PR gdb/13498:
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "valprint.h"
63 #include <ctype.h>
64
65 #include <fcntl.h>
66 #include "gdb_string.h"
67 #include "gdb_assert.h"
68 #include <sys/types.h>
69 #ifdef HAVE_ZLIB_H
70 #include <zlib.h>
71 #endif
72 #ifdef HAVE_MMAP
73 #include <sys/mman.h>
74 #ifndef MAP_FAILED
75 #define MAP_FAILED ((void *) -1)
76 #endif
77 #endif
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When non-zero, dump DIEs after they are read in. */
83 static int dwarf2_die_debug = 0;
84
85 /* When non-zero, cross-check physname against demangler. */
86 static int check_physname = 0;
87
88 static int pagesize;
89
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94 static int processing_has_namespace_info;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 struct dwarf2_section_info
99 {
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
103 /* Not NULL if the section was actually mmapped. */
104 void *map_addr;
105 /* Page aligned size of mmapped area. */
106 bfd_size_type map_len;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* A description of the mapped index. The file format is described in
121 a comment by the code that writes the index. */
122 struct mapped_index
123 {
124 /* Index data format version. */
125 int version;
126
127 /* The total length of the buffer. */
128 off_t total_size;
129
130 /* A pointer to the address table data. */
131 const gdb_byte *address_table;
132
133 /* Size of the address table data in bytes. */
134 offset_type address_table_size;
135
136 /* The symbol table, implemented as a hash table. */
137 const offset_type *symbol_table;
138
139 /* Size in slots, each slot is 2 offset_types. */
140 offset_type symbol_table_slots;
141
142 /* A pointer to the constant pool. */
143 const char *constant_pool;
144 };
145
146 /* Collection of data recorded per objfile.
147 This hangs off of dwarf2_objfile_data_key. */
148
149 struct dwarf2_per_objfile
150 {
151 struct dwarf2_section_info info;
152 struct dwarf2_section_info abbrev;
153 struct dwarf2_section_info line;
154 struct dwarf2_section_info loc;
155 struct dwarf2_section_info macinfo;
156 struct dwarf2_section_info macro;
157 struct dwarf2_section_info str;
158 struct dwarf2_section_info ranges;
159 struct dwarf2_section_info frame;
160 struct dwarf2_section_info eh_frame;
161 struct dwarf2_section_info gdb_index;
162
163 VEC (dwarf2_section_info_def) *types;
164
165 /* Back link. */
166 struct objfile *objfile;
167
168 /* Table of all the compilation units. This is used to locate
169 the target compilation unit of a particular reference. */
170 struct dwarf2_per_cu_data **all_comp_units;
171
172 /* The number of compilation units in ALL_COMP_UNITS. */
173 int n_comp_units;
174
175 /* The number of .debug_types-related CUs. */
176 int n_type_units;
177
178 /* The .debug_types-related CUs (TUs). */
179 struct dwarf2_per_cu_data **all_type_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
184
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
192
193 /* True if we are using the mapped index,
194 or we are faking it for OBJF_READNOW's sake. */
195 unsigned char using_index;
196
197 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
198 struct mapped_index *index_table;
199
200 /* When using index_table, this keeps track of all quick_file_names entries.
201 TUs can share line table entries with CUs or other TUs, and there can be
202 a lot more TUs than unique line tables, so we maintain a separate table
203 of all line table entries to support the sharing. */
204 htab_t quick_file_names_table;
205
206 /* Set during partial symbol reading, to prevent queueing of full
207 symbols. */
208 int reading_partial_symbols;
209
210 /* Table mapping type .debug_info DIE offsets to types.
211 This is NULL if not allocated yet.
212 It (currently) makes sense to allocate debug_types_type_hash lazily.
213 To keep things simple we allocate both lazily. */
214 htab_t debug_info_type_hash;
215
216 /* Table mapping type .debug_types DIE offsets to types.
217 This is NULL if not allocated yet. */
218 htab_t debug_types_type_hash;
219 };
220
221 static struct dwarf2_per_objfile *dwarf2_per_objfile;
222
223 /* Default names of the debugging sections. */
224
225 /* Note that if the debugging section has been compressed, it might
226 have a name like .zdebug_info. */
227
228 static const struct dwarf2_debug_sections dwarf2_elf_names =
229 {
230 { ".debug_info", ".zdebug_info" },
231 { ".debug_abbrev", ".zdebug_abbrev" },
232 { ".debug_line", ".zdebug_line" },
233 { ".debug_loc", ".zdebug_loc" },
234 { ".debug_macinfo", ".zdebug_macinfo" },
235 { ".debug_macro", ".zdebug_macro" },
236 { ".debug_str", ".zdebug_str" },
237 { ".debug_ranges", ".zdebug_ranges" },
238 { ".debug_types", ".zdebug_types" },
239 { ".debug_frame", ".zdebug_frame" },
240 { ".eh_frame", NULL },
241 { ".gdb_index", ".zgdb_index" },
242 23
243 };
244
245 /* local data types */
246
247 /* We hold several abbreviation tables in memory at the same time. */
248 #ifndef ABBREV_HASH_SIZE
249 #define ABBREV_HASH_SIZE 121
250 #endif
251
252 /* The data in a compilation unit header, after target2host
253 translation, looks like this. */
254 struct comp_unit_head
255 {
256 unsigned int length;
257 short version;
258 unsigned char addr_size;
259 unsigned char signed_addr_p;
260 unsigned int abbrev_offset;
261
262 /* Size of file offsets; either 4 or 8. */
263 unsigned int offset_size;
264
265 /* Size of the length field; either 4 or 12. */
266 unsigned int initial_length_size;
267
268 /* Offset to the first byte of this compilation unit header in the
269 .debug_info section, for resolving relative reference dies. */
270 unsigned int offset;
271
272 /* Offset to first die in this cu from the start of the cu.
273 This will be the first byte following the compilation unit header. */
274 unsigned int first_die_offset;
275 };
276
277 /* Type used for delaying computation of method physnames.
278 See comments for compute_delayed_physnames. */
279 struct delayed_method_info
280 {
281 /* The type to which the method is attached, i.e., its parent class. */
282 struct type *type;
283
284 /* The index of the method in the type's function fieldlists. */
285 int fnfield_index;
286
287 /* The index of the method in the fieldlist. */
288 int index;
289
290 /* The name of the DIE. */
291 const char *name;
292
293 /* The DIE associated with this method. */
294 struct die_info *die;
295 };
296
297 typedef struct delayed_method_info delayed_method_info;
298 DEF_VEC_O (delayed_method_info);
299
300 /* Internal state when decoding a particular compilation unit. */
301 struct dwarf2_cu
302 {
303 /* The objfile containing this compilation unit. */
304 struct objfile *objfile;
305
306 /* The header of the compilation unit. */
307 struct comp_unit_head header;
308
309 /* Base address of this compilation unit. */
310 CORE_ADDR base_address;
311
312 /* Non-zero if base_address has been set. */
313 int base_known;
314
315 /* The language we are debugging. */
316 enum language language;
317 const struct language_defn *language_defn;
318
319 const char *producer;
320
321 /* The generic symbol table building routines have separate lists for
322 file scope symbols and all all other scopes (local scopes). So
323 we need to select the right one to pass to add_symbol_to_list().
324 We do it by keeping a pointer to the correct list in list_in_scope.
325
326 FIXME: The original dwarf code just treated the file scope as the
327 first local scope, and all other local scopes as nested local
328 scopes, and worked fine. Check to see if we really need to
329 distinguish these in buildsym.c. */
330 struct pending **list_in_scope;
331
332 /* DWARF abbreviation table associated with this compilation unit. */
333 struct abbrev_info **dwarf2_abbrevs;
334
335 /* Storage for the abbrev table. */
336 struct obstack abbrev_obstack;
337
338 /* Hash table holding all the loaded partial DIEs. */
339 htab_t partial_dies;
340
341 /* Storage for things with the same lifetime as this read-in compilation
342 unit, including partial DIEs. */
343 struct obstack comp_unit_obstack;
344
345 /* When multiple dwarf2_cu structures are living in memory, this field
346 chains them all together, so that they can be released efficiently.
347 We will probably also want a generation counter so that most-recently-used
348 compilation units are cached... */
349 struct dwarf2_per_cu_data *read_in_chain;
350
351 /* Backchain to our per_cu entry if the tree has been built. */
352 struct dwarf2_per_cu_data *per_cu;
353
354 /* How many compilation units ago was this CU last referenced? */
355 int last_used;
356
357 /* A hash table of die offsets for following references. */
358 htab_t die_hash;
359
360 /* Full DIEs if read in. */
361 struct die_info *dies;
362
363 /* A set of pointers to dwarf2_per_cu_data objects for compilation
364 units referenced by this one. Only set during full symbol processing;
365 partial symbol tables do not have dependencies. */
366 htab_t dependencies;
367
368 /* Header data from the line table, during full symbol processing. */
369 struct line_header *line_header;
370
371 /* A list of methods which need to have physnames computed
372 after all type information has been read. */
373 VEC (delayed_method_info) *method_list;
374
375 /* To be copied to symtab->call_site_htab. */
376 htab_t call_site_htab;
377
378 /* Mark used when releasing cached dies. */
379 unsigned int mark : 1;
380
381 /* This flag will be set if this compilation unit might include
382 inter-compilation-unit references. */
383 unsigned int has_form_ref_addr : 1;
384
385 /* This flag will be set if this compilation unit includes any
386 DW_TAG_namespace DIEs. If we know that there are explicit
387 DIEs for namespaces, we don't need to try to infer them
388 from mangled names. */
389 unsigned int has_namespace_info : 1;
390
391 /* This CU references .debug_loc. See the symtab->locations_valid field.
392 This test is imperfect as there may exist optimized debug code not using
393 any location list and still facing inlining issues if handled as
394 unoptimized code. For a future better test see GCC PR other/32998. */
395 unsigned int has_loclist : 1;
396 };
397
398 /* Persistent data held for a compilation unit, even when not
399 processing it. We put a pointer to this structure in the
400 read_symtab_private field of the psymtab. */
401
402 struct dwarf2_per_cu_data
403 {
404 /* The start offset and length of this compilation unit. 2**29-1
405 bytes should suffice to store the length of any compilation unit
406 - if it doesn't, GDB will fall over anyway.
407 NOTE: Unlike comp_unit_head.length, this length includes
408 initial_length_size. */
409 unsigned int offset;
410 unsigned int length : 29;
411
412 /* Flag indicating this compilation unit will be read in before
413 any of the current compilation units are processed. */
414 unsigned int queued : 1;
415
416 /* This flag will be set if we need to load absolutely all DIEs
417 for this compilation unit, instead of just the ones we think
418 are interesting. It gets set if we look for a DIE in the
419 hash table and don't find it. */
420 unsigned int load_all_dies : 1;
421
422 /* Non-null if this CU is from .debug_types; in which case it points
423 to the section. Otherwise it's from .debug_info. */
424 struct dwarf2_section_info *debug_types_section;
425
426 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
427 of the CU cache it gets reset to NULL again. */
428 struct dwarf2_cu *cu;
429
430 /* The corresponding objfile.
431 Normally we can get the objfile from dwarf2_per_objfile.
432 However we can enter this file with just a "per_cu" handle. */
433 struct objfile *objfile;
434
435 /* When using partial symbol tables, the 'psymtab' field is active.
436 Otherwise the 'quick' field is active. */
437 union
438 {
439 /* The partial symbol table associated with this compilation unit,
440 or NULL for partial units (which do not have an associated
441 symtab). */
442 struct partial_symtab *psymtab;
443
444 /* Data needed by the "quick" functions. */
445 struct dwarf2_per_cu_quick_data *quick;
446 } v;
447 };
448
449 /* Entry in the signatured_types hash table. */
450
451 struct signatured_type
452 {
453 ULONGEST signature;
454
455 /* Offset in .debug_types of the type defined by this TU. */
456 unsigned int type_offset;
457
458 /* The CU(/TU) of this type. */
459 struct dwarf2_per_cu_data per_cu;
460 };
461
462 /* Struct used to pass misc. parameters to read_die_and_children, et
463 al. which are used for both .debug_info and .debug_types dies.
464 All parameters here are unchanging for the life of the call. This
465 struct exists to abstract away the constant parameters of die
466 reading. */
467
468 struct die_reader_specs
469 {
470 /* The bfd of this objfile. */
471 bfd* abfd;
472
473 /* The CU of the DIE we are parsing. */
474 struct dwarf2_cu *cu;
475
476 /* Pointer to start of section buffer.
477 This is either the start of .debug_info or .debug_types. */
478 const gdb_byte *buffer;
479 };
480
481 /* The line number information for a compilation unit (found in the
482 .debug_line section) begins with a "statement program header",
483 which contains the following information. */
484 struct line_header
485 {
486 unsigned int total_length;
487 unsigned short version;
488 unsigned int header_length;
489 unsigned char minimum_instruction_length;
490 unsigned char maximum_ops_per_instruction;
491 unsigned char default_is_stmt;
492 int line_base;
493 unsigned char line_range;
494 unsigned char opcode_base;
495
496 /* standard_opcode_lengths[i] is the number of operands for the
497 standard opcode whose value is i. This means that
498 standard_opcode_lengths[0] is unused, and the last meaningful
499 element is standard_opcode_lengths[opcode_base - 1]. */
500 unsigned char *standard_opcode_lengths;
501
502 /* The include_directories table. NOTE! These strings are not
503 allocated with xmalloc; instead, they are pointers into
504 debug_line_buffer. If you try to free them, `free' will get
505 indigestion. */
506 unsigned int num_include_dirs, include_dirs_size;
507 char **include_dirs;
508
509 /* The file_names table. NOTE! These strings are not allocated
510 with xmalloc; instead, they are pointers into debug_line_buffer.
511 Don't try to free them directly. */
512 unsigned int num_file_names, file_names_size;
513 struct file_entry
514 {
515 char *name;
516 unsigned int dir_index;
517 unsigned int mod_time;
518 unsigned int length;
519 int included_p; /* Non-zero if referenced by the Line Number Program. */
520 struct symtab *symtab; /* The associated symbol table, if any. */
521 } *file_names;
522
523 /* The start and end of the statement program following this
524 header. These point into dwarf2_per_objfile->line_buffer. */
525 gdb_byte *statement_program_start, *statement_program_end;
526 };
527
528 /* When we construct a partial symbol table entry we only
529 need this much information. */
530 struct partial_die_info
531 {
532 /* Offset of this DIE. */
533 unsigned int offset;
534
535 /* DWARF-2 tag for this DIE. */
536 ENUM_BITFIELD(dwarf_tag) tag : 16;
537
538 /* Assorted flags describing the data found in this DIE. */
539 unsigned int has_children : 1;
540 unsigned int is_external : 1;
541 unsigned int is_declaration : 1;
542 unsigned int has_type : 1;
543 unsigned int has_specification : 1;
544 unsigned int has_pc_info : 1;
545
546 /* Flag set if the SCOPE field of this structure has been
547 computed. */
548 unsigned int scope_set : 1;
549
550 /* Flag set if the DIE has a byte_size attribute. */
551 unsigned int has_byte_size : 1;
552
553 /* Flag set if any of the DIE's children are template arguments. */
554 unsigned int has_template_arguments : 1;
555
556 /* Flag set if fixup_partial_die has been called on this die. */
557 unsigned int fixup_called : 1;
558
559 /* The name of this DIE. Normally the value of DW_AT_name, but
560 sometimes a default name for unnamed DIEs. */
561 char *name;
562
563 /* The linkage name, if present. */
564 const char *linkage_name;
565
566 /* The scope to prepend to our children. This is generally
567 allocated on the comp_unit_obstack, so will disappear
568 when this compilation unit leaves the cache. */
569 char *scope;
570
571 /* The location description associated with this DIE, if any. */
572 struct dwarf_block *locdesc;
573
574 /* If HAS_PC_INFO, the PC range associated with this DIE. */
575 CORE_ADDR lowpc;
576 CORE_ADDR highpc;
577
578 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
579 DW_AT_sibling, if any. */
580 /* NOTE: This member isn't strictly necessary, read_partial_die could
581 return DW_AT_sibling values to its caller load_partial_dies. */
582 gdb_byte *sibling;
583
584 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
585 DW_AT_specification (or DW_AT_abstract_origin or
586 DW_AT_extension). */
587 unsigned int spec_offset;
588
589 /* Pointers to this DIE's parent, first child, and next sibling,
590 if any. */
591 struct partial_die_info *die_parent, *die_child, *die_sibling;
592 };
593
594 /* This data structure holds the information of an abbrev. */
595 struct abbrev_info
596 {
597 unsigned int number; /* number identifying abbrev */
598 enum dwarf_tag tag; /* dwarf tag */
599 unsigned short has_children; /* boolean */
600 unsigned short num_attrs; /* number of attributes */
601 struct attr_abbrev *attrs; /* an array of attribute descriptions */
602 struct abbrev_info *next; /* next in chain */
603 };
604
605 struct attr_abbrev
606 {
607 ENUM_BITFIELD(dwarf_attribute) name : 16;
608 ENUM_BITFIELD(dwarf_form) form : 16;
609 };
610
611 /* Attributes have a name and a value. */
612 struct attribute
613 {
614 ENUM_BITFIELD(dwarf_attribute) name : 16;
615 ENUM_BITFIELD(dwarf_form) form : 15;
616
617 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
618 field should be in u.str (existing only for DW_STRING) but it is kept
619 here for better struct attribute alignment. */
620 unsigned int string_is_canonical : 1;
621
622 union
623 {
624 char *str;
625 struct dwarf_block *blk;
626 ULONGEST unsnd;
627 LONGEST snd;
628 CORE_ADDR addr;
629 struct signatured_type *signatured_type;
630 }
631 u;
632 };
633
634 /* This data structure holds a complete die structure. */
635 struct die_info
636 {
637 /* DWARF-2 tag for this DIE. */
638 ENUM_BITFIELD(dwarf_tag) tag : 16;
639
640 /* Number of attributes */
641 unsigned char num_attrs;
642
643 /* True if we're presently building the full type name for the
644 type derived from this DIE. */
645 unsigned char building_fullname : 1;
646
647 /* Abbrev number */
648 unsigned int abbrev;
649
650 /* Offset in .debug_info or .debug_types section. */
651 unsigned int offset;
652
653 /* The dies in a compilation unit form an n-ary tree. PARENT
654 points to this die's parent; CHILD points to the first child of
655 this node; and all the children of a given node are chained
656 together via their SIBLING fields. */
657 struct die_info *child; /* Its first child, if any. */
658 struct die_info *sibling; /* Its next sibling, if any. */
659 struct die_info *parent; /* Its parent, if any. */
660
661 /* An array of attributes, with NUM_ATTRS elements. There may be
662 zero, but it's not common and zero-sized arrays are not
663 sufficiently portable C. */
664 struct attribute attrs[1];
665 };
666
667 /* Get at parts of an attribute structure. */
668
669 #define DW_STRING(attr) ((attr)->u.str)
670 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
671 #define DW_UNSND(attr) ((attr)->u.unsnd)
672 #define DW_BLOCK(attr) ((attr)->u.blk)
673 #define DW_SND(attr) ((attr)->u.snd)
674 #define DW_ADDR(attr) ((attr)->u.addr)
675 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
676
677 /* Blocks are a bunch of untyped bytes. */
678 struct dwarf_block
679 {
680 unsigned int size;
681
682 /* Valid only if SIZE is not zero. */
683 gdb_byte *data;
684 };
685
686 #ifndef ATTR_ALLOC_CHUNK
687 #define ATTR_ALLOC_CHUNK 4
688 #endif
689
690 /* Allocate fields for structs, unions and enums in this size. */
691 #ifndef DW_FIELD_ALLOC_CHUNK
692 #define DW_FIELD_ALLOC_CHUNK 4
693 #endif
694
695 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
696 but this would require a corresponding change in unpack_field_as_long
697 and friends. */
698 static int bits_per_byte = 8;
699
700 /* The routines that read and process dies for a C struct or C++ class
701 pass lists of data member fields and lists of member function fields
702 in an instance of a field_info structure, as defined below. */
703 struct field_info
704 {
705 /* List of data member and baseclasses fields. */
706 struct nextfield
707 {
708 struct nextfield *next;
709 int accessibility;
710 int virtuality;
711 struct field field;
712 }
713 *fields, *baseclasses;
714
715 /* Number of fields (including baseclasses). */
716 int nfields;
717
718 /* Number of baseclasses. */
719 int nbaseclasses;
720
721 /* Set if the accesibility of one of the fields is not public. */
722 int non_public_fields;
723
724 /* Member function fields array, entries are allocated in the order they
725 are encountered in the object file. */
726 struct nextfnfield
727 {
728 struct nextfnfield *next;
729 struct fn_field fnfield;
730 }
731 *fnfields;
732
733 /* Member function fieldlist array, contains name of possibly overloaded
734 member function, number of overloaded member functions and a pointer
735 to the head of the member function field chain. */
736 struct fnfieldlist
737 {
738 char *name;
739 int length;
740 struct nextfnfield *head;
741 }
742 *fnfieldlists;
743
744 /* Number of entries in the fnfieldlists array. */
745 int nfnfields;
746
747 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
748 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
749 struct typedef_field_list
750 {
751 struct typedef_field field;
752 struct typedef_field_list *next;
753 }
754 *typedef_field_list;
755 unsigned typedef_field_list_count;
756 };
757
758 /* One item on the queue of compilation units to read in full symbols
759 for. */
760 struct dwarf2_queue_item
761 {
762 struct dwarf2_per_cu_data *per_cu;
763 struct dwarf2_queue_item *next;
764 };
765
766 /* The current queue. */
767 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
768
769 /* Loaded secondary compilation units are kept in memory until they
770 have not been referenced for the processing of this many
771 compilation units. Set this to zero to disable caching. Cache
772 sizes of up to at least twenty will improve startup time for
773 typical inter-CU-reference binaries, at an obvious memory cost. */
774 static int dwarf2_max_cache_age = 5;
775 static void
776 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
777 struct cmd_list_element *c, const char *value)
778 {
779 fprintf_filtered (file, _("The upper bound on the age of cached "
780 "dwarf2 compilation units is %s.\n"),
781 value);
782 }
783
784
785 /* Various complaints about symbol reading that don't abort the process. */
786
787 static void
788 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
789 {
790 complaint (&symfile_complaints,
791 _("statement list doesn't fit in .debug_line section"));
792 }
793
794 static void
795 dwarf2_debug_line_missing_file_complaint (void)
796 {
797 complaint (&symfile_complaints,
798 _(".debug_line section has line data without a file"));
799 }
800
801 static void
802 dwarf2_debug_line_missing_end_sequence_complaint (void)
803 {
804 complaint (&symfile_complaints,
805 _(".debug_line section has line "
806 "program sequence without an end"));
807 }
808
809 static void
810 dwarf2_complex_location_expr_complaint (void)
811 {
812 complaint (&symfile_complaints, _("location expression too complex"));
813 }
814
815 static void
816 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
817 int arg3)
818 {
819 complaint (&symfile_complaints,
820 _("const value length mismatch for '%s', got %d, expected %d"),
821 arg1, arg2, arg3);
822 }
823
824 static void
825 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
826 {
827 complaint (&symfile_complaints,
828 _("macro info runs off end of `%s' section"),
829 section->asection->name);
830 }
831
832 static void
833 dwarf2_macro_malformed_definition_complaint (const char *arg1)
834 {
835 complaint (&symfile_complaints,
836 _("macro debug info contains a "
837 "malformed macro definition:\n`%s'"),
838 arg1);
839 }
840
841 static void
842 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
843 {
844 complaint (&symfile_complaints,
845 _("invalid attribute class or form for '%s' in '%s'"),
846 arg1, arg2);
847 }
848
849 /* local function prototypes */
850
851 static void dwarf2_locate_sections (bfd *, asection *, void *);
852
853 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
854 struct objfile *);
855
856 static void dwarf2_find_base_address (struct die_info *die,
857 struct dwarf2_cu *cu);
858
859 static void dwarf2_build_psymtabs_hard (struct objfile *);
860
861 static void scan_partial_symbols (struct partial_die_info *,
862 CORE_ADDR *, CORE_ADDR *,
863 int, struct dwarf2_cu *);
864
865 static void add_partial_symbol (struct partial_die_info *,
866 struct dwarf2_cu *);
867
868 static void add_partial_namespace (struct partial_die_info *pdi,
869 CORE_ADDR *lowpc, CORE_ADDR *highpc,
870 int need_pc, struct dwarf2_cu *cu);
871
872 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
873 CORE_ADDR *highpc, int need_pc,
874 struct dwarf2_cu *cu);
875
876 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
877 struct dwarf2_cu *cu);
878
879 static void add_partial_subprogram (struct partial_die_info *pdi,
880 CORE_ADDR *lowpc, CORE_ADDR *highpc,
881 int need_pc, struct dwarf2_cu *cu);
882
883 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
884 gdb_byte *buffer, gdb_byte *info_ptr,
885 bfd *abfd, struct dwarf2_cu *cu);
886
887 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
888
889 static void psymtab_to_symtab_1 (struct partial_symtab *);
890
891 static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
892
893 static void dwarf2_free_abbrev_table (void *);
894
895 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
896
897 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
898 struct dwarf2_cu *);
899
900 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
901 struct dwarf2_cu *);
902
903 static struct partial_die_info *load_partial_dies (bfd *,
904 gdb_byte *, gdb_byte *,
905 int, struct dwarf2_cu *);
906
907 static gdb_byte *read_partial_die (struct partial_die_info *,
908 struct abbrev_info *abbrev,
909 unsigned int, bfd *,
910 gdb_byte *, gdb_byte *,
911 struct dwarf2_cu *);
912
913 static struct partial_die_info *find_partial_die (unsigned int,
914 struct dwarf2_cu *);
915
916 static void fixup_partial_die (struct partial_die_info *,
917 struct dwarf2_cu *);
918
919 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
920 bfd *, gdb_byte *, struct dwarf2_cu *);
921
922 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
923 bfd *, gdb_byte *, struct dwarf2_cu *);
924
925 static unsigned int read_1_byte (bfd *, gdb_byte *);
926
927 static int read_1_signed_byte (bfd *, gdb_byte *);
928
929 static unsigned int read_2_bytes (bfd *, gdb_byte *);
930
931 static unsigned int read_4_bytes (bfd *, gdb_byte *);
932
933 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
934
935 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
936 unsigned int *);
937
938 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
939
940 static LONGEST read_checked_initial_length_and_offset
941 (bfd *, gdb_byte *, const struct comp_unit_head *,
942 unsigned int *, unsigned int *);
943
944 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
945 unsigned int *);
946
947 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
948
949 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
950
951 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
952
953 static char *read_indirect_string (bfd *, gdb_byte *,
954 const struct comp_unit_head *,
955 unsigned int *);
956
957 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
958
959 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
960
961 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
962
963 static void set_cu_language (unsigned int, struct dwarf2_cu *);
964
965 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
966 struct dwarf2_cu *);
967
968 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
969 unsigned int,
970 struct dwarf2_cu *);
971
972 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
973 struct dwarf2_cu *cu);
974
975 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
976
977 static struct die_info *die_specification (struct die_info *die,
978 struct dwarf2_cu **);
979
980 static void free_line_header (struct line_header *lh);
981
982 static void add_file_name (struct line_header *, char *, unsigned int,
983 unsigned int, unsigned int);
984
985 static struct line_header *(dwarf_decode_line_header
986 (unsigned int offset,
987 bfd *abfd, struct dwarf2_cu *cu));
988
989 static void dwarf_decode_lines (struct line_header *, const char *,
990 struct dwarf2_cu *, struct partial_symtab *,
991 int);
992
993 static void dwarf2_start_subfile (char *, const char *, const char *);
994
995 static struct symbol *new_symbol (struct die_info *, struct type *,
996 struct dwarf2_cu *);
997
998 static struct symbol *new_symbol_full (struct die_info *, struct type *,
999 struct dwarf2_cu *, struct symbol *);
1000
1001 static void dwarf2_const_value (struct attribute *, struct symbol *,
1002 struct dwarf2_cu *);
1003
1004 static void dwarf2_const_value_attr (struct attribute *attr,
1005 struct type *type,
1006 const char *name,
1007 struct obstack *obstack,
1008 struct dwarf2_cu *cu, long *value,
1009 gdb_byte **bytes,
1010 struct dwarf2_locexpr_baton **baton);
1011
1012 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1013
1014 static int need_gnat_info (struct dwarf2_cu *);
1015
1016 static struct type *die_descriptive_type (struct die_info *,
1017 struct dwarf2_cu *);
1018
1019 static void set_descriptive_type (struct type *, struct die_info *,
1020 struct dwarf2_cu *);
1021
1022 static struct type *die_containing_type (struct die_info *,
1023 struct dwarf2_cu *);
1024
1025 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1029
1030 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1031
1032 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1033
1034 static char *typename_concat (struct obstack *obs, const char *prefix,
1035 const char *suffix, int physname,
1036 struct dwarf2_cu *cu);
1037
1038 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1039
1040 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1041
1042 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1047
1048 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1049 struct dwarf2_cu *, struct partial_symtab *);
1050
1051 static int dwarf2_get_pc_bounds (struct die_info *,
1052 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1053 struct partial_symtab *);
1054
1055 static void get_scope_pc_bounds (struct die_info *,
1056 CORE_ADDR *, CORE_ADDR *,
1057 struct dwarf2_cu *);
1058
1059 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1060 CORE_ADDR, struct dwarf2_cu *);
1061
1062 static void dwarf2_add_field (struct field_info *, struct die_info *,
1063 struct dwarf2_cu *);
1064
1065 static void dwarf2_attach_fields_to_type (struct field_info *,
1066 struct type *, struct dwarf2_cu *);
1067
1068 static void dwarf2_add_member_fn (struct field_info *,
1069 struct die_info *, struct type *,
1070 struct dwarf2_cu *);
1071
1072 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1073 struct type *,
1074 struct dwarf2_cu *);
1075
1076 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1077
1078 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1081
1082 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1083
1084 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1085
1086 static struct type *read_module_type (struct die_info *die,
1087 struct dwarf2_cu *cu);
1088
1089 static const char *namespace_name (struct die_info *die,
1090 int *is_anonymous, struct dwarf2_cu *);
1091
1092 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1095
1096 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1097 struct dwarf2_cu *);
1098
1099 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1100
1101 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1102 gdb_byte *info_ptr,
1103 gdb_byte **new_info_ptr,
1104 struct die_info *parent);
1105
1106 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1107 gdb_byte *info_ptr,
1108 gdb_byte **new_info_ptr,
1109 struct die_info *parent);
1110
1111 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1112 gdb_byte *info_ptr,
1113 gdb_byte **new_info_ptr,
1114 struct die_info *parent);
1115
1116 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1117 struct die_info **, gdb_byte *,
1118 int *);
1119
1120 static void process_die (struct die_info *, struct dwarf2_cu *);
1121
1122 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1123 struct obstack *);
1124
1125 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1126
1127 static const char *dwarf2_full_name (char *name,
1128 struct die_info *die,
1129 struct dwarf2_cu *cu);
1130
1131 static struct die_info *dwarf2_extension (struct die_info *die,
1132 struct dwarf2_cu **);
1133
1134 static char *dwarf_tag_name (unsigned int);
1135
1136 static char *dwarf_attr_name (unsigned int);
1137
1138 static char *dwarf_form_name (unsigned int);
1139
1140 static char *dwarf_bool_name (unsigned int);
1141
1142 static char *dwarf_type_encoding_name (unsigned int);
1143
1144 #if 0
1145 static char *dwarf_cfi_name (unsigned int);
1146 #endif
1147
1148 static struct die_info *sibling_die (struct die_info *);
1149
1150 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1151
1152 static void dump_die_for_error (struct die_info *);
1153
1154 static void dump_die_1 (struct ui_file *, int level, int max_level,
1155 struct die_info *);
1156
1157 /*static*/ void dump_die (struct die_info *, int max_level);
1158
1159 static void store_in_ref_table (struct die_info *,
1160 struct dwarf2_cu *);
1161
1162 static int is_ref_attr (struct attribute *);
1163
1164 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1165
1166 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1167
1168 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1169 struct attribute *,
1170 struct dwarf2_cu **);
1171
1172 static struct die_info *follow_die_ref (struct die_info *,
1173 struct attribute *,
1174 struct dwarf2_cu **);
1175
1176 static struct die_info *follow_die_sig (struct die_info *,
1177 struct attribute *,
1178 struct dwarf2_cu **);
1179
1180 static struct signatured_type *lookup_signatured_type_at_offset
1181 (struct objfile *objfile,
1182 struct dwarf2_section_info *section,
1183 unsigned int offset);
1184
1185 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1186
1187 static void read_signatured_type (struct signatured_type *type_sig);
1188
1189 /* memory allocation interface */
1190
1191 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1192
1193 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1194
1195 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1196
1197 static void dwarf_decode_macros (struct line_header *, unsigned int,
1198 char *, bfd *, struct dwarf2_cu *,
1199 struct dwarf2_section_info *,
1200 int);
1201
1202 static int attr_form_is_block (struct attribute *);
1203
1204 static int attr_form_is_section_offset (struct attribute *);
1205
1206 static int attr_form_is_constant (struct attribute *);
1207
1208 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1209 struct dwarf2_loclist_baton *baton,
1210 struct attribute *attr);
1211
1212 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1213 struct symbol *sym,
1214 struct dwarf2_cu *cu);
1215
1216 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1217 struct abbrev_info *abbrev,
1218 struct dwarf2_cu *cu);
1219
1220 static void free_stack_comp_unit (void *);
1221
1222 static hashval_t partial_die_hash (const void *item);
1223
1224 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1225
1226 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1227 (unsigned int offset, struct objfile *objfile);
1228
1229 static void init_one_comp_unit (struct dwarf2_cu *cu,
1230 struct dwarf2_per_cu_data *per_cu);
1231
1232 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1233 struct die_info *comp_unit_die);
1234
1235 static void free_heap_comp_unit (void *);
1236
1237 static void free_cached_comp_units (void *);
1238
1239 static void age_cached_comp_units (void);
1240
1241 static void free_one_cached_comp_unit (void *);
1242
1243 static struct type *set_die_type (struct die_info *, struct type *,
1244 struct dwarf2_cu *);
1245
1246 static void create_all_comp_units (struct objfile *);
1247
1248 static int create_debug_types_hash_table (struct objfile *objfile);
1249
1250 static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1251
1252 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1253
1254 static void dwarf2_add_dependence (struct dwarf2_cu *,
1255 struct dwarf2_per_cu_data *);
1256
1257 static void dwarf2_mark (struct dwarf2_cu *);
1258
1259 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1260
1261 static struct type *get_die_type_at_offset (unsigned int,
1262 struct dwarf2_per_cu_data *per_cu);
1263
1264 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1265
1266 static void dwarf2_release_queue (void *dummy);
1267
1268 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1269
1270 static void process_queue (void);
1271
1272 static void find_file_and_directory (struct die_info *die,
1273 struct dwarf2_cu *cu,
1274 char **name, char **comp_dir);
1275
1276 static char *file_full_name (int file, struct line_header *lh,
1277 const char *comp_dir);
1278
1279 static gdb_byte *read_and_check_comp_unit_head
1280 (struct comp_unit_head *header,
1281 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1282 int is_debug_types_section);
1283
1284 static void init_cu_die_reader (struct die_reader_specs *reader,
1285 struct dwarf2_cu *cu);
1286
1287 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1288
1289 #if WORDS_BIGENDIAN
1290
1291 /* Convert VALUE between big- and little-endian. */
1292 static offset_type
1293 byte_swap (offset_type value)
1294 {
1295 offset_type result;
1296
1297 result = (value & 0xff) << 24;
1298 result |= (value & 0xff00) << 8;
1299 result |= (value & 0xff0000) >> 8;
1300 result |= (value & 0xff000000) >> 24;
1301 return result;
1302 }
1303
1304 #define MAYBE_SWAP(V) byte_swap (V)
1305
1306 #else
1307 #define MAYBE_SWAP(V) (V)
1308 #endif /* WORDS_BIGENDIAN */
1309
1310 /* The suffix for an index file. */
1311 #define INDEX_SUFFIX ".gdb-index"
1312
1313 static const char *dwarf2_physname (char *name, struct die_info *die,
1314 struct dwarf2_cu *cu);
1315
1316 /* Try to locate the sections we need for DWARF 2 debugging
1317 information and return true if we have enough to do something.
1318 NAMES points to the dwarf2 section names, or is NULL if the standard
1319 ELF names are used. */
1320
1321 int
1322 dwarf2_has_info (struct objfile *objfile,
1323 const struct dwarf2_debug_sections *names)
1324 {
1325 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1326 if (!dwarf2_per_objfile)
1327 {
1328 /* Initialize per-objfile state. */
1329 struct dwarf2_per_objfile *data
1330 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1331
1332 memset (data, 0, sizeof (*data));
1333 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1334 dwarf2_per_objfile = data;
1335
1336 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1337 (void *) names);
1338 dwarf2_per_objfile->objfile = objfile;
1339 }
1340 return (dwarf2_per_objfile->info.asection != NULL
1341 && dwarf2_per_objfile->abbrev.asection != NULL);
1342 }
1343
1344 /* When loading sections, we look either for uncompressed section or for
1345 compressed section names. */
1346
1347 static int
1348 section_is_p (const char *section_name,
1349 const struct dwarf2_section_names *names)
1350 {
1351 if (names->normal != NULL
1352 && strcmp (section_name, names->normal) == 0)
1353 return 1;
1354 if (names->compressed != NULL
1355 && strcmp (section_name, names->compressed) == 0)
1356 return 1;
1357 return 0;
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1366 {
1367 const struct dwarf2_debug_sections *names;
1368
1369 if (vnames == NULL)
1370 names = &dwarf2_elf_names;
1371 else
1372 names = (const struct dwarf2_debug_sections *) vnames;
1373
1374 if (section_is_p (sectp->name, &names->info))
1375 {
1376 dwarf2_per_objfile->info.asection = sectp;
1377 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1378 }
1379 else if (section_is_p (sectp->name, &names->abbrev))
1380 {
1381 dwarf2_per_objfile->abbrev.asection = sectp;
1382 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1383 }
1384 else if (section_is_p (sectp->name, &names->line))
1385 {
1386 dwarf2_per_objfile->line.asection = sectp;
1387 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1388 }
1389 else if (section_is_p (sectp->name, &names->loc))
1390 {
1391 dwarf2_per_objfile->loc.asection = sectp;
1392 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1393 }
1394 else if (section_is_p (sectp->name, &names->macinfo))
1395 {
1396 dwarf2_per_objfile->macinfo.asection = sectp;
1397 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1398 }
1399 else if (section_is_p (sectp->name, &names->macro))
1400 {
1401 dwarf2_per_objfile->macro.asection = sectp;
1402 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1403 }
1404 else if (section_is_p (sectp->name, &names->str))
1405 {
1406 dwarf2_per_objfile->str.asection = sectp;
1407 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1408 }
1409 else if (section_is_p (sectp->name, &names->frame))
1410 {
1411 dwarf2_per_objfile->frame.asection = sectp;
1412 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1413 }
1414 else if (section_is_p (sectp->name, &names->eh_frame))
1415 {
1416 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1417
1418 if (aflag & SEC_HAS_CONTENTS)
1419 {
1420 dwarf2_per_objfile->eh_frame.asection = sectp;
1421 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1422 }
1423 }
1424 else if (section_is_p (sectp->name, &names->ranges))
1425 {
1426 dwarf2_per_objfile->ranges.asection = sectp;
1427 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1428 }
1429 else if (section_is_p (sectp->name, &names->types))
1430 {
1431 struct dwarf2_section_info type_section;
1432
1433 memset (&type_section, 0, sizeof (type_section));
1434 type_section.asection = sectp;
1435 type_section.size = bfd_get_section_size (sectp);
1436
1437 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1438 &type_section);
1439 }
1440 else if (section_is_p (sectp->name, &names->gdb_index))
1441 {
1442 dwarf2_per_objfile->gdb_index.asection = sectp;
1443 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1444 }
1445
1446 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1447 && bfd_section_vma (abfd, sectp) == 0)
1448 dwarf2_per_objfile->has_section_at_zero = 1;
1449 }
1450
1451 /* Decompress a section that was compressed using zlib. Store the
1452 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1453
1454 static void
1455 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1456 gdb_byte **outbuf, bfd_size_type *outsize)
1457 {
1458 bfd *abfd = objfile->obfd;
1459 #ifndef HAVE_ZLIB_H
1460 error (_("Support for zlib-compressed DWARF data (from '%s') "
1461 "is disabled in this copy of GDB"),
1462 bfd_get_filename (abfd));
1463 #else
1464 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1465 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1466 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1467 bfd_size_type uncompressed_size;
1468 gdb_byte *uncompressed_buffer;
1469 z_stream strm;
1470 int rc;
1471 int header_size = 12;
1472
1473 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1474 || bfd_bread (compressed_buffer,
1475 compressed_size, abfd) != compressed_size)
1476 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1477 bfd_get_filename (abfd));
1478
1479 /* Read the zlib header. In this case, it should be "ZLIB" followed
1480 by the uncompressed section size, 8 bytes in big-endian order. */
1481 if (compressed_size < header_size
1482 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1483 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1484 bfd_get_filename (abfd));
1485 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1486 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1487 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1488 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1489 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1490 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1491 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1492 uncompressed_size += compressed_buffer[11];
1493
1494 /* It is possible the section consists of several compressed
1495 buffers concatenated together, so we uncompress in a loop. */
1496 strm.zalloc = NULL;
1497 strm.zfree = NULL;
1498 strm.opaque = NULL;
1499 strm.avail_in = compressed_size - header_size;
1500 strm.next_in = (Bytef*) compressed_buffer + header_size;
1501 strm.avail_out = uncompressed_size;
1502 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1503 uncompressed_size);
1504 rc = inflateInit (&strm);
1505 while (strm.avail_in > 0)
1506 {
1507 if (rc != Z_OK)
1508 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510 strm.next_out = ((Bytef*) uncompressed_buffer
1511 + (uncompressed_size - strm.avail_out));
1512 rc = inflate (&strm, Z_FINISH);
1513 if (rc != Z_STREAM_END)
1514 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1515 bfd_get_filename (abfd), rc);
1516 rc = inflateReset (&strm);
1517 }
1518 rc = inflateEnd (&strm);
1519 if (rc != Z_OK
1520 || strm.avail_out != 0)
1521 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1522 bfd_get_filename (abfd), rc);
1523
1524 do_cleanups (cleanup);
1525 *outbuf = uncompressed_buffer;
1526 *outsize = uncompressed_size;
1527 #endif
1528 }
1529
1530 /* A helper function that decides whether a section is empty. */
1531
1532 static int
1533 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1534 {
1535 return info->asection == NULL || info->size == 0;
1536 }
1537
1538 /* Read the contents of the section INFO from object file specified by
1539 OBJFILE, store info about the section into INFO.
1540 If the section is compressed, uncompress it before returning. */
1541
1542 static void
1543 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1544 {
1545 bfd *abfd = objfile->obfd;
1546 asection *sectp = info->asection;
1547 gdb_byte *buf, *retbuf;
1548 unsigned char header[4];
1549
1550 if (info->readin)
1551 return;
1552 info->buffer = NULL;
1553 info->map_addr = NULL;
1554 info->readin = 1;
1555
1556 if (dwarf2_section_empty_p (info))
1557 return;
1558
1559 /* Check if the file has a 4-byte header indicating compression. */
1560 if (info->size > sizeof (header)
1561 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1562 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1563 {
1564 /* Upon decompression, update the buffer and its size. */
1565 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1566 {
1567 zlib_decompress_section (objfile, sectp, &info->buffer,
1568 &info->size);
1569 return;
1570 }
1571 }
1572
1573 #ifdef HAVE_MMAP
1574 if (pagesize == 0)
1575 pagesize = getpagesize ();
1576
1577 /* Only try to mmap sections which are large enough: we don't want to
1578 waste space due to fragmentation. Also, only try mmap for sections
1579 without relocations. */
1580
1581 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1582 {
1583 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1584 MAP_PRIVATE, sectp->filepos,
1585 &info->map_addr, &info->map_len);
1586
1587 if ((caddr_t)info->buffer != MAP_FAILED)
1588 {
1589 #if HAVE_POSIX_MADVISE
1590 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1591 #endif
1592 return;
1593 }
1594 }
1595 #endif
1596
1597 /* If we get here, we are a normal, not-compressed section. */
1598 info->buffer = buf
1599 = obstack_alloc (&objfile->objfile_obstack, info->size);
1600
1601 /* When debugging .o files, we may need to apply relocations; see
1602 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1603 We never compress sections in .o files, so we only need to
1604 try this when the section is not compressed. */
1605 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1606 if (retbuf != NULL)
1607 {
1608 info->buffer = retbuf;
1609 return;
1610 }
1611
1612 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1613 || bfd_bread (buf, info->size, abfd) != info->size)
1614 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1615 bfd_get_filename (abfd));
1616 }
1617
1618 /* A helper function that returns the size of a section in a safe way.
1619 If you are positive that the section has been read before using the
1620 size, then it is safe to refer to the dwarf2_section_info object's
1621 "size" field directly. In other cases, you must call this
1622 function, because for compressed sections the size field is not set
1623 correctly until the section has been read. */
1624
1625 static bfd_size_type
1626 dwarf2_section_size (struct objfile *objfile,
1627 struct dwarf2_section_info *info)
1628 {
1629 if (!info->readin)
1630 dwarf2_read_section (objfile, info);
1631 return info->size;
1632 }
1633
1634 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1635 SECTION_NAME. */
1636
1637 void
1638 dwarf2_get_section_info (struct objfile *objfile,
1639 enum dwarf2_section_enum sect,
1640 asection **sectp, gdb_byte **bufp,
1641 bfd_size_type *sizep)
1642 {
1643 struct dwarf2_per_objfile *data
1644 = objfile_data (objfile, dwarf2_objfile_data_key);
1645 struct dwarf2_section_info *info;
1646
1647 /* We may see an objfile without any DWARF, in which case we just
1648 return nothing. */
1649 if (data == NULL)
1650 {
1651 *sectp = NULL;
1652 *bufp = NULL;
1653 *sizep = 0;
1654 return;
1655 }
1656 switch (sect)
1657 {
1658 case DWARF2_DEBUG_FRAME:
1659 info = &data->frame;
1660 break;
1661 case DWARF2_EH_FRAME:
1662 info = &data->eh_frame;
1663 break;
1664 default:
1665 gdb_assert_not_reached ("unexpected section");
1666 }
1667
1668 dwarf2_read_section (objfile, info);
1669
1670 *sectp = info->asection;
1671 *bufp = info->buffer;
1672 *sizep = info->size;
1673 }
1674
1675 \f
1676 /* DWARF quick_symbols_functions support. */
1677
1678 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1679 unique line tables, so we maintain a separate table of all .debug_line
1680 derived entries to support the sharing.
1681 All the quick functions need is the list of file names. We discard the
1682 line_header when we're done and don't need to record it here. */
1683 struct quick_file_names
1684 {
1685 /* The offset in .debug_line of the line table. We hash on this. */
1686 unsigned int offset;
1687
1688 /* The number of entries in file_names, real_names. */
1689 unsigned int num_file_names;
1690
1691 /* The file names from the line table, after being run through
1692 file_full_name. */
1693 const char **file_names;
1694
1695 /* The file names from the line table after being run through
1696 gdb_realpath. These are computed lazily. */
1697 const char **real_names;
1698 };
1699
1700 /* When using the index (and thus not using psymtabs), each CU has an
1701 object of this type. This is used to hold information needed by
1702 the various "quick" methods. */
1703 struct dwarf2_per_cu_quick_data
1704 {
1705 /* The file table. This can be NULL if there was no file table
1706 or it's currently not read in.
1707 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1708 struct quick_file_names *file_names;
1709
1710 /* The corresponding symbol table. This is NULL if symbols for this
1711 CU have not yet been read. */
1712 struct symtab *symtab;
1713
1714 /* A temporary mark bit used when iterating over all CUs in
1715 expand_symtabs_matching. */
1716 unsigned int mark : 1;
1717
1718 /* True if we've tried to read the file table and found there isn't one.
1719 There will be no point in trying to read it again next time. */
1720 unsigned int no_file_data : 1;
1721 };
1722
1723 /* Hash function for a quick_file_names. */
1724
1725 static hashval_t
1726 hash_file_name_entry (const void *e)
1727 {
1728 const struct quick_file_names *file_data = e;
1729
1730 return file_data->offset;
1731 }
1732
1733 /* Equality function for a quick_file_names. */
1734
1735 static int
1736 eq_file_name_entry (const void *a, const void *b)
1737 {
1738 const struct quick_file_names *ea = a;
1739 const struct quick_file_names *eb = b;
1740
1741 return ea->offset == eb->offset;
1742 }
1743
1744 /* Delete function for a quick_file_names. */
1745
1746 static void
1747 delete_file_name_entry (void *e)
1748 {
1749 struct quick_file_names *file_data = e;
1750 int i;
1751
1752 for (i = 0; i < file_data->num_file_names; ++i)
1753 {
1754 xfree ((void*) file_data->file_names[i]);
1755 if (file_data->real_names)
1756 xfree ((void*) file_data->real_names[i]);
1757 }
1758
1759 /* The space for the struct itself lives on objfile_obstack,
1760 so we don't free it here. */
1761 }
1762
1763 /* Create a quick_file_names hash table. */
1764
1765 static htab_t
1766 create_quick_file_names_table (unsigned int nr_initial_entries)
1767 {
1768 return htab_create_alloc (nr_initial_entries,
1769 hash_file_name_entry, eq_file_name_entry,
1770 delete_file_name_entry, xcalloc, xfree);
1771 }
1772
1773 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1774 have to be created afterwards. You should call age_cached_comp_units after
1775 processing PER_CU->CU. dw2_setup must have been already called. */
1776
1777 static void
1778 load_cu (struct dwarf2_per_cu_data *per_cu)
1779 {
1780 if (per_cu->debug_types_section)
1781 load_full_type_unit (per_cu);
1782 else
1783 load_full_comp_unit (per_cu);
1784
1785 gdb_assert (per_cu->cu != NULL);
1786
1787 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1788 }
1789
1790 /* Read in the symbols for PER_CU. */
1791
1792 static void
1793 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1794 {
1795 struct cleanup *back_to;
1796
1797 back_to = make_cleanup (dwarf2_release_queue, NULL);
1798
1799 queue_comp_unit (per_cu);
1800
1801 load_cu (per_cu);
1802
1803 process_queue ();
1804
1805 /* Age the cache, releasing compilation units that have not
1806 been used recently. */
1807 age_cached_comp_units ();
1808
1809 do_cleanups (back_to);
1810 }
1811
1812 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1813 the objfile from which this CU came. Returns the resulting symbol
1814 table. */
1815
1816 static struct symtab *
1817 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1818 {
1819 if (!per_cu->v.quick->symtab)
1820 {
1821 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1822 increment_reading_symtab ();
1823 dw2_do_instantiate_symtab (per_cu);
1824 do_cleanups (back_to);
1825 }
1826 return per_cu->v.quick->symtab;
1827 }
1828
1829 /* Return the CU given its index. */
1830
1831 static struct dwarf2_per_cu_data *
1832 dw2_get_cu (int index)
1833 {
1834 if (index >= dwarf2_per_objfile->n_comp_units)
1835 {
1836 index -= dwarf2_per_objfile->n_comp_units;
1837 return dwarf2_per_objfile->all_type_units[index];
1838 }
1839 return dwarf2_per_objfile->all_comp_units[index];
1840 }
1841
1842 /* A helper function that knows how to read a 64-bit value in a way
1843 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1844 otherwise. */
1845
1846 static int
1847 extract_cu_value (const char *bytes, ULONGEST *result)
1848 {
1849 if (sizeof (ULONGEST) < 8)
1850 {
1851 int i;
1852
1853 /* Ignore the upper 4 bytes if they are all zero. */
1854 for (i = 0; i < 4; ++i)
1855 if (bytes[i + 4] != 0)
1856 return 0;
1857
1858 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1859 }
1860 else
1861 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1862 return 1;
1863 }
1864
1865 /* Read the CU list from the mapped index, and use it to create all
1866 the CU objects for this objfile. Return 0 if something went wrong,
1867 1 if everything went ok. */
1868
1869 static int
1870 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1871 offset_type cu_list_elements)
1872 {
1873 offset_type i;
1874
1875 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1876 dwarf2_per_objfile->all_comp_units
1877 = obstack_alloc (&objfile->objfile_obstack,
1878 dwarf2_per_objfile->n_comp_units
1879 * sizeof (struct dwarf2_per_cu_data *));
1880
1881 for (i = 0; i < cu_list_elements; i += 2)
1882 {
1883 struct dwarf2_per_cu_data *the_cu;
1884 ULONGEST offset, length;
1885
1886 if (!extract_cu_value (cu_list, &offset)
1887 || !extract_cu_value (cu_list + 8, &length))
1888 return 0;
1889 cu_list += 2 * 8;
1890
1891 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1892 struct dwarf2_per_cu_data);
1893 the_cu->offset = offset;
1894 the_cu->length = length;
1895 the_cu->objfile = objfile;
1896 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1897 struct dwarf2_per_cu_quick_data);
1898 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1899 }
1900
1901 return 1;
1902 }
1903
1904 /* Create the signatured type hash table from the index. */
1905
1906 static int
1907 create_signatured_type_table_from_index (struct objfile *objfile,
1908 struct dwarf2_section_info *section,
1909 const gdb_byte *bytes,
1910 offset_type elements)
1911 {
1912 offset_type i;
1913 htab_t sig_types_hash;
1914
1915 dwarf2_per_objfile->n_type_units = elements / 3;
1916 dwarf2_per_objfile->all_type_units
1917 = obstack_alloc (&objfile->objfile_obstack,
1918 dwarf2_per_objfile->n_type_units
1919 * sizeof (struct dwarf2_per_cu_data *));
1920
1921 sig_types_hash = allocate_signatured_type_table (objfile);
1922
1923 for (i = 0; i < elements; i += 3)
1924 {
1925 struct signatured_type *type_sig;
1926 ULONGEST offset, type_offset, signature;
1927 void **slot;
1928
1929 if (!extract_cu_value (bytes, &offset)
1930 || !extract_cu_value (bytes + 8, &type_offset))
1931 return 0;
1932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1933 bytes += 3 * 8;
1934
1935 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1936 struct signatured_type);
1937 type_sig->signature = signature;
1938 type_sig->type_offset = type_offset;
1939 type_sig->per_cu.debug_types_section = section;
1940 type_sig->per_cu.offset = offset;
1941 type_sig->per_cu.objfile = objfile;
1942 type_sig->per_cu.v.quick
1943 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1944 struct dwarf2_per_cu_quick_data);
1945
1946 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1947 *slot = type_sig;
1948
1949 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1950 }
1951
1952 dwarf2_per_objfile->signatured_types = sig_types_hash;
1953
1954 return 1;
1955 }
1956
1957 /* Read the address map data from the mapped index, and use it to
1958 populate the objfile's psymtabs_addrmap. */
1959
1960 static void
1961 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1962 {
1963 const gdb_byte *iter, *end;
1964 struct obstack temp_obstack;
1965 struct addrmap *mutable_map;
1966 struct cleanup *cleanup;
1967 CORE_ADDR baseaddr;
1968
1969 obstack_init (&temp_obstack);
1970 cleanup = make_cleanup_obstack_free (&temp_obstack);
1971 mutable_map = addrmap_create_mutable (&temp_obstack);
1972
1973 iter = index->address_table;
1974 end = iter + index->address_table_size;
1975
1976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1977
1978 while (iter < end)
1979 {
1980 ULONGEST hi, lo, cu_index;
1981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1982 iter += 8;
1983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1984 iter += 8;
1985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1986 iter += 4;
1987
1988 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1989 dw2_get_cu (cu_index));
1990 }
1991
1992 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1993 &objfile->objfile_obstack);
1994 do_cleanups (cleanup);
1995 }
1996
1997 /* The hash function for strings in the mapped index. This is the same as
1998 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
1999 implementation. This is necessary because the hash function is tied to the
2000 format of the mapped index file. The hash values do not have to match with
2001 SYMBOL_HASH_NEXT.
2002
2003 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2004
2005 static hashval_t
2006 mapped_index_string_hash (int index_version, const void *p)
2007 {
2008 const unsigned char *str = (const unsigned char *) p;
2009 hashval_t r = 0;
2010 unsigned char c;
2011
2012 while ((c = *str++) != 0)
2013 {
2014 if (index_version >= 5)
2015 c = tolower (c);
2016 r = r * 67 + c - 113;
2017 }
2018
2019 return r;
2020 }
2021
2022 /* Find a slot in the mapped index INDEX for the object named NAME.
2023 If NAME is found, set *VEC_OUT to point to the CU vector in the
2024 constant pool and return 1. If NAME cannot be found, return 0. */
2025
2026 static int
2027 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2028 offset_type **vec_out)
2029 {
2030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2031 offset_type hash;
2032 offset_type slot, step;
2033 int (*cmp) (const char *, const char *);
2034
2035 if (current_language->la_language == language_cplus
2036 || current_language->la_language == language_java
2037 || current_language->la_language == language_fortran)
2038 {
2039 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2040 not contain any. */
2041 const char *paren = strchr (name, '(');
2042
2043 if (paren)
2044 {
2045 char *dup;
2046
2047 dup = xmalloc (paren - name + 1);
2048 memcpy (dup, name, paren - name);
2049 dup[paren - name] = 0;
2050
2051 make_cleanup (xfree, dup);
2052 name = dup;
2053 }
2054 }
2055
2056 /* Index version 4 did not support case insensitive searches. But the
2057 indexes for case insensitive languages are built in lowercase, therefore
2058 simulate our NAME being searched is also lowercased. */
2059 hash = mapped_index_string_hash ((index->version == 4
2060 && case_sensitivity == case_sensitive_off
2061 ? 5 : index->version),
2062 name);
2063
2064 slot = hash & (index->symbol_table_slots - 1);
2065 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2066 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2067
2068 for (;;)
2069 {
2070 /* Convert a slot number to an offset into the table. */
2071 offset_type i = 2 * slot;
2072 const char *str;
2073 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2074 {
2075 do_cleanups (back_to);
2076 return 0;
2077 }
2078
2079 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2080 if (!cmp (name, str))
2081 {
2082 *vec_out = (offset_type *) (index->constant_pool
2083 + MAYBE_SWAP (index->symbol_table[i + 1]));
2084 do_cleanups (back_to);
2085 return 1;
2086 }
2087
2088 slot = (slot + step) & (index->symbol_table_slots - 1);
2089 }
2090 }
2091
2092 /* Read the index file. If everything went ok, initialize the "quick"
2093 elements of all the CUs and return 1. Otherwise, return 0. */
2094
2095 static int
2096 dwarf2_read_index (struct objfile *objfile)
2097 {
2098 char *addr;
2099 struct mapped_index *map;
2100 offset_type *metadata;
2101 const gdb_byte *cu_list;
2102 const gdb_byte *types_list = NULL;
2103 offset_type version, cu_list_elements;
2104 offset_type types_list_elements = 0;
2105 int i;
2106
2107 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2108 return 0;
2109
2110 /* Older elfutils strip versions could keep the section in the main
2111 executable while splitting it for the separate debug info file. */
2112 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2113 & SEC_HAS_CONTENTS) == 0)
2114 return 0;
2115
2116 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2117
2118 addr = dwarf2_per_objfile->gdb_index.buffer;
2119 /* Version check. */
2120 version = MAYBE_SWAP (*(offset_type *) addr);
2121 /* Versions earlier than 3 emitted every copy of a psymbol. This
2122 causes the index to behave very poorly for certain requests. Version 3
2123 contained incomplete addrmap. So, it seems better to just ignore such
2124 indices. Index version 4 uses a different hash function than index
2125 version 5 and later. */
2126 if (version < 4)
2127 return 0;
2128 /* Indexes with higher version than the one supported by GDB may be no
2129 longer backward compatible. */
2130 if (version > 5)
2131 return 0;
2132
2133 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2134 map->version = version;
2135 map->total_size = dwarf2_per_objfile->gdb_index.size;
2136
2137 metadata = (offset_type *) (addr + sizeof (offset_type));
2138
2139 i = 0;
2140 cu_list = addr + MAYBE_SWAP (metadata[i]);
2141 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2142 / 8);
2143 ++i;
2144
2145 types_list = addr + MAYBE_SWAP (metadata[i]);
2146 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2147 - MAYBE_SWAP (metadata[i]))
2148 / 8);
2149 ++i;
2150
2151 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2152 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2153 - MAYBE_SWAP (metadata[i]));
2154 ++i;
2155
2156 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2157 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2158 - MAYBE_SWAP (metadata[i]))
2159 / (2 * sizeof (offset_type)));
2160 ++i;
2161
2162 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2163
2164 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2165 return 0;
2166
2167 if (types_list_elements)
2168 {
2169 struct dwarf2_section_info *section;
2170
2171 /* We can only handle a single .debug_types when we have an
2172 index. */
2173 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2174 return 0;
2175
2176 section = VEC_index (dwarf2_section_info_def,
2177 dwarf2_per_objfile->types, 0);
2178
2179 if (!create_signatured_type_table_from_index (objfile, section,
2180 types_list,
2181 types_list_elements))
2182 return 0;
2183 }
2184
2185 create_addrmap_from_index (objfile, map);
2186
2187 dwarf2_per_objfile->index_table = map;
2188 dwarf2_per_objfile->using_index = 1;
2189 dwarf2_per_objfile->quick_file_names_table =
2190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2191
2192 return 1;
2193 }
2194
2195 /* A helper for the "quick" functions which sets the global
2196 dwarf2_per_objfile according to OBJFILE. */
2197
2198 static void
2199 dw2_setup (struct objfile *objfile)
2200 {
2201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2202 gdb_assert (dwarf2_per_objfile);
2203 }
2204
2205 /* A helper for the "quick" functions which attempts to read the line
2206 table for THIS_CU. */
2207
2208 static struct quick_file_names *
2209 dw2_get_file_names (struct objfile *objfile,
2210 struct dwarf2_per_cu_data *this_cu)
2211 {
2212 bfd *abfd = objfile->obfd;
2213 struct line_header *lh;
2214 struct attribute *attr;
2215 struct cleanup *cleanups;
2216 struct die_info *comp_unit_die;
2217 struct dwarf2_section_info* sec;
2218 gdb_byte *info_ptr;
2219 int has_children, i;
2220 struct dwarf2_cu cu;
2221 unsigned int bytes_read;
2222 struct die_reader_specs reader_specs;
2223 char *name, *comp_dir;
2224 void **slot;
2225 struct quick_file_names *qfn;
2226 unsigned int line_offset;
2227
2228 if (this_cu->v.quick->file_names != NULL)
2229 return this_cu->v.quick->file_names;
2230 /* If we know there is no line data, no point in looking again. */
2231 if (this_cu->v.quick->no_file_data)
2232 return NULL;
2233
2234 init_one_comp_unit (&cu, this_cu);
2235 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2236
2237 if (this_cu->debug_types_section)
2238 sec = this_cu->debug_types_section;
2239 else
2240 sec = &dwarf2_per_objfile->info;
2241 dwarf2_read_section (objfile, sec);
2242 info_ptr = sec->buffer + this_cu->offset;
2243
2244 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2245 this_cu->debug_types_section != NULL);
2246
2247 /* Skip dummy compilation units. */
2248 if (info_ptr >= (sec->buffer + sec->size)
2249 || peek_abbrev_code (abfd, info_ptr) == 0)
2250 {
2251 do_cleanups (cleanups);
2252 return NULL;
2253 }
2254
2255 dwarf2_read_abbrevs (&cu);
2256 make_cleanup (dwarf2_free_abbrev_table, &cu);
2257
2258 init_cu_die_reader (&reader_specs, &cu);
2259 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2260 &has_children);
2261
2262 lh = NULL;
2263 slot = NULL;
2264 line_offset = 0;
2265 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2266 if (attr)
2267 {
2268 struct quick_file_names find_entry;
2269
2270 line_offset = DW_UNSND (attr);
2271
2272 /* We may have already read in this line header (TU line header sharing).
2273 If we have we're done. */
2274 find_entry.offset = line_offset;
2275 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2276 &find_entry, INSERT);
2277 if (*slot != NULL)
2278 {
2279 do_cleanups (cleanups);
2280 this_cu->v.quick->file_names = *slot;
2281 return *slot;
2282 }
2283
2284 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2285 }
2286 if (lh == NULL)
2287 {
2288 do_cleanups (cleanups);
2289 this_cu->v.quick->no_file_data = 1;
2290 return NULL;
2291 }
2292
2293 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2294 qfn->offset = line_offset;
2295 gdb_assert (slot != NULL);
2296 *slot = qfn;
2297
2298 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2299
2300 qfn->num_file_names = lh->num_file_names;
2301 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2302 lh->num_file_names * sizeof (char *));
2303 for (i = 0; i < lh->num_file_names; ++i)
2304 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2305 qfn->real_names = NULL;
2306
2307 free_line_header (lh);
2308 do_cleanups (cleanups);
2309
2310 this_cu->v.quick->file_names = qfn;
2311 return qfn;
2312 }
2313
2314 /* A helper for the "quick" functions which computes and caches the
2315 real path for a given file name from the line table. */
2316
2317 static const char *
2318 dw2_get_real_path (struct objfile *objfile,
2319 struct quick_file_names *qfn, int index)
2320 {
2321 if (qfn->real_names == NULL)
2322 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2323 qfn->num_file_names, sizeof (char *));
2324
2325 if (qfn->real_names[index] == NULL)
2326 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2327
2328 return qfn->real_names[index];
2329 }
2330
2331 static struct symtab *
2332 dw2_find_last_source_symtab (struct objfile *objfile)
2333 {
2334 int index;
2335
2336 dw2_setup (objfile);
2337 index = dwarf2_per_objfile->n_comp_units - 1;
2338 return dw2_instantiate_symtab (dw2_get_cu (index));
2339 }
2340
2341 /* Traversal function for dw2_forget_cached_source_info. */
2342
2343 static int
2344 dw2_free_cached_file_names (void **slot, void *info)
2345 {
2346 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2347
2348 if (file_data->real_names)
2349 {
2350 int i;
2351
2352 for (i = 0; i < file_data->num_file_names; ++i)
2353 {
2354 xfree ((void*) file_data->real_names[i]);
2355 file_data->real_names[i] = NULL;
2356 }
2357 }
2358
2359 return 1;
2360 }
2361
2362 static void
2363 dw2_forget_cached_source_info (struct objfile *objfile)
2364 {
2365 dw2_setup (objfile);
2366
2367 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2368 dw2_free_cached_file_names, NULL);
2369 }
2370
2371 /* Helper function for dw2_map_symtabs_matching_filename that expands
2372 the symtabs and calls the iterator. */
2373
2374 static int
2375 dw2_map_expand_apply (struct objfile *objfile,
2376 struct dwarf2_per_cu_data *per_cu,
2377 const char *name,
2378 const char *full_path, const char *real_path,
2379 int (*callback) (struct symtab *, void *),
2380 void *data)
2381 {
2382 struct symtab *last_made = objfile->symtabs;
2383
2384 /* Don't visit already-expanded CUs. */
2385 if (per_cu->v.quick->symtab)
2386 return 0;
2387
2388 /* This may expand more than one symtab, and we want to iterate over
2389 all of them. */
2390 dw2_instantiate_symtab (per_cu);
2391
2392 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2393 objfile->symtabs, last_made);
2394 }
2395
2396 /* Implementation of the map_symtabs_matching_filename method. */
2397
2398 static int
2399 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2400 const char *full_path, const char *real_path,
2401 int (*callback) (struct symtab *, void *),
2402 void *data)
2403 {
2404 int i;
2405 const char *name_basename = lbasename (name);
2406 int name_len = strlen (name);
2407 int is_abs = IS_ABSOLUTE_PATH (name);
2408
2409 dw2_setup (objfile);
2410
2411 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2412 + dwarf2_per_objfile->n_type_units); ++i)
2413 {
2414 int j;
2415 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2416 struct quick_file_names *file_data;
2417
2418 /* We only need to look at symtabs not already expanded. */
2419 if (per_cu->v.quick->symtab)
2420 continue;
2421
2422 file_data = dw2_get_file_names (objfile, per_cu);
2423 if (file_data == NULL)
2424 continue;
2425
2426 for (j = 0; j < file_data->num_file_names; ++j)
2427 {
2428 const char *this_name = file_data->file_names[j];
2429
2430 if (FILENAME_CMP (name, this_name) == 0
2431 || (!is_abs && compare_filenames_for_search (this_name,
2432 name, name_len)))
2433 {
2434 if (dw2_map_expand_apply (objfile, per_cu,
2435 name, full_path, real_path,
2436 callback, data))
2437 return 1;
2438 }
2439
2440 /* Before we invoke realpath, which can get expensive when many
2441 files are involved, do a quick comparison of the basenames. */
2442 if (! basenames_may_differ
2443 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2444 continue;
2445
2446 if (full_path != NULL)
2447 {
2448 const char *this_real_name = dw2_get_real_path (objfile,
2449 file_data, j);
2450
2451 if (this_real_name != NULL
2452 && (FILENAME_CMP (full_path, this_real_name) == 0
2453 || (!is_abs
2454 && compare_filenames_for_search (this_real_name,
2455 name, name_len))))
2456 {
2457 if (dw2_map_expand_apply (objfile, per_cu,
2458 name, full_path, real_path,
2459 callback, data))
2460 return 1;
2461 }
2462 }
2463
2464 if (real_path != NULL)
2465 {
2466 const char *this_real_name = dw2_get_real_path (objfile,
2467 file_data, j);
2468
2469 if (this_real_name != NULL
2470 && (FILENAME_CMP (real_path, this_real_name) == 0
2471 || (!is_abs
2472 && compare_filenames_for_search (this_real_name,
2473 name, name_len))))
2474 {
2475 if (dw2_map_expand_apply (objfile, per_cu,
2476 name, full_path, real_path,
2477 callback, data))
2478 return 1;
2479 }
2480 }
2481 }
2482 }
2483
2484 return 0;
2485 }
2486
2487 static struct symtab *
2488 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2489 const char *name, domain_enum domain)
2490 {
2491 /* We do all the work in the pre_expand_symtabs_matching hook
2492 instead. */
2493 return NULL;
2494 }
2495
2496 /* A helper function that expands all symtabs that hold an object
2497 named NAME. */
2498
2499 static void
2500 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2501 {
2502 dw2_setup (objfile);
2503
2504 /* index_table is NULL if OBJF_READNOW. */
2505 if (dwarf2_per_objfile->index_table)
2506 {
2507 offset_type *vec;
2508
2509 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2510 name, &vec))
2511 {
2512 offset_type i, len = MAYBE_SWAP (*vec);
2513 for (i = 0; i < len; ++i)
2514 {
2515 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2516 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2517
2518 dw2_instantiate_symtab (per_cu);
2519 }
2520 }
2521 }
2522 }
2523
2524 static void
2525 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2526 enum block_enum block_kind, const char *name,
2527 domain_enum domain)
2528 {
2529 dw2_do_expand_symtabs_matching (objfile, name);
2530 }
2531
2532 static void
2533 dw2_print_stats (struct objfile *objfile)
2534 {
2535 int i, count;
2536
2537 dw2_setup (objfile);
2538 count = 0;
2539 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2540 + dwarf2_per_objfile->n_type_units); ++i)
2541 {
2542 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2543
2544 if (!per_cu->v.quick->symtab)
2545 ++count;
2546 }
2547 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2548 }
2549
2550 static void
2551 dw2_dump (struct objfile *objfile)
2552 {
2553 /* Nothing worth printing. */
2554 }
2555
2556 static void
2557 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2558 struct section_offsets *delta)
2559 {
2560 /* There's nothing to relocate here. */
2561 }
2562
2563 static void
2564 dw2_expand_symtabs_for_function (struct objfile *objfile,
2565 const char *func_name)
2566 {
2567 dw2_do_expand_symtabs_matching (objfile, func_name);
2568 }
2569
2570 static void
2571 dw2_expand_all_symtabs (struct objfile *objfile)
2572 {
2573 int i;
2574
2575 dw2_setup (objfile);
2576
2577 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2578 + dwarf2_per_objfile->n_type_units); ++i)
2579 {
2580 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2581
2582 dw2_instantiate_symtab (per_cu);
2583 }
2584 }
2585
2586 static void
2587 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2588 const char *filename)
2589 {
2590 int i;
2591
2592 dw2_setup (objfile);
2593
2594 /* We don't need to consider type units here.
2595 This is only called for examining code, e.g. expand_line_sal.
2596 There can be an order of magnitude (or more) more type units
2597 than comp units, and we avoid them if we can. */
2598
2599 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2600 {
2601 int j;
2602 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2603 struct quick_file_names *file_data;
2604
2605 /* We only need to look at symtabs not already expanded. */
2606 if (per_cu->v.quick->symtab)
2607 continue;
2608
2609 file_data = dw2_get_file_names (objfile, per_cu);
2610 if (file_data == NULL)
2611 continue;
2612
2613 for (j = 0; j < file_data->num_file_names; ++j)
2614 {
2615 const char *this_name = file_data->file_names[j];
2616 if (FILENAME_CMP (this_name, filename) == 0)
2617 {
2618 dw2_instantiate_symtab (per_cu);
2619 break;
2620 }
2621 }
2622 }
2623 }
2624
2625 static const char *
2626 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2627 {
2628 struct dwarf2_per_cu_data *per_cu;
2629 offset_type *vec;
2630 struct quick_file_names *file_data;
2631
2632 dw2_setup (objfile);
2633
2634 /* index_table is NULL if OBJF_READNOW. */
2635 if (!dwarf2_per_objfile->index_table)
2636 {
2637 struct symtab *s;
2638
2639 ALL_OBJFILE_SYMTABS (objfile, s)
2640 if (s->primary)
2641 {
2642 struct blockvector *bv = BLOCKVECTOR (s);
2643 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2644 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2645
2646 if (sym)
2647 return sym->symtab->filename;
2648 }
2649 return NULL;
2650 }
2651
2652 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2653 name, &vec))
2654 return NULL;
2655
2656 /* Note that this just looks at the very first one named NAME -- but
2657 actually we are looking for a function. find_main_filename
2658 should be rewritten so that it doesn't require a custom hook. It
2659 could just use the ordinary symbol tables. */
2660 /* vec[0] is the length, which must always be >0. */
2661 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2662
2663 file_data = dw2_get_file_names (objfile, per_cu);
2664 if (file_data == NULL)
2665 return NULL;
2666
2667 return file_data->file_names[file_data->num_file_names - 1];
2668 }
2669
2670 static void
2671 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2672 struct objfile *objfile, int global,
2673 int (*callback) (struct block *,
2674 struct symbol *, void *),
2675 void *data, symbol_compare_ftype *match,
2676 symbol_compare_ftype *ordered_compare)
2677 {
2678 /* Currently unimplemented; used for Ada. The function can be called if the
2679 current language is Ada for a non-Ada objfile using GNU index. As Ada
2680 does not look for non-Ada symbols this function should just return. */
2681 }
2682
2683 static void
2684 dw2_expand_symtabs_matching
2685 (struct objfile *objfile,
2686 int (*file_matcher) (const char *, void *),
2687 int (*name_matcher) (const char *, void *),
2688 enum search_domain kind,
2689 void *data)
2690 {
2691 int i;
2692 offset_type iter;
2693 struct mapped_index *index;
2694
2695 dw2_setup (objfile);
2696
2697 /* index_table is NULL if OBJF_READNOW. */
2698 if (!dwarf2_per_objfile->index_table)
2699 return;
2700 index = dwarf2_per_objfile->index_table;
2701
2702 if (file_matcher != NULL)
2703 {
2704 struct cleanup *cleanup;
2705 htab_t visited_found, visited_not_found;
2706
2707 visited_found = htab_create_alloc (10,
2708 htab_hash_pointer, htab_eq_pointer,
2709 NULL, xcalloc, xfree);
2710 cleanup = make_cleanup_htab_delete (visited_found);
2711 visited_not_found = htab_create_alloc (10,
2712 htab_hash_pointer, htab_eq_pointer,
2713 NULL, xcalloc, xfree);
2714 make_cleanup_htab_delete (visited_not_found);
2715
2716 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2717 + dwarf2_per_objfile->n_type_units); ++i)
2718 {
2719 int j;
2720 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2721 struct quick_file_names *file_data;
2722 void **slot;
2723
2724 per_cu->v.quick->mark = 0;
2725
2726 /* We only need to look at symtabs not already expanded. */
2727 if (per_cu->v.quick->symtab)
2728 continue;
2729
2730 file_data = dw2_get_file_names (objfile, per_cu);
2731 if (file_data == NULL)
2732 continue;
2733
2734 if (htab_find (visited_not_found, file_data) != NULL)
2735 continue;
2736 else if (htab_find (visited_found, file_data) != NULL)
2737 {
2738 per_cu->v.quick->mark = 1;
2739 continue;
2740 }
2741
2742 for (j = 0; j < file_data->num_file_names; ++j)
2743 {
2744 if (file_matcher (file_data->file_names[j], data))
2745 {
2746 per_cu->v.quick->mark = 1;
2747 break;
2748 }
2749 }
2750
2751 slot = htab_find_slot (per_cu->v.quick->mark
2752 ? visited_found
2753 : visited_not_found,
2754 file_data, INSERT);
2755 *slot = file_data;
2756 }
2757
2758 do_cleanups (cleanup);
2759 }
2760
2761 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2762 {
2763 offset_type idx = 2 * iter;
2764 const char *name;
2765 offset_type *vec, vec_len, vec_idx;
2766
2767 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2768 continue;
2769
2770 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2771
2772 if (! (*name_matcher) (name, data))
2773 continue;
2774
2775 /* The name was matched, now expand corresponding CUs that were
2776 marked. */
2777 vec = (offset_type *) (index->constant_pool
2778 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2779 vec_len = MAYBE_SWAP (vec[0]);
2780 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2781 {
2782 struct dwarf2_per_cu_data *per_cu;
2783
2784 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2785 if (file_matcher == NULL || per_cu->v.quick->mark)
2786 dw2_instantiate_symtab (per_cu);
2787 }
2788 }
2789 }
2790
2791 static struct symtab *
2792 dw2_find_pc_sect_symtab (struct objfile *objfile,
2793 struct minimal_symbol *msymbol,
2794 CORE_ADDR pc,
2795 struct obj_section *section,
2796 int warn_if_readin)
2797 {
2798 struct dwarf2_per_cu_data *data;
2799
2800 dw2_setup (objfile);
2801
2802 if (!objfile->psymtabs_addrmap)
2803 return NULL;
2804
2805 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2806 if (!data)
2807 return NULL;
2808
2809 if (warn_if_readin && data->v.quick->symtab)
2810 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2811 paddress (get_objfile_arch (objfile), pc));
2812
2813 return dw2_instantiate_symtab (data);
2814 }
2815
2816 static void
2817 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2818 void *data, int need_fullname)
2819 {
2820 int i;
2821 struct cleanup *cleanup;
2822 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
2823 NULL, xcalloc, xfree);
2824
2825 cleanup = make_cleanup_htab_delete (visited);
2826 dw2_setup (objfile);
2827
2828 /* We can ignore file names coming from already-expanded CUs. */
2829 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2830 + dwarf2_per_objfile->n_type_units); ++i)
2831 {
2832 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2833
2834 if (per_cu->v.quick->symtab)
2835 {
2836 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
2837 INSERT);
2838
2839 *slot = per_cu->v.quick->file_names;
2840 }
2841 }
2842
2843 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2844 + dwarf2_per_objfile->n_type_units); ++i)
2845 {
2846 int j;
2847 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2848 struct quick_file_names *file_data;
2849 void **slot;
2850
2851 /* We only need to look at symtabs not already expanded. */
2852 if (per_cu->v.quick->symtab)
2853 continue;
2854
2855 file_data = dw2_get_file_names (objfile, per_cu);
2856 if (file_data == NULL)
2857 continue;
2858
2859 slot = htab_find_slot (visited, file_data, INSERT);
2860 if (*slot)
2861 {
2862 /* Already visited. */
2863 continue;
2864 }
2865 *slot = file_data;
2866
2867 for (j = 0; j < file_data->num_file_names; ++j)
2868 {
2869 const char *this_real_name;
2870
2871 if (need_fullname)
2872 this_real_name = dw2_get_real_path (objfile, file_data, j);
2873 else
2874 this_real_name = NULL;
2875 (*fun) (file_data->file_names[j], this_real_name, data);
2876 }
2877 }
2878
2879 do_cleanups (cleanup);
2880 }
2881
2882 static int
2883 dw2_has_symbols (struct objfile *objfile)
2884 {
2885 return 1;
2886 }
2887
2888 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2889 {
2890 dw2_has_symbols,
2891 dw2_find_last_source_symtab,
2892 dw2_forget_cached_source_info,
2893 dw2_map_symtabs_matching_filename,
2894 dw2_lookup_symbol,
2895 dw2_pre_expand_symtabs_matching,
2896 dw2_print_stats,
2897 dw2_dump,
2898 dw2_relocate,
2899 dw2_expand_symtabs_for_function,
2900 dw2_expand_all_symtabs,
2901 dw2_expand_symtabs_with_filename,
2902 dw2_find_symbol_file,
2903 dw2_map_matching_symbols,
2904 dw2_expand_symtabs_matching,
2905 dw2_find_pc_sect_symtab,
2906 dw2_map_symbol_filenames
2907 };
2908
2909 /* Initialize for reading DWARF for this objfile. Return 0 if this
2910 file will use psymtabs, or 1 if using the GNU index. */
2911
2912 int
2913 dwarf2_initialize_objfile (struct objfile *objfile)
2914 {
2915 /* If we're about to read full symbols, don't bother with the
2916 indices. In this case we also don't care if some other debug
2917 format is making psymtabs, because they are all about to be
2918 expanded anyway. */
2919 if ((objfile->flags & OBJF_READNOW))
2920 {
2921 int i;
2922
2923 dwarf2_per_objfile->using_index = 1;
2924 create_all_comp_units (objfile);
2925 create_debug_types_hash_table (objfile);
2926 dwarf2_per_objfile->quick_file_names_table =
2927 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2928
2929 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2930 + dwarf2_per_objfile->n_type_units); ++i)
2931 {
2932 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2933
2934 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2935 struct dwarf2_per_cu_quick_data);
2936 }
2937
2938 /* Return 1 so that gdb sees the "quick" functions. However,
2939 these functions will be no-ops because we will have expanded
2940 all symtabs. */
2941 return 1;
2942 }
2943
2944 if (dwarf2_read_index (objfile))
2945 return 1;
2946
2947 return 0;
2948 }
2949
2950 \f
2951
2952 /* Build a partial symbol table. */
2953
2954 void
2955 dwarf2_build_psymtabs (struct objfile *objfile)
2956 {
2957 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2958 {
2959 init_psymbol_list (objfile, 1024);
2960 }
2961
2962 dwarf2_build_psymtabs_hard (objfile);
2963 }
2964
2965 /* Return TRUE if OFFSET is within CU_HEADER. */
2966
2967 static inline int
2968 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2969 {
2970 unsigned int bottom = cu_header->offset;
2971 unsigned int top = (cu_header->offset
2972 + cu_header->length
2973 + cu_header->initial_length_size);
2974
2975 return (offset >= bottom && offset < top);
2976 }
2977
2978 /* Read in the comp unit header information from the debug_info at info_ptr.
2979 NOTE: This leaves members offset, first_die_offset to be filled in
2980 by the caller. */
2981
2982 static gdb_byte *
2983 read_comp_unit_head (struct comp_unit_head *cu_header,
2984 gdb_byte *info_ptr, bfd *abfd)
2985 {
2986 int signed_addr;
2987 unsigned int bytes_read;
2988
2989 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2990 cu_header->initial_length_size = bytes_read;
2991 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2992 info_ptr += bytes_read;
2993 cu_header->version = read_2_bytes (abfd, info_ptr);
2994 info_ptr += 2;
2995 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2996 &bytes_read);
2997 info_ptr += bytes_read;
2998 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2999 info_ptr += 1;
3000 signed_addr = bfd_get_sign_extend_vma (abfd);
3001 if (signed_addr < 0)
3002 internal_error (__FILE__, __LINE__,
3003 _("read_comp_unit_head: dwarf from non elf file"));
3004 cu_header->signed_addr_p = signed_addr;
3005
3006 return info_ptr;
3007 }
3008
3009 /* Subroutine of read_and_check_comp_unit_head and
3010 read_and_check_type_unit_head to simplify them.
3011 Perform various error checking on the header. */
3012
3013 static void
3014 error_check_comp_unit_head (struct comp_unit_head *header,
3015 struct dwarf2_section_info *section)
3016 {
3017 bfd *abfd = section->asection->owner;
3018 const char *filename = bfd_get_filename (abfd);
3019
3020 if (header->version != 2 && header->version != 3 && header->version != 4)
3021 error (_("Dwarf Error: wrong version in compilation unit header "
3022 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3023 filename);
3024
3025 if (header->abbrev_offset
3026 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3027 &dwarf2_per_objfile->abbrev))
3028 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3029 "(offset 0x%lx + 6) [in module %s]"),
3030 (long) header->abbrev_offset, (long) header->offset,
3031 filename);
3032
3033 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3034 avoid potential 32-bit overflow. */
3035 if (((unsigned long) header->offset
3036 + header->length + header->initial_length_size)
3037 > section->size)
3038 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3039 "(offset 0x%lx + 0) [in module %s]"),
3040 (long) header->length, (long) header->offset,
3041 filename);
3042 }
3043
3044 /* Read in a CU/TU header and perform some basic error checking.
3045 The contents of the header are stored in HEADER.
3046 The result is a pointer to the start of the first DIE. */
3047
3048 static gdb_byte *
3049 read_and_check_comp_unit_head (struct comp_unit_head *header,
3050 struct dwarf2_section_info *section,
3051 gdb_byte *info_ptr,
3052 int is_debug_types_section)
3053 {
3054 gdb_byte *beg_of_comp_unit = info_ptr;
3055 bfd *abfd = section->asection->owner;
3056
3057 header->offset = beg_of_comp_unit - section->buffer;
3058
3059 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3060
3061 /* If we're reading a type unit, skip over the signature and
3062 type_offset fields. */
3063 if (is_debug_types_section)
3064 info_ptr += 8 /*signature*/ + header->offset_size;
3065
3066 header->first_die_offset = info_ptr - beg_of_comp_unit;
3067
3068 error_check_comp_unit_head (header, section);
3069
3070 return info_ptr;
3071 }
3072
3073 /* Read in the types comp unit header information from .debug_types entry at
3074 types_ptr. The result is a pointer to one past the end of the header. */
3075
3076 static gdb_byte *
3077 read_and_check_type_unit_head (struct comp_unit_head *header,
3078 struct dwarf2_section_info *section,
3079 gdb_byte *info_ptr,
3080 ULONGEST *signature, unsigned int *type_offset)
3081 {
3082 gdb_byte *beg_of_comp_unit = info_ptr;
3083 bfd *abfd = section->asection->owner;
3084
3085 header->offset = beg_of_comp_unit - section->buffer;
3086
3087 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3088
3089 /* If we're reading a type unit, skip over the signature and
3090 type_offset fields. */
3091 if (signature != NULL)
3092 *signature = read_8_bytes (abfd, info_ptr);
3093 info_ptr += 8;
3094 if (type_offset != NULL)
3095 *type_offset = read_offset_1 (abfd, info_ptr, header->offset_size);
3096 info_ptr += header->offset_size;
3097
3098 header->first_die_offset = info_ptr - beg_of_comp_unit;
3099
3100 error_check_comp_unit_head (header, section);
3101
3102 return info_ptr;
3103 }
3104
3105 /* Allocate a new partial symtab for file named NAME and mark this new
3106 partial symtab as being an include of PST. */
3107
3108 static void
3109 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3110 struct objfile *objfile)
3111 {
3112 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3113
3114 subpst->section_offsets = pst->section_offsets;
3115 subpst->textlow = 0;
3116 subpst->texthigh = 0;
3117
3118 subpst->dependencies = (struct partial_symtab **)
3119 obstack_alloc (&objfile->objfile_obstack,
3120 sizeof (struct partial_symtab *));
3121 subpst->dependencies[0] = pst;
3122 subpst->number_of_dependencies = 1;
3123
3124 subpst->globals_offset = 0;
3125 subpst->n_global_syms = 0;
3126 subpst->statics_offset = 0;
3127 subpst->n_static_syms = 0;
3128 subpst->symtab = NULL;
3129 subpst->read_symtab = pst->read_symtab;
3130 subpst->readin = 0;
3131
3132 /* No private part is necessary for include psymtabs. This property
3133 can be used to differentiate between such include psymtabs and
3134 the regular ones. */
3135 subpst->read_symtab_private = NULL;
3136 }
3137
3138 /* Read the Line Number Program data and extract the list of files
3139 included by the source file represented by PST. Build an include
3140 partial symtab for each of these included files. */
3141
3142 static void
3143 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3144 struct die_info *die,
3145 struct partial_symtab *pst)
3146 {
3147 struct objfile *objfile = cu->objfile;
3148 bfd *abfd = objfile->obfd;
3149 struct line_header *lh = NULL;
3150 struct attribute *attr;
3151
3152 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3153 if (attr)
3154 {
3155 unsigned int line_offset = DW_UNSND (attr);
3156
3157 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3158 }
3159 if (lh == NULL)
3160 return; /* No linetable, so no includes. */
3161
3162 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3163 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3164
3165 free_line_header (lh);
3166 }
3167
3168 static hashval_t
3169 hash_type_signature (const void *item)
3170 {
3171 const struct signatured_type *type_sig = item;
3172
3173 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3174 return type_sig->signature;
3175 }
3176
3177 static int
3178 eq_type_signature (const void *item_lhs, const void *item_rhs)
3179 {
3180 const struct signatured_type *lhs = item_lhs;
3181 const struct signatured_type *rhs = item_rhs;
3182
3183 return lhs->signature == rhs->signature;
3184 }
3185
3186 /* Allocate a hash table for signatured types. */
3187
3188 static htab_t
3189 allocate_signatured_type_table (struct objfile *objfile)
3190 {
3191 return htab_create_alloc_ex (41,
3192 hash_type_signature,
3193 eq_type_signature,
3194 NULL,
3195 &objfile->objfile_obstack,
3196 hashtab_obstack_allocate,
3197 dummy_obstack_deallocate);
3198 }
3199
3200 /* A helper function to add a signatured type CU to a table. */
3201
3202 static int
3203 add_signatured_type_cu_to_table (void **slot, void *datum)
3204 {
3205 struct signatured_type *sigt = *slot;
3206 struct dwarf2_per_cu_data ***datap = datum;
3207
3208 **datap = &sigt->per_cu;
3209 ++*datap;
3210
3211 return 1;
3212 }
3213
3214 /* Create the hash table of all entries in the .debug_types section(s).
3215 The result is zero if there is an error (e.g. missing .debug_types section),
3216 otherwise non-zero. */
3217
3218 static int
3219 create_debug_types_hash_table (struct objfile *objfile)
3220 {
3221 htab_t types_htab = NULL;
3222 struct dwarf2_per_cu_data **iter;
3223 int ix;
3224 struct dwarf2_section_info *section;
3225
3226 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3227 {
3228 dwarf2_per_objfile->signatured_types = NULL;
3229 return 0;
3230 }
3231
3232 for (ix = 0;
3233 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3234 ix, section);
3235 ++ix)
3236 {
3237 gdb_byte *info_ptr, *end_ptr;
3238
3239 dwarf2_read_section (objfile, section);
3240 info_ptr = section->buffer;
3241
3242 if (info_ptr == NULL)
3243 continue;
3244
3245 if (types_htab == NULL)
3246 types_htab = allocate_signatured_type_table (objfile);
3247
3248 if (dwarf2_die_debug)
3249 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3250
3251 end_ptr = info_ptr + section->size;
3252 while (info_ptr < end_ptr)
3253 {
3254 unsigned int offset;
3255 unsigned int type_offset;
3256 ULONGEST signature;
3257 struct signatured_type *type_sig;
3258 void **slot;
3259 gdb_byte *ptr = info_ptr;
3260 struct comp_unit_head header;
3261
3262 offset = ptr - section->buffer;
3263
3264 /* We need to read the type's signature in order to build the hash
3265 table, but we don't need anything else just yet. */
3266
3267 ptr = read_and_check_type_unit_head (&header, section, ptr,
3268 &signature, &type_offset);
3269
3270 /* Skip dummy type units. */
3271 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3272 {
3273 info_ptr = info_ptr + header.initial_length_size + header.length;
3274 continue;
3275 }
3276
3277 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3278 memset (type_sig, 0, sizeof (*type_sig));
3279 type_sig->signature = signature;
3280 type_sig->type_offset = type_offset;
3281 type_sig->per_cu.objfile = objfile;
3282 type_sig->per_cu.debug_types_section = section;
3283 type_sig->per_cu.offset = offset;
3284
3285 slot = htab_find_slot (types_htab, type_sig, INSERT);
3286 gdb_assert (slot != NULL);
3287 if (*slot != NULL)
3288 {
3289 const struct signatured_type *dup_sig = *slot;
3290
3291 complaint (&symfile_complaints,
3292 _("debug type entry at offset 0x%x is duplicate to the "
3293 "entry at offset 0x%x, signature 0x%s"),
3294 offset, dup_sig->per_cu.offset,
3295 phex (signature, sizeof (signature)));
3296 gdb_assert (signature == dup_sig->signature);
3297 }
3298 *slot = type_sig;
3299
3300 if (dwarf2_die_debug)
3301 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3302 offset, phex (signature, sizeof (signature)));
3303
3304 info_ptr = info_ptr + header.initial_length_size + header.length;
3305 }
3306 }
3307
3308 dwarf2_per_objfile->signatured_types = types_htab;
3309
3310 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3311 dwarf2_per_objfile->all_type_units
3312 = obstack_alloc (&objfile->objfile_obstack,
3313 dwarf2_per_objfile->n_type_units
3314 * sizeof (struct dwarf2_per_cu_data *));
3315 iter = &dwarf2_per_objfile->all_type_units[0];
3316 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3317 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3318 == dwarf2_per_objfile->n_type_units);
3319
3320 return 1;
3321 }
3322
3323 /* Lookup a signature based type.
3324 Returns NULL if SIG is not present in the table. */
3325
3326 static struct signatured_type *
3327 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3328 {
3329 struct signatured_type find_entry, *entry;
3330
3331 if (dwarf2_per_objfile->signatured_types == NULL)
3332 {
3333 complaint (&symfile_complaints,
3334 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3335 return 0;
3336 }
3337
3338 find_entry.signature = sig;
3339 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3340 return entry;
3341 }
3342
3343 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3344
3345 static void
3346 init_cu_die_reader (struct die_reader_specs *reader,
3347 struct dwarf2_cu *cu)
3348 {
3349 reader->abfd = cu->objfile->obfd;
3350 reader->cu = cu;
3351 if (cu->per_cu->debug_types_section)
3352 {
3353 gdb_assert (cu->per_cu->debug_types_section->readin);
3354 reader->buffer = cu->per_cu->debug_types_section->buffer;
3355 }
3356 else
3357 {
3358 gdb_assert (dwarf2_per_objfile->info.readin);
3359 reader->buffer = dwarf2_per_objfile->info.buffer;
3360 }
3361 }
3362
3363 /* Find the base address of the compilation unit for range lists and
3364 location lists. It will normally be specified by DW_AT_low_pc.
3365 In DWARF-3 draft 4, the base address could be overridden by
3366 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3367 compilation units with discontinuous ranges. */
3368
3369 static void
3370 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3371 {
3372 struct attribute *attr;
3373
3374 cu->base_known = 0;
3375 cu->base_address = 0;
3376
3377 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3378 if (attr)
3379 {
3380 cu->base_address = DW_ADDR (attr);
3381 cu->base_known = 1;
3382 }
3383 else
3384 {
3385 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3386 if (attr)
3387 {
3388 cu->base_address = DW_ADDR (attr);
3389 cu->base_known = 1;
3390 }
3391 }
3392 }
3393
3394 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3395 to combine the common parts.
3396 Process compilation unit THIS_CU for a psymtab.
3397 SECTION is the section the CU/TU comes from,
3398 either .debug_info or .debug_types. */
3399
3400 void
3401 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3402 struct dwarf2_section_info *section,
3403 int is_debug_types_section)
3404 {
3405 struct objfile *objfile = this_cu->objfile;
3406 bfd *abfd = objfile->obfd;
3407 gdb_byte *buffer = section->buffer;
3408 gdb_byte *info_ptr = buffer + this_cu->offset;
3409 unsigned int buffer_size = section->size;
3410 gdb_byte *beg_of_comp_unit = info_ptr;
3411 struct die_info *comp_unit_die;
3412 struct partial_symtab *pst;
3413 CORE_ADDR baseaddr;
3414 struct cleanup *back_to_inner;
3415 struct dwarf2_cu cu;
3416 int has_children, has_pc_info;
3417 struct attribute *attr;
3418 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3419 struct die_reader_specs reader_specs;
3420 const char *filename;
3421
3422 /* If this compilation unit was already read in, free the
3423 cached copy in order to read it in again. This is
3424 necessary because we skipped some symbols when we first
3425 read in the compilation unit (see load_partial_dies).
3426 This problem could be avoided, but the benefit is
3427 unclear. */
3428 if (this_cu->cu != NULL)
3429 free_one_cached_comp_unit (this_cu->cu);
3430
3431 /* Note that this is a pointer to our stack frame, being
3432 added to a global data structure. It will be cleaned up
3433 in free_stack_comp_unit when we finish with this
3434 compilation unit. */
3435 init_one_comp_unit (&cu, this_cu);
3436 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3437
3438 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3439 is_debug_types_section);
3440
3441 /* Skip dummy compilation units. */
3442 if (info_ptr >= buffer + buffer_size
3443 || peek_abbrev_code (abfd, info_ptr) == 0)
3444 {
3445 do_cleanups (back_to_inner);
3446 return;
3447 }
3448
3449 cu.list_in_scope = &file_symbols;
3450
3451 /* Read the abbrevs for this compilation unit into a table. */
3452 dwarf2_read_abbrevs (&cu);
3453 make_cleanup (dwarf2_free_abbrev_table, &cu);
3454
3455 /* Read the compilation unit die. */
3456 init_cu_die_reader (&reader_specs, &cu);
3457 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3458 &has_children);
3459
3460 if (is_debug_types_section)
3461 {
3462 /* LENGTH has not been set yet for type units. */
3463 gdb_assert (this_cu->offset == cu.header.offset);
3464 this_cu->length = cu.header.length + cu.header.initial_length_size;
3465 }
3466 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3467 {
3468 do_cleanups (back_to_inner);
3469 return;
3470 }
3471
3472 prepare_one_comp_unit (&cu, comp_unit_die);
3473
3474 /* Allocate a new partial symbol table structure. */
3475 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3476 if (attr == NULL || !DW_STRING (attr))
3477 filename = "";
3478 else
3479 filename = DW_STRING (attr);
3480 pst = start_psymtab_common (objfile, objfile->section_offsets,
3481 filename,
3482 /* TEXTLOW and TEXTHIGH are set below. */
3483 0,
3484 objfile->global_psymbols.next,
3485 objfile->static_psymbols.next);
3486 pst->psymtabs_addrmap_supported = 1;
3487
3488 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3489 if (attr != NULL)
3490 pst->dirname = DW_STRING (attr);
3491
3492 pst->read_symtab_private = this_cu;
3493
3494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3495
3496 /* Store the function that reads in the rest of the symbol table. */
3497 pst->read_symtab = dwarf2_psymtab_to_symtab;
3498
3499 this_cu->v.psymtab = pst;
3500
3501 dwarf2_find_base_address (comp_unit_die, &cu);
3502
3503 /* Possibly set the default values of LOWPC and HIGHPC from
3504 `DW_AT_ranges'. */
3505 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3506 &best_highpc, &cu, pst);
3507 if (has_pc_info == 1 && best_lowpc < best_highpc)
3508 /* Store the contiguous range if it is not empty; it can be empty for
3509 CUs with no code. */
3510 addrmap_set_empty (objfile->psymtabs_addrmap,
3511 best_lowpc + baseaddr,
3512 best_highpc + baseaddr - 1, pst);
3513
3514 /* Check if comp unit has_children.
3515 If so, read the rest of the partial symbols from this comp unit.
3516 If not, there's no more debug_info for this comp unit. */
3517 if (has_children)
3518 {
3519 struct partial_die_info *first_die;
3520 CORE_ADDR lowpc, highpc;
3521
3522 lowpc = ((CORE_ADDR) -1);
3523 highpc = ((CORE_ADDR) 0);
3524
3525 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3526
3527 scan_partial_symbols (first_die, &lowpc, &highpc,
3528 ! has_pc_info, &cu);
3529
3530 /* If we didn't find a lowpc, set it to highpc to avoid
3531 complaints from `maint check'. */
3532 if (lowpc == ((CORE_ADDR) -1))
3533 lowpc = highpc;
3534
3535 /* If the compilation unit didn't have an explicit address range,
3536 then use the information extracted from its child dies. */
3537 if (! has_pc_info)
3538 {
3539 best_lowpc = lowpc;
3540 best_highpc = highpc;
3541 }
3542 }
3543 pst->textlow = best_lowpc + baseaddr;
3544 pst->texthigh = best_highpc + baseaddr;
3545
3546 pst->n_global_syms = objfile->global_psymbols.next -
3547 (objfile->global_psymbols.list + pst->globals_offset);
3548 pst->n_static_syms = objfile->static_psymbols.next -
3549 (objfile->static_psymbols.list + pst->statics_offset);
3550 sort_pst_symbols (pst);
3551
3552 if (is_debug_types_section)
3553 {
3554 /* It's not clear we want to do anything with stmt lists here.
3555 Waiting to see what gcc ultimately does. */
3556 }
3557 else
3558 {
3559 /* Get the list of files included in the current compilation unit,
3560 and build a psymtab for each of them. */
3561 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3562 }
3563
3564 do_cleanups (back_to_inner);
3565 }
3566
3567 /* Traversal function for htab_traverse_noresize.
3568 Process one .debug_types comp-unit. */
3569
3570 static int
3571 process_type_comp_unit (void **slot, void *info)
3572 {
3573 struct signatured_type *entry = (struct signatured_type *) *slot;
3574 struct dwarf2_per_cu_data *this_cu;
3575
3576 gdb_assert (info == NULL);
3577 this_cu = &entry->per_cu;
3578
3579 gdb_assert (this_cu->debug_types_section->readin);
3580 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3581
3582 return 1;
3583 }
3584
3585 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3586 Build partial symbol tables for the .debug_types comp-units. */
3587
3588 static void
3589 build_type_psymtabs (struct objfile *objfile)
3590 {
3591 if (! create_debug_types_hash_table (objfile))
3592 return;
3593
3594 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3595 process_type_comp_unit, NULL);
3596 }
3597
3598 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3599
3600 static void
3601 psymtabs_addrmap_cleanup (void *o)
3602 {
3603 struct objfile *objfile = o;
3604
3605 objfile->psymtabs_addrmap = NULL;
3606 }
3607
3608 /* Build the partial symbol table by doing a quick pass through the
3609 .debug_info and .debug_abbrev sections. */
3610
3611 static void
3612 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3613 {
3614 struct cleanup *back_to, *addrmap_cleanup;
3615 struct obstack temp_obstack;
3616 int i;
3617
3618 dwarf2_per_objfile->reading_partial_symbols = 1;
3619
3620 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3621
3622 /* Any cached compilation units will be linked by the per-objfile
3623 read_in_chain. Make sure to free them when we're done. */
3624 back_to = make_cleanup (free_cached_comp_units, NULL);
3625
3626 build_type_psymtabs (objfile);
3627
3628 create_all_comp_units (objfile);
3629
3630 /* Create a temporary address map on a temporary obstack. We later
3631 copy this to the final obstack. */
3632 obstack_init (&temp_obstack);
3633 make_cleanup_obstack_free (&temp_obstack);
3634 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3635 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3636
3637 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3638 {
3639 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3640
3641 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3642 }
3643
3644 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3645 &objfile->objfile_obstack);
3646 discard_cleanups (addrmap_cleanup);
3647
3648 do_cleanups (back_to);
3649 }
3650
3651 /* Load the partial DIEs for a secondary CU into memory. */
3652
3653 static void
3654 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3655 {
3656 struct objfile *objfile = this_cu->objfile;
3657 bfd *abfd = objfile->obfd;
3658 gdb_byte *info_ptr;
3659 struct die_info *comp_unit_die;
3660 struct dwarf2_cu *cu;
3661 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3662 int has_children;
3663 struct die_reader_specs reader_specs;
3664 int read_cu = 0;
3665 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3666
3667 gdb_assert (! this_cu->debug_types_section);
3668
3669 gdb_assert (section->readin);
3670 info_ptr = section->buffer + this_cu->offset;
3671
3672 if (this_cu->cu == NULL)
3673 {
3674 cu = xmalloc (sizeof (*cu));
3675 init_one_comp_unit (cu, this_cu);
3676
3677 read_cu = 1;
3678
3679 /* If an error occurs while loading, release our storage. */
3680 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3681
3682 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3683 0);
3684
3685 /* Skip dummy compilation units. */
3686 if (info_ptr >= (section->buffer + section->size)
3687 || peek_abbrev_code (abfd, info_ptr) == 0)
3688 {
3689 do_cleanups (free_cu_cleanup);
3690 return;
3691 }
3692
3693 /* Link this CU into read_in_chain. */
3694 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3695 dwarf2_per_objfile->read_in_chain = this_cu;
3696 }
3697 else
3698 {
3699 cu = this_cu->cu;
3700 info_ptr += cu->header.first_die_offset;
3701 }
3702
3703 /* Read the abbrevs for this compilation unit into a table. */
3704 gdb_assert (cu->dwarf2_abbrevs == NULL);
3705 dwarf2_read_abbrevs (cu);
3706 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3707
3708 /* Read the compilation unit die. */
3709 init_cu_die_reader (&reader_specs, cu);
3710 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3711 &has_children);
3712
3713 prepare_one_comp_unit (cu, comp_unit_die);
3714
3715 /* Check if comp unit has_children.
3716 If so, read the rest of the partial symbols from this comp unit.
3717 If not, there's no more debug_info for this comp unit. */
3718 if (has_children)
3719 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3720
3721 do_cleanups (free_abbrevs_cleanup);
3722
3723 if (read_cu)
3724 {
3725 /* We've successfully allocated this compilation unit. Let our
3726 caller clean it up when finished with it. */
3727 discard_cleanups (free_cu_cleanup);
3728 }
3729 }
3730
3731 /* Create a list of all compilation units in OBJFILE.
3732 This is only done for -readnow and building partial symtabs. */
3733
3734 static void
3735 create_all_comp_units (struct objfile *objfile)
3736 {
3737 int n_allocated;
3738 int n_comp_units;
3739 struct dwarf2_per_cu_data **all_comp_units;
3740 gdb_byte *info_ptr;
3741
3742 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3743 info_ptr = dwarf2_per_objfile->info.buffer;
3744
3745 n_comp_units = 0;
3746 n_allocated = 10;
3747 all_comp_units = xmalloc (n_allocated
3748 * sizeof (struct dwarf2_per_cu_data *));
3749
3750 while (info_ptr < dwarf2_per_objfile->info.buffer
3751 + dwarf2_per_objfile->info.size)
3752 {
3753 unsigned int length, initial_length_size;
3754 struct dwarf2_per_cu_data *this_cu;
3755 unsigned int offset;
3756
3757 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3758
3759 /* Read just enough information to find out where the next
3760 compilation unit is. */
3761 length = read_initial_length (objfile->obfd, info_ptr,
3762 &initial_length_size);
3763
3764 /* Save the compilation unit for later lookup. */
3765 this_cu = obstack_alloc (&objfile->objfile_obstack,
3766 sizeof (struct dwarf2_per_cu_data));
3767 memset (this_cu, 0, sizeof (*this_cu));
3768 this_cu->offset = offset;
3769 this_cu->length = length + initial_length_size;
3770 this_cu->objfile = objfile;
3771
3772 if (n_comp_units == n_allocated)
3773 {
3774 n_allocated *= 2;
3775 all_comp_units = xrealloc (all_comp_units,
3776 n_allocated
3777 * sizeof (struct dwarf2_per_cu_data *));
3778 }
3779 all_comp_units[n_comp_units++] = this_cu;
3780
3781 info_ptr = info_ptr + this_cu->length;
3782 }
3783
3784 dwarf2_per_objfile->all_comp_units
3785 = obstack_alloc (&objfile->objfile_obstack,
3786 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3787 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3788 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3789 xfree (all_comp_units);
3790 dwarf2_per_objfile->n_comp_units = n_comp_units;
3791 }
3792
3793 /* Process all loaded DIEs for compilation unit CU, starting at
3794 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3795 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3796 DW_AT_ranges). If NEED_PC is set, then this function will set
3797 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3798 and record the covered ranges in the addrmap. */
3799
3800 static void
3801 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3802 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3803 {
3804 struct partial_die_info *pdi;
3805
3806 /* Now, march along the PDI's, descending into ones which have
3807 interesting children but skipping the children of the other ones,
3808 until we reach the end of the compilation unit. */
3809
3810 pdi = first_die;
3811
3812 while (pdi != NULL)
3813 {
3814 fixup_partial_die (pdi, cu);
3815
3816 /* Anonymous namespaces or modules have no name but have interesting
3817 children, so we need to look at them. Ditto for anonymous
3818 enums. */
3819
3820 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3821 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3822 {
3823 switch (pdi->tag)
3824 {
3825 case DW_TAG_subprogram:
3826 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3827 break;
3828 case DW_TAG_constant:
3829 case DW_TAG_variable:
3830 case DW_TAG_typedef:
3831 case DW_TAG_union_type:
3832 if (!pdi->is_declaration)
3833 {
3834 add_partial_symbol (pdi, cu);
3835 }
3836 break;
3837 case DW_TAG_class_type:
3838 case DW_TAG_interface_type:
3839 case DW_TAG_structure_type:
3840 if (!pdi->is_declaration)
3841 {
3842 add_partial_symbol (pdi, cu);
3843 }
3844 break;
3845 case DW_TAG_enumeration_type:
3846 if (!pdi->is_declaration)
3847 add_partial_enumeration (pdi, cu);
3848 break;
3849 case DW_TAG_base_type:
3850 case DW_TAG_subrange_type:
3851 /* File scope base type definitions are added to the partial
3852 symbol table. */
3853 add_partial_symbol (pdi, cu);
3854 break;
3855 case DW_TAG_namespace:
3856 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3857 break;
3858 case DW_TAG_module:
3859 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3860 break;
3861 default:
3862 break;
3863 }
3864 }
3865
3866 /* If the die has a sibling, skip to the sibling. */
3867
3868 pdi = pdi->die_sibling;
3869 }
3870 }
3871
3872 /* Functions used to compute the fully scoped name of a partial DIE.
3873
3874 Normally, this is simple. For C++, the parent DIE's fully scoped
3875 name is concatenated with "::" and the partial DIE's name. For
3876 Java, the same thing occurs except that "." is used instead of "::".
3877 Enumerators are an exception; they use the scope of their parent
3878 enumeration type, i.e. the name of the enumeration type is not
3879 prepended to the enumerator.
3880
3881 There are two complexities. One is DW_AT_specification; in this
3882 case "parent" means the parent of the target of the specification,
3883 instead of the direct parent of the DIE. The other is compilers
3884 which do not emit DW_TAG_namespace; in this case we try to guess
3885 the fully qualified name of structure types from their members'
3886 linkage names. This must be done using the DIE's children rather
3887 than the children of any DW_AT_specification target. We only need
3888 to do this for structures at the top level, i.e. if the target of
3889 any DW_AT_specification (if any; otherwise the DIE itself) does not
3890 have a parent. */
3891
3892 /* Compute the scope prefix associated with PDI's parent, in
3893 compilation unit CU. The result will be allocated on CU's
3894 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3895 field. NULL is returned if no prefix is necessary. */
3896 static char *
3897 partial_die_parent_scope (struct partial_die_info *pdi,
3898 struct dwarf2_cu *cu)
3899 {
3900 char *grandparent_scope;
3901 struct partial_die_info *parent, *real_pdi;
3902
3903 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3904 then this means the parent of the specification DIE. */
3905
3906 real_pdi = pdi;
3907 while (real_pdi->has_specification)
3908 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3909
3910 parent = real_pdi->die_parent;
3911 if (parent == NULL)
3912 return NULL;
3913
3914 if (parent->scope_set)
3915 return parent->scope;
3916
3917 fixup_partial_die (parent, cu);
3918
3919 grandparent_scope = partial_die_parent_scope (parent, cu);
3920
3921 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3922 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3923 Work around this problem here. */
3924 if (cu->language == language_cplus
3925 && parent->tag == DW_TAG_namespace
3926 && strcmp (parent->name, "::") == 0
3927 && grandparent_scope == NULL)
3928 {
3929 parent->scope = NULL;
3930 parent->scope_set = 1;
3931 return NULL;
3932 }
3933
3934 if (pdi->tag == DW_TAG_enumerator)
3935 /* Enumerators should not get the name of the enumeration as a prefix. */
3936 parent->scope = grandparent_scope;
3937 else if (parent->tag == DW_TAG_namespace
3938 || parent->tag == DW_TAG_module
3939 || parent->tag == DW_TAG_structure_type
3940 || parent->tag == DW_TAG_class_type
3941 || parent->tag == DW_TAG_interface_type
3942 || parent->tag == DW_TAG_union_type
3943 || parent->tag == DW_TAG_enumeration_type)
3944 {
3945 if (grandparent_scope == NULL)
3946 parent->scope = parent->name;
3947 else
3948 parent->scope = typename_concat (&cu->comp_unit_obstack,
3949 grandparent_scope,
3950 parent->name, 0, cu);
3951 }
3952 else
3953 {
3954 /* FIXME drow/2004-04-01: What should we be doing with
3955 function-local names? For partial symbols, we should probably be
3956 ignoring them. */
3957 complaint (&symfile_complaints,
3958 _("unhandled containing DIE tag %d for DIE at %d"),
3959 parent->tag, pdi->offset);
3960 parent->scope = grandparent_scope;
3961 }
3962
3963 parent->scope_set = 1;
3964 return parent->scope;
3965 }
3966
3967 /* Return the fully scoped name associated with PDI, from compilation unit
3968 CU. The result will be allocated with malloc. */
3969 static char *
3970 partial_die_full_name (struct partial_die_info *pdi,
3971 struct dwarf2_cu *cu)
3972 {
3973 char *parent_scope;
3974
3975 /* If this is a template instantiation, we can not work out the
3976 template arguments from partial DIEs. So, unfortunately, we have
3977 to go through the full DIEs. At least any work we do building
3978 types here will be reused if full symbols are loaded later. */
3979 if (pdi->has_template_arguments)
3980 {
3981 fixup_partial_die (pdi, cu);
3982
3983 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3984 {
3985 struct die_info *die;
3986 struct attribute attr;
3987 struct dwarf2_cu *ref_cu = cu;
3988
3989 attr.name = 0;
3990 attr.form = DW_FORM_ref_addr;
3991 attr.u.addr = pdi->offset;
3992 die = follow_die_ref (NULL, &attr, &ref_cu);
3993
3994 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3995 }
3996 }
3997
3998 parent_scope = partial_die_parent_scope (pdi, cu);
3999 if (parent_scope == NULL)
4000 return NULL;
4001 else
4002 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4003 }
4004
4005 static void
4006 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4007 {
4008 struct objfile *objfile = cu->objfile;
4009 CORE_ADDR addr = 0;
4010 char *actual_name = NULL;
4011 CORE_ADDR baseaddr;
4012 int built_actual_name = 0;
4013
4014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4015
4016 actual_name = partial_die_full_name (pdi, cu);
4017 if (actual_name)
4018 built_actual_name = 1;
4019
4020 if (actual_name == NULL)
4021 actual_name = pdi->name;
4022
4023 switch (pdi->tag)
4024 {
4025 case DW_TAG_subprogram:
4026 if (pdi->is_external || cu->language == language_ada)
4027 {
4028 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4029 of the global scope. But in Ada, we want to be able to access
4030 nested procedures globally. So all Ada subprograms are stored
4031 in the global scope. */
4032 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4033 mst_text, objfile); */
4034 add_psymbol_to_list (actual_name, strlen (actual_name),
4035 built_actual_name,
4036 VAR_DOMAIN, LOC_BLOCK,
4037 &objfile->global_psymbols,
4038 0, pdi->lowpc + baseaddr,
4039 cu->language, objfile);
4040 }
4041 else
4042 {
4043 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4044 mst_file_text, objfile); */
4045 add_psymbol_to_list (actual_name, strlen (actual_name),
4046 built_actual_name,
4047 VAR_DOMAIN, LOC_BLOCK,
4048 &objfile->static_psymbols,
4049 0, pdi->lowpc + baseaddr,
4050 cu->language, objfile);
4051 }
4052 break;
4053 case DW_TAG_constant:
4054 {
4055 struct psymbol_allocation_list *list;
4056
4057 if (pdi->is_external)
4058 list = &objfile->global_psymbols;
4059 else
4060 list = &objfile->static_psymbols;
4061 add_psymbol_to_list (actual_name, strlen (actual_name),
4062 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4063 list, 0, 0, cu->language, objfile);
4064 }
4065 break;
4066 case DW_TAG_variable:
4067 if (pdi->locdesc)
4068 addr = decode_locdesc (pdi->locdesc, cu);
4069
4070 if (pdi->locdesc
4071 && addr == 0
4072 && !dwarf2_per_objfile->has_section_at_zero)
4073 {
4074 /* A global or static variable may also have been stripped
4075 out by the linker if unused, in which case its address
4076 will be nullified; do not add such variables into partial
4077 symbol table then. */
4078 }
4079 else if (pdi->is_external)
4080 {
4081 /* Global Variable.
4082 Don't enter into the minimal symbol tables as there is
4083 a minimal symbol table entry from the ELF symbols already.
4084 Enter into partial symbol table if it has a location
4085 descriptor or a type.
4086 If the location descriptor is missing, new_symbol will create
4087 a LOC_UNRESOLVED symbol, the address of the variable will then
4088 be determined from the minimal symbol table whenever the variable
4089 is referenced.
4090 The address for the partial symbol table entry is not
4091 used by GDB, but it comes in handy for debugging partial symbol
4092 table building. */
4093
4094 if (pdi->locdesc || pdi->has_type)
4095 add_psymbol_to_list (actual_name, strlen (actual_name),
4096 built_actual_name,
4097 VAR_DOMAIN, LOC_STATIC,
4098 &objfile->global_psymbols,
4099 0, addr + baseaddr,
4100 cu->language, objfile);
4101 }
4102 else
4103 {
4104 /* Static Variable. Skip symbols without location descriptors. */
4105 if (pdi->locdesc == NULL)
4106 {
4107 if (built_actual_name)
4108 xfree (actual_name);
4109 return;
4110 }
4111 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4112 mst_file_data, objfile); */
4113 add_psymbol_to_list (actual_name, strlen (actual_name),
4114 built_actual_name,
4115 VAR_DOMAIN, LOC_STATIC,
4116 &objfile->static_psymbols,
4117 0, addr + baseaddr,
4118 cu->language, objfile);
4119 }
4120 break;
4121 case DW_TAG_typedef:
4122 case DW_TAG_base_type:
4123 case DW_TAG_subrange_type:
4124 add_psymbol_to_list (actual_name, strlen (actual_name),
4125 built_actual_name,
4126 VAR_DOMAIN, LOC_TYPEDEF,
4127 &objfile->static_psymbols,
4128 0, (CORE_ADDR) 0, cu->language, objfile);
4129 break;
4130 case DW_TAG_namespace:
4131 add_psymbol_to_list (actual_name, strlen (actual_name),
4132 built_actual_name,
4133 VAR_DOMAIN, LOC_TYPEDEF,
4134 &objfile->global_psymbols,
4135 0, (CORE_ADDR) 0, cu->language, objfile);
4136 break;
4137 case DW_TAG_class_type:
4138 case DW_TAG_interface_type:
4139 case DW_TAG_structure_type:
4140 case DW_TAG_union_type:
4141 case DW_TAG_enumeration_type:
4142 /* Skip external references. The DWARF standard says in the section
4143 about "Structure, Union, and Class Type Entries": "An incomplete
4144 structure, union or class type is represented by a structure,
4145 union or class entry that does not have a byte size attribute
4146 and that has a DW_AT_declaration attribute." */
4147 if (!pdi->has_byte_size && pdi->is_declaration)
4148 {
4149 if (built_actual_name)
4150 xfree (actual_name);
4151 return;
4152 }
4153
4154 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4155 static vs. global. */
4156 add_psymbol_to_list (actual_name, strlen (actual_name),
4157 built_actual_name,
4158 STRUCT_DOMAIN, LOC_TYPEDEF,
4159 (cu->language == language_cplus
4160 || cu->language == language_java)
4161 ? &objfile->global_psymbols
4162 : &objfile->static_psymbols,
4163 0, (CORE_ADDR) 0, cu->language, objfile);
4164
4165 break;
4166 case DW_TAG_enumerator:
4167 add_psymbol_to_list (actual_name, strlen (actual_name),
4168 built_actual_name,
4169 VAR_DOMAIN, LOC_CONST,
4170 (cu->language == language_cplus
4171 || cu->language == language_java)
4172 ? &objfile->global_psymbols
4173 : &objfile->static_psymbols,
4174 0, (CORE_ADDR) 0, cu->language, objfile);
4175 break;
4176 default:
4177 break;
4178 }
4179
4180 if (built_actual_name)
4181 xfree (actual_name);
4182 }
4183
4184 /* Read a partial die corresponding to a namespace; also, add a symbol
4185 corresponding to that namespace to the symbol table. NAMESPACE is
4186 the name of the enclosing namespace. */
4187
4188 static void
4189 add_partial_namespace (struct partial_die_info *pdi,
4190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4191 int need_pc, struct dwarf2_cu *cu)
4192 {
4193 /* Add a symbol for the namespace. */
4194
4195 add_partial_symbol (pdi, cu);
4196
4197 /* Now scan partial symbols in that namespace. */
4198
4199 if (pdi->has_children)
4200 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4201 }
4202
4203 /* Read a partial die corresponding to a Fortran module. */
4204
4205 static void
4206 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4207 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4208 {
4209 /* Now scan partial symbols in that module. */
4210
4211 if (pdi->has_children)
4212 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4213 }
4214
4215 /* Read a partial die corresponding to a subprogram and create a partial
4216 symbol for that subprogram. When the CU language allows it, this
4217 routine also defines a partial symbol for each nested subprogram
4218 that this subprogram contains.
4219
4220 DIE my also be a lexical block, in which case we simply search
4221 recursively for suprograms defined inside that lexical block.
4222 Again, this is only performed when the CU language allows this
4223 type of definitions. */
4224
4225 static void
4226 add_partial_subprogram (struct partial_die_info *pdi,
4227 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4228 int need_pc, struct dwarf2_cu *cu)
4229 {
4230 if (pdi->tag == DW_TAG_subprogram)
4231 {
4232 if (pdi->has_pc_info)
4233 {
4234 if (pdi->lowpc < *lowpc)
4235 *lowpc = pdi->lowpc;
4236 if (pdi->highpc > *highpc)
4237 *highpc = pdi->highpc;
4238 if (need_pc)
4239 {
4240 CORE_ADDR baseaddr;
4241 struct objfile *objfile = cu->objfile;
4242
4243 baseaddr = ANOFFSET (objfile->section_offsets,
4244 SECT_OFF_TEXT (objfile));
4245 addrmap_set_empty (objfile->psymtabs_addrmap,
4246 pdi->lowpc + baseaddr,
4247 pdi->highpc - 1 + baseaddr,
4248 cu->per_cu->v.psymtab);
4249 }
4250 if (!pdi->is_declaration)
4251 /* Ignore subprogram DIEs that do not have a name, they are
4252 illegal. Do not emit a complaint at this point, we will
4253 do so when we convert this psymtab into a symtab. */
4254 if (pdi->name)
4255 add_partial_symbol (pdi, cu);
4256 }
4257 }
4258
4259 if (! pdi->has_children)
4260 return;
4261
4262 if (cu->language == language_ada)
4263 {
4264 pdi = pdi->die_child;
4265 while (pdi != NULL)
4266 {
4267 fixup_partial_die (pdi, cu);
4268 if (pdi->tag == DW_TAG_subprogram
4269 || pdi->tag == DW_TAG_lexical_block)
4270 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4271 pdi = pdi->die_sibling;
4272 }
4273 }
4274 }
4275
4276 /* Read a partial die corresponding to an enumeration type. */
4277
4278 static void
4279 add_partial_enumeration (struct partial_die_info *enum_pdi,
4280 struct dwarf2_cu *cu)
4281 {
4282 struct partial_die_info *pdi;
4283
4284 if (enum_pdi->name != NULL)
4285 add_partial_symbol (enum_pdi, cu);
4286
4287 pdi = enum_pdi->die_child;
4288 while (pdi)
4289 {
4290 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4291 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4292 else
4293 add_partial_symbol (pdi, cu);
4294 pdi = pdi->die_sibling;
4295 }
4296 }
4297
4298 /* Return the initial uleb128 in the die at INFO_PTR. */
4299
4300 static unsigned int
4301 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4302 {
4303 unsigned int bytes_read;
4304
4305 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4306 }
4307
4308 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4309 Return the corresponding abbrev, or NULL if the number is zero (indicating
4310 an empty DIE). In either case *BYTES_READ will be set to the length of
4311 the initial number. */
4312
4313 static struct abbrev_info *
4314 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4315 struct dwarf2_cu *cu)
4316 {
4317 bfd *abfd = cu->objfile->obfd;
4318 unsigned int abbrev_number;
4319 struct abbrev_info *abbrev;
4320
4321 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4322
4323 if (abbrev_number == 0)
4324 return NULL;
4325
4326 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4327 if (!abbrev)
4328 {
4329 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4330 abbrev_number, bfd_get_filename (abfd));
4331 }
4332
4333 return abbrev;
4334 }
4335
4336 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4337 Returns a pointer to the end of a series of DIEs, terminated by an empty
4338 DIE. Any children of the skipped DIEs will also be skipped. */
4339
4340 static gdb_byte *
4341 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4342 {
4343 struct abbrev_info *abbrev;
4344 unsigned int bytes_read;
4345
4346 while (1)
4347 {
4348 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4349 if (abbrev == NULL)
4350 return info_ptr + bytes_read;
4351 else
4352 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4353 }
4354 }
4355
4356 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4357 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4358 abbrev corresponding to that skipped uleb128 should be passed in
4359 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4360 children. */
4361
4362 static gdb_byte *
4363 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4364 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4365 {
4366 unsigned int bytes_read;
4367 struct attribute attr;
4368 bfd *abfd = cu->objfile->obfd;
4369 unsigned int form, i;
4370
4371 for (i = 0; i < abbrev->num_attrs; i++)
4372 {
4373 /* The only abbrev we care about is DW_AT_sibling. */
4374 if (abbrev->attrs[i].name == DW_AT_sibling)
4375 {
4376 read_attribute (&attr, &abbrev->attrs[i],
4377 abfd, info_ptr, cu);
4378 if (attr.form == DW_FORM_ref_addr)
4379 complaint (&symfile_complaints,
4380 _("ignoring absolute DW_AT_sibling"));
4381 else
4382 return buffer + dwarf2_get_ref_die_offset (&attr);
4383 }
4384
4385 /* If it isn't DW_AT_sibling, skip this attribute. */
4386 form = abbrev->attrs[i].form;
4387 skip_attribute:
4388 switch (form)
4389 {
4390 case DW_FORM_ref_addr:
4391 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4392 and later it is offset sized. */
4393 if (cu->header.version == 2)
4394 info_ptr += cu->header.addr_size;
4395 else
4396 info_ptr += cu->header.offset_size;
4397 break;
4398 case DW_FORM_addr:
4399 info_ptr += cu->header.addr_size;
4400 break;
4401 case DW_FORM_data1:
4402 case DW_FORM_ref1:
4403 case DW_FORM_flag:
4404 info_ptr += 1;
4405 break;
4406 case DW_FORM_flag_present:
4407 break;
4408 case DW_FORM_data2:
4409 case DW_FORM_ref2:
4410 info_ptr += 2;
4411 break;
4412 case DW_FORM_data4:
4413 case DW_FORM_ref4:
4414 info_ptr += 4;
4415 break;
4416 case DW_FORM_data8:
4417 case DW_FORM_ref8:
4418 case DW_FORM_ref_sig8:
4419 info_ptr += 8;
4420 break;
4421 case DW_FORM_string:
4422 read_direct_string (abfd, info_ptr, &bytes_read);
4423 info_ptr += bytes_read;
4424 break;
4425 case DW_FORM_sec_offset:
4426 case DW_FORM_strp:
4427 info_ptr += cu->header.offset_size;
4428 break;
4429 case DW_FORM_exprloc:
4430 case DW_FORM_block:
4431 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4432 info_ptr += bytes_read;
4433 break;
4434 case DW_FORM_block1:
4435 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4436 break;
4437 case DW_FORM_block2:
4438 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4439 break;
4440 case DW_FORM_block4:
4441 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4442 break;
4443 case DW_FORM_sdata:
4444 case DW_FORM_udata:
4445 case DW_FORM_ref_udata:
4446 info_ptr = skip_leb128 (abfd, info_ptr);
4447 break;
4448 case DW_FORM_indirect:
4449 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4450 info_ptr += bytes_read;
4451 /* We need to continue parsing from here, so just go back to
4452 the top. */
4453 goto skip_attribute;
4454
4455 default:
4456 error (_("Dwarf Error: Cannot handle %s "
4457 "in DWARF reader [in module %s]"),
4458 dwarf_form_name (form),
4459 bfd_get_filename (abfd));
4460 }
4461 }
4462
4463 if (abbrev->has_children)
4464 return skip_children (buffer, info_ptr, cu);
4465 else
4466 return info_ptr;
4467 }
4468
4469 /* Locate ORIG_PDI's sibling.
4470 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4471 in BUFFER. */
4472
4473 static gdb_byte *
4474 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4475 gdb_byte *buffer, gdb_byte *info_ptr,
4476 bfd *abfd, struct dwarf2_cu *cu)
4477 {
4478 /* Do we know the sibling already? */
4479
4480 if (orig_pdi->sibling)
4481 return orig_pdi->sibling;
4482
4483 /* Are there any children to deal with? */
4484
4485 if (!orig_pdi->has_children)
4486 return info_ptr;
4487
4488 /* Skip the children the long way. */
4489
4490 return skip_children (buffer, info_ptr, cu);
4491 }
4492
4493 /* Expand this partial symbol table into a full symbol table. */
4494
4495 static void
4496 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4497 {
4498 if (pst != NULL)
4499 {
4500 if (pst->readin)
4501 {
4502 warning (_("bug: psymtab for %s is already read in."),
4503 pst->filename);
4504 }
4505 else
4506 {
4507 if (info_verbose)
4508 {
4509 printf_filtered (_("Reading in symbols for %s..."),
4510 pst->filename);
4511 gdb_flush (gdb_stdout);
4512 }
4513
4514 /* Restore our global data. */
4515 dwarf2_per_objfile = objfile_data (pst->objfile,
4516 dwarf2_objfile_data_key);
4517
4518 /* If this psymtab is constructed from a debug-only objfile, the
4519 has_section_at_zero flag will not necessarily be correct. We
4520 can get the correct value for this flag by looking at the data
4521 associated with the (presumably stripped) associated objfile. */
4522 if (pst->objfile->separate_debug_objfile_backlink)
4523 {
4524 struct dwarf2_per_objfile *dpo_backlink
4525 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4526 dwarf2_objfile_data_key);
4527
4528 dwarf2_per_objfile->has_section_at_zero
4529 = dpo_backlink->has_section_at_zero;
4530 }
4531
4532 dwarf2_per_objfile->reading_partial_symbols = 0;
4533
4534 psymtab_to_symtab_1 (pst);
4535
4536 /* Finish up the debug error message. */
4537 if (info_verbose)
4538 printf_filtered (_("done.\n"));
4539 }
4540 }
4541 }
4542 \f
4543 /* Reading in full CUs. */
4544
4545 /* Add PER_CU to the queue. */
4546
4547 static void
4548 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4549 {
4550 struct dwarf2_queue_item *item;
4551
4552 per_cu->queued = 1;
4553 item = xmalloc (sizeof (*item));
4554 item->per_cu = per_cu;
4555 item->next = NULL;
4556
4557 if (dwarf2_queue == NULL)
4558 dwarf2_queue = item;
4559 else
4560 dwarf2_queue_tail->next = item;
4561
4562 dwarf2_queue_tail = item;
4563 }
4564
4565 /* Process the queue. */
4566
4567 static void
4568 process_queue (void)
4569 {
4570 struct dwarf2_queue_item *item, *next_item;
4571
4572 /* The queue starts out with one item, but following a DIE reference
4573 may load a new CU, adding it to the end of the queue. */
4574 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4575 {
4576 if (dwarf2_per_objfile->using_index
4577 ? !item->per_cu->v.quick->symtab
4578 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4579 process_full_comp_unit (item->per_cu);
4580
4581 item->per_cu->queued = 0;
4582 next_item = item->next;
4583 xfree (item);
4584 }
4585
4586 dwarf2_queue_tail = NULL;
4587 }
4588
4589 /* Free all allocated queue entries. This function only releases anything if
4590 an error was thrown; if the queue was processed then it would have been
4591 freed as we went along. */
4592
4593 static void
4594 dwarf2_release_queue (void *dummy)
4595 {
4596 struct dwarf2_queue_item *item, *last;
4597
4598 item = dwarf2_queue;
4599 while (item)
4600 {
4601 /* Anything still marked queued is likely to be in an
4602 inconsistent state, so discard it. */
4603 if (item->per_cu->queued)
4604 {
4605 if (item->per_cu->cu != NULL)
4606 free_one_cached_comp_unit (item->per_cu->cu);
4607 item->per_cu->queued = 0;
4608 }
4609
4610 last = item;
4611 item = item->next;
4612 xfree (last);
4613 }
4614
4615 dwarf2_queue = dwarf2_queue_tail = NULL;
4616 }
4617
4618 /* Read in full symbols for PST, and anything it depends on. */
4619
4620 static void
4621 psymtab_to_symtab_1 (struct partial_symtab *pst)
4622 {
4623 struct dwarf2_per_cu_data *per_cu;
4624 struct cleanup *back_to;
4625 int i;
4626
4627 for (i = 0; i < pst->number_of_dependencies; i++)
4628 if (!pst->dependencies[i]->readin)
4629 {
4630 /* Inform about additional files that need to be read in. */
4631 if (info_verbose)
4632 {
4633 /* FIXME: i18n: Need to make this a single string. */
4634 fputs_filtered (" ", gdb_stdout);
4635 wrap_here ("");
4636 fputs_filtered ("and ", gdb_stdout);
4637 wrap_here ("");
4638 printf_filtered ("%s...", pst->dependencies[i]->filename);
4639 wrap_here (""); /* Flush output. */
4640 gdb_flush (gdb_stdout);
4641 }
4642 psymtab_to_symtab_1 (pst->dependencies[i]);
4643 }
4644
4645 per_cu = pst->read_symtab_private;
4646
4647 if (per_cu == NULL)
4648 {
4649 /* It's an include file, no symbols to read for it.
4650 Everything is in the parent symtab. */
4651 pst->readin = 1;
4652 return;
4653 }
4654
4655 dw2_do_instantiate_symtab (per_cu);
4656 }
4657
4658 /* Load the DIEs associated with PER_CU into memory. */
4659
4660 static void
4661 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4662 {
4663 struct objfile *objfile = per_cu->objfile;
4664 bfd *abfd = objfile->obfd;
4665 struct dwarf2_cu *cu;
4666 unsigned int offset;
4667 gdb_byte *info_ptr, *beg_of_comp_unit;
4668 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4669 struct attribute *attr;
4670 int read_cu = 0;
4671
4672 gdb_assert (! per_cu->debug_types_section);
4673
4674 /* Set local variables from the partial symbol table info. */
4675 offset = per_cu->offset;
4676
4677 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4678 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4679 beg_of_comp_unit = info_ptr;
4680
4681 if (per_cu->cu == NULL)
4682 {
4683 cu = xmalloc (sizeof (*cu));
4684 init_one_comp_unit (cu, per_cu);
4685
4686 read_cu = 1;
4687
4688 /* If an error occurs while loading, release our storage. */
4689 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4690
4691 /* Read in the comp_unit header. */
4692 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4693
4694 /* Skip dummy compilation units. */
4695 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4696 + dwarf2_per_objfile->info.size)
4697 || peek_abbrev_code (abfd, info_ptr) == 0)
4698 {
4699 do_cleanups (free_cu_cleanup);
4700 return;
4701 }
4702
4703 /* Complete the cu_header. */
4704 cu->header.offset = offset;
4705 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4706
4707 /* Read the abbrevs for this compilation unit. */
4708 dwarf2_read_abbrevs (cu);
4709 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4710
4711 /* Link this CU into read_in_chain. */
4712 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4713 dwarf2_per_objfile->read_in_chain = per_cu;
4714 }
4715 else
4716 {
4717 cu = per_cu->cu;
4718 info_ptr += cu->header.first_die_offset;
4719 }
4720
4721 cu->dies = read_comp_unit (info_ptr, cu);
4722
4723 /* We try not to read any attributes in this function, because not
4724 all CUs needed for references have been loaded yet, and symbol
4725 table processing isn't initialized. But we have to set the CU language,
4726 or we won't be able to build types correctly. */
4727 prepare_one_comp_unit (cu, cu->dies);
4728
4729 /* Similarly, if we do not read the producer, we can not apply
4730 producer-specific interpretation. */
4731 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4732 if (attr)
4733 cu->producer = DW_STRING (attr);
4734
4735 if (read_cu)
4736 {
4737 do_cleanups (free_abbrevs_cleanup);
4738
4739 /* We've successfully allocated this compilation unit. Let our
4740 caller clean it up when finished with it. */
4741 discard_cleanups (free_cu_cleanup);
4742 }
4743 }
4744
4745 /* Add a DIE to the delayed physname list. */
4746
4747 static void
4748 add_to_method_list (struct type *type, int fnfield_index, int index,
4749 const char *name, struct die_info *die,
4750 struct dwarf2_cu *cu)
4751 {
4752 struct delayed_method_info mi;
4753 mi.type = type;
4754 mi.fnfield_index = fnfield_index;
4755 mi.index = index;
4756 mi.name = name;
4757 mi.die = die;
4758 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4759 }
4760
4761 /* A cleanup for freeing the delayed method list. */
4762
4763 static void
4764 free_delayed_list (void *ptr)
4765 {
4766 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4767 if (cu->method_list != NULL)
4768 {
4769 VEC_free (delayed_method_info, cu->method_list);
4770 cu->method_list = NULL;
4771 }
4772 }
4773
4774 /* Compute the physnames of any methods on the CU's method list.
4775
4776 The computation of method physnames is delayed in order to avoid the
4777 (bad) condition that one of the method's formal parameters is of an as yet
4778 incomplete type. */
4779
4780 static void
4781 compute_delayed_physnames (struct dwarf2_cu *cu)
4782 {
4783 int i;
4784 struct delayed_method_info *mi;
4785 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4786 {
4787 const char *physname;
4788 struct fn_fieldlist *fn_flp
4789 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4790 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4791 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4792 }
4793 }
4794
4795 /* Generate full symbol information for PER_CU, whose DIEs have
4796 already been loaded into memory. */
4797
4798 static void
4799 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4800 {
4801 struct dwarf2_cu *cu = per_cu->cu;
4802 struct objfile *objfile = per_cu->objfile;
4803 CORE_ADDR lowpc, highpc;
4804 struct symtab *symtab;
4805 struct cleanup *back_to, *delayed_list_cleanup;
4806 CORE_ADDR baseaddr;
4807
4808 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4809
4810 buildsym_init ();
4811 back_to = make_cleanup (really_free_pendings, NULL);
4812 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4813
4814 cu->list_in_scope = &file_symbols;
4815
4816 /* Do line number decoding in read_file_scope () */
4817 process_die (cu->dies, cu);
4818
4819 /* Now that we have processed all the DIEs in the CU, all the types
4820 should be complete, and it should now be safe to compute all of the
4821 physnames. */
4822 compute_delayed_physnames (cu);
4823 do_cleanups (delayed_list_cleanup);
4824
4825 /* Some compilers don't define a DW_AT_high_pc attribute for the
4826 compilation unit. If the DW_AT_high_pc is missing, synthesize
4827 it, by scanning the DIE's below the compilation unit. */
4828 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4829
4830 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4831
4832 if (symtab != NULL)
4833 {
4834 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4835
4836 /* Set symtab language to language from DW_AT_language. If the
4837 compilation is from a C file generated by language preprocessors, do
4838 not set the language if it was already deduced by start_subfile. */
4839 if (!(cu->language == language_c && symtab->language != language_c))
4840 symtab->language = cu->language;
4841
4842 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4843 produce DW_AT_location with location lists but it can be possibly
4844 invalid without -fvar-tracking.
4845
4846 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4847 needed, it would be wrong due to missing DW_AT_producer there.
4848
4849 Still one can confuse GDB by using non-standard GCC compilation
4850 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4851 */
4852 if (cu->has_loclist && gcc_4_minor >= 0)
4853 symtab->locations_valid = 1;
4854
4855 if (gcc_4_minor >= 5)
4856 symtab->epilogue_unwind_valid = 1;
4857
4858 symtab->call_site_htab = cu->call_site_htab;
4859 }
4860
4861 if (dwarf2_per_objfile->using_index)
4862 per_cu->v.quick->symtab = symtab;
4863 else
4864 {
4865 struct partial_symtab *pst = per_cu->v.psymtab;
4866 pst->symtab = symtab;
4867 pst->readin = 1;
4868 }
4869
4870 do_cleanups (back_to);
4871 }
4872
4873 /* Process a die and its children. */
4874
4875 static void
4876 process_die (struct die_info *die, struct dwarf2_cu *cu)
4877 {
4878 switch (die->tag)
4879 {
4880 case DW_TAG_padding:
4881 break;
4882 case DW_TAG_compile_unit:
4883 read_file_scope (die, cu);
4884 break;
4885 case DW_TAG_type_unit:
4886 read_type_unit_scope (die, cu);
4887 break;
4888 case DW_TAG_subprogram:
4889 case DW_TAG_inlined_subroutine:
4890 read_func_scope (die, cu);
4891 break;
4892 case DW_TAG_lexical_block:
4893 case DW_TAG_try_block:
4894 case DW_TAG_catch_block:
4895 read_lexical_block_scope (die, cu);
4896 break;
4897 case DW_TAG_GNU_call_site:
4898 read_call_site_scope (die, cu);
4899 break;
4900 case DW_TAG_class_type:
4901 case DW_TAG_interface_type:
4902 case DW_TAG_structure_type:
4903 case DW_TAG_union_type:
4904 process_structure_scope (die, cu);
4905 break;
4906 case DW_TAG_enumeration_type:
4907 process_enumeration_scope (die, cu);
4908 break;
4909
4910 /* These dies have a type, but processing them does not create
4911 a symbol or recurse to process the children. Therefore we can
4912 read them on-demand through read_type_die. */
4913 case DW_TAG_subroutine_type:
4914 case DW_TAG_set_type:
4915 case DW_TAG_array_type:
4916 case DW_TAG_pointer_type:
4917 case DW_TAG_ptr_to_member_type:
4918 case DW_TAG_reference_type:
4919 case DW_TAG_string_type:
4920 break;
4921
4922 case DW_TAG_base_type:
4923 case DW_TAG_subrange_type:
4924 case DW_TAG_typedef:
4925 /* Add a typedef symbol for the type definition, if it has a
4926 DW_AT_name. */
4927 new_symbol (die, read_type_die (die, cu), cu);
4928 break;
4929 case DW_TAG_common_block:
4930 read_common_block (die, cu);
4931 break;
4932 case DW_TAG_common_inclusion:
4933 break;
4934 case DW_TAG_namespace:
4935 processing_has_namespace_info = 1;
4936 read_namespace (die, cu);
4937 break;
4938 case DW_TAG_module:
4939 processing_has_namespace_info = 1;
4940 read_module (die, cu);
4941 break;
4942 case DW_TAG_imported_declaration:
4943 case DW_TAG_imported_module:
4944 processing_has_namespace_info = 1;
4945 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4946 || cu->language != language_fortran))
4947 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4948 dwarf_tag_name (die->tag));
4949 read_import_statement (die, cu);
4950 break;
4951 default:
4952 new_symbol (die, NULL, cu);
4953 break;
4954 }
4955 }
4956
4957 /* A helper function for dwarf2_compute_name which determines whether DIE
4958 needs to have the name of the scope prepended to the name listed in the
4959 die. */
4960
4961 static int
4962 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4963 {
4964 struct attribute *attr;
4965
4966 switch (die->tag)
4967 {
4968 case DW_TAG_namespace:
4969 case DW_TAG_typedef:
4970 case DW_TAG_class_type:
4971 case DW_TAG_interface_type:
4972 case DW_TAG_structure_type:
4973 case DW_TAG_union_type:
4974 case DW_TAG_enumeration_type:
4975 case DW_TAG_enumerator:
4976 case DW_TAG_subprogram:
4977 case DW_TAG_member:
4978 return 1;
4979
4980 case DW_TAG_variable:
4981 case DW_TAG_constant:
4982 /* We only need to prefix "globally" visible variables. These include
4983 any variable marked with DW_AT_external or any variable that
4984 lives in a namespace. [Variables in anonymous namespaces
4985 require prefixing, but they are not DW_AT_external.] */
4986
4987 if (dwarf2_attr (die, DW_AT_specification, cu))
4988 {
4989 struct dwarf2_cu *spec_cu = cu;
4990
4991 return die_needs_namespace (die_specification (die, &spec_cu),
4992 spec_cu);
4993 }
4994
4995 attr = dwarf2_attr (die, DW_AT_external, cu);
4996 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4997 && die->parent->tag != DW_TAG_module)
4998 return 0;
4999 /* A variable in a lexical block of some kind does not need a
5000 namespace, even though in C++ such variables may be external
5001 and have a mangled name. */
5002 if (die->parent->tag == DW_TAG_lexical_block
5003 || die->parent->tag == DW_TAG_try_block
5004 || die->parent->tag == DW_TAG_catch_block
5005 || die->parent->tag == DW_TAG_subprogram)
5006 return 0;
5007 return 1;
5008
5009 default:
5010 return 0;
5011 }
5012 }
5013
5014 /* Retrieve the last character from a mem_file. */
5015
5016 static void
5017 do_ui_file_peek_last (void *object, const char *buffer, long length)
5018 {
5019 char *last_char_p = (char *) object;
5020
5021 if (length > 0)
5022 *last_char_p = buffer[length - 1];
5023 }
5024
5025 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5026 compute the physname for the object, which include a method's
5027 formal parameters (C++/Java) and return type (Java).
5028
5029 For Ada, return the DIE's linkage name rather than the fully qualified
5030 name. PHYSNAME is ignored..
5031
5032 The result is allocated on the objfile_obstack and canonicalized. */
5033
5034 static const char *
5035 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5036 int physname)
5037 {
5038 struct objfile *objfile = cu->objfile;
5039
5040 if (name == NULL)
5041 name = dwarf2_name (die, cu);
5042
5043 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5044 compute it by typename_concat inside GDB. */
5045 if (cu->language == language_ada
5046 || (cu->language == language_fortran && physname))
5047 {
5048 /* For Ada unit, we prefer the linkage name over the name, as
5049 the former contains the exported name, which the user expects
5050 to be able to reference. Ideally, we want the user to be able
5051 to reference this entity using either natural or linkage name,
5052 but we haven't started looking at this enhancement yet. */
5053 struct attribute *attr;
5054
5055 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5056 if (attr == NULL)
5057 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5058 if (attr && DW_STRING (attr))
5059 return DW_STRING (attr);
5060 }
5061
5062 /* These are the only languages we know how to qualify names in. */
5063 if (name != NULL
5064 && (cu->language == language_cplus || cu->language == language_java
5065 || cu->language == language_fortran))
5066 {
5067 if (die_needs_namespace (die, cu))
5068 {
5069 long length;
5070 const char *prefix;
5071 struct ui_file *buf;
5072
5073 prefix = determine_prefix (die, cu);
5074 buf = mem_fileopen ();
5075 if (*prefix != '\0')
5076 {
5077 char *prefixed_name = typename_concat (NULL, prefix, name,
5078 physname, cu);
5079
5080 fputs_unfiltered (prefixed_name, buf);
5081 xfree (prefixed_name);
5082 }
5083 else
5084 fputs_unfiltered (name, buf);
5085
5086 /* Template parameters may be specified in the DIE's DW_AT_name, or
5087 as children with DW_TAG_template_type_param or
5088 DW_TAG_value_type_param. If the latter, add them to the name
5089 here. If the name already has template parameters, then
5090 skip this step; some versions of GCC emit both, and
5091 it is more efficient to use the pre-computed name.
5092
5093 Something to keep in mind about this process: it is very
5094 unlikely, or in some cases downright impossible, to produce
5095 something that will match the mangled name of a function.
5096 If the definition of the function has the same debug info,
5097 we should be able to match up with it anyway. But fallbacks
5098 using the minimal symbol, for instance to find a method
5099 implemented in a stripped copy of libstdc++, will not work.
5100 If we do not have debug info for the definition, we will have to
5101 match them up some other way.
5102
5103 When we do name matching there is a related problem with function
5104 templates; two instantiated function templates are allowed to
5105 differ only by their return types, which we do not add here. */
5106
5107 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5108 {
5109 struct attribute *attr;
5110 struct die_info *child;
5111 int first = 1;
5112
5113 die->building_fullname = 1;
5114
5115 for (child = die->child; child != NULL; child = child->sibling)
5116 {
5117 struct type *type;
5118 long value;
5119 gdb_byte *bytes;
5120 struct dwarf2_locexpr_baton *baton;
5121 struct value *v;
5122
5123 if (child->tag != DW_TAG_template_type_param
5124 && child->tag != DW_TAG_template_value_param)
5125 continue;
5126
5127 if (first)
5128 {
5129 fputs_unfiltered ("<", buf);
5130 first = 0;
5131 }
5132 else
5133 fputs_unfiltered (", ", buf);
5134
5135 attr = dwarf2_attr (child, DW_AT_type, cu);
5136 if (attr == NULL)
5137 {
5138 complaint (&symfile_complaints,
5139 _("template parameter missing DW_AT_type"));
5140 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5141 continue;
5142 }
5143 type = die_type (child, cu);
5144
5145 if (child->tag == DW_TAG_template_type_param)
5146 {
5147 c_print_type (type, "", buf, -1, 0);
5148 continue;
5149 }
5150
5151 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5152 if (attr == NULL)
5153 {
5154 complaint (&symfile_complaints,
5155 _("template parameter missing "
5156 "DW_AT_const_value"));
5157 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5158 continue;
5159 }
5160
5161 dwarf2_const_value_attr (attr, type, name,
5162 &cu->comp_unit_obstack, cu,
5163 &value, &bytes, &baton);
5164
5165 if (TYPE_NOSIGN (type))
5166 /* GDB prints characters as NUMBER 'CHAR'. If that's
5167 changed, this can use value_print instead. */
5168 c_printchar (value, type, buf);
5169 else
5170 {
5171 struct value_print_options opts;
5172
5173 if (baton != NULL)
5174 v = dwarf2_evaluate_loc_desc (type, NULL,
5175 baton->data,
5176 baton->size,
5177 baton->per_cu);
5178 else if (bytes != NULL)
5179 {
5180 v = allocate_value (type);
5181 memcpy (value_contents_writeable (v), bytes,
5182 TYPE_LENGTH (type));
5183 }
5184 else
5185 v = value_from_longest (type, value);
5186
5187 /* Specify decimal so that we do not depend on
5188 the radix. */
5189 get_formatted_print_options (&opts, 'd');
5190 opts.raw = 1;
5191 value_print (v, buf, &opts);
5192 release_value (v);
5193 value_free (v);
5194 }
5195 }
5196
5197 die->building_fullname = 0;
5198
5199 if (!first)
5200 {
5201 /* Close the argument list, with a space if necessary
5202 (nested templates). */
5203 char last_char = '\0';
5204 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5205 if (last_char == '>')
5206 fputs_unfiltered (" >", buf);
5207 else
5208 fputs_unfiltered (">", buf);
5209 }
5210 }
5211
5212 /* For Java and C++ methods, append formal parameter type
5213 information, if PHYSNAME. */
5214
5215 if (physname && die->tag == DW_TAG_subprogram
5216 && (cu->language == language_cplus
5217 || cu->language == language_java))
5218 {
5219 struct type *type = read_type_die (die, cu);
5220
5221 c_type_print_args (type, buf, 1, cu->language);
5222
5223 if (cu->language == language_java)
5224 {
5225 /* For java, we must append the return type to method
5226 names. */
5227 if (die->tag == DW_TAG_subprogram)
5228 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5229 0, 0);
5230 }
5231 else if (cu->language == language_cplus)
5232 {
5233 /* Assume that an artificial first parameter is
5234 "this", but do not crash if it is not. RealView
5235 marks unnamed (and thus unused) parameters as
5236 artificial; there is no way to differentiate
5237 the two cases. */
5238 if (TYPE_NFIELDS (type) > 0
5239 && TYPE_FIELD_ARTIFICIAL (type, 0)
5240 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5241 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5242 0))))
5243 fputs_unfiltered (" const", buf);
5244 }
5245 }
5246
5247 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5248 &length);
5249 ui_file_delete (buf);
5250
5251 if (cu->language == language_cplus)
5252 {
5253 char *cname
5254 = dwarf2_canonicalize_name (name, cu,
5255 &objfile->objfile_obstack);
5256
5257 if (cname != NULL)
5258 name = cname;
5259 }
5260 }
5261 }
5262
5263 return name;
5264 }
5265
5266 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5267 If scope qualifiers are appropriate they will be added. The result
5268 will be allocated on the objfile_obstack, or NULL if the DIE does
5269 not have a name. NAME may either be from a previous call to
5270 dwarf2_name or NULL.
5271
5272 The output string will be canonicalized (if C++/Java). */
5273
5274 static const char *
5275 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5276 {
5277 return dwarf2_compute_name (name, die, cu, 0);
5278 }
5279
5280 /* Construct a physname for the given DIE in CU. NAME may either be
5281 from a previous call to dwarf2_name or NULL. The result will be
5282 allocated on the objfile_objstack or NULL if the DIE does not have a
5283 name.
5284
5285 The output string will be canonicalized (if C++/Java). */
5286
5287 static const char *
5288 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5289 {
5290 struct objfile *objfile = cu->objfile;
5291 struct attribute *attr;
5292 const char *retval, *mangled = NULL, *canon = NULL;
5293 struct cleanup *back_to;
5294 int need_copy = 1;
5295
5296 /* In this case dwarf2_compute_name is just a shortcut not building anything
5297 on its own. */
5298 if (!die_needs_namespace (die, cu))
5299 return dwarf2_compute_name (name, die, cu, 1);
5300
5301 back_to = make_cleanup (null_cleanup, NULL);
5302
5303 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5304 if (!attr)
5305 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5306
5307 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5308 has computed. */
5309 if (attr && DW_STRING (attr))
5310 {
5311 char *demangled;
5312
5313 mangled = DW_STRING (attr);
5314
5315 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5316 type. It is easier for GDB users to search for such functions as
5317 `name(params)' than `long name(params)'. In such case the minimal
5318 symbol names do not match the full symbol names but for template
5319 functions there is never a need to look up their definition from their
5320 declaration so the only disadvantage remains the minimal symbol
5321 variant `long name(params)' does not have the proper inferior type.
5322 */
5323
5324 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5325 | (cu->language == language_java
5326 ? DMGL_JAVA | DMGL_RET_POSTFIX
5327 : DMGL_RET_DROP)));
5328 if (demangled)
5329 {
5330 make_cleanup (xfree, demangled);
5331 canon = demangled;
5332 }
5333 else
5334 {
5335 canon = mangled;
5336 need_copy = 0;
5337 }
5338 }
5339
5340 if (canon == NULL || check_physname)
5341 {
5342 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5343
5344 if (canon != NULL && strcmp (physname, canon) != 0)
5345 {
5346 /* It may not mean a bug in GDB. The compiler could also
5347 compute DW_AT_linkage_name incorrectly. But in such case
5348 GDB would need to be bug-to-bug compatible. */
5349
5350 complaint (&symfile_complaints,
5351 _("Computed physname <%s> does not match demangled <%s> "
5352 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5353 physname, canon, mangled, die->offset, objfile->name);
5354
5355 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5356 is available here - over computed PHYSNAME. It is safer
5357 against both buggy GDB and buggy compilers. */
5358
5359 retval = canon;
5360 }
5361 else
5362 {
5363 retval = physname;
5364 need_copy = 0;
5365 }
5366 }
5367 else
5368 retval = canon;
5369
5370 if (need_copy)
5371 retval = obsavestring (retval, strlen (retval),
5372 &objfile->objfile_obstack);
5373
5374 do_cleanups (back_to);
5375 return retval;
5376 }
5377
5378 /* Read the import statement specified by the given die and record it. */
5379
5380 static void
5381 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5382 {
5383 struct objfile *objfile = cu->objfile;
5384 struct attribute *import_attr;
5385 struct die_info *imported_die, *child_die;
5386 struct dwarf2_cu *imported_cu;
5387 const char *imported_name;
5388 const char *imported_name_prefix;
5389 const char *canonical_name;
5390 const char *import_alias;
5391 const char *imported_declaration = NULL;
5392 const char *import_prefix;
5393 VEC (const_char_ptr) *excludes = NULL;
5394 struct cleanup *cleanups;
5395
5396 char *temp;
5397
5398 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5399 if (import_attr == NULL)
5400 {
5401 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5402 dwarf_tag_name (die->tag));
5403 return;
5404 }
5405
5406 imported_cu = cu;
5407 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5408 imported_name = dwarf2_name (imported_die, imported_cu);
5409 if (imported_name == NULL)
5410 {
5411 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5412
5413 The import in the following code:
5414 namespace A
5415 {
5416 typedef int B;
5417 }
5418
5419 int main ()
5420 {
5421 using A::B;
5422 B b;
5423 return b;
5424 }
5425
5426 ...
5427 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5428 <52> DW_AT_decl_file : 1
5429 <53> DW_AT_decl_line : 6
5430 <54> DW_AT_import : <0x75>
5431 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5432 <59> DW_AT_name : B
5433 <5b> DW_AT_decl_file : 1
5434 <5c> DW_AT_decl_line : 2
5435 <5d> DW_AT_type : <0x6e>
5436 ...
5437 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5438 <76> DW_AT_byte_size : 4
5439 <77> DW_AT_encoding : 5 (signed)
5440
5441 imports the wrong die ( 0x75 instead of 0x58 ).
5442 This case will be ignored until the gcc bug is fixed. */
5443 return;
5444 }
5445
5446 /* Figure out the local name after import. */
5447 import_alias = dwarf2_name (die, cu);
5448
5449 /* Figure out where the statement is being imported to. */
5450 import_prefix = determine_prefix (die, cu);
5451
5452 /* Figure out what the scope of the imported die is and prepend it
5453 to the name of the imported die. */
5454 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5455
5456 if (imported_die->tag != DW_TAG_namespace
5457 && imported_die->tag != DW_TAG_module)
5458 {
5459 imported_declaration = imported_name;
5460 canonical_name = imported_name_prefix;
5461 }
5462 else if (strlen (imported_name_prefix) > 0)
5463 {
5464 temp = alloca (strlen (imported_name_prefix)
5465 + 2 + strlen (imported_name) + 1);
5466 strcpy (temp, imported_name_prefix);
5467 strcat (temp, "::");
5468 strcat (temp, imported_name);
5469 canonical_name = temp;
5470 }
5471 else
5472 canonical_name = imported_name;
5473
5474 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5475
5476 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5477 for (child_die = die->child; child_die && child_die->tag;
5478 child_die = sibling_die (child_die))
5479 {
5480 /* DWARF-4: A Fortran use statement with a “rename list” may be
5481 represented by an imported module entry with an import attribute
5482 referring to the module and owned entries corresponding to those
5483 entities that are renamed as part of being imported. */
5484
5485 if (child_die->tag != DW_TAG_imported_declaration)
5486 {
5487 complaint (&symfile_complaints,
5488 _("child DW_TAG_imported_declaration expected "
5489 "- DIE at 0x%x [in module %s]"),
5490 child_die->offset, objfile->name);
5491 continue;
5492 }
5493
5494 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5495 if (import_attr == NULL)
5496 {
5497 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5498 dwarf_tag_name (child_die->tag));
5499 continue;
5500 }
5501
5502 imported_cu = cu;
5503 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5504 &imported_cu);
5505 imported_name = dwarf2_name (imported_die, imported_cu);
5506 if (imported_name == NULL)
5507 {
5508 complaint (&symfile_complaints,
5509 _("child DW_TAG_imported_declaration has unknown "
5510 "imported name - DIE at 0x%x [in module %s]"),
5511 child_die->offset, objfile->name);
5512 continue;
5513 }
5514
5515 VEC_safe_push (const_char_ptr, excludes, imported_name);
5516
5517 process_die (child_die, cu);
5518 }
5519
5520 cp_add_using_directive (import_prefix,
5521 canonical_name,
5522 import_alias,
5523 imported_declaration,
5524 excludes,
5525 &objfile->objfile_obstack);
5526
5527 do_cleanups (cleanups);
5528 }
5529
5530 /* Cleanup function for read_file_scope. */
5531
5532 static void
5533 free_cu_line_header (void *arg)
5534 {
5535 struct dwarf2_cu *cu = arg;
5536
5537 free_line_header (cu->line_header);
5538 cu->line_header = NULL;
5539 }
5540
5541 static void
5542 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5543 char **name, char **comp_dir)
5544 {
5545 struct attribute *attr;
5546
5547 *name = NULL;
5548 *comp_dir = NULL;
5549
5550 /* Find the filename. Do not use dwarf2_name here, since the filename
5551 is not a source language identifier. */
5552 attr = dwarf2_attr (die, DW_AT_name, cu);
5553 if (attr)
5554 {
5555 *name = DW_STRING (attr);
5556 }
5557
5558 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5559 if (attr)
5560 *comp_dir = DW_STRING (attr);
5561 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5562 {
5563 *comp_dir = ldirname (*name);
5564 if (*comp_dir != NULL)
5565 make_cleanup (xfree, *comp_dir);
5566 }
5567 if (*comp_dir != NULL)
5568 {
5569 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5570 directory, get rid of it. */
5571 char *cp = strchr (*comp_dir, ':');
5572
5573 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5574 *comp_dir = cp + 1;
5575 }
5576
5577 if (*name == NULL)
5578 *name = "<unknown>";
5579 }
5580
5581 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5582 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5583 COMP_DIR is the compilation directory.
5584 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5585
5586 static void
5587 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5588 const char *comp_dir, int want_line_info)
5589 {
5590 struct attribute *attr;
5591 struct objfile *objfile = cu->objfile;
5592 bfd *abfd = objfile->obfd;
5593
5594 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5595 if (attr)
5596 {
5597 unsigned int line_offset = DW_UNSND (attr);
5598 struct line_header *line_header
5599 = dwarf_decode_line_header (line_offset, abfd, cu);
5600
5601 if (line_header)
5602 {
5603 cu->line_header = line_header;
5604 make_cleanup (free_cu_line_header, cu);
5605 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5606 }
5607 }
5608 }
5609
5610 /* Process DW_TAG_compile_unit. */
5611
5612 static void
5613 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5614 {
5615 struct objfile *objfile = cu->objfile;
5616 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5617 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5618 CORE_ADDR highpc = ((CORE_ADDR) 0);
5619 struct attribute *attr;
5620 char *name = NULL;
5621 char *comp_dir = NULL;
5622 struct die_info *child_die;
5623 bfd *abfd = objfile->obfd;
5624 CORE_ADDR baseaddr;
5625
5626 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5627
5628 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5629
5630 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5631 from finish_block. */
5632 if (lowpc == ((CORE_ADDR) -1))
5633 lowpc = highpc;
5634 lowpc += baseaddr;
5635 highpc += baseaddr;
5636
5637 find_file_and_directory (die, cu, &name, &comp_dir);
5638
5639 attr = dwarf2_attr (die, DW_AT_language, cu);
5640 if (attr)
5641 {
5642 set_cu_language (DW_UNSND (attr), cu);
5643 }
5644
5645 attr = dwarf2_attr (die, DW_AT_producer, cu);
5646 if (attr)
5647 cu->producer = DW_STRING (attr);
5648
5649 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5650 standardised yet. As a workaround for the language detection we fall
5651 back to the DW_AT_producer string. */
5652 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5653 cu->language = language_opencl;
5654
5655 /* We assume that we're processing GCC output. */
5656 processing_gcc_compilation = 2;
5657
5658 processing_has_namespace_info = 0;
5659
5660 start_symtab (name, comp_dir, lowpc);
5661 record_debugformat ("DWARF 2");
5662 record_producer (cu->producer);
5663
5664 /* Decode line number information if present. We do this before
5665 processing child DIEs, so that the line header table is available
5666 for DW_AT_decl_file. */
5667 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5668
5669 /* Process all dies in compilation unit. */
5670 if (die->child != NULL)
5671 {
5672 child_die = die->child;
5673 while (child_die && child_die->tag)
5674 {
5675 process_die (child_die, cu);
5676 child_die = sibling_die (child_die);
5677 }
5678 }
5679
5680 /* Decode macro information, if present. Dwarf 2 macro information
5681 refers to information in the line number info statement program
5682 header, so we can only read it if we've read the header
5683 successfully. */
5684 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5685 if (attr && cu->line_header)
5686 {
5687 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5688 complaint (&symfile_complaints,
5689 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5690
5691 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5692 comp_dir, abfd, cu,
5693 &dwarf2_per_objfile->macro, 1);
5694 }
5695 else
5696 {
5697 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5698 if (attr && cu->line_header)
5699 {
5700 unsigned int macro_offset = DW_UNSND (attr);
5701
5702 dwarf_decode_macros (cu->line_header, macro_offset,
5703 comp_dir, abfd, cu,
5704 &dwarf2_per_objfile->macinfo, 0);
5705 }
5706 }
5707
5708 do_cleanups (back_to);
5709 }
5710
5711 /* Process DW_TAG_type_unit.
5712 For TUs we want to skip the first top level sibling if it's not the
5713 actual type being defined by this TU. In this case the first top
5714 level sibling is there to provide context only. */
5715
5716 static void
5717 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5718 {
5719 struct objfile *objfile = cu->objfile;
5720 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5721 CORE_ADDR lowpc;
5722 struct attribute *attr;
5723 char *name = NULL;
5724 char *comp_dir = NULL;
5725 struct die_info *child_die;
5726 bfd *abfd = objfile->obfd;
5727
5728 /* start_symtab needs a low pc, but we don't really have one.
5729 Do what read_file_scope would do in the absence of such info. */
5730 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5731
5732 /* Find the filename. Do not use dwarf2_name here, since the filename
5733 is not a source language identifier. */
5734 attr = dwarf2_attr (die, DW_AT_name, cu);
5735 if (attr)
5736 name = DW_STRING (attr);
5737
5738 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5739 if (attr)
5740 comp_dir = DW_STRING (attr);
5741 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5742 {
5743 comp_dir = ldirname (name);
5744 if (comp_dir != NULL)
5745 make_cleanup (xfree, comp_dir);
5746 }
5747
5748 if (name == NULL)
5749 name = "<unknown>";
5750
5751 attr = dwarf2_attr (die, DW_AT_language, cu);
5752 if (attr)
5753 set_cu_language (DW_UNSND (attr), cu);
5754
5755 /* This isn't technically needed today. It is done for symmetry
5756 with read_file_scope. */
5757 attr = dwarf2_attr (die, DW_AT_producer, cu);
5758 if (attr)
5759 cu->producer = DW_STRING (attr);
5760
5761 /* We assume that we're processing GCC output. */
5762 processing_gcc_compilation = 2;
5763
5764 processing_has_namespace_info = 0;
5765
5766 start_symtab (name, comp_dir, lowpc);
5767 record_debugformat ("DWARF 2");
5768 record_producer (cu->producer);
5769
5770 /* Decode line number information if present. We do this before
5771 processing child DIEs, so that the line header table is available
5772 for DW_AT_decl_file.
5773 We don't need the pc/line-number mapping for type units. */
5774 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5775
5776 /* Process the dies in the type unit. */
5777 if (die->child == NULL)
5778 {
5779 dump_die_for_error (die);
5780 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5781 bfd_get_filename (abfd));
5782 }
5783
5784 child_die = die->child;
5785
5786 while (child_die && child_die->tag)
5787 {
5788 process_die (child_die, cu);
5789
5790 child_die = sibling_die (child_die);
5791 }
5792
5793 do_cleanups (back_to);
5794 }
5795
5796 /* qsort helper for inherit_abstract_dies. */
5797
5798 static int
5799 unsigned_int_compar (const void *ap, const void *bp)
5800 {
5801 unsigned int a = *(unsigned int *) ap;
5802 unsigned int b = *(unsigned int *) bp;
5803
5804 return (a > b) - (b > a);
5805 }
5806
5807 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5808 Inherit only the children of the DW_AT_abstract_origin DIE not being
5809 already referenced by DW_AT_abstract_origin from the children of the
5810 current DIE. */
5811
5812 static void
5813 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5814 {
5815 struct die_info *child_die;
5816 unsigned die_children_count;
5817 /* CU offsets which were referenced by children of the current DIE. */
5818 unsigned *offsets;
5819 unsigned *offsets_end, *offsetp;
5820 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5821 struct die_info *origin_die;
5822 /* Iterator of the ORIGIN_DIE children. */
5823 struct die_info *origin_child_die;
5824 struct cleanup *cleanups;
5825 struct attribute *attr;
5826 struct dwarf2_cu *origin_cu;
5827 struct pending **origin_previous_list_in_scope;
5828
5829 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5830 if (!attr)
5831 return;
5832
5833 /* Note that following die references may follow to a die in a
5834 different cu. */
5835
5836 origin_cu = cu;
5837 origin_die = follow_die_ref (die, attr, &origin_cu);
5838
5839 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5840 symbols in. */
5841 origin_previous_list_in_scope = origin_cu->list_in_scope;
5842 origin_cu->list_in_scope = cu->list_in_scope;
5843
5844 if (die->tag != origin_die->tag
5845 && !(die->tag == DW_TAG_inlined_subroutine
5846 && origin_die->tag == DW_TAG_subprogram))
5847 complaint (&symfile_complaints,
5848 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5849 die->offset, origin_die->offset);
5850
5851 child_die = die->child;
5852 die_children_count = 0;
5853 while (child_die && child_die->tag)
5854 {
5855 child_die = sibling_die (child_die);
5856 die_children_count++;
5857 }
5858 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5859 cleanups = make_cleanup (xfree, offsets);
5860
5861 offsets_end = offsets;
5862 child_die = die->child;
5863 while (child_die && child_die->tag)
5864 {
5865 /* For each CHILD_DIE, find the corresponding child of
5866 ORIGIN_DIE. If there is more than one layer of
5867 DW_AT_abstract_origin, follow them all; there shouldn't be,
5868 but GCC versions at least through 4.4 generate this (GCC PR
5869 40573). */
5870 struct die_info *child_origin_die = child_die;
5871 struct dwarf2_cu *child_origin_cu = cu;
5872
5873 while (1)
5874 {
5875 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5876 child_origin_cu);
5877 if (attr == NULL)
5878 break;
5879 child_origin_die = follow_die_ref (child_origin_die, attr,
5880 &child_origin_cu);
5881 }
5882
5883 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5884 counterpart may exist. */
5885 if (child_origin_die != child_die)
5886 {
5887 if (child_die->tag != child_origin_die->tag
5888 && !(child_die->tag == DW_TAG_inlined_subroutine
5889 && child_origin_die->tag == DW_TAG_subprogram))
5890 complaint (&symfile_complaints,
5891 _("Child DIE 0x%x and its abstract origin 0x%x have "
5892 "different tags"), child_die->offset,
5893 child_origin_die->offset);
5894 if (child_origin_die->parent != origin_die)
5895 complaint (&symfile_complaints,
5896 _("Child DIE 0x%x and its abstract origin 0x%x have "
5897 "different parents"), child_die->offset,
5898 child_origin_die->offset);
5899 else
5900 *offsets_end++ = child_origin_die->offset;
5901 }
5902 child_die = sibling_die (child_die);
5903 }
5904 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5905 unsigned_int_compar);
5906 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5907 if (offsetp[-1] == *offsetp)
5908 complaint (&symfile_complaints,
5909 _("Multiple children of DIE 0x%x refer "
5910 "to DIE 0x%x as their abstract origin"),
5911 die->offset, *offsetp);
5912
5913 offsetp = offsets;
5914 origin_child_die = origin_die->child;
5915 while (origin_child_die && origin_child_die->tag)
5916 {
5917 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5918 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5919 offsetp++;
5920 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5921 {
5922 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5923 process_die (origin_child_die, origin_cu);
5924 }
5925 origin_child_die = sibling_die (origin_child_die);
5926 }
5927 origin_cu->list_in_scope = origin_previous_list_in_scope;
5928
5929 do_cleanups (cleanups);
5930 }
5931
5932 static void
5933 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5934 {
5935 struct objfile *objfile = cu->objfile;
5936 struct context_stack *new;
5937 CORE_ADDR lowpc;
5938 CORE_ADDR highpc;
5939 struct die_info *child_die;
5940 struct attribute *attr, *call_line, *call_file;
5941 char *name;
5942 CORE_ADDR baseaddr;
5943 struct block *block;
5944 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5945 VEC (symbolp) *template_args = NULL;
5946 struct template_symbol *templ_func = NULL;
5947
5948 if (inlined_func)
5949 {
5950 /* If we do not have call site information, we can't show the
5951 caller of this inlined function. That's too confusing, so
5952 only use the scope for local variables. */
5953 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5954 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5955 if (call_line == NULL || call_file == NULL)
5956 {
5957 read_lexical_block_scope (die, cu);
5958 return;
5959 }
5960 }
5961
5962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5963
5964 name = dwarf2_name (die, cu);
5965
5966 /* Ignore functions with missing or empty names. These are actually
5967 illegal according to the DWARF standard. */
5968 if (name == NULL)
5969 {
5970 complaint (&symfile_complaints,
5971 _("missing name for subprogram DIE at %d"), die->offset);
5972 return;
5973 }
5974
5975 /* Ignore functions with missing or invalid low and high pc attributes. */
5976 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5977 {
5978 attr = dwarf2_attr (die, DW_AT_external, cu);
5979 if (!attr || !DW_UNSND (attr))
5980 complaint (&symfile_complaints,
5981 _("cannot get low and high bounds "
5982 "for subprogram DIE at %d"),
5983 die->offset);
5984 return;
5985 }
5986
5987 lowpc += baseaddr;
5988 highpc += baseaddr;
5989
5990 /* If we have any template arguments, then we must allocate a
5991 different sort of symbol. */
5992 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5993 {
5994 if (child_die->tag == DW_TAG_template_type_param
5995 || child_die->tag == DW_TAG_template_value_param)
5996 {
5997 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5998 struct template_symbol);
5999 templ_func->base.is_cplus_template_function = 1;
6000 break;
6001 }
6002 }
6003
6004 new = push_context (0, lowpc);
6005 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6006 (struct symbol *) templ_func);
6007
6008 /* If there is a location expression for DW_AT_frame_base, record
6009 it. */
6010 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6011 if (attr)
6012 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6013 expression is being recorded directly in the function's symbol
6014 and not in a separate frame-base object. I guess this hack is
6015 to avoid adding some sort of frame-base adjunct/annex to the
6016 function's symbol :-(. The problem with doing this is that it
6017 results in a function symbol with a location expression that
6018 has nothing to do with the location of the function, ouch! The
6019 relationship should be: a function's symbol has-a frame base; a
6020 frame-base has-a location expression. */
6021 dwarf2_symbol_mark_computed (attr, new->name, cu);
6022
6023 cu->list_in_scope = &local_symbols;
6024
6025 if (die->child != NULL)
6026 {
6027 child_die = die->child;
6028 while (child_die && child_die->tag)
6029 {
6030 if (child_die->tag == DW_TAG_template_type_param
6031 || child_die->tag == DW_TAG_template_value_param)
6032 {
6033 struct symbol *arg = new_symbol (child_die, NULL, cu);
6034
6035 if (arg != NULL)
6036 VEC_safe_push (symbolp, template_args, arg);
6037 }
6038 else
6039 process_die (child_die, cu);
6040 child_die = sibling_die (child_die);
6041 }
6042 }
6043
6044 inherit_abstract_dies (die, cu);
6045
6046 /* If we have a DW_AT_specification, we might need to import using
6047 directives from the context of the specification DIE. See the
6048 comment in determine_prefix. */
6049 if (cu->language == language_cplus
6050 && dwarf2_attr (die, DW_AT_specification, cu))
6051 {
6052 struct dwarf2_cu *spec_cu = cu;
6053 struct die_info *spec_die = die_specification (die, &spec_cu);
6054
6055 while (spec_die)
6056 {
6057 child_die = spec_die->child;
6058 while (child_die && child_die->tag)
6059 {
6060 if (child_die->tag == DW_TAG_imported_module)
6061 process_die (child_die, spec_cu);
6062 child_die = sibling_die (child_die);
6063 }
6064
6065 /* In some cases, GCC generates specification DIEs that
6066 themselves contain DW_AT_specification attributes. */
6067 spec_die = die_specification (spec_die, &spec_cu);
6068 }
6069 }
6070
6071 new = pop_context ();
6072 /* Make a block for the local symbols within. */
6073 block = finish_block (new->name, &local_symbols, new->old_blocks,
6074 lowpc, highpc, objfile);
6075
6076 /* For C++, set the block's scope. */
6077 if (cu->language == language_cplus || cu->language == language_fortran)
6078 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6079 determine_prefix (die, cu),
6080 processing_has_namespace_info);
6081
6082 /* If we have address ranges, record them. */
6083 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6084
6085 /* Attach template arguments to function. */
6086 if (! VEC_empty (symbolp, template_args))
6087 {
6088 gdb_assert (templ_func != NULL);
6089
6090 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6091 templ_func->template_arguments
6092 = obstack_alloc (&objfile->objfile_obstack,
6093 (templ_func->n_template_arguments
6094 * sizeof (struct symbol *)));
6095 memcpy (templ_func->template_arguments,
6096 VEC_address (symbolp, template_args),
6097 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6098 VEC_free (symbolp, template_args);
6099 }
6100
6101 /* In C++, we can have functions nested inside functions (e.g., when
6102 a function declares a class that has methods). This means that
6103 when we finish processing a function scope, we may need to go
6104 back to building a containing block's symbol lists. */
6105 local_symbols = new->locals;
6106 param_symbols = new->params;
6107 using_directives = new->using_directives;
6108
6109 /* If we've finished processing a top-level function, subsequent
6110 symbols go in the file symbol list. */
6111 if (outermost_context_p ())
6112 cu->list_in_scope = &file_symbols;
6113 }
6114
6115 /* Process all the DIES contained within a lexical block scope. Start
6116 a new scope, process the dies, and then close the scope. */
6117
6118 static void
6119 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6120 {
6121 struct objfile *objfile = cu->objfile;
6122 struct context_stack *new;
6123 CORE_ADDR lowpc, highpc;
6124 struct die_info *child_die;
6125 CORE_ADDR baseaddr;
6126
6127 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6128
6129 /* Ignore blocks with missing or invalid low and high pc attributes. */
6130 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6131 as multiple lexical blocks? Handling children in a sane way would
6132 be nasty. Might be easier to properly extend generic blocks to
6133 describe ranges. */
6134 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6135 return;
6136 lowpc += baseaddr;
6137 highpc += baseaddr;
6138
6139 push_context (0, lowpc);
6140 if (die->child != NULL)
6141 {
6142 child_die = die->child;
6143 while (child_die && child_die->tag)
6144 {
6145 process_die (child_die, cu);
6146 child_die = sibling_die (child_die);
6147 }
6148 }
6149 new = pop_context ();
6150
6151 if (local_symbols != NULL || using_directives != NULL)
6152 {
6153 struct block *block
6154 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6155 highpc, objfile);
6156
6157 /* Note that recording ranges after traversing children, as we
6158 do here, means that recording a parent's ranges entails
6159 walking across all its children's ranges as they appear in
6160 the address map, which is quadratic behavior.
6161
6162 It would be nicer to record the parent's ranges before
6163 traversing its children, simply overriding whatever you find
6164 there. But since we don't even decide whether to create a
6165 block until after we've traversed its children, that's hard
6166 to do. */
6167 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6168 }
6169 local_symbols = new->locals;
6170 using_directives = new->using_directives;
6171 }
6172
6173 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6174
6175 static void
6176 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6177 {
6178 struct objfile *objfile = cu->objfile;
6179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6180 CORE_ADDR pc, baseaddr;
6181 struct attribute *attr;
6182 struct call_site *call_site, call_site_local;
6183 void **slot;
6184 int nparams;
6185 struct die_info *child_die;
6186
6187 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6188
6189 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6190 if (!attr)
6191 {
6192 complaint (&symfile_complaints,
6193 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6194 "DIE 0x%x [in module %s]"),
6195 die->offset, objfile->name);
6196 return;
6197 }
6198 pc = DW_ADDR (attr) + baseaddr;
6199
6200 if (cu->call_site_htab == NULL)
6201 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6202 NULL, &objfile->objfile_obstack,
6203 hashtab_obstack_allocate, NULL);
6204 call_site_local.pc = pc;
6205 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6206 if (*slot != NULL)
6207 {
6208 complaint (&symfile_complaints,
6209 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6210 "DIE 0x%x [in module %s]"),
6211 paddress (gdbarch, pc), die->offset, objfile->name);
6212 return;
6213 }
6214
6215 /* Count parameters at the caller. */
6216
6217 nparams = 0;
6218 for (child_die = die->child; child_die && child_die->tag;
6219 child_die = sibling_die (child_die))
6220 {
6221 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6222 {
6223 complaint (&symfile_complaints,
6224 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6225 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6226 child_die->tag, child_die->offset, objfile->name);
6227 continue;
6228 }
6229
6230 nparams++;
6231 }
6232
6233 call_site = obstack_alloc (&objfile->objfile_obstack,
6234 (sizeof (*call_site)
6235 + (sizeof (*call_site->parameter)
6236 * (nparams - 1))));
6237 *slot = call_site;
6238 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6239 call_site->pc = pc;
6240
6241 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6242 {
6243 struct die_info *func_die;
6244
6245 /* Skip also over DW_TAG_inlined_subroutine. */
6246 for (func_die = die->parent;
6247 func_die && func_die->tag != DW_TAG_subprogram
6248 && func_die->tag != DW_TAG_subroutine_type;
6249 func_die = func_die->parent);
6250
6251 /* DW_AT_GNU_all_call_sites is a superset
6252 of DW_AT_GNU_all_tail_call_sites. */
6253 if (func_die
6254 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6255 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6256 {
6257 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6258 not complete. But keep CALL_SITE for look ups via call_site_htab,
6259 both the initial caller containing the real return address PC and
6260 the final callee containing the current PC of a chain of tail
6261 calls do not need to have the tail call list complete. But any
6262 function candidate for a virtual tail call frame searched via
6263 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6264 determined unambiguously. */
6265 }
6266 else
6267 {
6268 struct type *func_type = NULL;
6269
6270 if (func_die)
6271 func_type = get_die_type (func_die, cu);
6272 if (func_type != NULL)
6273 {
6274 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6275
6276 /* Enlist this call site to the function. */
6277 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6278 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6279 }
6280 else
6281 complaint (&symfile_complaints,
6282 _("Cannot find function owning DW_TAG_GNU_call_site "
6283 "DIE 0x%x [in module %s]"),
6284 die->offset, objfile->name);
6285 }
6286 }
6287
6288 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6289 if (attr == NULL)
6290 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6291 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6292 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6293 /* Keep NULL DWARF_BLOCK. */;
6294 else if (attr_form_is_block (attr))
6295 {
6296 struct dwarf2_locexpr_baton *dlbaton;
6297
6298 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6299 dlbaton->data = DW_BLOCK (attr)->data;
6300 dlbaton->size = DW_BLOCK (attr)->size;
6301 dlbaton->per_cu = cu->per_cu;
6302
6303 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6304 }
6305 else if (is_ref_attr (attr))
6306 {
6307 struct dwarf2_cu *target_cu = cu;
6308 struct die_info *target_die;
6309
6310 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6311 gdb_assert (target_cu->objfile == objfile);
6312 if (die_is_declaration (target_die, target_cu))
6313 {
6314 const char *target_physname;
6315
6316 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6317 if (target_physname == NULL)
6318 complaint (&symfile_complaints,
6319 _("DW_AT_GNU_call_site_target target DIE has invalid "
6320 "physname, for referencing DIE 0x%x [in module %s]"),
6321 die->offset, objfile->name);
6322 else
6323 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6324 }
6325 else
6326 {
6327 CORE_ADDR lowpc;
6328
6329 /* DW_AT_entry_pc should be preferred. */
6330 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6331 complaint (&symfile_complaints,
6332 _("DW_AT_GNU_call_site_target target DIE has invalid "
6333 "low pc, for referencing DIE 0x%x [in module %s]"),
6334 die->offset, objfile->name);
6335 else
6336 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6337 }
6338 }
6339 else
6340 complaint (&symfile_complaints,
6341 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6342 "block nor reference, for DIE 0x%x [in module %s]"),
6343 die->offset, objfile->name);
6344
6345 call_site->per_cu = cu->per_cu;
6346
6347 for (child_die = die->child;
6348 child_die && child_die->tag;
6349 child_die = sibling_die (child_die))
6350 {
6351 struct dwarf2_locexpr_baton *dlbaton;
6352 struct call_site_parameter *parameter;
6353
6354 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6355 {
6356 /* Already printed the complaint above. */
6357 continue;
6358 }
6359
6360 gdb_assert (call_site->parameter_count < nparams);
6361 parameter = &call_site->parameter[call_site->parameter_count];
6362
6363 /* DW_AT_location specifies the register number. Value of the data
6364 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6365
6366 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6367 if (!attr || !attr_form_is_block (attr))
6368 {
6369 complaint (&symfile_complaints,
6370 _("No DW_FORM_block* DW_AT_location for "
6371 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6372 child_die->offset, objfile->name);
6373 continue;
6374 }
6375 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6376 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6377 if (parameter->dwarf_reg == -1
6378 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6379 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6380 &parameter->fb_offset))
6381 {
6382 complaint (&symfile_complaints,
6383 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6384 "for DW_FORM_block* DW_AT_location for "
6385 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6386 child_die->offset, objfile->name);
6387 continue;
6388 }
6389
6390 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6391 if (!attr_form_is_block (attr))
6392 {
6393 complaint (&symfile_complaints,
6394 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6395 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6396 child_die->offset, objfile->name);
6397 continue;
6398 }
6399 parameter->value = DW_BLOCK (attr)->data;
6400 parameter->value_size = DW_BLOCK (attr)->size;
6401
6402 /* Parameters are not pre-cleared by memset above. */
6403 parameter->data_value = NULL;
6404 parameter->data_value_size = 0;
6405 call_site->parameter_count++;
6406
6407 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6408 if (attr)
6409 {
6410 if (!attr_form_is_block (attr))
6411 complaint (&symfile_complaints,
6412 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6413 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6414 child_die->offset, objfile->name);
6415 else
6416 {
6417 parameter->data_value = DW_BLOCK (attr)->data;
6418 parameter->data_value_size = DW_BLOCK (attr)->size;
6419 }
6420 }
6421 }
6422 }
6423
6424 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6425 Return 1 if the attributes are present and valid, otherwise, return 0.
6426 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6427
6428 static int
6429 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6430 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6431 struct partial_symtab *ranges_pst)
6432 {
6433 struct objfile *objfile = cu->objfile;
6434 struct comp_unit_head *cu_header = &cu->header;
6435 bfd *obfd = objfile->obfd;
6436 unsigned int addr_size = cu_header->addr_size;
6437 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6438 /* Base address selection entry. */
6439 CORE_ADDR base;
6440 int found_base;
6441 unsigned int dummy;
6442 gdb_byte *buffer;
6443 CORE_ADDR marker;
6444 int low_set;
6445 CORE_ADDR low = 0;
6446 CORE_ADDR high = 0;
6447 CORE_ADDR baseaddr;
6448
6449 found_base = cu->base_known;
6450 base = cu->base_address;
6451
6452 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6453 if (offset >= dwarf2_per_objfile->ranges.size)
6454 {
6455 complaint (&symfile_complaints,
6456 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6457 offset);
6458 return 0;
6459 }
6460 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6461
6462 /* Read in the largest possible address. */
6463 marker = read_address (obfd, buffer, cu, &dummy);
6464 if ((marker & mask) == mask)
6465 {
6466 /* If we found the largest possible address, then
6467 read the base address. */
6468 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6469 buffer += 2 * addr_size;
6470 offset += 2 * addr_size;
6471 found_base = 1;
6472 }
6473
6474 low_set = 0;
6475
6476 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6477
6478 while (1)
6479 {
6480 CORE_ADDR range_beginning, range_end;
6481
6482 range_beginning = read_address (obfd, buffer, cu, &dummy);
6483 buffer += addr_size;
6484 range_end = read_address (obfd, buffer, cu, &dummy);
6485 buffer += addr_size;
6486 offset += 2 * addr_size;
6487
6488 /* An end of list marker is a pair of zero addresses. */
6489 if (range_beginning == 0 && range_end == 0)
6490 /* Found the end of list entry. */
6491 break;
6492
6493 /* Each base address selection entry is a pair of 2 values.
6494 The first is the largest possible address, the second is
6495 the base address. Check for a base address here. */
6496 if ((range_beginning & mask) == mask)
6497 {
6498 /* If we found the largest possible address, then
6499 read the base address. */
6500 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6501 found_base = 1;
6502 continue;
6503 }
6504
6505 if (!found_base)
6506 {
6507 /* We have no valid base address for the ranges
6508 data. */
6509 complaint (&symfile_complaints,
6510 _("Invalid .debug_ranges data (no base address)"));
6511 return 0;
6512 }
6513
6514 if (range_beginning > range_end)
6515 {
6516 /* Inverted range entries are invalid. */
6517 complaint (&symfile_complaints,
6518 _("Invalid .debug_ranges data (inverted range)"));
6519 return 0;
6520 }
6521
6522 /* Empty range entries have no effect. */
6523 if (range_beginning == range_end)
6524 continue;
6525
6526 range_beginning += base;
6527 range_end += base;
6528
6529 if (ranges_pst != NULL)
6530 addrmap_set_empty (objfile->psymtabs_addrmap,
6531 range_beginning + baseaddr,
6532 range_end - 1 + baseaddr,
6533 ranges_pst);
6534
6535 /* FIXME: This is recording everything as a low-high
6536 segment of consecutive addresses. We should have a
6537 data structure for discontiguous block ranges
6538 instead. */
6539 if (! low_set)
6540 {
6541 low = range_beginning;
6542 high = range_end;
6543 low_set = 1;
6544 }
6545 else
6546 {
6547 if (range_beginning < low)
6548 low = range_beginning;
6549 if (range_end > high)
6550 high = range_end;
6551 }
6552 }
6553
6554 if (! low_set)
6555 /* If the first entry is an end-of-list marker, the range
6556 describes an empty scope, i.e. no instructions. */
6557 return 0;
6558
6559 if (low_return)
6560 *low_return = low;
6561 if (high_return)
6562 *high_return = high;
6563 return 1;
6564 }
6565
6566 /* Get low and high pc attributes from a die. Return 1 if the attributes
6567 are present and valid, otherwise, return 0. Return -1 if the range is
6568 discontinuous, i.e. derived from DW_AT_ranges information. */
6569 static int
6570 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6571 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6572 struct partial_symtab *pst)
6573 {
6574 struct attribute *attr;
6575 CORE_ADDR low = 0;
6576 CORE_ADDR high = 0;
6577 int ret = 0;
6578
6579 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6580 if (attr)
6581 {
6582 high = DW_ADDR (attr);
6583 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6584 if (attr)
6585 low = DW_ADDR (attr);
6586 else
6587 /* Found high w/o low attribute. */
6588 return 0;
6589
6590 /* Found consecutive range of addresses. */
6591 ret = 1;
6592 }
6593 else
6594 {
6595 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6596 if (attr != NULL)
6597 {
6598 /* Value of the DW_AT_ranges attribute is the offset in the
6599 .debug_ranges section. */
6600 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6601 return 0;
6602 /* Found discontinuous range of addresses. */
6603 ret = -1;
6604 }
6605 }
6606
6607 /* read_partial_die has also the strict LOW < HIGH requirement. */
6608 if (high <= low)
6609 return 0;
6610
6611 /* When using the GNU linker, .gnu.linkonce. sections are used to
6612 eliminate duplicate copies of functions and vtables and such.
6613 The linker will arbitrarily choose one and discard the others.
6614 The AT_*_pc values for such functions refer to local labels in
6615 these sections. If the section from that file was discarded, the
6616 labels are not in the output, so the relocs get a value of 0.
6617 If this is a discarded function, mark the pc bounds as invalid,
6618 so that GDB will ignore it. */
6619 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6620 return 0;
6621
6622 *lowpc = low;
6623 if (highpc)
6624 *highpc = high;
6625 return ret;
6626 }
6627
6628 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6629 its low and high PC addresses. Do nothing if these addresses could not
6630 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6631 and HIGHPC to the high address if greater than HIGHPC. */
6632
6633 static void
6634 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6635 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6636 struct dwarf2_cu *cu)
6637 {
6638 CORE_ADDR low, high;
6639 struct die_info *child = die->child;
6640
6641 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6642 {
6643 *lowpc = min (*lowpc, low);
6644 *highpc = max (*highpc, high);
6645 }
6646
6647 /* If the language does not allow nested subprograms (either inside
6648 subprograms or lexical blocks), we're done. */
6649 if (cu->language != language_ada)
6650 return;
6651
6652 /* Check all the children of the given DIE. If it contains nested
6653 subprograms, then check their pc bounds. Likewise, we need to
6654 check lexical blocks as well, as they may also contain subprogram
6655 definitions. */
6656 while (child && child->tag)
6657 {
6658 if (child->tag == DW_TAG_subprogram
6659 || child->tag == DW_TAG_lexical_block)
6660 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6661 child = sibling_die (child);
6662 }
6663 }
6664
6665 /* Get the low and high pc's represented by the scope DIE, and store
6666 them in *LOWPC and *HIGHPC. If the correct values can't be
6667 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6668
6669 static void
6670 get_scope_pc_bounds (struct die_info *die,
6671 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6672 struct dwarf2_cu *cu)
6673 {
6674 CORE_ADDR best_low = (CORE_ADDR) -1;
6675 CORE_ADDR best_high = (CORE_ADDR) 0;
6676 CORE_ADDR current_low, current_high;
6677
6678 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6679 {
6680 best_low = current_low;
6681 best_high = current_high;
6682 }
6683 else
6684 {
6685 struct die_info *child = die->child;
6686
6687 while (child && child->tag)
6688 {
6689 switch (child->tag) {
6690 case DW_TAG_subprogram:
6691 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6692 break;
6693 case DW_TAG_namespace:
6694 case DW_TAG_module:
6695 /* FIXME: carlton/2004-01-16: Should we do this for
6696 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6697 that current GCC's always emit the DIEs corresponding
6698 to definitions of methods of classes as children of a
6699 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6700 the DIEs giving the declarations, which could be
6701 anywhere). But I don't see any reason why the
6702 standards says that they have to be there. */
6703 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6704
6705 if (current_low != ((CORE_ADDR) -1))
6706 {
6707 best_low = min (best_low, current_low);
6708 best_high = max (best_high, current_high);
6709 }
6710 break;
6711 default:
6712 /* Ignore. */
6713 break;
6714 }
6715
6716 child = sibling_die (child);
6717 }
6718 }
6719
6720 *lowpc = best_low;
6721 *highpc = best_high;
6722 }
6723
6724 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6725 in DIE. */
6726 static void
6727 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6728 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6729 {
6730 struct objfile *objfile = cu->objfile;
6731 struct attribute *attr;
6732
6733 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6734 if (attr)
6735 {
6736 CORE_ADDR high = DW_ADDR (attr);
6737
6738 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6739 if (attr)
6740 {
6741 CORE_ADDR low = DW_ADDR (attr);
6742
6743 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6744 }
6745 }
6746
6747 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6748 if (attr)
6749 {
6750 bfd *obfd = objfile->obfd;
6751
6752 /* The value of the DW_AT_ranges attribute is the offset of the
6753 address range list in the .debug_ranges section. */
6754 unsigned long offset = DW_UNSND (attr);
6755 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6756
6757 /* For some target architectures, but not others, the
6758 read_address function sign-extends the addresses it returns.
6759 To recognize base address selection entries, we need a
6760 mask. */
6761 unsigned int addr_size = cu->header.addr_size;
6762 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6763
6764 /* The base address, to which the next pair is relative. Note
6765 that this 'base' is a DWARF concept: most entries in a range
6766 list are relative, to reduce the number of relocs against the
6767 debugging information. This is separate from this function's
6768 'baseaddr' argument, which GDB uses to relocate debugging
6769 information from a shared library based on the address at
6770 which the library was loaded. */
6771 CORE_ADDR base = cu->base_address;
6772 int base_known = cu->base_known;
6773
6774 gdb_assert (dwarf2_per_objfile->ranges.readin);
6775 if (offset >= dwarf2_per_objfile->ranges.size)
6776 {
6777 complaint (&symfile_complaints,
6778 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6779 offset);
6780 return;
6781 }
6782
6783 for (;;)
6784 {
6785 unsigned int bytes_read;
6786 CORE_ADDR start, end;
6787
6788 start = read_address (obfd, buffer, cu, &bytes_read);
6789 buffer += bytes_read;
6790 end = read_address (obfd, buffer, cu, &bytes_read);
6791 buffer += bytes_read;
6792
6793 /* Did we find the end of the range list? */
6794 if (start == 0 && end == 0)
6795 break;
6796
6797 /* Did we find a base address selection entry? */
6798 else if ((start & base_select_mask) == base_select_mask)
6799 {
6800 base = end;
6801 base_known = 1;
6802 }
6803
6804 /* We found an ordinary address range. */
6805 else
6806 {
6807 if (!base_known)
6808 {
6809 complaint (&symfile_complaints,
6810 _("Invalid .debug_ranges data "
6811 "(no base address)"));
6812 return;
6813 }
6814
6815 if (start > end)
6816 {
6817 /* Inverted range entries are invalid. */
6818 complaint (&symfile_complaints,
6819 _("Invalid .debug_ranges data "
6820 "(inverted range)"));
6821 return;
6822 }
6823
6824 /* Empty range entries have no effect. */
6825 if (start == end)
6826 continue;
6827
6828 record_block_range (block,
6829 baseaddr + base + start,
6830 baseaddr + base + end - 1);
6831 }
6832 }
6833 }
6834 }
6835
6836 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6837 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6838 during 4.6.0 experimental. */
6839
6840 static int
6841 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6842 {
6843 const char *cs;
6844 int major, minor, release;
6845
6846 if (cu->producer == NULL)
6847 {
6848 /* For unknown compilers expect their behavior is DWARF version
6849 compliant.
6850
6851 GCC started to support .debug_types sections by -gdwarf-4 since
6852 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6853 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6854 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6855 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6856
6857 return 0;
6858 }
6859
6860 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6861
6862 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6863 {
6864 /* For non-GCC compilers expect their behavior is DWARF version
6865 compliant. */
6866
6867 return 0;
6868 }
6869 cs = &cu->producer[strlen ("GNU ")];
6870 while (*cs && !isdigit (*cs))
6871 cs++;
6872 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6873 {
6874 /* Not recognized as GCC. */
6875
6876 return 0;
6877 }
6878
6879 return major < 4 || (major == 4 && minor < 6);
6880 }
6881
6882 /* Return the default accessibility type if it is not overriden by
6883 DW_AT_accessibility. */
6884
6885 static enum dwarf_access_attribute
6886 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6887 {
6888 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6889 {
6890 /* The default DWARF 2 accessibility for members is public, the default
6891 accessibility for inheritance is private. */
6892
6893 if (die->tag != DW_TAG_inheritance)
6894 return DW_ACCESS_public;
6895 else
6896 return DW_ACCESS_private;
6897 }
6898 else
6899 {
6900 /* DWARF 3+ defines the default accessibility a different way. The same
6901 rules apply now for DW_TAG_inheritance as for the members and it only
6902 depends on the container kind. */
6903
6904 if (die->parent->tag == DW_TAG_class_type)
6905 return DW_ACCESS_private;
6906 else
6907 return DW_ACCESS_public;
6908 }
6909 }
6910
6911 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6912 offset. If the attribute was not found return 0, otherwise return
6913 1. If it was found but could not properly be handled, set *OFFSET
6914 to 0. */
6915
6916 static int
6917 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6918 LONGEST *offset)
6919 {
6920 struct attribute *attr;
6921
6922 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6923 if (attr != NULL)
6924 {
6925 *offset = 0;
6926
6927 /* Note that we do not check for a section offset first here.
6928 This is because DW_AT_data_member_location is new in DWARF 4,
6929 so if we see it, we can assume that a constant form is really
6930 a constant and not a section offset. */
6931 if (attr_form_is_constant (attr))
6932 *offset = dwarf2_get_attr_constant_value (attr, 0);
6933 else if (attr_form_is_section_offset (attr))
6934 dwarf2_complex_location_expr_complaint ();
6935 else if (attr_form_is_block (attr))
6936 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6937 else
6938 dwarf2_complex_location_expr_complaint ();
6939
6940 return 1;
6941 }
6942
6943 return 0;
6944 }
6945
6946 /* Add an aggregate field to the field list. */
6947
6948 static void
6949 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6950 struct dwarf2_cu *cu)
6951 {
6952 struct objfile *objfile = cu->objfile;
6953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6954 struct nextfield *new_field;
6955 struct attribute *attr;
6956 struct field *fp;
6957 char *fieldname = "";
6958
6959 /* Allocate a new field list entry and link it in. */
6960 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6961 make_cleanup (xfree, new_field);
6962 memset (new_field, 0, sizeof (struct nextfield));
6963
6964 if (die->tag == DW_TAG_inheritance)
6965 {
6966 new_field->next = fip->baseclasses;
6967 fip->baseclasses = new_field;
6968 }
6969 else
6970 {
6971 new_field->next = fip->fields;
6972 fip->fields = new_field;
6973 }
6974 fip->nfields++;
6975
6976 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6977 if (attr)
6978 new_field->accessibility = DW_UNSND (attr);
6979 else
6980 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
6981 if (new_field->accessibility != DW_ACCESS_public)
6982 fip->non_public_fields = 1;
6983
6984 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6985 if (attr)
6986 new_field->virtuality = DW_UNSND (attr);
6987 else
6988 new_field->virtuality = DW_VIRTUALITY_none;
6989
6990 fp = &new_field->field;
6991
6992 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6993 {
6994 LONGEST offset;
6995
6996 /* Data member other than a C++ static data member. */
6997
6998 /* Get type of field. */
6999 fp->type = die_type (die, cu);
7000
7001 SET_FIELD_BITPOS (*fp, 0);
7002
7003 /* Get bit size of field (zero if none). */
7004 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7005 if (attr)
7006 {
7007 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7008 }
7009 else
7010 {
7011 FIELD_BITSIZE (*fp) = 0;
7012 }
7013
7014 /* Get bit offset of field. */
7015 if (handle_data_member_location (die, cu, &offset))
7016 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7017 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7018 if (attr)
7019 {
7020 if (gdbarch_bits_big_endian (gdbarch))
7021 {
7022 /* For big endian bits, the DW_AT_bit_offset gives the
7023 additional bit offset from the MSB of the containing
7024 anonymous object to the MSB of the field. We don't
7025 have to do anything special since we don't need to
7026 know the size of the anonymous object. */
7027 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7028 }
7029 else
7030 {
7031 /* For little endian bits, compute the bit offset to the
7032 MSB of the anonymous object, subtract off the number of
7033 bits from the MSB of the field to the MSB of the
7034 object, and then subtract off the number of bits of
7035 the field itself. The result is the bit offset of
7036 the LSB of the field. */
7037 int anonymous_size;
7038 int bit_offset = DW_UNSND (attr);
7039
7040 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7041 if (attr)
7042 {
7043 /* The size of the anonymous object containing
7044 the bit field is explicit, so use the
7045 indicated size (in bytes). */
7046 anonymous_size = DW_UNSND (attr);
7047 }
7048 else
7049 {
7050 /* The size of the anonymous object containing
7051 the bit field must be inferred from the type
7052 attribute of the data member containing the
7053 bit field. */
7054 anonymous_size = TYPE_LENGTH (fp->type);
7055 }
7056 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7057 - bit_offset - FIELD_BITSIZE (*fp);
7058 }
7059 }
7060
7061 /* Get name of field. */
7062 fieldname = dwarf2_name (die, cu);
7063 if (fieldname == NULL)
7064 fieldname = "";
7065
7066 /* The name is already allocated along with this objfile, so we don't
7067 need to duplicate it for the type. */
7068 fp->name = fieldname;
7069
7070 /* Change accessibility for artificial fields (e.g. virtual table
7071 pointer or virtual base class pointer) to private. */
7072 if (dwarf2_attr (die, DW_AT_artificial, cu))
7073 {
7074 FIELD_ARTIFICIAL (*fp) = 1;
7075 new_field->accessibility = DW_ACCESS_private;
7076 fip->non_public_fields = 1;
7077 }
7078 }
7079 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7080 {
7081 /* C++ static member. */
7082
7083 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7084 is a declaration, but all versions of G++ as of this writing
7085 (so through at least 3.2.1) incorrectly generate
7086 DW_TAG_variable tags. */
7087
7088 const char *physname;
7089
7090 /* Get name of field. */
7091 fieldname = dwarf2_name (die, cu);
7092 if (fieldname == NULL)
7093 return;
7094
7095 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7096 if (attr
7097 /* Only create a symbol if this is an external value.
7098 new_symbol checks this and puts the value in the global symbol
7099 table, which we want. If it is not external, new_symbol
7100 will try to put the value in cu->list_in_scope which is wrong. */
7101 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7102 {
7103 /* A static const member, not much different than an enum as far as
7104 we're concerned, except that we can support more types. */
7105 new_symbol (die, NULL, cu);
7106 }
7107
7108 /* Get physical name. */
7109 physname = dwarf2_physname (fieldname, die, cu);
7110
7111 /* The name is already allocated along with this objfile, so we don't
7112 need to duplicate it for the type. */
7113 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7114 FIELD_TYPE (*fp) = die_type (die, cu);
7115 FIELD_NAME (*fp) = fieldname;
7116 }
7117 else if (die->tag == DW_TAG_inheritance)
7118 {
7119 LONGEST offset;
7120
7121 /* C++ base class field. */
7122 if (handle_data_member_location (die, cu, &offset))
7123 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7124 FIELD_BITSIZE (*fp) = 0;
7125 FIELD_TYPE (*fp) = die_type (die, cu);
7126 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7127 fip->nbaseclasses++;
7128 }
7129 }
7130
7131 /* Add a typedef defined in the scope of the FIP's class. */
7132
7133 static void
7134 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7135 struct dwarf2_cu *cu)
7136 {
7137 struct objfile *objfile = cu->objfile;
7138 struct typedef_field_list *new_field;
7139 struct attribute *attr;
7140 struct typedef_field *fp;
7141 char *fieldname = "";
7142
7143 /* Allocate a new field list entry and link it in. */
7144 new_field = xzalloc (sizeof (*new_field));
7145 make_cleanup (xfree, new_field);
7146
7147 gdb_assert (die->tag == DW_TAG_typedef);
7148
7149 fp = &new_field->field;
7150
7151 /* Get name of field. */
7152 fp->name = dwarf2_name (die, cu);
7153 if (fp->name == NULL)
7154 return;
7155
7156 fp->type = read_type_die (die, cu);
7157
7158 new_field->next = fip->typedef_field_list;
7159 fip->typedef_field_list = new_field;
7160 fip->typedef_field_list_count++;
7161 }
7162
7163 /* Create the vector of fields, and attach it to the type. */
7164
7165 static void
7166 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7167 struct dwarf2_cu *cu)
7168 {
7169 int nfields = fip->nfields;
7170
7171 /* Record the field count, allocate space for the array of fields,
7172 and create blank accessibility bitfields if necessary. */
7173 TYPE_NFIELDS (type) = nfields;
7174 TYPE_FIELDS (type) = (struct field *)
7175 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7176 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7177
7178 if (fip->non_public_fields && cu->language != language_ada)
7179 {
7180 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7181
7182 TYPE_FIELD_PRIVATE_BITS (type) =
7183 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7184 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7185
7186 TYPE_FIELD_PROTECTED_BITS (type) =
7187 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7188 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7189
7190 TYPE_FIELD_IGNORE_BITS (type) =
7191 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7192 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7193 }
7194
7195 /* If the type has baseclasses, allocate and clear a bit vector for
7196 TYPE_FIELD_VIRTUAL_BITS. */
7197 if (fip->nbaseclasses && cu->language != language_ada)
7198 {
7199 int num_bytes = B_BYTES (fip->nbaseclasses);
7200 unsigned char *pointer;
7201
7202 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7203 pointer = TYPE_ALLOC (type, num_bytes);
7204 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7205 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7206 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7207 }
7208
7209 /* Copy the saved-up fields into the field vector. Start from the head of
7210 the list, adding to the tail of the field array, so that they end up in
7211 the same order in the array in which they were added to the list. */
7212 while (nfields-- > 0)
7213 {
7214 struct nextfield *fieldp;
7215
7216 if (fip->fields)
7217 {
7218 fieldp = fip->fields;
7219 fip->fields = fieldp->next;
7220 }
7221 else
7222 {
7223 fieldp = fip->baseclasses;
7224 fip->baseclasses = fieldp->next;
7225 }
7226
7227 TYPE_FIELD (type, nfields) = fieldp->field;
7228 switch (fieldp->accessibility)
7229 {
7230 case DW_ACCESS_private:
7231 if (cu->language != language_ada)
7232 SET_TYPE_FIELD_PRIVATE (type, nfields);
7233 break;
7234
7235 case DW_ACCESS_protected:
7236 if (cu->language != language_ada)
7237 SET_TYPE_FIELD_PROTECTED (type, nfields);
7238 break;
7239
7240 case DW_ACCESS_public:
7241 break;
7242
7243 default:
7244 /* Unknown accessibility. Complain and treat it as public. */
7245 {
7246 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7247 fieldp->accessibility);
7248 }
7249 break;
7250 }
7251 if (nfields < fip->nbaseclasses)
7252 {
7253 switch (fieldp->virtuality)
7254 {
7255 case DW_VIRTUALITY_virtual:
7256 case DW_VIRTUALITY_pure_virtual:
7257 if (cu->language == language_ada)
7258 error (_("unexpected virtuality in component of Ada type"));
7259 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7260 break;
7261 }
7262 }
7263 }
7264 }
7265
7266 /* Add a member function to the proper fieldlist. */
7267
7268 static void
7269 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7270 struct type *type, struct dwarf2_cu *cu)
7271 {
7272 struct objfile *objfile = cu->objfile;
7273 struct attribute *attr;
7274 struct fnfieldlist *flp;
7275 int i;
7276 struct fn_field *fnp;
7277 char *fieldname;
7278 struct nextfnfield *new_fnfield;
7279 struct type *this_type;
7280 enum dwarf_access_attribute accessibility;
7281
7282 if (cu->language == language_ada)
7283 error (_("unexpected member function in Ada type"));
7284
7285 /* Get name of member function. */
7286 fieldname = dwarf2_name (die, cu);
7287 if (fieldname == NULL)
7288 return;
7289
7290 /* Look up member function name in fieldlist. */
7291 for (i = 0; i < fip->nfnfields; i++)
7292 {
7293 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7294 break;
7295 }
7296
7297 /* Create new list element if necessary. */
7298 if (i < fip->nfnfields)
7299 flp = &fip->fnfieldlists[i];
7300 else
7301 {
7302 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7303 {
7304 fip->fnfieldlists = (struct fnfieldlist *)
7305 xrealloc (fip->fnfieldlists,
7306 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7307 * sizeof (struct fnfieldlist));
7308 if (fip->nfnfields == 0)
7309 make_cleanup (free_current_contents, &fip->fnfieldlists);
7310 }
7311 flp = &fip->fnfieldlists[fip->nfnfields];
7312 flp->name = fieldname;
7313 flp->length = 0;
7314 flp->head = NULL;
7315 i = fip->nfnfields++;
7316 }
7317
7318 /* Create a new member function field and chain it to the field list
7319 entry. */
7320 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7321 make_cleanup (xfree, new_fnfield);
7322 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7323 new_fnfield->next = flp->head;
7324 flp->head = new_fnfield;
7325 flp->length++;
7326
7327 /* Fill in the member function field info. */
7328 fnp = &new_fnfield->fnfield;
7329
7330 /* Delay processing of the physname until later. */
7331 if (cu->language == language_cplus || cu->language == language_java)
7332 {
7333 add_to_method_list (type, i, flp->length - 1, fieldname,
7334 die, cu);
7335 }
7336 else
7337 {
7338 const char *physname = dwarf2_physname (fieldname, die, cu);
7339 fnp->physname = physname ? physname : "";
7340 }
7341
7342 fnp->type = alloc_type (objfile);
7343 this_type = read_type_die (die, cu);
7344 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7345 {
7346 int nparams = TYPE_NFIELDS (this_type);
7347
7348 /* TYPE is the domain of this method, and THIS_TYPE is the type
7349 of the method itself (TYPE_CODE_METHOD). */
7350 smash_to_method_type (fnp->type, type,
7351 TYPE_TARGET_TYPE (this_type),
7352 TYPE_FIELDS (this_type),
7353 TYPE_NFIELDS (this_type),
7354 TYPE_VARARGS (this_type));
7355
7356 /* Handle static member functions.
7357 Dwarf2 has no clean way to discern C++ static and non-static
7358 member functions. G++ helps GDB by marking the first
7359 parameter for non-static member functions (which is the this
7360 pointer) as artificial. We obtain this information from
7361 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7362 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7363 fnp->voffset = VOFFSET_STATIC;
7364 }
7365 else
7366 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7367 dwarf2_full_name (fieldname, die, cu));
7368
7369 /* Get fcontext from DW_AT_containing_type if present. */
7370 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7371 fnp->fcontext = die_containing_type (die, cu);
7372
7373 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7374 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7375
7376 /* Get accessibility. */
7377 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7378 if (attr)
7379 accessibility = DW_UNSND (attr);
7380 else
7381 accessibility = dwarf2_default_access_attribute (die, cu);
7382 switch (accessibility)
7383 {
7384 case DW_ACCESS_private:
7385 fnp->is_private = 1;
7386 break;
7387 case DW_ACCESS_protected:
7388 fnp->is_protected = 1;
7389 break;
7390 }
7391
7392 /* Check for artificial methods. */
7393 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7394 if (attr && DW_UNSND (attr) != 0)
7395 fnp->is_artificial = 1;
7396
7397 /* Get index in virtual function table if it is a virtual member
7398 function. For older versions of GCC, this is an offset in the
7399 appropriate virtual table, as specified by DW_AT_containing_type.
7400 For everyone else, it is an expression to be evaluated relative
7401 to the object address. */
7402
7403 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7404 if (attr)
7405 {
7406 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7407 {
7408 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7409 {
7410 /* Old-style GCC. */
7411 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7412 }
7413 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7414 || (DW_BLOCK (attr)->size > 1
7415 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7416 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7417 {
7418 struct dwarf_block blk;
7419 int offset;
7420
7421 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7422 ? 1 : 2);
7423 blk.size = DW_BLOCK (attr)->size - offset;
7424 blk.data = DW_BLOCK (attr)->data + offset;
7425 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7426 if ((fnp->voffset % cu->header.addr_size) != 0)
7427 dwarf2_complex_location_expr_complaint ();
7428 else
7429 fnp->voffset /= cu->header.addr_size;
7430 fnp->voffset += 2;
7431 }
7432 else
7433 dwarf2_complex_location_expr_complaint ();
7434
7435 if (!fnp->fcontext)
7436 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7437 }
7438 else if (attr_form_is_section_offset (attr))
7439 {
7440 dwarf2_complex_location_expr_complaint ();
7441 }
7442 else
7443 {
7444 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7445 fieldname);
7446 }
7447 }
7448 else
7449 {
7450 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7451 if (attr && DW_UNSND (attr))
7452 {
7453 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7454 complaint (&symfile_complaints,
7455 _("Member function \"%s\" (offset %d) is virtual "
7456 "but the vtable offset is not specified"),
7457 fieldname, die->offset);
7458 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7459 TYPE_CPLUS_DYNAMIC (type) = 1;
7460 }
7461 }
7462 }
7463
7464 /* Create the vector of member function fields, and attach it to the type. */
7465
7466 static void
7467 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7468 struct dwarf2_cu *cu)
7469 {
7470 struct fnfieldlist *flp;
7471 int i;
7472
7473 if (cu->language == language_ada)
7474 error (_("unexpected member functions in Ada type"));
7475
7476 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7477 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7478 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7479
7480 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7481 {
7482 struct nextfnfield *nfp = flp->head;
7483 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7484 int k;
7485
7486 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7487 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7488 fn_flp->fn_fields = (struct fn_field *)
7489 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7490 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7491 fn_flp->fn_fields[k] = nfp->fnfield;
7492 }
7493
7494 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7495 }
7496
7497 /* Returns non-zero if NAME is the name of a vtable member in CU's
7498 language, zero otherwise. */
7499 static int
7500 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7501 {
7502 static const char vptr[] = "_vptr";
7503 static const char vtable[] = "vtable";
7504
7505 /* Look for the C++ and Java forms of the vtable. */
7506 if ((cu->language == language_java
7507 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7508 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7509 && is_cplus_marker (name[sizeof (vptr) - 1])))
7510 return 1;
7511
7512 return 0;
7513 }
7514
7515 /* GCC outputs unnamed structures that are really pointers to member
7516 functions, with the ABI-specified layout. If TYPE describes
7517 such a structure, smash it into a member function type.
7518
7519 GCC shouldn't do this; it should just output pointer to member DIEs.
7520 This is GCC PR debug/28767. */
7521
7522 static void
7523 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7524 {
7525 struct type *pfn_type, *domain_type, *new_type;
7526
7527 /* Check for a structure with no name and two children. */
7528 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7529 return;
7530
7531 /* Check for __pfn and __delta members. */
7532 if (TYPE_FIELD_NAME (type, 0) == NULL
7533 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7534 || TYPE_FIELD_NAME (type, 1) == NULL
7535 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7536 return;
7537
7538 /* Find the type of the method. */
7539 pfn_type = TYPE_FIELD_TYPE (type, 0);
7540 if (pfn_type == NULL
7541 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7542 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7543 return;
7544
7545 /* Look for the "this" argument. */
7546 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7547 if (TYPE_NFIELDS (pfn_type) == 0
7548 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7549 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7550 return;
7551
7552 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7553 new_type = alloc_type (objfile);
7554 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7555 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7556 TYPE_VARARGS (pfn_type));
7557 smash_to_methodptr_type (type, new_type);
7558 }
7559
7560 /* Called when we find the DIE that starts a structure or union scope
7561 (definition) to create a type for the structure or union. Fill in
7562 the type's name and general properties; the members will not be
7563 processed until process_structure_type.
7564
7565 NOTE: we need to call these functions regardless of whether or not the
7566 DIE has a DW_AT_name attribute, since it might be an anonymous
7567 structure or union. This gets the type entered into our set of
7568 user defined types.
7569
7570 However, if the structure is incomplete (an opaque struct/union)
7571 then suppress creating a symbol table entry for it since gdb only
7572 wants to find the one with the complete definition. Note that if
7573 it is complete, we just call new_symbol, which does it's own
7574 checking about whether the struct/union is anonymous or not (and
7575 suppresses creating a symbol table entry itself). */
7576
7577 static struct type *
7578 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7579 {
7580 struct objfile *objfile = cu->objfile;
7581 struct type *type;
7582 struct attribute *attr;
7583 char *name;
7584
7585 /* If the definition of this type lives in .debug_types, read that type.
7586 Don't follow DW_AT_specification though, that will take us back up
7587 the chain and we want to go down. */
7588 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7589 if (attr)
7590 {
7591 struct dwarf2_cu *type_cu = cu;
7592 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7593
7594 /* We could just recurse on read_structure_type, but we need to call
7595 get_die_type to ensure only one type for this DIE is created.
7596 This is important, for example, because for c++ classes we need
7597 TYPE_NAME set which is only done by new_symbol. Blech. */
7598 type = read_type_die (type_die, type_cu);
7599
7600 /* TYPE_CU may not be the same as CU.
7601 Ensure TYPE is recorded in CU's type_hash table. */
7602 return set_die_type (die, type, cu);
7603 }
7604
7605 type = alloc_type (objfile);
7606 INIT_CPLUS_SPECIFIC (type);
7607
7608 name = dwarf2_name (die, cu);
7609 if (name != NULL)
7610 {
7611 if (cu->language == language_cplus
7612 || cu->language == language_java)
7613 {
7614 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7615
7616 /* dwarf2_full_name might have already finished building the DIE's
7617 type. If so, there is no need to continue. */
7618 if (get_die_type (die, cu) != NULL)
7619 return get_die_type (die, cu);
7620
7621 TYPE_TAG_NAME (type) = full_name;
7622 if (die->tag == DW_TAG_structure_type
7623 || die->tag == DW_TAG_class_type)
7624 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7625 }
7626 else
7627 {
7628 /* The name is already allocated along with this objfile, so
7629 we don't need to duplicate it for the type. */
7630 TYPE_TAG_NAME (type) = (char *) name;
7631 if (die->tag == DW_TAG_class_type)
7632 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7633 }
7634 }
7635
7636 if (die->tag == DW_TAG_structure_type)
7637 {
7638 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7639 }
7640 else if (die->tag == DW_TAG_union_type)
7641 {
7642 TYPE_CODE (type) = TYPE_CODE_UNION;
7643 }
7644 else
7645 {
7646 TYPE_CODE (type) = TYPE_CODE_CLASS;
7647 }
7648
7649 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7650 TYPE_DECLARED_CLASS (type) = 1;
7651
7652 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7653 if (attr)
7654 {
7655 TYPE_LENGTH (type) = DW_UNSND (attr);
7656 }
7657 else
7658 {
7659 TYPE_LENGTH (type) = 0;
7660 }
7661
7662 TYPE_STUB_SUPPORTED (type) = 1;
7663 if (die_is_declaration (die, cu))
7664 TYPE_STUB (type) = 1;
7665 else if (attr == NULL && die->child == NULL
7666 && producer_is_realview (cu->producer))
7667 /* RealView does not output the required DW_AT_declaration
7668 on incomplete types. */
7669 TYPE_STUB (type) = 1;
7670
7671 /* We need to add the type field to the die immediately so we don't
7672 infinitely recurse when dealing with pointers to the structure
7673 type within the structure itself. */
7674 set_die_type (die, type, cu);
7675
7676 /* set_die_type should be already done. */
7677 set_descriptive_type (type, die, cu);
7678
7679 return type;
7680 }
7681
7682 /* Finish creating a structure or union type, including filling in
7683 its members and creating a symbol for it. */
7684
7685 static void
7686 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7687 {
7688 struct objfile *objfile = cu->objfile;
7689 struct die_info *child_die = die->child;
7690 struct type *type;
7691
7692 type = get_die_type (die, cu);
7693 if (type == NULL)
7694 type = read_structure_type (die, cu);
7695
7696 if (die->child != NULL && ! die_is_declaration (die, cu))
7697 {
7698 struct field_info fi;
7699 struct die_info *child_die;
7700 VEC (symbolp) *template_args = NULL;
7701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7702
7703 memset (&fi, 0, sizeof (struct field_info));
7704
7705 child_die = die->child;
7706
7707 while (child_die && child_die->tag)
7708 {
7709 if (child_die->tag == DW_TAG_member
7710 || child_die->tag == DW_TAG_variable)
7711 {
7712 /* NOTE: carlton/2002-11-05: A C++ static data member
7713 should be a DW_TAG_member that is a declaration, but
7714 all versions of G++ as of this writing (so through at
7715 least 3.2.1) incorrectly generate DW_TAG_variable
7716 tags for them instead. */
7717 dwarf2_add_field (&fi, child_die, cu);
7718 }
7719 else if (child_die->tag == DW_TAG_subprogram)
7720 {
7721 /* C++ member function. */
7722 dwarf2_add_member_fn (&fi, child_die, type, cu);
7723 }
7724 else if (child_die->tag == DW_TAG_inheritance)
7725 {
7726 /* C++ base class field. */
7727 dwarf2_add_field (&fi, child_die, cu);
7728 }
7729 else if (child_die->tag == DW_TAG_typedef)
7730 dwarf2_add_typedef (&fi, child_die, cu);
7731 else if (child_die->tag == DW_TAG_template_type_param
7732 || child_die->tag == DW_TAG_template_value_param)
7733 {
7734 struct symbol *arg = new_symbol (child_die, NULL, cu);
7735
7736 if (arg != NULL)
7737 VEC_safe_push (symbolp, template_args, arg);
7738 }
7739
7740 child_die = sibling_die (child_die);
7741 }
7742
7743 /* Attach template arguments to type. */
7744 if (! VEC_empty (symbolp, template_args))
7745 {
7746 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7747 TYPE_N_TEMPLATE_ARGUMENTS (type)
7748 = VEC_length (symbolp, template_args);
7749 TYPE_TEMPLATE_ARGUMENTS (type)
7750 = obstack_alloc (&objfile->objfile_obstack,
7751 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7752 * sizeof (struct symbol *)));
7753 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7754 VEC_address (symbolp, template_args),
7755 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7756 * sizeof (struct symbol *)));
7757 VEC_free (symbolp, template_args);
7758 }
7759
7760 /* Attach fields and member functions to the type. */
7761 if (fi.nfields)
7762 dwarf2_attach_fields_to_type (&fi, type, cu);
7763 if (fi.nfnfields)
7764 {
7765 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7766
7767 /* Get the type which refers to the base class (possibly this
7768 class itself) which contains the vtable pointer for the current
7769 class from the DW_AT_containing_type attribute. This use of
7770 DW_AT_containing_type is a GNU extension. */
7771
7772 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7773 {
7774 struct type *t = die_containing_type (die, cu);
7775
7776 TYPE_VPTR_BASETYPE (type) = t;
7777 if (type == t)
7778 {
7779 int i;
7780
7781 /* Our own class provides vtbl ptr. */
7782 for (i = TYPE_NFIELDS (t) - 1;
7783 i >= TYPE_N_BASECLASSES (t);
7784 --i)
7785 {
7786 const char *fieldname = TYPE_FIELD_NAME (t, i);
7787
7788 if (is_vtable_name (fieldname, cu))
7789 {
7790 TYPE_VPTR_FIELDNO (type) = i;
7791 break;
7792 }
7793 }
7794
7795 /* Complain if virtual function table field not found. */
7796 if (i < TYPE_N_BASECLASSES (t))
7797 complaint (&symfile_complaints,
7798 _("virtual function table pointer "
7799 "not found when defining class '%s'"),
7800 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7801 "");
7802 }
7803 else
7804 {
7805 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7806 }
7807 }
7808 else if (cu->producer
7809 && strncmp (cu->producer,
7810 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7811 {
7812 /* The IBM XLC compiler does not provide direct indication
7813 of the containing type, but the vtable pointer is
7814 always named __vfp. */
7815
7816 int i;
7817
7818 for (i = TYPE_NFIELDS (type) - 1;
7819 i >= TYPE_N_BASECLASSES (type);
7820 --i)
7821 {
7822 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7823 {
7824 TYPE_VPTR_FIELDNO (type) = i;
7825 TYPE_VPTR_BASETYPE (type) = type;
7826 break;
7827 }
7828 }
7829 }
7830 }
7831
7832 /* Copy fi.typedef_field_list linked list elements content into the
7833 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7834 if (fi.typedef_field_list)
7835 {
7836 int i = fi.typedef_field_list_count;
7837
7838 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7839 TYPE_TYPEDEF_FIELD_ARRAY (type)
7840 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7841 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7842
7843 /* Reverse the list order to keep the debug info elements order. */
7844 while (--i >= 0)
7845 {
7846 struct typedef_field *dest, *src;
7847
7848 dest = &TYPE_TYPEDEF_FIELD (type, i);
7849 src = &fi.typedef_field_list->field;
7850 fi.typedef_field_list = fi.typedef_field_list->next;
7851 *dest = *src;
7852 }
7853 }
7854
7855 do_cleanups (back_to);
7856
7857 if (HAVE_CPLUS_STRUCT (type))
7858 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7859 }
7860
7861 quirk_gcc_member_function_pointer (type, objfile);
7862
7863 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7864 snapshots) has been known to create a die giving a declaration
7865 for a class that has, as a child, a die giving a definition for a
7866 nested class. So we have to process our children even if the
7867 current die is a declaration. Normally, of course, a declaration
7868 won't have any children at all. */
7869
7870 while (child_die != NULL && child_die->tag)
7871 {
7872 if (child_die->tag == DW_TAG_member
7873 || child_die->tag == DW_TAG_variable
7874 || child_die->tag == DW_TAG_inheritance
7875 || child_die->tag == DW_TAG_template_value_param
7876 || child_die->tag == DW_TAG_template_type_param)
7877 {
7878 /* Do nothing. */
7879 }
7880 else
7881 process_die (child_die, cu);
7882
7883 child_die = sibling_die (child_die);
7884 }
7885
7886 /* Do not consider external references. According to the DWARF standard,
7887 these DIEs are identified by the fact that they have no byte_size
7888 attribute, and a declaration attribute. */
7889 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7890 || !die_is_declaration (die, cu))
7891 new_symbol (die, type, cu);
7892 }
7893
7894 /* Given a DW_AT_enumeration_type die, set its type. We do not
7895 complete the type's fields yet, or create any symbols. */
7896
7897 static struct type *
7898 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7899 {
7900 struct objfile *objfile = cu->objfile;
7901 struct type *type;
7902 struct attribute *attr;
7903 const char *name;
7904
7905 /* If the definition of this type lives in .debug_types, read that type.
7906 Don't follow DW_AT_specification though, that will take us back up
7907 the chain and we want to go down. */
7908 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7909 if (attr)
7910 {
7911 struct dwarf2_cu *type_cu = cu;
7912 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7913
7914 type = read_type_die (type_die, type_cu);
7915
7916 /* TYPE_CU may not be the same as CU.
7917 Ensure TYPE is recorded in CU's type_hash table. */
7918 return set_die_type (die, type, cu);
7919 }
7920
7921 type = alloc_type (objfile);
7922
7923 TYPE_CODE (type) = TYPE_CODE_ENUM;
7924 name = dwarf2_full_name (NULL, die, cu);
7925 if (name != NULL)
7926 TYPE_TAG_NAME (type) = (char *) name;
7927
7928 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7929 if (attr)
7930 {
7931 TYPE_LENGTH (type) = DW_UNSND (attr);
7932 }
7933 else
7934 {
7935 TYPE_LENGTH (type) = 0;
7936 }
7937
7938 /* The enumeration DIE can be incomplete. In Ada, any type can be
7939 declared as private in the package spec, and then defined only
7940 inside the package body. Such types are known as Taft Amendment
7941 Types. When another package uses such a type, an incomplete DIE
7942 may be generated by the compiler. */
7943 if (die_is_declaration (die, cu))
7944 TYPE_STUB (type) = 1;
7945
7946 return set_die_type (die, type, cu);
7947 }
7948
7949 /* Given a pointer to a die which begins an enumeration, process all
7950 the dies that define the members of the enumeration, and create the
7951 symbol for the enumeration type.
7952
7953 NOTE: We reverse the order of the element list. */
7954
7955 static void
7956 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7957 {
7958 struct type *this_type;
7959
7960 this_type = get_die_type (die, cu);
7961 if (this_type == NULL)
7962 this_type = read_enumeration_type (die, cu);
7963
7964 if (die->child != NULL)
7965 {
7966 struct die_info *child_die;
7967 struct symbol *sym;
7968 struct field *fields = NULL;
7969 int num_fields = 0;
7970 int unsigned_enum = 1;
7971 char *name;
7972 int flag_enum = 1;
7973 ULONGEST mask = 0;
7974
7975 child_die = die->child;
7976 while (child_die && child_die->tag)
7977 {
7978 if (child_die->tag != DW_TAG_enumerator)
7979 {
7980 process_die (child_die, cu);
7981 }
7982 else
7983 {
7984 name = dwarf2_name (child_die, cu);
7985 if (name)
7986 {
7987 sym = new_symbol (child_die, this_type, cu);
7988 if (SYMBOL_VALUE (sym) < 0)
7989 {
7990 unsigned_enum = 0;
7991 flag_enum = 0;
7992 }
7993 else if ((mask & SYMBOL_VALUE (sym)) != 0)
7994 flag_enum = 0;
7995 else
7996 mask |= SYMBOL_VALUE (sym);
7997
7998 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7999 {
8000 fields = (struct field *)
8001 xrealloc (fields,
8002 (num_fields + DW_FIELD_ALLOC_CHUNK)
8003 * sizeof (struct field));
8004 }
8005
8006 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8007 FIELD_TYPE (fields[num_fields]) = NULL;
8008 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8009 FIELD_BITSIZE (fields[num_fields]) = 0;
8010
8011 num_fields++;
8012 }
8013 }
8014
8015 child_die = sibling_die (child_die);
8016 }
8017
8018 if (num_fields)
8019 {
8020 TYPE_NFIELDS (this_type) = num_fields;
8021 TYPE_FIELDS (this_type) = (struct field *)
8022 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8023 memcpy (TYPE_FIELDS (this_type), fields,
8024 sizeof (struct field) * num_fields);
8025 xfree (fields);
8026 }
8027 if (unsigned_enum)
8028 TYPE_UNSIGNED (this_type) = 1;
8029 if (flag_enum)
8030 TYPE_FLAG_ENUM (this_type) = 1;
8031 }
8032
8033 /* If we are reading an enum from a .debug_types unit, and the enum
8034 is a declaration, and the enum is not the signatured type in the
8035 unit, then we do not want to add a symbol for it. Adding a
8036 symbol would in some cases obscure the true definition of the
8037 enum, giving users an incomplete type when the definition is
8038 actually available. Note that we do not want to do this for all
8039 enums which are just declarations, because C++0x allows forward
8040 enum declarations. */
8041 if (cu->per_cu->debug_types_section
8042 && die_is_declaration (die, cu))
8043 {
8044 struct signatured_type *type_sig;
8045
8046 type_sig
8047 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8048 cu->per_cu->debug_types_section,
8049 cu->per_cu->offset);
8050 if (type_sig->type_offset != die->offset)
8051 return;
8052 }
8053
8054 new_symbol (die, this_type, cu);
8055 }
8056
8057 /* Extract all information from a DW_TAG_array_type DIE and put it in
8058 the DIE's type field. For now, this only handles one dimensional
8059 arrays. */
8060
8061 static struct type *
8062 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8063 {
8064 struct objfile *objfile = cu->objfile;
8065 struct die_info *child_die;
8066 struct type *type;
8067 struct type *element_type, *range_type, *index_type;
8068 struct type **range_types = NULL;
8069 struct attribute *attr;
8070 int ndim = 0;
8071 struct cleanup *back_to;
8072 char *name;
8073
8074 element_type = die_type (die, cu);
8075
8076 /* The die_type call above may have already set the type for this DIE. */
8077 type = get_die_type (die, cu);
8078 if (type)
8079 return type;
8080
8081 /* Irix 6.2 native cc creates array types without children for
8082 arrays with unspecified length. */
8083 if (die->child == NULL)
8084 {
8085 index_type = objfile_type (objfile)->builtin_int;
8086 range_type = create_range_type (NULL, index_type, 0, -1);
8087 type = create_array_type (NULL, element_type, range_type);
8088 return set_die_type (die, type, cu);
8089 }
8090
8091 back_to = make_cleanup (null_cleanup, NULL);
8092 child_die = die->child;
8093 while (child_die && child_die->tag)
8094 {
8095 if (child_die->tag == DW_TAG_subrange_type)
8096 {
8097 struct type *child_type = read_type_die (child_die, cu);
8098
8099 if (child_type != NULL)
8100 {
8101 /* The range type was succesfully read. Save it for the
8102 array type creation. */
8103 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8104 {
8105 range_types = (struct type **)
8106 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8107 * sizeof (struct type *));
8108 if (ndim == 0)
8109 make_cleanup (free_current_contents, &range_types);
8110 }
8111 range_types[ndim++] = child_type;
8112 }
8113 }
8114 child_die = sibling_die (child_die);
8115 }
8116
8117 /* Dwarf2 dimensions are output from left to right, create the
8118 necessary array types in backwards order. */
8119
8120 type = element_type;
8121
8122 if (read_array_order (die, cu) == DW_ORD_col_major)
8123 {
8124 int i = 0;
8125
8126 while (i < ndim)
8127 type = create_array_type (NULL, type, range_types[i++]);
8128 }
8129 else
8130 {
8131 while (ndim-- > 0)
8132 type = create_array_type (NULL, type, range_types[ndim]);
8133 }
8134
8135 /* Understand Dwarf2 support for vector types (like they occur on
8136 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8137 array type. This is not part of the Dwarf2/3 standard yet, but a
8138 custom vendor extension. The main difference between a regular
8139 array and the vector variant is that vectors are passed by value
8140 to functions. */
8141 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8142 if (attr)
8143 make_vector_type (type);
8144
8145 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8146 implementation may choose to implement triple vectors using this
8147 attribute. */
8148 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8149 if (attr)
8150 {
8151 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8152 TYPE_LENGTH (type) = DW_UNSND (attr);
8153 else
8154 complaint (&symfile_complaints,
8155 _("DW_AT_byte_size for array type smaller "
8156 "than the total size of elements"));
8157 }
8158
8159 name = dwarf2_name (die, cu);
8160 if (name)
8161 TYPE_NAME (type) = name;
8162
8163 /* Install the type in the die. */
8164 set_die_type (die, type, cu);
8165
8166 /* set_die_type should be already done. */
8167 set_descriptive_type (type, die, cu);
8168
8169 do_cleanups (back_to);
8170
8171 return type;
8172 }
8173
8174 static enum dwarf_array_dim_ordering
8175 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8176 {
8177 struct attribute *attr;
8178
8179 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8180
8181 if (attr) return DW_SND (attr);
8182
8183 /* GNU F77 is a special case, as at 08/2004 array type info is the
8184 opposite order to the dwarf2 specification, but data is still
8185 laid out as per normal fortran.
8186
8187 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8188 version checking. */
8189
8190 if (cu->language == language_fortran
8191 && cu->producer && strstr (cu->producer, "GNU F77"))
8192 {
8193 return DW_ORD_row_major;
8194 }
8195
8196 switch (cu->language_defn->la_array_ordering)
8197 {
8198 case array_column_major:
8199 return DW_ORD_col_major;
8200 case array_row_major:
8201 default:
8202 return DW_ORD_row_major;
8203 };
8204 }
8205
8206 /* Extract all information from a DW_TAG_set_type DIE and put it in
8207 the DIE's type field. */
8208
8209 static struct type *
8210 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8211 {
8212 struct type *domain_type, *set_type;
8213 struct attribute *attr;
8214
8215 domain_type = die_type (die, cu);
8216
8217 /* The die_type call above may have already set the type for this DIE. */
8218 set_type = get_die_type (die, cu);
8219 if (set_type)
8220 return set_type;
8221
8222 set_type = create_set_type (NULL, domain_type);
8223
8224 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8225 if (attr)
8226 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8227
8228 return set_die_type (die, set_type, cu);
8229 }
8230
8231 /* First cut: install each common block member as a global variable. */
8232
8233 static void
8234 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8235 {
8236 struct die_info *child_die;
8237 struct attribute *attr;
8238 struct symbol *sym;
8239 CORE_ADDR base = (CORE_ADDR) 0;
8240
8241 attr = dwarf2_attr (die, DW_AT_location, cu);
8242 if (attr)
8243 {
8244 /* Support the .debug_loc offsets. */
8245 if (attr_form_is_block (attr))
8246 {
8247 base = decode_locdesc (DW_BLOCK (attr), cu);
8248 }
8249 else if (attr_form_is_section_offset (attr))
8250 {
8251 dwarf2_complex_location_expr_complaint ();
8252 }
8253 else
8254 {
8255 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8256 "common block member");
8257 }
8258 }
8259 if (die->child != NULL)
8260 {
8261 child_die = die->child;
8262 while (child_die && child_die->tag)
8263 {
8264 LONGEST offset;
8265
8266 sym = new_symbol (child_die, NULL, cu);
8267 if (sym != NULL
8268 && handle_data_member_location (child_die, cu, &offset))
8269 {
8270 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8271 add_symbol_to_list (sym, &global_symbols);
8272 }
8273 child_die = sibling_die (child_die);
8274 }
8275 }
8276 }
8277
8278 /* Create a type for a C++ namespace. */
8279
8280 static struct type *
8281 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8282 {
8283 struct objfile *objfile = cu->objfile;
8284 const char *previous_prefix, *name;
8285 int is_anonymous;
8286 struct type *type;
8287
8288 /* For extensions, reuse the type of the original namespace. */
8289 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8290 {
8291 struct die_info *ext_die;
8292 struct dwarf2_cu *ext_cu = cu;
8293
8294 ext_die = dwarf2_extension (die, &ext_cu);
8295 type = read_type_die (ext_die, ext_cu);
8296
8297 /* EXT_CU may not be the same as CU.
8298 Ensure TYPE is recorded in CU's type_hash table. */
8299 return set_die_type (die, type, cu);
8300 }
8301
8302 name = namespace_name (die, &is_anonymous, cu);
8303
8304 /* Now build the name of the current namespace. */
8305
8306 previous_prefix = determine_prefix (die, cu);
8307 if (previous_prefix[0] != '\0')
8308 name = typename_concat (&objfile->objfile_obstack,
8309 previous_prefix, name, 0, cu);
8310
8311 /* Create the type. */
8312 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8313 objfile);
8314 TYPE_NAME (type) = (char *) name;
8315 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8316
8317 return set_die_type (die, type, cu);
8318 }
8319
8320 /* Read a C++ namespace. */
8321
8322 static void
8323 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8324 {
8325 struct objfile *objfile = cu->objfile;
8326 int is_anonymous;
8327
8328 /* Add a symbol associated to this if we haven't seen the namespace
8329 before. Also, add a using directive if it's an anonymous
8330 namespace. */
8331
8332 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8333 {
8334 struct type *type;
8335
8336 type = read_type_die (die, cu);
8337 new_symbol (die, type, cu);
8338
8339 namespace_name (die, &is_anonymous, cu);
8340 if (is_anonymous)
8341 {
8342 const char *previous_prefix = determine_prefix (die, cu);
8343
8344 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8345 NULL, NULL, &objfile->objfile_obstack);
8346 }
8347 }
8348
8349 if (die->child != NULL)
8350 {
8351 struct die_info *child_die = die->child;
8352
8353 while (child_die && child_die->tag)
8354 {
8355 process_die (child_die, cu);
8356 child_die = sibling_die (child_die);
8357 }
8358 }
8359 }
8360
8361 /* Read a Fortran module as type. This DIE can be only a declaration used for
8362 imported module. Still we need that type as local Fortran "use ... only"
8363 declaration imports depend on the created type in determine_prefix. */
8364
8365 static struct type *
8366 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8367 {
8368 struct objfile *objfile = cu->objfile;
8369 char *module_name;
8370 struct type *type;
8371
8372 module_name = dwarf2_name (die, cu);
8373 if (!module_name)
8374 complaint (&symfile_complaints,
8375 _("DW_TAG_module has no name, offset 0x%x"),
8376 die->offset);
8377 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8378
8379 /* determine_prefix uses TYPE_TAG_NAME. */
8380 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8381
8382 return set_die_type (die, type, cu);
8383 }
8384
8385 /* Read a Fortran module. */
8386
8387 static void
8388 read_module (struct die_info *die, struct dwarf2_cu *cu)
8389 {
8390 struct die_info *child_die = die->child;
8391
8392 while (child_die && child_die->tag)
8393 {
8394 process_die (child_die, cu);
8395 child_die = sibling_die (child_die);
8396 }
8397 }
8398
8399 /* Return the name of the namespace represented by DIE. Set
8400 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8401 namespace. */
8402
8403 static const char *
8404 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8405 {
8406 struct die_info *current_die;
8407 const char *name = NULL;
8408
8409 /* Loop through the extensions until we find a name. */
8410
8411 for (current_die = die;
8412 current_die != NULL;
8413 current_die = dwarf2_extension (die, &cu))
8414 {
8415 name = dwarf2_name (current_die, cu);
8416 if (name != NULL)
8417 break;
8418 }
8419
8420 /* Is it an anonymous namespace? */
8421
8422 *is_anonymous = (name == NULL);
8423 if (*is_anonymous)
8424 name = CP_ANONYMOUS_NAMESPACE_STR;
8425
8426 return name;
8427 }
8428
8429 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8430 the user defined type vector. */
8431
8432 static struct type *
8433 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8434 {
8435 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8436 struct comp_unit_head *cu_header = &cu->header;
8437 struct type *type;
8438 struct attribute *attr_byte_size;
8439 struct attribute *attr_address_class;
8440 int byte_size, addr_class;
8441 struct type *target_type;
8442
8443 target_type = die_type (die, cu);
8444
8445 /* The die_type call above may have already set the type for this DIE. */
8446 type = get_die_type (die, cu);
8447 if (type)
8448 return type;
8449
8450 type = lookup_pointer_type (target_type);
8451
8452 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8453 if (attr_byte_size)
8454 byte_size = DW_UNSND (attr_byte_size);
8455 else
8456 byte_size = cu_header->addr_size;
8457
8458 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8459 if (attr_address_class)
8460 addr_class = DW_UNSND (attr_address_class);
8461 else
8462 addr_class = DW_ADDR_none;
8463
8464 /* If the pointer size or address class is different than the
8465 default, create a type variant marked as such and set the
8466 length accordingly. */
8467 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8468 {
8469 if (gdbarch_address_class_type_flags_p (gdbarch))
8470 {
8471 int type_flags;
8472
8473 type_flags = gdbarch_address_class_type_flags
8474 (gdbarch, byte_size, addr_class);
8475 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8476 == 0);
8477 type = make_type_with_address_space (type, type_flags);
8478 }
8479 else if (TYPE_LENGTH (type) != byte_size)
8480 {
8481 complaint (&symfile_complaints,
8482 _("invalid pointer size %d"), byte_size);
8483 }
8484 else
8485 {
8486 /* Should we also complain about unhandled address classes? */
8487 }
8488 }
8489
8490 TYPE_LENGTH (type) = byte_size;
8491 return set_die_type (die, type, cu);
8492 }
8493
8494 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8495 the user defined type vector. */
8496
8497 static struct type *
8498 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8499 {
8500 struct type *type;
8501 struct type *to_type;
8502 struct type *domain;
8503
8504 to_type = die_type (die, cu);
8505 domain = die_containing_type (die, cu);
8506
8507 /* The calls above may have already set the type for this DIE. */
8508 type = get_die_type (die, cu);
8509 if (type)
8510 return type;
8511
8512 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8513 type = lookup_methodptr_type (to_type);
8514 else
8515 type = lookup_memberptr_type (to_type, domain);
8516
8517 return set_die_type (die, type, cu);
8518 }
8519
8520 /* Extract all information from a DW_TAG_reference_type DIE and add to
8521 the user defined type vector. */
8522
8523 static struct type *
8524 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8525 {
8526 struct comp_unit_head *cu_header = &cu->header;
8527 struct type *type, *target_type;
8528 struct attribute *attr;
8529
8530 target_type = die_type (die, cu);
8531
8532 /* The die_type call above may have already set the type for this DIE. */
8533 type = get_die_type (die, cu);
8534 if (type)
8535 return type;
8536
8537 type = lookup_reference_type (target_type);
8538 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8539 if (attr)
8540 {
8541 TYPE_LENGTH (type) = DW_UNSND (attr);
8542 }
8543 else
8544 {
8545 TYPE_LENGTH (type) = cu_header->addr_size;
8546 }
8547 return set_die_type (die, type, cu);
8548 }
8549
8550 static struct type *
8551 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8552 {
8553 struct type *base_type, *cv_type;
8554
8555 base_type = die_type (die, cu);
8556
8557 /* The die_type call above may have already set the type for this DIE. */
8558 cv_type = get_die_type (die, cu);
8559 if (cv_type)
8560 return cv_type;
8561
8562 /* In case the const qualifier is applied to an array type, the element type
8563 is so qualified, not the array type (section 6.7.3 of C99). */
8564 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8565 {
8566 struct type *el_type, *inner_array;
8567
8568 base_type = copy_type (base_type);
8569 inner_array = base_type;
8570
8571 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8572 {
8573 TYPE_TARGET_TYPE (inner_array) =
8574 copy_type (TYPE_TARGET_TYPE (inner_array));
8575 inner_array = TYPE_TARGET_TYPE (inner_array);
8576 }
8577
8578 el_type = TYPE_TARGET_TYPE (inner_array);
8579 TYPE_TARGET_TYPE (inner_array) =
8580 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8581
8582 return set_die_type (die, base_type, cu);
8583 }
8584
8585 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8586 return set_die_type (die, cv_type, cu);
8587 }
8588
8589 static struct type *
8590 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8591 {
8592 struct type *base_type, *cv_type;
8593
8594 base_type = die_type (die, cu);
8595
8596 /* The die_type call above may have already set the type for this DIE. */
8597 cv_type = get_die_type (die, cu);
8598 if (cv_type)
8599 return cv_type;
8600
8601 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8602 return set_die_type (die, cv_type, cu);
8603 }
8604
8605 /* Extract all information from a DW_TAG_string_type DIE and add to
8606 the user defined type vector. It isn't really a user defined type,
8607 but it behaves like one, with other DIE's using an AT_user_def_type
8608 attribute to reference it. */
8609
8610 static struct type *
8611 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8612 {
8613 struct objfile *objfile = cu->objfile;
8614 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8615 struct type *type, *range_type, *index_type, *char_type;
8616 struct attribute *attr;
8617 unsigned int length;
8618
8619 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8620 if (attr)
8621 {
8622 length = DW_UNSND (attr);
8623 }
8624 else
8625 {
8626 /* Check for the DW_AT_byte_size attribute. */
8627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8628 if (attr)
8629 {
8630 length = DW_UNSND (attr);
8631 }
8632 else
8633 {
8634 length = 1;
8635 }
8636 }
8637
8638 index_type = objfile_type (objfile)->builtin_int;
8639 range_type = create_range_type (NULL, index_type, 1, length);
8640 char_type = language_string_char_type (cu->language_defn, gdbarch);
8641 type = create_string_type (NULL, char_type, range_type);
8642
8643 return set_die_type (die, type, cu);
8644 }
8645
8646 /* Handle DIES due to C code like:
8647
8648 struct foo
8649 {
8650 int (*funcp)(int a, long l);
8651 int b;
8652 };
8653
8654 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8655
8656 static struct type *
8657 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8658 {
8659 struct objfile *objfile = cu->objfile;
8660 struct type *type; /* Type that this function returns. */
8661 struct type *ftype; /* Function that returns above type. */
8662 struct attribute *attr;
8663
8664 type = die_type (die, cu);
8665
8666 /* The die_type call above may have already set the type for this DIE. */
8667 ftype = get_die_type (die, cu);
8668 if (ftype)
8669 return ftype;
8670
8671 ftype = lookup_function_type (type);
8672
8673 /* All functions in C++, Pascal and Java have prototypes. */
8674 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8675 if ((attr && (DW_UNSND (attr) != 0))
8676 || cu->language == language_cplus
8677 || cu->language == language_java
8678 || cu->language == language_pascal)
8679 TYPE_PROTOTYPED (ftype) = 1;
8680 else if (producer_is_realview (cu->producer))
8681 /* RealView does not emit DW_AT_prototyped. We can not
8682 distinguish prototyped and unprototyped functions; default to
8683 prototyped, since that is more common in modern code (and
8684 RealView warns about unprototyped functions). */
8685 TYPE_PROTOTYPED (ftype) = 1;
8686
8687 /* Store the calling convention in the type if it's available in
8688 the subroutine die. Otherwise set the calling convention to
8689 the default value DW_CC_normal. */
8690 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8691 if (attr)
8692 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8693 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8694 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8695 else
8696 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8697
8698 /* We need to add the subroutine type to the die immediately so
8699 we don't infinitely recurse when dealing with parameters
8700 declared as the same subroutine type. */
8701 set_die_type (die, ftype, cu);
8702
8703 if (die->child != NULL)
8704 {
8705 struct type *void_type = objfile_type (objfile)->builtin_void;
8706 struct die_info *child_die;
8707 int nparams, iparams;
8708
8709 /* Count the number of parameters.
8710 FIXME: GDB currently ignores vararg functions, but knows about
8711 vararg member functions. */
8712 nparams = 0;
8713 child_die = die->child;
8714 while (child_die && child_die->tag)
8715 {
8716 if (child_die->tag == DW_TAG_formal_parameter)
8717 nparams++;
8718 else if (child_die->tag == DW_TAG_unspecified_parameters)
8719 TYPE_VARARGS (ftype) = 1;
8720 child_die = sibling_die (child_die);
8721 }
8722
8723 /* Allocate storage for parameters and fill them in. */
8724 TYPE_NFIELDS (ftype) = nparams;
8725 TYPE_FIELDS (ftype) = (struct field *)
8726 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8727
8728 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8729 even if we error out during the parameters reading below. */
8730 for (iparams = 0; iparams < nparams; iparams++)
8731 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8732
8733 iparams = 0;
8734 child_die = die->child;
8735 while (child_die && child_die->tag)
8736 {
8737 if (child_die->tag == DW_TAG_formal_parameter)
8738 {
8739 struct type *arg_type;
8740
8741 /* DWARF version 2 has no clean way to discern C++
8742 static and non-static member functions. G++ helps
8743 GDB by marking the first parameter for non-static
8744 member functions (which is the this pointer) as
8745 artificial. We pass this information to
8746 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8747
8748 DWARF version 3 added DW_AT_object_pointer, which GCC
8749 4.5 does not yet generate. */
8750 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8751 if (attr)
8752 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8753 else
8754 {
8755 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8756
8757 /* GCC/43521: In java, the formal parameter
8758 "this" is sometimes not marked with DW_AT_artificial. */
8759 if (cu->language == language_java)
8760 {
8761 const char *name = dwarf2_name (child_die, cu);
8762
8763 if (name && !strcmp (name, "this"))
8764 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8765 }
8766 }
8767 arg_type = die_type (child_die, cu);
8768
8769 /* RealView does not mark THIS as const, which the testsuite
8770 expects. GCC marks THIS as const in method definitions,
8771 but not in the class specifications (GCC PR 43053). */
8772 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8773 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8774 {
8775 int is_this = 0;
8776 struct dwarf2_cu *arg_cu = cu;
8777 const char *name = dwarf2_name (child_die, cu);
8778
8779 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8780 if (attr)
8781 {
8782 /* If the compiler emits this, use it. */
8783 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8784 is_this = 1;
8785 }
8786 else if (name && strcmp (name, "this") == 0)
8787 /* Function definitions will have the argument names. */
8788 is_this = 1;
8789 else if (name == NULL && iparams == 0)
8790 /* Declarations may not have the names, so like
8791 elsewhere in GDB, assume an artificial first
8792 argument is "this". */
8793 is_this = 1;
8794
8795 if (is_this)
8796 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8797 arg_type, 0);
8798 }
8799
8800 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8801 iparams++;
8802 }
8803 child_die = sibling_die (child_die);
8804 }
8805 }
8806
8807 return ftype;
8808 }
8809
8810 static struct type *
8811 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8812 {
8813 struct objfile *objfile = cu->objfile;
8814 const char *name = NULL;
8815 struct type *this_type, *target_type;
8816
8817 name = dwarf2_full_name (NULL, die, cu);
8818 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8819 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8820 TYPE_NAME (this_type) = (char *) name;
8821 set_die_type (die, this_type, cu);
8822 target_type = die_type (die, cu);
8823 if (target_type != this_type)
8824 TYPE_TARGET_TYPE (this_type) = target_type;
8825 else
8826 {
8827 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8828 spec and cause infinite loops in GDB. */
8829 complaint (&symfile_complaints,
8830 _("Self-referential DW_TAG_typedef "
8831 "- DIE at 0x%x [in module %s]"),
8832 die->offset, objfile->name);
8833 TYPE_TARGET_TYPE (this_type) = NULL;
8834 }
8835 return this_type;
8836 }
8837
8838 /* Find a representation of a given base type and install
8839 it in the TYPE field of the die. */
8840
8841 static struct type *
8842 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8843 {
8844 struct objfile *objfile = cu->objfile;
8845 struct type *type;
8846 struct attribute *attr;
8847 int encoding = 0, size = 0;
8848 char *name;
8849 enum type_code code = TYPE_CODE_INT;
8850 int type_flags = 0;
8851 struct type *target_type = NULL;
8852
8853 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8854 if (attr)
8855 {
8856 encoding = DW_UNSND (attr);
8857 }
8858 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8859 if (attr)
8860 {
8861 size = DW_UNSND (attr);
8862 }
8863 name = dwarf2_name (die, cu);
8864 if (!name)
8865 {
8866 complaint (&symfile_complaints,
8867 _("DW_AT_name missing from DW_TAG_base_type"));
8868 }
8869
8870 switch (encoding)
8871 {
8872 case DW_ATE_address:
8873 /* Turn DW_ATE_address into a void * pointer. */
8874 code = TYPE_CODE_PTR;
8875 type_flags |= TYPE_FLAG_UNSIGNED;
8876 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8877 break;
8878 case DW_ATE_boolean:
8879 code = TYPE_CODE_BOOL;
8880 type_flags |= TYPE_FLAG_UNSIGNED;
8881 break;
8882 case DW_ATE_complex_float:
8883 code = TYPE_CODE_COMPLEX;
8884 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8885 break;
8886 case DW_ATE_decimal_float:
8887 code = TYPE_CODE_DECFLOAT;
8888 break;
8889 case DW_ATE_float:
8890 code = TYPE_CODE_FLT;
8891 break;
8892 case DW_ATE_signed:
8893 break;
8894 case DW_ATE_unsigned:
8895 type_flags |= TYPE_FLAG_UNSIGNED;
8896 if (cu->language == language_fortran
8897 && name
8898 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8899 code = TYPE_CODE_CHAR;
8900 break;
8901 case DW_ATE_signed_char:
8902 if (cu->language == language_ada || cu->language == language_m2
8903 || cu->language == language_pascal
8904 || cu->language == language_fortran)
8905 code = TYPE_CODE_CHAR;
8906 break;
8907 case DW_ATE_unsigned_char:
8908 if (cu->language == language_ada || cu->language == language_m2
8909 || cu->language == language_pascal
8910 || cu->language == language_fortran)
8911 code = TYPE_CODE_CHAR;
8912 type_flags |= TYPE_FLAG_UNSIGNED;
8913 break;
8914 case DW_ATE_UTF:
8915 /* We just treat this as an integer and then recognize the
8916 type by name elsewhere. */
8917 break;
8918
8919 default:
8920 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8921 dwarf_type_encoding_name (encoding));
8922 break;
8923 }
8924
8925 type = init_type (code, size, type_flags, NULL, objfile);
8926 TYPE_NAME (type) = name;
8927 TYPE_TARGET_TYPE (type) = target_type;
8928
8929 if (name && strcmp (name, "char") == 0)
8930 TYPE_NOSIGN (type) = 1;
8931
8932 return set_die_type (die, type, cu);
8933 }
8934
8935 /* Read the given DW_AT_subrange DIE. */
8936
8937 static struct type *
8938 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8939 {
8940 struct type *base_type;
8941 struct type *range_type;
8942 struct attribute *attr;
8943 LONGEST low = 0;
8944 LONGEST high = -1;
8945 char *name;
8946 LONGEST negative_mask;
8947
8948 base_type = die_type (die, cu);
8949 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8950 check_typedef (base_type);
8951
8952 /* The die_type call above may have already set the type for this DIE. */
8953 range_type = get_die_type (die, cu);
8954 if (range_type)
8955 return range_type;
8956
8957 if (cu->language == language_fortran)
8958 {
8959 /* FORTRAN implies a lower bound of 1, if not given. */
8960 low = 1;
8961 }
8962
8963 /* FIXME: For variable sized arrays either of these could be
8964 a variable rather than a constant value. We'll allow it,
8965 but we don't know how to handle it. */
8966 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8967 if (attr)
8968 low = dwarf2_get_attr_constant_value (attr, 0);
8969
8970 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8971 if (attr)
8972 {
8973 if (attr_form_is_block (attr) || is_ref_attr (attr))
8974 {
8975 /* GCC encodes arrays with unspecified or dynamic length
8976 with a DW_FORM_block1 attribute or a reference attribute.
8977 FIXME: GDB does not yet know how to handle dynamic
8978 arrays properly, treat them as arrays with unspecified
8979 length for now.
8980
8981 FIXME: jimb/2003-09-22: GDB does not really know
8982 how to handle arrays of unspecified length
8983 either; we just represent them as zero-length
8984 arrays. Choose an appropriate upper bound given
8985 the lower bound we've computed above. */
8986 high = low - 1;
8987 }
8988 else
8989 high = dwarf2_get_attr_constant_value (attr, 1);
8990 }
8991 else
8992 {
8993 attr = dwarf2_attr (die, DW_AT_count, cu);
8994 if (attr)
8995 {
8996 int count = dwarf2_get_attr_constant_value (attr, 1);
8997 high = low + count - 1;
8998 }
8999 else
9000 {
9001 /* Unspecified array length. */
9002 high = low - 1;
9003 }
9004 }
9005
9006 /* Dwarf-2 specifications explicitly allows to create subrange types
9007 without specifying a base type.
9008 In that case, the base type must be set to the type of
9009 the lower bound, upper bound or count, in that order, if any of these
9010 three attributes references an object that has a type.
9011 If no base type is found, the Dwarf-2 specifications say that
9012 a signed integer type of size equal to the size of an address should
9013 be used.
9014 For the following C code: `extern char gdb_int [];'
9015 GCC produces an empty range DIE.
9016 FIXME: muller/2010-05-28: Possible references to object for low bound,
9017 high bound or count are not yet handled by this code. */
9018 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9019 {
9020 struct objfile *objfile = cu->objfile;
9021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9022 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9023 struct type *int_type = objfile_type (objfile)->builtin_int;
9024
9025 /* Test "int", "long int", and "long long int" objfile types,
9026 and select the first one having a size above or equal to the
9027 architecture address size. */
9028 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9029 base_type = int_type;
9030 else
9031 {
9032 int_type = objfile_type (objfile)->builtin_long;
9033 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9034 base_type = int_type;
9035 else
9036 {
9037 int_type = objfile_type (objfile)->builtin_long_long;
9038 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9039 base_type = int_type;
9040 }
9041 }
9042 }
9043
9044 negative_mask =
9045 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9046 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9047 low |= negative_mask;
9048 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9049 high |= negative_mask;
9050
9051 range_type = create_range_type (NULL, base_type, low, high);
9052
9053 /* Mark arrays with dynamic length at least as an array of unspecified
9054 length. GDB could check the boundary but before it gets implemented at
9055 least allow accessing the array elements. */
9056 if (attr && attr_form_is_block (attr))
9057 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9058
9059 /* Ada expects an empty array on no boundary attributes. */
9060 if (attr == NULL && cu->language != language_ada)
9061 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9062
9063 name = dwarf2_name (die, cu);
9064 if (name)
9065 TYPE_NAME (range_type) = name;
9066
9067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9068 if (attr)
9069 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9070
9071 set_die_type (die, range_type, cu);
9072
9073 /* set_die_type should be already done. */
9074 set_descriptive_type (range_type, die, cu);
9075
9076 return range_type;
9077 }
9078
9079 static struct type *
9080 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9081 {
9082 struct type *type;
9083
9084 /* For now, we only support the C meaning of an unspecified type: void. */
9085
9086 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9087 TYPE_NAME (type) = dwarf2_name (die, cu);
9088
9089 return set_die_type (die, type, cu);
9090 }
9091
9092 /* Trivial hash function for die_info: the hash value of a DIE
9093 is its offset in .debug_info for this objfile. */
9094
9095 static hashval_t
9096 die_hash (const void *item)
9097 {
9098 const struct die_info *die = item;
9099
9100 return die->offset;
9101 }
9102
9103 /* Trivial comparison function for die_info structures: two DIEs
9104 are equal if they have the same offset. */
9105
9106 static int
9107 die_eq (const void *item_lhs, const void *item_rhs)
9108 {
9109 const struct die_info *die_lhs = item_lhs;
9110 const struct die_info *die_rhs = item_rhs;
9111
9112 return die_lhs->offset == die_rhs->offset;
9113 }
9114
9115 /* Read a whole compilation unit into a linked list of dies. */
9116
9117 static struct die_info *
9118 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9119 {
9120 struct die_reader_specs reader_specs;
9121 int read_abbrevs = 0;
9122 struct cleanup *back_to = NULL;
9123 struct die_info *die;
9124
9125 if (cu->dwarf2_abbrevs == NULL)
9126 {
9127 dwarf2_read_abbrevs (cu);
9128 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9129 read_abbrevs = 1;
9130 }
9131
9132 gdb_assert (cu->die_hash == NULL);
9133 cu->die_hash
9134 = htab_create_alloc_ex (cu->header.length / 12,
9135 die_hash,
9136 die_eq,
9137 NULL,
9138 &cu->comp_unit_obstack,
9139 hashtab_obstack_allocate,
9140 dummy_obstack_deallocate);
9141
9142 init_cu_die_reader (&reader_specs, cu);
9143
9144 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9145
9146 if (read_abbrevs)
9147 do_cleanups (back_to);
9148
9149 return die;
9150 }
9151
9152 /* Main entry point for reading a DIE and all children.
9153 Read the DIE and dump it if requested. */
9154
9155 static struct die_info *
9156 read_die_and_children (const struct die_reader_specs *reader,
9157 gdb_byte *info_ptr,
9158 gdb_byte **new_info_ptr,
9159 struct die_info *parent)
9160 {
9161 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9162 new_info_ptr, parent);
9163
9164 if (dwarf2_die_debug)
9165 {
9166 fprintf_unfiltered (gdb_stdlog,
9167 "\nRead die from %s of %s:\n",
9168 (reader->cu->per_cu->debug_types_section
9169 ? ".debug_types"
9170 : ".debug_info"),
9171 reader->abfd->filename);
9172 dump_die (result, dwarf2_die_debug);
9173 }
9174
9175 return result;
9176 }
9177
9178 /* Read a single die and all its descendents. Set the die's sibling
9179 field to NULL; set other fields in the die correctly, and set all
9180 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9181 location of the info_ptr after reading all of those dies. PARENT
9182 is the parent of the die in question. */
9183
9184 static struct die_info *
9185 read_die_and_children_1 (const struct die_reader_specs *reader,
9186 gdb_byte *info_ptr,
9187 gdb_byte **new_info_ptr,
9188 struct die_info *parent)
9189 {
9190 struct die_info *die;
9191 gdb_byte *cur_ptr;
9192 int has_children;
9193
9194 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9195 if (die == NULL)
9196 {
9197 *new_info_ptr = cur_ptr;
9198 return NULL;
9199 }
9200 store_in_ref_table (die, reader->cu);
9201
9202 if (has_children)
9203 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9204 else
9205 {
9206 die->child = NULL;
9207 *new_info_ptr = cur_ptr;
9208 }
9209
9210 die->sibling = NULL;
9211 die->parent = parent;
9212 return die;
9213 }
9214
9215 /* Read a die, all of its descendents, and all of its siblings; set
9216 all of the fields of all of the dies correctly. Arguments are as
9217 in read_die_and_children. */
9218
9219 static struct die_info *
9220 read_die_and_siblings (const struct die_reader_specs *reader,
9221 gdb_byte *info_ptr,
9222 gdb_byte **new_info_ptr,
9223 struct die_info *parent)
9224 {
9225 struct die_info *first_die, *last_sibling;
9226 gdb_byte *cur_ptr;
9227
9228 cur_ptr = info_ptr;
9229 first_die = last_sibling = NULL;
9230
9231 while (1)
9232 {
9233 struct die_info *die
9234 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9235
9236 if (die == NULL)
9237 {
9238 *new_info_ptr = cur_ptr;
9239 return first_die;
9240 }
9241
9242 if (!first_die)
9243 first_die = die;
9244 else
9245 last_sibling->sibling = die;
9246
9247 last_sibling = die;
9248 }
9249 }
9250
9251 /* Read the die from the .debug_info section buffer. Set DIEP to
9252 point to a newly allocated die with its information, except for its
9253 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9254 whether the die has children or not. */
9255
9256 static gdb_byte *
9257 read_full_die (const struct die_reader_specs *reader,
9258 struct die_info **diep, gdb_byte *info_ptr,
9259 int *has_children)
9260 {
9261 unsigned int abbrev_number, bytes_read, i, offset;
9262 struct abbrev_info *abbrev;
9263 struct die_info *die;
9264 struct dwarf2_cu *cu = reader->cu;
9265 bfd *abfd = reader->abfd;
9266
9267 offset = info_ptr - reader->buffer;
9268 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9269 info_ptr += bytes_read;
9270 if (!abbrev_number)
9271 {
9272 *diep = NULL;
9273 *has_children = 0;
9274 return info_ptr;
9275 }
9276
9277 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9278 if (!abbrev)
9279 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9280 abbrev_number,
9281 bfd_get_filename (abfd));
9282
9283 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9284 die->offset = offset;
9285 die->tag = abbrev->tag;
9286 die->abbrev = abbrev_number;
9287
9288 die->num_attrs = abbrev->num_attrs;
9289
9290 for (i = 0; i < abbrev->num_attrs; ++i)
9291 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9292 abfd, info_ptr, cu);
9293
9294 *diep = die;
9295 *has_children = abbrev->has_children;
9296 return info_ptr;
9297 }
9298
9299 /* In DWARF version 2, the description of the debugging information is
9300 stored in a separate .debug_abbrev section. Before we read any
9301 dies from a section we read in all abbreviations and install them
9302 in a hash table. This function also sets flags in CU describing
9303 the data found in the abbrev table. */
9304
9305 static void
9306 dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9307 {
9308 bfd *abfd = cu->objfile->obfd;
9309 struct comp_unit_head *cu_header = &cu->header;
9310 gdb_byte *abbrev_ptr;
9311 struct abbrev_info *cur_abbrev;
9312 unsigned int abbrev_number, bytes_read, abbrev_name;
9313 unsigned int abbrev_form, hash_number;
9314 struct attr_abbrev *cur_attrs;
9315 unsigned int allocated_attrs;
9316
9317 /* Initialize dwarf2 abbrevs. */
9318 obstack_init (&cu->abbrev_obstack);
9319 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9320 (ABBREV_HASH_SIZE
9321 * sizeof (struct abbrev_info *)));
9322 memset (cu->dwarf2_abbrevs, 0,
9323 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9324
9325 dwarf2_read_section (dwarf2_per_objfile->objfile,
9326 &dwarf2_per_objfile->abbrev);
9327 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9328 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9329 abbrev_ptr += bytes_read;
9330
9331 allocated_attrs = ATTR_ALLOC_CHUNK;
9332 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9333
9334 /* Loop until we reach an abbrev number of 0. */
9335 while (abbrev_number)
9336 {
9337 cur_abbrev = dwarf_alloc_abbrev (cu);
9338
9339 /* read in abbrev header */
9340 cur_abbrev->number = abbrev_number;
9341 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9342 abbrev_ptr += bytes_read;
9343 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9344 abbrev_ptr += 1;
9345
9346 if (cur_abbrev->tag == DW_TAG_namespace)
9347 cu->has_namespace_info = 1;
9348
9349 /* now read in declarations */
9350 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9351 abbrev_ptr += bytes_read;
9352 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9353 abbrev_ptr += bytes_read;
9354 while (abbrev_name)
9355 {
9356 if (cur_abbrev->num_attrs == allocated_attrs)
9357 {
9358 allocated_attrs += ATTR_ALLOC_CHUNK;
9359 cur_attrs
9360 = xrealloc (cur_attrs, (allocated_attrs
9361 * sizeof (struct attr_abbrev)));
9362 }
9363
9364 /* Record whether this compilation unit might have
9365 inter-compilation-unit references. If we don't know what form
9366 this attribute will have, then it might potentially be a
9367 DW_FORM_ref_addr, so we conservatively expect inter-CU
9368 references. */
9369
9370 if (abbrev_form == DW_FORM_ref_addr
9371 || abbrev_form == DW_FORM_indirect)
9372 cu->has_form_ref_addr = 1;
9373
9374 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9375 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9376 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9377 abbrev_ptr += bytes_read;
9378 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9379 abbrev_ptr += bytes_read;
9380 }
9381
9382 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9383 (cur_abbrev->num_attrs
9384 * sizeof (struct attr_abbrev)));
9385 memcpy (cur_abbrev->attrs, cur_attrs,
9386 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9387
9388 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9389 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9390 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9391
9392 /* Get next abbreviation.
9393 Under Irix6 the abbreviations for a compilation unit are not
9394 always properly terminated with an abbrev number of 0.
9395 Exit loop if we encounter an abbreviation which we have
9396 already read (which means we are about to read the abbreviations
9397 for the next compile unit) or if the end of the abbreviation
9398 table is reached. */
9399 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9400 >= dwarf2_per_objfile->abbrev.size)
9401 break;
9402 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9403 abbrev_ptr += bytes_read;
9404 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9405 break;
9406 }
9407
9408 xfree (cur_attrs);
9409 }
9410
9411 /* Release the memory used by the abbrev table for a compilation unit. */
9412
9413 static void
9414 dwarf2_free_abbrev_table (void *ptr_to_cu)
9415 {
9416 struct dwarf2_cu *cu = ptr_to_cu;
9417
9418 obstack_free (&cu->abbrev_obstack, NULL);
9419 cu->dwarf2_abbrevs = NULL;
9420 }
9421
9422 /* Lookup an abbrev_info structure in the abbrev hash table. */
9423
9424 static struct abbrev_info *
9425 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9426 {
9427 unsigned int hash_number;
9428 struct abbrev_info *abbrev;
9429
9430 hash_number = number % ABBREV_HASH_SIZE;
9431 abbrev = cu->dwarf2_abbrevs[hash_number];
9432
9433 while (abbrev)
9434 {
9435 if (abbrev->number == number)
9436 return abbrev;
9437 else
9438 abbrev = abbrev->next;
9439 }
9440 return NULL;
9441 }
9442
9443 /* Returns nonzero if TAG represents a type that we might generate a partial
9444 symbol for. */
9445
9446 static int
9447 is_type_tag_for_partial (int tag)
9448 {
9449 switch (tag)
9450 {
9451 #if 0
9452 /* Some types that would be reasonable to generate partial symbols for,
9453 that we don't at present. */
9454 case DW_TAG_array_type:
9455 case DW_TAG_file_type:
9456 case DW_TAG_ptr_to_member_type:
9457 case DW_TAG_set_type:
9458 case DW_TAG_string_type:
9459 case DW_TAG_subroutine_type:
9460 #endif
9461 case DW_TAG_base_type:
9462 case DW_TAG_class_type:
9463 case DW_TAG_interface_type:
9464 case DW_TAG_enumeration_type:
9465 case DW_TAG_structure_type:
9466 case DW_TAG_subrange_type:
9467 case DW_TAG_typedef:
9468 case DW_TAG_union_type:
9469 return 1;
9470 default:
9471 return 0;
9472 }
9473 }
9474
9475 /* Load all DIEs that are interesting for partial symbols into memory. */
9476
9477 static struct partial_die_info *
9478 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9479 int building_psymtab, struct dwarf2_cu *cu)
9480 {
9481 struct objfile *objfile = cu->objfile;
9482 struct partial_die_info *part_die;
9483 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9484 struct abbrev_info *abbrev;
9485 unsigned int bytes_read;
9486 unsigned int load_all = 0;
9487
9488 int nesting_level = 1;
9489
9490 parent_die = NULL;
9491 last_die = NULL;
9492
9493 if (cu->per_cu && cu->per_cu->load_all_dies)
9494 load_all = 1;
9495
9496 cu->partial_dies
9497 = htab_create_alloc_ex (cu->header.length / 12,
9498 partial_die_hash,
9499 partial_die_eq,
9500 NULL,
9501 &cu->comp_unit_obstack,
9502 hashtab_obstack_allocate,
9503 dummy_obstack_deallocate);
9504
9505 part_die = obstack_alloc (&cu->comp_unit_obstack,
9506 sizeof (struct partial_die_info));
9507
9508 while (1)
9509 {
9510 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9511
9512 /* A NULL abbrev means the end of a series of children. */
9513 if (abbrev == NULL)
9514 {
9515 if (--nesting_level == 0)
9516 {
9517 /* PART_DIE was probably the last thing allocated on the
9518 comp_unit_obstack, so we could call obstack_free
9519 here. We don't do that because the waste is small,
9520 and will be cleaned up when we're done with this
9521 compilation unit. This way, we're also more robust
9522 against other users of the comp_unit_obstack. */
9523 return first_die;
9524 }
9525 info_ptr += bytes_read;
9526 last_die = parent_die;
9527 parent_die = parent_die->die_parent;
9528 continue;
9529 }
9530
9531 /* Check for template arguments. We never save these; if
9532 they're seen, we just mark the parent, and go on our way. */
9533 if (parent_die != NULL
9534 && cu->language == language_cplus
9535 && (abbrev->tag == DW_TAG_template_type_param
9536 || abbrev->tag == DW_TAG_template_value_param))
9537 {
9538 parent_die->has_template_arguments = 1;
9539
9540 if (!load_all)
9541 {
9542 /* We don't need a partial DIE for the template argument. */
9543 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9544 cu);
9545 continue;
9546 }
9547 }
9548
9549 /* We only recurse into subprograms looking for template arguments.
9550 Skip their other children. */
9551 if (!load_all
9552 && cu->language == language_cplus
9553 && parent_die != NULL
9554 && parent_die->tag == DW_TAG_subprogram)
9555 {
9556 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9557 continue;
9558 }
9559
9560 /* Check whether this DIE is interesting enough to save. Normally
9561 we would not be interested in members here, but there may be
9562 later variables referencing them via DW_AT_specification (for
9563 static members). */
9564 if (!load_all
9565 && !is_type_tag_for_partial (abbrev->tag)
9566 && abbrev->tag != DW_TAG_constant
9567 && abbrev->tag != DW_TAG_enumerator
9568 && abbrev->tag != DW_TAG_subprogram
9569 && abbrev->tag != DW_TAG_lexical_block
9570 && abbrev->tag != DW_TAG_variable
9571 && abbrev->tag != DW_TAG_namespace
9572 && abbrev->tag != DW_TAG_module
9573 && abbrev->tag != DW_TAG_member)
9574 {
9575 /* Otherwise we skip to the next sibling, if any. */
9576 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9577 continue;
9578 }
9579
9580 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9581 buffer, info_ptr, cu);
9582
9583 /* This two-pass algorithm for processing partial symbols has a
9584 high cost in cache pressure. Thus, handle some simple cases
9585 here which cover the majority of C partial symbols. DIEs
9586 which neither have specification tags in them, nor could have
9587 specification tags elsewhere pointing at them, can simply be
9588 processed and discarded.
9589
9590 This segment is also optional; scan_partial_symbols and
9591 add_partial_symbol will handle these DIEs if we chain
9592 them in normally. When compilers which do not emit large
9593 quantities of duplicate debug information are more common,
9594 this code can probably be removed. */
9595
9596 /* Any complete simple types at the top level (pretty much all
9597 of them, for a language without namespaces), can be processed
9598 directly. */
9599 if (parent_die == NULL
9600 && part_die->has_specification == 0
9601 && part_die->is_declaration == 0
9602 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9603 || part_die->tag == DW_TAG_base_type
9604 || part_die->tag == DW_TAG_subrange_type))
9605 {
9606 if (building_psymtab && part_die->name != NULL)
9607 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9608 VAR_DOMAIN, LOC_TYPEDEF,
9609 &objfile->static_psymbols,
9610 0, (CORE_ADDR) 0, cu->language, objfile);
9611 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9612 continue;
9613 }
9614
9615 /* The exception for DW_TAG_typedef with has_children above is
9616 a workaround of GCC PR debug/47510. In the case of this complaint
9617 type_name_no_tag_or_error will error on such types later.
9618
9619 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9620 it could not find the child DIEs referenced later, this is checked
9621 above. In correct DWARF DW_TAG_typedef should have no children. */
9622
9623 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9624 complaint (&symfile_complaints,
9625 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9626 "- DIE at 0x%x [in module %s]"),
9627 part_die->offset, objfile->name);
9628
9629 /* If we're at the second level, and we're an enumerator, and
9630 our parent has no specification (meaning possibly lives in a
9631 namespace elsewhere), then we can add the partial symbol now
9632 instead of queueing it. */
9633 if (part_die->tag == DW_TAG_enumerator
9634 && parent_die != NULL
9635 && parent_die->die_parent == NULL
9636 && parent_die->tag == DW_TAG_enumeration_type
9637 && parent_die->has_specification == 0)
9638 {
9639 if (part_die->name == NULL)
9640 complaint (&symfile_complaints,
9641 _("malformed enumerator DIE ignored"));
9642 else if (building_psymtab)
9643 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9644 VAR_DOMAIN, LOC_CONST,
9645 (cu->language == language_cplus
9646 || cu->language == language_java)
9647 ? &objfile->global_psymbols
9648 : &objfile->static_psymbols,
9649 0, (CORE_ADDR) 0, cu->language, objfile);
9650
9651 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9652 continue;
9653 }
9654
9655 /* We'll save this DIE so link it in. */
9656 part_die->die_parent = parent_die;
9657 part_die->die_sibling = NULL;
9658 part_die->die_child = NULL;
9659
9660 if (last_die && last_die == parent_die)
9661 last_die->die_child = part_die;
9662 else if (last_die)
9663 last_die->die_sibling = part_die;
9664
9665 last_die = part_die;
9666
9667 if (first_die == NULL)
9668 first_die = part_die;
9669
9670 /* Maybe add the DIE to the hash table. Not all DIEs that we
9671 find interesting need to be in the hash table, because we
9672 also have the parent/sibling/child chains; only those that we
9673 might refer to by offset later during partial symbol reading.
9674
9675 For now this means things that might have be the target of a
9676 DW_AT_specification, DW_AT_abstract_origin, or
9677 DW_AT_extension. DW_AT_extension will refer only to
9678 namespaces; DW_AT_abstract_origin refers to functions (and
9679 many things under the function DIE, but we do not recurse
9680 into function DIEs during partial symbol reading) and
9681 possibly variables as well; DW_AT_specification refers to
9682 declarations. Declarations ought to have the DW_AT_declaration
9683 flag. It happens that GCC forgets to put it in sometimes, but
9684 only for functions, not for types.
9685
9686 Adding more things than necessary to the hash table is harmless
9687 except for the performance cost. Adding too few will result in
9688 wasted time in find_partial_die, when we reread the compilation
9689 unit with load_all_dies set. */
9690
9691 if (load_all
9692 || abbrev->tag == DW_TAG_constant
9693 || abbrev->tag == DW_TAG_subprogram
9694 || abbrev->tag == DW_TAG_variable
9695 || abbrev->tag == DW_TAG_namespace
9696 || part_die->is_declaration)
9697 {
9698 void **slot;
9699
9700 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9701 part_die->offset, INSERT);
9702 *slot = part_die;
9703 }
9704
9705 part_die = obstack_alloc (&cu->comp_unit_obstack,
9706 sizeof (struct partial_die_info));
9707
9708 /* For some DIEs we want to follow their children (if any). For C
9709 we have no reason to follow the children of structures; for other
9710 languages we have to, so that we can get at method physnames
9711 to infer fully qualified class names, for DW_AT_specification,
9712 and for C++ template arguments. For C++, we also look one level
9713 inside functions to find template arguments (if the name of the
9714 function does not already contain the template arguments).
9715
9716 For Ada, we need to scan the children of subprograms and lexical
9717 blocks as well because Ada allows the definition of nested
9718 entities that could be interesting for the debugger, such as
9719 nested subprograms for instance. */
9720 if (last_die->has_children
9721 && (load_all
9722 || last_die->tag == DW_TAG_namespace
9723 || last_die->tag == DW_TAG_module
9724 || last_die->tag == DW_TAG_enumeration_type
9725 || (cu->language == language_cplus
9726 && last_die->tag == DW_TAG_subprogram
9727 && (last_die->name == NULL
9728 || strchr (last_die->name, '<') == NULL))
9729 || (cu->language != language_c
9730 && (last_die->tag == DW_TAG_class_type
9731 || last_die->tag == DW_TAG_interface_type
9732 || last_die->tag == DW_TAG_structure_type
9733 || last_die->tag == DW_TAG_union_type))
9734 || (cu->language == language_ada
9735 && (last_die->tag == DW_TAG_subprogram
9736 || last_die->tag == DW_TAG_lexical_block))))
9737 {
9738 nesting_level++;
9739 parent_die = last_die;
9740 continue;
9741 }
9742
9743 /* Otherwise we skip to the next sibling, if any. */
9744 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9745
9746 /* Back to the top, do it again. */
9747 }
9748 }
9749
9750 /* Read a minimal amount of information into the minimal die structure. */
9751
9752 static gdb_byte *
9753 read_partial_die (struct partial_die_info *part_die,
9754 struct abbrev_info *abbrev,
9755 unsigned int abbrev_len, bfd *abfd,
9756 gdb_byte *buffer, gdb_byte *info_ptr,
9757 struct dwarf2_cu *cu)
9758 {
9759 struct objfile *objfile = cu->objfile;
9760 unsigned int i;
9761 struct attribute attr;
9762 int has_low_pc_attr = 0;
9763 int has_high_pc_attr = 0;
9764
9765 memset (part_die, 0, sizeof (struct partial_die_info));
9766
9767 part_die->offset = info_ptr - buffer;
9768
9769 info_ptr += abbrev_len;
9770
9771 if (abbrev == NULL)
9772 return info_ptr;
9773
9774 part_die->tag = abbrev->tag;
9775 part_die->has_children = abbrev->has_children;
9776
9777 for (i = 0; i < abbrev->num_attrs; ++i)
9778 {
9779 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9780
9781 /* Store the data if it is of an attribute we want to keep in a
9782 partial symbol table. */
9783 switch (attr.name)
9784 {
9785 case DW_AT_name:
9786 switch (part_die->tag)
9787 {
9788 case DW_TAG_compile_unit:
9789 case DW_TAG_type_unit:
9790 /* Compilation units have a DW_AT_name that is a filename, not
9791 a source language identifier. */
9792 case DW_TAG_enumeration_type:
9793 case DW_TAG_enumerator:
9794 /* These tags always have simple identifiers already; no need
9795 to canonicalize them. */
9796 part_die->name = DW_STRING (&attr);
9797 break;
9798 default:
9799 part_die->name
9800 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9801 &objfile->objfile_obstack);
9802 break;
9803 }
9804 break;
9805 case DW_AT_linkage_name:
9806 case DW_AT_MIPS_linkage_name:
9807 /* Note that both forms of linkage name might appear. We
9808 assume they will be the same, and we only store the last
9809 one we see. */
9810 if (cu->language == language_ada)
9811 part_die->name = DW_STRING (&attr);
9812 part_die->linkage_name = DW_STRING (&attr);
9813 break;
9814 case DW_AT_low_pc:
9815 has_low_pc_attr = 1;
9816 part_die->lowpc = DW_ADDR (&attr);
9817 break;
9818 case DW_AT_high_pc:
9819 has_high_pc_attr = 1;
9820 part_die->highpc = DW_ADDR (&attr);
9821 break;
9822 case DW_AT_location:
9823 /* Support the .debug_loc offsets. */
9824 if (attr_form_is_block (&attr))
9825 {
9826 part_die->locdesc = DW_BLOCK (&attr);
9827 }
9828 else if (attr_form_is_section_offset (&attr))
9829 {
9830 dwarf2_complex_location_expr_complaint ();
9831 }
9832 else
9833 {
9834 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9835 "partial symbol information");
9836 }
9837 break;
9838 case DW_AT_external:
9839 part_die->is_external = DW_UNSND (&attr);
9840 break;
9841 case DW_AT_declaration:
9842 part_die->is_declaration = DW_UNSND (&attr);
9843 break;
9844 case DW_AT_type:
9845 part_die->has_type = 1;
9846 break;
9847 case DW_AT_abstract_origin:
9848 case DW_AT_specification:
9849 case DW_AT_extension:
9850 part_die->has_specification = 1;
9851 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9852 break;
9853 case DW_AT_sibling:
9854 /* Ignore absolute siblings, they might point outside of
9855 the current compile unit. */
9856 if (attr.form == DW_FORM_ref_addr)
9857 complaint (&symfile_complaints,
9858 _("ignoring absolute DW_AT_sibling"));
9859 else
9860 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9861 break;
9862 case DW_AT_byte_size:
9863 part_die->has_byte_size = 1;
9864 break;
9865 case DW_AT_calling_convention:
9866 /* DWARF doesn't provide a way to identify a program's source-level
9867 entry point. DW_AT_calling_convention attributes are only meant
9868 to describe functions' calling conventions.
9869
9870 However, because it's a necessary piece of information in
9871 Fortran, and because DW_CC_program is the only piece of debugging
9872 information whose definition refers to a 'main program' at all,
9873 several compilers have begun marking Fortran main programs with
9874 DW_CC_program --- even when those functions use the standard
9875 calling conventions.
9876
9877 So until DWARF specifies a way to provide this information and
9878 compilers pick up the new representation, we'll support this
9879 practice. */
9880 if (DW_UNSND (&attr) == DW_CC_program
9881 && cu->language == language_fortran)
9882 {
9883 set_main_name (part_die->name);
9884
9885 /* As this DIE has a static linkage the name would be difficult
9886 to look up later. */
9887 language_of_main = language_fortran;
9888 }
9889 break;
9890 default:
9891 break;
9892 }
9893 }
9894
9895 if (has_low_pc_attr && has_high_pc_attr)
9896 {
9897 /* When using the GNU linker, .gnu.linkonce. sections are used to
9898 eliminate duplicate copies of functions and vtables and such.
9899 The linker will arbitrarily choose one and discard the others.
9900 The AT_*_pc values for such functions refer to local labels in
9901 these sections. If the section from that file was discarded, the
9902 labels are not in the output, so the relocs get a value of 0.
9903 If this is a discarded function, mark the pc bounds as invalid,
9904 so that GDB will ignore it. */
9905 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9906 {
9907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9908
9909 complaint (&symfile_complaints,
9910 _("DW_AT_low_pc %s is zero "
9911 "for DIE at 0x%x [in module %s]"),
9912 paddress (gdbarch, part_die->lowpc),
9913 part_die->offset, objfile->name);
9914 }
9915 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9916 else if (part_die->lowpc >= part_die->highpc)
9917 {
9918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9919
9920 complaint (&symfile_complaints,
9921 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9922 "for DIE at 0x%x [in module %s]"),
9923 paddress (gdbarch, part_die->lowpc),
9924 paddress (gdbarch, part_die->highpc),
9925 part_die->offset, objfile->name);
9926 }
9927 else
9928 part_die->has_pc_info = 1;
9929 }
9930
9931 return info_ptr;
9932 }
9933
9934 /* Find a cached partial DIE at OFFSET in CU. */
9935
9936 static struct partial_die_info *
9937 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9938 {
9939 struct partial_die_info *lookup_die = NULL;
9940 struct partial_die_info part_die;
9941
9942 part_die.offset = offset;
9943 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9944
9945 return lookup_die;
9946 }
9947
9948 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9949 except in the case of .debug_types DIEs which do not reference
9950 outside their CU (they do however referencing other types via
9951 DW_FORM_ref_sig8). */
9952
9953 static struct partial_die_info *
9954 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9955 {
9956 struct objfile *objfile = cu->objfile;
9957 struct dwarf2_per_cu_data *per_cu = NULL;
9958 struct partial_die_info *pd = NULL;
9959
9960 if (cu->per_cu->debug_types_section)
9961 {
9962 pd = find_partial_die_in_comp_unit (offset, cu);
9963 if (pd != NULL)
9964 return pd;
9965 goto not_found;
9966 }
9967
9968 if (offset_in_cu_p (&cu->header, offset))
9969 {
9970 pd = find_partial_die_in_comp_unit (offset, cu);
9971 if (pd != NULL)
9972 return pd;
9973 }
9974
9975 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9976
9977 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9978 load_partial_comp_unit (per_cu);
9979
9980 per_cu->cu->last_used = 0;
9981 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9982
9983 if (pd == NULL && per_cu->load_all_dies == 0)
9984 {
9985 struct cleanup *back_to;
9986 struct partial_die_info comp_unit_die;
9987 struct abbrev_info *abbrev;
9988 unsigned int bytes_read;
9989 char *info_ptr;
9990
9991 per_cu->load_all_dies = 1;
9992
9993 /* Re-read the DIEs. */
9994 back_to = make_cleanup (null_cleanup, 0);
9995 if (per_cu->cu->dwarf2_abbrevs == NULL)
9996 {
9997 dwarf2_read_abbrevs (per_cu->cu);
9998 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9999 }
10000 info_ptr = (dwarf2_per_objfile->info.buffer
10001 + per_cu->cu->header.offset
10002 + per_cu->cu->header.first_die_offset);
10003 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10004 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10005 objfile->obfd,
10006 dwarf2_per_objfile->info.buffer, info_ptr,
10007 per_cu->cu);
10008 if (comp_unit_die.has_children)
10009 load_partial_dies (objfile->obfd,
10010 dwarf2_per_objfile->info.buffer, info_ptr,
10011 0, per_cu->cu);
10012 do_cleanups (back_to);
10013
10014 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10015 }
10016
10017 not_found:
10018
10019 if (pd == NULL)
10020 internal_error (__FILE__, __LINE__,
10021 _("could not find partial DIE 0x%x "
10022 "in cache [from module %s]\n"),
10023 offset, bfd_get_filename (objfile->obfd));
10024 return pd;
10025 }
10026
10027 /* See if we can figure out if the class lives in a namespace. We do
10028 this by looking for a member function; its demangled name will
10029 contain namespace info, if there is any. */
10030
10031 static void
10032 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10033 struct dwarf2_cu *cu)
10034 {
10035 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10036 what template types look like, because the demangler
10037 frequently doesn't give the same name as the debug info. We
10038 could fix this by only using the demangled name to get the
10039 prefix (but see comment in read_structure_type). */
10040
10041 struct partial_die_info *real_pdi;
10042 struct partial_die_info *child_pdi;
10043
10044 /* If this DIE (this DIE's specification, if any) has a parent, then
10045 we should not do this. We'll prepend the parent's fully qualified
10046 name when we create the partial symbol. */
10047
10048 real_pdi = struct_pdi;
10049 while (real_pdi->has_specification)
10050 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10051
10052 if (real_pdi->die_parent != NULL)
10053 return;
10054
10055 for (child_pdi = struct_pdi->die_child;
10056 child_pdi != NULL;
10057 child_pdi = child_pdi->die_sibling)
10058 {
10059 if (child_pdi->tag == DW_TAG_subprogram
10060 && child_pdi->linkage_name != NULL)
10061 {
10062 char *actual_class_name
10063 = language_class_name_from_physname (cu->language_defn,
10064 child_pdi->linkage_name);
10065 if (actual_class_name != NULL)
10066 {
10067 struct_pdi->name
10068 = obsavestring (actual_class_name,
10069 strlen (actual_class_name),
10070 &cu->objfile->objfile_obstack);
10071 xfree (actual_class_name);
10072 }
10073 break;
10074 }
10075 }
10076 }
10077
10078 /* Adjust PART_DIE before generating a symbol for it. This function
10079 may set the is_external flag or change the DIE's name. */
10080
10081 static void
10082 fixup_partial_die (struct partial_die_info *part_die,
10083 struct dwarf2_cu *cu)
10084 {
10085 /* Once we've fixed up a die, there's no point in doing so again.
10086 This also avoids a memory leak if we were to call
10087 guess_partial_die_structure_name multiple times. */
10088 if (part_die->fixup_called)
10089 return;
10090
10091 /* If we found a reference attribute and the DIE has no name, try
10092 to find a name in the referred to DIE. */
10093
10094 if (part_die->name == NULL && part_die->has_specification)
10095 {
10096 struct partial_die_info *spec_die;
10097
10098 spec_die = find_partial_die (part_die->spec_offset, cu);
10099
10100 fixup_partial_die (spec_die, cu);
10101
10102 if (spec_die->name)
10103 {
10104 part_die->name = spec_die->name;
10105
10106 /* Copy DW_AT_external attribute if it is set. */
10107 if (spec_die->is_external)
10108 part_die->is_external = spec_die->is_external;
10109 }
10110 }
10111
10112 /* Set default names for some unnamed DIEs. */
10113
10114 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10115 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10116
10117 /* If there is no parent die to provide a namespace, and there are
10118 children, see if we can determine the namespace from their linkage
10119 name.
10120 NOTE: We need to do this even if cu->has_namespace_info != 0.
10121 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
10122 if (cu->language == language_cplus
10123 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10124 && part_die->die_parent == NULL
10125 && part_die->has_children
10126 && (part_die->tag == DW_TAG_class_type
10127 || part_die->tag == DW_TAG_structure_type
10128 || part_die->tag == DW_TAG_union_type))
10129 guess_partial_die_structure_name (part_die, cu);
10130
10131 /* GCC might emit a nameless struct or union that has a linkage
10132 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10133 if (part_die->name == NULL
10134 && (part_die->tag == DW_TAG_class_type
10135 || part_die->tag == DW_TAG_interface_type
10136 || part_die->tag == DW_TAG_structure_type
10137 || part_die->tag == DW_TAG_union_type)
10138 && part_die->linkage_name != NULL)
10139 {
10140 char *demangled;
10141
10142 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10143 if (demangled)
10144 {
10145 const char *base;
10146
10147 /* Strip any leading namespaces/classes, keep only the base name.
10148 DW_AT_name for named DIEs does not contain the prefixes. */
10149 base = strrchr (demangled, ':');
10150 if (base && base > demangled && base[-1] == ':')
10151 base++;
10152 else
10153 base = demangled;
10154
10155 part_die->name = obsavestring (base, strlen (base),
10156 &cu->objfile->objfile_obstack);
10157 xfree (demangled);
10158 }
10159 }
10160
10161 part_die->fixup_called = 1;
10162 }
10163
10164 /* Read an attribute value described by an attribute form. */
10165
10166 static gdb_byte *
10167 read_attribute_value (struct attribute *attr, unsigned form,
10168 bfd *abfd, gdb_byte *info_ptr,
10169 struct dwarf2_cu *cu)
10170 {
10171 struct comp_unit_head *cu_header = &cu->header;
10172 unsigned int bytes_read;
10173 struct dwarf_block *blk;
10174
10175 attr->form = form;
10176 switch (form)
10177 {
10178 case DW_FORM_ref_addr:
10179 if (cu->header.version == 2)
10180 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10181 else
10182 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10183 &cu->header, &bytes_read);
10184 info_ptr += bytes_read;
10185 break;
10186 case DW_FORM_addr:
10187 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10188 info_ptr += bytes_read;
10189 break;
10190 case DW_FORM_block2:
10191 blk = dwarf_alloc_block (cu);
10192 blk->size = read_2_bytes (abfd, info_ptr);
10193 info_ptr += 2;
10194 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10195 info_ptr += blk->size;
10196 DW_BLOCK (attr) = blk;
10197 break;
10198 case DW_FORM_block4:
10199 blk = dwarf_alloc_block (cu);
10200 blk->size = read_4_bytes (abfd, info_ptr);
10201 info_ptr += 4;
10202 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10203 info_ptr += blk->size;
10204 DW_BLOCK (attr) = blk;
10205 break;
10206 case DW_FORM_data2:
10207 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10208 info_ptr += 2;
10209 break;
10210 case DW_FORM_data4:
10211 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10212 info_ptr += 4;
10213 break;
10214 case DW_FORM_data8:
10215 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10216 info_ptr += 8;
10217 break;
10218 case DW_FORM_sec_offset:
10219 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10220 info_ptr += bytes_read;
10221 break;
10222 case DW_FORM_string:
10223 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10224 DW_STRING_IS_CANONICAL (attr) = 0;
10225 info_ptr += bytes_read;
10226 break;
10227 case DW_FORM_strp:
10228 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10229 &bytes_read);
10230 DW_STRING_IS_CANONICAL (attr) = 0;
10231 info_ptr += bytes_read;
10232 break;
10233 case DW_FORM_exprloc:
10234 case DW_FORM_block:
10235 blk = dwarf_alloc_block (cu);
10236 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10237 info_ptr += bytes_read;
10238 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10239 info_ptr += blk->size;
10240 DW_BLOCK (attr) = blk;
10241 break;
10242 case DW_FORM_block1:
10243 blk = dwarf_alloc_block (cu);
10244 blk->size = read_1_byte (abfd, info_ptr);
10245 info_ptr += 1;
10246 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10247 info_ptr += blk->size;
10248 DW_BLOCK (attr) = blk;
10249 break;
10250 case DW_FORM_data1:
10251 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10252 info_ptr += 1;
10253 break;
10254 case DW_FORM_flag:
10255 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10256 info_ptr += 1;
10257 break;
10258 case DW_FORM_flag_present:
10259 DW_UNSND (attr) = 1;
10260 break;
10261 case DW_FORM_sdata:
10262 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10263 info_ptr += bytes_read;
10264 break;
10265 case DW_FORM_udata:
10266 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10267 info_ptr += bytes_read;
10268 break;
10269 case DW_FORM_ref1:
10270 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10271 info_ptr += 1;
10272 break;
10273 case DW_FORM_ref2:
10274 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10275 info_ptr += 2;
10276 break;
10277 case DW_FORM_ref4:
10278 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10279 info_ptr += 4;
10280 break;
10281 case DW_FORM_ref8:
10282 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10283 info_ptr += 8;
10284 break;
10285 case DW_FORM_ref_sig8:
10286 /* Convert the signature to something we can record in DW_UNSND
10287 for later lookup.
10288 NOTE: This is NULL if the type wasn't found. */
10289 DW_SIGNATURED_TYPE (attr) =
10290 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10291 info_ptr += 8;
10292 break;
10293 case DW_FORM_ref_udata:
10294 DW_ADDR (attr) = (cu->header.offset
10295 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10296 info_ptr += bytes_read;
10297 break;
10298 case DW_FORM_indirect:
10299 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10300 info_ptr += bytes_read;
10301 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10302 break;
10303 default:
10304 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10305 dwarf_form_name (form),
10306 bfd_get_filename (abfd));
10307 }
10308
10309 /* We have seen instances where the compiler tried to emit a byte
10310 size attribute of -1 which ended up being encoded as an unsigned
10311 0xffffffff. Although 0xffffffff is technically a valid size value,
10312 an object of this size seems pretty unlikely so we can relatively
10313 safely treat these cases as if the size attribute was invalid and
10314 treat them as zero by default. */
10315 if (attr->name == DW_AT_byte_size
10316 && form == DW_FORM_data4
10317 && DW_UNSND (attr) >= 0xffffffff)
10318 {
10319 complaint
10320 (&symfile_complaints,
10321 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10322 hex_string (DW_UNSND (attr)));
10323 DW_UNSND (attr) = 0;
10324 }
10325
10326 return info_ptr;
10327 }
10328
10329 /* Read an attribute described by an abbreviated attribute. */
10330
10331 static gdb_byte *
10332 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10333 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10334 {
10335 attr->name = abbrev->name;
10336 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10337 }
10338
10339 /* Read dwarf information from a buffer. */
10340
10341 static unsigned int
10342 read_1_byte (bfd *abfd, gdb_byte *buf)
10343 {
10344 return bfd_get_8 (abfd, buf);
10345 }
10346
10347 static int
10348 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10349 {
10350 return bfd_get_signed_8 (abfd, buf);
10351 }
10352
10353 static unsigned int
10354 read_2_bytes (bfd *abfd, gdb_byte *buf)
10355 {
10356 return bfd_get_16 (abfd, buf);
10357 }
10358
10359 static int
10360 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10361 {
10362 return bfd_get_signed_16 (abfd, buf);
10363 }
10364
10365 static unsigned int
10366 read_4_bytes (bfd *abfd, gdb_byte *buf)
10367 {
10368 return bfd_get_32 (abfd, buf);
10369 }
10370
10371 static int
10372 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10373 {
10374 return bfd_get_signed_32 (abfd, buf);
10375 }
10376
10377 static ULONGEST
10378 read_8_bytes (bfd *abfd, gdb_byte *buf)
10379 {
10380 return bfd_get_64 (abfd, buf);
10381 }
10382
10383 static CORE_ADDR
10384 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10385 unsigned int *bytes_read)
10386 {
10387 struct comp_unit_head *cu_header = &cu->header;
10388 CORE_ADDR retval = 0;
10389
10390 if (cu_header->signed_addr_p)
10391 {
10392 switch (cu_header->addr_size)
10393 {
10394 case 2:
10395 retval = bfd_get_signed_16 (abfd, buf);
10396 break;
10397 case 4:
10398 retval = bfd_get_signed_32 (abfd, buf);
10399 break;
10400 case 8:
10401 retval = bfd_get_signed_64 (abfd, buf);
10402 break;
10403 default:
10404 internal_error (__FILE__, __LINE__,
10405 _("read_address: bad switch, signed [in module %s]"),
10406 bfd_get_filename (abfd));
10407 }
10408 }
10409 else
10410 {
10411 switch (cu_header->addr_size)
10412 {
10413 case 2:
10414 retval = bfd_get_16 (abfd, buf);
10415 break;
10416 case 4:
10417 retval = bfd_get_32 (abfd, buf);
10418 break;
10419 case 8:
10420 retval = bfd_get_64 (abfd, buf);
10421 break;
10422 default:
10423 internal_error (__FILE__, __LINE__,
10424 _("read_address: bad switch, "
10425 "unsigned [in module %s]"),
10426 bfd_get_filename (abfd));
10427 }
10428 }
10429
10430 *bytes_read = cu_header->addr_size;
10431 return retval;
10432 }
10433
10434 /* Read the initial length from a section. The (draft) DWARF 3
10435 specification allows the initial length to take up either 4 bytes
10436 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10437 bytes describe the length and all offsets will be 8 bytes in length
10438 instead of 4.
10439
10440 An older, non-standard 64-bit format is also handled by this
10441 function. The older format in question stores the initial length
10442 as an 8-byte quantity without an escape value. Lengths greater
10443 than 2^32 aren't very common which means that the initial 4 bytes
10444 is almost always zero. Since a length value of zero doesn't make
10445 sense for the 32-bit format, this initial zero can be considered to
10446 be an escape value which indicates the presence of the older 64-bit
10447 format. As written, the code can't detect (old format) lengths
10448 greater than 4GB. If it becomes necessary to handle lengths
10449 somewhat larger than 4GB, we could allow other small values (such
10450 as the non-sensical values of 1, 2, and 3) to also be used as
10451 escape values indicating the presence of the old format.
10452
10453 The value returned via bytes_read should be used to increment the
10454 relevant pointer after calling read_initial_length().
10455
10456 [ Note: read_initial_length() and read_offset() are based on the
10457 document entitled "DWARF Debugging Information Format", revision
10458 3, draft 8, dated November 19, 2001. This document was obtained
10459 from:
10460
10461 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10462
10463 This document is only a draft and is subject to change. (So beware.)
10464
10465 Details regarding the older, non-standard 64-bit format were
10466 determined empirically by examining 64-bit ELF files produced by
10467 the SGI toolchain on an IRIX 6.5 machine.
10468
10469 - Kevin, July 16, 2002
10470 ] */
10471
10472 static LONGEST
10473 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10474 {
10475 LONGEST length = bfd_get_32 (abfd, buf);
10476
10477 if (length == 0xffffffff)
10478 {
10479 length = bfd_get_64 (abfd, buf + 4);
10480 *bytes_read = 12;
10481 }
10482 else if (length == 0)
10483 {
10484 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10485 length = bfd_get_64 (abfd, buf);
10486 *bytes_read = 8;
10487 }
10488 else
10489 {
10490 *bytes_read = 4;
10491 }
10492
10493 return length;
10494 }
10495
10496 /* Cover function for read_initial_length.
10497 Returns the length of the object at BUF, and stores the size of the
10498 initial length in *BYTES_READ and stores the size that offsets will be in
10499 *OFFSET_SIZE.
10500 If the initial length size is not equivalent to that specified in
10501 CU_HEADER then issue a complaint.
10502 This is useful when reading non-comp-unit headers. */
10503
10504 static LONGEST
10505 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10506 const struct comp_unit_head *cu_header,
10507 unsigned int *bytes_read,
10508 unsigned int *offset_size)
10509 {
10510 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10511
10512 gdb_assert (cu_header->initial_length_size == 4
10513 || cu_header->initial_length_size == 8
10514 || cu_header->initial_length_size == 12);
10515
10516 if (cu_header->initial_length_size != *bytes_read)
10517 complaint (&symfile_complaints,
10518 _("intermixed 32-bit and 64-bit DWARF sections"));
10519
10520 *offset_size = (*bytes_read == 4) ? 4 : 8;
10521 return length;
10522 }
10523
10524 /* Read an offset from the data stream. The size of the offset is
10525 given by cu_header->offset_size. */
10526
10527 static LONGEST
10528 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10529 unsigned int *bytes_read)
10530 {
10531 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10532
10533 *bytes_read = cu_header->offset_size;
10534 return offset;
10535 }
10536
10537 /* Read an offset from the data stream. */
10538
10539 static LONGEST
10540 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10541 {
10542 LONGEST retval = 0;
10543
10544 switch (offset_size)
10545 {
10546 case 4:
10547 retval = bfd_get_32 (abfd, buf);
10548 break;
10549 case 8:
10550 retval = bfd_get_64 (abfd, buf);
10551 break;
10552 default:
10553 internal_error (__FILE__, __LINE__,
10554 _("read_offset_1: bad switch [in module %s]"),
10555 bfd_get_filename (abfd));
10556 }
10557
10558 return retval;
10559 }
10560
10561 static gdb_byte *
10562 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10563 {
10564 /* If the size of a host char is 8 bits, we can return a pointer
10565 to the buffer, otherwise we have to copy the data to a buffer
10566 allocated on the temporary obstack. */
10567 gdb_assert (HOST_CHAR_BIT == 8);
10568 return buf;
10569 }
10570
10571 static char *
10572 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10573 {
10574 /* If the size of a host char is 8 bits, we can return a pointer
10575 to the string, otherwise we have to copy the string to a buffer
10576 allocated on the temporary obstack. */
10577 gdb_assert (HOST_CHAR_BIT == 8);
10578 if (*buf == '\0')
10579 {
10580 *bytes_read_ptr = 1;
10581 return NULL;
10582 }
10583 *bytes_read_ptr = strlen ((char *) buf) + 1;
10584 return (char *) buf;
10585 }
10586
10587 static char *
10588 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10589 {
10590 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10591 if (dwarf2_per_objfile->str.buffer == NULL)
10592 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10593 bfd_get_filename (abfd));
10594 if (str_offset >= dwarf2_per_objfile->str.size)
10595 error (_("DW_FORM_strp pointing outside of "
10596 ".debug_str section [in module %s]"),
10597 bfd_get_filename (abfd));
10598 gdb_assert (HOST_CHAR_BIT == 8);
10599 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10600 return NULL;
10601 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10602 }
10603
10604 static char *
10605 read_indirect_string (bfd *abfd, gdb_byte *buf,
10606 const struct comp_unit_head *cu_header,
10607 unsigned int *bytes_read_ptr)
10608 {
10609 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10610
10611 return read_indirect_string_at_offset (abfd, str_offset);
10612 }
10613
10614 static unsigned long
10615 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10616 {
10617 unsigned long result;
10618 unsigned int num_read;
10619 int i, shift;
10620 unsigned char byte;
10621
10622 result = 0;
10623 shift = 0;
10624 num_read = 0;
10625 i = 0;
10626 while (1)
10627 {
10628 byte = bfd_get_8 (abfd, buf);
10629 buf++;
10630 num_read++;
10631 result |= ((unsigned long)(byte & 127) << shift);
10632 if ((byte & 128) == 0)
10633 {
10634 break;
10635 }
10636 shift += 7;
10637 }
10638 *bytes_read_ptr = num_read;
10639 return result;
10640 }
10641
10642 static long
10643 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10644 {
10645 long result;
10646 int i, shift, num_read;
10647 unsigned char byte;
10648
10649 result = 0;
10650 shift = 0;
10651 num_read = 0;
10652 i = 0;
10653 while (1)
10654 {
10655 byte = bfd_get_8 (abfd, buf);
10656 buf++;
10657 num_read++;
10658 result |= ((long)(byte & 127) << shift);
10659 shift += 7;
10660 if ((byte & 128) == 0)
10661 {
10662 break;
10663 }
10664 }
10665 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10666 result |= -(((long)1) << shift);
10667 *bytes_read_ptr = num_read;
10668 return result;
10669 }
10670
10671 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10672
10673 static gdb_byte *
10674 skip_leb128 (bfd *abfd, gdb_byte *buf)
10675 {
10676 int byte;
10677
10678 while (1)
10679 {
10680 byte = bfd_get_8 (abfd, buf);
10681 buf++;
10682 if ((byte & 128) == 0)
10683 return buf;
10684 }
10685 }
10686
10687 static void
10688 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10689 {
10690 switch (lang)
10691 {
10692 case DW_LANG_C89:
10693 case DW_LANG_C99:
10694 case DW_LANG_C:
10695 cu->language = language_c;
10696 break;
10697 case DW_LANG_C_plus_plus:
10698 cu->language = language_cplus;
10699 break;
10700 case DW_LANG_D:
10701 cu->language = language_d;
10702 break;
10703 case DW_LANG_Fortran77:
10704 case DW_LANG_Fortran90:
10705 case DW_LANG_Fortran95:
10706 cu->language = language_fortran;
10707 break;
10708 case DW_LANG_Mips_Assembler:
10709 cu->language = language_asm;
10710 break;
10711 case DW_LANG_Java:
10712 cu->language = language_java;
10713 break;
10714 case DW_LANG_Ada83:
10715 case DW_LANG_Ada95:
10716 cu->language = language_ada;
10717 break;
10718 case DW_LANG_Modula2:
10719 cu->language = language_m2;
10720 break;
10721 case DW_LANG_Pascal83:
10722 cu->language = language_pascal;
10723 break;
10724 case DW_LANG_ObjC:
10725 cu->language = language_objc;
10726 break;
10727 case DW_LANG_Cobol74:
10728 case DW_LANG_Cobol85:
10729 default:
10730 cu->language = language_minimal;
10731 break;
10732 }
10733 cu->language_defn = language_def (cu->language);
10734 }
10735
10736 /* Return the named attribute or NULL if not there. */
10737
10738 static struct attribute *
10739 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10740 {
10741 unsigned int i;
10742 struct attribute *spec = NULL;
10743
10744 for (i = 0; i < die->num_attrs; ++i)
10745 {
10746 if (die->attrs[i].name == name)
10747 return &die->attrs[i];
10748 if (die->attrs[i].name == DW_AT_specification
10749 || die->attrs[i].name == DW_AT_abstract_origin)
10750 spec = &die->attrs[i];
10751 }
10752
10753 if (spec)
10754 {
10755 die = follow_die_ref (die, spec, &cu);
10756 return dwarf2_attr (die, name, cu);
10757 }
10758
10759 return NULL;
10760 }
10761
10762 /* Return the named attribute or NULL if not there,
10763 but do not follow DW_AT_specification, etc.
10764 This is for use in contexts where we're reading .debug_types dies.
10765 Following DW_AT_specification, DW_AT_abstract_origin will take us
10766 back up the chain, and we want to go down. */
10767
10768 static struct attribute *
10769 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10770 struct dwarf2_cu *cu)
10771 {
10772 unsigned int i;
10773
10774 for (i = 0; i < die->num_attrs; ++i)
10775 if (die->attrs[i].name == name)
10776 return &die->attrs[i];
10777
10778 return NULL;
10779 }
10780
10781 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10782 and holds a non-zero value. This function should only be used for
10783 DW_FORM_flag or DW_FORM_flag_present attributes. */
10784
10785 static int
10786 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10787 {
10788 struct attribute *attr = dwarf2_attr (die, name, cu);
10789
10790 return (attr && DW_UNSND (attr));
10791 }
10792
10793 static int
10794 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10795 {
10796 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10797 which value is non-zero. However, we have to be careful with
10798 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10799 (via dwarf2_flag_true_p) follows this attribute. So we may
10800 end up accidently finding a declaration attribute that belongs
10801 to a different DIE referenced by the specification attribute,
10802 even though the given DIE does not have a declaration attribute. */
10803 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10804 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10805 }
10806
10807 /* Return the die giving the specification for DIE, if there is
10808 one. *SPEC_CU is the CU containing DIE on input, and the CU
10809 containing the return value on output. If there is no
10810 specification, but there is an abstract origin, that is
10811 returned. */
10812
10813 static struct die_info *
10814 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10815 {
10816 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10817 *spec_cu);
10818
10819 if (spec_attr == NULL)
10820 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10821
10822 if (spec_attr == NULL)
10823 return NULL;
10824 else
10825 return follow_die_ref (die, spec_attr, spec_cu);
10826 }
10827
10828 /* Free the line_header structure *LH, and any arrays and strings it
10829 refers to.
10830 NOTE: This is also used as a "cleanup" function. */
10831
10832 static void
10833 free_line_header (struct line_header *lh)
10834 {
10835 if (lh->standard_opcode_lengths)
10836 xfree (lh->standard_opcode_lengths);
10837
10838 /* Remember that all the lh->file_names[i].name pointers are
10839 pointers into debug_line_buffer, and don't need to be freed. */
10840 if (lh->file_names)
10841 xfree (lh->file_names);
10842
10843 /* Similarly for the include directory names. */
10844 if (lh->include_dirs)
10845 xfree (lh->include_dirs);
10846
10847 xfree (lh);
10848 }
10849
10850 /* Add an entry to LH's include directory table. */
10851
10852 static void
10853 add_include_dir (struct line_header *lh, char *include_dir)
10854 {
10855 /* Grow the array if necessary. */
10856 if (lh->include_dirs_size == 0)
10857 {
10858 lh->include_dirs_size = 1; /* for testing */
10859 lh->include_dirs = xmalloc (lh->include_dirs_size
10860 * sizeof (*lh->include_dirs));
10861 }
10862 else if (lh->num_include_dirs >= lh->include_dirs_size)
10863 {
10864 lh->include_dirs_size *= 2;
10865 lh->include_dirs = xrealloc (lh->include_dirs,
10866 (lh->include_dirs_size
10867 * sizeof (*lh->include_dirs)));
10868 }
10869
10870 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10871 }
10872
10873 /* Add an entry to LH's file name table. */
10874
10875 static void
10876 add_file_name (struct line_header *lh,
10877 char *name,
10878 unsigned int dir_index,
10879 unsigned int mod_time,
10880 unsigned int length)
10881 {
10882 struct file_entry *fe;
10883
10884 /* Grow the array if necessary. */
10885 if (lh->file_names_size == 0)
10886 {
10887 lh->file_names_size = 1; /* for testing */
10888 lh->file_names = xmalloc (lh->file_names_size
10889 * sizeof (*lh->file_names));
10890 }
10891 else if (lh->num_file_names >= lh->file_names_size)
10892 {
10893 lh->file_names_size *= 2;
10894 lh->file_names = xrealloc (lh->file_names,
10895 (lh->file_names_size
10896 * sizeof (*lh->file_names)));
10897 }
10898
10899 fe = &lh->file_names[lh->num_file_names++];
10900 fe->name = name;
10901 fe->dir_index = dir_index;
10902 fe->mod_time = mod_time;
10903 fe->length = length;
10904 fe->included_p = 0;
10905 fe->symtab = NULL;
10906 }
10907
10908 /* Read the statement program header starting at OFFSET in
10909 .debug_line, according to the endianness of ABFD. Return a pointer
10910 to a struct line_header, allocated using xmalloc.
10911
10912 NOTE: the strings in the include directory and file name tables of
10913 the returned object point into debug_line_buffer, and must not be
10914 freed. */
10915
10916 static struct line_header *
10917 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10918 struct dwarf2_cu *cu)
10919 {
10920 struct cleanup *back_to;
10921 struct line_header *lh;
10922 gdb_byte *line_ptr;
10923 unsigned int bytes_read, offset_size;
10924 int i;
10925 char *cur_dir, *cur_file;
10926
10927 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10928 if (dwarf2_per_objfile->line.buffer == NULL)
10929 {
10930 complaint (&symfile_complaints, _("missing .debug_line section"));
10931 return 0;
10932 }
10933
10934 /* Make sure that at least there's room for the total_length field.
10935 That could be 12 bytes long, but we're just going to fudge that. */
10936 if (offset + 4 >= dwarf2_per_objfile->line.size)
10937 {
10938 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10939 return 0;
10940 }
10941
10942 lh = xmalloc (sizeof (*lh));
10943 memset (lh, 0, sizeof (*lh));
10944 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10945 (void *) lh);
10946
10947 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10948
10949 /* Read in the header. */
10950 lh->total_length =
10951 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10952 &bytes_read, &offset_size);
10953 line_ptr += bytes_read;
10954 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10955 + dwarf2_per_objfile->line.size))
10956 {
10957 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10958 return 0;
10959 }
10960 lh->statement_program_end = line_ptr + lh->total_length;
10961 lh->version = read_2_bytes (abfd, line_ptr);
10962 line_ptr += 2;
10963 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10964 line_ptr += offset_size;
10965 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10966 line_ptr += 1;
10967 if (lh->version >= 4)
10968 {
10969 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10970 line_ptr += 1;
10971 }
10972 else
10973 lh->maximum_ops_per_instruction = 1;
10974
10975 if (lh->maximum_ops_per_instruction == 0)
10976 {
10977 lh->maximum_ops_per_instruction = 1;
10978 complaint (&symfile_complaints,
10979 _("invalid maximum_ops_per_instruction "
10980 "in `.debug_line' section"));
10981 }
10982
10983 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10984 line_ptr += 1;
10985 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10986 line_ptr += 1;
10987 lh->line_range = read_1_byte (abfd, line_ptr);
10988 line_ptr += 1;
10989 lh->opcode_base = read_1_byte (abfd, line_ptr);
10990 line_ptr += 1;
10991 lh->standard_opcode_lengths
10992 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10993
10994 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10995 for (i = 1; i < lh->opcode_base; ++i)
10996 {
10997 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10998 line_ptr += 1;
10999 }
11000
11001 /* Read directory table. */
11002 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11003 {
11004 line_ptr += bytes_read;
11005 add_include_dir (lh, cur_dir);
11006 }
11007 line_ptr += bytes_read;
11008
11009 /* Read file name table. */
11010 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11011 {
11012 unsigned int dir_index, mod_time, length;
11013
11014 line_ptr += bytes_read;
11015 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11016 line_ptr += bytes_read;
11017 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11018 line_ptr += bytes_read;
11019 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11020 line_ptr += bytes_read;
11021
11022 add_file_name (lh, cur_file, dir_index, mod_time, length);
11023 }
11024 line_ptr += bytes_read;
11025 lh->statement_program_start = line_ptr;
11026
11027 if (line_ptr > (dwarf2_per_objfile->line.buffer
11028 + dwarf2_per_objfile->line.size))
11029 complaint (&symfile_complaints,
11030 _("line number info header doesn't "
11031 "fit in `.debug_line' section"));
11032
11033 discard_cleanups (back_to);
11034 return lh;
11035 }
11036
11037 /* Subroutine of dwarf_decode_lines to simplify it.
11038 Return the file name of the psymtab for included file FILE_INDEX
11039 in line header LH of PST.
11040 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11041 If space for the result is malloc'd, it will be freed by a cleanup.
11042 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11043
11044 static char *
11045 psymtab_include_file_name (const struct line_header *lh, int file_index,
11046 const struct partial_symtab *pst,
11047 const char *comp_dir)
11048 {
11049 const struct file_entry fe = lh->file_names [file_index];
11050 char *include_name = fe.name;
11051 char *include_name_to_compare = include_name;
11052 char *dir_name = NULL;
11053 const char *pst_filename;
11054 char *copied_name = NULL;
11055 int file_is_pst;
11056
11057 if (fe.dir_index)
11058 dir_name = lh->include_dirs[fe.dir_index - 1];
11059
11060 if (!IS_ABSOLUTE_PATH (include_name)
11061 && (dir_name != NULL || comp_dir != NULL))
11062 {
11063 /* Avoid creating a duplicate psymtab for PST.
11064 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11065 Before we do the comparison, however, we need to account
11066 for DIR_NAME and COMP_DIR.
11067 First prepend dir_name (if non-NULL). If we still don't
11068 have an absolute path prepend comp_dir (if non-NULL).
11069 However, the directory we record in the include-file's
11070 psymtab does not contain COMP_DIR (to match the
11071 corresponding symtab(s)).
11072
11073 Example:
11074
11075 bash$ cd /tmp
11076 bash$ gcc -g ./hello.c
11077 include_name = "hello.c"
11078 dir_name = "."
11079 DW_AT_comp_dir = comp_dir = "/tmp"
11080 DW_AT_name = "./hello.c" */
11081
11082 if (dir_name != NULL)
11083 {
11084 include_name = concat (dir_name, SLASH_STRING,
11085 include_name, (char *)NULL);
11086 include_name_to_compare = include_name;
11087 make_cleanup (xfree, include_name);
11088 }
11089 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11090 {
11091 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11092 include_name, (char *)NULL);
11093 }
11094 }
11095
11096 pst_filename = pst->filename;
11097 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11098 {
11099 copied_name = concat (pst->dirname, SLASH_STRING,
11100 pst_filename, (char *)NULL);
11101 pst_filename = copied_name;
11102 }
11103
11104 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11105
11106 if (include_name_to_compare != include_name)
11107 xfree (include_name_to_compare);
11108 if (copied_name != NULL)
11109 xfree (copied_name);
11110
11111 if (file_is_pst)
11112 return NULL;
11113 return include_name;
11114 }
11115
11116 /* Ignore this record_line request. */
11117
11118 static void
11119 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11120 {
11121 return;
11122 }
11123
11124 /* Subroutine of dwarf_decode_lines to simplify it.
11125 Process the line number information in LH. */
11126
11127 static void
11128 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11129 struct dwarf2_cu *cu, struct partial_symtab *pst)
11130 {
11131 gdb_byte *line_ptr, *extended_end;
11132 gdb_byte *line_end;
11133 unsigned int bytes_read, extended_len;
11134 unsigned char op_code, extended_op, adj_opcode;
11135 CORE_ADDR baseaddr;
11136 struct objfile *objfile = cu->objfile;
11137 bfd *abfd = objfile->obfd;
11138 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11139 const int decode_for_pst_p = (pst != NULL);
11140 struct subfile *last_subfile = NULL;
11141 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11142 = record_line;
11143
11144 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11145
11146 line_ptr = lh->statement_program_start;
11147 line_end = lh->statement_program_end;
11148
11149 /* Read the statement sequences until there's nothing left. */
11150 while (line_ptr < line_end)
11151 {
11152 /* state machine registers */
11153 CORE_ADDR address = 0;
11154 unsigned int file = 1;
11155 unsigned int line = 1;
11156 unsigned int column = 0;
11157 int is_stmt = lh->default_is_stmt;
11158 int basic_block = 0;
11159 int end_sequence = 0;
11160 CORE_ADDR addr;
11161 unsigned char op_index = 0;
11162
11163 if (!decode_for_pst_p && lh->num_file_names >= file)
11164 {
11165 /* Start a subfile for the current file of the state machine. */
11166 /* lh->include_dirs and lh->file_names are 0-based, but the
11167 directory and file name numbers in the statement program
11168 are 1-based. */
11169 struct file_entry *fe = &lh->file_names[file - 1];
11170 char *dir = NULL;
11171
11172 if (fe->dir_index)
11173 dir = lh->include_dirs[fe->dir_index - 1];
11174
11175 dwarf2_start_subfile (fe->name, dir, comp_dir);
11176 }
11177
11178 /* Decode the table. */
11179 while (!end_sequence)
11180 {
11181 op_code = read_1_byte (abfd, line_ptr);
11182 line_ptr += 1;
11183 if (line_ptr > line_end)
11184 {
11185 dwarf2_debug_line_missing_end_sequence_complaint ();
11186 break;
11187 }
11188
11189 if (op_code >= lh->opcode_base)
11190 {
11191 /* Special operand. */
11192 adj_opcode = op_code - lh->opcode_base;
11193 address += (((op_index + (adj_opcode / lh->line_range))
11194 / lh->maximum_ops_per_instruction)
11195 * lh->minimum_instruction_length);
11196 op_index = ((op_index + (adj_opcode / lh->line_range))
11197 % lh->maximum_ops_per_instruction);
11198 line += lh->line_base + (adj_opcode % lh->line_range);
11199 if (lh->num_file_names < file || file == 0)
11200 dwarf2_debug_line_missing_file_complaint ();
11201 /* For now we ignore lines not starting on an
11202 instruction boundary. */
11203 else if (op_index == 0)
11204 {
11205 lh->file_names[file - 1].included_p = 1;
11206 if (!decode_for_pst_p && is_stmt)
11207 {
11208 if (last_subfile != current_subfile)
11209 {
11210 addr = gdbarch_addr_bits_remove (gdbarch, address);
11211 if (last_subfile)
11212 (*p_record_line) (last_subfile, 0, addr);
11213 last_subfile = current_subfile;
11214 }
11215 /* Append row to matrix using current values. */
11216 addr = gdbarch_addr_bits_remove (gdbarch, address);
11217 (*p_record_line) (current_subfile, line, addr);
11218 }
11219 }
11220 basic_block = 0;
11221 }
11222 else switch (op_code)
11223 {
11224 case DW_LNS_extended_op:
11225 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11226 &bytes_read);
11227 line_ptr += bytes_read;
11228 extended_end = line_ptr + extended_len;
11229 extended_op = read_1_byte (abfd, line_ptr);
11230 line_ptr += 1;
11231 switch (extended_op)
11232 {
11233 case DW_LNE_end_sequence:
11234 p_record_line = record_line;
11235 end_sequence = 1;
11236 break;
11237 case DW_LNE_set_address:
11238 address = read_address (abfd, line_ptr, cu, &bytes_read);
11239
11240 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11241 {
11242 /* This line table is for a function which has been
11243 GCd by the linker. Ignore it. PR gdb/12528 */
11244
11245 long line_offset
11246 = line_ptr - dwarf2_per_objfile->line.buffer;
11247
11248 complaint (&symfile_complaints,
11249 _(".debug_line address at offset 0x%lx is 0 "
11250 "[in module %s]"),
11251 line_offset, objfile->name);
11252 p_record_line = noop_record_line;
11253 }
11254
11255 op_index = 0;
11256 line_ptr += bytes_read;
11257 address += baseaddr;
11258 break;
11259 case DW_LNE_define_file:
11260 {
11261 char *cur_file;
11262 unsigned int dir_index, mod_time, length;
11263
11264 cur_file = read_direct_string (abfd, line_ptr,
11265 &bytes_read);
11266 line_ptr += bytes_read;
11267 dir_index =
11268 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11269 line_ptr += bytes_read;
11270 mod_time =
11271 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11272 line_ptr += bytes_read;
11273 length =
11274 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11275 line_ptr += bytes_read;
11276 add_file_name (lh, cur_file, dir_index, mod_time, length);
11277 }
11278 break;
11279 case DW_LNE_set_discriminator:
11280 /* The discriminator is not interesting to the debugger;
11281 just ignore it. */
11282 line_ptr = extended_end;
11283 break;
11284 default:
11285 complaint (&symfile_complaints,
11286 _("mangled .debug_line section"));
11287 return;
11288 }
11289 /* Make sure that we parsed the extended op correctly. If e.g.
11290 we expected a different address size than the producer used,
11291 we may have read the wrong number of bytes. */
11292 if (line_ptr != extended_end)
11293 {
11294 complaint (&symfile_complaints,
11295 _("mangled .debug_line section"));
11296 return;
11297 }
11298 break;
11299 case DW_LNS_copy:
11300 if (lh->num_file_names < file || file == 0)
11301 dwarf2_debug_line_missing_file_complaint ();
11302 else
11303 {
11304 lh->file_names[file - 1].included_p = 1;
11305 if (!decode_for_pst_p && is_stmt)
11306 {
11307 if (last_subfile != current_subfile)
11308 {
11309 addr = gdbarch_addr_bits_remove (gdbarch, address);
11310 if (last_subfile)
11311 (*p_record_line) (last_subfile, 0, addr);
11312 last_subfile = current_subfile;
11313 }
11314 addr = gdbarch_addr_bits_remove (gdbarch, address);
11315 (*p_record_line) (current_subfile, line, addr);
11316 }
11317 }
11318 basic_block = 0;
11319 break;
11320 case DW_LNS_advance_pc:
11321 {
11322 CORE_ADDR adjust
11323 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11324
11325 address += (((op_index + adjust)
11326 / lh->maximum_ops_per_instruction)
11327 * lh->minimum_instruction_length);
11328 op_index = ((op_index + adjust)
11329 % lh->maximum_ops_per_instruction);
11330 line_ptr += bytes_read;
11331 }
11332 break;
11333 case DW_LNS_advance_line:
11334 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11335 line_ptr += bytes_read;
11336 break;
11337 case DW_LNS_set_file:
11338 {
11339 /* The arrays lh->include_dirs and lh->file_names are
11340 0-based, but the directory and file name numbers in
11341 the statement program are 1-based. */
11342 struct file_entry *fe;
11343 char *dir = NULL;
11344
11345 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11346 line_ptr += bytes_read;
11347 if (lh->num_file_names < file || file == 0)
11348 dwarf2_debug_line_missing_file_complaint ();
11349 else
11350 {
11351 fe = &lh->file_names[file - 1];
11352 if (fe->dir_index)
11353 dir = lh->include_dirs[fe->dir_index - 1];
11354 if (!decode_for_pst_p)
11355 {
11356 last_subfile = current_subfile;
11357 dwarf2_start_subfile (fe->name, dir, comp_dir);
11358 }
11359 }
11360 }
11361 break;
11362 case DW_LNS_set_column:
11363 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11364 line_ptr += bytes_read;
11365 break;
11366 case DW_LNS_negate_stmt:
11367 is_stmt = (!is_stmt);
11368 break;
11369 case DW_LNS_set_basic_block:
11370 basic_block = 1;
11371 break;
11372 /* Add to the address register of the state machine the
11373 address increment value corresponding to special opcode
11374 255. I.e., this value is scaled by the minimum
11375 instruction length since special opcode 255 would have
11376 scaled the increment. */
11377 case DW_LNS_const_add_pc:
11378 {
11379 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11380
11381 address += (((op_index + adjust)
11382 / lh->maximum_ops_per_instruction)
11383 * lh->minimum_instruction_length);
11384 op_index = ((op_index + adjust)
11385 % lh->maximum_ops_per_instruction);
11386 }
11387 break;
11388 case DW_LNS_fixed_advance_pc:
11389 address += read_2_bytes (abfd, line_ptr);
11390 op_index = 0;
11391 line_ptr += 2;
11392 break;
11393 default:
11394 {
11395 /* Unknown standard opcode, ignore it. */
11396 int i;
11397
11398 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11399 {
11400 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11401 line_ptr += bytes_read;
11402 }
11403 }
11404 }
11405 }
11406 if (lh->num_file_names < file || file == 0)
11407 dwarf2_debug_line_missing_file_complaint ();
11408 else
11409 {
11410 lh->file_names[file - 1].included_p = 1;
11411 if (!decode_for_pst_p)
11412 {
11413 addr = gdbarch_addr_bits_remove (gdbarch, address);
11414 (*p_record_line) (current_subfile, 0, addr);
11415 }
11416 }
11417 }
11418 }
11419
11420 /* Decode the Line Number Program (LNP) for the given line_header
11421 structure and CU. The actual information extracted and the type
11422 of structures created from the LNP depends on the value of PST.
11423
11424 1. If PST is NULL, then this procedure uses the data from the program
11425 to create all necessary symbol tables, and their linetables.
11426
11427 2. If PST is not NULL, this procedure reads the program to determine
11428 the list of files included by the unit represented by PST, and
11429 builds all the associated partial symbol tables.
11430
11431 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11432 It is used for relative paths in the line table.
11433 NOTE: When processing partial symtabs (pst != NULL),
11434 comp_dir == pst->dirname.
11435
11436 NOTE: It is important that psymtabs have the same file name (via strcmp)
11437 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11438 symtab we don't use it in the name of the psymtabs we create.
11439 E.g. expand_line_sal requires this when finding psymtabs to expand.
11440 A good testcase for this is mb-inline.exp. */
11441
11442 static void
11443 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11444 struct dwarf2_cu *cu, struct partial_symtab *pst,
11445 int want_line_info)
11446 {
11447 struct objfile *objfile = cu->objfile;
11448 const int decode_for_pst_p = (pst != NULL);
11449 struct subfile *first_subfile = current_subfile;
11450
11451 if (want_line_info)
11452 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11453
11454 if (decode_for_pst_p)
11455 {
11456 int file_index;
11457
11458 /* Now that we're done scanning the Line Header Program, we can
11459 create the psymtab of each included file. */
11460 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11461 if (lh->file_names[file_index].included_p == 1)
11462 {
11463 char *include_name =
11464 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11465 if (include_name != NULL)
11466 dwarf2_create_include_psymtab (include_name, pst, objfile);
11467 }
11468 }
11469 else
11470 {
11471 /* Make sure a symtab is created for every file, even files
11472 which contain only variables (i.e. no code with associated
11473 line numbers). */
11474 int i;
11475
11476 for (i = 0; i < lh->num_file_names; i++)
11477 {
11478 char *dir = NULL;
11479 struct file_entry *fe;
11480
11481 fe = &lh->file_names[i];
11482 if (fe->dir_index)
11483 dir = lh->include_dirs[fe->dir_index - 1];
11484 dwarf2_start_subfile (fe->name, dir, comp_dir);
11485
11486 /* Skip the main file; we don't need it, and it must be
11487 allocated last, so that it will show up before the
11488 non-primary symtabs in the objfile's symtab list. */
11489 if (current_subfile == first_subfile)
11490 continue;
11491
11492 if (current_subfile->symtab == NULL)
11493 current_subfile->symtab = allocate_symtab (current_subfile->name,
11494 objfile);
11495 fe->symtab = current_subfile->symtab;
11496 }
11497 }
11498 }
11499
11500 /* Start a subfile for DWARF. FILENAME is the name of the file and
11501 DIRNAME the name of the source directory which contains FILENAME
11502 or NULL if not known. COMP_DIR is the compilation directory for the
11503 linetable's compilation unit or NULL if not known.
11504 This routine tries to keep line numbers from identical absolute and
11505 relative file names in a common subfile.
11506
11507 Using the `list' example from the GDB testsuite, which resides in
11508 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11509 of /srcdir/list0.c yields the following debugging information for list0.c:
11510
11511 DW_AT_name: /srcdir/list0.c
11512 DW_AT_comp_dir: /compdir
11513 files.files[0].name: list0.h
11514 files.files[0].dir: /srcdir
11515 files.files[1].name: list0.c
11516 files.files[1].dir: /srcdir
11517
11518 The line number information for list0.c has to end up in a single
11519 subfile, so that `break /srcdir/list0.c:1' works as expected.
11520 start_subfile will ensure that this happens provided that we pass the
11521 concatenation of files.files[1].dir and files.files[1].name as the
11522 subfile's name. */
11523
11524 static void
11525 dwarf2_start_subfile (char *filename, const char *dirname,
11526 const char *comp_dir)
11527 {
11528 char *fullname;
11529
11530 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11531 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11532 second argument to start_subfile. To be consistent, we do the
11533 same here. In order not to lose the line information directory,
11534 we concatenate it to the filename when it makes sense.
11535 Note that the Dwarf3 standard says (speaking of filenames in line
11536 information): ``The directory index is ignored for file names
11537 that represent full path names''. Thus ignoring dirname in the
11538 `else' branch below isn't an issue. */
11539
11540 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11541 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11542 else
11543 fullname = filename;
11544
11545 start_subfile (fullname, comp_dir);
11546
11547 if (fullname != filename)
11548 xfree (fullname);
11549 }
11550
11551 static void
11552 var_decode_location (struct attribute *attr, struct symbol *sym,
11553 struct dwarf2_cu *cu)
11554 {
11555 struct objfile *objfile = cu->objfile;
11556 struct comp_unit_head *cu_header = &cu->header;
11557
11558 /* NOTE drow/2003-01-30: There used to be a comment and some special
11559 code here to turn a symbol with DW_AT_external and a
11560 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11561 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11562 with some versions of binutils) where shared libraries could have
11563 relocations against symbols in their debug information - the
11564 minimal symbol would have the right address, but the debug info
11565 would not. It's no longer necessary, because we will explicitly
11566 apply relocations when we read in the debug information now. */
11567
11568 /* A DW_AT_location attribute with no contents indicates that a
11569 variable has been optimized away. */
11570 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11571 {
11572 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11573 return;
11574 }
11575
11576 /* Handle one degenerate form of location expression specially, to
11577 preserve GDB's previous behavior when section offsets are
11578 specified. If this is just a DW_OP_addr then mark this symbol
11579 as LOC_STATIC. */
11580
11581 if (attr_form_is_block (attr)
11582 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11583 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11584 {
11585 unsigned int dummy;
11586
11587 SYMBOL_VALUE_ADDRESS (sym) =
11588 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11589 SYMBOL_CLASS (sym) = LOC_STATIC;
11590 fixup_symbol_section (sym, objfile);
11591 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11592 SYMBOL_SECTION (sym));
11593 return;
11594 }
11595
11596 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11597 expression evaluator, and use LOC_COMPUTED only when necessary
11598 (i.e. when the value of a register or memory location is
11599 referenced, or a thread-local block, etc.). Then again, it might
11600 not be worthwhile. I'm assuming that it isn't unless performance
11601 or memory numbers show me otherwise. */
11602
11603 dwarf2_symbol_mark_computed (attr, sym, cu);
11604 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11605
11606 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11607 cu->has_loclist = 1;
11608 }
11609
11610 /* Given a pointer to a DWARF information entry, figure out if we need
11611 to make a symbol table entry for it, and if so, create a new entry
11612 and return a pointer to it.
11613 If TYPE is NULL, determine symbol type from the die, otherwise
11614 used the passed type.
11615 If SPACE is not NULL, use it to hold the new symbol. If it is
11616 NULL, allocate a new symbol on the objfile's obstack. */
11617
11618 static struct symbol *
11619 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11620 struct symbol *space)
11621 {
11622 struct objfile *objfile = cu->objfile;
11623 struct symbol *sym = NULL;
11624 char *name;
11625 struct attribute *attr = NULL;
11626 struct attribute *attr2 = NULL;
11627 CORE_ADDR baseaddr;
11628 struct pending **list_to_add = NULL;
11629
11630 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11631
11632 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11633
11634 name = dwarf2_name (die, cu);
11635 if (name)
11636 {
11637 const char *linkagename;
11638 int suppress_add = 0;
11639
11640 if (space)
11641 sym = space;
11642 else
11643 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11644 OBJSTAT (objfile, n_syms++);
11645
11646 /* Cache this symbol's name and the name's demangled form (if any). */
11647 SYMBOL_SET_LANGUAGE (sym, cu->language);
11648 linkagename = dwarf2_physname (name, die, cu);
11649 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11650
11651 /* Fortran does not have mangling standard and the mangling does differ
11652 between gfortran, iFort etc. */
11653 if (cu->language == language_fortran
11654 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11655 symbol_set_demangled_name (&(sym->ginfo),
11656 (char *) dwarf2_full_name (name, die, cu),
11657 NULL);
11658
11659 /* Default assumptions.
11660 Use the passed type or decode it from the die. */
11661 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11662 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11663 if (type != NULL)
11664 SYMBOL_TYPE (sym) = type;
11665 else
11666 SYMBOL_TYPE (sym) = die_type (die, cu);
11667 attr = dwarf2_attr (die,
11668 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11669 cu);
11670 if (attr)
11671 {
11672 SYMBOL_LINE (sym) = DW_UNSND (attr);
11673 }
11674
11675 attr = dwarf2_attr (die,
11676 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11677 cu);
11678 if (attr)
11679 {
11680 int file_index = DW_UNSND (attr);
11681
11682 if (cu->line_header == NULL
11683 || file_index > cu->line_header->num_file_names)
11684 complaint (&symfile_complaints,
11685 _("file index out of range"));
11686 else if (file_index > 0)
11687 {
11688 struct file_entry *fe;
11689
11690 fe = &cu->line_header->file_names[file_index - 1];
11691 SYMBOL_SYMTAB (sym) = fe->symtab;
11692 }
11693 }
11694
11695 switch (die->tag)
11696 {
11697 case DW_TAG_label:
11698 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11699 if (attr)
11700 {
11701 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11702 }
11703 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11704 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11705 SYMBOL_CLASS (sym) = LOC_LABEL;
11706 add_symbol_to_list (sym, cu->list_in_scope);
11707 break;
11708 case DW_TAG_subprogram:
11709 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11710 finish_block. */
11711 SYMBOL_CLASS (sym) = LOC_BLOCK;
11712 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11713 if ((attr2 && (DW_UNSND (attr2) != 0))
11714 || cu->language == language_ada)
11715 {
11716 /* Subprograms marked external are stored as a global symbol.
11717 Ada subprograms, whether marked external or not, are always
11718 stored as a global symbol, because we want to be able to
11719 access them globally. For instance, we want to be able
11720 to break on a nested subprogram without having to
11721 specify the context. */
11722 list_to_add = &global_symbols;
11723 }
11724 else
11725 {
11726 list_to_add = cu->list_in_scope;
11727 }
11728 break;
11729 case DW_TAG_inlined_subroutine:
11730 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11731 finish_block. */
11732 SYMBOL_CLASS (sym) = LOC_BLOCK;
11733 SYMBOL_INLINED (sym) = 1;
11734 /* Do not add the symbol to any lists. It will be found via
11735 BLOCK_FUNCTION from the blockvector. */
11736 break;
11737 case DW_TAG_template_value_param:
11738 suppress_add = 1;
11739 /* Fall through. */
11740 case DW_TAG_constant:
11741 case DW_TAG_variable:
11742 case DW_TAG_member:
11743 /* Compilation with minimal debug info may result in
11744 variables with missing type entries. Change the
11745 misleading `void' type to something sensible. */
11746 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11747 SYMBOL_TYPE (sym)
11748 = objfile_type (objfile)->nodebug_data_symbol;
11749
11750 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11751 /* In the case of DW_TAG_member, we should only be called for
11752 static const members. */
11753 if (die->tag == DW_TAG_member)
11754 {
11755 /* dwarf2_add_field uses die_is_declaration,
11756 so we do the same. */
11757 gdb_assert (die_is_declaration (die, cu));
11758 gdb_assert (attr);
11759 }
11760 if (attr)
11761 {
11762 dwarf2_const_value (attr, sym, cu);
11763 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11764 if (!suppress_add)
11765 {
11766 if (attr2 && (DW_UNSND (attr2) != 0))
11767 list_to_add = &global_symbols;
11768 else
11769 list_to_add = cu->list_in_scope;
11770 }
11771 break;
11772 }
11773 attr = dwarf2_attr (die, DW_AT_location, cu);
11774 if (attr)
11775 {
11776 var_decode_location (attr, sym, cu);
11777 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11778 if (SYMBOL_CLASS (sym) == LOC_STATIC
11779 && SYMBOL_VALUE_ADDRESS (sym) == 0
11780 && !dwarf2_per_objfile->has_section_at_zero)
11781 {
11782 /* When a static variable is eliminated by the linker,
11783 the corresponding debug information is not stripped
11784 out, but the variable address is set to null;
11785 do not add such variables into symbol table. */
11786 }
11787 else if (attr2 && (DW_UNSND (attr2) != 0))
11788 {
11789 /* Workaround gfortran PR debug/40040 - it uses
11790 DW_AT_location for variables in -fPIC libraries which may
11791 get overriden by other libraries/executable and get
11792 a different address. Resolve it by the minimal symbol
11793 which may come from inferior's executable using copy
11794 relocation. Make this workaround only for gfortran as for
11795 other compilers GDB cannot guess the minimal symbol
11796 Fortran mangling kind. */
11797 if (cu->language == language_fortran && die->parent
11798 && die->parent->tag == DW_TAG_module
11799 && cu->producer
11800 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11801 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11802
11803 /* A variable with DW_AT_external is never static,
11804 but it may be block-scoped. */
11805 list_to_add = (cu->list_in_scope == &file_symbols
11806 ? &global_symbols : cu->list_in_scope);
11807 }
11808 else
11809 list_to_add = cu->list_in_scope;
11810 }
11811 else
11812 {
11813 /* We do not know the address of this symbol.
11814 If it is an external symbol and we have type information
11815 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11816 The address of the variable will then be determined from
11817 the minimal symbol table whenever the variable is
11818 referenced. */
11819 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11820 if (attr2 && (DW_UNSND (attr2) != 0)
11821 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11822 {
11823 /* A variable with DW_AT_external is never static, but it
11824 may be block-scoped. */
11825 list_to_add = (cu->list_in_scope == &file_symbols
11826 ? &global_symbols : cu->list_in_scope);
11827
11828 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11829 }
11830 else if (!die_is_declaration (die, cu))
11831 {
11832 /* Use the default LOC_OPTIMIZED_OUT class. */
11833 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11834 if (!suppress_add)
11835 list_to_add = cu->list_in_scope;
11836 }
11837 }
11838 break;
11839 case DW_TAG_formal_parameter:
11840 /* If we are inside a function, mark this as an argument. If
11841 not, we might be looking at an argument to an inlined function
11842 when we do not have enough information to show inlined frames;
11843 pretend it's a local variable in that case so that the user can
11844 still see it. */
11845 if (context_stack_depth > 0
11846 && context_stack[context_stack_depth - 1].name != NULL)
11847 SYMBOL_IS_ARGUMENT (sym) = 1;
11848 attr = dwarf2_attr (die, DW_AT_location, cu);
11849 if (attr)
11850 {
11851 var_decode_location (attr, sym, cu);
11852 }
11853 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11854 if (attr)
11855 {
11856 dwarf2_const_value (attr, sym, cu);
11857 }
11858
11859 list_to_add = cu->list_in_scope;
11860 break;
11861 case DW_TAG_unspecified_parameters:
11862 /* From varargs functions; gdb doesn't seem to have any
11863 interest in this information, so just ignore it for now.
11864 (FIXME?) */
11865 break;
11866 case DW_TAG_template_type_param:
11867 suppress_add = 1;
11868 /* Fall through. */
11869 case DW_TAG_class_type:
11870 case DW_TAG_interface_type:
11871 case DW_TAG_structure_type:
11872 case DW_TAG_union_type:
11873 case DW_TAG_set_type:
11874 case DW_TAG_enumeration_type:
11875 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11877
11878 {
11879 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11880 really ever be static objects: otherwise, if you try
11881 to, say, break of a class's method and you're in a file
11882 which doesn't mention that class, it won't work unless
11883 the check for all static symbols in lookup_symbol_aux
11884 saves you. See the OtherFileClass tests in
11885 gdb.c++/namespace.exp. */
11886
11887 if (!suppress_add)
11888 {
11889 list_to_add = (cu->list_in_scope == &file_symbols
11890 && (cu->language == language_cplus
11891 || cu->language == language_java)
11892 ? &global_symbols : cu->list_in_scope);
11893
11894 /* The semantics of C++ state that "struct foo {
11895 ... }" also defines a typedef for "foo". A Java
11896 class declaration also defines a typedef for the
11897 class. */
11898 if (cu->language == language_cplus
11899 || cu->language == language_java
11900 || cu->language == language_ada)
11901 {
11902 /* The symbol's name is already allocated along
11903 with this objfile, so we don't need to
11904 duplicate it for the type. */
11905 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11906 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11907 }
11908 }
11909 }
11910 break;
11911 case DW_TAG_typedef:
11912 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11914 list_to_add = cu->list_in_scope;
11915 break;
11916 case DW_TAG_base_type:
11917 case DW_TAG_subrange_type:
11918 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11919 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11920 list_to_add = cu->list_in_scope;
11921 break;
11922 case DW_TAG_enumerator:
11923 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11924 if (attr)
11925 {
11926 dwarf2_const_value (attr, sym, cu);
11927 }
11928 {
11929 /* NOTE: carlton/2003-11-10: See comment above in the
11930 DW_TAG_class_type, etc. block. */
11931
11932 list_to_add = (cu->list_in_scope == &file_symbols
11933 && (cu->language == language_cplus
11934 || cu->language == language_java)
11935 ? &global_symbols : cu->list_in_scope);
11936 }
11937 break;
11938 case DW_TAG_namespace:
11939 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11940 list_to_add = &global_symbols;
11941 break;
11942 default:
11943 /* Not a tag we recognize. Hopefully we aren't processing
11944 trash data, but since we must specifically ignore things
11945 we don't recognize, there is nothing else we should do at
11946 this point. */
11947 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11948 dwarf_tag_name (die->tag));
11949 break;
11950 }
11951
11952 if (suppress_add)
11953 {
11954 sym->hash_next = objfile->template_symbols;
11955 objfile->template_symbols = sym;
11956 list_to_add = NULL;
11957 }
11958
11959 if (list_to_add != NULL)
11960 add_symbol_to_list (sym, list_to_add);
11961
11962 /* For the benefit of old versions of GCC, check for anonymous
11963 namespaces based on the demangled name. */
11964 if (!processing_has_namespace_info
11965 && cu->language == language_cplus)
11966 cp_scan_for_anonymous_namespaces (sym, objfile);
11967 }
11968 return (sym);
11969 }
11970
11971 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11972
11973 static struct symbol *
11974 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11975 {
11976 return new_symbol_full (die, type, cu, NULL);
11977 }
11978
11979 /* Given an attr with a DW_FORM_dataN value in host byte order,
11980 zero-extend it as appropriate for the symbol's type. The DWARF
11981 standard (v4) is not entirely clear about the meaning of using
11982 DW_FORM_dataN for a constant with a signed type, where the type is
11983 wider than the data. The conclusion of a discussion on the DWARF
11984 list was that this is unspecified. We choose to always zero-extend
11985 because that is the interpretation long in use by GCC. */
11986
11987 static gdb_byte *
11988 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11989 const char *name, struct obstack *obstack,
11990 struct dwarf2_cu *cu, long *value, int bits)
11991 {
11992 struct objfile *objfile = cu->objfile;
11993 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11994 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11995 LONGEST l = DW_UNSND (attr);
11996
11997 if (bits < sizeof (*value) * 8)
11998 {
11999 l &= ((LONGEST) 1 << bits) - 1;
12000 *value = l;
12001 }
12002 else if (bits == sizeof (*value) * 8)
12003 *value = l;
12004 else
12005 {
12006 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12007 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12008 return bytes;
12009 }
12010
12011 return NULL;
12012 }
12013
12014 /* Read a constant value from an attribute. Either set *VALUE, or if
12015 the value does not fit in *VALUE, set *BYTES - either already
12016 allocated on the objfile obstack, or newly allocated on OBSTACK,
12017 or, set *BATON, if we translated the constant to a location
12018 expression. */
12019
12020 static void
12021 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12022 const char *name, struct obstack *obstack,
12023 struct dwarf2_cu *cu,
12024 long *value, gdb_byte **bytes,
12025 struct dwarf2_locexpr_baton **baton)
12026 {
12027 struct objfile *objfile = cu->objfile;
12028 struct comp_unit_head *cu_header = &cu->header;
12029 struct dwarf_block *blk;
12030 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12031 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12032
12033 *value = 0;
12034 *bytes = NULL;
12035 *baton = NULL;
12036
12037 switch (attr->form)
12038 {
12039 case DW_FORM_addr:
12040 {
12041 gdb_byte *data;
12042
12043 if (TYPE_LENGTH (type) != cu_header->addr_size)
12044 dwarf2_const_value_length_mismatch_complaint (name,
12045 cu_header->addr_size,
12046 TYPE_LENGTH (type));
12047 /* Symbols of this form are reasonably rare, so we just
12048 piggyback on the existing location code rather than writing
12049 a new implementation of symbol_computed_ops. */
12050 *baton = obstack_alloc (&objfile->objfile_obstack,
12051 sizeof (struct dwarf2_locexpr_baton));
12052 (*baton)->per_cu = cu->per_cu;
12053 gdb_assert ((*baton)->per_cu);
12054
12055 (*baton)->size = 2 + cu_header->addr_size;
12056 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12057 (*baton)->data = data;
12058
12059 data[0] = DW_OP_addr;
12060 store_unsigned_integer (&data[1], cu_header->addr_size,
12061 byte_order, DW_ADDR (attr));
12062 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12063 }
12064 break;
12065 case DW_FORM_string:
12066 case DW_FORM_strp:
12067 /* DW_STRING is already allocated on the objfile obstack, point
12068 directly to it. */
12069 *bytes = (gdb_byte *) DW_STRING (attr);
12070 break;
12071 case DW_FORM_block1:
12072 case DW_FORM_block2:
12073 case DW_FORM_block4:
12074 case DW_FORM_block:
12075 case DW_FORM_exprloc:
12076 blk = DW_BLOCK (attr);
12077 if (TYPE_LENGTH (type) != blk->size)
12078 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12079 TYPE_LENGTH (type));
12080 *bytes = blk->data;
12081 break;
12082
12083 /* The DW_AT_const_value attributes are supposed to carry the
12084 symbol's value "represented as it would be on the target
12085 architecture." By the time we get here, it's already been
12086 converted to host endianness, so we just need to sign- or
12087 zero-extend it as appropriate. */
12088 case DW_FORM_data1:
12089 *bytes = dwarf2_const_value_data (attr, type, name,
12090 obstack, cu, value, 8);
12091 break;
12092 case DW_FORM_data2:
12093 *bytes = dwarf2_const_value_data (attr, type, name,
12094 obstack, cu, value, 16);
12095 break;
12096 case DW_FORM_data4:
12097 *bytes = dwarf2_const_value_data (attr, type, name,
12098 obstack, cu, value, 32);
12099 break;
12100 case DW_FORM_data8:
12101 *bytes = dwarf2_const_value_data (attr, type, name,
12102 obstack, cu, value, 64);
12103 break;
12104
12105 case DW_FORM_sdata:
12106 *value = DW_SND (attr);
12107 break;
12108
12109 case DW_FORM_udata:
12110 *value = DW_UNSND (attr);
12111 break;
12112
12113 default:
12114 complaint (&symfile_complaints,
12115 _("unsupported const value attribute form: '%s'"),
12116 dwarf_form_name (attr->form));
12117 *value = 0;
12118 break;
12119 }
12120 }
12121
12122
12123 /* Copy constant value from an attribute to a symbol. */
12124
12125 static void
12126 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12127 struct dwarf2_cu *cu)
12128 {
12129 struct objfile *objfile = cu->objfile;
12130 struct comp_unit_head *cu_header = &cu->header;
12131 long value;
12132 gdb_byte *bytes;
12133 struct dwarf2_locexpr_baton *baton;
12134
12135 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12136 SYMBOL_PRINT_NAME (sym),
12137 &objfile->objfile_obstack, cu,
12138 &value, &bytes, &baton);
12139
12140 if (baton != NULL)
12141 {
12142 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12143 SYMBOL_LOCATION_BATON (sym) = baton;
12144 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12145 }
12146 else if (bytes != NULL)
12147 {
12148 SYMBOL_VALUE_BYTES (sym) = bytes;
12149 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12150 }
12151 else
12152 {
12153 SYMBOL_VALUE (sym) = value;
12154 SYMBOL_CLASS (sym) = LOC_CONST;
12155 }
12156 }
12157
12158 /* Return the type of the die in question using its DW_AT_type attribute. */
12159
12160 static struct type *
12161 die_type (struct die_info *die, struct dwarf2_cu *cu)
12162 {
12163 struct attribute *type_attr;
12164
12165 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12166 if (!type_attr)
12167 {
12168 /* A missing DW_AT_type represents a void type. */
12169 return objfile_type (cu->objfile)->builtin_void;
12170 }
12171
12172 return lookup_die_type (die, type_attr, cu);
12173 }
12174
12175 /* True iff CU's producer generates GNAT Ada auxiliary information
12176 that allows to find parallel types through that information instead
12177 of having to do expensive parallel lookups by type name. */
12178
12179 static int
12180 need_gnat_info (struct dwarf2_cu *cu)
12181 {
12182 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12183 of GNAT produces this auxiliary information, without any indication
12184 that it is produced. Part of enhancing the FSF version of GNAT
12185 to produce that information will be to put in place an indicator
12186 that we can use in order to determine whether the descriptive type
12187 info is available or not. One suggestion that has been made is
12188 to use a new attribute, attached to the CU die. For now, assume
12189 that the descriptive type info is not available. */
12190 return 0;
12191 }
12192
12193 /* Return the auxiliary type of the die in question using its
12194 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12195 attribute is not present. */
12196
12197 static struct type *
12198 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12199 {
12200 struct attribute *type_attr;
12201
12202 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12203 if (!type_attr)
12204 return NULL;
12205
12206 return lookup_die_type (die, type_attr, cu);
12207 }
12208
12209 /* If DIE has a descriptive_type attribute, then set the TYPE's
12210 descriptive type accordingly. */
12211
12212 static void
12213 set_descriptive_type (struct type *type, struct die_info *die,
12214 struct dwarf2_cu *cu)
12215 {
12216 struct type *descriptive_type = die_descriptive_type (die, cu);
12217
12218 if (descriptive_type)
12219 {
12220 ALLOCATE_GNAT_AUX_TYPE (type);
12221 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12222 }
12223 }
12224
12225 /* Return the containing type of the die in question using its
12226 DW_AT_containing_type attribute. */
12227
12228 static struct type *
12229 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12230 {
12231 struct attribute *type_attr;
12232
12233 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12234 if (!type_attr)
12235 error (_("Dwarf Error: Problem turning containing type into gdb type "
12236 "[in module %s]"), cu->objfile->name);
12237
12238 return lookup_die_type (die, type_attr, cu);
12239 }
12240
12241 /* Look up the type of DIE in CU using its type attribute ATTR.
12242 If there is no type substitute an error marker. */
12243
12244 static struct type *
12245 lookup_die_type (struct die_info *die, struct attribute *attr,
12246 struct dwarf2_cu *cu)
12247 {
12248 struct objfile *objfile = cu->objfile;
12249 struct type *this_type;
12250
12251 /* First see if we have it cached. */
12252
12253 if (is_ref_attr (attr))
12254 {
12255 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12256
12257 this_type = get_die_type_at_offset (offset, cu->per_cu);
12258 }
12259 else if (attr->form == DW_FORM_ref_sig8)
12260 {
12261 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12262 struct dwarf2_cu *sig_cu;
12263 unsigned int offset;
12264
12265 /* sig_type will be NULL if the signatured type is missing from
12266 the debug info. */
12267 if (sig_type == NULL)
12268 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12269 "at 0x%x [in module %s]"),
12270 die->offset, objfile->name);
12271
12272 gdb_assert (sig_type->per_cu.debug_types_section);
12273 offset = sig_type->per_cu.offset + sig_type->type_offset;
12274 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12275 }
12276 else
12277 {
12278 dump_die_for_error (die);
12279 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12280 dwarf_attr_name (attr->name), objfile->name);
12281 }
12282
12283 /* If not cached we need to read it in. */
12284
12285 if (this_type == NULL)
12286 {
12287 struct die_info *type_die;
12288 struct dwarf2_cu *type_cu = cu;
12289
12290 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12291 /* If the type is cached, we should have found it above. */
12292 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12293 this_type = read_type_die_1 (type_die, type_cu);
12294 }
12295
12296 /* If we still don't have a type use an error marker. */
12297
12298 if (this_type == NULL)
12299 {
12300 char *message, *saved;
12301
12302 /* read_type_die already issued a complaint. */
12303 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12304 objfile->name,
12305 cu->header.offset,
12306 die->offset);
12307 saved = obstack_copy0 (&objfile->objfile_obstack,
12308 message, strlen (message));
12309 xfree (message);
12310
12311 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12312 }
12313
12314 return this_type;
12315 }
12316
12317 /* Return the type in DIE, CU.
12318 Returns NULL for invalid types.
12319
12320 This first does a lookup in the appropriate type_hash table,
12321 and only reads the die in if necessary.
12322
12323 NOTE: This can be called when reading in partial or full symbols. */
12324
12325 static struct type *
12326 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12327 {
12328 struct type *this_type;
12329
12330 this_type = get_die_type (die, cu);
12331 if (this_type)
12332 return this_type;
12333
12334 return read_type_die_1 (die, cu);
12335 }
12336
12337 /* Read the type in DIE, CU.
12338 Returns NULL for invalid types. */
12339
12340 static struct type *
12341 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12342 {
12343 struct type *this_type = NULL;
12344
12345 switch (die->tag)
12346 {
12347 case DW_TAG_class_type:
12348 case DW_TAG_interface_type:
12349 case DW_TAG_structure_type:
12350 case DW_TAG_union_type:
12351 this_type = read_structure_type (die, cu);
12352 break;
12353 case DW_TAG_enumeration_type:
12354 this_type = read_enumeration_type (die, cu);
12355 break;
12356 case DW_TAG_subprogram:
12357 case DW_TAG_subroutine_type:
12358 case DW_TAG_inlined_subroutine:
12359 this_type = read_subroutine_type (die, cu);
12360 break;
12361 case DW_TAG_array_type:
12362 this_type = read_array_type (die, cu);
12363 break;
12364 case DW_TAG_set_type:
12365 this_type = read_set_type (die, cu);
12366 break;
12367 case DW_TAG_pointer_type:
12368 this_type = read_tag_pointer_type (die, cu);
12369 break;
12370 case DW_TAG_ptr_to_member_type:
12371 this_type = read_tag_ptr_to_member_type (die, cu);
12372 break;
12373 case DW_TAG_reference_type:
12374 this_type = read_tag_reference_type (die, cu);
12375 break;
12376 case DW_TAG_const_type:
12377 this_type = read_tag_const_type (die, cu);
12378 break;
12379 case DW_TAG_volatile_type:
12380 this_type = read_tag_volatile_type (die, cu);
12381 break;
12382 case DW_TAG_string_type:
12383 this_type = read_tag_string_type (die, cu);
12384 break;
12385 case DW_TAG_typedef:
12386 this_type = read_typedef (die, cu);
12387 break;
12388 case DW_TAG_subrange_type:
12389 this_type = read_subrange_type (die, cu);
12390 break;
12391 case DW_TAG_base_type:
12392 this_type = read_base_type (die, cu);
12393 break;
12394 case DW_TAG_unspecified_type:
12395 this_type = read_unspecified_type (die, cu);
12396 break;
12397 case DW_TAG_namespace:
12398 this_type = read_namespace_type (die, cu);
12399 break;
12400 case DW_TAG_module:
12401 this_type = read_module_type (die, cu);
12402 break;
12403 default:
12404 complaint (&symfile_complaints,
12405 _("unexpected tag in read_type_die: '%s'"),
12406 dwarf_tag_name (die->tag));
12407 break;
12408 }
12409
12410 return this_type;
12411 }
12412
12413 /* See if we can figure out if the class lives in a namespace. We do
12414 this by looking for a member function; its demangled name will
12415 contain namespace info, if there is any.
12416 Return the computed name or NULL.
12417 Space for the result is allocated on the objfile's obstack.
12418 This is the full-die version of guess_partial_die_structure_name.
12419 In this case we know DIE has no useful parent. */
12420
12421 static char *
12422 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12423 {
12424 struct die_info *spec_die;
12425 struct dwarf2_cu *spec_cu;
12426 struct die_info *child;
12427
12428 spec_cu = cu;
12429 spec_die = die_specification (die, &spec_cu);
12430 if (spec_die != NULL)
12431 {
12432 die = spec_die;
12433 cu = spec_cu;
12434 }
12435
12436 for (child = die->child;
12437 child != NULL;
12438 child = child->sibling)
12439 {
12440 if (child->tag == DW_TAG_subprogram)
12441 {
12442 struct attribute *attr;
12443
12444 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12445 if (attr == NULL)
12446 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12447 if (attr != NULL)
12448 {
12449 char *actual_name
12450 = language_class_name_from_physname (cu->language_defn,
12451 DW_STRING (attr));
12452 char *name = NULL;
12453
12454 if (actual_name != NULL)
12455 {
12456 char *die_name = dwarf2_name (die, cu);
12457
12458 if (die_name != NULL
12459 && strcmp (die_name, actual_name) != 0)
12460 {
12461 /* Strip off the class name from the full name.
12462 We want the prefix. */
12463 int die_name_len = strlen (die_name);
12464 int actual_name_len = strlen (actual_name);
12465
12466 /* Test for '::' as a sanity check. */
12467 if (actual_name_len > die_name_len + 2
12468 && actual_name[actual_name_len
12469 - die_name_len - 1] == ':')
12470 name =
12471 obsavestring (actual_name,
12472 actual_name_len - die_name_len - 2,
12473 &cu->objfile->objfile_obstack);
12474 }
12475 }
12476 xfree (actual_name);
12477 return name;
12478 }
12479 }
12480 }
12481
12482 return NULL;
12483 }
12484
12485 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12486 prefix part in such case. See
12487 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12488
12489 static char *
12490 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12491 {
12492 struct attribute *attr;
12493 char *base;
12494
12495 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12496 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12497 return NULL;
12498
12499 attr = dwarf2_attr (die, DW_AT_name, cu);
12500 if (attr != NULL && DW_STRING (attr) != NULL)
12501 return NULL;
12502
12503 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12504 if (attr == NULL)
12505 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12506 if (attr == NULL || DW_STRING (attr) == NULL)
12507 return NULL;
12508
12509 /* dwarf2_name had to be already called. */
12510 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12511
12512 /* Strip the base name, keep any leading namespaces/classes. */
12513 base = strrchr (DW_STRING (attr), ':');
12514 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12515 return "";
12516
12517 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12518 &cu->objfile->objfile_obstack);
12519 }
12520
12521 /* Return the name of the namespace/class that DIE is defined within,
12522 or "" if we can't tell. The caller should not xfree the result.
12523
12524 For example, if we're within the method foo() in the following
12525 code:
12526
12527 namespace N {
12528 class C {
12529 void foo () {
12530 }
12531 };
12532 }
12533
12534 then determine_prefix on foo's die will return "N::C". */
12535
12536 static const char *
12537 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12538 {
12539 struct die_info *parent, *spec_die;
12540 struct dwarf2_cu *spec_cu;
12541 struct type *parent_type;
12542 char *retval;
12543
12544 if (cu->language != language_cplus && cu->language != language_java
12545 && cu->language != language_fortran)
12546 return "";
12547
12548 retval = anonymous_struct_prefix (die, cu);
12549 if (retval)
12550 return retval;
12551
12552 /* We have to be careful in the presence of DW_AT_specification.
12553 For example, with GCC 3.4, given the code
12554
12555 namespace N {
12556 void foo() {
12557 // Definition of N::foo.
12558 }
12559 }
12560
12561 then we'll have a tree of DIEs like this:
12562
12563 1: DW_TAG_compile_unit
12564 2: DW_TAG_namespace // N
12565 3: DW_TAG_subprogram // declaration of N::foo
12566 4: DW_TAG_subprogram // definition of N::foo
12567 DW_AT_specification // refers to die #3
12568
12569 Thus, when processing die #4, we have to pretend that we're in
12570 the context of its DW_AT_specification, namely the contex of die
12571 #3. */
12572 spec_cu = cu;
12573 spec_die = die_specification (die, &spec_cu);
12574 if (spec_die == NULL)
12575 parent = die->parent;
12576 else
12577 {
12578 parent = spec_die->parent;
12579 cu = spec_cu;
12580 }
12581
12582 if (parent == NULL)
12583 return "";
12584 else if (parent->building_fullname)
12585 {
12586 const char *name;
12587 const char *parent_name;
12588
12589 /* It has been seen on RealView 2.2 built binaries,
12590 DW_TAG_template_type_param types actually _defined_ as
12591 children of the parent class:
12592
12593 enum E {};
12594 template class <class Enum> Class{};
12595 Class<enum E> class_e;
12596
12597 1: DW_TAG_class_type (Class)
12598 2: DW_TAG_enumeration_type (E)
12599 3: DW_TAG_enumerator (enum1:0)
12600 3: DW_TAG_enumerator (enum2:1)
12601 ...
12602 2: DW_TAG_template_type_param
12603 DW_AT_type DW_FORM_ref_udata (E)
12604
12605 Besides being broken debug info, it can put GDB into an
12606 infinite loop. Consider:
12607
12608 When we're building the full name for Class<E>, we'll start
12609 at Class, and go look over its template type parameters,
12610 finding E. We'll then try to build the full name of E, and
12611 reach here. We're now trying to build the full name of E,
12612 and look over the parent DIE for containing scope. In the
12613 broken case, if we followed the parent DIE of E, we'd again
12614 find Class, and once again go look at its template type
12615 arguments, etc., etc. Simply don't consider such parent die
12616 as source-level parent of this die (it can't be, the language
12617 doesn't allow it), and break the loop here. */
12618 name = dwarf2_name (die, cu);
12619 parent_name = dwarf2_name (parent, cu);
12620 complaint (&symfile_complaints,
12621 _("template param type '%s' defined within parent '%s'"),
12622 name ? name : "<unknown>",
12623 parent_name ? parent_name : "<unknown>");
12624 return "";
12625 }
12626 else
12627 switch (parent->tag)
12628 {
12629 case DW_TAG_namespace:
12630 parent_type = read_type_die (parent, cu);
12631 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12632 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12633 Work around this problem here. */
12634 if (cu->language == language_cplus
12635 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12636 return "";
12637 /* We give a name to even anonymous namespaces. */
12638 return TYPE_TAG_NAME (parent_type);
12639 case DW_TAG_class_type:
12640 case DW_TAG_interface_type:
12641 case DW_TAG_structure_type:
12642 case DW_TAG_union_type:
12643 case DW_TAG_module:
12644 parent_type = read_type_die (parent, cu);
12645 if (TYPE_TAG_NAME (parent_type) != NULL)
12646 return TYPE_TAG_NAME (parent_type);
12647 else
12648 /* An anonymous structure is only allowed non-static data
12649 members; no typedefs, no member functions, et cetera.
12650 So it does not need a prefix. */
12651 return "";
12652 case DW_TAG_compile_unit:
12653 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12654 if (cu->language == language_cplus
12655 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12656 && die->child != NULL
12657 && (die->tag == DW_TAG_class_type
12658 || die->tag == DW_TAG_structure_type
12659 || die->tag == DW_TAG_union_type))
12660 {
12661 char *name = guess_full_die_structure_name (die, cu);
12662 if (name != NULL)
12663 return name;
12664 }
12665 return "";
12666 default:
12667 return determine_prefix (parent, cu);
12668 }
12669 }
12670
12671 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12672 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12673 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12674 an obconcat, otherwise allocate storage for the result. The CU argument is
12675 used to determine the language and hence, the appropriate separator. */
12676
12677 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12678
12679 static char *
12680 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12681 int physname, struct dwarf2_cu *cu)
12682 {
12683 const char *lead = "";
12684 const char *sep;
12685
12686 if (suffix == NULL || suffix[0] == '\0'
12687 || prefix == NULL || prefix[0] == '\0')
12688 sep = "";
12689 else if (cu->language == language_java)
12690 sep = ".";
12691 else if (cu->language == language_fortran && physname)
12692 {
12693 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12694 DW_AT_MIPS_linkage_name is preferred and used instead. */
12695
12696 lead = "__";
12697 sep = "_MOD_";
12698 }
12699 else
12700 sep = "::";
12701
12702 if (prefix == NULL)
12703 prefix = "";
12704 if (suffix == NULL)
12705 suffix = "";
12706
12707 if (obs == NULL)
12708 {
12709 char *retval
12710 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12711
12712 strcpy (retval, lead);
12713 strcat (retval, prefix);
12714 strcat (retval, sep);
12715 strcat (retval, suffix);
12716 return retval;
12717 }
12718 else
12719 {
12720 /* We have an obstack. */
12721 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12722 }
12723 }
12724
12725 /* Return sibling of die, NULL if no sibling. */
12726
12727 static struct die_info *
12728 sibling_die (struct die_info *die)
12729 {
12730 return die->sibling;
12731 }
12732
12733 /* Get name of a die, return NULL if not found. */
12734
12735 static char *
12736 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12737 struct obstack *obstack)
12738 {
12739 if (name && cu->language == language_cplus)
12740 {
12741 char *canon_name = cp_canonicalize_string (name);
12742
12743 if (canon_name != NULL)
12744 {
12745 if (strcmp (canon_name, name) != 0)
12746 name = obsavestring (canon_name, strlen (canon_name),
12747 obstack);
12748 xfree (canon_name);
12749 }
12750 }
12751
12752 return name;
12753 }
12754
12755 /* Get name of a die, return NULL if not found. */
12756
12757 static char *
12758 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12759 {
12760 struct attribute *attr;
12761
12762 attr = dwarf2_attr (die, DW_AT_name, cu);
12763 if ((!attr || !DW_STRING (attr))
12764 && die->tag != DW_TAG_class_type
12765 && die->tag != DW_TAG_interface_type
12766 && die->tag != DW_TAG_structure_type
12767 && die->tag != DW_TAG_union_type)
12768 return NULL;
12769
12770 switch (die->tag)
12771 {
12772 case DW_TAG_compile_unit:
12773 /* Compilation units have a DW_AT_name that is a filename, not
12774 a source language identifier. */
12775 case DW_TAG_enumeration_type:
12776 case DW_TAG_enumerator:
12777 /* These tags always have simple identifiers already; no need
12778 to canonicalize them. */
12779 return DW_STRING (attr);
12780
12781 case DW_TAG_subprogram:
12782 /* Java constructors will all be named "<init>", so return
12783 the class name when we see this special case. */
12784 if (cu->language == language_java
12785 && DW_STRING (attr) != NULL
12786 && strcmp (DW_STRING (attr), "<init>") == 0)
12787 {
12788 struct dwarf2_cu *spec_cu = cu;
12789 struct die_info *spec_die;
12790
12791 /* GCJ will output '<init>' for Java constructor names.
12792 For this special case, return the name of the parent class. */
12793
12794 /* GCJ may output suprogram DIEs with AT_specification set.
12795 If so, use the name of the specified DIE. */
12796 spec_die = die_specification (die, &spec_cu);
12797 if (spec_die != NULL)
12798 return dwarf2_name (spec_die, spec_cu);
12799
12800 do
12801 {
12802 die = die->parent;
12803 if (die->tag == DW_TAG_class_type)
12804 return dwarf2_name (die, cu);
12805 }
12806 while (die->tag != DW_TAG_compile_unit);
12807 }
12808 break;
12809
12810 case DW_TAG_class_type:
12811 case DW_TAG_interface_type:
12812 case DW_TAG_structure_type:
12813 case DW_TAG_union_type:
12814 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12815 structures or unions. These were of the form "._%d" in GCC 4.1,
12816 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12817 and GCC 4.4. We work around this problem by ignoring these. */
12818 if (attr && DW_STRING (attr)
12819 && (strncmp (DW_STRING (attr), "._", 2) == 0
12820 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12821 return NULL;
12822
12823 /* GCC might emit a nameless typedef that has a linkage name. See
12824 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12825 if (!attr || DW_STRING (attr) == NULL)
12826 {
12827 char *demangled = NULL;
12828
12829 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12830 if (attr == NULL)
12831 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12832
12833 if (attr == NULL || DW_STRING (attr) == NULL)
12834 return NULL;
12835
12836 /* Avoid demangling DW_STRING (attr) the second time on a second
12837 call for the same DIE. */
12838 if (!DW_STRING_IS_CANONICAL (attr))
12839 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12840
12841 if (demangled)
12842 {
12843 char *base;
12844
12845 /* FIXME: we already did this for the partial symbol... */
12846 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12847 &cu->objfile->objfile_obstack);
12848 DW_STRING_IS_CANONICAL (attr) = 1;
12849 xfree (demangled);
12850
12851 /* Strip any leading namespaces/classes, keep only the base name.
12852 DW_AT_name for named DIEs does not contain the prefixes. */
12853 base = strrchr (DW_STRING (attr), ':');
12854 if (base && base > DW_STRING (attr) && base[-1] == ':')
12855 return &base[1];
12856 else
12857 return DW_STRING (attr);
12858 }
12859 }
12860 break;
12861
12862 default:
12863 break;
12864 }
12865
12866 if (!DW_STRING_IS_CANONICAL (attr))
12867 {
12868 DW_STRING (attr)
12869 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12870 &cu->objfile->objfile_obstack);
12871 DW_STRING_IS_CANONICAL (attr) = 1;
12872 }
12873 return DW_STRING (attr);
12874 }
12875
12876 /* Return the die that this die in an extension of, or NULL if there
12877 is none. *EXT_CU is the CU containing DIE on input, and the CU
12878 containing the return value on output. */
12879
12880 static struct die_info *
12881 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12882 {
12883 struct attribute *attr;
12884
12885 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12886 if (attr == NULL)
12887 return NULL;
12888
12889 return follow_die_ref (die, attr, ext_cu);
12890 }
12891
12892 /* Convert a DIE tag into its string name. */
12893
12894 static char *
12895 dwarf_tag_name (unsigned tag)
12896 {
12897 switch (tag)
12898 {
12899 case DW_TAG_padding:
12900 return "DW_TAG_padding";
12901 case DW_TAG_array_type:
12902 return "DW_TAG_array_type";
12903 case DW_TAG_class_type:
12904 return "DW_TAG_class_type";
12905 case DW_TAG_entry_point:
12906 return "DW_TAG_entry_point";
12907 case DW_TAG_enumeration_type:
12908 return "DW_TAG_enumeration_type";
12909 case DW_TAG_formal_parameter:
12910 return "DW_TAG_formal_parameter";
12911 case DW_TAG_imported_declaration:
12912 return "DW_TAG_imported_declaration";
12913 case DW_TAG_label:
12914 return "DW_TAG_label";
12915 case DW_TAG_lexical_block:
12916 return "DW_TAG_lexical_block";
12917 case DW_TAG_member:
12918 return "DW_TAG_member";
12919 case DW_TAG_pointer_type:
12920 return "DW_TAG_pointer_type";
12921 case DW_TAG_reference_type:
12922 return "DW_TAG_reference_type";
12923 case DW_TAG_compile_unit:
12924 return "DW_TAG_compile_unit";
12925 case DW_TAG_string_type:
12926 return "DW_TAG_string_type";
12927 case DW_TAG_structure_type:
12928 return "DW_TAG_structure_type";
12929 case DW_TAG_subroutine_type:
12930 return "DW_TAG_subroutine_type";
12931 case DW_TAG_typedef:
12932 return "DW_TAG_typedef";
12933 case DW_TAG_union_type:
12934 return "DW_TAG_union_type";
12935 case DW_TAG_unspecified_parameters:
12936 return "DW_TAG_unspecified_parameters";
12937 case DW_TAG_variant:
12938 return "DW_TAG_variant";
12939 case DW_TAG_common_block:
12940 return "DW_TAG_common_block";
12941 case DW_TAG_common_inclusion:
12942 return "DW_TAG_common_inclusion";
12943 case DW_TAG_inheritance:
12944 return "DW_TAG_inheritance";
12945 case DW_TAG_inlined_subroutine:
12946 return "DW_TAG_inlined_subroutine";
12947 case DW_TAG_module:
12948 return "DW_TAG_module";
12949 case DW_TAG_ptr_to_member_type:
12950 return "DW_TAG_ptr_to_member_type";
12951 case DW_TAG_set_type:
12952 return "DW_TAG_set_type";
12953 case DW_TAG_subrange_type:
12954 return "DW_TAG_subrange_type";
12955 case DW_TAG_with_stmt:
12956 return "DW_TAG_with_stmt";
12957 case DW_TAG_access_declaration:
12958 return "DW_TAG_access_declaration";
12959 case DW_TAG_base_type:
12960 return "DW_TAG_base_type";
12961 case DW_TAG_catch_block:
12962 return "DW_TAG_catch_block";
12963 case DW_TAG_const_type:
12964 return "DW_TAG_const_type";
12965 case DW_TAG_constant:
12966 return "DW_TAG_constant";
12967 case DW_TAG_enumerator:
12968 return "DW_TAG_enumerator";
12969 case DW_TAG_file_type:
12970 return "DW_TAG_file_type";
12971 case DW_TAG_friend:
12972 return "DW_TAG_friend";
12973 case DW_TAG_namelist:
12974 return "DW_TAG_namelist";
12975 case DW_TAG_namelist_item:
12976 return "DW_TAG_namelist_item";
12977 case DW_TAG_packed_type:
12978 return "DW_TAG_packed_type";
12979 case DW_TAG_subprogram:
12980 return "DW_TAG_subprogram";
12981 case DW_TAG_template_type_param:
12982 return "DW_TAG_template_type_param";
12983 case DW_TAG_template_value_param:
12984 return "DW_TAG_template_value_param";
12985 case DW_TAG_thrown_type:
12986 return "DW_TAG_thrown_type";
12987 case DW_TAG_try_block:
12988 return "DW_TAG_try_block";
12989 case DW_TAG_variant_part:
12990 return "DW_TAG_variant_part";
12991 case DW_TAG_variable:
12992 return "DW_TAG_variable";
12993 case DW_TAG_volatile_type:
12994 return "DW_TAG_volatile_type";
12995 case DW_TAG_dwarf_procedure:
12996 return "DW_TAG_dwarf_procedure";
12997 case DW_TAG_restrict_type:
12998 return "DW_TAG_restrict_type";
12999 case DW_TAG_interface_type:
13000 return "DW_TAG_interface_type";
13001 case DW_TAG_namespace:
13002 return "DW_TAG_namespace";
13003 case DW_TAG_imported_module:
13004 return "DW_TAG_imported_module";
13005 case DW_TAG_unspecified_type:
13006 return "DW_TAG_unspecified_type";
13007 case DW_TAG_partial_unit:
13008 return "DW_TAG_partial_unit";
13009 case DW_TAG_imported_unit:
13010 return "DW_TAG_imported_unit";
13011 case DW_TAG_condition:
13012 return "DW_TAG_condition";
13013 case DW_TAG_shared_type:
13014 return "DW_TAG_shared_type";
13015 case DW_TAG_type_unit:
13016 return "DW_TAG_type_unit";
13017 case DW_TAG_MIPS_loop:
13018 return "DW_TAG_MIPS_loop";
13019 case DW_TAG_HP_array_descriptor:
13020 return "DW_TAG_HP_array_descriptor";
13021 case DW_TAG_format_label:
13022 return "DW_TAG_format_label";
13023 case DW_TAG_function_template:
13024 return "DW_TAG_function_template";
13025 case DW_TAG_class_template:
13026 return "DW_TAG_class_template";
13027 case DW_TAG_GNU_BINCL:
13028 return "DW_TAG_GNU_BINCL";
13029 case DW_TAG_GNU_EINCL:
13030 return "DW_TAG_GNU_EINCL";
13031 case DW_TAG_upc_shared_type:
13032 return "DW_TAG_upc_shared_type";
13033 case DW_TAG_upc_strict_type:
13034 return "DW_TAG_upc_strict_type";
13035 case DW_TAG_upc_relaxed_type:
13036 return "DW_TAG_upc_relaxed_type";
13037 case DW_TAG_PGI_kanji_type:
13038 return "DW_TAG_PGI_kanji_type";
13039 case DW_TAG_PGI_interface_block:
13040 return "DW_TAG_PGI_interface_block";
13041 case DW_TAG_GNU_call_site:
13042 return "DW_TAG_GNU_call_site";
13043 default:
13044 return "DW_TAG_<unknown>";
13045 }
13046 }
13047
13048 /* Convert a DWARF attribute code into its string name. */
13049
13050 static char *
13051 dwarf_attr_name (unsigned attr)
13052 {
13053 switch (attr)
13054 {
13055 case DW_AT_sibling:
13056 return "DW_AT_sibling";
13057 case DW_AT_location:
13058 return "DW_AT_location";
13059 case DW_AT_name:
13060 return "DW_AT_name";
13061 case DW_AT_ordering:
13062 return "DW_AT_ordering";
13063 case DW_AT_subscr_data:
13064 return "DW_AT_subscr_data";
13065 case DW_AT_byte_size:
13066 return "DW_AT_byte_size";
13067 case DW_AT_bit_offset:
13068 return "DW_AT_bit_offset";
13069 case DW_AT_bit_size:
13070 return "DW_AT_bit_size";
13071 case DW_AT_element_list:
13072 return "DW_AT_element_list";
13073 case DW_AT_stmt_list:
13074 return "DW_AT_stmt_list";
13075 case DW_AT_low_pc:
13076 return "DW_AT_low_pc";
13077 case DW_AT_high_pc:
13078 return "DW_AT_high_pc";
13079 case DW_AT_language:
13080 return "DW_AT_language";
13081 case DW_AT_member:
13082 return "DW_AT_member";
13083 case DW_AT_discr:
13084 return "DW_AT_discr";
13085 case DW_AT_discr_value:
13086 return "DW_AT_discr_value";
13087 case DW_AT_visibility:
13088 return "DW_AT_visibility";
13089 case DW_AT_import:
13090 return "DW_AT_import";
13091 case DW_AT_string_length:
13092 return "DW_AT_string_length";
13093 case DW_AT_common_reference:
13094 return "DW_AT_common_reference";
13095 case DW_AT_comp_dir:
13096 return "DW_AT_comp_dir";
13097 case DW_AT_const_value:
13098 return "DW_AT_const_value";
13099 case DW_AT_containing_type:
13100 return "DW_AT_containing_type";
13101 case DW_AT_default_value:
13102 return "DW_AT_default_value";
13103 case DW_AT_inline:
13104 return "DW_AT_inline";
13105 case DW_AT_is_optional:
13106 return "DW_AT_is_optional";
13107 case DW_AT_lower_bound:
13108 return "DW_AT_lower_bound";
13109 case DW_AT_producer:
13110 return "DW_AT_producer";
13111 case DW_AT_prototyped:
13112 return "DW_AT_prototyped";
13113 case DW_AT_return_addr:
13114 return "DW_AT_return_addr";
13115 case DW_AT_start_scope:
13116 return "DW_AT_start_scope";
13117 case DW_AT_bit_stride:
13118 return "DW_AT_bit_stride";
13119 case DW_AT_upper_bound:
13120 return "DW_AT_upper_bound";
13121 case DW_AT_abstract_origin:
13122 return "DW_AT_abstract_origin";
13123 case DW_AT_accessibility:
13124 return "DW_AT_accessibility";
13125 case DW_AT_address_class:
13126 return "DW_AT_address_class";
13127 case DW_AT_artificial:
13128 return "DW_AT_artificial";
13129 case DW_AT_base_types:
13130 return "DW_AT_base_types";
13131 case DW_AT_calling_convention:
13132 return "DW_AT_calling_convention";
13133 case DW_AT_count:
13134 return "DW_AT_count";
13135 case DW_AT_data_member_location:
13136 return "DW_AT_data_member_location";
13137 case DW_AT_decl_column:
13138 return "DW_AT_decl_column";
13139 case DW_AT_decl_file:
13140 return "DW_AT_decl_file";
13141 case DW_AT_decl_line:
13142 return "DW_AT_decl_line";
13143 case DW_AT_declaration:
13144 return "DW_AT_declaration";
13145 case DW_AT_discr_list:
13146 return "DW_AT_discr_list";
13147 case DW_AT_encoding:
13148 return "DW_AT_encoding";
13149 case DW_AT_external:
13150 return "DW_AT_external";
13151 case DW_AT_frame_base:
13152 return "DW_AT_frame_base";
13153 case DW_AT_friend:
13154 return "DW_AT_friend";
13155 case DW_AT_identifier_case:
13156 return "DW_AT_identifier_case";
13157 case DW_AT_macro_info:
13158 return "DW_AT_macro_info";
13159 case DW_AT_namelist_items:
13160 return "DW_AT_namelist_items";
13161 case DW_AT_priority:
13162 return "DW_AT_priority";
13163 case DW_AT_segment:
13164 return "DW_AT_segment";
13165 case DW_AT_specification:
13166 return "DW_AT_specification";
13167 case DW_AT_static_link:
13168 return "DW_AT_static_link";
13169 case DW_AT_type:
13170 return "DW_AT_type";
13171 case DW_AT_use_location:
13172 return "DW_AT_use_location";
13173 case DW_AT_variable_parameter:
13174 return "DW_AT_variable_parameter";
13175 case DW_AT_virtuality:
13176 return "DW_AT_virtuality";
13177 case DW_AT_vtable_elem_location:
13178 return "DW_AT_vtable_elem_location";
13179 /* DWARF 3 values. */
13180 case DW_AT_allocated:
13181 return "DW_AT_allocated";
13182 case DW_AT_associated:
13183 return "DW_AT_associated";
13184 case DW_AT_data_location:
13185 return "DW_AT_data_location";
13186 case DW_AT_byte_stride:
13187 return "DW_AT_byte_stride";
13188 case DW_AT_entry_pc:
13189 return "DW_AT_entry_pc";
13190 case DW_AT_use_UTF8:
13191 return "DW_AT_use_UTF8";
13192 case DW_AT_extension:
13193 return "DW_AT_extension";
13194 case DW_AT_ranges:
13195 return "DW_AT_ranges";
13196 case DW_AT_trampoline:
13197 return "DW_AT_trampoline";
13198 case DW_AT_call_column:
13199 return "DW_AT_call_column";
13200 case DW_AT_call_file:
13201 return "DW_AT_call_file";
13202 case DW_AT_call_line:
13203 return "DW_AT_call_line";
13204 case DW_AT_description:
13205 return "DW_AT_description";
13206 case DW_AT_binary_scale:
13207 return "DW_AT_binary_scale";
13208 case DW_AT_decimal_scale:
13209 return "DW_AT_decimal_scale";
13210 case DW_AT_small:
13211 return "DW_AT_small";
13212 case DW_AT_decimal_sign:
13213 return "DW_AT_decimal_sign";
13214 case DW_AT_digit_count:
13215 return "DW_AT_digit_count";
13216 case DW_AT_picture_string:
13217 return "DW_AT_picture_string";
13218 case DW_AT_mutable:
13219 return "DW_AT_mutable";
13220 case DW_AT_threads_scaled:
13221 return "DW_AT_threads_scaled";
13222 case DW_AT_explicit:
13223 return "DW_AT_explicit";
13224 case DW_AT_object_pointer:
13225 return "DW_AT_object_pointer";
13226 case DW_AT_endianity:
13227 return "DW_AT_endianity";
13228 case DW_AT_elemental:
13229 return "DW_AT_elemental";
13230 case DW_AT_pure:
13231 return "DW_AT_pure";
13232 case DW_AT_recursive:
13233 return "DW_AT_recursive";
13234 /* DWARF 4 values. */
13235 case DW_AT_signature:
13236 return "DW_AT_signature";
13237 case DW_AT_linkage_name:
13238 return "DW_AT_linkage_name";
13239 /* SGI/MIPS extensions. */
13240 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13241 case DW_AT_MIPS_fde:
13242 return "DW_AT_MIPS_fde";
13243 #endif
13244 case DW_AT_MIPS_loop_begin:
13245 return "DW_AT_MIPS_loop_begin";
13246 case DW_AT_MIPS_tail_loop_begin:
13247 return "DW_AT_MIPS_tail_loop_begin";
13248 case DW_AT_MIPS_epilog_begin:
13249 return "DW_AT_MIPS_epilog_begin";
13250 case DW_AT_MIPS_loop_unroll_factor:
13251 return "DW_AT_MIPS_loop_unroll_factor";
13252 case DW_AT_MIPS_software_pipeline_depth:
13253 return "DW_AT_MIPS_software_pipeline_depth";
13254 case DW_AT_MIPS_linkage_name:
13255 return "DW_AT_MIPS_linkage_name";
13256 case DW_AT_MIPS_stride:
13257 return "DW_AT_MIPS_stride";
13258 case DW_AT_MIPS_abstract_name:
13259 return "DW_AT_MIPS_abstract_name";
13260 case DW_AT_MIPS_clone_origin:
13261 return "DW_AT_MIPS_clone_origin";
13262 case DW_AT_MIPS_has_inlines:
13263 return "DW_AT_MIPS_has_inlines";
13264 /* HP extensions. */
13265 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13266 case DW_AT_HP_block_index:
13267 return "DW_AT_HP_block_index";
13268 #endif
13269 case DW_AT_HP_unmodifiable:
13270 return "DW_AT_HP_unmodifiable";
13271 case DW_AT_HP_actuals_stmt_list:
13272 return "DW_AT_HP_actuals_stmt_list";
13273 case DW_AT_HP_proc_per_section:
13274 return "DW_AT_HP_proc_per_section";
13275 case DW_AT_HP_raw_data_ptr:
13276 return "DW_AT_HP_raw_data_ptr";
13277 case DW_AT_HP_pass_by_reference:
13278 return "DW_AT_HP_pass_by_reference";
13279 case DW_AT_HP_opt_level:
13280 return "DW_AT_HP_opt_level";
13281 case DW_AT_HP_prof_version_id:
13282 return "DW_AT_HP_prof_version_id";
13283 case DW_AT_HP_opt_flags:
13284 return "DW_AT_HP_opt_flags";
13285 case DW_AT_HP_cold_region_low_pc:
13286 return "DW_AT_HP_cold_region_low_pc";
13287 case DW_AT_HP_cold_region_high_pc:
13288 return "DW_AT_HP_cold_region_high_pc";
13289 case DW_AT_HP_all_variables_modifiable:
13290 return "DW_AT_HP_all_variables_modifiable";
13291 case DW_AT_HP_linkage_name:
13292 return "DW_AT_HP_linkage_name";
13293 case DW_AT_HP_prof_flags:
13294 return "DW_AT_HP_prof_flags";
13295 /* GNU extensions. */
13296 case DW_AT_sf_names:
13297 return "DW_AT_sf_names";
13298 case DW_AT_src_info:
13299 return "DW_AT_src_info";
13300 case DW_AT_mac_info:
13301 return "DW_AT_mac_info";
13302 case DW_AT_src_coords:
13303 return "DW_AT_src_coords";
13304 case DW_AT_body_begin:
13305 return "DW_AT_body_begin";
13306 case DW_AT_body_end:
13307 return "DW_AT_body_end";
13308 case DW_AT_GNU_vector:
13309 return "DW_AT_GNU_vector";
13310 case DW_AT_GNU_odr_signature:
13311 return "DW_AT_GNU_odr_signature";
13312 /* VMS extensions. */
13313 case DW_AT_VMS_rtnbeg_pd_address:
13314 return "DW_AT_VMS_rtnbeg_pd_address";
13315 /* UPC extension. */
13316 case DW_AT_upc_threads_scaled:
13317 return "DW_AT_upc_threads_scaled";
13318 /* PGI (STMicroelectronics) extensions. */
13319 case DW_AT_PGI_lbase:
13320 return "DW_AT_PGI_lbase";
13321 case DW_AT_PGI_soffset:
13322 return "DW_AT_PGI_soffset";
13323 case DW_AT_PGI_lstride:
13324 return "DW_AT_PGI_lstride";
13325 default:
13326 return "DW_AT_<unknown>";
13327 }
13328 }
13329
13330 /* Convert a DWARF value form code into its string name. */
13331
13332 static char *
13333 dwarf_form_name (unsigned form)
13334 {
13335 switch (form)
13336 {
13337 case DW_FORM_addr:
13338 return "DW_FORM_addr";
13339 case DW_FORM_block2:
13340 return "DW_FORM_block2";
13341 case DW_FORM_block4:
13342 return "DW_FORM_block4";
13343 case DW_FORM_data2:
13344 return "DW_FORM_data2";
13345 case DW_FORM_data4:
13346 return "DW_FORM_data4";
13347 case DW_FORM_data8:
13348 return "DW_FORM_data8";
13349 case DW_FORM_string:
13350 return "DW_FORM_string";
13351 case DW_FORM_block:
13352 return "DW_FORM_block";
13353 case DW_FORM_block1:
13354 return "DW_FORM_block1";
13355 case DW_FORM_data1:
13356 return "DW_FORM_data1";
13357 case DW_FORM_flag:
13358 return "DW_FORM_flag";
13359 case DW_FORM_sdata:
13360 return "DW_FORM_sdata";
13361 case DW_FORM_strp:
13362 return "DW_FORM_strp";
13363 case DW_FORM_udata:
13364 return "DW_FORM_udata";
13365 case DW_FORM_ref_addr:
13366 return "DW_FORM_ref_addr";
13367 case DW_FORM_ref1:
13368 return "DW_FORM_ref1";
13369 case DW_FORM_ref2:
13370 return "DW_FORM_ref2";
13371 case DW_FORM_ref4:
13372 return "DW_FORM_ref4";
13373 case DW_FORM_ref8:
13374 return "DW_FORM_ref8";
13375 case DW_FORM_ref_udata:
13376 return "DW_FORM_ref_udata";
13377 case DW_FORM_indirect:
13378 return "DW_FORM_indirect";
13379 case DW_FORM_sec_offset:
13380 return "DW_FORM_sec_offset";
13381 case DW_FORM_exprloc:
13382 return "DW_FORM_exprloc";
13383 case DW_FORM_flag_present:
13384 return "DW_FORM_flag_present";
13385 case DW_FORM_ref_sig8:
13386 return "DW_FORM_ref_sig8";
13387 default:
13388 return "DW_FORM_<unknown>";
13389 }
13390 }
13391
13392 /* Convert a DWARF stack opcode into its string name. */
13393
13394 const char *
13395 dwarf_stack_op_name (unsigned op)
13396 {
13397 switch (op)
13398 {
13399 case DW_OP_addr:
13400 return "DW_OP_addr";
13401 case DW_OP_deref:
13402 return "DW_OP_deref";
13403 case DW_OP_const1u:
13404 return "DW_OP_const1u";
13405 case DW_OP_const1s:
13406 return "DW_OP_const1s";
13407 case DW_OP_const2u:
13408 return "DW_OP_const2u";
13409 case DW_OP_const2s:
13410 return "DW_OP_const2s";
13411 case DW_OP_const4u:
13412 return "DW_OP_const4u";
13413 case DW_OP_const4s:
13414 return "DW_OP_const4s";
13415 case DW_OP_const8u:
13416 return "DW_OP_const8u";
13417 case DW_OP_const8s:
13418 return "DW_OP_const8s";
13419 case DW_OP_constu:
13420 return "DW_OP_constu";
13421 case DW_OP_consts:
13422 return "DW_OP_consts";
13423 case DW_OP_dup:
13424 return "DW_OP_dup";
13425 case DW_OP_drop:
13426 return "DW_OP_drop";
13427 case DW_OP_over:
13428 return "DW_OP_over";
13429 case DW_OP_pick:
13430 return "DW_OP_pick";
13431 case DW_OP_swap:
13432 return "DW_OP_swap";
13433 case DW_OP_rot:
13434 return "DW_OP_rot";
13435 case DW_OP_xderef:
13436 return "DW_OP_xderef";
13437 case DW_OP_abs:
13438 return "DW_OP_abs";
13439 case DW_OP_and:
13440 return "DW_OP_and";
13441 case DW_OP_div:
13442 return "DW_OP_div";
13443 case DW_OP_minus:
13444 return "DW_OP_minus";
13445 case DW_OP_mod:
13446 return "DW_OP_mod";
13447 case DW_OP_mul:
13448 return "DW_OP_mul";
13449 case DW_OP_neg:
13450 return "DW_OP_neg";
13451 case DW_OP_not:
13452 return "DW_OP_not";
13453 case DW_OP_or:
13454 return "DW_OP_or";
13455 case DW_OP_plus:
13456 return "DW_OP_plus";
13457 case DW_OP_plus_uconst:
13458 return "DW_OP_plus_uconst";
13459 case DW_OP_shl:
13460 return "DW_OP_shl";
13461 case DW_OP_shr:
13462 return "DW_OP_shr";
13463 case DW_OP_shra:
13464 return "DW_OP_shra";
13465 case DW_OP_xor:
13466 return "DW_OP_xor";
13467 case DW_OP_bra:
13468 return "DW_OP_bra";
13469 case DW_OP_eq:
13470 return "DW_OP_eq";
13471 case DW_OP_ge:
13472 return "DW_OP_ge";
13473 case DW_OP_gt:
13474 return "DW_OP_gt";
13475 case DW_OP_le:
13476 return "DW_OP_le";
13477 case DW_OP_lt:
13478 return "DW_OP_lt";
13479 case DW_OP_ne:
13480 return "DW_OP_ne";
13481 case DW_OP_skip:
13482 return "DW_OP_skip";
13483 case DW_OP_lit0:
13484 return "DW_OP_lit0";
13485 case DW_OP_lit1:
13486 return "DW_OP_lit1";
13487 case DW_OP_lit2:
13488 return "DW_OP_lit2";
13489 case DW_OP_lit3:
13490 return "DW_OP_lit3";
13491 case DW_OP_lit4:
13492 return "DW_OP_lit4";
13493 case DW_OP_lit5:
13494 return "DW_OP_lit5";
13495 case DW_OP_lit6:
13496 return "DW_OP_lit6";
13497 case DW_OP_lit7:
13498 return "DW_OP_lit7";
13499 case DW_OP_lit8:
13500 return "DW_OP_lit8";
13501 case DW_OP_lit9:
13502 return "DW_OP_lit9";
13503 case DW_OP_lit10:
13504 return "DW_OP_lit10";
13505 case DW_OP_lit11:
13506 return "DW_OP_lit11";
13507 case DW_OP_lit12:
13508 return "DW_OP_lit12";
13509 case DW_OP_lit13:
13510 return "DW_OP_lit13";
13511 case DW_OP_lit14:
13512 return "DW_OP_lit14";
13513 case DW_OP_lit15:
13514 return "DW_OP_lit15";
13515 case DW_OP_lit16:
13516 return "DW_OP_lit16";
13517 case DW_OP_lit17:
13518 return "DW_OP_lit17";
13519 case DW_OP_lit18:
13520 return "DW_OP_lit18";
13521 case DW_OP_lit19:
13522 return "DW_OP_lit19";
13523 case DW_OP_lit20:
13524 return "DW_OP_lit20";
13525 case DW_OP_lit21:
13526 return "DW_OP_lit21";
13527 case DW_OP_lit22:
13528 return "DW_OP_lit22";
13529 case DW_OP_lit23:
13530 return "DW_OP_lit23";
13531 case DW_OP_lit24:
13532 return "DW_OP_lit24";
13533 case DW_OP_lit25:
13534 return "DW_OP_lit25";
13535 case DW_OP_lit26:
13536 return "DW_OP_lit26";
13537 case DW_OP_lit27:
13538 return "DW_OP_lit27";
13539 case DW_OP_lit28:
13540 return "DW_OP_lit28";
13541 case DW_OP_lit29:
13542 return "DW_OP_lit29";
13543 case DW_OP_lit30:
13544 return "DW_OP_lit30";
13545 case DW_OP_lit31:
13546 return "DW_OP_lit31";
13547 case DW_OP_reg0:
13548 return "DW_OP_reg0";
13549 case DW_OP_reg1:
13550 return "DW_OP_reg1";
13551 case DW_OP_reg2:
13552 return "DW_OP_reg2";
13553 case DW_OP_reg3:
13554 return "DW_OP_reg3";
13555 case DW_OP_reg4:
13556 return "DW_OP_reg4";
13557 case DW_OP_reg5:
13558 return "DW_OP_reg5";
13559 case DW_OP_reg6:
13560 return "DW_OP_reg6";
13561 case DW_OP_reg7:
13562 return "DW_OP_reg7";
13563 case DW_OP_reg8:
13564 return "DW_OP_reg8";
13565 case DW_OP_reg9:
13566 return "DW_OP_reg9";
13567 case DW_OP_reg10:
13568 return "DW_OP_reg10";
13569 case DW_OP_reg11:
13570 return "DW_OP_reg11";
13571 case DW_OP_reg12:
13572 return "DW_OP_reg12";
13573 case DW_OP_reg13:
13574 return "DW_OP_reg13";
13575 case DW_OP_reg14:
13576 return "DW_OP_reg14";
13577 case DW_OP_reg15:
13578 return "DW_OP_reg15";
13579 case DW_OP_reg16:
13580 return "DW_OP_reg16";
13581 case DW_OP_reg17:
13582 return "DW_OP_reg17";
13583 case DW_OP_reg18:
13584 return "DW_OP_reg18";
13585 case DW_OP_reg19:
13586 return "DW_OP_reg19";
13587 case DW_OP_reg20:
13588 return "DW_OP_reg20";
13589 case DW_OP_reg21:
13590 return "DW_OP_reg21";
13591 case DW_OP_reg22:
13592 return "DW_OP_reg22";
13593 case DW_OP_reg23:
13594 return "DW_OP_reg23";
13595 case DW_OP_reg24:
13596 return "DW_OP_reg24";
13597 case DW_OP_reg25:
13598 return "DW_OP_reg25";
13599 case DW_OP_reg26:
13600 return "DW_OP_reg26";
13601 case DW_OP_reg27:
13602 return "DW_OP_reg27";
13603 case DW_OP_reg28:
13604 return "DW_OP_reg28";
13605 case DW_OP_reg29:
13606 return "DW_OP_reg29";
13607 case DW_OP_reg30:
13608 return "DW_OP_reg30";
13609 case DW_OP_reg31:
13610 return "DW_OP_reg31";
13611 case DW_OP_breg0:
13612 return "DW_OP_breg0";
13613 case DW_OP_breg1:
13614 return "DW_OP_breg1";
13615 case DW_OP_breg2:
13616 return "DW_OP_breg2";
13617 case DW_OP_breg3:
13618 return "DW_OP_breg3";
13619 case DW_OP_breg4:
13620 return "DW_OP_breg4";
13621 case DW_OP_breg5:
13622 return "DW_OP_breg5";
13623 case DW_OP_breg6:
13624 return "DW_OP_breg6";
13625 case DW_OP_breg7:
13626 return "DW_OP_breg7";
13627 case DW_OP_breg8:
13628 return "DW_OP_breg8";
13629 case DW_OP_breg9:
13630 return "DW_OP_breg9";
13631 case DW_OP_breg10:
13632 return "DW_OP_breg10";
13633 case DW_OP_breg11:
13634 return "DW_OP_breg11";
13635 case DW_OP_breg12:
13636 return "DW_OP_breg12";
13637 case DW_OP_breg13:
13638 return "DW_OP_breg13";
13639 case DW_OP_breg14:
13640 return "DW_OP_breg14";
13641 case DW_OP_breg15:
13642 return "DW_OP_breg15";
13643 case DW_OP_breg16:
13644 return "DW_OP_breg16";
13645 case DW_OP_breg17:
13646 return "DW_OP_breg17";
13647 case DW_OP_breg18:
13648 return "DW_OP_breg18";
13649 case DW_OP_breg19:
13650 return "DW_OP_breg19";
13651 case DW_OP_breg20:
13652 return "DW_OP_breg20";
13653 case DW_OP_breg21:
13654 return "DW_OP_breg21";
13655 case DW_OP_breg22:
13656 return "DW_OP_breg22";
13657 case DW_OP_breg23:
13658 return "DW_OP_breg23";
13659 case DW_OP_breg24:
13660 return "DW_OP_breg24";
13661 case DW_OP_breg25:
13662 return "DW_OP_breg25";
13663 case DW_OP_breg26:
13664 return "DW_OP_breg26";
13665 case DW_OP_breg27:
13666 return "DW_OP_breg27";
13667 case DW_OP_breg28:
13668 return "DW_OP_breg28";
13669 case DW_OP_breg29:
13670 return "DW_OP_breg29";
13671 case DW_OP_breg30:
13672 return "DW_OP_breg30";
13673 case DW_OP_breg31:
13674 return "DW_OP_breg31";
13675 case DW_OP_regx:
13676 return "DW_OP_regx";
13677 case DW_OP_fbreg:
13678 return "DW_OP_fbreg";
13679 case DW_OP_bregx:
13680 return "DW_OP_bregx";
13681 case DW_OP_piece:
13682 return "DW_OP_piece";
13683 case DW_OP_deref_size:
13684 return "DW_OP_deref_size";
13685 case DW_OP_xderef_size:
13686 return "DW_OP_xderef_size";
13687 case DW_OP_nop:
13688 return "DW_OP_nop";
13689 /* DWARF 3 extensions. */
13690 case DW_OP_push_object_address:
13691 return "DW_OP_push_object_address";
13692 case DW_OP_call2:
13693 return "DW_OP_call2";
13694 case DW_OP_call4:
13695 return "DW_OP_call4";
13696 case DW_OP_call_ref:
13697 return "DW_OP_call_ref";
13698 case DW_OP_form_tls_address:
13699 return "DW_OP_form_tls_address";
13700 case DW_OP_call_frame_cfa:
13701 return "DW_OP_call_frame_cfa";
13702 case DW_OP_bit_piece:
13703 return "DW_OP_bit_piece";
13704 /* DWARF 4 extensions. */
13705 case DW_OP_implicit_value:
13706 return "DW_OP_implicit_value";
13707 case DW_OP_stack_value:
13708 return "DW_OP_stack_value";
13709 /* GNU extensions. */
13710 case DW_OP_GNU_push_tls_address:
13711 return "DW_OP_GNU_push_tls_address";
13712 case DW_OP_GNU_uninit:
13713 return "DW_OP_GNU_uninit";
13714 case DW_OP_GNU_implicit_pointer:
13715 return "DW_OP_GNU_implicit_pointer";
13716 case DW_OP_GNU_entry_value:
13717 return "DW_OP_GNU_entry_value";
13718 case DW_OP_GNU_const_type:
13719 return "DW_OP_GNU_const_type";
13720 case DW_OP_GNU_regval_type:
13721 return "DW_OP_GNU_regval_type";
13722 case DW_OP_GNU_deref_type:
13723 return "DW_OP_GNU_deref_type";
13724 case DW_OP_GNU_convert:
13725 return "DW_OP_GNU_convert";
13726 case DW_OP_GNU_reinterpret:
13727 return "DW_OP_GNU_reinterpret";
13728 default:
13729 return NULL;
13730 }
13731 }
13732
13733 static char *
13734 dwarf_bool_name (unsigned mybool)
13735 {
13736 if (mybool)
13737 return "TRUE";
13738 else
13739 return "FALSE";
13740 }
13741
13742 /* Convert a DWARF type code into its string name. */
13743
13744 static char *
13745 dwarf_type_encoding_name (unsigned enc)
13746 {
13747 switch (enc)
13748 {
13749 case DW_ATE_void:
13750 return "DW_ATE_void";
13751 case DW_ATE_address:
13752 return "DW_ATE_address";
13753 case DW_ATE_boolean:
13754 return "DW_ATE_boolean";
13755 case DW_ATE_complex_float:
13756 return "DW_ATE_complex_float";
13757 case DW_ATE_float:
13758 return "DW_ATE_float";
13759 case DW_ATE_signed:
13760 return "DW_ATE_signed";
13761 case DW_ATE_signed_char:
13762 return "DW_ATE_signed_char";
13763 case DW_ATE_unsigned:
13764 return "DW_ATE_unsigned";
13765 case DW_ATE_unsigned_char:
13766 return "DW_ATE_unsigned_char";
13767 /* DWARF 3. */
13768 case DW_ATE_imaginary_float:
13769 return "DW_ATE_imaginary_float";
13770 case DW_ATE_packed_decimal:
13771 return "DW_ATE_packed_decimal";
13772 case DW_ATE_numeric_string:
13773 return "DW_ATE_numeric_string";
13774 case DW_ATE_edited:
13775 return "DW_ATE_edited";
13776 case DW_ATE_signed_fixed:
13777 return "DW_ATE_signed_fixed";
13778 case DW_ATE_unsigned_fixed:
13779 return "DW_ATE_unsigned_fixed";
13780 case DW_ATE_decimal_float:
13781 return "DW_ATE_decimal_float";
13782 /* DWARF 4. */
13783 case DW_ATE_UTF:
13784 return "DW_ATE_UTF";
13785 /* HP extensions. */
13786 case DW_ATE_HP_float80:
13787 return "DW_ATE_HP_float80";
13788 case DW_ATE_HP_complex_float80:
13789 return "DW_ATE_HP_complex_float80";
13790 case DW_ATE_HP_float128:
13791 return "DW_ATE_HP_float128";
13792 case DW_ATE_HP_complex_float128:
13793 return "DW_ATE_HP_complex_float128";
13794 case DW_ATE_HP_floathpintel:
13795 return "DW_ATE_HP_floathpintel";
13796 case DW_ATE_HP_imaginary_float80:
13797 return "DW_ATE_HP_imaginary_float80";
13798 case DW_ATE_HP_imaginary_float128:
13799 return "DW_ATE_HP_imaginary_float128";
13800 default:
13801 return "DW_ATE_<unknown>";
13802 }
13803 }
13804
13805 /* Convert a DWARF call frame info operation to its string name. */
13806
13807 #if 0
13808 static char *
13809 dwarf_cfi_name (unsigned cfi_opc)
13810 {
13811 switch (cfi_opc)
13812 {
13813 case DW_CFA_advance_loc:
13814 return "DW_CFA_advance_loc";
13815 case DW_CFA_offset:
13816 return "DW_CFA_offset";
13817 case DW_CFA_restore:
13818 return "DW_CFA_restore";
13819 case DW_CFA_nop:
13820 return "DW_CFA_nop";
13821 case DW_CFA_set_loc:
13822 return "DW_CFA_set_loc";
13823 case DW_CFA_advance_loc1:
13824 return "DW_CFA_advance_loc1";
13825 case DW_CFA_advance_loc2:
13826 return "DW_CFA_advance_loc2";
13827 case DW_CFA_advance_loc4:
13828 return "DW_CFA_advance_loc4";
13829 case DW_CFA_offset_extended:
13830 return "DW_CFA_offset_extended";
13831 case DW_CFA_restore_extended:
13832 return "DW_CFA_restore_extended";
13833 case DW_CFA_undefined:
13834 return "DW_CFA_undefined";
13835 case DW_CFA_same_value:
13836 return "DW_CFA_same_value";
13837 case DW_CFA_register:
13838 return "DW_CFA_register";
13839 case DW_CFA_remember_state:
13840 return "DW_CFA_remember_state";
13841 case DW_CFA_restore_state:
13842 return "DW_CFA_restore_state";
13843 case DW_CFA_def_cfa:
13844 return "DW_CFA_def_cfa";
13845 case DW_CFA_def_cfa_register:
13846 return "DW_CFA_def_cfa_register";
13847 case DW_CFA_def_cfa_offset:
13848 return "DW_CFA_def_cfa_offset";
13849 /* DWARF 3. */
13850 case DW_CFA_def_cfa_expression:
13851 return "DW_CFA_def_cfa_expression";
13852 case DW_CFA_expression:
13853 return "DW_CFA_expression";
13854 case DW_CFA_offset_extended_sf:
13855 return "DW_CFA_offset_extended_sf";
13856 case DW_CFA_def_cfa_sf:
13857 return "DW_CFA_def_cfa_sf";
13858 case DW_CFA_def_cfa_offset_sf:
13859 return "DW_CFA_def_cfa_offset_sf";
13860 case DW_CFA_val_offset:
13861 return "DW_CFA_val_offset";
13862 case DW_CFA_val_offset_sf:
13863 return "DW_CFA_val_offset_sf";
13864 case DW_CFA_val_expression:
13865 return "DW_CFA_val_expression";
13866 /* SGI/MIPS specific. */
13867 case DW_CFA_MIPS_advance_loc8:
13868 return "DW_CFA_MIPS_advance_loc8";
13869 /* GNU extensions. */
13870 case DW_CFA_GNU_window_save:
13871 return "DW_CFA_GNU_window_save";
13872 case DW_CFA_GNU_args_size:
13873 return "DW_CFA_GNU_args_size";
13874 case DW_CFA_GNU_negative_offset_extended:
13875 return "DW_CFA_GNU_negative_offset_extended";
13876 default:
13877 return "DW_CFA_<unknown>";
13878 }
13879 }
13880 #endif
13881
13882 static void
13883 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13884 {
13885 unsigned int i;
13886
13887 print_spaces (indent, f);
13888 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13889 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13890
13891 if (die->parent != NULL)
13892 {
13893 print_spaces (indent, f);
13894 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13895 die->parent->offset);
13896 }
13897
13898 print_spaces (indent, f);
13899 fprintf_unfiltered (f, " has children: %s\n",
13900 dwarf_bool_name (die->child != NULL));
13901
13902 print_spaces (indent, f);
13903 fprintf_unfiltered (f, " attributes:\n");
13904
13905 for (i = 0; i < die->num_attrs; ++i)
13906 {
13907 print_spaces (indent, f);
13908 fprintf_unfiltered (f, " %s (%s) ",
13909 dwarf_attr_name (die->attrs[i].name),
13910 dwarf_form_name (die->attrs[i].form));
13911
13912 switch (die->attrs[i].form)
13913 {
13914 case DW_FORM_ref_addr:
13915 case DW_FORM_addr:
13916 fprintf_unfiltered (f, "address: ");
13917 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13918 break;
13919 case DW_FORM_block2:
13920 case DW_FORM_block4:
13921 case DW_FORM_block:
13922 case DW_FORM_block1:
13923 fprintf_unfiltered (f, "block: size %d",
13924 DW_BLOCK (&die->attrs[i])->size);
13925 break;
13926 case DW_FORM_exprloc:
13927 fprintf_unfiltered (f, "expression: size %u",
13928 DW_BLOCK (&die->attrs[i])->size);
13929 break;
13930 case DW_FORM_ref1:
13931 case DW_FORM_ref2:
13932 case DW_FORM_ref4:
13933 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13934 (long) (DW_ADDR (&die->attrs[i])));
13935 break;
13936 case DW_FORM_data1:
13937 case DW_FORM_data2:
13938 case DW_FORM_data4:
13939 case DW_FORM_data8:
13940 case DW_FORM_udata:
13941 case DW_FORM_sdata:
13942 fprintf_unfiltered (f, "constant: %s",
13943 pulongest (DW_UNSND (&die->attrs[i])));
13944 break;
13945 case DW_FORM_sec_offset:
13946 fprintf_unfiltered (f, "section offset: %s",
13947 pulongest (DW_UNSND (&die->attrs[i])));
13948 break;
13949 case DW_FORM_ref_sig8:
13950 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13951 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13952 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
13953 else
13954 fprintf_unfiltered (f, "signatured type, offset: unknown");
13955 break;
13956 case DW_FORM_string:
13957 case DW_FORM_strp:
13958 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13959 DW_STRING (&die->attrs[i])
13960 ? DW_STRING (&die->attrs[i]) : "",
13961 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13962 break;
13963 case DW_FORM_flag:
13964 if (DW_UNSND (&die->attrs[i]))
13965 fprintf_unfiltered (f, "flag: TRUE");
13966 else
13967 fprintf_unfiltered (f, "flag: FALSE");
13968 break;
13969 case DW_FORM_flag_present:
13970 fprintf_unfiltered (f, "flag: TRUE");
13971 break;
13972 case DW_FORM_indirect:
13973 /* The reader will have reduced the indirect form to
13974 the "base form" so this form should not occur. */
13975 fprintf_unfiltered (f,
13976 "unexpected attribute form: DW_FORM_indirect");
13977 break;
13978 default:
13979 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13980 die->attrs[i].form);
13981 break;
13982 }
13983 fprintf_unfiltered (f, "\n");
13984 }
13985 }
13986
13987 static void
13988 dump_die_for_error (struct die_info *die)
13989 {
13990 dump_die_shallow (gdb_stderr, 0, die);
13991 }
13992
13993 static void
13994 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13995 {
13996 int indent = level * 4;
13997
13998 gdb_assert (die != NULL);
13999
14000 if (level >= max_level)
14001 return;
14002
14003 dump_die_shallow (f, indent, die);
14004
14005 if (die->child != NULL)
14006 {
14007 print_spaces (indent, f);
14008 fprintf_unfiltered (f, " Children:");
14009 if (level + 1 < max_level)
14010 {
14011 fprintf_unfiltered (f, "\n");
14012 dump_die_1 (f, level + 1, max_level, die->child);
14013 }
14014 else
14015 {
14016 fprintf_unfiltered (f,
14017 " [not printed, max nesting level reached]\n");
14018 }
14019 }
14020
14021 if (die->sibling != NULL && level > 0)
14022 {
14023 dump_die_1 (f, level, max_level, die->sibling);
14024 }
14025 }
14026
14027 /* This is called from the pdie macro in gdbinit.in.
14028 It's not static so gcc will keep a copy callable from gdb. */
14029
14030 void
14031 dump_die (struct die_info *die, int max_level)
14032 {
14033 dump_die_1 (gdb_stdlog, 0, max_level, die);
14034 }
14035
14036 static void
14037 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14038 {
14039 void **slot;
14040
14041 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14042
14043 *slot = die;
14044 }
14045
14046 static int
14047 is_ref_attr (struct attribute *attr)
14048 {
14049 switch (attr->form)
14050 {
14051 case DW_FORM_ref_addr:
14052 case DW_FORM_ref1:
14053 case DW_FORM_ref2:
14054 case DW_FORM_ref4:
14055 case DW_FORM_ref8:
14056 case DW_FORM_ref_udata:
14057 return 1;
14058 default:
14059 return 0;
14060 }
14061 }
14062
14063 static unsigned int
14064 dwarf2_get_ref_die_offset (struct attribute *attr)
14065 {
14066 if (is_ref_attr (attr))
14067 return DW_ADDR (attr);
14068
14069 complaint (&symfile_complaints,
14070 _("unsupported die ref attribute form: '%s'"),
14071 dwarf_form_name (attr->form));
14072 return 0;
14073 }
14074
14075 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14076 * the value held by the attribute is not constant. */
14077
14078 static LONGEST
14079 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14080 {
14081 if (attr->form == DW_FORM_sdata)
14082 return DW_SND (attr);
14083 else if (attr->form == DW_FORM_udata
14084 || attr->form == DW_FORM_data1
14085 || attr->form == DW_FORM_data2
14086 || attr->form == DW_FORM_data4
14087 || attr->form == DW_FORM_data8)
14088 return DW_UNSND (attr);
14089 else
14090 {
14091 complaint (&symfile_complaints,
14092 _("Attribute value is not a constant (%s)"),
14093 dwarf_form_name (attr->form));
14094 return default_value;
14095 }
14096 }
14097
14098 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14099 unit and add it to our queue.
14100 The result is non-zero if PER_CU was queued, otherwise the result is zero
14101 meaning either PER_CU is already queued or it is already loaded. */
14102
14103 static int
14104 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14105 struct dwarf2_per_cu_data *per_cu)
14106 {
14107 /* We may arrive here during partial symbol reading, if we need full
14108 DIEs to process an unusual case (e.g. template arguments). Do
14109 not queue PER_CU, just tell our caller to load its DIEs. */
14110 if (dwarf2_per_objfile->reading_partial_symbols)
14111 {
14112 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14113 return 1;
14114 return 0;
14115 }
14116
14117 /* Mark the dependence relation so that we don't flush PER_CU
14118 too early. */
14119 dwarf2_add_dependence (this_cu, per_cu);
14120
14121 /* If it's already on the queue, we have nothing to do. */
14122 if (per_cu->queued)
14123 return 0;
14124
14125 /* If the compilation unit is already loaded, just mark it as
14126 used. */
14127 if (per_cu->cu != NULL)
14128 {
14129 per_cu->cu->last_used = 0;
14130 return 0;
14131 }
14132
14133 /* Add it to the queue. */
14134 queue_comp_unit (per_cu);
14135
14136 return 1;
14137 }
14138
14139 /* Follow reference or signature attribute ATTR of SRC_DIE.
14140 On entry *REF_CU is the CU of SRC_DIE.
14141 On exit *REF_CU is the CU of the result. */
14142
14143 static struct die_info *
14144 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14145 struct dwarf2_cu **ref_cu)
14146 {
14147 struct die_info *die;
14148
14149 if (is_ref_attr (attr))
14150 die = follow_die_ref (src_die, attr, ref_cu);
14151 else if (attr->form == DW_FORM_ref_sig8)
14152 die = follow_die_sig (src_die, attr, ref_cu);
14153 else
14154 {
14155 dump_die_for_error (src_die);
14156 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14157 (*ref_cu)->objfile->name);
14158 }
14159
14160 return die;
14161 }
14162
14163 /* Follow reference OFFSET.
14164 On entry *REF_CU is the CU of the source die referencing OFFSET.
14165 On exit *REF_CU is the CU of the result.
14166 Returns NULL if OFFSET is invalid. */
14167
14168 static struct die_info *
14169 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14170 {
14171 struct die_info temp_die;
14172 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14173
14174 gdb_assert (cu->per_cu != NULL);
14175
14176 target_cu = cu;
14177
14178 if (cu->per_cu->debug_types_section)
14179 {
14180 /* .debug_types CUs cannot reference anything outside their CU.
14181 If they need to, they have to reference a signatured type via
14182 DW_FORM_ref_sig8. */
14183 if (! offset_in_cu_p (&cu->header, offset))
14184 return NULL;
14185 }
14186 else if (! offset_in_cu_p (&cu->header, offset))
14187 {
14188 struct dwarf2_per_cu_data *per_cu;
14189
14190 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14191
14192 /* If necessary, add it to the queue and load its DIEs. */
14193 if (maybe_queue_comp_unit (cu, per_cu))
14194 load_full_comp_unit (per_cu);
14195
14196 target_cu = per_cu->cu;
14197 }
14198 else if (cu->dies == NULL)
14199 {
14200 /* We're loading full DIEs during partial symbol reading. */
14201 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14202 load_full_comp_unit (cu->per_cu);
14203 }
14204
14205 *ref_cu = target_cu;
14206 temp_die.offset = offset;
14207 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14208 }
14209
14210 /* Follow reference attribute ATTR of SRC_DIE.
14211 On entry *REF_CU is the CU of SRC_DIE.
14212 On exit *REF_CU is the CU of the result. */
14213
14214 static struct die_info *
14215 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14216 struct dwarf2_cu **ref_cu)
14217 {
14218 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14219 struct dwarf2_cu *cu = *ref_cu;
14220 struct die_info *die;
14221
14222 die = follow_die_offset (offset, ref_cu);
14223 if (!die)
14224 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14225 "at 0x%x [in module %s]"),
14226 offset, src_die->offset, cu->objfile->name);
14227
14228 return die;
14229 }
14230
14231 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14232 Returned value is intended for DW_OP_call*. Returned
14233 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14234
14235 struct dwarf2_locexpr_baton
14236 dwarf2_fetch_die_location_block (unsigned int offset,
14237 struct dwarf2_per_cu_data *per_cu,
14238 CORE_ADDR (*get_frame_pc) (void *baton),
14239 void *baton)
14240 {
14241 struct dwarf2_cu *cu;
14242 struct die_info *die;
14243 struct attribute *attr;
14244 struct dwarf2_locexpr_baton retval;
14245
14246 dw2_setup (per_cu->objfile);
14247
14248 if (per_cu->cu == NULL)
14249 load_cu (per_cu);
14250 cu = per_cu->cu;
14251
14252 die = follow_die_offset (offset, &cu);
14253 if (!die)
14254 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14255 offset, per_cu->objfile->name);
14256
14257 attr = dwarf2_attr (die, DW_AT_location, cu);
14258 if (!attr)
14259 {
14260 /* DWARF: "If there is no such attribute, then there is no effect.".
14261 DATA is ignored if SIZE is 0. */
14262
14263 retval.data = NULL;
14264 retval.size = 0;
14265 }
14266 else if (attr_form_is_section_offset (attr))
14267 {
14268 struct dwarf2_loclist_baton loclist_baton;
14269 CORE_ADDR pc = (*get_frame_pc) (baton);
14270 size_t size;
14271
14272 fill_in_loclist_baton (cu, &loclist_baton, attr);
14273
14274 retval.data = dwarf2_find_location_expression (&loclist_baton,
14275 &size, pc);
14276 retval.size = size;
14277 }
14278 else
14279 {
14280 if (!attr_form_is_block (attr))
14281 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14282 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14283 offset, per_cu->objfile->name);
14284
14285 retval.data = DW_BLOCK (attr)->data;
14286 retval.size = DW_BLOCK (attr)->size;
14287 }
14288 retval.per_cu = cu->per_cu;
14289
14290 age_cached_comp_units ();
14291
14292 return retval;
14293 }
14294
14295 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14296 PER_CU. */
14297
14298 struct type *
14299 dwarf2_get_die_type (unsigned int die_offset,
14300 struct dwarf2_per_cu_data *per_cu)
14301 {
14302 dw2_setup (per_cu->objfile);
14303 return get_die_type_at_offset (die_offset, per_cu);
14304 }
14305
14306 /* Follow the signature attribute ATTR in SRC_DIE.
14307 On entry *REF_CU is the CU of SRC_DIE.
14308 On exit *REF_CU is the CU of the result. */
14309
14310 static struct die_info *
14311 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14312 struct dwarf2_cu **ref_cu)
14313 {
14314 struct objfile *objfile = (*ref_cu)->objfile;
14315 struct die_info temp_die;
14316 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14317 struct dwarf2_cu *sig_cu;
14318 struct die_info *die;
14319
14320 /* sig_type will be NULL if the signatured type is missing from
14321 the debug info. */
14322 if (sig_type == NULL)
14323 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14324 "at 0x%x [in module %s]"),
14325 src_die->offset, objfile->name);
14326
14327 /* If necessary, add it to the queue and load its DIEs. */
14328
14329 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14330 read_signatured_type (sig_type);
14331
14332 gdb_assert (sig_type->per_cu.cu != NULL);
14333
14334 sig_cu = sig_type->per_cu.cu;
14335 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14336 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14337 if (die)
14338 {
14339 *ref_cu = sig_cu;
14340 return die;
14341 }
14342
14343 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14344 "from DIE at 0x%x [in module %s]"),
14345 sig_type->type_offset, src_die->offset, objfile->name);
14346 }
14347
14348 /* Given an offset of a signatured type, return its signatured_type. */
14349
14350 static struct signatured_type *
14351 lookup_signatured_type_at_offset (struct objfile *objfile,
14352 struct dwarf2_section_info *section,
14353 unsigned int offset)
14354 {
14355 gdb_byte *info_ptr = section->buffer + offset;
14356 unsigned int length, initial_length_size;
14357 unsigned int sig_offset;
14358 struct signatured_type find_entry, *type_sig;
14359
14360 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14361 sig_offset = (initial_length_size
14362 + 2 /*version*/
14363 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14364 + 1 /*address_size*/);
14365 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14366 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14367
14368 /* This is only used to lookup previously recorded types.
14369 If we didn't find it, it's our bug. */
14370 gdb_assert (type_sig != NULL);
14371 gdb_assert (offset == type_sig->per_cu.offset);
14372
14373 return type_sig;
14374 }
14375
14376 /* Load the DIEs associated with type unit PER_CU into memory. */
14377
14378 static void
14379 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14380 {
14381 struct objfile *objfile = per_cu->objfile;
14382 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14383 unsigned int offset = per_cu->offset;
14384 struct signatured_type *type_sig;
14385
14386 dwarf2_read_section (objfile, sect);
14387
14388 /* We have the section offset, but we need the signature to do the
14389 hash table lookup. */
14390 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14391 the signature to assert we found the right one.
14392 Ok, but it's a lot of work. We should simplify things so any needed
14393 assert doesn't require all this clumsiness. */
14394 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14395
14396 gdb_assert (type_sig->per_cu.cu == NULL);
14397
14398 read_signatured_type (type_sig);
14399
14400 gdb_assert (type_sig->per_cu.cu != NULL);
14401 }
14402
14403 /* Read in a signatured type and build its CU and DIEs. */
14404
14405 static void
14406 read_signatured_type (struct signatured_type *type_sig)
14407 {
14408 struct objfile *objfile = type_sig->per_cu.objfile;
14409 gdb_byte *types_ptr;
14410 struct die_reader_specs reader_specs;
14411 struct dwarf2_cu *cu;
14412 ULONGEST signature;
14413 struct cleanup *back_to, *free_cu_cleanup;
14414 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14415
14416 dwarf2_read_section (objfile, section);
14417 types_ptr = section->buffer + type_sig->per_cu.offset;
14418
14419 gdb_assert (type_sig->per_cu.cu == NULL);
14420
14421 cu = xmalloc (sizeof (*cu));
14422 init_one_comp_unit (cu, &type_sig->per_cu);
14423
14424 /* If an error occurs while loading, release our storage. */
14425 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14426
14427 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14428 &signature, NULL);
14429 gdb_assert (signature == type_sig->signature);
14430
14431 cu->die_hash
14432 = htab_create_alloc_ex (cu->header.length / 12,
14433 die_hash,
14434 die_eq,
14435 NULL,
14436 &cu->comp_unit_obstack,
14437 hashtab_obstack_allocate,
14438 dummy_obstack_deallocate);
14439
14440 dwarf2_read_abbrevs (cu);
14441 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14442
14443 init_cu_die_reader (&reader_specs, cu);
14444
14445 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14446 NULL /*parent*/);
14447
14448 /* We try not to read any attributes in this function, because not
14449 all CUs needed for references have been loaded yet, and symbol
14450 table processing isn't initialized. But we have to set the CU language,
14451 or we won't be able to build types correctly. */
14452 prepare_one_comp_unit (cu, cu->dies);
14453
14454 do_cleanups (back_to);
14455
14456 /* We've successfully allocated this compilation unit. Let our caller
14457 clean it up when finished with it. */
14458 discard_cleanups (free_cu_cleanup);
14459
14460 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14461 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14462 }
14463
14464 /* Decode simple location descriptions.
14465 Given a pointer to a dwarf block that defines a location, compute
14466 the location and return the value.
14467
14468 NOTE drow/2003-11-18: This function is called in two situations
14469 now: for the address of static or global variables (partial symbols
14470 only) and for offsets into structures which are expected to be
14471 (more or less) constant. The partial symbol case should go away,
14472 and only the constant case should remain. That will let this
14473 function complain more accurately. A few special modes are allowed
14474 without complaint for global variables (for instance, global
14475 register values and thread-local values).
14476
14477 A location description containing no operations indicates that the
14478 object is optimized out. The return value is 0 for that case.
14479 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14480 callers will only want a very basic result and this can become a
14481 complaint.
14482
14483 Note that stack[0] is unused except as a default error return. */
14484
14485 static CORE_ADDR
14486 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14487 {
14488 struct objfile *objfile = cu->objfile;
14489 int i;
14490 int size = blk->size;
14491 gdb_byte *data = blk->data;
14492 CORE_ADDR stack[64];
14493 int stacki;
14494 unsigned int bytes_read, unsnd;
14495 gdb_byte op;
14496
14497 i = 0;
14498 stacki = 0;
14499 stack[stacki] = 0;
14500 stack[++stacki] = 0;
14501
14502 while (i < size)
14503 {
14504 op = data[i++];
14505 switch (op)
14506 {
14507 case DW_OP_lit0:
14508 case DW_OP_lit1:
14509 case DW_OP_lit2:
14510 case DW_OP_lit3:
14511 case DW_OP_lit4:
14512 case DW_OP_lit5:
14513 case DW_OP_lit6:
14514 case DW_OP_lit7:
14515 case DW_OP_lit8:
14516 case DW_OP_lit9:
14517 case DW_OP_lit10:
14518 case DW_OP_lit11:
14519 case DW_OP_lit12:
14520 case DW_OP_lit13:
14521 case DW_OP_lit14:
14522 case DW_OP_lit15:
14523 case DW_OP_lit16:
14524 case DW_OP_lit17:
14525 case DW_OP_lit18:
14526 case DW_OP_lit19:
14527 case DW_OP_lit20:
14528 case DW_OP_lit21:
14529 case DW_OP_lit22:
14530 case DW_OP_lit23:
14531 case DW_OP_lit24:
14532 case DW_OP_lit25:
14533 case DW_OP_lit26:
14534 case DW_OP_lit27:
14535 case DW_OP_lit28:
14536 case DW_OP_lit29:
14537 case DW_OP_lit30:
14538 case DW_OP_lit31:
14539 stack[++stacki] = op - DW_OP_lit0;
14540 break;
14541
14542 case DW_OP_reg0:
14543 case DW_OP_reg1:
14544 case DW_OP_reg2:
14545 case DW_OP_reg3:
14546 case DW_OP_reg4:
14547 case DW_OP_reg5:
14548 case DW_OP_reg6:
14549 case DW_OP_reg7:
14550 case DW_OP_reg8:
14551 case DW_OP_reg9:
14552 case DW_OP_reg10:
14553 case DW_OP_reg11:
14554 case DW_OP_reg12:
14555 case DW_OP_reg13:
14556 case DW_OP_reg14:
14557 case DW_OP_reg15:
14558 case DW_OP_reg16:
14559 case DW_OP_reg17:
14560 case DW_OP_reg18:
14561 case DW_OP_reg19:
14562 case DW_OP_reg20:
14563 case DW_OP_reg21:
14564 case DW_OP_reg22:
14565 case DW_OP_reg23:
14566 case DW_OP_reg24:
14567 case DW_OP_reg25:
14568 case DW_OP_reg26:
14569 case DW_OP_reg27:
14570 case DW_OP_reg28:
14571 case DW_OP_reg29:
14572 case DW_OP_reg30:
14573 case DW_OP_reg31:
14574 stack[++stacki] = op - DW_OP_reg0;
14575 if (i < size)
14576 dwarf2_complex_location_expr_complaint ();
14577 break;
14578
14579 case DW_OP_regx:
14580 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14581 i += bytes_read;
14582 stack[++stacki] = unsnd;
14583 if (i < size)
14584 dwarf2_complex_location_expr_complaint ();
14585 break;
14586
14587 case DW_OP_addr:
14588 stack[++stacki] = read_address (objfile->obfd, &data[i],
14589 cu, &bytes_read);
14590 i += bytes_read;
14591 break;
14592
14593 case DW_OP_const1u:
14594 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14595 i += 1;
14596 break;
14597
14598 case DW_OP_const1s:
14599 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14600 i += 1;
14601 break;
14602
14603 case DW_OP_const2u:
14604 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14605 i += 2;
14606 break;
14607
14608 case DW_OP_const2s:
14609 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14610 i += 2;
14611 break;
14612
14613 case DW_OP_const4u:
14614 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14615 i += 4;
14616 break;
14617
14618 case DW_OP_const4s:
14619 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14620 i += 4;
14621 break;
14622
14623 case DW_OP_const8u:
14624 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14625 i += 8;
14626 break;
14627
14628 case DW_OP_constu:
14629 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14630 &bytes_read);
14631 i += bytes_read;
14632 break;
14633
14634 case DW_OP_consts:
14635 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14636 i += bytes_read;
14637 break;
14638
14639 case DW_OP_dup:
14640 stack[stacki + 1] = stack[stacki];
14641 stacki++;
14642 break;
14643
14644 case DW_OP_plus:
14645 stack[stacki - 1] += stack[stacki];
14646 stacki--;
14647 break;
14648
14649 case DW_OP_plus_uconst:
14650 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14651 &bytes_read);
14652 i += bytes_read;
14653 break;
14654
14655 case DW_OP_minus:
14656 stack[stacki - 1] -= stack[stacki];
14657 stacki--;
14658 break;
14659
14660 case DW_OP_deref:
14661 /* If we're not the last op, then we definitely can't encode
14662 this using GDB's address_class enum. This is valid for partial
14663 global symbols, although the variable's address will be bogus
14664 in the psymtab. */
14665 if (i < size)
14666 dwarf2_complex_location_expr_complaint ();
14667 break;
14668
14669 case DW_OP_GNU_push_tls_address:
14670 /* The top of the stack has the offset from the beginning
14671 of the thread control block at which the variable is located. */
14672 /* Nothing should follow this operator, so the top of stack would
14673 be returned. */
14674 /* This is valid for partial global symbols, but the variable's
14675 address will be bogus in the psymtab. Make it always at least
14676 non-zero to not look as a variable garbage collected by linker
14677 which have DW_OP_addr 0. */
14678 if (i < size)
14679 dwarf2_complex_location_expr_complaint ();
14680 stack[stacki]++;
14681 break;
14682
14683 case DW_OP_GNU_uninit:
14684 break;
14685
14686 default:
14687 {
14688 const char *name = dwarf_stack_op_name (op);
14689
14690 if (name)
14691 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14692 name);
14693 else
14694 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14695 op);
14696 }
14697
14698 return (stack[stacki]);
14699 }
14700
14701 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14702 outside of the allocated space. Also enforce minimum>0. */
14703 if (stacki >= ARRAY_SIZE (stack) - 1)
14704 {
14705 complaint (&symfile_complaints,
14706 _("location description stack overflow"));
14707 return 0;
14708 }
14709
14710 if (stacki <= 0)
14711 {
14712 complaint (&symfile_complaints,
14713 _("location description stack underflow"));
14714 return 0;
14715 }
14716 }
14717 return (stack[stacki]);
14718 }
14719
14720 /* memory allocation interface */
14721
14722 static struct dwarf_block *
14723 dwarf_alloc_block (struct dwarf2_cu *cu)
14724 {
14725 struct dwarf_block *blk;
14726
14727 blk = (struct dwarf_block *)
14728 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14729 return (blk);
14730 }
14731
14732 static struct abbrev_info *
14733 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14734 {
14735 struct abbrev_info *abbrev;
14736
14737 abbrev = (struct abbrev_info *)
14738 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14739 memset (abbrev, 0, sizeof (struct abbrev_info));
14740 return (abbrev);
14741 }
14742
14743 static struct die_info *
14744 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14745 {
14746 struct die_info *die;
14747 size_t size = sizeof (struct die_info);
14748
14749 if (num_attrs > 1)
14750 size += (num_attrs - 1) * sizeof (struct attribute);
14751
14752 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14753 memset (die, 0, sizeof (struct die_info));
14754 return (die);
14755 }
14756
14757 \f
14758 /* Macro support. */
14759
14760 /* Return the full name of file number I in *LH's file name table.
14761 Use COMP_DIR as the name of the current directory of the
14762 compilation. The result is allocated using xmalloc; the caller is
14763 responsible for freeing it. */
14764 static char *
14765 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14766 {
14767 /* Is the file number a valid index into the line header's file name
14768 table? Remember that file numbers start with one, not zero. */
14769 if (1 <= file && file <= lh->num_file_names)
14770 {
14771 struct file_entry *fe = &lh->file_names[file - 1];
14772
14773 if (IS_ABSOLUTE_PATH (fe->name))
14774 return xstrdup (fe->name);
14775 else
14776 {
14777 const char *dir;
14778 int dir_len;
14779 char *full_name;
14780
14781 if (fe->dir_index)
14782 dir = lh->include_dirs[fe->dir_index - 1];
14783 else
14784 dir = comp_dir;
14785
14786 if (dir)
14787 {
14788 dir_len = strlen (dir);
14789 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14790 strcpy (full_name, dir);
14791 full_name[dir_len] = '/';
14792 strcpy (full_name + dir_len + 1, fe->name);
14793 return full_name;
14794 }
14795 else
14796 return xstrdup (fe->name);
14797 }
14798 }
14799 else
14800 {
14801 /* The compiler produced a bogus file number. We can at least
14802 record the macro definitions made in the file, even if we
14803 won't be able to find the file by name. */
14804 char fake_name[80];
14805
14806 sprintf (fake_name, "<bad macro file number %d>", file);
14807
14808 complaint (&symfile_complaints,
14809 _("bad file number in macro information (%d)"),
14810 file);
14811
14812 return xstrdup (fake_name);
14813 }
14814 }
14815
14816
14817 static struct macro_source_file *
14818 macro_start_file (int file, int line,
14819 struct macro_source_file *current_file,
14820 const char *comp_dir,
14821 struct line_header *lh, struct objfile *objfile)
14822 {
14823 /* The full name of this source file. */
14824 char *full_name = file_full_name (file, lh, comp_dir);
14825
14826 /* We don't create a macro table for this compilation unit
14827 at all until we actually get a filename. */
14828 if (! pending_macros)
14829 pending_macros = new_macro_table (&objfile->objfile_obstack,
14830 objfile->macro_cache);
14831
14832 if (! current_file)
14833 /* If we have no current file, then this must be the start_file
14834 directive for the compilation unit's main source file. */
14835 current_file = macro_set_main (pending_macros, full_name);
14836 else
14837 current_file = macro_include (current_file, line, full_name);
14838
14839 xfree (full_name);
14840
14841 return current_file;
14842 }
14843
14844
14845 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14846 followed by a null byte. */
14847 static char *
14848 copy_string (const char *buf, int len)
14849 {
14850 char *s = xmalloc (len + 1);
14851
14852 memcpy (s, buf, len);
14853 s[len] = '\0';
14854 return s;
14855 }
14856
14857
14858 static const char *
14859 consume_improper_spaces (const char *p, const char *body)
14860 {
14861 if (*p == ' ')
14862 {
14863 complaint (&symfile_complaints,
14864 _("macro definition contains spaces "
14865 "in formal argument list:\n`%s'"),
14866 body);
14867
14868 while (*p == ' ')
14869 p++;
14870 }
14871
14872 return p;
14873 }
14874
14875
14876 static void
14877 parse_macro_definition (struct macro_source_file *file, int line,
14878 const char *body)
14879 {
14880 const char *p;
14881
14882 /* The body string takes one of two forms. For object-like macro
14883 definitions, it should be:
14884
14885 <macro name> " " <definition>
14886
14887 For function-like macro definitions, it should be:
14888
14889 <macro name> "() " <definition>
14890 or
14891 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14892
14893 Spaces may appear only where explicitly indicated, and in the
14894 <definition>.
14895
14896 The Dwarf 2 spec says that an object-like macro's name is always
14897 followed by a space, but versions of GCC around March 2002 omit
14898 the space when the macro's definition is the empty string.
14899
14900 The Dwarf 2 spec says that there should be no spaces between the
14901 formal arguments in a function-like macro's formal argument list,
14902 but versions of GCC around March 2002 include spaces after the
14903 commas. */
14904
14905
14906 /* Find the extent of the macro name. The macro name is terminated
14907 by either a space or null character (for an object-like macro) or
14908 an opening paren (for a function-like macro). */
14909 for (p = body; *p; p++)
14910 if (*p == ' ' || *p == '(')
14911 break;
14912
14913 if (*p == ' ' || *p == '\0')
14914 {
14915 /* It's an object-like macro. */
14916 int name_len = p - body;
14917 char *name = copy_string (body, name_len);
14918 const char *replacement;
14919
14920 if (*p == ' ')
14921 replacement = body + name_len + 1;
14922 else
14923 {
14924 dwarf2_macro_malformed_definition_complaint (body);
14925 replacement = body + name_len;
14926 }
14927
14928 macro_define_object (file, line, name, replacement);
14929
14930 xfree (name);
14931 }
14932 else if (*p == '(')
14933 {
14934 /* It's a function-like macro. */
14935 char *name = copy_string (body, p - body);
14936 int argc = 0;
14937 int argv_size = 1;
14938 char **argv = xmalloc (argv_size * sizeof (*argv));
14939
14940 p++;
14941
14942 p = consume_improper_spaces (p, body);
14943
14944 /* Parse the formal argument list. */
14945 while (*p && *p != ')')
14946 {
14947 /* Find the extent of the current argument name. */
14948 const char *arg_start = p;
14949
14950 while (*p && *p != ',' && *p != ')' && *p != ' ')
14951 p++;
14952
14953 if (! *p || p == arg_start)
14954 dwarf2_macro_malformed_definition_complaint (body);
14955 else
14956 {
14957 /* Make sure argv has room for the new argument. */
14958 if (argc >= argv_size)
14959 {
14960 argv_size *= 2;
14961 argv = xrealloc (argv, argv_size * sizeof (*argv));
14962 }
14963
14964 argv[argc++] = copy_string (arg_start, p - arg_start);
14965 }
14966
14967 p = consume_improper_spaces (p, body);
14968
14969 /* Consume the comma, if present. */
14970 if (*p == ',')
14971 {
14972 p++;
14973
14974 p = consume_improper_spaces (p, body);
14975 }
14976 }
14977
14978 if (*p == ')')
14979 {
14980 p++;
14981
14982 if (*p == ' ')
14983 /* Perfectly formed definition, no complaints. */
14984 macro_define_function (file, line, name,
14985 argc, (const char **) argv,
14986 p + 1);
14987 else if (*p == '\0')
14988 {
14989 /* Complain, but do define it. */
14990 dwarf2_macro_malformed_definition_complaint (body);
14991 macro_define_function (file, line, name,
14992 argc, (const char **) argv,
14993 p);
14994 }
14995 else
14996 /* Just complain. */
14997 dwarf2_macro_malformed_definition_complaint (body);
14998 }
14999 else
15000 /* Just complain. */
15001 dwarf2_macro_malformed_definition_complaint (body);
15002
15003 xfree (name);
15004 {
15005 int i;
15006
15007 for (i = 0; i < argc; i++)
15008 xfree (argv[i]);
15009 }
15010 xfree (argv);
15011 }
15012 else
15013 dwarf2_macro_malformed_definition_complaint (body);
15014 }
15015
15016 /* Skip some bytes from BYTES according to the form given in FORM.
15017 Returns the new pointer. */
15018
15019 static gdb_byte *
15020 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15021 enum dwarf_form form,
15022 unsigned int offset_size,
15023 struct dwarf2_section_info *section)
15024 {
15025 unsigned int bytes_read;
15026
15027 switch (form)
15028 {
15029 case DW_FORM_data1:
15030 case DW_FORM_flag:
15031 ++bytes;
15032 break;
15033
15034 case DW_FORM_data2:
15035 bytes += 2;
15036 break;
15037
15038 case DW_FORM_data4:
15039 bytes += 4;
15040 break;
15041
15042 case DW_FORM_data8:
15043 bytes += 8;
15044 break;
15045
15046 case DW_FORM_string:
15047 read_direct_string (abfd, bytes, &bytes_read);
15048 bytes += bytes_read;
15049 break;
15050
15051 case DW_FORM_sec_offset:
15052 case DW_FORM_strp:
15053 bytes += offset_size;
15054 break;
15055
15056 case DW_FORM_block:
15057 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15058 bytes += bytes_read;
15059 break;
15060
15061 case DW_FORM_block1:
15062 bytes += 1 + read_1_byte (abfd, bytes);
15063 break;
15064 case DW_FORM_block2:
15065 bytes += 2 + read_2_bytes (abfd, bytes);
15066 break;
15067 case DW_FORM_block4:
15068 bytes += 4 + read_4_bytes (abfd, bytes);
15069 break;
15070
15071 case DW_FORM_sdata:
15072 case DW_FORM_udata:
15073 bytes = skip_leb128 (abfd, bytes);
15074 break;
15075
15076 default:
15077 {
15078 complain:
15079 complaint (&symfile_complaints,
15080 _("invalid form 0x%x in `%s'"),
15081 form,
15082 section->asection->name);
15083 return NULL;
15084 }
15085 }
15086
15087 return bytes;
15088 }
15089
15090 /* A helper for dwarf_decode_macros that handles skipping an unknown
15091 opcode. Returns an updated pointer to the macro data buffer; or,
15092 on error, issues a complaint and returns NULL. */
15093
15094 static gdb_byte *
15095 skip_unknown_opcode (unsigned int opcode,
15096 gdb_byte **opcode_definitions,
15097 gdb_byte *mac_ptr,
15098 bfd *abfd,
15099 unsigned int offset_size,
15100 struct dwarf2_section_info *section)
15101 {
15102 unsigned int bytes_read, i;
15103 unsigned long arg;
15104 gdb_byte *defn;
15105
15106 if (opcode_definitions[opcode] == NULL)
15107 {
15108 complaint (&symfile_complaints,
15109 _("unrecognized DW_MACFINO opcode 0x%x"),
15110 opcode);
15111 return NULL;
15112 }
15113
15114 defn = opcode_definitions[opcode];
15115 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15116 defn += bytes_read;
15117
15118 for (i = 0; i < arg; ++i)
15119 {
15120 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15121 if (mac_ptr == NULL)
15122 {
15123 /* skip_form_bytes already issued the complaint. */
15124 return NULL;
15125 }
15126 }
15127
15128 return mac_ptr;
15129 }
15130
15131 /* A helper function which parses the header of a macro section.
15132 If the macro section is the extended (for now called "GNU") type,
15133 then this updates *OFFSET_SIZE. Returns a pointer to just after
15134 the header, or issues a complaint and returns NULL on error. */
15135
15136 static gdb_byte *
15137 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15138 bfd *abfd,
15139 gdb_byte *mac_ptr,
15140 unsigned int *offset_size,
15141 int section_is_gnu)
15142 {
15143 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15144
15145 if (section_is_gnu)
15146 {
15147 unsigned int version, flags;
15148
15149 version = read_2_bytes (abfd, mac_ptr);
15150 if (version != 4)
15151 {
15152 complaint (&symfile_complaints,
15153 _("unrecognized version `%d' in .debug_macro section"),
15154 version);
15155 return NULL;
15156 }
15157 mac_ptr += 2;
15158
15159 flags = read_1_byte (abfd, mac_ptr);
15160 ++mac_ptr;
15161 *offset_size = (flags & 1) ? 8 : 4;
15162
15163 if ((flags & 2) != 0)
15164 /* We don't need the line table offset. */
15165 mac_ptr += *offset_size;
15166
15167 /* Vendor opcode descriptions. */
15168 if ((flags & 4) != 0)
15169 {
15170 unsigned int i, count;
15171
15172 count = read_1_byte (abfd, mac_ptr);
15173 ++mac_ptr;
15174 for (i = 0; i < count; ++i)
15175 {
15176 unsigned int opcode, bytes_read;
15177 unsigned long arg;
15178
15179 opcode = read_1_byte (abfd, mac_ptr);
15180 ++mac_ptr;
15181 opcode_definitions[opcode] = mac_ptr;
15182 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15183 mac_ptr += bytes_read;
15184 mac_ptr += arg;
15185 }
15186 }
15187 }
15188
15189 return mac_ptr;
15190 }
15191
15192 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15193 including DW_MACRO_GNU_transparent_include. */
15194
15195 static void
15196 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15197 struct macro_source_file *current_file,
15198 struct line_header *lh, char *comp_dir,
15199 struct dwarf2_section_info *section,
15200 int section_is_gnu,
15201 unsigned int offset_size,
15202 struct objfile *objfile,
15203 htab_t include_hash)
15204 {
15205 enum dwarf_macro_record_type macinfo_type;
15206 int at_commandline;
15207 gdb_byte *opcode_definitions[256];
15208
15209 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15210 &offset_size, section_is_gnu);
15211 if (mac_ptr == NULL)
15212 {
15213 /* We already issued a complaint. */
15214 return;
15215 }
15216
15217 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15218 GDB is still reading the definitions from command line. First
15219 DW_MACINFO_start_file will need to be ignored as it was already executed
15220 to create CURRENT_FILE for the main source holding also the command line
15221 definitions. On first met DW_MACINFO_start_file this flag is reset to
15222 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15223
15224 at_commandline = 1;
15225
15226 do
15227 {
15228 /* Do we at least have room for a macinfo type byte? */
15229 if (mac_ptr >= mac_end)
15230 {
15231 dwarf2_macros_too_long_complaint (section);
15232 break;
15233 }
15234
15235 macinfo_type = read_1_byte (abfd, mac_ptr);
15236 mac_ptr++;
15237
15238 /* Note that we rely on the fact that the corresponding GNU and
15239 DWARF constants are the same. */
15240 switch (macinfo_type)
15241 {
15242 /* A zero macinfo type indicates the end of the macro
15243 information. */
15244 case 0:
15245 break;
15246
15247 case DW_MACRO_GNU_define:
15248 case DW_MACRO_GNU_undef:
15249 case DW_MACRO_GNU_define_indirect:
15250 case DW_MACRO_GNU_undef_indirect:
15251 {
15252 unsigned int bytes_read;
15253 int line;
15254 char *body;
15255 int is_define;
15256
15257 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15258 mac_ptr += bytes_read;
15259
15260 if (macinfo_type == DW_MACRO_GNU_define
15261 || macinfo_type == DW_MACRO_GNU_undef)
15262 {
15263 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15264 mac_ptr += bytes_read;
15265 }
15266 else
15267 {
15268 LONGEST str_offset;
15269
15270 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15271 mac_ptr += offset_size;
15272
15273 body = read_indirect_string_at_offset (abfd, str_offset);
15274 }
15275
15276 is_define = (macinfo_type == DW_MACRO_GNU_define
15277 || macinfo_type == DW_MACRO_GNU_define_indirect);
15278 if (! current_file)
15279 {
15280 /* DWARF violation as no main source is present. */
15281 complaint (&symfile_complaints,
15282 _("debug info with no main source gives macro %s "
15283 "on line %d: %s"),
15284 is_define ? _("definition") : _("undefinition"),
15285 line, body);
15286 break;
15287 }
15288 if ((line == 0 && !at_commandline)
15289 || (line != 0 && at_commandline))
15290 complaint (&symfile_complaints,
15291 _("debug info gives %s macro %s with %s line %d: %s"),
15292 at_commandline ? _("command-line") : _("in-file"),
15293 is_define ? _("definition") : _("undefinition"),
15294 line == 0 ? _("zero") : _("non-zero"), line, body);
15295
15296 if (is_define)
15297 parse_macro_definition (current_file, line, body);
15298 else
15299 {
15300 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15301 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15302 macro_undef (current_file, line, body);
15303 }
15304 }
15305 break;
15306
15307 case DW_MACRO_GNU_start_file:
15308 {
15309 unsigned int bytes_read;
15310 int line, file;
15311
15312 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15313 mac_ptr += bytes_read;
15314 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15315 mac_ptr += bytes_read;
15316
15317 if ((line == 0 && !at_commandline)
15318 || (line != 0 && at_commandline))
15319 complaint (&symfile_complaints,
15320 _("debug info gives source %d included "
15321 "from %s at %s line %d"),
15322 file, at_commandline ? _("command-line") : _("file"),
15323 line == 0 ? _("zero") : _("non-zero"), line);
15324
15325 if (at_commandline)
15326 {
15327 /* This DW_MACRO_GNU_start_file was executed in the
15328 pass one. */
15329 at_commandline = 0;
15330 }
15331 else
15332 current_file = macro_start_file (file, line,
15333 current_file, comp_dir,
15334 lh, objfile);
15335 }
15336 break;
15337
15338 case DW_MACRO_GNU_end_file:
15339 if (! current_file)
15340 complaint (&symfile_complaints,
15341 _("macro debug info has an unmatched "
15342 "`close_file' directive"));
15343 else
15344 {
15345 current_file = current_file->included_by;
15346 if (! current_file)
15347 {
15348 enum dwarf_macro_record_type next_type;
15349
15350 /* GCC circa March 2002 doesn't produce the zero
15351 type byte marking the end of the compilation
15352 unit. Complain if it's not there, but exit no
15353 matter what. */
15354
15355 /* Do we at least have room for a macinfo type byte? */
15356 if (mac_ptr >= mac_end)
15357 {
15358 dwarf2_macros_too_long_complaint (section);
15359 return;
15360 }
15361
15362 /* We don't increment mac_ptr here, so this is just
15363 a look-ahead. */
15364 next_type = read_1_byte (abfd, mac_ptr);
15365 if (next_type != 0)
15366 complaint (&symfile_complaints,
15367 _("no terminating 0-type entry for "
15368 "macros in `.debug_macinfo' section"));
15369
15370 return;
15371 }
15372 }
15373 break;
15374
15375 case DW_MACRO_GNU_transparent_include:
15376 {
15377 LONGEST offset;
15378 void **slot;
15379
15380 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15381 mac_ptr += offset_size;
15382
15383 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15384 if (*slot != NULL)
15385 {
15386 /* This has actually happened; see
15387 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15388 complaint (&symfile_complaints,
15389 _("recursive DW_MACRO_GNU_transparent_include in "
15390 ".debug_macro section"));
15391 }
15392 else
15393 {
15394 *slot = mac_ptr;
15395
15396 dwarf_decode_macro_bytes (abfd,
15397 section->buffer + offset,
15398 mac_end, current_file,
15399 lh, comp_dir,
15400 section, section_is_gnu,
15401 offset_size, objfile, include_hash);
15402
15403 htab_remove_elt (include_hash, mac_ptr);
15404 }
15405 }
15406 break;
15407
15408 case DW_MACINFO_vendor_ext:
15409 if (!section_is_gnu)
15410 {
15411 unsigned int bytes_read;
15412 int constant;
15413
15414 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15415 mac_ptr += bytes_read;
15416 read_direct_string (abfd, mac_ptr, &bytes_read);
15417 mac_ptr += bytes_read;
15418
15419 /* We don't recognize any vendor extensions. */
15420 break;
15421 }
15422 /* FALLTHROUGH */
15423
15424 default:
15425 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15426 mac_ptr, abfd, offset_size,
15427 section);
15428 if (mac_ptr == NULL)
15429 return;
15430 break;
15431 }
15432 } while (macinfo_type != 0);
15433 }
15434
15435 static void
15436 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15437 char *comp_dir, bfd *abfd,
15438 struct dwarf2_cu *cu,
15439 struct dwarf2_section_info *section,
15440 int section_is_gnu)
15441 {
15442 struct objfile *objfile = dwarf2_per_objfile->objfile;
15443 gdb_byte *mac_ptr, *mac_end;
15444 struct macro_source_file *current_file = 0;
15445 enum dwarf_macro_record_type macinfo_type;
15446 unsigned int offset_size = cu->header.offset_size;
15447 gdb_byte *opcode_definitions[256];
15448 struct cleanup *cleanup;
15449 htab_t include_hash;
15450 void **slot;
15451
15452 dwarf2_read_section (objfile, section);
15453 if (section->buffer == NULL)
15454 {
15455 complaint (&symfile_complaints, _("missing %s section"),
15456 section->asection->name);
15457 return;
15458 }
15459
15460 /* First pass: Find the name of the base filename.
15461 This filename is needed in order to process all macros whose definition
15462 (or undefinition) comes from the command line. These macros are defined
15463 before the first DW_MACINFO_start_file entry, and yet still need to be
15464 associated to the base file.
15465
15466 To determine the base file name, we scan the macro definitions until we
15467 reach the first DW_MACINFO_start_file entry. We then initialize
15468 CURRENT_FILE accordingly so that any macro definition found before the
15469 first DW_MACINFO_start_file can still be associated to the base file. */
15470
15471 mac_ptr = section->buffer + offset;
15472 mac_end = section->buffer + section->size;
15473
15474 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15475 &offset_size, section_is_gnu);
15476 if (mac_ptr == NULL)
15477 {
15478 /* We already issued a complaint. */
15479 return;
15480 }
15481
15482 do
15483 {
15484 /* Do we at least have room for a macinfo type byte? */
15485 if (mac_ptr >= mac_end)
15486 {
15487 /* Complaint is printed during the second pass as GDB will probably
15488 stop the first pass earlier upon finding
15489 DW_MACINFO_start_file. */
15490 break;
15491 }
15492
15493 macinfo_type = read_1_byte (abfd, mac_ptr);
15494 mac_ptr++;
15495
15496 /* Note that we rely on the fact that the corresponding GNU and
15497 DWARF constants are the same. */
15498 switch (macinfo_type)
15499 {
15500 /* A zero macinfo type indicates the end of the macro
15501 information. */
15502 case 0:
15503 break;
15504
15505 case DW_MACRO_GNU_define:
15506 case DW_MACRO_GNU_undef:
15507 /* Only skip the data by MAC_PTR. */
15508 {
15509 unsigned int bytes_read;
15510
15511 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15512 mac_ptr += bytes_read;
15513 read_direct_string (abfd, mac_ptr, &bytes_read);
15514 mac_ptr += bytes_read;
15515 }
15516 break;
15517
15518 case DW_MACRO_GNU_start_file:
15519 {
15520 unsigned int bytes_read;
15521 int line, file;
15522
15523 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15524 mac_ptr += bytes_read;
15525 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15526 mac_ptr += bytes_read;
15527
15528 current_file = macro_start_file (file, line, current_file,
15529 comp_dir, lh, objfile);
15530 }
15531 break;
15532
15533 case DW_MACRO_GNU_end_file:
15534 /* No data to skip by MAC_PTR. */
15535 break;
15536
15537 case DW_MACRO_GNU_define_indirect:
15538 case DW_MACRO_GNU_undef_indirect:
15539 {
15540 unsigned int bytes_read;
15541
15542 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15543 mac_ptr += bytes_read;
15544 mac_ptr += offset_size;
15545 }
15546 break;
15547
15548 case DW_MACRO_GNU_transparent_include:
15549 /* Note that, according to the spec, a transparent include
15550 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15551 skip this opcode. */
15552 mac_ptr += offset_size;
15553 break;
15554
15555 case DW_MACINFO_vendor_ext:
15556 /* Only skip the data by MAC_PTR. */
15557 if (!section_is_gnu)
15558 {
15559 unsigned int bytes_read;
15560
15561 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15562 mac_ptr += bytes_read;
15563 read_direct_string (abfd, mac_ptr, &bytes_read);
15564 mac_ptr += bytes_read;
15565 }
15566 /* FALLTHROUGH */
15567
15568 default:
15569 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15570 mac_ptr, abfd, offset_size,
15571 section);
15572 if (mac_ptr == NULL)
15573 return;
15574 break;
15575 }
15576 } while (macinfo_type != 0 && current_file == NULL);
15577
15578 /* Second pass: Process all entries.
15579
15580 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15581 command-line macro definitions/undefinitions. This flag is unset when we
15582 reach the first DW_MACINFO_start_file entry. */
15583
15584 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15585 NULL, xcalloc, xfree);
15586 cleanup = make_cleanup_htab_delete (include_hash);
15587 mac_ptr = section->buffer + offset;
15588 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15589 *slot = mac_ptr;
15590 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15591 current_file, lh, comp_dir, section, section_is_gnu,
15592 offset_size, objfile, include_hash);
15593 do_cleanups (cleanup);
15594 }
15595
15596 /* Check if the attribute's form is a DW_FORM_block*
15597 if so return true else false. */
15598 static int
15599 attr_form_is_block (struct attribute *attr)
15600 {
15601 return (attr == NULL ? 0 :
15602 attr->form == DW_FORM_block1
15603 || attr->form == DW_FORM_block2
15604 || attr->form == DW_FORM_block4
15605 || attr->form == DW_FORM_block
15606 || attr->form == DW_FORM_exprloc);
15607 }
15608
15609 /* Return non-zero if ATTR's value is a section offset --- classes
15610 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15611 You may use DW_UNSND (attr) to retrieve such offsets.
15612
15613 Section 7.5.4, "Attribute Encodings", explains that no attribute
15614 may have a value that belongs to more than one of these classes; it
15615 would be ambiguous if we did, because we use the same forms for all
15616 of them. */
15617 static int
15618 attr_form_is_section_offset (struct attribute *attr)
15619 {
15620 return (attr->form == DW_FORM_data4
15621 || attr->form == DW_FORM_data8
15622 || attr->form == DW_FORM_sec_offset);
15623 }
15624
15625
15626 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15627 zero otherwise. When this function returns true, you can apply
15628 dwarf2_get_attr_constant_value to it.
15629
15630 However, note that for some attributes you must check
15631 attr_form_is_section_offset before using this test. DW_FORM_data4
15632 and DW_FORM_data8 are members of both the constant class, and of
15633 the classes that contain offsets into other debug sections
15634 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15635 that, if an attribute's can be either a constant or one of the
15636 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15637 taken as section offsets, not constants. */
15638 static int
15639 attr_form_is_constant (struct attribute *attr)
15640 {
15641 switch (attr->form)
15642 {
15643 case DW_FORM_sdata:
15644 case DW_FORM_udata:
15645 case DW_FORM_data1:
15646 case DW_FORM_data2:
15647 case DW_FORM_data4:
15648 case DW_FORM_data8:
15649 return 1;
15650 default:
15651 return 0;
15652 }
15653 }
15654
15655 /* A helper function that fills in a dwarf2_loclist_baton. */
15656
15657 static void
15658 fill_in_loclist_baton (struct dwarf2_cu *cu,
15659 struct dwarf2_loclist_baton *baton,
15660 struct attribute *attr)
15661 {
15662 dwarf2_read_section (dwarf2_per_objfile->objfile,
15663 &dwarf2_per_objfile->loc);
15664
15665 baton->per_cu = cu->per_cu;
15666 gdb_assert (baton->per_cu);
15667 /* We don't know how long the location list is, but make sure we
15668 don't run off the edge of the section. */
15669 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15670 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15671 baton->base_address = cu->base_address;
15672 }
15673
15674 static void
15675 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15676 struct dwarf2_cu *cu)
15677 {
15678 struct objfile *objfile = dwarf2_per_objfile->objfile;
15679
15680 if (attr_form_is_section_offset (attr)
15681 /* ".debug_loc" may not exist at all, or the offset may be outside
15682 the section. If so, fall through to the complaint in the
15683 other branch. */
15684 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15685 &dwarf2_per_objfile->loc))
15686 {
15687 struct dwarf2_loclist_baton *baton;
15688
15689 baton = obstack_alloc (&objfile->objfile_obstack,
15690 sizeof (struct dwarf2_loclist_baton));
15691
15692 fill_in_loclist_baton (cu, baton, attr);
15693
15694 if (cu->base_known == 0)
15695 complaint (&symfile_complaints,
15696 _("Location list used without "
15697 "specifying the CU base address."));
15698
15699 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15700 SYMBOL_LOCATION_BATON (sym) = baton;
15701 }
15702 else
15703 {
15704 struct dwarf2_locexpr_baton *baton;
15705
15706 baton = obstack_alloc (&objfile->objfile_obstack,
15707 sizeof (struct dwarf2_locexpr_baton));
15708 baton->per_cu = cu->per_cu;
15709 gdb_assert (baton->per_cu);
15710
15711 if (attr_form_is_block (attr))
15712 {
15713 /* Note that we're just copying the block's data pointer
15714 here, not the actual data. We're still pointing into the
15715 info_buffer for SYM's objfile; right now we never release
15716 that buffer, but when we do clean up properly this may
15717 need to change. */
15718 baton->size = DW_BLOCK (attr)->size;
15719 baton->data = DW_BLOCK (attr)->data;
15720 }
15721 else
15722 {
15723 dwarf2_invalid_attrib_class_complaint ("location description",
15724 SYMBOL_NATURAL_NAME (sym));
15725 baton->size = 0;
15726 }
15727
15728 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15729 SYMBOL_LOCATION_BATON (sym) = baton;
15730 }
15731 }
15732
15733 /* Return the OBJFILE associated with the compilation unit CU. If CU
15734 came from a separate debuginfo file, then the master objfile is
15735 returned. */
15736
15737 struct objfile *
15738 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15739 {
15740 struct objfile *objfile = per_cu->objfile;
15741
15742 /* Return the master objfile, so that we can report and look up the
15743 correct file containing this variable. */
15744 if (objfile->separate_debug_objfile_backlink)
15745 objfile = objfile->separate_debug_objfile_backlink;
15746
15747 return objfile;
15748 }
15749
15750 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15751 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15752 CU_HEADERP first. */
15753
15754 static const struct comp_unit_head *
15755 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15756 struct dwarf2_per_cu_data *per_cu)
15757 {
15758 struct objfile *objfile;
15759 struct dwarf2_per_objfile *per_objfile;
15760 gdb_byte *info_ptr;
15761
15762 if (per_cu->cu)
15763 return &per_cu->cu->header;
15764
15765 objfile = per_cu->objfile;
15766 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15767 info_ptr = per_objfile->info.buffer + per_cu->offset;
15768
15769 memset (cu_headerp, 0, sizeof (*cu_headerp));
15770 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15771
15772 return cu_headerp;
15773 }
15774
15775 /* Return the address size given in the compilation unit header for CU. */
15776
15777 int
15778 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15779 {
15780 struct comp_unit_head cu_header_local;
15781 const struct comp_unit_head *cu_headerp;
15782
15783 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15784
15785 return cu_headerp->addr_size;
15786 }
15787
15788 /* Return the offset size given in the compilation unit header for CU. */
15789
15790 int
15791 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15792 {
15793 struct comp_unit_head cu_header_local;
15794 const struct comp_unit_head *cu_headerp;
15795
15796 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15797
15798 return cu_headerp->offset_size;
15799 }
15800
15801 /* See its dwarf2loc.h declaration. */
15802
15803 int
15804 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15805 {
15806 struct comp_unit_head cu_header_local;
15807 const struct comp_unit_head *cu_headerp;
15808
15809 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15810
15811 if (cu_headerp->version == 2)
15812 return cu_headerp->addr_size;
15813 else
15814 return cu_headerp->offset_size;
15815 }
15816
15817 /* Return the text offset of the CU. The returned offset comes from
15818 this CU's objfile. If this objfile came from a separate debuginfo
15819 file, then the offset may be different from the corresponding
15820 offset in the parent objfile. */
15821
15822 CORE_ADDR
15823 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15824 {
15825 struct objfile *objfile = per_cu->objfile;
15826
15827 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15828 }
15829
15830 /* Locate the .debug_info compilation unit from CU's objfile which contains
15831 the DIE at OFFSET. Raises an error on failure. */
15832
15833 static struct dwarf2_per_cu_data *
15834 dwarf2_find_containing_comp_unit (unsigned int offset,
15835 struct objfile *objfile)
15836 {
15837 struct dwarf2_per_cu_data *this_cu;
15838 int low, high;
15839
15840 low = 0;
15841 high = dwarf2_per_objfile->n_comp_units - 1;
15842 while (high > low)
15843 {
15844 int mid = low + (high - low) / 2;
15845
15846 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15847 high = mid;
15848 else
15849 low = mid + 1;
15850 }
15851 gdb_assert (low == high);
15852 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15853 {
15854 if (low == 0)
15855 error (_("Dwarf Error: could not find partial DIE containing "
15856 "offset 0x%lx [in module %s]"),
15857 (long) offset, bfd_get_filename (objfile->obfd));
15858
15859 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15860 return dwarf2_per_objfile->all_comp_units[low-1];
15861 }
15862 else
15863 {
15864 this_cu = dwarf2_per_objfile->all_comp_units[low];
15865 if (low == dwarf2_per_objfile->n_comp_units - 1
15866 && offset >= this_cu->offset + this_cu->length)
15867 error (_("invalid dwarf2 offset %u"), offset);
15868 gdb_assert (offset < this_cu->offset + this_cu->length);
15869 return this_cu;
15870 }
15871 }
15872
15873 /* Initialize dwarf2_cu CU, owned by PER_CU. */
15874
15875 static void
15876 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15877 {
15878 memset (cu, 0, sizeof (*cu));
15879 per_cu->cu = cu;
15880 cu->per_cu = per_cu;
15881 cu->objfile = per_cu->objfile;
15882 obstack_init (&cu->comp_unit_obstack);
15883 }
15884
15885 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15886
15887 static void
15888 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15889 {
15890 struct attribute *attr;
15891
15892 /* Set the language we're debugging. */
15893 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15894 if (attr)
15895 set_cu_language (DW_UNSND (attr), cu);
15896 else
15897 {
15898 cu->language = language_minimal;
15899 cu->language_defn = language_def (cu->language);
15900 }
15901 }
15902
15903 /* Release one cached compilation unit, CU. We unlink it from the tree
15904 of compilation units, but we don't remove it from the read_in_chain;
15905 the caller is responsible for that.
15906 NOTE: DATA is a void * because this function is also used as a
15907 cleanup routine. */
15908
15909 static void
15910 free_heap_comp_unit (void *data)
15911 {
15912 struct dwarf2_cu *cu = data;
15913
15914 gdb_assert (cu->per_cu != NULL);
15915 cu->per_cu->cu = NULL;
15916 cu->per_cu = NULL;
15917
15918 obstack_free (&cu->comp_unit_obstack, NULL);
15919
15920 xfree (cu);
15921 }
15922
15923 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15924 when we're finished with it. We can't free the pointer itself, but be
15925 sure to unlink it from the cache. Also release any associated storage
15926 and perform cache maintenance.
15927
15928 Only used during partial symbol parsing. */
15929
15930 static void
15931 free_stack_comp_unit (void *data)
15932 {
15933 struct dwarf2_cu *cu = data;
15934
15935 gdb_assert (cu->per_cu != NULL);
15936 cu->per_cu->cu = NULL;
15937 cu->per_cu = NULL;
15938
15939 obstack_free (&cu->comp_unit_obstack, NULL);
15940 cu->partial_dies = NULL;
15941
15942 /* The previous code only did this if per_cu != NULL.
15943 But that would always succeed, so now we just unconditionally do
15944 the aging. This seems like the wrong place to do such aging,
15945 but cleaning that up is left for later. */
15946 age_cached_comp_units ();
15947 }
15948
15949 /* Free all cached compilation units. */
15950
15951 static void
15952 free_cached_comp_units (void *data)
15953 {
15954 struct dwarf2_per_cu_data *per_cu, **last_chain;
15955
15956 per_cu = dwarf2_per_objfile->read_in_chain;
15957 last_chain = &dwarf2_per_objfile->read_in_chain;
15958 while (per_cu != NULL)
15959 {
15960 struct dwarf2_per_cu_data *next_cu;
15961
15962 next_cu = per_cu->cu->read_in_chain;
15963
15964 free_heap_comp_unit (per_cu->cu);
15965 *last_chain = next_cu;
15966
15967 per_cu = next_cu;
15968 }
15969 }
15970
15971 /* Increase the age counter on each cached compilation unit, and free
15972 any that are too old. */
15973
15974 static void
15975 age_cached_comp_units (void)
15976 {
15977 struct dwarf2_per_cu_data *per_cu, **last_chain;
15978
15979 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15980 per_cu = dwarf2_per_objfile->read_in_chain;
15981 while (per_cu != NULL)
15982 {
15983 per_cu->cu->last_used ++;
15984 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15985 dwarf2_mark (per_cu->cu);
15986 per_cu = per_cu->cu->read_in_chain;
15987 }
15988
15989 per_cu = dwarf2_per_objfile->read_in_chain;
15990 last_chain = &dwarf2_per_objfile->read_in_chain;
15991 while (per_cu != NULL)
15992 {
15993 struct dwarf2_per_cu_data *next_cu;
15994
15995 next_cu = per_cu->cu->read_in_chain;
15996
15997 if (!per_cu->cu->mark)
15998 {
15999 free_heap_comp_unit (per_cu->cu);
16000 *last_chain = next_cu;
16001 }
16002 else
16003 last_chain = &per_cu->cu->read_in_chain;
16004
16005 per_cu = next_cu;
16006 }
16007 }
16008
16009 /* Remove a single compilation unit from the cache. */
16010
16011 static void
16012 free_one_cached_comp_unit (void *target_cu)
16013 {
16014 struct dwarf2_per_cu_data *per_cu, **last_chain;
16015
16016 per_cu = dwarf2_per_objfile->read_in_chain;
16017 last_chain = &dwarf2_per_objfile->read_in_chain;
16018 while (per_cu != NULL)
16019 {
16020 struct dwarf2_per_cu_data *next_cu;
16021
16022 next_cu = per_cu->cu->read_in_chain;
16023
16024 if (per_cu->cu == target_cu)
16025 {
16026 free_heap_comp_unit (per_cu->cu);
16027 *last_chain = next_cu;
16028 break;
16029 }
16030 else
16031 last_chain = &per_cu->cu->read_in_chain;
16032
16033 per_cu = next_cu;
16034 }
16035 }
16036
16037 /* Release all extra memory associated with OBJFILE. */
16038
16039 void
16040 dwarf2_free_objfile (struct objfile *objfile)
16041 {
16042 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16043
16044 if (dwarf2_per_objfile == NULL)
16045 return;
16046
16047 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16048 free_cached_comp_units (NULL);
16049
16050 if (dwarf2_per_objfile->quick_file_names_table)
16051 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16052
16053 /* Everything else should be on the objfile obstack. */
16054 }
16055
16056 /* A pair of DIE offset and GDB type pointer. We store these
16057 in a hash table separate from the DIEs, and preserve them
16058 when the DIEs are flushed out of cache. */
16059
16060 struct dwarf2_offset_and_type
16061 {
16062 unsigned int offset;
16063 struct type *type;
16064 };
16065
16066 /* Hash function for a dwarf2_offset_and_type. */
16067
16068 static hashval_t
16069 offset_and_type_hash (const void *item)
16070 {
16071 const struct dwarf2_offset_and_type *ofs = item;
16072
16073 return ofs->offset;
16074 }
16075
16076 /* Equality function for a dwarf2_offset_and_type. */
16077
16078 static int
16079 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16080 {
16081 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16082 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16083
16084 return ofs_lhs->offset == ofs_rhs->offset;
16085 }
16086
16087 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16088 table if necessary. For convenience, return TYPE.
16089
16090 The DIEs reading must have careful ordering to:
16091 * Not cause infite loops trying to read in DIEs as a prerequisite for
16092 reading current DIE.
16093 * Not trying to dereference contents of still incompletely read in types
16094 while reading in other DIEs.
16095 * Enable referencing still incompletely read in types just by a pointer to
16096 the type without accessing its fields.
16097
16098 Therefore caller should follow these rules:
16099 * Try to fetch any prerequisite types we may need to build this DIE type
16100 before building the type and calling set_die_type.
16101 * After building type call set_die_type for current DIE as soon as
16102 possible before fetching more types to complete the current type.
16103 * Make the type as complete as possible before fetching more types. */
16104
16105 static struct type *
16106 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16107 {
16108 struct dwarf2_offset_and_type **slot, ofs;
16109 struct objfile *objfile = cu->objfile;
16110 htab_t *type_hash_ptr;
16111
16112 /* For Ada types, make sure that the gnat-specific data is always
16113 initialized (if not already set). There are a few types where
16114 we should not be doing so, because the type-specific area is
16115 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16116 where the type-specific area is used to store the floatformat).
16117 But this is not a problem, because the gnat-specific information
16118 is actually not needed for these types. */
16119 if (need_gnat_info (cu)
16120 && TYPE_CODE (type) != TYPE_CODE_FUNC
16121 && TYPE_CODE (type) != TYPE_CODE_FLT
16122 && !HAVE_GNAT_AUX_INFO (type))
16123 INIT_GNAT_SPECIFIC (type);
16124
16125 if (cu->per_cu->debug_types_section)
16126 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16127 else
16128 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16129
16130 if (*type_hash_ptr == NULL)
16131 {
16132 *type_hash_ptr
16133 = htab_create_alloc_ex (127,
16134 offset_and_type_hash,
16135 offset_and_type_eq,
16136 NULL,
16137 &objfile->objfile_obstack,
16138 hashtab_obstack_allocate,
16139 dummy_obstack_deallocate);
16140 }
16141
16142 ofs.offset = die->offset;
16143 ofs.type = type;
16144 slot = (struct dwarf2_offset_and_type **)
16145 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16146 if (*slot)
16147 complaint (&symfile_complaints,
16148 _("A problem internal to GDB: DIE 0x%x has type already set"),
16149 die->offset);
16150 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16151 **slot = ofs;
16152 return type;
16153 }
16154
16155 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16156 table, or return NULL if the die does not have a saved type. */
16157
16158 static struct type *
16159 get_die_type_at_offset (unsigned int offset,
16160 struct dwarf2_per_cu_data *per_cu)
16161 {
16162 struct dwarf2_offset_and_type *slot, ofs;
16163 htab_t type_hash;
16164
16165 if (per_cu->debug_types_section)
16166 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16167 else
16168 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16169 if (type_hash == NULL)
16170 return NULL;
16171
16172 ofs.offset = offset;
16173 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16174 if (slot)
16175 return slot->type;
16176 else
16177 return NULL;
16178 }
16179
16180 /* Look up the type for DIE in the appropriate type_hash table,
16181 or return NULL if DIE does not have a saved type. */
16182
16183 static struct type *
16184 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16185 {
16186 return get_die_type_at_offset (die->offset, cu->per_cu);
16187 }
16188
16189 /* Add a dependence relationship from CU to REF_PER_CU. */
16190
16191 static void
16192 dwarf2_add_dependence (struct dwarf2_cu *cu,
16193 struct dwarf2_per_cu_data *ref_per_cu)
16194 {
16195 void **slot;
16196
16197 if (cu->dependencies == NULL)
16198 cu->dependencies
16199 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16200 NULL, &cu->comp_unit_obstack,
16201 hashtab_obstack_allocate,
16202 dummy_obstack_deallocate);
16203
16204 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16205 if (*slot == NULL)
16206 *slot = ref_per_cu;
16207 }
16208
16209 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16210 Set the mark field in every compilation unit in the
16211 cache that we must keep because we are keeping CU. */
16212
16213 static int
16214 dwarf2_mark_helper (void **slot, void *data)
16215 {
16216 struct dwarf2_per_cu_data *per_cu;
16217
16218 per_cu = (struct dwarf2_per_cu_data *) *slot;
16219
16220 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16221 reading of the chain. As such dependencies remain valid it is not much
16222 useful to track and undo them during QUIT cleanups. */
16223 if (per_cu->cu == NULL)
16224 return 1;
16225
16226 if (per_cu->cu->mark)
16227 return 1;
16228 per_cu->cu->mark = 1;
16229
16230 if (per_cu->cu->dependencies != NULL)
16231 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16232
16233 return 1;
16234 }
16235
16236 /* Set the mark field in CU and in every other compilation unit in the
16237 cache that we must keep because we are keeping CU. */
16238
16239 static void
16240 dwarf2_mark (struct dwarf2_cu *cu)
16241 {
16242 if (cu->mark)
16243 return;
16244 cu->mark = 1;
16245 if (cu->dependencies != NULL)
16246 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16247 }
16248
16249 static void
16250 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16251 {
16252 while (per_cu)
16253 {
16254 per_cu->cu->mark = 0;
16255 per_cu = per_cu->cu->read_in_chain;
16256 }
16257 }
16258
16259 /* Trivial hash function for partial_die_info: the hash value of a DIE
16260 is its offset in .debug_info for this objfile. */
16261
16262 static hashval_t
16263 partial_die_hash (const void *item)
16264 {
16265 const struct partial_die_info *part_die = item;
16266
16267 return part_die->offset;
16268 }
16269
16270 /* Trivial comparison function for partial_die_info structures: two DIEs
16271 are equal if they have the same offset. */
16272
16273 static int
16274 partial_die_eq (const void *item_lhs, const void *item_rhs)
16275 {
16276 const struct partial_die_info *part_die_lhs = item_lhs;
16277 const struct partial_die_info *part_die_rhs = item_rhs;
16278
16279 return part_die_lhs->offset == part_die_rhs->offset;
16280 }
16281
16282 static struct cmd_list_element *set_dwarf2_cmdlist;
16283 static struct cmd_list_element *show_dwarf2_cmdlist;
16284
16285 static void
16286 set_dwarf2_cmd (char *args, int from_tty)
16287 {
16288 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16289 }
16290
16291 static void
16292 show_dwarf2_cmd (char *args, int from_tty)
16293 {
16294 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16295 }
16296
16297 /* If section described by INFO was mmapped, munmap it now. */
16298
16299 static void
16300 munmap_section_buffer (struct dwarf2_section_info *info)
16301 {
16302 if (info->map_addr != NULL)
16303 {
16304 #ifdef HAVE_MMAP
16305 int res;
16306
16307 res = munmap (info->map_addr, info->map_len);
16308 gdb_assert (res == 0);
16309 #else
16310 /* Without HAVE_MMAP, we should never be here to begin with. */
16311 gdb_assert_not_reached ("no mmap support");
16312 #endif
16313 }
16314 }
16315
16316 /* munmap debug sections for OBJFILE, if necessary. */
16317
16318 static void
16319 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16320 {
16321 struct dwarf2_per_objfile *data = d;
16322 int ix;
16323 struct dwarf2_section_info *section;
16324
16325 /* This is sorted according to the order they're defined in to make it easier
16326 to keep in sync. */
16327 munmap_section_buffer (&data->info);
16328 munmap_section_buffer (&data->abbrev);
16329 munmap_section_buffer (&data->line);
16330 munmap_section_buffer (&data->loc);
16331 munmap_section_buffer (&data->macinfo);
16332 munmap_section_buffer (&data->macro);
16333 munmap_section_buffer (&data->str);
16334 munmap_section_buffer (&data->ranges);
16335 munmap_section_buffer (&data->frame);
16336 munmap_section_buffer (&data->eh_frame);
16337 munmap_section_buffer (&data->gdb_index);
16338
16339 for (ix = 0;
16340 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16341 ++ix)
16342 munmap_section_buffer (section);
16343
16344 VEC_free (dwarf2_section_info_def, data->types);
16345 }
16346
16347 \f
16348 /* The "save gdb-index" command. */
16349
16350 /* The contents of the hash table we create when building the string
16351 table. */
16352 struct strtab_entry
16353 {
16354 offset_type offset;
16355 const char *str;
16356 };
16357
16358 /* Hash function for a strtab_entry.
16359
16360 Function is used only during write_hash_table so no index format backward
16361 compatibility is needed. */
16362
16363 static hashval_t
16364 hash_strtab_entry (const void *e)
16365 {
16366 const struct strtab_entry *entry = e;
16367 return mapped_index_string_hash (INT_MAX, entry->str);
16368 }
16369
16370 /* Equality function for a strtab_entry. */
16371
16372 static int
16373 eq_strtab_entry (const void *a, const void *b)
16374 {
16375 const struct strtab_entry *ea = a;
16376 const struct strtab_entry *eb = b;
16377 return !strcmp (ea->str, eb->str);
16378 }
16379
16380 /* Create a strtab_entry hash table. */
16381
16382 static htab_t
16383 create_strtab (void)
16384 {
16385 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16386 xfree, xcalloc, xfree);
16387 }
16388
16389 /* Add a string to the constant pool. Return the string's offset in
16390 host order. */
16391
16392 static offset_type
16393 add_string (htab_t table, struct obstack *cpool, const char *str)
16394 {
16395 void **slot;
16396 struct strtab_entry entry;
16397 struct strtab_entry *result;
16398
16399 entry.str = str;
16400 slot = htab_find_slot (table, &entry, INSERT);
16401 if (*slot)
16402 result = *slot;
16403 else
16404 {
16405 result = XNEW (struct strtab_entry);
16406 result->offset = obstack_object_size (cpool);
16407 result->str = str;
16408 obstack_grow_str0 (cpool, str);
16409 *slot = result;
16410 }
16411 return result->offset;
16412 }
16413
16414 /* An entry in the symbol table. */
16415 struct symtab_index_entry
16416 {
16417 /* The name of the symbol. */
16418 const char *name;
16419 /* The offset of the name in the constant pool. */
16420 offset_type index_offset;
16421 /* A sorted vector of the indices of all the CUs that hold an object
16422 of this name. */
16423 VEC (offset_type) *cu_indices;
16424 };
16425
16426 /* The symbol table. This is a power-of-2-sized hash table. */
16427 struct mapped_symtab
16428 {
16429 offset_type n_elements;
16430 offset_type size;
16431 struct symtab_index_entry **data;
16432 };
16433
16434 /* Hash function for a symtab_index_entry. */
16435
16436 static hashval_t
16437 hash_symtab_entry (const void *e)
16438 {
16439 const struct symtab_index_entry *entry = e;
16440 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16441 sizeof (offset_type) * VEC_length (offset_type,
16442 entry->cu_indices),
16443 0);
16444 }
16445
16446 /* Equality function for a symtab_index_entry. */
16447
16448 static int
16449 eq_symtab_entry (const void *a, const void *b)
16450 {
16451 const struct symtab_index_entry *ea = a;
16452 const struct symtab_index_entry *eb = b;
16453 int len = VEC_length (offset_type, ea->cu_indices);
16454 if (len != VEC_length (offset_type, eb->cu_indices))
16455 return 0;
16456 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16457 VEC_address (offset_type, eb->cu_indices),
16458 sizeof (offset_type) * len);
16459 }
16460
16461 /* Destroy a symtab_index_entry. */
16462
16463 static void
16464 delete_symtab_entry (void *p)
16465 {
16466 struct symtab_index_entry *entry = p;
16467 VEC_free (offset_type, entry->cu_indices);
16468 xfree (entry);
16469 }
16470
16471 /* Create a hash table holding symtab_index_entry objects. */
16472
16473 static htab_t
16474 create_symbol_hash_table (void)
16475 {
16476 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16477 delete_symtab_entry, xcalloc, xfree);
16478 }
16479
16480 /* Create a new mapped symtab object. */
16481
16482 static struct mapped_symtab *
16483 create_mapped_symtab (void)
16484 {
16485 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16486 symtab->n_elements = 0;
16487 symtab->size = 1024;
16488 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16489 return symtab;
16490 }
16491
16492 /* Destroy a mapped_symtab. */
16493
16494 static void
16495 cleanup_mapped_symtab (void *p)
16496 {
16497 struct mapped_symtab *symtab = p;
16498 /* The contents of the array are freed when the other hash table is
16499 destroyed. */
16500 xfree (symtab->data);
16501 xfree (symtab);
16502 }
16503
16504 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16505 the slot.
16506
16507 Function is used only during write_hash_table so no index format backward
16508 compatibility is needed. */
16509
16510 static struct symtab_index_entry **
16511 find_slot (struct mapped_symtab *symtab, const char *name)
16512 {
16513 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16514
16515 index = hash & (symtab->size - 1);
16516 step = ((hash * 17) & (symtab->size - 1)) | 1;
16517
16518 for (;;)
16519 {
16520 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16521 return &symtab->data[index];
16522 index = (index + step) & (symtab->size - 1);
16523 }
16524 }
16525
16526 /* Expand SYMTAB's hash table. */
16527
16528 static void
16529 hash_expand (struct mapped_symtab *symtab)
16530 {
16531 offset_type old_size = symtab->size;
16532 offset_type i;
16533 struct symtab_index_entry **old_entries = symtab->data;
16534
16535 symtab->size *= 2;
16536 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16537
16538 for (i = 0; i < old_size; ++i)
16539 {
16540 if (old_entries[i])
16541 {
16542 struct symtab_index_entry **slot = find_slot (symtab,
16543 old_entries[i]->name);
16544 *slot = old_entries[i];
16545 }
16546 }
16547
16548 xfree (old_entries);
16549 }
16550
16551 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16552 is the index of the CU in which the symbol appears. */
16553
16554 static void
16555 add_index_entry (struct mapped_symtab *symtab, const char *name,
16556 offset_type cu_index)
16557 {
16558 struct symtab_index_entry **slot;
16559
16560 ++symtab->n_elements;
16561 if (4 * symtab->n_elements / 3 >= symtab->size)
16562 hash_expand (symtab);
16563
16564 slot = find_slot (symtab, name);
16565 if (!*slot)
16566 {
16567 *slot = XNEW (struct symtab_index_entry);
16568 (*slot)->name = name;
16569 (*slot)->cu_indices = NULL;
16570 }
16571 /* Don't push an index twice. Due to how we add entries we only
16572 have to check the last one. */
16573 if (VEC_empty (offset_type, (*slot)->cu_indices)
16574 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16575 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16576 }
16577
16578 /* Add a vector of indices to the constant pool. */
16579
16580 static offset_type
16581 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16582 struct symtab_index_entry *entry)
16583 {
16584 void **slot;
16585
16586 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16587 if (!*slot)
16588 {
16589 offset_type len = VEC_length (offset_type, entry->cu_indices);
16590 offset_type val = MAYBE_SWAP (len);
16591 offset_type iter;
16592 int i;
16593
16594 *slot = entry;
16595 entry->index_offset = obstack_object_size (cpool);
16596
16597 obstack_grow (cpool, &val, sizeof (val));
16598 for (i = 0;
16599 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16600 ++i)
16601 {
16602 val = MAYBE_SWAP (iter);
16603 obstack_grow (cpool, &val, sizeof (val));
16604 }
16605 }
16606 else
16607 {
16608 struct symtab_index_entry *old_entry = *slot;
16609 entry->index_offset = old_entry->index_offset;
16610 entry = old_entry;
16611 }
16612 return entry->index_offset;
16613 }
16614
16615 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16616 constant pool entries going into the obstack CPOOL. */
16617
16618 static void
16619 write_hash_table (struct mapped_symtab *symtab,
16620 struct obstack *output, struct obstack *cpool)
16621 {
16622 offset_type i;
16623 htab_t symbol_hash_table;
16624 htab_t str_table;
16625
16626 symbol_hash_table = create_symbol_hash_table ();
16627 str_table = create_strtab ();
16628
16629 /* We add all the index vectors to the constant pool first, to
16630 ensure alignment is ok. */
16631 for (i = 0; i < symtab->size; ++i)
16632 {
16633 if (symtab->data[i])
16634 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16635 }
16636
16637 /* Now write out the hash table. */
16638 for (i = 0; i < symtab->size; ++i)
16639 {
16640 offset_type str_off, vec_off;
16641
16642 if (symtab->data[i])
16643 {
16644 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16645 vec_off = symtab->data[i]->index_offset;
16646 }
16647 else
16648 {
16649 /* While 0 is a valid constant pool index, it is not valid
16650 to have 0 for both offsets. */
16651 str_off = 0;
16652 vec_off = 0;
16653 }
16654
16655 str_off = MAYBE_SWAP (str_off);
16656 vec_off = MAYBE_SWAP (vec_off);
16657
16658 obstack_grow (output, &str_off, sizeof (str_off));
16659 obstack_grow (output, &vec_off, sizeof (vec_off));
16660 }
16661
16662 htab_delete (str_table);
16663 htab_delete (symbol_hash_table);
16664 }
16665
16666 /* Struct to map psymtab to CU index in the index file. */
16667 struct psymtab_cu_index_map
16668 {
16669 struct partial_symtab *psymtab;
16670 unsigned int cu_index;
16671 };
16672
16673 static hashval_t
16674 hash_psymtab_cu_index (const void *item)
16675 {
16676 const struct psymtab_cu_index_map *map = item;
16677
16678 return htab_hash_pointer (map->psymtab);
16679 }
16680
16681 static int
16682 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16683 {
16684 const struct psymtab_cu_index_map *lhs = item_lhs;
16685 const struct psymtab_cu_index_map *rhs = item_rhs;
16686
16687 return lhs->psymtab == rhs->psymtab;
16688 }
16689
16690 /* Helper struct for building the address table. */
16691 struct addrmap_index_data
16692 {
16693 struct objfile *objfile;
16694 struct obstack *addr_obstack;
16695 htab_t cu_index_htab;
16696
16697 /* Non-zero if the previous_* fields are valid.
16698 We can't write an entry until we see the next entry (since it is only then
16699 that we know the end of the entry). */
16700 int previous_valid;
16701 /* Index of the CU in the table of all CUs in the index file. */
16702 unsigned int previous_cu_index;
16703 /* Start address of the CU. */
16704 CORE_ADDR previous_cu_start;
16705 };
16706
16707 /* Write an address entry to OBSTACK. */
16708
16709 static void
16710 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16711 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16712 {
16713 offset_type cu_index_to_write;
16714 char addr[8];
16715 CORE_ADDR baseaddr;
16716
16717 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16718
16719 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16720 obstack_grow (obstack, addr, 8);
16721 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16722 obstack_grow (obstack, addr, 8);
16723 cu_index_to_write = MAYBE_SWAP (cu_index);
16724 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16725 }
16726
16727 /* Worker function for traversing an addrmap to build the address table. */
16728
16729 static int
16730 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16731 {
16732 struct addrmap_index_data *data = datap;
16733 struct partial_symtab *pst = obj;
16734 offset_type cu_index;
16735 void **slot;
16736
16737 if (data->previous_valid)
16738 add_address_entry (data->objfile, data->addr_obstack,
16739 data->previous_cu_start, start_addr,
16740 data->previous_cu_index);
16741
16742 data->previous_cu_start = start_addr;
16743 if (pst != NULL)
16744 {
16745 struct psymtab_cu_index_map find_map, *map;
16746 find_map.psymtab = pst;
16747 map = htab_find (data->cu_index_htab, &find_map);
16748 gdb_assert (map != NULL);
16749 data->previous_cu_index = map->cu_index;
16750 data->previous_valid = 1;
16751 }
16752 else
16753 data->previous_valid = 0;
16754
16755 return 0;
16756 }
16757
16758 /* Write OBJFILE's address map to OBSTACK.
16759 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16760 in the index file. */
16761
16762 static void
16763 write_address_map (struct objfile *objfile, struct obstack *obstack,
16764 htab_t cu_index_htab)
16765 {
16766 struct addrmap_index_data addrmap_index_data;
16767
16768 /* When writing the address table, we have to cope with the fact that
16769 the addrmap iterator only provides the start of a region; we have to
16770 wait until the next invocation to get the start of the next region. */
16771
16772 addrmap_index_data.objfile = objfile;
16773 addrmap_index_data.addr_obstack = obstack;
16774 addrmap_index_data.cu_index_htab = cu_index_htab;
16775 addrmap_index_data.previous_valid = 0;
16776
16777 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16778 &addrmap_index_data);
16779
16780 /* It's highly unlikely the last entry (end address = 0xff...ff)
16781 is valid, but we should still handle it.
16782 The end address is recorded as the start of the next region, but that
16783 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16784 anyway. */
16785 if (addrmap_index_data.previous_valid)
16786 add_address_entry (objfile, obstack,
16787 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16788 addrmap_index_data.previous_cu_index);
16789 }
16790
16791 /* Add a list of partial symbols to SYMTAB. */
16792
16793 static void
16794 write_psymbols (struct mapped_symtab *symtab,
16795 htab_t psyms_seen,
16796 struct partial_symbol **psymp,
16797 int count,
16798 offset_type cu_index,
16799 int is_static)
16800 {
16801 for (; count-- > 0; ++psymp)
16802 {
16803 void **slot, *lookup;
16804
16805 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16806 error (_("Ada is not currently supported by the index"));
16807
16808 /* We only want to add a given psymbol once. However, we also
16809 want to account for whether it is global or static. So, we
16810 may add it twice, using slightly different values. */
16811 if (is_static)
16812 {
16813 uintptr_t val = 1 | (uintptr_t) *psymp;
16814
16815 lookup = (void *) val;
16816 }
16817 else
16818 lookup = *psymp;
16819
16820 /* Only add a given psymbol once. */
16821 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16822 if (!*slot)
16823 {
16824 *slot = lookup;
16825 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16826 }
16827 }
16828 }
16829
16830 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16831 exception if there is an error. */
16832
16833 static void
16834 write_obstack (FILE *file, struct obstack *obstack)
16835 {
16836 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16837 file)
16838 != obstack_object_size (obstack))
16839 error (_("couldn't data write to file"));
16840 }
16841
16842 /* Unlink a file if the argument is not NULL. */
16843
16844 static void
16845 unlink_if_set (void *p)
16846 {
16847 char **filename = p;
16848 if (*filename)
16849 unlink (*filename);
16850 }
16851
16852 /* A helper struct used when iterating over debug_types. */
16853 struct signatured_type_index_data
16854 {
16855 struct objfile *objfile;
16856 struct mapped_symtab *symtab;
16857 struct obstack *types_list;
16858 htab_t psyms_seen;
16859 int cu_index;
16860 };
16861
16862 /* A helper function that writes a single signatured_type to an
16863 obstack. */
16864
16865 static int
16866 write_one_signatured_type (void **slot, void *d)
16867 {
16868 struct signatured_type_index_data *info = d;
16869 struct signatured_type *entry = (struct signatured_type *) *slot;
16870 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16871 struct partial_symtab *psymtab = per_cu->v.psymtab;
16872 gdb_byte val[8];
16873
16874 write_psymbols (info->symtab,
16875 info->psyms_seen,
16876 info->objfile->global_psymbols.list
16877 + psymtab->globals_offset,
16878 psymtab->n_global_syms, info->cu_index,
16879 0);
16880 write_psymbols (info->symtab,
16881 info->psyms_seen,
16882 info->objfile->static_psymbols.list
16883 + psymtab->statics_offset,
16884 psymtab->n_static_syms, info->cu_index,
16885 1);
16886
16887 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16888 obstack_grow (info->types_list, val, 8);
16889 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16890 obstack_grow (info->types_list, val, 8);
16891 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16892 obstack_grow (info->types_list, val, 8);
16893
16894 ++info->cu_index;
16895
16896 return 1;
16897 }
16898
16899 /* Create an index file for OBJFILE in the directory DIR. */
16900
16901 static void
16902 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16903 {
16904 struct cleanup *cleanup;
16905 char *filename, *cleanup_filename;
16906 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16907 struct obstack cu_list, types_cu_list;
16908 int i;
16909 FILE *out_file;
16910 struct mapped_symtab *symtab;
16911 offset_type val, size_of_contents, total_len;
16912 struct stat st;
16913 char buf[8];
16914 htab_t psyms_seen;
16915 htab_t cu_index_htab;
16916 struct psymtab_cu_index_map *psymtab_cu_index_map;
16917
16918 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16919 return;
16920
16921 if (dwarf2_per_objfile->using_index)
16922 error (_("Cannot use an index to create the index"));
16923
16924 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16925 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16926
16927 if (stat (objfile->name, &st) < 0)
16928 perror_with_name (objfile->name);
16929
16930 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16931 INDEX_SUFFIX, (char *) NULL);
16932 cleanup = make_cleanup (xfree, filename);
16933
16934 out_file = fopen (filename, "wb");
16935 if (!out_file)
16936 error (_("Can't open `%s' for writing"), filename);
16937
16938 cleanup_filename = filename;
16939 make_cleanup (unlink_if_set, &cleanup_filename);
16940
16941 symtab = create_mapped_symtab ();
16942 make_cleanup (cleanup_mapped_symtab, symtab);
16943
16944 obstack_init (&addr_obstack);
16945 make_cleanup_obstack_free (&addr_obstack);
16946
16947 obstack_init (&cu_list);
16948 make_cleanup_obstack_free (&cu_list);
16949
16950 obstack_init (&types_cu_list);
16951 make_cleanup_obstack_free (&types_cu_list);
16952
16953 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16954 NULL, xcalloc, xfree);
16955 make_cleanup_htab_delete (psyms_seen);
16956
16957 /* While we're scanning CU's create a table that maps a psymtab pointer
16958 (which is what addrmap records) to its index (which is what is recorded
16959 in the index file). This will later be needed to write the address
16960 table. */
16961 cu_index_htab = htab_create_alloc (100,
16962 hash_psymtab_cu_index,
16963 eq_psymtab_cu_index,
16964 NULL, xcalloc, xfree);
16965 make_cleanup_htab_delete (cu_index_htab);
16966 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16967 xmalloc (sizeof (struct psymtab_cu_index_map)
16968 * dwarf2_per_objfile->n_comp_units);
16969 make_cleanup (xfree, psymtab_cu_index_map);
16970
16971 /* The CU list is already sorted, so we don't need to do additional
16972 work here. Also, the debug_types entries do not appear in
16973 all_comp_units, but only in their own hash table. */
16974 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16975 {
16976 struct dwarf2_per_cu_data *per_cu
16977 = dwarf2_per_objfile->all_comp_units[i];
16978 struct partial_symtab *psymtab = per_cu->v.psymtab;
16979 gdb_byte val[8];
16980 struct psymtab_cu_index_map *map;
16981 void **slot;
16982
16983 write_psymbols (symtab,
16984 psyms_seen,
16985 objfile->global_psymbols.list + psymtab->globals_offset,
16986 psymtab->n_global_syms, i,
16987 0);
16988 write_psymbols (symtab,
16989 psyms_seen,
16990 objfile->static_psymbols.list + psymtab->statics_offset,
16991 psymtab->n_static_syms, i,
16992 1);
16993
16994 map = &psymtab_cu_index_map[i];
16995 map->psymtab = psymtab;
16996 map->cu_index = i;
16997 slot = htab_find_slot (cu_index_htab, map, INSERT);
16998 gdb_assert (slot != NULL);
16999 gdb_assert (*slot == NULL);
17000 *slot = map;
17001
17002 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
17003 obstack_grow (&cu_list, val, 8);
17004 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17005 obstack_grow (&cu_list, val, 8);
17006 }
17007
17008 /* Dump the address map. */
17009 write_address_map (objfile, &addr_obstack, cu_index_htab);
17010
17011 /* Write out the .debug_type entries, if any. */
17012 if (dwarf2_per_objfile->signatured_types)
17013 {
17014 struct signatured_type_index_data sig_data;
17015
17016 sig_data.objfile = objfile;
17017 sig_data.symtab = symtab;
17018 sig_data.types_list = &types_cu_list;
17019 sig_data.psyms_seen = psyms_seen;
17020 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17021 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17022 write_one_signatured_type, &sig_data);
17023 }
17024
17025 obstack_init (&constant_pool);
17026 make_cleanup_obstack_free (&constant_pool);
17027 obstack_init (&symtab_obstack);
17028 make_cleanup_obstack_free (&symtab_obstack);
17029 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17030
17031 obstack_init (&contents);
17032 make_cleanup_obstack_free (&contents);
17033 size_of_contents = 6 * sizeof (offset_type);
17034 total_len = size_of_contents;
17035
17036 /* The version number. */
17037 val = MAYBE_SWAP (5);
17038 obstack_grow (&contents, &val, sizeof (val));
17039
17040 /* The offset of the CU list from the start of the file. */
17041 val = MAYBE_SWAP (total_len);
17042 obstack_grow (&contents, &val, sizeof (val));
17043 total_len += obstack_object_size (&cu_list);
17044
17045 /* The offset of the types CU list from the start of the file. */
17046 val = MAYBE_SWAP (total_len);
17047 obstack_grow (&contents, &val, sizeof (val));
17048 total_len += obstack_object_size (&types_cu_list);
17049
17050 /* The offset of the address table from the start of the file. */
17051 val = MAYBE_SWAP (total_len);
17052 obstack_grow (&contents, &val, sizeof (val));
17053 total_len += obstack_object_size (&addr_obstack);
17054
17055 /* The offset of the symbol table from the start of the file. */
17056 val = MAYBE_SWAP (total_len);
17057 obstack_grow (&contents, &val, sizeof (val));
17058 total_len += obstack_object_size (&symtab_obstack);
17059
17060 /* The offset of the constant pool from the start of the file. */
17061 val = MAYBE_SWAP (total_len);
17062 obstack_grow (&contents, &val, sizeof (val));
17063 total_len += obstack_object_size (&constant_pool);
17064
17065 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17066
17067 write_obstack (out_file, &contents);
17068 write_obstack (out_file, &cu_list);
17069 write_obstack (out_file, &types_cu_list);
17070 write_obstack (out_file, &addr_obstack);
17071 write_obstack (out_file, &symtab_obstack);
17072 write_obstack (out_file, &constant_pool);
17073
17074 fclose (out_file);
17075
17076 /* We want to keep the file, so we set cleanup_filename to NULL
17077 here. See unlink_if_set. */
17078 cleanup_filename = NULL;
17079
17080 do_cleanups (cleanup);
17081 }
17082
17083 /* Implementation of the `save gdb-index' command.
17084
17085 Note that the file format used by this command is documented in the
17086 GDB manual. Any changes here must be documented there. */
17087
17088 static void
17089 save_gdb_index_command (char *arg, int from_tty)
17090 {
17091 struct objfile *objfile;
17092
17093 if (!arg || !*arg)
17094 error (_("usage: save gdb-index DIRECTORY"));
17095
17096 ALL_OBJFILES (objfile)
17097 {
17098 struct stat st;
17099
17100 /* If the objfile does not correspond to an actual file, skip it. */
17101 if (stat (objfile->name, &st) < 0)
17102 continue;
17103
17104 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17105 if (dwarf2_per_objfile)
17106 {
17107 volatile struct gdb_exception except;
17108
17109 TRY_CATCH (except, RETURN_MASK_ERROR)
17110 {
17111 write_psymtabs_to_index (objfile, arg);
17112 }
17113 if (except.reason < 0)
17114 exception_fprintf (gdb_stderr, except,
17115 _("Error while writing index for `%s': "),
17116 objfile->name);
17117 }
17118 }
17119 }
17120
17121 \f
17122
17123 int dwarf2_always_disassemble;
17124
17125 static void
17126 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17127 struct cmd_list_element *c, const char *value)
17128 {
17129 fprintf_filtered (file,
17130 _("Whether to always disassemble "
17131 "DWARF expressions is %s.\n"),
17132 value);
17133 }
17134
17135 static void
17136 show_check_physname (struct ui_file *file, int from_tty,
17137 struct cmd_list_element *c, const char *value)
17138 {
17139 fprintf_filtered (file,
17140 _("Whether to check \"physname\" is %s.\n"),
17141 value);
17142 }
17143
17144 void _initialize_dwarf2_read (void);
17145
17146 void
17147 _initialize_dwarf2_read (void)
17148 {
17149 struct cmd_list_element *c;
17150
17151 dwarf2_objfile_data_key
17152 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17153
17154 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17155 Set DWARF 2 specific variables.\n\
17156 Configure DWARF 2 variables such as the cache size"),
17157 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17158 0/*allow-unknown*/, &maintenance_set_cmdlist);
17159
17160 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17161 Show DWARF 2 specific variables\n\
17162 Show DWARF 2 variables such as the cache size"),
17163 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17164 0/*allow-unknown*/, &maintenance_show_cmdlist);
17165
17166 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17167 &dwarf2_max_cache_age, _("\
17168 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17169 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17170 A higher limit means that cached compilation units will be stored\n\
17171 in memory longer, and more total memory will be used. Zero disables\n\
17172 caching, which can slow down startup."),
17173 NULL,
17174 show_dwarf2_max_cache_age,
17175 &set_dwarf2_cmdlist,
17176 &show_dwarf2_cmdlist);
17177
17178 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17179 &dwarf2_always_disassemble, _("\
17180 Set whether `info address' always disassembles DWARF expressions."), _("\
17181 Show whether `info address' always disassembles DWARF expressions."), _("\
17182 When enabled, DWARF expressions are always printed in an assembly-like\n\
17183 syntax. When disabled, expressions will be printed in a more\n\
17184 conversational style, when possible."),
17185 NULL,
17186 show_dwarf2_always_disassemble,
17187 &set_dwarf2_cmdlist,
17188 &show_dwarf2_cmdlist);
17189
17190 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17191 Set debugging of the dwarf2 DIE reader."), _("\
17192 Show debugging of the dwarf2 DIE reader."), _("\
17193 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17194 The value is the maximum depth to print."),
17195 NULL,
17196 NULL,
17197 &setdebuglist, &showdebuglist);
17198
17199 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17200 Set cross-checking of \"physname\" code against demangler."), _("\
17201 Show cross-checking of \"physname\" code against demangler."), _("\
17202 When enabled, GDB's internal \"physname\" code is checked against\n\
17203 the demangler."),
17204 NULL, show_check_physname,
17205 &setdebuglist, &showdebuglist);
17206
17207 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17208 _("\
17209 Save a gdb-index file.\n\
17210 Usage: save gdb-index DIRECTORY"),
17211 &save_cmdlist);
17212 set_cmd_completer (c, filename_completer);
17213 }