* dwarf2read.c (struct dwz_file) <gdb_index>: New field.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68
69 #include <fcntl.h>
70 #include "gdb_string.h"
71 #include "gdb_assert.h"
72 #include <sys/types.h>
73
74 typedef struct symbol *symbolp;
75 DEF_VEC_P (symbolp);
76
77 /* When non-zero, print basic high level tracing messages.
78 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
79 static int dwarf2_read_debug = 0;
80
81 /* When non-zero, dump DIEs after they are read in. */
82 static int dwarf2_die_debug = 0;
83
84 /* When non-zero, cross-check physname against demangler. */
85 static int check_physname = 0;
86
87 /* When non-zero, do not reject deprecated .gdb_index sections. */
88 int use_deprecated_index_sections = 0;
89
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94 static int processing_has_namespace_info;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 struct dwarf2_section_info
99 {
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
103 /* True if we have tried to read this section. */
104 int readin;
105 };
106
107 typedef struct dwarf2_section_info dwarf2_section_info_def;
108 DEF_VEC_O (dwarf2_section_info_def);
109
110 /* All offsets in the index are of this type. It must be
111 architecture-independent. */
112 typedef uint32_t offset_type;
113
114 DEF_VEC_I (offset_type);
115
116 /* Ensure only legit values are used. */
117 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
118 do { \
119 gdb_assert ((unsigned int) (value) <= 1); \
120 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
121 } while (0)
122
123 /* Ensure only legit values are used. */
124 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
125 do { \
126 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
127 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
128 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
129 } while (0)
130
131 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
132 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
133 do { \
134 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
135 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
136 } while (0)
137
138 /* A description of the mapped index. The file format is described in
139 a comment by the code that writes the index. */
140 struct mapped_index
141 {
142 /* Index data format version. */
143 int version;
144
145 /* The total length of the buffer. */
146 off_t total_size;
147
148 /* A pointer to the address table data. */
149 const gdb_byte *address_table;
150
151 /* Size of the address table data in bytes. */
152 offset_type address_table_size;
153
154 /* The symbol table, implemented as a hash table. */
155 const offset_type *symbol_table;
156
157 /* Size in slots, each slot is 2 offset_types. */
158 offset_type symbol_table_slots;
159
160 /* A pointer to the constant pool. */
161 const char *constant_pool;
162 };
163
164 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
165 DEF_VEC_P (dwarf2_per_cu_ptr);
166
167 /* Collection of data recorded per objfile.
168 This hangs off of dwarf2_objfile_data_key. */
169
170 struct dwarf2_per_objfile
171 {
172 struct dwarf2_section_info info;
173 struct dwarf2_section_info abbrev;
174 struct dwarf2_section_info line;
175 struct dwarf2_section_info loc;
176 struct dwarf2_section_info macinfo;
177 struct dwarf2_section_info macro;
178 struct dwarf2_section_info str;
179 struct dwarf2_section_info ranges;
180 struct dwarf2_section_info addr;
181 struct dwarf2_section_info frame;
182 struct dwarf2_section_info eh_frame;
183 struct dwarf2_section_info gdb_index;
184
185 VEC (dwarf2_section_info_def) *types;
186
187 /* Back link. */
188 struct objfile *objfile;
189
190 /* Table of all the compilation units. This is used to locate
191 the target compilation unit of a particular reference. */
192 struct dwarf2_per_cu_data **all_comp_units;
193
194 /* The number of compilation units in ALL_COMP_UNITS. */
195 int n_comp_units;
196
197 /* The number of .debug_types-related CUs. */
198 int n_type_units;
199
200 /* The .debug_types-related CUs (TUs). */
201 struct signatured_type **all_type_units;
202
203 /* The number of entries in all_type_unit_groups. */
204 int n_type_unit_groups;
205
206 /* Table of type unit groups.
207 This exists to make it easy to iterate over all CUs and TU groups. */
208 struct type_unit_group **all_type_unit_groups;
209
210 /* Table of struct type_unit_group objects.
211 The hash key is the DW_AT_stmt_list value. */
212 htab_t type_unit_groups;
213
214 /* A table mapping .debug_types signatures to its signatured_type entry.
215 This is NULL if the .debug_types section hasn't been read in yet. */
216 htab_t signatured_types;
217
218 /* Type unit statistics, to see how well the scaling improvements
219 are doing. */
220 struct tu_stats
221 {
222 int nr_uniq_abbrev_tables;
223 int nr_symtabs;
224 int nr_symtab_sharers;
225 int nr_stmt_less_type_units;
226 } tu_stats;
227
228 /* A chain of compilation units that are currently read in, so that
229 they can be freed later. */
230 struct dwarf2_per_cu_data *read_in_chain;
231
232 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
233 This is NULL if the table hasn't been allocated yet. */
234 htab_t dwo_files;
235
236 /* The shared '.dwz' file, if one exists. This is used when the
237 original data was compressed using 'dwz -m'. */
238 struct dwz_file *dwz_file;
239
240 /* A flag indicating wether this objfile has a section loaded at a
241 VMA of 0. */
242 int has_section_at_zero;
243
244 /* True if we are using the mapped index,
245 or we are faking it for OBJF_READNOW's sake. */
246 unsigned char using_index;
247
248 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
249 struct mapped_index *index_table;
250
251 /* When using index_table, this keeps track of all quick_file_names entries.
252 TUs can share line table entries with CUs or other TUs, and there can be
253 a lot more TUs than unique line tables, so we maintain a separate table
254 of all line table entries to support the sharing. */
255 htab_t quick_file_names_table;
256
257 /* Set during partial symbol reading, to prevent queueing of full
258 symbols. */
259 int reading_partial_symbols;
260
261 /* Table mapping type DIEs to their struct type *.
262 This is NULL if not allocated yet.
263 The mapping is done via (CU/TU signature + DIE offset) -> type. */
264 htab_t die_type_hash;
265
266 /* The CUs we recently read. */
267 VEC (dwarf2_per_cu_ptr) *just_read_cus;
268 };
269
270 static struct dwarf2_per_objfile *dwarf2_per_objfile;
271
272 /* Default names of the debugging sections. */
273
274 /* Note that if the debugging section has been compressed, it might
275 have a name like .zdebug_info. */
276
277 static const struct dwarf2_debug_sections dwarf2_elf_names =
278 {
279 { ".debug_info", ".zdebug_info" },
280 { ".debug_abbrev", ".zdebug_abbrev" },
281 { ".debug_line", ".zdebug_line" },
282 { ".debug_loc", ".zdebug_loc" },
283 { ".debug_macinfo", ".zdebug_macinfo" },
284 { ".debug_macro", ".zdebug_macro" },
285 { ".debug_str", ".zdebug_str" },
286 { ".debug_ranges", ".zdebug_ranges" },
287 { ".debug_types", ".zdebug_types" },
288 { ".debug_addr", ".zdebug_addr" },
289 { ".debug_frame", ".zdebug_frame" },
290 { ".eh_frame", NULL },
291 { ".gdb_index", ".zgdb_index" },
292 23
293 };
294
295 /* List of DWO sections. */
296
297 static const struct dwo_section_names
298 {
299 struct dwarf2_section_names abbrev_dwo;
300 struct dwarf2_section_names info_dwo;
301 struct dwarf2_section_names line_dwo;
302 struct dwarf2_section_names loc_dwo;
303 struct dwarf2_section_names macinfo_dwo;
304 struct dwarf2_section_names macro_dwo;
305 struct dwarf2_section_names str_dwo;
306 struct dwarf2_section_names str_offsets_dwo;
307 struct dwarf2_section_names types_dwo;
308 }
309 dwo_section_names =
310 {
311 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
312 { ".debug_info.dwo", ".zdebug_info.dwo" },
313 { ".debug_line.dwo", ".zdebug_line.dwo" },
314 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
315 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
316 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
317 { ".debug_str.dwo", ".zdebug_str.dwo" },
318 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
319 { ".debug_types.dwo", ".zdebug_types.dwo" },
320 };
321
322 /* local data types */
323
324 /* The data in a compilation unit header, after target2host
325 translation, looks like this. */
326 struct comp_unit_head
327 {
328 unsigned int length;
329 short version;
330 unsigned char addr_size;
331 unsigned char signed_addr_p;
332 sect_offset abbrev_offset;
333
334 /* Size of file offsets; either 4 or 8. */
335 unsigned int offset_size;
336
337 /* Size of the length field; either 4 or 12. */
338 unsigned int initial_length_size;
339
340 /* Offset to the first byte of this compilation unit header in the
341 .debug_info section, for resolving relative reference dies. */
342 sect_offset offset;
343
344 /* Offset to first die in this cu from the start of the cu.
345 This will be the first byte following the compilation unit header. */
346 cu_offset first_die_offset;
347 };
348
349 /* Type used for delaying computation of method physnames.
350 See comments for compute_delayed_physnames. */
351 struct delayed_method_info
352 {
353 /* The type to which the method is attached, i.e., its parent class. */
354 struct type *type;
355
356 /* The index of the method in the type's function fieldlists. */
357 int fnfield_index;
358
359 /* The index of the method in the fieldlist. */
360 int index;
361
362 /* The name of the DIE. */
363 const char *name;
364
365 /* The DIE associated with this method. */
366 struct die_info *die;
367 };
368
369 typedef struct delayed_method_info delayed_method_info;
370 DEF_VEC_O (delayed_method_info);
371
372 /* Internal state when decoding a particular compilation unit. */
373 struct dwarf2_cu
374 {
375 /* The objfile containing this compilation unit. */
376 struct objfile *objfile;
377
378 /* The header of the compilation unit. */
379 struct comp_unit_head header;
380
381 /* Base address of this compilation unit. */
382 CORE_ADDR base_address;
383
384 /* Non-zero if base_address has been set. */
385 int base_known;
386
387 /* The language we are debugging. */
388 enum language language;
389 const struct language_defn *language_defn;
390
391 const char *producer;
392
393 /* The generic symbol table building routines have separate lists for
394 file scope symbols and all all other scopes (local scopes). So
395 we need to select the right one to pass to add_symbol_to_list().
396 We do it by keeping a pointer to the correct list in list_in_scope.
397
398 FIXME: The original dwarf code just treated the file scope as the
399 first local scope, and all other local scopes as nested local
400 scopes, and worked fine. Check to see if we really need to
401 distinguish these in buildsym.c. */
402 struct pending **list_in_scope;
403
404 /* The abbrev table for this CU.
405 Normally this points to the abbrev table in the objfile.
406 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
407 struct abbrev_table *abbrev_table;
408
409 /* Hash table holding all the loaded partial DIEs
410 with partial_die->offset.SECT_OFF as hash. */
411 htab_t partial_dies;
412
413 /* Storage for things with the same lifetime as this read-in compilation
414 unit, including partial DIEs. */
415 struct obstack comp_unit_obstack;
416
417 /* When multiple dwarf2_cu structures are living in memory, this field
418 chains them all together, so that they can be released efficiently.
419 We will probably also want a generation counter so that most-recently-used
420 compilation units are cached... */
421 struct dwarf2_per_cu_data *read_in_chain;
422
423 /* Backchain to our per_cu entry if the tree has been built. */
424 struct dwarf2_per_cu_data *per_cu;
425
426 /* How many compilation units ago was this CU last referenced? */
427 int last_used;
428
429 /* A hash table of DIE cu_offset for following references with
430 die_info->offset.sect_off as hash. */
431 htab_t die_hash;
432
433 /* Full DIEs if read in. */
434 struct die_info *dies;
435
436 /* A set of pointers to dwarf2_per_cu_data objects for compilation
437 units referenced by this one. Only set during full symbol processing;
438 partial symbol tables do not have dependencies. */
439 htab_t dependencies;
440
441 /* Header data from the line table, during full symbol processing. */
442 struct line_header *line_header;
443
444 /* A list of methods which need to have physnames computed
445 after all type information has been read. */
446 VEC (delayed_method_info) *method_list;
447
448 /* To be copied to symtab->call_site_htab. */
449 htab_t call_site_htab;
450
451 /* Non-NULL if this CU came from a DWO file.
452 There is an invariant here that is important to remember:
453 Except for attributes copied from the top level DIE in the "main"
454 (or "stub") file in preparation for reading the DWO file
455 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
456 Either there isn't a DWO file (in which case this is NULL and the point
457 is moot), or there is and either we're not going to read it (in which
458 case this is NULL) or there is and we are reading it (in which case this
459 is non-NULL). */
460 struct dwo_unit *dwo_unit;
461
462 /* The DW_AT_addr_base attribute if present, zero otherwise
463 (zero is a valid value though).
464 Note this value comes from the stub CU/TU's DIE. */
465 ULONGEST addr_base;
466
467 /* The DW_AT_ranges_base attribute if present, zero otherwise
468 (zero is a valid value though).
469 Note this value comes from the stub CU/TU's DIE.
470 Also note that the value is zero in the non-DWO case so this value can
471 be used without needing to know whether DWO files are in use or not. */
472 ULONGEST ranges_base;
473
474 /* Mark used when releasing cached dies. */
475 unsigned int mark : 1;
476
477 /* This CU references .debug_loc. See the symtab->locations_valid field.
478 This test is imperfect as there may exist optimized debug code not using
479 any location list and still facing inlining issues if handled as
480 unoptimized code. For a future better test see GCC PR other/32998. */
481 unsigned int has_loclist : 1;
482
483 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
484 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
485 are valid. This information is cached because profiling CU expansion
486 showed excessive time spent in producer_is_gxx_lt_4_6. */
487 unsigned int checked_producer : 1;
488 unsigned int producer_is_gxx_lt_4_6 : 1;
489 unsigned int producer_is_icc : 1;
490 };
491
492 /* Persistent data held for a compilation unit, even when not
493 processing it. We put a pointer to this structure in the
494 read_symtab_private field of the psymtab. */
495
496 struct dwarf2_per_cu_data
497 {
498 /* The start offset and length of this compilation unit.
499 NOTE: Unlike comp_unit_head.length, this length includes
500 initial_length_size.
501 If the DIE refers to a DWO file, this is always of the original die,
502 not the DWO file. */
503 sect_offset offset;
504 unsigned int length;
505
506 /* Flag indicating this compilation unit will be read in before
507 any of the current compilation units are processed. */
508 unsigned int queued : 1;
509
510 /* This flag will be set when reading partial DIEs if we need to load
511 absolutely all DIEs for this compilation unit, instead of just the ones
512 we think are interesting. It gets set if we look for a DIE in the
513 hash table and don't find it. */
514 unsigned int load_all_dies : 1;
515
516 /* Non-zero if this CU is from .debug_types. */
517 unsigned int is_debug_types : 1;
518
519 /* Non-zero if this CU is from the .dwz file. */
520 unsigned int is_dwz : 1;
521
522 /* The section this CU/TU lives in.
523 If the DIE refers to a DWO file, this is always the original die,
524 not the DWO file. */
525 struct dwarf2_section_info *info_or_types_section;
526
527 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
528 of the CU cache it gets reset to NULL again. */
529 struct dwarf2_cu *cu;
530
531 /* The corresponding objfile.
532 Normally we can get the objfile from dwarf2_per_objfile.
533 However we can enter this file with just a "per_cu" handle. */
534 struct objfile *objfile;
535
536 /* When using partial symbol tables, the 'psymtab' field is active.
537 Otherwise the 'quick' field is active. */
538 union
539 {
540 /* The partial symbol table associated with this compilation unit,
541 or NULL for unread partial units. */
542 struct partial_symtab *psymtab;
543
544 /* Data needed by the "quick" functions. */
545 struct dwarf2_per_cu_quick_data *quick;
546 } v;
547
548 union
549 {
550 /* The CUs we import using DW_TAG_imported_unit. This is filled in
551 while reading psymtabs, used to compute the psymtab dependencies,
552 and then cleared. Then it is filled in again while reading full
553 symbols, and only deleted when the objfile is destroyed. */
554 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
555
556 /* Type units are grouped by their DW_AT_stmt_list entry so that they
557 can share them. If this is a TU, this points to the containing
558 symtab. */
559 struct type_unit_group *type_unit_group;
560 } s;
561 };
562
563 /* Entry in the signatured_types hash table. */
564
565 struct signatured_type
566 {
567 /* The "per_cu" object of this type.
568 N.B.: This is the first member so that it's easy to convert pointers
569 between them. */
570 struct dwarf2_per_cu_data per_cu;
571
572 /* The type's signature. */
573 ULONGEST signature;
574
575 /* Offset in the TU of the type's DIE, as read from the TU header.
576 If the definition lives in a DWO file, this value is unusable. */
577 cu_offset type_offset_in_tu;
578
579 /* Offset in the section of the type's DIE.
580 If the definition lives in a DWO file, this is the offset in the
581 .debug_types.dwo section.
582 The value is zero until the actual value is known.
583 Zero is otherwise not a valid section offset. */
584 sect_offset type_offset_in_section;
585 };
586
587 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
588 This includes type_unit_group and quick_file_names. */
589
590 struct stmt_list_hash
591 {
592 /* The DWO unit this table is from or NULL if there is none. */
593 struct dwo_unit *dwo_unit;
594
595 /* Offset in .debug_line or .debug_line.dwo. */
596 sect_offset line_offset;
597 };
598
599 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
600 an object of this type. */
601
602 struct type_unit_group
603 {
604 /* dwarf2read.c's main "handle" on the symtab.
605 To simplify things we create an artificial CU that "includes" all the
606 type units using this stmt_list so that the rest of the code still has
607 a "per_cu" handle on the symtab.
608 This PER_CU is recognized by having no section. */
609 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
610 struct dwarf2_per_cu_data per_cu;
611
612 union
613 {
614 /* The TUs that share this DW_AT_stmt_list entry.
615 This is added to while parsing type units to build partial symtabs,
616 and is deleted afterwards and not used again. */
617 VEC (dwarf2_per_cu_ptr) *tus;
618
619 /* When reading the line table in "quick" functions, we need a real TU.
620 Any will do, we know they all share the same DW_AT_stmt_list entry.
621 For simplicity's sake, we pick the first one. */
622 struct dwarf2_per_cu_data *first_tu;
623 } t;
624
625 /* The primary symtab.
626 Type units in a group needn't all be defined in the same source file,
627 so we create an essentially anonymous symtab as the primary symtab. */
628 struct symtab *primary_symtab;
629
630 /* The data used to construct the hash key. */
631 struct stmt_list_hash hash;
632
633 /* The number of symtabs from the line header.
634 The value here must match line_header.num_file_names. */
635 unsigned int num_symtabs;
636
637 /* The symbol tables for this TU (obtained from the files listed in
638 DW_AT_stmt_list).
639 WARNING: The order of entries here must match the order of entries
640 in the line header. After the first TU using this type_unit_group, the
641 line header for the subsequent TUs is recreated from this. This is done
642 because we need to use the same symtabs for each TU using the same
643 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
644 there's no guarantee the line header doesn't have duplicate entries. */
645 struct symtab **symtabs;
646 };
647
648 /* These sections are what may appear in a "dwo" file. */
649
650 struct dwo_sections
651 {
652 struct dwarf2_section_info abbrev;
653 struct dwarf2_section_info info;
654 struct dwarf2_section_info line;
655 struct dwarf2_section_info loc;
656 struct dwarf2_section_info macinfo;
657 struct dwarf2_section_info macro;
658 struct dwarf2_section_info str;
659 struct dwarf2_section_info str_offsets;
660 VEC (dwarf2_section_info_def) *types;
661 };
662
663 /* Common bits of DWO CUs/TUs. */
664
665 struct dwo_unit
666 {
667 /* Backlink to the containing struct dwo_file. */
668 struct dwo_file *dwo_file;
669
670 /* The "id" that distinguishes this CU/TU.
671 .debug_info calls this "dwo_id", .debug_types calls this "signature".
672 Since signatures came first, we stick with it for consistency. */
673 ULONGEST signature;
674
675 /* The section this CU/TU lives in, in the DWO file. */
676 struct dwarf2_section_info *info_or_types_section;
677
678 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
679 sect_offset offset;
680 unsigned int length;
681
682 /* For types, offset in the type's DIE of the type defined by this TU. */
683 cu_offset type_offset_in_tu;
684 };
685
686 /* Data for one DWO file. */
687
688 struct dwo_file
689 {
690 /* The DW_AT_GNU_dwo_name attribute.
691 We don't manage space for this, it's an attribute. */
692 const char *dwo_name;
693
694 /* The bfd, when the file is open. Otherwise this is NULL. */
695 bfd *dwo_bfd;
696
697 /* Section info for this file. */
698 struct dwo_sections sections;
699
700 /* Table of CUs in the file.
701 Each element is a struct dwo_unit. */
702 htab_t cus;
703
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
706 htab_t tus;
707 };
708
709 /* This represents a '.dwz' file. */
710
711 struct dwz_file
712 {
713 /* A dwz file can only contain a few sections. */
714 struct dwarf2_section_info abbrev;
715 struct dwarf2_section_info info;
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info macro;
719 struct dwarf2_section_info gdb_index;
720
721 /* The dwz's BFD. */
722 bfd *dwz_bfd;
723 };
724
725 /* Struct used to pass misc. parameters to read_die_and_children, et
726 al. which are used for both .debug_info and .debug_types dies.
727 All parameters here are unchanging for the life of the call. This
728 struct exists to abstract away the constant parameters of die reading. */
729
730 struct die_reader_specs
731 {
732 /* die_section->asection->owner. */
733 bfd* abfd;
734
735 /* The CU of the DIE we are parsing. */
736 struct dwarf2_cu *cu;
737
738 /* Non-NULL if reading a DWO file. */
739 struct dwo_file *dwo_file;
740
741 /* The section the die comes from.
742 This is either .debug_info or .debug_types, or the .dwo variants. */
743 struct dwarf2_section_info *die_section;
744
745 /* die_section->buffer. */
746 gdb_byte *buffer;
747
748 /* The end of the buffer. */
749 const gdb_byte *buffer_end;
750 };
751
752 /* Type of function passed to init_cutu_and_read_dies, et.al. */
753 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
754 gdb_byte *info_ptr,
755 struct die_info *comp_unit_die,
756 int has_children,
757 void *data);
758
759 /* The line number information for a compilation unit (found in the
760 .debug_line section) begins with a "statement program header",
761 which contains the following information. */
762 struct line_header
763 {
764 unsigned int total_length;
765 unsigned short version;
766 unsigned int header_length;
767 unsigned char minimum_instruction_length;
768 unsigned char maximum_ops_per_instruction;
769 unsigned char default_is_stmt;
770 int line_base;
771 unsigned char line_range;
772 unsigned char opcode_base;
773
774 /* standard_opcode_lengths[i] is the number of operands for the
775 standard opcode whose value is i. This means that
776 standard_opcode_lengths[0] is unused, and the last meaningful
777 element is standard_opcode_lengths[opcode_base - 1]. */
778 unsigned char *standard_opcode_lengths;
779
780 /* The include_directories table. NOTE! These strings are not
781 allocated with xmalloc; instead, they are pointers into
782 debug_line_buffer. If you try to free them, `free' will get
783 indigestion. */
784 unsigned int num_include_dirs, include_dirs_size;
785 char **include_dirs;
786
787 /* The file_names table. NOTE! These strings are not allocated
788 with xmalloc; instead, they are pointers into debug_line_buffer.
789 Don't try to free them directly. */
790 unsigned int num_file_names, file_names_size;
791 struct file_entry
792 {
793 char *name;
794 unsigned int dir_index;
795 unsigned int mod_time;
796 unsigned int length;
797 int included_p; /* Non-zero if referenced by the Line Number Program. */
798 struct symtab *symtab; /* The associated symbol table, if any. */
799 } *file_names;
800
801 /* The start and end of the statement program following this
802 header. These point into dwarf2_per_objfile->line_buffer. */
803 gdb_byte *statement_program_start, *statement_program_end;
804 };
805
806 /* When we construct a partial symbol table entry we only
807 need this much information. */
808 struct partial_die_info
809 {
810 /* Offset of this DIE. */
811 sect_offset offset;
812
813 /* DWARF-2 tag for this DIE. */
814 ENUM_BITFIELD(dwarf_tag) tag : 16;
815
816 /* Assorted flags describing the data found in this DIE. */
817 unsigned int has_children : 1;
818 unsigned int is_external : 1;
819 unsigned int is_declaration : 1;
820 unsigned int has_type : 1;
821 unsigned int has_specification : 1;
822 unsigned int has_pc_info : 1;
823 unsigned int may_be_inlined : 1;
824
825 /* Flag set if the SCOPE field of this structure has been
826 computed. */
827 unsigned int scope_set : 1;
828
829 /* Flag set if the DIE has a byte_size attribute. */
830 unsigned int has_byte_size : 1;
831
832 /* Flag set if any of the DIE's children are template arguments. */
833 unsigned int has_template_arguments : 1;
834
835 /* Flag set if fixup_partial_die has been called on this die. */
836 unsigned int fixup_called : 1;
837
838 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
839 unsigned int is_dwz : 1;
840
841 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
842 unsigned int spec_is_dwz : 1;
843
844 /* The name of this DIE. Normally the value of DW_AT_name, but
845 sometimes a default name for unnamed DIEs. */
846 char *name;
847
848 /* The linkage name, if present. */
849 const char *linkage_name;
850
851 /* The scope to prepend to our children. This is generally
852 allocated on the comp_unit_obstack, so will disappear
853 when this compilation unit leaves the cache. */
854 char *scope;
855
856 /* Some data associated with the partial DIE. The tag determines
857 which field is live. */
858 union
859 {
860 /* The location description associated with this DIE, if any. */
861 struct dwarf_block *locdesc;
862 /* The offset of an import, for DW_TAG_imported_unit. */
863 sect_offset offset;
864 } d;
865
866 /* If HAS_PC_INFO, the PC range associated with this DIE. */
867 CORE_ADDR lowpc;
868 CORE_ADDR highpc;
869
870 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
871 DW_AT_sibling, if any. */
872 /* NOTE: This member isn't strictly necessary, read_partial_die could
873 return DW_AT_sibling values to its caller load_partial_dies. */
874 gdb_byte *sibling;
875
876 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
877 DW_AT_specification (or DW_AT_abstract_origin or
878 DW_AT_extension). */
879 sect_offset spec_offset;
880
881 /* Pointers to this DIE's parent, first child, and next sibling,
882 if any. */
883 struct partial_die_info *die_parent, *die_child, *die_sibling;
884 };
885
886 /* This data structure holds the information of an abbrev. */
887 struct abbrev_info
888 {
889 unsigned int number; /* number identifying abbrev */
890 enum dwarf_tag tag; /* dwarf tag */
891 unsigned short has_children; /* boolean */
892 unsigned short num_attrs; /* number of attributes */
893 struct attr_abbrev *attrs; /* an array of attribute descriptions */
894 struct abbrev_info *next; /* next in chain */
895 };
896
897 struct attr_abbrev
898 {
899 ENUM_BITFIELD(dwarf_attribute) name : 16;
900 ENUM_BITFIELD(dwarf_form) form : 16;
901 };
902
903 /* Size of abbrev_table.abbrev_hash_table. */
904 #define ABBREV_HASH_SIZE 121
905
906 /* Top level data structure to contain an abbreviation table. */
907
908 struct abbrev_table
909 {
910 /* Where the abbrev table came from.
911 This is used as a sanity check when the table is used. */
912 sect_offset offset;
913
914 /* Storage for the abbrev table. */
915 struct obstack abbrev_obstack;
916
917 /* Hash table of abbrevs.
918 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
919 It could be statically allocated, but the previous code didn't so we
920 don't either. */
921 struct abbrev_info **abbrevs;
922 };
923
924 /* Attributes have a name and a value. */
925 struct attribute
926 {
927 ENUM_BITFIELD(dwarf_attribute) name : 16;
928 ENUM_BITFIELD(dwarf_form) form : 15;
929
930 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
931 field should be in u.str (existing only for DW_STRING) but it is kept
932 here for better struct attribute alignment. */
933 unsigned int string_is_canonical : 1;
934
935 union
936 {
937 char *str;
938 struct dwarf_block *blk;
939 ULONGEST unsnd;
940 LONGEST snd;
941 CORE_ADDR addr;
942 struct signatured_type *signatured_type;
943 }
944 u;
945 };
946
947 /* This data structure holds a complete die structure. */
948 struct die_info
949 {
950 /* DWARF-2 tag for this DIE. */
951 ENUM_BITFIELD(dwarf_tag) tag : 16;
952
953 /* Number of attributes */
954 unsigned char num_attrs;
955
956 /* True if we're presently building the full type name for the
957 type derived from this DIE. */
958 unsigned char building_fullname : 1;
959
960 /* Abbrev number */
961 unsigned int abbrev;
962
963 /* Offset in .debug_info or .debug_types section. */
964 sect_offset offset;
965
966 /* The dies in a compilation unit form an n-ary tree. PARENT
967 points to this die's parent; CHILD points to the first child of
968 this node; and all the children of a given node are chained
969 together via their SIBLING fields. */
970 struct die_info *child; /* Its first child, if any. */
971 struct die_info *sibling; /* Its next sibling, if any. */
972 struct die_info *parent; /* Its parent, if any. */
973
974 /* An array of attributes, with NUM_ATTRS elements. There may be
975 zero, but it's not common and zero-sized arrays are not
976 sufficiently portable C. */
977 struct attribute attrs[1];
978 };
979
980 /* Get at parts of an attribute structure. */
981
982 #define DW_STRING(attr) ((attr)->u.str)
983 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
984 #define DW_UNSND(attr) ((attr)->u.unsnd)
985 #define DW_BLOCK(attr) ((attr)->u.blk)
986 #define DW_SND(attr) ((attr)->u.snd)
987 #define DW_ADDR(attr) ((attr)->u.addr)
988 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
989
990 /* Blocks are a bunch of untyped bytes. */
991 struct dwarf_block
992 {
993 unsigned int size;
994
995 /* Valid only if SIZE is not zero. */
996 gdb_byte *data;
997 };
998
999 #ifndef ATTR_ALLOC_CHUNK
1000 #define ATTR_ALLOC_CHUNK 4
1001 #endif
1002
1003 /* Allocate fields for structs, unions and enums in this size. */
1004 #ifndef DW_FIELD_ALLOC_CHUNK
1005 #define DW_FIELD_ALLOC_CHUNK 4
1006 #endif
1007
1008 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1009 but this would require a corresponding change in unpack_field_as_long
1010 and friends. */
1011 static int bits_per_byte = 8;
1012
1013 /* The routines that read and process dies for a C struct or C++ class
1014 pass lists of data member fields and lists of member function fields
1015 in an instance of a field_info structure, as defined below. */
1016 struct field_info
1017 {
1018 /* List of data member and baseclasses fields. */
1019 struct nextfield
1020 {
1021 struct nextfield *next;
1022 int accessibility;
1023 int virtuality;
1024 struct field field;
1025 }
1026 *fields, *baseclasses;
1027
1028 /* Number of fields (including baseclasses). */
1029 int nfields;
1030
1031 /* Number of baseclasses. */
1032 int nbaseclasses;
1033
1034 /* Set if the accesibility of one of the fields is not public. */
1035 int non_public_fields;
1036
1037 /* Member function fields array, entries are allocated in the order they
1038 are encountered in the object file. */
1039 struct nextfnfield
1040 {
1041 struct nextfnfield *next;
1042 struct fn_field fnfield;
1043 }
1044 *fnfields;
1045
1046 /* Member function fieldlist array, contains name of possibly overloaded
1047 member function, number of overloaded member functions and a pointer
1048 to the head of the member function field chain. */
1049 struct fnfieldlist
1050 {
1051 char *name;
1052 int length;
1053 struct nextfnfield *head;
1054 }
1055 *fnfieldlists;
1056
1057 /* Number of entries in the fnfieldlists array. */
1058 int nfnfields;
1059
1060 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1061 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1062 struct typedef_field_list
1063 {
1064 struct typedef_field field;
1065 struct typedef_field_list *next;
1066 }
1067 *typedef_field_list;
1068 unsigned typedef_field_list_count;
1069 };
1070
1071 /* One item on the queue of compilation units to read in full symbols
1072 for. */
1073 struct dwarf2_queue_item
1074 {
1075 struct dwarf2_per_cu_data *per_cu;
1076 enum language pretend_language;
1077 struct dwarf2_queue_item *next;
1078 };
1079
1080 /* The current queue. */
1081 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1082
1083 /* Loaded secondary compilation units are kept in memory until they
1084 have not been referenced for the processing of this many
1085 compilation units. Set this to zero to disable caching. Cache
1086 sizes of up to at least twenty will improve startup time for
1087 typical inter-CU-reference binaries, at an obvious memory cost. */
1088 static int dwarf2_max_cache_age = 5;
1089 static void
1090 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1091 struct cmd_list_element *c, const char *value)
1092 {
1093 fprintf_filtered (file, _("The upper bound on the age of cached "
1094 "dwarf2 compilation units is %s.\n"),
1095 value);
1096 }
1097
1098
1099 /* Various complaints about symbol reading that don't abort the process. */
1100
1101 static void
1102 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1103 {
1104 complaint (&symfile_complaints,
1105 _("statement list doesn't fit in .debug_line section"));
1106 }
1107
1108 static void
1109 dwarf2_debug_line_missing_file_complaint (void)
1110 {
1111 complaint (&symfile_complaints,
1112 _(".debug_line section has line data without a file"));
1113 }
1114
1115 static void
1116 dwarf2_debug_line_missing_end_sequence_complaint (void)
1117 {
1118 complaint (&symfile_complaints,
1119 _(".debug_line section has line "
1120 "program sequence without an end"));
1121 }
1122
1123 static void
1124 dwarf2_complex_location_expr_complaint (void)
1125 {
1126 complaint (&symfile_complaints, _("location expression too complex"));
1127 }
1128
1129 static void
1130 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1131 int arg3)
1132 {
1133 complaint (&symfile_complaints,
1134 _("const value length mismatch for '%s', got %d, expected %d"),
1135 arg1, arg2, arg3);
1136 }
1137
1138 static void
1139 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1140 {
1141 complaint (&symfile_complaints,
1142 _("debug info runs off end of %s section"
1143 " [in module %s]"),
1144 section->asection->name,
1145 bfd_get_filename (section->asection->owner));
1146 }
1147
1148 static void
1149 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1150 {
1151 complaint (&symfile_complaints,
1152 _("macro debug info contains a "
1153 "malformed macro definition:\n`%s'"),
1154 arg1);
1155 }
1156
1157 static void
1158 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1159 {
1160 complaint (&symfile_complaints,
1161 _("invalid attribute class or form for '%s' in '%s'"),
1162 arg1, arg2);
1163 }
1164
1165 /* local function prototypes */
1166
1167 static void dwarf2_locate_sections (bfd *, asection *, void *);
1168
1169 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1170 struct objfile *);
1171
1172 static void dwarf2_find_base_address (struct die_info *die,
1173 struct dwarf2_cu *cu);
1174
1175 static void dwarf2_build_psymtabs_hard (struct objfile *);
1176
1177 static void scan_partial_symbols (struct partial_die_info *,
1178 CORE_ADDR *, CORE_ADDR *,
1179 int, struct dwarf2_cu *);
1180
1181 static void add_partial_symbol (struct partial_die_info *,
1182 struct dwarf2_cu *);
1183
1184 static void add_partial_namespace (struct partial_die_info *pdi,
1185 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1186 int need_pc, struct dwarf2_cu *cu);
1187
1188 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1189 CORE_ADDR *highpc, int need_pc,
1190 struct dwarf2_cu *cu);
1191
1192 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1193 struct dwarf2_cu *cu);
1194
1195 static void add_partial_subprogram (struct partial_die_info *pdi,
1196 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1197 int need_pc, struct dwarf2_cu *cu);
1198
1199 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1200
1201 static void psymtab_to_symtab_1 (struct partial_symtab *);
1202
1203 static struct abbrev_info *abbrev_table_lookup_abbrev
1204 (const struct abbrev_table *, unsigned int);
1205
1206 static struct abbrev_table *abbrev_table_read_table
1207 (struct dwarf2_section_info *, sect_offset);
1208
1209 static void abbrev_table_free (struct abbrev_table *);
1210
1211 static void abbrev_table_free_cleanup (void *);
1212
1213 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1214 struct dwarf2_section_info *);
1215
1216 static void dwarf2_free_abbrev_table (void *);
1217
1218 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1219
1220 static struct partial_die_info *load_partial_dies
1221 (const struct die_reader_specs *, gdb_byte *, int);
1222
1223 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1224 struct partial_die_info *,
1225 struct abbrev_info *,
1226 unsigned int,
1227 gdb_byte *);
1228
1229 static struct partial_die_info *find_partial_die (sect_offset, int,
1230 struct dwarf2_cu *);
1231
1232 static void fixup_partial_die (struct partial_die_info *,
1233 struct dwarf2_cu *);
1234
1235 static gdb_byte *read_attribute (const struct die_reader_specs *,
1236 struct attribute *, struct attr_abbrev *,
1237 gdb_byte *);
1238
1239 static unsigned int read_1_byte (bfd *, gdb_byte *);
1240
1241 static int read_1_signed_byte (bfd *, gdb_byte *);
1242
1243 static unsigned int read_2_bytes (bfd *, gdb_byte *);
1244
1245 static unsigned int read_4_bytes (bfd *, gdb_byte *);
1246
1247 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
1248
1249 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1250 unsigned int *);
1251
1252 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1253
1254 static LONGEST read_checked_initial_length_and_offset
1255 (bfd *, gdb_byte *, const struct comp_unit_head *,
1256 unsigned int *, unsigned int *);
1257
1258 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1259 unsigned int *);
1260
1261 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1262
1263 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1264 sect_offset);
1265
1266 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1267
1268 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1269
1270 static char *read_indirect_string (bfd *, gdb_byte *,
1271 const struct comp_unit_head *,
1272 unsigned int *);
1273
1274 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1275
1276 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1277
1278 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1279
1280 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1281 unsigned int *);
1282
1283 static char *read_str_index (const struct die_reader_specs *reader,
1284 struct dwarf2_cu *cu, ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1292 unsigned int);
1293
1294 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1295 struct dwarf2_cu *cu);
1296
1297 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1298
1299 static struct die_info *die_specification (struct die_info *die,
1300 struct dwarf2_cu **);
1301
1302 static void free_line_header (struct line_header *lh);
1303
1304 static void add_file_name (struct line_header *, char *, unsigned int,
1305 unsigned int, unsigned int);
1306
1307 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1308 struct dwarf2_cu *cu);
1309
1310 static void dwarf_decode_lines (struct line_header *, const char *,
1311 struct dwarf2_cu *, struct partial_symtab *,
1312 int);
1313
1314 static void dwarf2_start_subfile (char *, const char *, const char *);
1315
1316 static void dwarf2_start_symtab (struct dwarf2_cu *,
1317 char *, char *, CORE_ADDR);
1318
1319 static struct symbol *new_symbol (struct die_info *, struct type *,
1320 struct dwarf2_cu *);
1321
1322 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1323 struct dwarf2_cu *, struct symbol *);
1324
1325 static void dwarf2_const_value (struct attribute *, struct symbol *,
1326 struct dwarf2_cu *);
1327
1328 static void dwarf2_const_value_attr (struct attribute *attr,
1329 struct type *type,
1330 const char *name,
1331 struct obstack *obstack,
1332 struct dwarf2_cu *cu, LONGEST *value,
1333 gdb_byte **bytes,
1334 struct dwarf2_locexpr_baton **baton);
1335
1336 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1337
1338 static int need_gnat_info (struct dwarf2_cu *);
1339
1340 static struct type *die_descriptive_type (struct die_info *,
1341 struct dwarf2_cu *);
1342
1343 static void set_descriptive_type (struct type *, struct die_info *,
1344 struct dwarf2_cu *);
1345
1346 static struct type *die_containing_type (struct die_info *,
1347 struct dwarf2_cu *);
1348
1349 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1350 struct dwarf2_cu *);
1351
1352 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1353
1354 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1355
1356 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1357
1358 static char *typename_concat (struct obstack *obs, const char *prefix,
1359 const char *suffix, int physname,
1360 struct dwarf2_cu *cu);
1361
1362 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1363
1364 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1365
1366 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1367
1368 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1369
1370 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1371
1372 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1373 struct dwarf2_cu *, struct partial_symtab *);
1374
1375 static int dwarf2_get_pc_bounds (struct die_info *,
1376 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1377 struct partial_symtab *);
1378
1379 static void get_scope_pc_bounds (struct die_info *,
1380 CORE_ADDR *, CORE_ADDR *,
1381 struct dwarf2_cu *);
1382
1383 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1384 CORE_ADDR, struct dwarf2_cu *);
1385
1386 static void dwarf2_add_field (struct field_info *, struct die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void dwarf2_attach_fields_to_type (struct field_info *,
1390 struct type *, struct dwarf2_cu *);
1391
1392 static void dwarf2_add_member_fn (struct field_info *,
1393 struct die_info *, struct type *,
1394 struct dwarf2_cu *);
1395
1396 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1397 struct type *,
1398 struct dwarf2_cu *);
1399
1400 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1401
1402 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1403
1404 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1405
1406 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1407
1408 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1409
1410 static struct type *read_module_type (struct die_info *die,
1411 struct dwarf2_cu *cu);
1412
1413 static const char *namespace_name (struct die_info *die,
1414 int *is_anonymous, struct dwarf2_cu *);
1415
1416 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1419
1420 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1421 struct dwarf2_cu *);
1422
1423 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1424 gdb_byte *info_ptr,
1425 gdb_byte **new_info_ptr,
1426 struct die_info *parent);
1427
1428 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1429 gdb_byte *info_ptr,
1430 gdb_byte **new_info_ptr,
1431 struct die_info *parent);
1432
1433 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1434 struct die_info **, gdb_byte *, int *, int);
1435
1436 static gdb_byte *read_full_die (const struct die_reader_specs *,
1437 struct die_info **, gdb_byte *, int *);
1438
1439 static void process_die (struct die_info *, struct dwarf2_cu *);
1440
1441 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1442 struct obstack *);
1443
1444 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1445
1446 static const char *dwarf2_full_name (char *name,
1447 struct die_info *die,
1448 struct dwarf2_cu *cu);
1449
1450 static struct die_info *dwarf2_extension (struct die_info *die,
1451 struct dwarf2_cu **);
1452
1453 static const char *dwarf_tag_name (unsigned int);
1454
1455 static const char *dwarf_attr_name (unsigned int);
1456
1457 static const char *dwarf_form_name (unsigned int);
1458
1459 static char *dwarf_bool_name (unsigned int);
1460
1461 static const char *dwarf_type_encoding_name (unsigned int);
1462
1463 static struct die_info *sibling_die (struct die_info *);
1464
1465 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1466
1467 static void dump_die_for_error (struct die_info *);
1468
1469 static void dump_die_1 (struct ui_file *, int level, int max_level,
1470 struct die_info *);
1471
1472 /*static*/ void dump_die (struct die_info *, int max_level);
1473
1474 static void store_in_ref_table (struct die_info *,
1475 struct dwarf2_cu *);
1476
1477 static int is_ref_attr (struct attribute *);
1478
1479 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1480
1481 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1482
1483 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1484 struct attribute *,
1485 struct dwarf2_cu **);
1486
1487 static struct die_info *follow_die_ref (struct die_info *,
1488 struct attribute *,
1489 struct dwarf2_cu **);
1490
1491 static struct die_info *follow_die_sig (struct die_info *,
1492 struct attribute *,
1493 struct dwarf2_cu **);
1494
1495 static struct signatured_type *lookup_signatured_type_at_offset
1496 (struct objfile *objfile,
1497 struct dwarf2_section_info *section, sect_offset offset);
1498
1499 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1500
1501 static void read_signatured_type (struct signatured_type *);
1502
1503 static struct type_unit_group *get_type_unit_group
1504 (struct dwarf2_cu *, struct attribute *);
1505
1506 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1507
1508 /* memory allocation interface */
1509
1510 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1511
1512 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1513
1514 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1515 char *, int);
1516
1517 static int attr_form_is_block (struct attribute *);
1518
1519 static int attr_form_is_section_offset (struct attribute *);
1520
1521 static int attr_form_is_constant (struct attribute *);
1522
1523 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1524 struct dwarf2_loclist_baton *baton,
1525 struct attribute *attr);
1526
1527 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1528 struct symbol *sym,
1529 struct dwarf2_cu *cu);
1530
1531 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1532 gdb_byte *info_ptr,
1533 struct abbrev_info *abbrev);
1534
1535 static void free_stack_comp_unit (void *);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1543
1544 static void init_one_comp_unit (struct dwarf2_cu *cu,
1545 struct dwarf2_per_cu_data *per_cu);
1546
1547 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1548 struct die_info *comp_unit_die,
1549 enum language pretend_language);
1550
1551 static void free_heap_comp_unit (void *);
1552
1553 static void free_cached_comp_units (void *);
1554
1555 static void age_cached_comp_units (void);
1556
1557 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1558
1559 static struct type *set_die_type (struct die_info *, struct type *,
1560 struct dwarf2_cu *);
1561
1562 static void create_all_comp_units (struct objfile *);
1563
1564 static int create_all_type_units (struct objfile *);
1565
1566 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1570 enum language);
1571
1572 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1573 enum language);
1574
1575 static void dwarf2_add_dependence (struct dwarf2_cu *,
1576 struct dwarf2_per_cu_data *);
1577
1578 static void dwarf2_mark (struct dwarf2_cu *);
1579
1580 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1581
1582 static struct type *get_die_type_at_offset (sect_offset,
1583 struct dwarf2_per_cu_data *per_cu);
1584
1585 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1586
1587 static void dwarf2_release_queue (void *dummy);
1588
1589 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1590 enum language pretend_language);
1591
1592 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1593 struct dwarf2_per_cu_data *per_cu,
1594 enum language pretend_language);
1595
1596 static void process_queue (void);
1597
1598 static void find_file_and_directory (struct die_info *die,
1599 struct dwarf2_cu *cu,
1600 char **name, char **comp_dir);
1601
1602 static char *file_full_name (int file, struct line_header *lh,
1603 const char *comp_dir);
1604
1605 static gdb_byte *read_and_check_comp_unit_head
1606 (struct comp_unit_head *header,
1607 struct dwarf2_section_info *section,
1608 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1609 int is_debug_types_section);
1610
1611 static void init_cutu_and_read_dies
1612 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1613 int use_existing_cu, int keep,
1614 die_reader_func_ftype *die_reader_func, void *data);
1615
1616 static void init_cutu_and_read_dies_simple
1617 (struct dwarf2_per_cu_data *this_cu,
1618 die_reader_func_ftype *die_reader_func, void *data);
1619
1620 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1621
1622 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1623
1624 static struct dwo_unit *lookup_dwo_comp_unit
1625 (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST);
1626
1627 static struct dwo_unit *lookup_dwo_type_unit
1628 (struct signatured_type *, char *, const char *);
1629
1630 static void free_dwo_file_cleanup (void *);
1631
1632 static void process_cu_includes (void);
1633
1634 #if WORDS_BIGENDIAN
1635
1636 /* Convert VALUE between big- and little-endian. */
1637 static offset_type
1638 byte_swap (offset_type value)
1639 {
1640 offset_type result;
1641
1642 result = (value & 0xff) << 24;
1643 result |= (value & 0xff00) << 8;
1644 result |= (value & 0xff0000) >> 8;
1645 result |= (value & 0xff000000) >> 24;
1646 return result;
1647 }
1648
1649 #define MAYBE_SWAP(V) byte_swap (V)
1650
1651 #else
1652 #define MAYBE_SWAP(V) (V)
1653 #endif /* WORDS_BIGENDIAN */
1654
1655 /* The suffix for an index file. */
1656 #define INDEX_SUFFIX ".gdb-index"
1657
1658 static const char *dwarf2_physname (char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 /* Try to locate the sections we need for DWARF 2 debugging
1662 information and return true if we have enough to do something.
1663 NAMES points to the dwarf2 section names, or is NULL if the standard
1664 ELF names are used. */
1665
1666 int
1667 dwarf2_has_info (struct objfile *objfile,
1668 const struct dwarf2_debug_sections *names)
1669 {
1670 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1671 if (!dwarf2_per_objfile)
1672 {
1673 /* Initialize per-objfile state. */
1674 struct dwarf2_per_objfile *data
1675 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1676
1677 memset (data, 0, sizeof (*data));
1678 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1679 dwarf2_per_objfile = data;
1680
1681 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1682 (void *) names);
1683 dwarf2_per_objfile->objfile = objfile;
1684 }
1685 return (dwarf2_per_objfile->info.asection != NULL
1686 && dwarf2_per_objfile->abbrev.asection != NULL);
1687 }
1688
1689 /* When loading sections, we look either for uncompressed section or for
1690 compressed section names. */
1691
1692 static int
1693 section_is_p (const char *section_name,
1694 const struct dwarf2_section_names *names)
1695 {
1696 if (names->normal != NULL
1697 && strcmp (section_name, names->normal) == 0)
1698 return 1;
1699 if (names->compressed != NULL
1700 && strcmp (section_name, names->compressed) == 0)
1701 return 1;
1702 return 0;
1703 }
1704
1705 /* This function is mapped across the sections and remembers the
1706 offset and size of each of the debugging sections we are interested
1707 in. */
1708
1709 static void
1710 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1711 {
1712 const struct dwarf2_debug_sections *names;
1713
1714 if (vnames == NULL)
1715 names = &dwarf2_elf_names;
1716 else
1717 names = (const struct dwarf2_debug_sections *) vnames;
1718
1719 if (section_is_p (sectp->name, &names->info))
1720 {
1721 dwarf2_per_objfile->info.asection = sectp;
1722 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1723 }
1724 else if (section_is_p (sectp->name, &names->abbrev))
1725 {
1726 dwarf2_per_objfile->abbrev.asection = sectp;
1727 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1728 }
1729 else if (section_is_p (sectp->name, &names->line))
1730 {
1731 dwarf2_per_objfile->line.asection = sectp;
1732 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1733 }
1734 else if (section_is_p (sectp->name, &names->loc))
1735 {
1736 dwarf2_per_objfile->loc.asection = sectp;
1737 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1738 }
1739 else if (section_is_p (sectp->name, &names->macinfo))
1740 {
1741 dwarf2_per_objfile->macinfo.asection = sectp;
1742 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1743 }
1744 else if (section_is_p (sectp->name, &names->macro))
1745 {
1746 dwarf2_per_objfile->macro.asection = sectp;
1747 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1748 }
1749 else if (section_is_p (sectp->name, &names->str))
1750 {
1751 dwarf2_per_objfile->str.asection = sectp;
1752 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1753 }
1754 else if (section_is_p (sectp->name, &names->addr))
1755 {
1756 dwarf2_per_objfile->addr.asection = sectp;
1757 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1758 }
1759 else if (section_is_p (sectp->name, &names->frame))
1760 {
1761 dwarf2_per_objfile->frame.asection = sectp;
1762 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1763 }
1764 else if (section_is_p (sectp->name, &names->eh_frame))
1765 {
1766 flagword aflag = bfd_get_section_flags (abfd, sectp);
1767
1768 if (aflag & SEC_HAS_CONTENTS)
1769 {
1770 dwarf2_per_objfile->eh_frame.asection = sectp;
1771 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1772 }
1773 }
1774 else if (section_is_p (sectp->name, &names->ranges))
1775 {
1776 dwarf2_per_objfile->ranges.asection = sectp;
1777 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1778 }
1779 else if (section_is_p (sectp->name, &names->types))
1780 {
1781 struct dwarf2_section_info type_section;
1782
1783 memset (&type_section, 0, sizeof (type_section));
1784 type_section.asection = sectp;
1785 type_section.size = bfd_get_section_size (sectp);
1786
1787 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1788 &type_section);
1789 }
1790 else if (section_is_p (sectp->name, &names->gdb_index))
1791 {
1792 dwarf2_per_objfile->gdb_index.asection = sectp;
1793 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1794 }
1795
1796 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1797 && bfd_section_vma (abfd, sectp) == 0)
1798 dwarf2_per_objfile->has_section_at_zero = 1;
1799 }
1800
1801 /* A helper function that decides whether a section is empty,
1802 or not present. */
1803
1804 static int
1805 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1806 {
1807 return info->asection == NULL || info->size == 0;
1808 }
1809
1810 /* Read the contents of the section INFO.
1811 OBJFILE is the main object file, but not necessarily the file where
1812 the section comes from. E.g., for DWO files INFO->asection->owner
1813 is the bfd of the DWO file.
1814 If the section is compressed, uncompress it before returning. */
1815
1816 static void
1817 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1818 {
1819 asection *sectp = info->asection;
1820 bfd *abfd;
1821 gdb_byte *buf, *retbuf;
1822 unsigned char header[4];
1823
1824 if (info->readin)
1825 return;
1826 info->buffer = NULL;
1827 info->readin = 1;
1828
1829 if (dwarf2_section_empty_p (info))
1830 return;
1831
1832 abfd = sectp->owner;
1833
1834 /* If the section has relocations, we must read it ourselves.
1835 Otherwise we attach it to the BFD. */
1836 if ((sectp->flags & SEC_RELOC) == 0)
1837 {
1838 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1839
1840 /* We have to cast away const here for historical reasons.
1841 Fixing dwarf2read to be const-correct would be quite nice. */
1842 info->buffer = (gdb_byte *) bytes;
1843 return;
1844 }
1845
1846 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1847 info->buffer = buf;
1848
1849 /* When debugging .o files, we may need to apply relocations; see
1850 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1851 We never compress sections in .o files, so we only need to
1852 try this when the section is not compressed. */
1853 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1854 if (retbuf != NULL)
1855 {
1856 info->buffer = retbuf;
1857 return;
1858 }
1859
1860 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1861 || bfd_bread (buf, info->size, abfd) != info->size)
1862 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1863 bfd_get_filename (abfd));
1864 }
1865
1866 /* A helper function that returns the size of a section in a safe way.
1867 If you are positive that the section has been read before using the
1868 size, then it is safe to refer to the dwarf2_section_info object's
1869 "size" field directly. In other cases, you must call this
1870 function, because for compressed sections the size field is not set
1871 correctly until the section has been read. */
1872
1873 static bfd_size_type
1874 dwarf2_section_size (struct objfile *objfile,
1875 struct dwarf2_section_info *info)
1876 {
1877 if (!info->readin)
1878 dwarf2_read_section (objfile, info);
1879 return info->size;
1880 }
1881
1882 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1883 SECTION_NAME. */
1884
1885 void
1886 dwarf2_get_section_info (struct objfile *objfile,
1887 enum dwarf2_section_enum sect,
1888 asection **sectp, gdb_byte **bufp,
1889 bfd_size_type *sizep)
1890 {
1891 struct dwarf2_per_objfile *data
1892 = objfile_data (objfile, dwarf2_objfile_data_key);
1893 struct dwarf2_section_info *info;
1894
1895 /* We may see an objfile without any DWARF, in which case we just
1896 return nothing. */
1897 if (data == NULL)
1898 {
1899 *sectp = NULL;
1900 *bufp = NULL;
1901 *sizep = 0;
1902 return;
1903 }
1904 switch (sect)
1905 {
1906 case DWARF2_DEBUG_FRAME:
1907 info = &data->frame;
1908 break;
1909 case DWARF2_EH_FRAME:
1910 info = &data->eh_frame;
1911 break;
1912 default:
1913 gdb_assert_not_reached ("unexpected section");
1914 }
1915
1916 dwarf2_read_section (objfile, info);
1917
1918 *sectp = info->asection;
1919 *bufp = info->buffer;
1920 *sizep = info->size;
1921 }
1922
1923 /* A helper function to find the sections for a .dwz file. */
1924
1925 static void
1926 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
1927 {
1928 struct dwz_file *dwz_file = arg;
1929
1930 /* Note that we only support the standard ELF names, because .dwz
1931 is ELF-only (at the time of writing). */
1932 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
1933 {
1934 dwz_file->abbrev.asection = sectp;
1935 dwz_file->abbrev.size = bfd_get_section_size (sectp);
1936 }
1937 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
1938 {
1939 dwz_file->info.asection = sectp;
1940 dwz_file->info.size = bfd_get_section_size (sectp);
1941 }
1942 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
1943 {
1944 dwz_file->str.asection = sectp;
1945 dwz_file->str.size = bfd_get_section_size (sectp);
1946 }
1947 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
1948 {
1949 dwz_file->line.asection = sectp;
1950 dwz_file->line.size = bfd_get_section_size (sectp);
1951 }
1952 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
1953 {
1954 dwz_file->macro.asection = sectp;
1955 dwz_file->macro.size = bfd_get_section_size (sectp);
1956 }
1957 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
1958 {
1959 dwz_file->gdb_index.asection = sectp;
1960 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
1961 }
1962 }
1963
1964 /* Open the separate '.dwz' debug file, if needed. Error if the file
1965 cannot be found. */
1966
1967 static struct dwz_file *
1968 dwarf2_get_dwz_file (void)
1969 {
1970 bfd *abfd, *dwz_bfd;
1971 asection *section;
1972 gdb_byte *data;
1973 struct cleanup *cleanup;
1974 const char *filename;
1975 struct dwz_file *result;
1976
1977 if (dwarf2_per_objfile->dwz_file != NULL)
1978 return dwarf2_per_objfile->dwz_file;
1979
1980 abfd = dwarf2_per_objfile->objfile->obfd;
1981 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
1982 if (section == NULL)
1983 error (_("could not find '.gnu_debugaltlink' section"));
1984 if (!bfd_malloc_and_get_section (abfd, section, &data))
1985 error (_("could not read '.gnu_debugaltlink' section: %s"),
1986 bfd_errmsg (bfd_get_error ()));
1987 cleanup = make_cleanup (xfree, data);
1988
1989 filename = data;
1990 if (!IS_ABSOLUTE_PATH (filename))
1991 {
1992 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
1993 char *rel;
1994
1995 make_cleanup (xfree, abs);
1996 abs = ldirname (abs);
1997 make_cleanup (xfree, abs);
1998
1999 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2000 make_cleanup (xfree, rel);
2001 filename = rel;
2002 }
2003
2004 /* The format is just a NUL-terminated file name, followed by the
2005 build-id. For now, though, we ignore the build-id. */
2006 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2007 if (dwz_bfd == NULL)
2008 error (_("could not read '%s': %s"), filename,
2009 bfd_errmsg (bfd_get_error ()));
2010
2011 if (!bfd_check_format (dwz_bfd, bfd_object))
2012 {
2013 gdb_bfd_unref (dwz_bfd);
2014 error (_("file '%s' was not usable: %s"), filename,
2015 bfd_errmsg (bfd_get_error ()));
2016 }
2017
2018 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2019 struct dwz_file);
2020 result->dwz_bfd = dwz_bfd;
2021
2022 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2023
2024 do_cleanups (cleanup);
2025
2026 return result;
2027 }
2028 \f
2029 /* DWARF quick_symbols_functions support. */
2030
2031 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2032 unique line tables, so we maintain a separate table of all .debug_line
2033 derived entries to support the sharing.
2034 All the quick functions need is the list of file names. We discard the
2035 line_header when we're done and don't need to record it here. */
2036 struct quick_file_names
2037 {
2038 /* The data used to construct the hash key. */
2039 struct stmt_list_hash hash;
2040
2041 /* The number of entries in file_names, real_names. */
2042 unsigned int num_file_names;
2043
2044 /* The file names from the line table, after being run through
2045 file_full_name. */
2046 const char **file_names;
2047
2048 /* The file names from the line table after being run through
2049 gdb_realpath. These are computed lazily. */
2050 const char **real_names;
2051 };
2052
2053 /* When using the index (and thus not using psymtabs), each CU has an
2054 object of this type. This is used to hold information needed by
2055 the various "quick" methods. */
2056 struct dwarf2_per_cu_quick_data
2057 {
2058 /* The file table. This can be NULL if there was no file table
2059 or it's currently not read in.
2060 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2061 struct quick_file_names *file_names;
2062
2063 /* The corresponding symbol table. This is NULL if symbols for this
2064 CU have not yet been read. */
2065 struct symtab *symtab;
2066
2067 /* A temporary mark bit used when iterating over all CUs in
2068 expand_symtabs_matching. */
2069 unsigned int mark : 1;
2070
2071 /* True if we've tried to read the file table and found there isn't one.
2072 There will be no point in trying to read it again next time. */
2073 unsigned int no_file_data : 1;
2074 };
2075
2076 /* Utility hash function for a stmt_list_hash. */
2077
2078 static hashval_t
2079 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2080 {
2081 hashval_t v = 0;
2082
2083 if (stmt_list_hash->dwo_unit != NULL)
2084 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2085 v += stmt_list_hash->line_offset.sect_off;
2086 return v;
2087 }
2088
2089 /* Utility equality function for a stmt_list_hash. */
2090
2091 static int
2092 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2093 const struct stmt_list_hash *rhs)
2094 {
2095 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2096 return 0;
2097 if (lhs->dwo_unit != NULL
2098 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2099 return 0;
2100
2101 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2102 }
2103
2104 /* Hash function for a quick_file_names. */
2105
2106 static hashval_t
2107 hash_file_name_entry (const void *e)
2108 {
2109 const struct quick_file_names *file_data = e;
2110
2111 return hash_stmt_list_entry (&file_data->hash);
2112 }
2113
2114 /* Equality function for a quick_file_names. */
2115
2116 static int
2117 eq_file_name_entry (const void *a, const void *b)
2118 {
2119 const struct quick_file_names *ea = a;
2120 const struct quick_file_names *eb = b;
2121
2122 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2123 }
2124
2125 /* Delete function for a quick_file_names. */
2126
2127 static void
2128 delete_file_name_entry (void *e)
2129 {
2130 struct quick_file_names *file_data = e;
2131 int i;
2132
2133 for (i = 0; i < file_data->num_file_names; ++i)
2134 {
2135 xfree ((void*) file_data->file_names[i]);
2136 if (file_data->real_names)
2137 xfree ((void*) file_data->real_names[i]);
2138 }
2139
2140 /* The space for the struct itself lives on objfile_obstack,
2141 so we don't free it here. */
2142 }
2143
2144 /* Create a quick_file_names hash table. */
2145
2146 static htab_t
2147 create_quick_file_names_table (unsigned int nr_initial_entries)
2148 {
2149 return htab_create_alloc (nr_initial_entries,
2150 hash_file_name_entry, eq_file_name_entry,
2151 delete_file_name_entry, xcalloc, xfree);
2152 }
2153
2154 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2155 have to be created afterwards. You should call age_cached_comp_units after
2156 processing PER_CU->CU. dw2_setup must have been already called. */
2157
2158 static void
2159 load_cu (struct dwarf2_per_cu_data *per_cu)
2160 {
2161 if (per_cu->is_debug_types)
2162 load_full_type_unit (per_cu);
2163 else
2164 load_full_comp_unit (per_cu, language_minimal);
2165
2166 gdb_assert (per_cu->cu != NULL);
2167
2168 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2169 }
2170
2171 /* Read in the symbols for PER_CU. */
2172
2173 static void
2174 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2175 {
2176 struct cleanup *back_to;
2177
2178 /* Skip type_unit_groups, reading the type units they contain
2179 is handled elsewhere. */
2180 if (IS_TYPE_UNIT_GROUP (per_cu))
2181 return;
2182
2183 back_to = make_cleanup (dwarf2_release_queue, NULL);
2184
2185 if (dwarf2_per_objfile->using_index
2186 ? per_cu->v.quick->symtab == NULL
2187 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2188 {
2189 queue_comp_unit (per_cu, language_minimal);
2190 load_cu (per_cu);
2191 }
2192
2193 process_queue ();
2194
2195 /* Age the cache, releasing compilation units that have not
2196 been used recently. */
2197 age_cached_comp_units ();
2198
2199 do_cleanups (back_to);
2200 }
2201
2202 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2203 the objfile from which this CU came. Returns the resulting symbol
2204 table. */
2205
2206 static struct symtab *
2207 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2208 {
2209 gdb_assert (dwarf2_per_objfile->using_index);
2210 if (!per_cu->v.quick->symtab)
2211 {
2212 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2213 increment_reading_symtab ();
2214 dw2_do_instantiate_symtab (per_cu);
2215 process_cu_includes ();
2216 do_cleanups (back_to);
2217 }
2218 return per_cu->v.quick->symtab;
2219 }
2220
2221 /* Return the CU given its index.
2222
2223 This is intended for loops like:
2224
2225 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2226 + dwarf2_per_objfile->n_type_units); ++i)
2227 {
2228 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2229
2230 ...;
2231 }
2232 */
2233
2234 static struct dwarf2_per_cu_data *
2235 dw2_get_cu (int index)
2236 {
2237 if (index >= dwarf2_per_objfile->n_comp_units)
2238 {
2239 index -= dwarf2_per_objfile->n_comp_units;
2240 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2241 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2242 }
2243
2244 return dwarf2_per_objfile->all_comp_units[index];
2245 }
2246
2247 /* Return the primary CU given its index.
2248 The difference between this function and dw2_get_cu is in the handling
2249 of type units (TUs). Here we return the type_unit_group object.
2250
2251 This is intended for loops like:
2252
2253 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2254 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2255 {
2256 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2257
2258 ...;
2259 }
2260 */
2261
2262 static struct dwarf2_per_cu_data *
2263 dw2_get_primary_cu (int index)
2264 {
2265 if (index >= dwarf2_per_objfile->n_comp_units)
2266 {
2267 index -= dwarf2_per_objfile->n_comp_units;
2268 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2269 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2270 }
2271
2272 return dwarf2_per_objfile->all_comp_units[index];
2273 }
2274
2275 /* A helper function that knows how to read a 64-bit value in a way
2276 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2277 otherwise. */
2278
2279 static int
2280 extract_cu_value (const char *bytes, ULONGEST *result)
2281 {
2282 if (sizeof (ULONGEST) < 8)
2283 {
2284 int i;
2285
2286 /* Ignore the upper 4 bytes if they are all zero. */
2287 for (i = 0; i < 4; ++i)
2288 if (bytes[i + 4] != 0)
2289 return 0;
2290
2291 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2292 }
2293 else
2294 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2295 return 1;
2296 }
2297
2298 /* A helper for create_cus_from_index that handles a given list of
2299 CUs. */
2300
2301 static int
2302 create_cus_from_index_list (struct objfile *objfile,
2303 const gdb_byte *cu_list, offset_type n_elements,
2304 struct dwarf2_section_info *section,
2305 int is_dwz,
2306 int base_offset)
2307 {
2308 offset_type i;
2309
2310 for (i = 0; i < n_elements; i += 2)
2311 {
2312 struct dwarf2_per_cu_data *the_cu;
2313 ULONGEST offset, length;
2314
2315 if (!extract_cu_value (cu_list, &offset)
2316 || !extract_cu_value (cu_list + 8, &length))
2317 return 0;
2318 cu_list += 2 * 8;
2319
2320 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2321 struct dwarf2_per_cu_data);
2322 the_cu->offset.sect_off = offset;
2323 the_cu->length = length;
2324 the_cu->objfile = objfile;
2325 the_cu->info_or_types_section = section;
2326 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2327 struct dwarf2_per_cu_quick_data);
2328 the_cu->is_dwz = is_dwz;
2329 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2330 }
2331
2332 return 1;
2333 }
2334
2335 /* Read the CU list from the mapped index, and use it to create all
2336 the CU objects for this objfile. Return 0 if something went wrong,
2337 1 if everything went ok. */
2338
2339 static int
2340 create_cus_from_index (struct objfile *objfile,
2341 const gdb_byte *cu_list, offset_type cu_list_elements,
2342 const gdb_byte *dwz_list, offset_type dwz_elements)
2343 {
2344 struct dwz_file *dwz;
2345
2346 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2347 dwarf2_per_objfile->all_comp_units
2348 = obstack_alloc (&objfile->objfile_obstack,
2349 dwarf2_per_objfile->n_comp_units
2350 * sizeof (struct dwarf2_per_cu_data *));
2351
2352 if (!create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2353 &dwarf2_per_objfile->info, 0, 0))
2354 return 0;
2355
2356 if (dwz_elements == 0)
2357 return 1;
2358
2359 dwz = dwarf2_get_dwz_file ();
2360 return create_cus_from_index_list (objfile, dwz_list, dwz_elements,
2361 &dwz->info, 1, cu_list_elements / 2);
2362 }
2363
2364 /* Create the signatured type hash table from the index. */
2365
2366 static int
2367 create_signatured_type_table_from_index (struct objfile *objfile,
2368 struct dwarf2_section_info *section,
2369 const gdb_byte *bytes,
2370 offset_type elements)
2371 {
2372 offset_type i;
2373 htab_t sig_types_hash;
2374
2375 dwarf2_per_objfile->n_type_units = elements / 3;
2376 dwarf2_per_objfile->all_type_units
2377 = obstack_alloc (&objfile->objfile_obstack,
2378 dwarf2_per_objfile->n_type_units
2379 * sizeof (struct signatured_type *));
2380
2381 sig_types_hash = allocate_signatured_type_table (objfile);
2382
2383 for (i = 0; i < elements; i += 3)
2384 {
2385 struct signatured_type *sig_type;
2386 ULONGEST offset, type_offset_in_tu, signature;
2387 void **slot;
2388
2389 if (!extract_cu_value (bytes, &offset)
2390 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
2391 return 0;
2392 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2393 bytes += 3 * 8;
2394
2395 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2396 struct signatured_type);
2397 sig_type->signature = signature;
2398 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2399 sig_type->per_cu.is_debug_types = 1;
2400 sig_type->per_cu.info_or_types_section = section;
2401 sig_type->per_cu.offset.sect_off = offset;
2402 sig_type->per_cu.objfile = objfile;
2403 sig_type->per_cu.v.quick
2404 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2406
2407 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2408 *slot = sig_type;
2409
2410 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2411 }
2412
2413 dwarf2_per_objfile->signatured_types = sig_types_hash;
2414
2415 return 1;
2416 }
2417
2418 /* Read the address map data from the mapped index, and use it to
2419 populate the objfile's psymtabs_addrmap. */
2420
2421 static void
2422 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2423 {
2424 const gdb_byte *iter, *end;
2425 struct obstack temp_obstack;
2426 struct addrmap *mutable_map;
2427 struct cleanup *cleanup;
2428 CORE_ADDR baseaddr;
2429
2430 obstack_init (&temp_obstack);
2431 cleanup = make_cleanup_obstack_free (&temp_obstack);
2432 mutable_map = addrmap_create_mutable (&temp_obstack);
2433
2434 iter = index->address_table;
2435 end = iter + index->address_table_size;
2436
2437 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2438
2439 while (iter < end)
2440 {
2441 ULONGEST hi, lo, cu_index;
2442 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2443 iter += 8;
2444 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2445 iter += 8;
2446 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2447 iter += 4;
2448
2449 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2450 dw2_get_cu (cu_index));
2451 }
2452
2453 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2454 &objfile->objfile_obstack);
2455 do_cleanups (cleanup);
2456 }
2457
2458 /* The hash function for strings in the mapped index. This is the same as
2459 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2460 implementation. This is necessary because the hash function is tied to the
2461 format of the mapped index file. The hash values do not have to match with
2462 SYMBOL_HASH_NEXT.
2463
2464 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2465
2466 static hashval_t
2467 mapped_index_string_hash (int index_version, const void *p)
2468 {
2469 const unsigned char *str = (const unsigned char *) p;
2470 hashval_t r = 0;
2471 unsigned char c;
2472
2473 while ((c = *str++) != 0)
2474 {
2475 if (index_version >= 5)
2476 c = tolower (c);
2477 r = r * 67 + c - 113;
2478 }
2479
2480 return r;
2481 }
2482
2483 /* Find a slot in the mapped index INDEX for the object named NAME.
2484 If NAME is found, set *VEC_OUT to point to the CU vector in the
2485 constant pool and return 1. If NAME cannot be found, return 0. */
2486
2487 static int
2488 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2489 offset_type **vec_out)
2490 {
2491 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2492 offset_type hash;
2493 offset_type slot, step;
2494 int (*cmp) (const char *, const char *);
2495
2496 if (current_language->la_language == language_cplus
2497 || current_language->la_language == language_java
2498 || current_language->la_language == language_fortran)
2499 {
2500 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2501 not contain any. */
2502 const char *paren = strchr (name, '(');
2503
2504 if (paren)
2505 {
2506 char *dup;
2507
2508 dup = xmalloc (paren - name + 1);
2509 memcpy (dup, name, paren - name);
2510 dup[paren - name] = 0;
2511
2512 make_cleanup (xfree, dup);
2513 name = dup;
2514 }
2515 }
2516
2517 /* Index version 4 did not support case insensitive searches. But the
2518 indices for case insensitive languages are built in lowercase, therefore
2519 simulate our NAME being searched is also lowercased. */
2520 hash = mapped_index_string_hash ((index->version == 4
2521 && case_sensitivity == case_sensitive_off
2522 ? 5 : index->version),
2523 name);
2524
2525 slot = hash & (index->symbol_table_slots - 1);
2526 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2527 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2528
2529 for (;;)
2530 {
2531 /* Convert a slot number to an offset into the table. */
2532 offset_type i = 2 * slot;
2533 const char *str;
2534 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2535 {
2536 do_cleanups (back_to);
2537 return 0;
2538 }
2539
2540 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2541 if (!cmp (name, str))
2542 {
2543 *vec_out = (offset_type *) (index->constant_pool
2544 + MAYBE_SWAP (index->symbol_table[i + 1]));
2545 do_cleanups (back_to);
2546 return 1;
2547 }
2548
2549 slot = (slot + step) & (index->symbol_table_slots - 1);
2550 }
2551 }
2552
2553 /* A helper function that reads the .gdb_index from SECTION and fills
2554 in MAP. FILENAME is the name of the file containing the section;
2555 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2556 ok to use deprecated sections.
2557
2558 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2559 out parameters that are filled in with information about the CU and
2560 TU lists in the section.
2561
2562 Returns 1 if all went well, 0 otherwise. */
2563
2564 static int
2565 read_index_from_section (struct objfile *objfile,
2566 const char *filename,
2567 int deprecated_ok,
2568 struct dwarf2_section_info *section,
2569 struct mapped_index *map,
2570 const gdb_byte **cu_list,
2571 offset_type *cu_list_elements,
2572 const gdb_byte **types_list,
2573 offset_type *types_list_elements)
2574 {
2575 char *addr;
2576 offset_type version;
2577 offset_type *metadata;
2578 int i;
2579
2580 if (dwarf2_section_empty_p (section))
2581 return 0;
2582
2583 /* Older elfutils strip versions could keep the section in the main
2584 executable while splitting it for the separate debug info file. */
2585 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2586 return 0;
2587
2588 dwarf2_read_section (objfile, section);
2589
2590 addr = section->buffer;
2591 /* Version check. */
2592 version = MAYBE_SWAP (*(offset_type *) addr);
2593 /* Versions earlier than 3 emitted every copy of a psymbol. This
2594 causes the index to behave very poorly for certain requests. Version 3
2595 contained incomplete addrmap. So, it seems better to just ignore such
2596 indices. */
2597 if (version < 4)
2598 {
2599 static int warning_printed = 0;
2600 if (!warning_printed)
2601 {
2602 warning (_("Skipping obsolete .gdb_index section in %s."),
2603 filename);
2604 warning_printed = 1;
2605 }
2606 return 0;
2607 }
2608 /* Index version 4 uses a different hash function than index version
2609 5 and later.
2610
2611 Versions earlier than 6 did not emit psymbols for inlined
2612 functions. Using these files will cause GDB not to be able to
2613 set breakpoints on inlined functions by name, so we ignore these
2614 indices unless the --use-deprecated-index-sections command line
2615 option was supplied. */
2616 if (version < 6 && !deprecated_ok)
2617 {
2618 static int warning_printed = 0;
2619 if (!warning_printed)
2620 {
2621 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2622 "--use-deprecated-index-sections to use them anyway"),
2623 filename);
2624 warning_printed = 1;
2625 }
2626 return 0;
2627 }
2628 /* Indexes with higher version than the one supported by GDB may be no
2629 longer backward compatible. */
2630 if (version > 7)
2631 return 0;
2632
2633 map->version = version;
2634 map->total_size = section->size;
2635
2636 metadata = (offset_type *) (addr + sizeof (offset_type));
2637
2638 i = 0;
2639 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2640 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2641 / 8);
2642 ++i;
2643
2644 *types_list = addr + MAYBE_SWAP (metadata[i]);
2645 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2646 - MAYBE_SWAP (metadata[i]))
2647 / 8);
2648 ++i;
2649
2650 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2651 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2652 - MAYBE_SWAP (metadata[i]));
2653 ++i;
2654
2655 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2656 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2657 - MAYBE_SWAP (metadata[i]))
2658 / (2 * sizeof (offset_type)));
2659 ++i;
2660
2661 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2662
2663 return 1;
2664 }
2665
2666
2667 /* Read the index file. If everything went ok, initialize the "quick"
2668 elements of all the CUs and return 1. Otherwise, return 0. */
2669
2670 static int
2671 dwarf2_read_index (struct objfile *objfile)
2672 {
2673 struct mapped_index local_map, *map;
2674 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2675 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2676
2677 if (!read_index_from_section (objfile, objfile->name,
2678 use_deprecated_index_sections,
2679 &dwarf2_per_objfile->gdb_index, &local_map,
2680 &cu_list, &cu_list_elements,
2681 &types_list, &types_list_elements))
2682 return 0;
2683
2684 /* Don't use the index if it's empty. */
2685 if (local_map.symbol_table_slots == 0)
2686 return 0;
2687
2688 /* If there is a .dwz file, read it so we can get its CU list as
2689 well. */
2690 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2691 {
2692 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2693 struct mapped_index dwz_map;
2694 const gdb_byte *dwz_types_ignore;
2695 offset_type dwz_types_elements_ignore;
2696
2697 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2698 1,
2699 &dwz->gdb_index, &dwz_map,
2700 &dwz_list, &dwz_list_elements,
2701 &dwz_types_ignore,
2702 &dwz_types_elements_ignore))
2703 {
2704 warning (_("could not read '.gdb_index' section from %s; skipping"),
2705 bfd_get_filename (dwz->dwz_bfd));
2706 return 0;
2707 }
2708 }
2709
2710 if (!create_cus_from_index (objfile, cu_list, cu_list_elements,
2711 dwz_list, dwz_list_elements))
2712 return 0;
2713
2714 if (types_list_elements)
2715 {
2716 struct dwarf2_section_info *section;
2717
2718 /* We can only handle a single .debug_types when we have an
2719 index. */
2720 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2721 return 0;
2722
2723 section = VEC_index (dwarf2_section_info_def,
2724 dwarf2_per_objfile->types, 0);
2725
2726 if (!create_signatured_type_table_from_index (objfile, section,
2727 types_list,
2728 types_list_elements))
2729 return 0;
2730 }
2731
2732 create_addrmap_from_index (objfile, &local_map);
2733
2734 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2735 *map = local_map;
2736
2737 dwarf2_per_objfile->index_table = map;
2738 dwarf2_per_objfile->using_index = 1;
2739 dwarf2_per_objfile->quick_file_names_table =
2740 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2741
2742 return 1;
2743 }
2744
2745 /* A helper for the "quick" functions which sets the global
2746 dwarf2_per_objfile according to OBJFILE. */
2747
2748 static void
2749 dw2_setup (struct objfile *objfile)
2750 {
2751 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2752 gdb_assert (dwarf2_per_objfile);
2753 }
2754
2755 /* Reader function for dw2_build_type_unit_groups. */
2756
2757 static void
2758 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2759 gdb_byte *info_ptr,
2760 struct die_info *type_unit_die,
2761 int has_children,
2762 void *data)
2763 {
2764 struct dwarf2_cu *cu = reader->cu;
2765 struct attribute *attr;
2766 struct type_unit_group *tu_group;
2767
2768 gdb_assert (data == NULL);
2769
2770 if (! has_children)
2771 return;
2772
2773 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2774 /* Call this for its side-effect of creating the associated
2775 struct type_unit_group if it doesn't already exist. */
2776 tu_group = get_type_unit_group (cu, attr);
2777 }
2778
2779 /* Build dwarf2_per_objfile->type_unit_groups.
2780 This function may be called multiple times. */
2781
2782 static void
2783 dw2_build_type_unit_groups (void)
2784 {
2785 if (dwarf2_per_objfile->type_unit_groups == NULL)
2786 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2787 }
2788
2789 /* die_reader_func for dw2_get_file_names. */
2790
2791 static void
2792 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2793 gdb_byte *info_ptr,
2794 struct die_info *comp_unit_die,
2795 int has_children,
2796 void *data)
2797 {
2798 struct dwarf2_cu *cu = reader->cu;
2799 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2800 struct objfile *objfile = dwarf2_per_objfile->objfile;
2801 struct dwarf2_per_cu_data *lh_cu;
2802 struct line_header *lh;
2803 struct attribute *attr;
2804 int i;
2805 char *name, *comp_dir;
2806 void **slot;
2807 struct quick_file_names *qfn;
2808 unsigned int line_offset;
2809
2810 /* Our callers never want to match partial units -- instead they
2811 will match the enclosing full CU. */
2812 if (comp_unit_die->tag == DW_TAG_partial_unit)
2813 {
2814 this_cu->v.quick->no_file_data = 1;
2815 return;
2816 }
2817
2818 /* If we're reading the line header for TUs, store it in the "per_cu"
2819 for tu_group. */
2820 if (this_cu->is_debug_types)
2821 {
2822 struct type_unit_group *tu_group = data;
2823
2824 gdb_assert (tu_group != NULL);
2825 lh_cu = &tu_group->per_cu;
2826 }
2827 else
2828 lh_cu = this_cu;
2829
2830 lh = NULL;
2831 slot = NULL;
2832 line_offset = 0;
2833
2834 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2835 if (attr)
2836 {
2837 struct quick_file_names find_entry;
2838
2839 line_offset = DW_UNSND (attr);
2840
2841 /* We may have already read in this line header (TU line header sharing).
2842 If we have we're done. */
2843 find_entry.hash.dwo_unit = cu->dwo_unit;
2844 find_entry.hash.line_offset.sect_off = line_offset;
2845 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2846 &find_entry, INSERT);
2847 if (*slot != NULL)
2848 {
2849 lh_cu->v.quick->file_names = *slot;
2850 return;
2851 }
2852
2853 lh = dwarf_decode_line_header (line_offset, cu);
2854 }
2855 if (lh == NULL)
2856 {
2857 lh_cu->v.quick->no_file_data = 1;
2858 return;
2859 }
2860
2861 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2862 qfn->hash.dwo_unit = cu->dwo_unit;
2863 qfn->hash.line_offset.sect_off = line_offset;
2864 gdb_assert (slot != NULL);
2865 *slot = qfn;
2866
2867 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2868
2869 qfn->num_file_names = lh->num_file_names;
2870 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2871 lh->num_file_names * sizeof (char *));
2872 for (i = 0; i < lh->num_file_names; ++i)
2873 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2874 qfn->real_names = NULL;
2875
2876 free_line_header (lh);
2877
2878 lh_cu->v.quick->file_names = qfn;
2879 }
2880
2881 /* A helper for the "quick" functions which attempts to read the line
2882 table for THIS_CU. */
2883
2884 static struct quick_file_names *
2885 dw2_get_file_names (struct objfile *objfile,
2886 struct dwarf2_per_cu_data *this_cu)
2887 {
2888 /* For TUs this should only be called on the parent group. */
2889 if (this_cu->is_debug_types)
2890 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2891
2892 if (this_cu->v.quick->file_names != NULL)
2893 return this_cu->v.quick->file_names;
2894 /* If we know there is no line data, no point in looking again. */
2895 if (this_cu->v.quick->no_file_data)
2896 return NULL;
2897
2898 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2899 in the stub for CUs, there's is no need to lookup the DWO file.
2900 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2901 DWO file. */
2902 if (this_cu->is_debug_types)
2903 {
2904 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2905
2906 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2907 dw2_get_file_names_reader, tu_group);
2908 }
2909 else
2910 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2911
2912 if (this_cu->v.quick->no_file_data)
2913 return NULL;
2914 return this_cu->v.quick->file_names;
2915 }
2916
2917 /* A helper for the "quick" functions which computes and caches the
2918 real path for a given file name from the line table. */
2919
2920 static const char *
2921 dw2_get_real_path (struct objfile *objfile,
2922 struct quick_file_names *qfn, int index)
2923 {
2924 if (qfn->real_names == NULL)
2925 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2926 qfn->num_file_names, sizeof (char *));
2927
2928 if (qfn->real_names[index] == NULL)
2929 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2930
2931 return qfn->real_names[index];
2932 }
2933
2934 static struct symtab *
2935 dw2_find_last_source_symtab (struct objfile *objfile)
2936 {
2937 int index;
2938
2939 dw2_setup (objfile);
2940 index = dwarf2_per_objfile->n_comp_units - 1;
2941 return dw2_instantiate_symtab (dw2_get_cu (index));
2942 }
2943
2944 /* Traversal function for dw2_forget_cached_source_info. */
2945
2946 static int
2947 dw2_free_cached_file_names (void **slot, void *info)
2948 {
2949 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2950
2951 if (file_data->real_names)
2952 {
2953 int i;
2954
2955 for (i = 0; i < file_data->num_file_names; ++i)
2956 {
2957 xfree ((void*) file_data->real_names[i]);
2958 file_data->real_names[i] = NULL;
2959 }
2960 }
2961
2962 return 1;
2963 }
2964
2965 static void
2966 dw2_forget_cached_source_info (struct objfile *objfile)
2967 {
2968 dw2_setup (objfile);
2969
2970 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2971 dw2_free_cached_file_names, NULL);
2972 }
2973
2974 /* Helper function for dw2_map_symtabs_matching_filename that expands
2975 the symtabs and calls the iterator. */
2976
2977 static int
2978 dw2_map_expand_apply (struct objfile *objfile,
2979 struct dwarf2_per_cu_data *per_cu,
2980 const char *name,
2981 const char *full_path, const char *real_path,
2982 int (*callback) (struct symtab *, void *),
2983 void *data)
2984 {
2985 struct symtab *last_made = objfile->symtabs;
2986
2987 /* Don't visit already-expanded CUs. */
2988 if (per_cu->v.quick->symtab)
2989 return 0;
2990
2991 /* This may expand more than one symtab, and we want to iterate over
2992 all of them. */
2993 dw2_instantiate_symtab (per_cu);
2994
2995 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2996 objfile->symtabs, last_made);
2997 }
2998
2999 /* Implementation of the map_symtabs_matching_filename method. */
3000
3001 static int
3002 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3003 const char *full_path, const char *real_path,
3004 int (*callback) (struct symtab *, void *),
3005 void *data)
3006 {
3007 int i;
3008 const char *name_basename = lbasename (name);
3009 int name_len = strlen (name);
3010 int is_abs = IS_ABSOLUTE_PATH (name);
3011
3012 dw2_setup (objfile);
3013
3014 dw2_build_type_unit_groups ();
3015
3016 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3017 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3018 {
3019 int j;
3020 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3021 struct quick_file_names *file_data;
3022
3023 /* We only need to look at symtabs not already expanded. */
3024 if (per_cu->v.quick->symtab)
3025 continue;
3026
3027 file_data = dw2_get_file_names (objfile, per_cu);
3028 if (file_data == NULL)
3029 continue;
3030
3031 for (j = 0; j < file_data->num_file_names; ++j)
3032 {
3033 const char *this_name = file_data->file_names[j];
3034
3035 if (FILENAME_CMP (name, this_name) == 0
3036 || (!is_abs && compare_filenames_for_search (this_name,
3037 name, name_len)))
3038 {
3039 if (dw2_map_expand_apply (objfile, per_cu,
3040 name, full_path, real_path,
3041 callback, data))
3042 return 1;
3043 }
3044
3045 /* Before we invoke realpath, which can get expensive when many
3046 files are involved, do a quick comparison of the basenames. */
3047 if (! basenames_may_differ
3048 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3049 continue;
3050
3051 if (full_path != NULL)
3052 {
3053 const char *this_real_name = dw2_get_real_path (objfile,
3054 file_data, j);
3055
3056 if (this_real_name != NULL
3057 && (FILENAME_CMP (full_path, this_real_name) == 0
3058 || (!is_abs
3059 && compare_filenames_for_search (this_real_name,
3060 name, name_len))))
3061 {
3062 if (dw2_map_expand_apply (objfile, per_cu,
3063 name, full_path, real_path,
3064 callback, data))
3065 return 1;
3066 }
3067 }
3068
3069 if (real_path != NULL)
3070 {
3071 const char *this_real_name = dw2_get_real_path (objfile,
3072 file_data, j);
3073
3074 if (this_real_name != NULL
3075 && (FILENAME_CMP (real_path, this_real_name) == 0
3076 || (!is_abs
3077 && compare_filenames_for_search (this_real_name,
3078 name, name_len))))
3079 {
3080 if (dw2_map_expand_apply (objfile, per_cu,
3081 name, full_path, real_path,
3082 callback, data))
3083 return 1;
3084 }
3085 }
3086 }
3087 }
3088
3089 return 0;
3090 }
3091
3092 static struct symtab *
3093 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3094 const char *name, domain_enum domain)
3095 {
3096 /* We do all the work in the pre_expand_symtabs_matching hook
3097 instead. */
3098 return NULL;
3099 }
3100
3101 /* A helper function that expands all symtabs that hold an object
3102 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3103 symbols in block BLOCK_KIND. */
3104
3105 static void
3106 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3107 int want_specific_block,
3108 enum block_enum block_kind,
3109 const char *name, domain_enum domain)
3110 {
3111 struct mapped_index *index;
3112
3113 dw2_setup (objfile);
3114
3115 index = dwarf2_per_objfile->index_table;
3116
3117 /* index_table is NULL if OBJF_READNOW. */
3118 if (index)
3119 {
3120 offset_type *vec;
3121
3122 if (find_slot_in_mapped_hash (index, name, &vec))
3123 {
3124 offset_type i, len = MAYBE_SWAP (*vec);
3125 for (i = 0; i < len; ++i)
3126 {
3127 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3128 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3129 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3130 int want_static = block_kind != GLOBAL_BLOCK;
3131 /* This value is only valid for index versions >= 7. */
3132 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3133 gdb_index_symbol_kind symbol_kind =
3134 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3135
3136 if (want_specific_block
3137 && index->version >= 7
3138 && want_static != is_static)
3139 continue;
3140
3141 /* Only check the symbol's kind if it has one.
3142 Indices prior to version 7 don't record it. */
3143 if (index->version >= 7)
3144 {
3145 switch (domain)
3146 {
3147 case VAR_DOMAIN:
3148 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3149 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3150 /* Some types are also in VAR_DOMAIN. */
3151 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3152 continue;
3153 break;
3154 case STRUCT_DOMAIN:
3155 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3156 continue;
3157 break;
3158 case LABEL_DOMAIN:
3159 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3160 continue;
3161 break;
3162 default:
3163 break;
3164 }
3165 }
3166
3167 dw2_instantiate_symtab (per_cu);
3168 }
3169 }
3170 }
3171 }
3172
3173 static void
3174 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3175 enum block_enum block_kind, const char *name,
3176 domain_enum domain)
3177 {
3178 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3179 }
3180
3181 static void
3182 dw2_print_stats (struct objfile *objfile)
3183 {
3184 int i, count;
3185
3186 dw2_setup (objfile);
3187 count = 0;
3188 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3189 + dwarf2_per_objfile->n_type_units); ++i)
3190 {
3191 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3192
3193 if (!per_cu->v.quick->symtab)
3194 ++count;
3195 }
3196 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3197 }
3198
3199 static void
3200 dw2_dump (struct objfile *objfile)
3201 {
3202 /* Nothing worth printing. */
3203 }
3204
3205 static void
3206 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3207 struct section_offsets *delta)
3208 {
3209 /* There's nothing to relocate here. */
3210 }
3211
3212 static void
3213 dw2_expand_symtabs_for_function (struct objfile *objfile,
3214 const char *func_name)
3215 {
3216 /* Note: It doesn't matter what we pass for block_kind here. */
3217 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3218 VAR_DOMAIN);
3219 }
3220
3221 static void
3222 dw2_expand_all_symtabs (struct objfile *objfile)
3223 {
3224 int i;
3225
3226 dw2_setup (objfile);
3227
3228 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3229 + dwarf2_per_objfile->n_type_units); ++i)
3230 {
3231 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3232
3233 dw2_instantiate_symtab (per_cu);
3234 }
3235 }
3236
3237 static void
3238 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3239 const char *filename)
3240 {
3241 int i;
3242
3243 dw2_setup (objfile);
3244
3245 /* We don't need to consider type units here.
3246 This is only called for examining code, e.g. expand_line_sal.
3247 There can be an order of magnitude (or more) more type units
3248 than comp units, and we avoid them if we can. */
3249
3250 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3251 {
3252 int j;
3253 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3254 struct quick_file_names *file_data;
3255
3256 /* We only need to look at symtabs not already expanded. */
3257 if (per_cu->v.quick->symtab)
3258 continue;
3259
3260 file_data = dw2_get_file_names (objfile, per_cu);
3261 if (file_data == NULL)
3262 continue;
3263
3264 for (j = 0; j < file_data->num_file_names; ++j)
3265 {
3266 const char *this_name = file_data->file_names[j];
3267 if (FILENAME_CMP (this_name, filename) == 0)
3268 {
3269 dw2_instantiate_symtab (per_cu);
3270 break;
3271 }
3272 }
3273 }
3274 }
3275
3276 /* A helper function for dw2_find_symbol_file that finds the primary
3277 file name for a given CU. This is a die_reader_func. */
3278
3279 static void
3280 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3281 gdb_byte *info_ptr,
3282 struct die_info *comp_unit_die,
3283 int has_children,
3284 void *data)
3285 {
3286 const char **result_ptr = data;
3287 struct dwarf2_cu *cu = reader->cu;
3288 struct attribute *attr;
3289
3290 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3291 if (attr == NULL)
3292 *result_ptr = NULL;
3293 else
3294 *result_ptr = DW_STRING (attr);
3295 }
3296
3297 static const char *
3298 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3299 {
3300 struct dwarf2_per_cu_data *per_cu;
3301 offset_type *vec;
3302 struct quick_file_names *file_data;
3303 const char *filename;
3304
3305 dw2_setup (objfile);
3306
3307 /* index_table is NULL if OBJF_READNOW. */
3308 if (!dwarf2_per_objfile->index_table)
3309 {
3310 struct symtab *s;
3311
3312 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3313 {
3314 struct blockvector *bv = BLOCKVECTOR (s);
3315 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3316 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3317
3318 if (sym)
3319 return sym->symtab->filename;
3320 }
3321 return NULL;
3322 }
3323
3324 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3325 name, &vec))
3326 return NULL;
3327
3328 /* Note that this just looks at the very first one named NAME -- but
3329 actually we are looking for a function. find_main_filename
3330 should be rewritten so that it doesn't require a custom hook. It
3331 could just use the ordinary symbol tables. */
3332 /* vec[0] is the length, which must always be >0. */
3333 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3334
3335 if (per_cu->v.quick->symtab != NULL)
3336 return per_cu->v.quick->symtab->filename;
3337
3338 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3339 dw2_get_primary_filename_reader, &filename);
3340
3341 return filename;
3342 }
3343
3344 static void
3345 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3346 struct objfile *objfile, int global,
3347 int (*callback) (struct block *,
3348 struct symbol *, void *),
3349 void *data, symbol_compare_ftype *match,
3350 symbol_compare_ftype *ordered_compare)
3351 {
3352 /* Currently unimplemented; used for Ada. The function can be called if the
3353 current language is Ada for a non-Ada objfile using GNU index. As Ada
3354 does not look for non-Ada symbols this function should just return. */
3355 }
3356
3357 static void
3358 dw2_expand_symtabs_matching
3359 (struct objfile *objfile,
3360 int (*file_matcher) (const char *, void *),
3361 int (*name_matcher) (const char *, void *),
3362 enum search_domain kind,
3363 void *data)
3364 {
3365 int i;
3366 offset_type iter;
3367 struct mapped_index *index;
3368
3369 dw2_setup (objfile);
3370
3371 /* index_table is NULL if OBJF_READNOW. */
3372 if (!dwarf2_per_objfile->index_table)
3373 return;
3374 index = dwarf2_per_objfile->index_table;
3375
3376 if (file_matcher != NULL)
3377 {
3378 struct cleanup *cleanup;
3379 htab_t visited_found, visited_not_found;
3380
3381 dw2_build_type_unit_groups ();
3382
3383 visited_found = htab_create_alloc (10,
3384 htab_hash_pointer, htab_eq_pointer,
3385 NULL, xcalloc, xfree);
3386 cleanup = make_cleanup_htab_delete (visited_found);
3387 visited_not_found = htab_create_alloc (10,
3388 htab_hash_pointer, htab_eq_pointer,
3389 NULL, xcalloc, xfree);
3390 make_cleanup_htab_delete (visited_not_found);
3391
3392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3394 {
3395 int j;
3396 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3397 struct quick_file_names *file_data;
3398 void **slot;
3399
3400 per_cu->v.quick->mark = 0;
3401
3402 /* We only need to look at symtabs not already expanded. */
3403 if (per_cu->v.quick->symtab)
3404 continue;
3405
3406 file_data = dw2_get_file_names (objfile, per_cu);
3407 if (file_data == NULL)
3408 continue;
3409
3410 if (htab_find (visited_not_found, file_data) != NULL)
3411 continue;
3412 else if (htab_find (visited_found, file_data) != NULL)
3413 {
3414 per_cu->v.quick->mark = 1;
3415 continue;
3416 }
3417
3418 for (j = 0; j < file_data->num_file_names; ++j)
3419 {
3420 if (file_matcher (file_data->file_names[j], data))
3421 {
3422 per_cu->v.quick->mark = 1;
3423 break;
3424 }
3425 }
3426
3427 slot = htab_find_slot (per_cu->v.quick->mark
3428 ? visited_found
3429 : visited_not_found,
3430 file_data, INSERT);
3431 *slot = file_data;
3432 }
3433
3434 do_cleanups (cleanup);
3435 }
3436
3437 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3438 {
3439 offset_type idx = 2 * iter;
3440 const char *name;
3441 offset_type *vec, vec_len, vec_idx;
3442
3443 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3444 continue;
3445
3446 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3447
3448 if (! (*name_matcher) (name, data))
3449 continue;
3450
3451 /* The name was matched, now expand corresponding CUs that were
3452 marked. */
3453 vec = (offset_type *) (index->constant_pool
3454 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3455 vec_len = MAYBE_SWAP (vec[0]);
3456 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3457 {
3458 struct dwarf2_per_cu_data *per_cu;
3459 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3460 gdb_index_symbol_kind symbol_kind =
3461 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3462 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3463
3464 /* Don't crash on bad data. */
3465 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3466 + dwarf2_per_objfile->n_type_units))
3467 continue;
3468
3469 /* Only check the symbol's kind if it has one.
3470 Indices prior to version 7 don't record it. */
3471 if (index->version >= 7)
3472 {
3473 switch (kind)
3474 {
3475 case VARIABLES_DOMAIN:
3476 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3477 continue;
3478 break;
3479 case FUNCTIONS_DOMAIN:
3480 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3481 continue;
3482 break;
3483 case TYPES_DOMAIN:
3484 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3485 continue;
3486 break;
3487 default:
3488 break;
3489 }
3490 }
3491
3492 per_cu = dw2_get_cu (cu_index);
3493 if (file_matcher == NULL || per_cu->v.quick->mark)
3494 dw2_instantiate_symtab (per_cu);
3495 }
3496 }
3497 }
3498
3499 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3500 symtab. */
3501
3502 static struct symtab *
3503 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3504 {
3505 int i;
3506
3507 if (BLOCKVECTOR (symtab) != NULL
3508 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3509 return symtab;
3510
3511 if (symtab->includes == NULL)
3512 return NULL;
3513
3514 for (i = 0; symtab->includes[i]; ++i)
3515 {
3516 struct symtab *s = symtab->includes[i];
3517
3518 s = recursively_find_pc_sect_symtab (s, pc);
3519 if (s != NULL)
3520 return s;
3521 }
3522
3523 return NULL;
3524 }
3525
3526 static struct symtab *
3527 dw2_find_pc_sect_symtab (struct objfile *objfile,
3528 struct minimal_symbol *msymbol,
3529 CORE_ADDR pc,
3530 struct obj_section *section,
3531 int warn_if_readin)
3532 {
3533 struct dwarf2_per_cu_data *data;
3534 struct symtab *result;
3535
3536 dw2_setup (objfile);
3537
3538 if (!objfile->psymtabs_addrmap)
3539 return NULL;
3540
3541 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3542 if (!data)
3543 return NULL;
3544
3545 if (warn_if_readin && data->v.quick->symtab)
3546 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3547 paddress (get_objfile_arch (objfile), pc));
3548
3549 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3550 gdb_assert (result != NULL);
3551 return result;
3552 }
3553
3554 static void
3555 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3556 void *data, int need_fullname)
3557 {
3558 int i;
3559 struct cleanup *cleanup;
3560 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3561 NULL, xcalloc, xfree);
3562
3563 cleanup = make_cleanup_htab_delete (visited);
3564 dw2_setup (objfile);
3565
3566 dw2_build_type_unit_groups ();
3567
3568 /* We can ignore file names coming from already-expanded CUs. */
3569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3570 + dwarf2_per_objfile->n_type_units); ++i)
3571 {
3572 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3573
3574 if (per_cu->v.quick->symtab)
3575 {
3576 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3577 INSERT);
3578
3579 *slot = per_cu->v.quick->file_names;
3580 }
3581 }
3582
3583 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3584 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3585 {
3586 int j;
3587 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3588 struct quick_file_names *file_data;
3589 void **slot;
3590
3591 /* We only need to look at symtabs not already expanded. */
3592 if (per_cu->v.quick->symtab)
3593 continue;
3594
3595 file_data = dw2_get_file_names (objfile, per_cu);
3596 if (file_data == NULL)
3597 continue;
3598
3599 slot = htab_find_slot (visited, file_data, INSERT);
3600 if (*slot)
3601 {
3602 /* Already visited. */
3603 continue;
3604 }
3605 *slot = file_data;
3606
3607 for (j = 0; j < file_data->num_file_names; ++j)
3608 {
3609 const char *this_real_name;
3610
3611 if (need_fullname)
3612 this_real_name = dw2_get_real_path (objfile, file_data, j);
3613 else
3614 this_real_name = NULL;
3615 (*fun) (file_data->file_names[j], this_real_name, data);
3616 }
3617 }
3618
3619 do_cleanups (cleanup);
3620 }
3621
3622 static int
3623 dw2_has_symbols (struct objfile *objfile)
3624 {
3625 return 1;
3626 }
3627
3628 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3629 {
3630 dw2_has_symbols,
3631 dw2_find_last_source_symtab,
3632 dw2_forget_cached_source_info,
3633 dw2_map_symtabs_matching_filename,
3634 dw2_lookup_symbol,
3635 dw2_pre_expand_symtabs_matching,
3636 dw2_print_stats,
3637 dw2_dump,
3638 dw2_relocate,
3639 dw2_expand_symtabs_for_function,
3640 dw2_expand_all_symtabs,
3641 dw2_expand_symtabs_with_filename,
3642 dw2_find_symbol_file,
3643 dw2_map_matching_symbols,
3644 dw2_expand_symtabs_matching,
3645 dw2_find_pc_sect_symtab,
3646 dw2_map_symbol_filenames
3647 };
3648
3649 /* Initialize for reading DWARF for this objfile. Return 0 if this
3650 file will use psymtabs, or 1 if using the GNU index. */
3651
3652 int
3653 dwarf2_initialize_objfile (struct objfile *objfile)
3654 {
3655 /* If we're about to read full symbols, don't bother with the
3656 indices. In this case we also don't care if some other debug
3657 format is making psymtabs, because they are all about to be
3658 expanded anyway. */
3659 if ((objfile->flags & OBJF_READNOW))
3660 {
3661 int i;
3662
3663 dwarf2_per_objfile->using_index = 1;
3664 create_all_comp_units (objfile);
3665 create_all_type_units (objfile);
3666 dwarf2_per_objfile->quick_file_names_table =
3667 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3668
3669 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3670 + dwarf2_per_objfile->n_type_units); ++i)
3671 {
3672 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3673
3674 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3675 struct dwarf2_per_cu_quick_data);
3676 }
3677
3678 /* Return 1 so that gdb sees the "quick" functions. However,
3679 these functions will be no-ops because we will have expanded
3680 all symtabs. */
3681 return 1;
3682 }
3683
3684 if (dwarf2_read_index (objfile))
3685 return 1;
3686
3687 return 0;
3688 }
3689
3690 \f
3691
3692 /* Build a partial symbol table. */
3693
3694 void
3695 dwarf2_build_psymtabs (struct objfile *objfile)
3696 {
3697 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3698 {
3699 init_psymbol_list (objfile, 1024);
3700 }
3701
3702 dwarf2_build_psymtabs_hard (objfile);
3703 }
3704
3705 /* Return the total length of the CU described by HEADER. */
3706
3707 static unsigned int
3708 get_cu_length (const struct comp_unit_head *header)
3709 {
3710 return header->initial_length_size + header->length;
3711 }
3712
3713 /* Return TRUE if OFFSET is within CU_HEADER. */
3714
3715 static inline int
3716 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3717 {
3718 sect_offset bottom = { cu_header->offset.sect_off };
3719 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3720
3721 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3722 }
3723
3724 /* Find the base address of the compilation unit for range lists and
3725 location lists. It will normally be specified by DW_AT_low_pc.
3726 In DWARF-3 draft 4, the base address could be overridden by
3727 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3728 compilation units with discontinuous ranges. */
3729
3730 static void
3731 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3732 {
3733 struct attribute *attr;
3734
3735 cu->base_known = 0;
3736 cu->base_address = 0;
3737
3738 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3739 if (attr)
3740 {
3741 cu->base_address = DW_ADDR (attr);
3742 cu->base_known = 1;
3743 }
3744 else
3745 {
3746 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3747 if (attr)
3748 {
3749 cu->base_address = DW_ADDR (attr);
3750 cu->base_known = 1;
3751 }
3752 }
3753 }
3754
3755 /* Read in the comp unit header information from the debug_info at info_ptr.
3756 NOTE: This leaves members offset, first_die_offset to be filled in
3757 by the caller. */
3758
3759 static gdb_byte *
3760 read_comp_unit_head (struct comp_unit_head *cu_header,
3761 gdb_byte *info_ptr, bfd *abfd)
3762 {
3763 int signed_addr;
3764 unsigned int bytes_read;
3765
3766 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3767 cu_header->initial_length_size = bytes_read;
3768 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3769 info_ptr += bytes_read;
3770 cu_header->version = read_2_bytes (abfd, info_ptr);
3771 info_ptr += 2;
3772 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3773 &bytes_read);
3774 info_ptr += bytes_read;
3775 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3776 info_ptr += 1;
3777 signed_addr = bfd_get_sign_extend_vma (abfd);
3778 if (signed_addr < 0)
3779 internal_error (__FILE__, __LINE__,
3780 _("read_comp_unit_head: dwarf from non elf file"));
3781 cu_header->signed_addr_p = signed_addr;
3782
3783 return info_ptr;
3784 }
3785
3786 /* Helper function that returns the proper abbrev section for
3787 THIS_CU. */
3788
3789 static struct dwarf2_section_info *
3790 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3791 {
3792 struct dwarf2_section_info *abbrev;
3793
3794 if (this_cu->is_dwz)
3795 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3796 else
3797 abbrev = &dwarf2_per_objfile->abbrev;
3798
3799 return abbrev;
3800 }
3801
3802 /* Subroutine of read_and_check_comp_unit_head and
3803 read_and_check_type_unit_head to simplify them.
3804 Perform various error checking on the header. */
3805
3806 static void
3807 error_check_comp_unit_head (struct comp_unit_head *header,
3808 struct dwarf2_section_info *section,
3809 struct dwarf2_section_info *abbrev_section)
3810 {
3811 bfd *abfd = section->asection->owner;
3812 const char *filename = bfd_get_filename (abfd);
3813
3814 if (header->version != 2 && header->version != 3 && header->version != 4)
3815 error (_("Dwarf Error: wrong version in compilation unit header "
3816 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3817 filename);
3818
3819 if (header->abbrev_offset.sect_off
3820 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3821 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3822 "(offset 0x%lx + 6) [in module %s]"),
3823 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3824 filename);
3825
3826 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3827 avoid potential 32-bit overflow. */
3828 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3829 > section->size)
3830 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3831 "(offset 0x%lx + 0) [in module %s]"),
3832 (long) header->length, (long) header->offset.sect_off,
3833 filename);
3834 }
3835
3836 /* Read in a CU/TU header and perform some basic error checking.
3837 The contents of the header are stored in HEADER.
3838 The result is a pointer to the start of the first DIE. */
3839
3840 static gdb_byte *
3841 read_and_check_comp_unit_head (struct comp_unit_head *header,
3842 struct dwarf2_section_info *section,
3843 struct dwarf2_section_info *abbrev_section,
3844 gdb_byte *info_ptr,
3845 int is_debug_types_section)
3846 {
3847 gdb_byte *beg_of_comp_unit = info_ptr;
3848 bfd *abfd = section->asection->owner;
3849
3850 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3851
3852 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3853
3854 /* If we're reading a type unit, skip over the signature and
3855 type_offset fields. */
3856 if (is_debug_types_section)
3857 info_ptr += 8 /*signature*/ + header->offset_size;
3858
3859 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3860
3861 error_check_comp_unit_head (header, section, abbrev_section);
3862
3863 return info_ptr;
3864 }
3865
3866 /* Read in the types comp unit header information from .debug_types entry at
3867 types_ptr. The result is a pointer to one past the end of the header. */
3868
3869 static gdb_byte *
3870 read_and_check_type_unit_head (struct comp_unit_head *header,
3871 struct dwarf2_section_info *section,
3872 struct dwarf2_section_info *abbrev_section,
3873 gdb_byte *info_ptr,
3874 ULONGEST *signature,
3875 cu_offset *type_offset_in_tu)
3876 {
3877 gdb_byte *beg_of_comp_unit = info_ptr;
3878 bfd *abfd = section->asection->owner;
3879
3880 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3881
3882 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3883
3884 /* If we're reading a type unit, skip over the signature and
3885 type_offset fields. */
3886 if (signature != NULL)
3887 *signature = read_8_bytes (abfd, info_ptr);
3888 info_ptr += 8;
3889 if (type_offset_in_tu != NULL)
3890 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3891 header->offset_size);
3892 info_ptr += header->offset_size;
3893
3894 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3895
3896 error_check_comp_unit_head (header, section, abbrev_section);
3897
3898 return info_ptr;
3899 }
3900
3901 /* Fetch the abbreviation table offset from a comp or type unit header. */
3902
3903 static sect_offset
3904 read_abbrev_offset (struct dwarf2_section_info *section,
3905 sect_offset offset)
3906 {
3907 bfd *abfd = section->asection->owner;
3908 gdb_byte *info_ptr;
3909 unsigned int length, initial_length_size, offset_size;
3910 sect_offset abbrev_offset;
3911
3912 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3913 info_ptr = section->buffer + offset.sect_off;
3914 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3915 offset_size = initial_length_size == 4 ? 4 : 8;
3916 info_ptr += initial_length_size + 2 /*version*/;
3917 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3918 return abbrev_offset;
3919 }
3920
3921 /* Allocate a new partial symtab for file named NAME and mark this new
3922 partial symtab as being an include of PST. */
3923
3924 static void
3925 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3926 struct objfile *objfile)
3927 {
3928 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3929
3930 subpst->section_offsets = pst->section_offsets;
3931 subpst->textlow = 0;
3932 subpst->texthigh = 0;
3933
3934 subpst->dependencies = (struct partial_symtab **)
3935 obstack_alloc (&objfile->objfile_obstack,
3936 sizeof (struct partial_symtab *));
3937 subpst->dependencies[0] = pst;
3938 subpst->number_of_dependencies = 1;
3939
3940 subpst->globals_offset = 0;
3941 subpst->n_global_syms = 0;
3942 subpst->statics_offset = 0;
3943 subpst->n_static_syms = 0;
3944 subpst->symtab = NULL;
3945 subpst->read_symtab = pst->read_symtab;
3946 subpst->readin = 0;
3947
3948 /* No private part is necessary for include psymtabs. This property
3949 can be used to differentiate between such include psymtabs and
3950 the regular ones. */
3951 subpst->read_symtab_private = NULL;
3952 }
3953
3954 /* Read the Line Number Program data and extract the list of files
3955 included by the source file represented by PST. Build an include
3956 partial symtab for each of these included files. */
3957
3958 static void
3959 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3960 struct die_info *die,
3961 struct partial_symtab *pst)
3962 {
3963 struct line_header *lh = NULL;
3964 struct attribute *attr;
3965
3966 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3967 if (attr)
3968 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
3969 if (lh == NULL)
3970 return; /* No linetable, so no includes. */
3971
3972 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3973 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3974
3975 free_line_header (lh);
3976 }
3977
3978 static hashval_t
3979 hash_signatured_type (const void *item)
3980 {
3981 const struct signatured_type *sig_type = item;
3982
3983 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3984 return sig_type->signature;
3985 }
3986
3987 static int
3988 eq_signatured_type (const void *item_lhs, const void *item_rhs)
3989 {
3990 const struct signatured_type *lhs = item_lhs;
3991 const struct signatured_type *rhs = item_rhs;
3992
3993 return lhs->signature == rhs->signature;
3994 }
3995
3996 /* Allocate a hash table for signatured types. */
3997
3998 static htab_t
3999 allocate_signatured_type_table (struct objfile *objfile)
4000 {
4001 return htab_create_alloc_ex (41,
4002 hash_signatured_type,
4003 eq_signatured_type,
4004 NULL,
4005 &objfile->objfile_obstack,
4006 hashtab_obstack_allocate,
4007 dummy_obstack_deallocate);
4008 }
4009
4010 /* A helper function to add a signatured type CU to a table. */
4011
4012 static int
4013 add_signatured_type_cu_to_table (void **slot, void *datum)
4014 {
4015 struct signatured_type *sigt = *slot;
4016 struct signatured_type ***datap = datum;
4017
4018 **datap = sigt;
4019 ++*datap;
4020
4021 return 1;
4022 }
4023
4024 /* Create the hash table of all entries in the .debug_types section.
4025 DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise.
4026 The result is a pointer to the hash table or NULL if there are
4027 no types. */
4028
4029 static htab_t
4030 create_debug_types_hash_table (struct dwo_file *dwo_file,
4031 VEC (dwarf2_section_info_def) *types)
4032 {
4033 struct objfile *objfile = dwarf2_per_objfile->objfile;
4034 htab_t types_htab = NULL;
4035 int ix;
4036 struct dwarf2_section_info *section;
4037 struct dwarf2_section_info *abbrev_section;
4038
4039 if (VEC_empty (dwarf2_section_info_def, types))
4040 return NULL;
4041
4042 abbrev_section = (dwo_file != NULL
4043 ? &dwo_file->sections.abbrev
4044 : &dwarf2_per_objfile->abbrev);
4045
4046 if (dwarf2_read_debug)
4047 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4048 dwo_file ? ".dwo" : "",
4049 bfd_get_filename (abbrev_section->asection->owner));
4050
4051 for (ix = 0;
4052 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4053 ++ix)
4054 {
4055 bfd *abfd;
4056 gdb_byte *info_ptr, *end_ptr;
4057 struct dwarf2_section_info *abbrev_section;
4058
4059 dwarf2_read_section (objfile, section);
4060 info_ptr = section->buffer;
4061
4062 if (info_ptr == NULL)
4063 continue;
4064
4065 /* We can't set abfd until now because the section may be empty or
4066 not present, in which case section->asection will be NULL. */
4067 abfd = section->asection->owner;
4068
4069 if (dwo_file)
4070 abbrev_section = &dwo_file->sections.abbrev;
4071 else
4072 abbrev_section = &dwarf2_per_objfile->abbrev;
4073
4074 if (types_htab == NULL)
4075 {
4076 if (dwo_file)
4077 types_htab = allocate_dwo_unit_table (objfile);
4078 else
4079 types_htab = allocate_signatured_type_table (objfile);
4080 }
4081
4082 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4083 because we don't need to read any dies: the signature is in the
4084 header. */
4085
4086 end_ptr = info_ptr + section->size;
4087 while (info_ptr < end_ptr)
4088 {
4089 sect_offset offset;
4090 cu_offset type_offset_in_tu;
4091 ULONGEST signature;
4092 struct signatured_type *sig_type;
4093 struct dwo_unit *dwo_tu;
4094 void **slot;
4095 gdb_byte *ptr = info_ptr;
4096 struct comp_unit_head header;
4097 unsigned int length;
4098
4099 offset.sect_off = ptr - section->buffer;
4100
4101 /* We need to read the type's signature in order to build the hash
4102 table, but we don't need anything else just yet. */
4103
4104 ptr = read_and_check_type_unit_head (&header, section,
4105 abbrev_section, ptr,
4106 &signature, &type_offset_in_tu);
4107
4108 length = get_cu_length (&header);
4109
4110 /* Skip dummy type units. */
4111 if (ptr >= info_ptr + length
4112 || peek_abbrev_code (abfd, ptr) == 0)
4113 {
4114 info_ptr += length;
4115 continue;
4116 }
4117
4118 if (dwo_file)
4119 {
4120 sig_type = NULL;
4121 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4122 struct dwo_unit);
4123 dwo_tu->dwo_file = dwo_file;
4124 dwo_tu->signature = signature;
4125 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4126 dwo_tu->info_or_types_section = section;
4127 dwo_tu->offset = offset;
4128 dwo_tu->length = length;
4129 }
4130 else
4131 {
4132 /* N.B.: type_offset is not usable if this type uses a DWO file.
4133 The real type_offset is in the DWO file. */
4134 dwo_tu = NULL;
4135 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4136 struct signatured_type);
4137 sig_type->signature = signature;
4138 sig_type->type_offset_in_tu = type_offset_in_tu;
4139 sig_type->per_cu.objfile = objfile;
4140 sig_type->per_cu.is_debug_types = 1;
4141 sig_type->per_cu.info_or_types_section = section;
4142 sig_type->per_cu.offset = offset;
4143 sig_type->per_cu.length = length;
4144 }
4145
4146 slot = htab_find_slot (types_htab,
4147 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4148 INSERT);
4149 gdb_assert (slot != NULL);
4150 if (*slot != NULL)
4151 {
4152 sect_offset dup_offset;
4153
4154 if (dwo_file)
4155 {
4156 const struct dwo_unit *dup_tu = *slot;
4157
4158 dup_offset = dup_tu->offset;
4159 }
4160 else
4161 {
4162 const struct signatured_type *dup_tu = *slot;
4163
4164 dup_offset = dup_tu->per_cu.offset;
4165 }
4166
4167 complaint (&symfile_complaints,
4168 _("debug type entry at offset 0x%x is duplicate to the "
4169 "entry at offset 0x%x, signature 0x%s"),
4170 offset.sect_off, dup_offset.sect_off,
4171 phex (signature, sizeof (signature)));
4172 }
4173 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4174
4175 if (dwarf2_read_debug)
4176 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4177 offset.sect_off,
4178 phex (signature, sizeof (signature)));
4179
4180 info_ptr += length;
4181 }
4182 }
4183
4184 return types_htab;
4185 }
4186
4187 /* Create the hash table of all entries in the .debug_types section,
4188 and initialize all_type_units.
4189 The result is zero if there is an error (e.g. missing .debug_types section),
4190 otherwise non-zero. */
4191
4192 static int
4193 create_all_type_units (struct objfile *objfile)
4194 {
4195 htab_t types_htab;
4196 struct signatured_type **iter;
4197
4198 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4199 if (types_htab == NULL)
4200 {
4201 dwarf2_per_objfile->signatured_types = NULL;
4202 return 0;
4203 }
4204
4205 dwarf2_per_objfile->signatured_types = types_htab;
4206
4207 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4208 dwarf2_per_objfile->all_type_units
4209 = obstack_alloc (&objfile->objfile_obstack,
4210 dwarf2_per_objfile->n_type_units
4211 * sizeof (struct signatured_type *));
4212 iter = &dwarf2_per_objfile->all_type_units[0];
4213 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4214 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4215 == dwarf2_per_objfile->n_type_units);
4216
4217 return 1;
4218 }
4219
4220 /* Lookup a signature based type for DW_FORM_ref_sig8.
4221 Returns NULL if signature SIG is not present in the table. */
4222
4223 static struct signatured_type *
4224 lookup_signatured_type (ULONGEST sig)
4225 {
4226 struct signatured_type find_entry, *entry;
4227
4228 if (dwarf2_per_objfile->signatured_types == NULL)
4229 {
4230 complaint (&symfile_complaints,
4231 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4232 return NULL;
4233 }
4234
4235 find_entry.signature = sig;
4236 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4237 return entry;
4238 }
4239 \f
4240 /* Low level DIE reading support. */
4241
4242 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4243
4244 static void
4245 init_cu_die_reader (struct die_reader_specs *reader,
4246 struct dwarf2_cu *cu,
4247 struct dwarf2_section_info *section,
4248 struct dwo_file *dwo_file)
4249 {
4250 gdb_assert (section->readin && section->buffer != NULL);
4251 reader->abfd = section->asection->owner;
4252 reader->cu = cu;
4253 reader->dwo_file = dwo_file;
4254 reader->die_section = section;
4255 reader->buffer = section->buffer;
4256 reader->buffer_end = section->buffer + section->size;
4257 }
4258
4259 /* Initialize a CU (or TU) and read its DIEs.
4260 If the CU defers to a DWO file, read the DWO file as well.
4261
4262 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4263 Otherwise the table specified in the comp unit header is read in and used.
4264 This is an optimization for when we already have the abbrev table.
4265
4266 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4267 Otherwise, a new CU is allocated with xmalloc.
4268
4269 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4270 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4271
4272 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4273 linker) then DIE_READER_FUNC will not get called. */
4274
4275 static void
4276 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4277 struct abbrev_table *abbrev_table,
4278 int use_existing_cu, int keep,
4279 die_reader_func_ftype *die_reader_func,
4280 void *data)
4281 {
4282 struct objfile *objfile = dwarf2_per_objfile->objfile;
4283 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4284 bfd *abfd = section->asection->owner;
4285 struct dwarf2_cu *cu;
4286 gdb_byte *begin_info_ptr, *info_ptr;
4287 struct die_reader_specs reader;
4288 struct die_info *comp_unit_die;
4289 int has_children;
4290 struct attribute *attr;
4291 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4292 struct signatured_type *sig_type = NULL;
4293 struct dwarf2_section_info *abbrev_section;
4294 /* Non-zero if CU currently points to a DWO file and we need to
4295 reread it. When this happens we need to reread the skeleton die
4296 before we can reread the DWO file. */
4297 int rereading_dwo_cu = 0;
4298
4299 if (dwarf2_die_debug)
4300 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4301 this_cu->is_debug_types ? "type" : "comp",
4302 this_cu->offset.sect_off);
4303
4304 if (use_existing_cu)
4305 gdb_assert (keep);
4306
4307 cleanups = make_cleanup (null_cleanup, NULL);
4308
4309 /* This is cheap if the section is already read in. */
4310 dwarf2_read_section (objfile, section);
4311
4312 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4313
4314 abbrev_section = get_abbrev_section_for_cu (this_cu);
4315
4316 if (use_existing_cu && this_cu->cu != NULL)
4317 {
4318 cu = this_cu->cu;
4319
4320 /* If this CU is from a DWO file we need to start over, we need to
4321 refetch the attributes from the skeleton CU.
4322 This could be optimized by retrieving those attributes from when we
4323 were here the first time: the previous comp_unit_die was stored in
4324 comp_unit_obstack. But there's no data yet that we need this
4325 optimization. */
4326 if (cu->dwo_unit != NULL)
4327 rereading_dwo_cu = 1;
4328 }
4329 else
4330 {
4331 /* If !use_existing_cu, this_cu->cu must be NULL. */
4332 gdb_assert (this_cu->cu == NULL);
4333
4334 cu = xmalloc (sizeof (*cu));
4335 init_one_comp_unit (cu, this_cu);
4336
4337 /* If an error occurs while loading, release our storage. */
4338 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4339 }
4340
4341 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4342 {
4343 /* We already have the header, there's no need to read it in again. */
4344 info_ptr += cu->header.first_die_offset.cu_off;
4345 }
4346 else
4347 {
4348 if (this_cu->is_debug_types)
4349 {
4350 ULONGEST signature;
4351 cu_offset type_offset_in_tu;
4352
4353 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4354 abbrev_section, info_ptr,
4355 &signature,
4356 &type_offset_in_tu);
4357
4358 /* Since per_cu is the first member of struct signatured_type,
4359 we can go from a pointer to one to a pointer to the other. */
4360 sig_type = (struct signatured_type *) this_cu;
4361 gdb_assert (sig_type->signature == signature);
4362 gdb_assert (sig_type->type_offset_in_tu.cu_off
4363 == type_offset_in_tu.cu_off);
4364 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4365
4366 /* LENGTH has not been set yet for type units if we're
4367 using .gdb_index. */
4368 this_cu->length = get_cu_length (&cu->header);
4369
4370 /* Establish the type offset that can be used to lookup the type. */
4371 sig_type->type_offset_in_section.sect_off =
4372 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4373 }
4374 else
4375 {
4376 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4377 abbrev_section,
4378 info_ptr, 0);
4379
4380 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4381 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4382 }
4383 }
4384
4385 /* Skip dummy compilation units. */
4386 if (info_ptr >= begin_info_ptr + this_cu->length
4387 || peek_abbrev_code (abfd, info_ptr) == 0)
4388 {
4389 do_cleanups (cleanups);
4390 return;
4391 }
4392
4393 /* If we don't have them yet, read the abbrevs for this compilation unit.
4394 And if we need to read them now, make sure they're freed when we're
4395 done. Note that it's important that if the CU had an abbrev table
4396 on entry we don't free it when we're done: Somewhere up the call stack
4397 it may be in use. */
4398 if (abbrev_table != NULL)
4399 {
4400 gdb_assert (cu->abbrev_table == NULL);
4401 gdb_assert (cu->header.abbrev_offset.sect_off
4402 == abbrev_table->offset.sect_off);
4403 cu->abbrev_table = abbrev_table;
4404 }
4405 else if (cu->abbrev_table == NULL)
4406 {
4407 dwarf2_read_abbrevs (cu, abbrev_section);
4408 make_cleanup (dwarf2_free_abbrev_table, cu);
4409 }
4410 else if (rereading_dwo_cu)
4411 {
4412 dwarf2_free_abbrev_table (cu);
4413 dwarf2_read_abbrevs (cu, abbrev_section);
4414 }
4415
4416 /* Read the top level CU/TU die. */
4417 init_cu_die_reader (&reader, cu, section, NULL);
4418 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4419
4420 /* If we have a DWO stub, process it and then read in the DWO file.
4421 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4422 a DWO CU, that this test will fail. */
4423 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4424 if (attr)
4425 {
4426 char *dwo_name = DW_STRING (attr);
4427 const char *comp_dir_string;
4428 struct dwo_unit *dwo_unit;
4429 ULONGEST signature; /* Or dwo_id. */
4430 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4431 int i,num_extra_attrs;
4432 struct dwarf2_section_info *dwo_abbrev_section;
4433
4434 if (has_children)
4435 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4436 " has children (offset 0x%x) [in module %s]"),
4437 this_cu->offset.sect_off, bfd_get_filename (abfd));
4438
4439 /* These attributes aren't processed until later:
4440 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4441 However, the attribute is found in the stub which we won't have later.
4442 In order to not impose this complication on the rest of the code,
4443 we read them here and copy them to the DWO CU/TU die. */
4444
4445 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4446 DWO file. */
4447 stmt_list = NULL;
4448 if (! this_cu->is_debug_types)
4449 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4450 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4451 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4452 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4453 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4454
4455 /* There should be a DW_AT_addr_base attribute here (if needed).
4456 We need the value before we can process DW_FORM_GNU_addr_index. */
4457 cu->addr_base = 0;
4458 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4459 if (attr)
4460 cu->addr_base = DW_UNSND (attr);
4461
4462 /* There should be a DW_AT_ranges_base attribute here (if needed).
4463 We need the value before we can process DW_AT_ranges. */
4464 cu->ranges_base = 0;
4465 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4466 if (attr)
4467 cu->ranges_base = DW_UNSND (attr);
4468
4469 if (this_cu->is_debug_types)
4470 {
4471 gdb_assert (sig_type != NULL);
4472 signature = sig_type->signature;
4473 }
4474 else
4475 {
4476 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4477 if (! attr)
4478 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4479 dwo_name);
4480 signature = DW_UNSND (attr);
4481 }
4482
4483 /* We may need the comp_dir in order to find the DWO file. */
4484 comp_dir_string = NULL;
4485 if (comp_dir)
4486 comp_dir_string = DW_STRING (comp_dir);
4487
4488 if (this_cu->is_debug_types)
4489 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4490 else
4491 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4492 signature);
4493
4494 if (dwo_unit == NULL)
4495 {
4496 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4497 " with ID %s [in module %s]"),
4498 this_cu->offset.sect_off,
4499 phex (signature, sizeof (signature)),
4500 objfile->name);
4501 }
4502
4503 /* Set up for reading the DWO CU/TU. */
4504 cu->dwo_unit = dwo_unit;
4505 section = dwo_unit->info_or_types_section;
4506 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4507 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4508 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4509
4510 if (this_cu->is_debug_types)
4511 {
4512 ULONGEST signature;
4513
4514 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4515 dwo_abbrev_section,
4516 info_ptr,
4517 &signature, NULL);
4518 gdb_assert (sig_type->signature == signature);
4519 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4520 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4521
4522 /* Establish the type offset that can be used to lookup the type.
4523 For DWO files, we don't know it until now. */
4524 sig_type->type_offset_in_section.sect_off =
4525 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4526 }
4527 else
4528 {
4529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4530 dwo_abbrev_section,
4531 info_ptr, 0);
4532 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4533 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4534 }
4535
4536 /* Discard the original CU's abbrev table, and read the DWO's. */
4537 if (abbrev_table == NULL)
4538 {
4539 dwarf2_free_abbrev_table (cu);
4540 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4541 }
4542 else
4543 {
4544 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4545 make_cleanup (dwarf2_free_abbrev_table, cu);
4546 }
4547
4548 /* Read in the die, but leave space to copy over the attributes
4549 from the stub. This has the benefit of simplifying the rest of
4550 the code - all the real work is done here. */
4551 num_extra_attrs = ((stmt_list != NULL)
4552 + (low_pc != NULL)
4553 + (high_pc != NULL)
4554 + (ranges != NULL)
4555 + (comp_dir != NULL));
4556 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4557 &has_children, num_extra_attrs);
4558
4559 /* Copy over the attributes from the stub to the DWO die. */
4560 i = comp_unit_die->num_attrs;
4561 if (stmt_list != NULL)
4562 comp_unit_die->attrs[i++] = *stmt_list;
4563 if (low_pc != NULL)
4564 comp_unit_die->attrs[i++] = *low_pc;
4565 if (high_pc != NULL)
4566 comp_unit_die->attrs[i++] = *high_pc;
4567 if (ranges != NULL)
4568 comp_unit_die->attrs[i++] = *ranges;
4569 if (comp_dir != NULL)
4570 comp_unit_die->attrs[i++] = *comp_dir;
4571 comp_unit_die->num_attrs += num_extra_attrs;
4572
4573 /* Skip dummy compilation units. */
4574 if (info_ptr >= begin_info_ptr + dwo_unit->length
4575 || peek_abbrev_code (abfd, info_ptr) == 0)
4576 {
4577 do_cleanups (cleanups);
4578 return;
4579 }
4580 }
4581
4582 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4583
4584 if (free_cu_cleanup != NULL)
4585 {
4586 if (keep)
4587 {
4588 /* We've successfully allocated this compilation unit. Let our
4589 caller clean it up when finished with it. */
4590 discard_cleanups (free_cu_cleanup);
4591
4592 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4593 So we have to manually free the abbrev table. */
4594 dwarf2_free_abbrev_table (cu);
4595
4596 /* Link this CU into read_in_chain. */
4597 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4598 dwarf2_per_objfile->read_in_chain = this_cu;
4599 }
4600 else
4601 do_cleanups (free_cu_cleanup);
4602 }
4603
4604 do_cleanups (cleanups);
4605 }
4606
4607 /* Read CU/TU THIS_CU in section SECTION,
4608 but do not follow DW_AT_GNU_dwo_name if present.
4609 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to
4610 have already done the lookup to find the DWO file).
4611
4612 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4613 THIS_CU->is_debug_types, but nothing else.
4614
4615 We fill in THIS_CU->length.
4616
4617 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4618 linker) then DIE_READER_FUNC will not get called.
4619
4620 THIS_CU->cu is always freed when done.
4621 This is done in order to not leave THIS_CU->cu in a state where we have
4622 to care whether it refers to the "main" CU or the DWO CU. */
4623
4624 static void
4625 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4626 struct dwarf2_section_info *abbrev_section,
4627 struct dwo_file *dwo_file,
4628 die_reader_func_ftype *die_reader_func,
4629 void *data)
4630 {
4631 struct objfile *objfile = dwarf2_per_objfile->objfile;
4632 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4633 bfd *abfd = section->asection->owner;
4634 struct dwarf2_cu cu;
4635 gdb_byte *begin_info_ptr, *info_ptr;
4636 struct die_reader_specs reader;
4637 struct cleanup *cleanups;
4638 struct die_info *comp_unit_die;
4639 int has_children;
4640
4641 if (dwarf2_die_debug)
4642 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4643 this_cu->is_debug_types ? "type" : "comp",
4644 this_cu->offset.sect_off);
4645
4646 gdb_assert (this_cu->cu == NULL);
4647
4648 /* This is cheap if the section is already read in. */
4649 dwarf2_read_section (objfile, section);
4650
4651 init_one_comp_unit (&cu, this_cu);
4652
4653 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4654
4655 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4656 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4657 abbrev_section, info_ptr,
4658 this_cu->is_debug_types);
4659
4660 this_cu->length = get_cu_length (&cu.header);
4661
4662 /* Skip dummy compilation units. */
4663 if (info_ptr >= begin_info_ptr + this_cu->length
4664 || peek_abbrev_code (abfd, info_ptr) == 0)
4665 {
4666 do_cleanups (cleanups);
4667 return;
4668 }
4669
4670 dwarf2_read_abbrevs (&cu, abbrev_section);
4671 make_cleanup (dwarf2_free_abbrev_table, &cu);
4672
4673 init_cu_die_reader (&reader, &cu, section, dwo_file);
4674 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4675
4676 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4677
4678 do_cleanups (cleanups);
4679 }
4680
4681 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4682 does not lookup the specified DWO file.
4683 This cannot be used to read DWO files.
4684
4685 THIS_CU->cu is always freed when done.
4686 This is done in order to not leave THIS_CU->cu in a state where we have
4687 to care whether it refers to the "main" CU or the DWO CU.
4688 We can revisit this if the data shows there's a performance issue. */
4689
4690 static void
4691 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4692 die_reader_func_ftype *die_reader_func,
4693 void *data)
4694 {
4695 init_cutu_and_read_dies_no_follow (this_cu,
4696 get_abbrev_section_for_cu (this_cu),
4697 NULL,
4698 die_reader_func, data);
4699 }
4700
4701 /* Create a psymtab named NAME and assign it to PER_CU.
4702
4703 The caller must fill in the following details:
4704 dirname, textlow, texthigh. */
4705
4706 static struct partial_symtab *
4707 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4708 {
4709 struct objfile *objfile = per_cu->objfile;
4710 struct partial_symtab *pst;
4711
4712 pst = start_psymtab_common (objfile, objfile->section_offsets,
4713 name, 0,
4714 objfile->global_psymbols.next,
4715 objfile->static_psymbols.next);
4716
4717 pst->psymtabs_addrmap_supported = 1;
4718
4719 /* This is the glue that links PST into GDB's symbol API. */
4720 pst->read_symtab_private = per_cu;
4721 pst->read_symtab = dwarf2_psymtab_to_symtab;
4722 per_cu->v.psymtab = pst;
4723
4724 return pst;
4725 }
4726
4727 /* die_reader_func for process_psymtab_comp_unit. */
4728
4729 static void
4730 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4731 gdb_byte *info_ptr,
4732 struct die_info *comp_unit_die,
4733 int has_children,
4734 void *data)
4735 {
4736 struct dwarf2_cu *cu = reader->cu;
4737 struct objfile *objfile = cu->objfile;
4738 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4739 struct attribute *attr;
4740 CORE_ADDR baseaddr;
4741 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4742 struct partial_symtab *pst;
4743 int has_pc_info;
4744 const char *filename;
4745 int *want_partial_unit_ptr = data;
4746
4747 if (comp_unit_die->tag == DW_TAG_partial_unit
4748 && (want_partial_unit_ptr == NULL
4749 || !*want_partial_unit_ptr))
4750 return;
4751
4752 gdb_assert (! per_cu->is_debug_types);
4753
4754 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4755
4756 cu->list_in_scope = &file_symbols;
4757
4758 /* Allocate a new partial symbol table structure. */
4759 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4760 if (attr == NULL || !DW_STRING (attr))
4761 filename = "";
4762 else
4763 filename = DW_STRING (attr);
4764
4765 pst = create_partial_symtab (per_cu, filename);
4766
4767 /* This must be done before calling dwarf2_build_include_psymtabs. */
4768 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4769 if (attr != NULL)
4770 pst->dirname = DW_STRING (attr);
4771
4772 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4773
4774 dwarf2_find_base_address (comp_unit_die, cu);
4775
4776 /* Possibly set the default values of LOWPC and HIGHPC from
4777 `DW_AT_ranges'. */
4778 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4779 &best_highpc, cu, pst);
4780 if (has_pc_info == 1 && best_lowpc < best_highpc)
4781 /* Store the contiguous range if it is not empty; it can be empty for
4782 CUs with no code. */
4783 addrmap_set_empty (objfile->psymtabs_addrmap,
4784 best_lowpc + baseaddr,
4785 best_highpc + baseaddr - 1, pst);
4786
4787 /* Check if comp unit has_children.
4788 If so, read the rest of the partial symbols from this comp unit.
4789 If not, there's no more debug_info for this comp unit. */
4790 if (has_children)
4791 {
4792 struct partial_die_info *first_die;
4793 CORE_ADDR lowpc, highpc;
4794
4795 lowpc = ((CORE_ADDR) -1);
4796 highpc = ((CORE_ADDR) 0);
4797
4798 first_die = load_partial_dies (reader, info_ptr, 1);
4799
4800 scan_partial_symbols (first_die, &lowpc, &highpc,
4801 ! has_pc_info, cu);
4802
4803 /* If we didn't find a lowpc, set it to highpc to avoid
4804 complaints from `maint check'. */
4805 if (lowpc == ((CORE_ADDR) -1))
4806 lowpc = highpc;
4807
4808 /* If the compilation unit didn't have an explicit address range,
4809 then use the information extracted from its child dies. */
4810 if (! has_pc_info)
4811 {
4812 best_lowpc = lowpc;
4813 best_highpc = highpc;
4814 }
4815 }
4816 pst->textlow = best_lowpc + baseaddr;
4817 pst->texthigh = best_highpc + baseaddr;
4818
4819 pst->n_global_syms = objfile->global_psymbols.next -
4820 (objfile->global_psymbols.list + pst->globals_offset);
4821 pst->n_static_syms = objfile->static_psymbols.next -
4822 (objfile->static_psymbols.list + pst->statics_offset);
4823 sort_pst_symbols (pst);
4824
4825 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4826 {
4827 int i;
4828 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4829 struct dwarf2_per_cu_data *iter;
4830
4831 /* Fill in 'dependencies' here; we fill in 'users' in a
4832 post-pass. */
4833 pst->number_of_dependencies = len;
4834 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4835 len * sizeof (struct symtab *));
4836 for (i = 0;
4837 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4838 i, iter);
4839 ++i)
4840 pst->dependencies[i] = iter->v.psymtab;
4841
4842 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4843 }
4844
4845 /* Get the list of files included in the current compilation unit,
4846 and build a psymtab for each of them. */
4847 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4848
4849 if (dwarf2_read_debug)
4850 {
4851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4852
4853 fprintf_unfiltered (gdb_stdlog,
4854 "Psymtab for %s unit @0x%x: 0x%s - 0x%s"
4855 ", %d global, %d static syms\n",
4856 per_cu->is_debug_types ? "type" : "comp",
4857 per_cu->offset.sect_off,
4858 paddress (gdbarch, pst->textlow),
4859 paddress (gdbarch, pst->texthigh),
4860 pst->n_global_syms, pst->n_static_syms);
4861 }
4862 }
4863
4864 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4865 Process compilation unit THIS_CU for a psymtab. */
4866
4867 static void
4868 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4869 int want_partial_unit)
4870 {
4871 /* If this compilation unit was already read in, free the
4872 cached copy in order to read it in again. This is
4873 necessary because we skipped some symbols when we first
4874 read in the compilation unit (see load_partial_dies).
4875 This problem could be avoided, but the benefit is unclear. */
4876 if (this_cu->cu != NULL)
4877 free_one_cached_comp_unit (this_cu);
4878
4879 gdb_assert (! this_cu->is_debug_types);
4880 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4881 process_psymtab_comp_unit_reader,
4882 &want_partial_unit);
4883
4884 /* Age out any secondary CUs. */
4885 age_cached_comp_units ();
4886 }
4887
4888 static hashval_t
4889 hash_type_unit_group (const void *item)
4890 {
4891 const struct type_unit_group *tu_group = item;
4892
4893 return hash_stmt_list_entry (&tu_group->hash);
4894 }
4895
4896 static int
4897 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4898 {
4899 const struct type_unit_group *lhs = item_lhs;
4900 const struct type_unit_group *rhs = item_rhs;
4901
4902 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4903 }
4904
4905 /* Allocate a hash table for type unit groups. */
4906
4907 static htab_t
4908 allocate_type_unit_groups_table (void)
4909 {
4910 return htab_create_alloc_ex (3,
4911 hash_type_unit_group,
4912 eq_type_unit_group,
4913 NULL,
4914 &dwarf2_per_objfile->objfile->objfile_obstack,
4915 hashtab_obstack_allocate,
4916 dummy_obstack_deallocate);
4917 }
4918
4919 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4920 partial symtabs. We combine several TUs per psymtab to not let the size
4921 of any one psymtab grow too big. */
4922 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4923 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4924
4925 /* Helper routine for get_type_unit_group.
4926 Create the type_unit_group object used to hold one or more TUs. */
4927
4928 static struct type_unit_group *
4929 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
4930 {
4931 struct objfile *objfile = dwarf2_per_objfile->objfile;
4932 struct dwarf2_per_cu_data *per_cu;
4933 struct type_unit_group *tu_group;
4934
4935 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4936 struct type_unit_group);
4937 per_cu = &tu_group->per_cu;
4938 per_cu->objfile = objfile;
4939 per_cu->is_debug_types = 1;
4940 per_cu->s.type_unit_group = tu_group;
4941
4942 if (dwarf2_per_objfile->using_index)
4943 {
4944 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4945 struct dwarf2_per_cu_quick_data);
4946 tu_group->t.first_tu = cu->per_cu;
4947 }
4948 else
4949 {
4950 unsigned int line_offset = line_offset_struct.sect_off;
4951 struct partial_symtab *pst;
4952 char *name;
4953
4954 /* Give the symtab a useful name for debug purposes. */
4955 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
4956 name = xstrprintf ("<type_units_%d>",
4957 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
4958 else
4959 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
4960
4961 pst = create_partial_symtab (per_cu, name);
4962 pst->anonymous = 1;
4963
4964 xfree (name);
4965 }
4966
4967 tu_group->hash.dwo_unit = cu->dwo_unit;
4968 tu_group->hash.line_offset = line_offset_struct;
4969
4970 return tu_group;
4971 }
4972
4973 /* Look up the type_unit_group for type unit CU, and create it if necessary.
4974 STMT_LIST is a DW_AT_stmt_list attribute. */
4975
4976 static struct type_unit_group *
4977 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
4978 {
4979 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
4980 struct type_unit_group *tu_group;
4981 void **slot;
4982 unsigned int line_offset;
4983 struct type_unit_group type_unit_group_for_lookup;
4984
4985 if (dwarf2_per_objfile->type_unit_groups == NULL)
4986 {
4987 dwarf2_per_objfile->type_unit_groups =
4988 allocate_type_unit_groups_table ();
4989 }
4990
4991 /* Do we need to create a new group, or can we use an existing one? */
4992
4993 if (stmt_list)
4994 {
4995 line_offset = DW_UNSND (stmt_list);
4996 ++tu_stats->nr_symtab_sharers;
4997 }
4998 else
4999 {
5000 /* Ugh, no stmt_list. Rare, but we have to handle it.
5001 We can do various things here like create one group per TU or
5002 spread them over multiple groups to split up the expansion work.
5003 To avoid worst case scenarios (too many groups or too large groups)
5004 we, umm, group them in bunches. */
5005 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5006 | (tu_stats->nr_stmt_less_type_units
5007 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5008 ++tu_stats->nr_stmt_less_type_units;
5009 }
5010
5011 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5012 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5013 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5014 &type_unit_group_for_lookup, INSERT);
5015 if (*slot != NULL)
5016 {
5017 tu_group = *slot;
5018 gdb_assert (tu_group != NULL);
5019 }
5020 else
5021 {
5022 sect_offset line_offset_struct;
5023
5024 line_offset_struct.sect_off = line_offset;
5025 tu_group = create_type_unit_group (cu, line_offset_struct);
5026 *slot = tu_group;
5027 ++tu_stats->nr_symtabs;
5028 }
5029
5030 return tu_group;
5031 }
5032
5033 /* Struct used to sort TUs by their abbreviation table offset. */
5034
5035 struct tu_abbrev_offset
5036 {
5037 struct signatured_type *sig_type;
5038 sect_offset abbrev_offset;
5039 };
5040
5041 /* Helper routine for build_type_unit_groups, passed to qsort. */
5042
5043 static int
5044 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5045 {
5046 const struct tu_abbrev_offset * const *a = ap;
5047 const struct tu_abbrev_offset * const *b = bp;
5048 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5049 unsigned int boff = (*b)->abbrev_offset.sect_off;
5050
5051 return (aoff > boff) - (aoff < boff);
5052 }
5053
5054 /* A helper function to add a type_unit_group to a table. */
5055
5056 static int
5057 add_type_unit_group_to_table (void **slot, void *datum)
5058 {
5059 struct type_unit_group *tu_group = *slot;
5060 struct type_unit_group ***datap = datum;
5061
5062 **datap = tu_group;
5063 ++*datap;
5064
5065 return 1;
5066 }
5067
5068 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5069 each one passing FUNC,DATA.
5070
5071 The efficiency is because we sort TUs by the abbrev table they use and
5072 only read each abbrev table once. In one program there are 200K TUs
5073 sharing 8K abbrev tables.
5074
5075 The main purpose of this function is to support building the
5076 dwarf2_per_objfile->type_unit_groups table.
5077 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5078 can collapse the search space by grouping them by stmt_list.
5079 The savings can be significant, in the same program from above the 200K TUs
5080 share 8K stmt_list tables.
5081
5082 FUNC is expected to call get_type_unit_group, which will create the
5083 struct type_unit_group if necessary and add it to
5084 dwarf2_per_objfile->type_unit_groups. */
5085
5086 static void
5087 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5088 {
5089 struct objfile *objfile = dwarf2_per_objfile->objfile;
5090 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5091 struct cleanup *cleanups;
5092 struct abbrev_table *abbrev_table;
5093 sect_offset abbrev_offset;
5094 struct tu_abbrev_offset *sorted_by_abbrev;
5095 struct type_unit_group **iter;
5096 int i;
5097
5098 /* It's up to the caller to not call us multiple times. */
5099 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5100
5101 if (dwarf2_per_objfile->n_type_units == 0)
5102 return;
5103
5104 /* TUs typically share abbrev tables, and there can be way more TUs than
5105 abbrev tables. Sort by abbrev table to reduce the number of times we
5106 read each abbrev table in.
5107 Alternatives are to punt or to maintain a cache of abbrev tables.
5108 This is simpler and efficient enough for now.
5109
5110 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5111 symtab to use). Typically TUs with the same abbrev offset have the same
5112 stmt_list value too so in practice this should work well.
5113
5114 The basic algorithm here is:
5115
5116 sort TUs by abbrev table
5117 for each TU with same abbrev table:
5118 read abbrev table if first user
5119 read TU top level DIE
5120 [IWBN if DWO skeletons had DW_AT_stmt_list]
5121 call FUNC */
5122
5123 if (dwarf2_read_debug)
5124 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5125
5126 /* Sort in a separate table to maintain the order of all_type_units
5127 for .gdb_index: TU indices directly index all_type_units. */
5128 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5129 dwarf2_per_objfile->n_type_units);
5130 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5131 {
5132 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5133
5134 sorted_by_abbrev[i].sig_type = sig_type;
5135 sorted_by_abbrev[i].abbrev_offset =
5136 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5137 sig_type->per_cu.offset);
5138 }
5139 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5140 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5141 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5142
5143 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5144 called any number of times, so we don't reset tu_stats here. */
5145
5146 abbrev_offset.sect_off = ~(unsigned) 0;
5147 abbrev_table = NULL;
5148 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5149
5150 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5151 {
5152 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5153
5154 /* Switch to the next abbrev table if necessary. */
5155 if (abbrev_table == NULL
5156 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5157 {
5158 if (abbrev_table != NULL)
5159 {
5160 abbrev_table_free (abbrev_table);
5161 /* Reset to NULL in case abbrev_table_read_table throws
5162 an error: abbrev_table_free_cleanup will get called. */
5163 abbrev_table = NULL;
5164 }
5165 abbrev_offset = tu->abbrev_offset;
5166 abbrev_table =
5167 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5168 abbrev_offset);
5169 ++tu_stats->nr_uniq_abbrev_tables;
5170 }
5171
5172 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5173 func, data);
5174 }
5175
5176 /* Create a vector of pointers to primary type units to make it easy to
5177 iterate over them and CUs. See dw2_get_primary_cu. */
5178 dwarf2_per_objfile->n_type_unit_groups =
5179 htab_elements (dwarf2_per_objfile->type_unit_groups);
5180 dwarf2_per_objfile->all_type_unit_groups =
5181 obstack_alloc (&objfile->objfile_obstack,
5182 dwarf2_per_objfile->n_type_unit_groups
5183 * sizeof (struct type_unit_group *));
5184 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5185 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5186 add_type_unit_group_to_table, &iter);
5187 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5188 == dwarf2_per_objfile->n_type_unit_groups);
5189
5190 do_cleanups (cleanups);
5191
5192 if (dwarf2_read_debug)
5193 {
5194 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5195 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5196 dwarf2_per_objfile->n_type_units);
5197 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5198 tu_stats->nr_uniq_abbrev_tables);
5199 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5200 tu_stats->nr_symtabs);
5201 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5202 tu_stats->nr_symtab_sharers);
5203 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5204 tu_stats->nr_stmt_less_type_units);
5205 }
5206 }
5207
5208 /* Reader function for build_type_psymtabs. */
5209
5210 static void
5211 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5212 gdb_byte *info_ptr,
5213 struct die_info *type_unit_die,
5214 int has_children,
5215 void *data)
5216 {
5217 struct objfile *objfile = dwarf2_per_objfile->objfile;
5218 struct dwarf2_cu *cu = reader->cu;
5219 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5220 struct type_unit_group *tu_group;
5221 struct attribute *attr;
5222 struct partial_die_info *first_die;
5223 CORE_ADDR lowpc, highpc;
5224 struct partial_symtab *pst;
5225
5226 gdb_assert (data == NULL);
5227
5228 if (! has_children)
5229 return;
5230
5231 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5232 tu_group = get_type_unit_group (cu, attr);
5233
5234 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5235
5236 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5237 cu->list_in_scope = &file_symbols;
5238 pst = create_partial_symtab (per_cu, "");
5239 pst->anonymous = 1;
5240
5241 first_die = load_partial_dies (reader, info_ptr, 1);
5242
5243 lowpc = (CORE_ADDR) -1;
5244 highpc = (CORE_ADDR) 0;
5245 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5246
5247 pst->n_global_syms = objfile->global_psymbols.next -
5248 (objfile->global_psymbols.list + pst->globals_offset);
5249 pst->n_static_syms = objfile->static_psymbols.next -
5250 (objfile->static_psymbols.list + pst->statics_offset);
5251 sort_pst_symbols (pst);
5252 }
5253
5254 /* Traversal function for build_type_psymtabs. */
5255
5256 static int
5257 build_type_psymtab_dependencies (void **slot, void *info)
5258 {
5259 struct objfile *objfile = dwarf2_per_objfile->objfile;
5260 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5261 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5262 struct partial_symtab *pst = per_cu->v.psymtab;
5263 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5264 struct dwarf2_per_cu_data *iter;
5265 int i;
5266
5267 gdb_assert (len > 0);
5268
5269 pst->number_of_dependencies = len;
5270 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5271 len * sizeof (struct psymtab *));
5272 for (i = 0;
5273 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5274 ++i)
5275 {
5276 pst->dependencies[i] = iter->v.psymtab;
5277 iter->s.type_unit_group = tu_group;
5278 }
5279
5280 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5281
5282 return 1;
5283 }
5284
5285 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5286 Build partial symbol tables for the .debug_types comp-units. */
5287
5288 static void
5289 build_type_psymtabs (struct objfile *objfile)
5290 {
5291 if (! create_all_type_units (objfile))
5292 return;
5293
5294 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5295
5296 /* Now that all TUs have been processed we can fill in the dependencies. */
5297 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5298 build_type_psymtab_dependencies, NULL);
5299 }
5300
5301 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5302
5303 static void
5304 psymtabs_addrmap_cleanup (void *o)
5305 {
5306 struct objfile *objfile = o;
5307
5308 objfile->psymtabs_addrmap = NULL;
5309 }
5310
5311 /* Compute the 'user' field for each psymtab in OBJFILE. */
5312
5313 static void
5314 set_partial_user (struct objfile *objfile)
5315 {
5316 int i;
5317
5318 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5319 {
5320 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5321 struct partial_symtab *pst = per_cu->v.psymtab;
5322 int j;
5323
5324 if (pst == NULL)
5325 continue;
5326
5327 for (j = 0; j < pst->number_of_dependencies; ++j)
5328 {
5329 /* Set the 'user' field only if it is not already set. */
5330 if (pst->dependencies[j]->user == NULL)
5331 pst->dependencies[j]->user = pst;
5332 }
5333 }
5334 }
5335
5336 /* Build the partial symbol table by doing a quick pass through the
5337 .debug_info and .debug_abbrev sections. */
5338
5339 static void
5340 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5341 {
5342 struct cleanup *back_to, *addrmap_cleanup;
5343 struct obstack temp_obstack;
5344 int i;
5345
5346 if (dwarf2_read_debug)
5347 {
5348 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5349 objfile->name);
5350 }
5351
5352 dwarf2_per_objfile->reading_partial_symbols = 1;
5353
5354 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5355
5356 /* Any cached compilation units will be linked by the per-objfile
5357 read_in_chain. Make sure to free them when we're done. */
5358 back_to = make_cleanup (free_cached_comp_units, NULL);
5359
5360 build_type_psymtabs (objfile);
5361
5362 create_all_comp_units (objfile);
5363
5364 /* Create a temporary address map on a temporary obstack. We later
5365 copy this to the final obstack. */
5366 obstack_init (&temp_obstack);
5367 make_cleanup_obstack_free (&temp_obstack);
5368 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5369 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5370
5371 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5372 {
5373 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5374
5375 process_psymtab_comp_unit (per_cu, 0);
5376 }
5377
5378 set_partial_user (objfile);
5379
5380 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5381 &objfile->objfile_obstack);
5382 discard_cleanups (addrmap_cleanup);
5383
5384 do_cleanups (back_to);
5385
5386 if (dwarf2_read_debug)
5387 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5388 objfile->name);
5389 }
5390
5391 /* die_reader_func for load_partial_comp_unit. */
5392
5393 static void
5394 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5395 gdb_byte *info_ptr,
5396 struct die_info *comp_unit_die,
5397 int has_children,
5398 void *data)
5399 {
5400 struct dwarf2_cu *cu = reader->cu;
5401
5402 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5403
5404 /* Check if comp unit has_children.
5405 If so, read the rest of the partial symbols from this comp unit.
5406 If not, there's no more debug_info for this comp unit. */
5407 if (has_children)
5408 load_partial_dies (reader, info_ptr, 0);
5409 }
5410
5411 /* Load the partial DIEs for a secondary CU into memory.
5412 This is also used when rereading a primary CU with load_all_dies. */
5413
5414 static void
5415 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5416 {
5417 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5418 load_partial_comp_unit_reader, NULL);
5419 }
5420
5421 static void
5422 read_comp_units_from_section (struct objfile *objfile,
5423 struct dwarf2_section_info *section,
5424 unsigned int is_dwz,
5425 int *n_allocated,
5426 int *n_comp_units,
5427 struct dwarf2_per_cu_data ***all_comp_units)
5428 {
5429 gdb_byte *info_ptr;
5430 bfd *abfd = section->asection->owner;
5431
5432 dwarf2_read_section (objfile, section);
5433
5434 info_ptr = section->buffer;
5435
5436 while (info_ptr < section->buffer + section->size)
5437 {
5438 unsigned int length, initial_length_size;
5439 struct dwarf2_per_cu_data *this_cu;
5440 sect_offset offset;
5441
5442 offset.sect_off = info_ptr - section->buffer;
5443
5444 /* Read just enough information to find out where the next
5445 compilation unit is. */
5446 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5447
5448 /* Save the compilation unit for later lookup. */
5449 this_cu = obstack_alloc (&objfile->objfile_obstack,
5450 sizeof (struct dwarf2_per_cu_data));
5451 memset (this_cu, 0, sizeof (*this_cu));
5452 this_cu->offset = offset;
5453 this_cu->length = length + initial_length_size;
5454 this_cu->is_dwz = is_dwz;
5455 this_cu->objfile = objfile;
5456 this_cu->info_or_types_section = section;
5457
5458 if (*n_comp_units == *n_allocated)
5459 {
5460 *n_allocated *= 2;
5461 *all_comp_units = xrealloc (*all_comp_units,
5462 *n_allocated
5463 * sizeof (struct dwarf2_per_cu_data *));
5464 }
5465 (*all_comp_units)[*n_comp_units] = this_cu;
5466 ++*n_comp_units;
5467
5468 info_ptr = info_ptr + this_cu->length;
5469 }
5470 }
5471
5472 /* Create a list of all compilation units in OBJFILE.
5473 This is only done for -readnow and building partial symtabs. */
5474
5475 static void
5476 create_all_comp_units (struct objfile *objfile)
5477 {
5478 int n_allocated;
5479 int n_comp_units;
5480 struct dwarf2_per_cu_data **all_comp_units;
5481
5482 n_comp_units = 0;
5483 n_allocated = 10;
5484 all_comp_units = xmalloc (n_allocated
5485 * sizeof (struct dwarf2_per_cu_data *));
5486
5487 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5488 &n_allocated, &n_comp_units, &all_comp_units);
5489
5490 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5491 {
5492 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5493
5494 read_comp_units_from_section (objfile, &dwz->info, 1,
5495 &n_allocated, &n_comp_units,
5496 &all_comp_units);
5497 }
5498
5499 dwarf2_per_objfile->all_comp_units
5500 = obstack_alloc (&objfile->objfile_obstack,
5501 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5502 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5503 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5504 xfree (all_comp_units);
5505 dwarf2_per_objfile->n_comp_units = n_comp_units;
5506 }
5507
5508 /* Process all loaded DIEs for compilation unit CU, starting at
5509 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5510 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5511 DW_AT_ranges). If NEED_PC is set, then this function will set
5512 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5513 and record the covered ranges in the addrmap. */
5514
5515 static void
5516 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5517 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5518 {
5519 struct partial_die_info *pdi;
5520
5521 /* Now, march along the PDI's, descending into ones which have
5522 interesting children but skipping the children of the other ones,
5523 until we reach the end of the compilation unit. */
5524
5525 pdi = first_die;
5526
5527 while (pdi != NULL)
5528 {
5529 fixup_partial_die (pdi, cu);
5530
5531 /* Anonymous namespaces or modules have no name but have interesting
5532 children, so we need to look at them. Ditto for anonymous
5533 enums. */
5534
5535 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5536 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5537 || pdi->tag == DW_TAG_imported_unit)
5538 {
5539 switch (pdi->tag)
5540 {
5541 case DW_TAG_subprogram:
5542 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5543 break;
5544 case DW_TAG_constant:
5545 case DW_TAG_variable:
5546 case DW_TAG_typedef:
5547 case DW_TAG_union_type:
5548 if (!pdi->is_declaration)
5549 {
5550 add_partial_symbol (pdi, cu);
5551 }
5552 break;
5553 case DW_TAG_class_type:
5554 case DW_TAG_interface_type:
5555 case DW_TAG_structure_type:
5556 if (!pdi->is_declaration)
5557 {
5558 add_partial_symbol (pdi, cu);
5559 }
5560 break;
5561 case DW_TAG_enumeration_type:
5562 if (!pdi->is_declaration)
5563 add_partial_enumeration (pdi, cu);
5564 break;
5565 case DW_TAG_base_type:
5566 case DW_TAG_subrange_type:
5567 /* File scope base type definitions are added to the partial
5568 symbol table. */
5569 add_partial_symbol (pdi, cu);
5570 break;
5571 case DW_TAG_namespace:
5572 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5573 break;
5574 case DW_TAG_module:
5575 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5576 break;
5577 case DW_TAG_imported_unit:
5578 {
5579 struct dwarf2_per_cu_data *per_cu;
5580
5581 /* For now we don't handle imported units in type units. */
5582 if (cu->per_cu->is_debug_types)
5583 {
5584 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5585 " supported in type units [in module %s]"),
5586 cu->objfile->name);
5587 }
5588
5589 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5590 pdi->is_dwz,
5591 cu->objfile);
5592
5593 /* Go read the partial unit, if needed. */
5594 if (per_cu->v.psymtab == NULL)
5595 process_psymtab_comp_unit (per_cu, 1);
5596
5597 VEC_safe_push (dwarf2_per_cu_ptr,
5598 cu->per_cu->s.imported_symtabs, per_cu);
5599 }
5600 break;
5601 default:
5602 break;
5603 }
5604 }
5605
5606 /* If the die has a sibling, skip to the sibling. */
5607
5608 pdi = pdi->die_sibling;
5609 }
5610 }
5611
5612 /* Functions used to compute the fully scoped name of a partial DIE.
5613
5614 Normally, this is simple. For C++, the parent DIE's fully scoped
5615 name is concatenated with "::" and the partial DIE's name. For
5616 Java, the same thing occurs except that "." is used instead of "::".
5617 Enumerators are an exception; they use the scope of their parent
5618 enumeration type, i.e. the name of the enumeration type is not
5619 prepended to the enumerator.
5620
5621 There are two complexities. One is DW_AT_specification; in this
5622 case "parent" means the parent of the target of the specification,
5623 instead of the direct parent of the DIE. The other is compilers
5624 which do not emit DW_TAG_namespace; in this case we try to guess
5625 the fully qualified name of structure types from their members'
5626 linkage names. This must be done using the DIE's children rather
5627 than the children of any DW_AT_specification target. We only need
5628 to do this for structures at the top level, i.e. if the target of
5629 any DW_AT_specification (if any; otherwise the DIE itself) does not
5630 have a parent. */
5631
5632 /* Compute the scope prefix associated with PDI's parent, in
5633 compilation unit CU. The result will be allocated on CU's
5634 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5635 field. NULL is returned if no prefix is necessary. */
5636 static char *
5637 partial_die_parent_scope (struct partial_die_info *pdi,
5638 struct dwarf2_cu *cu)
5639 {
5640 char *grandparent_scope;
5641 struct partial_die_info *parent, *real_pdi;
5642
5643 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5644 then this means the parent of the specification DIE. */
5645
5646 real_pdi = pdi;
5647 while (real_pdi->has_specification)
5648 real_pdi = find_partial_die (real_pdi->spec_offset,
5649 real_pdi->spec_is_dwz, cu);
5650
5651 parent = real_pdi->die_parent;
5652 if (parent == NULL)
5653 return NULL;
5654
5655 if (parent->scope_set)
5656 return parent->scope;
5657
5658 fixup_partial_die (parent, cu);
5659
5660 grandparent_scope = partial_die_parent_scope (parent, cu);
5661
5662 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5663 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5664 Work around this problem here. */
5665 if (cu->language == language_cplus
5666 && parent->tag == DW_TAG_namespace
5667 && strcmp (parent->name, "::") == 0
5668 && grandparent_scope == NULL)
5669 {
5670 parent->scope = NULL;
5671 parent->scope_set = 1;
5672 return NULL;
5673 }
5674
5675 if (pdi->tag == DW_TAG_enumerator)
5676 /* Enumerators should not get the name of the enumeration as a prefix. */
5677 parent->scope = grandparent_scope;
5678 else if (parent->tag == DW_TAG_namespace
5679 || parent->tag == DW_TAG_module
5680 || parent->tag == DW_TAG_structure_type
5681 || parent->tag == DW_TAG_class_type
5682 || parent->tag == DW_TAG_interface_type
5683 || parent->tag == DW_TAG_union_type
5684 || parent->tag == DW_TAG_enumeration_type)
5685 {
5686 if (grandparent_scope == NULL)
5687 parent->scope = parent->name;
5688 else
5689 parent->scope = typename_concat (&cu->comp_unit_obstack,
5690 grandparent_scope,
5691 parent->name, 0, cu);
5692 }
5693 else
5694 {
5695 /* FIXME drow/2004-04-01: What should we be doing with
5696 function-local names? For partial symbols, we should probably be
5697 ignoring them. */
5698 complaint (&symfile_complaints,
5699 _("unhandled containing DIE tag %d for DIE at %d"),
5700 parent->tag, pdi->offset.sect_off);
5701 parent->scope = grandparent_scope;
5702 }
5703
5704 parent->scope_set = 1;
5705 return parent->scope;
5706 }
5707
5708 /* Return the fully scoped name associated with PDI, from compilation unit
5709 CU. The result will be allocated with malloc. */
5710
5711 static char *
5712 partial_die_full_name (struct partial_die_info *pdi,
5713 struct dwarf2_cu *cu)
5714 {
5715 char *parent_scope;
5716
5717 /* If this is a template instantiation, we can not work out the
5718 template arguments from partial DIEs. So, unfortunately, we have
5719 to go through the full DIEs. At least any work we do building
5720 types here will be reused if full symbols are loaded later. */
5721 if (pdi->has_template_arguments)
5722 {
5723 fixup_partial_die (pdi, cu);
5724
5725 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5726 {
5727 struct die_info *die;
5728 struct attribute attr;
5729 struct dwarf2_cu *ref_cu = cu;
5730
5731 /* DW_FORM_ref_addr is using section offset. */
5732 attr.name = 0;
5733 attr.form = DW_FORM_ref_addr;
5734 attr.u.unsnd = pdi->offset.sect_off;
5735 die = follow_die_ref (NULL, &attr, &ref_cu);
5736
5737 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5738 }
5739 }
5740
5741 parent_scope = partial_die_parent_scope (pdi, cu);
5742 if (parent_scope == NULL)
5743 return NULL;
5744 else
5745 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5746 }
5747
5748 static void
5749 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5750 {
5751 struct objfile *objfile = cu->objfile;
5752 CORE_ADDR addr = 0;
5753 char *actual_name = NULL;
5754 CORE_ADDR baseaddr;
5755 int built_actual_name = 0;
5756
5757 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5758
5759 actual_name = partial_die_full_name (pdi, cu);
5760 if (actual_name)
5761 built_actual_name = 1;
5762
5763 if (actual_name == NULL)
5764 actual_name = pdi->name;
5765
5766 switch (pdi->tag)
5767 {
5768 case DW_TAG_subprogram:
5769 if (pdi->is_external || cu->language == language_ada)
5770 {
5771 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5772 of the global scope. But in Ada, we want to be able to access
5773 nested procedures globally. So all Ada subprograms are stored
5774 in the global scope. */
5775 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5776 mst_text, objfile); */
5777 add_psymbol_to_list (actual_name, strlen (actual_name),
5778 built_actual_name,
5779 VAR_DOMAIN, LOC_BLOCK,
5780 &objfile->global_psymbols,
5781 0, pdi->lowpc + baseaddr,
5782 cu->language, objfile);
5783 }
5784 else
5785 {
5786 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5787 mst_file_text, objfile); */
5788 add_psymbol_to_list (actual_name, strlen (actual_name),
5789 built_actual_name,
5790 VAR_DOMAIN, LOC_BLOCK,
5791 &objfile->static_psymbols,
5792 0, pdi->lowpc + baseaddr,
5793 cu->language, objfile);
5794 }
5795 break;
5796 case DW_TAG_constant:
5797 {
5798 struct psymbol_allocation_list *list;
5799
5800 if (pdi->is_external)
5801 list = &objfile->global_psymbols;
5802 else
5803 list = &objfile->static_psymbols;
5804 add_psymbol_to_list (actual_name, strlen (actual_name),
5805 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5806 list, 0, 0, cu->language, objfile);
5807 }
5808 break;
5809 case DW_TAG_variable:
5810 if (pdi->d.locdesc)
5811 addr = decode_locdesc (pdi->d.locdesc, cu);
5812
5813 if (pdi->d.locdesc
5814 && addr == 0
5815 && !dwarf2_per_objfile->has_section_at_zero)
5816 {
5817 /* A global or static variable may also have been stripped
5818 out by the linker if unused, in which case its address
5819 will be nullified; do not add such variables into partial
5820 symbol table then. */
5821 }
5822 else if (pdi->is_external)
5823 {
5824 /* Global Variable.
5825 Don't enter into the minimal symbol tables as there is
5826 a minimal symbol table entry from the ELF symbols already.
5827 Enter into partial symbol table if it has a location
5828 descriptor or a type.
5829 If the location descriptor is missing, new_symbol will create
5830 a LOC_UNRESOLVED symbol, the address of the variable will then
5831 be determined from the minimal symbol table whenever the variable
5832 is referenced.
5833 The address for the partial symbol table entry is not
5834 used by GDB, but it comes in handy for debugging partial symbol
5835 table building. */
5836
5837 if (pdi->d.locdesc || pdi->has_type)
5838 add_psymbol_to_list (actual_name, strlen (actual_name),
5839 built_actual_name,
5840 VAR_DOMAIN, LOC_STATIC,
5841 &objfile->global_psymbols,
5842 0, addr + baseaddr,
5843 cu->language, objfile);
5844 }
5845 else
5846 {
5847 /* Static Variable. Skip symbols without location descriptors. */
5848 if (pdi->d.locdesc == NULL)
5849 {
5850 if (built_actual_name)
5851 xfree (actual_name);
5852 return;
5853 }
5854 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5855 mst_file_data, objfile); */
5856 add_psymbol_to_list (actual_name, strlen (actual_name),
5857 built_actual_name,
5858 VAR_DOMAIN, LOC_STATIC,
5859 &objfile->static_psymbols,
5860 0, addr + baseaddr,
5861 cu->language, objfile);
5862 }
5863 break;
5864 case DW_TAG_typedef:
5865 case DW_TAG_base_type:
5866 case DW_TAG_subrange_type:
5867 add_psymbol_to_list (actual_name, strlen (actual_name),
5868 built_actual_name,
5869 VAR_DOMAIN, LOC_TYPEDEF,
5870 &objfile->static_psymbols,
5871 0, (CORE_ADDR) 0, cu->language, objfile);
5872 break;
5873 case DW_TAG_namespace:
5874 add_psymbol_to_list (actual_name, strlen (actual_name),
5875 built_actual_name,
5876 VAR_DOMAIN, LOC_TYPEDEF,
5877 &objfile->global_psymbols,
5878 0, (CORE_ADDR) 0, cu->language, objfile);
5879 break;
5880 case DW_TAG_class_type:
5881 case DW_TAG_interface_type:
5882 case DW_TAG_structure_type:
5883 case DW_TAG_union_type:
5884 case DW_TAG_enumeration_type:
5885 /* Skip external references. The DWARF standard says in the section
5886 about "Structure, Union, and Class Type Entries": "An incomplete
5887 structure, union or class type is represented by a structure,
5888 union or class entry that does not have a byte size attribute
5889 and that has a DW_AT_declaration attribute." */
5890 if (!pdi->has_byte_size && pdi->is_declaration)
5891 {
5892 if (built_actual_name)
5893 xfree (actual_name);
5894 return;
5895 }
5896
5897 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5898 static vs. global. */
5899 add_psymbol_to_list (actual_name, strlen (actual_name),
5900 built_actual_name,
5901 STRUCT_DOMAIN, LOC_TYPEDEF,
5902 (cu->language == language_cplus
5903 || cu->language == language_java)
5904 ? &objfile->global_psymbols
5905 : &objfile->static_psymbols,
5906 0, (CORE_ADDR) 0, cu->language, objfile);
5907
5908 break;
5909 case DW_TAG_enumerator:
5910 add_psymbol_to_list (actual_name, strlen (actual_name),
5911 built_actual_name,
5912 VAR_DOMAIN, LOC_CONST,
5913 (cu->language == language_cplus
5914 || cu->language == language_java)
5915 ? &objfile->global_psymbols
5916 : &objfile->static_psymbols,
5917 0, (CORE_ADDR) 0, cu->language, objfile);
5918 break;
5919 default:
5920 break;
5921 }
5922
5923 if (built_actual_name)
5924 xfree (actual_name);
5925 }
5926
5927 /* Read a partial die corresponding to a namespace; also, add a symbol
5928 corresponding to that namespace to the symbol table. NAMESPACE is
5929 the name of the enclosing namespace. */
5930
5931 static void
5932 add_partial_namespace (struct partial_die_info *pdi,
5933 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5934 int need_pc, struct dwarf2_cu *cu)
5935 {
5936 /* Add a symbol for the namespace. */
5937
5938 add_partial_symbol (pdi, cu);
5939
5940 /* Now scan partial symbols in that namespace. */
5941
5942 if (pdi->has_children)
5943 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5944 }
5945
5946 /* Read a partial die corresponding to a Fortran module. */
5947
5948 static void
5949 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
5950 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5951 {
5952 /* Now scan partial symbols in that module. */
5953
5954 if (pdi->has_children)
5955 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5956 }
5957
5958 /* Read a partial die corresponding to a subprogram and create a partial
5959 symbol for that subprogram. When the CU language allows it, this
5960 routine also defines a partial symbol for each nested subprogram
5961 that this subprogram contains.
5962
5963 DIE my also be a lexical block, in which case we simply search
5964 recursively for suprograms defined inside that lexical block.
5965 Again, this is only performed when the CU language allows this
5966 type of definitions. */
5967
5968 static void
5969 add_partial_subprogram (struct partial_die_info *pdi,
5970 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5971 int need_pc, struct dwarf2_cu *cu)
5972 {
5973 if (pdi->tag == DW_TAG_subprogram)
5974 {
5975 if (pdi->has_pc_info)
5976 {
5977 if (pdi->lowpc < *lowpc)
5978 *lowpc = pdi->lowpc;
5979 if (pdi->highpc > *highpc)
5980 *highpc = pdi->highpc;
5981 if (need_pc)
5982 {
5983 CORE_ADDR baseaddr;
5984 struct objfile *objfile = cu->objfile;
5985
5986 baseaddr = ANOFFSET (objfile->section_offsets,
5987 SECT_OFF_TEXT (objfile));
5988 addrmap_set_empty (objfile->psymtabs_addrmap,
5989 pdi->lowpc + baseaddr,
5990 pdi->highpc - 1 + baseaddr,
5991 cu->per_cu->v.psymtab);
5992 }
5993 }
5994
5995 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
5996 {
5997 if (!pdi->is_declaration)
5998 /* Ignore subprogram DIEs that do not have a name, they are
5999 illegal. Do not emit a complaint at this point, we will
6000 do so when we convert this psymtab into a symtab. */
6001 if (pdi->name)
6002 add_partial_symbol (pdi, cu);
6003 }
6004 }
6005
6006 if (! pdi->has_children)
6007 return;
6008
6009 if (cu->language == language_ada)
6010 {
6011 pdi = pdi->die_child;
6012 while (pdi != NULL)
6013 {
6014 fixup_partial_die (pdi, cu);
6015 if (pdi->tag == DW_TAG_subprogram
6016 || pdi->tag == DW_TAG_lexical_block)
6017 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6018 pdi = pdi->die_sibling;
6019 }
6020 }
6021 }
6022
6023 /* Read a partial die corresponding to an enumeration type. */
6024
6025 static void
6026 add_partial_enumeration (struct partial_die_info *enum_pdi,
6027 struct dwarf2_cu *cu)
6028 {
6029 struct partial_die_info *pdi;
6030
6031 if (enum_pdi->name != NULL)
6032 add_partial_symbol (enum_pdi, cu);
6033
6034 pdi = enum_pdi->die_child;
6035 while (pdi)
6036 {
6037 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6038 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6039 else
6040 add_partial_symbol (pdi, cu);
6041 pdi = pdi->die_sibling;
6042 }
6043 }
6044
6045 /* Return the initial uleb128 in the die at INFO_PTR. */
6046
6047 static unsigned int
6048 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6049 {
6050 unsigned int bytes_read;
6051
6052 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6053 }
6054
6055 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6056 Return the corresponding abbrev, or NULL if the number is zero (indicating
6057 an empty DIE). In either case *BYTES_READ will be set to the length of
6058 the initial number. */
6059
6060 static struct abbrev_info *
6061 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6062 struct dwarf2_cu *cu)
6063 {
6064 bfd *abfd = cu->objfile->obfd;
6065 unsigned int abbrev_number;
6066 struct abbrev_info *abbrev;
6067
6068 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6069
6070 if (abbrev_number == 0)
6071 return NULL;
6072
6073 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6074 if (!abbrev)
6075 {
6076 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6077 abbrev_number, bfd_get_filename (abfd));
6078 }
6079
6080 return abbrev;
6081 }
6082
6083 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6084 Returns a pointer to the end of a series of DIEs, terminated by an empty
6085 DIE. Any children of the skipped DIEs will also be skipped. */
6086
6087 static gdb_byte *
6088 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6089 {
6090 struct dwarf2_cu *cu = reader->cu;
6091 struct abbrev_info *abbrev;
6092 unsigned int bytes_read;
6093
6094 while (1)
6095 {
6096 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6097 if (abbrev == NULL)
6098 return info_ptr + bytes_read;
6099 else
6100 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6101 }
6102 }
6103
6104 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6105 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6106 abbrev corresponding to that skipped uleb128 should be passed in
6107 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6108 children. */
6109
6110 static gdb_byte *
6111 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6112 struct abbrev_info *abbrev)
6113 {
6114 unsigned int bytes_read;
6115 struct attribute attr;
6116 bfd *abfd = reader->abfd;
6117 struct dwarf2_cu *cu = reader->cu;
6118 gdb_byte *buffer = reader->buffer;
6119 const gdb_byte *buffer_end = reader->buffer_end;
6120 gdb_byte *start_info_ptr = info_ptr;
6121 unsigned int form, i;
6122
6123 for (i = 0; i < abbrev->num_attrs; i++)
6124 {
6125 /* The only abbrev we care about is DW_AT_sibling. */
6126 if (abbrev->attrs[i].name == DW_AT_sibling)
6127 {
6128 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6129 if (attr.form == DW_FORM_ref_addr)
6130 complaint (&symfile_complaints,
6131 _("ignoring absolute DW_AT_sibling"));
6132 else
6133 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6134 }
6135
6136 /* If it isn't DW_AT_sibling, skip this attribute. */
6137 form = abbrev->attrs[i].form;
6138 skip_attribute:
6139 switch (form)
6140 {
6141 case DW_FORM_ref_addr:
6142 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6143 and later it is offset sized. */
6144 if (cu->header.version == 2)
6145 info_ptr += cu->header.addr_size;
6146 else
6147 info_ptr += cu->header.offset_size;
6148 break;
6149 case DW_FORM_GNU_ref_alt:
6150 info_ptr += cu->header.offset_size;
6151 break;
6152 case DW_FORM_addr:
6153 info_ptr += cu->header.addr_size;
6154 break;
6155 case DW_FORM_data1:
6156 case DW_FORM_ref1:
6157 case DW_FORM_flag:
6158 info_ptr += 1;
6159 break;
6160 case DW_FORM_flag_present:
6161 break;
6162 case DW_FORM_data2:
6163 case DW_FORM_ref2:
6164 info_ptr += 2;
6165 break;
6166 case DW_FORM_data4:
6167 case DW_FORM_ref4:
6168 info_ptr += 4;
6169 break;
6170 case DW_FORM_data8:
6171 case DW_FORM_ref8:
6172 case DW_FORM_ref_sig8:
6173 info_ptr += 8;
6174 break;
6175 case DW_FORM_string:
6176 read_direct_string (abfd, info_ptr, &bytes_read);
6177 info_ptr += bytes_read;
6178 break;
6179 case DW_FORM_sec_offset:
6180 case DW_FORM_strp:
6181 case DW_FORM_GNU_strp_alt:
6182 info_ptr += cu->header.offset_size;
6183 break;
6184 case DW_FORM_exprloc:
6185 case DW_FORM_block:
6186 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6187 info_ptr += bytes_read;
6188 break;
6189 case DW_FORM_block1:
6190 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6191 break;
6192 case DW_FORM_block2:
6193 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6194 break;
6195 case DW_FORM_block4:
6196 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6197 break;
6198 case DW_FORM_sdata:
6199 case DW_FORM_udata:
6200 case DW_FORM_ref_udata:
6201 case DW_FORM_GNU_addr_index:
6202 case DW_FORM_GNU_str_index:
6203 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6204 break;
6205 case DW_FORM_indirect:
6206 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6207 info_ptr += bytes_read;
6208 /* We need to continue parsing from here, so just go back to
6209 the top. */
6210 goto skip_attribute;
6211
6212 default:
6213 error (_("Dwarf Error: Cannot handle %s "
6214 "in DWARF reader [in module %s]"),
6215 dwarf_form_name (form),
6216 bfd_get_filename (abfd));
6217 }
6218 }
6219
6220 if (abbrev->has_children)
6221 return skip_children (reader, info_ptr);
6222 else
6223 return info_ptr;
6224 }
6225
6226 /* Locate ORIG_PDI's sibling.
6227 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6228
6229 static gdb_byte *
6230 locate_pdi_sibling (const struct die_reader_specs *reader,
6231 struct partial_die_info *orig_pdi,
6232 gdb_byte *info_ptr)
6233 {
6234 /* Do we know the sibling already? */
6235
6236 if (orig_pdi->sibling)
6237 return orig_pdi->sibling;
6238
6239 /* Are there any children to deal with? */
6240
6241 if (!orig_pdi->has_children)
6242 return info_ptr;
6243
6244 /* Skip the children the long way. */
6245
6246 return skip_children (reader, info_ptr);
6247 }
6248
6249 /* Expand this partial symbol table into a full symbol table. */
6250
6251 static void
6252 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6253 {
6254 if (pst != NULL)
6255 {
6256 if (pst->readin)
6257 {
6258 warning (_("bug: psymtab for %s is already read in."),
6259 pst->filename);
6260 }
6261 else
6262 {
6263 if (info_verbose)
6264 {
6265 printf_filtered (_("Reading in symbols for %s..."),
6266 pst->filename);
6267 gdb_flush (gdb_stdout);
6268 }
6269
6270 /* Restore our global data. */
6271 dwarf2_per_objfile = objfile_data (pst->objfile,
6272 dwarf2_objfile_data_key);
6273
6274 /* If this psymtab is constructed from a debug-only objfile, the
6275 has_section_at_zero flag will not necessarily be correct. We
6276 can get the correct value for this flag by looking at the data
6277 associated with the (presumably stripped) associated objfile. */
6278 if (pst->objfile->separate_debug_objfile_backlink)
6279 {
6280 struct dwarf2_per_objfile *dpo_backlink
6281 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6282 dwarf2_objfile_data_key);
6283
6284 dwarf2_per_objfile->has_section_at_zero
6285 = dpo_backlink->has_section_at_zero;
6286 }
6287
6288 dwarf2_per_objfile->reading_partial_symbols = 0;
6289
6290 psymtab_to_symtab_1 (pst);
6291
6292 /* Finish up the debug error message. */
6293 if (info_verbose)
6294 printf_filtered (_("done.\n"));
6295 }
6296 }
6297
6298 process_cu_includes ();
6299 }
6300 \f
6301 /* Reading in full CUs. */
6302
6303 /* Add PER_CU to the queue. */
6304
6305 static void
6306 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6307 enum language pretend_language)
6308 {
6309 struct dwarf2_queue_item *item;
6310
6311 per_cu->queued = 1;
6312 item = xmalloc (sizeof (*item));
6313 item->per_cu = per_cu;
6314 item->pretend_language = pretend_language;
6315 item->next = NULL;
6316
6317 if (dwarf2_queue == NULL)
6318 dwarf2_queue = item;
6319 else
6320 dwarf2_queue_tail->next = item;
6321
6322 dwarf2_queue_tail = item;
6323 }
6324
6325 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6326 unit and add it to our queue.
6327 The result is non-zero if PER_CU was queued, otherwise the result is zero
6328 meaning either PER_CU is already queued or it is already loaded. */
6329
6330 static int
6331 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6332 struct dwarf2_per_cu_data *per_cu,
6333 enum language pretend_language)
6334 {
6335 /* We may arrive here during partial symbol reading, if we need full
6336 DIEs to process an unusual case (e.g. template arguments). Do
6337 not queue PER_CU, just tell our caller to load its DIEs. */
6338 if (dwarf2_per_objfile->reading_partial_symbols)
6339 {
6340 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6341 return 1;
6342 return 0;
6343 }
6344
6345 /* Mark the dependence relation so that we don't flush PER_CU
6346 too early. */
6347 dwarf2_add_dependence (this_cu, per_cu);
6348
6349 /* If it's already on the queue, we have nothing to do. */
6350 if (per_cu->queued)
6351 return 0;
6352
6353 /* If the compilation unit is already loaded, just mark it as
6354 used. */
6355 if (per_cu->cu != NULL)
6356 {
6357 per_cu->cu->last_used = 0;
6358 return 0;
6359 }
6360
6361 /* Add it to the queue. */
6362 queue_comp_unit (per_cu, pretend_language);
6363
6364 return 1;
6365 }
6366
6367 /* Process the queue. */
6368
6369 static void
6370 process_queue (void)
6371 {
6372 struct dwarf2_queue_item *item, *next_item;
6373
6374 if (dwarf2_read_debug)
6375 {
6376 fprintf_unfiltered (gdb_stdlog,
6377 "Expanding one or more symtabs of objfile %s ...\n",
6378 dwarf2_per_objfile->objfile->name);
6379 }
6380
6381 /* The queue starts out with one item, but following a DIE reference
6382 may load a new CU, adding it to the end of the queue. */
6383 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6384 {
6385 if (dwarf2_per_objfile->using_index
6386 ? !item->per_cu->v.quick->symtab
6387 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6388 {
6389 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6390
6391 if (dwarf2_read_debug)
6392 {
6393 fprintf_unfiltered (gdb_stdlog,
6394 "Expanding symtab of %s at offset 0x%x\n",
6395 per_cu->is_debug_types ? "TU" : "CU",
6396 per_cu->offset.sect_off);
6397 }
6398
6399 if (per_cu->is_debug_types)
6400 process_full_type_unit (per_cu, item->pretend_language);
6401 else
6402 process_full_comp_unit (per_cu, item->pretend_language);
6403
6404 if (dwarf2_read_debug)
6405 {
6406 fprintf_unfiltered (gdb_stdlog,
6407 "Done expanding %s at offset 0x%x\n",
6408 per_cu->is_debug_types ? "TU" : "CU",
6409 per_cu->offset.sect_off);
6410 }
6411 }
6412
6413 item->per_cu->queued = 0;
6414 next_item = item->next;
6415 xfree (item);
6416 }
6417
6418 dwarf2_queue_tail = NULL;
6419
6420 if (dwarf2_read_debug)
6421 {
6422 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6423 dwarf2_per_objfile->objfile->name);
6424 }
6425 }
6426
6427 /* Free all allocated queue entries. This function only releases anything if
6428 an error was thrown; if the queue was processed then it would have been
6429 freed as we went along. */
6430
6431 static void
6432 dwarf2_release_queue (void *dummy)
6433 {
6434 struct dwarf2_queue_item *item, *last;
6435
6436 item = dwarf2_queue;
6437 while (item)
6438 {
6439 /* Anything still marked queued is likely to be in an
6440 inconsistent state, so discard it. */
6441 if (item->per_cu->queued)
6442 {
6443 if (item->per_cu->cu != NULL)
6444 free_one_cached_comp_unit (item->per_cu);
6445 item->per_cu->queued = 0;
6446 }
6447
6448 last = item;
6449 item = item->next;
6450 xfree (last);
6451 }
6452
6453 dwarf2_queue = dwarf2_queue_tail = NULL;
6454 }
6455
6456 /* Read in full symbols for PST, and anything it depends on. */
6457
6458 static void
6459 psymtab_to_symtab_1 (struct partial_symtab *pst)
6460 {
6461 struct dwarf2_per_cu_data *per_cu;
6462 int i;
6463
6464 if (pst->readin)
6465 return;
6466
6467 for (i = 0; i < pst->number_of_dependencies; i++)
6468 if (!pst->dependencies[i]->readin
6469 && pst->dependencies[i]->user == NULL)
6470 {
6471 /* Inform about additional files that need to be read in. */
6472 if (info_verbose)
6473 {
6474 /* FIXME: i18n: Need to make this a single string. */
6475 fputs_filtered (" ", gdb_stdout);
6476 wrap_here ("");
6477 fputs_filtered ("and ", gdb_stdout);
6478 wrap_here ("");
6479 printf_filtered ("%s...", pst->dependencies[i]->filename);
6480 wrap_here (""); /* Flush output. */
6481 gdb_flush (gdb_stdout);
6482 }
6483 psymtab_to_symtab_1 (pst->dependencies[i]);
6484 }
6485
6486 per_cu = pst->read_symtab_private;
6487
6488 if (per_cu == NULL)
6489 {
6490 /* It's an include file, no symbols to read for it.
6491 Everything is in the parent symtab. */
6492 pst->readin = 1;
6493 return;
6494 }
6495
6496 dw2_do_instantiate_symtab (per_cu);
6497 }
6498
6499 /* Trivial hash function for die_info: the hash value of a DIE
6500 is its offset in .debug_info for this objfile. */
6501
6502 static hashval_t
6503 die_hash (const void *item)
6504 {
6505 const struct die_info *die = item;
6506
6507 return die->offset.sect_off;
6508 }
6509
6510 /* Trivial comparison function for die_info structures: two DIEs
6511 are equal if they have the same offset. */
6512
6513 static int
6514 die_eq (const void *item_lhs, const void *item_rhs)
6515 {
6516 const struct die_info *die_lhs = item_lhs;
6517 const struct die_info *die_rhs = item_rhs;
6518
6519 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6520 }
6521
6522 /* die_reader_func for load_full_comp_unit.
6523 This is identical to read_signatured_type_reader,
6524 but is kept separate for now. */
6525
6526 static void
6527 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6528 gdb_byte *info_ptr,
6529 struct die_info *comp_unit_die,
6530 int has_children,
6531 void *data)
6532 {
6533 struct dwarf2_cu *cu = reader->cu;
6534 enum language *language_ptr = data;
6535
6536 gdb_assert (cu->die_hash == NULL);
6537 cu->die_hash =
6538 htab_create_alloc_ex (cu->header.length / 12,
6539 die_hash,
6540 die_eq,
6541 NULL,
6542 &cu->comp_unit_obstack,
6543 hashtab_obstack_allocate,
6544 dummy_obstack_deallocate);
6545
6546 if (has_children)
6547 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6548 &info_ptr, comp_unit_die);
6549 cu->dies = comp_unit_die;
6550 /* comp_unit_die is not stored in die_hash, no need. */
6551
6552 /* We try not to read any attributes in this function, because not
6553 all CUs needed for references have been loaded yet, and symbol
6554 table processing isn't initialized. But we have to set the CU language,
6555 or we won't be able to build types correctly.
6556 Similarly, if we do not read the producer, we can not apply
6557 producer-specific interpretation. */
6558 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6559 }
6560
6561 /* Load the DIEs associated with PER_CU into memory. */
6562
6563 static void
6564 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6565 enum language pretend_language)
6566 {
6567 gdb_assert (! this_cu->is_debug_types);
6568
6569 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6570 load_full_comp_unit_reader, &pretend_language);
6571 }
6572
6573 /* Add a DIE to the delayed physname list. */
6574
6575 static void
6576 add_to_method_list (struct type *type, int fnfield_index, int index,
6577 const char *name, struct die_info *die,
6578 struct dwarf2_cu *cu)
6579 {
6580 struct delayed_method_info mi;
6581 mi.type = type;
6582 mi.fnfield_index = fnfield_index;
6583 mi.index = index;
6584 mi.name = name;
6585 mi.die = die;
6586 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6587 }
6588
6589 /* A cleanup for freeing the delayed method list. */
6590
6591 static void
6592 free_delayed_list (void *ptr)
6593 {
6594 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6595 if (cu->method_list != NULL)
6596 {
6597 VEC_free (delayed_method_info, cu->method_list);
6598 cu->method_list = NULL;
6599 }
6600 }
6601
6602 /* Compute the physnames of any methods on the CU's method list.
6603
6604 The computation of method physnames is delayed in order to avoid the
6605 (bad) condition that one of the method's formal parameters is of an as yet
6606 incomplete type. */
6607
6608 static void
6609 compute_delayed_physnames (struct dwarf2_cu *cu)
6610 {
6611 int i;
6612 struct delayed_method_info *mi;
6613 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6614 {
6615 const char *physname;
6616 struct fn_fieldlist *fn_flp
6617 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6618 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6619 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6620 }
6621 }
6622
6623 /* Go objects should be embedded in a DW_TAG_module DIE,
6624 and it's not clear if/how imported objects will appear.
6625 To keep Go support simple until that's worked out,
6626 go back through what we've read and create something usable.
6627 We could do this while processing each DIE, and feels kinda cleaner,
6628 but that way is more invasive.
6629 This is to, for example, allow the user to type "p var" or "b main"
6630 without having to specify the package name, and allow lookups
6631 of module.object to work in contexts that use the expression
6632 parser. */
6633
6634 static void
6635 fixup_go_packaging (struct dwarf2_cu *cu)
6636 {
6637 char *package_name = NULL;
6638 struct pending *list;
6639 int i;
6640
6641 for (list = global_symbols; list != NULL; list = list->next)
6642 {
6643 for (i = 0; i < list->nsyms; ++i)
6644 {
6645 struct symbol *sym = list->symbol[i];
6646
6647 if (SYMBOL_LANGUAGE (sym) == language_go
6648 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6649 {
6650 char *this_package_name = go_symbol_package_name (sym);
6651
6652 if (this_package_name == NULL)
6653 continue;
6654 if (package_name == NULL)
6655 package_name = this_package_name;
6656 else
6657 {
6658 if (strcmp (package_name, this_package_name) != 0)
6659 complaint (&symfile_complaints,
6660 _("Symtab %s has objects from two different Go packages: %s and %s"),
6661 (sym->symtab && sym->symtab->filename
6662 ? sym->symtab->filename
6663 : cu->objfile->name),
6664 this_package_name, package_name);
6665 xfree (this_package_name);
6666 }
6667 }
6668 }
6669 }
6670
6671 if (package_name != NULL)
6672 {
6673 struct objfile *objfile = cu->objfile;
6674 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6675 package_name, objfile);
6676 struct symbol *sym;
6677
6678 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6679
6680 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6681 SYMBOL_SET_LANGUAGE (sym, language_go);
6682 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6683 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6684 e.g., "main" finds the "main" module and not C's main(). */
6685 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6686 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6687 SYMBOL_TYPE (sym) = type;
6688
6689 add_symbol_to_list (sym, &global_symbols);
6690
6691 xfree (package_name);
6692 }
6693 }
6694
6695 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6696
6697 /* Return the symtab for PER_CU. This works properly regardless of
6698 whether we're using the index or psymtabs. */
6699
6700 static struct symtab *
6701 get_symtab (struct dwarf2_per_cu_data *per_cu)
6702 {
6703 return (dwarf2_per_objfile->using_index
6704 ? per_cu->v.quick->symtab
6705 : per_cu->v.psymtab->symtab);
6706 }
6707
6708 /* A helper function for computing the list of all symbol tables
6709 included by PER_CU. */
6710
6711 static void
6712 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6713 htab_t all_children,
6714 struct dwarf2_per_cu_data *per_cu)
6715 {
6716 void **slot;
6717 int ix;
6718 struct dwarf2_per_cu_data *iter;
6719
6720 slot = htab_find_slot (all_children, per_cu, INSERT);
6721 if (*slot != NULL)
6722 {
6723 /* This inclusion and its children have been processed. */
6724 return;
6725 }
6726
6727 *slot = per_cu;
6728 /* Only add a CU if it has a symbol table. */
6729 if (get_symtab (per_cu) != NULL)
6730 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6731
6732 for (ix = 0;
6733 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6734 ++ix)
6735 recursively_compute_inclusions (result, all_children, iter);
6736 }
6737
6738 /* Compute the symtab 'includes' fields for the symtab related to
6739 PER_CU. */
6740
6741 static void
6742 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6743 {
6744 gdb_assert (! per_cu->is_debug_types);
6745
6746 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6747 {
6748 int ix, len;
6749 struct dwarf2_per_cu_data *iter;
6750 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6751 htab_t all_children;
6752 struct symtab *symtab = get_symtab (per_cu);
6753
6754 /* If we don't have a symtab, we can just skip this case. */
6755 if (symtab == NULL)
6756 return;
6757
6758 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6759 NULL, xcalloc, xfree);
6760
6761 for (ix = 0;
6762 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6763 ix, iter);
6764 ++ix)
6765 recursively_compute_inclusions (&result_children, all_children, iter);
6766
6767 /* Now we have a transitive closure of all the included CUs, so
6768 we can convert it to a list of symtabs. */
6769 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6770 symtab->includes
6771 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6772 (len + 1) * sizeof (struct symtab *));
6773 for (ix = 0;
6774 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6775 ++ix)
6776 symtab->includes[ix] = get_symtab (iter);
6777 symtab->includes[len] = NULL;
6778
6779 VEC_free (dwarf2_per_cu_ptr, result_children);
6780 htab_delete (all_children);
6781 }
6782 }
6783
6784 /* Compute the 'includes' field for the symtabs of all the CUs we just
6785 read. */
6786
6787 static void
6788 process_cu_includes (void)
6789 {
6790 int ix;
6791 struct dwarf2_per_cu_data *iter;
6792
6793 for (ix = 0;
6794 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6795 ix, iter);
6796 ++ix)
6797 {
6798 if (! iter->is_debug_types)
6799 compute_symtab_includes (iter);
6800 }
6801
6802 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6803 }
6804
6805 /* Generate full symbol information for PER_CU, whose DIEs have
6806 already been loaded into memory. */
6807
6808 static void
6809 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6810 enum language pretend_language)
6811 {
6812 struct dwarf2_cu *cu = per_cu->cu;
6813 struct objfile *objfile = per_cu->objfile;
6814 CORE_ADDR lowpc, highpc;
6815 struct symtab *symtab;
6816 struct cleanup *back_to, *delayed_list_cleanup;
6817 CORE_ADDR baseaddr;
6818 struct block *static_block;
6819
6820 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6821
6822 buildsym_init ();
6823 back_to = make_cleanup (really_free_pendings, NULL);
6824 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6825
6826 cu->list_in_scope = &file_symbols;
6827
6828 cu->language = pretend_language;
6829 cu->language_defn = language_def (cu->language);
6830
6831 /* Do line number decoding in read_file_scope () */
6832 process_die (cu->dies, cu);
6833
6834 /* For now fudge the Go package. */
6835 if (cu->language == language_go)
6836 fixup_go_packaging (cu);
6837
6838 /* Now that we have processed all the DIEs in the CU, all the types
6839 should be complete, and it should now be safe to compute all of the
6840 physnames. */
6841 compute_delayed_physnames (cu);
6842 do_cleanups (delayed_list_cleanup);
6843
6844 /* Some compilers don't define a DW_AT_high_pc attribute for the
6845 compilation unit. If the DW_AT_high_pc is missing, synthesize
6846 it, by scanning the DIE's below the compilation unit. */
6847 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6848
6849 static_block
6850 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6851 per_cu->s.imported_symtabs != NULL);
6852
6853 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6854 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6855 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6856 addrmap to help ensure it has an accurate map of pc values belonging to
6857 this comp unit. */
6858 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6859
6860 symtab = end_symtab_from_static_block (static_block, objfile,
6861 SECT_OFF_TEXT (objfile), 0);
6862
6863 if (symtab != NULL)
6864 {
6865 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6866
6867 /* Set symtab language to language from DW_AT_language. If the
6868 compilation is from a C file generated by language preprocessors, do
6869 not set the language if it was already deduced by start_subfile. */
6870 if (!(cu->language == language_c && symtab->language != language_c))
6871 symtab->language = cu->language;
6872
6873 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6874 produce DW_AT_location with location lists but it can be possibly
6875 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6876 there were bugs in prologue debug info, fixed later in GCC-4.5
6877 by "unwind info for epilogues" patch (which is not directly related).
6878
6879 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6880 needed, it would be wrong due to missing DW_AT_producer there.
6881
6882 Still one can confuse GDB by using non-standard GCC compilation
6883 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6884 */
6885 if (cu->has_loclist && gcc_4_minor >= 5)
6886 symtab->locations_valid = 1;
6887
6888 if (gcc_4_minor >= 5)
6889 symtab->epilogue_unwind_valid = 1;
6890
6891 symtab->call_site_htab = cu->call_site_htab;
6892 }
6893
6894 if (dwarf2_per_objfile->using_index)
6895 per_cu->v.quick->symtab = symtab;
6896 else
6897 {
6898 struct partial_symtab *pst = per_cu->v.psymtab;
6899 pst->symtab = symtab;
6900 pst->readin = 1;
6901 }
6902
6903 /* Push it for inclusion processing later. */
6904 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6905
6906 do_cleanups (back_to);
6907 }
6908
6909 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6910 already been loaded into memory. */
6911
6912 static void
6913 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6914 enum language pretend_language)
6915 {
6916 struct dwarf2_cu *cu = per_cu->cu;
6917 struct objfile *objfile = per_cu->objfile;
6918 struct symtab *symtab;
6919 struct cleanup *back_to, *delayed_list_cleanup;
6920
6921 buildsym_init ();
6922 back_to = make_cleanup (really_free_pendings, NULL);
6923 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6924
6925 cu->list_in_scope = &file_symbols;
6926
6927 cu->language = pretend_language;
6928 cu->language_defn = language_def (cu->language);
6929
6930 /* The symbol tables are set up in read_type_unit_scope. */
6931 process_die (cu->dies, cu);
6932
6933 /* For now fudge the Go package. */
6934 if (cu->language == language_go)
6935 fixup_go_packaging (cu);
6936
6937 /* Now that we have processed all the DIEs in the CU, all the types
6938 should be complete, and it should now be safe to compute all of the
6939 physnames. */
6940 compute_delayed_physnames (cu);
6941 do_cleanups (delayed_list_cleanup);
6942
6943 /* TUs share symbol tables.
6944 If this is the first TU to use this symtab, complete the construction
6945 of it with end_expandable_symtab. Otherwise, complete the addition of
6946 this TU's symbols to the existing symtab. */
6947 if (per_cu->s.type_unit_group->primary_symtab == NULL)
6948 {
6949 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
6950 per_cu->s.type_unit_group->primary_symtab = symtab;
6951
6952 if (symtab != NULL)
6953 {
6954 /* Set symtab language to language from DW_AT_language. If the
6955 compilation is from a C file generated by language preprocessors,
6956 do not set the language if it was already deduced by
6957 start_subfile. */
6958 if (!(cu->language == language_c && symtab->language != language_c))
6959 symtab->language = cu->language;
6960 }
6961 }
6962 else
6963 {
6964 augment_type_symtab (objfile,
6965 per_cu->s.type_unit_group->primary_symtab);
6966 symtab = per_cu->s.type_unit_group->primary_symtab;
6967 }
6968
6969 if (dwarf2_per_objfile->using_index)
6970 per_cu->v.quick->symtab = symtab;
6971 else
6972 {
6973 struct partial_symtab *pst = per_cu->v.psymtab;
6974 pst->symtab = symtab;
6975 pst->readin = 1;
6976 }
6977
6978 do_cleanups (back_to);
6979 }
6980
6981 /* Process an imported unit DIE. */
6982
6983 static void
6984 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
6985 {
6986 struct attribute *attr;
6987
6988 /* For now we don't handle imported units in type units. */
6989 if (cu->per_cu->is_debug_types)
6990 {
6991 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6992 " supported in type units [in module %s]"),
6993 cu->objfile->name);
6994 }
6995
6996 attr = dwarf2_attr (die, DW_AT_import, cu);
6997 if (attr != NULL)
6998 {
6999 struct dwarf2_per_cu_data *per_cu;
7000 struct symtab *imported_symtab;
7001 sect_offset offset;
7002 int is_dwz;
7003
7004 offset = dwarf2_get_ref_die_offset (attr);
7005 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7006 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7007
7008 /* Queue the unit, if needed. */
7009 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7010 load_full_comp_unit (per_cu, cu->language);
7011
7012 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7013 per_cu);
7014 }
7015 }
7016
7017 /* Process a die and its children. */
7018
7019 static void
7020 process_die (struct die_info *die, struct dwarf2_cu *cu)
7021 {
7022 switch (die->tag)
7023 {
7024 case DW_TAG_padding:
7025 break;
7026 case DW_TAG_compile_unit:
7027 case DW_TAG_partial_unit:
7028 read_file_scope (die, cu);
7029 break;
7030 case DW_TAG_type_unit:
7031 read_type_unit_scope (die, cu);
7032 break;
7033 case DW_TAG_subprogram:
7034 case DW_TAG_inlined_subroutine:
7035 read_func_scope (die, cu);
7036 break;
7037 case DW_TAG_lexical_block:
7038 case DW_TAG_try_block:
7039 case DW_TAG_catch_block:
7040 read_lexical_block_scope (die, cu);
7041 break;
7042 case DW_TAG_GNU_call_site:
7043 read_call_site_scope (die, cu);
7044 break;
7045 case DW_TAG_class_type:
7046 case DW_TAG_interface_type:
7047 case DW_TAG_structure_type:
7048 case DW_TAG_union_type:
7049 process_structure_scope (die, cu);
7050 break;
7051 case DW_TAG_enumeration_type:
7052 process_enumeration_scope (die, cu);
7053 break;
7054
7055 /* These dies have a type, but processing them does not create
7056 a symbol or recurse to process the children. Therefore we can
7057 read them on-demand through read_type_die. */
7058 case DW_TAG_subroutine_type:
7059 case DW_TAG_set_type:
7060 case DW_TAG_array_type:
7061 case DW_TAG_pointer_type:
7062 case DW_TAG_ptr_to_member_type:
7063 case DW_TAG_reference_type:
7064 case DW_TAG_string_type:
7065 break;
7066
7067 case DW_TAG_base_type:
7068 case DW_TAG_subrange_type:
7069 case DW_TAG_typedef:
7070 /* Add a typedef symbol for the type definition, if it has a
7071 DW_AT_name. */
7072 new_symbol (die, read_type_die (die, cu), cu);
7073 break;
7074 case DW_TAG_common_block:
7075 read_common_block (die, cu);
7076 break;
7077 case DW_TAG_common_inclusion:
7078 break;
7079 case DW_TAG_namespace:
7080 processing_has_namespace_info = 1;
7081 read_namespace (die, cu);
7082 break;
7083 case DW_TAG_module:
7084 processing_has_namespace_info = 1;
7085 read_module (die, cu);
7086 break;
7087 case DW_TAG_imported_declaration:
7088 case DW_TAG_imported_module:
7089 processing_has_namespace_info = 1;
7090 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7091 || cu->language != language_fortran))
7092 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7093 dwarf_tag_name (die->tag));
7094 read_import_statement (die, cu);
7095 break;
7096
7097 case DW_TAG_imported_unit:
7098 process_imported_unit_die (die, cu);
7099 break;
7100
7101 default:
7102 new_symbol (die, NULL, cu);
7103 break;
7104 }
7105 }
7106
7107 /* A helper function for dwarf2_compute_name which determines whether DIE
7108 needs to have the name of the scope prepended to the name listed in the
7109 die. */
7110
7111 static int
7112 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7113 {
7114 struct attribute *attr;
7115
7116 switch (die->tag)
7117 {
7118 case DW_TAG_namespace:
7119 case DW_TAG_typedef:
7120 case DW_TAG_class_type:
7121 case DW_TAG_interface_type:
7122 case DW_TAG_structure_type:
7123 case DW_TAG_union_type:
7124 case DW_TAG_enumeration_type:
7125 case DW_TAG_enumerator:
7126 case DW_TAG_subprogram:
7127 case DW_TAG_member:
7128 return 1;
7129
7130 case DW_TAG_variable:
7131 case DW_TAG_constant:
7132 /* We only need to prefix "globally" visible variables. These include
7133 any variable marked with DW_AT_external or any variable that
7134 lives in a namespace. [Variables in anonymous namespaces
7135 require prefixing, but they are not DW_AT_external.] */
7136
7137 if (dwarf2_attr (die, DW_AT_specification, cu))
7138 {
7139 struct dwarf2_cu *spec_cu = cu;
7140
7141 return die_needs_namespace (die_specification (die, &spec_cu),
7142 spec_cu);
7143 }
7144
7145 attr = dwarf2_attr (die, DW_AT_external, cu);
7146 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7147 && die->parent->tag != DW_TAG_module)
7148 return 0;
7149 /* A variable in a lexical block of some kind does not need a
7150 namespace, even though in C++ such variables may be external
7151 and have a mangled name. */
7152 if (die->parent->tag == DW_TAG_lexical_block
7153 || die->parent->tag == DW_TAG_try_block
7154 || die->parent->tag == DW_TAG_catch_block
7155 || die->parent->tag == DW_TAG_subprogram)
7156 return 0;
7157 return 1;
7158
7159 default:
7160 return 0;
7161 }
7162 }
7163
7164 /* Retrieve the last character from a mem_file. */
7165
7166 static void
7167 do_ui_file_peek_last (void *object, const char *buffer, long length)
7168 {
7169 char *last_char_p = (char *) object;
7170
7171 if (length > 0)
7172 *last_char_p = buffer[length - 1];
7173 }
7174
7175 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7176 compute the physname for the object, which include a method's:
7177 - formal parameters (C++/Java),
7178 - receiver type (Go),
7179 - return type (Java).
7180
7181 The term "physname" is a bit confusing.
7182 For C++, for example, it is the demangled name.
7183 For Go, for example, it's the mangled name.
7184
7185 For Ada, return the DIE's linkage name rather than the fully qualified
7186 name. PHYSNAME is ignored..
7187
7188 The result is allocated on the objfile_obstack and canonicalized. */
7189
7190 static const char *
7191 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7192 int physname)
7193 {
7194 struct objfile *objfile = cu->objfile;
7195
7196 if (name == NULL)
7197 name = dwarf2_name (die, cu);
7198
7199 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7200 compute it by typename_concat inside GDB. */
7201 if (cu->language == language_ada
7202 || (cu->language == language_fortran && physname))
7203 {
7204 /* For Ada unit, we prefer the linkage name over the name, as
7205 the former contains the exported name, which the user expects
7206 to be able to reference. Ideally, we want the user to be able
7207 to reference this entity using either natural or linkage name,
7208 but we haven't started looking at this enhancement yet. */
7209 struct attribute *attr;
7210
7211 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7212 if (attr == NULL)
7213 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7214 if (attr && DW_STRING (attr))
7215 return DW_STRING (attr);
7216 }
7217
7218 /* These are the only languages we know how to qualify names in. */
7219 if (name != NULL
7220 && (cu->language == language_cplus || cu->language == language_java
7221 || cu->language == language_fortran))
7222 {
7223 if (die_needs_namespace (die, cu))
7224 {
7225 long length;
7226 const char *prefix;
7227 struct ui_file *buf;
7228
7229 prefix = determine_prefix (die, cu);
7230 buf = mem_fileopen ();
7231 if (*prefix != '\0')
7232 {
7233 char *prefixed_name = typename_concat (NULL, prefix, name,
7234 physname, cu);
7235
7236 fputs_unfiltered (prefixed_name, buf);
7237 xfree (prefixed_name);
7238 }
7239 else
7240 fputs_unfiltered (name, buf);
7241
7242 /* Template parameters may be specified in the DIE's DW_AT_name, or
7243 as children with DW_TAG_template_type_param or
7244 DW_TAG_value_type_param. If the latter, add them to the name
7245 here. If the name already has template parameters, then
7246 skip this step; some versions of GCC emit both, and
7247 it is more efficient to use the pre-computed name.
7248
7249 Something to keep in mind about this process: it is very
7250 unlikely, or in some cases downright impossible, to produce
7251 something that will match the mangled name of a function.
7252 If the definition of the function has the same debug info,
7253 we should be able to match up with it anyway. But fallbacks
7254 using the minimal symbol, for instance to find a method
7255 implemented in a stripped copy of libstdc++, will not work.
7256 If we do not have debug info for the definition, we will have to
7257 match them up some other way.
7258
7259 When we do name matching there is a related problem with function
7260 templates; two instantiated function templates are allowed to
7261 differ only by their return types, which we do not add here. */
7262
7263 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7264 {
7265 struct attribute *attr;
7266 struct die_info *child;
7267 int first = 1;
7268
7269 die->building_fullname = 1;
7270
7271 for (child = die->child; child != NULL; child = child->sibling)
7272 {
7273 struct type *type;
7274 LONGEST value;
7275 gdb_byte *bytes;
7276 struct dwarf2_locexpr_baton *baton;
7277 struct value *v;
7278
7279 if (child->tag != DW_TAG_template_type_param
7280 && child->tag != DW_TAG_template_value_param)
7281 continue;
7282
7283 if (first)
7284 {
7285 fputs_unfiltered ("<", buf);
7286 first = 0;
7287 }
7288 else
7289 fputs_unfiltered (", ", buf);
7290
7291 attr = dwarf2_attr (child, DW_AT_type, cu);
7292 if (attr == NULL)
7293 {
7294 complaint (&symfile_complaints,
7295 _("template parameter missing DW_AT_type"));
7296 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7297 continue;
7298 }
7299 type = die_type (child, cu);
7300
7301 if (child->tag == DW_TAG_template_type_param)
7302 {
7303 c_print_type (type, "", buf, -1, 0);
7304 continue;
7305 }
7306
7307 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7308 if (attr == NULL)
7309 {
7310 complaint (&symfile_complaints,
7311 _("template parameter missing "
7312 "DW_AT_const_value"));
7313 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7314 continue;
7315 }
7316
7317 dwarf2_const_value_attr (attr, type, name,
7318 &cu->comp_unit_obstack, cu,
7319 &value, &bytes, &baton);
7320
7321 if (TYPE_NOSIGN (type))
7322 /* GDB prints characters as NUMBER 'CHAR'. If that's
7323 changed, this can use value_print instead. */
7324 c_printchar (value, type, buf);
7325 else
7326 {
7327 struct value_print_options opts;
7328
7329 if (baton != NULL)
7330 v = dwarf2_evaluate_loc_desc (type, NULL,
7331 baton->data,
7332 baton->size,
7333 baton->per_cu);
7334 else if (bytes != NULL)
7335 {
7336 v = allocate_value (type);
7337 memcpy (value_contents_writeable (v), bytes,
7338 TYPE_LENGTH (type));
7339 }
7340 else
7341 v = value_from_longest (type, value);
7342
7343 /* Specify decimal so that we do not depend on
7344 the radix. */
7345 get_formatted_print_options (&opts, 'd');
7346 opts.raw = 1;
7347 value_print (v, buf, &opts);
7348 release_value (v);
7349 value_free (v);
7350 }
7351 }
7352
7353 die->building_fullname = 0;
7354
7355 if (!first)
7356 {
7357 /* Close the argument list, with a space if necessary
7358 (nested templates). */
7359 char last_char = '\0';
7360 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7361 if (last_char == '>')
7362 fputs_unfiltered (" >", buf);
7363 else
7364 fputs_unfiltered (">", buf);
7365 }
7366 }
7367
7368 /* For Java and C++ methods, append formal parameter type
7369 information, if PHYSNAME. */
7370
7371 if (physname && die->tag == DW_TAG_subprogram
7372 && (cu->language == language_cplus
7373 || cu->language == language_java))
7374 {
7375 struct type *type = read_type_die (die, cu);
7376
7377 c_type_print_args (type, buf, 1, cu->language);
7378
7379 if (cu->language == language_java)
7380 {
7381 /* For java, we must append the return type to method
7382 names. */
7383 if (die->tag == DW_TAG_subprogram)
7384 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7385 0, 0);
7386 }
7387 else if (cu->language == language_cplus)
7388 {
7389 /* Assume that an artificial first parameter is
7390 "this", but do not crash if it is not. RealView
7391 marks unnamed (and thus unused) parameters as
7392 artificial; there is no way to differentiate
7393 the two cases. */
7394 if (TYPE_NFIELDS (type) > 0
7395 && TYPE_FIELD_ARTIFICIAL (type, 0)
7396 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7397 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7398 0))))
7399 fputs_unfiltered (" const", buf);
7400 }
7401 }
7402
7403 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7404 &length);
7405 ui_file_delete (buf);
7406
7407 if (cu->language == language_cplus)
7408 {
7409 char *cname
7410 = dwarf2_canonicalize_name (name, cu,
7411 &objfile->objfile_obstack);
7412
7413 if (cname != NULL)
7414 name = cname;
7415 }
7416 }
7417 }
7418
7419 return name;
7420 }
7421
7422 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7423 If scope qualifiers are appropriate they will be added. The result
7424 will be allocated on the objfile_obstack, or NULL if the DIE does
7425 not have a name. NAME may either be from a previous call to
7426 dwarf2_name or NULL.
7427
7428 The output string will be canonicalized (if C++/Java). */
7429
7430 static const char *
7431 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7432 {
7433 return dwarf2_compute_name (name, die, cu, 0);
7434 }
7435
7436 /* Construct a physname for the given DIE in CU. NAME may either be
7437 from a previous call to dwarf2_name or NULL. The result will be
7438 allocated on the objfile_objstack or NULL if the DIE does not have a
7439 name.
7440
7441 The output string will be canonicalized (if C++/Java). */
7442
7443 static const char *
7444 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7445 {
7446 struct objfile *objfile = cu->objfile;
7447 struct attribute *attr;
7448 const char *retval, *mangled = NULL, *canon = NULL;
7449 struct cleanup *back_to;
7450 int need_copy = 1;
7451
7452 /* In this case dwarf2_compute_name is just a shortcut not building anything
7453 on its own. */
7454 if (!die_needs_namespace (die, cu))
7455 return dwarf2_compute_name (name, die, cu, 1);
7456
7457 back_to = make_cleanup (null_cleanup, NULL);
7458
7459 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7460 if (!attr)
7461 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7462
7463 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7464 has computed. */
7465 if (attr && DW_STRING (attr))
7466 {
7467 char *demangled;
7468
7469 mangled = DW_STRING (attr);
7470
7471 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7472 type. It is easier for GDB users to search for such functions as
7473 `name(params)' than `long name(params)'. In such case the minimal
7474 symbol names do not match the full symbol names but for template
7475 functions there is never a need to look up their definition from their
7476 declaration so the only disadvantage remains the minimal symbol
7477 variant `long name(params)' does not have the proper inferior type.
7478 */
7479
7480 if (cu->language == language_go)
7481 {
7482 /* This is a lie, but we already lie to the caller new_symbol_full.
7483 new_symbol_full assumes we return the mangled name.
7484 This just undoes that lie until things are cleaned up. */
7485 demangled = NULL;
7486 }
7487 else
7488 {
7489 demangled = cplus_demangle (mangled,
7490 (DMGL_PARAMS | DMGL_ANSI
7491 | (cu->language == language_java
7492 ? DMGL_JAVA | DMGL_RET_POSTFIX
7493 : DMGL_RET_DROP)));
7494 }
7495 if (demangled)
7496 {
7497 make_cleanup (xfree, demangled);
7498 canon = demangled;
7499 }
7500 else
7501 {
7502 canon = mangled;
7503 need_copy = 0;
7504 }
7505 }
7506
7507 if (canon == NULL || check_physname)
7508 {
7509 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7510
7511 if (canon != NULL && strcmp (physname, canon) != 0)
7512 {
7513 /* It may not mean a bug in GDB. The compiler could also
7514 compute DW_AT_linkage_name incorrectly. But in such case
7515 GDB would need to be bug-to-bug compatible. */
7516
7517 complaint (&symfile_complaints,
7518 _("Computed physname <%s> does not match demangled <%s> "
7519 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7520 physname, canon, mangled, die->offset.sect_off, objfile->name);
7521
7522 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7523 is available here - over computed PHYSNAME. It is safer
7524 against both buggy GDB and buggy compilers. */
7525
7526 retval = canon;
7527 }
7528 else
7529 {
7530 retval = physname;
7531 need_copy = 0;
7532 }
7533 }
7534 else
7535 retval = canon;
7536
7537 if (need_copy)
7538 retval = obsavestring (retval, strlen (retval),
7539 &objfile->objfile_obstack);
7540
7541 do_cleanups (back_to);
7542 return retval;
7543 }
7544
7545 /* Read the import statement specified by the given die and record it. */
7546
7547 static void
7548 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7549 {
7550 struct objfile *objfile = cu->objfile;
7551 struct attribute *import_attr;
7552 struct die_info *imported_die, *child_die;
7553 struct dwarf2_cu *imported_cu;
7554 const char *imported_name;
7555 const char *imported_name_prefix;
7556 const char *canonical_name;
7557 const char *import_alias;
7558 const char *imported_declaration = NULL;
7559 const char *import_prefix;
7560 VEC (const_char_ptr) *excludes = NULL;
7561 struct cleanup *cleanups;
7562
7563 char *temp;
7564
7565 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7566 if (import_attr == NULL)
7567 {
7568 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7569 dwarf_tag_name (die->tag));
7570 return;
7571 }
7572
7573 imported_cu = cu;
7574 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7575 imported_name = dwarf2_name (imported_die, imported_cu);
7576 if (imported_name == NULL)
7577 {
7578 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7579
7580 The import in the following code:
7581 namespace A
7582 {
7583 typedef int B;
7584 }
7585
7586 int main ()
7587 {
7588 using A::B;
7589 B b;
7590 return b;
7591 }
7592
7593 ...
7594 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7595 <52> DW_AT_decl_file : 1
7596 <53> DW_AT_decl_line : 6
7597 <54> DW_AT_import : <0x75>
7598 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7599 <59> DW_AT_name : B
7600 <5b> DW_AT_decl_file : 1
7601 <5c> DW_AT_decl_line : 2
7602 <5d> DW_AT_type : <0x6e>
7603 ...
7604 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7605 <76> DW_AT_byte_size : 4
7606 <77> DW_AT_encoding : 5 (signed)
7607
7608 imports the wrong die ( 0x75 instead of 0x58 ).
7609 This case will be ignored until the gcc bug is fixed. */
7610 return;
7611 }
7612
7613 /* Figure out the local name after import. */
7614 import_alias = dwarf2_name (die, cu);
7615
7616 /* Figure out where the statement is being imported to. */
7617 import_prefix = determine_prefix (die, cu);
7618
7619 /* Figure out what the scope of the imported die is and prepend it
7620 to the name of the imported die. */
7621 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7622
7623 if (imported_die->tag != DW_TAG_namespace
7624 && imported_die->tag != DW_TAG_module)
7625 {
7626 imported_declaration = imported_name;
7627 canonical_name = imported_name_prefix;
7628 }
7629 else if (strlen (imported_name_prefix) > 0)
7630 {
7631 temp = alloca (strlen (imported_name_prefix)
7632 + 2 + strlen (imported_name) + 1);
7633 strcpy (temp, imported_name_prefix);
7634 strcat (temp, "::");
7635 strcat (temp, imported_name);
7636 canonical_name = temp;
7637 }
7638 else
7639 canonical_name = imported_name;
7640
7641 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7642
7643 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7644 for (child_die = die->child; child_die && child_die->tag;
7645 child_die = sibling_die (child_die))
7646 {
7647 /* DWARF-4: A Fortran use statement with a “rename list” may be
7648 represented by an imported module entry with an import attribute
7649 referring to the module and owned entries corresponding to those
7650 entities that are renamed as part of being imported. */
7651
7652 if (child_die->tag != DW_TAG_imported_declaration)
7653 {
7654 complaint (&symfile_complaints,
7655 _("child DW_TAG_imported_declaration expected "
7656 "- DIE at 0x%x [in module %s]"),
7657 child_die->offset.sect_off, objfile->name);
7658 continue;
7659 }
7660
7661 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7662 if (import_attr == NULL)
7663 {
7664 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7665 dwarf_tag_name (child_die->tag));
7666 continue;
7667 }
7668
7669 imported_cu = cu;
7670 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7671 &imported_cu);
7672 imported_name = dwarf2_name (imported_die, imported_cu);
7673 if (imported_name == NULL)
7674 {
7675 complaint (&symfile_complaints,
7676 _("child DW_TAG_imported_declaration has unknown "
7677 "imported name - DIE at 0x%x [in module %s]"),
7678 child_die->offset.sect_off, objfile->name);
7679 continue;
7680 }
7681
7682 VEC_safe_push (const_char_ptr, excludes, imported_name);
7683
7684 process_die (child_die, cu);
7685 }
7686
7687 cp_add_using_directive (import_prefix,
7688 canonical_name,
7689 import_alias,
7690 imported_declaration,
7691 excludes,
7692 &objfile->objfile_obstack);
7693
7694 do_cleanups (cleanups);
7695 }
7696
7697 /* Cleanup function for handle_DW_AT_stmt_list. */
7698
7699 static void
7700 free_cu_line_header (void *arg)
7701 {
7702 struct dwarf2_cu *cu = arg;
7703
7704 free_line_header (cu->line_header);
7705 cu->line_header = NULL;
7706 }
7707
7708 static void
7709 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7710 char **name, char **comp_dir)
7711 {
7712 struct attribute *attr;
7713
7714 *name = NULL;
7715 *comp_dir = NULL;
7716
7717 /* Find the filename. Do not use dwarf2_name here, since the filename
7718 is not a source language identifier. */
7719 attr = dwarf2_attr (die, DW_AT_name, cu);
7720 if (attr)
7721 {
7722 *name = DW_STRING (attr);
7723 }
7724
7725 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7726 if (attr)
7727 *comp_dir = DW_STRING (attr);
7728 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7729 {
7730 *comp_dir = ldirname (*name);
7731 if (*comp_dir != NULL)
7732 make_cleanup (xfree, *comp_dir);
7733 }
7734 if (*comp_dir != NULL)
7735 {
7736 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7737 directory, get rid of it. */
7738 char *cp = strchr (*comp_dir, ':');
7739
7740 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7741 *comp_dir = cp + 1;
7742 }
7743
7744 if (*name == NULL)
7745 *name = "<unknown>";
7746 }
7747
7748 /* Handle DW_AT_stmt_list for a compilation unit.
7749 DIE is the DW_TAG_compile_unit die for CU.
7750 COMP_DIR is the compilation directory.
7751 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7752
7753 static void
7754 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7755 const char *comp_dir)
7756 {
7757 struct attribute *attr;
7758
7759 gdb_assert (! cu->per_cu->is_debug_types);
7760
7761 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7762 if (attr)
7763 {
7764 unsigned int line_offset = DW_UNSND (attr);
7765 struct line_header *line_header
7766 = dwarf_decode_line_header (line_offset, cu);
7767
7768 if (line_header)
7769 {
7770 cu->line_header = line_header;
7771 make_cleanup (free_cu_line_header, cu);
7772 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7773 }
7774 }
7775 }
7776
7777 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7778
7779 static void
7780 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7784 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7785 CORE_ADDR highpc = ((CORE_ADDR) 0);
7786 struct attribute *attr;
7787 char *name = NULL;
7788 char *comp_dir = NULL;
7789 struct die_info *child_die;
7790 bfd *abfd = objfile->obfd;
7791 CORE_ADDR baseaddr;
7792
7793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7794
7795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7796
7797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7798 from finish_block. */
7799 if (lowpc == ((CORE_ADDR) -1))
7800 lowpc = highpc;
7801 lowpc += baseaddr;
7802 highpc += baseaddr;
7803
7804 find_file_and_directory (die, cu, &name, &comp_dir);
7805
7806 prepare_one_comp_unit (cu, die, cu->language);
7807
7808 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7809 standardised yet. As a workaround for the language detection we fall
7810 back to the DW_AT_producer string. */
7811 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7812 cu->language = language_opencl;
7813
7814 /* Similar hack for Go. */
7815 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7816 set_cu_language (DW_LANG_Go, cu);
7817
7818 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7819
7820 /* Decode line number information if present. We do this before
7821 processing child DIEs, so that the line header table is available
7822 for DW_AT_decl_file. */
7823 handle_DW_AT_stmt_list (die, cu, comp_dir);
7824
7825 /* Process all dies in compilation unit. */
7826 if (die->child != NULL)
7827 {
7828 child_die = die->child;
7829 while (child_die && child_die->tag)
7830 {
7831 process_die (child_die, cu);
7832 child_die = sibling_die (child_die);
7833 }
7834 }
7835
7836 /* Decode macro information, if present. Dwarf 2 macro information
7837 refers to information in the line number info statement program
7838 header, so we can only read it if we've read the header
7839 successfully. */
7840 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7841 if (attr && cu->line_header)
7842 {
7843 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7844 complaint (&symfile_complaints,
7845 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7846
7847 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7848 }
7849 else
7850 {
7851 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7852 if (attr && cu->line_header)
7853 {
7854 unsigned int macro_offset = DW_UNSND (attr);
7855
7856 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7857 }
7858 }
7859
7860 do_cleanups (back_to);
7861 }
7862
7863 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7864 Create the set of symtabs used by this TU, or if this TU is sharing
7865 symtabs with another TU and the symtabs have already been created
7866 then restore those symtabs in the line header.
7867 We don't need the pc/line-number mapping for type units. */
7868
7869 static void
7870 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7871 {
7872 struct objfile *objfile = dwarf2_per_objfile->objfile;
7873 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7874 struct type_unit_group *tu_group;
7875 int first_time;
7876 struct line_header *lh;
7877 struct attribute *attr;
7878 unsigned int i, line_offset;
7879
7880 gdb_assert (per_cu->is_debug_types);
7881
7882 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7883
7884 /* If we're using .gdb_index (includes -readnow) then
7885 per_cu->s.type_unit_group may not have been set up yet. */
7886 if (per_cu->s.type_unit_group == NULL)
7887 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7888 tu_group = per_cu->s.type_unit_group;
7889
7890 /* If we've already processed this stmt_list there's no real need to
7891 do it again, we could fake it and just recreate the part we need
7892 (file name,index -> symtab mapping). If data shows this optimization
7893 is useful we can do it then. */
7894 first_time = tu_group->primary_symtab == NULL;
7895
7896 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7897 debug info. */
7898 lh = NULL;
7899 if (attr != NULL)
7900 {
7901 line_offset = DW_UNSND (attr);
7902 lh = dwarf_decode_line_header (line_offset, cu);
7903 }
7904 if (lh == NULL)
7905 {
7906 if (first_time)
7907 dwarf2_start_symtab (cu, "", NULL, 0);
7908 else
7909 {
7910 gdb_assert (tu_group->symtabs == NULL);
7911 restart_symtab (0);
7912 }
7913 /* Note: The primary symtab will get allocated at the end. */
7914 return;
7915 }
7916
7917 cu->line_header = lh;
7918 make_cleanup (free_cu_line_header, cu);
7919
7920 if (first_time)
7921 {
7922 dwarf2_start_symtab (cu, "", NULL, 0);
7923
7924 tu_group->num_symtabs = lh->num_file_names;
7925 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
7926
7927 for (i = 0; i < lh->num_file_names; ++i)
7928 {
7929 char *dir = NULL;
7930 struct file_entry *fe = &lh->file_names[i];
7931
7932 if (fe->dir_index)
7933 dir = lh->include_dirs[fe->dir_index - 1];
7934 dwarf2_start_subfile (fe->name, dir, NULL);
7935
7936 /* Note: We don't have to watch for the main subfile here, type units
7937 don't have DW_AT_name. */
7938
7939 if (current_subfile->symtab == NULL)
7940 {
7941 /* NOTE: start_subfile will recognize when it's been passed
7942 a file it has already seen. So we can't assume there's a
7943 simple mapping from lh->file_names to subfiles,
7944 lh->file_names may contain dups. */
7945 current_subfile->symtab = allocate_symtab (current_subfile->name,
7946 objfile);
7947 }
7948
7949 fe->symtab = current_subfile->symtab;
7950 tu_group->symtabs[i] = fe->symtab;
7951 }
7952 }
7953 else
7954 {
7955 restart_symtab (0);
7956
7957 for (i = 0; i < lh->num_file_names; ++i)
7958 {
7959 struct file_entry *fe = &lh->file_names[i];
7960
7961 fe->symtab = tu_group->symtabs[i];
7962 }
7963 }
7964
7965 /* The main symtab is allocated last. Type units don't have DW_AT_name
7966 so they don't have a "real" (so to speak) symtab anyway.
7967 There is later code that will assign the main symtab to all symbols
7968 that don't have one. We need to handle the case of a symbol with a
7969 missing symtab (DW_AT_decl_file) anyway. */
7970 }
7971
7972 /* Process DW_TAG_type_unit.
7973 For TUs we want to skip the first top level sibling if it's not the
7974 actual type being defined by this TU. In this case the first top
7975 level sibling is there to provide context only. */
7976
7977 static void
7978 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
7979 {
7980 struct die_info *child_die;
7981
7982 prepare_one_comp_unit (cu, die, language_minimal);
7983
7984 /* Initialize (or reinitialize) the machinery for building symtabs.
7985 We do this before processing child DIEs, so that the line header table
7986 is available for DW_AT_decl_file. */
7987 setup_type_unit_groups (die, cu);
7988
7989 if (die->child != NULL)
7990 {
7991 child_die = die->child;
7992 while (child_die && child_die->tag)
7993 {
7994 process_die (child_die, cu);
7995 child_die = sibling_die (child_die);
7996 }
7997 }
7998 }
7999 \f
8000 /* DWO files. */
8001
8002 static hashval_t
8003 hash_dwo_file (const void *item)
8004 {
8005 const struct dwo_file *dwo_file = item;
8006
8007 return htab_hash_string (dwo_file->dwo_name);
8008 }
8009
8010 static int
8011 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8012 {
8013 const struct dwo_file *lhs = item_lhs;
8014 const struct dwo_file *rhs = item_rhs;
8015
8016 return strcmp (lhs->dwo_name, rhs->dwo_name) == 0;
8017 }
8018
8019 /* Allocate a hash table for DWO files. */
8020
8021 static htab_t
8022 allocate_dwo_file_hash_table (void)
8023 {
8024 struct objfile *objfile = dwarf2_per_objfile->objfile;
8025
8026 return htab_create_alloc_ex (41,
8027 hash_dwo_file,
8028 eq_dwo_file,
8029 NULL,
8030 &objfile->objfile_obstack,
8031 hashtab_obstack_allocate,
8032 dummy_obstack_deallocate);
8033 }
8034
8035 static hashval_t
8036 hash_dwo_unit (const void *item)
8037 {
8038 const struct dwo_unit *dwo_unit = item;
8039
8040 /* This drops the top 32 bits of the id, but is ok for a hash. */
8041 return dwo_unit->signature;
8042 }
8043
8044 static int
8045 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8046 {
8047 const struct dwo_unit *lhs = item_lhs;
8048 const struct dwo_unit *rhs = item_rhs;
8049
8050 /* The signature is assumed to be unique within the DWO file.
8051 So while object file CU dwo_id's always have the value zero,
8052 that's OK, assuming each object file DWO file has only one CU,
8053 and that's the rule for now. */
8054 return lhs->signature == rhs->signature;
8055 }
8056
8057 /* Allocate a hash table for DWO CUs,TUs.
8058 There is one of these tables for each of CUs,TUs for each DWO file. */
8059
8060 static htab_t
8061 allocate_dwo_unit_table (struct objfile *objfile)
8062 {
8063 /* Start out with a pretty small number.
8064 Generally DWO files contain only one CU and maybe some TUs. */
8065 return htab_create_alloc_ex (3,
8066 hash_dwo_unit,
8067 eq_dwo_unit,
8068 NULL,
8069 &objfile->objfile_obstack,
8070 hashtab_obstack_allocate,
8071 dummy_obstack_deallocate);
8072 }
8073
8074 /* This function is mapped across the sections and remembers the offset and
8075 size of each of the DWO debugging sections we are interested in. */
8076
8077 static void
8078 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr)
8079 {
8080 struct dwo_file *dwo_file = dwo_file_ptr;
8081 const struct dwo_section_names *names = &dwo_section_names;
8082
8083 if (section_is_p (sectp->name, &names->abbrev_dwo))
8084 {
8085 dwo_file->sections.abbrev.asection = sectp;
8086 dwo_file->sections.abbrev.size = bfd_get_section_size (sectp);
8087 }
8088 else if (section_is_p (sectp->name, &names->info_dwo))
8089 {
8090 dwo_file->sections.info.asection = sectp;
8091 dwo_file->sections.info.size = bfd_get_section_size (sectp);
8092 }
8093 else if (section_is_p (sectp->name, &names->line_dwo))
8094 {
8095 dwo_file->sections.line.asection = sectp;
8096 dwo_file->sections.line.size = bfd_get_section_size (sectp);
8097 }
8098 else if (section_is_p (sectp->name, &names->loc_dwo))
8099 {
8100 dwo_file->sections.loc.asection = sectp;
8101 dwo_file->sections.loc.size = bfd_get_section_size (sectp);
8102 }
8103 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8104 {
8105 dwo_file->sections.macinfo.asection = sectp;
8106 dwo_file->sections.macinfo.size = bfd_get_section_size (sectp);
8107 }
8108 else if (section_is_p (sectp->name, &names->macro_dwo))
8109 {
8110 dwo_file->sections.macro.asection = sectp;
8111 dwo_file->sections.macro.size = bfd_get_section_size (sectp);
8112 }
8113 else if (section_is_p (sectp->name, &names->str_dwo))
8114 {
8115 dwo_file->sections.str.asection = sectp;
8116 dwo_file->sections.str.size = bfd_get_section_size (sectp);
8117 }
8118 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8119 {
8120 dwo_file->sections.str_offsets.asection = sectp;
8121 dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp);
8122 }
8123 else if (section_is_p (sectp->name, &names->types_dwo))
8124 {
8125 struct dwarf2_section_info type_section;
8126
8127 memset (&type_section, 0, sizeof (type_section));
8128 type_section.asection = sectp;
8129 type_section.size = bfd_get_section_size (sectp);
8130 VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types,
8131 &type_section);
8132 }
8133 }
8134
8135 /* Structure used to pass data to create_debug_info_hash_table_reader. */
8136
8137 struct create_dwo_info_table_data
8138 {
8139 struct dwo_file *dwo_file;
8140 htab_t cu_htab;
8141 };
8142
8143 /* die_reader_func for create_debug_info_hash_table. */
8144
8145 static void
8146 create_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8147 gdb_byte *info_ptr,
8148 struct die_info *comp_unit_die,
8149 int has_children,
8150 void *datap)
8151 {
8152 struct dwarf2_cu *cu = reader->cu;
8153 struct objfile *objfile = dwarf2_per_objfile->objfile;
8154 sect_offset offset = cu->per_cu->offset;
8155 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8156 struct create_dwo_info_table_data *data = datap;
8157 struct dwo_file *dwo_file = data->dwo_file;
8158 htab_t cu_htab = data->cu_htab;
8159 void **slot;
8160 struct attribute *attr;
8161 struct dwo_unit *dwo_unit;
8162
8163 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8164 if (attr == NULL)
8165 {
8166 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8167 " its dwo_id [in module %s]"),
8168 offset.sect_off, dwo_file->dwo_name);
8169 return;
8170 }
8171
8172 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8173 dwo_unit->dwo_file = dwo_file;
8174 dwo_unit->signature = DW_UNSND (attr);
8175 dwo_unit->info_or_types_section = section;
8176 dwo_unit->offset = offset;
8177 dwo_unit->length = cu->per_cu->length;
8178
8179 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8180 gdb_assert (slot != NULL);
8181 if (*slot != NULL)
8182 {
8183 const struct dwo_unit *dup_dwo_unit = *slot;
8184
8185 complaint (&symfile_complaints,
8186 _("debug entry at offset 0x%x is duplicate to the entry at"
8187 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8188 offset.sect_off, dup_dwo_unit->offset.sect_off,
8189 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8190 dwo_file->dwo_name);
8191 }
8192 else
8193 *slot = dwo_unit;
8194
8195 if (dwarf2_read_debug)
8196 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8197 offset.sect_off,
8198 phex (dwo_unit->signature,
8199 sizeof (dwo_unit->signature)));
8200 }
8201
8202 /* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */
8203
8204 static htab_t
8205 create_debug_info_hash_table (struct dwo_file *dwo_file)
8206 {
8207 struct objfile *objfile = dwarf2_per_objfile->objfile;
8208 struct dwarf2_section_info *section = &dwo_file->sections.info;
8209 bfd *abfd;
8210 htab_t cu_htab;
8211 gdb_byte *info_ptr, *end_ptr;
8212 struct create_dwo_info_table_data create_dwo_info_table_data;
8213
8214 dwarf2_read_section (objfile, section);
8215 info_ptr = section->buffer;
8216
8217 if (info_ptr == NULL)
8218 return NULL;
8219
8220 /* We can't set abfd until now because the section may be empty or
8221 not present, in which case section->asection will be NULL. */
8222 abfd = section->asection->owner;
8223
8224 if (dwarf2_read_debug)
8225 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8226 bfd_get_filename (abfd));
8227
8228 cu_htab = allocate_dwo_unit_table (objfile);
8229
8230 create_dwo_info_table_data.dwo_file = dwo_file;
8231 create_dwo_info_table_data.cu_htab = cu_htab;
8232
8233 end_ptr = info_ptr + section->size;
8234 while (info_ptr < end_ptr)
8235 {
8236 struct dwarf2_per_cu_data per_cu;
8237
8238 memset (&per_cu, 0, sizeof (per_cu));
8239 per_cu.objfile = objfile;
8240 per_cu.is_debug_types = 0;
8241 per_cu.offset.sect_off = info_ptr - section->buffer;
8242 per_cu.info_or_types_section = section;
8243
8244 init_cutu_and_read_dies_no_follow (&per_cu,
8245 &dwo_file->sections.abbrev,
8246 dwo_file,
8247 create_debug_info_hash_table_reader,
8248 &create_dwo_info_table_data);
8249
8250 info_ptr += per_cu.length;
8251 }
8252
8253 return cu_htab;
8254 }
8255
8256 /* Subroutine of open_dwo_file to simplify it.
8257 Open the file specified by FILE_NAME and hand it off to BFD for
8258 preliminary analysis. Return a newly initialized bfd *, which
8259 includes a canonicalized copy of FILE_NAME.
8260 In case of trouble, return NULL.
8261 NOTE: This function is derived from symfile_bfd_open. */
8262
8263 static bfd *
8264 try_open_dwo_file (const char *file_name)
8265 {
8266 bfd *sym_bfd;
8267 int desc;
8268 char *absolute_name;
8269
8270 desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name,
8271 O_RDONLY | O_BINARY, &absolute_name);
8272 if (desc < 0)
8273 return NULL;
8274
8275 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8276 if (!sym_bfd)
8277 {
8278 xfree (absolute_name);
8279 return NULL;
8280 }
8281 gdb_bfd_stash_filename (sym_bfd);
8282 xfree (absolute_name);
8283 bfd_set_cacheable (sym_bfd, 1);
8284
8285 if (!bfd_check_format (sym_bfd, bfd_object))
8286 {
8287 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8288 return NULL;
8289 }
8290
8291 return sym_bfd;
8292 }
8293
8294 /* Try to open DWO file DWO_NAME.
8295 COMP_DIR is the DW_AT_comp_dir attribute.
8296 The result is the bfd handle of the file.
8297 If there is a problem finding or opening the file, return NULL.
8298 Upon success, the canonicalized path of the file is stored in the bfd,
8299 same as symfile_bfd_open. */
8300
8301 static bfd *
8302 open_dwo_file (const char *dwo_name, const char *comp_dir)
8303 {
8304 bfd *abfd;
8305
8306 if (IS_ABSOLUTE_PATH (dwo_name))
8307 return try_open_dwo_file (dwo_name);
8308
8309 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8310
8311 if (comp_dir != NULL)
8312 {
8313 char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL);
8314
8315 /* NOTE: If comp_dir is a relative path, this will also try the
8316 search path, which seems useful. */
8317 abfd = try_open_dwo_file (path_to_try);
8318 xfree (path_to_try);
8319 if (abfd != NULL)
8320 return abfd;
8321 }
8322
8323 /* That didn't work, try debug-file-directory, which, despite its name,
8324 is a list of paths. */
8325
8326 if (*debug_file_directory == '\0')
8327 return NULL;
8328
8329 return try_open_dwo_file (dwo_name);
8330 }
8331
8332 /* Initialize the use of the DWO file specified by DWO_NAME. */
8333
8334 static struct dwo_file *
8335 init_dwo_file (const char *dwo_name, const char *comp_dir)
8336 {
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8339 struct dwo_file);
8340 bfd *abfd;
8341 struct cleanup *cleanups;
8342
8343 if (dwarf2_read_debug)
8344 fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name);
8345
8346 abfd = open_dwo_file (dwo_name, comp_dir);
8347 if (abfd == NULL)
8348 return NULL;
8349 dwo_file->dwo_name = dwo_name;
8350 dwo_file->dwo_bfd = abfd;
8351
8352 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8353
8354 bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file);
8355
8356 dwo_file->cus = create_debug_info_hash_table (dwo_file);
8357
8358 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8359 dwo_file->sections.types);
8360
8361 discard_cleanups (cleanups);
8362
8363 return dwo_file;
8364 }
8365
8366 /* Lookup DWO file DWO_NAME. */
8367
8368 static struct dwo_file *
8369 lookup_dwo_file (char *dwo_name, const char *comp_dir)
8370 {
8371 struct dwo_file *dwo_file;
8372 struct dwo_file find_entry;
8373 void **slot;
8374
8375 if (dwarf2_per_objfile->dwo_files == NULL)
8376 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8377
8378 /* Have we already seen this DWO file? */
8379 find_entry.dwo_name = dwo_name;
8380 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8381
8382 /* If not, read it in and build a table of the DWOs it contains. */
8383 if (*slot == NULL)
8384 *slot = init_dwo_file (dwo_name, comp_dir);
8385
8386 /* NOTE: This will be NULL if unable to open the file. */
8387 dwo_file = *slot;
8388
8389 return dwo_file;
8390 }
8391
8392 /* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME.
8393 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8394 SIGNATURE is the "dwo_id" of the CU (for consistency we use the same
8395 nomenclature as TUs).
8396 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8397 (dwo_id mismatch or couldn't find the DWO file). */
8398
8399 static struct dwo_unit *
8400 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
8401 char *dwo_name, const char *comp_dir,
8402 ULONGEST signature)
8403 {
8404 struct objfile *objfile = dwarf2_per_objfile->objfile;
8405 struct dwo_file *dwo_file;
8406
8407 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8408 if (dwo_file == NULL)
8409 return NULL;
8410
8411 /* Look up the DWO using its signature(dwo_id). */
8412
8413 if (dwo_file->cus != NULL)
8414 {
8415 struct dwo_unit find_dwo_cu, *dwo_cu;
8416
8417 find_dwo_cu.signature = signature;
8418 dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu);
8419
8420 if (dwo_cu != NULL)
8421 return dwo_cu;
8422 }
8423
8424 /* We didn't find it. This must mean a dwo_id mismatch. */
8425
8426 complaint (&symfile_complaints,
8427 _("Could not find DWO CU referenced by CU at offset 0x%x"
8428 " [in module %s]"),
8429 this_cu->offset.sect_off, objfile->name);
8430 return NULL;
8431 }
8432
8433 /* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME.
8434 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8435 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8436 (dwo_id mismatch or couldn't find the DWO file). */
8437
8438 static struct dwo_unit *
8439 lookup_dwo_type_unit (struct signatured_type *this_tu,
8440 char *dwo_name, const char *comp_dir)
8441 {
8442 struct objfile *objfile = dwarf2_per_objfile->objfile;
8443 struct dwo_file *dwo_file;
8444
8445 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8446 if (dwo_file == NULL)
8447 return NULL;
8448
8449 /* Look up the DWO using its signature(dwo_id). */
8450
8451 if (dwo_file->tus != NULL)
8452 {
8453 struct dwo_unit find_dwo_tu, *dwo_tu;
8454
8455 find_dwo_tu.signature = this_tu->signature;
8456 dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu);
8457
8458 if (dwo_tu != NULL)
8459 return dwo_tu;
8460 }
8461
8462 /* We didn't find it. This must mean a dwo_id mismatch. */
8463
8464 complaint (&symfile_complaints,
8465 _("Could not find DWO TU referenced by TU at offset 0x%x"
8466 " [in module %s]"),
8467 this_tu->per_cu.offset.sect_off, objfile->name);
8468 return NULL;
8469 }
8470
8471 /* Free all resources associated with DWO_FILE.
8472 Close the DWO file and munmap the sections.
8473 All memory should be on the objfile obstack. */
8474
8475 static void
8476 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
8477 {
8478 int ix;
8479 struct dwarf2_section_info *section;
8480
8481 gdb_assert (dwo_file->dwo_bfd != objfile->obfd);
8482 gdb_bfd_unref (dwo_file->dwo_bfd);
8483
8484 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
8485 }
8486
8487 /* Wrapper for free_dwo_file for use in cleanups. */
8488
8489 static void
8490 free_dwo_file_cleanup (void *arg)
8491 {
8492 struct dwo_file *dwo_file = (struct dwo_file *) arg;
8493 struct objfile *objfile = dwarf2_per_objfile->objfile;
8494
8495 free_dwo_file (dwo_file, objfile);
8496 }
8497
8498 /* Traversal function for free_dwo_files. */
8499
8500 static int
8501 free_dwo_file_from_slot (void **slot, void *info)
8502 {
8503 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8504 struct objfile *objfile = (struct objfile *) info;
8505
8506 free_dwo_file (dwo_file, objfile);
8507
8508 return 1;
8509 }
8510
8511 /* Free all resources associated with DWO_FILES. */
8512
8513 static void
8514 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
8515 {
8516 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
8517 }
8518 \f
8519 /* Read in various DIEs. */
8520
8521 /* qsort helper for inherit_abstract_dies. */
8522
8523 static int
8524 unsigned_int_compar (const void *ap, const void *bp)
8525 {
8526 unsigned int a = *(unsigned int *) ap;
8527 unsigned int b = *(unsigned int *) bp;
8528
8529 return (a > b) - (b > a);
8530 }
8531
8532 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
8533 Inherit only the children of the DW_AT_abstract_origin DIE not being
8534 already referenced by DW_AT_abstract_origin from the children of the
8535 current DIE. */
8536
8537 static void
8538 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
8539 {
8540 struct die_info *child_die;
8541 unsigned die_children_count;
8542 /* CU offsets which were referenced by children of the current DIE. */
8543 sect_offset *offsets;
8544 sect_offset *offsets_end, *offsetp;
8545 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
8546 struct die_info *origin_die;
8547 /* Iterator of the ORIGIN_DIE children. */
8548 struct die_info *origin_child_die;
8549 struct cleanup *cleanups;
8550 struct attribute *attr;
8551 struct dwarf2_cu *origin_cu;
8552 struct pending **origin_previous_list_in_scope;
8553
8554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
8555 if (!attr)
8556 return;
8557
8558 /* Note that following die references may follow to a die in a
8559 different cu. */
8560
8561 origin_cu = cu;
8562 origin_die = follow_die_ref (die, attr, &origin_cu);
8563
8564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
8565 symbols in. */
8566 origin_previous_list_in_scope = origin_cu->list_in_scope;
8567 origin_cu->list_in_scope = cu->list_in_scope;
8568
8569 if (die->tag != origin_die->tag
8570 && !(die->tag == DW_TAG_inlined_subroutine
8571 && origin_die->tag == DW_TAG_subprogram))
8572 complaint (&symfile_complaints,
8573 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
8574 die->offset.sect_off, origin_die->offset.sect_off);
8575
8576 child_die = die->child;
8577 die_children_count = 0;
8578 while (child_die && child_die->tag)
8579 {
8580 child_die = sibling_die (child_die);
8581 die_children_count++;
8582 }
8583 offsets = xmalloc (sizeof (*offsets) * die_children_count);
8584 cleanups = make_cleanup (xfree, offsets);
8585
8586 offsets_end = offsets;
8587 child_die = die->child;
8588 while (child_die && child_die->tag)
8589 {
8590 /* For each CHILD_DIE, find the corresponding child of
8591 ORIGIN_DIE. If there is more than one layer of
8592 DW_AT_abstract_origin, follow them all; there shouldn't be,
8593 but GCC versions at least through 4.4 generate this (GCC PR
8594 40573). */
8595 struct die_info *child_origin_die = child_die;
8596 struct dwarf2_cu *child_origin_cu = cu;
8597
8598 while (1)
8599 {
8600 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
8601 child_origin_cu);
8602 if (attr == NULL)
8603 break;
8604 child_origin_die = follow_die_ref (child_origin_die, attr,
8605 &child_origin_cu);
8606 }
8607
8608 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
8609 counterpart may exist. */
8610 if (child_origin_die != child_die)
8611 {
8612 if (child_die->tag != child_origin_die->tag
8613 && !(child_die->tag == DW_TAG_inlined_subroutine
8614 && child_origin_die->tag == DW_TAG_subprogram))
8615 complaint (&symfile_complaints,
8616 _("Child DIE 0x%x and its abstract origin 0x%x have "
8617 "different tags"), child_die->offset.sect_off,
8618 child_origin_die->offset.sect_off);
8619 if (child_origin_die->parent != origin_die)
8620 complaint (&symfile_complaints,
8621 _("Child DIE 0x%x and its abstract origin 0x%x have "
8622 "different parents"), child_die->offset.sect_off,
8623 child_origin_die->offset.sect_off);
8624 else
8625 *offsets_end++ = child_origin_die->offset;
8626 }
8627 child_die = sibling_die (child_die);
8628 }
8629 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
8630 unsigned_int_compar);
8631 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
8632 if (offsetp[-1].sect_off == offsetp->sect_off)
8633 complaint (&symfile_complaints,
8634 _("Multiple children of DIE 0x%x refer "
8635 "to DIE 0x%x as their abstract origin"),
8636 die->offset.sect_off, offsetp->sect_off);
8637
8638 offsetp = offsets;
8639 origin_child_die = origin_die->child;
8640 while (origin_child_die && origin_child_die->tag)
8641 {
8642 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
8643 while (offsetp < offsets_end
8644 && offsetp->sect_off < origin_child_die->offset.sect_off)
8645 offsetp++;
8646 if (offsetp >= offsets_end
8647 || offsetp->sect_off > origin_child_die->offset.sect_off)
8648 {
8649 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
8650 process_die (origin_child_die, origin_cu);
8651 }
8652 origin_child_die = sibling_die (origin_child_die);
8653 }
8654 origin_cu->list_in_scope = origin_previous_list_in_scope;
8655
8656 do_cleanups (cleanups);
8657 }
8658
8659 static void
8660 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
8661 {
8662 struct objfile *objfile = cu->objfile;
8663 struct context_stack *new;
8664 CORE_ADDR lowpc;
8665 CORE_ADDR highpc;
8666 struct die_info *child_die;
8667 struct attribute *attr, *call_line, *call_file;
8668 char *name;
8669 CORE_ADDR baseaddr;
8670 struct block *block;
8671 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8672 VEC (symbolp) *template_args = NULL;
8673 struct template_symbol *templ_func = NULL;
8674
8675 if (inlined_func)
8676 {
8677 /* If we do not have call site information, we can't show the
8678 caller of this inlined function. That's too confusing, so
8679 only use the scope for local variables. */
8680 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
8681 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
8682 if (call_line == NULL || call_file == NULL)
8683 {
8684 read_lexical_block_scope (die, cu);
8685 return;
8686 }
8687 }
8688
8689 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8690
8691 name = dwarf2_name (die, cu);
8692
8693 /* Ignore functions with missing or empty names. These are actually
8694 illegal according to the DWARF standard. */
8695 if (name == NULL)
8696 {
8697 complaint (&symfile_complaints,
8698 _("missing name for subprogram DIE at %d"),
8699 die->offset.sect_off);
8700 return;
8701 }
8702
8703 /* Ignore functions with missing or invalid low and high pc attributes. */
8704 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8705 {
8706 attr = dwarf2_attr (die, DW_AT_external, cu);
8707 if (!attr || !DW_UNSND (attr))
8708 complaint (&symfile_complaints,
8709 _("cannot get low and high bounds "
8710 "for subprogram DIE at %d"),
8711 die->offset.sect_off);
8712 return;
8713 }
8714
8715 lowpc += baseaddr;
8716 highpc += baseaddr;
8717
8718 /* If we have any template arguments, then we must allocate a
8719 different sort of symbol. */
8720 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
8721 {
8722 if (child_die->tag == DW_TAG_template_type_param
8723 || child_die->tag == DW_TAG_template_value_param)
8724 {
8725 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8726 struct template_symbol);
8727 templ_func->base.is_cplus_template_function = 1;
8728 break;
8729 }
8730 }
8731
8732 new = push_context (0, lowpc);
8733 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
8734 (struct symbol *) templ_func);
8735
8736 /* If there is a location expression for DW_AT_frame_base, record
8737 it. */
8738 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
8739 if (attr)
8740 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
8741 expression is being recorded directly in the function's symbol
8742 and not in a separate frame-base object. I guess this hack is
8743 to avoid adding some sort of frame-base adjunct/annex to the
8744 function's symbol :-(. The problem with doing this is that it
8745 results in a function symbol with a location expression that
8746 has nothing to do with the location of the function, ouch! The
8747 relationship should be: a function's symbol has-a frame base; a
8748 frame-base has-a location expression. */
8749 dwarf2_symbol_mark_computed (attr, new->name, cu);
8750
8751 cu->list_in_scope = &local_symbols;
8752
8753 if (die->child != NULL)
8754 {
8755 child_die = die->child;
8756 while (child_die && child_die->tag)
8757 {
8758 if (child_die->tag == DW_TAG_template_type_param
8759 || child_die->tag == DW_TAG_template_value_param)
8760 {
8761 struct symbol *arg = new_symbol (child_die, NULL, cu);
8762
8763 if (arg != NULL)
8764 VEC_safe_push (symbolp, template_args, arg);
8765 }
8766 else
8767 process_die (child_die, cu);
8768 child_die = sibling_die (child_die);
8769 }
8770 }
8771
8772 inherit_abstract_dies (die, cu);
8773
8774 /* If we have a DW_AT_specification, we might need to import using
8775 directives from the context of the specification DIE. See the
8776 comment in determine_prefix. */
8777 if (cu->language == language_cplus
8778 && dwarf2_attr (die, DW_AT_specification, cu))
8779 {
8780 struct dwarf2_cu *spec_cu = cu;
8781 struct die_info *spec_die = die_specification (die, &spec_cu);
8782
8783 while (spec_die)
8784 {
8785 child_die = spec_die->child;
8786 while (child_die && child_die->tag)
8787 {
8788 if (child_die->tag == DW_TAG_imported_module)
8789 process_die (child_die, spec_cu);
8790 child_die = sibling_die (child_die);
8791 }
8792
8793 /* In some cases, GCC generates specification DIEs that
8794 themselves contain DW_AT_specification attributes. */
8795 spec_die = die_specification (spec_die, &spec_cu);
8796 }
8797 }
8798
8799 new = pop_context ();
8800 /* Make a block for the local symbols within. */
8801 block = finish_block (new->name, &local_symbols, new->old_blocks,
8802 lowpc, highpc, objfile);
8803
8804 /* For C++, set the block's scope. */
8805 if (cu->language == language_cplus || cu->language == language_fortran)
8806 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
8807 determine_prefix (die, cu),
8808 processing_has_namespace_info);
8809
8810 /* If we have address ranges, record them. */
8811 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8812
8813 /* Attach template arguments to function. */
8814 if (! VEC_empty (symbolp, template_args))
8815 {
8816 gdb_assert (templ_func != NULL);
8817
8818 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
8819 templ_func->template_arguments
8820 = obstack_alloc (&objfile->objfile_obstack,
8821 (templ_func->n_template_arguments
8822 * sizeof (struct symbol *)));
8823 memcpy (templ_func->template_arguments,
8824 VEC_address (symbolp, template_args),
8825 (templ_func->n_template_arguments * sizeof (struct symbol *)));
8826 VEC_free (symbolp, template_args);
8827 }
8828
8829 /* In C++, we can have functions nested inside functions (e.g., when
8830 a function declares a class that has methods). This means that
8831 when we finish processing a function scope, we may need to go
8832 back to building a containing block's symbol lists. */
8833 local_symbols = new->locals;
8834 param_symbols = new->params;
8835 using_directives = new->using_directives;
8836
8837 /* If we've finished processing a top-level function, subsequent
8838 symbols go in the file symbol list. */
8839 if (outermost_context_p ())
8840 cu->list_in_scope = &file_symbols;
8841 }
8842
8843 /* Process all the DIES contained within a lexical block scope. Start
8844 a new scope, process the dies, and then close the scope. */
8845
8846 static void
8847 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
8848 {
8849 struct objfile *objfile = cu->objfile;
8850 struct context_stack *new;
8851 CORE_ADDR lowpc, highpc;
8852 struct die_info *child_die;
8853 CORE_ADDR baseaddr;
8854
8855 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8856
8857 /* Ignore blocks with missing or invalid low and high pc attributes. */
8858 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
8859 as multiple lexical blocks? Handling children in a sane way would
8860 be nasty. Might be easier to properly extend generic blocks to
8861 describe ranges. */
8862 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8863 return;
8864 lowpc += baseaddr;
8865 highpc += baseaddr;
8866
8867 push_context (0, lowpc);
8868 if (die->child != NULL)
8869 {
8870 child_die = die->child;
8871 while (child_die && child_die->tag)
8872 {
8873 process_die (child_die, cu);
8874 child_die = sibling_die (child_die);
8875 }
8876 }
8877 new = pop_context ();
8878
8879 if (local_symbols != NULL || using_directives != NULL)
8880 {
8881 struct block *block
8882 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
8883 highpc, objfile);
8884
8885 /* Note that recording ranges after traversing children, as we
8886 do here, means that recording a parent's ranges entails
8887 walking across all its children's ranges as they appear in
8888 the address map, which is quadratic behavior.
8889
8890 It would be nicer to record the parent's ranges before
8891 traversing its children, simply overriding whatever you find
8892 there. But since we don't even decide whether to create a
8893 block until after we've traversed its children, that's hard
8894 to do. */
8895 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8896 }
8897 local_symbols = new->locals;
8898 using_directives = new->using_directives;
8899 }
8900
8901 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
8902
8903 static void
8904 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
8905 {
8906 struct objfile *objfile = cu->objfile;
8907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8908 CORE_ADDR pc, baseaddr;
8909 struct attribute *attr;
8910 struct call_site *call_site, call_site_local;
8911 void **slot;
8912 int nparams;
8913 struct die_info *child_die;
8914
8915 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8916
8917 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8918 if (!attr)
8919 {
8920 complaint (&symfile_complaints,
8921 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
8922 "DIE 0x%x [in module %s]"),
8923 die->offset.sect_off, objfile->name);
8924 return;
8925 }
8926 pc = DW_ADDR (attr) + baseaddr;
8927
8928 if (cu->call_site_htab == NULL)
8929 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
8930 NULL, &objfile->objfile_obstack,
8931 hashtab_obstack_allocate, NULL);
8932 call_site_local.pc = pc;
8933 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
8934 if (*slot != NULL)
8935 {
8936 complaint (&symfile_complaints,
8937 _("Duplicate PC %s for DW_TAG_GNU_call_site "
8938 "DIE 0x%x [in module %s]"),
8939 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
8940 return;
8941 }
8942
8943 /* Count parameters at the caller. */
8944
8945 nparams = 0;
8946 for (child_die = die->child; child_die && child_die->tag;
8947 child_die = sibling_die (child_die))
8948 {
8949 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
8950 {
8951 complaint (&symfile_complaints,
8952 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
8953 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8954 child_die->tag, child_die->offset.sect_off, objfile->name);
8955 continue;
8956 }
8957
8958 nparams++;
8959 }
8960
8961 call_site = obstack_alloc (&objfile->objfile_obstack,
8962 (sizeof (*call_site)
8963 + (sizeof (*call_site->parameter)
8964 * (nparams - 1))));
8965 *slot = call_site;
8966 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
8967 call_site->pc = pc;
8968
8969 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
8970 {
8971 struct die_info *func_die;
8972
8973 /* Skip also over DW_TAG_inlined_subroutine. */
8974 for (func_die = die->parent;
8975 func_die && func_die->tag != DW_TAG_subprogram
8976 && func_die->tag != DW_TAG_subroutine_type;
8977 func_die = func_die->parent);
8978
8979 /* DW_AT_GNU_all_call_sites is a superset
8980 of DW_AT_GNU_all_tail_call_sites. */
8981 if (func_die
8982 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
8983 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
8984 {
8985 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
8986 not complete. But keep CALL_SITE for look ups via call_site_htab,
8987 both the initial caller containing the real return address PC and
8988 the final callee containing the current PC of a chain of tail
8989 calls do not need to have the tail call list complete. But any
8990 function candidate for a virtual tail call frame searched via
8991 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
8992 determined unambiguously. */
8993 }
8994 else
8995 {
8996 struct type *func_type = NULL;
8997
8998 if (func_die)
8999 func_type = get_die_type (func_die, cu);
9000 if (func_type != NULL)
9001 {
9002 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9003
9004 /* Enlist this call site to the function. */
9005 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9006 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9007 }
9008 else
9009 complaint (&symfile_complaints,
9010 _("Cannot find function owning DW_TAG_GNU_call_site "
9011 "DIE 0x%x [in module %s]"),
9012 die->offset.sect_off, objfile->name);
9013 }
9014 }
9015
9016 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9017 if (attr == NULL)
9018 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9019 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9020 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9021 /* Keep NULL DWARF_BLOCK. */;
9022 else if (attr_form_is_block (attr))
9023 {
9024 struct dwarf2_locexpr_baton *dlbaton;
9025
9026 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9027 dlbaton->data = DW_BLOCK (attr)->data;
9028 dlbaton->size = DW_BLOCK (attr)->size;
9029 dlbaton->per_cu = cu->per_cu;
9030
9031 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9032 }
9033 else if (is_ref_attr (attr))
9034 {
9035 struct dwarf2_cu *target_cu = cu;
9036 struct die_info *target_die;
9037
9038 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9039 gdb_assert (target_cu->objfile == objfile);
9040 if (die_is_declaration (target_die, target_cu))
9041 {
9042 const char *target_physname;
9043
9044 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9045 if (target_physname == NULL)
9046 complaint (&symfile_complaints,
9047 _("DW_AT_GNU_call_site_target target DIE has invalid "
9048 "physname, for referencing DIE 0x%x [in module %s]"),
9049 die->offset.sect_off, objfile->name);
9050 else
9051 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9052 }
9053 else
9054 {
9055 CORE_ADDR lowpc;
9056
9057 /* DW_AT_entry_pc should be preferred. */
9058 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9059 complaint (&symfile_complaints,
9060 _("DW_AT_GNU_call_site_target target DIE has invalid "
9061 "low pc, for referencing DIE 0x%x [in module %s]"),
9062 die->offset.sect_off, objfile->name);
9063 else
9064 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9065 }
9066 }
9067 else
9068 complaint (&symfile_complaints,
9069 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9070 "block nor reference, for DIE 0x%x [in module %s]"),
9071 die->offset.sect_off, objfile->name);
9072
9073 call_site->per_cu = cu->per_cu;
9074
9075 for (child_die = die->child;
9076 child_die && child_die->tag;
9077 child_die = sibling_die (child_die))
9078 {
9079 struct call_site_parameter *parameter;
9080 struct attribute *loc, *origin;
9081
9082 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9083 {
9084 /* Already printed the complaint above. */
9085 continue;
9086 }
9087
9088 gdb_assert (call_site->parameter_count < nparams);
9089 parameter = &call_site->parameter[call_site->parameter_count];
9090
9091 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9092 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9093 register is contained in DW_AT_GNU_call_site_value. */
9094
9095 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9096 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9097 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9098 {
9099 sect_offset offset;
9100
9101 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9102 offset = dwarf2_get_ref_die_offset (origin);
9103 if (!offset_in_cu_p (&cu->header, offset))
9104 {
9105 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9106 binding can be done only inside one CU. Such referenced DIE
9107 therefore cannot be even moved to DW_TAG_partial_unit. */
9108 complaint (&symfile_complaints,
9109 _("DW_AT_abstract_origin offset is not in CU for "
9110 "DW_TAG_GNU_call_site child DIE 0x%x "
9111 "[in module %s]"),
9112 child_die->offset.sect_off, objfile->name);
9113 continue;
9114 }
9115 parameter->u.param_offset.cu_off = (offset.sect_off
9116 - cu->header.offset.sect_off);
9117 }
9118 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9119 {
9120 complaint (&symfile_complaints,
9121 _("No DW_FORM_block* DW_AT_location for "
9122 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9123 child_die->offset.sect_off, objfile->name);
9124 continue;
9125 }
9126 else
9127 {
9128 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9129 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9130 if (parameter->u.dwarf_reg != -1)
9131 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9132 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9133 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9134 &parameter->u.fb_offset))
9135 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9136 else
9137 {
9138 complaint (&symfile_complaints,
9139 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9140 "for DW_FORM_block* DW_AT_location is supported for "
9141 "DW_TAG_GNU_call_site child DIE 0x%x "
9142 "[in module %s]"),
9143 child_die->offset.sect_off, objfile->name);
9144 continue;
9145 }
9146 }
9147
9148 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9149 if (!attr_form_is_block (attr))
9150 {
9151 complaint (&symfile_complaints,
9152 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9153 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9154 child_die->offset.sect_off, objfile->name);
9155 continue;
9156 }
9157 parameter->value = DW_BLOCK (attr)->data;
9158 parameter->value_size = DW_BLOCK (attr)->size;
9159
9160 /* Parameters are not pre-cleared by memset above. */
9161 parameter->data_value = NULL;
9162 parameter->data_value_size = 0;
9163 call_site->parameter_count++;
9164
9165 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9166 if (attr)
9167 {
9168 if (!attr_form_is_block (attr))
9169 complaint (&symfile_complaints,
9170 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9171 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9172 child_die->offset.sect_off, objfile->name);
9173 else
9174 {
9175 parameter->data_value = DW_BLOCK (attr)->data;
9176 parameter->data_value_size = DW_BLOCK (attr)->size;
9177 }
9178 }
9179 }
9180 }
9181
9182 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9183 Return 1 if the attributes are present and valid, otherwise, return 0.
9184 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9185
9186 static int
9187 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9188 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9189 struct partial_symtab *ranges_pst)
9190 {
9191 struct objfile *objfile = cu->objfile;
9192 struct comp_unit_head *cu_header = &cu->header;
9193 bfd *obfd = objfile->obfd;
9194 unsigned int addr_size = cu_header->addr_size;
9195 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9196 /* Base address selection entry. */
9197 CORE_ADDR base;
9198 int found_base;
9199 unsigned int dummy;
9200 gdb_byte *buffer;
9201 CORE_ADDR marker;
9202 int low_set;
9203 CORE_ADDR low = 0;
9204 CORE_ADDR high = 0;
9205 CORE_ADDR baseaddr;
9206
9207 found_base = cu->base_known;
9208 base = cu->base_address;
9209
9210 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9211 if (offset >= dwarf2_per_objfile->ranges.size)
9212 {
9213 complaint (&symfile_complaints,
9214 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9215 offset);
9216 return 0;
9217 }
9218 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9219
9220 /* Read in the largest possible address. */
9221 marker = read_address (obfd, buffer, cu, &dummy);
9222 if ((marker & mask) == mask)
9223 {
9224 /* If we found the largest possible address, then
9225 read the base address. */
9226 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9227 buffer += 2 * addr_size;
9228 offset += 2 * addr_size;
9229 found_base = 1;
9230 }
9231
9232 low_set = 0;
9233
9234 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9235
9236 while (1)
9237 {
9238 CORE_ADDR range_beginning, range_end;
9239
9240 range_beginning = read_address (obfd, buffer, cu, &dummy);
9241 buffer += addr_size;
9242 range_end = read_address (obfd, buffer, cu, &dummy);
9243 buffer += addr_size;
9244 offset += 2 * addr_size;
9245
9246 /* An end of list marker is a pair of zero addresses. */
9247 if (range_beginning == 0 && range_end == 0)
9248 /* Found the end of list entry. */
9249 break;
9250
9251 /* Each base address selection entry is a pair of 2 values.
9252 The first is the largest possible address, the second is
9253 the base address. Check for a base address here. */
9254 if ((range_beginning & mask) == mask)
9255 {
9256 /* If we found the largest possible address, then
9257 read the base address. */
9258 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9259 found_base = 1;
9260 continue;
9261 }
9262
9263 if (!found_base)
9264 {
9265 /* We have no valid base address for the ranges
9266 data. */
9267 complaint (&symfile_complaints,
9268 _("Invalid .debug_ranges data (no base address)"));
9269 return 0;
9270 }
9271
9272 if (range_beginning > range_end)
9273 {
9274 /* Inverted range entries are invalid. */
9275 complaint (&symfile_complaints,
9276 _("Invalid .debug_ranges data (inverted range)"));
9277 return 0;
9278 }
9279
9280 /* Empty range entries have no effect. */
9281 if (range_beginning == range_end)
9282 continue;
9283
9284 range_beginning += base;
9285 range_end += base;
9286
9287 if (ranges_pst != NULL)
9288 addrmap_set_empty (objfile->psymtabs_addrmap,
9289 range_beginning + baseaddr,
9290 range_end - 1 + baseaddr,
9291 ranges_pst);
9292
9293 /* FIXME: This is recording everything as a low-high
9294 segment of consecutive addresses. We should have a
9295 data structure for discontiguous block ranges
9296 instead. */
9297 if (! low_set)
9298 {
9299 low = range_beginning;
9300 high = range_end;
9301 low_set = 1;
9302 }
9303 else
9304 {
9305 if (range_beginning < low)
9306 low = range_beginning;
9307 if (range_end > high)
9308 high = range_end;
9309 }
9310 }
9311
9312 if (! low_set)
9313 /* If the first entry is an end-of-list marker, the range
9314 describes an empty scope, i.e. no instructions. */
9315 return 0;
9316
9317 if (low_return)
9318 *low_return = low;
9319 if (high_return)
9320 *high_return = high;
9321 return 1;
9322 }
9323
9324 /* Get low and high pc attributes from a die. Return 1 if the attributes
9325 are present and valid, otherwise, return 0. Return -1 if the range is
9326 discontinuous, i.e. derived from DW_AT_ranges information. */
9327
9328 static int
9329 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
9330 CORE_ADDR *highpc, struct dwarf2_cu *cu,
9331 struct partial_symtab *pst)
9332 {
9333 struct attribute *attr;
9334 struct attribute *attr_high;
9335 CORE_ADDR low = 0;
9336 CORE_ADDR high = 0;
9337 int ret = 0;
9338
9339 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9340 if (attr_high)
9341 {
9342 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9343 if (attr)
9344 {
9345 low = DW_ADDR (attr);
9346 if (attr_high->form == DW_FORM_addr
9347 || attr_high->form == DW_FORM_GNU_addr_index)
9348 high = DW_ADDR (attr_high);
9349 else
9350 high = low + DW_UNSND (attr_high);
9351 }
9352 else
9353 /* Found high w/o low attribute. */
9354 return 0;
9355
9356 /* Found consecutive range of addresses. */
9357 ret = 1;
9358 }
9359 else
9360 {
9361 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9362 if (attr != NULL)
9363 {
9364 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
9365
9366 /* Value of the DW_AT_ranges attribute is the offset in the
9367 .debug_ranges section. */
9368 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
9369 return 0;
9370 /* Found discontinuous range of addresses. */
9371 ret = -1;
9372 }
9373 }
9374
9375 /* read_partial_die has also the strict LOW < HIGH requirement. */
9376 if (high <= low)
9377 return 0;
9378
9379 /* When using the GNU linker, .gnu.linkonce. sections are used to
9380 eliminate duplicate copies of functions and vtables and such.
9381 The linker will arbitrarily choose one and discard the others.
9382 The AT_*_pc values for such functions refer to local labels in
9383 these sections. If the section from that file was discarded, the
9384 labels are not in the output, so the relocs get a value of 0.
9385 If this is a discarded function, mark the pc bounds as invalid,
9386 so that GDB will ignore it. */
9387 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
9388 return 0;
9389
9390 *lowpc = low;
9391 if (highpc)
9392 *highpc = high;
9393 return ret;
9394 }
9395
9396 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
9397 its low and high PC addresses. Do nothing if these addresses could not
9398 be determined. Otherwise, set LOWPC to the low address if it is smaller,
9399 and HIGHPC to the high address if greater than HIGHPC. */
9400
9401 static void
9402 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
9403 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9404 struct dwarf2_cu *cu)
9405 {
9406 CORE_ADDR low, high;
9407 struct die_info *child = die->child;
9408
9409 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
9410 {
9411 *lowpc = min (*lowpc, low);
9412 *highpc = max (*highpc, high);
9413 }
9414
9415 /* If the language does not allow nested subprograms (either inside
9416 subprograms or lexical blocks), we're done. */
9417 if (cu->language != language_ada)
9418 return;
9419
9420 /* Check all the children of the given DIE. If it contains nested
9421 subprograms, then check their pc bounds. Likewise, we need to
9422 check lexical blocks as well, as they may also contain subprogram
9423 definitions. */
9424 while (child && child->tag)
9425 {
9426 if (child->tag == DW_TAG_subprogram
9427 || child->tag == DW_TAG_lexical_block)
9428 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
9429 child = sibling_die (child);
9430 }
9431 }
9432
9433 /* Get the low and high pc's represented by the scope DIE, and store
9434 them in *LOWPC and *HIGHPC. If the correct values can't be
9435 determined, set *LOWPC to -1 and *HIGHPC to 0. */
9436
9437 static void
9438 get_scope_pc_bounds (struct die_info *die,
9439 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9440 struct dwarf2_cu *cu)
9441 {
9442 CORE_ADDR best_low = (CORE_ADDR) -1;
9443 CORE_ADDR best_high = (CORE_ADDR) 0;
9444 CORE_ADDR current_low, current_high;
9445
9446 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
9447 {
9448 best_low = current_low;
9449 best_high = current_high;
9450 }
9451 else
9452 {
9453 struct die_info *child = die->child;
9454
9455 while (child && child->tag)
9456 {
9457 switch (child->tag) {
9458 case DW_TAG_subprogram:
9459 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
9460 break;
9461 case DW_TAG_namespace:
9462 case DW_TAG_module:
9463 /* FIXME: carlton/2004-01-16: Should we do this for
9464 DW_TAG_class_type/DW_TAG_structure_type, too? I think
9465 that current GCC's always emit the DIEs corresponding
9466 to definitions of methods of classes as children of a
9467 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
9468 the DIEs giving the declarations, which could be
9469 anywhere). But I don't see any reason why the
9470 standards says that they have to be there. */
9471 get_scope_pc_bounds (child, &current_low, &current_high, cu);
9472
9473 if (current_low != ((CORE_ADDR) -1))
9474 {
9475 best_low = min (best_low, current_low);
9476 best_high = max (best_high, current_high);
9477 }
9478 break;
9479 default:
9480 /* Ignore. */
9481 break;
9482 }
9483
9484 child = sibling_die (child);
9485 }
9486 }
9487
9488 *lowpc = best_low;
9489 *highpc = best_high;
9490 }
9491
9492 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
9493 in DIE. */
9494
9495 static void
9496 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
9497 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
9498 {
9499 struct objfile *objfile = cu->objfile;
9500 struct attribute *attr;
9501 struct attribute *attr_high;
9502
9503 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9504 if (attr_high)
9505 {
9506 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9507 if (attr)
9508 {
9509 CORE_ADDR low = DW_ADDR (attr);
9510 CORE_ADDR high;
9511 if (attr_high->form == DW_FORM_addr
9512 || attr_high->form == DW_FORM_GNU_addr_index)
9513 high = DW_ADDR (attr_high);
9514 else
9515 high = low + DW_UNSND (attr_high);
9516
9517 record_block_range (block, baseaddr + low, baseaddr + high - 1);
9518 }
9519 }
9520
9521 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9522 if (attr)
9523 {
9524 bfd *obfd = objfile->obfd;
9525
9526 /* The value of the DW_AT_ranges attribute is the offset of the
9527 address range list in the .debug_ranges section. */
9528 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
9529 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
9530
9531 /* For some target architectures, but not others, the
9532 read_address function sign-extends the addresses it returns.
9533 To recognize base address selection entries, we need a
9534 mask. */
9535 unsigned int addr_size = cu->header.addr_size;
9536 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9537
9538 /* The base address, to which the next pair is relative. Note
9539 that this 'base' is a DWARF concept: most entries in a range
9540 list are relative, to reduce the number of relocs against the
9541 debugging information. This is separate from this function's
9542 'baseaddr' argument, which GDB uses to relocate debugging
9543 information from a shared library based on the address at
9544 which the library was loaded. */
9545 CORE_ADDR base = cu->base_address;
9546 int base_known = cu->base_known;
9547
9548 gdb_assert (dwarf2_per_objfile->ranges.readin);
9549 if (offset >= dwarf2_per_objfile->ranges.size)
9550 {
9551 complaint (&symfile_complaints,
9552 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
9553 offset);
9554 return;
9555 }
9556
9557 for (;;)
9558 {
9559 unsigned int bytes_read;
9560 CORE_ADDR start, end;
9561
9562 start = read_address (obfd, buffer, cu, &bytes_read);
9563 buffer += bytes_read;
9564 end = read_address (obfd, buffer, cu, &bytes_read);
9565 buffer += bytes_read;
9566
9567 /* Did we find the end of the range list? */
9568 if (start == 0 && end == 0)
9569 break;
9570
9571 /* Did we find a base address selection entry? */
9572 else if ((start & base_select_mask) == base_select_mask)
9573 {
9574 base = end;
9575 base_known = 1;
9576 }
9577
9578 /* We found an ordinary address range. */
9579 else
9580 {
9581 if (!base_known)
9582 {
9583 complaint (&symfile_complaints,
9584 _("Invalid .debug_ranges data "
9585 "(no base address)"));
9586 return;
9587 }
9588
9589 if (start > end)
9590 {
9591 /* Inverted range entries are invalid. */
9592 complaint (&symfile_complaints,
9593 _("Invalid .debug_ranges data "
9594 "(inverted range)"));
9595 return;
9596 }
9597
9598 /* Empty range entries have no effect. */
9599 if (start == end)
9600 continue;
9601
9602 record_block_range (block,
9603 baseaddr + base + start,
9604 baseaddr + base + end - 1);
9605 }
9606 }
9607 }
9608 }
9609
9610 /* Check whether the producer field indicates either of GCC < 4.6, or the
9611 Intel C/C++ compiler, and cache the result in CU. */
9612
9613 static void
9614 check_producer (struct dwarf2_cu *cu)
9615 {
9616 const char *cs;
9617 int major, minor, release;
9618
9619 if (cu->producer == NULL)
9620 {
9621 /* For unknown compilers expect their behavior is DWARF version
9622 compliant.
9623
9624 GCC started to support .debug_types sections by -gdwarf-4 since
9625 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
9626 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
9627 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
9628 interpreted incorrectly by GDB now - GCC PR debug/48229. */
9629 }
9630 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
9631 {
9632 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
9633
9634 cs = &cu->producer[strlen ("GNU ")];
9635 while (*cs && !isdigit (*cs))
9636 cs++;
9637 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
9638 {
9639 /* Not recognized as GCC. */
9640 }
9641 else
9642 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
9643 }
9644 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
9645 cu->producer_is_icc = 1;
9646 else
9647 {
9648 /* For other non-GCC compilers, expect their behavior is DWARF version
9649 compliant. */
9650 }
9651
9652 cu->checked_producer = 1;
9653 }
9654
9655 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
9656 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
9657 during 4.6.0 experimental. */
9658
9659 static int
9660 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
9661 {
9662 if (!cu->checked_producer)
9663 check_producer (cu);
9664
9665 return cu->producer_is_gxx_lt_4_6;
9666 }
9667
9668 /* Return the default accessibility type if it is not overriden by
9669 DW_AT_accessibility. */
9670
9671 static enum dwarf_access_attribute
9672 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
9673 {
9674 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
9675 {
9676 /* The default DWARF 2 accessibility for members is public, the default
9677 accessibility for inheritance is private. */
9678
9679 if (die->tag != DW_TAG_inheritance)
9680 return DW_ACCESS_public;
9681 else
9682 return DW_ACCESS_private;
9683 }
9684 else
9685 {
9686 /* DWARF 3+ defines the default accessibility a different way. The same
9687 rules apply now for DW_TAG_inheritance as for the members and it only
9688 depends on the container kind. */
9689
9690 if (die->parent->tag == DW_TAG_class_type)
9691 return DW_ACCESS_private;
9692 else
9693 return DW_ACCESS_public;
9694 }
9695 }
9696
9697 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
9698 offset. If the attribute was not found return 0, otherwise return
9699 1. If it was found but could not properly be handled, set *OFFSET
9700 to 0. */
9701
9702 static int
9703 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
9704 LONGEST *offset)
9705 {
9706 struct attribute *attr;
9707
9708 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
9709 if (attr != NULL)
9710 {
9711 *offset = 0;
9712
9713 /* Note that we do not check for a section offset first here.
9714 This is because DW_AT_data_member_location is new in DWARF 4,
9715 so if we see it, we can assume that a constant form is really
9716 a constant and not a section offset. */
9717 if (attr_form_is_constant (attr))
9718 *offset = dwarf2_get_attr_constant_value (attr, 0);
9719 else if (attr_form_is_section_offset (attr))
9720 dwarf2_complex_location_expr_complaint ();
9721 else if (attr_form_is_block (attr))
9722 *offset = decode_locdesc (DW_BLOCK (attr), cu);
9723 else
9724 dwarf2_complex_location_expr_complaint ();
9725
9726 return 1;
9727 }
9728
9729 return 0;
9730 }
9731
9732 /* Add an aggregate field to the field list. */
9733
9734 static void
9735 dwarf2_add_field (struct field_info *fip, struct die_info *die,
9736 struct dwarf2_cu *cu)
9737 {
9738 struct objfile *objfile = cu->objfile;
9739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9740 struct nextfield *new_field;
9741 struct attribute *attr;
9742 struct field *fp;
9743 char *fieldname = "";
9744
9745 /* Allocate a new field list entry and link it in. */
9746 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
9747 make_cleanup (xfree, new_field);
9748 memset (new_field, 0, sizeof (struct nextfield));
9749
9750 if (die->tag == DW_TAG_inheritance)
9751 {
9752 new_field->next = fip->baseclasses;
9753 fip->baseclasses = new_field;
9754 }
9755 else
9756 {
9757 new_field->next = fip->fields;
9758 fip->fields = new_field;
9759 }
9760 fip->nfields++;
9761
9762 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
9763 if (attr)
9764 new_field->accessibility = DW_UNSND (attr);
9765 else
9766 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
9767 if (new_field->accessibility != DW_ACCESS_public)
9768 fip->non_public_fields = 1;
9769
9770 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
9771 if (attr)
9772 new_field->virtuality = DW_UNSND (attr);
9773 else
9774 new_field->virtuality = DW_VIRTUALITY_none;
9775
9776 fp = &new_field->field;
9777
9778 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
9779 {
9780 LONGEST offset;
9781
9782 /* Data member other than a C++ static data member. */
9783
9784 /* Get type of field. */
9785 fp->type = die_type (die, cu);
9786
9787 SET_FIELD_BITPOS (*fp, 0);
9788
9789 /* Get bit size of field (zero if none). */
9790 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
9791 if (attr)
9792 {
9793 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
9794 }
9795 else
9796 {
9797 FIELD_BITSIZE (*fp) = 0;
9798 }
9799
9800 /* Get bit offset of field. */
9801 if (handle_data_member_location (die, cu, &offset))
9802 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9803 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
9804 if (attr)
9805 {
9806 if (gdbarch_bits_big_endian (gdbarch))
9807 {
9808 /* For big endian bits, the DW_AT_bit_offset gives the
9809 additional bit offset from the MSB of the containing
9810 anonymous object to the MSB of the field. We don't
9811 have to do anything special since we don't need to
9812 know the size of the anonymous object. */
9813 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
9814 }
9815 else
9816 {
9817 /* For little endian bits, compute the bit offset to the
9818 MSB of the anonymous object, subtract off the number of
9819 bits from the MSB of the field to the MSB of the
9820 object, and then subtract off the number of bits of
9821 the field itself. The result is the bit offset of
9822 the LSB of the field. */
9823 int anonymous_size;
9824 int bit_offset = DW_UNSND (attr);
9825
9826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9827 if (attr)
9828 {
9829 /* The size of the anonymous object containing
9830 the bit field is explicit, so use the
9831 indicated size (in bytes). */
9832 anonymous_size = DW_UNSND (attr);
9833 }
9834 else
9835 {
9836 /* The size of the anonymous object containing
9837 the bit field must be inferred from the type
9838 attribute of the data member containing the
9839 bit field. */
9840 anonymous_size = TYPE_LENGTH (fp->type);
9841 }
9842 SET_FIELD_BITPOS (*fp,
9843 (FIELD_BITPOS (*fp)
9844 + anonymous_size * bits_per_byte
9845 - bit_offset - FIELD_BITSIZE (*fp)));
9846 }
9847 }
9848
9849 /* Get name of field. */
9850 fieldname = dwarf2_name (die, cu);
9851 if (fieldname == NULL)
9852 fieldname = "";
9853
9854 /* The name is already allocated along with this objfile, so we don't
9855 need to duplicate it for the type. */
9856 fp->name = fieldname;
9857
9858 /* Change accessibility for artificial fields (e.g. virtual table
9859 pointer or virtual base class pointer) to private. */
9860 if (dwarf2_attr (die, DW_AT_artificial, cu))
9861 {
9862 FIELD_ARTIFICIAL (*fp) = 1;
9863 new_field->accessibility = DW_ACCESS_private;
9864 fip->non_public_fields = 1;
9865 }
9866 }
9867 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
9868 {
9869 /* C++ static member. */
9870
9871 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
9872 is a declaration, but all versions of G++ as of this writing
9873 (so through at least 3.2.1) incorrectly generate
9874 DW_TAG_variable tags. */
9875
9876 const char *physname;
9877
9878 /* Get name of field. */
9879 fieldname = dwarf2_name (die, cu);
9880 if (fieldname == NULL)
9881 return;
9882
9883 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9884 if (attr
9885 /* Only create a symbol if this is an external value.
9886 new_symbol checks this and puts the value in the global symbol
9887 table, which we want. If it is not external, new_symbol
9888 will try to put the value in cu->list_in_scope which is wrong. */
9889 && dwarf2_flag_true_p (die, DW_AT_external, cu))
9890 {
9891 /* A static const member, not much different than an enum as far as
9892 we're concerned, except that we can support more types. */
9893 new_symbol (die, NULL, cu);
9894 }
9895
9896 /* Get physical name. */
9897 physname = dwarf2_physname (fieldname, die, cu);
9898
9899 /* The name is already allocated along with this objfile, so we don't
9900 need to duplicate it for the type. */
9901 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
9902 FIELD_TYPE (*fp) = die_type (die, cu);
9903 FIELD_NAME (*fp) = fieldname;
9904 }
9905 else if (die->tag == DW_TAG_inheritance)
9906 {
9907 LONGEST offset;
9908
9909 /* C++ base class field. */
9910 if (handle_data_member_location (die, cu, &offset))
9911 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9912 FIELD_BITSIZE (*fp) = 0;
9913 FIELD_TYPE (*fp) = die_type (die, cu);
9914 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
9915 fip->nbaseclasses++;
9916 }
9917 }
9918
9919 /* Add a typedef defined in the scope of the FIP's class. */
9920
9921 static void
9922 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
9923 struct dwarf2_cu *cu)
9924 {
9925 struct objfile *objfile = cu->objfile;
9926 struct typedef_field_list *new_field;
9927 struct attribute *attr;
9928 struct typedef_field *fp;
9929 char *fieldname = "";
9930
9931 /* Allocate a new field list entry and link it in. */
9932 new_field = xzalloc (sizeof (*new_field));
9933 make_cleanup (xfree, new_field);
9934
9935 gdb_assert (die->tag == DW_TAG_typedef);
9936
9937 fp = &new_field->field;
9938
9939 /* Get name of field. */
9940 fp->name = dwarf2_name (die, cu);
9941 if (fp->name == NULL)
9942 return;
9943
9944 fp->type = read_type_die (die, cu);
9945
9946 new_field->next = fip->typedef_field_list;
9947 fip->typedef_field_list = new_field;
9948 fip->typedef_field_list_count++;
9949 }
9950
9951 /* Create the vector of fields, and attach it to the type. */
9952
9953 static void
9954 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
9955 struct dwarf2_cu *cu)
9956 {
9957 int nfields = fip->nfields;
9958
9959 /* Record the field count, allocate space for the array of fields,
9960 and create blank accessibility bitfields if necessary. */
9961 TYPE_NFIELDS (type) = nfields;
9962 TYPE_FIELDS (type) = (struct field *)
9963 TYPE_ALLOC (type, sizeof (struct field) * nfields);
9964 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
9965
9966 if (fip->non_public_fields && cu->language != language_ada)
9967 {
9968 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9969
9970 TYPE_FIELD_PRIVATE_BITS (type) =
9971 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9972 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
9973
9974 TYPE_FIELD_PROTECTED_BITS (type) =
9975 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9976 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
9977
9978 TYPE_FIELD_IGNORE_BITS (type) =
9979 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9980 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
9981 }
9982
9983 /* If the type has baseclasses, allocate and clear a bit vector for
9984 TYPE_FIELD_VIRTUAL_BITS. */
9985 if (fip->nbaseclasses && cu->language != language_ada)
9986 {
9987 int num_bytes = B_BYTES (fip->nbaseclasses);
9988 unsigned char *pointer;
9989
9990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9991 pointer = TYPE_ALLOC (type, num_bytes);
9992 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
9993 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
9994 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
9995 }
9996
9997 /* Copy the saved-up fields into the field vector. Start from the head of
9998 the list, adding to the tail of the field array, so that they end up in
9999 the same order in the array in which they were added to the list. */
10000 while (nfields-- > 0)
10001 {
10002 struct nextfield *fieldp;
10003
10004 if (fip->fields)
10005 {
10006 fieldp = fip->fields;
10007 fip->fields = fieldp->next;
10008 }
10009 else
10010 {
10011 fieldp = fip->baseclasses;
10012 fip->baseclasses = fieldp->next;
10013 }
10014
10015 TYPE_FIELD (type, nfields) = fieldp->field;
10016 switch (fieldp->accessibility)
10017 {
10018 case DW_ACCESS_private:
10019 if (cu->language != language_ada)
10020 SET_TYPE_FIELD_PRIVATE (type, nfields);
10021 break;
10022
10023 case DW_ACCESS_protected:
10024 if (cu->language != language_ada)
10025 SET_TYPE_FIELD_PROTECTED (type, nfields);
10026 break;
10027
10028 case DW_ACCESS_public:
10029 break;
10030
10031 default:
10032 /* Unknown accessibility. Complain and treat it as public. */
10033 {
10034 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10035 fieldp->accessibility);
10036 }
10037 break;
10038 }
10039 if (nfields < fip->nbaseclasses)
10040 {
10041 switch (fieldp->virtuality)
10042 {
10043 case DW_VIRTUALITY_virtual:
10044 case DW_VIRTUALITY_pure_virtual:
10045 if (cu->language == language_ada)
10046 error (_("unexpected virtuality in component of Ada type"));
10047 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10048 break;
10049 }
10050 }
10051 }
10052 }
10053
10054 /* Add a member function to the proper fieldlist. */
10055
10056 static void
10057 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10058 struct type *type, struct dwarf2_cu *cu)
10059 {
10060 struct objfile *objfile = cu->objfile;
10061 struct attribute *attr;
10062 struct fnfieldlist *flp;
10063 int i;
10064 struct fn_field *fnp;
10065 char *fieldname;
10066 struct nextfnfield *new_fnfield;
10067 struct type *this_type;
10068 enum dwarf_access_attribute accessibility;
10069
10070 if (cu->language == language_ada)
10071 error (_("unexpected member function in Ada type"));
10072
10073 /* Get name of member function. */
10074 fieldname = dwarf2_name (die, cu);
10075 if (fieldname == NULL)
10076 return;
10077
10078 /* Look up member function name in fieldlist. */
10079 for (i = 0; i < fip->nfnfields; i++)
10080 {
10081 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10082 break;
10083 }
10084
10085 /* Create new list element if necessary. */
10086 if (i < fip->nfnfields)
10087 flp = &fip->fnfieldlists[i];
10088 else
10089 {
10090 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10091 {
10092 fip->fnfieldlists = (struct fnfieldlist *)
10093 xrealloc (fip->fnfieldlists,
10094 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10095 * sizeof (struct fnfieldlist));
10096 if (fip->nfnfields == 0)
10097 make_cleanup (free_current_contents, &fip->fnfieldlists);
10098 }
10099 flp = &fip->fnfieldlists[fip->nfnfields];
10100 flp->name = fieldname;
10101 flp->length = 0;
10102 flp->head = NULL;
10103 i = fip->nfnfields++;
10104 }
10105
10106 /* Create a new member function field and chain it to the field list
10107 entry. */
10108 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10109 make_cleanup (xfree, new_fnfield);
10110 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10111 new_fnfield->next = flp->head;
10112 flp->head = new_fnfield;
10113 flp->length++;
10114
10115 /* Fill in the member function field info. */
10116 fnp = &new_fnfield->fnfield;
10117
10118 /* Delay processing of the physname until later. */
10119 if (cu->language == language_cplus || cu->language == language_java)
10120 {
10121 add_to_method_list (type, i, flp->length - 1, fieldname,
10122 die, cu);
10123 }
10124 else
10125 {
10126 const char *physname = dwarf2_physname (fieldname, die, cu);
10127 fnp->physname = physname ? physname : "";
10128 }
10129
10130 fnp->type = alloc_type (objfile);
10131 this_type = read_type_die (die, cu);
10132 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10133 {
10134 int nparams = TYPE_NFIELDS (this_type);
10135
10136 /* TYPE is the domain of this method, and THIS_TYPE is the type
10137 of the method itself (TYPE_CODE_METHOD). */
10138 smash_to_method_type (fnp->type, type,
10139 TYPE_TARGET_TYPE (this_type),
10140 TYPE_FIELDS (this_type),
10141 TYPE_NFIELDS (this_type),
10142 TYPE_VARARGS (this_type));
10143
10144 /* Handle static member functions.
10145 Dwarf2 has no clean way to discern C++ static and non-static
10146 member functions. G++ helps GDB by marking the first
10147 parameter for non-static member functions (which is the this
10148 pointer) as artificial. We obtain this information from
10149 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10150 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10151 fnp->voffset = VOFFSET_STATIC;
10152 }
10153 else
10154 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10155 dwarf2_full_name (fieldname, die, cu));
10156
10157 /* Get fcontext from DW_AT_containing_type if present. */
10158 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10159 fnp->fcontext = die_containing_type (die, cu);
10160
10161 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10162 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10163
10164 /* Get accessibility. */
10165 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10166 if (attr)
10167 accessibility = DW_UNSND (attr);
10168 else
10169 accessibility = dwarf2_default_access_attribute (die, cu);
10170 switch (accessibility)
10171 {
10172 case DW_ACCESS_private:
10173 fnp->is_private = 1;
10174 break;
10175 case DW_ACCESS_protected:
10176 fnp->is_protected = 1;
10177 break;
10178 }
10179
10180 /* Check for artificial methods. */
10181 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10182 if (attr && DW_UNSND (attr) != 0)
10183 fnp->is_artificial = 1;
10184
10185 /* Get index in virtual function table if it is a virtual member
10186 function. For older versions of GCC, this is an offset in the
10187 appropriate virtual table, as specified by DW_AT_containing_type.
10188 For everyone else, it is an expression to be evaluated relative
10189 to the object address. */
10190
10191 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10192 if (attr)
10193 {
10194 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10195 {
10196 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10197 {
10198 /* Old-style GCC. */
10199 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10200 }
10201 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10202 || (DW_BLOCK (attr)->size > 1
10203 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10204 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10205 {
10206 struct dwarf_block blk;
10207 int offset;
10208
10209 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10210 ? 1 : 2);
10211 blk.size = DW_BLOCK (attr)->size - offset;
10212 blk.data = DW_BLOCK (attr)->data + offset;
10213 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10214 if ((fnp->voffset % cu->header.addr_size) != 0)
10215 dwarf2_complex_location_expr_complaint ();
10216 else
10217 fnp->voffset /= cu->header.addr_size;
10218 fnp->voffset += 2;
10219 }
10220 else
10221 dwarf2_complex_location_expr_complaint ();
10222
10223 if (!fnp->fcontext)
10224 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10225 }
10226 else if (attr_form_is_section_offset (attr))
10227 {
10228 dwarf2_complex_location_expr_complaint ();
10229 }
10230 else
10231 {
10232 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10233 fieldname);
10234 }
10235 }
10236 else
10237 {
10238 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10239 if (attr && DW_UNSND (attr))
10240 {
10241 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10242 complaint (&symfile_complaints,
10243 _("Member function \"%s\" (offset %d) is virtual "
10244 "but the vtable offset is not specified"),
10245 fieldname, die->offset.sect_off);
10246 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10247 TYPE_CPLUS_DYNAMIC (type) = 1;
10248 }
10249 }
10250 }
10251
10252 /* Create the vector of member function fields, and attach it to the type. */
10253
10254 static void
10255 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10256 struct dwarf2_cu *cu)
10257 {
10258 struct fnfieldlist *flp;
10259 int i;
10260
10261 if (cu->language == language_ada)
10262 error (_("unexpected member functions in Ada type"));
10263
10264 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10265 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10266 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10267
10268 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10269 {
10270 struct nextfnfield *nfp = flp->head;
10271 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10272 int k;
10273
10274 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10275 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10276 fn_flp->fn_fields = (struct fn_field *)
10277 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10278 for (k = flp->length; (k--, nfp); nfp = nfp->next)
10279 fn_flp->fn_fields[k] = nfp->fnfield;
10280 }
10281
10282 TYPE_NFN_FIELDS (type) = fip->nfnfields;
10283 }
10284
10285 /* Returns non-zero if NAME is the name of a vtable member in CU's
10286 language, zero otherwise. */
10287 static int
10288 is_vtable_name (const char *name, struct dwarf2_cu *cu)
10289 {
10290 static const char vptr[] = "_vptr";
10291 static const char vtable[] = "vtable";
10292
10293 /* Look for the C++ and Java forms of the vtable. */
10294 if ((cu->language == language_java
10295 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
10296 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
10297 && is_cplus_marker (name[sizeof (vptr) - 1])))
10298 return 1;
10299
10300 return 0;
10301 }
10302
10303 /* GCC outputs unnamed structures that are really pointers to member
10304 functions, with the ABI-specified layout. If TYPE describes
10305 such a structure, smash it into a member function type.
10306
10307 GCC shouldn't do this; it should just output pointer to member DIEs.
10308 This is GCC PR debug/28767. */
10309
10310 static void
10311 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
10312 {
10313 struct type *pfn_type, *domain_type, *new_type;
10314
10315 /* Check for a structure with no name and two children. */
10316 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
10317 return;
10318
10319 /* Check for __pfn and __delta members. */
10320 if (TYPE_FIELD_NAME (type, 0) == NULL
10321 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
10322 || TYPE_FIELD_NAME (type, 1) == NULL
10323 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
10324 return;
10325
10326 /* Find the type of the method. */
10327 pfn_type = TYPE_FIELD_TYPE (type, 0);
10328 if (pfn_type == NULL
10329 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
10330 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
10331 return;
10332
10333 /* Look for the "this" argument. */
10334 pfn_type = TYPE_TARGET_TYPE (pfn_type);
10335 if (TYPE_NFIELDS (pfn_type) == 0
10336 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
10337 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
10338 return;
10339
10340 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
10341 new_type = alloc_type (objfile);
10342 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
10343 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
10344 TYPE_VARARGS (pfn_type));
10345 smash_to_methodptr_type (type, new_type);
10346 }
10347
10348 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
10349 (icc). */
10350
10351 static int
10352 producer_is_icc (struct dwarf2_cu *cu)
10353 {
10354 if (!cu->checked_producer)
10355 check_producer (cu);
10356
10357 return cu->producer_is_icc;
10358 }
10359
10360 /* Called when we find the DIE that starts a structure or union scope
10361 (definition) to create a type for the structure or union. Fill in
10362 the type's name and general properties; the members will not be
10363 processed until process_structure_type.
10364
10365 NOTE: we need to call these functions regardless of whether or not the
10366 DIE has a DW_AT_name attribute, since it might be an anonymous
10367 structure or union. This gets the type entered into our set of
10368 user defined types.
10369
10370 However, if the structure is incomplete (an opaque struct/union)
10371 then suppress creating a symbol table entry for it since gdb only
10372 wants to find the one with the complete definition. Note that if
10373 it is complete, we just call new_symbol, which does it's own
10374 checking about whether the struct/union is anonymous or not (and
10375 suppresses creating a symbol table entry itself). */
10376
10377 static struct type *
10378 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
10379 {
10380 struct objfile *objfile = cu->objfile;
10381 struct type *type;
10382 struct attribute *attr;
10383 char *name;
10384
10385 /* If the definition of this type lives in .debug_types, read that type.
10386 Don't follow DW_AT_specification though, that will take us back up
10387 the chain and we want to go down. */
10388 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10389 if (attr)
10390 {
10391 struct dwarf2_cu *type_cu = cu;
10392 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10393
10394 /* We could just recurse on read_structure_type, but we need to call
10395 get_die_type to ensure only one type for this DIE is created.
10396 This is important, for example, because for c++ classes we need
10397 TYPE_NAME set which is only done by new_symbol. Blech. */
10398 type = read_type_die (type_die, type_cu);
10399
10400 /* TYPE_CU may not be the same as CU.
10401 Ensure TYPE is recorded in CU's type_hash table. */
10402 return set_die_type (die, type, cu);
10403 }
10404
10405 type = alloc_type (objfile);
10406 INIT_CPLUS_SPECIFIC (type);
10407
10408 name = dwarf2_name (die, cu);
10409 if (name != NULL)
10410 {
10411 if (cu->language == language_cplus
10412 || cu->language == language_java)
10413 {
10414 char *full_name = (char *) dwarf2_full_name (name, die, cu);
10415
10416 /* dwarf2_full_name might have already finished building the DIE's
10417 type. If so, there is no need to continue. */
10418 if (get_die_type (die, cu) != NULL)
10419 return get_die_type (die, cu);
10420
10421 TYPE_TAG_NAME (type) = full_name;
10422 if (die->tag == DW_TAG_structure_type
10423 || die->tag == DW_TAG_class_type)
10424 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10425 }
10426 else
10427 {
10428 /* The name is already allocated along with this objfile, so
10429 we don't need to duplicate it for the type. */
10430 TYPE_TAG_NAME (type) = (char *) name;
10431 if (die->tag == DW_TAG_class_type)
10432 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10433 }
10434 }
10435
10436 if (die->tag == DW_TAG_structure_type)
10437 {
10438 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10439 }
10440 else if (die->tag == DW_TAG_union_type)
10441 {
10442 TYPE_CODE (type) = TYPE_CODE_UNION;
10443 }
10444 else
10445 {
10446 TYPE_CODE (type) = TYPE_CODE_CLASS;
10447 }
10448
10449 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
10450 TYPE_DECLARED_CLASS (type) = 1;
10451
10452 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10453 if (attr)
10454 {
10455 TYPE_LENGTH (type) = DW_UNSND (attr);
10456 }
10457 else
10458 {
10459 TYPE_LENGTH (type) = 0;
10460 }
10461
10462 if (producer_is_icc (cu))
10463 {
10464 /* ICC does not output the required DW_AT_declaration
10465 on incomplete types, but gives them a size of zero. */
10466 }
10467 else
10468 TYPE_STUB_SUPPORTED (type) = 1;
10469
10470 if (die_is_declaration (die, cu))
10471 TYPE_STUB (type) = 1;
10472 else if (attr == NULL && die->child == NULL
10473 && producer_is_realview (cu->producer))
10474 /* RealView does not output the required DW_AT_declaration
10475 on incomplete types. */
10476 TYPE_STUB (type) = 1;
10477
10478 /* We need to add the type field to the die immediately so we don't
10479 infinitely recurse when dealing with pointers to the structure
10480 type within the structure itself. */
10481 set_die_type (die, type, cu);
10482
10483 /* set_die_type should be already done. */
10484 set_descriptive_type (type, die, cu);
10485
10486 return type;
10487 }
10488
10489 /* Finish creating a structure or union type, including filling in
10490 its members and creating a symbol for it. */
10491
10492 static void
10493 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
10494 {
10495 struct objfile *objfile = cu->objfile;
10496 struct die_info *child_die = die->child;
10497 struct type *type;
10498
10499 type = get_die_type (die, cu);
10500 if (type == NULL)
10501 type = read_structure_type (die, cu);
10502
10503 if (die->child != NULL && ! die_is_declaration (die, cu))
10504 {
10505 struct field_info fi;
10506 struct die_info *child_die;
10507 VEC (symbolp) *template_args = NULL;
10508 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
10509
10510 memset (&fi, 0, sizeof (struct field_info));
10511
10512 child_die = die->child;
10513
10514 while (child_die && child_die->tag)
10515 {
10516 if (child_die->tag == DW_TAG_member
10517 || child_die->tag == DW_TAG_variable)
10518 {
10519 /* NOTE: carlton/2002-11-05: A C++ static data member
10520 should be a DW_TAG_member that is a declaration, but
10521 all versions of G++ as of this writing (so through at
10522 least 3.2.1) incorrectly generate DW_TAG_variable
10523 tags for them instead. */
10524 dwarf2_add_field (&fi, child_die, cu);
10525 }
10526 else if (child_die->tag == DW_TAG_subprogram)
10527 {
10528 /* C++ member function. */
10529 dwarf2_add_member_fn (&fi, child_die, type, cu);
10530 }
10531 else if (child_die->tag == DW_TAG_inheritance)
10532 {
10533 /* C++ base class field. */
10534 dwarf2_add_field (&fi, child_die, cu);
10535 }
10536 else if (child_die->tag == DW_TAG_typedef)
10537 dwarf2_add_typedef (&fi, child_die, cu);
10538 else if (child_die->tag == DW_TAG_template_type_param
10539 || child_die->tag == DW_TAG_template_value_param)
10540 {
10541 struct symbol *arg = new_symbol (child_die, NULL, cu);
10542
10543 if (arg != NULL)
10544 VEC_safe_push (symbolp, template_args, arg);
10545 }
10546
10547 child_die = sibling_die (child_die);
10548 }
10549
10550 /* Attach template arguments to type. */
10551 if (! VEC_empty (symbolp, template_args))
10552 {
10553 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10554 TYPE_N_TEMPLATE_ARGUMENTS (type)
10555 = VEC_length (symbolp, template_args);
10556 TYPE_TEMPLATE_ARGUMENTS (type)
10557 = obstack_alloc (&objfile->objfile_obstack,
10558 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10559 * sizeof (struct symbol *)));
10560 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
10561 VEC_address (symbolp, template_args),
10562 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10563 * sizeof (struct symbol *)));
10564 VEC_free (symbolp, template_args);
10565 }
10566
10567 /* Attach fields and member functions to the type. */
10568 if (fi.nfields)
10569 dwarf2_attach_fields_to_type (&fi, type, cu);
10570 if (fi.nfnfields)
10571 {
10572 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
10573
10574 /* Get the type which refers to the base class (possibly this
10575 class itself) which contains the vtable pointer for the current
10576 class from the DW_AT_containing_type attribute. This use of
10577 DW_AT_containing_type is a GNU extension. */
10578
10579 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10580 {
10581 struct type *t = die_containing_type (die, cu);
10582
10583 TYPE_VPTR_BASETYPE (type) = t;
10584 if (type == t)
10585 {
10586 int i;
10587
10588 /* Our own class provides vtbl ptr. */
10589 for (i = TYPE_NFIELDS (t) - 1;
10590 i >= TYPE_N_BASECLASSES (t);
10591 --i)
10592 {
10593 const char *fieldname = TYPE_FIELD_NAME (t, i);
10594
10595 if (is_vtable_name (fieldname, cu))
10596 {
10597 TYPE_VPTR_FIELDNO (type) = i;
10598 break;
10599 }
10600 }
10601
10602 /* Complain if virtual function table field not found. */
10603 if (i < TYPE_N_BASECLASSES (t))
10604 complaint (&symfile_complaints,
10605 _("virtual function table pointer "
10606 "not found when defining class '%s'"),
10607 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
10608 "");
10609 }
10610 else
10611 {
10612 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
10613 }
10614 }
10615 else if (cu->producer
10616 && strncmp (cu->producer,
10617 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
10618 {
10619 /* The IBM XLC compiler does not provide direct indication
10620 of the containing type, but the vtable pointer is
10621 always named __vfp. */
10622
10623 int i;
10624
10625 for (i = TYPE_NFIELDS (type) - 1;
10626 i >= TYPE_N_BASECLASSES (type);
10627 --i)
10628 {
10629 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
10630 {
10631 TYPE_VPTR_FIELDNO (type) = i;
10632 TYPE_VPTR_BASETYPE (type) = type;
10633 break;
10634 }
10635 }
10636 }
10637 }
10638
10639 /* Copy fi.typedef_field_list linked list elements content into the
10640 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
10641 if (fi.typedef_field_list)
10642 {
10643 int i = fi.typedef_field_list_count;
10644
10645 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10646 TYPE_TYPEDEF_FIELD_ARRAY (type)
10647 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
10648 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
10649
10650 /* Reverse the list order to keep the debug info elements order. */
10651 while (--i >= 0)
10652 {
10653 struct typedef_field *dest, *src;
10654
10655 dest = &TYPE_TYPEDEF_FIELD (type, i);
10656 src = &fi.typedef_field_list->field;
10657 fi.typedef_field_list = fi.typedef_field_list->next;
10658 *dest = *src;
10659 }
10660 }
10661
10662 do_cleanups (back_to);
10663
10664 if (HAVE_CPLUS_STRUCT (type))
10665 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
10666 }
10667
10668 quirk_gcc_member_function_pointer (type, objfile);
10669
10670 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
10671 snapshots) has been known to create a die giving a declaration
10672 for a class that has, as a child, a die giving a definition for a
10673 nested class. So we have to process our children even if the
10674 current die is a declaration. Normally, of course, a declaration
10675 won't have any children at all. */
10676
10677 while (child_die != NULL && child_die->tag)
10678 {
10679 if (child_die->tag == DW_TAG_member
10680 || child_die->tag == DW_TAG_variable
10681 || child_die->tag == DW_TAG_inheritance
10682 || child_die->tag == DW_TAG_template_value_param
10683 || child_die->tag == DW_TAG_template_type_param)
10684 {
10685 /* Do nothing. */
10686 }
10687 else
10688 process_die (child_die, cu);
10689
10690 child_die = sibling_die (child_die);
10691 }
10692
10693 /* Do not consider external references. According to the DWARF standard,
10694 these DIEs are identified by the fact that they have no byte_size
10695 attribute, and a declaration attribute. */
10696 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
10697 || !die_is_declaration (die, cu))
10698 new_symbol (die, type, cu);
10699 }
10700
10701 /* Given a DW_AT_enumeration_type die, set its type. We do not
10702 complete the type's fields yet, or create any symbols. */
10703
10704 static struct type *
10705 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
10706 {
10707 struct objfile *objfile = cu->objfile;
10708 struct type *type;
10709 struct attribute *attr;
10710 const char *name;
10711
10712 /* If the definition of this type lives in .debug_types, read that type.
10713 Don't follow DW_AT_specification though, that will take us back up
10714 the chain and we want to go down. */
10715 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10716 if (attr)
10717 {
10718 struct dwarf2_cu *type_cu = cu;
10719 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10720
10721 type = read_type_die (type_die, type_cu);
10722
10723 /* TYPE_CU may not be the same as CU.
10724 Ensure TYPE is recorded in CU's type_hash table. */
10725 return set_die_type (die, type, cu);
10726 }
10727
10728 type = alloc_type (objfile);
10729
10730 TYPE_CODE (type) = TYPE_CODE_ENUM;
10731 name = dwarf2_full_name (NULL, die, cu);
10732 if (name != NULL)
10733 TYPE_TAG_NAME (type) = (char *) name;
10734
10735 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10736 if (attr)
10737 {
10738 TYPE_LENGTH (type) = DW_UNSND (attr);
10739 }
10740 else
10741 {
10742 TYPE_LENGTH (type) = 0;
10743 }
10744
10745 /* The enumeration DIE can be incomplete. In Ada, any type can be
10746 declared as private in the package spec, and then defined only
10747 inside the package body. Such types are known as Taft Amendment
10748 Types. When another package uses such a type, an incomplete DIE
10749 may be generated by the compiler. */
10750 if (die_is_declaration (die, cu))
10751 TYPE_STUB (type) = 1;
10752
10753 return set_die_type (die, type, cu);
10754 }
10755
10756 /* Given a pointer to a die which begins an enumeration, process all
10757 the dies that define the members of the enumeration, and create the
10758 symbol for the enumeration type.
10759
10760 NOTE: We reverse the order of the element list. */
10761
10762 static void
10763 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
10764 {
10765 struct type *this_type;
10766
10767 this_type = get_die_type (die, cu);
10768 if (this_type == NULL)
10769 this_type = read_enumeration_type (die, cu);
10770
10771 if (die->child != NULL)
10772 {
10773 struct die_info *child_die;
10774 struct symbol *sym;
10775 struct field *fields = NULL;
10776 int num_fields = 0;
10777 int unsigned_enum = 1;
10778 char *name;
10779 int flag_enum = 1;
10780 ULONGEST mask = 0;
10781
10782 child_die = die->child;
10783 while (child_die && child_die->tag)
10784 {
10785 if (child_die->tag != DW_TAG_enumerator)
10786 {
10787 process_die (child_die, cu);
10788 }
10789 else
10790 {
10791 name = dwarf2_name (child_die, cu);
10792 if (name)
10793 {
10794 sym = new_symbol (child_die, this_type, cu);
10795 if (SYMBOL_VALUE (sym) < 0)
10796 {
10797 unsigned_enum = 0;
10798 flag_enum = 0;
10799 }
10800 else if ((mask & SYMBOL_VALUE (sym)) != 0)
10801 flag_enum = 0;
10802 else
10803 mask |= SYMBOL_VALUE (sym);
10804
10805 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
10806 {
10807 fields = (struct field *)
10808 xrealloc (fields,
10809 (num_fields + DW_FIELD_ALLOC_CHUNK)
10810 * sizeof (struct field));
10811 }
10812
10813 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
10814 FIELD_TYPE (fields[num_fields]) = NULL;
10815 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
10816 FIELD_BITSIZE (fields[num_fields]) = 0;
10817
10818 num_fields++;
10819 }
10820 }
10821
10822 child_die = sibling_die (child_die);
10823 }
10824
10825 if (num_fields)
10826 {
10827 TYPE_NFIELDS (this_type) = num_fields;
10828 TYPE_FIELDS (this_type) = (struct field *)
10829 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
10830 memcpy (TYPE_FIELDS (this_type), fields,
10831 sizeof (struct field) * num_fields);
10832 xfree (fields);
10833 }
10834 if (unsigned_enum)
10835 TYPE_UNSIGNED (this_type) = 1;
10836 if (flag_enum)
10837 TYPE_FLAG_ENUM (this_type) = 1;
10838 }
10839
10840 /* If we are reading an enum from a .debug_types unit, and the enum
10841 is a declaration, and the enum is not the signatured type in the
10842 unit, then we do not want to add a symbol for it. Adding a
10843 symbol would in some cases obscure the true definition of the
10844 enum, giving users an incomplete type when the definition is
10845 actually available. Note that we do not want to do this for all
10846 enums which are just declarations, because C++0x allows forward
10847 enum declarations. */
10848 if (cu->per_cu->is_debug_types
10849 && die_is_declaration (die, cu))
10850 {
10851 struct signatured_type *sig_type;
10852
10853 sig_type
10854 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
10855 cu->per_cu->info_or_types_section,
10856 cu->per_cu->offset);
10857 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
10858 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
10859 return;
10860 }
10861
10862 new_symbol (die, this_type, cu);
10863 }
10864
10865 /* Extract all information from a DW_TAG_array_type DIE and put it in
10866 the DIE's type field. For now, this only handles one dimensional
10867 arrays. */
10868
10869 static struct type *
10870 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
10871 {
10872 struct objfile *objfile = cu->objfile;
10873 struct die_info *child_die;
10874 struct type *type;
10875 struct type *element_type, *range_type, *index_type;
10876 struct type **range_types = NULL;
10877 struct attribute *attr;
10878 int ndim = 0;
10879 struct cleanup *back_to;
10880 char *name;
10881
10882 element_type = die_type (die, cu);
10883
10884 /* The die_type call above may have already set the type for this DIE. */
10885 type = get_die_type (die, cu);
10886 if (type)
10887 return type;
10888
10889 /* Irix 6.2 native cc creates array types without children for
10890 arrays with unspecified length. */
10891 if (die->child == NULL)
10892 {
10893 index_type = objfile_type (objfile)->builtin_int;
10894 range_type = create_range_type (NULL, index_type, 0, -1);
10895 type = create_array_type (NULL, element_type, range_type);
10896 return set_die_type (die, type, cu);
10897 }
10898
10899 back_to = make_cleanup (null_cleanup, NULL);
10900 child_die = die->child;
10901 while (child_die && child_die->tag)
10902 {
10903 if (child_die->tag == DW_TAG_subrange_type)
10904 {
10905 struct type *child_type = read_type_die (child_die, cu);
10906
10907 if (child_type != NULL)
10908 {
10909 /* The range type was succesfully read. Save it for the
10910 array type creation. */
10911 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
10912 {
10913 range_types = (struct type **)
10914 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
10915 * sizeof (struct type *));
10916 if (ndim == 0)
10917 make_cleanup (free_current_contents, &range_types);
10918 }
10919 range_types[ndim++] = child_type;
10920 }
10921 }
10922 child_die = sibling_die (child_die);
10923 }
10924
10925 /* Dwarf2 dimensions are output from left to right, create the
10926 necessary array types in backwards order. */
10927
10928 type = element_type;
10929
10930 if (read_array_order (die, cu) == DW_ORD_col_major)
10931 {
10932 int i = 0;
10933
10934 while (i < ndim)
10935 type = create_array_type (NULL, type, range_types[i++]);
10936 }
10937 else
10938 {
10939 while (ndim-- > 0)
10940 type = create_array_type (NULL, type, range_types[ndim]);
10941 }
10942
10943 /* Understand Dwarf2 support for vector types (like they occur on
10944 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
10945 array type. This is not part of the Dwarf2/3 standard yet, but a
10946 custom vendor extension. The main difference between a regular
10947 array and the vector variant is that vectors are passed by value
10948 to functions. */
10949 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
10950 if (attr)
10951 make_vector_type (type);
10952
10953 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
10954 implementation may choose to implement triple vectors using this
10955 attribute. */
10956 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10957 if (attr)
10958 {
10959 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
10960 TYPE_LENGTH (type) = DW_UNSND (attr);
10961 else
10962 complaint (&symfile_complaints,
10963 _("DW_AT_byte_size for array type smaller "
10964 "than the total size of elements"));
10965 }
10966
10967 name = dwarf2_name (die, cu);
10968 if (name)
10969 TYPE_NAME (type) = name;
10970
10971 /* Install the type in the die. */
10972 set_die_type (die, type, cu);
10973
10974 /* set_die_type should be already done. */
10975 set_descriptive_type (type, die, cu);
10976
10977 do_cleanups (back_to);
10978
10979 return type;
10980 }
10981
10982 static enum dwarf_array_dim_ordering
10983 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
10984 {
10985 struct attribute *attr;
10986
10987 attr = dwarf2_attr (die, DW_AT_ordering, cu);
10988
10989 if (attr) return DW_SND (attr);
10990
10991 /* GNU F77 is a special case, as at 08/2004 array type info is the
10992 opposite order to the dwarf2 specification, but data is still
10993 laid out as per normal fortran.
10994
10995 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
10996 version checking. */
10997
10998 if (cu->language == language_fortran
10999 && cu->producer && strstr (cu->producer, "GNU F77"))
11000 {
11001 return DW_ORD_row_major;
11002 }
11003
11004 switch (cu->language_defn->la_array_ordering)
11005 {
11006 case array_column_major:
11007 return DW_ORD_col_major;
11008 case array_row_major:
11009 default:
11010 return DW_ORD_row_major;
11011 };
11012 }
11013
11014 /* Extract all information from a DW_TAG_set_type DIE and put it in
11015 the DIE's type field. */
11016
11017 static struct type *
11018 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11019 {
11020 struct type *domain_type, *set_type;
11021 struct attribute *attr;
11022
11023 domain_type = die_type (die, cu);
11024
11025 /* The die_type call above may have already set the type for this DIE. */
11026 set_type = get_die_type (die, cu);
11027 if (set_type)
11028 return set_type;
11029
11030 set_type = create_set_type (NULL, domain_type);
11031
11032 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11033 if (attr)
11034 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11035
11036 return set_die_type (die, set_type, cu);
11037 }
11038
11039 /* First cut: install each common block member as a global variable. */
11040
11041 static void
11042 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 struct die_info *child_die;
11045 struct attribute *attr;
11046 struct symbol *sym;
11047 CORE_ADDR base = (CORE_ADDR) 0;
11048
11049 attr = dwarf2_attr (die, DW_AT_location, cu);
11050 if (attr)
11051 {
11052 /* Support the .debug_loc offsets. */
11053 if (attr_form_is_block (attr))
11054 {
11055 base = decode_locdesc (DW_BLOCK (attr), cu);
11056 }
11057 else if (attr_form_is_section_offset (attr))
11058 {
11059 dwarf2_complex_location_expr_complaint ();
11060 }
11061 else
11062 {
11063 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11064 "common block member");
11065 }
11066 }
11067 if (die->child != NULL)
11068 {
11069 child_die = die->child;
11070 while (child_die && child_die->tag)
11071 {
11072 LONGEST offset;
11073
11074 sym = new_symbol (child_die, NULL, cu);
11075 if (sym != NULL
11076 && handle_data_member_location (child_die, cu, &offset))
11077 {
11078 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
11079 add_symbol_to_list (sym, &global_symbols);
11080 }
11081 child_die = sibling_die (child_die);
11082 }
11083 }
11084 }
11085
11086 /* Create a type for a C++ namespace. */
11087
11088 static struct type *
11089 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11090 {
11091 struct objfile *objfile = cu->objfile;
11092 const char *previous_prefix, *name;
11093 int is_anonymous;
11094 struct type *type;
11095
11096 /* For extensions, reuse the type of the original namespace. */
11097 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11098 {
11099 struct die_info *ext_die;
11100 struct dwarf2_cu *ext_cu = cu;
11101
11102 ext_die = dwarf2_extension (die, &ext_cu);
11103 type = read_type_die (ext_die, ext_cu);
11104
11105 /* EXT_CU may not be the same as CU.
11106 Ensure TYPE is recorded in CU's type_hash table. */
11107 return set_die_type (die, type, cu);
11108 }
11109
11110 name = namespace_name (die, &is_anonymous, cu);
11111
11112 /* Now build the name of the current namespace. */
11113
11114 previous_prefix = determine_prefix (die, cu);
11115 if (previous_prefix[0] != '\0')
11116 name = typename_concat (&objfile->objfile_obstack,
11117 previous_prefix, name, 0, cu);
11118
11119 /* Create the type. */
11120 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11121 objfile);
11122 TYPE_NAME (type) = (char *) name;
11123 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11124
11125 return set_die_type (die, type, cu);
11126 }
11127
11128 /* Read a C++ namespace. */
11129
11130 static void
11131 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11132 {
11133 struct objfile *objfile = cu->objfile;
11134 int is_anonymous;
11135
11136 /* Add a symbol associated to this if we haven't seen the namespace
11137 before. Also, add a using directive if it's an anonymous
11138 namespace. */
11139
11140 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
11141 {
11142 struct type *type;
11143
11144 type = read_type_die (die, cu);
11145 new_symbol (die, type, cu);
11146
11147 namespace_name (die, &is_anonymous, cu);
11148 if (is_anonymous)
11149 {
11150 const char *previous_prefix = determine_prefix (die, cu);
11151
11152 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
11153 NULL, NULL, &objfile->objfile_obstack);
11154 }
11155 }
11156
11157 if (die->child != NULL)
11158 {
11159 struct die_info *child_die = die->child;
11160
11161 while (child_die && child_die->tag)
11162 {
11163 process_die (child_die, cu);
11164 child_die = sibling_die (child_die);
11165 }
11166 }
11167 }
11168
11169 /* Read a Fortran module as type. This DIE can be only a declaration used for
11170 imported module. Still we need that type as local Fortran "use ... only"
11171 declaration imports depend on the created type in determine_prefix. */
11172
11173 static struct type *
11174 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
11175 {
11176 struct objfile *objfile = cu->objfile;
11177 char *module_name;
11178 struct type *type;
11179
11180 module_name = dwarf2_name (die, cu);
11181 if (!module_name)
11182 complaint (&symfile_complaints,
11183 _("DW_TAG_module has no name, offset 0x%x"),
11184 die->offset.sect_off);
11185 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
11186
11187 /* determine_prefix uses TYPE_TAG_NAME. */
11188 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11189
11190 return set_die_type (die, type, cu);
11191 }
11192
11193 /* Read a Fortran module. */
11194
11195 static void
11196 read_module (struct die_info *die, struct dwarf2_cu *cu)
11197 {
11198 struct die_info *child_die = die->child;
11199
11200 while (child_die && child_die->tag)
11201 {
11202 process_die (child_die, cu);
11203 child_die = sibling_die (child_die);
11204 }
11205 }
11206
11207 /* Return the name of the namespace represented by DIE. Set
11208 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
11209 namespace. */
11210
11211 static const char *
11212 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
11213 {
11214 struct die_info *current_die;
11215 const char *name = NULL;
11216
11217 /* Loop through the extensions until we find a name. */
11218
11219 for (current_die = die;
11220 current_die != NULL;
11221 current_die = dwarf2_extension (die, &cu))
11222 {
11223 name = dwarf2_name (current_die, cu);
11224 if (name != NULL)
11225 break;
11226 }
11227
11228 /* Is it an anonymous namespace? */
11229
11230 *is_anonymous = (name == NULL);
11231 if (*is_anonymous)
11232 name = CP_ANONYMOUS_NAMESPACE_STR;
11233
11234 return name;
11235 }
11236
11237 /* Extract all information from a DW_TAG_pointer_type DIE and add to
11238 the user defined type vector. */
11239
11240 static struct type *
11241 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
11242 {
11243 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
11244 struct comp_unit_head *cu_header = &cu->header;
11245 struct type *type;
11246 struct attribute *attr_byte_size;
11247 struct attribute *attr_address_class;
11248 int byte_size, addr_class;
11249 struct type *target_type;
11250
11251 target_type = die_type (die, cu);
11252
11253 /* The die_type call above may have already set the type for this DIE. */
11254 type = get_die_type (die, cu);
11255 if (type)
11256 return type;
11257
11258 type = lookup_pointer_type (target_type);
11259
11260 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
11261 if (attr_byte_size)
11262 byte_size = DW_UNSND (attr_byte_size);
11263 else
11264 byte_size = cu_header->addr_size;
11265
11266 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
11267 if (attr_address_class)
11268 addr_class = DW_UNSND (attr_address_class);
11269 else
11270 addr_class = DW_ADDR_none;
11271
11272 /* If the pointer size or address class is different than the
11273 default, create a type variant marked as such and set the
11274 length accordingly. */
11275 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
11276 {
11277 if (gdbarch_address_class_type_flags_p (gdbarch))
11278 {
11279 int type_flags;
11280
11281 type_flags = gdbarch_address_class_type_flags
11282 (gdbarch, byte_size, addr_class);
11283 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
11284 == 0);
11285 type = make_type_with_address_space (type, type_flags);
11286 }
11287 else if (TYPE_LENGTH (type) != byte_size)
11288 {
11289 complaint (&symfile_complaints,
11290 _("invalid pointer size %d"), byte_size);
11291 }
11292 else
11293 {
11294 /* Should we also complain about unhandled address classes? */
11295 }
11296 }
11297
11298 TYPE_LENGTH (type) = byte_size;
11299 return set_die_type (die, type, cu);
11300 }
11301
11302 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
11303 the user defined type vector. */
11304
11305 static struct type *
11306 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
11307 {
11308 struct type *type;
11309 struct type *to_type;
11310 struct type *domain;
11311
11312 to_type = die_type (die, cu);
11313 domain = die_containing_type (die, cu);
11314
11315 /* The calls above may have already set the type for this DIE. */
11316 type = get_die_type (die, cu);
11317 if (type)
11318 return type;
11319
11320 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
11321 type = lookup_methodptr_type (to_type);
11322 else
11323 type = lookup_memberptr_type (to_type, domain);
11324
11325 return set_die_type (die, type, cu);
11326 }
11327
11328 /* Extract all information from a DW_TAG_reference_type DIE and add to
11329 the user defined type vector. */
11330
11331 static struct type *
11332 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
11333 {
11334 struct comp_unit_head *cu_header = &cu->header;
11335 struct type *type, *target_type;
11336 struct attribute *attr;
11337
11338 target_type = die_type (die, cu);
11339
11340 /* The die_type call above may have already set the type for this DIE. */
11341 type = get_die_type (die, cu);
11342 if (type)
11343 return type;
11344
11345 type = lookup_reference_type (target_type);
11346 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11347 if (attr)
11348 {
11349 TYPE_LENGTH (type) = DW_UNSND (attr);
11350 }
11351 else
11352 {
11353 TYPE_LENGTH (type) = cu_header->addr_size;
11354 }
11355 return set_die_type (die, type, cu);
11356 }
11357
11358 static struct type *
11359 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
11360 {
11361 struct type *base_type, *cv_type;
11362
11363 base_type = die_type (die, cu);
11364
11365 /* The die_type call above may have already set the type for this DIE. */
11366 cv_type = get_die_type (die, cu);
11367 if (cv_type)
11368 return cv_type;
11369
11370 /* In case the const qualifier is applied to an array type, the element type
11371 is so qualified, not the array type (section 6.7.3 of C99). */
11372 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
11373 {
11374 struct type *el_type, *inner_array;
11375
11376 base_type = copy_type (base_type);
11377 inner_array = base_type;
11378
11379 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
11380 {
11381 TYPE_TARGET_TYPE (inner_array) =
11382 copy_type (TYPE_TARGET_TYPE (inner_array));
11383 inner_array = TYPE_TARGET_TYPE (inner_array);
11384 }
11385
11386 el_type = TYPE_TARGET_TYPE (inner_array);
11387 TYPE_TARGET_TYPE (inner_array) =
11388 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
11389
11390 return set_die_type (die, base_type, cu);
11391 }
11392
11393 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
11394 return set_die_type (die, cv_type, cu);
11395 }
11396
11397 static struct type *
11398 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
11399 {
11400 struct type *base_type, *cv_type;
11401
11402 base_type = die_type (die, cu);
11403
11404 /* The die_type call above may have already set the type for this DIE. */
11405 cv_type = get_die_type (die, cu);
11406 if (cv_type)
11407 return cv_type;
11408
11409 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
11410 return set_die_type (die, cv_type, cu);
11411 }
11412
11413 /* Extract all information from a DW_TAG_string_type DIE and add to
11414 the user defined type vector. It isn't really a user defined type,
11415 but it behaves like one, with other DIE's using an AT_user_def_type
11416 attribute to reference it. */
11417
11418 static struct type *
11419 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
11420 {
11421 struct objfile *objfile = cu->objfile;
11422 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11423 struct type *type, *range_type, *index_type, *char_type;
11424 struct attribute *attr;
11425 unsigned int length;
11426
11427 attr = dwarf2_attr (die, DW_AT_string_length, cu);
11428 if (attr)
11429 {
11430 length = DW_UNSND (attr);
11431 }
11432 else
11433 {
11434 /* Check for the DW_AT_byte_size attribute. */
11435 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11436 if (attr)
11437 {
11438 length = DW_UNSND (attr);
11439 }
11440 else
11441 {
11442 length = 1;
11443 }
11444 }
11445
11446 index_type = objfile_type (objfile)->builtin_int;
11447 range_type = create_range_type (NULL, index_type, 1, length);
11448 char_type = language_string_char_type (cu->language_defn, gdbarch);
11449 type = create_string_type (NULL, char_type, range_type);
11450
11451 return set_die_type (die, type, cu);
11452 }
11453
11454 /* Handle DIES due to C code like:
11455
11456 struct foo
11457 {
11458 int (*funcp)(int a, long l);
11459 int b;
11460 };
11461
11462 ('funcp' generates a DW_TAG_subroutine_type DIE). */
11463
11464 static struct type *
11465 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
11466 {
11467 struct objfile *objfile = cu->objfile;
11468 struct type *type; /* Type that this function returns. */
11469 struct type *ftype; /* Function that returns above type. */
11470 struct attribute *attr;
11471
11472 type = die_type (die, cu);
11473
11474 /* The die_type call above may have already set the type for this DIE. */
11475 ftype = get_die_type (die, cu);
11476 if (ftype)
11477 return ftype;
11478
11479 ftype = lookup_function_type (type);
11480
11481 /* All functions in C++, Pascal and Java have prototypes. */
11482 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
11483 if ((attr && (DW_UNSND (attr) != 0))
11484 || cu->language == language_cplus
11485 || cu->language == language_java
11486 || cu->language == language_pascal)
11487 TYPE_PROTOTYPED (ftype) = 1;
11488 else if (producer_is_realview (cu->producer))
11489 /* RealView does not emit DW_AT_prototyped. We can not
11490 distinguish prototyped and unprototyped functions; default to
11491 prototyped, since that is more common in modern code (and
11492 RealView warns about unprototyped functions). */
11493 TYPE_PROTOTYPED (ftype) = 1;
11494
11495 /* Store the calling convention in the type if it's available in
11496 the subroutine die. Otherwise set the calling convention to
11497 the default value DW_CC_normal. */
11498 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
11499 if (attr)
11500 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
11501 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
11502 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
11503 else
11504 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
11505
11506 /* We need to add the subroutine type to the die immediately so
11507 we don't infinitely recurse when dealing with parameters
11508 declared as the same subroutine type. */
11509 set_die_type (die, ftype, cu);
11510
11511 if (die->child != NULL)
11512 {
11513 struct type *void_type = objfile_type (objfile)->builtin_void;
11514 struct die_info *child_die;
11515 int nparams, iparams;
11516
11517 /* Count the number of parameters.
11518 FIXME: GDB currently ignores vararg functions, but knows about
11519 vararg member functions. */
11520 nparams = 0;
11521 child_die = die->child;
11522 while (child_die && child_die->tag)
11523 {
11524 if (child_die->tag == DW_TAG_formal_parameter)
11525 nparams++;
11526 else if (child_die->tag == DW_TAG_unspecified_parameters)
11527 TYPE_VARARGS (ftype) = 1;
11528 child_die = sibling_die (child_die);
11529 }
11530
11531 /* Allocate storage for parameters and fill them in. */
11532 TYPE_NFIELDS (ftype) = nparams;
11533 TYPE_FIELDS (ftype) = (struct field *)
11534 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
11535
11536 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
11537 even if we error out during the parameters reading below. */
11538 for (iparams = 0; iparams < nparams; iparams++)
11539 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
11540
11541 iparams = 0;
11542 child_die = die->child;
11543 while (child_die && child_die->tag)
11544 {
11545 if (child_die->tag == DW_TAG_formal_parameter)
11546 {
11547 struct type *arg_type;
11548
11549 /* DWARF version 2 has no clean way to discern C++
11550 static and non-static member functions. G++ helps
11551 GDB by marking the first parameter for non-static
11552 member functions (which is the this pointer) as
11553 artificial. We pass this information to
11554 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
11555
11556 DWARF version 3 added DW_AT_object_pointer, which GCC
11557 4.5 does not yet generate. */
11558 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
11559 if (attr)
11560 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
11561 else
11562 {
11563 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
11564
11565 /* GCC/43521: In java, the formal parameter
11566 "this" is sometimes not marked with DW_AT_artificial. */
11567 if (cu->language == language_java)
11568 {
11569 const char *name = dwarf2_name (child_die, cu);
11570
11571 if (name && !strcmp (name, "this"))
11572 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
11573 }
11574 }
11575 arg_type = die_type (child_die, cu);
11576
11577 /* RealView does not mark THIS as const, which the testsuite
11578 expects. GCC marks THIS as const in method definitions,
11579 but not in the class specifications (GCC PR 43053). */
11580 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
11581 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
11582 {
11583 int is_this = 0;
11584 struct dwarf2_cu *arg_cu = cu;
11585 const char *name = dwarf2_name (child_die, cu);
11586
11587 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
11588 if (attr)
11589 {
11590 /* If the compiler emits this, use it. */
11591 if (follow_die_ref (die, attr, &arg_cu) == child_die)
11592 is_this = 1;
11593 }
11594 else if (name && strcmp (name, "this") == 0)
11595 /* Function definitions will have the argument names. */
11596 is_this = 1;
11597 else if (name == NULL && iparams == 0)
11598 /* Declarations may not have the names, so like
11599 elsewhere in GDB, assume an artificial first
11600 argument is "this". */
11601 is_this = 1;
11602
11603 if (is_this)
11604 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
11605 arg_type, 0);
11606 }
11607
11608 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
11609 iparams++;
11610 }
11611 child_die = sibling_die (child_die);
11612 }
11613 }
11614
11615 return ftype;
11616 }
11617
11618 static struct type *
11619 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
11620 {
11621 struct objfile *objfile = cu->objfile;
11622 const char *name = NULL;
11623 struct type *this_type, *target_type;
11624
11625 name = dwarf2_full_name (NULL, die, cu);
11626 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
11627 TYPE_FLAG_TARGET_STUB, NULL, objfile);
11628 TYPE_NAME (this_type) = (char *) name;
11629 set_die_type (die, this_type, cu);
11630 target_type = die_type (die, cu);
11631 if (target_type != this_type)
11632 TYPE_TARGET_TYPE (this_type) = target_type;
11633 else
11634 {
11635 /* Self-referential typedefs are, it seems, not allowed by the DWARF
11636 spec and cause infinite loops in GDB. */
11637 complaint (&symfile_complaints,
11638 _("Self-referential DW_TAG_typedef "
11639 "- DIE at 0x%x [in module %s]"),
11640 die->offset.sect_off, objfile->name);
11641 TYPE_TARGET_TYPE (this_type) = NULL;
11642 }
11643 return this_type;
11644 }
11645
11646 /* Find a representation of a given base type and install
11647 it in the TYPE field of the die. */
11648
11649 static struct type *
11650 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
11651 {
11652 struct objfile *objfile = cu->objfile;
11653 struct type *type;
11654 struct attribute *attr;
11655 int encoding = 0, size = 0;
11656 char *name;
11657 enum type_code code = TYPE_CODE_INT;
11658 int type_flags = 0;
11659 struct type *target_type = NULL;
11660
11661 attr = dwarf2_attr (die, DW_AT_encoding, cu);
11662 if (attr)
11663 {
11664 encoding = DW_UNSND (attr);
11665 }
11666 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11667 if (attr)
11668 {
11669 size = DW_UNSND (attr);
11670 }
11671 name = dwarf2_name (die, cu);
11672 if (!name)
11673 {
11674 complaint (&symfile_complaints,
11675 _("DW_AT_name missing from DW_TAG_base_type"));
11676 }
11677
11678 switch (encoding)
11679 {
11680 case DW_ATE_address:
11681 /* Turn DW_ATE_address into a void * pointer. */
11682 code = TYPE_CODE_PTR;
11683 type_flags |= TYPE_FLAG_UNSIGNED;
11684 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
11685 break;
11686 case DW_ATE_boolean:
11687 code = TYPE_CODE_BOOL;
11688 type_flags |= TYPE_FLAG_UNSIGNED;
11689 break;
11690 case DW_ATE_complex_float:
11691 code = TYPE_CODE_COMPLEX;
11692 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
11693 break;
11694 case DW_ATE_decimal_float:
11695 code = TYPE_CODE_DECFLOAT;
11696 break;
11697 case DW_ATE_float:
11698 code = TYPE_CODE_FLT;
11699 break;
11700 case DW_ATE_signed:
11701 break;
11702 case DW_ATE_unsigned:
11703 type_flags |= TYPE_FLAG_UNSIGNED;
11704 if (cu->language == language_fortran
11705 && name
11706 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
11707 code = TYPE_CODE_CHAR;
11708 break;
11709 case DW_ATE_signed_char:
11710 if (cu->language == language_ada || cu->language == language_m2
11711 || cu->language == language_pascal
11712 || cu->language == language_fortran)
11713 code = TYPE_CODE_CHAR;
11714 break;
11715 case DW_ATE_unsigned_char:
11716 if (cu->language == language_ada || cu->language == language_m2
11717 || cu->language == language_pascal
11718 || cu->language == language_fortran)
11719 code = TYPE_CODE_CHAR;
11720 type_flags |= TYPE_FLAG_UNSIGNED;
11721 break;
11722 case DW_ATE_UTF:
11723 /* We just treat this as an integer and then recognize the
11724 type by name elsewhere. */
11725 break;
11726
11727 default:
11728 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
11729 dwarf_type_encoding_name (encoding));
11730 break;
11731 }
11732
11733 type = init_type (code, size, type_flags, NULL, objfile);
11734 TYPE_NAME (type) = name;
11735 TYPE_TARGET_TYPE (type) = target_type;
11736
11737 if (name && strcmp (name, "char") == 0)
11738 TYPE_NOSIGN (type) = 1;
11739
11740 return set_die_type (die, type, cu);
11741 }
11742
11743 /* Read the given DW_AT_subrange DIE. */
11744
11745 static struct type *
11746 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
11747 {
11748 struct type *base_type;
11749 struct type *range_type;
11750 struct attribute *attr;
11751 LONGEST low, high;
11752 int low_default_is_valid;
11753 char *name;
11754 LONGEST negative_mask;
11755
11756 base_type = die_type (die, cu);
11757 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
11758 check_typedef (base_type);
11759
11760 /* The die_type call above may have already set the type for this DIE. */
11761 range_type = get_die_type (die, cu);
11762 if (range_type)
11763 return range_type;
11764
11765 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
11766 omitting DW_AT_lower_bound. */
11767 switch (cu->language)
11768 {
11769 case language_c:
11770 case language_cplus:
11771 low = 0;
11772 low_default_is_valid = 1;
11773 break;
11774 case language_fortran:
11775 low = 1;
11776 low_default_is_valid = 1;
11777 break;
11778 case language_d:
11779 case language_java:
11780 case language_objc:
11781 low = 0;
11782 low_default_is_valid = (cu->header.version >= 4);
11783 break;
11784 case language_ada:
11785 case language_m2:
11786 case language_pascal:
11787 low = 1;
11788 low_default_is_valid = (cu->header.version >= 4);
11789 break;
11790 default:
11791 low = 0;
11792 low_default_is_valid = 0;
11793 break;
11794 }
11795
11796 /* FIXME: For variable sized arrays either of these could be
11797 a variable rather than a constant value. We'll allow it,
11798 but we don't know how to handle it. */
11799 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
11800 if (attr)
11801 low = dwarf2_get_attr_constant_value (attr, low);
11802 else if (!low_default_is_valid)
11803 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
11804 "- DIE at 0x%x [in module %s]"),
11805 die->offset.sect_off, cu->objfile->name);
11806
11807 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
11808 if (attr)
11809 {
11810 if (attr_form_is_block (attr) || is_ref_attr (attr))
11811 {
11812 /* GCC encodes arrays with unspecified or dynamic length
11813 with a DW_FORM_block1 attribute or a reference attribute.
11814 FIXME: GDB does not yet know how to handle dynamic
11815 arrays properly, treat them as arrays with unspecified
11816 length for now.
11817
11818 FIXME: jimb/2003-09-22: GDB does not really know
11819 how to handle arrays of unspecified length
11820 either; we just represent them as zero-length
11821 arrays. Choose an appropriate upper bound given
11822 the lower bound we've computed above. */
11823 high = low - 1;
11824 }
11825 else
11826 high = dwarf2_get_attr_constant_value (attr, 1);
11827 }
11828 else
11829 {
11830 attr = dwarf2_attr (die, DW_AT_count, cu);
11831 if (attr)
11832 {
11833 int count = dwarf2_get_attr_constant_value (attr, 1);
11834 high = low + count - 1;
11835 }
11836 else
11837 {
11838 /* Unspecified array length. */
11839 high = low - 1;
11840 }
11841 }
11842
11843 /* Dwarf-2 specifications explicitly allows to create subrange types
11844 without specifying a base type.
11845 In that case, the base type must be set to the type of
11846 the lower bound, upper bound or count, in that order, if any of these
11847 three attributes references an object that has a type.
11848 If no base type is found, the Dwarf-2 specifications say that
11849 a signed integer type of size equal to the size of an address should
11850 be used.
11851 For the following C code: `extern char gdb_int [];'
11852 GCC produces an empty range DIE.
11853 FIXME: muller/2010-05-28: Possible references to object for low bound,
11854 high bound or count are not yet handled by this code. */
11855 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
11856 {
11857 struct objfile *objfile = cu->objfile;
11858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11859 int addr_size = gdbarch_addr_bit (gdbarch) /8;
11860 struct type *int_type = objfile_type (objfile)->builtin_int;
11861
11862 /* Test "int", "long int", and "long long int" objfile types,
11863 and select the first one having a size above or equal to the
11864 architecture address size. */
11865 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11866 base_type = int_type;
11867 else
11868 {
11869 int_type = objfile_type (objfile)->builtin_long;
11870 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11871 base_type = int_type;
11872 else
11873 {
11874 int_type = objfile_type (objfile)->builtin_long_long;
11875 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11876 base_type = int_type;
11877 }
11878 }
11879 }
11880
11881 negative_mask =
11882 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
11883 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
11884 low |= negative_mask;
11885 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
11886 high |= negative_mask;
11887
11888 range_type = create_range_type (NULL, base_type, low, high);
11889
11890 /* Mark arrays with dynamic length at least as an array of unspecified
11891 length. GDB could check the boundary but before it gets implemented at
11892 least allow accessing the array elements. */
11893 if (attr && attr_form_is_block (attr))
11894 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11895
11896 /* Ada expects an empty array on no boundary attributes. */
11897 if (attr == NULL && cu->language != language_ada)
11898 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11899
11900 name = dwarf2_name (die, cu);
11901 if (name)
11902 TYPE_NAME (range_type) = name;
11903
11904 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11905 if (attr)
11906 TYPE_LENGTH (range_type) = DW_UNSND (attr);
11907
11908 set_die_type (die, range_type, cu);
11909
11910 /* set_die_type should be already done. */
11911 set_descriptive_type (range_type, die, cu);
11912
11913 return range_type;
11914 }
11915
11916 static struct type *
11917 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
11918 {
11919 struct type *type;
11920
11921 /* For now, we only support the C meaning of an unspecified type: void. */
11922
11923 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
11924 TYPE_NAME (type) = dwarf2_name (die, cu);
11925
11926 return set_die_type (die, type, cu);
11927 }
11928
11929 /* Read a single die and all its descendents. Set the die's sibling
11930 field to NULL; set other fields in the die correctly, and set all
11931 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
11932 location of the info_ptr after reading all of those dies. PARENT
11933 is the parent of the die in question. */
11934
11935 static struct die_info *
11936 read_die_and_children (const struct die_reader_specs *reader,
11937 gdb_byte *info_ptr,
11938 gdb_byte **new_info_ptr,
11939 struct die_info *parent)
11940 {
11941 struct die_info *die;
11942 gdb_byte *cur_ptr;
11943 int has_children;
11944
11945 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
11946 if (die == NULL)
11947 {
11948 *new_info_ptr = cur_ptr;
11949 return NULL;
11950 }
11951 store_in_ref_table (die, reader->cu);
11952
11953 if (has_children)
11954 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
11955 else
11956 {
11957 die->child = NULL;
11958 *new_info_ptr = cur_ptr;
11959 }
11960
11961 die->sibling = NULL;
11962 die->parent = parent;
11963 return die;
11964 }
11965
11966 /* Read a die, all of its descendents, and all of its siblings; set
11967 all of the fields of all of the dies correctly. Arguments are as
11968 in read_die_and_children. */
11969
11970 static struct die_info *
11971 read_die_and_siblings (const struct die_reader_specs *reader,
11972 gdb_byte *info_ptr,
11973 gdb_byte **new_info_ptr,
11974 struct die_info *parent)
11975 {
11976 struct die_info *first_die, *last_sibling;
11977 gdb_byte *cur_ptr;
11978
11979 cur_ptr = info_ptr;
11980 first_die = last_sibling = NULL;
11981
11982 while (1)
11983 {
11984 struct die_info *die
11985 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
11986
11987 if (die == NULL)
11988 {
11989 *new_info_ptr = cur_ptr;
11990 return first_die;
11991 }
11992
11993 if (!first_die)
11994 first_die = die;
11995 else
11996 last_sibling->sibling = die;
11997
11998 last_sibling = die;
11999 }
12000 }
12001
12002 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12003 attributes.
12004 The caller is responsible for filling in the extra attributes
12005 and updating (*DIEP)->num_attrs.
12006 Set DIEP to point to a newly allocated die with its information,
12007 except for its child, sibling, and parent fields.
12008 Set HAS_CHILDREN to tell whether the die has children or not. */
12009
12010 static gdb_byte *
12011 read_full_die_1 (const struct die_reader_specs *reader,
12012 struct die_info **diep, gdb_byte *info_ptr,
12013 int *has_children, int num_extra_attrs)
12014 {
12015 unsigned int abbrev_number, bytes_read, i;
12016 sect_offset offset;
12017 struct abbrev_info *abbrev;
12018 struct die_info *die;
12019 struct dwarf2_cu *cu = reader->cu;
12020 bfd *abfd = reader->abfd;
12021
12022 offset.sect_off = info_ptr - reader->buffer;
12023 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12024 info_ptr += bytes_read;
12025 if (!abbrev_number)
12026 {
12027 *diep = NULL;
12028 *has_children = 0;
12029 return info_ptr;
12030 }
12031
12032 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12033 if (!abbrev)
12034 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12035 abbrev_number,
12036 bfd_get_filename (abfd));
12037
12038 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12039 die->offset = offset;
12040 die->tag = abbrev->tag;
12041 die->abbrev = abbrev_number;
12042
12043 /* Make the result usable.
12044 The caller needs to update num_attrs after adding the extra
12045 attributes. */
12046 die->num_attrs = abbrev->num_attrs;
12047
12048 for (i = 0; i < abbrev->num_attrs; ++i)
12049 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12050 info_ptr);
12051
12052 *diep = die;
12053 *has_children = abbrev->has_children;
12054 return info_ptr;
12055 }
12056
12057 /* Read a die and all its attributes.
12058 Set DIEP to point to a newly allocated die with its information,
12059 except for its child, sibling, and parent fields.
12060 Set HAS_CHILDREN to tell whether the die has children or not. */
12061
12062 static gdb_byte *
12063 read_full_die (const struct die_reader_specs *reader,
12064 struct die_info **diep, gdb_byte *info_ptr,
12065 int *has_children)
12066 {
12067 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12068 }
12069 \f
12070 /* Abbreviation tables.
12071
12072 In DWARF version 2, the description of the debugging information is
12073 stored in a separate .debug_abbrev section. Before we read any
12074 dies from a section we read in all abbreviations and install them
12075 in a hash table. */
12076
12077 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12078
12079 static struct abbrev_info *
12080 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12081 {
12082 struct abbrev_info *abbrev;
12083
12084 abbrev = (struct abbrev_info *)
12085 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12086 memset (abbrev, 0, sizeof (struct abbrev_info));
12087 return abbrev;
12088 }
12089
12090 /* Add an abbreviation to the table. */
12091
12092 static void
12093 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12094 unsigned int abbrev_number,
12095 struct abbrev_info *abbrev)
12096 {
12097 unsigned int hash_number;
12098
12099 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12100 abbrev->next = abbrev_table->abbrevs[hash_number];
12101 abbrev_table->abbrevs[hash_number] = abbrev;
12102 }
12103
12104 /* Look up an abbrev in the table.
12105 Returns NULL if the abbrev is not found. */
12106
12107 static struct abbrev_info *
12108 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12109 unsigned int abbrev_number)
12110 {
12111 unsigned int hash_number;
12112 struct abbrev_info *abbrev;
12113
12114 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12115 abbrev = abbrev_table->abbrevs[hash_number];
12116
12117 while (abbrev)
12118 {
12119 if (abbrev->number == abbrev_number)
12120 return abbrev;
12121 abbrev = abbrev->next;
12122 }
12123 return NULL;
12124 }
12125
12126 /* Read in an abbrev table. */
12127
12128 static struct abbrev_table *
12129 abbrev_table_read_table (struct dwarf2_section_info *section,
12130 sect_offset offset)
12131 {
12132 struct objfile *objfile = dwarf2_per_objfile->objfile;
12133 bfd *abfd = section->asection->owner;
12134 struct abbrev_table *abbrev_table;
12135 gdb_byte *abbrev_ptr;
12136 struct abbrev_info *cur_abbrev;
12137 unsigned int abbrev_number, bytes_read, abbrev_name;
12138 unsigned int abbrev_form;
12139 struct attr_abbrev *cur_attrs;
12140 unsigned int allocated_attrs;
12141
12142 abbrev_table = XMALLOC (struct abbrev_table);
12143 abbrev_table->offset = offset;
12144 obstack_init (&abbrev_table->abbrev_obstack);
12145 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12146 (ABBREV_HASH_SIZE
12147 * sizeof (struct abbrev_info *)));
12148 memset (abbrev_table->abbrevs, 0,
12149 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
12150
12151 dwarf2_read_section (objfile, section);
12152 abbrev_ptr = section->buffer + offset.sect_off;
12153 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12154 abbrev_ptr += bytes_read;
12155
12156 allocated_attrs = ATTR_ALLOC_CHUNK;
12157 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
12158
12159 /* Loop until we reach an abbrev number of 0. */
12160 while (abbrev_number)
12161 {
12162 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
12163
12164 /* read in abbrev header */
12165 cur_abbrev->number = abbrev_number;
12166 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12167 abbrev_ptr += bytes_read;
12168 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
12169 abbrev_ptr += 1;
12170
12171 /* now read in declarations */
12172 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12173 abbrev_ptr += bytes_read;
12174 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12175 abbrev_ptr += bytes_read;
12176 while (abbrev_name)
12177 {
12178 if (cur_abbrev->num_attrs == allocated_attrs)
12179 {
12180 allocated_attrs += ATTR_ALLOC_CHUNK;
12181 cur_attrs
12182 = xrealloc (cur_attrs, (allocated_attrs
12183 * sizeof (struct attr_abbrev)));
12184 }
12185
12186 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
12187 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
12188 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12189 abbrev_ptr += bytes_read;
12190 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12191 abbrev_ptr += bytes_read;
12192 }
12193
12194 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
12195 (cur_abbrev->num_attrs
12196 * sizeof (struct attr_abbrev)));
12197 memcpy (cur_abbrev->attrs, cur_attrs,
12198 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
12199
12200 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
12201
12202 /* Get next abbreviation.
12203 Under Irix6 the abbreviations for a compilation unit are not
12204 always properly terminated with an abbrev number of 0.
12205 Exit loop if we encounter an abbreviation which we have
12206 already read (which means we are about to read the abbreviations
12207 for the next compile unit) or if the end of the abbreviation
12208 table is reached. */
12209 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
12210 break;
12211 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12212 abbrev_ptr += bytes_read;
12213 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
12214 break;
12215 }
12216
12217 xfree (cur_attrs);
12218 return abbrev_table;
12219 }
12220
12221 /* Free the resources held by ABBREV_TABLE. */
12222
12223 static void
12224 abbrev_table_free (struct abbrev_table *abbrev_table)
12225 {
12226 obstack_free (&abbrev_table->abbrev_obstack, NULL);
12227 xfree (abbrev_table);
12228 }
12229
12230 /* Same as abbrev_table_free but as a cleanup.
12231 We pass in a pointer to the pointer to the table so that we can
12232 set the pointer to NULL when we're done. It also simplifies
12233 build_type_unit_groups. */
12234
12235 static void
12236 abbrev_table_free_cleanup (void *table_ptr)
12237 {
12238 struct abbrev_table **abbrev_table_ptr = table_ptr;
12239
12240 if (*abbrev_table_ptr != NULL)
12241 abbrev_table_free (*abbrev_table_ptr);
12242 *abbrev_table_ptr = NULL;
12243 }
12244
12245 /* Read the abbrev table for CU from ABBREV_SECTION. */
12246
12247 static void
12248 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
12249 struct dwarf2_section_info *abbrev_section)
12250 {
12251 cu->abbrev_table =
12252 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
12253 }
12254
12255 /* Release the memory used by the abbrev table for a compilation unit. */
12256
12257 static void
12258 dwarf2_free_abbrev_table (void *ptr_to_cu)
12259 {
12260 struct dwarf2_cu *cu = ptr_to_cu;
12261
12262 abbrev_table_free (cu->abbrev_table);
12263 /* Set this to NULL so that we SEGV if we try to read it later,
12264 and also because free_comp_unit verifies this is NULL. */
12265 cu->abbrev_table = NULL;
12266 }
12267 \f
12268 /* Returns nonzero if TAG represents a type that we might generate a partial
12269 symbol for. */
12270
12271 static int
12272 is_type_tag_for_partial (int tag)
12273 {
12274 switch (tag)
12275 {
12276 #if 0
12277 /* Some types that would be reasonable to generate partial symbols for,
12278 that we don't at present. */
12279 case DW_TAG_array_type:
12280 case DW_TAG_file_type:
12281 case DW_TAG_ptr_to_member_type:
12282 case DW_TAG_set_type:
12283 case DW_TAG_string_type:
12284 case DW_TAG_subroutine_type:
12285 #endif
12286 case DW_TAG_base_type:
12287 case DW_TAG_class_type:
12288 case DW_TAG_interface_type:
12289 case DW_TAG_enumeration_type:
12290 case DW_TAG_structure_type:
12291 case DW_TAG_subrange_type:
12292 case DW_TAG_typedef:
12293 case DW_TAG_union_type:
12294 return 1;
12295 default:
12296 return 0;
12297 }
12298 }
12299
12300 /* Load all DIEs that are interesting for partial symbols into memory. */
12301
12302 static struct partial_die_info *
12303 load_partial_dies (const struct die_reader_specs *reader,
12304 gdb_byte *info_ptr, int building_psymtab)
12305 {
12306 struct dwarf2_cu *cu = reader->cu;
12307 struct objfile *objfile = cu->objfile;
12308 struct partial_die_info *part_die;
12309 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
12310 struct abbrev_info *abbrev;
12311 unsigned int bytes_read;
12312 unsigned int load_all = 0;
12313 int nesting_level = 1;
12314
12315 parent_die = NULL;
12316 last_die = NULL;
12317
12318 gdb_assert (cu->per_cu != NULL);
12319 if (cu->per_cu->load_all_dies)
12320 load_all = 1;
12321
12322 cu->partial_dies
12323 = htab_create_alloc_ex (cu->header.length / 12,
12324 partial_die_hash,
12325 partial_die_eq,
12326 NULL,
12327 &cu->comp_unit_obstack,
12328 hashtab_obstack_allocate,
12329 dummy_obstack_deallocate);
12330
12331 part_die = obstack_alloc (&cu->comp_unit_obstack,
12332 sizeof (struct partial_die_info));
12333
12334 while (1)
12335 {
12336 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
12337
12338 /* A NULL abbrev means the end of a series of children. */
12339 if (abbrev == NULL)
12340 {
12341 if (--nesting_level == 0)
12342 {
12343 /* PART_DIE was probably the last thing allocated on the
12344 comp_unit_obstack, so we could call obstack_free
12345 here. We don't do that because the waste is small,
12346 and will be cleaned up when we're done with this
12347 compilation unit. This way, we're also more robust
12348 against other users of the comp_unit_obstack. */
12349 return first_die;
12350 }
12351 info_ptr += bytes_read;
12352 last_die = parent_die;
12353 parent_die = parent_die->die_parent;
12354 continue;
12355 }
12356
12357 /* Check for template arguments. We never save these; if
12358 they're seen, we just mark the parent, and go on our way. */
12359 if (parent_die != NULL
12360 && cu->language == language_cplus
12361 && (abbrev->tag == DW_TAG_template_type_param
12362 || abbrev->tag == DW_TAG_template_value_param))
12363 {
12364 parent_die->has_template_arguments = 1;
12365
12366 if (!load_all)
12367 {
12368 /* We don't need a partial DIE for the template argument. */
12369 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12370 continue;
12371 }
12372 }
12373
12374 /* We only recurse into c++ subprograms looking for template arguments.
12375 Skip their other children. */
12376 if (!load_all
12377 && cu->language == language_cplus
12378 && parent_die != NULL
12379 && parent_die->tag == DW_TAG_subprogram)
12380 {
12381 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12382 continue;
12383 }
12384
12385 /* Check whether this DIE is interesting enough to save. Normally
12386 we would not be interested in members here, but there may be
12387 later variables referencing them via DW_AT_specification (for
12388 static members). */
12389 if (!load_all
12390 && !is_type_tag_for_partial (abbrev->tag)
12391 && abbrev->tag != DW_TAG_constant
12392 && abbrev->tag != DW_TAG_enumerator
12393 && abbrev->tag != DW_TAG_subprogram
12394 && abbrev->tag != DW_TAG_lexical_block
12395 && abbrev->tag != DW_TAG_variable
12396 && abbrev->tag != DW_TAG_namespace
12397 && abbrev->tag != DW_TAG_module
12398 && abbrev->tag != DW_TAG_member
12399 && abbrev->tag != DW_TAG_imported_unit)
12400 {
12401 /* Otherwise we skip to the next sibling, if any. */
12402 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12403 continue;
12404 }
12405
12406 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
12407 info_ptr);
12408
12409 /* This two-pass algorithm for processing partial symbols has a
12410 high cost in cache pressure. Thus, handle some simple cases
12411 here which cover the majority of C partial symbols. DIEs
12412 which neither have specification tags in them, nor could have
12413 specification tags elsewhere pointing at them, can simply be
12414 processed and discarded.
12415
12416 This segment is also optional; scan_partial_symbols and
12417 add_partial_symbol will handle these DIEs if we chain
12418 them in normally. When compilers which do not emit large
12419 quantities of duplicate debug information are more common,
12420 this code can probably be removed. */
12421
12422 /* Any complete simple types at the top level (pretty much all
12423 of them, for a language without namespaces), can be processed
12424 directly. */
12425 if (parent_die == NULL
12426 && part_die->has_specification == 0
12427 && part_die->is_declaration == 0
12428 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
12429 || part_die->tag == DW_TAG_base_type
12430 || part_die->tag == DW_TAG_subrange_type))
12431 {
12432 if (building_psymtab && part_die->name != NULL)
12433 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12434 VAR_DOMAIN, LOC_TYPEDEF,
12435 &objfile->static_psymbols,
12436 0, (CORE_ADDR) 0, cu->language, objfile);
12437 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12438 continue;
12439 }
12440
12441 /* The exception for DW_TAG_typedef with has_children above is
12442 a workaround of GCC PR debug/47510. In the case of this complaint
12443 type_name_no_tag_or_error will error on such types later.
12444
12445 GDB skipped children of DW_TAG_typedef by the shortcut above and then
12446 it could not find the child DIEs referenced later, this is checked
12447 above. In correct DWARF DW_TAG_typedef should have no children. */
12448
12449 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
12450 complaint (&symfile_complaints,
12451 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
12452 "- DIE at 0x%x [in module %s]"),
12453 part_die->offset.sect_off, objfile->name);
12454
12455 /* If we're at the second level, and we're an enumerator, and
12456 our parent has no specification (meaning possibly lives in a
12457 namespace elsewhere), then we can add the partial symbol now
12458 instead of queueing it. */
12459 if (part_die->tag == DW_TAG_enumerator
12460 && parent_die != NULL
12461 && parent_die->die_parent == NULL
12462 && parent_die->tag == DW_TAG_enumeration_type
12463 && parent_die->has_specification == 0)
12464 {
12465 if (part_die->name == NULL)
12466 complaint (&symfile_complaints,
12467 _("malformed enumerator DIE ignored"));
12468 else if (building_psymtab)
12469 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12470 VAR_DOMAIN, LOC_CONST,
12471 (cu->language == language_cplus
12472 || cu->language == language_java)
12473 ? &objfile->global_psymbols
12474 : &objfile->static_psymbols,
12475 0, (CORE_ADDR) 0, cu->language, objfile);
12476
12477 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12478 continue;
12479 }
12480
12481 /* We'll save this DIE so link it in. */
12482 part_die->die_parent = parent_die;
12483 part_die->die_sibling = NULL;
12484 part_die->die_child = NULL;
12485
12486 if (last_die && last_die == parent_die)
12487 last_die->die_child = part_die;
12488 else if (last_die)
12489 last_die->die_sibling = part_die;
12490
12491 last_die = part_die;
12492
12493 if (first_die == NULL)
12494 first_die = part_die;
12495
12496 /* Maybe add the DIE to the hash table. Not all DIEs that we
12497 find interesting need to be in the hash table, because we
12498 also have the parent/sibling/child chains; only those that we
12499 might refer to by offset later during partial symbol reading.
12500
12501 For now this means things that might have be the target of a
12502 DW_AT_specification, DW_AT_abstract_origin, or
12503 DW_AT_extension. DW_AT_extension will refer only to
12504 namespaces; DW_AT_abstract_origin refers to functions (and
12505 many things under the function DIE, but we do not recurse
12506 into function DIEs during partial symbol reading) and
12507 possibly variables as well; DW_AT_specification refers to
12508 declarations. Declarations ought to have the DW_AT_declaration
12509 flag. It happens that GCC forgets to put it in sometimes, but
12510 only for functions, not for types.
12511
12512 Adding more things than necessary to the hash table is harmless
12513 except for the performance cost. Adding too few will result in
12514 wasted time in find_partial_die, when we reread the compilation
12515 unit with load_all_dies set. */
12516
12517 if (load_all
12518 || abbrev->tag == DW_TAG_constant
12519 || abbrev->tag == DW_TAG_subprogram
12520 || abbrev->tag == DW_TAG_variable
12521 || abbrev->tag == DW_TAG_namespace
12522 || part_die->is_declaration)
12523 {
12524 void **slot;
12525
12526 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
12527 part_die->offset.sect_off, INSERT);
12528 *slot = part_die;
12529 }
12530
12531 part_die = obstack_alloc (&cu->comp_unit_obstack,
12532 sizeof (struct partial_die_info));
12533
12534 /* For some DIEs we want to follow their children (if any). For C
12535 we have no reason to follow the children of structures; for other
12536 languages we have to, so that we can get at method physnames
12537 to infer fully qualified class names, for DW_AT_specification,
12538 and for C++ template arguments. For C++, we also look one level
12539 inside functions to find template arguments (if the name of the
12540 function does not already contain the template arguments).
12541
12542 For Ada, we need to scan the children of subprograms and lexical
12543 blocks as well because Ada allows the definition of nested
12544 entities that could be interesting for the debugger, such as
12545 nested subprograms for instance. */
12546 if (last_die->has_children
12547 && (load_all
12548 || last_die->tag == DW_TAG_namespace
12549 || last_die->tag == DW_TAG_module
12550 || last_die->tag == DW_TAG_enumeration_type
12551 || (cu->language == language_cplus
12552 && last_die->tag == DW_TAG_subprogram
12553 && (last_die->name == NULL
12554 || strchr (last_die->name, '<') == NULL))
12555 || (cu->language != language_c
12556 && (last_die->tag == DW_TAG_class_type
12557 || last_die->tag == DW_TAG_interface_type
12558 || last_die->tag == DW_TAG_structure_type
12559 || last_die->tag == DW_TAG_union_type))
12560 || (cu->language == language_ada
12561 && (last_die->tag == DW_TAG_subprogram
12562 || last_die->tag == DW_TAG_lexical_block))))
12563 {
12564 nesting_level++;
12565 parent_die = last_die;
12566 continue;
12567 }
12568
12569 /* Otherwise we skip to the next sibling, if any. */
12570 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
12571
12572 /* Back to the top, do it again. */
12573 }
12574 }
12575
12576 /* Read a minimal amount of information into the minimal die structure. */
12577
12578 static gdb_byte *
12579 read_partial_die (const struct die_reader_specs *reader,
12580 struct partial_die_info *part_die,
12581 struct abbrev_info *abbrev, unsigned int abbrev_len,
12582 gdb_byte *info_ptr)
12583 {
12584 struct dwarf2_cu *cu = reader->cu;
12585 struct objfile *objfile = cu->objfile;
12586 gdb_byte *buffer = reader->buffer;
12587 unsigned int i;
12588 struct attribute attr;
12589 int has_low_pc_attr = 0;
12590 int has_high_pc_attr = 0;
12591 int high_pc_relative = 0;
12592
12593 memset (part_die, 0, sizeof (struct partial_die_info));
12594
12595 part_die->offset.sect_off = info_ptr - buffer;
12596
12597 info_ptr += abbrev_len;
12598
12599 if (abbrev == NULL)
12600 return info_ptr;
12601
12602 part_die->tag = abbrev->tag;
12603 part_die->has_children = abbrev->has_children;
12604
12605 for (i = 0; i < abbrev->num_attrs; ++i)
12606 {
12607 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
12608
12609 /* Store the data if it is of an attribute we want to keep in a
12610 partial symbol table. */
12611 switch (attr.name)
12612 {
12613 case DW_AT_name:
12614 switch (part_die->tag)
12615 {
12616 case DW_TAG_compile_unit:
12617 case DW_TAG_partial_unit:
12618 case DW_TAG_type_unit:
12619 /* Compilation units have a DW_AT_name that is a filename, not
12620 a source language identifier. */
12621 case DW_TAG_enumeration_type:
12622 case DW_TAG_enumerator:
12623 /* These tags always have simple identifiers already; no need
12624 to canonicalize them. */
12625 part_die->name = DW_STRING (&attr);
12626 break;
12627 default:
12628 part_die->name
12629 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
12630 &objfile->objfile_obstack);
12631 break;
12632 }
12633 break;
12634 case DW_AT_linkage_name:
12635 case DW_AT_MIPS_linkage_name:
12636 /* Note that both forms of linkage name might appear. We
12637 assume they will be the same, and we only store the last
12638 one we see. */
12639 if (cu->language == language_ada)
12640 part_die->name = DW_STRING (&attr);
12641 part_die->linkage_name = DW_STRING (&attr);
12642 break;
12643 case DW_AT_low_pc:
12644 has_low_pc_attr = 1;
12645 part_die->lowpc = DW_ADDR (&attr);
12646 break;
12647 case DW_AT_high_pc:
12648 has_high_pc_attr = 1;
12649 if (attr.form == DW_FORM_addr
12650 || attr.form == DW_FORM_GNU_addr_index)
12651 part_die->highpc = DW_ADDR (&attr);
12652 else
12653 {
12654 high_pc_relative = 1;
12655 part_die->highpc = DW_UNSND (&attr);
12656 }
12657 break;
12658 case DW_AT_location:
12659 /* Support the .debug_loc offsets. */
12660 if (attr_form_is_block (&attr))
12661 {
12662 part_die->d.locdesc = DW_BLOCK (&attr);
12663 }
12664 else if (attr_form_is_section_offset (&attr))
12665 {
12666 dwarf2_complex_location_expr_complaint ();
12667 }
12668 else
12669 {
12670 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12671 "partial symbol information");
12672 }
12673 break;
12674 case DW_AT_external:
12675 part_die->is_external = DW_UNSND (&attr);
12676 break;
12677 case DW_AT_declaration:
12678 part_die->is_declaration = DW_UNSND (&attr);
12679 break;
12680 case DW_AT_type:
12681 part_die->has_type = 1;
12682 break;
12683 case DW_AT_abstract_origin:
12684 case DW_AT_specification:
12685 case DW_AT_extension:
12686 part_die->has_specification = 1;
12687 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
12688 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
12689 || cu->per_cu->is_dwz);
12690 break;
12691 case DW_AT_sibling:
12692 /* Ignore absolute siblings, they might point outside of
12693 the current compile unit. */
12694 if (attr.form == DW_FORM_ref_addr)
12695 complaint (&symfile_complaints,
12696 _("ignoring absolute DW_AT_sibling"));
12697 else
12698 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
12699 break;
12700 case DW_AT_byte_size:
12701 part_die->has_byte_size = 1;
12702 break;
12703 case DW_AT_calling_convention:
12704 /* DWARF doesn't provide a way to identify a program's source-level
12705 entry point. DW_AT_calling_convention attributes are only meant
12706 to describe functions' calling conventions.
12707
12708 However, because it's a necessary piece of information in
12709 Fortran, and because DW_CC_program is the only piece of debugging
12710 information whose definition refers to a 'main program' at all,
12711 several compilers have begun marking Fortran main programs with
12712 DW_CC_program --- even when those functions use the standard
12713 calling conventions.
12714
12715 So until DWARF specifies a way to provide this information and
12716 compilers pick up the new representation, we'll support this
12717 practice. */
12718 if (DW_UNSND (&attr) == DW_CC_program
12719 && cu->language == language_fortran)
12720 {
12721 set_main_name (part_die->name);
12722
12723 /* As this DIE has a static linkage the name would be difficult
12724 to look up later. */
12725 language_of_main = language_fortran;
12726 }
12727 break;
12728 case DW_AT_inline:
12729 if (DW_UNSND (&attr) == DW_INL_inlined
12730 || DW_UNSND (&attr) == DW_INL_declared_inlined)
12731 part_die->may_be_inlined = 1;
12732 break;
12733
12734 case DW_AT_import:
12735 if (part_die->tag == DW_TAG_imported_unit)
12736 {
12737 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
12738 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
12739 || cu->per_cu->is_dwz);
12740 }
12741 break;
12742
12743 default:
12744 break;
12745 }
12746 }
12747
12748 if (high_pc_relative)
12749 part_die->highpc += part_die->lowpc;
12750
12751 if (has_low_pc_attr && has_high_pc_attr)
12752 {
12753 /* When using the GNU linker, .gnu.linkonce. sections are used to
12754 eliminate duplicate copies of functions and vtables and such.
12755 The linker will arbitrarily choose one and discard the others.
12756 The AT_*_pc values for such functions refer to local labels in
12757 these sections. If the section from that file was discarded, the
12758 labels are not in the output, so the relocs get a value of 0.
12759 If this is a discarded function, mark the pc bounds as invalid,
12760 so that GDB will ignore it. */
12761 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
12762 {
12763 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12764
12765 complaint (&symfile_complaints,
12766 _("DW_AT_low_pc %s is zero "
12767 "for DIE at 0x%x [in module %s]"),
12768 paddress (gdbarch, part_die->lowpc),
12769 part_die->offset.sect_off, objfile->name);
12770 }
12771 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
12772 else if (part_die->lowpc >= part_die->highpc)
12773 {
12774 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12775
12776 complaint (&symfile_complaints,
12777 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
12778 "for DIE at 0x%x [in module %s]"),
12779 paddress (gdbarch, part_die->lowpc),
12780 paddress (gdbarch, part_die->highpc),
12781 part_die->offset.sect_off, objfile->name);
12782 }
12783 else
12784 part_die->has_pc_info = 1;
12785 }
12786
12787 return info_ptr;
12788 }
12789
12790 /* Find a cached partial DIE at OFFSET in CU. */
12791
12792 static struct partial_die_info *
12793 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
12794 {
12795 struct partial_die_info *lookup_die = NULL;
12796 struct partial_die_info part_die;
12797
12798 part_die.offset = offset;
12799 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
12800 offset.sect_off);
12801
12802 return lookup_die;
12803 }
12804
12805 /* Find a partial DIE at OFFSET, which may or may not be in CU,
12806 except in the case of .debug_types DIEs which do not reference
12807 outside their CU (they do however referencing other types via
12808 DW_FORM_ref_sig8). */
12809
12810 static struct partial_die_info *
12811 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
12812 {
12813 struct objfile *objfile = cu->objfile;
12814 struct dwarf2_per_cu_data *per_cu = NULL;
12815 struct partial_die_info *pd = NULL;
12816
12817 if (offset_in_dwz == cu->per_cu->is_dwz
12818 && offset_in_cu_p (&cu->header, offset))
12819 {
12820 pd = find_partial_die_in_comp_unit (offset, cu);
12821 if (pd != NULL)
12822 return pd;
12823 /* We missed recording what we needed.
12824 Load all dies and try again. */
12825 per_cu = cu->per_cu;
12826 }
12827 else
12828 {
12829 /* TUs don't reference other CUs/TUs (except via type signatures). */
12830 if (cu->per_cu->is_debug_types)
12831 {
12832 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
12833 " external reference to offset 0x%lx [in module %s].\n"),
12834 (long) cu->header.offset.sect_off, (long) offset.sect_off,
12835 bfd_get_filename (objfile->obfd));
12836 }
12837 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
12838 objfile);
12839
12840 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
12841 load_partial_comp_unit (per_cu);
12842
12843 per_cu->cu->last_used = 0;
12844 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12845 }
12846
12847 /* If we didn't find it, and not all dies have been loaded,
12848 load them all and try again. */
12849
12850 if (pd == NULL && per_cu->load_all_dies == 0)
12851 {
12852 per_cu->load_all_dies = 1;
12853
12854 /* This is nasty. When we reread the DIEs, somewhere up the call chain
12855 THIS_CU->cu may already be in use. So we can't just free it and
12856 replace its DIEs with the ones we read in. Instead, we leave those
12857 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
12858 and clobber THIS_CU->cu->partial_dies with the hash table for the new
12859 set. */
12860 load_partial_comp_unit (per_cu);
12861
12862 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12863 }
12864
12865 if (pd == NULL)
12866 internal_error (__FILE__, __LINE__,
12867 _("could not find partial DIE 0x%x "
12868 "in cache [from module %s]\n"),
12869 offset.sect_off, bfd_get_filename (objfile->obfd));
12870 return pd;
12871 }
12872
12873 /* See if we can figure out if the class lives in a namespace. We do
12874 this by looking for a member function; its demangled name will
12875 contain namespace info, if there is any. */
12876
12877 static void
12878 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
12879 struct dwarf2_cu *cu)
12880 {
12881 /* NOTE: carlton/2003-10-07: Getting the info this way changes
12882 what template types look like, because the demangler
12883 frequently doesn't give the same name as the debug info. We
12884 could fix this by only using the demangled name to get the
12885 prefix (but see comment in read_structure_type). */
12886
12887 struct partial_die_info *real_pdi;
12888 struct partial_die_info *child_pdi;
12889
12890 /* If this DIE (this DIE's specification, if any) has a parent, then
12891 we should not do this. We'll prepend the parent's fully qualified
12892 name when we create the partial symbol. */
12893
12894 real_pdi = struct_pdi;
12895 while (real_pdi->has_specification)
12896 real_pdi = find_partial_die (real_pdi->spec_offset,
12897 real_pdi->spec_is_dwz, cu);
12898
12899 if (real_pdi->die_parent != NULL)
12900 return;
12901
12902 for (child_pdi = struct_pdi->die_child;
12903 child_pdi != NULL;
12904 child_pdi = child_pdi->die_sibling)
12905 {
12906 if (child_pdi->tag == DW_TAG_subprogram
12907 && child_pdi->linkage_name != NULL)
12908 {
12909 char *actual_class_name
12910 = language_class_name_from_physname (cu->language_defn,
12911 child_pdi->linkage_name);
12912 if (actual_class_name != NULL)
12913 {
12914 struct_pdi->name
12915 = obsavestring (actual_class_name,
12916 strlen (actual_class_name),
12917 &cu->objfile->objfile_obstack);
12918 xfree (actual_class_name);
12919 }
12920 break;
12921 }
12922 }
12923 }
12924
12925 /* Adjust PART_DIE before generating a symbol for it. This function
12926 may set the is_external flag or change the DIE's name. */
12927
12928 static void
12929 fixup_partial_die (struct partial_die_info *part_die,
12930 struct dwarf2_cu *cu)
12931 {
12932 /* Once we've fixed up a die, there's no point in doing so again.
12933 This also avoids a memory leak if we were to call
12934 guess_partial_die_structure_name multiple times. */
12935 if (part_die->fixup_called)
12936 return;
12937
12938 /* If we found a reference attribute and the DIE has no name, try
12939 to find a name in the referred to DIE. */
12940
12941 if (part_die->name == NULL && part_die->has_specification)
12942 {
12943 struct partial_die_info *spec_die;
12944
12945 spec_die = find_partial_die (part_die->spec_offset,
12946 part_die->spec_is_dwz, cu);
12947
12948 fixup_partial_die (spec_die, cu);
12949
12950 if (spec_die->name)
12951 {
12952 part_die->name = spec_die->name;
12953
12954 /* Copy DW_AT_external attribute if it is set. */
12955 if (spec_die->is_external)
12956 part_die->is_external = spec_die->is_external;
12957 }
12958 }
12959
12960 /* Set default names for some unnamed DIEs. */
12961
12962 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
12963 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
12964
12965 /* If there is no parent die to provide a namespace, and there are
12966 children, see if we can determine the namespace from their linkage
12967 name. */
12968 if (cu->language == language_cplus
12969 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12970 && part_die->die_parent == NULL
12971 && part_die->has_children
12972 && (part_die->tag == DW_TAG_class_type
12973 || part_die->tag == DW_TAG_structure_type
12974 || part_die->tag == DW_TAG_union_type))
12975 guess_partial_die_structure_name (part_die, cu);
12976
12977 /* GCC might emit a nameless struct or union that has a linkage
12978 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12979 if (part_die->name == NULL
12980 && (part_die->tag == DW_TAG_class_type
12981 || part_die->tag == DW_TAG_interface_type
12982 || part_die->tag == DW_TAG_structure_type
12983 || part_die->tag == DW_TAG_union_type)
12984 && part_die->linkage_name != NULL)
12985 {
12986 char *demangled;
12987
12988 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
12989 if (demangled)
12990 {
12991 const char *base;
12992
12993 /* Strip any leading namespaces/classes, keep only the base name.
12994 DW_AT_name for named DIEs does not contain the prefixes. */
12995 base = strrchr (demangled, ':');
12996 if (base && base > demangled && base[-1] == ':')
12997 base++;
12998 else
12999 base = demangled;
13000
13001 part_die->name = obsavestring (base, strlen (base),
13002 &cu->objfile->objfile_obstack);
13003 xfree (demangled);
13004 }
13005 }
13006
13007 part_die->fixup_called = 1;
13008 }
13009
13010 /* Read an attribute value described by an attribute form. */
13011
13012 static gdb_byte *
13013 read_attribute_value (const struct die_reader_specs *reader,
13014 struct attribute *attr, unsigned form,
13015 gdb_byte *info_ptr)
13016 {
13017 struct dwarf2_cu *cu = reader->cu;
13018 bfd *abfd = reader->abfd;
13019 struct comp_unit_head *cu_header = &cu->header;
13020 unsigned int bytes_read;
13021 struct dwarf_block *blk;
13022
13023 attr->form = form;
13024 switch (form)
13025 {
13026 case DW_FORM_ref_addr:
13027 if (cu->header.version == 2)
13028 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13029 else
13030 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13031 &cu->header, &bytes_read);
13032 info_ptr += bytes_read;
13033 break;
13034 case DW_FORM_GNU_ref_alt:
13035 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13036 info_ptr += bytes_read;
13037 break;
13038 case DW_FORM_addr:
13039 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13040 info_ptr += bytes_read;
13041 break;
13042 case DW_FORM_block2:
13043 blk = dwarf_alloc_block (cu);
13044 blk->size = read_2_bytes (abfd, info_ptr);
13045 info_ptr += 2;
13046 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13047 info_ptr += blk->size;
13048 DW_BLOCK (attr) = blk;
13049 break;
13050 case DW_FORM_block4:
13051 blk = dwarf_alloc_block (cu);
13052 blk->size = read_4_bytes (abfd, info_ptr);
13053 info_ptr += 4;
13054 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13055 info_ptr += blk->size;
13056 DW_BLOCK (attr) = blk;
13057 break;
13058 case DW_FORM_data2:
13059 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13060 info_ptr += 2;
13061 break;
13062 case DW_FORM_data4:
13063 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13064 info_ptr += 4;
13065 break;
13066 case DW_FORM_data8:
13067 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13068 info_ptr += 8;
13069 break;
13070 case DW_FORM_sec_offset:
13071 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13072 info_ptr += bytes_read;
13073 break;
13074 case DW_FORM_string:
13075 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13076 DW_STRING_IS_CANONICAL (attr) = 0;
13077 info_ptr += bytes_read;
13078 break;
13079 case DW_FORM_strp:
13080 if (!cu->per_cu->is_dwz)
13081 {
13082 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13083 &bytes_read);
13084 DW_STRING_IS_CANONICAL (attr) = 0;
13085 info_ptr += bytes_read;
13086 break;
13087 }
13088 /* FALLTHROUGH */
13089 case DW_FORM_GNU_strp_alt:
13090 {
13091 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13092 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13093 &bytes_read);
13094
13095 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13096 DW_STRING_IS_CANONICAL (attr) = 0;
13097 info_ptr += bytes_read;
13098 }
13099 break;
13100 case DW_FORM_exprloc:
13101 case DW_FORM_block:
13102 blk = dwarf_alloc_block (cu);
13103 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13104 info_ptr += bytes_read;
13105 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13106 info_ptr += blk->size;
13107 DW_BLOCK (attr) = blk;
13108 break;
13109 case DW_FORM_block1:
13110 blk = dwarf_alloc_block (cu);
13111 blk->size = read_1_byte (abfd, info_ptr);
13112 info_ptr += 1;
13113 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13114 info_ptr += blk->size;
13115 DW_BLOCK (attr) = blk;
13116 break;
13117 case DW_FORM_data1:
13118 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13119 info_ptr += 1;
13120 break;
13121 case DW_FORM_flag:
13122 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13123 info_ptr += 1;
13124 break;
13125 case DW_FORM_flag_present:
13126 DW_UNSND (attr) = 1;
13127 break;
13128 case DW_FORM_sdata:
13129 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13130 info_ptr += bytes_read;
13131 break;
13132 case DW_FORM_udata:
13133 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13134 info_ptr += bytes_read;
13135 break;
13136 case DW_FORM_ref1:
13137 DW_UNSND (attr) = (cu->header.offset.sect_off
13138 + read_1_byte (abfd, info_ptr));
13139 info_ptr += 1;
13140 break;
13141 case DW_FORM_ref2:
13142 DW_UNSND (attr) = (cu->header.offset.sect_off
13143 + read_2_bytes (abfd, info_ptr));
13144 info_ptr += 2;
13145 break;
13146 case DW_FORM_ref4:
13147 DW_UNSND (attr) = (cu->header.offset.sect_off
13148 + read_4_bytes (abfd, info_ptr));
13149 info_ptr += 4;
13150 break;
13151 case DW_FORM_ref8:
13152 DW_UNSND (attr) = (cu->header.offset.sect_off
13153 + read_8_bytes (abfd, info_ptr));
13154 info_ptr += 8;
13155 break;
13156 case DW_FORM_ref_sig8:
13157 /* Convert the signature to something we can record in DW_UNSND
13158 for later lookup.
13159 NOTE: This is NULL if the type wasn't found. */
13160 DW_SIGNATURED_TYPE (attr) =
13161 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
13162 info_ptr += 8;
13163 break;
13164 case DW_FORM_ref_udata:
13165 DW_UNSND (attr) = (cu->header.offset.sect_off
13166 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
13167 info_ptr += bytes_read;
13168 break;
13169 case DW_FORM_indirect:
13170 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13171 info_ptr += bytes_read;
13172 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
13173 break;
13174 case DW_FORM_GNU_addr_index:
13175 if (reader->dwo_file == NULL)
13176 {
13177 /* For now flag a hard error.
13178 Later we can turn this into a complaint. */
13179 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
13180 dwarf_form_name (form),
13181 bfd_get_filename (abfd));
13182 }
13183 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
13184 info_ptr += bytes_read;
13185 break;
13186 case DW_FORM_GNU_str_index:
13187 if (reader->dwo_file == NULL)
13188 {
13189 /* For now flag a hard error.
13190 Later we can turn this into a complaint if warranted. */
13191 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
13192 dwarf_form_name (form),
13193 bfd_get_filename (abfd));
13194 }
13195 {
13196 ULONGEST str_index =
13197 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13198
13199 DW_STRING (attr) = read_str_index (reader, cu, str_index);
13200 DW_STRING_IS_CANONICAL (attr) = 0;
13201 info_ptr += bytes_read;
13202 }
13203 break;
13204 default:
13205 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
13206 dwarf_form_name (form),
13207 bfd_get_filename (abfd));
13208 }
13209
13210 /* Super hack. */
13211 if (cu->per_cu->is_dwz && is_ref_attr (attr))
13212 attr->form = DW_FORM_GNU_ref_alt;
13213
13214 /* We have seen instances where the compiler tried to emit a byte
13215 size attribute of -1 which ended up being encoded as an unsigned
13216 0xffffffff. Although 0xffffffff is technically a valid size value,
13217 an object of this size seems pretty unlikely so we can relatively
13218 safely treat these cases as if the size attribute was invalid and
13219 treat them as zero by default. */
13220 if (attr->name == DW_AT_byte_size
13221 && form == DW_FORM_data4
13222 && DW_UNSND (attr) >= 0xffffffff)
13223 {
13224 complaint
13225 (&symfile_complaints,
13226 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
13227 hex_string (DW_UNSND (attr)));
13228 DW_UNSND (attr) = 0;
13229 }
13230
13231 return info_ptr;
13232 }
13233
13234 /* Read an attribute described by an abbreviated attribute. */
13235
13236 static gdb_byte *
13237 read_attribute (const struct die_reader_specs *reader,
13238 struct attribute *attr, struct attr_abbrev *abbrev,
13239 gdb_byte *info_ptr)
13240 {
13241 attr->name = abbrev->name;
13242 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
13243 }
13244
13245 /* Read dwarf information from a buffer. */
13246
13247 static unsigned int
13248 read_1_byte (bfd *abfd, gdb_byte *buf)
13249 {
13250 return bfd_get_8 (abfd, buf);
13251 }
13252
13253 static int
13254 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
13255 {
13256 return bfd_get_signed_8 (abfd, buf);
13257 }
13258
13259 static unsigned int
13260 read_2_bytes (bfd *abfd, gdb_byte *buf)
13261 {
13262 return bfd_get_16 (abfd, buf);
13263 }
13264
13265 static int
13266 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
13267 {
13268 return bfd_get_signed_16 (abfd, buf);
13269 }
13270
13271 static unsigned int
13272 read_4_bytes (bfd *abfd, gdb_byte *buf)
13273 {
13274 return bfd_get_32 (abfd, buf);
13275 }
13276
13277 static int
13278 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
13279 {
13280 return bfd_get_signed_32 (abfd, buf);
13281 }
13282
13283 static ULONGEST
13284 read_8_bytes (bfd *abfd, gdb_byte *buf)
13285 {
13286 return bfd_get_64 (abfd, buf);
13287 }
13288
13289 static CORE_ADDR
13290 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
13291 unsigned int *bytes_read)
13292 {
13293 struct comp_unit_head *cu_header = &cu->header;
13294 CORE_ADDR retval = 0;
13295
13296 if (cu_header->signed_addr_p)
13297 {
13298 switch (cu_header->addr_size)
13299 {
13300 case 2:
13301 retval = bfd_get_signed_16 (abfd, buf);
13302 break;
13303 case 4:
13304 retval = bfd_get_signed_32 (abfd, buf);
13305 break;
13306 case 8:
13307 retval = bfd_get_signed_64 (abfd, buf);
13308 break;
13309 default:
13310 internal_error (__FILE__, __LINE__,
13311 _("read_address: bad switch, signed [in module %s]"),
13312 bfd_get_filename (abfd));
13313 }
13314 }
13315 else
13316 {
13317 switch (cu_header->addr_size)
13318 {
13319 case 2:
13320 retval = bfd_get_16 (abfd, buf);
13321 break;
13322 case 4:
13323 retval = bfd_get_32 (abfd, buf);
13324 break;
13325 case 8:
13326 retval = bfd_get_64 (abfd, buf);
13327 break;
13328 default:
13329 internal_error (__FILE__, __LINE__,
13330 _("read_address: bad switch, "
13331 "unsigned [in module %s]"),
13332 bfd_get_filename (abfd));
13333 }
13334 }
13335
13336 *bytes_read = cu_header->addr_size;
13337 return retval;
13338 }
13339
13340 /* Read the initial length from a section. The (draft) DWARF 3
13341 specification allows the initial length to take up either 4 bytes
13342 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
13343 bytes describe the length and all offsets will be 8 bytes in length
13344 instead of 4.
13345
13346 An older, non-standard 64-bit format is also handled by this
13347 function. The older format in question stores the initial length
13348 as an 8-byte quantity without an escape value. Lengths greater
13349 than 2^32 aren't very common which means that the initial 4 bytes
13350 is almost always zero. Since a length value of zero doesn't make
13351 sense for the 32-bit format, this initial zero can be considered to
13352 be an escape value which indicates the presence of the older 64-bit
13353 format. As written, the code can't detect (old format) lengths
13354 greater than 4GB. If it becomes necessary to handle lengths
13355 somewhat larger than 4GB, we could allow other small values (such
13356 as the non-sensical values of 1, 2, and 3) to also be used as
13357 escape values indicating the presence of the old format.
13358
13359 The value returned via bytes_read should be used to increment the
13360 relevant pointer after calling read_initial_length().
13361
13362 [ Note: read_initial_length() and read_offset() are based on the
13363 document entitled "DWARF Debugging Information Format", revision
13364 3, draft 8, dated November 19, 2001. This document was obtained
13365 from:
13366
13367 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
13368
13369 This document is only a draft and is subject to change. (So beware.)
13370
13371 Details regarding the older, non-standard 64-bit format were
13372 determined empirically by examining 64-bit ELF files produced by
13373 the SGI toolchain on an IRIX 6.5 machine.
13374
13375 - Kevin, July 16, 2002
13376 ] */
13377
13378 static LONGEST
13379 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
13380 {
13381 LONGEST length = bfd_get_32 (abfd, buf);
13382
13383 if (length == 0xffffffff)
13384 {
13385 length = bfd_get_64 (abfd, buf + 4);
13386 *bytes_read = 12;
13387 }
13388 else if (length == 0)
13389 {
13390 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
13391 length = bfd_get_64 (abfd, buf);
13392 *bytes_read = 8;
13393 }
13394 else
13395 {
13396 *bytes_read = 4;
13397 }
13398
13399 return length;
13400 }
13401
13402 /* Cover function for read_initial_length.
13403 Returns the length of the object at BUF, and stores the size of the
13404 initial length in *BYTES_READ and stores the size that offsets will be in
13405 *OFFSET_SIZE.
13406 If the initial length size is not equivalent to that specified in
13407 CU_HEADER then issue a complaint.
13408 This is useful when reading non-comp-unit headers. */
13409
13410 static LONGEST
13411 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
13412 const struct comp_unit_head *cu_header,
13413 unsigned int *bytes_read,
13414 unsigned int *offset_size)
13415 {
13416 LONGEST length = read_initial_length (abfd, buf, bytes_read);
13417
13418 gdb_assert (cu_header->initial_length_size == 4
13419 || cu_header->initial_length_size == 8
13420 || cu_header->initial_length_size == 12);
13421
13422 if (cu_header->initial_length_size != *bytes_read)
13423 complaint (&symfile_complaints,
13424 _("intermixed 32-bit and 64-bit DWARF sections"));
13425
13426 *offset_size = (*bytes_read == 4) ? 4 : 8;
13427 return length;
13428 }
13429
13430 /* Read an offset from the data stream. The size of the offset is
13431 given by cu_header->offset_size. */
13432
13433 static LONGEST
13434 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
13435 unsigned int *bytes_read)
13436 {
13437 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
13438
13439 *bytes_read = cu_header->offset_size;
13440 return offset;
13441 }
13442
13443 /* Read an offset from the data stream. */
13444
13445 static LONGEST
13446 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
13447 {
13448 LONGEST retval = 0;
13449
13450 switch (offset_size)
13451 {
13452 case 4:
13453 retval = bfd_get_32 (abfd, buf);
13454 break;
13455 case 8:
13456 retval = bfd_get_64 (abfd, buf);
13457 break;
13458 default:
13459 internal_error (__FILE__, __LINE__,
13460 _("read_offset_1: bad switch [in module %s]"),
13461 bfd_get_filename (abfd));
13462 }
13463
13464 return retval;
13465 }
13466
13467 static gdb_byte *
13468 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
13469 {
13470 /* If the size of a host char is 8 bits, we can return a pointer
13471 to the buffer, otherwise we have to copy the data to a buffer
13472 allocated on the temporary obstack. */
13473 gdb_assert (HOST_CHAR_BIT == 8);
13474 return buf;
13475 }
13476
13477 static char *
13478 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13479 {
13480 /* If the size of a host char is 8 bits, we can return a pointer
13481 to the string, otherwise we have to copy the string to a buffer
13482 allocated on the temporary obstack. */
13483 gdb_assert (HOST_CHAR_BIT == 8);
13484 if (*buf == '\0')
13485 {
13486 *bytes_read_ptr = 1;
13487 return NULL;
13488 }
13489 *bytes_read_ptr = strlen ((char *) buf) + 1;
13490 return (char *) buf;
13491 }
13492
13493 static char *
13494 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
13495 {
13496 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
13497 if (dwarf2_per_objfile->str.buffer == NULL)
13498 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
13499 bfd_get_filename (abfd));
13500 if (str_offset >= dwarf2_per_objfile->str.size)
13501 error (_("DW_FORM_strp pointing outside of "
13502 ".debug_str section [in module %s]"),
13503 bfd_get_filename (abfd));
13504 gdb_assert (HOST_CHAR_BIT == 8);
13505 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
13506 return NULL;
13507 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
13508 }
13509
13510 /* Read a string at offset STR_OFFSET in the .debug_str section from
13511 the .dwz file DWZ. Throw an error if the offset is too large. If
13512 the string consists of a single NUL byte, return NULL; otherwise
13513 return a pointer to the string. */
13514
13515 static char *
13516 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
13517 {
13518 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
13519
13520 if (dwz->str.buffer == NULL)
13521 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
13522 "section [in module %s]"),
13523 bfd_get_filename (dwz->dwz_bfd));
13524 if (str_offset >= dwz->str.size)
13525 error (_("DW_FORM_GNU_strp_alt pointing outside of "
13526 ".debug_str section [in module %s]"),
13527 bfd_get_filename (dwz->dwz_bfd));
13528 gdb_assert (HOST_CHAR_BIT == 8);
13529 if (dwz->str.buffer[str_offset] == '\0')
13530 return NULL;
13531 return (char *) (dwz->str.buffer + str_offset);
13532 }
13533
13534 static char *
13535 read_indirect_string (bfd *abfd, gdb_byte *buf,
13536 const struct comp_unit_head *cu_header,
13537 unsigned int *bytes_read_ptr)
13538 {
13539 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
13540
13541 return read_indirect_string_at_offset (abfd, str_offset);
13542 }
13543
13544 static ULONGEST
13545 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13546 {
13547 ULONGEST result;
13548 unsigned int num_read;
13549 int i, shift;
13550 unsigned char byte;
13551
13552 result = 0;
13553 shift = 0;
13554 num_read = 0;
13555 i = 0;
13556 while (1)
13557 {
13558 byte = bfd_get_8 (abfd, buf);
13559 buf++;
13560 num_read++;
13561 result |= ((ULONGEST) (byte & 127) << shift);
13562 if ((byte & 128) == 0)
13563 {
13564 break;
13565 }
13566 shift += 7;
13567 }
13568 *bytes_read_ptr = num_read;
13569 return result;
13570 }
13571
13572 static LONGEST
13573 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13574 {
13575 LONGEST result;
13576 int i, shift, num_read;
13577 unsigned char byte;
13578
13579 result = 0;
13580 shift = 0;
13581 num_read = 0;
13582 i = 0;
13583 while (1)
13584 {
13585 byte = bfd_get_8 (abfd, buf);
13586 buf++;
13587 num_read++;
13588 result |= ((LONGEST) (byte & 127) << shift);
13589 shift += 7;
13590 if ((byte & 128) == 0)
13591 {
13592 break;
13593 }
13594 }
13595 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
13596 result |= -(((LONGEST) 1) << shift);
13597 *bytes_read_ptr = num_read;
13598 return result;
13599 }
13600
13601 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
13602 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
13603 ADDR_SIZE is the size of addresses from the CU header. */
13604
13605 static CORE_ADDR
13606 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
13607 {
13608 struct objfile *objfile = dwarf2_per_objfile->objfile;
13609 bfd *abfd = objfile->obfd;
13610 const gdb_byte *info_ptr;
13611
13612 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
13613 if (dwarf2_per_objfile->addr.buffer == NULL)
13614 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
13615 objfile->name);
13616 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
13617 error (_("DW_FORM_addr_index pointing outside of "
13618 ".debug_addr section [in module %s]"),
13619 objfile->name);
13620 info_ptr = (dwarf2_per_objfile->addr.buffer
13621 + addr_base + addr_index * addr_size);
13622 if (addr_size == 4)
13623 return bfd_get_32 (abfd, info_ptr);
13624 else
13625 return bfd_get_64 (abfd, info_ptr);
13626 }
13627
13628 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
13629
13630 static CORE_ADDR
13631 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
13632 {
13633 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
13634 }
13635
13636 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
13637
13638 static CORE_ADDR
13639 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
13640 unsigned int *bytes_read)
13641 {
13642 bfd *abfd = cu->objfile->obfd;
13643 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
13644
13645 return read_addr_index (cu, addr_index);
13646 }
13647
13648 /* Data structure to pass results from dwarf2_read_addr_index_reader
13649 back to dwarf2_read_addr_index. */
13650
13651 struct dwarf2_read_addr_index_data
13652 {
13653 ULONGEST addr_base;
13654 int addr_size;
13655 };
13656
13657 /* die_reader_func for dwarf2_read_addr_index. */
13658
13659 static void
13660 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
13661 gdb_byte *info_ptr,
13662 struct die_info *comp_unit_die,
13663 int has_children,
13664 void *data)
13665 {
13666 struct dwarf2_cu *cu = reader->cu;
13667 struct dwarf2_read_addr_index_data *aidata =
13668 (struct dwarf2_read_addr_index_data *) data;
13669
13670 aidata->addr_base = cu->addr_base;
13671 aidata->addr_size = cu->header.addr_size;
13672 }
13673
13674 /* Given an index in .debug_addr, fetch the value.
13675 NOTE: This can be called during dwarf expression evaluation,
13676 long after the debug information has been read, and thus per_cu->cu
13677 may no longer exist. */
13678
13679 CORE_ADDR
13680 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
13681 unsigned int addr_index)
13682 {
13683 struct objfile *objfile = per_cu->objfile;
13684 struct dwarf2_cu *cu = per_cu->cu;
13685 ULONGEST addr_base;
13686 int addr_size;
13687
13688 /* This is intended to be called from outside this file. */
13689 dw2_setup (objfile);
13690
13691 /* We need addr_base and addr_size.
13692 If we don't have PER_CU->cu, we have to get it.
13693 Nasty, but the alternative is storing the needed info in PER_CU,
13694 which at this point doesn't seem justified: it's not clear how frequently
13695 it would get used and it would increase the size of every PER_CU.
13696 Entry points like dwarf2_per_cu_addr_size do a similar thing
13697 so we're not in uncharted territory here.
13698 Alas we need to be a bit more complicated as addr_base is contained
13699 in the DIE.
13700
13701 We don't need to read the entire CU(/TU).
13702 We just need the header and top level die.
13703 IWBN to use the aging mechanism to let us lazily later discard the CU.
13704 See however init_cutu_and_read_dies_simple. */
13705
13706 if (cu != NULL)
13707 {
13708 addr_base = cu->addr_base;
13709 addr_size = cu->header.addr_size;
13710 }
13711 else
13712 {
13713 struct dwarf2_read_addr_index_data aidata;
13714
13715 init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader,
13716 &aidata);
13717 addr_base = aidata.addr_base;
13718 addr_size = aidata.addr_size;
13719 }
13720
13721 return read_addr_index_1 (addr_index, addr_base, addr_size);
13722 }
13723
13724 /* Given a DW_AT_str_index, fetch the string. */
13725
13726 static char *
13727 read_str_index (const struct die_reader_specs *reader,
13728 struct dwarf2_cu *cu, ULONGEST str_index)
13729 {
13730 struct objfile *objfile = dwarf2_per_objfile->objfile;
13731 const char *dwo_name = objfile->name;
13732 bfd *abfd = objfile->obfd;
13733 struct dwo_sections *sections = &reader->dwo_file->sections;
13734 gdb_byte *info_ptr;
13735 ULONGEST str_offset;
13736
13737 dwarf2_read_section (objfile, &sections->str);
13738 dwarf2_read_section (objfile, &sections->str_offsets);
13739 if (sections->str.buffer == NULL)
13740 error (_("DW_FORM_str_index used without .debug_str.dwo section"
13741 " in CU at offset 0x%lx [in module %s]"),
13742 (long) cu->header.offset.sect_off, dwo_name);
13743 if (sections->str_offsets.buffer == NULL)
13744 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
13745 " in CU at offset 0x%lx [in module %s]"),
13746 (long) cu->header.offset.sect_off, dwo_name);
13747 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
13748 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
13749 " section in CU at offset 0x%lx [in module %s]"),
13750 (long) cu->header.offset.sect_off, dwo_name);
13751 info_ptr = (sections->str_offsets.buffer
13752 + str_index * cu->header.offset_size);
13753 if (cu->header.offset_size == 4)
13754 str_offset = bfd_get_32 (abfd, info_ptr);
13755 else
13756 str_offset = bfd_get_64 (abfd, info_ptr);
13757 if (str_offset >= sections->str.size)
13758 error (_("Offset from DW_FORM_str_index pointing outside of"
13759 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
13760 (long) cu->header.offset.sect_off, dwo_name);
13761 return (char *) (sections->str.buffer + str_offset);
13762 }
13763
13764 /* Return the length of an LEB128 number in BUF. */
13765
13766 static int
13767 leb128_size (const gdb_byte *buf)
13768 {
13769 const gdb_byte *begin = buf;
13770 gdb_byte byte;
13771
13772 while (1)
13773 {
13774 byte = *buf++;
13775 if ((byte & 128) == 0)
13776 return buf - begin;
13777 }
13778 }
13779
13780 static void
13781 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
13782 {
13783 switch (lang)
13784 {
13785 case DW_LANG_C89:
13786 case DW_LANG_C99:
13787 case DW_LANG_C:
13788 cu->language = language_c;
13789 break;
13790 case DW_LANG_C_plus_plus:
13791 cu->language = language_cplus;
13792 break;
13793 case DW_LANG_D:
13794 cu->language = language_d;
13795 break;
13796 case DW_LANG_Fortran77:
13797 case DW_LANG_Fortran90:
13798 case DW_LANG_Fortran95:
13799 cu->language = language_fortran;
13800 break;
13801 case DW_LANG_Go:
13802 cu->language = language_go;
13803 break;
13804 case DW_LANG_Mips_Assembler:
13805 cu->language = language_asm;
13806 break;
13807 case DW_LANG_Java:
13808 cu->language = language_java;
13809 break;
13810 case DW_LANG_Ada83:
13811 case DW_LANG_Ada95:
13812 cu->language = language_ada;
13813 break;
13814 case DW_LANG_Modula2:
13815 cu->language = language_m2;
13816 break;
13817 case DW_LANG_Pascal83:
13818 cu->language = language_pascal;
13819 break;
13820 case DW_LANG_ObjC:
13821 cu->language = language_objc;
13822 break;
13823 case DW_LANG_Cobol74:
13824 case DW_LANG_Cobol85:
13825 default:
13826 cu->language = language_minimal;
13827 break;
13828 }
13829 cu->language_defn = language_def (cu->language);
13830 }
13831
13832 /* Return the named attribute or NULL if not there. */
13833
13834 static struct attribute *
13835 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
13836 {
13837 for (;;)
13838 {
13839 unsigned int i;
13840 struct attribute *spec = NULL;
13841
13842 for (i = 0; i < die->num_attrs; ++i)
13843 {
13844 if (die->attrs[i].name == name)
13845 return &die->attrs[i];
13846 if (die->attrs[i].name == DW_AT_specification
13847 || die->attrs[i].name == DW_AT_abstract_origin)
13848 spec = &die->attrs[i];
13849 }
13850
13851 if (!spec)
13852 break;
13853
13854 die = follow_die_ref (die, spec, &cu);
13855 }
13856
13857 return NULL;
13858 }
13859
13860 /* Return the named attribute or NULL if not there,
13861 but do not follow DW_AT_specification, etc.
13862 This is for use in contexts where we're reading .debug_types dies.
13863 Following DW_AT_specification, DW_AT_abstract_origin will take us
13864 back up the chain, and we want to go down. */
13865
13866 static struct attribute *
13867 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
13868 {
13869 unsigned int i;
13870
13871 for (i = 0; i < die->num_attrs; ++i)
13872 if (die->attrs[i].name == name)
13873 return &die->attrs[i];
13874
13875 return NULL;
13876 }
13877
13878 /* Return non-zero iff the attribute NAME is defined for the given DIE,
13879 and holds a non-zero value. This function should only be used for
13880 DW_FORM_flag or DW_FORM_flag_present attributes. */
13881
13882 static int
13883 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
13884 {
13885 struct attribute *attr = dwarf2_attr (die, name, cu);
13886
13887 return (attr && DW_UNSND (attr));
13888 }
13889
13890 static int
13891 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
13892 {
13893 /* A DIE is a declaration if it has a DW_AT_declaration attribute
13894 which value is non-zero. However, we have to be careful with
13895 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
13896 (via dwarf2_flag_true_p) follows this attribute. So we may
13897 end up accidently finding a declaration attribute that belongs
13898 to a different DIE referenced by the specification attribute,
13899 even though the given DIE does not have a declaration attribute. */
13900 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
13901 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
13902 }
13903
13904 /* Return the die giving the specification for DIE, if there is
13905 one. *SPEC_CU is the CU containing DIE on input, and the CU
13906 containing the return value on output. If there is no
13907 specification, but there is an abstract origin, that is
13908 returned. */
13909
13910 static struct die_info *
13911 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
13912 {
13913 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
13914 *spec_cu);
13915
13916 if (spec_attr == NULL)
13917 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
13918
13919 if (spec_attr == NULL)
13920 return NULL;
13921 else
13922 return follow_die_ref (die, spec_attr, spec_cu);
13923 }
13924
13925 /* Free the line_header structure *LH, and any arrays and strings it
13926 refers to.
13927 NOTE: This is also used as a "cleanup" function. */
13928
13929 static void
13930 free_line_header (struct line_header *lh)
13931 {
13932 if (lh->standard_opcode_lengths)
13933 xfree (lh->standard_opcode_lengths);
13934
13935 /* Remember that all the lh->file_names[i].name pointers are
13936 pointers into debug_line_buffer, and don't need to be freed. */
13937 if (lh->file_names)
13938 xfree (lh->file_names);
13939
13940 /* Similarly for the include directory names. */
13941 if (lh->include_dirs)
13942 xfree (lh->include_dirs);
13943
13944 xfree (lh);
13945 }
13946
13947 /* Add an entry to LH's include directory table. */
13948
13949 static void
13950 add_include_dir (struct line_header *lh, char *include_dir)
13951 {
13952 /* Grow the array if necessary. */
13953 if (lh->include_dirs_size == 0)
13954 {
13955 lh->include_dirs_size = 1; /* for testing */
13956 lh->include_dirs = xmalloc (lh->include_dirs_size
13957 * sizeof (*lh->include_dirs));
13958 }
13959 else if (lh->num_include_dirs >= lh->include_dirs_size)
13960 {
13961 lh->include_dirs_size *= 2;
13962 lh->include_dirs = xrealloc (lh->include_dirs,
13963 (lh->include_dirs_size
13964 * sizeof (*lh->include_dirs)));
13965 }
13966
13967 lh->include_dirs[lh->num_include_dirs++] = include_dir;
13968 }
13969
13970 /* Add an entry to LH's file name table. */
13971
13972 static void
13973 add_file_name (struct line_header *lh,
13974 char *name,
13975 unsigned int dir_index,
13976 unsigned int mod_time,
13977 unsigned int length)
13978 {
13979 struct file_entry *fe;
13980
13981 /* Grow the array if necessary. */
13982 if (lh->file_names_size == 0)
13983 {
13984 lh->file_names_size = 1; /* for testing */
13985 lh->file_names = xmalloc (lh->file_names_size
13986 * sizeof (*lh->file_names));
13987 }
13988 else if (lh->num_file_names >= lh->file_names_size)
13989 {
13990 lh->file_names_size *= 2;
13991 lh->file_names = xrealloc (lh->file_names,
13992 (lh->file_names_size
13993 * sizeof (*lh->file_names)));
13994 }
13995
13996 fe = &lh->file_names[lh->num_file_names++];
13997 fe->name = name;
13998 fe->dir_index = dir_index;
13999 fe->mod_time = mod_time;
14000 fe->length = length;
14001 fe->included_p = 0;
14002 fe->symtab = NULL;
14003 }
14004
14005 /* A convenience function to find the proper .debug_line section for a
14006 CU. */
14007
14008 static struct dwarf2_section_info *
14009 get_debug_line_section (struct dwarf2_cu *cu)
14010 {
14011 struct dwarf2_section_info *section;
14012
14013 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14014 DWO file. */
14015 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14016 section = &cu->dwo_unit->dwo_file->sections.line;
14017 else if (cu->per_cu->is_dwz)
14018 {
14019 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14020
14021 section = &dwz->line;
14022 }
14023 else
14024 section = &dwarf2_per_objfile->line;
14025
14026 return section;
14027 }
14028
14029 /* Read the statement program header starting at OFFSET in
14030 .debug_line, or .debug_line.dwo. Return a pointer
14031 to a struct line_header, allocated using xmalloc.
14032
14033 NOTE: the strings in the include directory and file name tables of
14034 the returned object point into the dwarf line section buffer,
14035 and must not be freed. */
14036
14037 static struct line_header *
14038 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14039 {
14040 struct cleanup *back_to;
14041 struct line_header *lh;
14042 gdb_byte *line_ptr;
14043 unsigned int bytes_read, offset_size;
14044 int i;
14045 char *cur_dir, *cur_file;
14046 struct dwarf2_section_info *section;
14047 bfd *abfd;
14048
14049 section = get_debug_line_section (cu);
14050 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14051 if (section->buffer == NULL)
14052 {
14053 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14054 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14055 else
14056 complaint (&symfile_complaints, _("missing .debug_line section"));
14057 return 0;
14058 }
14059
14060 /* We can't do this until we know the section is non-empty.
14061 Only then do we know we have such a section. */
14062 abfd = section->asection->owner;
14063
14064 /* Make sure that at least there's room for the total_length field.
14065 That could be 12 bytes long, but we're just going to fudge that. */
14066 if (offset + 4 >= section->size)
14067 {
14068 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14069 return 0;
14070 }
14071
14072 lh = xmalloc (sizeof (*lh));
14073 memset (lh, 0, sizeof (*lh));
14074 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14075 (void *) lh);
14076
14077 line_ptr = section->buffer + offset;
14078
14079 /* Read in the header. */
14080 lh->total_length =
14081 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14082 &bytes_read, &offset_size);
14083 line_ptr += bytes_read;
14084 if (line_ptr + lh->total_length > (section->buffer + section->size))
14085 {
14086 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14087 return 0;
14088 }
14089 lh->statement_program_end = line_ptr + lh->total_length;
14090 lh->version = read_2_bytes (abfd, line_ptr);
14091 line_ptr += 2;
14092 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14093 line_ptr += offset_size;
14094 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14095 line_ptr += 1;
14096 if (lh->version >= 4)
14097 {
14098 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14099 line_ptr += 1;
14100 }
14101 else
14102 lh->maximum_ops_per_instruction = 1;
14103
14104 if (lh->maximum_ops_per_instruction == 0)
14105 {
14106 lh->maximum_ops_per_instruction = 1;
14107 complaint (&symfile_complaints,
14108 _("invalid maximum_ops_per_instruction "
14109 "in `.debug_line' section"));
14110 }
14111
14112 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14113 line_ptr += 1;
14114 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14115 line_ptr += 1;
14116 lh->line_range = read_1_byte (abfd, line_ptr);
14117 line_ptr += 1;
14118 lh->opcode_base = read_1_byte (abfd, line_ptr);
14119 line_ptr += 1;
14120 lh->standard_opcode_lengths
14121 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
14122
14123 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14124 for (i = 1; i < lh->opcode_base; ++i)
14125 {
14126 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14127 line_ptr += 1;
14128 }
14129
14130 /* Read directory table. */
14131 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14132 {
14133 line_ptr += bytes_read;
14134 add_include_dir (lh, cur_dir);
14135 }
14136 line_ptr += bytes_read;
14137
14138 /* Read file name table. */
14139 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14140 {
14141 unsigned int dir_index, mod_time, length;
14142
14143 line_ptr += bytes_read;
14144 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14145 line_ptr += bytes_read;
14146 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14147 line_ptr += bytes_read;
14148 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14149 line_ptr += bytes_read;
14150
14151 add_file_name (lh, cur_file, dir_index, mod_time, length);
14152 }
14153 line_ptr += bytes_read;
14154 lh->statement_program_start = line_ptr;
14155
14156 if (line_ptr > (section->buffer + section->size))
14157 complaint (&symfile_complaints,
14158 _("line number info header doesn't "
14159 "fit in `.debug_line' section"));
14160
14161 discard_cleanups (back_to);
14162 return lh;
14163 }
14164
14165 /* Subroutine of dwarf_decode_lines to simplify it.
14166 Return the file name of the psymtab for included file FILE_INDEX
14167 in line header LH of PST.
14168 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14169 If space for the result is malloc'd, it will be freed by a cleanup.
14170 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
14171
14172 static char *
14173 psymtab_include_file_name (const struct line_header *lh, int file_index,
14174 const struct partial_symtab *pst,
14175 const char *comp_dir)
14176 {
14177 const struct file_entry fe = lh->file_names [file_index];
14178 char *include_name = fe.name;
14179 char *include_name_to_compare = include_name;
14180 char *dir_name = NULL;
14181 const char *pst_filename;
14182 char *copied_name = NULL;
14183 int file_is_pst;
14184
14185 if (fe.dir_index)
14186 dir_name = lh->include_dirs[fe.dir_index - 1];
14187
14188 if (!IS_ABSOLUTE_PATH (include_name)
14189 && (dir_name != NULL || comp_dir != NULL))
14190 {
14191 /* Avoid creating a duplicate psymtab for PST.
14192 We do this by comparing INCLUDE_NAME and PST_FILENAME.
14193 Before we do the comparison, however, we need to account
14194 for DIR_NAME and COMP_DIR.
14195 First prepend dir_name (if non-NULL). If we still don't
14196 have an absolute path prepend comp_dir (if non-NULL).
14197 However, the directory we record in the include-file's
14198 psymtab does not contain COMP_DIR (to match the
14199 corresponding symtab(s)).
14200
14201 Example:
14202
14203 bash$ cd /tmp
14204 bash$ gcc -g ./hello.c
14205 include_name = "hello.c"
14206 dir_name = "."
14207 DW_AT_comp_dir = comp_dir = "/tmp"
14208 DW_AT_name = "./hello.c" */
14209
14210 if (dir_name != NULL)
14211 {
14212 include_name = concat (dir_name, SLASH_STRING,
14213 include_name, (char *)NULL);
14214 include_name_to_compare = include_name;
14215 make_cleanup (xfree, include_name);
14216 }
14217 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
14218 {
14219 include_name_to_compare = concat (comp_dir, SLASH_STRING,
14220 include_name, (char *)NULL);
14221 }
14222 }
14223
14224 pst_filename = pst->filename;
14225 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
14226 {
14227 copied_name = concat (pst->dirname, SLASH_STRING,
14228 pst_filename, (char *)NULL);
14229 pst_filename = copied_name;
14230 }
14231
14232 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
14233
14234 if (include_name_to_compare != include_name)
14235 xfree (include_name_to_compare);
14236 if (copied_name != NULL)
14237 xfree (copied_name);
14238
14239 if (file_is_pst)
14240 return NULL;
14241 return include_name;
14242 }
14243
14244 /* Ignore this record_line request. */
14245
14246 static void
14247 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
14248 {
14249 return;
14250 }
14251
14252 /* Subroutine of dwarf_decode_lines to simplify it.
14253 Process the line number information in LH. */
14254
14255 static void
14256 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
14257 struct dwarf2_cu *cu, struct partial_symtab *pst)
14258 {
14259 gdb_byte *line_ptr, *extended_end;
14260 gdb_byte *line_end;
14261 unsigned int bytes_read, extended_len;
14262 unsigned char op_code, extended_op, adj_opcode;
14263 CORE_ADDR baseaddr;
14264 struct objfile *objfile = cu->objfile;
14265 bfd *abfd = objfile->obfd;
14266 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14267 const int decode_for_pst_p = (pst != NULL);
14268 struct subfile *last_subfile = NULL;
14269 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
14270 = record_line;
14271
14272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14273
14274 line_ptr = lh->statement_program_start;
14275 line_end = lh->statement_program_end;
14276
14277 /* Read the statement sequences until there's nothing left. */
14278 while (line_ptr < line_end)
14279 {
14280 /* state machine registers */
14281 CORE_ADDR address = 0;
14282 unsigned int file = 1;
14283 unsigned int line = 1;
14284 unsigned int column = 0;
14285 int is_stmt = lh->default_is_stmt;
14286 int basic_block = 0;
14287 int end_sequence = 0;
14288 CORE_ADDR addr;
14289 unsigned char op_index = 0;
14290
14291 if (!decode_for_pst_p && lh->num_file_names >= file)
14292 {
14293 /* Start a subfile for the current file of the state machine. */
14294 /* lh->include_dirs and lh->file_names are 0-based, but the
14295 directory and file name numbers in the statement program
14296 are 1-based. */
14297 struct file_entry *fe = &lh->file_names[file - 1];
14298 char *dir = NULL;
14299
14300 if (fe->dir_index)
14301 dir = lh->include_dirs[fe->dir_index - 1];
14302
14303 dwarf2_start_subfile (fe->name, dir, comp_dir);
14304 }
14305
14306 /* Decode the table. */
14307 while (!end_sequence)
14308 {
14309 op_code = read_1_byte (abfd, line_ptr);
14310 line_ptr += 1;
14311 if (line_ptr > line_end)
14312 {
14313 dwarf2_debug_line_missing_end_sequence_complaint ();
14314 break;
14315 }
14316
14317 if (op_code >= lh->opcode_base)
14318 {
14319 /* Special operand. */
14320 adj_opcode = op_code - lh->opcode_base;
14321 address += (((op_index + (adj_opcode / lh->line_range))
14322 / lh->maximum_ops_per_instruction)
14323 * lh->minimum_instruction_length);
14324 op_index = ((op_index + (adj_opcode / lh->line_range))
14325 % lh->maximum_ops_per_instruction);
14326 line += lh->line_base + (adj_opcode % lh->line_range);
14327 if (lh->num_file_names < file || file == 0)
14328 dwarf2_debug_line_missing_file_complaint ();
14329 /* For now we ignore lines not starting on an
14330 instruction boundary. */
14331 else if (op_index == 0)
14332 {
14333 lh->file_names[file - 1].included_p = 1;
14334 if (!decode_for_pst_p && is_stmt)
14335 {
14336 if (last_subfile != current_subfile)
14337 {
14338 addr = gdbarch_addr_bits_remove (gdbarch, address);
14339 if (last_subfile)
14340 (*p_record_line) (last_subfile, 0, addr);
14341 last_subfile = current_subfile;
14342 }
14343 /* Append row to matrix using current values. */
14344 addr = gdbarch_addr_bits_remove (gdbarch, address);
14345 (*p_record_line) (current_subfile, line, addr);
14346 }
14347 }
14348 basic_block = 0;
14349 }
14350 else switch (op_code)
14351 {
14352 case DW_LNS_extended_op:
14353 extended_len = read_unsigned_leb128 (abfd, line_ptr,
14354 &bytes_read);
14355 line_ptr += bytes_read;
14356 extended_end = line_ptr + extended_len;
14357 extended_op = read_1_byte (abfd, line_ptr);
14358 line_ptr += 1;
14359 switch (extended_op)
14360 {
14361 case DW_LNE_end_sequence:
14362 p_record_line = record_line;
14363 end_sequence = 1;
14364 break;
14365 case DW_LNE_set_address:
14366 address = read_address (abfd, line_ptr, cu, &bytes_read);
14367
14368 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
14369 {
14370 /* This line table is for a function which has been
14371 GCd by the linker. Ignore it. PR gdb/12528 */
14372
14373 long line_offset
14374 = line_ptr - get_debug_line_section (cu)->buffer;
14375
14376 complaint (&symfile_complaints,
14377 _(".debug_line address at offset 0x%lx is 0 "
14378 "[in module %s]"),
14379 line_offset, objfile->name);
14380 p_record_line = noop_record_line;
14381 }
14382
14383 op_index = 0;
14384 line_ptr += bytes_read;
14385 address += baseaddr;
14386 break;
14387 case DW_LNE_define_file:
14388 {
14389 char *cur_file;
14390 unsigned int dir_index, mod_time, length;
14391
14392 cur_file = read_direct_string (abfd, line_ptr,
14393 &bytes_read);
14394 line_ptr += bytes_read;
14395 dir_index =
14396 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14397 line_ptr += bytes_read;
14398 mod_time =
14399 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14400 line_ptr += bytes_read;
14401 length =
14402 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14403 line_ptr += bytes_read;
14404 add_file_name (lh, cur_file, dir_index, mod_time, length);
14405 }
14406 break;
14407 case DW_LNE_set_discriminator:
14408 /* The discriminator is not interesting to the debugger;
14409 just ignore it. */
14410 line_ptr = extended_end;
14411 break;
14412 default:
14413 complaint (&symfile_complaints,
14414 _("mangled .debug_line section"));
14415 return;
14416 }
14417 /* Make sure that we parsed the extended op correctly. If e.g.
14418 we expected a different address size than the producer used,
14419 we may have read the wrong number of bytes. */
14420 if (line_ptr != extended_end)
14421 {
14422 complaint (&symfile_complaints,
14423 _("mangled .debug_line section"));
14424 return;
14425 }
14426 break;
14427 case DW_LNS_copy:
14428 if (lh->num_file_names < file || file == 0)
14429 dwarf2_debug_line_missing_file_complaint ();
14430 else
14431 {
14432 lh->file_names[file - 1].included_p = 1;
14433 if (!decode_for_pst_p && is_stmt)
14434 {
14435 if (last_subfile != current_subfile)
14436 {
14437 addr = gdbarch_addr_bits_remove (gdbarch, address);
14438 if (last_subfile)
14439 (*p_record_line) (last_subfile, 0, addr);
14440 last_subfile = current_subfile;
14441 }
14442 addr = gdbarch_addr_bits_remove (gdbarch, address);
14443 (*p_record_line) (current_subfile, line, addr);
14444 }
14445 }
14446 basic_block = 0;
14447 break;
14448 case DW_LNS_advance_pc:
14449 {
14450 CORE_ADDR adjust
14451 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14452
14453 address += (((op_index + adjust)
14454 / lh->maximum_ops_per_instruction)
14455 * lh->minimum_instruction_length);
14456 op_index = ((op_index + adjust)
14457 % lh->maximum_ops_per_instruction);
14458 line_ptr += bytes_read;
14459 }
14460 break;
14461 case DW_LNS_advance_line:
14462 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
14463 line_ptr += bytes_read;
14464 break;
14465 case DW_LNS_set_file:
14466 {
14467 /* The arrays lh->include_dirs and lh->file_names are
14468 0-based, but the directory and file name numbers in
14469 the statement program are 1-based. */
14470 struct file_entry *fe;
14471 char *dir = NULL;
14472
14473 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14474 line_ptr += bytes_read;
14475 if (lh->num_file_names < file || file == 0)
14476 dwarf2_debug_line_missing_file_complaint ();
14477 else
14478 {
14479 fe = &lh->file_names[file - 1];
14480 if (fe->dir_index)
14481 dir = lh->include_dirs[fe->dir_index - 1];
14482 if (!decode_for_pst_p)
14483 {
14484 last_subfile = current_subfile;
14485 dwarf2_start_subfile (fe->name, dir, comp_dir);
14486 }
14487 }
14488 }
14489 break;
14490 case DW_LNS_set_column:
14491 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14492 line_ptr += bytes_read;
14493 break;
14494 case DW_LNS_negate_stmt:
14495 is_stmt = (!is_stmt);
14496 break;
14497 case DW_LNS_set_basic_block:
14498 basic_block = 1;
14499 break;
14500 /* Add to the address register of the state machine the
14501 address increment value corresponding to special opcode
14502 255. I.e., this value is scaled by the minimum
14503 instruction length since special opcode 255 would have
14504 scaled the increment. */
14505 case DW_LNS_const_add_pc:
14506 {
14507 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
14508
14509 address += (((op_index + adjust)
14510 / lh->maximum_ops_per_instruction)
14511 * lh->minimum_instruction_length);
14512 op_index = ((op_index + adjust)
14513 % lh->maximum_ops_per_instruction);
14514 }
14515 break;
14516 case DW_LNS_fixed_advance_pc:
14517 address += read_2_bytes (abfd, line_ptr);
14518 op_index = 0;
14519 line_ptr += 2;
14520 break;
14521 default:
14522 {
14523 /* Unknown standard opcode, ignore it. */
14524 int i;
14525
14526 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
14527 {
14528 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14529 line_ptr += bytes_read;
14530 }
14531 }
14532 }
14533 }
14534 if (lh->num_file_names < file || file == 0)
14535 dwarf2_debug_line_missing_file_complaint ();
14536 else
14537 {
14538 lh->file_names[file - 1].included_p = 1;
14539 if (!decode_for_pst_p)
14540 {
14541 addr = gdbarch_addr_bits_remove (gdbarch, address);
14542 (*p_record_line) (current_subfile, 0, addr);
14543 }
14544 }
14545 }
14546 }
14547
14548 /* Decode the Line Number Program (LNP) for the given line_header
14549 structure and CU. The actual information extracted and the type
14550 of structures created from the LNP depends on the value of PST.
14551
14552 1. If PST is NULL, then this procedure uses the data from the program
14553 to create all necessary symbol tables, and their linetables.
14554
14555 2. If PST is not NULL, this procedure reads the program to determine
14556 the list of files included by the unit represented by PST, and
14557 builds all the associated partial symbol tables.
14558
14559 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14560 It is used for relative paths in the line table.
14561 NOTE: When processing partial symtabs (pst != NULL),
14562 comp_dir == pst->dirname.
14563
14564 NOTE: It is important that psymtabs have the same file name (via strcmp)
14565 as the corresponding symtab. Since COMP_DIR is not used in the name of the
14566 symtab we don't use it in the name of the psymtabs we create.
14567 E.g. expand_line_sal requires this when finding psymtabs to expand.
14568 A good testcase for this is mb-inline.exp. */
14569
14570 static void
14571 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
14572 struct dwarf2_cu *cu, struct partial_symtab *pst,
14573 int want_line_info)
14574 {
14575 struct objfile *objfile = cu->objfile;
14576 const int decode_for_pst_p = (pst != NULL);
14577 struct subfile *first_subfile = current_subfile;
14578
14579 if (want_line_info)
14580 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
14581
14582 if (decode_for_pst_p)
14583 {
14584 int file_index;
14585
14586 /* Now that we're done scanning the Line Header Program, we can
14587 create the psymtab of each included file. */
14588 for (file_index = 0; file_index < lh->num_file_names; file_index++)
14589 if (lh->file_names[file_index].included_p == 1)
14590 {
14591 char *include_name =
14592 psymtab_include_file_name (lh, file_index, pst, comp_dir);
14593 if (include_name != NULL)
14594 dwarf2_create_include_psymtab (include_name, pst, objfile);
14595 }
14596 }
14597 else
14598 {
14599 /* Make sure a symtab is created for every file, even files
14600 which contain only variables (i.e. no code with associated
14601 line numbers). */
14602 int i;
14603
14604 for (i = 0; i < lh->num_file_names; i++)
14605 {
14606 char *dir = NULL;
14607 struct file_entry *fe;
14608
14609 fe = &lh->file_names[i];
14610 if (fe->dir_index)
14611 dir = lh->include_dirs[fe->dir_index - 1];
14612 dwarf2_start_subfile (fe->name, dir, comp_dir);
14613
14614 /* Skip the main file; we don't need it, and it must be
14615 allocated last, so that it will show up before the
14616 non-primary symtabs in the objfile's symtab list. */
14617 if (current_subfile == first_subfile)
14618 continue;
14619
14620 if (current_subfile->symtab == NULL)
14621 current_subfile->symtab = allocate_symtab (current_subfile->name,
14622 objfile);
14623 fe->symtab = current_subfile->symtab;
14624 }
14625 }
14626 }
14627
14628 /* Start a subfile for DWARF. FILENAME is the name of the file and
14629 DIRNAME the name of the source directory which contains FILENAME
14630 or NULL if not known. COMP_DIR is the compilation directory for the
14631 linetable's compilation unit or NULL if not known.
14632 This routine tries to keep line numbers from identical absolute and
14633 relative file names in a common subfile.
14634
14635 Using the `list' example from the GDB testsuite, which resides in
14636 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
14637 of /srcdir/list0.c yields the following debugging information for list0.c:
14638
14639 DW_AT_name: /srcdir/list0.c
14640 DW_AT_comp_dir: /compdir
14641 files.files[0].name: list0.h
14642 files.files[0].dir: /srcdir
14643 files.files[1].name: list0.c
14644 files.files[1].dir: /srcdir
14645
14646 The line number information for list0.c has to end up in a single
14647 subfile, so that `break /srcdir/list0.c:1' works as expected.
14648 start_subfile will ensure that this happens provided that we pass the
14649 concatenation of files.files[1].dir and files.files[1].name as the
14650 subfile's name. */
14651
14652 static void
14653 dwarf2_start_subfile (char *filename, const char *dirname,
14654 const char *comp_dir)
14655 {
14656 char *fullname;
14657
14658 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
14659 `start_symtab' will always pass the contents of DW_AT_comp_dir as
14660 second argument to start_subfile. To be consistent, we do the
14661 same here. In order not to lose the line information directory,
14662 we concatenate it to the filename when it makes sense.
14663 Note that the Dwarf3 standard says (speaking of filenames in line
14664 information): ``The directory index is ignored for file names
14665 that represent full path names''. Thus ignoring dirname in the
14666 `else' branch below isn't an issue. */
14667
14668 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
14669 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
14670 else
14671 fullname = filename;
14672
14673 start_subfile (fullname, comp_dir);
14674
14675 if (fullname != filename)
14676 xfree (fullname);
14677 }
14678
14679 /* Start a symtab for DWARF.
14680 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
14681
14682 static void
14683 dwarf2_start_symtab (struct dwarf2_cu *cu,
14684 char *name, char *comp_dir, CORE_ADDR low_pc)
14685 {
14686 start_symtab (name, comp_dir, low_pc);
14687 record_debugformat ("DWARF 2");
14688 record_producer (cu->producer);
14689
14690 /* We assume that we're processing GCC output. */
14691 processing_gcc_compilation = 2;
14692
14693 processing_has_namespace_info = 0;
14694 }
14695
14696 static void
14697 var_decode_location (struct attribute *attr, struct symbol *sym,
14698 struct dwarf2_cu *cu)
14699 {
14700 struct objfile *objfile = cu->objfile;
14701 struct comp_unit_head *cu_header = &cu->header;
14702
14703 /* NOTE drow/2003-01-30: There used to be a comment and some special
14704 code here to turn a symbol with DW_AT_external and a
14705 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
14706 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
14707 with some versions of binutils) where shared libraries could have
14708 relocations against symbols in their debug information - the
14709 minimal symbol would have the right address, but the debug info
14710 would not. It's no longer necessary, because we will explicitly
14711 apply relocations when we read in the debug information now. */
14712
14713 /* A DW_AT_location attribute with no contents indicates that a
14714 variable has been optimized away. */
14715 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
14716 {
14717 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14718 return;
14719 }
14720
14721 /* Handle one degenerate form of location expression specially, to
14722 preserve GDB's previous behavior when section offsets are
14723 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
14724 then mark this symbol as LOC_STATIC. */
14725
14726 if (attr_form_is_block (attr)
14727 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
14728 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
14729 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
14730 && (DW_BLOCK (attr)->size
14731 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
14732 {
14733 unsigned int dummy;
14734
14735 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
14736 SYMBOL_VALUE_ADDRESS (sym) =
14737 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
14738 else
14739 SYMBOL_VALUE_ADDRESS (sym) =
14740 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
14741 SYMBOL_CLASS (sym) = LOC_STATIC;
14742 fixup_symbol_section (sym, objfile);
14743 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
14744 SYMBOL_SECTION (sym));
14745 return;
14746 }
14747
14748 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
14749 expression evaluator, and use LOC_COMPUTED only when necessary
14750 (i.e. when the value of a register or memory location is
14751 referenced, or a thread-local block, etc.). Then again, it might
14752 not be worthwhile. I'm assuming that it isn't unless performance
14753 or memory numbers show me otherwise. */
14754
14755 dwarf2_symbol_mark_computed (attr, sym, cu);
14756 SYMBOL_CLASS (sym) = LOC_COMPUTED;
14757
14758 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
14759 cu->has_loclist = 1;
14760 }
14761
14762 /* Given a pointer to a DWARF information entry, figure out if we need
14763 to make a symbol table entry for it, and if so, create a new entry
14764 and return a pointer to it.
14765 If TYPE is NULL, determine symbol type from the die, otherwise
14766 used the passed type.
14767 If SPACE is not NULL, use it to hold the new symbol. If it is
14768 NULL, allocate a new symbol on the objfile's obstack. */
14769
14770 static struct symbol *
14771 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
14772 struct symbol *space)
14773 {
14774 struct objfile *objfile = cu->objfile;
14775 struct symbol *sym = NULL;
14776 char *name;
14777 struct attribute *attr = NULL;
14778 struct attribute *attr2 = NULL;
14779 CORE_ADDR baseaddr;
14780 struct pending **list_to_add = NULL;
14781
14782 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14783
14784 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14785
14786 name = dwarf2_name (die, cu);
14787 if (name)
14788 {
14789 const char *linkagename;
14790 int suppress_add = 0;
14791
14792 if (space)
14793 sym = space;
14794 else
14795 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
14796 OBJSTAT (objfile, n_syms++);
14797
14798 /* Cache this symbol's name and the name's demangled form (if any). */
14799 SYMBOL_SET_LANGUAGE (sym, cu->language);
14800 linkagename = dwarf2_physname (name, die, cu);
14801 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
14802
14803 /* Fortran does not have mangling standard and the mangling does differ
14804 between gfortran, iFort etc. */
14805 if (cu->language == language_fortran
14806 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
14807 symbol_set_demangled_name (&(sym->ginfo),
14808 (char *) dwarf2_full_name (name, die, cu),
14809 NULL);
14810
14811 /* Default assumptions.
14812 Use the passed type or decode it from the die. */
14813 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
14814 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14815 if (type != NULL)
14816 SYMBOL_TYPE (sym) = type;
14817 else
14818 SYMBOL_TYPE (sym) = die_type (die, cu);
14819 attr = dwarf2_attr (die,
14820 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
14821 cu);
14822 if (attr)
14823 {
14824 SYMBOL_LINE (sym) = DW_UNSND (attr);
14825 }
14826
14827 attr = dwarf2_attr (die,
14828 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
14829 cu);
14830 if (attr)
14831 {
14832 int file_index = DW_UNSND (attr);
14833
14834 if (cu->line_header == NULL
14835 || file_index > cu->line_header->num_file_names)
14836 complaint (&symfile_complaints,
14837 _("file index out of range"));
14838 else if (file_index > 0)
14839 {
14840 struct file_entry *fe;
14841
14842 fe = &cu->line_header->file_names[file_index - 1];
14843 SYMBOL_SYMTAB (sym) = fe->symtab;
14844 }
14845 }
14846
14847 switch (die->tag)
14848 {
14849 case DW_TAG_label:
14850 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14851 if (attr)
14852 {
14853 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
14854 }
14855 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
14856 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
14857 SYMBOL_CLASS (sym) = LOC_LABEL;
14858 add_symbol_to_list (sym, cu->list_in_scope);
14859 break;
14860 case DW_TAG_subprogram:
14861 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14862 finish_block. */
14863 SYMBOL_CLASS (sym) = LOC_BLOCK;
14864 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14865 if ((attr2 && (DW_UNSND (attr2) != 0))
14866 || cu->language == language_ada)
14867 {
14868 /* Subprograms marked external are stored as a global symbol.
14869 Ada subprograms, whether marked external or not, are always
14870 stored as a global symbol, because we want to be able to
14871 access them globally. For instance, we want to be able
14872 to break on a nested subprogram without having to
14873 specify the context. */
14874 list_to_add = &global_symbols;
14875 }
14876 else
14877 {
14878 list_to_add = cu->list_in_scope;
14879 }
14880 break;
14881 case DW_TAG_inlined_subroutine:
14882 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14883 finish_block. */
14884 SYMBOL_CLASS (sym) = LOC_BLOCK;
14885 SYMBOL_INLINED (sym) = 1;
14886 list_to_add = cu->list_in_scope;
14887 break;
14888 case DW_TAG_template_value_param:
14889 suppress_add = 1;
14890 /* Fall through. */
14891 case DW_TAG_constant:
14892 case DW_TAG_variable:
14893 case DW_TAG_member:
14894 /* Compilation with minimal debug info may result in
14895 variables with missing type entries. Change the
14896 misleading `void' type to something sensible. */
14897 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
14898 SYMBOL_TYPE (sym)
14899 = objfile_type (objfile)->nodebug_data_symbol;
14900
14901 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14902 /* In the case of DW_TAG_member, we should only be called for
14903 static const members. */
14904 if (die->tag == DW_TAG_member)
14905 {
14906 /* dwarf2_add_field uses die_is_declaration,
14907 so we do the same. */
14908 gdb_assert (die_is_declaration (die, cu));
14909 gdb_assert (attr);
14910 }
14911 if (attr)
14912 {
14913 dwarf2_const_value (attr, sym, cu);
14914 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14915 if (!suppress_add)
14916 {
14917 if (attr2 && (DW_UNSND (attr2) != 0))
14918 list_to_add = &global_symbols;
14919 else
14920 list_to_add = cu->list_in_scope;
14921 }
14922 break;
14923 }
14924 attr = dwarf2_attr (die, DW_AT_location, cu);
14925 if (attr)
14926 {
14927 var_decode_location (attr, sym, cu);
14928 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14929 if (SYMBOL_CLASS (sym) == LOC_STATIC
14930 && SYMBOL_VALUE_ADDRESS (sym) == 0
14931 && !dwarf2_per_objfile->has_section_at_zero)
14932 {
14933 /* When a static variable is eliminated by the linker,
14934 the corresponding debug information is not stripped
14935 out, but the variable address is set to null;
14936 do not add such variables into symbol table. */
14937 }
14938 else if (attr2 && (DW_UNSND (attr2) != 0))
14939 {
14940 /* Workaround gfortran PR debug/40040 - it uses
14941 DW_AT_location for variables in -fPIC libraries which may
14942 get overriden by other libraries/executable and get
14943 a different address. Resolve it by the minimal symbol
14944 which may come from inferior's executable using copy
14945 relocation. Make this workaround only for gfortran as for
14946 other compilers GDB cannot guess the minimal symbol
14947 Fortran mangling kind. */
14948 if (cu->language == language_fortran && die->parent
14949 && die->parent->tag == DW_TAG_module
14950 && cu->producer
14951 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
14952 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
14953
14954 /* A variable with DW_AT_external is never static,
14955 but it may be block-scoped. */
14956 list_to_add = (cu->list_in_scope == &file_symbols
14957 ? &global_symbols : cu->list_in_scope);
14958 }
14959 else
14960 list_to_add = cu->list_in_scope;
14961 }
14962 else
14963 {
14964 /* We do not know the address of this symbol.
14965 If it is an external symbol and we have type information
14966 for it, enter the symbol as a LOC_UNRESOLVED symbol.
14967 The address of the variable will then be determined from
14968 the minimal symbol table whenever the variable is
14969 referenced. */
14970 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14971 if (attr2 && (DW_UNSND (attr2) != 0)
14972 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
14973 {
14974 /* A variable with DW_AT_external is never static, but it
14975 may be block-scoped. */
14976 list_to_add = (cu->list_in_scope == &file_symbols
14977 ? &global_symbols : cu->list_in_scope);
14978
14979 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
14980 }
14981 else if (!die_is_declaration (die, cu))
14982 {
14983 /* Use the default LOC_OPTIMIZED_OUT class. */
14984 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
14985 if (!suppress_add)
14986 list_to_add = cu->list_in_scope;
14987 }
14988 }
14989 break;
14990 case DW_TAG_formal_parameter:
14991 /* If we are inside a function, mark this as an argument. If
14992 not, we might be looking at an argument to an inlined function
14993 when we do not have enough information to show inlined frames;
14994 pretend it's a local variable in that case so that the user can
14995 still see it. */
14996 if (context_stack_depth > 0
14997 && context_stack[context_stack_depth - 1].name != NULL)
14998 SYMBOL_IS_ARGUMENT (sym) = 1;
14999 attr = dwarf2_attr (die, DW_AT_location, cu);
15000 if (attr)
15001 {
15002 var_decode_location (attr, sym, cu);
15003 }
15004 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15005 if (attr)
15006 {
15007 dwarf2_const_value (attr, sym, cu);
15008 }
15009
15010 list_to_add = cu->list_in_scope;
15011 break;
15012 case DW_TAG_unspecified_parameters:
15013 /* From varargs functions; gdb doesn't seem to have any
15014 interest in this information, so just ignore it for now.
15015 (FIXME?) */
15016 break;
15017 case DW_TAG_template_type_param:
15018 suppress_add = 1;
15019 /* Fall through. */
15020 case DW_TAG_class_type:
15021 case DW_TAG_interface_type:
15022 case DW_TAG_structure_type:
15023 case DW_TAG_union_type:
15024 case DW_TAG_set_type:
15025 case DW_TAG_enumeration_type:
15026 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15027 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15028
15029 {
15030 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15031 really ever be static objects: otherwise, if you try
15032 to, say, break of a class's method and you're in a file
15033 which doesn't mention that class, it won't work unless
15034 the check for all static symbols in lookup_symbol_aux
15035 saves you. See the OtherFileClass tests in
15036 gdb.c++/namespace.exp. */
15037
15038 if (!suppress_add)
15039 {
15040 list_to_add = (cu->list_in_scope == &file_symbols
15041 && (cu->language == language_cplus
15042 || cu->language == language_java)
15043 ? &global_symbols : cu->list_in_scope);
15044
15045 /* The semantics of C++ state that "struct foo {
15046 ... }" also defines a typedef for "foo". A Java
15047 class declaration also defines a typedef for the
15048 class. */
15049 if (cu->language == language_cplus
15050 || cu->language == language_java
15051 || cu->language == language_ada)
15052 {
15053 /* The symbol's name is already allocated along
15054 with this objfile, so we don't need to
15055 duplicate it for the type. */
15056 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15057 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15058 }
15059 }
15060 }
15061 break;
15062 case DW_TAG_typedef:
15063 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15064 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15065 list_to_add = cu->list_in_scope;
15066 break;
15067 case DW_TAG_base_type:
15068 case DW_TAG_subrange_type:
15069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15070 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15071 list_to_add = cu->list_in_scope;
15072 break;
15073 case DW_TAG_enumerator:
15074 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15075 if (attr)
15076 {
15077 dwarf2_const_value (attr, sym, cu);
15078 }
15079 {
15080 /* NOTE: carlton/2003-11-10: See comment above in the
15081 DW_TAG_class_type, etc. block. */
15082
15083 list_to_add = (cu->list_in_scope == &file_symbols
15084 && (cu->language == language_cplus
15085 || cu->language == language_java)
15086 ? &global_symbols : cu->list_in_scope);
15087 }
15088 break;
15089 case DW_TAG_namespace:
15090 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15091 list_to_add = &global_symbols;
15092 break;
15093 default:
15094 /* Not a tag we recognize. Hopefully we aren't processing
15095 trash data, but since we must specifically ignore things
15096 we don't recognize, there is nothing else we should do at
15097 this point. */
15098 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
15099 dwarf_tag_name (die->tag));
15100 break;
15101 }
15102
15103 if (suppress_add)
15104 {
15105 sym->hash_next = objfile->template_symbols;
15106 objfile->template_symbols = sym;
15107 list_to_add = NULL;
15108 }
15109
15110 if (list_to_add != NULL)
15111 add_symbol_to_list (sym, list_to_add);
15112
15113 /* For the benefit of old versions of GCC, check for anonymous
15114 namespaces based on the demangled name. */
15115 if (!processing_has_namespace_info
15116 && cu->language == language_cplus)
15117 cp_scan_for_anonymous_namespaces (sym, objfile);
15118 }
15119 return (sym);
15120 }
15121
15122 /* A wrapper for new_symbol_full that always allocates a new symbol. */
15123
15124 static struct symbol *
15125 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15126 {
15127 return new_symbol_full (die, type, cu, NULL);
15128 }
15129
15130 /* Given an attr with a DW_FORM_dataN value in host byte order,
15131 zero-extend it as appropriate for the symbol's type. The DWARF
15132 standard (v4) is not entirely clear about the meaning of using
15133 DW_FORM_dataN for a constant with a signed type, where the type is
15134 wider than the data. The conclusion of a discussion on the DWARF
15135 list was that this is unspecified. We choose to always zero-extend
15136 because that is the interpretation long in use by GCC. */
15137
15138 static gdb_byte *
15139 dwarf2_const_value_data (struct attribute *attr, struct type *type,
15140 const char *name, struct obstack *obstack,
15141 struct dwarf2_cu *cu, LONGEST *value, int bits)
15142 {
15143 struct objfile *objfile = cu->objfile;
15144 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
15145 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
15146 LONGEST l = DW_UNSND (attr);
15147
15148 if (bits < sizeof (*value) * 8)
15149 {
15150 l &= ((LONGEST) 1 << bits) - 1;
15151 *value = l;
15152 }
15153 else if (bits == sizeof (*value) * 8)
15154 *value = l;
15155 else
15156 {
15157 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
15158 store_unsigned_integer (bytes, bits / 8, byte_order, l);
15159 return bytes;
15160 }
15161
15162 return NULL;
15163 }
15164
15165 /* Read a constant value from an attribute. Either set *VALUE, or if
15166 the value does not fit in *VALUE, set *BYTES - either already
15167 allocated on the objfile obstack, or newly allocated on OBSTACK,
15168 or, set *BATON, if we translated the constant to a location
15169 expression. */
15170
15171 static void
15172 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
15173 const char *name, struct obstack *obstack,
15174 struct dwarf2_cu *cu,
15175 LONGEST *value, gdb_byte **bytes,
15176 struct dwarf2_locexpr_baton **baton)
15177 {
15178 struct objfile *objfile = cu->objfile;
15179 struct comp_unit_head *cu_header = &cu->header;
15180 struct dwarf_block *blk;
15181 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
15182 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
15183
15184 *value = 0;
15185 *bytes = NULL;
15186 *baton = NULL;
15187
15188 switch (attr->form)
15189 {
15190 case DW_FORM_addr:
15191 case DW_FORM_GNU_addr_index:
15192 {
15193 gdb_byte *data;
15194
15195 if (TYPE_LENGTH (type) != cu_header->addr_size)
15196 dwarf2_const_value_length_mismatch_complaint (name,
15197 cu_header->addr_size,
15198 TYPE_LENGTH (type));
15199 /* Symbols of this form are reasonably rare, so we just
15200 piggyback on the existing location code rather than writing
15201 a new implementation of symbol_computed_ops. */
15202 *baton = obstack_alloc (&objfile->objfile_obstack,
15203 sizeof (struct dwarf2_locexpr_baton));
15204 (*baton)->per_cu = cu->per_cu;
15205 gdb_assert ((*baton)->per_cu);
15206
15207 (*baton)->size = 2 + cu_header->addr_size;
15208 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
15209 (*baton)->data = data;
15210
15211 data[0] = DW_OP_addr;
15212 store_unsigned_integer (&data[1], cu_header->addr_size,
15213 byte_order, DW_ADDR (attr));
15214 data[cu_header->addr_size + 1] = DW_OP_stack_value;
15215 }
15216 break;
15217 case DW_FORM_string:
15218 case DW_FORM_strp:
15219 case DW_FORM_GNU_str_index:
15220 case DW_FORM_GNU_strp_alt:
15221 /* DW_STRING is already allocated on the objfile obstack, point
15222 directly to it. */
15223 *bytes = (gdb_byte *) DW_STRING (attr);
15224 break;
15225 case DW_FORM_block1:
15226 case DW_FORM_block2:
15227 case DW_FORM_block4:
15228 case DW_FORM_block:
15229 case DW_FORM_exprloc:
15230 blk = DW_BLOCK (attr);
15231 if (TYPE_LENGTH (type) != blk->size)
15232 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
15233 TYPE_LENGTH (type));
15234 *bytes = blk->data;
15235 break;
15236
15237 /* The DW_AT_const_value attributes are supposed to carry the
15238 symbol's value "represented as it would be on the target
15239 architecture." By the time we get here, it's already been
15240 converted to host endianness, so we just need to sign- or
15241 zero-extend it as appropriate. */
15242 case DW_FORM_data1:
15243 *bytes = dwarf2_const_value_data (attr, type, name,
15244 obstack, cu, value, 8);
15245 break;
15246 case DW_FORM_data2:
15247 *bytes = dwarf2_const_value_data (attr, type, name,
15248 obstack, cu, value, 16);
15249 break;
15250 case DW_FORM_data4:
15251 *bytes = dwarf2_const_value_data (attr, type, name,
15252 obstack, cu, value, 32);
15253 break;
15254 case DW_FORM_data8:
15255 *bytes = dwarf2_const_value_data (attr, type, name,
15256 obstack, cu, value, 64);
15257 break;
15258
15259 case DW_FORM_sdata:
15260 *value = DW_SND (attr);
15261 break;
15262
15263 case DW_FORM_udata:
15264 *value = DW_UNSND (attr);
15265 break;
15266
15267 default:
15268 complaint (&symfile_complaints,
15269 _("unsupported const value attribute form: '%s'"),
15270 dwarf_form_name (attr->form));
15271 *value = 0;
15272 break;
15273 }
15274 }
15275
15276
15277 /* Copy constant value from an attribute to a symbol. */
15278
15279 static void
15280 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
15281 struct dwarf2_cu *cu)
15282 {
15283 struct objfile *objfile = cu->objfile;
15284 struct comp_unit_head *cu_header = &cu->header;
15285 LONGEST value;
15286 gdb_byte *bytes;
15287 struct dwarf2_locexpr_baton *baton;
15288
15289 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
15290 SYMBOL_PRINT_NAME (sym),
15291 &objfile->objfile_obstack, cu,
15292 &value, &bytes, &baton);
15293
15294 if (baton != NULL)
15295 {
15296 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15297 SYMBOL_LOCATION_BATON (sym) = baton;
15298 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15299 }
15300 else if (bytes != NULL)
15301 {
15302 SYMBOL_VALUE_BYTES (sym) = bytes;
15303 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
15304 }
15305 else
15306 {
15307 SYMBOL_VALUE (sym) = value;
15308 SYMBOL_CLASS (sym) = LOC_CONST;
15309 }
15310 }
15311
15312 /* Return the type of the die in question using its DW_AT_type attribute. */
15313
15314 static struct type *
15315 die_type (struct die_info *die, struct dwarf2_cu *cu)
15316 {
15317 struct attribute *type_attr;
15318
15319 type_attr = dwarf2_attr (die, DW_AT_type, cu);
15320 if (!type_attr)
15321 {
15322 /* A missing DW_AT_type represents a void type. */
15323 return objfile_type (cu->objfile)->builtin_void;
15324 }
15325
15326 return lookup_die_type (die, type_attr, cu);
15327 }
15328
15329 /* True iff CU's producer generates GNAT Ada auxiliary information
15330 that allows to find parallel types through that information instead
15331 of having to do expensive parallel lookups by type name. */
15332
15333 static int
15334 need_gnat_info (struct dwarf2_cu *cu)
15335 {
15336 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
15337 of GNAT produces this auxiliary information, without any indication
15338 that it is produced. Part of enhancing the FSF version of GNAT
15339 to produce that information will be to put in place an indicator
15340 that we can use in order to determine whether the descriptive type
15341 info is available or not. One suggestion that has been made is
15342 to use a new attribute, attached to the CU die. For now, assume
15343 that the descriptive type info is not available. */
15344 return 0;
15345 }
15346
15347 /* Return the auxiliary type of the die in question using its
15348 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
15349 attribute is not present. */
15350
15351 static struct type *
15352 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
15353 {
15354 struct attribute *type_attr;
15355
15356 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
15357 if (!type_attr)
15358 return NULL;
15359
15360 return lookup_die_type (die, type_attr, cu);
15361 }
15362
15363 /* If DIE has a descriptive_type attribute, then set the TYPE's
15364 descriptive type accordingly. */
15365
15366 static void
15367 set_descriptive_type (struct type *type, struct die_info *die,
15368 struct dwarf2_cu *cu)
15369 {
15370 struct type *descriptive_type = die_descriptive_type (die, cu);
15371
15372 if (descriptive_type)
15373 {
15374 ALLOCATE_GNAT_AUX_TYPE (type);
15375 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
15376 }
15377 }
15378
15379 /* Return the containing type of the die in question using its
15380 DW_AT_containing_type attribute. */
15381
15382 static struct type *
15383 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
15384 {
15385 struct attribute *type_attr;
15386
15387 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
15388 if (!type_attr)
15389 error (_("Dwarf Error: Problem turning containing type into gdb type "
15390 "[in module %s]"), cu->objfile->name);
15391
15392 return lookup_die_type (die, type_attr, cu);
15393 }
15394
15395 /* Look up the type of DIE in CU using its type attribute ATTR.
15396 If there is no type substitute an error marker. */
15397
15398 static struct type *
15399 lookup_die_type (struct die_info *die, struct attribute *attr,
15400 struct dwarf2_cu *cu)
15401 {
15402 struct objfile *objfile = cu->objfile;
15403 struct type *this_type;
15404
15405 /* First see if we have it cached. */
15406
15407 if (attr->form == DW_FORM_GNU_ref_alt)
15408 {
15409 struct dwarf2_per_cu_data *per_cu;
15410 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15411
15412 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
15413 this_type = get_die_type_at_offset (offset, per_cu);
15414 }
15415 else if (is_ref_attr (attr))
15416 {
15417 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15418
15419 this_type = get_die_type_at_offset (offset, cu->per_cu);
15420 }
15421 else if (attr->form == DW_FORM_ref_sig8)
15422 {
15423 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
15424
15425 /* sig_type will be NULL if the signatured type is missing from
15426 the debug info. */
15427 if (sig_type == NULL)
15428 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
15429 "at 0x%x [in module %s]"),
15430 die->offset.sect_off, objfile->name);
15431
15432 gdb_assert (sig_type->per_cu.is_debug_types);
15433 /* If we haven't filled in type_offset_in_section yet, then we
15434 haven't read the type in yet. */
15435 this_type = NULL;
15436 if (sig_type->type_offset_in_section.sect_off != 0)
15437 {
15438 this_type =
15439 get_die_type_at_offset (sig_type->type_offset_in_section,
15440 &sig_type->per_cu);
15441 }
15442 }
15443 else
15444 {
15445 dump_die_for_error (die);
15446 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
15447 dwarf_attr_name (attr->name), objfile->name);
15448 }
15449
15450 /* If not cached we need to read it in. */
15451
15452 if (this_type == NULL)
15453 {
15454 struct die_info *type_die;
15455 struct dwarf2_cu *type_cu = cu;
15456
15457 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
15458 /* If we found the type now, it's probably because the type came
15459 from an inter-CU reference and the type's CU got expanded before
15460 ours. */
15461 this_type = get_die_type (type_die, type_cu);
15462 if (this_type == NULL)
15463 this_type = read_type_die_1 (type_die, type_cu);
15464 }
15465
15466 /* If we still don't have a type use an error marker. */
15467
15468 if (this_type == NULL)
15469 {
15470 char *message, *saved;
15471
15472 /* read_type_die already issued a complaint. */
15473 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
15474 objfile->name,
15475 cu->header.offset.sect_off,
15476 die->offset.sect_off);
15477 saved = obstack_copy0 (&objfile->objfile_obstack,
15478 message, strlen (message));
15479 xfree (message);
15480
15481 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
15482 }
15483
15484 return this_type;
15485 }
15486
15487 /* Return the type in DIE, CU.
15488 Returns NULL for invalid types.
15489
15490 This first does a lookup in the appropriate type_hash table,
15491 and only reads the die in if necessary.
15492
15493 NOTE: This can be called when reading in partial or full symbols. */
15494
15495 static struct type *
15496 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
15497 {
15498 struct type *this_type;
15499
15500 this_type = get_die_type (die, cu);
15501 if (this_type)
15502 return this_type;
15503
15504 return read_type_die_1 (die, cu);
15505 }
15506
15507 /* Read the type in DIE, CU.
15508 Returns NULL for invalid types. */
15509
15510 static struct type *
15511 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
15512 {
15513 struct type *this_type = NULL;
15514
15515 switch (die->tag)
15516 {
15517 case DW_TAG_class_type:
15518 case DW_TAG_interface_type:
15519 case DW_TAG_structure_type:
15520 case DW_TAG_union_type:
15521 this_type = read_structure_type (die, cu);
15522 break;
15523 case DW_TAG_enumeration_type:
15524 this_type = read_enumeration_type (die, cu);
15525 break;
15526 case DW_TAG_subprogram:
15527 case DW_TAG_subroutine_type:
15528 case DW_TAG_inlined_subroutine:
15529 this_type = read_subroutine_type (die, cu);
15530 break;
15531 case DW_TAG_array_type:
15532 this_type = read_array_type (die, cu);
15533 break;
15534 case DW_TAG_set_type:
15535 this_type = read_set_type (die, cu);
15536 break;
15537 case DW_TAG_pointer_type:
15538 this_type = read_tag_pointer_type (die, cu);
15539 break;
15540 case DW_TAG_ptr_to_member_type:
15541 this_type = read_tag_ptr_to_member_type (die, cu);
15542 break;
15543 case DW_TAG_reference_type:
15544 this_type = read_tag_reference_type (die, cu);
15545 break;
15546 case DW_TAG_const_type:
15547 this_type = read_tag_const_type (die, cu);
15548 break;
15549 case DW_TAG_volatile_type:
15550 this_type = read_tag_volatile_type (die, cu);
15551 break;
15552 case DW_TAG_string_type:
15553 this_type = read_tag_string_type (die, cu);
15554 break;
15555 case DW_TAG_typedef:
15556 this_type = read_typedef (die, cu);
15557 break;
15558 case DW_TAG_subrange_type:
15559 this_type = read_subrange_type (die, cu);
15560 break;
15561 case DW_TAG_base_type:
15562 this_type = read_base_type (die, cu);
15563 break;
15564 case DW_TAG_unspecified_type:
15565 this_type = read_unspecified_type (die, cu);
15566 break;
15567 case DW_TAG_namespace:
15568 this_type = read_namespace_type (die, cu);
15569 break;
15570 case DW_TAG_module:
15571 this_type = read_module_type (die, cu);
15572 break;
15573 default:
15574 complaint (&symfile_complaints,
15575 _("unexpected tag in read_type_die: '%s'"),
15576 dwarf_tag_name (die->tag));
15577 break;
15578 }
15579
15580 return this_type;
15581 }
15582
15583 /* See if we can figure out if the class lives in a namespace. We do
15584 this by looking for a member function; its demangled name will
15585 contain namespace info, if there is any.
15586 Return the computed name or NULL.
15587 Space for the result is allocated on the objfile's obstack.
15588 This is the full-die version of guess_partial_die_structure_name.
15589 In this case we know DIE has no useful parent. */
15590
15591 static char *
15592 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
15593 {
15594 struct die_info *spec_die;
15595 struct dwarf2_cu *spec_cu;
15596 struct die_info *child;
15597
15598 spec_cu = cu;
15599 spec_die = die_specification (die, &spec_cu);
15600 if (spec_die != NULL)
15601 {
15602 die = spec_die;
15603 cu = spec_cu;
15604 }
15605
15606 for (child = die->child;
15607 child != NULL;
15608 child = child->sibling)
15609 {
15610 if (child->tag == DW_TAG_subprogram)
15611 {
15612 struct attribute *attr;
15613
15614 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
15615 if (attr == NULL)
15616 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
15617 if (attr != NULL)
15618 {
15619 char *actual_name
15620 = language_class_name_from_physname (cu->language_defn,
15621 DW_STRING (attr));
15622 char *name = NULL;
15623
15624 if (actual_name != NULL)
15625 {
15626 char *die_name = dwarf2_name (die, cu);
15627
15628 if (die_name != NULL
15629 && strcmp (die_name, actual_name) != 0)
15630 {
15631 /* Strip off the class name from the full name.
15632 We want the prefix. */
15633 int die_name_len = strlen (die_name);
15634 int actual_name_len = strlen (actual_name);
15635
15636 /* Test for '::' as a sanity check. */
15637 if (actual_name_len > die_name_len + 2
15638 && actual_name[actual_name_len
15639 - die_name_len - 1] == ':')
15640 name =
15641 obsavestring (actual_name,
15642 actual_name_len - die_name_len - 2,
15643 &cu->objfile->objfile_obstack);
15644 }
15645 }
15646 xfree (actual_name);
15647 return name;
15648 }
15649 }
15650 }
15651
15652 return NULL;
15653 }
15654
15655 /* GCC might emit a nameless typedef that has a linkage name. Determine the
15656 prefix part in such case. See
15657 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15658
15659 static char *
15660 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
15661 {
15662 struct attribute *attr;
15663 char *base;
15664
15665 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
15666 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
15667 return NULL;
15668
15669 attr = dwarf2_attr (die, DW_AT_name, cu);
15670 if (attr != NULL && DW_STRING (attr) != NULL)
15671 return NULL;
15672
15673 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
15674 if (attr == NULL)
15675 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
15676 if (attr == NULL || DW_STRING (attr) == NULL)
15677 return NULL;
15678
15679 /* dwarf2_name had to be already called. */
15680 gdb_assert (DW_STRING_IS_CANONICAL (attr));
15681
15682 /* Strip the base name, keep any leading namespaces/classes. */
15683 base = strrchr (DW_STRING (attr), ':');
15684 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
15685 return "";
15686
15687 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
15688 &cu->objfile->objfile_obstack);
15689 }
15690
15691 /* Return the name of the namespace/class that DIE is defined within,
15692 or "" if we can't tell. The caller should not xfree the result.
15693
15694 For example, if we're within the method foo() in the following
15695 code:
15696
15697 namespace N {
15698 class C {
15699 void foo () {
15700 }
15701 };
15702 }
15703
15704 then determine_prefix on foo's die will return "N::C". */
15705
15706 static const char *
15707 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
15708 {
15709 struct die_info *parent, *spec_die;
15710 struct dwarf2_cu *spec_cu;
15711 struct type *parent_type;
15712 char *retval;
15713
15714 if (cu->language != language_cplus && cu->language != language_java
15715 && cu->language != language_fortran)
15716 return "";
15717
15718 retval = anonymous_struct_prefix (die, cu);
15719 if (retval)
15720 return retval;
15721
15722 /* We have to be careful in the presence of DW_AT_specification.
15723 For example, with GCC 3.4, given the code
15724
15725 namespace N {
15726 void foo() {
15727 // Definition of N::foo.
15728 }
15729 }
15730
15731 then we'll have a tree of DIEs like this:
15732
15733 1: DW_TAG_compile_unit
15734 2: DW_TAG_namespace // N
15735 3: DW_TAG_subprogram // declaration of N::foo
15736 4: DW_TAG_subprogram // definition of N::foo
15737 DW_AT_specification // refers to die #3
15738
15739 Thus, when processing die #4, we have to pretend that we're in
15740 the context of its DW_AT_specification, namely the contex of die
15741 #3. */
15742 spec_cu = cu;
15743 spec_die = die_specification (die, &spec_cu);
15744 if (spec_die == NULL)
15745 parent = die->parent;
15746 else
15747 {
15748 parent = spec_die->parent;
15749 cu = spec_cu;
15750 }
15751
15752 if (parent == NULL)
15753 return "";
15754 else if (parent->building_fullname)
15755 {
15756 const char *name;
15757 const char *parent_name;
15758
15759 /* It has been seen on RealView 2.2 built binaries,
15760 DW_TAG_template_type_param types actually _defined_ as
15761 children of the parent class:
15762
15763 enum E {};
15764 template class <class Enum> Class{};
15765 Class<enum E> class_e;
15766
15767 1: DW_TAG_class_type (Class)
15768 2: DW_TAG_enumeration_type (E)
15769 3: DW_TAG_enumerator (enum1:0)
15770 3: DW_TAG_enumerator (enum2:1)
15771 ...
15772 2: DW_TAG_template_type_param
15773 DW_AT_type DW_FORM_ref_udata (E)
15774
15775 Besides being broken debug info, it can put GDB into an
15776 infinite loop. Consider:
15777
15778 When we're building the full name for Class<E>, we'll start
15779 at Class, and go look over its template type parameters,
15780 finding E. We'll then try to build the full name of E, and
15781 reach here. We're now trying to build the full name of E,
15782 and look over the parent DIE for containing scope. In the
15783 broken case, if we followed the parent DIE of E, we'd again
15784 find Class, and once again go look at its template type
15785 arguments, etc., etc. Simply don't consider such parent die
15786 as source-level parent of this die (it can't be, the language
15787 doesn't allow it), and break the loop here. */
15788 name = dwarf2_name (die, cu);
15789 parent_name = dwarf2_name (parent, cu);
15790 complaint (&symfile_complaints,
15791 _("template param type '%s' defined within parent '%s'"),
15792 name ? name : "<unknown>",
15793 parent_name ? parent_name : "<unknown>");
15794 return "";
15795 }
15796 else
15797 switch (parent->tag)
15798 {
15799 case DW_TAG_namespace:
15800 parent_type = read_type_die (parent, cu);
15801 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
15802 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
15803 Work around this problem here. */
15804 if (cu->language == language_cplus
15805 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
15806 return "";
15807 /* We give a name to even anonymous namespaces. */
15808 return TYPE_TAG_NAME (parent_type);
15809 case DW_TAG_class_type:
15810 case DW_TAG_interface_type:
15811 case DW_TAG_structure_type:
15812 case DW_TAG_union_type:
15813 case DW_TAG_module:
15814 parent_type = read_type_die (parent, cu);
15815 if (TYPE_TAG_NAME (parent_type) != NULL)
15816 return TYPE_TAG_NAME (parent_type);
15817 else
15818 /* An anonymous structure is only allowed non-static data
15819 members; no typedefs, no member functions, et cetera.
15820 So it does not need a prefix. */
15821 return "";
15822 case DW_TAG_compile_unit:
15823 case DW_TAG_partial_unit:
15824 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
15825 if (cu->language == language_cplus
15826 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15827 && die->child != NULL
15828 && (die->tag == DW_TAG_class_type
15829 || die->tag == DW_TAG_structure_type
15830 || die->tag == DW_TAG_union_type))
15831 {
15832 char *name = guess_full_die_structure_name (die, cu);
15833 if (name != NULL)
15834 return name;
15835 }
15836 return "";
15837 default:
15838 return determine_prefix (parent, cu);
15839 }
15840 }
15841
15842 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
15843 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
15844 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
15845 an obconcat, otherwise allocate storage for the result. The CU argument is
15846 used to determine the language and hence, the appropriate separator. */
15847
15848 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
15849
15850 static char *
15851 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
15852 int physname, struct dwarf2_cu *cu)
15853 {
15854 const char *lead = "";
15855 const char *sep;
15856
15857 if (suffix == NULL || suffix[0] == '\0'
15858 || prefix == NULL || prefix[0] == '\0')
15859 sep = "";
15860 else if (cu->language == language_java)
15861 sep = ".";
15862 else if (cu->language == language_fortran && physname)
15863 {
15864 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
15865 DW_AT_MIPS_linkage_name is preferred and used instead. */
15866
15867 lead = "__";
15868 sep = "_MOD_";
15869 }
15870 else
15871 sep = "::";
15872
15873 if (prefix == NULL)
15874 prefix = "";
15875 if (suffix == NULL)
15876 suffix = "";
15877
15878 if (obs == NULL)
15879 {
15880 char *retval
15881 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
15882
15883 strcpy (retval, lead);
15884 strcat (retval, prefix);
15885 strcat (retval, sep);
15886 strcat (retval, suffix);
15887 return retval;
15888 }
15889 else
15890 {
15891 /* We have an obstack. */
15892 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
15893 }
15894 }
15895
15896 /* Return sibling of die, NULL if no sibling. */
15897
15898 static struct die_info *
15899 sibling_die (struct die_info *die)
15900 {
15901 return die->sibling;
15902 }
15903
15904 /* Get name of a die, return NULL if not found. */
15905
15906 static char *
15907 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
15908 struct obstack *obstack)
15909 {
15910 if (name && cu->language == language_cplus)
15911 {
15912 char *canon_name = cp_canonicalize_string (name);
15913
15914 if (canon_name != NULL)
15915 {
15916 if (strcmp (canon_name, name) != 0)
15917 name = obsavestring (canon_name, strlen (canon_name),
15918 obstack);
15919 xfree (canon_name);
15920 }
15921 }
15922
15923 return name;
15924 }
15925
15926 /* Get name of a die, return NULL if not found. */
15927
15928 static char *
15929 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
15930 {
15931 struct attribute *attr;
15932
15933 attr = dwarf2_attr (die, DW_AT_name, cu);
15934 if ((!attr || !DW_STRING (attr))
15935 && die->tag != DW_TAG_class_type
15936 && die->tag != DW_TAG_interface_type
15937 && die->tag != DW_TAG_structure_type
15938 && die->tag != DW_TAG_union_type)
15939 return NULL;
15940
15941 switch (die->tag)
15942 {
15943 case DW_TAG_compile_unit:
15944 case DW_TAG_partial_unit:
15945 /* Compilation units have a DW_AT_name that is a filename, not
15946 a source language identifier. */
15947 case DW_TAG_enumeration_type:
15948 case DW_TAG_enumerator:
15949 /* These tags always have simple identifiers already; no need
15950 to canonicalize them. */
15951 return DW_STRING (attr);
15952
15953 case DW_TAG_subprogram:
15954 /* Java constructors will all be named "<init>", so return
15955 the class name when we see this special case. */
15956 if (cu->language == language_java
15957 && DW_STRING (attr) != NULL
15958 && strcmp (DW_STRING (attr), "<init>") == 0)
15959 {
15960 struct dwarf2_cu *spec_cu = cu;
15961 struct die_info *spec_die;
15962
15963 /* GCJ will output '<init>' for Java constructor names.
15964 For this special case, return the name of the parent class. */
15965
15966 /* GCJ may output suprogram DIEs with AT_specification set.
15967 If so, use the name of the specified DIE. */
15968 spec_die = die_specification (die, &spec_cu);
15969 if (spec_die != NULL)
15970 return dwarf2_name (spec_die, spec_cu);
15971
15972 do
15973 {
15974 die = die->parent;
15975 if (die->tag == DW_TAG_class_type)
15976 return dwarf2_name (die, cu);
15977 }
15978 while (die->tag != DW_TAG_compile_unit
15979 && die->tag != DW_TAG_partial_unit);
15980 }
15981 break;
15982
15983 case DW_TAG_class_type:
15984 case DW_TAG_interface_type:
15985 case DW_TAG_structure_type:
15986 case DW_TAG_union_type:
15987 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
15988 structures or unions. These were of the form "._%d" in GCC 4.1,
15989 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
15990 and GCC 4.4. We work around this problem by ignoring these. */
15991 if (attr && DW_STRING (attr)
15992 && (strncmp (DW_STRING (attr), "._", 2) == 0
15993 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
15994 return NULL;
15995
15996 /* GCC might emit a nameless typedef that has a linkage name. See
15997 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15998 if (!attr || DW_STRING (attr) == NULL)
15999 {
16000 char *demangled = NULL;
16001
16002 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16003 if (attr == NULL)
16004 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16005
16006 if (attr == NULL || DW_STRING (attr) == NULL)
16007 return NULL;
16008
16009 /* Avoid demangling DW_STRING (attr) the second time on a second
16010 call for the same DIE. */
16011 if (!DW_STRING_IS_CANONICAL (attr))
16012 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16013
16014 if (demangled)
16015 {
16016 char *base;
16017
16018 /* FIXME: we already did this for the partial symbol... */
16019 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16020 &cu->objfile->objfile_obstack);
16021 DW_STRING_IS_CANONICAL (attr) = 1;
16022 xfree (demangled);
16023
16024 /* Strip any leading namespaces/classes, keep only the base name.
16025 DW_AT_name for named DIEs does not contain the prefixes. */
16026 base = strrchr (DW_STRING (attr), ':');
16027 if (base && base > DW_STRING (attr) && base[-1] == ':')
16028 return &base[1];
16029 else
16030 return DW_STRING (attr);
16031 }
16032 }
16033 break;
16034
16035 default:
16036 break;
16037 }
16038
16039 if (!DW_STRING_IS_CANONICAL (attr))
16040 {
16041 DW_STRING (attr)
16042 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16043 &cu->objfile->objfile_obstack);
16044 DW_STRING_IS_CANONICAL (attr) = 1;
16045 }
16046 return DW_STRING (attr);
16047 }
16048
16049 /* Return the die that this die in an extension of, or NULL if there
16050 is none. *EXT_CU is the CU containing DIE on input, and the CU
16051 containing the return value on output. */
16052
16053 static struct die_info *
16054 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16055 {
16056 struct attribute *attr;
16057
16058 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16059 if (attr == NULL)
16060 return NULL;
16061
16062 return follow_die_ref (die, attr, ext_cu);
16063 }
16064
16065 /* Convert a DIE tag into its string name. */
16066
16067 static const char *
16068 dwarf_tag_name (unsigned tag)
16069 {
16070 const char *name = get_DW_TAG_name (tag);
16071
16072 if (name == NULL)
16073 return "DW_TAG_<unknown>";
16074
16075 return name;
16076 }
16077
16078 /* Convert a DWARF attribute code into its string name. */
16079
16080 static const char *
16081 dwarf_attr_name (unsigned attr)
16082 {
16083 const char *name;
16084
16085 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16086 if (attr == DW_AT_MIPS_fde)
16087 return "DW_AT_MIPS_fde";
16088 #else
16089 if (attr == DW_AT_HP_block_index)
16090 return "DW_AT_HP_block_index";
16091 #endif
16092
16093 name = get_DW_AT_name (attr);
16094
16095 if (name == NULL)
16096 return "DW_AT_<unknown>";
16097
16098 return name;
16099 }
16100
16101 /* Convert a DWARF value form code into its string name. */
16102
16103 static const char *
16104 dwarf_form_name (unsigned form)
16105 {
16106 const char *name = get_DW_FORM_name (form);
16107
16108 if (name == NULL)
16109 return "DW_FORM_<unknown>";
16110
16111 return name;
16112 }
16113
16114 static char *
16115 dwarf_bool_name (unsigned mybool)
16116 {
16117 if (mybool)
16118 return "TRUE";
16119 else
16120 return "FALSE";
16121 }
16122
16123 /* Convert a DWARF type code into its string name. */
16124
16125 static const char *
16126 dwarf_type_encoding_name (unsigned enc)
16127 {
16128 const char *name = get_DW_ATE_name (enc);
16129
16130 if (name == NULL)
16131 return "DW_ATE_<unknown>";
16132
16133 return name;
16134 }
16135
16136 static void
16137 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
16138 {
16139 unsigned int i;
16140
16141 print_spaces (indent, f);
16142 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
16143 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
16144
16145 if (die->parent != NULL)
16146 {
16147 print_spaces (indent, f);
16148 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
16149 die->parent->offset.sect_off);
16150 }
16151
16152 print_spaces (indent, f);
16153 fprintf_unfiltered (f, " has children: %s\n",
16154 dwarf_bool_name (die->child != NULL));
16155
16156 print_spaces (indent, f);
16157 fprintf_unfiltered (f, " attributes:\n");
16158
16159 for (i = 0; i < die->num_attrs; ++i)
16160 {
16161 print_spaces (indent, f);
16162 fprintf_unfiltered (f, " %s (%s) ",
16163 dwarf_attr_name (die->attrs[i].name),
16164 dwarf_form_name (die->attrs[i].form));
16165
16166 switch (die->attrs[i].form)
16167 {
16168 case DW_FORM_addr:
16169 case DW_FORM_GNU_addr_index:
16170 fprintf_unfiltered (f, "address: ");
16171 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
16172 break;
16173 case DW_FORM_block2:
16174 case DW_FORM_block4:
16175 case DW_FORM_block:
16176 case DW_FORM_block1:
16177 fprintf_unfiltered (f, "block: size %d",
16178 DW_BLOCK (&die->attrs[i])->size);
16179 break;
16180 case DW_FORM_exprloc:
16181 fprintf_unfiltered (f, "expression: size %u",
16182 DW_BLOCK (&die->attrs[i])->size);
16183 break;
16184 case DW_FORM_ref_addr:
16185 fprintf_unfiltered (f, "ref address: ");
16186 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
16187 break;
16188 case DW_FORM_GNU_ref_alt:
16189 fprintf_unfiltered (f, "alt ref address: ");
16190 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
16191 break;
16192 case DW_FORM_ref1:
16193 case DW_FORM_ref2:
16194 case DW_FORM_ref4:
16195 case DW_FORM_ref8:
16196 case DW_FORM_ref_udata:
16197 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
16198 (long) (DW_UNSND (&die->attrs[i])));
16199 break;
16200 case DW_FORM_data1:
16201 case DW_FORM_data2:
16202 case DW_FORM_data4:
16203 case DW_FORM_data8:
16204 case DW_FORM_udata:
16205 case DW_FORM_sdata:
16206 fprintf_unfiltered (f, "constant: %s",
16207 pulongest (DW_UNSND (&die->attrs[i])));
16208 break;
16209 case DW_FORM_sec_offset:
16210 fprintf_unfiltered (f, "section offset: %s",
16211 pulongest (DW_UNSND (&die->attrs[i])));
16212 break;
16213 case DW_FORM_ref_sig8:
16214 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
16215 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
16216 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
16217 else
16218 fprintf_unfiltered (f, "signatured type, offset: unknown");
16219 break;
16220 case DW_FORM_string:
16221 case DW_FORM_strp:
16222 case DW_FORM_GNU_str_index:
16223 case DW_FORM_GNU_strp_alt:
16224 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
16225 DW_STRING (&die->attrs[i])
16226 ? DW_STRING (&die->attrs[i]) : "",
16227 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
16228 break;
16229 case DW_FORM_flag:
16230 if (DW_UNSND (&die->attrs[i]))
16231 fprintf_unfiltered (f, "flag: TRUE");
16232 else
16233 fprintf_unfiltered (f, "flag: FALSE");
16234 break;
16235 case DW_FORM_flag_present:
16236 fprintf_unfiltered (f, "flag: TRUE");
16237 break;
16238 case DW_FORM_indirect:
16239 /* The reader will have reduced the indirect form to
16240 the "base form" so this form should not occur. */
16241 fprintf_unfiltered (f,
16242 "unexpected attribute form: DW_FORM_indirect");
16243 break;
16244 default:
16245 fprintf_unfiltered (f, "unsupported attribute form: %d.",
16246 die->attrs[i].form);
16247 break;
16248 }
16249 fprintf_unfiltered (f, "\n");
16250 }
16251 }
16252
16253 static void
16254 dump_die_for_error (struct die_info *die)
16255 {
16256 dump_die_shallow (gdb_stderr, 0, die);
16257 }
16258
16259 static void
16260 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
16261 {
16262 int indent = level * 4;
16263
16264 gdb_assert (die != NULL);
16265
16266 if (level >= max_level)
16267 return;
16268
16269 dump_die_shallow (f, indent, die);
16270
16271 if (die->child != NULL)
16272 {
16273 print_spaces (indent, f);
16274 fprintf_unfiltered (f, " Children:");
16275 if (level + 1 < max_level)
16276 {
16277 fprintf_unfiltered (f, "\n");
16278 dump_die_1 (f, level + 1, max_level, die->child);
16279 }
16280 else
16281 {
16282 fprintf_unfiltered (f,
16283 " [not printed, max nesting level reached]\n");
16284 }
16285 }
16286
16287 if (die->sibling != NULL && level > 0)
16288 {
16289 dump_die_1 (f, level, max_level, die->sibling);
16290 }
16291 }
16292
16293 /* This is called from the pdie macro in gdbinit.in.
16294 It's not static so gcc will keep a copy callable from gdb. */
16295
16296 void
16297 dump_die (struct die_info *die, int max_level)
16298 {
16299 dump_die_1 (gdb_stdlog, 0, max_level, die);
16300 }
16301
16302 static void
16303 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
16304 {
16305 void **slot;
16306
16307 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
16308 INSERT);
16309
16310 *slot = die;
16311 }
16312
16313 /* DW_ADDR is always stored already as sect_offset; despite for the forms
16314 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
16315
16316 static int
16317 is_ref_attr (struct attribute *attr)
16318 {
16319 switch (attr->form)
16320 {
16321 case DW_FORM_ref_addr:
16322 case DW_FORM_ref1:
16323 case DW_FORM_ref2:
16324 case DW_FORM_ref4:
16325 case DW_FORM_ref8:
16326 case DW_FORM_ref_udata:
16327 case DW_FORM_GNU_ref_alt:
16328 return 1;
16329 default:
16330 return 0;
16331 }
16332 }
16333
16334 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
16335 required kind. */
16336
16337 static sect_offset
16338 dwarf2_get_ref_die_offset (struct attribute *attr)
16339 {
16340 sect_offset retval = { DW_UNSND (attr) };
16341
16342 if (is_ref_attr (attr))
16343 return retval;
16344
16345 retval.sect_off = 0;
16346 complaint (&symfile_complaints,
16347 _("unsupported die ref attribute form: '%s'"),
16348 dwarf_form_name (attr->form));
16349 return retval;
16350 }
16351
16352 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
16353 * the value held by the attribute is not constant. */
16354
16355 static LONGEST
16356 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
16357 {
16358 if (attr->form == DW_FORM_sdata)
16359 return DW_SND (attr);
16360 else if (attr->form == DW_FORM_udata
16361 || attr->form == DW_FORM_data1
16362 || attr->form == DW_FORM_data2
16363 || attr->form == DW_FORM_data4
16364 || attr->form == DW_FORM_data8)
16365 return DW_UNSND (attr);
16366 else
16367 {
16368 complaint (&symfile_complaints,
16369 _("Attribute value is not a constant (%s)"),
16370 dwarf_form_name (attr->form));
16371 return default_value;
16372 }
16373 }
16374
16375 /* Follow reference or signature attribute ATTR of SRC_DIE.
16376 On entry *REF_CU is the CU of SRC_DIE.
16377 On exit *REF_CU is the CU of the result. */
16378
16379 static struct die_info *
16380 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
16381 struct dwarf2_cu **ref_cu)
16382 {
16383 struct die_info *die;
16384
16385 if (is_ref_attr (attr))
16386 die = follow_die_ref (src_die, attr, ref_cu);
16387 else if (attr->form == DW_FORM_ref_sig8)
16388 die = follow_die_sig (src_die, attr, ref_cu);
16389 else
16390 {
16391 dump_die_for_error (src_die);
16392 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
16393 (*ref_cu)->objfile->name);
16394 }
16395
16396 return die;
16397 }
16398
16399 /* Follow reference OFFSET.
16400 On entry *REF_CU is the CU of the source die referencing OFFSET.
16401 On exit *REF_CU is the CU of the result.
16402 Returns NULL if OFFSET is invalid. */
16403
16404 static struct die_info *
16405 follow_die_offset (sect_offset offset, int offset_in_dwz,
16406 struct dwarf2_cu **ref_cu)
16407 {
16408 struct die_info temp_die;
16409 struct dwarf2_cu *target_cu, *cu = *ref_cu;
16410
16411 gdb_assert (cu->per_cu != NULL);
16412
16413 target_cu = cu;
16414
16415 if (cu->per_cu->is_debug_types)
16416 {
16417 /* .debug_types CUs cannot reference anything outside their CU.
16418 If they need to, they have to reference a signatured type via
16419 DW_FORM_ref_sig8. */
16420 if (! offset_in_cu_p (&cu->header, offset))
16421 return NULL;
16422 }
16423 else if (offset_in_dwz != cu->per_cu->is_dwz
16424 || ! offset_in_cu_p (&cu->header, offset))
16425 {
16426 struct dwarf2_per_cu_data *per_cu;
16427
16428 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16429 cu->objfile);
16430
16431 /* If necessary, add it to the queue and load its DIEs. */
16432 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
16433 load_full_comp_unit (per_cu, cu->language);
16434
16435 target_cu = per_cu->cu;
16436 }
16437 else if (cu->dies == NULL)
16438 {
16439 /* We're loading full DIEs during partial symbol reading. */
16440 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
16441 load_full_comp_unit (cu->per_cu, language_minimal);
16442 }
16443
16444 *ref_cu = target_cu;
16445 temp_die.offset = offset;
16446 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
16447 }
16448
16449 /* Follow reference attribute ATTR of SRC_DIE.
16450 On entry *REF_CU is the CU of SRC_DIE.
16451 On exit *REF_CU is the CU of the result. */
16452
16453 static struct die_info *
16454 follow_die_ref (struct die_info *src_die, struct attribute *attr,
16455 struct dwarf2_cu **ref_cu)
16456 {
16457 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16458 struct dwarf2_cu *cu = *ref_cu;
16459 struct die_info *die;
16460
16461 die = follow_die_offset (offset,
16462 (attr->form == DW_FORM_GNU_ref_alt
16463 || cu->per_cu->is_dwz),
16464 ref_cu);
16465 if (!die)
16466 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
16467 "at 0x%x [in module %s]"),
16468 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
16469
16470 return die;
16471 }
16472
16473 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
16474 Returned value is intended for DW_OP_call*. Returned
16475 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
16476
16477 struct dwarf2_locexpr_baton
16478 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
16479 struct dwarf2_per_cu_data *per_cu,
16480 CORE_ADDR (*get_frame_pc) (void *baton),
16481 void *baton)
16482 {
16483 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
16484 struct dwarf2_cu *cu;
16485 struct die_info *die;
16486 struct attribute *attr;
16487 struct dwarf2_locexpr_baton retval;
16488
16489 dw2_setup (per_cu->objfile);
16490
16491 if (per_cu->cu == NULL)
16492 load_cu (per_cu);
16493 cu = per_cu->cu;
16494
16495 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
16496 if (!die)
16497 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
16498 offset.sect_off, per_cu->objfile->name);
16499
16500 attr = dwarf2_attr (die, DW_AT_location, cu);
16501 if (!attr)
16502 {
16503 /* DWARF: "If there is no such attribute, then there is no effect.".
16504 DATA is ignored if SIZE is 0. */
16505
16506 retval.data = NULL;
16507 retval.size = 0;
16508 }
16509 else if (attr_form_is_section_offset (attr))
16510 {
16511 struct dwarf2_loclist_baton loclist_baton;
16512 CORE_ADDR pc = (*get_frame_pc) (baton);
16513 size_t size;
16514
16515 fill_in_loclist_baton (cu, &loclist_baton, attr);
16516
16517 retval.data = dwarf2_find_location_expression (&loclist_baton,
16518 &size, pc);
16519 retval.size = size;
16520 }
16521 else
16522 {
16523 if (!attr_form_is_block (attr))
16524 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
16525 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
16526 offset.sect_off, per_cu->objfile->name);
16527
16528 retval.data = DW_BLOCK (attr)->data;
16529 retval.size = DW_BLOCK (attr)->size;
16530 }
16531 retval.per_cu = cu->per_cu;
16532
16533 age_cached_comp_units ();
16534
16535 return retval;
16536 }
16537
16538 /* Return the type of the DIE at DIE_OFFSET in the CU named by
16539 PER_CU. */
16540
16541 struct type *
16542 dwarf2_get_die_type (cu_offset die_offset,
16543 struct dwarf2_per_cu_data *per_cu)
16544 {
16545 sect_offset die_offset_sect;
16546
16547 dw2_setup (per_cu->objfile);
16548
16549 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
16550 return get_die_type_at_offset (die_offset_sect, per_cu);
16551 }
16552
16553 /* Follow the signature attribute ATTR in SRC_DIE.
16554 On entry *REF_CU is the CU of SRC_DIE.
16555 On exit *REF_CU is the CU of the result. */
16556
16557 static struct die_info *
16558 follow_die_sig (struct die_info *src_die, struct attribute *attr,
16559 struct dwarf2_cu **ref_cu)
16560 {
16561 struct objfile *objfile = (*ref_cu)->objfile;
16562 struct die_info temp_die;
16563 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16564 struct dwarf2_cu *sig_cu;
16565 struct die_info *die;
16566
16567 /* sig_type will be NULL if the signatured type is missing from
16568 the debug info. */
16569 if (sig_type == NULL)
16570 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16571 "at 0x%x [in module %s]"),
16572 src_die->offset.sect_off, objfile->name);
16573
16574 /* If necessary, add it to the queue and load its DIEs. */
16575
16576 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
16577 read_signatured_type (sig_type);
16578
16579 gdb_assert (sig_type->per_cu.cu != NULL);
16580
16581 sig_cu = sig_type->per_cu.cu;
16582 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
16583 temp_die.offset = sig_type->type_offset_in_section;
16584 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
16585 temp_die.offset.sect_off);
16586 if (die)
16587 {
16588 *ref_cu = sig_cu;
16589 return die;
16590 }
16591
16592 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
16593 "from DIE at 0x%x [in module %s]"),
16594 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
16595 }
16596
16597 /* Given an offset of a signatured type, return its signatured_type. */
16598
16599 static struct signatured_type *
16600 lookup_signatured_type_at_offset (struct objfile *objfile,
16601 struct dwarf2_section_info *section,
16602 sect_offset offset)
16603 {
16604 gdb_byte *info_ptr = section->buffer + offset.sect_off;
16605 unsigned int length, initial_length_size;
16606 unsigned int sig_offset;
16607 struct signatured_type find_entry, *sig_type;
16608
16609 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
16610 sig_offset = (initial_length_size
16611 + 2 /*version*/
16612 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
16613 + 1 /*address_size*/);
16614 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
16615 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
16616
16617 /* This is only used to lookup previously recorded types.
16618 If we didn't find it, it's our bug. */
16619 gdb_assert (sig_type != NULL);
16620 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
16621
16622 return sig_type;
16623 }
16624
16625 /* Load the DIEs associated with type unit PER_CU into memory. */
16626
16627 static void
16628 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
16629 {
16630 struct signatured_type *sig_type;
16631
16632 /* Caller is responsible for ensuring type_unit_groups don't get here. */
16633 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
16634
16635 /* We have the per_cu, but we need the signatured_type.
16636 Fortunately this is an easy translation. */
16637 gdb_assert (per_cu->is_debug_types);
16638 sig_type = (struct signatured_type *) per_cu;
16639
16640 gdb_assert (per_cu->cu == NULL);
16641
16642 read_signatured_type (sig_type);
16643
16644 gdb_assert (per_cu->cu != NULL);
16645 }
16646
16647 /* die_reader_func for read_signatured_type.
16648 This is identical to load_full_comp_unit_reader,
16649 but is kept separate for now. */
16650
16651 static void
16652 read_signatured_type_reader (const struct die_reader_specs *reader,
16653 gdb_byte *info_ptr,
16654 struct die_info *comp_unit_die,
16655 int has_children,
16656 void *data)
16657 {
16658 struct dwarf2_cu *cu = reader->cu;
16659
16660 gdb_assert (cu->die_hash == NULL);
16661 cu->die_hash =
16662 htab_create_alloc_ex (cu->header.length / 12,
16663 die_hash,
16664 die_eq,
16665 NULL,
16666 &cu->comp_unit_obstack,
16667 hashtab_obstack_allocate,
16668 dummy_obstack_deallocate);
16669
16670 if (has_children)
16671 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
16672 &info_ptr, comp_unit_die);
16673 cu->dies = comp_unit_die;
16674 /* comp_unit_die is not stored in die_hash, no need. */
16675
16676 /* We try not to read any attributes in this function, because not
16677 all CUs needed for references have been loaded yet, and symbol
16678 table processing isn't initialized. But we have to set the CU language,
16679 or we won't be able to build types correctly.
16680 Similarly, if we do not read the producer, we can not apply
16681 producer-specific interpretation. */
16682 prepare_one_comp_unit (cu, cu->dies, language_minimal);
16683 }
16684
16685 /* Read in a signatured type and build its CU and DIEs.
16686 If the type is a stub for the real type in a DWO file,
16687 read in the real type from the DWO file as well. */
16688
16689 static void
16690 read_signatured_type (struct signatured_type *sig_type)
16691 {
16692 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
16693
16694 gdb_assert (per_cu->is_debug_types);
16695 gdb_assert (per_cu->cu == NULL);
16696
16697 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
16698 read_signatured_type_reader, NULL);
16699 }
16700
16701 /* Decode simple location descriptions.
16702 Given a pointer to a dwarf block that defines a location, compute
16703 the location and return the value.
16704
16705 NOTE drow/2003-11-18: This function is called in two situations
16706 now: for the address of static or global variables (partial symbols
16707 only) and for offsets into structures which are expected to be
16708 (more or less) constant. The partial symbol case should go away,
16709 and only the constant case should remain. That will let this
16710 function complain more accurately. A few special modes are allowed
16711 without complaint for global variables (for instance, global
16712 register values and thread-local values).
16713
16714 A location description containing no operations indicates that the
16715 object is optimized out. The return value is 0 for that case.
16716 FIXME drow/2003-11-16: No callers check for this case any more; soon all
16717 callers will only want a very basic result and this can become a
16718 complaint.
16719
16720 Note that stack[0] is unused except as a default error return. */
16721
16722 static CORE_ADDR
16723 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
16724 {
16725 struct objfile *objfile = cu->objfile;
16726 int i;
16727 int size = blk->size;
16728 gdb_byte *data = blk->data;
16729 CORE_ADDR stack[64];
16730 int stacki;
16731 unsigned int bytes_read, unsnd;
16732 gdb_byte op;
16733
16734 i = 0;
16735 stacki = 0;
16736 stack[stacki] = 0;
16737 stack[++stacki] = 0;
16738
16739 while (i < size)
16740 {
16741 op = data[i++];
16742 switch (op)
16743 {
16744 case DW_OP_lit0:
16745 case DW_OP_lit1:
16746 case DW_OP_lit2:
16747 case DW_OP_lit3:
16748 case DW_OP_lit4:
16749 case DW_OP_lit5:
16750 case DW_OP_lit6:
16751 case DW_OP_lit7:
16752 case DW_OP_lit8:
16753 case DW_OP_lit9:
16754 case DW_OP_lit10:
16755 case DW_OP_lit11:
16756 case DW_OP_lit12:
16757 case DW_OP_lit13:
16758 case DW_OP_lit14:
16759 case DW_OP_lit15:
16760 case DW_OP_lit16:
16761 case DW_OP_lit17:
16762 case DW_OP_lit18:
16763 case DW_OP_lit19:
16764 case DW_OP_lit20:
16765 case DW_OP_lit21:
16766 case DW_OP_lit22:
16767 case DW_OP_lit23:
16768 case DW_OP_lit24:
16769 case DW_OP_lit25:
16770 case DW_OP_lit26:
16771 case DW_OP_lit27:
16772 case DW_OP_lit28:
16773 case DW_OP_lit29:
16774 case DW_OP_lit30:
16775 case DW_OP_lit31:
16776 stack[++stacki] = op - DW_OP_lit0;
16777 break;
16778
16779 case DW_OP_reg0:
16780 case DW_OP_reg1:
16781 case DW_OP_reg2:
16782 case DW_OP_reg3:
16783 case DW_OP_reg4:
16784 case DW_OP_reg5:
16785 case DW_OP_reg6:
16786 case DW_OP_reg7:
16787 case DW_OP_reg8:
16788 case DW_OP_reg9:
16789 case DW_OP_reg10:
16790 case DW_OP_reg11:
16791 case DW_OP_reg12:
16792 case DW_OP_reg13:
16793 case DW_OP_reg14:
16794 case DW_OP_reg15:
16795 case DW_OP_reg16:
16796 case DW_OP_reg17:
16797 case DW_OP_reg18:
16798 case DW_OP_reg19:
16799 case DW_OP_reg20:
16800 case DW_OP_reg21:
16801 case DW_OP_reg22:
16802 case DW_OP_reg23:
16803 case DW_OP_reg24:
16804 case DW_OP_reg25:
16805 case DW_OP_reg26:
16806 case DW_OP_reg27:
16807 case DW_OP_reg28:
16808 case DW_OP_reg29:
16809 case DW_OP_reg30:
16810 case DW_OP_reg31:
16811 stack[++stacki] = op - DW_OP_reg0;
16812 if (i < size)
16813 dwarf2_complex_location_expr_complaint ();
16814 break;
16815
16816 case DW_OP_regx:
16817 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
16818 i += bytes_read;
16819 stack[++stacki] = unsnd;
16820 if (i < size)
16821 dwarf2_complex_location_expr_complaint ();
16822 break;
16823
16824 case DW_OP_addr:
16825 stack[++stacki] = read_address (objfile->obfd, &data[i],
16826 cu, &bytes_read);
16827 i += bytes_read;
16828 break;
16829
16830 case DW_OP_const1u:
16831 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
16832 i += 1;
16833 break;
16834
16835 case DW_OP_const1s:
16836 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
16837 i += 1;
16838 break;
16839
16840 case DW_OP_const2u:
16841 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
16842 i += 2;
16843 break;
16844
16845 case DW_OP_const2s:
16846 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
16847 i += 2;
16848 break;
16849
16850 case DW_OP_const4u:
16851 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
16852 i += 4;
16853 break;
16854
16855 case DW_OP_const4s:
16856 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
16857 i += 4;
16858 break;
16859
16860 case DW_OP_const8u:
16861 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
16862 i += 8;
16863 break;
16864
16865 case DW_OP_constu:
16866 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
16867 &bytes_read);
16868 i += bytes_read;
16869 break;
16870
16871 case DW_OP_consts:
16872 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
16873 i += bytes_read;
16874 break;
16875
16876 case DW_OP_dup:
16877 stack[stacki + 1] = stack[stacki];
16878 stacki++;
16879 break;
16880
16881 case DW_OP_plus:
16882 stack[stacki - 1] += stack[stacki];
16883 stacki--;
16884 break;
16885
16886 case DW_OP_plus_uconst:
16887 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
16888 &bytes_read);
16889 i += bytes_read;
16890 break;
16891
16892 case DW_OP_minus:
16893 stack[stacki - 1] -= stack[stacki];
16894 stacki--;
16895 break;
16896
16897 case DW_OP_deref:
16898 /* If we're not the last op, then we definitely can't encode
16899 this using GDB's address_class enum. This is valid for partial
16900 global symbols, although the variable's address will be bogus
16901 in the psymtab. */
16902 if (i < size)
16903 dwarf2_complex_location_expr_complaint ();
16904 break;
16905
16906 case DW_OP_GNU_push_tls_address:
16907 /* The top of the stack has the offset from the beginning
16908 of the thread control block at which the variable is located. */
16909 /* Nothing should follow this operator, so the top of stack would
16910 be returned. */
16911 /* This is valid for partial global symbols, but the variable's
16912 address will be bogus in the psymtab. Make it always at least
16913 non-zero to not look as a variable garbage collected by linker
16914 which have DW_OP_addr 0. */
16915 if (i < size)
16916 dwarf2_complex_location_expr_complaint ();
16917 stack[stacki]++;
16918 break;
16919
16920 case DW_OP_GNU_uninit:
16921 break;
16922
16923 case DW_OP_GNU_addr_index:
16924 case DW_OP_GNU_const_index:
16925 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
16926 &bytes_read);
16927 i += bytes_read;
16928 break;
16929
16930 default:
16931 {
16932 const char *name = get_DW_OP_name (op);
16933
16934 if (name)
16935 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
16936 name);
16937 else
16938 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
16939 op);
16940 }
16941
16942 return (stack[stacki]);
16943 }
16944
16945 /* Enforce maximum stack depth of SIZE-1 to avoid writing
16946 outside of the allocated space. Also enforce minimum>0. */
16947 if (stacki >= ARRAY_SIZE (stack) - 1)
16948 {
16949 complaint (&symfile_complaints,
16950 _("location description stack overflow"));
16951 return 0;
16952 }
16953
16954 if (stacki <= 0)
16955 {
16956 complaint (&symfile_complaints,
16957 _("location description stack underflow"));
16958 return 0;
16959 }
16960 }
16961 return (stack[stacki]);
16962 }
16963
16964 /* memory allocation interface */
16965
16966 static struct dwarf_block *
16967 dwarf_alloc_block (struct dwarf2_cu *cu)
16968 {
16969 struct dwarf_block *blk;
16970
16971 blk = (struct dwarf_block *)
16972 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
16973 return (blk);
16974 }
16975
16976 static struct die_info *
16977 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
16978 {
16979 struct die_info *die;
16980 size_t size = sizeof (struct die_info);
16981
16982 if (num_attrs > 1)
16983 size += (num_attrs - 1) * sizeof (struct attribute);
16984
16985 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
16986 memset (die, 0, sizeof (struct die_info));
16987 return (die);
16988 }
16989
16990 \f
16991 /* Macro support. */
16992
16993 /* Return the full name of file number I in *LH's file name table.
16994 Use COMP_DIR as the name of the current directory of the
16995 compilation. The result is allocated using xmalloc; the caller is
16996 responsible for freeing it. */
16997 static char *
16998 file_full_name (int file, struct line_header *lh, const char *comp_dir)
16999 {
17000 /* Is the file number a valid index into the line header's file name
17001 table? Remember that file numbers start with one, not zero. */
17002 if (1 <= file && file <= lh->num_file_names)
17003 {
17004 struct file_entry *fe = &lh->file_names[file - 1];
17005
17006 if (IS_ABSOLUTE_PATH (fe->name))
17007 return xstrdup (fe->name);
17008 else
17009 {
17010 const char *dir;
17011 int dir_len;
17012 char *full_name;
17013
17014 if (fe->dir_index)
17015 dir = lh->include_dirs[fe->dir_index - 1];
17016 else
17017 dir = comp_dir;
17018
17019 if (dir)
17020 {
17021 dir_len = strlen (dir);
17022 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17023 strcpy (full_name, dir);
17024 full_name[dir_len] = '/';
17025 strcpy (full_name + dir_len + 1, fe->name);
17026 return full_name;
17027 }
17028 else
17029 return xstrdup (fe->name);
17030 }
17031 }
17032 else
17033 {
17034 /* The compiler produced a bogus file number. We can at least
17035 record the macro definitions made in the file, even if we
17036 won't be able to find the file by name. */
17037 char fake_name[80];
17038
17039 sprintf (fake_name, "<bad macro file number %d>", file);
17040
17041 complaint (&symfile_complaints,
17042 _("bad file number in macro information (%d)"),
17043 file);
17044
17045 return xstrdup (fake_name);
17046 }
17047 }
17048
17049
17050 static struct macro_source_file *
17051 macro_start_file (int file, int line,
17052 struct macro_source_file *current_file,
17053 const char *comp_dir,
17054 struct line_header *lh, struct objfile *objfile)
17055 {
17056 /* The full name of this source file. */
17057 char *full_name = file_full_name (file, lh, comp_dir);
17058
17059 /* We don't create a macro table for this compilation unit
17060 at all until we actually get a filename. */
17061 if (! pending_macros)
17062 pending_macros = new_macro_table (&objfile->objfile_obstack,
17063 objfile->macro_cache);
17064
17065 if (! current_file)
17066 {
17067 /* If we have no current file, then this must be the start_file
17068 directive for the compilation unit's main source file. */
17069 current_file = macro_set_main (pending_macros, full_name);
17070 macro_define_special (pending_macros);
17071 }
17072 else
17073 current_file = macro_include (current_file, line, full_name);
17074
17075 xfree (full_name);
17076
17077 return current_file;
17078 }
17079
17080
17081 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17082 followed by a null byte. */
17083 static char *
17084 copy_string (const char *buf, int len)
17085 {
17086 char *s = xmalloc (len + 1);
17087
17088 memcpy (s, buf, len);
17089 s[len] = '\0';
17090 return s;
17091 }
17092
17093
17094 static const char *
17095 consume_improper_spaces (const char *p, const char *body)
17096 {
17097 if (*p == ' ')
17098 {
17099 complaint (&symfile_complaints,
17100 _("macro definition contains spaces "
17101 "in formal argument list:\n`%s'"),
17102 body);
17103
17104 while (*p == ' ')
17105 p++;
17106 }
17107
17108 return p;
17109 }
17110
17111
17112 static void
17113 parse_macro_definition (struct macro_source_file *file, int line,
17114 const char *body)
17115 {
17116 const char *p;
17117
17118 /* The body string takes one of two forms. For object-like macro
17119 definitions, it should be:
17120
17121 <macro name> " " <definition>
17122
17123 For function-like macro definitions, it should be:
17124
17125 <macro name> "() " <definition>
17126 or
17127 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
17128
17129 Spaces may appear only where explicitly indicated, and in the
17130 <definition>.
17131
17132 The Dwarf 2 spec says that an object-like macro's name is always
17133 followed by a space, but versions of GCC around March 2002 omit
17134 the space when the macro's definition is the empty string.
17135
17136 The Dwarf 2 spec says that there should be no spaces between the
17137 formal arguments in a function-like macro's formal argument list,
17138 but versions of GCC around March 2002 include spaces after the
17139 commas. */
17140
17141
17142 /* Find the extent of the macro name. The macro name is terminated
17143 by either a space or null character (for an object-like macro) or
17144 an opening paren (for a function-like macro). */
17145 for (p = body; *p; p++)
17146 if (*p == ' ' || *p == '(')
17147 break;
17148
17149 if (*p == ' ' || *p == '\0')
17150 {
17151 /* It's an object-like macro. */
17152 int name_len = p - body;
17153 char *name = copy_string (body, name_len);
17154 const char *replacement;
17155
17156 if (*p == ' ')
17157 replacement = body + name_len + 1;
17158 else
17159 {
17160 dwarf2_macro_malformed_definition_complaint (body);
17161 replacement = body + name_len;
17162 }
17163
17164 macro_define_object (file, line, name, replacement);
17165
17166 xfree (name);
17167 }
17168 else if (*p == '(')
17169 {
17170 /* It's a function-like macro. */
17171 char *name = copy_string (body, p - body);
17172 int argc = 0;
17173 int argv_size = 1;
17174 char **argv = xmalloc (argv_size * sizeof (*argv));
17175
17176 p++;
17177
17178 p = consume_improper_spaces (p, body);
17179
17180 /* Parse the formal argument list. */
17181 while (*p && *p != ')')
17182 {
17183 /* Find the extent of the current argument name. */
17184 const char *arg_start = p;
17185
17186 while (*p && *p != ',' && *p != ')' && *p != ' ')
17187 p++;
17188
17189 if (! *p || p == arg_start)
17190 dwarf2_macro_malformed_definition_complaint (body);
17191 else
17192 {
17193 /* Make sure argv has room for the new argument. */
17194 if (argc >= argv_size)
17195 {
17196 argv_size *= 2;
17197 argv = xrealloc (argv, argv_size * sizeof (*argv));
17198 }
17199
17200 argv[argc++] = copy_string (arg_start, p - arg_start);
17201 }
17202
17203 p = consume_improper_spaces (p, body);
17204
17205 /* Consume the comma, if present. */
17206 if (*p == ',')
17207 {
17208 p++;
17209
17210 p = consume_improper_spaces (p, body);
17211 }
17212 }
17213
17214 if (*p == ')')
17215 {
17216 p++;
17217
17218 if (*p == ' ')
17219 /* Perfectly formed definition, no complaints. */
17220 macro_define_function (file, line, name,
17221 argc, (const char **) argv,
17222 p + 1);
17223 else if (*p == '\0')
17224 {
17225 /* Complain, but do define it. */
17226 dwarf2_macro_malformed_definition_complaint (body);
17227 macro_define_function (file, line, name,
17228 argc, (const char **) argv,
17229 p);
17230 }
17231 else
17232 /* Just complain. */
17233 dwarf2_macro_malformed_definition_complaint (body);
17234 }
17235 else
17236 /* Just complain. */
17237 dwarf2_macro_malformed_definition_complaint (body);
17238
17239 xfree (name);
17240 {
17241 int i;
17242
17243 for (i = 0; i < argc; i++)
17244 xfree (argv[i]);
17245 }
17246 xfree (argv);
17247 }
17248 else
17249 dwarf2_macro_malformed_definition_complaint (body);
17250 }
17251
17252 /* Skip some bytes from BYTES according to the form given in FORM.
17253 Returns the new pointer. */
17254
17255 static gdb_byte *
17256 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
17257 enum dwarf_form form,
17258 unsigned int offset_size,
17259 struct dwarf2_section_info *section)
17260 {
17261 unsigned int bytes_read;
17262
17263 switch (form)
17264 {
17265 case DW_FORM_data1:
17266 case DW_FORM_flag:
17267 ++bytes;
17268 break;
17269
17270 case DW_FORM_data2:
17271 bytes += 2;
17272 break;
17273
17274 case DW_FORM_data4:
17275 bytes += 4;
17276 break;
17277
17278 case DW_FORM_data8:
17279 bytes += 8;
17280 break;
17281
17282 case DW_FORM_string:
17283 read_direct_string (abfd, bytes, &bytes_read);
17284 bytes += bytes_read;
17285 break;
17286
17287 case DW_FORM_sec_offset:
17288 case DW_FORM_strp:
17289 case DW_FORM_GNU_strp_alt:
17290 bytes += offset_size;
17291 break;
17292
17293 case DW_FORM_block:
17294 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
17295 bytes += bytes_read;
17296 break;
17297
17298 case DW_FORM_block1:
17299 bytes += 1 + read_1_byte (abfd, bytes);
17300 break;
17301 case DW_FORM_block2:
17302 bytes += 2 + read_2_bytes (abfd, bytes);
17303 break;
17304 case DW_FORM_block4:
17305 bytes += 4 + read_4_bytes (abfd, bytes);
17306 break;
17307
17308 case DW_FORM_sdata:
17309 case DW_FORM_udata:
17310 case DW_FORM_GNU_addr_index:
17311 case DW_FORM_GNU_str_index:
17312 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
17313 if (bytes == NULL)
17314 {
17315 dwarf2_section_buffer_overflow_complaint (section);
17316 return NULL;
17317 }
17318 break;
17319
17320 default:
17321 {
17322 complain:
17323 complaint (&symfile_complaints,
17324 _("invalid form 0x%x in `%s'"),
17325 form,
17326 section->asection->name);
17327 return NULL;
17328 }
17329 }
17330
17331 return bytes;
17332 }
17333
17334 /* A helper for dwarf_decode_macros that handles skipping an unknown
17335 opcode. Returns an updated pointer to the macro data buffer; or,
17336 on error, issues a complaint and returns NULL. */
17337
17338 static gdb_byte *
17339 skip_unknown_opcode (unsigned int opcode,
17340 gdb_byte **opcode_definitions,
17341 gdb_byte *mac_ptr, gdb_byte *mac_end,
17342 bfd *abfd,
17343 unsigned int offset_size,
17344 struct dwarf2_section_info *section)
17345 {
17346 unsigned int bytes_read, i;
17347 unsigned long arg;
17348 gdb_byte *defn;
17349
17350 if (opcode_definitions[opcode] == NULL)
17351 {
17352 complaint (&symfile_complaints,
17353 _("unrecognized DW_MACFINO opcode 0x%x"),
17354 opcode);
17355 return NULL;
17356 }
17357
17358 defn = opcode_definitions[opcode];
17359 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
17360 defn += bytes_read;
17361
17362 for (i = 0; i < arg; ++i)
17363 {
17364 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
17365 section);
17366 if (mac_ptr == NULL)
17367 {
17368 /* skip_form_bytes already issued the complaint. */
17369 return NULL;
17370 }
17371 }
17372
17373 return mac_ptr;
17374 }
17375
17376 /* A helper function which parses the header of a macro section.
17377 If the macro section is the extended (for now called "GNU") type,
17378 then this updates *OFFSET_SIZE. Returns a pointer to just after
17379 the header, or issues a complaint and returns NULL on error. */
17380
17381 static gdb_byte *
17382 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
17383 bfd *abfd,
17384 gdb_byte *mac_ptr,
17385 unsigned int *offset_size,
17386 int section_is_gnu)
17387 {
17388 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
17389
17390 if (section_is_gnu)
17391 {
17392 unsigned int version, flags;
17393
17394 version = read_2_bytes (abfd, mac_ptr);
17395 if (version != 4)
17396 {
17397 complaint (&symfile_complaints,
17398 _("unrecognized version `%d' in .debug_macro section"),
17399 version);
17400 return NULL;
17401 }
17402 mac_ptr += 2;
17403
17404 flags = read_1_byte (abfd, mac_ptr);
17405 ++mac_ptr;
17406 *offset_size = (flags & 1) ? 8 : 4;
17407
17408 if ((flags & 2) != 0)
17409 /* We don't need the line table offset. */
17410 mac_ptr += *offset_size;
17411
17412 /* Vendor opcode descriptions. */
17413 if ((flags & 4) != 0)
17414 {
17415 unsigned int i, count;
17416
17417 count = read_1_byte (abfd, mac_ptr);
17418 ++mac_ptr;
17419 for (i = 0; i < count; ++i)
17420 {
17421 unsigned int opcode, bytes_read;
17422 unsigned long arg;
17423
17424 opcode = read_1_byte (abfd, mac_ptr);
17425 ++mac_ptr;
17426 opcode_definitions[opcode] = mac_ptr;
17427 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17428 mac_ptr += bytes_read;
17429 mac_ptr += arg;
17430 }
17431 }
17432 }
17433
17434 return mac_ptr;
17435 }
17436
17437 /* A helper for dwarf_decode_macros that handles the GNU extensions,
17438 including DW_MACRO_GNU_transparent_include. */
17439
17440 static void
17441 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
17442 struct macro_source_file *current_file,
17443 struct line_header *lh, char *comp_dir,
17444 struct dwarf2_section_info *section,
17445 int section_is_gnu, int section_is_dwz,
17446 unsigned int offset_size,
17447 struct objfile *objfile,
17448 htab_t include_hash)
17449 {
17450 enum dwarf_macro_record_type macinfo_type;
17451 int at_commandline;
17452 gdb_byte *opcode_definitions[256];
17453
17454 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17455 &offset_size, section_is_gnu);
17456 if (mac_ptr == NULL)
17457 {
17458 /* We already issued a complaint. */
17459 return;
17460 }
17461
17462 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
17463 GDB is still reading the definitions from command line. First
17464 DW_MACINFO_start_file will need to be ignored as it was already executed
17465 to create CURRENT_FILE for the main source holding also the command line
17466 definitions. On first met DW_MACINFO_start_file this flag is reset to
17467 normally execute all the remaining DW_MACINFO_start_file macinfos. */
17468
17469 at_commandline = 1;
17470
17471 do
17472 {
17473 /* Do we at least have room for a macinfo type byte? */
17474 if (mac_ptr >= mac_end)
17475 {
17476 dwarf2_section_buffer_overflow_complaint (section);
17477 break;
17478 }
17479
17480 macinfo_type = read_1_byte (abfd, mac_ptr);
17481 mac_ptr++;
17482
17483 /* Note that we rely on the fact that the corresponding GNU and
17484 DWARF constants are the same. */
17485 switch (macinfo_type)
17486 {
17487 /* A zero macinfo type indicates the end of the macro
17488 information. */
17489 case 0:
17490 break;
17491
17492 case DW_MACRO_GNU_define:
17493 case DW_MACRO_GNU_undef:
17494 case DW_MACRO_GNU_define_indirect:
17495 case DW_MACRO_GNU_undef_indirect:
17496 case DW_MACRO_GNU_define_indirect_alt:
17497 case DW_MACRO_GNU_undef_indirect_alt:
17498 {
17499 unsigned int bytes_read;
17500 int line;
17501 char *body;
17502 int is_define;
17503
17504 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17505 mac_ptr += bytes_read;
17506
17507 if (macinfo_type == DW_MACRO_GNU_define
17508 || macinfo_type == DW_MACRO_GNU_undef)
17509 {
17510 body = read_direct_string (abfd, mac_ptr, &bytes_read);
17511 mac_ptr += bytes_read;
17512 }
17513 else
17514 {
17515 LONGEST str_offset;
17516
17517 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
17518 mac_ptr += offset_size;
17519
17520 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
17521 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt)
17522 {
17523 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17524
17525 body = read_indirect_string_from_dwz (dwz, str_offset);
17526 }
17527 else
17528 body = read_indirect_string_at_offset (abfd, str_offset);
17529 }
17530
17531 is_define = (macinfo_type == DW_MACRO_GNU_define
17532 || macinfo_type == DW_MACRO_GNU_define_indirect
17533 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
17534 if (! current_file)
17535 {
17536 /* DWARF violation as no main source is present. */
17537 complaint (&symfile_complaints,
17538 _("debug info with no main source gives macro %s "
17539 "on line %d: %s"),
17540 is_define ? _("definition") : _("undefinition"),
17541 line, body);
17542 break;
17543 }
17544 if ((line == 0 && !at_commandline)
17545 || (line != 0 && at_commandline))
17546 complaint (&symfile_complaints,
17547 _("debug info gives %s macro %s with %s line %d: %s"),
17548 at_commandline ? _("command-line") : _("in-file"),
17549 is_define ? _("definition") : _("undefinition"),
17550 line == 0 ? _("zero") : _("non-zero"), line, body);
17551
17552 if (is_define)
17553 parse_macro_definition (current_file, line, body);
17554 else
17555 {
17556 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
17557 || macinfo_type == DW_MACRO_GNU_undef_indirect
17558 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
17559 macro_undef (current_file, line, body);
17560 }
17561 }
17562 break;
17563
17564 case DW_MACRO_GNU_start_file:
17565 {
17566 unsigned int bytes_read;
17567 int line, file;
17568
17569 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17570 mac_ptr += bytes_read;
17571 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17572 mac_ptr += bytes_read;
17573
17574 if ((line == 0 && !at_commandline)
17575 || (line != 0 && at_commandline))
17576 complaint (&symfile_complaints,
17577 _("debug info gives source %d included "
17578 "from %s at %s line %d"),
17579 file, at_commandline ? _("command-line") : _("file"),
17580 line == 0 ? _("zero") : _("non-zero"), line);
17581
17582 if (at_commandline)
17583 {
17584 /* This DW_MACRO_GNU_start_file was executed in the
17585 pass one. */
17586 at_commandline = 0;
17587 }
17588 else
17589 current_file = macro_start_file (file, line,
17590 current_file, comp_dir,
17591 lh, objfile);
17592 }
17593 break;
17594
17595 case DW_MACRO_GNU_end_file:
17596 if (! current_file)
17597 complaint (&symfile_complaints,
17598 _("macro debug info has an unmatched "
17599 "`close_file' directive"));
17600 else
17601 {
17602 current_file = current_file->included_by;
17603 if (! current_file)
17604 {
17605 enum dwarf_macro_record_type next_type;
17606
17607 /* GCC circa March 2002 doesn't produce the zero
17608 type byte marking the end of the compilation
17609 unit. Complain if it's not there, but exit no
17610 matter what. */
17611
17612 /* Do we at least have room for a macinfo type byte? */
17613 if (mac_ptr >= mac_end)
17614 {
17615 dwarf2_section_buffer_overflow_complaint (section);
17616 return;
17617 }
17618
17619 /* We don't increment mac_ptr here, so this is just
17620 a look-ahead. */
17621 next_type = read_1_byte (abfd, mac_ptr);
17622 if (next_type != 0)
17623 complaint (&symfile_complaints,
17624 _("no terminating 0-type entry for "
17625 "macros in `.debug_macinfo' section"));
17626
17627 return;
17628 }
17629 }
17630 break;
17631
17632 case DW_MACRO_GNU_transparent_include:
17633 case DW_MACRO_GNU_transparent_include_alt:
17634 {
17635 LONGEST offset;
17636 void **slot;
17637
17638 offset = read_offset_1 (abfd, mac_ptr, offset_size);
17639 mac_ptr += offset_size;
17640
17641 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17642 if (*slot != NULL)
17643 {
17644 /* This has actually happened; see
17645 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
17646 complaint (&symfile_complaints,
17647 _("recursive DW_MACRO_GNU_transparent_include in "
17648 ".debug_macro section"));
17649 }
17650 else
17651 {
17652 bfd *include_bfd = abfd;
17653 struct dwarf2_section_info *include_section = section;
17654 struct dwarf2_section_info alt_section;
17655 gdb_byte *include_mac_end = mac_end;
17656 int is_dwz = section_is_dwz;
17657
17658 *slot = mac_ptr;
17659
17660 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
17661 {
17662 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17663
17664 dwarf2_read_section (dwarf2_per_objfile->objfile,
17665 &dwz->macro);
17666
17667 include_bfd = dwz->macro.asection->owner;
17668 include_section = &dwz->macro;
17669 include_mac_end = dwz->macro.buffer + dwz->macro.size;
17670 is_dwz = 1;
17671 }
17672
17673 dwarf_decode_macro_bytes (include_bfd,
17674 include_section->buffer + offset,
17675 include_mac_end, current_file,
17676 lh, comp_dir,
17677 section, section_is_gnu, is_dwz,
17678 offset_size, objfile, include_hash);
17679
17680 htab_remove_elt (include_hash, mac_ptr);
17681 }
17682 }
17683 break;
17684
17685 case DW_MACINFO_vendor_ext:
17686 if (!section_is_gnu)
17687 {
17688 unsigned int bytes_read;
17689 int constant;
17690
17691 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17692 mac_ptr += bytes_read;
17693 read_direct_string (abfd, mac_ptr, &bytes_read);
17694 mac_ptr += bytes_read;
17695
17696 /* We don't recognize any vendor extensions. */
17697 break;
17698 }
17699 /* FALLTHROUGH */
17700
17701 default:
17702 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17703 mac_ptr, mac_end, abfd, offset_size,
17704 section);
17705 if (mac_ptr == NULL)
17706 return;
17707 break;
17708 }
17709 } while (macinfo_type != 0);
17710 }
17711
17712 static void
17713 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
17714 char *comp_dir, int section_is_gnu)
17715 {
17716 struct objfile *objfile = dwarf2_per_objfile->objfile;
17717 struct line_header *lh = cu->line_header;
17718 bfd *abfd;
17719 gdb_byte *mac_ptr, *mac_end;
17720 struct macro_source_file *current_file = 0;
17721 enum dwarf_macro_record_type macinfo_type;
17722 unsigned int offset_size = cu->header.offset_size;
17723 gdb_byte *opcode_definitions[256];
17724 struct cleanup *cleanup;
17725 htab_t include_hash;
17726 void **slot;
17727 struct dwarf2_section_info *section;
17728 const char *section_name;
17729
17730 if (cu->dwo_unit != NULL)
17731 {
17732 if (section_is_gnu)
17733 {
17734 section = &cu->dwo_unit->dwo_file->sections.macro;
17735 section_name = ".debug_macro.dwo";
17736 }
17737 else
17738 {
17739 section = &cu->dwo_unit->dwo_file->sections.macinfo;
17740 section_name = ".debug_macinfo.dwo";
17741 }
17742 }
17743 else
17744 {
17745 if (section_is_gnu)
17746 {
17747 section = &dwarf2_per_objfile->macro;
17748 section_name = ".debug_macro";
17749 }
17750 else
17751 {
17752 section = &dwarf2_per_objfile->macinfo;
17753 section_name = ".debug_macinfo";
17754 }
17755 }
17756
17757 dwarf2_read_section (objfile, section);
17758 if (section->buffer == NULL)
17759 {
17760 complaint (&symfile_complaints, _("missing %s section"), section_name);
17761 return;
17762 }
17763 abfd = section->asection->owner;
17764
17765 /* First pass: Find the name of the base filename.
17766 This filename is needed in order to process all macros whose definition
17767 (or undefinition) comes from the command line. These macros are defined
17768 before the first DW_MACINFO_start_file entry, and yet still need to be
17769 associated to the base file.
17770
17771 To determine the base file name, we scan the macro definitions until we
17772 reach the first DW_MACINFO_start_file entry. We then initialize
17773 CURRENT_FILE accordingly so that any macro definition found before the
17774 first DW_MACINFO_start_file can still be associated to the base file. */
17775
17776 mac_ptr = section->buffer + offset;
17777 mac_end = section->buffer + section->size;
17778
17779 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17780 &offset_size, section_is_gnu);
17781 if (mac_ptr == NULL)
17782 {
17783 /* We already issued a complaint. */
17784 return;
17785 }
17786
17787 do
17788 {
17789 /* Do we at least have room for a macinfo type byte? */
17790 if (mac_ptr >= mac_end)
17791 {
17792 /* Complaint is printed during the second pass as GDB will probably
17793 stop the first pass earlier upon finding
17794 DW_MACINFO_start_file. */
17795 break;
17796 }
17797
17798 macinfo_type = read_1_byte (abfd, mac_ptr);
17799 mac_ptr++;
17800
17801 /* Note that we rely on the fact that the corresponding GNU and
17802 DWARF constants are the same. */
17803 switch (macinfo_type)
17804 {
17805 /* A zero macinfo type indicates the end of the macro
17806 information. */
17807 case 0:
17808 break;
17809
17810 case DW_MACRO_GNU_define:
17811 case DW_MACRO_GNU_undef:
17812 /* Only skip the data by MAC_PTR. */
17813 {
17814 unsigned int bytes_read;
17815
17816 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17817 mac_ptr += bytes_read;
17818 read_direct_string (abfd, mac_ptr, &bytes_read);
17819 mac_ptr += bytes_read;
17820 }
17821 break;
17822
17823 case DW_MACRO_GNU_start_file:
17824 {
17825 unsigned int bytes_read;
17826 int line, file;
17827
17828 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17829 mac_ptr += bytes_read;
17830 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17831 mac_ptr += bytes_read;
17832
17833 current_file = macro_start_file (file, line, current_file,
17834 comp_dir, lh, objfile);
17835 }
17836 break;
17837
17838 case DW_MACRO_GNU_end_file:
17839 /* No data to skip by MAC_PTR. */
17840 break;
17841
17842 case DW_MACRO_GNU_define_indirect:
17843 case DW_MACRO_GNU_undef_indirect:
17844 {
17845 unsigned int bytes_read;
17846
17847 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17848 mac_ptr += bytes_read;
17849 mac_ptr += offset_size;
17850 }
17851 break;
17852
17853 case DW_MACRO_GNU_transparent_include:
17854 /* Note that, according to the spec, a transparent include
17855 chain cannot call DW_MACRO_GNU_start_file. So, we can just
17856 skip this opcode. */
17857 mac_ptr += offset_size;
17858 break;
17859
17860 case DW_MACINFO_vendor_ext:
17861 /* Only skip the data by MAC_PTR. */
17862 if (!section_is_gnu)
17863 {
17864 unsigned int bytes_read;
17865
17866 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17867 mac_ptr += bytes_read;
17868 read_direct_string (abfd, mac_ptr, &bytes_read);
17869 mac_ptr += bytes_read;
17870 }
17871 /* FALLTHROUGH */
17872
17873 default:
17874 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17875 mac_ptr, mac_end, abfd, offset_size,
17876 section);
17877 if (mac_ptr == NULL)
17878 return;
17879 break;
17880 }
17881 } while (macinfo_type != 0 && current_file == NULL);
17882
17883 /* Second pass: Process all entries.
17884
17885 Use the AT_COMMAND_LINE flag to determine whether we are still processing
17886 command-line macro definitions/undefinitions. This flag is unset when we
17887 reach the first DW_MACINFO_start_file entry. */
17888
17889 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
17890 NULL, xcalloc, xfree);
17891 cleanup = make_cleanup_htab_delete (include_hash);
17892 mac_ptr = section->buffer + offset;
17893 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17894 *slot = mac_ptr;
17895 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
17896 current_file, lh, comp_dir, section,
17897 section_is_gnu, 0,
17898 offset_size, objfile, include_hash);
17899 do_cleanups (cleanup);
17900 }
17901
17902 /* Check if the attribute's form is a DW_FORM_block*
17903 if so return true else false. */
17904
17905 static int
17906 attr_form_is_block (struct attribute *attr)
17907 {
17908 return (attr == NULL ? 0 :
17909 attr->form == DW_FORM_block1
17910 || attr->form == DW_FORM_block2
17911 || attr->form == DW_FORM_block4
17912 || attr->form == DW_FORM_block
17913 || attr->form == DW_FORM_exprloc);
17914 }
17915
17916 /* Return non-zero if ATTR's value is a section offset --- classes
17917 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
17918 You may use DW_UNSND (attr) to retrieve such offsets.
17919
17920 Section 7.5.4, "Attribute Encodings", explains that no attribute
17921 may have a value that belongs to more than one of these classes; it
17922 would be ambiguous if we did, because we use the same forms for all
17923 of them. */
17924
17925 static int
17926 attr_form_is_section_offset (struct attribute *attr)
17927 {
17928 return (attr->form == DW_FORM_data4
17929 || attr->form == DW_FORM_data8
17930 || attr->form == DW_FORM_sec_offset);
17931 }
17932
17933 /* Return non-zero if ATTR's value falls in the 'constant' class, or
17934 zero otherwise. When this function returns true, you can apply
17935 dwarf2_get_attr_constant_value to it.
17936
17937 However, note that for some attributes you must check
17938 attr_form_is_section_offset before using this test. DW_FORM_data4
17939 and DW_FORM_data8 are members of both the constant class, and of
17940 the classes that contain offsets into other debug sections
17941 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
17942 that, if an attribute's can be either a constant or one of the
17943 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
17944 taken as section offsets, not constants. */
17945
17946 static int
17947 attr_form_is_constant (struct attribute *attr)
17948 {
17949 switch (attr->form)
17950 {
17951 case DW_FORM_sdata:
17952 case DW_FORM_udata:
17953 case DW_FORM_data1:
17954 case DW_FORM_data2:
17955 case DW_FORM_data4:
17956 case DW_FORM_data8:
17957 return 1;
17958 default:
17959 return 0;
17960 }
17961 }
17962
17963 /* Return the .debug_loc section to use for CU.
17964 For DWO files use .debug_loc.dwo. */
17965
17966 static struct dwarf2_section_info *
17967 cu_debug_loc_section (struct dwarf2_cu *cu)
17968 {
17969 if (cu->dwo_unit)
17970 return &cu->dwo_unit->dwo_file->sections.loc;
17971 return &dwarf2_per_objfile->loc;
17972 }
17973
17974 /* A helper function that fills in a dwarf2_loclist_baton. */
17975
17976 static void
17977 fill_in_loclist_baton (struct dwarf2_cu *cu,
17978 struct dwarf2_loclist_baton *baton,
17979 struct attribute *attr)
17980 {
17981 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
17982
17983 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17984
17985 baton->per_cu = cu->per_cu;
17986 gdb_assert (baton->per_cu);
17987 /* We don't know how long the location list is, but make sure we
17988 don't run off the edge of the section. */
17989 baton->size = section->size - DW_UNSND (attr);
17990 baton->data = section->buffer + DW_UNSND (attr);
17991 baton->base_address = cu->base_address;
17992 baton->from_dwo = cu->dwo_unit != NULL;
17993 }
17994
17995 static void
17996 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
17997 struct dwarf2_cu *cu)
17998 {
17999 struct objfile *objfile = dwarf2_per_objfile->objfile;
18000 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18001
18002 if (attr_form_is_section_offset (attr)
18003 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18004 the section. If so, fall through to the complaint in the
18005 other branch. */
18006 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18007 {
18008 struct dwarf2_loclist_baton *baton;
18009
18010 baton = obstack_alloc (&objfile->objfile_obstack,
18011 sizeof (struct dwarf2_loclist_baton));
18012
18013 fill_in_loclist_baton (cu, baton, attr);
18014
18015 if (cu->base_known == 0)
18016 complaint (&symfile_complaints,
18017 _("Location list used without "
18018 "specifying the CU base address."));
18019
18020 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18021 SYMBOL_LOCATION_BATON (sym) = baton;
18022 }
18023 else
18024 {
18025 struct dwarf2_locexpr_baton *baton;
18026
18027 baton = obstack_alloc (&objfile->objfile_obstack,
18028 sizeof (struct dwarf2_locexpr_baton));
18029 baton->per_cu = cu->per_cu;
18030 gdb_assert (baton->per_cu);
18031
18032 if (attr_form_is_block (attr))
18033 {
18034 /* Note that we're just copying the block's data pointer
18035 here, not the actual data. We're still pointing into the
18036 info_buffer for SYM's objfile; right now we never release
18037 that buffer, but when we do clean up properly this may
18038 need to change. */
18039 baton->size = DW_BLOCK (attr)->size;
18040 baton->data = DW_BLOCK (attr)->data;
18041 }
18042 else
18043 {
18044 dwarf2_invalid_attrib_class_complaint ("location description",
18045 SYMBOL_NATURAL_NAME (sym));
18046 baton->size = 0;
18047 }
18048
18049 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18050 SYMBOL_LOCATION_BATON (sym) = baton;
18051 }
18052 }
18053
18054 /* Return the OBJFILE associated with the compilation unit CU. If CU
18055 came from a separate debuginfo file, then the master objfile is
18056 returned. */
18057
18058 struct objfile *
18059 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18060 {
18061 struct objfile *objfile = per_cu->objfile;
18062
18063 /* Return the master objfile, so that we can report and look up the
18064 correct file containing this variable. */
18065 if (objfile->separate_debug_objfile_backlink)
18066 objfile = objfile->separate_debug_objfile_backlink;
18067
18068 return objfile;
18069 }
18070
18071 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18072 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18073 CU_HEADERP first. */
18074
18075 static const struct comp_unit_head *
18076 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18077 struct dwarf2_per_cu_data *per_cu)
18078 {
18079 gdb_byte *info_ptr;
18080
18081 if (per_cu->cu)
18082 return &per_cu->cu->header;
18083
18084 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
18085
18086 memset (cu_headerp, 0, sizeof (*cu_headerp));
18087 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
18088
18089 return cu_headerp;
18090 }
18091
18092 /* Return the address size given in the compilation unit header for CU. */
18093
18094 int
18095 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18096 {
18097 struct comp_unit_head cu_header_local;
18098 const struct comp_unit_head *cu_headerp;
18099
18100 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18101
18102 return cu_headerp->addr_size;
18103 }
18104
18105 /* Return the offset size given in the compilation unit header for CU. */
18106
18107 int
18108 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
18109 {
18110 struct comp_unit_head cu_header_local;
18111 const struct comp_unit_head *cu_headerp;
18112
18113 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18114
18115 return cu_headerp->offset_size;
18116 }
18117
18118 /* See its dwarf2loc.h declaration. */
18119
18120 int
18121 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
18122 {
18123 struct comp_unit_head cu_header_local;
18124 const struct comp_unit_head *cu_headerp;
18125
18126 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18127
18128 if (cu_headerp->version == 2)
18129 return cu_headerp->addr_size;
18130 else
18131 return cu_headerp->offset_size;
18132 }
18133
18134 /* Return the text offset of the CU. The returned offset comes from
18135 this CU's objfile. If this objfile came from a separate debuginfo
18136 file, then the offset may be different from the corresponding
18137 offset in the parent objfile. */
18138
18139 CORE_ADDR
18140 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
18141 {
18142 struct objfile *objfile = per_cu->objfile;
18143
18144 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18145 }
18146
18147 /* Locate the .debug_info compilation unit from CU's objfile which contains
18148 the DIE at OFFSET. Raises an error on failure. */
18149
18150 static struct dwarf2_per_cu_data *
18151 dwarf2_find_containing_comp_unit (sect_offset offset,
18152 unsigned int offset_in_dwz,
18153 struct objfile *objfile)
18154 {
18155 struct dwarf2_per_cu_data *this_cu;
18156 int low, high;
18157 const sect_offset *cu_off;
18158
18159 low = 0;
18160 high = dwarf2_per_objfile->n_comp_units - 1;
18161 while (high > low)
18162 {
18163 struct dwarf2_per_cu_data *mid_cu;
18164 int mid = low + (high - low) / 2;
18165
18166 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
18167 cu_off = &mid_cu->offset;
18168 if (mid_cu->is_dwz > offset_in_dwz
18169 || (mid_cu->is_dwz == offset_in_dwz
18170 && cu_off->sect_off >= offset.sect_off))
18171 high = mid;
18172 else
18173 low = mid + 1;
18174 }
18175 gdb_assert (low == high);
18176 this_cu = dwarf2_per_objfile->all_comp_units[low];
18177 cu_off = &this_cu->offset;
18178 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
18179 {
18180 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
18181 error (_("Dwarf Error: could not find partial DIE containing "
18182 "offset 0x%lx [in module %s]"),
18183 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
18184
18185 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
18186 <= offset.sect_off);
18187 return dwarf2_per_objfile->all_comp_units[low-1];
18188 }
18189 else
18190 {
18191 this_cu = dwarf2_per_objfile->all_comp_units[low];
18192 if (low == dwarf2_per_objfile->n_comp_units - 1
18193 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
18194 error (_("invalid dwarf2 offset %u"), offset.sect_off);
18195 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
18196 return this_cu;
18197 }
18198 }
18199
18200 /* Initialize dwarf2_cu CU, owned by PER_CU. */
18201
18202 static void
18203 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
18204 {
18205 memset (cu, 0, sizeof (*cu));
18206 per_cu->cu = cu;
18207 cu->per_cu = per_cu;
18208 cu->objfile = per_cu->objfile;
18209 obstack_init (&cu->comp_unit_obstack);
18210 }
18211
18212 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
18213
18214 static void
18215 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
18216 enum language pretend_language)
18217 {
18218 struct attribute *attr;
18219
18220 /* Set the language we're debugging. */
18221 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
18222 if (attr)
18223 set_cu_language (DW_UNSND (attr), cu);
18224 else
18225 {
18226 cu->language = pretend_language;
18227 cu->language_defn = language_def (cu->language);
18228 }
18229
18230 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
18231 if (attr)
18232 cu->producer = DW_STRING (attr);
18233 }
18234
18235 /* Release one cached compilation unit, CU. We unlink it from the tree
18236 of compilation units, but we don't remove it from the read_in_chain;
18237 the caller is responsible for that.
18238 NOTE: DATA is a void * because this function is also used as a
18239 cleanup routine. */
18240
18241 static void
18242 free_heap_comp_unit (void *data)
18243 {
18244 struct dwarf2_cu *cu = data;
18245
18246 gdb_assert (cu->per_cu != NULL);
18247 cu->per_cu->cu = NULL;
18248 cu->per_cu = NULL;
18249
18250 obstack_free (&cu->comp_unit_obstack, NULL);
18251
18252 xfree (cu);
18253 }
18254
18255 /* This cleanup function is passed the address of a dwarf2_cu on the stack
18256 when we're finished with it. We can't free the pointer itself, but be
18257 sure to unlink it from the cache. Also release any associated storage. */
18258
18259 static void
18260 free_stack_comp_unit (void *data)
18261 {
18262 struct dwarf2_cu *cu = data;
18263
18264 gdb_assert (cu->per_cu != NULL);
18265 cu->per_cu->cu = NULL;
18266 cu->per_cu = NULL;
18267
18268 obstack_free (&cu->comp_unit_obstack, NULL);
18269 cu->partial_dies = NULL;
18270 }
18271
18272 /* Free all cached compilation units. */
18273
18274 static void
18275 free_cached_comp_units (void *data)
18276 {
18277 struct dwarf2_per_cu_data *per_cu, **last_chain;
18278
18279 per_cu = dwarf2_per_objfile->read_in_chain;
18280 last_chain = &dwarf2_per_objfile->read_in_chain;
18281 while (per_cu != NULL)
18282 {
18283 struct dwarf2_per_cu_data *next_cu;
18284
18285 next_cu = per_cu->cu->read_in_chain;
18286
18287 free_heap_comp_unit (per_cu->cu);
18288 *last_chain = next_cu;
18289
18290 per_cu = next_cu;
18291 }
18292 }
18293
18294 /* Increase the age counter on each cached compilation unit, and free
18295 any that are too old. */
18296
18297 static void
18298 age_cached_comp_units (void)
18299 {
18300 struct dwarf2_per_cu_data *per_cu, **last_chain;
18301
18302 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
18303 per_cu = dwarf2_per_objfile->read_in_chain;
18304 while (per_cu != NULL)
18305 {
18306 per_cu->cu->last_used ++;
18307 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
18308 dwarf2_mark (per_cu->cu);
18309 per_cu = per_cu->cu->read_in_chain;
18310 }
18311
18312 per_cu = dwarf2_per_objfile->read_in_chain;
18313 last_chain = &dwarf2_per_objfile->read_in_chain;
18314 while (per_cu != NULL)
18315 {
18316 struct dwarf2_per_cu_data *next_cu;
18317
18318 next_cu = per_cu->cu->read_in_chain;
18319
18320 if (!per_cu->cu->mark)
18321 {
18322 free_heap_comp_unit (per_cu->cu);
18323 *last_chain = next_cu;
18324 }
18325 else
18326 last_chain = &per_cu->cu->read_in_chain;
18327
18328 per_cu = next_cu;
18329 }
18330 }
18331
18332 /* Remove a single compilation unit from the cache. */
18333
18334 static void
18335 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
18336 {
18337 struct dwarf2_per_cu_data *per_cu, **last_chain;
18338
18339 per_cu = dwarf2_per_objfile->read_in_chain;
18340 last_chain = &dwarf2_per_objfile->read_in_chain;
18341 while (per_cu != NULL)
18342 {
18343 struct dwarf2_per_cu_data *next_cu;
18344
18345 next_cu = per_cu->cu->read_in_chain;
18346
18347 if (per_cu == target_per_cu)
18348 {
18349 free_heap_comp_unit (per_cu->cu);
18350 per_cu->cu = NULL;
18351 *last_chain = next_cu;
18352 break;
18353 }
18354 else
18355 last_chain = &per_cu->cu->read_in_chain;
18356
18357 per_cu = next_cu;
18358 }
18359 }
18360
18361 /* Release all extra memory associated with OBJFILE. */
18362
18363 void
18364 dwarf2_free_objfile (struct objfile *objfile)
18365 {
18366 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
18367
18368 if (dwarf2_per_objfile == NULL)
18369 return;
18370
18371 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
18372 free_cached_comp_units (NULL);
18373
18374 if (dwarf2_per_objfile->quick_file_names_table)
18375 htab_delete (dwarf2_per_objfile->quick_file_names_table);
18376
18377 /* Everything else should be on the objfile obstack. */
18378 }
18379
18380 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
18381 We store these in a hash table separate from the DIEs, and preserve them
18382 when the DIEs are flushed out of cache.
18383
18384 The CU "per_cu" pointer is needed because offset alone is not enough to
18385 uniquely identify the type. A file may have multiple .debug_types sections,
18386 or the type may come from a DWO file. We have to use something in
18387 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
18388 routine, get_die_type_at_offset, from outside this file, and thus won't
18389 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
18390 of the objfile. */
18391
18392 struct dwarf2_per_cu_offset_and_type
18393 {
18394 const struct dwarf2_per_cu_data *per_cu;
18395 sect_offset offset;
18396 struct type *type;
18397 };
18398
18399 /* Hash function for a dwarf2_per_cu_offset_and_type. */
18400
18401 static hashval_t
18402 per_cu_offset_and_type_hash (const void *item)
18403 {
18404 const struct dwarf2_per_cu_offset_and_type *ofs = item;
18405
18406 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
18407 }
18408
18409 /* Equality function for a dwarf2_per_cu_offset_and_type. */
18410
18411 static int
18412 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
18413 {
18414 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
18415 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
18416
18417 return (ofs_lhs->per_cu == ofs_rhs->per_cu
18418 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
18419 }
18420
18421 /* Set the type associated with DIE to TYPE. Save it in CU's hash
18422 table if necessary. For convenience, return TYPE.
18423
18424 The DIEs reading must have careful ordering to:
18425 * Not cause infite loops trying to read in DIEs as a prerequisite for
18426 reading current DIE.
18427 * Not trying to dereference contents of still incompletely read in types
18428 while reading in other DIEs.
18429 * Enable referencing still incompletely read in types just by a pointer to
18430 the type without accessing its fields.
18431
18432 Therefore caller should follow these rules:
18433 * Try to fetch any prerequisite types we may need to build this DIE type
18434 before building the type and calling set_die_type.
18435 * After building type call set_die_type for current DIE as soon as
18436 possible before fetching more types to complete the current type.
18437 * Make the type as complete as possible before fetching more types. */
18438
18439 static struct type *
18440 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18441 {
18442 struct dwarf2_per_cu_offset_and_type **slot, ofs;
18443 struct objfile *objfile = cu->objfile;
18444
18445 /* For Ada types, make sure that the gnat-specific data is always
18446 initialized (if not already set). There are a few types where
18447 we should not be doing so, because the type-specific area is
18448 already used to hold some other piece of info (eg: TYPE_CODE_FLT
18449 where the type-specific area is used to store the floatformat).
18450 But this is not a problem, because the gnat-specific information
18451 is actually not needed for these types. */
18452 if (need_gnat_info (cu)
18453 && TYPE_CODE (type) != TYPE_CODE_FUNC
18454 && TYPE_CODE (type) != TYPE_CODE_FLT
18455 && !HAVE_GNAT_AUX_INFO (type))
18456 INIT_GNAT_SPECIFIC (type);
18457
18458 if (dwarf2_per_objfile->die_type_hash == NULL)
18459 {
18460 dwarf2_per_objfile->die_type_hash =
18461 htab_create_alloc_ex (127,
18462 per_cu_offset_and_type_hash,
18463 per_cu_offset_and_type_eq,
18464 NULL,
18465 &objfile->objfile_obstack,
18466 hashtab_obstack_allocate,
18467 dummy_obstack_deallocate);
18468 }
18469
18470 ofs.per_cu = cu->per_cu;
18471 ofs.offset = die->offset;
18472 ofs.type = type;
18473 slot = (struct dwarf2_per_cu_offset_and_type **)
18474 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
18475 if (*slot)
18476 complaint (&symfile_complaints,
18477 _("A problem internal to GDB: DIE 0x%x has type already set"),
18478 die->offset.sect_off);
18479 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
18480 **slot = ofs;
18481 return type;
18482 }
18483
18484 /* Look up the type for the die at OFFSET in the appropriate type_hash
18485 table, or return NULL if the die does not have a saved type. */
18486
18487 static struct type *
18488 get_die_type_at_offset (sect_offset offset,
18489 struct dwarf2_per_cu_data *per_cu)
18490 {
18491 struct dwarf2_per_cu_offset_and_type *slot, ofs;
18492
18493 if (dwarf2_per_objfile->die_type_hash == NULL)
18494 return NULL;
18495
18496 ofs.per_cu = per_cu;
18497 ofs.offset = offset;
18498 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
18499 if (slot)
18500 return slot->type;
18501 else
18502 return NULL;
18503 }
18504
18505 /* Look up the type for DIE in the appropriate type_hash table,
18506 or return NULL if DIE does not have a saved type. */
18507
18508 static struct type *
18509 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
18510 {
18511 return get_die_type_at_offset (die->offset, cu->per_cu);
18512 }
18513
18514 /* Add a dependence relationship from CU to REF_PER_CU. */
18515
18516 static void
18517 dwarf2_add_dependence (struct dwarf2_cu *cu,
18518 struct dwarf2_per_cu_data *ref_per_cu)
18519 {
18520 void **slot;
18521
18522 if (cu->dependencies == NULL)
18523 cu->dependencies
18524 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
18525 NULL, &cu->comp_unit_obstack,
18526 hashtab_obstack_allocate,
18527 dummy_obstack_deallocate);
18528
18529 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
18530 if (*slot == NULL)
18531 *slot = ref_per_cu;
18532 }
18533
18534 /* Subroutine of dwarf2_mark to pass to htab_traverse.
18535 Set the mark field in every compilation unit in the
18536 cache that we must keep because we are keeping CU. */
18537
18538 static int
18539 dwarf2_mark_helper (void **slot, void *data)
18540 {
18541 struct dwarf2_per_cu_data *per_cu;
18542
18543 per_cu = (struct dwarf2_per_cu_data *) *slot;
18544
18545 /* cu->dependencies references may not yet have been ever read if QUIT aborts
18546 reading of the chain. As such dependencies remain valid it is not much
18547 useful to track and undo them during QUIT cleanups. */
18548 if (per_cu->cu == NULL)
18549 return 1;
18550
18551 if (per_cu->cu->mark)
18552 return 1;
18553 per_cu->cu->mark = 1;
18554
18555 if (per_cu->cu->dependencies != NULL)
18556 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
18557
18558 return 1;
18559 }
18560
18561 /* Set the mark field in CU and in every other compilation unit in the
18562 cache that we must keep because we are keeping CU. */
18563
18564 static void
18565 dwarf2_mark (struct dwarf2_cu *cu)
18566 {
18567 if (cu->mark)
18568 return;
18569 cu->mark = 1;
18570 if (cu->dependencies != NULL)
18571 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
18572 }
18573
18574 static void
18575 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
18576 {
18577 while (per_cu)
18578 {
18579 per_cu->cu->mark = 0;
18580 per_cu = per_cu->cu->read_in_chain;
18581 }
18582 }
18583
18584 /* Trivial hash function for partial_die_info: the hash value of a DIE
18585 is its offset in .debug_info for this objfile. */
18586
18587 static hashval_t
18588 partial_die_hash (const void *item)
18589 {
18590 const struct partial_die_info *part_die = item;
18591
18592 return part_die->offset.sect_off;
18593 }
18594
18595 /* Trivial comparison function for partial_die_info structures: two DIEs
18596 are equal if they have the same offset. */
18597
18598 static int
18599 partial_die_eq (const void *item_lhs, const void *item_rhs)
18600 {
18601 const struct partial_die_info *part_die_lhs = item_lhs;
18602 const struct partial_die_info *part_die_rhs = item_rhs;
18603
18604 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
18605 }
18606
18607 static struct cmd_list_element *set_dwarf2_cmdlist;
18608 static struct cmd_list_element *show_dwarf2_cmdlist;
18609
18610 static void
18611 set_dwarf2_cmd (char *args, int from_tty)
18612 {
18613 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
18614 }
18615
18616 static void
18617 show_dwarf2_cmd (char *args, int from_tty)
18618 {
18619 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
18620 }
18621
18622 /* Free data associated with OBJFILE, if necessary. */
18623
18624 static void
18625 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
18626 {
18627 struct dwarf2_per_objfile *data = d;
18628 int ix;
18629
18630 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
18631 VEC_free (dwarf2_per_cu_ptr,
18632 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
18633
18634 VEC_free (dwarf2_section_info_def, data->types);
18635
18636 if (data->dwo_files)
18637 free_dwo_files (data->dwo_files, objfile);
18638
18639 if (data->dwz_file && data->dwz_file->dwz_bfd)
18640 gdb_bfd_unref (data->dwz_file->dwz_bfd);
18641 }
18642
18643 \f
18644 /* The "save gdb-index" command. */
18645
18646 /* The contents of the hash table we create when building the string
18647 table. */
18648 struct strtab_entry
18649 {
18650 offset_type offset;
18651 const char *str;
18652 };
18653
18654 /* Hash function for a strtab_entry.
18655
18656 Function is used only during write_hash_table so no index format backward
18657 compatibility is needed. */
18658
18659 static hashval_t
18660 hash_strtab_entry (const void *e)
18661 {
18662 const struct strtab_entry *entry = e;
18663 return mapped_index_string_hash (INT_MAX, entry->str);
18664 }
18665
18666 /* Equality function for a strtab_entry. */
18667
18668 static int
18669 eq_strtab_entry (const void *a, const void *b)
18670 {
18671 const struct strtab_entry *ea = a;
18672 const struct strtab_entry *eb = b;
18673 return !strcmp (ea->str, eb->str);
18674 }
18675
18676 /* Create a strtab_entry hash table. */
18677
18678 static htab_t
18679 create_strtab (void)
18680 {
18681 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
18682 xfree, xcalloc, xfree);
18683 }
18684
18685 /* Add a string to the constant pool. Return the string's offset in
18686 host order. */
18687
18688 static offset_type
18689 add_string (htab_t table, struct obstack *cpool, const char *str)
18690 {
18691 void **slot;
18692 struct strtab_entry entry;
18693 struct strtab_entry *result;
18694
18695 entry.str = str;
18696 slot = htab_find_slot (table, &entry, INSERT);
18697 if (*slot)
18698 result = *slot;
18699 else
18700 {
18701 result = XNEW (struct strtab_entry);
18702 result->offset = obstack_object_size (cpool);
18703 result->str = str;
18704 obstack_grow_str0 (cpool, str);
18705 *slot = result;
18706 }
18707 return result->offset;
18708 }
18709
18710 /* An entry in the symbol table. */
18711 struct symtab_index_entry
18712 {
18713 /* The name of the symbol. */
18714 const char *name;
18715 /* The offset of the name in the constant pool. */
18716 offset_type index_offset;
18717 /* A sorted vector of the indices of all the CUs that hold an object
18718 of this name. */
18719 VEC (offset_type) *cu_indices;
18720 };
18721
18722 /* The symbol table. This is a power-of-2-sized hash table. */
18723 struct mapped_symtab
18724 {
18725 offset_type n_elements;
18726 offset_type size;
18727 struct symtab_index_entry **data;
18728 };
18729
18730 /* Hash function for a symtab_index_entry. */
18731
18732 static hashval_t
18733 hash_symtab_entry (const void *e)
18734 {
18735 const struct symtab_index_entry *entry = e;
18736 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
18737 sizeof (offset_type) * VEC_length (offset_type,
18738 entry->cu_indices),
18739 0);
18740 }
18741
18742 /* Equality function for a symtab_index_entry. */
18743
18744 static int
18745 eq_symtab_entry (const void *a, const void *b)
18746 {
18747 const struct symtab_index_entry *ea = a;
18748 const struct symtab_index_entry *eb = b;
18749 int len = VEC_length (offset_type, ea->cu_indices);
18750 if (len != VEC_length (offset_type, eb->cu_indices))
18751 return 0;
18752 return !memcmp (VEC_address (offset_type, ea->cu_indices),
18753 VEC_address (offset_type, eb->cu_indices),
18754 sizeof (offset_type) * len);
18755 }
18756
18757 /* Destroy a symtab_index_entry. */
18758
18759 static void
18760 delete_symtab_entry (void *p)
18761 {
18762 struct symtab_index_entry *entry = p;
18763 VEC_free (offset_type, entry->cu_indices);
18764 xfree (entry);
18765 }
18766
18767 /* Create a hash table holding symtab_index_entry objects. */
18768
18769 static htab_t
18770 create_symbol_hash_table (void)
18771 {
18772 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
18773 delete_symtab_entry, xcalloc, xfree);
18774 }
18775
18776 /* Create a new mapped symtab object. */
18777
18778 static struct mapped_symtab *
18779 create_mapped_symtab (void)
18780 {
18781 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
18782 symtab->n_elements = 0;
18783 symtab->size = 1024;
18784 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18785 return symtab;
18786 }
18787
18788 /* Destroy a mapped_symtab. */
18789
18790 static void
18791 cleanup_mapped_symtab (void *p)
18792 {
18793 struct mapped_symtab *symtab = p;
18794 /* The contents of the array are freed when the other hash table is
18795 destroyed. */
18796 xfree (symtab->data);
18797 xfree (symtab);
18798 }
18799
18800 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
18801 the slot.
18802
18803 Function is used only during write_hash_table so no index format backward
18804 compatibility is needed. */
18805
18806 static struct symtab_index_entry **
18807 find_slot (struct mapped_symtab *symtab, const char *name)
18808 {
18809 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
18810
18811 index = hash & (symtab->size - 1);
18812 step = ((hash * 17) & (symtab->size - 1)) | 1;
18813
18814 for (;;)
18815 {
18816 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
18817 return &symtab->data[index];
18818 index = (index + step) & (symtab->size - 1);
18819 }
18820 }
18821
18822 /* Expand SYMTAB's hash table. */
18823
18824 static void
18825 hash_expand (struct mapped_symtab *symtab)
18826 {
18827 offset_type old_size = symtab->size;
18828 offset_type i;
18829 struct symtab_index_entry **old_entries = symtab->data;
18830
18831 symtab->size *= 2;
18832 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18833
18834 for (i = 0; i < old_size; ++i)
18835 {
18836 if (old_entries[i])
18837 {
18838 struct symtab_index_entry **slot = find_slot (symtab,
18839 old_entries[i]->name);
18840 *slot = old_entries[i];
18841 }
18842 }
18843
18844 xfree (old_entries);
18845 }
18846
18847 /* Add an entry to SYMTAB. NAME is the name of the symbol.
18848 CU_INDEX is the index of the CU in which the symbol appears.
18849 IS_STATIC is one if the symbol is static, otherwise zero (global). */
18850
18851 static void
18852 add_index_entry (struct mapped_symtab *symtab, const char *name,
18853 int is_static, gdb_index_symbol_kind kind,
18854 offset_type cu_index)
18855 {
18856 struct symtab_index_entry **slot;
18857 offset_type cu_index_and_attrs;
18858
18859 ++symtab->n_elements;
18860 if (4 * symtab->n_elements / 3 >= symtab->size)
18861 hash_expand (symtab);
18862
18863 slot = find_slot (symtab, name);
18864 if (!*slot)
18865 {
18866 *slot = XNEW (struct symtab_index_entry);
18867 (*slot)->name = name;
18868 /* index_offset is set later. */
18869 (*slot)->cu_indices = NULL;
18870 }
18871
18872 cu_index_and_attrs = 0;
18873 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
18874 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
18875 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
18876
18877 /* We don't want to record an index value twice as we want to avoid the
18878 duplication.
18879 We process all global symbols and then all static symbols
18880 (which would allow us to avoid the duplication by only having to check
18881 the last entry pushed), but a symbol could have multiple kinds in one CU.
18882 To keep things simple we don't worry about the duplication here and
18883 sort and uniqufy the list after we've processed all symbols. */
18884 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
18885 }
18886
18887 /* qsort helper routine for uniquify_cu_indices. */
18888
18889 static int
18890 offset_type_compare (const void *ap, const void *bp)
18891 {
18892 offset_type a = *(offset_type *) ap;
18893 offset_type b = *(offset_type *) bp;
18894
18895 return (a > b) - (b > a);
18896 }
18897
18898 /* Sort and remove duplicates of all symbols' cu_indices lists. */
18899
18900 static void
18901 uniquify_cu_indices (struct mapped_symtab *symtab)
18902 {
18903 int i;
18904
18905 for (i = 0; i < symtab->size; ++i)
18906 {
18907 struct symtab_index_entry *entry = symtab->data[i];
18908
18909 if (entry
18910 && entry->cu_indices != NULL)
18911 {
18912 unsigned int next_to_insert, next_to_check;
18913 offset_type last_value;
18914
18915 qsort (VEC_address (offset_type, entry->cu_indices),
18916 VEC_length (offset_type, entry->cu_indices),
18917 sizeof (offset_type), offset_type_compare);
18918
18919 last_value = VEC_index (offset_type, entry->cu_indices, 0);
18920 next_to_insert = 1;
18921 for (next_to_check = 1;
18922 next_to_check < VEC_length (offset_type, entry->cu_indices);
18923 ++next_to_check)
18924 {
18925 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
18926 != last_value)
18927 {
18928 last_value = VEC_index (offset_type, entry->cu_indices,
18929 next_to_check);
18930 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
18931 last_value);
18932 ++next_to_insert;
18933 }
18934 }
18935 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
18936 }
18937 }
18938 }
18939
18940 /* Add a vector of indices to the constant pool. */
18941
18942 static offset_type
18943 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
18944 struct symtab_index_entry *entry)
18945 {
18946 void **slot;
18947
18948 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
18949 if (!*slot)
18950 {
18951 offset_type len = VEC_length (offset_type, entry->cu_indices);
18952 offset_type val = MAYBE_SWAP (len);
18953 offset_type iter;
18954 int i;
18955
18956 *slot = entry;
18957 entry->index_offset = obstack_object_size (cpool);
18958
18959 obstack_grow (cpool, &val, sizeof (val));
18960 for (i = 0;
18961 VEC_iterate (offset_type, entry->cu_indices, i, iter);
18962 ++i)
18963 {
18964 val = MAYBE_SWAP (iter);
18965 obstack_grow (cpool, &val, sizeof (val));
18966 }
18967 }
18968 else
18969 {
18970 struct symtab_index_entry *old_entry = *slot;
18971 entry->index_offset = old_entry->index_offset;
18972 entry = old_entry;
18973 }
18974 return entry->index_offset;
18975 }
18976
18977 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
18978 constant pool entries going into the obstack CPOOL. */
18979
18980 static void
18981 write_hash_table (struct mapped_symtab *symtab,
18982 struct obstack *output, struct obstack *cpool)
18983 {
18984 offset_type i;
18985 htab_t symbol_hash_table;
18986 htab_t str_table;
18987
18988 symbol_hash_table = create_symbol_hash_table ();
18989 str_table = create_strtab ();
18990
18991 /* We add all the index vectors to the constant pool first, to
18992 ensure alignment is ok. */
18993 for (i = 0; i < symtab->size; ++i)
18994 {
18995 if (symtab->data[i])
18996 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
18997 }
18998
18999 /* Now write out the hash table. */
19000 for (i = 0; i < symtab->size; ++i)
19001 {
19002 offset_type str_off, vec_off;
19003
19004 if (symtab->data[i])
19005 {
19006 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19007 vec_off = symtab->data[i]->index_offset;
19008 }
19009 else
19010 {
19011 /* While 0 is a valid constant pool index, it is not valid
19012 to have 0 for both offsets. */
19013 str_off = 0;
19014 vec_off = 0;
19015 }
19016
19017 str_off = MAYBE_SWAP (str_off);
19018 vec_off = MAYBE_SWAP (vec_off);
19019
19020 obstack_grow (output, &str_off, sizeof (str_off));
19021 obstack_grow (output, &vec_off, sizeof (vec_off));
19022 }
19023
19024 htab_delete (str_table);
19025 htab_delete (symbol_hash_table);
19026 }
19027
19028 /* Struct to map psymtab to CU index in the index file. */
19029 struct psymtab_cu_index_map
19030 {
19031 struct partial_symtab *psymtab;
19032 unsigned int cu_index;
19033 };
19034
19035 static hashval_t
19036 hash_psymtab_cu_index (const void *item)
19037 {
19038 const struct psymtab_cu_index_map *map = item;
19039
19040 return htab_hash_pointer (map->psymtab);
19041 }
19042
19043 static int
19044 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19045 {
19046 const struct psymtab_cu_index_map *lhs = item_lhs;
19047 const struct psymtab_cu_index_map *rhs = item_rhs;
19048
19049 return lhs->psymtab == rhs->psymtab;
19050 }
19051
19052 /* Helper struct for building the address table. */
19053 struct addrmap_index_data
19054 {
19055 struct objfile *objfile;
19056 struct obstack *addr_obstack;
19057 htab_t cu_index_htab;
19058
19059 /* Non-zero if the previous_* fields are valid.
19060 We can't write an entry until we see the next entry (since it is only then
19061 that we know the end of the entry). */
19062 int previous_valid;
19063 /* Index of the CU in the table of all CUs in the index file. */
19064 unsigned int previous_cu_index;
19065 /* Start address of the CU. */
19066 CORE_ADDR previous_cu_start;
19067 };
19068
19069 /* Write an address entry to OBSTACK. */
19070
19071 static void
19072 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19073 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19074 {
19075 offset_type cu_index_to_write;
19076 char addr[8];
19077 CORE_ADDR baseaddr;
19078
19079 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19080
19081 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19082 obstack_grow (obstack, addr, 8);
19083 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19084 obstack_grow (obstack, addr, 8);
19085 cu_index_to_write = MAYBE_SWAP (cu_index);
19086 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19087 }
19088
19089 /* Worker function for traversing an addrmap to build the address table. */
19090
19091 static int
19092 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19093 {
19094 struct addrmap_index_data *data = datap;
19095 struct partial_symtab *pst = obj;
19096
19097 if (data->previous_valid)
19098 add_address_entry (data->objfile, data->addr_obstack,
19099 data->previous_cu_start, start_addr,
19100 data->previous_cu_index);
19101
19102 data->previous_cu_start = start_addr;
19103 if (pst != NULL)
19104 {
19105 struct psymtab_cu_index_map find_map, *map;
19106 find_map.psymtab = pst;
19107 map = htab_find (data->cu_index_htab, &find_map);
19108 gdb_assert (map != NULL);
19109 data->previous_cu_index = map->cu_index;
19110 data->previous_valid = 1;
19111 }
19112 else
19113 data->previous_valid = 0;
19114
19115 return 0;
19116 }
19117
19118 /* Write OBJFILE's address map to OBSTACK.
19119 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
19120 in the index file. */
19121
19122 static void
19123 write_address_map (struct objfile *objfile, struct obstack *obstack,
19124 htab_t cu_index_htab)
19125 {
19126 struct addrmap_index_data addrmap_index_data;
19127
19128 /* When writing the address table, we have to cope with the fact that
19129 the addrmap iterator only provides the start of a region; we have to
19130 wait until the next invocation to get the start of the next region. */
19131
19132 addrmap_index_data.objfile = objfile;
19133 addrmap_index_data.addr_obstack = obstack;
19134 addrmap_index_data.cu_index_htab = cu_index_htab;
19135 addrmap_index_data.previous_valid = 0;
19136
19137 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
19138 &addrmap_index_data);
19139
19140 /* It's highly unlikely the last entry (end address = 0xff...ff)
19141 is valid, but we should still handle it.
19142 The end address is recorded as the start of the next region, but that
19143 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
19144 anyway. */
19145 if (addrmap_index_data.previous_valid)
19146 add_address_entry (objfile, obstack,
19147 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
19148 addrmap_index_data.previous_cu_index);
19149 }
19150
19151 /* Return the symbol kind of PSYM. */
19152
19153 static gdb_index_symbol_kind
19154 symbol_kind (struct partial_symbol *psym)
19155 {
19156 domain_enum domain = PSYMBOL_DOMAIN (psym);
19157 enum address_class aclass = PSYMBOL_CLASS (psym);
19158
19159 switch (domain)
19160 {
19161 case VAR_DOMAIN:
19162 switch (aclass)
19163 {
19164 case LOC_BLOCK:
19165 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
19166 case LOC_TYPEDEF:
19167 return GDB_INDEX_SYMBOL_KIND_TYPE;
19168 case LOC_COMPUTED:
19169 case LOC_CONST_BYTES:
19170 case LOC_OPTIMIZED_OUT:
19171 case LOC_STATIC:
19172 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
19173 case LOC_CONST:
19174 /* Note: It's currently impossible to recognize psyms as enum values
19175 short of reading the type info. For now punt. */
19176 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
19177 default:
19178 /* There are other LOC_FOO values that one might want to classify
19179 as variables, but dwarf2read.c doesn't currently use them. */
19180 return GDB_INDEX_SYMBOL_KIND_OTHER;
19181 }
19182 case STRUCT_DOMAIN:
19183 return GDB_INDEX_SYMBOL_KIND_TYPE;
19184 default:
19185 return GDB_INDEX_SYMBOL_KIND_OTHER;
19186 }
19187 }
19188
19189 /* Add a list of partial symbols to SYMTAB. */
19190
19191 static void
19192 write_psymbols (struct mapped_symtab *symtab,
19193 htab_t psyms_seen,
19194 struct partial_symbol **psymp,
19195 int count,
19196 offset_type cu_index,
19197 int is_static)
19198 {
19199 for (; count-- > 0; ++psymp)
19200 {
19201 struct partial_symbol *psym = *psymp;
19202 void **slot;
19203
19204 if (SYMBOL_LANGUAGE (psym) == language_ada)
19205 error (_("Ada is not currently supported by the index"));
19206
19207 /* Only add a given psymbol once. */
19208 slot = htab_find_slot (psyms_seen, psym, INSERT);
19209 if (!*slot)
19210 {
19211 gdb_index_symbol_kind kind = symbol_kind (psym);
19212
19213 *slot = psym;
19214 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
19215 is_static, kind, cu_index);
19216 }
19217 }
19218 }
19219
19220 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
19221 exception if there is an error. */
19222
19223 static void
19224 write_obstack (FILE *file, struct obstack *obstack)
19225 {
19226 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
19227 file)
19228 != obstack_object_size (obstack))
19229 error (_("couldn't data write to file"));
19230 }
19231
19232 /* Unlink a file if the argument is not NULL. */
19233
19234 static void
19235 unlink_if_set (void *p)
19236 {
19237 char **filename = p;
19238 if (*filename)
19239 unlink (*filename);
19240 }
19241
19242 /* A helper struct used when iterating over debug_types. */
19243 struct signatured_type_index_data
19244 {
19245 struct objfile *objfile;
19246 struct mapped_symtab *symtab;
19247 struct obstack *types_list;
19248 htab_t psyms_seen;
19249 int cu_index;
19250 };
19251
19252 /* A helper function that writes a single signatured_type to an
19253 obstack. */
19254
19255 static int
19256 write_one_signatured_type (void **slot, void *d)
19257 {
19258 struct signatured_type_index_data *info = d;
19259 struct signatured_type *entry = (struct signatured_type *) *slot;
19260 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
19261 struct partial_symtab *psymtab = per_cu->v.psymtab;
19262 gdb_byte val[8];
19263
19264 write_psymbols (info->symtab,
19265 info->psyms_seen,
19266 info->objfile->global_psymbols.list
19267 + psymtab->globals_offset,
19268 psymtab->n_global_syms, info->cu_index,
19269 0);
19270 write_psymbols (info->symtab,
19271 info->psyms_seen,
19272 info->objfile->static_psymbols.list
19273 + psymtab->statics_offset,
19274 psymtab->n_static_syms, info->cu_index,
19275 1);
19276
19277 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19278 entry->per_cu.offset.sect_off);
19279 obstack_grow (info->types_list, val, 8);
19280 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19281 entry->type_offset_in_tu.cu_off);
19282 obstack_grow (info->types_list, val, 8);
19283 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
19284 obstack_grow (info->types_list, val, 8);
19285
19286 ++info->cu_index;
19287
19288 return 1;
19289 }
19290
19291 /* Recurse into all "included" dependencies and write their symbols as
19292 if they appeared in this psymtab. */
19293
19294 static void
19295 recursively_write_psymbols (struct objfile *objfile,
19296 struct partial_symtab *psymtab,
19297 struct mapped_symtab *symtab,
19298 htab_t psyms_seen,
19299 offset_type cu_index)
19300 {
19301 int i;
19302
19303 for (i = 0; i < psymtab->number_of_dependencies; ++i)
19304 if (psymtab->dependencies[i]->user != NULL)
19305 recursively_write_psymbols (objfile, psymtab->dependencies[i],
19306 symtab, psyms_seen, cu_index);
19307
19308 write_psymbols (symtab,
19309 psyms_seen,
19310 objfile->global_psymbols.list + psymtab->globals_offset,
19311 psymtab->n_global_syms, cu_index,
19312 0);
19313 write_psymbols (symtab,
19314 psyms_seen,
19315 objfile->static_psymbols.list + psymtab->statics_offset,
19316 psymtab->n_static_syms, cu_index,
19317 1);
19318 }
19319
19320 /* Create an index file for OBJFILE in the directory DIR. */
19321
19322 static void
19323 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
19324 {
19325 struct cleanup *cleanup;
19326 char *filename, *cleanup_filename;
19327 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
19328 struct obstack cu_list, types_cu_list;
19329 int i;
19330 FILE *out_file;
19331 struct mapped_symtab *symtab;
19332 offset_type val, size_of_contents, total_len;
19333 struct stat st;
19334 htab_t psyms_seen;
19335 htab_t cu_index_htab;
19336 struct psymtab_cu_index_map *psymtab_cu_index_map;
19337
19338 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
19339 return;
19340
19341 if (dwarf2_per_objfile->using_index)
19342 error (_("Cannot use an index to create the index"));
19343
19344 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
19345 error (_("Cannot make an index when the file has multiple .debug_types sections"));
19346
19347 if (stat (objfile->name, &st) < 0)
19348 perror_with_name (objfile->name);
19349
19350 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
19351 INDEX_SUFFIX, (char *) NULL);
19352 cleanup = make_cleanup (xfree, filename);
19353
19354 out_file = fopen (filename, "wb");
19355 if (!out_file)
19356 error (_("Can't open `%s' for writing"), filename);
19357
19358 cleanup_filename = filename;
19359 make_cleanup (unlink_if_set, &cleanup_filename);
19360
19361 symtab = create_mapped_symtab ();
19362 make_cleanup (cleanup_mapped_symtab, symtab);
19363
19364 obstack_init (&addr_obstack);
19365 make_cleanup_obstack_free (&addr_obstack);
19366
19367 obstack_init (&cu_list);
19368 make_cleanup_obstack_free (&cu_list);
19369
19370 obstack_init (&types_cu_list);
19371 make_cleanup_obstack_free (&types_cu_list);
19372
19373 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
19374 NULL, xcalloc, xfree);
19375 make_cleanup_htab_delete (psyms_seen);
19376
19377 /* While we're scanning CU's create a table that maps a psymtab pointer
19378 (which is what addrmap records) to its index (which is what is recorded
19379 in the index file). This will later be needed to write the address
19380 table. */
19381 cu_index_htab = htab_create_alloc (100,
19382 hash_psymtab_cu_index,
19383 eq_psymtab_cu_index,
19384 NULL, xcalloc, xfree);
19385 make_cleanup_htab_delete (cu_index_htab);
19386 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
19387 xmalloc (sizeof (struct psymtab_cu_index_map)
19388 * dwarf2_per_objfile->n_comp_units);
19389 make_cleanup (xfree, psymtab_cu_index_map);
19390
19391 /* The CU list is already sorted, so we don't need to do additional
19392 work here. Also, the debug_types entries do not appear in
19393 all_comp_units, but only in their own hash table. */
19394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
19395 {
19396 struct dwarf2_per_cu_data *per_cu
19397 = dwarf2_per_objfile->all_comp_units[i];
19398 struct partial_symtab *psymtab = per_cu->v.psymtab;
19399 gdb_byte val[8];
19400 struct psymtab_cu_index_map *map;
19401 void **slot;
19402
19403 if (psymtab->user == NULL)
19404 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
19405
19406 map = &psymtab_cu_index_map[i];
19407 map->psymtab = psymtab;
19408 map->cu_index = i;
19409 slot = htab_find_slot (cu_index_htab, map, INSERT);
19410 gdb_assert (slot != NULL);
19411 gdb_assert (*slot == NULL);
19412 *slot = map;
19413
19414 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19415 per_cu->offset.sect_off);
19416 obstack_grow (&cu_list, val, 8);
19417 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
19418 obstack_grow (&cu_list, val, 8);
19419 }
19420
19421 /* Dump the address map. */
19422 write_address_map (objfile, &addr_obstack, cu_index_htab);
19423
19424 /* Write out the .debug_type entries, if any. */
19425 if (dwarf2_per_objfile->signatured_types)
19426 {
19427 struct signatured_type_index_data sig_data;
19428
19429 sig_data.objfile = objfile;
19430 sig_data.symtab = symtab;
19431 sig_data.types_list = &types_cu_list;
19432 sig_data.psyms_seen = psyms_seen;
19433 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
19434 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
19435 write_one_signatured_type, &sig_data);
19436 }
19437
19438 /* Now that we've processed all symbols we can shrink their cu_indices
19439 lists. */
19440 uniquify_cu_indices (symtab);
19441
19442 obstack_init (&constant_pool);
19443 make_cleanup_obstack_free (&constant_pool);
19444 obstack_init (&symtab_obstack);
19445 make_cleanup_obstack_free (&symtab_obstack);
19446 write_hash_table (symtab, &symtab_obstack, &constant_pool);
19447
19448 obstack_init (&contents);
19449 make_cleanup_obstack_free (&contents);
19450 size_of_contents = 6 * sizeof (offset_type);
19451 total_len = size_of_contents;
19452
19453 /* The version number. */
19454 val = MAYBE_SWAP (7);
19455 obstack_grow (&contents, &val, sizeof (val));
19456
19457 /* The offset of the CU list from the start of the file. */
19458 val = MAYBE_SWAP (total_len);
19459 obstack_grow (&contents, &val, sizeof (val));
19460 total_len += obstack_object_size (&cu_list);
19461
19462 /* The offset of the types CU list from the start of the file. */
19463 val = MAYBE_SWAP (total_len);
19464 obstack_grow (&contents, &val, sizeof (val));
19465 total_len += obstack_object_size (&types_cu_list);
19466
19467 /* The offset of the address table from the start of the file. */
19468 val = MAYBE_SWAP (total_len);
19469 obstack_grow (&contents, &val, sizeof (val));
19470 total_len += obstack_object_size (&addr_obstack);
19471
19472 /* The offset of the symbol table from the start of the file. */
19473 val = MAYBE_SWAP (total_len);
19474 obstack_grow (&contents, &val, sizeof (val));
19475 total_len += obstack_object_size (&symtab_obstack);
19476
19477 /* The offset of the constant pool from the start of the file. */
19478 val = MAYBE_SWAP (total_len);
19479 obstack_grow (&contents, &val, sizeof (val));
19480 total_len += obstack_object_size (&constant_pool);
19481
19482 gdb_assert (obstack_object_size (&contents) == size_of_contents);
19483
19484 write_obstack (out_file, &contents);
19485 write_obstack (out_file, &cu_list);
19486 write_obstack (out_file, &types_cu_list);
19487 write_obstack (out_file, &addr_obstack);
19488 write_obstack (out_file, &symtab_obstack);
19489 write_obstack (out_file, &constant_pool);
19490
19491 fclose (out_file);
19492
19493 /* We want to keep the file, so we set cleanup_filename to NULL
19494 here. See unlink_if_set. */
19495 cleanup_filename = NULL;
19496
19497 do_cleanups (cleanup);
19498 }
19499
19500 /* Implementation of the `save gdb-index' command.
19501
19502 Note that the file format used by this command is documented in the
19503 GDB manual. Any changes here must be documented there. */
19504
19505 static void
19506 save_gdb_index_command (char *arg, int from_tty)
19507 {
19508 struct objfile *objfile;
19509
19510 if (!arg || !*arg)
19511 error (_("usage: save gdb-index DIRECTORY"));
19512
19513 ALL_OBJFILES (objfile)
19514 {
19515 struct stat st;
19516
19517 /* If the objfile does not correspond to an actual file, skip it. */
19518 if (stat (objfile->name, &st) < 0)
19519 continue;
19520
19521 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19522 if (dwarf2_per_objfile)
19523 {
19524 volatile struct gdb_exception except;
19525
19526 TRY_CATCH (except, RETURN_MASK_ERROR)
19527 {
19528 write_psymtabs_to_index (objfile, arg);
19529 }
19530 if (except.reason < 0)
19531 exception_fprintf (gdb_stderr, except,
19532 _("Error while writing index for `%s': "),
19533 objfile->name);
19534 }
19535 }
19536 }
19537
19538 \f
19539
19540 int dwarf2_always_disassemble;
19541
19542 static void
19543 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
19544 struct cmd_list_element *c, const char *value)
19545 {
19546 fprintf_filtered (file,
19547 _("Whether to always disassemble "
19548 "DWARF expressions is %s.\n"),
19549 value);
19550 }
19551
19552 static void
19553 show_check_physname (struct ui_file *file, int from_tty,
19554 struct cmd_list_element *c, const char *value)
19555 {
19556 fprintf_filtered (file,
19557 _("Whether to check \"physname\" is %s.\n"),
19558 value);
19559 }
19560
19561 void _initialize_dwarf2_read (void);
19562
19563 void
19564 _initialize_dwarf2_read (void)
19565 {
19566 struct cmd_list_element *c;
19567
19568 dwarf2_objfile_data_key
19569 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
19570
19571 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
19572 Set DWARF 2 specific variables.\n\
19573 Configure DWARF 2 variables such as the cache size"),
19574 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
19575 0/*allow-unknown*/, &maintenance_set_cmdlist);
19576
19577 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
19578 Show DWARF 2 specific variables\n\
19579 Show DWARF 2 variables such as the cache size"),
19580 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
19581 0/*allow-unknown*/, &maintenance_show_cmdlist);
19582
19583 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
19584 &dwarf2_max_cache_age, _("\
19585 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
19586 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
19587 A higher limit means that cached compilation units will be stored\n\
19588 in memory longer, and more total memory will be used. Zero disables\n\
19589 caching, which can slow down startup."),
19590 NULL,
19591 show_dwarf2_max_cache_age,
19592 &set_dwarf2_cmdlist,
19593 &show_dwarf2_cmdlist);
19594
19595 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
19596 &dwarf2_always_disassemble, _("\
19597 Set whether `info address' always disassembles DWARF expressions."), _("\
19598 Show whether `info address' always disassembles DWARF expressions."), _("\
19599 When enabled, DWARF expressions are always printed in an assembly-like\n\
19600 syntax. When disabled, expressions will be printed in a more\n\
19601 conversational style, when possible."),
19602 NULL,
19603 show_dwarf2_always_disassemble,
19604 &set_dwarf2_cmdlist,
19605 &show_dwarf2_cmdlist);
19606
19607 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
19608 Set debugging of the dwarf2 reader."), _("\
19609 Show debugging of the dwarf2 reader."), _("\
19610 When enabled, debugging messages are printed during dwarf2 reading\n\
19611 and symtab expansion."),
19612 NULL,
19613 NULL,
19614 &setdebuglist, &showdebuglist);
19615
19616 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
19617 Set debugging of the dwarf2 DIE reader."), _("\
19618 Show debugging of the dwarf2 DIE reader."), _("\
19619 When enabled (non-zero), DIEs are dumped after they are read in.\n\
19620 The value is the maximum depth to print."),
19621 NULL,
19622 NULL,
19623 &setdebuglist, &showdebuglist);
19624
19625 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
19626 Set cross-checking of \"physname\" code against demangler."), _("\
19627 Show cross-checking of \"physname\" code against demangler."), _("\
19628 When enabled, GDB's internal \"physname\" code is checked against\n\
19629 the demangler."),
19630 NULL, show_check_physname,
19631 &setdebuglist, &showdebuglist);
19632
19633 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
19634 _("\
19635 Save a gdb-index file.\n\
19636 Usage: save gdb-index DIRECTORY"),
19637 &save_cmdlist);
19638 set_cmd_completer (c, filename_completer);
19639 }