dwarf2_compute_name: add fixme, don't use same name as parameter for local
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = item_lhs;
1976 const struct line_header *ofs_rhs = item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2047 if (!dwarf2_per_objfile)
2048 {
2049 /* Initialize per-objfile state. */
2050 struct dwarf2_per_objfile *data
2051 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2052
2053 memset (data, 0, sizeof (*data));
2054 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2055 dwarf2_per_objfile = data;
2056
2057 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2058 (void *) names);
2059 dwarf2_per_objfile->objfile = objfile;
2060 }
2061 return (!dwarf2_per_objfile->info.is_virtual
2062 && dwarf2_per_objfile->info.s.section != NULL
2063 && !dwarf2_per_objfile->abbrev.is_virtual
2064 && dwarf2_per_objfile->abbrev.s.section != NULL);
2065 }
2066
2067 /* Return the containing section of virtual section SECTION. */
2068
2069 static struct dwarf2_section_info *
2070 get_containing_section (const struct dwarf2_section_info *section)
2071 {
2072 gdb_assert (section->is_virtual);
2073 return section->s.containing_section;
2074 }
2075
2076 /* Return the bfd owner of SECTION. */
2077
2078 static struct bfd *
2079 get_section_bfd_owner (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.section->owner;
2087 }
2088
2089 /* Return the bfd section of SECTION.
2090 Returns NULL if the section is not present. */
2091
2092 static asection *
2093 get_section_bfd_section (const struct dwarf2_section_info *section)
2094 {
2095 if (section->is_virtual)
2096 {
2097 section = get_containing_section (section);
2098 gdb_assert (!section->is_virtual);
2099 }
2100 return section->s.section;
2101 }
2102
2103 /* Return the name of SECTION. */
2104
2105 static const char *
2106 get_section_name (const struct dwarf2_section_info *section)
2107 {
2108 asection *sectp = get_section_bfd_section (section);
2109
2110 gdb_assert (sectp != NULL);
2111 return bfd_section_name (get_section_bfd_owner (section), sectp);
2112 }
2113
2114 /* Return the name of the file SECTION is in. */
2115
2116 static const char *
2117 get_section_file_name (const struct dwarf2_section_info *section)
2118 {
2119 bfd *abfd = get_section_bfd_owner (section);
2120
2121 return bfd_get_filename (abfd);
2122 }
2123
2124 /* Return the id of SECTION.
2125 Returns 0 if SECTION doesn't exist. */
2126
2127 static int
2128 get_section_id (const struct dwarf2_section_info *section)
2129 {
2130 asection *sectp = get_section_bfd_section (section);
2131
2132 if (sectp == NULL)
2133 return 0;
2134 return sectp->id;
2135 }
2136
2137 /* Return the flags of SECTION.
2138 SECTION (or containing section if this is a virtual section) must exist. */
2139
2140 static int
2141 get_section_flags (const struct dwarf2_section_info *section)
2142 {
2143 asection *sectp = get_section_bfd_section (section);
2144
2145 gdb_assert (sectp != NULL);
2146 return bfd_get_section_flags (sectp->owner, sectp);
2147 }
2148
2149 /* When loading sections, we look either for uncompressed section or for
2150 compressed section names. */
2151
2152 static int
2153 section_is_p (const char *section_name,
2154 const struct dwarf2_section_names *names)
2155 {
2156 if (names->normal != NULL
2157 && strcmp (section_name, names->normal) == 0)
2158 return 1;
2159 if (names->compressed != NULL
2160 && strcmp (section_name, names->compressed) == 0)
2161 return 1;
2162 return 0;
2163 }
2164
2165 /* This function is mapped across the sections and remembers the
2166 offset and size of each of the debugging sections we are interested
2167 in. */
2168
2169 static void
2170 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2171 {
2172 const struct dwarf2_debug_sections *names;
2173 flagword aflag = bfd_get_section_flags (abfd, sectp);
2174
2175 if (vnames == NULL)
2176 names = &dwarf2_elf_names;
2177 else
2178 names = (const struct dwarf2_debug_sections *) vnames;
2179
2180 if ((aflag & SEC_HAS_CONTENTS) == 0)
2181 {
2182 }
2183 else if (section_is_p (sectp->name, &names->info))
2184 {
2185 dwarf2_per_objfile->info.s.section = sectp;
2186 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2187 }
2188 else if (section_is_p (sectp->name, &names->abbrev))
2189 {
2190 dwarf2_per_objfile->abbrev.s.section = sectp;
2191 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2192 }
2193 else if (section_is_p (sectp->name, &names->line))
2194 {
2195 dwarf2_per_objfile->line.s.section = sectp;
2196 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2197 }
2198 else if (section_is_p (sectp->name, &names->loc))
2199 {
2200 dwarf2_per_objfile->loc.s.section = sectp;
2201 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2202 }
2203 else if (section_is_p (sectp->name, &names->macinfo))
2204 {
2205 dwarf2_per_objfile->macinfo.s.section = sectp;
2206 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->macro))
2209 {
2210 dwarf2_per_objfile->macro.s.section = sectp;
2211 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->str))
2214 {
2215 dwarf2_per_objfile->str.s.section = sectp;
2216 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->addr))
2219 {
2220 dwarf2_per_objfile->addr.s.section = sectp;
2221 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->frame))
2224 {
2225 dwarf2_per_objfile->frame.s.section = sectp;
2226 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->eh_frame))
2229 {
2230 dwarf2_per_objfile->eh_frame.s.section = sectp;
2231 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->ranges))
2234 {
2235 dwarf2_per_objfile->ranges.s.section = sectp;
2236 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->types))
2239 {
2240 struct dwarf2_section_info type_section;
2241
2242 memset (&type_section, 0, sizeof (type_section));
2243 type_section.s.section = sectp;
2244 type_section.size = bfd_get_section_size (sectp);
2245
2246 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2247 &type_section);
2248 }
2249 else if (section_is_p (sectp->name, &names->gdb_index))
2250 {
2251 dwarf2_per_objfile->gdb_index.s.section = sectp;
2252 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2253 }
2254
2255 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2256 && bfd_section_vma (abfd, sectp) == 0)
2257 dwarf2_per_objfile->has_section_at_zero = 1;
2258 }
2259
2260 /* A helper function that decides whether a section is empty,
2261 or not present. */
2262
2263 static int
2264 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 return section->size == 0;
2268 return section->s.section == NULL || section->size == 0;
2269 }
2270
2271 /* Read the contents of the section INFO.
2272 OBJFILE is the main object file, but not necessarily the file where
2273 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2274 of the DWO file.
2275 If the section is compressed, uncompress it before returning. */
2276
2277 static void
2278 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2279 {
2280 asection *sectp;
2281 bfd *abfd;
2282 gdb_byte *buf, *retbuf;
2283
2284 if (info->readin)
2285 return;
2286 info->buffer = NULL;
2287 info->readin = 1;
2288
2289 if (dwarf2_section_empty_p (info))
2290 return;
2291
2292 sectp = get_section_bfd_section (info);
2293
2294 /* If this is a virtual section we need to read in the real one first. */
2295 if (info->is_virtual)
2296 {
2297 struct dwarf2_section_info *containing_section =
2298 get_containing_section (info);
2299
2300 gdb_assert (sectp != NULL);
2301 if ((sectp->flags & SEC_RELOC) != 0)
2302 {
2303 error (_("Dwarf Error: DWP format V2 with relocations is not"
2304 " supported in section %s [in module %s]"),
2305 get_section_name (info), get_section_file_name (info));
2306 }
2307 dwarf2_read_section (objfile, containing_section);
2308 /* Other code should have already caught virtual sections that don't
2309 fit. */
2310 gdb_assert (info->virtual_offset + info->size
2311 <= containing_section->size);
2312 /* If the real section is empty or there was a problem reading the
2313 section we shouldn't get here. */
2314 gdb_assert (containing_section->buffer != NULL);
2315 info->buffer = containing_section->buffer + info->virtual_offset;
2316 return;
2317 }
2318
2319 /* If the section has relocations, we must read it ourselves.
2320 Otherwise we attach it to the BFD. */
2321 if ((sectp->flags & SEC_RELOC) == 0)
2322 {
2323 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2324 return;
2325 }
2326
2327 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2328 info->buffer = buf;
2329
2330 /* When debugging .o files, we may need to apply relocations; see
2331 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2332 We never compress sections in .o files, so we only need to
2333 try this when the section is not compressed. */
2334 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2335 if (retbuf != NULL)
2336 {
2337 info->buffer = retbuf;
2338 return;
2339 }
2340
2341 abfd = get_section_bfd_owner (info);
2342 gdb_assert (abfd != NULL);
2343
2344 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2345 || bfd_bread (buf, info->size, abfd) != info->size)
2346 {
2347 error (_("Dwarf Error: Can't read DWARF data"
2348 " in section %s [in module %s]"),
2349 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2350 }
2351 }
2352
2353 /* A helper function that returns the size of a section in a safe way.
2354 If you are positive that the section has been read before using the
2355 size, then it is safe to refer to the dwarf2_section_info object's
2356 "size" field directly. In other cases, you must call this
2357 function, because for compressed sections the size field is not set
2358 correctly until the section has been read. */
2359
2360 static bfd_size_type
2361 dwarf2_section_size (struct objfile *objfile,
2362 struct dwarf2_section_info *info)
2363 {
2364 if (!info->readin)
2365 dwarf2_read_section (objfile, info);
2366 return info->size;
2367 }
2368
2369 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2370 SECTION_NAME. */
2371
2372 void
2373 dwarf2_get_section_info (struct objfile *objfile,
2374 enum dwarf2_section_enum sect,
2375 asection **sectp, const gdb_byte **bufp,
2376 bfd_size_type *sizep)
2377 {
2378 struct dwarf2_per_objfile *data
2379 = objfile_data (objfile, dwarf2_objfile_data_key);
2380 struct dwarf2_section_info *info;
2381
2382 /* We may see an objfile without any DWARF, in which case we just
2383 return nothing. */
2384 if (data == NULL)
2385 {
2386 *sectp = NULL;
2387 *bufp = NULL;
2388 *sizep = 0;
2389 return;
2390 }
2391 switch (sect)
2392 {
2393 case DWARF2_DEBUG_FRAME:
2394 info = &data->frame;
2395 break;
2396 case DWARF2_EH_FRAME:
2397 info = &data->eh_frame;
2398 break;
2399 default:
2400 gdb_assert_not_reached ("unexpected section");
2401 }
2402
2403 dwarf2_read_section (objfile, info);
2404
2405 *sectp = get_section_bfd_section (info);
2406 *bufp = info->buffer;
2407 *sizep = info->size;
2408 }
2409
2410 /* A helper function to find the sections for a .dwz file. */
2411
2412 static void
2413 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2414 {
2415 struct dwz_file *dwz_file = arg;
2416
2417 /* Note that we only support the standard ELF names, because .dwz
2418 is ELF-only (at the time of writing). */
2419 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2420 {
2421 dwz_file->abbrev.s.section = sectp;
2422 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2425 {
2426 dwz_file->info.s.section = sectp;
2427 dwz_file->info.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2430 {
2431 dwz_file->str.s.section = sectp;
2432 dwz_file->str.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2435 {
2436 dwz_file->line.s.section = sectp;
2437 dwz_file->line.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2440 {
2441 dwz_file->macro.s.section = sectp;
2442 dwz_file->macro.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2445 {
2446 dwz_file->gdb_index.s.section = sectp;
2447 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2448 }
2449 }
2450
2451 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2452 there is no .gnu_debugaltlink section in the file. Error if there
2453 is such a section but the file cannot be found. */
2454
2455 static struct dwz_file *
2456 dwarf2_get_dwz_file (void)
2457 {
2458 bfd *dwz_bfd;
2459 char *data;
2460 struct cleanup *cleanup;
2461 const char *filename;
2462 struct dwz_file *result;
2463 bfd_size_type buildid_len_arg;
2464 size_t buildid_len;
2465 bfd_byte *buildid;
2466
2467 if (dwarf2_per_objfile->dwz_file != NULL)
2468 return dwarf2_per_objfile->dwz_file;
2469
2470 bfd_set_error (bfd_error_no_error);
2471 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2472 &buildid_len_arg, &buildid);
2473 if (data == NULL)
2474 {
2475 if (bfd_get_error () == bfd_error_no_error)
2476 return NULL;
2477 error (_("could not read '.gnu_debugaltlink' section: %s"),
2478 bfd_errmsg (bfd_get_error ()));
2479 }
2480 cleanup = make_cleanup (xfree, data);
2481 make_cleanup (xfree, buildid);
2482
2483 buildid_len = (size_t) buildid_len_arg;
2484
2485 filename = (const char *) data;
2486 if (!IS_ABSOLUTE_PATH (filename))
2487 {
2488 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2489 char *rel;
2490
2491 make_cleanup (xfree, abs);
2492 abs = ldirname (abs);
2493 make_cleanup (xfree, abs);
2494
2495 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2496 make_cleanup (xfree, rel);
2497 filename = rel;
2498 }
2499
2500 /* First try the file name given in the section. If that doesn't
2501 work, try to use the build-id instead. */
2502 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2503 if (dwz_bfd != NULL)
2504 {
2505 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2506 {
2507 gdb_bfd_unref (dwz_bfd);
2508 dwz_bfd = NULL;
2509 }
2510 }
2511
2512 if (dwz_bfd == NULL)
2513 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2514
2515 if (dwz_bfd == NULL)
2516 error (_("could not find '.gnu_debugaltlink' file for %s"),
2517 objfile_name (dwarf2_per_objfile->objfile));
2518
2519 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2520 struct dwz_file);
2521 result->dwz_bfd = dwz_bfd;
2522
2523 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2524
2525 do_cleanups (cleanup);
2526
2527 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2528 dwarf2_per_objfile->dwz_file = result;
2529 return result;
2530 }
2531 \f
2532 /* DWARF quick_symbols_functions support. */
2533
2534 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2535 unique line tables, so we maintain a separate table of all .debug_line
2536 derived entries to support the sharing.
2537 All the quick functions need is the list of file names. We discard the
2538 line_header when we're done and don't need to record it here. */
2539 struct quick_file_names
2540 {
2541 /* The data used to construct the hash key. */
2542 struct stmt_list_hash hash;
2543
2544 /* The number of entries in file_names, real_names. */
2545 unsigned int num_file_names;
2546
2547 /* The file names from the line table, after being run through
2548 file_full_name. */
2549 const char **file_names;
2550
2551 /* The file names from the line table after being run through
2552 gdb_realpath. These are computed lazily. */
2553 const char **real_names;
2554 };
2555
2556 /* When using the index (and thus not using psymtabs), each CU has an
2557 object of this type. This is used to hold information needed by
2558 the various "quick" methods. */
2559 struct dwarf2_per_cu_quick_data
2560 {
2561 /* The file table. This can be NULL if there was no file table
2562 or it's currently not read in.
2563 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2564 struct quick_file_names *file_names;
2565
2566 /* The corresponding symbol table. This is NULL if symbols for this
2567 CU have not yet been read. */
2568 struct compunit_symtab *compunit_symtab;
2569
2570 /* A temporary mark bit used when iterating over all CUs in
2571 expand_symtabs_matching. */
2572 unsigned int mark : 1;
2573
2574 /* True if we've tried to read the file table and found there isn't one.
2575 There will be no point in trying to read it again next time. */
2576 unsigned int no_file_data : 1;
2577 };
2578
2579 /* Utility hash function for a stmt_list_hash. */
2580
2581 static hashval_t
2582 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2583 {
2584 hashval_t v = 0;
2585
2586 if (stmt_list_hash->dwo_unit != NULL)
2587 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2588 v += stmt_list_hash->line_offset.sect_off;
2589 return v;
2590 }
2591
2592 /* Utility equality function for a stmt_list_hash. */
2593
2594 static int
2595 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2596 const struct stmt_list_hash *rhs)
2597 {
2598 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2599 return 0;
2600 if (lhs->dwo_unit != NULL
2601 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2602 return 0;
2603
2604 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2605 }
2606
2607 /* Hash function for a quick_file_names. */
2608
2609 static hashval_t
2610 hash_file_name_entry (const void *e)
2611 {
2612 const struct quick_file_names *file_data = e;
2613
2614 return hash_stmt_list_entry (&file_data->hash);
2615 }
2616
2617 /* Equality function for a quick_file_names. */
2618
2619 static int
2620 eq_file_name_entry (const void *a, const void *b)
2621 {
2622 const struct quick_file_names *ea = a;
2623 const struct quick_file_names *eb = b;
2624
2625 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2626 }
2627
2628 /* Delete function for a quick_file_names. */
2629
2630 static void
2631 delete_file_name_entry (void *e)
2632 {
2633 struct quick_file_names *file_data = e;
2634 int i;
2635
2636 for (i = 0; i < file_data->num_file_names; ++i)
2637 {
2638 xfree ((void*) file_data->file_names[i]);
2639 if (file_data->real_names)
2640 xfree ((void*) file_data->real_names[i]);
2641 }
2642
2643 /* The space for the struct itself lives on objfile_obstack,
2644 so we don't free it here. */
2645 }
2646
2647 /* Create a quick_file_names hash table. */
2648
2649 static htab_t
2650 create_quick_file_names_table (unsigned int nr_initial_entries)
2651 {
2652 return htab_create_alloc (nr_initial_entries,
2653 hash_file_name_entry, eq_file_name_entry,
2654 delete_file_name_entry, xcalloc, xfree);
2655 }
2656
2657 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2658 have to be created afterwards. You should call age_cached_comp_units after
2659 processing PER_CU->CU. dw2_setup must have been already called. */
2660
2661 static void
2662 load_cu (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 if (per_cu->is_debug_types)
2665 load_full_type_unit (per_cu);
2666 else
2667 load_full_comp_unit (per_cu, language_minimal);
2668
2669 if (per_cu->cu == NULL)
2670 return; /* Dummy CU. */
2671
2672 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2673 }
2674
2675 /* Read in the symbols for PER_CU. */
2676
2677 static void
2678 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2679 {
2680 struct cleanup *back_to;
2681
2682 /* Skip type_unit_groups, reading the type units they contain
2683 is handled elsewhere. */
2684 if (IS_TYPE_UNIT_GROUP (per_cu))
2685 return;
2686
2687 back_to = make_cleanup (dwarf2_release_queue, NULL);
2688
2689 if (dwarf2_per_objfile->using_index
2690 ? per_cu->v.quick->compunit_symtab == NULL
2691 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2692 {
2693 queue_comp_unit (per_cu, language_minimal);
2694 load_cu (per_cu);
2695
2696 /* If we just loaded a CU from a DWO, and we're working with an index
2697 that may badly handle TUs, load all the TUs in that DWO as well.
2698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2699 if (!per_cu->is_debug_types
2700 && per_cu->cu != NULL
2701 && per_cu->cu->dwo_unit != NULL
2702 && dwarf2_per_objfile->index_table != NULL
2703 && dwarf2_per_objfile->index_table->version <= 7
2704 /* DWP files aren't supported yet. */
2705 && get_dwp_file () == NULL)
2706 queue_and_load_all_dwo_tus (per_cu);
2707 }
2708
2709 process_queue ();
2710
2711 /* Age the cache, releasing compilation units that have not
2712 been used recently. */
2713 age_cached_comp_units ();
2714
2715 do_cleanups (back_to);
2716 }
2717
2718 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2719 the objfile from which this CU came. Returns the resulting symbol
2720 table. */
2721
2722 static struct compunit_symtab *
2723 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2724 {
2725 gdb_assert (dwarf2_per_objfile->using_index);
2726 if (!per_cu->v.quick->compunit_symtab)
2727 {
2728 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2729 increment_reading_symtab ();
2730 dw2_do_instantiate_symtab (per_cu);
2731 process_cu_includes ();
2732 do_cleanups (back_to);
2733 }
2734
2735 return per_cu->v.quick->compunit_symtab;
2736 }
2737
2738 /* Return the CU/TU given its index.
2739
2740 This is intended for loops like:
2741
2742 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2743 + dwarf2_per_objfile->n_type_units); ++i)
2744 {
2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2746
2747 ...;
2748 }
2749 */
2750
2751 static struct dwarf2_per_cu_data *
2752 dw2_get_cutu (int index)
2753 {
2754 if (index >= dwarf2_per_objfile->n_comp_units)
2755 {
2756 index -= dwarf2_per_objfile->n_comp_units;
2757 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2758 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2759 }
2760
2761 return dwarf2_per_objfile->all_comp_units[index];
2762 }
2763
2764 /* Return the CU given its index.
2765 This differs from dw2_get_cutu in that it's for when you know INDEX
2766 refers to a CU. */
2767
2768 static struct dwarf2_per_cu_data *
2769 dw2_get_cu (int index)
2770 {
2771 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2772
2773 return dwarf2_per_objfile->all_comp_units[index];
2774 }
2775
2776 /* A helper for create_cus_from_index that handles a given list of
2777 CUs. */
2778
2779 static void
2780 create_cus_from_index_list (struct objfile *objfile,
2781 const gdb_byte *cu_list, offset_type n_elements,
2782 struct dwarf2_section_info *section,
2783 int is_dwz,
2784 int base_offset)
2785 {
2786 offset_type i;
2787
2788 for (i = 0; i < n_elements; i += 2)
2789 {
2790 struct dwarf2_per_cu_data *the_cu;
2791 ULONGEST offset, length;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2795 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2796 cu_list += 2 * 8;
2797
2798 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_data);
2800 the_cu->offset.sect_off = offset;
2801 the_cu->length = length;
2802 the_cu->objfile = objfile;
2803 the_cu->section = section;
2804 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2806 the_cu->is_dwz = is_dwz;
2807 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2808 }
2809 }
2810
2811 /* Read the CU list from the mapped index, and use it to create all
2812 the CU objects for this objfile. */
2813
2814 static void
2815 create_cus_from_index (struct objfile *objfile,
2816 const gdb_byte *cu_list, offset_type cu_list_elements,
2817 const gdb_byte *dwz_list, offset_type dwz_elements)
2818 {
2819 struct dwz_file *dwz;
2820
2821 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2822 dwarf2_per_objfile->all_comp_units =
2823 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2824 dwarf2_per_objfile->n_comp_units);
2825
2826 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2827 &dwarf2_per_objfile->info, 0, 0);
2828
2829 if (dwz_elements == 0)
2830 return;
2831
2832 dwz = dwarf2_get_dwz_file ();
2833 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2834 cu_list_elements / 2);
2835 }
2836
2837 /* Create the signatured type hash table from the index. */
2838
2839 static void
2840 create_signatured_type_table_from_index (struct objfile *objfile,
2841 struct dwarf2_section_info *section,
2842 const gdb_byte *bytes,
2843 offset_type elements)
2844 {
2845 offset_type i;
2846 htab_t sig_types_hash;
2847
2848 dwarf2_per_objfile->n_type_units
2849 = dwarf2_per_objfile->n_allocated_type_units
2850 = elements / 3;
2851 dwarf2_per_objfile->all_type_units =
2852 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2853
2854 sig_types_hash = allocate_signatured_type_table (objfile);
2855
2856 for (i = 0; i < elements; i += 3)
2857 {
2858 struct signatured_type *sig_type;
2859 ULONGEST offset, type_offset_in_tu, signature;
2860 void **slot;
2861
2862 gdb_static_assert (sizeof (ULONGEST) >= 8);
2863 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2864 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2865 BFD_ENDIAN_LITTLE);
2866 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2867 bytes += 3 * 8;
2868
2869 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2870 struct signatured_type);
2871 sig_type->signature = signature;
2872 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2873 sig_type->per_cu.is_debug_types = 1;
2874 sig_type->per_cu.section = section;
2875 sig_type->per_cu.offset.sect_off = offset;
2876 sig_type->per_cu.objfile = objfile;
2877 sig_type->per_cu.v.quick
2878 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2879 struct dwarf2_per_cu_quick_data);
2880
2881 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2882 *slot = sig_type;
2883
2884 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2885 }
2886
2887 dwarf2_per_objfile->signatured_types = sig_types_hash;
2888 }
2889
2890 /* Read the address map data from the mapped index, and use it to
2891 populate the objfile's psymtabs_addrmap. */
2892
2893 static void
2894 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2895 {
2896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2897 const gdb_byte *iter, *end;
2898 struct obstack temp_obstack;
2899 struct addrmap *mutable_map;
2900 struct cleanup *cleanup;
2901 CORE_ADDR baseaddr;
2902
2903 obstack_init (&temp_obstack);
2904 cleanup = make_cleanup_obstack_free (&temp_obstack);
2905 mutable_map = addrmap_create_mutable (&temp_obstack);
2906
2907 iter = index->address_table;
2908 end = iter + index->address_table_size;
2909
2910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2911
2912 while (iter < end)
2913 {
2914 ULONGEST hi, lo, cu_index;
2915 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2916 iter += 8;
2917 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2918 iter += 8;
2919 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2920 iter += 4;
2921
2922 if (lo > hi)
2923 {
2924 complaint (&symfile_complaints,
2925 _(".gdb_index address table has invalid range (%s - %s)"),
2926 hex_string (lo), hex_string (hi));
2927 continue;
2928 }
2929
2930 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2931 {
2932 complaint (&symfile_complaints,
2933 _(".gdb_index address table has invalid CU number %u"),
2934 (unsigned) cu_index);
2935 continue;
2936 }
2937
2938 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2939 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2940 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2941 }
2942
2943 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2944 &objfile->objfile_obstack);
2945 do_cleanups (cleanup);
2946 }
2947
2948 /* The hash function for strings in the mapped index. This is the same as
2949 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2950 implementation. This is necessary because the hash function is tied to the
2951 format of the mapped index file. The hash values do not have to match with
2952 SYMBOL_HASH_NEXT.
2953
2954 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2955
2956 static hashval_t
2957 mapped_index_string_hash (int index_version, const void *p)
2958 {
2959 const unsigned char *str = (const unsigned char *) p;
2960 hashval_t r = 0;
2961 unsigned char c;
2962
2963 while ((c = *str++) != 0)
2964 {
2965 if (index_version >= 5)
2966 c = tolower (c);
2967 r = r * 67 + c - 113;
2968 }
2969
2970 return r;
2971 }
2972
2973 /* Find a slot in the mapped index INDEX for the object named NAME.
2974 If NAME is found, set *VEC_OUT to point to the CU vector in the
2975 constant pool and return 1. If NAME cannot be found, return 0. */
2976
2977 static int
2978 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2979 offset_type **vec_out)
2980 {
2981 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2982 offset_type hash;
2983 offset_type slot, step;
2984 int (*cmp) (const char *, const char *);
2985
2986 if (current_language->la_language == language_cplus
2987 || current_language->la_language == language_java
2988 || current_language->la_language == language_fortran
2989 || current_language->la_language == language_d)
2990 {
2991 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2992 not contain any. */
2993
2994 if (strchr (name, '(') != NULL)
2995 {
2996 char *without_params = cp_remove_params (name);
2997
2998 if (without_params != NULL)
2999 {
3000 make_cleanup (xfree, without_params);
3001 name = without_params;
3002 }
3003 }
3004 }
3005
3006 /* Index version 4 did not support case insensitive searches. But the
3007 indices for case insensitive languages are built in lowercase, therefore
3008 simulate our NAME being searched is also lowercased. */
3009 hash = mapped_index_string_hash ((index->version == 4
3010 && case_sensitivity == case_sensitive_off
3011 ? 5 : index->version),
3012 name);
3013
3014 slot = hash & (index->symbol_table_slots - 1);
3015 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3016 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3017
3018 for (;;)
3019 {
3020 /* Convert a slot number to an offset into the table. */
3021 offset_type i = 2 * slot;
3022 const char *str;
3023 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3024 {
3025 do_cleanups (back_to);
3026 return 0;
3027 }
3028
3029 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3030 if (!cmp (name, str))
3031 {
3032 *vec_out = (offset_type *) (index->constant_pool
3033 + MAYBE_SWAP (index->symbol_table[i + 1]));
3034 do_cleanups (back_to);
3035 return 1;
3036 }
3037
3038 slot = (slot + step) & (index->symbol_table_slots - 1);
3039 }
3040 }
3041
3042 /* A helper function that reads the .gdb_index from SECTION and fills
3043 in MAP. FILENAME is the name of the file containing the section;
3044 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3045 ok to use deprecated sections.
3046
3047 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3048 out parameters that are filled in with information about the CU and
3049 TU lists in the section.
3050
3051 Returns 1 if all went well, 0 otherwise. */
3052
3053 static int
3054 read_index_from_section (struct objfile *objfile,
3055 const char *filename,
3056 int deprecated_ok,
3057 struct dwarf2_section_info *section,
3058 struct mapped_index *map,
3059 const gdb_byte **cu_list,
3060 offset_type *cu_list_elements,
3061 const gdb_byte **types_list,
3062 offset_type *types_list_elements)
3063 {
3064 const gdb_byte *addr;
3065 offset_type version;
3066 offset_type *metadata;
3067 int i;
3068
3069 if (dwarf2_section_empty_p (section))
3070 return 0;
3071
3072 /* Older elfutils strip versions could keep the section in the main
3073 executable while splitting it for the separate debug info file. */
3074 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3075 return 0;
3076
3077 dwarf2_read_section (objfile, section);
3078
3079 addr = section->buffer;
3080 /* Version check. */
3081 version = MAYBE_SWAP (*(offset_type *) addr);
3082 /* Versions earlier than 3 emitted every copy of a psymbol. This
3083 causes the index to behave very poorly for certain requests. Version 3
3084 contained incomplete addrmap. So, it seems better to just ignore such
3085 indices. */
3086 if (version < 4)
3087 {
3088 static int warning_printed = 0;
3089 if (!warning_printed)
3090 {
3091 warning (_("Skipping obsolete .gdb_index section in %s."),
3092 filename);
3093 warning_printed = 1;
3094 }
3095 return 0;
3096 }
3097 /* Index version 4 uses a different hash function than index version
3098 5 and later.
3099
3100 Versions earlier than 6 did not emit psymbols for inlined
3101 functions. Using these files will cause GDB not to be able to
3102 set breakpoints on inlined functions by name, so we ignore these
3103 indices unless the user has done
3104 "set use-deprecated-index-sections on". */
3105 if (version < 6 && !deprecated_ok)
3106 {
3107 static int warning_printed = 0;
3108 if (!warning_printed)
3109 {
3110 warning (_("\
3111 Skipping deprecated .gdb_index section in %s.\n\
3112 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3113 to use the section anyway."),
3114 filename);
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3120 of the TU (for symbols coming from TUs),
3121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3122 Plus gold-generated indices can have duplicate entries for global symbols,
3123 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3124 These are just performance bugs, and we can't distinguish gdb-generated
3125 indices from gold-generated ones, so issue no warning here. */
3126
3127 /* Indexes with higher version than the one supported by GDB may be no
3128 longer backward compatible. */
3129 if (version > 8)
3130 return 0;
3131
3132 map->version = version;
3133 map->total_size = section->size;
3134
3135 metadata = (offset_type *) (addr + sizeof (offset_type));
3136
3137 i = 0;
3138 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3139 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3140 / 8);
3141 ++i;
3142
3143 *types_list = addr + MAYBE_SWAP (metadata[i]);
3144 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3145 - MAYBE_SWAP (metadata[i]))
3146 / 8);
3147 ++i;
3148
3149 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3150 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]));
3152 ++i;
3153
3154 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3155 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3156 - MAYBE_SWAP (metadata[i]))
3157 / (2 * sizeof (offset_type)));
3158 ++i;
3159
3160 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3161
3162 return 1;
3163 }
3164
3165
3166 /* Read the index file. If everything went ok, initialize the "quick"
3167 elements of all the CUs and return 1. Otherwise, return 0. */
3168
3169 static int
3170 dwarf2_read_index (struct objfile *objfile)
3171 {
3172 struct mapped_index local_map, *map;
3173 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3174 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3175 struct dwz_file *dwz;
3176
3177 if (!read_index_from_section (objfile, objfile_name (objfile),
3178 use_deprecated_index_sections,
3179 &dwarf2_per_objfile->gdb_index, &local_map,
3180 &cu_list, &cu_list_elements,
3181 &types_list, &types_list_elements))
3182 return 0;
3183
3184 /* Don't use the index if it's empty. */
3185 if (local_map.symbol_table_slots == 0)
3186 return 0;
3187
3188 /* If there is a .dwz file, read it so we can get its CU list as
3189 well. */
3190 dwz = dwarf2_get_dwz_file ();
3191 if (dwz != NULL)
3192 {
3193 struct mapped_index dwz_map;
3194 const gdb_byte *dwz_types_ignore;
3195 offset_type dwz_types_elements_ignore;
3196
3197 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3198 1,
3199 &dwz->gdb_index, &dwz_map,
3200 &dwz_list, &dwz_list_elements,
3201 &dwz_types_ignore,
3202 &dwz_types_elements_ignore))
3203 {
3204 warning (_("could not read '.gdb_index' section from %s; skipping"),
3205 bfd_get_filename (dwz->dwz_bfd));
3206 return 0;
3207 }
3208 }
3209
3210 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3211 dwz_list_elements);
3212
3213 if (types_list_elements)
3214 {
3215 struct dwarf2_section_info *section;
3216
3217 /* We can only handle a single .debug_types when we have an
3218 index. */
3219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3220 return 0;
3221
3222 section = VEC_index (dwarf2_section_info_def,
3223 dwarf2_per_objfile->types, 0);
3224
3225 create_signatured_type_table_from_index (objfile, section, types_list,
3226 types_list_elements);
3227 }
3228
3229 create_addrmap_from_index (objfile, &local_map);
3230
3231 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3232 *map = local_map;
3233
3234 dwarf2_per_objfile->index_table = map;
3235 dwarf2_per_objfile->using_index = 1;
3236 dwarf2_per_objfile->quick_file_names_table =
3237 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3238
3239 return 1;
3240 }
3241
3242 /* A helper for the "quick" functions which sets the global
3243 dwarf2_per_objfile according to OBJFILE. */
3244
3245 static void
3246 dw2_setup (struct objfile *objfile)
3247 {
3248 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3249 gdb_assert (dwarf2_per_objfile);
3250 }
3251
3252 /* die_reader_func for dw2_get_file_names. */
3253
3254 static void
3255 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3256 const gdb_byte *info_ptr,
3257 struct die_info *comp_unit_die,
3258 int has_children,
3259 void *data)
3260 {
3261 struct dwarf2_cu *cu = reader->cu;
3262 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3263 struct objfile *objfile = dwarf2_per_objfile->objfile;
3264 struct dwarf2_per_cu_data *lh_cu;
3265 struct line_header *lh;
3266 struct attribute *attr;
3267 int i;
3268 const char *name, *comp_dir;
3269 void **slot;
3270 struct quick_file_names *qfn;
3271 unsigned int line_offset;
3272
3273 gdb_assert (! this_cu->is_debug_types);
3274
3275 /* Our callers never want to match partial units -- instead they
3276 will match the enclosing full CU. */
3277 if (comp_unit_die->tag == DW_TAG_partial_unit)
3278 {
3279 this_cu->v.quick->no_file_data = 1;
3280 return;
3281 }
3282
3283 lh_cu = this_cu;
3284 lh = NULL;
3285 slot = NULL;
3286 line_offset = 0;
3287
3288 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3289 if (attr)
3290 {
3291 struct quick_file_names find_entry;
3292
3293 line_offset = DW_UNSND (attr);
3294
3295 /* We may have already read in this line header (TU line header sharing).
3296 If we have we're done. */
3297 find_entry.hash.dwo_unit = cu->dwo_unit;
3298 find_entry.hash.line_offset.sect_off = line_offset;
3299 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3300 &find_entry, INSERT);
3301 if (*slot != NULL)
3302 {
3303 lh_cu->v.quick->file_names = *slot;
3304 return;
3305 }
3306
3307 lh = dwarf_decode_line_header (line_offset, cu);
3308 }
3309 if (lh == NULL)
3310 {
3311 lh_cu->v.quick->no_file_data = 1;
3312 return;
3313 }
3314
3315 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3316 qfn->hash.dwo_unit = cu->dwo_unit;
3317 qfn->hash.line_offset.sect_off = line_offset;
3318 gdb_assert (slot != NULL);
3319 *slot = qfn;
3320
3321 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3322
3323 qfn->num_file_names = lh->num_file_names;
3324 qfn->file_names =
3325 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3326 for (i = 0; i < lh->num_file_names; ++i)
3327 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3328 qfn->real_names = NULL;
3329
3330 free_line_header (lh);
3331
3332 lh_cu->v.quick->file_names = qfn;
3333 }
3334
3335 /* A helper for the "quick" functions which attempts to read the line
3336 table for THIS_CU. */
3337
3338 static struct quick_file_names *
3339 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3340 {
3341 /* This should never be called for TUs. */
3342 gdb_assert (! this_cu->is_debug_types);
3343 /* Nor type unit groups. */
3344 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3345
3346 if (this_cu->v.quick->file_names != NULL)
3347 return this_cu->v.quick->file_names;
3348 /* If we know there is no line data, no point in looking again. */
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351
3352 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3353
3354 if (this_cu->v.quick->no_file_data)
3355 return NULL;
3356 return this_cu->v.quick->file_names;
3357 }
3358
3359 /* A helper for the "quick" functions which computes and caches the
3360 real path for a given file name from the line table. */
3361
3362 static const char *
3363 dw2_get_real_path (struct objfile *objfile,
3364 struct quick_file_names *qfn, int index)
3365 {
3366 if (qfn->real_names == NULL)
3367 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3368 qfn->num_file_names, const char *);
3369
3370 if (qfn->real_names[index] == NULL)
3371 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3372
3373 return qfn->real_names[index];
3374 }
3375
3376 static struct symtab *
3377 dw2_find_last_source_symtab (struct objfile *objfile)
3378 {
3379 struct compunit_symtab *cust;
3380 int index;
3381
3382 dw2_setup (objfile);
3383 index = dwarf2_per_objfile->n_comp_units - 1;
3384 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3385 if (cust == NULL)
3386 return NULL;
3387 return compunit_primary_filetab (cust);
3388 }
3389
3390 /* Traversal function for dw2_forget_cached_source_info. */
3391
3392 static int
3393 dw2_free_cached_file_names (void **slot, void *info)
3394 {
3395 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3396
3397 if (file_data->real_names)
3398 {
3399 int i;
3400
3401 for (i = 0; i < file_data->num_file_names; ++i)
3402 {
3403 xfree ((void*) file_data->real_names[i]);
3404 file_data->real_names[i] = NULL;
3405 }
3406 }
3407
3408 return 1;
3409 }
3410
3411 static void
3412 dw2_forget_cached_source_info (struct objfile *objfile)
3413 {
3414 dw2_setup (objfile);
3415
3416 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3417 dw2_free_cached_file_names, NULL);
3418 }
3419
3420 /* Helper function for dw2_map_symtabs_matching_filename that expands
3421 the symtabs and calls the iterator. */
3422
3423 static int
3424 dw2_map_expand_apply (struct objfile *objfile,
3425 struct dwarf2_per_cu_data *per_cu,
3426 const char *name, const char *real_path,
3427 int (*callback) (struct symtab *, void *),
3428 void *data)
3429 {
3430 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3431
3432 /* Don't visit already-expanded CUs. */
3433 if (per_cu->v.quick->compunit_symtab)
3434 return 0;
3435
3436 /* This may expand more than one symtab, and we want to iterate over
3437 all of them. */
3438 dw2_instantiate_symtab (per_cu);
3439
3440 return iterate_over_some_symtabs (name, real_path, callback, data,
3441 objfile->compunit_symtabs, last_made);
3442 }
3443
3444 /* Implementation of the map_symtabs_matching_filename method. */
3445
3446 static int
3447 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3448 const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 int i;
3453 const char *name_basename = lbasename (name);
3454
3455 dw2_setup (objfile);
3456
3457 /* The rule is CUs specify all the files, including those used by
3458 any TU, so there's no need to scan TUs here. */
3459
3460 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3461 {
3462 int j;
3463 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3464 struct quick_file_names *file_data;
3465
3466 /* We only need to look at symtabs not already expanded. */
3467 if (per_cu->v.quick->compunit_symtab)
3468 continue;
3469
3470 file_data = dw2_get_file_names (per_cu);
3471 if (file_data == NULL)
3472 continue;
3473
3474 for (j = 0; j < file_data->num_file_names; ++j)
3475 {
3476 const char *this_name = file_data->file_names[j];
3477 const char *this_real_name;
3478
3479 if (compare_filenames_for_search (this_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 /* Before we invoke realpath, which can get expensive when many
3488 files are involved, do a quick comparison of the basenames. */
3489 if (! basenames_may_differ
3490 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3491 continue;
3492
3493 this_real_name = dw2_get_real_path (objfile, file_data, j);
3494 if (compare_filenames_for_search (this_real_name, name))
3495 {
3496 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3497 callback, data))
3498 return 1;
3499 continue;
3500 }
3501
3502 if (real_path != NULL)
3503 {
3504 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3505 gdb_assert (IS_ABSOLUTE_PATH (name));
3506 if (this_real_name != NULL
3507 && FILENAME_CMP (real_path, this_real_name) == 0)
3508 {
3509 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3510 callback, data))
3511 return 1;
3512 continue;
3513 }
3514 }
3515 }
3516 }
3517
3518 return 0;
3519 }
3520
3521 /* Struct used to manage iterating over all CUs looking for a symbol. */
3522
3523 struct dw2_symtab_iterator
3524 {
3525 /* The internalized form of .gdb_index. */
3526 struct mapped_index *index;
3527 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3528 int want_specific_block;
3529 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3530 Unused if !WANT_SPECIFIC_BLOCK. */
3531 int block_index;
3532 /* The kind of symbol we're looking for. */
3533 domain_enum domain;
3534 /* The list of CUs from the index entry of the symbol,
3535 or NULL if not found. */
3536 offset_type *vec;
3537 /* The next element in VEC to look at. */
3538 int next;
3539 /* The number of elements in VEC, or zero if there is no match. */
3540 int length;
3541 /* Have we seen a global version of the symbol?
3542 If so we can ignore all further global instances.
3543 This is to work around gold/15646, inefficient gold-generated
3544 indices. */
3545 int global_seen;
3546 };
3547
3548 /* Initialize the index symtab iterator ITER.
3549 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3550 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3551
3552 static void
3553 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3554 struct mapped_index *index,
3555 int want_specific_block,
3556 int block_index,
3557 domain_enum domain,
3558 const char *name)
3559 {
3560 iter->index = index;
3561 iter->want_specific_block = want_specific_block;
3562 iter->block_index = block_index;
3563 iter->domain = domain;
3564 iter->next = 0;
3565 iter->global_seen = 0;
3566
3567 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3568 iter->length = MAYBE_SWAP (*iter->vec);
3569 else
3570 {
3571 iter->vec = NULL;
3572 iter->length = 0;
3573 }
3574 }
3575
3576 /* Return the next matching CU or NULL if there are no more. */
3577
3578 static struct dwarf2_per_cu_data *
3579 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3580 {
3581 for ( ; iter->next < iter->length; ++iter->next)
3582 {
3583 offset_type cu_index_and_attrs =
3584 MAYBE_SWAP (iter->vec[iter->next + 1]);
3585 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3586 struct dwarf2_per_cu_data *per_cu;
3587 int want_static = iter->block_index != GLOBAL_BLOCK;
3588 /* This value is only valid for index versions >= 7. */
3589 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 /* Only check the symbol attributes if they're present.
3593 Indices prior to version 7 don't record them,
3594 and indices >= 7 may elide them for certain symbols
3595 (gold does this). */
3596 int attrs_valid =
3597 (iter->index->version >= 7
3598 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3599
3600 /* Don't crash on bad data. */
3601 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3602 + dwarf2_per_objfile->n_type_units))
3603 {
3604 complaint (&symfile_complaints,
3605 _(".gdb_index entry has bad CU index"
3606 " [in module %s]"),
3607 objfile_name (dwarf2_per_objfile->objfile));
3608 continue;
3609 }
3610
3611 per_cu = dw2_get_cutu (cu_index);
3612
3613 /* Skip if already read in. */
3614 if (per_cu->v.quick->compunit_symtab)
3615 continue;
3616
3617 /* Check static vs global. */
3618 if (attrs_valid)
3619 {
3620 if (iter->want_specific_block
3621 && want_static != is_static)
3622 continue;
3623 /* Work around gold/15646. */
3624 if (!is_static && iter->global_seen)
3625 continue;
3626 if (!is_static)
3627 iter->global_seen = 1;
3628 }
3629
3630 /* Only check the symbol's kind if it has one. */
3631 if (attrs_valid)
3632 {
3633 switch (iter->domain)
3634 {
3635 case VAR_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3637 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3638 /* Some types are also in VAR_DOMAIN. */
3639 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3640 continue;
3641 break;
3642 case STRUCT_DOMAIN:
3643 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case LABEL_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3648 continue;
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 ++iter->next;
3656 return per_cu;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static struct compunit_symtab *
3663 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3664 const char *name, domain_enum domain)
3665 {
3666 struct compunit_symtab *stab_best = NULL;
3667 struct mapped_index *index;
3668
3669 dw2_setup (objfile);
3670
3671 index = dwarf2_per_objfile->index_table;
3672
3673 /* index is NULL if OBJF_READNOW. */
3674 if (index)
3675 {
3676 struct dw2_symtab_iterator iter;
3677 struct dwarf2_per_cu_data *per_cu;
3678
3679 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3680
3681 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3682 {
3683 struct symbol *sym, *with_opaque = NULL;
3684 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3685 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3686 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3687
3688 sym = block_find_symbol (block, name, domain,
3689 block_find_non_opaque_type_preferred,
3690 &with_opaque);
3691
3692 /* Some caution must be observed with overloaded functions
3693 and methods, since the index will not contain any overload
3694 information (but NAME might contain it). */
3695
3696 if (sym != NULL
3697 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3698 return stab;
3699 if (with_opaque != NULL
3700 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3701 stab_best = stab;
3702
3703 /* Keep looking through other CUs. */
3704 }
3705 }
3706
3707 return stab_best;
3708 }
3709
3710 static void
3711 dw2_print_stats (struct objfile *objfile)
3712 {
3713 int i, total, count;
3714
3715 dw2_setup (objfile);
3716 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3717 count = 0;
3718 for (i = 0; i < total; ++i)
3719 {
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3721
3722 if (!per_cu->v.quick->compunit_symtab)
3723 ++count;
3724 }
3725 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3726 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3727 }
3728
3729 /* This dumps minimal information about the index.
3730 It is called via "mt print objfiles".
3731 One use is to verify .gdb_index has been loaded by the
3732 gdb.dwarf2/gdb-index.exp testcase. */
3733
3734 static void
3735 dw2_dump (struct objfile *objfile)
3736 {
3737 dw2_setup (objfile);
3738 gdb_assert (dwarf2_per_objfile->using_index);
3739 printf_filtered (".gdb_index:");
3740 if (dwarf2_per_objfile->index_table != NULL)
3741 {
3742 printf_filtered (" version %d\n",
3743 dwarf2_per_objfile->index_table->version);
3744 }
3745 else
3746 printf_filtered (" faked for \"readnow\"\n");
3747 printf_filtered ("\n");
3748 }
3749
3750 static void
3751 dw2_relocate (struct objfile *objfile,
3752 const struct section_offsets *new_offsets,
3753 const struct section_offsets *delta)
3754 {
3755 /* There's nothing to relocate here. */
3756 }
3757
3758 static void
3759 dw2_expand_symtabs_for_function (struct objfile *objfile,
3760 const char *func_name)
3761 {
3762 struct mapped_index *index;
3763
3764 dw2_setup (objfile);
3765
3766 index = dwarf2_per_objfile->index_table;
3767
3768 /* index is NULL if OBJF_READNOW. */
3769 if (index)
3770 {
3771 struct dw2_symtab_iterator iter;
3772 struct dwarf2_per_cu_data *per_cu;
3773
3774 /* Note: It doesn't matter what we pass for block_index here. */
3775 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3776 func_name);
3777
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_instantiate_symtab (per_cu);
3780 }
3781 }
3782
3783 static void
3784 dw2_expand_all_symtabs (struct objfile *objfile)
3785 {
3786 int i;
3787
3788 dw2_setup (objfile);
3789
3790 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3791 + dwarf2_per_objfile->n_type_units); ++i)
3792 {
3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3794
3795 dw2_instantiate_symtab (per_cu);
3796 }
3797 }
3798
3799 static void
3800 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3801 const char *fullname)
3802 {
3803 int i;
3804
3805 dw2_setup (objfile);
3806
3807 /* We don't need to consider type units here.
3808 This is only called for examining code, e.g. expand_line_sal.
3809 There can be an order of magnitude (or more) more type units
3810 than comp units, and we avoid them if we can. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3813 {
3814 int j;
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816 struct quick_file_names *file_data;
3817
3818 /* We only need to look at symtabs not already expanded. */
3819 if (per_cu->v.quick->compunit_symtab)
3820 continue;
3821
3822 file_data = dw2_get_file_names (per_cu);
3823 if (file_data == NULL)
3824 continue;
3825
3826 for (j = 0; j < file_data->num_file_names; ++j)
3827 {
3828 const char *this_fullname = file_data->file_names[j];
3829
3830 if (filename_cmp (this_fullname, fullname) == 0)
3831 {
3832 dw2_instantiate_symtab (per_cu);
3833 break;
3834 }
3835 }
3836 }
3837 }
3838
3839 static void
3840 dw2_map_matching_symbols (struct objfile *objfile,
3841 const char * name, domain_enum domain,
3842 int global,
3843 int (*callback) (struct block *,
3844 struct symbol *, void *),
3845 void *data, symbol_compare_ftype *match,
3846 symbol_compare_ftype *ordered_compare)
3847 {
3848 /* Currently unimplemented; used for Ada. The function can be called if the
3849 current language is Ada for a non-Ada objfile using GNU index. As Ada
3850 does not look for non-Ada symbols this function should just return. */
3851 }
3852
3853 static void
3854 dw2_expand_symtabs_matching
3855 (struct objfile *objfile,
3856 expand_symtabs_file_matcher_ftype *file_matcher,
3857 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3858 expand_symtabs_exp_notify_ftype *expansion_notify,
3859 enum search_domain kind,
3860 void *data)
3861 {
3862 int i;
3863 offset_type iter;
3864 struct mapped_index *index;
3865
3866 dw2_setup (objfile);
3867
3868 /* index_table is NULL if OBJF_READNOW. */
3869 if (!dwarf2_per_objfile->index_table)
3870 return;
3871 index = dwarf2_per_objfile->index_table;
3872
3873 if (file_matcher != NULL)
3874 {
3875 struct cleanup *cleanup;
3876 htab_t visited_found, visited_not_found;
3877
3878 visited_found = htab_create_alloc (10,
3879 htab_hash_pointer, htab_eq_pointer,
3880 NULL, xcalloc, xfree);
3881 cleanup = make_cleanup_htab_delete (visited_found);
3882 visited_not_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 make_cleanup_htab_delete (visited_not_found);
3886
3887 /* The rule is CUs specify all the files, including those used by
3888 any TU, so there's no need to scan TUs here. */
3889
3890 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3891 {
3892 int j;
3893 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3894 struct quick_file_names *file_data;
3895 void **slot;
3896
3897 QUIT;
3898
3899 per_cu->v.quick->mark = 0;
3900
3901 /* We only need to look at symtabs not already expanded. */
3902 if (per_cu->v.quick->compunit_symtab)
3903 continue;
3904
3905 file_data = dw2_get_file_names (per_cu);
3906 if (file_data == NULL)
3907 continue;
3908
3909 if (htab_find (visited_not_found, file_data) != NULL)
3910 continue;
3911 else if (htab_find (visited_found, file_data) != NULL)
3912 {
3913 per_cu->v.quick->mark = 1;
3914 continue;
3915 }
3916
3917 for (j = 0; j < file_data->num_file_names; ++j)
3918 {
3919 const char *this_real_name;
3920
3921 if (file_matcher (file_data->file_names[j], data, 0))
3922 {
3923 per_cu->v.quick->mark = 1;
3924 break;
3925 }
3926
3927 /* Before we invoke realpath, which can get expensive when many
3928 files are involved, do a quick comparison of the basenames. */
3929 if (!basenames_may_differ
3930 && !file_matcher (lbasename (file_data->file_names[j]),
3931 data, 1))
3932 continue;
3933
3934 this_real_name = dw2_get_real_path (objfile, file_data, j);
3935 if (file_matcher (this_real_name, data, 0))
3936 {
3937 per_cu->v.quick->mark = 1;
3938 break;
3939 }
3940 }
3941
3942 slot = htab_find_slot (per_cu->v.quick->mark
3943 ? visited_found
3944 : visited_not_found,
3945 file_data, INSERT);
3946 *slot = file_data;
3947 }
3948
3949 do_cleanups (cleanup);
3950 }
3951
3952 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3953 {
3954 offset_type idx = 2 * iter;
3955 const char *name;
3956 offset_type *vec, vec_len, vec_idx;
3957 int global_seen = 0;
3958
3959 QUIT;
3960
3961 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3962 continue;
3963
3964 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3965
3966 if (! (*symbol_matcher) (name, data))
3967 continue;
3968
3969 /* The name was matched, now expand corresponding CUs that were
3970 marked. */
3971 vec = (offset_type *) (index->constant_pool
3972 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3973 vec_len = MAYBE_SWAP (vec[0]);
3974 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3975 {
3976 struct dwarf2_per_cu_data *per_cu;
3977 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3978 /* This value is only valid for index versions >= 7. */
3979 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3980 gdb_index_symbol_kind symbol_kind =
3981 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3982 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3983 /* Only check the symbol attributes if they're present.
3984 Indices prior to version 7 don't record them,
3985 and indices >= 7 may elide them for certain symbols
3986 (gold does this). */
3987 int attrs_valid =
3988 (index->version >= 7
3989 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3990
3991 /* Work around gold/15646. */
3992 if (attrs_valid)
3993 {
3994 if (!is_static && global_seen)
3995 continue;
3996 if (!is_static)
3997 global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (kind)
4004 {
4005 case VARIABLES_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4007 continue;
4008 break;
4009 case FUNCTIONS_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4011 continue;
4012 break;
4013 case TYPES_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 default:
4018 break;
4019 }
4020 }
4021
4022 /* Don't crash on bad data. */
4023 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4024 + dwarf2_per_objfile->n_type_units))
4025 {
4026 complaint (&symfile_complaints,
4027 _(".gdb_index entry has bad CU index"
4028 " [in module %s]"), objfile_name (objfile));
4029 continue;
4030 }
4031
4032 per_cu = dw2_get_cutu (cu_index);
4033 if (file_matcher == NULL || per_cu->v.quick->mark)
4034 {
4035 int symtab_was_null =
4036 (per_cu->v.quick->compunit_symtab == NULL);
4037
4038 dw2_instantiate_symtab (per_cu);
4039
4040 if (expansion_notify != NULL
4041 && symtab_was_null
4042 && per_cu->v.quick->compunit_symtab != NULL)
4043 {
4044 expansion_notify (per_cu->v.quick->compunit_symtab,
4045 data);
4046 }
4047 }
4048 }
4049 }
4050 }
4051
4052 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4053 symtab. */
4054
4055 static struct compunit_symtab *
4056 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4057 CORE_ADDR pc)
4058 {
4059 int i;
4060
4061 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4062 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4063 return cust;
4064
4065 if (cust->includes == NULL)
4066 return NULL;
4067
4068 for (i = 0; cust->includes[i]; ++i)
4069 {
4070 struct compunit_symtab *s = cust->includes[i];
4071
4072 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4073 if (s != NULL)
4074 return s;
4075 }
4076
4077 return NULL;
4078 }
4079
4080 static struct compunit_symtab *
4081 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4082 struct bound_minimal_symbol msymbol,
4083 CORE_ADDR pc,
4084 struct obj_section *section,
4085 int warn_if_readin)
4086 {
4087 struct dwarf2_per_cu_data *data;
4088 struct compunit_symtab *result;
4089
4090 dw2_setup (objfile);
4091
4092 if (!objfile->psymtabs_addrmap)
4093 return NULL;
4094
4095 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4096 if (!data)
4097 return NULL;
4098
4099 if (warn_if_readin && data->v.quick->compunit_symtab)
4100 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4101 paddress (get_objfile_arch (objfile), pc));
4102
4103 result
4104 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4105 pc);
4106 gdb_assert (result != NULL);
4107 return result;
4108 }
4109
4110 static void
4111 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4112 void *data, int need_fullname)
4113 {
4114 int i;
4115 struct cleanup *cleanup;
4116 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4117 NULL, xcalloc, xfree);
4118
4119 cleanup = make_cleanup_htab_delete (visited);
4120 dw2_setup (objfile);
4121
4122 /* The rule is CUs specify all the files, including those used by
4123 any TU, so there's no need to scan TUs here.
4124 We can ignore file names coming from already-expanded CUs. */
4125
4126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4127 {
4128 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4129
4130 if (per_cu->v.quick->compunit_symtab)
4131 {
4132 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4133 INSERT);
4134
4135 *slot = per_cu->v.quick->file_names;
4136 }
4137 }
4138
4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4140 {
4141 int j;
4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4143 struct quick_file_names *file_data;
4144 void **slot;
4145
4146 /* We only need to look at symtabs not already expanded. */
4147 if (per_cu->v.quick->compunit_symtab)
4148 continue;
4149
4150 file_data = dw2_get_file_names (per_cu);
4151 if (file_data == NULL)
4152 continue;
4153
4154 slot = htab_find_slot (visited, file_data, INSERT);
4155 if (*slot)
4156 {
4157 /* Already visited. */
4158 continue;
4159 }
4160 *slot = file_data;
4161
4162 for (j = 0; j < file_data->num_file_names; ++j)
4163 {
4164 const char *this_real_name;
4165
4166 if (need_fullname)
4167 this_real_name = dw2_get_real_path (objfile, file_data, j);
4168 else
4169 this_real_name = NULL;
4170 (*fun) (file_data->file_names[j], this_real_name, data);
4171 }
4172 }
4173
4174 do_cleanups (cleanup);
4175 }
4176
4177 static int
4178 dw2_has_symbols (struct objfile *objfile)
4179 {
4180 return 1;
4181 }
4182
4183 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4184 {
4185 dw2_has_symbols,
4186 dw2_find_last_source_symtab,
4187 dw2_forget_cached_source_info,
4188 dw2_map_symtabs_matching_filename,
4189 dw2_lookup_symbol,
4190 dw2_print_stats,
4191 dw2_dump,
4192 dw2_relocate,
4193 dw2_expand_symtabs_for_function,
4194 dw2_expand_all_symtabs,
4195 dw2_expand_symtabs_with_fullname,
4196 dw2_map_matching_symbols,
4197 dw2_expand_symtabs_matching,
4198 dw2_find_pc_sect_compunit_symtab,
4199 dw2_map_symbol_filenames
4200 };
4201
4202 /* Initialize for reading DWARF for this objfile. Return 0 if this
4203 file will use psymtabs, or 1 if using the GNU index. */
4204
4205 int
4206 dwarf2_initialize_objfile (struct objfile *objfile)
4207 {
4208 /* If we're about to read full symbols, don't bother with the
4209 indices. In this case we also don't care if some other debug
4210 format is making psymtabs, because they are all about to be
4211 expanded anyway. */
4212 if ((objfile->flags & OBJF_READNOW))
4213 {
4214 int i;
4215
4216 dwarf2_per_objfile->using_index = 1;
4217 create_all_comp_units (objfile);
4218 create_all_type_units (objfile);
4219 dwarf2_per_objfile->quick_file_names_table =
4220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4221
4222 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4223 + dwarf2_per_objfile->n_type_units); ++i)
4224 {
4225 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4226
4227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4228 struct dwarf2_per_cu_quick_data);
4229 }
4230
4231 /* Return 1 so that gdb sees the "quick" functions. However,
4232 these functions will be no-ops because we will have expanded
4233 all symtabs. */
4234 return 1;
4235 }
4236
4237 if (dwarf2_read_index (objfile))
4238 return 1;
4239
4240 return 0;
4241 }
4242
4243 \f
4244
4245 /* Build a partial symbol table. */
4246
4247 void
4248 dwarf2_build_psymtabs (struct objfile *objfile)
4249 {
4250
4251 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4252 {
4253 init_psymbol_list (objfile, 1024);
4254 }
4255
4256 TRY
4257 {
4258 /* This isn't really ideal: all the data we allocate on the
4259 objfile's obstack is still uselessly kept around. However,
4260 freeing it seems unsafe. */
4261 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4262
4263 dwarf2_build_psymtabs_hard (objfile);
4264 discard_cleanups (cleanups);
4265 }
4266 CATCH (except, RETURN_MASK_ERROR)
4267 {
4268 exception_print (gdb_stderr, except);
4269 }
4270 END_CATCH
4271 }
4272
4273 /* Return the total length of the CU described by HEADER. */
4274
4275 static unsigned int
4276 get_cu_length (const struct comp_unit_head *header)
4277 {
4278 return header->initial_length_size + header->length;
4279 }
4280
4281 /* Return TRUE if OFFSET is within CU_HEADER. */
4282
4283 static inline int
4284 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4285 {
4286 sect_offset bottom = { cu_header->offset.sect_off };
4287 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4288
4289 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4290 }
4291
4292 /* Find the base address of the compilation unit for range lists and
4293 location lists. It will normally be specified by DW_AT_low_pc.
4294 In DWARF-3 draft 4, the base address could be overridden by
4295 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4296 compilation units with discontinuous ranges. */
4297
4298 static void
4299 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4300 {
4301 struct attribute *attr;
4302
4303 cu->base_known = 0;
4304 cu->base_address = 0;
4305
4306 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4307 if (attr)
4308 {
4309 cu->base_address = attr_value_as_address (attr);
4310 cu->base_known = 1;
4311 }
4312 else
4313 {
4314 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4315 if (attr)
4316 {
4317 cu->base_address = attr_value_as_address (attr);
4318 cu->base_known = 1;
4319 }
4320 }
4321 }
4322
4323 /* Read in the comp unit header information from the debug_info at info_ptr.
4324 NOTE: This leaves members offset, first_die_offset to be filled in
4325 by the caller. */
4326
4327 static const gdb_byte *
4328 read_comp_unit_head (struct comp_unit_head *cu_header,
4329 const gdb_byte *info_ptr, bfd *abfd)
4330 {
4331 int signed_addr;
4332 unsigned int bytes_read;
4333
4334 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4335 cu_header->initial_length_size = bytes_read;
4336 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4337 info_ptr += bytes_read;
4338 cu_header->version = read_2_bytes (abfd, info_ptr);
4339 info_ptr += 2;
4340 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4341 &bytes_read);
4342 info_ptr += bytes_read;
4343 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4344 info_ptr += 1;
4345 signed_addr = bfd_get_sign_extend_vma (abfd);
4346 if (signed_addr < 0)
4347 internal_error (__FILE__, __LINE__,
4348 _("read_comp_unit_head: dwarf from non elf file"));
4349 cu_header->signed_addr_p = signed_addr;
4350
4351 return info_ptr;
4352 }
4353
4354 /* Helper function that returns the proper abbrev section for
4355 THIS_CU. */
4356
4357 static struct dwarf2_section_info *
4358 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4359 {
4360 struct dwarf2_section_info *abbrev;
4361
4362 if (this_cu->is_dwz)
4363 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4364 else
4365 abbrev = &dwarf2_per_objfile->abbrev;
4366
4367 return abbrev;
4368 }
4369
4370 /* Subroutine of read_and_check_comp_unit_head and
4371 read_and_check_type_unit_head to simplify them.
4372 Perform various error checking on the header. */
4373
4374 static void
4375 error_check_comp_unit_head (struct comp_unit_head *header,
4376 struct dwarf2_section_info *section,
4377 struct dwarf2_section_info *abbrev_section)
4378 {
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const char *filename = get_section_file_name (section);
4381
4382 if (header->version != 2 && header->version != 3 && header->version != 4)
4383 error (_("Dwarf Error: wrong version in compilation unit header "
4384 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4385 filename);
4386
4387 if (header->abbrev_offset.sect_off
4388 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4389 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4390 "(offset 0x%lx + 6) [in module %s]"),
4391 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4392 filename);
4393
4394 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4395 avoid potential 32-bit overflow. */
4396 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4397 > section->size)
4398 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4399 "(offset 0x%lx + 0) [in module %s]"),
4400 (long) header->length, (long) header->offset.sect_off,
4401 filename);
4402 }
4403
4404 /* Read in a CU/TU header and perform some basic error checking.
4405 The contents of the header are stored in HEADER.
4406 The result is a pointer to the start of the first DIE. */
4407
4408 static const gdb_byte *
4409 read_and_check_comp_unit_head (struct comp_unit_head *header,
4410 struct dwarf2_section_info *section,
4411 struct dwarf2_section_info *abbrev_section,
4412 const gdb_byte *info_ptr,
4413 int is_debug_types_section)
4414 {
4415 const gdb_byte *beg_of_comp_unit = info_ptr;
4416 bfd *abfd = get_section_bfd_owner (section);
4417
4418 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4419
4420 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4421
4422 /* If we're reading a type unit, skip over the signature and
4423 type_offset fields. */
4424 if (is_debug_types_section)
4425 info_ptr += 8 /*signature*/ + header->offset_size;
4426
4427 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4428
4429 error_check_comp_unit_head (header, section, abbrev_section);
4430
4431 return info_ptr;
4432 }
4433
4434 /* Read in the types comp unit header information from .debug_types entry at
4435 types_ptr. The result is a pointer to one past the end of the header. */
4436
4437 static const gdb_byte *
4438 read_and_check_type_unit_head (struct comp_unit_head *header,
4439 struct dwarf2_section_info *section,
4440 struct dwarf2_section_info *abbrev_section,
4441 const gdb_byte *info_ptr,
4442 ULONGEST *signature,
4443 cu_offset *type_offset_in_tu)
4444 {
4445 const gdb_byte *beg_of_comp_unit = info_ptr;
4446 bfd *abfd = get_section_bfd_owner (section);
4447
4448 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4449
4450 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4451
4452 /* If we're reading a type unit, skip over the signature and
4453 type_offset fields. */
4454 if (signature != NULL)
4455 *signature = read_8_bytes (abfd, info_ptr);
4456 info_ptr += 8;
4457 if (type_offset_in_tu != NULL)
4458 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4459 header->offset_size);
4460 info_ptr += header->offset_size;
4461
4462 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4463
4464 error_check_comp_unit_head (header, section, abbrev_section);
4465
4466 return info_ptr;
4467 }
4468
4469 /* Fetch the abbreviation table offset from a comp or type unit header. */
4470
4471 static sect_offset
4472 read_abbrev_offset (struct dwarf2_section_info *section,
4473 sect_offset offset)
4474 {
4475 bfd *abfd = get_section_bfd_owner (section);
4476 const gdb_byte *info_ptr;
4477 unsigned int length, initial_length_size, offset_size;
4478 sect_offset abbrev_offset;
4479
4480 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4481 info_ptr = section->buffer + offset.sect_off;
4482 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4483 offset_size = initial_length_size == 4 ? 4 : 8;
4484 info_ptr += initial_length_size + 2 /*version*/;
4485 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4486 return abbrev_offset;
4487 }
4488
4489 /* Allocate a new partial symtab for file named NAME and mark this new
4490 partial symtab as being an include of PST. */
4491
4492 static void
4493 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4494 struct objfile *objfile)
4495 {
4496 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4497
4498 if (!IS_ABSOLUTE_PATH (subpst->filename))
4499 {
4500 /* It shares objfile->objfile_obstack. */
4501 subpst->dirname = pst->dirname;
4502 }
4503
4504 subpst->textlow = 0;
4505 subpst->texthigh = 0;
4506
4507 subpst->dependencies
4508 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4509 subpst->dependencies[0] = pst;
4510 subpst->number_of_dependencies = 1;
4511
4512 subpst->globals_offset = 0;
4513 subpst->n_global_syms = 0;
4514 subpst->statics_offset = 0;
4515 subpst->n_static_syms = 0;
4516 subpst->compunit_symtab = NULL;
4517 subpst->read_symtab = pst->read_symtab;
4518 subpst->readin = 0;
4519
4520 /* No private part is necessary for include psymtabs. This property
4521 can be used to differentiate between such include psymtabs and
4522 the regular ones. */
4523 subpst->read_symtab_private = NULL;
4524 }
4525
4526 /* Read the Line Number Program data and extract the list of files
4527 included by the source file represented by PST. Build an include
4528 partial symtab for each of these included files. */
4529
4530 static void
4531 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4532 struct die_info *die,
4533 struct partial_symtab *pst)
4534 {
4535 struct line_header *lh = NULL;
4536 struct attribute *attr;
4537
4538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4539 if (attr)
4540 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4541 if (lh == NULL)
4542 return; /* No linetable, so no includes. */
4543
4544 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4545 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4546
4547 free_line_header (lh);
4548 }
4549
4550 static hashval_t
4551 hash_signatured_type (const void *item)
4552 {
4553 const struct signatured_type *sig_type = item;
4554
4555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4556 return sig_type->signature;
4557 }
4558
4559 static int
4560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4561 {
4562 const struct signatured_type *lhs = item_lhs;
4563 const struct signatured_type *rhs = item_rhs;
4564
4565 return lhs->signature == rhs->signature;
4566 }
4567
4568 /* Allocate a hash table for signatured types. */
4569
4570 static htab_t
4571 allocate_signatured_type_table (struct objfile *objfile)
4572 {
4573 return htab_create_alloc_ex (41,
4574 hash_signatured_type,
4575 eq_signatured_type,
4576 NULL,
4577 &objfile->objfile_obstack,
4578 hashtab_obstack_allocate,
4579 dummy_obstack_deallocate);
4580 }
4581
4582 /* A helper function to add a signatured type CU to a table. */
4583
4584 static int
4585 add_signatured_type_cu_to_table (void **slot, void *datum)
4586 {
4587 struct signatured_type *sigt = *slot;
4588 struct signatured_type ***datap = datum;
4589
4590 **datap = sigt;
4591 ++*datap;
4592
4593 return 1;
4594 }
4595
4596 /* Create the hash table of all entries in the .debug_types
4597 (or .debug_types.dwo) section(s).
4598 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4599 otherwise it is NULL.
4600
4601 The result is a pointer to the hash table or NULL if there are no types.
4602
4603 Note: This function processes DWO files only, not DWP files. */
4604
4605 static htab_t
4606 create_debug_types_hash_table (struct dwo_file *dwo_file,
4607 VEC (dwarf2_section_info_def) *types)
4608 {
4609 struct objfile *objfile = dwarf2_per_objfile->objfile;
4610 htab_t types_htab = NULL;
4611 int ix;
4612 struct dwarf2_section_info *section;
4613 struct dwarf2_section_info *abbrev_section;
4614
4615 if (VEC_empty (dwarf2_section_info_def, types))
4616 return NULL;
4617
4618 abbrev_section = (dwo_file != NULL
4619 ? &dwo_file->sections.abbrev
4620 : &dwarf2_per_objfile->abbrev);
4621
4622 if (dwarf_read_debug)
4623 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4624 dwo_file ? ".dwo" : "",
4625 get_section_file_name (abbrev_section));
4626
4627 for (ix = 0;
4628 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4629 ++ix)
4630 {
4631 bfd *abfd;
4632 const gdb_byte *info_ptr, *end_ptr;
4633
4634 dwarf2_read_section (objfile, section);
4635 info_ptr = section->buffer;
4636
4637 if (info_ptr == NULL)
4638 continue;
4639
4640 /* We can't set abfd until now because the section may be empty or
4641 not present, in which case the bfd is unknown. */
4642 abfd = get_section_bfd_owner (section);
4643
4644 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4645 because we don't need to read any dies: the signature is in the
4646 header. */
4647
4648 end_ptr = info_ptr + section->size;
4649 while (info_ptr < end_ptr)
4650 {
4651 sect_offset offset;
4652 cu_offset type_offset_in_tu;
4653 ULONGEST signature;
4654 struct signatured_type *sig_type;
4655 struct dwo_unit *dwo_tu;
4656 void **slot;
4657 const gdb_byte *ptr = info_ptr;
4658 struct comp_unit_head header;
4659 unsigned int length;
4660
4661 offset.sect_off = ptr - section->buffer;
4662
4663 /* We need to read the type's signature in order to build the hash
4664 table, but we don't need anything else just yet. */
4665
4666 ptr = read_and_check_type_unit_head (&header, section,
4667 abbrev_section, ptr,
4668 &signature, &type_offset_in_tu);
4669
4670 length = get_cu_length (&header);
4671
4672 /* Skip dummy type units. */
4673 if (ptr >= info_ptr + length
4674 || peek_abbrev_code (abfd, ptr) == 0)
4675 {
4676 info_ptr += length;
4677 continue;
4678 }
4679
4680 if (types_htab == NULL)
4681 {
4682 if (dwo_file)
4683 types_htab = allocate_dwo_unit_table (objfile);
4684 else
4685 types_htab = allocate_signatured_type_table (objfile);
4686 }
4687
4688 if (dwo_file)
4689 {
4690 sig_type = NULL;
4691 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4692 struct dwo_unit);
4693 dwo_tu->dwo_file = dwo_file;
4694 dwo_tu->signature = signature;
4695 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4696 dwo_tu->section = section;
4697 dwo_tu->offset = offset;
4698 dwo_tu->length = length;
4699 }
4700 else
4701 {
4702 /* N.B.: type_offset is not usable if this type uses a DWO file.
4703 The real type_offset is in the DWO file. */
4704 dwo_tu = NULL;
4705 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4706 struct signatured_type);
4707 sig_type->signature = signature;
4708 sig_type->type_offset_in_tu = type_offset_in_tu;
4709 sig_type->per_cu.objfile = objfile;
4710 sig_type->per_cu.is_debug_types = 1;
4711 sig_type->per_cu.section = section;
4712 sig_type->per_cu.offset = offset;
4713 sig_type->per_cu.length = length;
4714 }
4715
4716 slot = htab_find_slot (types_htab,
4717 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4718 INSERT);
4719 gdb_assert (slot != NULL);
4720 if (*slot != NULL)
4721 {
4722 sect_offset dup_offset;
4723
4724 if (dwo_file)
4725 {
4726 const struct dwo_unit *dup_tu = *slot;
4727
4728 dup_offset = dup_tu->offset;
4729 }
4730 else
4731 {
4732 const struct signatured_type *dup_tu = *slot;
4733
4734 dup_offset = dup_tu->per_cu.offset;
4735 }
4736
4737 complaint (&symfile_complaints,
4738 _("debug type entry at offset 0x%x is duplicate to"
4739 " the entry at offset 0x%x, signature %s"),
4740 offset.sect_off, dup_offset.sect_off,
4741 hex_string (signature));
4742 }
4743 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4744
4745 if (dwarf_read_debug > 1)
4746 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4747 offset.sect_off,
4748 hex_string (signature));
4749
4750 info_ptr += length;
4751 }
4752 }
4753
4754 return types_htab;
4755 }
4756
4757 /* Create the hash table of all entries in the .debug_types section,
4758 and initialize all_type_units.
4759 The result is zero if there is an error (e.g. missing .debug_types section),
4760 otherwise non-zero. */
4761
4762 static int
4763 create_all_type_units (struct objfile *objfile)
4764 {
4765 htab_t types_htab;
4766 struct signatured_type **iter;
4767
4768 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4769 if (types_htab == NULL)
4770 {
4771 dwarf2_per_objfile->signatured_types = NULL;
4772 return 0;
4773 }
4774
4775 dwarf2_per_objfile->signatured_types = types_htab;
4776
4777 dwarf2_per_objfile->n_type_units
4778 = dwarf2_per_objfile->n_allocated_type_units
4779 = htab_elements (types_htab);
4780 dwarf2_per_objfile->all_type_units =
4781 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4782 iter = &dwarf2_per_objfile->all_type_units[0];
4783 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4784 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4785 == dwarf2_per_objfile->n_type_units);
4786
4787 return 1;
4788 }
4789
4790 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4791 If SLOT is non-NULL, it is the entry to use in the hash table.
4792 Otherwise we find one. */
4793
4794 static struct signatured_type *
4795 add_type_unit (ULONGEST sig, void **slot)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 int n_type_units = dwarf2_per_objfile->n_type_units;
4799 struct signatured_type *sig_type;
4800
4801 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4802 ++n_type_units;
4803 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4804 {
4805 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4806 dwarf2_per_objfile->n_allocated_type_units = 1;
4807 dwarf2_per_objfile->n_allocated_type_units *= 2;
4808 dwarf2_per_objfile->all_type_units
4809 = xrealloc (dwarf2_per_objfile->all_type_units,
4810 dwarf2_per_objfile->n_allocated_type_units
4811 * sizeof (struct signatured_type *));
4812 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4813 }
4814 dwarf2_per_objfile->n_type_units = n_type_units;
4815
4816 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4817 struct signatured_type);
4818 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4819 sig_type->signature = sig;
4820 sig_type->per_cu.is_debug_types = 1;
4821 if (dwarf2_per_objfile->using_index)
4822 {
4823 sig_type->per_cu.v.quick =
4824 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct dwarf2_per_cu_quick_data);
4826 }
4827
4828 if (slot == NULL)
4829 {
4830 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4831 sig_type, INSERT);
4832 }
4833 gdb_assert (*slot == NULL);
4834 *slot = sig_type;
4835 /* The rest of sig_type must be filled in by the caller. */
4836 return sig_type;
4837 }
4838
4839 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4840 Fill in SIG_ENTRY with DWO_ENTRY. */
4841
4842 static void
4843 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4844 struct signatured_type *sig_entry,
4845 struct dwo_unit *dwo_entry)
4846 {
4847 /* Make sure we're not clobbering something we don't expect to. */
4848 gdb_assert (! sig_entry->per_cu.queued);
4849 gdb_assert (sig_entry->per_cu.cu == NULL);
4850 if (dwarf2_per_objfile->using_index)
4851 {
4852 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4853 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4854 }
4855 else
4856 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4857 gdb_assert (sig_entry->signature == dwo_entry->signature);
4858 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4859 gdb_assert (sig_entry->type_unit_group == NULL);
4860 gdb_assert (sig_entry->dwo_unit == NULL);
4861
4862 sig_entry->per_cu.section = dwo_entry->section;
4863 sig_entry->per_cu.offset = dwo_entry->offset;
4864 sig_entry->per_cu.length = dwo_entry->length;
4865 sig_entry->per_cu.reading_dwo_directly = 1;
4866 sig_entry->per_cu.objfile = objfile;
4867 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4868 sig_entry->dwo_unit = dwo_entry;
4869 }
4870
4871 /* Subroutine of lookup_signatured_type.
4872 If we haven't read the TU yet, create the signatured_type data structure
4873 for a TU to be read in directly from a DWO file, bypassing the stub.
4874 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4875 using .gdb_index, then when reading a CU we want to stay in the DWO file
4876 containing that CU. Otherwise we could end up reading several other DWO
4877 files (due to comdat folding) to process the transitive closure of all the
4878 mentioned TUs, and that can be slow. The current DWO file will have every
4879 type signature that it needs.
4880 We only do this for .gdb_index because in the psymtab case we already have
4881 to read all the DWOs to build the type unit groups. */
4882
4883 static struct signatured_type *
4884 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4885 {
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwo_file *dwo_file;
4888 struct dwo_unit find_dwo_entry, *dwo_entry;
4889 struct signatured_type find_sig_entry, *sig_entry;
4890 void **slot;
4891
4892 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4893
4894 /* If TU skeletons have been removed then we may not have read in any
4895 TUs yet. */
4896 if (dwarf2_per_objfile->signatured_types == NULL)
4897 {
4898 dwarf2_per_objfile->signatured_types
4899 = allocate_signatured_type_table (objfile);
4900 }
4901
4902 /* We only ever need to read in one copy of a signatured type.
4903 Use the global signatured_types array to do our own comdat-folding
4904 of types. If this is the first time we're reading this TU, and
4905 the TU has an entry in .gdb_index, replace the recorded data from
4906 .gdb_index with this TU. */
4907
4908 find_sig_entry.signature = sig;
4909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4910 &find_sig_entry, INSERT);
4911 sig_entry = *slot;
4912
4913 /* We can get here with the TU already read, *or* in the process of being
4914 read. Don't reassign the global entry to point to this DWO if that's
4915 the case. Also note that if the TU is already being read, it may not
4916 have come from a DWO, the program may be a mix of Fission-compiled
4917 code and non-Fission-compiled code. */
4918
4919 /* Have we already tried to read this TU?
4920 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4921 needn't exist in the global table yet). */
4922 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4923 return sig_entry;
4924
4925 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4926 dwo_unit of the TU itself. */
4927 dwo_file = cu->dwo_unit->dwo_file;
4928
4929 /* Ok, this is the first time we're reading this TU. */
4930 if (dwo_file->tus == NULL)
4931 return NULL;
4932 find_dwo_entry.signature = sig;
4933 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4934 if (dwo_entry == NULL)
4935 return NULL;
4936
4937 /* If the global table doesn't have an entry for this TU, add one. */
4938 if (sig_entry == NULL)
4939 sig_entry = add_type_unit (sig, slot);
4940
4941 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4942 sig_entry->per_cu.tu_read = 1;
4943 return sig_entry;
4944 }
4945
4946 /* Subroutine of lookup_signatured_type.
4947 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4948 then try the DWP file. If the TU stub (skeleton) has been removed then
4949 it won't be in .gdb_index. */
4950
4951 static struct signatured_type *
4952 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4953 {
4954 struct objfile *objfile = dwarf2_per_objfile->objfile;
4955 struct dwp_file *dwp_file = get_dwp_file ();
4956 struct dwo_unit *dwo_entry;
4957 struct signatured_type find_sig_entry, *sig_entry;
4958 void **slot;
4959
4960 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4961 gdb_assert (dwp_file != NULL);
4962
4963 /* If TU skeletons have been removed then we may not have read in any
4964 TUs yet. */
4965 if (dwarf2_per_objfile->signatured_types == NULL)
4966 {
4967 dwarf2_per_objfile->signatured_types
4968 = allocate_signatured_type_table (objfile);
4969 }
4970
4971 find_sig_entry.signature = sig;
4972 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4973 &find_sig_entry, INSERT);
4974 sig_entry = *slot;
4975
4976 /* Have we already tried to read this TU?
4977 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4978 needn't exist in the global table yet). */
4979 if (sig_entry != NULL)
4980 return sig_entry;
4981
4982 if (dwp_file->tus == NULL)
4983 return NULL;
4984 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4985 sig, 1 /* is_debug_types */);
4986 if (dwo_entry == NULL)
4987 return NULL;
4988
4989 sig_entry = add_type_unit (sig, slot);
4990 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4991
4992 return sig_entry;
4993 }
4994
4995 /* Lookup a signature based type for DW_FORM_ref_sig8.
4996 Returns NULL if signature SIG is not present in the table.
4997 It is up to the caller to complain about this. */
4998
4999 static struct signatured_type *
5000 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5001 {
5002 if (cu->dwo_unit
5003 && dwarf2_per_objfile->using_index)
5004 {
5005 /* We're in a DWO/DWP file, and we're using .gdb_index.
5006 These cases require special processing. */
5007 if (get_dwp_file () == NULL)
5008 return lookup_dwo_signatured_type (cu, sig);
5009 else
5010 return lookup_dwp_signatured_type (cu, sig);
5011 }
5012 else
5013 {
5014 struct signatured_type find_entry, *entry;
5015
5016 if (dwarf2_per_objfile->signatured_types == NULL)
5017 return NULL;
5018 find_entry.signature = sig;
5019 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5020 return entry;
5021 }
5022 }
5023 \f
5024 /* Low level DIE reading support. */
5025
5026 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5027
5028 static void
5029 init_cu_die_reader (struct die_reader_specs *reader,
5030 struct dwarf2_cu *cu,
5031 struct dwarf2_section_info *section,
5032 struct dwo_file *dwo_file)
5033 {
5034 gdb_assert (section->readin && section->buffer != NULL);
5035 reader->abfd = get_section_bfd_owner (section);
5036 reader->cu = cu;
5037 reader->dwo_file = dwo_file;
5038 reader->die_section = section;
5039 reader->buffer = section->buffer;
5040 reader->buffer_end = section->buffer + section->size;
5041 reader->comp_dir = NULL;
5042 }
5043
5044 /* Subroutine of init_cutu_and_read_dies to simplify it.
5045 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5046 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5047 already.
5048
5049 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5050 from it to the DIE in the DWO. If NULL we are skipping the stub.
5051 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5052 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5053 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5054 STUB_COMP_DIR may be non-NULL.
5055 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5056 are filled in with the info of the DIE from the DWO file.
5057 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5058 provided an abbrev table to use.
5059 The result is non-zero if a valid (non-dummy) DIE was found. */
5060
5061 static int
5062 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5063 struct dwo_unit *dwo_unit,
5064 int abbrev_table_provided,
5065 struct die_info *stub_comp_unit_die,
5066 const char *stub_comp_dir,
5067 struct die_reader_specs *result_reader,
5068 const gdb_byte **result_info_ptr,
5069 struct die_info **result_comp_unit_die,
5070 int *result_has_children)
5071 {
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073 struct dwarf2_cu *cu = this_cu->cu;
5074 struct dwarf2_section_info *section;
5075 bfd *abfd;
5076 const gdb_byte *begin_info_ptr, *info_ptr;
5077 ULONGEST signature; /* Or dwo_id. */
5078 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5079 int i,num_extra_attrs;
5080 struct dwarf2_section_info *dwo_abbrev_section;
5081 struct attribute *attr;
5082 struct die_info *comp_unit_die;
5083
5084 /* At most one of these may be provided. */
5085 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5086
5087 /* These attributes aren't processed until later:
5088 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5089 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5090 referenced later. However, these attributes are found in the stub
5091 which we won't have later. In order to not impose this complication
5092 on the rest of the code, we read them here and copy them to the
5093 DWO CU/TU die. */
5094
5095 stmt_list = NULL;
5096 low_pc = NULL;
5097 high_pc = NULL;
5098 ranges = NULL;
5099 comp_dir = NULL;
5100
5101 if (stub_comp_unit_die != NULL)
5102 {
5103 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5104 DWO file. */
5105 if (! this_cu->is_debug_types)
5106 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5107 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5108 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5109 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5110 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5111
5112 /* There should be a DW_AT_addr_base attribute here (if needed).
5113 We need the value before we can process DW_FORM_GNU_addr_index. */
5114 cu->addr_base = 0;
5115 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5116 if (attr)
5117 cu->addr_base = DW_UNSND (attr);
5118
5119 /* There should be a DW_AT_ranges_base attribute here (if needed).
5120 We need the value before we can process DW_AT_ranges. */
5121 cu->ranges_base = 0;
5122 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5123 if (attr)
5124 cu->ranges_base = DW_UNSND (attr);
5125 }
5126 else if (stub_comp_dir != NULL)
5127 {
5128 /* Reconstruct the comp_dir attribute to simplify the code below. */
5129 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5130 comp_dir->name = DW_AT_comp_dir;
5131 comp_dir->form = DW_FORM_string;
5132 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5133 DW_STRING (comp_dir) = stub_comp_dir;
5134 }
5135
5136 /* Set up for reading the DWO CU/TU. */
5137 cu->dwo_unit = dwo_unit;
5138 section = dwo_unit->section;
5139 dwarf2_read_section (objfile, section);
5140 abfd = get_section_bfd_owner (section);
5141 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5142 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5143 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5144
5145 if (this_cu->is_debug_types)
5146 {
5147 ULONGEST header_signature;
5148 cu_offset type_offset_in_tu;
5149 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5150
5151 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5152 dwo_abbrev_section,
5153 info_ptr,
5154 &header_signature,
5155 &type_offset_in_tu);
5156 /* This is not an assert because it can be caused by bad debug info. */
5157 if (sig_type->signature != header_signature)
5158 {
5159 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5160 " TU at offset 0x%x [in module %s]"),
5161 hex_string (sig_type->signature),
5162 hex_string (header_signature),
5163 dwo_unit->offset.sect_off,
5164 bfd_get_filename (abfd));
5165 }
5166 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5167 /* For DWOs coming from DWP files, we don't know the CU length
5168 nor the type's offset in the TU until now. */
5169 dwo_unit->length = get_cu_length (&cu->header);
5170 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5171
5172 /* Establish the type offset that can be used to lookup the type.
5173 For DWO files, we don't know it until now. */
5174 sig_type->type_offset_in_section.sect_off =
5175 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5176 }
5177 else
5178 {
5179 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5180 dwo_abbrev_section,
5181 info_ptr, 0);
5182 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5183 /* For DWOs coming from DWP files, we don't know the CU length
5184 until now. */
5185 dwo_unit->length = get_cu_length (&cu->header);
5186 }
5187
5188 /* Replace the CU's original abbrev table with the DWO's.
5189 Reminder: We can't read the abbrev table until we've read the header. */
5190 if (abbrev_table_provided)
5191 {
5192 /* Don't free the provided abbrev table, the caller of
5193 init_cutu_and_read_dies owns it. */
5194 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5195 /* Ensure the DWO abbrev table gets freed. */
5196 make_cleanup (dwarf2_free_abbrev_table, cu);
5197 }
5198 else
5199 {
5200 dwarf2_free_abbrev_table (cu);
5201 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5202 /* Leave any existing abbrev table cleanup as is. */
5203 }
5204
5205 /* Read in the die, but leave space to copy over the attributes
5206 from the stub. This has the benefit of simplifying the rest of
5207 the code - all the work to maintain the illusion of a single
5208 DW_TAG_{compile,type}_unit DIE is done here. */
5209 num_extra_attrs = ((stmt_list != NULL)
5210 + (low_pc != NULL)
5211 + (high_pc != NULL)
5212 + (ranges != NULL)
5213 + (comp_dir != NULL));
5214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5215 result_has_children, num_extra_attrs);
5216
5217 /* Copy over the attributes from the stub to the DIE we just read in. */
5218 comp_unit_die = *result_comp_unit_die;
5219 i = comp_unit_die->num_attrs;
5220 if (stmt_list != NULL)
5221 comp_unit_die->attrs[i++] = *stmt_list;
5222 if (low_pc != NULL)
5223 comp_unit_die->attrs[i++] = *low_pc;
5224 if (high_pc != NULL)
5225 comp_unit_die->attrs[i++] = *high_pc;
5226 if (ranges != NULL)
5227 comp_unit_die->attrs[i++] = *ranges;
5228 if (comp_dir != NULL)
5229 comp_unit_die->attrs[i++] = *comp_dir;
5230 comp_unit_die->num_attrs += num_extra_attrs;
5231
5232 if (dwarf_die_debug)
5233 {
5234 fprintf_unfiltered (gdb_stdlog,
5235 "Read die from %s@0x%x of %s:\n",
5236 get_section_name (section),
5237 (unsigned) (begin_info_ptr - section->buffer),
5238 bfd_get_filename (abfd));
5239 dump_die (comp_unit_die, dwarf_die_debug);
5240 }
5241
5242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5243 TUs by skipping the stub and going directly to the entry in the DWO file.
5244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5245 to get it via circuitous means. Blech. */
5246 if (comp_dir != NULL)
5247 result_reader->comp_dir = DW_STRING (comp_dir);
5248
5249 /* Skip dummy compilation units. */
5250 if (info_ptr >= begin_info_ptr + dwo_unit->length
5251 || peek_abbrev_code (abfd, info_ptr) == 0)
5252 return 0;
5253
5254 *result_info_ptr = info_ptr;
5255 return 1;
5256 }
5257
5258 /* Subroutine of init_cutu_and_read_dies to simplify it.
5259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5260 Returns NULL if the specified DWO unit cannot be found. */
5261
5262 static struct dwo_unit *
5263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5264 struct die_info *comp_unit_die)
5265 {
5266 struct dwarf2_cu *cu = this_cu->cu;
5267 struct attribute *attr;
5268 ULONGEST signature;
5269 struct dwo_unit *dwo_unit;
5270 const char *comp_dir, *dwo_name;
5271
5272 gdb_assert (cu != NULL);
5273
5274 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5275 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5276 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5277
5278 if (this_cu->is_debug_types)
5279 {
5280 struct signatured_type *sig_type;
5281
5282 /* Since this_cu is the first member of struct signatured_type,
5283 we can go from a pointer to one to a pointer to the other. */
5284 sig_type = (struct signatured_type *) this_cu;
5285 signature = sig_type->signature;
5286 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5287 }
5288 else
5289 {
5290 struct attribute *attr;
5291
5292 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5293 if (! attr)
5294 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5295 " [in module %s]"),
5296 dwo_name, objfile_name (this_cu->objfile));
5297 signature = DW_UNSND (attr);
5298 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5299 signature);
5300 }
5301
5302 return dwo_unit;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 See it for a description of the parameters.
5307 Read a TU directly from a DWO file, bypassing the stub.
5308
5309 Note: This function could be a little bit simpler if we shared cleanups
5310 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5311 to do, so we keep this function self-contained. Or we could move this
5312 into our caller, but it's complex enough already. */
5313
5314 static void
5315 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5316 int use_existing_cu, int keep,
5317 die_reader_func_ftype *die_reader_func,
5318 void *data)
5319 {
5320 struct dwarf2_cu *cu;
5321 struct signatured_type *sig_type;
5322 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5323 struct die_reader_specs reader;
5324 const gdb_byte *info_ptr;
5325 struct die_info *comp_unit_die;
5326 int has_children;
5327
5328 /* Verify we can do the following downcast, and that we have the
5329 data we need. */
5330 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5331 sig_type = (struct signatured_type *) this_cu;
5332 gdb_assert (sig_type->dwo_unit != NULL);
5333
5334 cleanups = make_cleanup (null_cleanup, NULL);
5335
5336 if (use_existing_cu && this_cu->cu != NULL)
5337 {
5338 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5339 cu = this_cu->cu;
5340 /* There's no need to do the rereading_dwo_cu handling that
5341 init_cutu_and_read_dies does since we don't read the stub. */
5342 }
5343 else
5344 {
5345 /* If !use_existing_cu, this_cu->cu must be NULL. */
5346 gdb_assert (this_cu->cu == NULL);
5347 cu = XNEW (struct dwarf2_cu);
5348 init_one_comp_unit (cu, this_cu);
5349 /* If an error occurs while loading, release our storage. */
5350 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5351 }
5352
5353 /* A future optimization, if needed, would be to use an existing
5354 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5355 could share abbrev tables. */
5356
5357 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5358 0 /* abbrev_table_provided */,
5359 NULL /* stub_comp_unit_die */,
5360 sig_type->dwo_unit->dwo_file->comp_dir,
5361 &reader, &info_ptr,
5362 &comp_unit_die, &has_children) == 0)
5363 {
5364 /* Dummy die. */
5365 do_cleanups (cleanups);
5366 return;
5367 }
5368
5369 /* All the "real" work is done here. */
5370 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5371
5372 /* This duplicates the code in init_cutu_and_read_dies,
5373 but the alternative is making the latter more complex.
5374 This function is only for the special case of using DWO files directly:
5375 no point in overly complicating the general case just to handle this. */
5376 if (free_cu_cleanup != NULL)
5377 {
5378 if (keep)
5379 {
5380 /* We've successfully allocated this compilation unit. Let our
5381 caller clean it up when finished with it. */
5382 discard_cleanups (free_cu_cleanup);
5383
5384 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5385 So we have to manually free the abbrev table. */
5386 dwarf2_free_abbrev_table (cu);
5387
5388 /* Link this CU into read_in_chain. */
5389 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5390 dwarf2_per_objfile->read_in_chain = this_cu;
5391 }
5392 else
5393 do_cleanups (free_cu_cleanup);
5394 }
5395
5396 do_cleanups (cleanups);
5397 }
5398
5399 /* Initialize a CU (or TU) and read its DIEs.
5400 If the CU defers to a DWO file, read the DWO file as well.
5401
5402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5403 Otherwise the table specified in the comp unit header is read in and used.
5404 This is an optimization for when we already have the abbrev table.
5405
5406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5407 Otherwise, a new CU is allocated with xmalloc.
5408
5409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5411
5412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5413 linker) then DIE_READER_FUNC will not get called. */
5414
5415 static void
5416 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5417 struct abbrev_table *abbrev_table,
5418 int use_existing_cu, int keep,
5419 die_reader_func_ftype *die_reader_func,
5420 void *data)
5421 {
5422 struct objfile *objfile = dwarf2_per_objfile->objfile;
5423 struct dwarf2_section_info *section = this_cu->section;
5424 bfd *abfd = get_section_bfd_owner (section);
5425 struct dwarf2_cu *cu;
5426 const gdb_byte *begin_info_ptr, *info_ptr;
5427 struct die_reader_specs reader;
5428 struct die_info *comp_unit_die;
5429 int has_children;
5430 struct attribute *attr;
5431 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5432 struct signatured_type *sig_type = NULL;
5433 struct dwarf2_section_info *abbrev_section;
5434 /* Non-zero if CU currently points to a DWO file and we need to
5435 reread it. When this happens we need to reread the skeleton die
5436 before we can reread the DWO file (this only applies to CUs, not TUs). */
5437 int rereading_dwo_cu = 0;
5438
5439 if (dwarf_die_debug)
5440 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5441 this_cu->is_debug_types ? "type" : "comp",
5442 this_cu->offset.sect_off);
5443
5444 if (use_existing_cu)
5445 gdb_assert (keep);
5446
5447 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5448 file (instead of going through the stub), short-circuit all of this. */
5449 if (this_cu->reading_dwo_directly)
5450 {
5451 /* Narrow down the scope of possibilities to have to understand. */
5452 gdb_assert (this_cu->is_debug_types);
5453 gdb_assert (abbrev_table == NULL);
5454 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5455 die_reader_func, data);
5456 return;
5457 }
5458
5459 cleanups = make_cleanup (null_cleanup, NULL);
5460
5461 /* This is cheap if the section is already read in. */
5462 dwarf2_read_section (objfile, section);
5463
5464 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5465
5466 abbrev_section = get_abbrev_section_for_cu (this_cu);
5467
5468 if (use_existing_cu && this_cu->cu != NULL)
5469 {
5470 cu = this_cu->cu;
5471 /* If this CU is from a DWO file we need to start over, we need to
5472 refetch the attributes from the skeleton CU.
5473 This could be optimized by retrieving those attributes from when we
5474 were here the first time: the previous comp_unit_die was stored in
5475 comp_unit_obstack. But there's no data yet that we need this
5476 optimization. */
5477 if (cu->dwo_unit != NULL)
5478 rereading_dwo_cu = 1;
5479 }
5480 else
5481 {
5482 /* If !use_existing_cu, this_cu->cu must be NULL. */
5483 gdb_assert (this_cu->cu == NULL);
5484 cu = XNEW (struct dwarf2_cu);
5485 init_one_comp_unit (cu, this_cu);
5486 /* If an error occurs while loading, release our storage. */
5487 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5488 }
5489
5490 /* Get the header. */
5491 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5492 {
5493 /* We already have the header, there's no need to read it in again. */
5494 info_ptr += cu->header.first_die_offset.cu_off;
5495 }
5496 else
5497 {
5498 if (this_cu->is_debug_types)
5499 {
5500 ULONGEST signature;
5501 cu_offset type_offset_in_tu;
5502
5503 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5504 abbrev_section, info_ptr,
5505 &signature,
5506 &type_offset_in_tu);
5507
5508 /* Since per_cu is the first member of struct signatured_type,
5509 we can go from a pointer to one to a pointer to the other. */
5510 sig_type = (struct signatured_type *) this_cu;
5511 gdb_assert (sig_type->signature == signature);
5512 gdb_assert (sig_type->type_offset_in_tu.cu_off
5513 == type_offset_in_tu.cu_off);
5514 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5515
5516 /* LENGTH has not been set yet for type units if we're
5517 using .gdb_index. */
5518 this_cu->length = get_cu_length (&cu->header);
5519
5520 /* Establish the type offset that can be used to lookup the type. */
5521 sig_type->type_offset_in_section.sect_off =
5522 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5523 }
5524 else
5525 {
5526 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5527 abbrev_section,
5528 info_ptr, 0);
5529
5530 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5531 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5532 }
5533 }
5534
5535 /* Skip dummy compilation units. */
5536 if (info_ptr >= begin_info_ptr + this_cu->length
5537 || peek_abbrev_code (abfd, info_ptr) == 0)
5538 {
5539 do_cleanups (cleanups);
5540 return;
5541 }
5542
5543 /* If we don't have them yet, read the abbrevs for this compilation unit.
5544 And if we need to read them now, make sure they're freed when we're
5545 done. Note that it's important that if the CU had an abbrev table
5546 on entry we don't free it when we're done: Somewhere up the call stack
5547 it may be in use. */
5548 if (abbrev_table != NULL)
5549 {
5550 gdb_assert (cu->abbrev_table == NULL);
5551 gdb_assert (cu->header.abbrev_offset.sect_off
5552 == abbrev_table->offset.sect_off);
5553 cu->abbrev_table = abbrev_table;
5554 }
5555 else if (cu->abbrev_table == NULL)
5556 {
5557 dwarf2_read_abbrevs (cu, abbrev_section);
5558 make_cleanup (dwarf2_free_abbrev_table, cu);
5559 }
5560 else if (rereading_dwo_cu)
5561 {
5562 dwarf2_free_abbrev_table (cu);
5563 dwarf2_read_abbrevs (cu, abbrev_section);
5564 }
5565
5566 /* Read the top level CU/TU die. */
5567 init_cu_die_reader (&reader, cu, section, NULL);
5568 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5569
5570 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5571 from the DWO file.
5572 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5573 DWO CU, that this test will fail (the attribute will not be present). */
5574 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5575 if (attr)
5576 {
5577 struct dwo_unit *dwo_unit;
5578 struct die_info *dwo_comp_unit_die;
5579
5580 if (has_children)
5581 {
5582 complaint (&symfile_complaints,
5583 _("compilation unit with DW_AT_GNU_dwo_name"
5584 " has children (offset 0x%x) [in module %s]"),
5585 this_cu->offset.sect_off, bfd_get_filename (abfd));
5586 }
5587 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5588 if (dwo_unit != NULL)
5589 {
5590 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5591 abbrev_table != NULL,
5592 comp_unit_die, NULL,
5593 &reader, &info_ptr,
5594 &dwo_comp_unit_die, &has_children) == 0)
5595 {
5596 /* Dummy die. */
5597 do_cleanups (cleanups);
5598 return;
5599 }
5600 comp_unit_die = dwo_comp_unit_die;
5601 }
5602 else
5603 {
5604 /* Yikes, we couldn't find the rest of the DIE, we only have
5605 the stub. A complaint has already been logged. There's
5606 not much more we can do except pass on the stub DIE to
5607 die_reader_func. We don't want to throw an error on bad
5608 debug info. */
5609 }
5610 }
5611
5612 /* All of the above is setup for this call. Yikes. */
5613 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5614
5615 /* Done, clean up. */
5616 if (free_cu_cleanup != NULL)
5617 {
5618 if (keep)
5619 {
5620 /* We've successfully allocated this compilation unit. Let our
5621 caller clean it up when finished with it. */
5622 discard_cleanups (free_cu_cleanup);
5623
5624 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5625 So we have to manually free the abbrev table. */
5626 dwarf2_free_abbrev_table (cu);
5627
5628 /* Link this CU into read_in_chain. */
5629 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5630 dwarf2_per_objfile->read_in_chain = this_cu;
5631 }
5632 else
5633 do_cleanups (free_cu_cleanup);
5634 }
5635
5636 do_cleanups (cleanups);
5637 }
5638
5639 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5640 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5641 to have already done the lookup to find the DWO file).
5642
5643 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5644 THIS_CU->is_debug_types, but nothing else.
5645
5646 We fill in THIS_CU->length.
5647
5648 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5649 linker) then DIE_READER_FUNC will not get called.
5650
5651 THIS_CU->cu is always freed when done.
5652 This is done in order to not leave THIS_CU->cu in a state where we have
5653 to care whether it refers to the "main" CU or the DWO CU. */
5654
5655 static void
5656 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5657 struct dwo_file *dwo_file,
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660 {
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
5662 struct dwarf2_section_info *section = this_cu->section;
5663 bfd *abfd = get_section_bfd_owner (section);
5664 struct dwarf2_section_info *abbrev_section;
5665 struct dwarf2_cu cu;
5666 const gdb_byte *begin_info_ptr, *info_ptr;
5667 struct die_reader_specs reader;
5668 struct cleanup *cleanups;
5669 struct die_info *comp_unit_die;
5670 int has_children;
5671
5672 if (dwarf_die_debug)
5673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5674 this_cu->is_debug_types ? "type" : "comp",
5675 this_cu->offset.sect_off);
5676
5677 gdb_assert (this_cu->cu == NULL);
5678
5679 abbrev_section = (dwo_file != NULL
5680 ? &dwo_file->sections.abbrev
5681 : get_abbrev_section_for_cu (this_cu));
5682
5683 /* This is cheap if the section is already read in. */
5684 dwarf2_read_section (objfile, section);
5685
5686 init_one_comp_unit (&cu, this_cu);
5687
5688 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5689
5690 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5691 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5692 abbrev_section, info_ptr,
5693 this_cu->is_debug_types);
5694
5695 this_cu->length = get_cu_length (&cu.header);
5696
5697 /* Skip dummy compilation units. */
5698 if (info_ptr >= begin_info_ptr + this_cu->length
5699 || peek_abbrev_code (abfd, info_ptr) == 0)
5700 {
5701 do_cleanups (cleanups);
5702 return;
5703 }
5704
5705 dwarf2_read_abbrevs (&cu, abbrev_section);
5706 make_cleanup (dwarf2_free_abbrev_table, &cu);
5707
5708 init_cu_die_reader (&reader, &cu, section, dwo_file);
5709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5710
5711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5712
5713 do_cleanups (cleanups);
5714 }
5715
5716 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5717 does not lookup the specified DWO file.
5718 This cannot be used to read DWO files.
5719
5720 THIS_CU->cu is always freed when done.
5721 This is done in order to not leave THIS_CU->cu in a state where we have
5722 to care whether it refers to the "main" CU or the DWO CU.
5723 We can revisit this if the data shows there's a performance issue. */
5724
5725 static void
5726 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5727 die_reader_func_ftype *die_reader_func,
5728 void *data)
5729 {
5730 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5731 }
5732 \f
5733 /* Type Unit Groups.
5734
5735 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5736 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5737 so that all types coming from the same compilation (.o file) are grouped
5738 together. A future step could be to put the types in the same symtab as
5739 the CU the types ultimately came from. */
5740
5741 static hashval_t
5742 hash_type_unit_group (const void *item)
5743 {
5744 const struct type_unit_group *tu_group = item;
5745
5746 return hash_stmt_list_entry (&tu_group->hash);
5747 }
5748
5749 static int
5750 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5751 {
5752 const struct type_unit_group *lhs = item_lhs;
5753 const struct type_unit_group *rhs = item_rhs;
5754
5755 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5756 }
5757
5758 /* Allocate a hash table for type unit groups. */
5759
5760 static htab_t
5761 allocate_type_unit_groups_table (void)
5762 {
5763 return htab_create_alloc_ex (3,
5764 hash_type_unit_group,
5765 eq_type_unit_group,
5766 NULL,
5767 &dwarf2_per_objfile->objfile->objfile_obstack,
5768 hashtab_obstack_allocate,
5769 dummy_obstack_deallocate);
5770 }
5771
5772 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5773 partial symtabs. We combine several TUs per psymtab to not let the size
5774 of any one psymtab grow too big. */
5775 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5776 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5777
5778 /* Helper routine for get_type_unit_group.
5779 Create the type_unit_group object used to hold one or more TUs. */
5780
5781 static struct type_unit_group *
5782 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5783 {
5784 struct objfile *objfile = dwarf2_per_objfile->objfile;
5785 struct dwarf2_per_cu_data *per_cu;
5786 struct type_unit_group *tu_group;
5787
5788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5789 struct type_unit_group);
5790 per_cu = &tu_group->per_cu;
5791 per_cu->objfile = objfile;
5792
5793 if (dwarf2_per_objfile->using_index)
5794 {
5795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5796 struct dwarf2_per_cu_quick_data);
5797 }
5798 else
5799 {
5800 unsigned int line_offset = line_offset_struct.sect_off;
5801 struct partial_symtab *pst;
5802 char *name;
5803
5804 /* Give the symtab a useful name for debug purposes. */
5805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5806 name = xstrprintf ("<type_units_%d>",
5807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5808 else
5809 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5810
5811 pst = create_partial_symtab (per_cu, name);
5812 pst->anonymous = 1;
5813
5814 xfree (name);
5815 }
5816
5817 tu_group->hash.dwo_unit = cu->dwo_unit;
5818 tu_group->hash.line_offset = line_offset_struct;
5819
5820 return tu_group;
5821 }
5822
5823 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5824 STMT_LIST is a DW_AT_stmt_list attribute. */
5825
5826 static struct type_unit_group *
5827 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5828 {
5829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5830 struct type_unit_group *tu_group;
5831 void **slot;
5832 unsigned int line_offset;
5833 struct type_unit_group type_unit_group_for_lookup;
5834
5835 if (dwarf2_per_objfile->type_unit_groups == NULL)
5836 {
5837 dwarf2_per_objfile->type_unit_groups =
5838 allocate_type_unit_groups_table ();
5839 }
5840
5841 /* Do we need to create a new group, or can we use an existing one? */
5842
5843 if (stmt_list)
5844 {
5845 line_offset = DW_UNSND (stmt_list);
5846 ++tu_stats->nr_symtab_sharers;
5847 }
5848 else
5849 {
5850 /* Ugh, no stmt_list. Rare, but we have to handle it.
5851 We can do various things here like create one group per TU or
5852 spread them over multiple groups to split up the expansion work.
5853 To avoid worst case scenarios (too many groups or too large groups)
5854 we, umm, group them in bunches. */
5855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5856 | (tu_stats->nr_stmt_less_type_units
5857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5858 ++tu_stats->nr_stmt_less_type_units;
5859 }
5860
5861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5862 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5864 &type_unit_group_for_lookup, INSERT);
5865 if (*slot != NULL)
5866 {
5867 tu_group = *slot;
5868 gdb_assert (tu_group != NULL);
5869 }
5870 else
5871 {
5872 sect_offset line_offset_struct;
5873
5874 line_offset_struct.sect_off = line_offset;
5875 tu_group = create_type_unit_group (cu, line_offset_struct);
5876 *slot = tu_group;
5877 ++tu_stats->nr_symtabs;
5878 }
5879
5880 return tu_group;
5881 }
5882 \f
5883 /* Partial symbol tables. */
5884
5885 /* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890 static struct partial_symtab *
5891 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892 {
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
5896 pst = start_psymtab_common (objfile, name, 0,
5897 objfile->global_psymbols.next,
5898 objfile->static_psymbols.next);
5899
5900 pst->psymtabs_addrmap_supported = 1;
5901
5902 /* This is the glue that links PST into GDB's symbol API. */
5903 pst->read_symtab_private = per_cu;
5904 pst->read_symtab = dwarf2_read_symtab;
5905 per_cu->v.psymtab = pst;
5906
5907 return pst;
5908 }
5909
5910 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5911 type. */
5912
5913 struct process_psymtab_comp_unit_data
5914 {
5915 /* True if we are reading a DW_TAG_partial_unit. */
5916
5917 int want_partial_unit;
5918
5919 /* The "pretend" language that is used if the CU doesn't declare a
5920 language. */
5921
5922 enum language pretend_language;
5923 };
5924
5925 /* die_reader_func for process_psymtab_comp_unit. */
5926
5927 static void
5928 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5929 const gdb_byte *info_ptr,
5930 struct die_info *comp_unit_die,
5931 int has_children,
5932 void *data)
5933 {
5934 struct dwarf2_cu *cu = reader->cu;
5935 struct objfile *objfile = cu->objfile;
5936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5938 CORE_ADDR baseaddr;
5939 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5940 struct partial_symtab *pst;
5941 int has_pc_info;
5942 const char *filename;
5943 struct process_psymtab_comp_unit_data *info = data;
5944
5945 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5946 return;
5947
5948 gdb_assert (! per_cu->is_debug_types);
5949
5950 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5951
5952 cu->list_in_scope = &file_symbols;
5953
5954 /* Allocate a new partial symbol table structure. */
5955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5956 if (filename == NULL)
5957 filename = "";
5958
5959 pst = create_partial_symtab (per_cu, filename);
5960
5961 /* This must be done before calling dwarf2_build_include_psymtabs. */
5962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6013
6014 end_psymtab_common (objfile, pst);
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
6025 pst->dependencies =
6026 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
6040 if (dwarf_read_debug)
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053 }
6054
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058 static void
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6062 {
6063 struct process_psymtab_comp_unit_data info;
6064
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6078 &info);
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082 }
6083
6084 /* Reader function for build_type_psymtabs. */
6085
6086 static void
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6112
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
6126 end_psymtab_common (objfile, pst);
6127 }
6128
6129 /* Struct used to sort TUs by their abbreviation table offset. */
6130
6131 struct tu_abbrev_offset
6132 {
6133 struct signatured_type *sig_type;
6134 sect_offset abbrev_offset;
6135 };
6136
6137 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6138
6139 static int
6140 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6141 {
6142 const struct tu_abbrev_offset * const *a = ap;
6143 const struct tu_abbrev_offset * const *b = bp;
6144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6145 unsigned int boff = (*b)->abbrev_offset.sect_off;
6146
6147 return (aoff > boff) - (aoff < boff);
6148 }
6149
6150 /* Efficiently read all the type units.
6151 This does the bulk of the work for build_type_psymtabs.
6152
6153 The efficiency is because we sort TUs by the abbrev table they use and
6154 only read each abbrev table once. In one program there are 200K TUs
6155 sharing 8K abbrev tables.
6156
6157 The main purpose of this function is to support building the
6158 dwarf2_per_objfile->type_unit_groups table.
6159 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6160 can collapse the search space by grouping them by stmt_list.
6161 The savings can be significant, in the same program from above the 200K TUs
6162 share 8K stmt_list tables.
6163
6164 FUNC is expected to call get_type_unit_group, which will create the
6165 struct type_unit_group if necessary and add it to
6166 dwarf2_per_objfile->type_unit_groups. */
6167
6168 static void
6169 build_type_psymtabs_1 (void)
6170 {
6171 struct objfile *objfile = dwarf2_per_objfile->objfile;
6172 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6173 struct cleanup *cleanups;
6174 struct abbrev_table *abbrev_table;
6175 sect_offset abbrev_offset;
6176 struct tu_abbrev_offset *sorted_by_abbrev;
6177 struct type_unit_group **iter;
6178 int i;
6179
6180 /* It's up to the caller to not call us multiple times. */
6181 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6182
6183 if (dwarf2_per_objfile->n_type_units == 0)
6184 return;
6185
6186 /* TUs typically share abbrev tables, and there can be way more TUs than
6187 abbrev tables. Sort by abbrev table to reduce the number of times we
6188 read each abbrev table in.
6189 Alternatives are to punt or to maintain a cache of abbrev tables.
6190 This is simpler and efficient enough for now.
6191
6192 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6193 symtab to use). Typically TUs with the same abbrev offset have the same
6194 stmt_list value too so in practice this should work well.
6195
6196 The basic algorithm here is:
6197
6198 sort TUs by abbrev table
6199 for each TU with same abbrev table:
6200 read abbrev table if first user
6201 read TU top level DIE
6202 [IWBN if DWO skeletons had DW_AT_stmt_list]
6203 call FUNC */
6204
6205 if (dwarf_read_debug)
6206 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6207
6208 /* Sort in a separate table to maintain the order of all_type_units
6209 for .gdb_index: TU indices directly index all_type_units. */
6210 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6211 dwarf2_per_objfile->n_type_units);
6212 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6213 {
6214 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6215
6216 sorted_by_abbrev[i].sig_type = sig_type;
6217 sorted_by_abbrev[i].abbrev_offset =
6218 read_abbrev_offset (sig_type->per_cu.section,
6219 sig_type->per_cu.offset);
6220 }
6221 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6222 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6223 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6224
6225 abbrev_offset.sect_off = ~(unsigned) 0;
6226 abbrev_table = NULL;
6227 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6228
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6232
6233 /* Switch to the next abbrev table if necessary. */
6234 if (abbrev_table == NULL
6235 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6236 {
6237 if (abbrev_table != NULL)
6238 {
6239 abbrev_table_free (abbrev_table);
6240 /* Reset to NULL in case abbrev_table_read_table throws
6241 an error: abbrev_table_free_cleanup will get called. */
6242 abbrev_table = NULL;
6243 }
6244 abbrev_offset = tu->abbrev_offset;
6245 abbrev_table =
6246 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6247 abbrev_offset);
6248 ++tu_stats->nr_uniq_abbrev_tables;
6249 }
6250
6251 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6252 build_type_psymtabs_reader, NULL);
6253 }
6254
6255 do_cleanups (cleanups);
6256 }
6257
6258 /* Print collected type unit statistics. */
6259
6260 static void
6261 print_tu_stats (void)
6262 {
6263 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6264
6265 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6266 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6267 dwarf2_per_objfile->n_type_units);
6268 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6269 tu_stats->nr_uniq_abbrev_tables);
6270 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6271 tu_stats->nr_symtabs);
6272 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6273 tu_stats->nr_symtab_sharers);
6274 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6275 tu_stats->nr_stmt_less_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6277 tu_stats->nr_all_type_units_reallocs);
6278 }
6279
6280 /* Traversal function for build_type_psymtabs. */
6281
6282 static int
6283 build_type_psymtab_dependencies (void **slot, void *info)
6284 {
6285 struct objfile *objfile = dwarf2_per_objfile->objfile;
6286 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6287 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6288 struct partial_symtab *pst = per_cu->v.psymtab;
6289 int len = VEC_length (sig_type_ptr, tu_group->tus);
6290 struct signatured_type *iter;
6291 int i;
6292
6293 gdb_assert (len > 0);
6294 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6295
6296 pst->number_of_dependencies = len;
6297 pst->dependencies =
6298 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6299 for (i = 0;
6300 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6301 ++i)
6302 {
6303 gdb_assert (iter->per_cu.is_debug_types);
6304 pst->dependencies[i] = iter->per_cu.v.psymtab;
6305 iter->type_unit_group = tu_group;
6306 }
6307
6308 VEC_free (sig_type_ptr, tu_group->tus);
6309
6310 return 1;
6311 }
6312
6313 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6314 Build partial symbol tables for the .debug_types comp-units. */
6315
6316 static void
6317 build_type_psymtabs (struct objfile *objfile)
6318 {
6319 if (! create_all_type_units (objfile))
6320 return;
6321
6322 build_type_psymtabs_1 ();
6323 }
6324
6325 /* Traversal function for process_skeletonless_type_unit.
6326 Read a TU in a DWO file and build partial symbols for it. */
6327
6328 static int
6329 process_skeletonless_type_unit (void **slot, void *info)
6330 {
6331 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6332 struct objfile *objfile = info;
6333 struct signatured_type find_entry, *entry;
6334
6335 /* If this TU doesn't exist in the global table, add it and read it in. */
6336
6337 if (dwarf2_per_objfile->signatured_types == NULL)
6338 {
6339 dwarf2_per_objfile->signatured_types
6340 = allocate_signatured_type_table (objfile);
6341 }
6342
6343 find_entry.signature = dwo_unit->signature;
6344 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6345 INSERT);
6346 /* If we've already seen this type there's nothing to do. What's happening
6347 is we're doing our own version of comdat-folding here. */
6348 if (*slot != NULL)
6349 return 1;
6350
6351 /* This does the job that create_all_type_units would have done for
6352 this TU. */
6353 entry = add_type_unit (dwo_unit->signature, slot);
6354 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6355 *slot = entry;
6356
6357 /* This does the job that build_type_psymtabs_1 would have done. */
6358 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6359 build_type_psymtabs_reader, NULL);
6360
6361 return 1;
6362 }
6363
6364 /* Traversal function for process_skeletonless_type_units. */
6365
6366 static int
6367 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6368 {
6369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6370
6371 if (dwo_file->tus != NULL)
6372 {
6373 htab_traverse_noresize (dwo_file->tus,
6374 process_skeletonless_type_unit, info);
6375 }
6376
6377 return 1;
6378 }
6379
6380 /* Scan all TUs of DWO files, verifying we've processed them.
6381 This is needed in case a TU was emitted without its skeleton.
6382 Note: This can't be done until we know what all the DWO files are. */
6383
6384 static void
6385 process_skeletonless_type_units (struct objfile *objfile)
6386 {
6387 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6388 if (get_dwp_file () == NULL
6389 && dwarf2_per_objfile->dwo_files != NULL)
6390 {
6391 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6392 process_dwo_file_for_skeletonless_type_units,
6393 objfile);
6394 }
6395 }
6396
6397 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6398
6399 static void
6400 psymtabs_addrmap_cleanup (void *o)
6401 {
6402 struct objfile *objfile = o;
6403
6404 objfile->psymtabs_addrmap = NULL;
6405 }
6406
6407 /* Compute the 'user' field for each psymtab in OBJFILE. */
6408
6409 static void
6410 set_partial_user (struct objfile *objfile)
6411 {
6412 int i;
6413
6414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6415 {
6416 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6417 struct partial_symtab *pst = per_cu->v.psymtab;
6418 int j;
6419
6420 if (pst == NULL)
6421 continue;
6422
6423 for (j = 0; j < pst->number_of_dependencies; ++j)
6424 {
6425 /* Set the 'user' field only if it is not already set. */
6426 if (pst->dependencies[j]->user == NULL)
6427 pst->dependencies[j]->user = pst;
6428 }
6429 }
6430 }
6431
6432 /* Build the partial symbol table by doing a quick pass through the
6433 .debug_info and .debug_abbrev sections. */
6434
6435 static void
6436 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6437 {
6438 struct cleanup *back_to, *addrmap_cleanup;
6439 struct obstack temp_obstack;
6440 int i;
6441
6442 if (dwarf_read_debug)
6443 {
6444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6445 objfile_name (objfile));
6446 }
6447
6448 dwarf2_per_objfile->reading_partial_symbols = 1;
6449
6450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6451
6452 /* Any cached compilation units will be linked by the per-objfile
6453 read_in_chain. Make sure to free them when we're done. */
6454 back_to = make_cleanup (free_cached_comp_units, NULL);
6455
6456 build_type_psymtabs (objfile);
6457
6458 create_all_comp_units (objfile);
6459
6460 /* Create a temporary address map on a temporary obstack. We later
6461 copy this to the final obstack. */
6462 obstack_init (&temp_obstack);
6463 make_cleanup_obstack_free (&temp_obstack);
6464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6466
6467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6468 {
6469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6470
6471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6472 }
6473
6474 /* This has to wait until we read the CUs, we need the list of DWOs. */
6475 process_skeletonless_type_units (objfile);
6476
6477 /* Now that all TUs have been processed we can fill in the dependencies. */
6478 if (dwarf2_per_objfile->type_unit_groups != NULL)
6479 {
6480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6481 build_type_psymtab_dependencies, NULL);
6482 }
6483
6484 if (dwarf_read_debug)
6485 print_tu_stats ();
6486
6487 set_partial_user (objfile);
6488
6489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6490 &objfile->objfile_obstack);
6491 discard_cleanups (addrmap_cleanup);
6492
6493 do_cleanups (back_to);
6494
6495 if (dwarf_read_debug)
6496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6497 objfile_name (objfile));
6498 }
6499
6500 /* die_reader_func for load_partial_comp_unit. */
6501
6502 static void
6503 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6504 const gdb_byte *info_ptr,
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
6508 {
6509 struct dwarf2_cu *cu = reader->cu;
6510
6511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6512
6513 /* Check if comp unit has_children.
6514 If so, read the rest of the partial symbols from this comp unit.
6515 If not, there's no more debug_info for this comp unit. */
6516 if (has_children)
6517 load_partial_dies (reader, info_ptr, 0);
6518 }
6519
6520 /* Load the partial DIEs for a secondary CU into memory.
6521 This is also used when rereading a primary CU with load_all_dies. */
6522
6523 static void
6524 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6525 {
6526 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6527 load_partial_comp_unit_reader, NULL);
6528 }
6529
6530 static void
6531 read_comp_units_from_section (struct objfile *objfile,
6532 struct dwarf2_section_info *section,
6533 unsigned int is_dwz,
6534 int *n_allocated,
6535 int *n_comp_units,
6536 struct dwarf2_per_cu_data ***all_comp_units)
6537 {
6538 const gdb_byte *info_ptr;
6539 bfd *abfd = get_section_bfd_owner (section);
6540
6541 if (dwarf_read_debug)
6542 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6543 get_section_name (section),
6544 get_section_file_name (section));
6545
6546 dwarf2_read_section (objfile, section);
6547
6548 info_ptr = section->buffer;
6549
6550 while (info_ptr < section->buffer + section->size)
6551 {
6552 unsigned int length, initial_length_size;
6553 struct dwarf2_per_cu_data *this_cu;
6554 sect_offset offset;
6555
6556 offset.sect_off = info_ptr - section->buffer;
6557
6558 /* Read just enough information to find out where the next
6559 compilation unit is. */
6560 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6561
6562 /* Save the compilation unit for later lookup. */
6563 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6564 memset (this_cu, 0, sizeof (*this_cu));
6565 this_cu->offset = offset;
6566 this_cu->length = length + initial_length_size;
6567 this_cu->is_dwz = is_dwz;
6568 this_cu->objfile = objfile;
6569 this_cu->section = section;
6570
6571 if (*n_comp_units == *n_allocated)
6572 {
6573 *n_allocated *= 2;
6574 *all_comp_units = xrealloc (*all_comp_units,
6575 *n_allocated
6576 * sizeof (struct dwarf2_per_cu_data *));
6577 }
6578 (*all_comp_units)[*n_comp_units] = this_cu;
6579 ++*n_comp_units;
6580
6581 info_ptr = info_ptr + this_cu->length;
6582 }
6583 }
6584
6585 /* Create a list of all compilation units in OBJFILE.
6586 This is only done for -readnow and building partial symtabs. */
6587
6588 static void
6589 create_all_comp_units (struct objfile *objfile)
6590 {
6591 int n_allocated;
6592 int n_comp_units;
6593 struct dwarf2_per_cu_data **all_comp_units;
6594 struct dwz_file *dwz;
6595
6596 n_comp_units = 0;
6597 n_allocated = 10;
6598 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6599
6600 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6601 &n_allocated, &n_comp_units, &all_comp_units);
6602
6603 dwz = dwarf2_get_dwz_file ();
6604 if (dwz != NULL)
6605 read_comp_units_from_section (objfile, &dwz->info, 1,
6606 &n_allocated, &n_comp_units,
6607 &all_comp_units);
6608
6609 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6610 struct dwarf2_per_cu_data *,
6611 n_comp_units);
6612 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6613 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6614 xfree (all_comp_units);
6615 dwarf2_per_objfile->n_comp_units = n_comp_units;
6616 }
6617
6618 /* Process all loaded DIEs for compilation unit CU, starting at
6619 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6620 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6621 DW_AT_ranges). See the comments of add_partial_subprogram on how
6622 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6623
6624 static void
6625 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6626 CORE_ADDR *highpc, int set_addrmap,
6627 struct dwarf2_cu *cu)
6628 {
6629 struct partial_die_info *pdi;
6630
6631 /* Now, march along the PDI's, descending into ones which have
6632 interesting children but skipping the children of the other ones,
6633 until we reach the end of the compilation unit. */
6634
6635 pdi = first_die;
6636
6637 while (pdi != NULL)
6638 {
6639 fixup_partial_die (pdi, cu);
6640
6641 /* Anonymous namespaces or modules have no name but have interesting
6642 children, so we need to look at them. Ditto for anonymous
6643 enums. */
6644
6645 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6646 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6647 || pdi->tag == DW_TAG_imported_unit)
6648 {
6649 switch (pdi->tag)
6650 {
6651 case DW_TAG_subprogram:
6652 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6653 break;
6654 case DW_TAG_constant:
6655 case DW_TAG_variable:
6656 case DW_TAG_typedef:
6657 case DW_TAG_union_type:
6658 if (!pdi->is_declaration)
6659 {
6660 add_partial_symbol (pdi, cu);
6661 }
6662 break;
6663 case DW_TAG_class_type:
6664 case DW_TAG_interface_type:
6665 case DW_TAG_structure_type:
6666 if (!pdi->is_declaration)
6667 {
6668 add_partial_symbol (pdi, cu);
6669 }
6670 break;
6671 case DW_TAG_enumeration_type:
6672 if (!pdi->is_declaration)
6673 add_partial_enumeration (pdi, cu);
6674 break;
6675 case DW_TAG_base_type:
6676 case DW_TAG_subrange_type:
6677 /* File scope base type definitions are added to the partial
6678 symbol table. */
6679 add_partial_symbol (pdi, cu);
6680 break;
6681 case DW_TAG_namespace:
6682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6683 break;
6684 case DW_TAG_module:
6685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6686 break;
6687 case DW_TAG_imported_unit:
6688 {
6689 struct dwarf2_per_cu_data *per_cu;
6690
6691 /* For now we don't handle imported units in type units. */
6692 if (cu->per_cu->is_debug_types)
6693 {
6694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6695 " supported in type units [in module %s]"),
6696 objfile_name (cu->objfile));
6697 }
6698
6699 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6700 pdi->is_dwz,
6701 cu->objfile);
6702
6703 /* Go read the partial unit, if needed. */
6704 if (per_cu->v.psymtab == NULL)
6705 process_psymtab_comp_unit (per_cu, 1, cu->language);
6706
6707 VEC_safe_push (dwarf2_per_cu_ptr,
6708 cu->per_cu->imported_symtabs, per_cu);
6709 }
6710 break;
6711 case DW_TAG_imported_declaration:
6712 add_partial_symbol (pdi, cu);
6713 break;
6714 default:
6715 break;
6716 }
6717 }
6718
6719 /* If the die has a sibling, skip to the sibling. */
6720
6721 pdi = pdi->die_sibling;
6722 }
6723 }
6724
6725 /* Functions used to compute the fully scoped name of a partial DIE.
6726
6727 Normally, this is simple. For C++, the parent DIE's fully scoped
6728 name is concatenated with "::" and the partial DIE's name. For
6729 Java, the same thing occurs except that "." is used instead of "::".
6730 Enumerators are an exception; they use the scope of their parent
6731 enumeration type, i.e. the name of the enumeration type is not
6732 prepended to the enumerator.
6733
6734 There are two complexities. One is DW_AT_specification; in this
6735 case "parent" means the parent of the target of the specification,
6736 instead of the direct parent of the DIE. The other is compilers
6737 which do not emit DW_TAG_namespace; in this case we try to guess
6738 the fully qualified name of structure types from their members'
6739 linkage names. This must be done using the DIE's children rather
6740 than the children of any DW_AT_specification target. We only need
6741 to do this for structures at the top level, i.e. if the target of
6742 any DW_AT_specification (if any; otherwise the DIE itself) does not
6743 have a parent. */
6744
6745 /* Compute the scope prefix associated with PDI's parent, in
6746 compilation unit CU. The result will be allocated on CU's
6747 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6748 field. NULL is returned if no prefix is necessary. */
6749 static const char *
6750 partial_die_parent_scope (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752 {
6753 const char *grandparent_scope;
6754 struct partial_die_info *parent, *real_pdi;
6755
6756 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6757 then this means the parent of the specification DIE. */
6758
6759 real_pdi = pdi;
6760 while (real_pdi->has_specification)
6761 real_pdi = find_partial_die (real_pdi->spec_offset,
6762 real_pdi->spec_is_dwz, cu);
6763
6764 parent = real_pdi->die_parent;
6765 if (parent == NULL)
6766 return NULL;
6767
6768 if (parent->scope_set)
6769 return parent->scope;
6770
6771 fixup_partial_die (parent, cu);
6772
6773 grandparent_scope = partial_die_parent_scope (parent, cu);
6774
6775 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6776 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6777 Work around this problem here. */
6778 if (cu->language == language_cplus
6779 && parent->tag == DW_TAG_namespace
6780 && strcmp (parent->name, "::") == 0
6781 && grandparent_scope == NULL)
6782 {
6783 parent->scope = NULL;
6784 parent->scope_set = 1;
6785 return NULL;
6786 }
6787
6788 if (pdi->tag == DW_TAG_enumerator)
6789 /* Enumerators should not get the name of the enumeration as a prefix. */
6790 parent->scope = grandparent_scope;
6791 else if (parent->tag == DW_TAG_namespace
6792 || parent->tag == DW_TAG_module
6793 || parent->tag == DW_TAG_structure_type
6794 || parent->tag == DW_TAG_class_type
6795 || parent->tag == DW_TAG_interface_type
6796 || parent->tag == DW_TAG_union_type
6797 || parent->tag == DW_TAG_enumeration_type)
6798 {
6799 if (grandparent_scope == NULL)
6800 parent->scope = parent->name;
6801 else
6802 parent->scope = typename_concat (&cu->comp_unit_obstack,
6803 grandparent_scope,
6804 parent->name, 0, cu);
6805 }
6806 else
6807 {
6808 /* FIXME drow/2004-04-01: What should we be doing with
6809 function-local names? For partial symbols, we should probably be
6810 ignoring them. */
6811 complaint (&symfile_complaints,
6812 _("unhandled containing DIE tag %d for DIE at %d"),
6813 parent->tag, pdi->offset.sect_off);
6814 parent->scope = grandparent_scope;
6815 }
6816
6817 parent->scope_set = 1;
6818 return parent->scope;
6819 }
6820
6821 /* Return the fully scoped name associated with PDI, from compilation unit
6822 CU. The result will be allocated with malloc. */
6823
6824 static char *
6825 partial_die_full_name (struct partial_die_info *pdi,
6826 struct dwarf2_cu *cu)
6827 {
6828 const char *parent_scope;
6829
6830 /* If this is a template instantiation, we can not work out the
6831 template arguments from partial DIEs. So, unfortunately, we have
6832 to go through the full DIEs. At least any work we do building
6833 types here will be reused if full symbols are loaded later. */
6834 if (pdi->has_template_arguments)
6835 {
6836 fixup_partial_die (pdi, cu);
6837
6838 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6839 {
6840 struct die_info *die;
6841 struct attribute attr;
6842 struct dwarf2_cu *ref_cu = cu;
6843
6844 /* DW_FORM_ref_addr is using section offset. */
6845 attr.name = 0;
6846 attr.form = DW_FORM_ref_addr;
6847 attr.u.unsnd = pdi->offset.sect_off;
6848 die = follow_die_ref (NULL, &attr, &ref_cu);
6849
6850 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6851 }
6852 }
6853
6854 parent_scope = partial_die_parent_scope (pdi, cu);
6855 if (parent_scope == NULL)
6856 return NULL;
6857 else
6858 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6859 }
6860
6861 static void
6862 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6863 {
6864 struct objfile *objfile = cu->objfile;
6865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6866 CORE_ADDR addr = 0;
6867 const char *actual_name = NULL;
6868 CORE_ADDR baseaddr;
6869 char *built_actual_name;
6870
6871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6872
6873 built_actual_name = partial_die_full_name (pdi, cu);
6874 if (built_actual_name != NULL)
6875 actual_name = built_actual_name;
6876
6877 if (actual_name == NULL)
6878 actual_name = pdi->name;
6879
6880 switch (pdi->tag)
6881 {
6882 case DW_TAG_subprogram:
6883 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6884 if (pdi->is_external || cu->language == language_ada)
6885 {
6886 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6887 of the global scope. But in Ada, we want to be able to access
6888 nested procedures globally. So all Ada subprograms are stored
6889 in the global scope. */
6890 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6891 objfile); */
6892 add_psymbol_to_list (actual_name, strlen (actual_name),
6893 built_actual_name != NULL,
6894 VAR_DOMAIN, LOC_BLOCK,
6895 &objfile->global_psymbols,
6896 addr, cu->language, objfile);
6897 }
6898 else
6899 {
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6901 objfile); */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->static_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 break;
6909 case DW_TAG_constant:
6910 {
6911 struct psymbol_allocation_list *list;
6912
6913 if (pdi->is_external)
6914 list = &objfile->global_psymbols;
6915 else
6916 list = &objfile->static_psymbols;
6917 add_psymbol_to_list (actual_name, strlen (actual_name),
6918 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6919 list, 0, cu->language, objfile);
6920 }
6921 break;
6922 case DW_TAG_variable:
6923 if (pdi->d.locdesc)
6924 addr = decode_locdesc (pdi->d.locdesc, cu);
6925
6926 if (pdi->d.locdesc
6927 && addr == 0
6928 && !dwarf2_per_objfile->has_section_at_zero)
6929 {
6930 /* A global or static variable may also have been stripped
6931 out by the linker if unused, in which case its address
6932 will be nullified; do not add such variables into partial
6933 symbol table then. */
6934 }
6935 else if (pdi->is_external)
6936 {
6937 /* Global Variable.
6938 Don't enter into the minimal symbol tables as there is
6939 a minimal symbol table entry from the ELF symbols already.
6940 Enter into partial symbol table if it has a location
6941 descriptor or a type.
6942 If the location descriptor is missing, new_symbol will create
6943 a LOC_UNRESOLVED symbol, the address of the variable will then
6944 be determined from the minimal symbol table whenever the variable
6945 is referenced.
6946 The address for the partial symbol table entry is not
6947 used by GDB, but it comes in handy for debugging partial symbol
6948 table building. */
6949
6950 if (pdi->d.locdesc || pdi->has_type)
6951 add_psymbol_to_list (actual_name, strlen (actual_name),
6952 built_actual_name != NULL,
6953 VAR_DOMAIN, LOC_STATIC,
6954 &objfile->global_psymbols,
6955 addr + baseaddr,
6956 cu->language, objfile);
6957 }
6958 else
6959 {
6960 int has_loc = pdi->d.locdesc != NULL;
6961
6962 /* Static Variable. Skip symbols whose value we cannot know (those
6963 without location descriptors or constant values). */
6964 if (!has_loc && !pdi->has_const_value)
6965 {
6966 xfree (built_actual_name);
6967 return;
6968 }
6969
6970 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6971 mst_file_data, objfile); */
6972 add_psymbol_to_list (actual_name, strlen (actual_name),
6973 built_actual_name != NULL,
6974 VAR_DOMAIN, LOC_STATIC,
6975 &objfile->static_psymbols,
6976 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6977 cu->language, objfile);
6978 }
6979 break;
6980 case DW_TAG_typedef:
6981 case DW_TAG_base_type:
6982 case DW_TAG_subrange_type:
6983 add_psymbol_to_list (actual_name, strlen (actual_name),
6984 built_actual_name != NULL,
6985 VAR_DOMAIN, LOC_TYPEDEF,
6986 &objfile->static_psymbols,
6987 0, cu->language, objfile);
6988 break;
6989 case DW_TAG_imported_declaration:
6990 case DW_TAG_namespace:
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 VAR_DOMAIN, LOC_TYPEDEF,
6994 &objfile->global_psymbols,
6995 0, cu->language, objfile);
6996 break;
6997 case DW_TAG_module:
6998 add_psymbol_to_list (actual_name, strlen (actual_name),
6999 built_actual_name != NULL,
7000 MODULE_DOMAIN, LOC_TYPEDEF,
7001 &objfile->global_psymbols,
7002 0, cu->language, objfile);
7003 break;
7004 case DW_TAG_class_type:
7005 case DW_TAG_interface_type:
7006 case DW_TAG_structure_type:
7007 case DW_TAG_union_type:
7008 case DW_TAG_enumeration_type:
7009 /* Skip external references. The DWARF standard says in the section
7010 about "Structure, Union, and Class Type Entries": "An incomplete
7011 structure, union or class type is represented by a structure,
7012 union or class entry that does not have a byte size attribute
7013 and that has a DW_AT_declaration attribute." */
7014 if (!pdi->has_byte_size && pdi->is_declaration)
7015 {
7016 xfree (built_actual_name);
7017 return;
7018 }
7019
7020 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7021 static vs. global. */
7022 add_psymbol_to_list (actual_name, strlen (actual_name),
7023 built_actual_name != NULL,
7024 STRUCT_DOMAIN, LOC_TYPEDEF,
7025 (cu->language == language_cplus
7026 || cu->language == language_java)
7027 ? &objfile->global_psymbols
7028 : &objfile->static_psymbols,
7029 0, cu->language, objfile);
7030
7031 break;
7032 case DW_TAG_enumerator:
7033 add_psymbol_to_list (actual_name, strlen (actual_name),
7034 built_actual_name != NULL,
7035 VAR_DOMAIN, LOC_CONST,
7036 (cu->language == language_cplus
7037 || cu->language == language_java)
7038 ? &objfile->global_psymbols
7039 : &objfile->static_psymbols,
7040 0, cu->language, objfile);
7041 break;
7042 default:
7043 break;
7044 }
7045
7046 xfree (built_actual_name);
7047 }
7048
7049 /* Read a partial die corresponding to a namespace; also, add a symbol
7050 corresponding to that namespace to the symbol table. NAMESPACE is
7051 the name of the enclosing namespace. */
7052
7053 static void
7054 add_partial_namespace (struct partial_die_info *pdi,
7055 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7056 int set_addrmap, struct dwarf2_cu *cu)
7057 {
7058 /* Add a symbol for the namespace. */
7059
7060 add_partial_symbol (pdi, cu);
7061
7062 /* Now scan partial symbols in that namespace. */
7063
7064 if (pdi->has_children)
7065 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7066 }
7067
7068 /* Read a partial die corresponding to a Fortran module. */
7069
7070 static void
7071 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7072 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7073 {
7074 /* Add a symbol for the namespace. */
7075
7076 add_partial_symbol (pdi, cu);
7077
7078 /* Now scan partial symbols in that module. */
7079
7080 if (pdi->has_children)
7081 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7082 }
7083
7084 /* Read a partial die corresponding to a subprogram and create a partial
7085 symbol for that subprogram. When the CU language allows it, this
7086 routine also defines a partial symbol for each nested subprogram
7087 that this subprogram contains. If SET_ADDRMAP is true, record the
7088 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7089 and highest PC values found in PDI.
7090
7091 PDI may also be a lexical block, in which case we simply search
7092 recursively for subprograms defined inside that lexical block.
7093 Again, this is only performed when the CU language allows this
7094 type of definitions. */
7095
7096 static void
7097 add_partial_subprogram (struct partial_die_info *pdi,
7098 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7099 int set_addrmap, struct dwarf2_cu *cu)
7100 {
7101 if (pdi->tag == DW_TAG_subprogram)
7102 {
7103 if (pdi->has_pc_info)
7104 {
7105 if (pdi->lowpc < *lowpc)
7106 *lowpc = pdi->lowpc;
7107 if (pdi->highpc > *highpc)
7108 *highpc = pdi->highpc;
7109 if (set_addrmap)
7110 {
7111 struct objfile *objfile = cu->objfile;
7112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7113 CORE_ADDR baseaddr;
7114 CORE_ADDR highpc;
7115 CORE_ADDR lowpc;
7116
7117 baseaddr = ANOFFSET (objfile->section_offsets,
7118 SECT_OFF_TEXT (objfile));
7119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7120 pdi->lowpc + baseaddr);
7121 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7122 pdi->highpc + baseaddr);
7123 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7124 cu->per_cu->v.psymtab);
7125 }
7126 }
7127
7128 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7129 {
7130 if (!pdi->is_declaration)
7131 /* Ignore subprogram DIEs that do not have a name, they are
7132 illegal. Do not emit a complaint at this point, we will
7133 do so when we convert this psymtab into a symtab. */
7134 if (pdi->name)
7135 add_partial_symbol (pdi, cu);
7136 }
7137 }
7138
7139 if (! pdi->has_children)
7140 return;
7141
7142 if (cu->language == language_ada)
7143 {
7144 pdi = pdi->die_child;
7145 while (pdi != NULL)
7146 {
7147 fixup_partial_die (pdi, cu);
7148 if (pdi->tag == DW_TAG_subprogram
7149 || pdi->tag == DW_TAG_lexical_block)
7150 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7151 pdi = pdi->die_sibling;
7152 }
7153 }
7154 }
7155
7156 /* Read a partial die corresponding to an enumeration type. */
7157
7158 static void
7159 add_partial_enumeration (struct partial_die_info *enum_pdi,
7160 struct dwarf2_cu *cu)
7161 {
7162 struct partial_die_info *pdi;
7163
7164 if (enum_pdi->name != NULL)
7165 add_partial_symbol (enum_pdi, cu);
7166
7167 pdi = enum_pdi->die_child;
7168 while (pdi)
7169 {
7170 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7171 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7172 else
7173 add_partial_symbol (pdi, cu);
7174 pdi = pdi->die_sibling;
7175 }
7176 }
7177
7178 /* Return the initial uleb128 in the die at INFO_PTR. */
7179
7180 static unsigned int
7181 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7182 {
7183 unsigned int bytes_read;
7184
7185 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7186 }
7187
7188 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7189 Return the corresponding abbrev, or NULL if the number is zero (indicating
7190 an empty DIE). In either case *BYTES_READ will be set to the length of
7191 the initial number. */
7192
7193 static struct abbrev_info *
7194 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7195 struct dwarf2_cu *cu)
7196 {
7197 bfd *abfd = cu->objfile->obfd;
7198 unsigned int abbrev_number;
7199 struct abbrev_info *abbrev;
7200
7201 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7202
7203 if (abbrev_number == 0)
7204 return NULL;
7205
7206 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7207 if (!abbrev)
7208 {
7209 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7210 " at offset 0x%x [in module %s]"),
7211 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7212 cu->header.offset.sect_off, bfd_get_filename (abfd));
7213 }
7214
7215 return abbrev;
7216 }
7217
7218 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7219 Returns a pointer to the end of a series of DIEs, terminated by an empty
7220 DIE. Any children of the skipped DIEs will also be skipped. */
7221
7222 static const gdb_byte *
7223 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7224 {
7225 struct dwarf2_cu *cu = reader->cu;
7226 struct abbrev_info *abbrev;
7227 unsigned int bytes_read;
7228
7229 while (1)
7230 {
7231 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7232 if (abbrev == NULL)
7233 return info_ptr + bytes_read;
7234 else
7235 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7236 }
7237 }
7238
7239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7241 abbrev corresponding to that skipped uleb128 should be passed in
7242 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7243 children. */
7244
7245 static const gdb_byte *
7246 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7247 struct abbrev_info *abbrev)
7248 {
7249 unsigned int bytes_read;
7250 struct attribute attr;
7251 bfd *abfd = reader->abfd;
7252 struct dwarf2_cu *cu = reader->cu;
7253 const gdb_byte *buffer = reader->buffer;
7254 const gdb_byte *buffer_end = reader->buffer_end;
7255 const gdb_byte *start_info_ptr = info_ptr;
7256 unsigned int form, i;
7257
7258 for (i = 0; i < abbrev->num_attrs; i++)
7259 {
7260 /* The only abbrev we care about is DW_AT_sibling. */
7261 if (abbrev->attrs[i].name == DW_AT_sibling)
7262 {
7263 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7264 if (attr.form == DW_FORM_ref_addr)
7265 complaint (&symfile_complaints,
7266 _("ignoring absolute DW_AT_sibling"));
7267 else
7268 {
7269 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7270 const gdb_byte *sibling_ptr = buffer + off;
7271
7272 if (sibling_ptr < info_ptr)
7273 complaint (&symfile_complaints,
7274 _("DW_AT_sibling points backwards"));
7275 else if (sibling_ptr > reader->buffer_end)
7276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7277 else
7278 return sibling_ptr;
7279 }
7280 }
7281
7282 /* If it isn't DW_AT_sibling, skip this attribute. */
7283 form = abbrev->attrs[i].form;
7284 skip_attribute:
7285 switch (form)
7286 {
7287 case DW_FORM_ref_addr:
7288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7289 and later it is offset sized. */
7290 if (cu->header.version == 2)
7291 info_ptr += cu->header.addr_size;
7292 else
7293 info_ptr += cu->header.offset_size;
7294 break;
7295 case DW_FORM_GNU_ref_alt:
7296 info_ptr += cu->header.offset_size;
7297 break;
7298 case DW_FORM_addr:
7299 info_ptr += cu->header.addr_size;
7300 break;
7301 case DW_FORM_data1:
7302 case DW_FORM_ref1:
7303 case DW_FORM_flag:
7304 info_ptr += 1;
7305 break;
7306 case DW_FORM_flag_present:
7307 break;
7308 case DW_FORM_data2:
7309 case DW_FORM_ref2:
7310 info_ptr += 2;
7311 break;
7312 case DW_FORM_data4:
7313 case DW_FORM_ref4:
7314 info_ptr += 4;
7315 break;
7316 case DW_FORM_data8:
7317 case DW_FORM_ref8:
7318 case DW_FORM_ref_sig8:
7319 info_ptr += 8;
7320 break;
7321 case DW_FORM_string:
7322 read_direct_string (abfd, info_ptr, &bytes_read);
7323 info_ptr += bytes_read;
7324 break;
7325 case DW_FORM_sec_offset:
7326 case DW_FORM_strp:
7327 case DW_FORM_GNU_strp_alt:
7328 info_ptr += cu->header.offset_size;
7329 break;
7330 case DW_FORM_exprloc:
7331 case DW_FORM_block:
7332 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7333 info_ptr += bytes_read;
7334 break;
7335 case DW_FORM_block1:
7336 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7337 break;
7338 case DW_FORM_block2:
7339 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7340 break;
7341 case DW_FORM_block4:
7342 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7343 break;
7344 case DW_FORM_sdata:
7345 case DW_FORM_udata:
7346 case DW_FORM_ref_udata:
7347 case DW_FORM_GNU_addr_index:
7348 case DW_FORM_GNU_str_index:
7349 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7350 break;
7351 case DW_FORM_indirect:
7352 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 /* We need to continue parsing from here, so just go back to
7355 the top. */
7356 goto skip_attribute;
7357
7358 default:
7359 error (_("Dwarf Error: Cannot handle %s "
7360 "in DWARF reader [in module %s]"),
7361 dwarf_form_name (form),
7362 bfd_get_filename (abfd));
7363 }
7364 }
7365
7366 if (abbrev->has_children)
7367 return skip_children (reader, info_ptr);
7368 else
7369 return info_ptr;
7370 }
7371
7372 /* Locate ORIG_PDI's sibling.
7373 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7374
7375 static const gdb_byte *
7376 locate_pdi_sibling (const struct die_reader_specs *reader,
7377 struct partial_die_info *orig_pdi,
7378 const gdb_byte *info_ptr)
7379 {
7380 /* Do we know the sibling already? */
7381
7382 if (orig_pdi->sibling)
7383 return orig_pdi->sibling;
7384
7385 /* Are there any children to deal with? */
7386
7387 if (!orig_pdi->has_children)
7388 return info_ptr;
7389
7390 /* Skip the children the long way. */
7391
7392 return skip_children (reader, info_ptr);
7393 }
7394
7395 /* Expand this partial symbol table into a full symbol table. SELF is
7396 not NULL. */
7397
7398 static void
7399 dwarf2_read_symtab (struct partial_symtab *self,
7400 struct objfile *objfile)
7401 {
7402 if (self->readin)
7403 {
7404 warning (_("bug: psymtab for %s is already read in."),
7405 self->filename);
7406 }
7407 else
7408 {
7409 if (info_verbose)
7410 {
7411 printf_filtered (_("Reading in symbols for %s..."),
7412 self->filename);
7413 gdb_flush (gdb_stdout);
7414 }
7415
7416 /* Restore our global data. */
7417 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7418
7419 /* If this psymtab is constructed from a debug-only objfile, the
7420 has_section_at_zero flag will not necessarily be correct. We
7421 can get the correct value for this flag by looking at the data
7422 associated with the (presumably stripped) associated objfile. */
7423 if (objfile->separate_debug_objfile_backlink)
7424 {
7425 struct dwarf2_per_objfile *dpo_backlink
7426 = objfile_data (objfile->separate_debug_objfile_backlink,
7427 dwarf2_objfile_data_key);
7428
7429 dwarf2_per_objfile->has_section_at_zero
7430 = dpo_backlink->has_section_at_zero;
7431 }
7432
7433 dwarf2_per_objfile->reading_partial_symbols = 0;
7434
7435 psymtab_to_symtab_1 (self);
7436
7437 /* Finish up the debug error message. */
7438 if (info_verbose)
7439 printf_filtered (_("done.\n"));
7440 }
7441
7442 process_cu_includes ();
7443 }
7444 \f
7445 /* Reading in full CUs. */
7446
7447 /* Add PER_CU to the queue. */
7448
7449 static void
7450 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7451 enum language pretend_language)
7452 {
7453 struct dwarf2_queue_item *item;
7454
7455 per_cu->queued = 1;
7456 item = XNEW (struct dwarf2_queue_item);
7457 item->per_cu = per_cu;
7458 item->pretend_language = pretend_language;
7459 item->next = NULL;
7460
7461 if (dwarf2_queue == NULL)
7462 dwarf2_queue = item;
7463 else
7464 dwarf2_queue_tail->next = item;
7465
7466 dwarf2_queue_tail = item;
7467 }
7468
7469 /* If PER_CU is not yet queued, add it to the queue.
7470 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7471 dependency.
7472 The result is non-zero if PER_CU was queued, otherwise the result is zero
7473 meaning either PER_CU is already queued or it is already loaded.
7474
7475 N.B. There is an invariant here that if a CU is queued then it is loaded.
7476 The caller is required to load PER_CU if we return non-zero. */
7477
7478 static int
7479 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7480 struct dwarf2_per_cu_data *per_cu,
7481 enum language pretend_language)
7482 {
7483 /* We may arrive here during partial symbol reading, if we need full
7484 DIEs to process an unusual case (e.g. template arguments). Do
7485 not queue PER_CU, just tell our caller to load its DIEs. */
7486 if (dwarf2_per_objfile->reading_partial_symbols)
7487 {
7488 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7489 return 1;
7490 return 0;
7491 }
7492
7493 /* Mark the dependence relation so that we don't flush PER_CU
7494 too early. */
7495 if (dependent_cu != NULL)
7496 dwarf2_add_dependence (dependent_cu, per_cu);
7497
7498 /* If it's already on the queue, we have nothing to do. */
7499 if (per_cu->queued)
7500 return 0;
7501
7502 /* If the compilation unit is already loaded, just mark it as
7503 used. */
7504 if (per_cu->cu != NULL)
7505 {
7506 per_cu->cu->last_used = 0;
7507 return 0;
7508 }
7509
7510 /* Add it to the queue. */
7511 queue_comp_unit (per_cu, pretend_language);
7512
7513 return 1;
7514 }
7515
7516 /* Process the queue. */
7517
7518 static void
7519 process_queue (void)
7520 {
7521 struct dwarf2_queue_item *item, *next_item;
7522
7523 if (dwarf_read_debug)
7524 {
7525 fprintf_unfiltered (gdb_stdlog,
7526 "Expanding one or more symtabs of objfile %s ...\n",
7527 objfile_name (dwarf2_per_objfile->objfile));
7528 }
7529
7530 /* The queue starts out with one item, but following a DIE reference
7531 may load a new CU, adding it to the end of the queue. */
7532 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7533 {
7534 if ((dwarf2_per_objfile->using_index
7535 ? !item->per_cu->v.quick->compunit_symtab
7536 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7537 /* Skip dummy CUs. */
7538 && item->per_cu->cu != NULL)
7539 {
7540 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7541 unsigned int debug_print_threshold;
7542 char buf[100];
7543
7544 if (per_cu->is_debug_types)
7545 {
7546 struct signatured_type *sig_type =
7547 (struct signatured_type *) per_cu;
7548
7549 sprintf (buf, "TU %s at offset 0x%x",
7550 hex_string (sig_type->signature),
7551 per_cu->offset.sect_off);
7552 /* There can be 100s of TUs.
7553 Only print them in verbose mode. */
7554 debug_print_threshold = 2;
7555 }
7556 else
7557 {
7558 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7559 debug_print_threshold = 1;
7560 }
7561
7562 if (dwarf_read_debug >= debug_print_threshold)
7563 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7564
7565 if (per_cu->is_debug_types)
7566 process_full_type_unit (per_cu, item->pretend_language);
7567 else
7568 process_full_comp_unit (per_cu, item->pretend_language);
7569
7570 if (dwarf_read_debug >= debug_print_threshold)
7571 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7572 }
7573
7574 item->per_cu->queued = 0;
7575 next_item = item->next;
7576 xfree (item);
7577 }
7578
7579 dwarf2_queue_tail = NULL;
7580
7581 if (dwarf_read_debug)
7582 {
7583 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7584 objfile_name (dwarf2_per_objfile->objfile));
7585 }
7586 }
7587
7588 /* Free all allocated queue entries. This function only releases anything if
7589 an error was thrown; if the queue was processed then it would have been
7590 freed as we went along. */
7591
7592 static void
7593 dwarf2_release_queue (void *dummy)
7594 {
7595 struct dwarf2_queue_item *item, *last;
7596
7597 item = dwarf2_queue;
7598 while (item)
7599 {
7600 /* Anything still marked queued is likely to be in an
7601 inconsistent state, so discard it. */
7602 if (item->per_cu->queued)
7603 {
7604 if (item->per_cu->cu != NULL)
7605 free_one_cached_comp_unit (item->per_cu);
7606 item->per_cu->queued = 0;
7607 }
7608
7609 last = item;
7610 item = item->next;
7611 xfree (last);
7612 }
7613
7614 dwarf2_queue = dwarf2_queue_tail = NULL;
7615 }
7616
7617 /* Read in full symbols for PST, and anything it depends on. */
7618
7619 static void
7620 psymtab_to_symtab_1 (struct partial_symtab *pst)
7621 {
7622 struct dwarf2_per_cu_data *per_cu;
7623 int i;
7624
7625 if (pst->readin)
7626 return;
7627
7628 for (i = 0; i < pst->number_of_dependencies; i++)
7629 if (!pst->dependencies[i]->readin
7630 && pst->dependencies[i]->user == NULL)
7631 {
7632 /* Inform about additional files that need to be read in. */
7633 if (info_verbose)
7634 {
7635 /* FIXME: i18n: Need to make this a single string. */
7636 fputs_filtered (" ", gdb_stdout);
7637 wrap_here ("");
7638 fputs_filtered ("and ", gdb_stdout);
7639 wrap_here ("");
7640 printf_filtered ("%s...", pst->dependencies[i]->filename);
7641 wrap_here (""); /* Flush output. */
7642 gdb_flush (gdb_stdout);
7643 }
7644 psymtab_to_symtab_1 (pst->dependencies[i]);
7645 }
7646
7647 per_cu = pst->read_symtab_private;
7648
7649 if (per_cu == NULL)
7650 {
7651 /* It's an include file, no symbols to read for it.
7652 Everything is in the parent symtab. */
7653 pst->readin = 1;
7654 return;
7655 }
7656
7657 dw2_do_instantiate_symtab (per_cu);
7658 }
7659
7660 /* Trivial hash function for die_info: the hash value of a DIE
7661 is its offset in .debug_info for this objfile. */
7662
7663 static hashval_t
7664 die_hash (const void *item)
7665 {
7666 const struct die_info *die = item;
7667
7668 return die->offset.sect_off;
7669 }
7670
7671 /* Trivial comparison function for die_info structures: two DIEs
7672 are equal if they have the same offset. */
7673
7674 static int
7675 die_eq (const void *item_lhs, const void *item_rhs)
7676 {
7677 const struct die_info *die_lhs = item_lhs;
7678 const struct die_info *die_rhs = item_rhs;
7679
7680 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7681 }
7682
7683 /* die_reader_func for load_full_comp_unit.
7684 This is identical to read_signatured_type_reader,
7685 but is kept separate for now. */
7686
7687 static void
7688 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7689 const gdb_byte *info_ptr,
7690 struct die_info *comp_unit_die,
7691 int has_children,
7692 void *data)
7693 {
7694 struct dwarf2_cu *cu = reader->cu;
7695 enum language *language_ptr = data;
7696
7697 gdb_assert (cu->die_hash == NULL);
7698 cu->die_hash =
7699 htab_create_alloc_ex (cu->header.length / 12,
7700 die_hash,
7701 die_eq,
7702 NULL,
7703 &cu->comp_unit_obstack,
7704 hashtab_obstack_allocate,
7705 dummy_obstack_deallocate);
7706
7707 if (has_children)
7708 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7709 &info_ptr, comp_unit_die);
7710 cu->dies = comp_unit_die;
7711 /* comp_unit_die is not stored in die_hash, no need. */
7712
7713 /* We try not to read any attributes in this function, because not
7714 all CUs needed for references have been loaded yet, and symbol
7715 table processing isn't initialized. But we have to set the CU language,
7716 or we won't be able to build types correctly.
7717 Similarly, if we do not read the producer, we can not apply
7718 producer-specific interpretation. */
7719 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7720 }
7721
7722 /* Load the DIEs associated with PER_CU into memory. */
7723
7724 static void
7725 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7726 enum language pretend_language)
7727 {
7728 gdb_assert (! this_cu->is_debug_types);
7729
7730 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7731 load_full_comp_unit_reader, &pretend_language);
7732 }
7733
7734 /* Add a DIE to the delayed physname list. */
7735
7736 static void
7737 add_to_method_list (struct type *type, int fnfield_index, int index,
7738 const char *name, struct die_info *die,
7739 struct dwarf2_cu *cu)
7740 {
7741 struct delayed_method_info mi;
7742 mi.type = type;
7743 mi.fnfield_index = fnfield_index;
7744 mi.index = index;
7745 mi.name = name;
7746 mi.die = die;
7747 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7748 }
7749
7750 /* A cleanup for freeing the delayed method list. */
7751
7752 static void
7753 free_delayed_list (void *ptr)
7754 {
7755 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7756 if (cu->method_list != NULL)
7757 {
7758 VEC_free (delayed_method_info, cu->method_list);
7759 cu->method_list = NULL;
7760 }
7761 }
7762
7763 /* Compute the physnames of any methods on the CU's method list.
7764
7765 The computation of method physnames is delayed in order to avoid the
7766 (bad) condition that one of the method's formal parameters is of an as yet
7767 incomplete type. */
7768
7769 static void
7770 compute_delayed_physnames (struct dwarf2_cu *cu)
7771 {
7772 int i;
7773 struct delayed_method_info *mi;
7774 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7775 {
7776 const char *physname;
7777 struct fn_fieldlist *fn_flp
7778 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7779 physname = dwarf2_physname (mi->name, mi->die, cu);
7780 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7781 = physname ? physname : "";
7782 }
7783 }
7784
7785 /* Go objects should be embedded in a DW_TAG_module DIE,
7786 and it's not clear if/how imported objects will appear.
7787 To keep Go support simple until that's worked out,
7788 go back through what we've read and create something usable.
7789 We could do this while processing each DIE, and feels kinda cleaner,
7790 but that way is more invasive.
7791 This is to, for example, allow the user to type "p var" or "b main"
7792 without having to specify the package name, and allow lookups
7793 of module.object to work in contexts that use the expression
7794 parser. */
7795
7796 static void
7797 fixup_go_packaging (struct dwarf2_cu *cu)
7798 {
7799 char *package_name = NULL;
7800 struct pending *list;
7801 int i;
7802
7803 for (list = global_symbols; list != NULL; list = list->next)
7804 {
7805 for (i = 0; i < list->nsyms; ++i)
7806 {
7807 struct symbol *sym = list->symbol[i];
7808
7809 if (SYMBOL_LANGUAGE (sym) == language_go
7810 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7811 {
7812 char *this_package_name = go_symbol_package_name (sym);
7813
7814 if (this_package_name == NULL)
7815 continue;
7816 if (package_name == NULL)
7817 package_name = this_package_name;
7818 else
7819 {
7820 if (strcmp (package_name, this_package_name) != 0)
7821 complaint (&symfile_complaints,
7822 _("Symtab %s has objects from two different Go packages: %s and %s"),
7823 (symbol_symtab (sym) != NULL
7824 ? symtab_to_filename_for_display
7825 (symbol_symtab (sym))
7826 : objfile_name (cu->objfile)),
7827 this_package_name, package_name);
7828 xfree (this_package_name);
7829 }
7830 }
7831 }
7832 }
7833
7834 if (package_name != NULL)
7835 {
7836 struct objfile *objfile = cu->objfile;
7837 const char *saved_package_name
7838 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7839 package_name,
7840 strlen (package_name));
7841 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7842 saved_package_name, objfile);
7843 struct symbol *sym;
7844
7845 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7846
7847 sym = allocate_symbol (objfile);
7848 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7849 SYMBOL_SET_NAMES (sym, saved_package_name,
7850 strlen (saved_package_name), 0, objfile);
7851 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7852 e.g., "main" finds the "main" module and not C's main(). */
7853 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7854 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7855 SYMBOL_TYPE (sym) = type;
7856
7857 add_symbol_to_list (sym, &global_symbols);
7858
7859 xfree (package_name);
7860 }
7861 }
7862
7863 /* Return the symtab for PER_CU. This works properly regardless of
7864 whether we're using the index or psymtabs. */
7865
7866 static struct compunit_symtab *
7867 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7868 {
7869 return (dwarf2_per_objfile->using_index
7870 ? per_cu->v.quick->compunit_symtab
7871 : per_cu->v.psymtab->compunit_symtab);
7872 }
7873
7874 /* A helper function for computing the list of all symbol tables
7875 included by PER_CU. */
7876
7877 static void
7878 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7879 htab_t all_children, htab_t all_type_symtabs,
7880 struct dwarf2_per_cu_data *per_cu,
7881 struct compunit_symtab *immediate_parent)
7882 {
7883 void **slot;
7884 int ix;
7885 struct compunit_symtab *cust;
7886 struct dwarf2_per_cu_data *iter;
7887
7888 slot = htab_find_slot (all_children, per_cu, INSERT);
7889 if (*slot != NULL)
7890 {
7891 /* This inclusion and its children have been processed. */
7892 return;
7893 }
7894
7895 *slot = per_cu;
7896 /* Only add a CU if it has a symbol table. */
7897 cust = get_compunit_symtab (per_cu);
7898 if (cust != NULL)
7899 {
7900 /* If this is a type unit only add its symbol table if we haven't
7901 seen it yet (type unit per_cu's can share symtabs). */
7902 if (per_cu->is_debug_types)
7903 {
7904 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7905 if (*slot == NULL)
7906 {
7907 *slot = cust;
7908 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7909 if (cust->user == NULL)
7910 cust->user = immediate_parent;
7911 }
7912 }
7913 else
7914 {
7915 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7916 if (cust->user == NULL)
7917 cust->user = immediate_parent;
7918 }
7919 }
7920
7921 for (ix = 0;
7922 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7923 ++ix)
7924 {
7925 recursively_compute_inclusions (result, all_children,
7926 all_type_symtabs, iter, cust);
7927 }
7928 }
7929
7930 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7931 PER_CU. */
7932
7933 static void
7934 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7935 {
7936 gdb_assert (! per_cu->is_debug_types);
7937
7938 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7939 {
7940 int ix, len;
7941 struct dwarf2_per_cu_data *per_cu_iter;
7942 struct compunit_symtab *compunit_symtab_iter;
7943 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7944 htab_t all_children, all_type_symtabs;
7945 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7946
7947 /* If we don't have a symtab, we can just skip this case. */
7948 if (cust == NULL)
7949 return;
7950
7951 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7952 NULL, xcalloc, xfree);
7953 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7954 NULL, xcalloc, xfree);
7955
7956 for (ix = 0;
7957 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7958 ix, per_cu_iter);
7959 ++ix)
7960 {
7961 recursively_compute_inclusions (&result_symtabs, all_children,
7962 all_type_symtabs, per_cu_iter,
7963 cust);
7964 }
7965
7966 /* Now we have a transitive closure of all the included symtabs. */
7967 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7968 cust->includes
7969 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7970 struct compunit_symtab *, len + 1);
7971 for (ix = 0;
7972 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7973 compunit_symtab_iter);
7974 ++ix)
7975 cust->includes[ix] = compunit_symtab_iter;
7976 cust->includes[len] = NULL;
7977
7978 VEC_free (compunit_symtab_ptr, result_symtabs);
7979 htab_delete (all_children);
7980 htab_delete (all_type_symtabs);
7981 }
7982 }
7983
7984 /* Compute the 'includes' field for the symtabs of all the CUs we just
7985 read. */
7986
7987 static void
7988 process_cu_includes (void)
7989 {
7990 int ix;
7991 struct dwarf2_per_cu_data *iter;
7992
7993 for (ix = 0;
7994 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7995 ix, iter);
7996 ++ix)
7997 {
7998 if (! iter->is_debug_types)
7999 compute_compunit_symtab_includes (iter);
8000 }
8001
8002 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8003 }
8004
8005 /* Generate full symbol information for PER_CU, whose DIEs have
8006 already been loaded into memory. */
8007
8008 static void
8009 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8010 enum language pretend_language)
8011 {
8012 struct dwarf2_cu *cu = per_cu->cu;
8013 struct objfile *objfile = per_cu->objfile;
8014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8015 CORE_ADDR lowpc, highpc;
8016 struct compunit_symtab *cust;
8017 struct cleanup *back_to, *delayed_list_cleanup;
8018 CORE_ADDR baseaddr;
8019 struct block *static_block;
8020 CORE_ADDR addr;
8021
8022 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8023
8024 buildsym_init ();
8025 back_to = make_cleanup (really_free_pendings, NULL);
8026 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8027
8028 cu->list_in_scope = &file_symbols;
8029
8030 cu->language = pretend_language;
8031 cu->language_defn = language_def (cu->language);
8032
8033 /* Do line number decoding in read_file_scope () */
8034 process_die (cu->dies, cu);
8035
8036 /* For now fudge the Go package. */
8037 if (cu->language == language_go)
8038 fixup_go_packaging (cu);
8039
8040 /* Now that we have processed all the DIEs in the CU, all the types
8041 should be complete, and it should now be safe to compute all of the
8042 physnames. */
8043 compute_delayed_physnames (cu);
8044 do_cleanups (delayed_list_cleanup);
8045
8046 /* Some compilers don't define a DW_AT_high_pc attribute for the
8047 compilation unit. If the DW_AT_high_pc is missing, synthesize
8048 it, by scanning the DIE's below the compilation unit. */
8049 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8050
8051 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8052 static_block = end_symtab_get_static_block (addr, 0, 1);
8053
8054 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8055 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8056 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8057 addrmap to help ensure it has an accurate map of pc values belonging to
8058 this comp unit. */
8059 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8060
8061 cust = end_symtab_from_static_block (static_block,
8062 SECT_OFF_TEXT (objfile), 0);
8063
8064 if (cust != NULL)
8065 {
8066 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8067
8068 /* Set symtab language to language from DW_AT_language. If the
8069 compilation is from a C file generated by language preprocessors, do
8070 not set the language if it was already deduced by start_subfile. */
8071 if (!(cu->language == language_c
8072 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8073 COMPUNIT_FILETABS (cust)->language = cu->language;
8074
8075 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8076 produce DW_AT_location with location lists but it can be possibly
8077 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8078 there were bugs in prologue debug info, fixed later in GCC-4.5
8079 by "unwind info for epilogues" patch (which is not directly related).
8080
8081 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8082 needed, it would be wrong due to missing DW_AT_producer there.
8083
8084 Still one can confuse GDB by using non-standard GCC compilation
8085 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8086 */
8087 if (cu->has_loclist && gcc_4_minor >= 5)
8088 cust->locations_valid = 1;
8089
8090 if (gcc_4_minor >= 5)
8091 cust->epilogue_unwind_valid = 1;
8092
8093 cust->call_site_htab = cu->call_site_htab;
8094 }
8095
8096 if (dwarf2_per_objfile->using_index)
8097 per_cu->v.quick->compunit_symtab = cust;
8098 else
8099 {
8100 struct partial_symtab *pst = per_cu->v.psymtab;
8101 pst->compunit_symtab = cust;
8102 pst->readin = 1;
8103 }
8104
8105 /* Push it for inclusion processing later. */
8106 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8107
8108 do_cleanups (back_to);
8109 }
8110
8111 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8112 already been loaded into memory. */
8113
8114 static void
8115 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8116 enum language pretend_language)
8117 {
8118 struct dwarf2_cu *cu = per_cu->cu;
8119 struct objfile *objfile = per_cu->objfile;
8120 struct compunit_symtab *cust;
8121 struct cleanup *back_to, *delayed_list_cleanup;
8122 struct signatured_type *sig_type;
8123
8124 gdb_assert (per_cu->is_debug_types);
8125 sig_type = (struct signatured_type *) per_cu;
8126
8127 buildsym_init ();
8128 back_to = make_cleanup (really_free_pendings, NULL);
8129 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8130
8131 cu->list_in_scope = &file_symbols;
8132
8133 cu->language = pretend_language;
8134 cu->language_defn = language_def (cu->language);
8135
8136 /* The symbol tables are set up in read_type_unit_scope. */
8137 process_die (cu->dies, cu);
8138
8139 /* For now fudge the Go package. */
8140 if (cu->language == language_go)
8141 fixup_go_packaging (cu);
8142
8143 /* Now that we have processed all the DIEs in the CU, all the types
8144 should be complete, and it should now be safe to compute all of the
8145 physnames. */
8146 compute_delayed_physnames (cu);
8147 do_cleanups (delayed_list_cleanup);
8148
8149 /* TUs share symbol tables.
8150 If this is the first TU to use this symtab, complete the construction
8151 of it with end_expandable_symtab. Otherwise, complete the addition of
8152 this TU's symbols to the existing symtab. */
8153 if (sig_type->type_unit_group->compunit_symtab == NULL)
8154 {
8155 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8156 sig_type->type_unit_group->compunit_symtab = cust;
8157
8158 if (cust != NULL)
8159 {
8160 /* Set symtab language to language from DW_AT_language. If the
8161 compilation is from a C file generated by language preprocessors,
8162 do not set the language if it was already deduced by
8163 start_subfile. */
8164 if (!(cu->language == language_c
8165 && COMPUNIT_FILETABS (cust)->language != language_c))
8166 COMPUNIT_FILETABS (cust)->language = cu->language;
8167 }
8168 }
8169 else
8170 {
8171 augment_type_symtab ();
8172 cust = sig_type->type_unit_group->compunit_symtab;
8173 }
8174
8175 if (dwarf2_per_objfile->using_index)
8176 per_cu->v.quick->compunit_symtab = cust;
8177 else
8178 {
8179 struct partial_symtab *pst = per_cu->v.psymtab;
8180 pst->compunit_symtab = cust;
8181 pst->readin = 1;
8182 }
8183
8184 do_cleanups (back_to);
8185 }
8186
8187 /* Process an imported unit DIE. */
8188
8189 static void
8190 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8191 {
8192 struct attribute *attr;
8193
8194 /* For now we don't handle imported units in type units. */
8195 if (cu->per_cu->is_debug_types)
8196 {
8197 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8198 " supported in type units [in module %s]"),
8199 objfile_name (cu->objfile));
8200 }
8201
8202 attr = dwarf2_attr (die, DW_AT_import, cu);
8203 if (attr != NULL)
8204 {
8205 struct dwarf2_per_cu_data *per_cu;
8206 struct symtab *imported_symtab;
8207 sect_offset offset;
8208 int is_dwz;
8209
8210 offset = dwarf2_get_ref_die_offset (attr);
8211 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8212 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8213
8214 /* If necessary, add it to the queue and load its DIEs. */
8215 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8216 load_full_comp_unit (per_cu, cu->language);
8217
8218 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8219 per_cu);
8220 }
8221 }
8222
8223 /* Reset the in_process bit of a die. */
8224
8225 static void
8226 reset_die_in_process (void *arg)
8227 {
8228 struct die_info *die = arg;
8229
8230 die->in_process = 0;
8231 }
8232
8233 /* Process a die and its children. */
8234
8235 static void
8236 process_die (struct die_info *die, struct dwarf2_cu *cu)
8237 {
8238 struct cleanup *in_process;
8239
8240 /* We should only be processing those not already in process. */
8241 gdb_assert (!die->in_process);
8242
8243 die->in_process = 1;
8244 in_process = make_cleanup (reset_die_in_process,die);
8245
8246 switch (die->tag)
8247 {
8248 case DW_TAG_padding:
8249 break;
8250 case DW_TAG_compile_unit:
8251 case DW_TAG_partial_unit:
8252 read_file_scope (die, cu);
8253 break;
8254 case DW_TAG_type_unit:
8255 read_type_unit_scope (die, cu);
8256 break;
8257 case DW_TAG_subprogram:
8258 case DW_TAG_inlined_subroutine:
8259 read_func_scope (die, cu);
8260 break;
8261 case DW_TAG_lexical_block:
8262 case DW_TAG_try_block:
8263 case DW_TAG_catch_block:
8264 read_lexical_block_scope (die, cu);
8265 break;
8266 case DW_TAG_GNU_call_site:
8267 read_call_site_scope (die, cu);
8268 break;
8269 case DW_TAG_class_type:
8270 case DW_TAG_interface_type:
8271 case DW_TAG_structure_type:
8272 case DW_TAG_union_type:
8273 process_structure_scope (die, cu);
8274 break;
8275 case DW_TAG_enumeration_type:
8276 process_enumeration_scope (die, cu);
8277 break;
8278
8279 /* These dies have a type, but processing them does not create
8280 a symbol or recurse to process the children. Therefore we can
8281 read them on-demand through read_type_die. */
8282 case DW_TAG_subroutine_type:
8283 case DW_TAG_set_type:
8284 case DW_TAG_array_type:
8285 case DW_TAG_pointer_type:
8286 case DW_TAG_ptr_to_member_type:
8287 case DW_TAG_reference_type:
8288 case DW_TAG_string_type:
8289 break;
8290
8291 case DW_TAG_base_type:
8292 case DW_TAG_subrange_type:
8293 case DW_TAG_typedef:
8294 /* Add a typedef symbol for the type definition, if it has a
8295 DW_AT_name. */
8296 new_symbol (die, read_type_die (die, cu), cu);
8297 break;
8298 case DW_TAG_common_block:
8299 read_common_block (die, cu);
8300 break;
8301 case DW_TAG_common_inclusion:
8302 break;
8303 case DW_TAG_namespace:
8304 cu->processing_has_namespace_info = 1;
8305 read_namespace (die, cu);
8306 break;
8307 case DW_TAG_module:
8308 cu->processing_has_namespace_info = 1;
8309 read_module (die, cu);
8310 break;
8311 case DW_TAG_imported_declaration:
8312 cu->processing_has_namespace_info = 1;
8313 if (read_namespace_alias (die, cu))
8314 break;
8315 /* The declaration is not a global namespace alias: fall through. */
8316 case DW_TAG_imported_module:
8317 cu->processing_has_namespace_info = 1;
8318 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8319 || cu->language != language_fortran))
8320 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8321 dwarf_tag_name (die->tag));
8322 read_import_statement (die, cu);
8323 break;
8324
8325 case DW_TAG_imported_unit:
8326 process_imported_unit_die (die, cu);
8327 break;
8328
8329 default:
8330 new_symbol (die, NULL, cu);
8331 break;
8332 }
8333
8334 do_cleanups (in_process);
8335 }
8336 \f
8337 /* DWARF name computation. */
8338
8339 /* A helper function for dwarf2_compute_name which determines whether DIE
8340 needs to have the name of the scope prepended to the name listed in the
8341 die. */
8342
8343 static int
8344 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8345 {
8346 struct attribute *attr;
8347
8348 switch (die->tag)
8349 {
8350 case DW_TAG_namespace:
8351 case DW_TAG_typedef:
8352 case DW_TAG_class_type:
8353 case DW_TAG_interface_type:
8354 case DW_TAG_structure_type:
8355 case DW_TAG_union_type:
8356 case DW_TAG_enumeration_type:
8357 case DW_TAG_enumerator:
8358 case DW_TAG_subprogram:
8359 case DW_TAG_inlined_subroutine:
8360 case DW_TAG_member:
8361 case DW_TAG_imported_declaration:
8362 return 1;
8363
8364 case DW_TAG_variable:
8365 case DW_TAG_constant:
8366 /* We only need to prefix "globally" visible variables. These include
8367 any variable marked with DW_AT_external or any variable that
8368 lives in a namespace. [Variables in anonymous namespaces
8369 require prefixing, but they are not DW_AT_external.] */
8370
8371 if (dwarf2_attr (die, DW_AT_specification, cu))
8372 {
8373 struct dwarf2_cu *spec_cu = cu;
8374
8375 return die_needs_namespace (die_specification (die, &spec_cu),
8376 spec_cu);
8377 }
8378
8379 attr = dwarf2_attr (die, DW_AT_external, cu);
8380 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8381 && die->parent->tag != DW_TAG_module)
8382 return 0;
8383 /* A variable in a lexical block of some kind does not need a
8384 namespace, even though in C++ such variables may be external
8385 and have a mangled name. */
8386 if (die->parent->tag == DW_TAG_lexical_block
8387 || die->parent->tag == DW_TAG_try_block
8388 || die->parent->tag == DW_TAG_catch_block
8389 || die->parent->tag == DW_TAG_subprogram)
8390 return 0;
8391 return 1;
8392
8393 default:
8394 return 0;
8395 }
8396 }
8397
8398 /* Retrieve the last character from a mem_file. */
8399
8400 static void
8401 do_ui_file_peek_last (void *object, const char *buffer, long length)
8402 {
8403 char *last_char_p = (char *) object;
8404
8405 if (length > 0)
8406 *last_char_p = buffer[length - 1];
8407 }
8408
8409 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8410 compute the physname for the object, which include a method's:
8411 - formal parameters (C++/Java),
8412 - receiver type (Go),
8413 - return type (Java).
8414
8415 The term "physname" is a bit confusing.
8416 For C++, for example, it is the demangled name.
8417 For Go, for example, it's the mangled name.
8418
8419 For Ada, return the DIE's linkage name rather than the fully qualified
8420 name. PHYSNAME is ignored..
8421
8422 The result is allocated on the objfile_obstack and canonicalized. */
8423
8424 static const char *
8425 dwarf2_compute_name (const char *name,
8426 struct die_info *die, struct dwarf2_cu *cu,
8427 int physname)
8428 {
8429 struct objfile *objfile = cu->objfile;
8430
8431 if (name == NULL)
8432 name = dwarf2_name (die, cu);
8433
8434 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8435 but otherwise compute it by typename_concat inside GDB.
8436 FIXME: Actually this is not really true, or at least not always true.
8437 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8438 Fortran names because there is no mangling standard. So new_symbol_full
8439 will set the demangled name to the result of dwarf2_full_name, and it is
8440 the demangled name that GDB uses if it exists. */
8441 if (cu->language == language_ada
8442 || (cu->language == language_fortran && physname))
8443 {
8444 /* For Ada unit, we prefer the linkage name over the name, as
8445 the former contains the exported name, which the user expects
8446 to be able to reference. Ideally, we want the user to be able
8447 to reference this entity using either natural or linkage name,
8448 but we haven't started looking at this enhancement yet. */
8449 const char *linkage_name;
8450
8451 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8452 if (linkage_name == NULL)
8453 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8454 if (linkage_name != NULL)
8455 return linkage_name;
8456 }
8457
8458 /* These are the only languages we know how to qualify names in. */
8459 if (name != NULL
8460 && (cu->language == language_cplus || cu->language == language_java
8461 || cu->language == language_fortran || cu->language == language_d))
8462 {
8463 if (die_needs_namespace (die, cu))
8464 {
8465 long length;
8466 const char *prefix;
8467 struct ui_file *buf;
8468 char *intermediate_name;
8469 const char *canonical_name = NULL;
8470
8471 prefix = determine_prefix (die, cu);
8472 buf = mem_fileopen ();
8473 if (*prefix != '\0')
8474 {
8475 char *prefixed_name = typename_concat (NULL, prefix, name,
8476 physname, cu);
8477
8478 fputs_unfiltered (prefixed_name, buf);
8479 xfree (prefixed_name);
8480 }
8481 else
8482 fputs_unfiltered (name, buf);
8483
8484 /* Template parameters may be specified in the DIE's DW_AT_name, or
8485 as children with DW_TAG_template_type_param or
8486 DW_TAG_value_type_param. If the latter, add them to the name
8487 here. If the name already has template parameters, then
8488 skip this step; some versions of GCC emit both, and
8489 it is more efficient to use the pre-computed name.
8490
8491 Something to keep in mind about this process: it is very
8492 unlikely, or in some cases downright impossible, to produce
8493 something that will match the mangled name of a function.
8494 If the definition of the function has the same debug info,
8495 we should be able to match up with it anyway. But fallbacks
8496 using the minimal symbol, for instance to find a method
8497 implemented in a stripped copy of libstdc++, will not work.
8498 If we do not have debug info for the definition, we will have to
8499 match them up some other way.
8500
8501 When we do name matching there is a related problem with function
8502 templates; two instantiated function templates are allowed to
8503 differ only by their return types, which we do not add here. */
8504
8505 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8506 {
8507 struct attribute *attr;
8508 struct die_info *child;
8509 int first = 1;
8510
8511 die->building_fullname = 1;
8512
8513 for (child = die->child; child != NULL; child = child->sibling)
8514 {
8515 struct type *type;
8516 LONGEST value;
8517 const gdb_byte *bytes;
8518 struct dwarf2_locexpr_baton *baton;
8519 struct value *v;
8520
8521 if (child->tag != DW_TAG_template_type_param
8522 && child->tag != DW_TAG_template_value_param)
8523 continue;
8524
8525 if (first)
8526 {
8527 fputs_unfiltered ("<", buf);
8528 first = 0;
8529 }
8530 else
8531 fputs_unfiltered (", ", buf);
8532
8533 attr = dwarf2_attr (child, DW_AT_type, cu);
8534 if (attr == NULL)
8535 {
8536 complaint (&symfile_complaints,
8537 _("template parameter missing DW_AT_type"));
8538 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8539 continue;
8540 }
8541 type = die_type (child, cu);
8542
8543 if (child->tag == DW_TAG_template_type_param)
8544 {
8545 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8546 continue;
8547 }
8548
8549 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8550 if (attr == NULL)
8551 {
8552 complaint (&symfile_complaints,
8553 _("template parameter missing "
8554 "DW_AT_const_value"));
8555 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8556 continue;
8557 }
8558
8559 dwarf2_const_value_attr (attr, type, name,
8560 &cu->comp_unit_obstack, cu,
8561 &value, &bytes, &baton);
8562
8563 if (TYPE_NOSIGN (type))
8564 /* GDB prints characters as NUMBER 'CHAR'. If that's
8565 changed, this can use value_print instead. */
8566 c_printchar (value, type, buf);
8567 else
8568 {
8569 struct value_print_options opts;
8570
8571 if (baton != NULL)
8572 v = dwarf2_evaluate_loc_desc (type, NULL,
8573 baton->data,
8574 baton->size,
8575 baton->per_cu);
8576 else if (bytes != NULL)
8577 {
8578 v = allocate_value (type);
8579 memcpy (value_contents_writeable (v), bytes,
8580 TYPE_LENGTH (type));
8581 }
8582 else
8583 v = value_from_longest (type, value);
8584
8585 /* Specify decimal so that we do not depend on
8586 the radix. */
8587 get_formatted_print_options (&opts, 'd');
8588 opts.raw = 1;
8589 value_print (v, buf, &opts);
8590 release_value (v);
8591 value_free (v);
8592 }
8593 }
8594
8595 die->building_fullname = 0;
8596
8597 if (!first)
8598 {
8599 /* Close the argument list, with a space if necessary
8600 (nested templates). */
8601 char last_char = '\0';
8602 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8603 if (last_char == '>')
8604 fputs_unfiltered (" >", buf);
8605 else
8606 fputs_unfiltered (">", buf);
8607 }
8608 }
8609
8610 /* For Java and C++ methods, append formal parameter type
8611 information, if PHYSNAME. */
8612
8613 if (physname && die->tag == DW_TAG_subprogram
8614 && (cu->language == language_cplus
8615 || cu->language == language_java))
8616 {
8617 struct type *type = read_type_die (die, cu);
8618
8619 c_type_print_args (type, buf, 1, cu->language,
8620 &type_print_raw_options);
8621
8622 if (cu->language == language_java)
8623 {
8624 /* For java, we must append the return type to method
8625 names. */
8626 if (die->tag == DW_TAG_subprogram)
8627 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8628 0, 0, &type_print_raw_options);
8629 }
8630 else if (cu->language == language_cplus)
8631 {
8632 /* Assume that an artificial first parameter is
8633 "this", but do not crash if it is not. RealView
8634 marks unnamed (and thus unused) parameters as
8635 artificial; there is no way to differentiate
8636 the two cases. */
8637 if (TYPE_NFIELDS (type) > 0
8638 && TYPE_FIELD_ARTIFICIAL (type, 0)
8639 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8640 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8641 0))))
8642 fputs_unfiltered (" const", buf);
8643 }
8644 }
8645
8646 intermediate_name = ui_file_xstrdup (buf, &length);
8647 ui_file_delete (buf);
8648
8649 if (cu->language == language_cplus)
8650 canonical_name
8651 = dwarf2_canonicalize_name (intermediate_name, cu,
8652 &objfile->per_bfd->storage_obstack);
8653
8654 /* If we only computed INTERMEDIATE_NAME, or if
8655 INTERMEDIATE_NAME is already canonical, then we need to
8656 copy it to the appropriate obstack. */
8657 if (canonical_name == NULL || canonical_name == intermediate_name)
8658 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8659 intermediate_name,
8660 strlen (intermediate_name));
8661 else
8662 name = canonical_name;
8663
8664 xfree (intermediate_name);
8665 }
8666 }
8667
8668 return name;
8669 }
8670
8671 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8672 If scope qualifiers are appropriate they will be added. The result
8673 will be allocated on the storage_obstack, or NULL if the DIE does
8674 not have a name. NAME may either be from a previous call to
8675 dwarf2_name or NULL.
8676
8677 The output string will be canonicalized (if C++/Java). */
8678
8679 static const char *
8680 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8681 {
8682 return dwarf2_compute_name (name, die, cu, 0);
8683 }
8684
8685 /* Construct a physname for the given DIE in CU. NAME may either be
8686 from a previous call to dwarf2_name or NULL. The result will be
8687 allocated on the objfile_objstack or NULL if the DIE does not have a
8688 name.
8689
8690 The output string will be canonicalized (if C++/Java). */
8691
8692 static const char *
8693 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8694 {
8695 struct objfile *objfile = cu->objfile;
8696 struct attribute *attr;
8697 const char *retval, *mangled = NULL, *canon = NULL;
8698 struct cleanup *back_to;
8699 int need_copy = 1;
8700
8701 /* In this case dwarf2_compute_name is just a shortcut not building anything
8702 on its own. */
8703 if (!die_needs_namespace (die, cu))
8704 return dwarf2_compute_name (name, die, cu, 1);
8705
8706 back_to = make_cleanup (null_cleanup, NULL);
8707
8708 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8709 if (mangled == NULL)
8710 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8711
8712 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8713 has computed. */
8714 if (mangled != NULL)
8715 {
8716 char *demangled;
8717
8718 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8719 type. It is easier for GDB users to search for such functions as
8720 `name(params)' than `long name(params)'. In such case the minimal
8721 symbol names do not match the full symbol names but for template
8722 functions there is never a need to look up their definition from their
8723 declaration so the only disadvantage remains the minimal symbol
8724 variant `long name(params)' does not have the proper inferior type.
8725 */
8726
8727 if (cu->language == language_go)
8728 {
8729 /* This is a lie, but we already lie to the caller new_symbol_full.
8730 new_symbol_full assumes we return the mangled name.
8731 This just undoes that lie until things are cleaned up. */
8732 demangled = NULL;
8733 }
8734 else
8735 {
8736 demangled = gdb_demangle (mangled,
8737 (DMGL_PARAMS | DMGL_ANSI
8738 | (cu->language == language_java
8739 ? DMGL_JAVA | DMGL_RET_POSTFIX
8740 : DMGL_RET_DROP)));
8741 }
8742 if (demangled)
8743 {
8744 make_cleanup (xfree, demangled);
8745 canon = demangled;
8746 }
8747 else
8748 {
8749 canon = mangled;
8750 need_copy = 0;
8751 }
8752 }
8753
8754 if (canon == NULL || check_physname)
8755 {
8756 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8757
8758 if (canon != NULL && strcmp (physname, canon) != 0)
8759 {
8760 /* It may not mean a bug in GDB. The compiler could also
8761 compute DW_AT_linkage_name incorrectly. But in such case
8762 GDB would need to be bug-to-bug compatible. */
8763
8764 complaint (&symfile_complaints,
8765 _("Computed physname <%s> does not match demangled <%s> "
8766 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8767 physname, canon, mangled, die->offset.sect_off,
8768 objfile_name (objfile));
8769
8770 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8771 is available here - over computed PHYSNAME. It is safer
8772 against both buggy GDB and buggy compilers. */
8773
8774 retval = canon;
8775 }
8776 else
8777 {
8778 retval = physname;
8779 need_copy = 0;
8780 }
8781 }
8782 else
8783 retval = canon;
8784
8785 if (need_copy)
8786 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8787 retval, strlen (retval));
8788
8789 do_cleanups (back_to);
8790 return retval;
8791 }
8792
8793 /* Inspect DIE in CU for a namespace alias. If one exists, record
8794 a new symbol for it.
8795
8796 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8797
8798 static int
8799 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8800 {
8801 struct attribute *attr;
8802
8803 /* If the die does not have a name, this is not a namespace
8804 alias. */
8805 attr = dwarf2_attr (die, DW_AT_name, cu);
8806 if (attr != NULL)
8807 {
8808 int num;
8809 struct die_info *d = die;
8810 struct dwarf2_cu *imported_cu = cu;
8811
8812 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8813 keep inspecting DIEs until we hit the underlying import. */
8814 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8815 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8816 {
8817 attr = dwarf2_attr (d, DW_AT_import, cu);
8818 if (attr == NULL)
8819 break;
8820
8821 d = follow_die_ref (d, attr, &imported_cu);
8822 if (d->tag != DW_TAG_imported_declaration)
8823 break;
8824 }
8825
8826 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8827 {
8828 complaint (&symfile_complaints,
8829 _("DIE at 0x%x has too many recursively imported "
8830 "declarations"), d->offset.sect_off);
8831 return 0;
8832 }
8833
8834 if (attr != NULL)
8835 {
8836 struct type *type;
8837 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8838
8839 type = get_die_type_at_offset (offset, cu->per_cu);
8840 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8841 {
8842 /* This declaration is a global namespace alias. Add
8843 a symbol for it whose type is the aliased namespace. */
8844 new_symbol (die, type, cu);
8845 return 1;
8846 }
8847 }
8848 }
8849
8850 return 0;
8851 }
8852
8853 /* Return the using directives repository (global or local?) to use in the
8854 current context for LANGUAGE.
8855
8856 For Ada, imported declarations can materialize renamings, which *may* be
8857 global. However it is impossible (for now?) in DWARF to distinguish
8858 "external" imported declarations and "static" ones. As all imported
8859 declarations seem to be static in all other languages, make them all CU-wide
8860 global only in Ada. */
8861
8862 static struct using_direct **
8863 using_directives (enum language language)
8864 {
8865 if (language == language_ada && context_stack_depth == 0)
8866 return &global_using_directives;
8867 else
8868 return &local_using_directives;
8869 }
8870
8871 /* Read the import statement specified by the given die and record it. */
8872
8873 static void
8874 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8875 {
8876 struct objfile *objfile = cu->objfile;
8877 struct attribute *import_attr;
8878 struct die_info *imported_die, *child_die;
8879 struct dwarf2_cu *imported_cu;
8880 const char *imported_name;
8881 const char *imported_name_prefix;
8882 const char *canonical_name;
8883 const char *import_alias;
8884 const char *imported_declaration = NULL;
8885 const char *import_prefix;
8886 VEC (const_char_ptr) *excludes = NULL;
8887 struct cleanup *cleanups;
8888
8889 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8890 if (import_attr == NULL)
8891 {
8892 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8893 dwarf_tag_name (die->tag));
8894 return;
8895 }
8896
8897 imported_cu = cu;
8898 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8899 imported_name = dwarf2_name (imported_die, imported_cu);
8900 if (imported_name == NULL)
8901 {
8902 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8903
8904 The import in the following code:
8905 namespace A
8906 {
8907 typedef int B;
8908 }
8909
8910 int main ()
8911 {
8912 using A::B;
8913 B b;
8914 return b;
8915 }
8916
8917 ...
8918 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8919 <52> DW_AT_decl_file : 1
8920 <53> DW_AT_decl_line : 6
8921 <54> DW_AT_import : <0x75>
8922 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8923 <59> DW_AT_name : B
8924 <5b> DW_AT_decl_file : 1
8925 <5c> DW_AT_decl_line : 2
8926 <5d> DW_AT_type : <0x6e>
8927 ...
8928 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8929 <76> DW_AT_byte_size : 4
8930 <77> DW_AT_encoding : 5 (signed)
8931
8932 imports the wrong die ( 0x75 instead of 0x58 ).
8933 This case will be ignored until the gcc bug is fixed. */
8934 return;
8935 }
8936
8937 /* Figure out the local name after import. */
8938 import_alias = dwarf2_name (die, cu);
8939
8940 /* Figure out where the statement is being imported to. */
8941 import_prefix = determine_prefix (die, cu);
8942
8943 /* Figure out what the scope of the imported die is and prepend it
8944 to the name of the imported die. */
8945 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8946
8947 if (imported_die->tag != DW_TAG_namespace
8948 && imported_die->tag != DW_TAG_module)
8949 {
8950 imported_declaration = imported_name;
8951 canonical_name = imported_name_prefix;
8952 }
8953 else if (strlen (imported_name_prefix) > 0)
8954 canonical_name = obconcat (&objfile->objfile_obstack,
8955 imported_name_prefix,
8956 (cu->language == language_d ? "." : "::"),
8957 imported_name, (char *) NULL);
8958 else
8959 canonical_name = imported_name;
8960
8961 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8962
8963 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8964 for (child_die = die->child; child_die && child_die->tag;
8965 child_die = sibling_die (child_die))
8966 {
8967 /* DWARF-4: A Fortran use statement with a “rename list” may be
8968 represented by an imported module entry with an import attribute
8969 referring to the module and owned entries corresponding to those
8970 entities that are renamed as part of being imported. */
8971
8972 if (child_die->tag != DW_TAG_imported_declaration)
8973 {
8974 complaint (&symfile_complaints,
8975 _("child DW_TAG_imported_declaration expected "
8976 "- DIE at 0x%x [in module %s]"),
8977 child_die->offset.sect_off, objfile_name (objfile));
8978 continue;
8979 }
8980
8981 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8982 if (import_attr == NULL)
8983 {
8984 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8985 dwarf_tag_name (child_die->tag));
8986 continue;
8987 }
8988
8989 imported_cu = cu;
8990 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8991 &imported_cu);
8992 imported_name = dwarf2_name (imported_die, imported_cu);
8993 if (imported_name == NULL)
8994 {
8995 complaint (&symfile_complaints,
8996 _("child DW_TAG_imported_declaration has unknown "
8997 "imported name - DIE at 0x%x [in module %s]"),
8998 child_die->offset.sect_off, objfile_name (objfile));
8999 continue;
9000 }
9001
9002 VEC_safe_push (const_char_ptr, excludes, imported_name);
9003
9004 process_die (child_die, cu);
9005 }
9006
9007 add_using_directive (using_directives (cu->language),
9008 import_prefix,
9009 canonical_name,
9010 import_alias,
9011 imported_declaration,
9012 excludes,
9013 0,
9014 &objfile->objfile_obstack);
9015
9016 do_cleanups (cleanups);
9017 }
9018
9019 /* Cleanup function for handle_DW_AT_stmt_list. */
9020
9021 static void
9022 free_cu_line_header (void *arg)
9023 {
9024 struct dwarf2_cu *cu = arg;
9025
9026 free_line_header (cu->line_header);
9027 cu->line_header = NULL;
9028 }
9029
9030 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9031 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9032 this, it was first present in GCC release 4.3.0. */
9033
9034 static int
9035 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9036 {
9037 if (!cu->checked_producer)
9038 check_producer (cu);
9039
9040 return cu->producer_is_gcc_lt_4_3;
9041 }
9042
9043 static void
9044 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9045 const char **name, const char **comp_dir)
9046 {
9047 /* Find the filename. Do not use dwarf2_name here, since the filename
9048 is not a source language identifier. */
9049 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9050 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9051
9052 if (*comp_dir == NULL
9053 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9054 && IS_ABSOLUTE_PATH (*name))
9055 {
9056 char *d = ldirname (*name);
9057
9058 *comp_dir = d;
9059 if (d != NULL)
9060 make_cleanup (xfree, d);
9061 }
9062 if (*comp_dir != NULL)
9063 {
9064 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9065 directory, get rid of it. */
9066 char *cp = strchr (*comp_dir, ':');
9067
9068 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9069 *comp_dir = cp + 1;
9070 }
9071
9072 if (*name == NULL)
9073 *name = "<unknown>";
9074 }
9075
9076 /* Handle DW_AT_stmt_list for a compilation unit.
9077 DIE is the DW_TAG_compile_unit die for CU.
9078 COMP_DIR is the compilation directory. LOWPC is passed to
9079 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9080
9081 static void
9082 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9083 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9084 {
9085 struct objfile *objfile = dwarf2_per_objfile->objfile;
9086 struct attribute *attr;
9087 unsigned int line_offset;
9088 struct line_header line_header_local;
9089 hashval_t line_header_local_hash;
9090 unsigned u;
9091 void **slot;
9092 int decode_mapping;
9093
9094 gdb_assert (! cu->per_cu->is_debug_types);
9095
9096 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9097 if (attr == NULL)
9098 return;
9099
9100 line_offset = DW_UNSND (attr);
9101
9102 /* The line header hash table is only created if needed (it exists to
9103 prevent redundant reading of the line table for partial_units).
9104 If we're given a partial_unit, we'll need it. If we're given a
9105 compile_unit, then use the line header hash table if it's already
9106 created, but don't create one just yet. */
9107
9108 if (dwarf2_per_objfile->line_header_hash == NULL
9109 && die->tag == DW_TAG_partial_unit)
9110 {
9111 dwarf2_per_objfile->line_header_hash
9112 = htab_create_alloc_ex (127, line_header_hash_voidp,
9113 line_header_eq_voidp,
9114 free_line_header_voidp,
9115 &objfile->objfile_obstack,
9116 hashtab_obstack_allocate,
9117 dummy_obstack_deallocate);
9118 }
9119
9120 line_header_local.offset.sect_off = line_offset;
9121 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9122 line_header_local_hash = line_header_hash (&line_header_local);
9123 if (dwarf2_per_objfile->line_header_hash != NULL)
9124 {
9125 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9126 &line_header_local,
9127 line_header_local_hash, NO_INSERT);
9128
9129 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9130 is not present in *SLOT (since if there is something in *SLOT then
9131 it will be for a partial_unit). */
9132 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9133 {
9134 gdb_assert (*slot != NULL);
9135 cu->line_header = *slot;
9136 return;
9137 }
9138 }
9139
9140 /* dwarf_decode_line_header does not yet provide sufficient information.
9141 We always have to call also dwarf_decode_lines for it. */
9142 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9143 if (cu->line_header == NULL)
9144 return;
9145
9146 if (dwarf2_per_objfile->line_header_hash == NULL)
9147 slot = NULL;
9148 else
9149 {
9150 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9151 &line_header_local,
9152 line_header_local_hash, INSERT);
9153 gdb_assert (slot != NULL);
9154 }
9155 if (slot != NULL && *slot == NULL)
9156 {
9157 /* This newly decoded line number information unit will be owned
9158 by line_header_hash hash table. */
9159 *slot = cu->line_header;
9160 }
9161 else
9162 {
9163 /* We cannot free any current entry in (*slot) as that struct line_header
9164 may be already used by multiple CUs. Create only temporary decoded
9165 line_header for this CU - it may happen at most once for each line
9166 number information unit. And if we're not using line_header_hash
9167 then this is what we want as well. */
9168 gdb_assert (die->tag != DW_TAG_partial_unit);
9169 make_cleanup (free_cu_line_header, cu);
9170 }
9171 decode_mapping = (die->tag != DW_TAG_partial_unit);
9172 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9173 decode_mapping);
9174 }
9175
9176 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9177
9178 static void
9179 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9180 {
9181 struct objfile *objfile = dwarf2_per_objfile->objfile;
9182 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9183 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9184 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9185 CORE_ADDR highpc = ((CORE_ADDR) 0);
9186 struct attribute *attr;
9187 const char *name = NULL;
9188 const char *comp_dir = NULL;
9189 struct die_info *child_die;
9190 bfd *abfd = objfile->obfd;
9191 CORE_ADDR baseaddr;
9192
9193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9194
9195 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9196
9197 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9198 from finish_block. */
9199 if (lowpc == ((CORE_ADDR) -1))
9200 lowpc = highpc;
9201 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9202
9203 find_file_and_directory (die, cu, &name, &comp_dir);
9204
9205 prepare_one_comp_unit (cu, die, cu->language);
9206
9207 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9208 standardised yet. As a workaround for the language detection we fall
9209 back to the DW_AT_producer string. */
9210 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9211 cu->language = language_opencl;
9212
9213 /* Similar hack for Go. */
9214 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9215 set_cu_language (DW_LANG_Go, cu);
9216
9217 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9218
9219 /* Decode line number information if present. We do this before
9220 processing child DIEs, so that the line header table is available
9221 for DW_AT_decl_file. */
9222 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9223
9224 /* Process all dies in compilation unit. */
9225 if (die->child != NULL)
9226 {
9227 child_die = die->child;
9228 while (child_die && child_die->tag)
9229 {
9230 process_die (child_die, cu);
9231 child_die = sibling_die (child_die);
9232 }
9233 }
9234
9235 /* Decode macro information, if present. Dwarf 2 macro information
9236 refers to information in the line number info statement program
9237 header, so we can only read it if we've read the header
9238 successfully. */
9239 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9240 if (attr && cu->line_header)
9241 {
9242 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9243 complaint (&symfile_complaints,
9244 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9245
9246 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9247 }
9248 else
9249 {
9250 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9251 if (attr && cu->line_header)
9252 {
9253 unsigned int macro_offset = DW_UNSND (attr);
9254
9255 dwarf_decode_macros (cu, macro_offset, 0);
9256 }
9257 }
9258
9259 do_cleanups (back_to);
9260 }
9261
9262 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9263 Create the set of symtabs used by this TU, or if this TU is sharing
9264 symtabs with another TU and the symtabs have already been created
9265 then restore those symtabs in the line header.
9266 We don't need the pc/line-number mapping for type units. */
9267
9268 static void
9269 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9270 {
9271 struct objfile *objfile = dwarf2_per_objfile->objfile;
9272 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9273 struct type_unit_group *tu_group;
9274 int first_time;
9275 struct line_header *lh;
9276 struct attribute *attr;
9277 unsigned int i, line_offset;
9278 struct signatured_type *sig_type;
9279
9280 gdb_assert (per_cu->is_debug_types);
9281 sig_type = (struct signatured_type *) per_cu;
9282
9283 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9284
9285 /* If we're using .gdb_index (includes -readnow) then
9286 per_cu->type_unit_group may not have been set up yet. */
9287 if (sig_type->type_unit_group == NULL)
9288 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9289 tu_group = sig_type->type_unit_group;
9290
9291 /* If we've already processed this stmt_list there's no real need to
9292 do it again, we could fake it and just recreate the part we need
9293 (file name,index -> symtab mapping). If data shows this optimization
9294 is useful we can do it then. */
9295 first_time = tu_group->compunit_symtab == NULL;
9296
9297 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9298 debug info. */
9299 lh = NULL;
9300 if (attr != NULL)
9301 {
9302 line_offset = DW_UNSND (attr);
9303 lh = dwarf_decode_line_header (line_offset, cu);
9304 }
9305 if (lh == NULL)
9306 {
9307 if (first_time)
9308 dwarf2_start_symtab (cu, "", NULL, 0);
9309 else
9310 {
9311 gdb_assert (tu_group->symtabs == NULL);
9312 restart_symtab (tu_group->compunit_symtab, "", 0);
9313 }
9314 return;
9315 }
9316
9317 cu->line_header = lh;
9318 make_cleanup (free_cu_line_header, cu);
9319
9320 if (first_time)
9321 {
9322 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9323
9324 tu_group->num_symtabs = lh->num_file_names;
9325 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9326
9327 for (i = 0; i < lh->num_file_names; ++i)
9328 {
9329 const char *dir = NULL;
9330 struct file_entry *fe = &lh->file_names[i];
9331
9332 if (fe->dir_index && lh->include_dirs != NULL)
9333 dir = lh->include_dirs[fe->dir_index - 1];
9334 dwarf2_start_subfile (fe->name, dir);
9335
9336 if (current_subfile->symtab == NULL)
9337 {
9338 /* NOTE: start_subfile will recognize when it's been passed
9339 a file it has already seen. So we can't assume there's a
9340 simple mapping from lh->file_names to subfiles, plus
9341 lh->file_names may contain dups. */
9342 current_subfile->symtab
9343 = allocate_symtab (cust, current_subfile->name);
9344 }
9345
9346 fe->symtab = current_subfile->symtab;
9347 tu_group->symtabs[i] = fe->symtab;
9348 }
9349 }
9350 else
9351 {
9352 restart_symtab (tu_group->compunit_symtab, "", 0);
9353
9354 for (i = 0; i < lh->num_file_names; ++i)
9355 {
9356 struct file_entry *fe = &lh->file_names[i];
9357
9358 fe->symtab = tu_group->symtabs[i];
9359 }
9360 }
9361
9362 /* The main symtab is allocated last. Type units don't have DW_AT_name
9363 so they don't have a "real" (so to speak) symtab anyway.
9364 There is later code that will assign the main symtab to all symbols
9365 that don't have one. We need to handle the case of a symbol with a
9366 missing symtab (DW_AT_decl_file) anyway. */
9367 }
9368
9369 /* Process DW_TAG_type_unit.
9370 For TUs we want to skip the first top level sibling if it's not the
9371 actual type being defined by this TU. In this case the first top
9372 level sibling is there to provide context only. */
9373
9374 static void
9375 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9376 {
9377 struct die_info *child_die;
9378
9379 prepare_one_comp_unit (cu, die, language_minimal);
9380
9381 /* Initialize (or reinitialize) the machinery for building symtabs.
9382 We do this before processing child DIEs, so that the line header table
9383 is available for DW_AT_decl_file. */
9384 setup_type_unit_groups (die, cu);
9385
9386 if (die->child != NULL)
9387 {
9388 child_die = die->child;
9389 while (child_die && child_die->tag)
9390 {
9391 process_die (child_die, cu);
9392 child_die = sibling_die (child_die);
9393 }
9394 }
9395 }
9396 \f
9397 /* DWO/DWP files.
9398
9399 http://gcc.gnu.org/wiki/DebugFission
9400 http://gcc.gnu.org/wiki/DebugFissionDWP
9401
9402 To simplify handling of both DWO files ("object" files with the DWARF info)
9403 and DWP files (a file with the DWOs packaged up into one file), we treat
9404 DWP files as having a collection of virtual DWO files. */
9405
9406 static hashval_t
9407 hash_dwo_file (const void *item)
9408 {
9409 const struct dwo_file *dwo_file = item;
9410 hashval_t hash;
9411
9412 hash = htab_hash_string (dwo_file->dwo_name);
9413 if (dwo_file->comp_dir != NULL)
9414 hash += htab_hash_string (dwo_file->comp_dir);
9415 return hash;
9416 }
9417
9418 static int
9419 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9420 {
9421 const struct dwo_file *lhs = item_lhs;
9422 const struct dwo_file *rhs = item_rhs;
9423
9424 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9425 return 0;
9426 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9427 return lhs->comp_dir == rhs->comp_dir;
9428 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9429 }
9430
9431 /* Allocate a hash table for DWO files. */
9432
9433 static htab_t
9434 allocate_dwo_file_hash_table (void)
9435 {
9436 struct objfile *objfile = dwarf2_per_objfile->objfile;
9437
9438 return htab_create_alloc_ex (41,
9439 hash_dwo_file,
9440 eq_dwo_file,
9441 NULL,
9442 &objfile->objfile_obstack,
9443 hashtab_obstack_allocate,
9444 dummy_obstack_deallocate);
9445 }
9446
9447 /* Lookup DWO file DWO_NAME. */
9448
9449 static void **
9450 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9451 {
9452 struct dwo_file find_entry;
9453 void **slot;
9454
9455 if (dwarf2_per_objfile->dwo_files == NULL)
9456 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9457
9458 memset (&find_entry, 0, sizeof (find_entry));
9459 find_entry.dwo_name = dwo_name;
9460 find_entry.comp_dir = comp_dir;
9461 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9462
9463 return slot;
9464 }
9465
9466 static hashval_t
9467 hash_dwo_unit (const void *item)
9468 {
9469 const struct dwo_unit *dwo_unit = item;
9470
9471 /* This drops the top 32 bits of the id, but is ok for a hash. */
9472 return dwo_unit->signature;
9473 }
9474
9475 static int
9476 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9477 {
9478 const struct dwo_unit *lhs = item_lhs;
9479 const struct dwo_unit *rhs = item_rhs;
9480
9481 /* The signature is assumed to be unique within the DWO file.
9482 So while object file CU dwo_id's always have the value zero,
9483 that's OK, assuming each object file DWO file has only one CU,
9484 and that's the rule for now. */
9485 return lhs->signature == rhs->signature;
9486 }
9487
9488 /* Allocate a hash table for DWO CUs,TUs.
9489 There is one of these tables for each of CUs,TUs for each DWO file. */
9490
9491 static htab_t
9492 allocate_dwo_unit_table (struct objfile *objfile)
9493 {
9494 /* Start out with a pretty small number.
9495 Generally DWO files contain only one CU and maybe some TUs. */
9496 return htab_create_alloc_ex (3,
9497 hash_dwo_unit,
9498 eq_dwo_unit,
9499 NULL,
9500 &objfile->objfile_obstack,
9501 hashtab_obstack_allocate,
9502 dummy_obstack_deallocate);
9503 }
9504
9505 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9506
9507 struct create_dwo_cu_data
9508 {
9509 struct dwo_file *dwo_file;
9510 struct dwo_unit dwo_unit;
9511 };
9512
9513 /* die_reader_func for create_dwo_cu. */
9514
9515 static void
9516 create_dwo_cu_reader (const struct die_reader_specs *reader,
9517 const gdb_byte *info_ptr,
9518 struct die_info *comp_unit_die,
9519 int has_children,
9520 void *datap)
9521 {
9522 struct dwarf2_cu *cu = reader->cu;
9523 struct objfile *objfile = dwarf2_per_objfile->objfile;
9524 sect_offset offset = cu->per_cu->offset;
9525 struct dwarf2_section_info *section = cu->per_cu->section;
9526 struct create_dwo_cu_data *data = datap;
9527 struct dwo_file *dwo_file = data->dwo_file;
9528 struct dwo_unit *dwo_unit = &data->dwo_unit;
9529 struct attribute *attr;
9530
9531 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9532 if (attr == NULL)
9533 {
9534 complaint (&symfile_complaints,
9535 _("Dwarf Error: debug entry at offset 0x%x is missing"
9536 " its dwo_id [in module %s]"),
9537 offset.sect_off, dwo_file->dwo_name);
9538 return;
9539 }
9540
9541 dwo_unit->dwo_file = dwo_file;
9542 dwo_unit->signature = DW_UNSND (attr);
9543 dwo_unit->section = section;
9544 dwo_unit->offset = offset;
9545 dwo_unit->length = cu->per_cu->length;
9546
9547 if (dwarf_read_debug)
9548 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9549 offset.sect_off, hex_string (dwo_unit->signature));
9550 }
9551
9552 /* Create the dwo_unit for the lone CU in DWO_FILE.
9553 Note: This function processes DWO files only, not DWP files. */
9554
9555 static struct dwo_unit *
9556 create_dwo_cu (struct dwo_file *dwo_file)
9557 {
9558 struct objfile *objfile = dwarf2_per_objfile->objfile;
9559 struct dwarf2_section_info *section = &dwo_file->sections.info;
9560 bfd *abfd;
9561 htab_t cu_htab;
9562 const gdb_byte *info_ptr, *end_ptr;
9563 struct create_dwo_cu_data create_dwo_cu_data;
9564 struct dwo_unit *dwo_unit;
9565
9566 dwarf2_read_section (objfile, section);
9567 info_ptr = section->buffer;
9568
9569 if (info_ptr == NULL)
9570 return NULL;
9571
9572 /* We can't set abfd until now because the section may be empty or
9573 not present, in which case section->asection will be NULL. */
9574 abfd = get_section_bfd_owner (section);
9575
9576 if (dwarf_read_debug)
9577 {
9578 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9579 get_section_name (section),
9580 get_section_file_name (section));
9581 }
9582
9583 create_dwo_cu_data.dwo_file = dwo_file;
9584 dwo_unit = NULL;
9585
9586 end_ptr = info_ptr + section->size;
9587 while (info_ptr < end_ptr)
9588 {
9589 struct dwarf2_per_cu_data per_cu;
9590
9591 memset (&create_dwo_cu_data.dwo_unit, 0,
9592 sizeof (create_dwo_cu_data.dwo_unit));
9593 memset (&per_cu, 0, sizeof (per_cu));
9594 per_cu.objfile = objfile;
9595 per_cu.is_debug_types = 0;
9596 per_cu.offset.sect_off = info_ptr - section->buffer;
9597 per_cu.section = section;
9598
9599 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9600 create_dwo_cu_reader,
9601 &create_dwo_cu_data);
9602
9603 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9604 {
9605 /* If we've already found one, complain. We only support one
9606 because having more than one requires hacking the dwo_name of
9607 each to match, which is highly unlikely to happen. */
9608 if (dwo_unit != NULL)
9609 {
9610 complaint (&symfile_complaints,
9611 _("Multiple CUs in DWO file %s [in module %s]"),
9612 dwo_file->dwo_name, objfile_name (objfile));
9613 break;
9614 }
9615
9616 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9617 *dwo_unit = create_dwo_cu_data.dwo_unit;
9618 }
9619
9620 info_ptr += per_cu.length;
9621 }
9622
9623 return dwo_unit;
9624 }
9625
9626 /* DWP file .debug_{cu,tu}_index section format:
9627 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9628
9629 DWP Version 1:
9630
9631 Both index sections have the same format, and serve to map a 64-bit
9632 signature to a set of section numbers. Each section begins with a header,
9633 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9634 indexes, and a pool of 32-bit section numbers. The index sections will be
9635 aligned at 8-byte boundaries in the file.
9636
9637 The index section header consists of:
9638
9639 V, 32 bit version number
9640 -, 32 bits unused
9641 N, 32 bit number of compilation units or type units in the index
9642 M, 32 bit number of slots in the hash table
9643
9644 Numbers are recorded using the byte order of the application binary.
9645
9646 The hash table begins at offset 16 in the section, and consists of an array
9647 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9648 order of the application binary). Unused slots in the hash table are 0.
9649 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9650
9651 The parallel table begins immediately after the hash table
9652 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9653 array of 32-bit indexes (using the byte order of the application binary),
9654 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9655 table contains a 32-bit index into the pool of section numbers. For unused
9656 hash table slots, the corresponding entry in the parallel table will be 0.
9657
9658 The pool of section numbers begins immediately following the hash table
9659 (at offset 16 + 12 * M from the beginning of the section). The pool of
9660 section numbers consists of an array of 32-bit words (using the byte order
9661 of the application binary). Each item in the array is indexed starting
9662 from 0. The hash table entry provides the index of the first section
9663 number in the set. Additional section numbers in the set follow, and the
9664 set is terminated by a 0 entry (section number 0 is not used in ELF).
9665
9666 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9667 section must be the first entry in the set, and the .debug_abbrev.dwo must
9668 be the second entry. Other members of the set may follow in any order.
9669
9670 ---
9671
9672 DWP Version 2:
9673
9674 DWP Version 2 combines all the .debug_info, etc. sections into one,
9675 and the entries in the index tables are now offsets into these sections.
9676 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9677 section.
9678
9679 Index Section Contents:
9680 Header
9681 Hash Table of Signatures dwp_hash_table.hash_table
9682 Parallel Table of Indices dwp_hash_table.unit_table
9683 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9684 Table of Section Sizes dwp_hash_table.v2.sizes
9685
9686 The index section header consists of:
9687
9688 V, 32 bit version number
9689 L, 32 bit number of columns in the table of section offsets
9690 N, 32 bit number of compilation units or type units in the index
9691 M, 32 bit number of slots in the hash table
9692
9693 Numbers are recorded using the byte order of the application binary.
9694
9695 The hash table has the same format as version 1.
9696 The parallel table of indices has the same format as version 1,
9697 except that the entries are origin-1 indices into the table of sections
9698 offsets and the table of section sizes.
9699
9700 The table of offsets begins immediately following the parallel table
9701 (at offset 16 + 12 * M from the beginning of the section). The table is
9702 a two-dimensional array of 32-bit words (using the byte order of the
9703 application binary), with L columns and N+1 rows, in row-major order.
9704 Each row in the array is indexed starting from 0. The first row provides
9705 a key to the remaining rows: each column in this row provides an identifier
9706 for a debug section, and the offsets in the same column of subsequent rows
9707 refer to that section. The section identifiers are:
9708
9709 DW_SECT_INFO 1 .debug_info.dwo
9710 DW_SECT_TYPES 2 .debug_types.dwo
9711 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9712 DW_SECT_LINE 4 .debug_line.dwo
9713 DW_SECT_LOC 5 .debug_loc.dwo
9714 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9715 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9716 DW_SECT_MACRO 8 .debug_macro.dwo
9717
9718 The offsets provided by the CU and TU index sections are the base offsets
9719 for the contributions made by each CU or TU to the corresponding section
9720 in the package file. Each CU and TU header contains an abbrev_offset
9721 field, used to find the abbreviations table for that CU or TU within the
9722 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9723 be interpreted as relative to the base offset given in the index section.
9724 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9725 should be interpreted as relative to the base offset for .debug_line.dwo,
9726 and offsets into other debug sections obtained from DWARF attributes should
9727 also be interpreted as relative to the corresponding base offset.
9728
9729 The table of sizes begins immediately following the table of offsets.
9730 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9731 with L columns and N rows, in row-major order. Each row in the array is
9732 indexed starting from 1 (row 0 is shared by the two tables).
9733
9734 ---
9735
9736 Hash table lookup is handled the same in version 1 and 2:
9737
9738 We assume that N and M will not exceed 2^32 - 1.
9739 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9740
9741 Given a 64-bit compilation unit signature or a type signature S, an entry
9742 in the hash table is located as follows:
9743
9744 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9745 the low-order k bits all set to 1.
9746
9747 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9748
9749 3) If the hash table entry at index H matches the signature, use that
9750 entry. If the hash table entry at index H is unused (all zeroes),
9751 terminate the search: the signature is not present in the table.
9752
9753 4) Let H = (H + H') modulo M. Repeat at Step 3.
9754
9755 Because M > N and H' and M are relatively prime, the search is guaranteed
9756 to stop at an unused slot or find the match. */
9757
9758 /* Create a hash table to map DWO IDs to their CU/TU entry in
9759 .debug_{info,types}.dwo in DWP_FILE.
9760 Returns NULL if there isn't one.
9761 Note: This function processes DWP files only, not DWO files. */
9762
9763 static struct dwp_hash_table *
9764 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9765 {
9766 struct objfile *objfile = dwarf2_per_objfile->objfile;
9767 bfd *dbfd = dwp_file->dbfd;
9768 const gdb_byte *index_ptr, *index_end;
9769 struct dwarf2_section_info *index;
9770 uint32_t version, nr_columns, nr_units, nr_slots;
9771 struct dwp_hash_table *htab;
9772
9773 if (is_debug_types)
9774 index = &dwp_file->sections.tu_index;
9775 else
9776 index = &dwp_file->sections.cu_index;
9777
9778 if (dwarf2_section_empty_p (index))
9779 return NULL;
9780 dwarf2_read_section (objfile, index);
9781
9782 index_ptr = index->buffer;
9783 index_end = index_ptr + index->size;
9784
9785 version = read_4_bytes (dbfd, index_ptr);
9786 index_ptr += 4;
9787 if (version == 2)
9788 nr_columns = read_4_bytes (dbfd, index_ptr);
9789 else
9790 nr_columns = 0;
9791 index_ptr += 4;
9792 nr_units = read_4_bytes (dbfd, index_ptr);
9793 index_ptr += 4;
9794 nr_slots = read_4_bytes (dbfd, index_ptr);
9795 index_ptr += 4;
9796
9797 if (version != 1 && version != 2)
9798 {
9799 error (_("Dwarf Error: unsupported DWP file version (%s)"
9800 " [in module %s]"),
9801 pulongest (version), dwp_file->name);
9802 }
9803 if (nr_slots != (nr_slots & -nr_slots))
9804 {
9805 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9806 " is not power of 2 [in module %s]"),
9807 pulongest (nr_slots), dwp_file->name);
9808 }
9809
9810 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9811 htab->version = version;
9812 htab->nr_columns = nr_columns;
9813 htab->nr_units = nr_units;
9814 htab->nr_slots = nr_slots;
9815 htab->hash_table = index_ptr;
9816 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9817
9818 /* Exit early if the table is empty. */
9819 if (nr_slots == 0 || nr_units == 0
9820 || (version == 2 && nr_columns == 0))
9821 {
9822 /* All must be zero. */
9823 if (nr_slots != 0 || nr_units != 0
9824 || (version == 2 && nr_columns != 0))
9825 {
9826 complaint (&symfile_complaints,
9827 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9828 " all zero [in modules %s]"),
9829 dwp_file->name);
9830 }
9831 return htab;
9832 }
9833
9834 if (version == 1)
9835 {
9836 htab->section_pool.v1.indices =
9837 htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 /* It's harder to decide whether the section is too small in v1.
9839 V1 is deprecated anyway so we punt. */
9840 }
9841 else
9842 {
9843 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9844 int *ids = htab->section_pool.v2.section_ids;
9845 /* Reverse map for error checking. */
9846 int ids_seen[DW_SECT_MAX + 1];
9847 int i;
9848
9849 if (nr_columns < 2)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too few columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9856 {
9857 error (_("Dwarf Error: bad DWP hash table, too many columns"
9858 " in section table [in module %s]"),
9859 dwp_file->name);
9860 }
9861 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9862 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9863 for (i = 0; i < nr_columns; ++i)
9864 {
9865 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9866
9867 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9870 " in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 if (ids_seen[id] != -1)
9874 {
9875 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9876 " id %d in section table [in module %s]"),
9877 id, dwp_file->name);
9878 }
9879 ids_seen[id] = i;
9880 ids[i] = id;
9881 }
9882 /* Must have exactly one info or types section. */
9883 if (((ids_seen[DW_SECT_INFO] != -1)
9884 + (ids_seen[DW_SECT_TYPES] != -1))
9885 != 1)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9888 " DWO info/types section [in module %s]"),
9889 dwp_file->name);
9890 }
9891 /* Must have an abbrev section. */
9892 if (ids_seen[DW_SECT_ABBREV] == -1)
9893 {
9894 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9895 " section [in module %s]"),
9896 dwp_file->name);
9897 }
9898 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9899 htab->section_pool.v2.sizes =
9900 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9901 * nr_units * nr_columns);
9902 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9903 * nr_units * nr_columns))
9904 > index_end)
9905 {
9906 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9907 " [in module %s]"),
9908 dwp_file->name);
9909 }
9910 }
9911
9912 return htab;
9913 }
9914
9915 /* Update SECTIONS with the data from SECTP.
9916
9917 This function is like the other "locate" section routines that are
9918 passed to bfd_map_over_sections, but in this context the sections to
9919 read comes from the DWP V1 hash table, not the full ELF section table.
9920
9921 The result is non-zero for success, or zero if an error was found. */
9922
9923 static int
9924 locate_v1_virtual_dwo_sections (asection *sectp,
9925 struct virtual_v1_dwo_sections *sections)
9926 {
9927 const struct dwop_section_names *names = &dwop_section_names;
9928
9929 if (section_is_p (sectp->name, &names->abbrev_dwo))
9930 {
9931 /* There can be only one. */
9932 if (sections->abbrev.s.section != NULL)
9933 return 0;
9934 sections->abbrev.s.section = sectp;
9935 sections->abbrev.size = bfd_get_section_size (sectp);
9936 }
9937 else if (section_is_p (sectp->name, &names->info_dwo)
9938 || section_is_p (sectp->name, &names->types_dwo))
9939 {
9940 /* There can be only one. */
9941 if (sections->info_or_types.s.section != NULL)
9942 return 0;
9943 sections->info_or_types.s.section = sectp;
9944 sections->info_or_types.size = bfd_get_section_size (sectp);
9945 }
9946 else if (section_is_p (sectp->name, &names->line_dwo))
9947 {
9948 /* There can be only one. */
9949 if (sections->line.s.section != NULL)
9950 return 0;
9951 sections->line.s.section = sectp;
9952 sections->line.size = bfd_get_section_size (sectp);
9953 }
9954 else if (section_is_p (sectp->name, &names->loc_dwo))
9955 {
9956 /* There can be only one. */
9957 if (sections->loc.s.section != NULL)
9958 return 0;
9959 sections->loc.s.section = sectp;
9960 sections->loc.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9963 {
9964 /* There can be only one. */
9965 if (sections->macinfo.s.section != NULL)
9966 return 0;
9967 sections->macinfo.s.section = sectp;
9968 sections->macinfo.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->macro_dwo))
9971 {
9972 /* There can be only one. */
9973 if (sections->macro.s.section != NULL)
9974 return 0;
9975 sections->macro.s.section = sectp;
9976 sections->macro.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9979 {
9980 /* There can be only one. */
9981 if (sections->str_offsets.s.section != NULL)
9982 return 0;
9983 sections->str_offsets.s.section = sectp;
9984 sections->str_offsets.size = bfd_get_section_size (sectp);
9985 }
9986 else
9987 {
9988 /* No other kind of section is valid. */
9989 return 0;
9990 }
9991
9992 return 1;
9993 }
9994
9995 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9996 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9997 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9998 This is for DWP version 1 files. */
9999
10000 static struct dwo_unit *
10001 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10002 uint32_t unit_index,
10003 const char *comp_dir,
10004 ULONGEST signature, int is_debug_types)
10005 {
10006 struct objfile *objfile = dwarf2_per_objfile->objfile;
10007 const struct dwp_hash_table *dwp_htab =
10008 is_debug_types ? dwp_file->tus : dwp_file->cus;
10009 bfd *dbfd = dwp_file->dbfd;
10010 const char *kind = is_debug_types ? "TU" : "CU";
10011 struct dwo_file *dwo_file;
10012 struct dwo_unit *dwo_unit;
10013 struct virtual_v1_dwo_sections sections;
10014 void **dwo_file_slot;
10015 char *virtual_dwo_name;
10016 struct dwarf2_section_info *cutu;
10017 struct cleanup *cleanups;
10018 int i;
10019
10020 gdb_assert (dwp_file->version == 1);
10021
10022 if (dwarf_read_debug)
10023 {
10024 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10025 kind,
10026 pulongest (unit_index), hex_string (signature),
10027 dwp_file->name);
10028 }
10029
10030 /* Fetch the sections of this DWO unit.
10031 Put a limit on the number of sections we look for so that bad data
10032 doesn't cause us to loop forever. */
10033
10034 #define MAX_NR_V1_DWO_SECTIONS \
10035 (1 /* .debug_info or .debug_types */ \
10036 + 1 /* .debug_abbrev */ \
10037 + 1 /* .debug_line */ \
10038 + 1 /* .debug_loc */ \
10039 + 1 /* .debug_str_offsets */ \
10040 + 1 /* .debug_macro or .debug_macinfo */ \
10041 + 1 /* trailing zero */)
10042
10043 memset (&sections, 0, sizeof (sections));
10044 cleanups = make_cleanup (null_cleanup, 0);
10045
10046 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10047 {
10048 asection *sectp;
10049 uint32_t section_nr =
10050 read_4_bytes (dbfd,
10051 dwp_htab->section_pool.v1.indices
10052 + (unit_index + i) * sizeof (uint32_t));
10053
10054 if (section_nr == 0)
10055 break;
10056 if (section_nr >= dwp_file->num_sections)
10057 {
10058 error (_("Dwarf Error: bad DWP hash table, section number too large"
10059 " [in module %s]"),
10060 dwp_file->name);
10061 }
10062
10063 sectp = dwp_file->elf_sections[section_nr];
10064 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10065 {
10066 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10067 " [in module %s]"),
10068 dwp_file->name);
10069 }
10070 }
10071
10072 if (i < 2
10073 || dwarf2_section_empty_p (&sections.info_or_types)
10074 || dwarf2_section_empty_p (&sections.abbrev))
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080 if (i == MAX_NR_V1_DWO_SECTIONS)
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086
10087 /* It's easier for the rest of the code if we fake a struct dwo_file and
10088 have dwo_unit "live" in that. At least for now.
10089
10090 The DWP file can be made up of a random collection of CUs and TUs.
10091 However, for each CU + set of TUs that came from the same original DWO
10092 file, we can combine them back into a virtual DWO file to save space
10093 (fewer struct dwo_file objects to allocate). Remember that for really
10094 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10095
10096 virtual_dwo_name =
10097 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10098 get_section_id (&sections.abbrev),
10099 get_section_id (&sections.line),
10100 get_section_id (&sections.loc),
10101 get_section_id (&sections.str_offsets));
10102 make_cleanup (xfree, virtual_dwo_name);
10103 /* Can we use an existing virtual DWO file? */
10104 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10105 /* Create one if necessary. */
10106 if (*dwo_file_slot == NULL)
10107 {
10108 if (dwarf_read_debug)
10109 {
10110 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10111 virtual_dwo_name);
10112 }
10113 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10114 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10115 virtual_dwo_name,
10116 strlen (virtual_dwo_name));
10117 dwo_file->comp_dir = comp_dir;
10118 dwo_file->sections.abbrev = sections.abbrev;
10119 dwo_file->sections.line = sections.line;
10120 dwo_file->sections.loc = sections.loc;
10121 dwo_file->sections.macinfo = sections.macinfo;
10122 dwo_file->sections.macro = sections.macro;
10123 dwo_file->sections.str_offsets = sections.str_offsets;
10124 /* The "str" section is global to the entire DWP file. */
10125 dwo_file->sections.str = dwp_file->sections.str;
10126 /* The info or types section is assigned below to dwo_unit,
10127 there's no need to record it in dwo_file.
10128 Also, we can't simply record type sections in dwo_file because
10129 we record a pointer into the vector in dwo_unit. As we collect more
10130 types we'll grow the vector and eventually have to reallocate space
10131 for it, invalidating all copies of pointers into the previous
10132 contents. */
10133 *dwo_file_slot = dwo_file;
10134 }
10135 else
10136 {
10137 if (dwarf_read_debug)
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = *dwo_file_slot;
10143 }
10144 do_cleanups (cleanups);
10145
10146 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10147 dwo_unit->dwo_file = dwo_file;
10148 dwo_unit->signature = signature;
10149 dwo_unit->section =
10150 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10151 *dwo_unit->section = sections.info_or_types;
10152 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10153
10154 return dwo_unit;
10155 }
10156
10157 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10158 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10159 piece within that section used by a TU/CU, return a virtual section
10160 of just that piece. */
10161
10162 static struct dwarf2_section_info
10163 create_dwp_v2_section (struct dwarf2_section_info *section,
10164 bfd_size_type offset, bfd_size_type size)
10165 {
10166 struct dwarf2_section_info result;
10167 asection *sectp;
10168
10169 gdb_assert (section != NULL);
10170 gdb_assert (!section->is_virtual);
10171
10172 memset (&result, 0, sizeof (result));
10173 result.s.containing_section = section;
10174 result.is_virtual = 1;
10175
10176 if (size == 0)
10177 return result;
10178
10179 sectp = get_section_bfd_section (section);
10180
10181 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10182 bounds of the real section. This is a pretty-rare event, so just
10183 flag an error (easier) instead of a warning and trying to cope. */
10184 if (sectp == NULL
10185 || offset + size > bfd_get_section_size (sectp))
10186 {
10187 bfd *abfd = sectp->owner;
10188
10189 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10190 " in section %s [in module %s]"),
10191 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10192 objfile_name (dwarf2_per_objfile->objfile));
10193 }
10194
10195 result.virtual_offset = offset;
10196 result.size = size;
10197 return result;
10198 }
10199
10200 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10201 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10202 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10203 This is for DWP version 2 files. */
10204
10205 static struct dwo_unit *
10206 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10207 uint32_t unit_index,
10208 const char *comp_dir,
10209 ULONGEST signature, int is_debug_types)
10210 {
10211 struct objfile *objfile = dwarf2_per_objfile->objfile;
10212 const struct dwp_hash_table *dwp_htab =
10213 is_debug_types ? dwp_file->tus : dwp_file->cus;
10214 bfd *dbfd = dwp_file->dbfd;
10215 const char *kind = is_debug_types ? "TU" : "CU";
10216 struct dwo_file *dwo_file;
10217 struct dwo_unit *dwo_unit;
10218 struct virtual_v2_dwo_sections sections;
10219 void **dwo_file_slot;
10220 char *virtual_dwo_name;
10221 struct dwarf2_section_info *cutu;
10222 struct cleanup *cleanups;
10223 int i;
10224
10225 gdb_assert (dwp_file->version == 2);
10226
10227 if (dwarf_read_debug)
10228 {
10229 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10230 kind,
10231 pulongest (unit_index), hex_string (signature),
10232 dwp_file->name);
10233 }
10234
10235 /* Fetch the section offsets of this DWO unit. */
10236
10237 memset (&sections, 0, sizeof (sections));
10238 cleanups = make_cleanup (null_cleanup, 0);
10239
10240 for (i = 0; i < dwp_htab->nr_columns; ++i)
10241 {
10242 uint32_t offset = read_4_bytes (dbfd,
10243 dwp_htab->section_pool.v2.offsets
10244 + (((unit_index - 1) * dwp_htab->nr_columns
10245 + i)
10246 * sizeof (uint32_t)));
10247 uint32_t size = read_4_bytes (dbfd,
10248 dwp_htab->section_pool.v2.sizes
10249 + (((unit_index - 1) * dwp_htab->nr_columns
10250 + i)
10251 * sizeof (uint32_t)));
10252
10253 switch (dwp_htab->section_pool.v2.section_ids[i])
10254 {
10255 case DW_SECT_INFO:
10256 case DW_SECT_TYPES:
10257 sections.info_or_types_offset = offset;
10258 sections.info_or_types_size = size;
10259 break;
10260 case DW_SECT_ABBREV:
10261 sections.abbrev_offset = offset;
10262 sections.abbrev_size = size;
10263 break;
10264 case DW_SECT_LINE:
10265 sections.line_offset = offset;
10266 sections.line_size = size;
10267 break;
10268 case DW_SECT_LOC:
10269 sections.loc_offset = offset;
10270 sections.loc_size = size;
10271 break;
10272 case DW_SECT_STR_OFFSETS:
10273 sections.str_offsets_offset = offset;
10274 sections.str_offsets_size = size;
10275 break;
10276 case DW_SECT_MACINFO:
10277 sections.macinfo_offset = offset;
10278 sections.macinfo_size = size;
10279 break;
10280 case DW_SECT_MACRO:
10281 sections.macro_offset = offset;
10282 sections.macro_size = size;
10283 break;
10284 }
10285 }
10286
10287 /* It's easier for the rest of the code if we fake a struct dwo_file and
10288 have dwo_unit "live" in that. At least for now.
10289
10290 The DWP file can be made up of a random collection of CUs and TUs.
10291 However, for each CU + set of TUs that came from the same original DWO
10292 file, we can combine them back into a virtual DWO file to save space
10293 (fewer struct dwo_file objects to allocate). Remember that for really
10294 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10295
10296 virtual_dwo_name =
10297 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10298 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10299 (long) (sections.line_size ? sections.line_offset : 0),
10300 (long) (sections.loc_size ? sections.loc_offset : 0),
10301 (long) (sections.str_offsets_size
10302 ? sections.str_offsets_offset : 0));
10303 make_cleanup (xfree, virtual_dwo_name);
10304 /* Can we use an existing virtual DWO file? */
10305 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10306 /* Create one if necessary. */
10307 if (*dwo_file_slot == NULL)
10308 {
10309 if (dwarf_read_debug)
10310 {
10311 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10312 virtual_dwo_name);
10313 }
10314 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10315 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10316 virtual_dwo_name,
10317 strlen (virtual_dwo_name));
10318 dwo_file->comp_dir = comp_dir;
10319 dwo_file->sections.abbrev =
10320 create_dwp_v2_section (&dwp_file->sections.abbrev,
10321 sections.abbrev_offset, sections.abbrev_size);
10322 dwo_file->sections.line =
10323 create_dwp_v2_section (&dwp_file->sections.line,
10324 sections.line_offset, sections.line_size);
10325 dwo_file->sections.loc =
10326 create_dwp_v2_section (&dwp_file->sections.loc,
10327 sections.loc_offset, sections.loc_size);
10328 dwo_file->sections.macinfo =
10329 create_dwp_v2_section (&dwp_file->sections.macinfo,
10330 sections.macinfo_offset, sections.macinfo_size);
10331 dwo_file->sections.macro =
10332 create_dwp_v2_section (&dwp_file->sections.macro,
10333 sections.macro_offset, sections.macro_size);
10334 dwo_file->sections.str_offsets =
10335 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10336 sections.str_offsets_offset,
10337 sections.str_offsets_size);
10338 /* The "str" section is global to the entire DWP file. */
10339 dwo_file->sections.str = dwp_file->sections.str;
10340 /* The info or types section is assigned below to dwo_unit,
10341 there's no need to record it in dwo_file.
10342 Also, we can't simply record type sections in dwo_file because
10343 we record a pointer into the vector in dwo_unit. As we collect more
10344 types we'll grow the vector and eventually have to reallocate space
10345 for it, invalidating all copies of pointers into the previous
10346 contents. */
10347 *dwo_file_slot = dwo_file;
10348 }
10349 else
10350 {
10351 if (dwarf_read_debug)
10352 {
10353 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10354 virtual_dwo_name);
10355 }
10356 dwo_file = *dwo_file_slot;
10357 }
10358 do_cleanups (cleanups);
10359
10360 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10361 dwo_unit->dwo_file = dwo_file;
10362 dwo_unit->signature = signature;
10363 dwo_unit->section =
10364 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10365 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10366 ? &dwp_file->sections.types
10367 : &dwp_file->sections.info,
10368 sections.info_or_types_offset,
10369 sections.info_or_types_size);
10370 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10371
10372 return dwo_unit;
10373 }
10374
10375 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10376 Returns NULL if the signature isn't found. */
10377
10378 static struct dwo_unit *
10379 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10380 ULONGEST signature, int is_debug_types)
10381 {
10382 const struct dwp_hash_table *dwp_htab =
10383 is_debug_types ? dwp_file->tus : dwp_file->cus;
10384 bfd *dbfd = dwp_file->dbfd;
10385 uint32_t mask = dwp_htab->nr_slots - 1;
10386 uint32_t hash = signature & mask;
10387 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10388 unsigned int i;
10389 void **slot;
10390 struct dwo_unit find_dwo_cu, *dwo_cu;
10391
10392 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10393 find_dwo_cu.signature = signature;
10394 slot = htab_find_slot (is_debug_types
10395 ? dwp_file->loaded_tus
10396 : dwp_file->loaded_cus,
10397 &find_dwo_cu, INSERT);
10398
10399 if (*slot != NULL)
10400 return *slot;
10401
10402 /* Use a for loop so that we don't loop forever on bad debug info. */
10403 for (i = 0; i < dwp_htab->nr_slots; ++i)
10404 {
10405 ULONGEST signature_in_table;
10406
10407 signature_in_table =
10408 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10409 if (signature_in_table == signature)
10410 {
10411 uint32_t unit_index =
10412 read_4_bytes (dbfd,
10413 dwp_htab->unit_table + hash * sizeof (uint32_t));
10414
10415 if (dwp_file->version == 1)
10416 {
10417 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
10421 else
10422 {
10423 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10424 comp_dir, signature,
10425 is_debug_types);
10426 }
10427 return *slot;
10428 }
10429 if (signature_in_table == 0)
10430 return NULL;
10431 hash = (hash + hash2) & mask;
10432 }
10433
10434 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10435 " [in module %s]"),
10436 dwp_file->name);
10437 }
10438
10439 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10440 Open the file specified by FILE_NAME and hand it off to BFD for
10441 preliminary analysis. Return a newly initialized bfd *, which
10442 includes a canonicalized copy of FILE_NAME.
10443 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10444 SEARCH_CWD is true if the current directory is to be searched.
10445 It will be searched before debug-file-directory.
10446 If successful, the file is added to the bfd include table of the
10447 objfile's bfd (see gdb_bfd_record_inclusion).
10448 If unable to find/open the file, return NULL.
10449 NOTE: This function is derived from symfile_bfd_open. */
10450
10451 static bfd *
10452 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10453 {
10454 bfd *sym_bfd;
10455 int desc, flags;
10456 char *absolute_name;
10457 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10458 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10459 to debug_file_directory. */
10460 char *search_path;
10461 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10462
10463 if (search_cwd)
10464 {
10465 if (*debug_file_directory != '\0')
10466 search_path = concat (".", dirname_separator_string,
10467 debug_file_directory, NULL);
10468 else
10469 search_path = xstrdup (".");
10470 }
10471 else
10472 search_path = xstrdup (debug_file_directory);
10473
10474 flags = OPF_RETURN_REALPATH;
10475 if (is_dwp)
10476 flags |= OPF_SEARCH_IN_PATH;
10477 desc = openp (search_path, flags, file_name,
10478 O_RDONLY | O_BINARY, &absolute_name);
10479 xfree (search_path);
10480 if (desc < 0)
10481 return NULL;
10482
10483 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10484 xfree (absolute_name);
10485 if (sym_bfd == NULL)
10486 return NULL;
10487 bfd_set_cacheable (sym_bfd, 1);
10488
10489 if (!bfd_check_format (sym_bfd, bfd_object))
10490 {
10491 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10492 return NULL;
10493 }
10494
10495 /* Success. Record the bfd as having been included by the objfile's bfd.
10496 This is important because things like demangled_names_hash lives in the
10497 objfile's per_bfd space and may have references to things like symbol
10498 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10499 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10500
10501 return sym_bfd;
10502 }
10503
10504 /* Try to open DWO file FILE_NAME.
10505 COMP_DIR is the DW_AT_comp_dir attribute.
10506 The result is the bfd handle of the file.
10507 If there is a problem finding or opening the file, return NULL.
10508 Upon success, the canonicalized path of the file is stored in the bfd,
10509 same as symfile_bfd_open. */
10510
10511 static bfd *
10512 open_dwo_file (const char *file_name, const char *comp_dir)
10513 {
10514 bfd *abfd;
10515
10516 if (IS_ABSOLUTE_PATH (file_name))
10517 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10518
10519 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10520
10521 if (comp_dir != NULL)
10522 {
10523 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10524
10525 /* NOTE: If comp_dir is a relative path, this will also try the
10526 search path, which seems useful. */
10527 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10528 xfree (path_to_try);
10529 if (abfd != NULL)
10530 return abfd;
10531 }
10532
10533 /* That didn't work, try debug-file-directory, which, despite its name,
10534 is a list of paths. */
10535
10536 if (*debug_file_directory == '\0')
10537 return NULL;
10538
10539 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10540 }
10541
10542 /* This function is mapped across the sections and remembers the offset and
10543 size of each of the DWO debugging sections we are interested in. */
10544
10545 static void
10546 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10547 {
10548 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10549 const struct dwop_section_names *names = &dwop_section_names;
10550
10551 if (section_is_p (sectp->name, &names->abbrev_dwo))
10552 {
10553 dwo_sections->abbrev.s.section = sectp;
10554 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->info_dwo))
10557 {
10558 dwo_sections->info.s.section = sectp;
10559 dwo_sections->info.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->line_dwo))
10562 {
10563 dwo_sections->line.s.section = sectp;
10564 dwo_sections->line.size = bfd_get_section_size (sectp);
10565 }
10566 else if (section_is_p (sectp->name, &names->loc_dwo))
10567 {
10568 dwo_sections->loc.s.section = sectp;
10569 dwo_sections->loc.size = bfd_get_section_size (sectp);
10570 }
10571 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10572 {
10573 dwo_sections->macinfo.s.section = sectp;
10574 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10575 }
10576 else if (section_is_p (sectp->name, &names->macro_dwo))
10577 {
10578 dwo_sections->macro.s.section = sectp;
10579 dwo_sections->macro.size = bfd_get_section_size (sectp);
10580 }
10581 else if (section_is_p (sectp->name, &names->str_dwo))
10582 {
10583 dwo_sections->str.s.section = sectp;
10584 dwo_sections->str.size = bfd_get_section_size (sectp);
10585 }
10586 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10587 {
10588 dwo_sections->str_offsets.s.section = sectp;
10589 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10590 }
10591 else if (section_is_p (sectp->name, &names->types_dwo))
10592 {
10593 struct dwarf2_section_info type_section;
10594
10595 memset (&type_section, 0, sizeof (type_section));
10596 type_section.s.section = sectp;
10597 type_section.size = bfd_get_section_size (sectp);
10598 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10599 &type_section);
10600 }
10601 }
10602
10603 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10604 by PER_CU. This is for the non-DWP case.
10605 The result is NULL if DWO_NAME can't be found. */
10606
10607 static struct dwo_file *
10608 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10609 const char *dwo_name, const char *comp_dir)
10610 {
10611 struct objfile *objfile = dwarf2_per_objfile->objfile;
10612 struct dwo_file *dwo_file;
10613 bfd *dbfd;
10614 struct cleanup *cleanups;
10615
10616 dbfd = open_dwo_file (dwo_name, comp_dir);
10617 if (dbfd == NULL)
10618 {
10619 if (dwarf_read_debug)
10620 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10621 return NULL;
10622 }
10623 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10624 dwo_file->dwo_name = dwo_name;
10625 dwo_file->comp_dir = comp_dir;
10626 dwo_file->dbfd = dbfd;
10627
10628 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10629
10630 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10631
10632 dwo_file->cu = create_dwo_cu (dwo_file);
10633
10634 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10635 dwo_file->sections.types);
10636
10637 discard_cleanups (cleanups);
10638
10639 if (dwarf_read_debug)
10640 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10641
10642 return dwo_file;
10643 }
10644
10645 /* This function is mapped across the sections and remembers the offset and
10646 size of each of the DWP debugging sections common to version 1 and 2 that
10647 we are interested in. */
10648
10649 static void
10650 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10651 void *dwp_file_ptr)
10652 {
10653 struct dwp_file *dwp_file = dwp_file_ptr;
10654 const struct dwop_section_names *names = &dwop_section_names;
10655 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10656
10657 /* Record the ELF section number for later lookup: this is what the
10658 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10659 gdb_assert (elf_section_nr < dwp_file->num_sections);
10660 dwp_file->elf_sections[elf_section_nr] = sectp;
10661
10662 /* Look for specific sections that we need. */
10663 if (section_is_p (sectp->name, &names->str_dwo))
10664 {
10665 dwp_file->sections.str.s.section = sectp;
10666 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10667 }
10668 else if (section_is_p (sectp->name, &names->cu_index))
10669 {
10670 dwp_file->sections.cu_index.s.section = sectp;
10671 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10672 }
10673 else if (section_is_p (sectp->name, &names->tu_index))
10674 {
10675 dwp_file->sections.tu_index.s.section = sectp;
10676 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10677 }
10678 }
10679
10680 /* This function is mapped across the sections and remembers the offset and
10681 size of each of the DWP version 2 debugging sections that we are interested
10682 in. This is split into a separate function because we don't know if we
10683 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10684
10685 static void
10686 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10687 {
10688 struct dwp_file *dwp_file = dwp_file_ptr;
10689 const struct dwop_section_names *names = &dwop_section_names;
10690 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10691
10692 /* Record the ELF section number for later lookup: this is what the
10693 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10694 gdb_assert (elf_section_nr < dwp_file->num_sections);
10695 dwp_file->elf_sections[elf_section_nr] = sectp;
10696
10697 /* Look for specific sections that we need. */
10698 if (section_is_p (sectp->name, &names->abbrev_dwo))
10699 {
10700 dwp_file->sections.abbrev.s.section = sectp;
10701 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10702 }
10703 else if (section_is_p (sectp->name, &names->info_dwo))
10704 {
10705 dwp_file->sections.info.s.section = sectp;
10706 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10707 }
10708 else if (section_is_p (sectp->name, &names->line_dwo))
10709 {
10710 dwp_file->sections.line.s.section = sectp;
10711 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10712 }
10713 else if (section_is_p (sectp->name, &names->loc_dwo))
10714 {
10715 dwp_file->sections.loc.s.section = sectp;
10716 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10717 }
10718 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10719 {
10720 dwp_file->sections.macinfo.s.section = sectp;
10721 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10722 }
10723 else if (section_is_p (sectp->name, &names->macro_dwo))
10724 {
10725 dwp_file->sections.macro.s.section = sectp;
10726 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10727 }
10728 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10729 {
10730 dwp_file->sections.str_offsets.s.section = sectp;
10731 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10732 }
10733 else if (section_is_p (sectp->name, &names->types_dwo))
10734 {
10735 dwp_file->sections.types.s.section = sectp;
10736 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10737 }
10738 }
10739
10740 /* Hash function for dwp_file loaded CUs/TUs. */
10741
10742 static hashval_t
10743 hash_dwp_loaded_cutus (const void *item)
10744 {
10745 const struct dwo_unit *dwo_unit = item;
10746
10747 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10748 return dwo_unit->signature;
10749 }
10750
10751 /* Equality function for dwp_file loaded CUs/TUs. */
10752
10753 static int
10754 eq_dwp_loaded_cutus (const void *a, const void *b)
10755 {
10756 const struct dwo_unit *dua = a;
10757 const struct dwo_unit *dub = b;
10758
10759 return dua->signature == dub->signature;
10760 }
10761
10762 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10763
10764 static htab_t
10765 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10766 {
10767 return htab_create_alloc_ex (3,
10768 hash_dwp_loaded_cutus,
10769 eq_dwp_loaded_cutus,
10770 NULL,
10771 &objfile->objfile_obstack,
10772 hashtab_obstack_allocate,
10773 dummy_obstack_deallocate);
10774 }
10775
10776 /* Try to open DWP file FILE_NAME.
10777 The result is the bfd handle of the file.
10778 If there is a problem finding or opening the file, return NULL.
10779 Upon success, the canonicalized path of the file is stored in the bfd,
10780 same as symfile_bfd_open. */
10781
10782 static bfd *
10783 open_dwp_file (const char *file_name)
10784 {
10785 bfd *abfd;
10786
10787 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10788 if (abfd != NULL)
10789 return abfd;
10790
10791 /* Work around upstream bug 15652.
10792 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10793 [Whether that's a "bug" is debatable, but it is getting in our way.]
10794 We have no real idea where the dwp file is, because gdb's realpath-ing
10795 of the executable's path may have discarded the needed info.
10796 [IWBN if the dwp file name was recorded in the executable, akin to
10797 .gnu_debuglink, but that doesn't exist yet.]
10798 Strip the directory from FILE_NAME and search again. */
10799 if (*debug_file_directory != '\0')
10800 {
10801 /* Don't implicitly search the current directory here.
10802 If the user wants to search "." to handle this case,
10803 it must be added to debug-file-directory. */
10804 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10805 0 /*search_cwd*/);
10806 }
10807
10808 return NULL;
10809 }
10810
10811 /* Initialize the use of the DWP file for the current objfile.
10812 By convention the name of the DWP file is ${objfile}.dwp.
10813 The result is NULL if it can't be found. */
10814
10815 static struct dwp_file *
10816 open_and_init_dwp_file (void)
10817 {
10818 struct objfile *objfile = dwarf2_per_objfile->objfile;
10819 struct dwp_file *dwp_file;
10820 char *dwp_name;
10821 bfd *dbfd;
10822 struct cleanup *cleanups;
10823
10824 /* Try to find first .dwp for the binary file before any symbolic links
10825 resolving. */
10826 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10827 cleanups = make_cleanup (xfree, dwp_name);
10828
10829 dbfd = open_dwp_file (dwp_name);
10830 if (dbfd == NULL
10831 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10832 {
10833 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10834 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10835 make_cleanup (xfree, dwp_name);
10836 dbfd = open_dwp_file (dwp_name);
10837 }
10838
10839 if (dbfd == NULL)
10840 {
10841 if (dwarf_read_debug)
10842 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10843 do_cleanups (cleanups);
10844 return NULL;
10845 }
10846 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10847 dwp_file->name = bfd_get_filename (dbfd);
10848 dwp_file->dbfd = dbfd;
10849 do_cleanups (cleanups);
10850
10851 /* +1: section 0 is unused */
10852 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10853 dwp_file->elf_sections =
10854 OBSTACK_CALLOC (&objfile->objfile_obstack,
10855 dwp_file->num_sections, asection *);
10856
10857 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10858
10859 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10860
10861 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10862
10863 /* The DWP file version is stored in the hash table. Oh well. */
10864 if (dwp_file->cus->version != dwp_file->tus->version)
10865 {
10866 /* Technically speaking, we should try to limp along, but this is
10867 pretty bizarre. We use pulongest here because that's the established
10868 portability solution (e.g, we cannot use %u for uint32_t). */
10869 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10870 " TU version %s [in DWP file %s]"),
10871 pulongest (dwp_file->cus->version),
10872 pulongest (dwp_file->tus->version), dwp_name);
10873 }
10874 dwp_file->version = dwp_file->cus->version;
10875
10876 if (dwp_file->version == 2)
10877 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10878
10879 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10880 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10881
10882 if (dwarf_read_debug)
10883 {
10884 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10885 fprintf_unfiltered (gdb_stdlog,
10886 " %s CUs, %s TUs\n",
10887 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10888 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10889 }
10890
10891 return dwp_file;
10892 }
10893
10894 /* Wrapper around open_and_init_dwp_file, only open it once. */
10895
10896 static struct dwp_file *
10897 get_dwp_file (void)
10898 {
10899 if (! dwarf2_per_objfile->dwp_checked)
10900 {
10901 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10902 dwarf2_per_objfile->dwp_checked = 1;
10903 }
10904 return dwarf2_per_objfile->dwp_file;
10905 }
10906
10907 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10908 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10909 or in the DWP file for the objfile, referenced by THIS_UNIT.
10910 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10911 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10912
10913 This is called, for example, when wanting to read a variable with a
10914 complex location. Therefore we don't want to do file i/o for every call.
10915 Therefore we don't want to look for a DWO file on every call.
10916 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10917 then we check if we've already seen DWO_NAME, and only THEN do we check
10918 for a DWO file.
10919
10920 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10921 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10922
10923 static struct dwo_unit *
10924 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10925 const char *dwo_name, const char *comp_dir,
10926 ULONGEST signature, int is_debug_types)
10927 {
10928 struct objfile *objfile = dwarf2_per_objfile->objfile;
10929 const char *kind = is_debug_types ? "TU" : "CU";
10930 void **dwo_file_slot;
10931 struct dwo_file *dwo_file;
10932 struct dwp_file *dwp_file;
10933
10934 /* First see if there's a DWP file.
10935 If we have a DWP file but didn't find the DWO inside it, don't
10936 look for the original DWO file. It makes gdb behave differently
10937 depending on whether one is debugging in the build tree. */
10938
10939 dwp_file = get_dwp_file ();
10940 if (dwp_file != NULL)
10941 {
10942 const struct dwp_hash_table *dwp_htab =
10943 is_debug_types ? dwp_file->tus : dwp_file->cus;
10944
10945 if (dwp_htab != NULL)
10946 {
10947 struct dwo_unit *dwo_cutu =
10948 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10949 signature, is_debug_types);
10950
10951 if (dwo_cutu != NULL)
10952 {
10953 if (dwarf_read_debug)
10954 {
10955 fprintf_unfiltered (gdb_stdlog,
10956 "Virtual DWO %s %s found: @%s\n",
10957 kind, hex_string (signature),
10958 host_address_to_string (dwo_cutu));
10959 }
10960 return dwo_cutu;
10961 }
10962 }
10963 }
10964 else
10965 {
10966 /* No DWP file, look for the DWO file. */
10967
10968 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10969 if (*dwo_file_slot == NULL)
10970 {
10971 /* Read in the file and build a table of the CUs/TUs it contains. */
10972 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10973 }
10974 /* NOTE: This will be NULL if unable to open the file. */
10975 dwo_file = *dwo_file_slot;
10976
10977 if (dwo_file != NULL)
10978 {
10979 struct dwo_unit *dwo_cutu = NULL;
10980
10981 if (is_debug_types && dwo_file->tus)
10982 {
10983 struct dwo_unit find_dwo_cutu;
10984
10985 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10986 find_dwo_cutu.signature = signature;
10987 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10988 }
10989 else if (!is_debug_types && dwo_file->cu)
10990 {
10991 if (signature == dwo_file->cu->signature)
10992 dwo_cutu = dwo_file->cu;
10993 }
10994
10995 if (dwo_cutu != NULL)
10996 {
10997 if (dwarf_read_debug)
10998 {
10999 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11000 kind, dwo_name, hex_string (signature),
11001 host_address_to_string (dwo_cutu));
11002 }
11003 return dwo_cutu;
11004 }
11005 }
11006 }
11007
11008 /* We didn't find it. This could mean a dwo_id mismatch, or
11009 someone deleted the DWO/DWP file, or the search path isn't set up
11010 correctly to find the file. */
11011
11012 if (dwarf_read_debug)
11013 {
11014 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11015 kind, dwo_name, hex_string (signature));
11016 }
11017
11018 /* This is a warning and not a complaint because it can be caused by
11019 pilot error (e.g., user accidentally deleting the DWO). */
11020 {
11021 /* Print the name of the DWP file if we looked there, helps the user
11022 better diagnose the problem. */
11023 char *dwp_text = NULL;
11024 struct cleanup *cleanups;
11025
11026 if (dwp_file != NULL)
11027 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11028 cleanups = make_cleanup (xfree, dwp_text);
11029
11030 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11031 " [in module %s]"),
11032 kind, dwo_name, hex_string (signature),
11033 dwp_text != NULL ? dwp_text : "",
11034 this_unit->is_debug_types ? "TU" : "CU",
11035 this_unit->offset.sect_off, objfile_name (objfile));
11036
11037 do_cleanups (cleanups);
11038 }
11039 return NULL;
11040 }
11041
11042 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11043 See lookup_dwo_cutu_unit for details. */
11044
11045 static struct dwo_unit *
11046 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11047 const char *dwo_name, const char *comp_dir,
11048 ULONGEST signature)
11049 {
11050 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11051 }
11052
11053 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11054 See lookup_dwo_cutu_unit for details. */
11055
11056 static struct dwo_unit *
11057 lookup_dwo_type_unit (struct signatured_type *this_tu,
11058 const char *dwo_name, const char *comp_dir)
11059 {
11060 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11061 }
11062
11063 /* Traversal function for queue_and_load_all_dwo_tus. */
11064
11065 static int
11066 queue_and_load_dwo_tu (void **slot, void *info)
11067 {
11068 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11069 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11070 ULONGEST signature = dwo_unit->signature;
11071 struct signatured_type *sig_type =
11072 lookup_dwo_signatured_type (per_cu->cu, signature);
11073
11074 if (sig_type != NULL)
11075 {
11076 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11077
11078 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11079 a real dependency of PER_CU on SIG_TYPE. That is detected later
11080 while processing PER_CU. */
11081 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11082 load_full_type_unit (sig_cu);
11083 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11084 }
11085
11086 return 1;
11087 }
11088
11089 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11090 The DWO may have the only definition of the type, though it may not be
11091 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11092 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11093
11094 static void
11095 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11096 {
11097 struct dwo_unit *dwo_unit;
11098 struct dwo_file *dwo_file;
11099
11100 gdb_assert (!per_cu->is_debug_types);
11101 gdb_assert (get_dwp_file () == NULL);
11102 gdb_assert (per_cu->cu != NULL);
11103
11104 dwo_unit = per_cu->cu->dwo_unit;
11105 gdb_assert (dwo_unit != NULL);
11106
11107 dwo_file = dwo_unit->dwo_file;
11108 if (dwo_file->tus != NULL)
11109 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11110 }
11111
11112 /* Free all resources associated with DWO_FILE.
11113 Close the DWO file and munmap the sections.
11114 All memory should be on the objfile obstack. */
11115
11116 static void
11117 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11118 {
11119 int ix;
11120 struct dwarf2_section_info *section;
11121
11122 /* Note: dbfd is NULL for virtual DWO files. */
11123 gdb_bfd_unref (dwo_file->dbfd);
11124
11125 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11126 }
11127
11128 /* Wrapper for free_dwo_file for use in cleanups. */
11129
11130 static void
11131 free_dwo_file_cleanup (void *arg)
11132 {
11133 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11134 struct objfile *objfile = dwarf2_per_objfile->objfile;
11135
11136 free_dwo_file (dwo_file, objfile);
11137 }
11138
11139 /* Traversal function for free_dwo_files. */
11140
11141 static int
11142 free_dwo_file_from_slot (void **slot, void *info)
11143 {
11144 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11145 struct objfile *objfile = (struct objfile *) info;
11146
11147 free_dwo_file (dwo_file, objfile);
11148
11149 return 1;
11150 }
11151
11152 /* Free all resources associated with DWO_FILES. */
11153
11154 static void
11155 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11156 {
11157 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11158 }
11159 \f
11160 /* Read in various DIEs. */
11161
11162 /* qsort helper for inherit_abstract_dies. */
11163
11164 static int
11165 unsigned_int_compar (const void *ap, const void *bp)
11166 {
11167 unsigned int a = *(unsigned int *) ap;
11168 unsigned int b = *(unsigned int *) bp;
11169
11170 return (a > b) - (b > a);
11171 }
11172
11173 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11174 Inherit only the children of the DW_AT_abstract_origin DIE not being
11175 already referenced by DW_AT_abstract_origin from the children of the
11176 current DIE. */
11177
11178 static void
11179 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11180 {
11181 struct die_info *child_die;
11182 unsigned die_children_count;
11183 /* CU offsets which were referenced by children of the current DIE. */
11184 sect_offset *offsets;
11185 sect_offset *offsets_end, *offsetp;
11186 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11187 struct die_info *origin_die;
11188 /* Iterator of the ORIGIN_DIE children. */
11189 struct die_info *origin_child_die;
11190 struct cleanup *cleanups;
11191 struct attribute *attr;
11192 struct dwarf2_cu *origin_cu;
11193 struct pending **origin_previous_list_in_scope;
11194
11195 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11196 if (!attr)
11197 return;
11198
11199 /* Note that following die references may follow to a die in a
11200 different cu. */
11201
11202 origin_cu = cu;
11203 origin_die = follow_die_ref (die, attr, &origin_cu);
11204
11205 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11206 symbols in. */
11207 origin_previous_list_in_scope = origin_cu->list_in_scope;
11208 origin_cu->list_in_scope = cu->list_in_scope;
11209
11210 if (die->tag != origin_die->tag
11211 && !(die->tag == DW_TAG_inlined_subroutine
11212 && origin_die->tag == DW_TAG_subprogram))
11213 complaint (&symfile_complaints,
11214 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11215 die->offset.sect_off, origin_die->offset.sect_off);
11216
11217 child_die = die->child;
11218 die_children_count = 0;
11219 while (child_die && child_die->tag)
11220 {
11221 child_die = sibling_die (child_die);
11222 die_children_count++;
11223 }
11224 offsets = XNEWVEC (sect_offset, die_children_count);
11225 cleanups = make_cleanup (xfree, offsets);
11226
11227 offsets_end = offsets;
11228 for (child_die = die->child;
11229 child_die && child_die->tag;
11230 child_die = sibling_die (child_die))
11231 {
11232 struct die_info *child_origin_die;
11233 struct dwarf2_cu *child_origin_cu;
11234
11235 /* We are trying to process concrete instance entries:
11236 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11237 it's not relevant to our analysis here. i.e. detecting DIEs that are
11238 present in the abstract instance but not referenced in the concrete
11239 one. */
11240 if (child_die->tag == DW_TAG_GNU_call_site)
11241 continue;
11242
11243 /* For each CHILD_DIE, find the corresponding child of
11244 ORIGIN_DIE. If there is more than one layer of
11245 DW_AT_abstract_origin, follow them all; there shouldn't be,
11246 but GCC versions at least through 4.4 generate this (GCC PR
11247 40573). */
11248 child_origin_die = child_die;
11249 child_origin_cu = cu;
11250 while (1)
11251 {
11252 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11253 child_origin_cu);
11254 if (attr == NULL)
11255 break;
11256 child_origin_die = follow_die_ref (child_origin_die, attr,
11257 &child_origin_cu);
11258 }
11259
11260 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11261 counterpart may exist. */
11262 if (child_origin_die != child_die)
11263 {
11264 if (child_die->tag != child_origin_die->tag
11265 && !(child_die->tag == DW_TAG_inlined_subroutine
11266 && child_origin_die->tag == DW_TAG_subprogram))
11267 complaint (&symfile_complaints,
11268 _("Child DIE 0x%x and its abstract origin 0x%x have "
11269 "different tags"), child_die->offset.sect_off,
11270 child_origin_die->offset.sect_off);
11271 if (child_origin_die->parent != origin_die)
11272 complaint (&symfile_complaints,
11273 _("Child DIE 0x%x and its abstract origin 0x%x have "
11274 "different parents"), child_die->offset.sect_off,
11275 child_origin_die->offset.sect_off);
11276 else
11277 *offsets_end++ = child_origin_die->offset;
11278 }
11279 }
11280 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11281 unsigned_int_compar);
11282 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11283 if (offsetp[-1].sect_off == offsetp->sect_off)
11284 complaint (&symfile_complaints,
11285 _("Multiple children of DIE 0x%x refer "
11286 "to DIE 0x%x as their abstract origin"),
11287 die->offset.sect_off, offsetp->sect_off);
11288
11289 offsetp = offsets;
11290 origin_child_die = origin_die->child;
11291 while (origin_child_die && origin_child_die->tag)
11292 {
11293 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11294 while (offsetp < offsets_end
11295 && offsetp->sect_off < origin_child_die->offset.sect_off)
11296 offsetp++;
11297 if (offsetp >= offsets_end
11298 || offsetp->sect_off > origin_child_die->offset.sect_off)
11299 {
11300 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11301 Check whether we're already processing ORIGIN_CHILD_DIE.
11302 This can happen with mutually referenced abstract_origins.
11303 PR 16581. */
11304 if (!origin_child_die->in_process)
11305 process_die (origin_child_die, origin_cu);
11306 }
11307 origin_child_die = sibling_die (origin_child_die);
11308 }
11309 origin_cu->list_in_scope = origin_previous_list_in_scope;
11310
11311 do_cleanups (cleanups);
11312 }
11313
11314 static void
11315 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11316 {
11317 struct objfile *objfile = cu->objfile;
11318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11319 struct context_stack *newobj;
11320 CORE_ADDR lowpc;
11321 CORE_ADDR highpc;
11322 struct die_info *child_die;
11323 struct attribute *attr, *call_line, *call_file;
11324 const char *name;
11325 CORE_ADDR baseaddr;
11326 struct block *block;
11327 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11328 VEC (symbolp) *template_args = NULL;
11329 struct template_symbol *templ_func = NULL;
11330
11331 if (inlined_func)
11332 {
11333 /* If we do not have call site information, we can't show the
11334 caller of this inlined function. That's too confusing, so
11335 only use the scope for local variables. */
11336 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11337 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11338 if (call_line == NULL || call_file == NULL)
11339 {
11340 read_lexical_block_scope (die, cu);
11341 return;
11342 }
11343 }
11344
11345 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11346
11347 name = dwarf2_name (die, cu);
11348
11349 /* Ignore functions with missing or empty names. These are actually
11350 illegal according to the DWARF standard. */
11351 if (name == NULL)
11352 {
11353 complaint (&symfile_complaints,
11354 _("missing name for subprogram DIE at %d"),
11355 die->offset.sect_off);
11356 return;
11357 }
11358
11359 /* Ignore functions with missing or invalid low and high pc attributes. */
11360 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11361 {
11362 attr = dwarf2_attr (die, DW_AT_external, cu);
11363 if (!attr || !DW_UNSND (attr))
11364 complaint (&symfile_complaints,
11365 _("cannot get low and high bounds "
11366 "for subprogram DIE at %d"),
11367 die->offset.sect_off);
11368 return;
11369 }
11370
11371 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11372 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11373
11374 /* If we have any template arguments, then we must allocate a
11375 different sort of symbol. */
11376 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11377 {
11378 if (child_die->tag == DW_TAG_template_type_param
11379 || child_die->tag == DW_TAG_template_value_param)
11380 {
11381 templ_func = allocate_template_symbol (objfile);
11382 templ_func->base.is_cplus_template_function = 1;
11383 break;
11384 }
11385 }
11386
11387 newobj = push_context (0, lowpc);
11388 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11389 (struct symbol *) templ_func);
11390
11391 /* If there is a location expression for DW_AT_frame_base, record
11392 it. */
11393 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11394 if (attr)
11395 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11396
11397 /* If there is a location for the static link, record it. */
11398 newobj->static_link = NULL;
11399 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11400 if (attr)
11401 {
11402 newobj->static_link = obstack_alloc (&objfile->objfile_obstack,
11403 sizeof (*newobj->static_link));
11404 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11405 }
11406
11407 cu->list_in_scope = &local_symbols;
11408
11409 if (die->child != NULL)
11410 {
11411 child_die = die->child;
11412 while (child_die && child_die->tag)
11413 {
11414 if (child_die->tag == DW_TAG_template_type_param
11415 || child_die->tag == DW_TAG_template_value_param)
11416 {
11417 struct symbol *arg = new_symbol (child_die, NULL, cu);
11418
11419 if (arg != NULL)
11420 VEC_safe_push (symbolp, template_args, arg);
11421 }
11422 else
11423 process_die (child_die, cu);
11424 child_die = sibling_die (child_die);
11425 }
11426 }
11427
11428 inherit_abstract_dies (die, cu);
11429
11430 /* If we have a DW_AT_specification, we might need to import using
11431 directives from the context of the specification DIE. See the
11432 comment in determine_prefix. */
11433 if (cu->language == language_cplus
11434 && dwarf2_attr (die, DW_AT_specification, cu))
11435 {
11436 struct dwarf2_cu *spec_cu = cu;
11437 struct die_info *spec_die = die_specification (die, &spec_cu);
11438
11439 while (spec_die)
11440 {
11441 child_die = spec_die->child;
11442 while (child_die && child_die->tag)
11443 {
11444 if (child_die->tag == DW_TAG_imported_module)
11445 process_die (child_die, spec_cu);
11446 child_die = sibling_die (child_die);
11447 }
11448
11449 /* In some cases, GCC generates specification DIEs that
11450 themselves contain DW_AT_specification attributes. */
11451 spec_die = die_specification (spec_die, &spec_cu);
11452 }
11453 }
11454
11455 newobj = pop_context ();
11456 /* Make a block for the local symbols within. */
11457 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11458 newobj->static_link, lowpc, highpc);
11459
11460 /* For C++, set the block's scope. */
11461 if ((cu->language == language_cplus
11462 || cu->language == language_fortran
11463 || cu->language == language_d)
11464 && cu->processing_has_namespace_info)
11465 block_set_scope (block, determine_prefix (die, cu),
11466 &objfile->objfile_obstack);
11467
11468 /* If we have address ranges, record them. */
11469 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11470
11471 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11472
11473 /* Attach template arguments to function. */
11474 if (! VEC_empty (symbolp, template_args))
11475 {
11476 gdb_assert (templ_func != NULL);
11477
11478 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11479 templ_func->template_arguments
11480 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11481 templ_func->n_template_arguments);
11482 memcpy (templ_func->template_arguments,
11483 VEC_address (symbolp, template_args),
11484 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11485 VEC_free (symbolp, template_args);
11486 }
11487
11488 /* In C++, we can have functions nested inside functions (e.g., when
11489 a function declares a class that has methods). This means that
11490 when we finish processing a function scope, we may need to go
11491 back to building a containing block's symbol lists. */
11492 local_symbols = newobj->locals;
11493 local_using_directives = newobj->local_using_directives;
11494
11495 /* If we've finished processing a top-level function, subsequent
11496 symbols go in the file symbol list. */
11497 if (outermost_context_p ())
11498 cu->list_in_scope = &file_symbols;
11499 }
11500
11501 /* Process all the DIES contained within a lexical block scope. Start
11502 a new scope, process the dies, and then close the scope. */
11503
11504 static void
11505 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11506 {
11507 struct objfile *objfile = cu->objfile;
11508 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11509 struct context_stack *newobj;
11510 CORE_ADDR lowpc, highpc;
11511 struct die_info *child_die;
11512 CORE_ADDR baseaddr;
11513
11514 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11515
11516 /* Ignore blocks with missing or invalid low and high pc attributes. */
11517 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11518 as multiple lexical blocks? Handling children in a sane way would
11519 be nasty. Might be easier to properly extend generic blocks to
11520 describe ranges. */
11521 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11522 return;
11523 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11524 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11525
11526 push_context (0, lowpc);
11527 if (die->child != NULL)
11528 {
11529 child_die = die->child;
11530 while (child_die && child_die->tag)
11531 {
11532 process_die (child_die, cu);
11533 child_die = sibling_die (child_die);
11534 }
11535 }
11536 inherit_abstract_dies (die, cu);
11537 newobj = pop_context ();
11538
11539 if (local_symbols != NULL || local_using_directives != NULL)
11540 {
11541 struct block *block
11542 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11543 newobj->start_addr, highpc);
11544
11545 /* Note that recording ranges after traversing children, as we
11546 do here, means that recording a parent's ranges entails
11547 walking across all its children's ranges as they appear in
11548 the address map, which is quadratic behavior.
11549
11550 It would be nicer to record the parent's ranges before
11551 traversing its children, simply overriding whatever you find
11552 there. But since we don't even decide whether to create a
11553 block until after we've traversed its children, that's hard
11554 to do. */
11555 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11556 }
11557 local_symbols = newobj->locals;
11558 local_using_directives = newobj->local_using_directives;
11559 }
11560
11561 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11562
11563 static void
11564 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11565 {
11566 struct objfile *objfile = cu->objfile;
11567 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11568 CORE_ADDR pc, baseaddr;
11569 struct attribute *attr;
11570 struct call_site *call_site, call_site_local;
11571 void **slot;
11572 int nparams;
11573 struct die_info *child_die;
11574
11575 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11576
11577 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11578 if (!attr)
11579 {
11580 complaint (&symfile_complaints,
11581 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11582 "DIE 0x%x [in module %s]"),
11583 die->offset.sect_off, objfile_name (objfile));
11584 return;
11585 }
11586 pc = attr_value_as_address (attr) + baseaddr;
11587 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11588
11589 if (cu->call_site_htab == NULL)
11590 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11591 NULL, &objfile->objfile_obstack,
11592 hashtab_obstack_allocate, NULL);
11593 call_site_local.pc = pc;
11594 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11595 if (*slot != NULL)
11596 {
11597 complaint (&symfile_complaints,
11598 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
11600 paddress (gdbarch, pc), die->offset.sect_off,
11601 objfile_name (objfile));
11602 return;
11603 }
11604
11605 /* Count parameters at the caller. */
11606
11607 nparams = 0;
11608 for (child_die = die->child; child_die && child_die->tag;
11609 child_die = sibling_die (child_die))
11610 {
11611 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11612 {
11613 complaint (&symfile_complaints,
11614 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11615 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11616 child_die->tag, child_die->offset.sect_off,
11617 objfile_name (objfile));
11618 continue;
11619 }
11620
11621 nparams++;
11622 }
11623
11624 call_site = obstack_alloc (&objfile->objfile_obstack,
11625 (sizeof (*call_site)
11626 + (sizeof (*call_site->parameter)
11627 * (nparams - 1))));
11628 *slot = call_site;
11629 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11630 call_site->pc = pc;
11631
11632 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11633 {
11634 struct die_info *func_die;
11635
11636 /* Skip also over DW_TAG_inlined_subroutine. */
11637 for (func_die = die->parent;
11638 func_die && func_die->tag != DW_TAG_subprogram
11639 && func_die->tag != DW_TAG_subroutine_type;
11640 func_die = func_die->parent);
11641
11642 /* DW_AT_GNU_all_call_sites is a superset
11643 of DW_AT_GNU_all_tail_call_sites. */
11644 if (func_die
11645 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11646 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11647 {
11648 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11649 not complete. But keep CALL_SITE for look ups via call_site_htab,
11650 both the initial caller containing the real return address PC and
11651 the final callee containing the current PC of a chain of tail
11652 calls do not need to have the tail call list complete. But any
11653 function candidate for a virtual tail call frame searched via
11654 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11655 determined unambiguously. */
11656 }
11657 else
11658 {
11659 struct type *func_type = NULL;
11660
11661 if (func_die)
11662 func_type = get_die_type (func_die, cu);
11663 if (func_type != NULL)
11664 {
11665 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11666
11667 /* Enlist this call site to the function. */
11668 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11669 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11670 }
11671 else
11672 complaint (&symfile_complaints,
11673 _("Cannot find function owning DW_TAG_GNU_call_site "
11674 "DIE 0x%x [in module %s]"),
11675 die->offset.sect_off, objfile_name (objfile));
11676 }
11677 }
11678
11679 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11680 if (attr == NULL)
11681 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11682 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11683 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11684 /* Keep NULL DWARF_BLOCK. */;
11685 else if (attr_form_is_block (attr))
11686 {
11687 struct dwarf2_locexpr_baton *dlbaton;
11688
11689 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11690 dlbaton->data = DW_BLOCK (attr)->data;
11691 dlbaton->size = DW_BLOCK (attr)->size;
11692 dlbaton->per_cu = cu->per_cu;
11693
11694 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11695 }
11696 else if (attr_form_is_ref (attr))
11697 {
11698 struct dwarf2_cu *target_cu = cu;
11699 struct die_info *target_die;
11700
11701 target_die = follow_die_ref (die, attr, &target_cu);
11702 gdb_assert (target_cu->objfile == objfile);
11703 if (die_is_declaration (target_die, target_cu))
11704 {
11705 const char *target_physname;
11706
11707 /* Prefer the mangled name; otherwise compute the demangled one. */
11708 target_physname = dwarf2_string_attr (target_die,
11709 DW_AT_linkage_name,
11710 target_cu);
11711 if (target_physname == NULL)
11712 target_physname = dwarf2_string_attr (target_die,
11713 DW_AT_MIPS_linkage_name,
11714 target_cu);
11715 if (target_physname == NULL)
11716 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11717 if (target_physname == NULL)
11718 complaint (&symfile_complaints,
11719 _("DW_AT_GNU_call_site_target target DIE has invalid "
11720 "physname, for referencing DIE 0x%x [in module %s]"),
11721 die->offset.sect_off, objfile_name (objfile));
11722 else
11723 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11724 }
11725 else
11726 {
11727 CORE_ADDR lowpc;
11728
11729 /* DW_AT_entry_pc should be preferred. */
11730 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11731 complaint (&symfile_complaints,
11732 _("DW_AT_GNU_call_site_target target DIE has invalid "
11733 "low pc, for referencing DIE 0x%x [in module %s]"),
11734 die->offset.sect_off, objfile_name (objfile));
11735 else
11736 {
11737 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11738 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11739 }
11740 }
11741 }
11742 else
11743 complaint (&symfile_complaints,
11744 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11745 "block nor reference, for DIE 0x%x [in module %s]"),
11746 die->offset.sect_off, objfile_name (objfile));
11747
11748 call_site->per_cu = cu->per_cu;
11749
11750 for (child_die = die->child;
11751 child_die && child_die->tag;
11752 child_die = sibling_die (child_die))
11753 {
11754 struct call_site_parameter *parameter;
11755 struct attribute *loc, *origin;
11756
11757 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11758 {
11759 /* Already printed the complaint above. */
11760 continue;
11761 }
11762
11763 gdb_assert (call_site->parameter_count < nparams);
11764 parameter = &call_site->parameter[call_site->parameter_count];
11765
11766 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11767 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11768 register is contained in DW_AT_GNU_call_site_value. */
11769
11770 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11771 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11772 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11773 {
11774 sect_offset offset;
11775
11776 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11777 offset = dwarf2_get_ref_die_offset (origin);
11778 if (!offset_in_cu_p (&cu->header, offset))
11779 {
11780 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11781 binding can be done only inside one CU. Such referenced DIE
11782 therefore cannot be even moved to DW_TAG_partial_unit. */
11783 complaint (&symfile_complaints,
11784 _("DW_AT_abstract_origin offset is not in CU for "
11785 "DW_TAG_GNU_call_site child DIE 0x%x "
11786 "[in module %s]"),
11787 child_die->offset.sect_off, objfile_name (objfile));
11788 continue;
11789 }
11790 parameter->u.param_offset.cu_off = (offset.sect_off
11791 - cu->header.offset.sect_off);
11792 }
11793 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11794 {
11795 complaint (&symfile_complaints,
11796 _("No DW_FORM_block* DW_AT_location for "
11797 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11798 child_die->offset.sect_off, objfile_name (objfile));
11799 continue;
11800 }
11801 else
11802 {
11803 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11804 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11805 if (parameter->u.dwarf_reg != -1)
11806 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11807 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11808 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11809 &parameter->u.fb_offset))
11810 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11811 else
11812 {
11813 complaint (&symfile_complaints,
11814 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11815 "for DW_FORM_block* DW_AT_location is supported for "
11816 "DW_TAG_GNU_call_site child DIE 0x%x "
11817 "[in module %s]"),
11818 child_die->offset.sect_off, objfile_name (objfile));
11819 continue;
11820 }
11821 }
11822
11823 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11824 if (!attr_form_is_block (attr))
11825 {
11826 complaint (&symfile_complaints,
11827 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11828 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11829 child_die->offset.sect_off, objfile_name (objfile));
11830 continue;
11831 }
11832 parameter->value = DW_BLOCK (attr)->data;
11833 parameter->value_size = DW_BLOCK (attr)->size;
11834
11835 /* Parameters are not pre-cleared by memset above. */
11836 parameter->data_value = NULL;
11837 parameter->data_value_size = 0;
11838 call_site->parameter_count++;
11839
11840 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11841 if (attr)
11842 {
11843 if (!attr_form_is_block (attr))
11844 complaint (&symfile_complaints,
11845 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11846 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11847 child_die->offset.sect_off, objfile_name (objfile));
11848 else
11849 {
11850 parameter->data_value = DW_BLOCK (attr)->data;
11851 parameter->data_value_size = DW_BLOCK (attr)->size;
11852 }
11853 }
11854 }
11855 }
11856
11857 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11858 Return 1 if the attributes are present and valid, otherwise, return 0.
11859 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11860
11861 static int
11862 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11863 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11864 struct partial_symtab *ranges_pst)
11865 {
11866 struct objfile *objfile = cu->objfile;
11867 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11868 struct comp_unit_head *cu_header = &cu->header;
11869 bfd *obfd = objfile->obfd;
11870 unsigned int addr_size = cu_header->addr_size;
11871 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11872 /* Base address selection entry. */
11873 CORE_ADDR base;
11874 int found_base;
11875 unsigned int dummy;
11876 const gdb_byte *buffer;
11877 CORE_ADDR marker;
11878 int low_set;
11879 CORE_ADDR low = 0;
11880 CORE_ADDR high = 0;
11881 CORE_ADDR baseaddr;
11882
11883 found_base = cu->base_known;
11884 base = cu->base_address;
11885
11886 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11887 if (offset >= dwarf2_per_objfile->ranges.size)
11888 {
11889 complaint (&symfile_complaints,
11890 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11891 offset);
11892 return 0;
11893 }
11894 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11895
11896 /* Read in the largest possible address. */
11897 marker = read_address (obfd, buffer, cu, &dummy);
11898 if ((marker & mask) == mask)
11899 {
11900 /* If we found the largest possible address, then
11901 read the base address. */
11902 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11903 buffer += 2 * addr_size;
11904 offset += 2 * addr_size;
11905 found_base = 1;
11906 }
11907
11908 low_set = 0;
11909
11910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11911
11912 while (1)
11913 {
11914 CORE_ADDR range_beginning, range_end;
11915
11916 range_beginning = read_address (obfd, buffer, cu, &dummy);
11917 buffer += addr_size;
11918 range_end = read_address (obfd, buffer, cu, &dummy);
11919 buffer += addr_size;
11920 offset += 2 * addr_size;
11921
11922 /* An end of list marker is a pair of zero addresses. */
11923 if (range_beginning == 0 && range_end == 0)
11924 /* Found the end of list entry. */
11925 break;
11926
11927 /* Each base address selection entry is a pair of 2 values.
11928 The first is the largest possible address, the second is
11929 the base address. Check for a base address here. */
11930 if ((range_beginning & mask) == mask)
11931 {
11932 /* If we found the largest possible address, then
11933 read the base address. */
11934 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11935 found_base = 1;
11936 continue;
11937 }
11938
11939 if (!found_base)
11940 {
11941 /* We have no valid base address for the ranges
11942 data. */
11943 complaint (&symfile_complaints,
11944 _("Invalid .debug_ranges data (no base address)"));
11945 return 0;
11946 }
11947
11948 if (range_beginning > range_end)
11949 {
11950 /* Inverted range entries are invalid. */
11951 complaint (&symfile_complaints,
11952 _("Invalid .debug_ranges data (inverted range)"));
11953 return 0;
11954 }
11955
11956 /* Empty range entries have no effect. */
11957 if (range_beginning == range_end)
11958 continue;
11959
11960 range_beginning += base;
11961 range_end += base;
11962
11963 /* A not-uncommon case of bad debug info.
11964 Don't pollute the addrmap with bad data. */
11965 if (range_beginning + baseaddr == 0
11966 && !dwarf2_per_objfile->has_section_at_zero)
11967 {
11968 complaint (&symfile_complaints,
11969 _(".debug_ranges entry has start address of zero"
11970 " [in module %s]"), objfile_name (objfile));
11971 continue;
11972 }
11973
11974 if (ranges_pst != NULL)
11975 {
11976 CORE_ADDR lowpc;
11977 CORE_ADDR highpc;
11978
11979 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11980 range_beginning + baseaddr);
11981 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11982 range_end + baseaddr);
11983 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11984 ranges_pst);
11985 }
11986
11987 /* FIXME: This is recording everything as a low-high
11988 segment of consecutive addresses. We should have a
11989 data structure for discontiguous block ranges
11990 instead. */
11991 if (! low_set)
11992 {
11993 low = range_beginning;
11994 high = range_end;
11995 low_set = 1;
11996 }
11997 else
11998 {
11999 if (range_beginning < low)
12000 low = range_beginning;
12001 if (range_end > high)
12002 high = range_end;
12003 }
12004 }
12005
12006 if (! low_set)
12007 /* If the first entry is an end-of-list marker, the range
12008 describes an empty scope, i.e. no instructions. */
12009 return 0;
12010
12011 if (low_return)
12012 *low_return = low;
12013 if (high_return)
12014 *high_return = high;
12015 return 1;
12016 }
12017
12018 /* Get low and high pc attributes from a die. Return 1 if the attributes
12019 are present and valid, otherwise, return 0. Return -1 if the range is
12020 discontinuous, i.e. derived from DW_AT_ranges information. */
12021
12022 static int
12023 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12024 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12025 struct partial_symtab *pst)
12026 {
12027 struct attribute *attr;
12028 struct attribute *attr_high;
12029 CORE_ADDR low = 0;
12030 CORE_ADDR high = 0;
12031 int ret = 0;
12032
12033 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12034 if (attr_high)
12035 {
12036 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12037 if (attr)
12038 {
12039 low = attr_value_as_address (attr);
12040 high = attr_value_as_address (attr_high);
12041 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12042 high += low;
12043 }
12044 else
12045 /* Found high w/o low attribute. */
12046 return 0;
12047
12048 /* Found consecutive range of addresses. */
12049 ret = 1;
12050 }
12051 else
12052 {
12053 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12054 if (attr != NULL)
12055 {
12056 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12057 We take advantage of the fact that DW_AT_ranges does not appear
12058 in DW_TAG_compile_unit of DWO files. */
12059 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12060 unsigned int ranges_offset = (DW_UNSND (attr)
12061 + (need_ranges_base
12062 ? cu->ranges_base
12063 : 0));
12064
12065 /* Value of the DW_AT_ranges attribute is the offset in the
12066 .debug_ranges section. */
12067 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12068 return 0;
12069 /* Found discontinuous range of addresses. */
12070 ret = -1;
12071 }
12072 }
12073
12074 /* read_partial_die has also the strict LOW < HIGH requirement. */
12075 if (high <= low)
12076 return 0;
12077
12078 /* When using the GNU linker, .gnu.linkonce. sections are used to
12079 eliminate duplicate copies of functions and vtables and such.
12080 The linker will arbitrarily choose one and discard the others.
12081 The AT_*_pc values for such functions refer to local labels in
12082 these sections. If the section from that file was discarded, the
12083 labels are not in the output, so the relocs get a value of 0.
12084 If this is a discarded function, mark the pc bounds as invalid,
12085 so that GDB will ignore it. */
12086 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12087 return 0;
12088
12089 *lowpc = low;
12090 if (highpc)
12091 *highpc = high;
12092 return ret;
12093 }
12094
12095 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12096 its low and high PC addresses. Do nothing if these addresses could not
12097 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12098 and HIGHPC to the high address if greater than HIGHPC. */
12099
12100 static void
12101 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12102 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12103 struct dwarf2_cu *cu)
12104 {
12105 CORE_ADDR low, high;
12106 struct die_info *child = die->child;
12107
12108 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12109 {
12110 *lowpc = min (*lowpc, low);
12111 *highpc = max (*highpc, high);
12112 }
12113
12114 /* If the language does not allow nested subprograms (either inside
12115 subprograms or lexical blocks), we're done. */
12116 if (cu->language != language_ada)
12117 return;
12118
12119 /* Check all the children of the given DIE. If it contains nested
12120 subprograms, then check their pc bounds. Likewise, we need to
12121 check lexical blocks as well, as they may also contain subprogram
12122 definitions. */
12123 while (child && child->tag)
12124 {
12125 if (child->tag == DW_TAG_subprogram
12126 || child->tag == DW_TAG_lexical_block)
12127 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12128 child = sibling_die (child);
12129 }
12130 }
12131
12132 /* Get the low and high pc's represented by the scope DIE, and store
12133 them in *LOWPC and *HIGHPC. If the correct values can't be
12134 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12135
12136 static void
12137 get_scope_pc_bounds (struct die_info *die,
12138 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12139 struct dwarf2_cu *cu)
12140 {
12141 CORE_ADDR best_low = (CORE_ADDR) -1;
12142 CORE_ADDR best_high = (CORE_ADDR) 0;
12143 CORE_ADDR current_low, current_high;
12144
12145 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12146 {
12147 best_low = current_low;
12148 best_high = current_high;
12149 }
12150 else
12151 {
12152 struct die_info *child = die->child;
12153
12154 while (child && child->tag)
12155 {
12156 switch (child->tag) {
12157 case DW_TAG_subprogram:
12158 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12159 break;
12160 case DW_TAG_namespace:
12161 case DW_TAG_module:
12162 /* FIXME: carlton/2004-01-16: Should we do this for
12163 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12164 that current GCC's always emit the DIEs corresponding
12165 to definitions of methods of classes as children of a
12166 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12167 the DIEs giving the declarations, which could be
12168 anywhere). But I don't see any reason why the
12169 standards says that they have to be there. */
12170 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12171
12172 if (current_low != ((CORE_ADDR) -1))
12173 {
12174 best_low = min (best_low, current_low);
12175 best_high = max (best_high, current_high);
12176 }
12177 break;
12178 default:
12179 /* Ignore. */
12180 break;
12181 }
12182
12183 child = sibling_die (child);
12184 }
12185 }
12186
12187 *lowpc = best_low;
12188 *highpc = best_high;
12189 }
12190
12191 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12192 in DIE. */
12193
12194 static void
12195 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12196 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12197 {
12198 struct objfile *objfile = cu->objfile;
12199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12200 struct attribute *attr;
12201 struct attribute *attr_high;
12202
12203 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12204 if (attr_high)
12205 {
12206 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12207 if (attr)
12208 {
12209 CORE_ADDR low = attr_value_as_address (attr);
12210 CORE_ADDR high = attr_value_as_address (attr_high);
12211
12212 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12213 high += low;
12214
12215 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12216 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12217 record_block_range (block, low, high - 1);
12218 }
12219 }
12220
12221 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12222 if (attr)
12223 {
12224 bfd *obfd = objfile->obfd;
12225 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12226 We take advantage of the fact that DW_AT_ranges does not appear
12227 in DW_TAG_compile_unit of DWO files. */
12228 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12229
12230 /* The value of the DW_AT_ranges attribute is the offset of the
12231 address range list in the .debug_ranges section. */
12232 unsigned long offset = (DW_UNSND (attr)
12233 + (need_ranges_base ? cu->ranges_base : 0));
12234 const gdb_byte *buffer;
12235
12236 /* For some target architectures, but not others, the
12237 read_address function sign-extends the addresses it returns.
12238 To recognize base address selection entries, we need a
12239 mask. */
12240 unsigned int addr_size = cu->header.addr_size;
12241 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12242
12243 /* The base address, to which the next pair is relative. Note
12244 that this 'base' is a DWARF concept: most entries in a range
12245 list are relative, to reduce the number of relocs against the
12246 debugging information. This is separate from this function's
12247 'baseaddr' argument, which GDB uses to relocate debugging
12248 information from a shared library based on the address at
12249 which the library was loaded. */
12250 CORE_ADDR base = cu->base_address;
12251 int base_known = cu->base_known;
12252
12253 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12254 if (offset >= dwarf2_per_objfile->ranges.size)
12255 {
12256 complaint (&symfile_complaints,
12257 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12258 offset);
12259 return;
12260 }
12261 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12262
12263 for (;;)
12264 {
12265 unsigned int bytes_read;
12266 CORE_ADDR start, end;
12267
12268 start = read_address (obfd, buffer, cu, &bytes_read);
12269 buffer += bytes_read;
12270 end = read_address (obfd, buffer, cu, &bytes_read);
12271 buffer += bytes_read;
12272
12273 /* Did we find the end of the range list? */
12274 if (start == 0 && end == 0)
12275 break;
12276
12277 /* Did we find a base address selection entry? */
12278 else if ((start & base_select_mask) == base_select_mask)
12279 {
12280 base = end;
12281 base_known = 1;
12282 }
12283
12284 /* We found an ordinary address range. */
12285 else
12286 {
12287 if (!base_known)
12288 {
12289 complaint (&symfile_complaints,
12290 _("Invalid .debug_ranges data "
12291 "(no base address)"));
12292 return;
12293 }
12294
12295 if (start > end)
12296 {
12297 /* Inverted range entries are invalid. */
12298 complaint (&symfile_complaints,
12299 _("Invalid .debug_ranges data "
12300 "(inverted range)"));
12301 return;
12302 }
12303
12304 /* Empty range entries have no effect. */
12305 if (start == end)
12306 continue;
12307
12308 start += base + baseaddr;
12309 end += base + baseaddr;
12310
12311 /* A not-uncommon case of bad debug info.
12312 Don't pollute the addrmap with bad data. */
12313 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12314 {
12315 complaint (&symfile_complaints,
12316 _(".debug_ranges entry has start address of zero"
12317 " [in module %s]"), objfile_name (objfile));
12318 continue;
12319 }
12320
12321 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12322 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12323 record_block_range (block, start, end - 1);
12324 }
12325 }
12326 }
12327 }
12328
12329 /* Check whether the producer field indicates either of GCC < 4.6, or the
12330 Intel C/C++ compiler, and cache the result in CU. */
12331
12332 static void
12333 check_producer (struct dwarf2_cu *cu)
12334 {
12335 const char *cs;
12336 int major, minor;
12337
12338 if (cu->producer == NULL)
12339 {
12340 /* For unknown compilers expect their behavior is DWARF version
12341 compliant.
12342
12343 GCC started to support .debug_types sections by -gdwarf-4 since
12344 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12345 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12346 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12347 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12348 }
12349 else if (producer_is_gcc (cu->producer, &major, &minor))
12350 {
12351 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12352 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12353 }
12354 else if (startswith (cu->producer, "Intel(R) C"))
12355 cu->producer_is_icc = 1;
12356 else
12357 {
12358 /* For other non-GCC compilers, expect their behavior is DWARF version
12359 compliant. */
12360 }
12361
12362 cu->checked_producer = 1;
12363 }
12364
12365 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12366 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12367 during 4.6.0 experimental. */
12368
12369 static int
12370 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12371 {
12372 if (!cu->checked_producer)
12373 check_producer (cu);
12374
12375 return cu->producer_is_gxx_lt_4_6;
12376 }
12377
12378 /* Return the default accessibility type if it is not overriden by
12379 DW_AT_accessibility. */
12380
12381 static enum dwarf_access_attribute
12382 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12383 {
12384 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12385 {
12386 /* The default DWARF 2 accessibility for members is public, the default
12387 accessibility for inheritance is private. */
12388
12389 if (die->tag != DW_TAG_inheritance)
12390 return DW_ACCESS_public;
12391 else
12392 return DW_ACCESS_private;
12393 }
12394 else
12395 {
12396 /* DWARF 3+ defines the default accessibility a different way. The same
12397 rules apply now for DW_TAG_inheritance as for the members and it only
12398 depends on the container kind. */
12399
12400 if (die->parent->tag == DW_TAG_class_type)
12401 return DW_ACCESS_private;
12402 else
12403 return DW_ACCESS_public;
12404 }
12405 }
12406
12407 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12408 offset. If the attribute was not found return 0, otherwise return
12409 1. If it was found but could not properly be handled, set *OFFSET
12410 to 0. */
12411
12412 static int
12413 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12414 LONGEST *offset)
12415 {
12416 struct attribute *attr;
12417
12418 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12419 if (attr != NULL)
12420 {
12421 *offset = 0;
12422
12423 /* Note that we do not check for a section offset first here.
12424 This is because DW_AT_data_member_location is new in DWARF 4,
12425 so if we see it, we can assume that a constant form is really
12426 a constant and not a section offset. */
12427 if (attr_form_is_constant (attr))
12428 *offset = dwarf2_get_attr_constant_value (attr, 0);
12429 else if (attr_form_is_section_offset (attr))
12430 dwarf2_complex_location_expr_complaint ();
12431 else if (attr_form_is_block (attr))
12432 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12433 else
12434 dwarf2_complex_location_expr_complaint ();
12435
12436 return 1;
12437 }
12438
12439 return 0;
12440 }
12441
12442 /* Add an aggregate field to the field list. */
12443
12444 static void
12445 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12446 struct dwarf2_cu *cu)
12447 {
12448 struct objfile *objfile = cu->objfile;
12449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12450 struct nextfield *new_field;
12451 struct attribute *attr;
12452 struct field *fp;
12453 const char *fieldname = "";
12454
12455 /* Allocate a new field list entry and link it in. */
12456 new_field = XNEW (struct nextfield);
12457 make_cleanup (xfree, new_field);
12458 memset (new_field, 0, sizeof (struct nextfield));
12459
12460 if (die->tag == DW_TAG_inheritance)
12461 {
12462 new_field->next = fip->baseclasses;
12463 fip->baseclasses = new_field;
12464 }
12465 else
12466 {
12467 new_field->next = fip->fields;
12468 fip->fields = new_field;
12469 }
12470 fip->nfields++;
12471
12472 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12473 if (attr)
12474 new_field->accessibility = DW_UNSND (attr);
12475 else
12476 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12477 if (new_field->accessibility != DW_ACCESS_public)
12478 fip->non_public_fields = 1;
12479
12480 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12481 if (attr)
12482 new_field->virtuality = DW_UNSND (attr);
12483 else
12484 new_field->virtuality = DW_VIRTUALITY_none;
12485
12486 fp = &new_field->field;
12487
12488 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12489 {
12490 LONGEST offset;
12491
12492 /* Data member other than a C++ static data member. */
12493
12494 /* Get type of field. */
12495 fp->type = die_type (die, cu);
12496
12497 SET_FIELD_BITPOS (*fp, 0);
12498
12499 /* Get bit size of field (zero if none). */
12500 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12501 if (attr)
12502 {
12503 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12504 }
12505 else
12506 {
12507 FIELD_BITSIZE (*fp) = 0;
12508 }
12509
12510 /* Get bit offset of field. */
12511 if (handle_data_member_location (die, cu, &offset))
12512 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12513 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12514 if (attr)
12515 {
12516 if (gdbarch_bits_big_endian (gdbarch))
12517 {
12518 /* For big endian bits, the DW_AT_bit_offset gives the
12519 additional bit offset from the MSB of the containing
12520 anonymous object to the MSB of the field. We don't
12521 have to do anything special since we don't need to
12522 know the size of the anonymous object. */
12523 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12524 }
12525 else
12526 {
12527 /* For little endian bits, compute the bit offset to the
12528 MSB of the anonymous object, subtract off the number of
12529 bits from the MSB of the field to the MSB of the
12530 object, and then subtract off the number of bits of
12531 the field itself. The result is the bit offset of
12532 the LSB of the field. */
12533 int anonymous_size;
12534 int bit_offset = DW_UNSND (attr);
12535
12536 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12537 if (attr)
12538 {
12539 /* The size of the anonymous object containing
12540 the bit field is explicit, so use the
12541 indicated size (in bytes). */
12542 anonymous_size = DW_UNSND (attr);
12543 }
12544 else
12545 {
12546 /* The size of the anonymous object containing
12547 the bit field must be inferred from the type
12548 attribute of the data member containing the
12549 bit field. */
12550 anonymous_size = TYPE_LENGTH (fp->type);
12551 }
12552 SET_FIELD_BITPOS (*fp,
12553 (FIELD_BITPOS (*fp)
12554 + anonymous_size * bits_per_byte
12555 - bit_offset - FIELD_BITSIZE (*fp)));
12556 }
12557 }
12558
12559 /* Get name of field. */
12560 fieldname = dwarf2_name (die, cu);
12561 if (fieldname == NULL)
12562 fieldname = "";
12563
12564 /* The name is already allocated along with this objfile, so we don't
12565 need to duplicate it for the type. */
12566 fp->name = fieldname;
12567
12568 /* Change accessibility for artificial fields (e.g. virtual table
12569 pointer or virtual base class pointer) to private. */
12570 if (dwarf2_attr (die, DW_AT_artificial, cu))
12571 {
12572 FIELD_ARTIFICIAL (*fp) = 1;
12573 new_field->accessibility = DW_ACCESS_private;
12574 fip->non_public_fields = 1;
12575 }
12576 }
12577 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12578 {
12579 /* C++ static member. */
12580
12581 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12582 is a declaration, but all versions of G++ as of this writing
12583 (so through at least 3.2.1) incorrectly generate
12584 DW_TAG_variable tags. */
12585
12586 const char *physname;
12587
12588 /* Get name of field. */
12589 fieldname = dwarf2_name (die, cu);
12590 if (fieldname == NULL)
12591 return;
12592
12593 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12594 if (attr
12595 /* Only create a symbol if this is an external value.
12596 new_symbol checks this and puts the value in the global symbol
12597 table, which we want. If it is not external, new_symbol
12598 will try to put the value in cu->list_in_scope which is wrong. */
12599 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12600 {
12601 /* A static const member, not much different than an enum as far as
12602 we're concerned, except that we can support more types. */
12603 new_symbol (die, NULL, cu);
12604 }
12605
12606 /* Get physical name. */
12607 physname = dwarf2_physname (fieldname, die, cu);
12608
12609 /* The name is already allocated along with this objfile, so we don't
12610 need to duplicate it for the type. */
12611 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12612 FIELD_TYPE (*fp) = die_type (die, cu);
12613 FIELD_NAME (*fp) = fieldname;
12614 }
12615 else if (die->tag == DW_TAG_inheritance)
12616 {
12617 LONGEST offset;
12618
12619 /* C++ base class field. */
12620 if (handle_data_member_location (die, cu, &offset))
12621 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12622 FIELD_BITSIZE (*fp) = 0;
12623 FIELD_TYPE (*fp) = die_type (die, cu);
12624 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12625 fip->nbaseclasses++;
12626 }
12627 }
12628
12629 /* Add a typedef defined in the scope of the FIP's class. */
12630
12631 static void
12632 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12633 struct dwarf2_cu *cu)
12634 {
12635 struct objfile *objfile = cu->objfile;
12636 struct typedef_field_list *new_field;
12637 struct attribute *attr;
12638 struct typedef_field *fp;
12639 char *fieldname = "";
12640
12641 /* Allocate a new field list entry and link it in. */
12642 new_field = XCNEW (struct typedef_field_list);
12643 make_cleanup (xfree, new_field);
12644
12645 gdb_assert (die->tag == DW_TAG_typedef);
12646
12647 fp = &new_field->field;
12648
12649 /* Get name of field. */
12650 fp->name = dwarf2_name (die, cu);
12651 if (fp->name == NULL)
12652 return;
12653
12654 fp->type = read_type_die (die, cu);
12655
12656 new_field->next = fip->typedef_field_list;
12657 fip->typedef_field_list = new_field;
12658 fip->typedef_field_list_count++;
12659 }
12660
12661 /* Create the vector of fields, and attach it to the type. */
12662
12663 static void
12664 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12665 struct dwarf2_cu *cu)
12666 {
12667 int nfields = fip->nfields;
12668
12669 /* Record the field count, allocate space for the array of fields,
12670 and create blank accessibility bitfields if necessary. */
12671 TYPE_NFIELDS (type) = nfields;
12672 TYPE_FIELDS (type) = (struct field *)
12673 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12674 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12675
12676 if (fip->non_public_fields && cu->language != language_ada)
12677 {
12678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12679
12680 TYPE_FIELD_PRIVATE_BITS (type) =
12681 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12682 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12683
12684 TYPE_FIELD_PROTECTED_BITS (type) =
12685 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12686 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12687
12688 TYPE_FIELD_IGNORE_BITS (type) =
12689 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12690 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12691 }
12692
12693 /* If the type has baseclasses, allocate and clear a bit vector for
12694 TYPE_FIELD_VIRTUAL_BITS. */
12695 if (fip->nbaseclasses && cu->language != language_ada)
12696 {
12697 int num_bytes = B_BYTES (fip->nbaseclasses);
12698 unsigned char *pointer;
12699
12700 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12701 pointer = TYPE_ALLOC (type, num_bytes);
12702 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12703 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12704 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12705 }
12706
12707 /* Copy the saved-up fields into the field vector. Start from the head of
12708 the list, adding to the tail of the field array, so that they end up in
12709 the same order in the array in which they were added to the list. */
12710 while (nfields-- > 0)
12711 {
12712 struct nextfield *fieldp;
12713
12714 if (fip->fields)
12715 {
12716 fieldp = fip->fields;
12717 fip->fields = fieldp->next;
12718 }
12719 else
12720 {
12721 fieldp = fip->baseclasses;
12722 fip->baseclasses = fieldp->next;
12723 }
12724
12725 TYPE_FIELD (type, nfields) = fieldp->field;
12726 switch (fieldp->accessibility)
12727 {
12728 case DW_ACCESS_private:
12729 if (cu->language != language_ada)
12730 SET_TYPE_FIELD_PRIVATE (type, nfields);
12731 break;
12732
12733 case DW_ACCESS_protected:
12734 if (cu->language != language_ada)
12735 SET_TYPE_FIELD_PROTECTED (type, nfields);
12736 break;
12737
12738 case DW_ACCESS_public:
12739 break;
12740
12741 default:
12742 /* Unknown accessibility. Complain and treat it as public. */
12743 {
12744 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12745 fieldp->accessibility);
12746 }
12747 break;
12748 }
12749 if (nfields < fip->nbaseclasses)
12750 {
12751 switch (fieldp->virtuality)
12752 {
12753 case DW_VIRTUALITY_virtual:
12754 case DW_VIRTUALITY_pure_virtual:
12755 if (cu->language == language_ada)
12756 error (_("unexpected virtuality in component of Ada type"));
12757 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12758 break;
12759 }
12760 }
12761 }
12762 }
12763
12764 /* Return true if this member function is a constructor, false
12765 otherwise. */
12766
12767 static int
12768 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12769 {
12770 const char *fieldname;
12771 const char *type_name;
12772 int len;
12773
12774 if (die->parent == NULL)
12775 return 0;
12776
12777 if (die->parent->tag != DW_TAG_structure_type
12778 && die->parent->tag != DW_TAG_union_type
12779 && die->parent->tag != DW_TAG_class_type)
12780 return 0;
12781
12782 fieldname = dwarf2_name (die, cu);
12783 type_name = dwarf2_name (die->parent, cu);
12784 if (fieldname == NULL || type_name == NULL)
12785 return 0;
12786
12787 len = strlen (fieldname);
12788 return (strncmp (fieldname, type_name, len) == 0
12789 && (type_name[len] == '\0' || type_name[len] == '<'));
12790 }
12791
12792 /* Add a member function to the proper fieldlist. */
12793
12794 static void
12795 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12796 struct type *type, struct dwarf2_cu *cu)
12797 {
12798 struct objfile *objfile = cu->objfile;
12799 struct attribute *attr;
12800 struct fnfieldlist *flp;
12801 int i;
12802 struct fn_field *fnp;
12803 const char *fieldname;
12804 struct nextfnfield *new_fnfield;
12805 struct type *this_type;
12806 enum dwarf_access_attribute accessibility;
12807
12808 if (cu->language == language_ada)
12809 error (_("unexpected member function in Ada type"));
12810
12811 /* Get name of member function. */
12812 fieldname = dwarf2_name (die, cu);
12813 if (fieldname == NULL)
12814 return;
12815
12816 /* Look up member function name in fieldlist. */
12817 for (i = 0; i < fip->nfnfields; i++)
12818 {
12819 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12820 break;
12821 }
12822
12823 /* Create new list element if necessary. */
12824 if (i < fip->nfnfields)
12825 flp = &fip->fnfieldlists[i];
12826 else
12827 {
12828 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12829 {
12830 fip->fnfieldlists = (struct fnfieldlist *)
12831 xrealloc (fip->fnfieldlists,
12832 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12833 * sizeof (struct fnfieldlist));
12834 if (fip->nfnfields == 0)
12835 make_cleanup (free_current_contents, &fip->fnfieldlists);
12836 }
12837 flp = &fip->fnfieldlists[fip->nfnfields];
12838 flp->name = fieldname;
12839 flp->length = 0;
12840 flp->head = NULL;
12841 i = fip->nfnfields++;
12842 }
12843
12844 /* Create a new member function field and chain it to the field list
12845 entry. */
12846 new_fnfield = XNEW (struct nextfnfield);
12847 make_cleanup (xfree, new_fnfield);
12848 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12849 new_fnfield->next = flp->head;
12850 flp->head = new_fnfield;
12851 flp->length++;
12852
12853 /* Fill in the member function field info. */
12854 fnp = &new_fnfield->fnfield;
12855
12856 /* Delay processing of the physname until later. */
12857 if (cu->language == language_cplus || cu->language == language_java)
12858 {
12859 add_to_method_list (type, i, flp->length - 1, fieldname,
12860 die, cu);
12861 }
12862 else
12863 {
12864 const char *physname = dwarf2_physname (fieldname, die, cu);
12865 fnp->physname = physname ? physname : "";
12866 }
12867
12868 fnp->type = alloc_type (objfile);
12869 this_type = read_type_die (die, cu);
12870 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12871 {
12872 int nparams = TYPE_NFIELDS (this_type);
12873
12874 /* TYPE is the domain of this method, and THIS_TYPE is the type
12875 of the method itself (TYPE_CODE_METHOD). */
12876 smash_to_method_type (fnp->type, type,
12877 TYPE_TARGET_TYPE (this_type),
12878 TYPE_FIELDS (this_type),
12879 TYPE_NFIELDS (this_type),
12880 TYPE_VARARGS (this_type));
12881
12882 /* Handle static member functions.
12883 Dwarf2 has no clean way to discern C++ static and non-static
12884 member functions. G++ helps GDB by marking the first
12885 parameter for non-static member functions (which is the this
12886 pointer) as artificial. We obtain this information from
12887 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12888 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12889 fnp->voffset = VOFFSET_STATIC;
12890 }
12891 else
12892 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12893 dwarf2_full_name (fieldname, die, cu));
12894
12895 /* Get fcontext from DW_AT_containing_type if present. */
12896 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12897 fnp->fcontext = die_containing_type (die, cu);
12898
12899 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12900 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12901
12902 /* Get accessibility. */
12903 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12904 if (attr)
12905 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12906 else
12907 accessibility = dwarf2_default_access_attribute (die, cu);
12908 switch (accessibility)
12909 {
12910 case DW_ACCESS_private:
12911 fnp->is_private = 1;
12912 break;
12913 case DW_ACCESS_protected:
12914 fnp->is_protected = 1;
12915 break;
12916 }
12917
12918 /* Check for artificial methods. */
12919 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12920 if (attr && DW_UNSND (attr) != 0)
12921 fnp->is_artificial = 1;
12922
12923 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12924
12925 /* Get index in virtual function table if it is a virtual member
12926 function. For older versions of GCC, this is an offset in the
12927 appropriate virtual table, as specified by DW_AT_containing_type.
12928 For everyone else, it is an expression to be evaluated relative
12929 to the object address. */
12930
12931 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12932 if (attr)
12933 {
12934 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12935 {
12936 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12937 {
12938 /* Old-style GCC. */
12939 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12940 }
12941 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12942 || (DW_BLOCK (attr)->size > 1
12943 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12944 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12945 {
12946 struct dwarf_block blk;
12947 int offset;
12948
12949 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12950 ? 1 : 2);
12951 blk.size = DW_BLOCK (attr)->size - offset;
12952 blk.data = DW_BLOCK (attr)->data + offset;
12953 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12954 if ((fnp->voffset % cu->header.addr_size) != 0)
12955 dwarf2_complex_location_expr_complaint ();
12956 else
12957 fnp->voffset /= cu->header.addr_size;
12958 fnp->voffset += 2;
12959 }
12960 else
12961 dwarf2_complex_location_expr_complaint ();
12962
12963 if (!fnp->fcontext)
12964 {
12965 /* If there is no `this' field and no DW_AT_containing_type,
12966 we cannot actually find a base class context for the
12967 vtable! */
12968 if (TYPE_NFIELDS (this_type) == 0
12969 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12970 {
12971 complaint (&symfile_complaints,
12972 _("cannot determine context for virtual member "
12973 "function \"%s\" (offset %d)"),
12974 fieldname, die->offset.sect_off);
12975 }
12976 else
12977 {
12978 fnp->fcontext
12979 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12980 }
12981 }
12982 }
12983 else if (attr_form_is_section_offset (attr))
12984 {
12985 dwarf2_complex_location_expr_complaint ();
12986 }
12987 else
12988 {
12989 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12990 fieldname);
12991 }
12992 }
12993 else
12994 {
12995 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12996 if (attr && DW_UNSND (attr))
12997 {
12998 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12999 complaint (&symfile_complaints,
13000 _("Member function \"%s\" (offset %d) is virtual "
13001 "but the vtable offset is not specified"),
13002 fieldname, die->offset.sect_off);
13003 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13004 TYPE_CPLUS_DYNAMIC (type) = 1;
13005 }
13006 }
13007 }
13008
13009 /* Create the vector of member function fields, and attach it to the type. */
13010
13011 static void
13012 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13013 struct dwarf2_cu *cu)
13014 {
13015 struct fnfieldlist *flp;
13016 int i;
13017
13018 if (cu->language == language_ada)
13019 error (_("unexpected member functions in Ada type"));
13020
13021 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13022 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13023 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13024
13025 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13026 {
13027 struct nextfnfield *nfp = flp->head;
13028 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13029 int k;
13030
13031 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13032 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13033 fn_flp->fn_fields = (struct fn_field *)
13034 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13035 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13036 fn_flp->fn_fields[k] = nfp->fnfield;
13037 }
13038
13039 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13040 }
13041
13042 /* Returns non-zero if NAME is the name of a vtable member in CU's
13043 language, zero otherwise. */
13044 static int
13045 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13046 {
13047 static const char vptr[] = "_vptr";
13048 static const char vtable[] = "vtable";
13049
13050 /* Look for the C++ and Java forms of the vtable. */
13051 if ((cu->language == language_java
13052 && startswith (name, vtable))
13053 || (startswith (name, vptr)
13054 && is_cplus_marker (name[sizeof (vptr) - 1])))
13055 return 1;
13056
13057 return 0;
13058 }
13059
13060 /* GCC outputs unnamed structures that are really pointers to member
13061 functions, with the ABI-specified layout. If TYPE describes
13062 such a structure, smash it into a member function type.
13063
13064 GCC shouldn't do this; it should just output pointer to member DIEs.
13065 This is GCC PR debug/28767. */
13066
13067 static void
13068 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13069 {
13070 struct type *pfn_type, *self_type, *new_type;
13071
13072 /* Check for a structure with no name and two children. */
13073 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13074 return;
13075
13076 /* Check for __pfn and __delta members. */
13077 if (TYPE_FIELD_NAME (type, 0) == NULL
13078 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13079 || TYPE_FIELD_NAME (type, 1) == NULL
13080 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13081 return;
13082
13083 /* Find the type of the method. */
13084 pfn_type = TYPE_FIELD_TYPE (type, 0);
13085 if (pfn_type == NULL
13086 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13087 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13088 return;
13089
13090 /* Look for the "this" argument. */
13091 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13092 if (TYPE_NFIELDS (pfn_type) == 0
13093 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13094 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13095 return;
13096
13097 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13098 new_type = alloc_type (objfile);
13099 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13100 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13101 TYPE_VARARGS (pfn_type));
13102 smash_to_methodptr_type (type, new_type);
13103 }
13104
13105 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13106 (icc). */
13107
13108 static int
13109 producer_is_icc (struct dwarf2_cu *cu)
13110 {
13111 if (!cu->checked_producer)
13112 check_producer (cu);
13113
13114 return cu->producer_is_icc;
13115 }
13116
13117 /* Called when we find the DIE that starts a structure or union scope
13118 (definition) to create a type for the structure or union. Fill in
13119 the type's name and general properties; the members will not be
13120 processed until process_structure_scope. A symbol table entry for
13121 the type will also not be done until process_structure_scope (assuming
13122 the type has a name).
13123
13124 NOTE: we need to call these functions regardless of whether or not the
13125 DIE has a DW_AT_name attribute, since it might be an anonymous
13126 structure or union. This gets the type entered into our set of
13127 user defined types. */
13128
13129 static struct type *
13130 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13131 {
13132 struct objfile *objfile = cu->objfile;
13133 struct type *type;
13134 struct attribute *attr;
13135 const char *name;
13136
13137 /* If the definition of this type lives in .debug_types, read that type.
13138 Don't follow DW_AT_specification though, that will take us back up
13139 the chain and we want to go down. */
13140 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13141 if (attr)
13142 {
13143 type = get_DW_AT_signature_type (die, attr, cu);
13144
13145 /* The type's CU may not be the same as CU.
13146 Ensure TYPE is recorded with CU in die_type_hash. */
13147 return set_die_type (die, type, cu);
13148 }
13149
13150 type = alloc_type (objfile);
13151 INIT_CPLUS_SPECIFIC (type);
13152
13153 name = dwarf2_name (die, cu);
13154 if (name != NULL)
13155 {
13156 if (cu->language == language_cplus
13157 || cu->language == language_java
13158 || cu->language == language_d)
13159 {
13160 const char *full_name = dwarf2_full_name (name, die, cu);
13161
13162 /* dwarf2_full_name might have already finished building the DIE's
13163 type. If so, there is no need to continue. */
13164 if (get_die_type (die, cu) != NULL)
13165 return get_die_type (die, cu);
13166
13167 TYPE_TAG_NAME (type) = full_name;
13168 if (die->tag == DW_TAG_structure_type
13169 || die->tag == DW_TAG_class_type)
13170 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13171 }
13172 else
13173 {
13174 /* The name is already allocated along with this objfile, so
13175 we don't need to duplicate it for the type. */
13176 TYPE_TAG_NAME (type) = name;
13177 if (die->tag == DW_TAG_class_type)
13178 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13179 }
13180 }
13181
13182 if (die->tag == DW_TAG_structure_type)
13183 {
13184 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13185 }
13186 else if (die->tag == DW_TAG_union_type)
13187 {
13188 TYPE_CODE (type) = TYPE_CODE_UNION;
13189 }
13190 else
13191 {
13192 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13193 }
13194
13195 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13196 TYPE_DECLARED_CLASS (type) = 1;
13197
13198 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13199 if (attr)
13200 {
13201 TYPE_LENGTH (type) = DW_UNSND (attr);
13202 }
13203 else
13204 {
13205 TYPE_LENGTH (type) = 0;
13206 }
13207
13208 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13209 {
13210 /* ICC does not output the required DW_AT_declaration
13211 on incomplete types, but gives them a size of zero. */
13212 TYPE_STUB (type) = 1;
13213 }
13214 else
13215 TYPE_STUB_SUPPORTED (type) = 1;
13216
13217 if (die_is_declaration (die, cu))
13218 TYPE_STUB (type) = 1;
13219 else if (attr == NULL && die->child == NULL
13220 && producer_is_realview (cu->producer))
13221 /* RealView does not output the required DW_AT_declaration
13222 on incomplete types. */
13223 TYPE_STUB (type) = 1;
13224
13225 /* We need to add the type field to the die immediately so we don't
13226 infinitely recurse when dealing with pointers to the structure
13227 type within the structure itself. */
13228 set_die_type (die, type, cu);
13229
13230 /* set_die_type should be already done. */
13231 set_descriptive_type (type, die, cu);
13232
13233 return type;
13234 }
13235
13236 /* Finish creating a structure or union type, including filling in
13237 its members and creating a symbol for it. */
13238
13239 static void
13240 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13241 {
13242 struct objfile *objfile = cu->objfile;
13243 struct die_info *child_die;
13244 struct type *type;
13245
13246 type = get_die_type (die, cu);
13247 if (type == NULL)
13248 type = read_structure_type (die, cu);
13249
13250 if (die->child != NULL && ! die_is_declaration (die, cu))
13251 {
13252 struct field_info fi;
13253 VEC (symbolp) *template_args = NULL;
13254 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13255
13256 memset (&fi, 0, sizeof (struct field_info));
13257
13258 child_die = die->child;
13259
13260 while (child_die && child_die->tag)
13261 {
13262 if (child_die->tag == DW_TAG_member
13263 || child_die->tag == DW_TAG_variable)
13264 {
13265 /* NOTE: carlton/2002-11-05: A C++ static data member
13266 should be a DW_TAG_member that is a declaration, but
13267 all versions of G++ as of this writing (so through at
13268 least 3.2.1) incorrectly generate DW_TAG_variable
13269 tags for them instead. */
13270 dwarf2_add_field (&fi, child_die, cu);
13271 }
13272 else if (child_die->tag == DW_TAG_subprogram)
13273 {
13274 /* C++ member function. */
13275 dwarf2_add_member_fn (&fi, child_die, type, cu);
13276 }
13277 else if (child_die->tag == DW_TAG_inheritance)
13278 {
13279 /* C++ base class field. */
13280 dwarf2_add_field (&fi, child_die, cu);
13281 }
13282 else if (child_die->tag == DW_TAG_typedef)
13283 dwarf2_add_typedef (&fi, child_die, cu);
13284 else if (child_die->tag == DW_TAG_template_type_param
13285 || child_die->tag == DW_TAG_template_value_param)
13286 {
13287 struct symbol *arg = new_symbol (child_die, NULL, cu);
13288
13289 if (arg != NULL)
13290 VEC_safe_push (symbolp, template_args, arg);
13291 }
13292
13293 child_die = sibling_die (child_die);
13294 }
13295
13296 /* Attach template arguments to type. */
13297 if (! VEC_empty (symbolp, template_args))
13298 {
13299 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13300 TYPE_N_TEMPLATE_ARGUMENTS (type)
13301 = VEC_length (symbolp, template_args);
13302 TYPE_TEMPLATE_ARGUMENTS (type)
13303 = XOBNEWVEC (&objfile->objfile_obstack,
13304 struct symbol *,
13305 TYPE_N_TEMPLATE_ARGUMENTS (type));
13306 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13307 VEC_address (symbolp, template_args),
13308 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13309 * sizeof (struct symbol *)));
13310 VEC_free (symbolp, template_args);
13311 }
13312
13313 /* Attach fields and member functions to the type. */
13314 if (fi.nfields)
13315 dwarf2_attach_fields_to_type (&fi, type, cu);
13316 if (fi.nfnfields)
13317 {
13318 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13319
13320 /* Get the type which refers to the base class (possibly this
13321 class itself) which contains the vtable pointer for the current
13322 class from the DW_AT_containing_type attribute. This use of
13323 DW_AT_containing_type is a GNU extension. */
13324
13325 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13326 {
13327 struct type *t = die_containing_type (die, cu);
13328
13329 set_type_vptr_basetype (type, t);
13330 if (type == t)
13331 {
13332 int i;
13333
13334 /* Our own class provides vtbl ptr. */
13335 for (i = TYPE_NFIELDS (t) - 1;
13336 i >= TYPE_N_BASECLASSES (t);
13337 --i)
13338 {
13339 const char *fieldname = TYPE_FIELD_NAME (t, i);
13340
13341 if (is_vtable_name (fieldname, cu))
13342 {
13343 set_type_vptr_fieldno (type, i);
13344 break;
13345 }
13346 }
13347
13348 /* Complain if virtual function table field not found. */
13349 if (i < TYPE_N_BASECLASSES (t))
13350 complaint (&symfile_complaints,
13351 _("virtual function table pointer "
13352 "not found when defining class '%s'"),
13353 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13354 "");
13355 }
13356 else
13357 {
13358 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13359 }
13360 }
13361 else if (cu->producer
13362 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13363 {
13364 /* The IBM XLC compiler does not provide direct indication
13365 of the containing type, but the vtable pointer is
13366 always named __vfp. */
13367
13368 int i;
13369
13370 for (i = TYPE_NFIELDS (type) - 1;
13371 i >= TYPE_N_BASECLASSES (type);
13372 --i)
13373 {
13374 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13375 {
13376 set_type_vptr_fieldno (type, i);
13377 set_type_vptr_basetype (type, type);
13378 break;
13379 }
13380 }
13381 }
13382 }
13383
13384 /* Copy fi.typedef_field_list linked list elements content into the
13385 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13386 if (fi.typedef_field_list)
13387 {
13388 int i = fi.typedef_field_list_count;
13389
13390 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13391 TYPE_TYPEDEF_FIELD_ARRAY (type)
13392 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13393 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13394
13395 /* Reverse the list order to keep the debug info elements order. */
13396 while (--i >= 0)
13397 {
13398 struct typedef_field *dest, *src;
13399
13400 dest = &TYPE_TYPEDEF_FIELD (type, i);
13401 src = &fi.typedef_field_list->field;
13402 fi.typedef_field_list = fi.typedef_field_list->next;
13403 *dest = *src;
13404 }
13405 }
13406
13407 do_cleanups (back_to);
13408
13409 if (HAVE_CPLUS_STRUCT (type))
13410 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13411 }
13412
13413 quirk_gcc_member_function_pointer (type, objfile);
13414
13415 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13416 snapshots) has been known to create a die giving a declaration
13417 for a class that has, as a child, a die giving a definition for a
13418 nested class. So we have to process our children even if the
13419 current die is a declaration. Normally, of course, a declaration
13420 won't have any children at all. */
13421
13422 child_die = die->child;
13423
13424 while (child_die != NULL && child_die->tag)
13425 {
13426 if (child_die->tag == DW_TAG_member
13427 || child_die->tag == DW_TAG_variable
13428 || child_die->tag == DW_TAG_inheritance
13429 || child_die->tag == DW_TAG_template_value_param
13430 || child_die->tag == DW_TAG_template_type_param)
13431 {
13432 /* Do nothing. */
13433 }
13434 else
13435 process_die (child_die, cu);
13436
13437 child_die = sibling_die (child_die);
13438 }
13439
13440 /* Do not consider external references. According to the DWARF standard,
13441 these DIEs are identified by the fact that they have no byte_size
13442 attribute, and a declaration attribute. */
13443 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13444 || !die_is_declaration (die, cu))
13445 new_symbol (die, type, cu);
13446 }
13447
13448 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13449 update TYPE using some information only available in DIE's children. */
13450
13451 static void
13452 update_enumeration_type_from_children (struct die_info *die,
13453 struct type *type,
13454 struct dwarf2_cu *cu)
13455 {
13456 struct obstack obstack;
13457 struct die_info *child_die;
13458 int unsigned_enum = 1;
13459 int flag_enum = 1;
13460 ULONGEST mask = 0;
13461 struct cleanup *old_chain;
13462
13463 obstack_init (&obstack);
13464 old_chain = make_cleanup_obstack_free (&obstack);
13465
13466 for (child_die = die->child;
13467 child_die != NULL && child_die->tag;
13468 child_die = sibling_die (child_die))
13469 {
13470 struct attribute *attr;
13471 LONGEST value;
13472 const gdb_byte *bytes;
13473 struct dwarf2_locexpr_baton *baton;
13474 const char *name;
13475
13476 if (child_die->tag != DW_TAG_enumerator)
13477 continue;
13478
13479 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13480 if (attr == NULL)
13481 continue;
13482
13483 name = dwarf2_name (child_die, cu);
13484 if (name == NULL)
13485 name = "<anonymous enumerator>";
13486
13487 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13488 &value, &bytes, &baton);
13489 if (value < 0)
13490 {
13491 unsigned_enum = 0;
13492 flag_enum = 0;
13493 }
13494 else if ((mask & value) != 0)
13495 flag_enum = 0;
13496 else
13497 mask |= value;
13498
13499 /* If we already know that the enum type is neither unsigned, nor
13500 a flag type, no need to look at the rest of the enumerates. */
13501 if (!unsigned_enum && !flag_enum)
13502 break;
13503 }
13504
13505 if (unsigned_enum)
13506 TYPE_UNSIGNED (type) = 1;
13507 if (flag_enum)
13508 TYPE_FLAG_ENUM (type) = 1;
13509
13510 do_cleanups (old_chain);
13511 }
13512
13513 /* Given a DW_AT_enumeration_type die, set its type. We do not
13514 complete the type's fields yet, or create any symbols. */
13515
13516 static struct type *
13517 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13518 {
13519 struct objfile *objfile = cu->objfile;
13520 struct type *type;
13521 struct attribute *attr;
13522 const char *name;
13523
13524 /* If the definition of this type lives in .debug_types, read that type.
13525 Don't follow DW_AT_specification though, that will take us back up
13526 the chain and we want to go down. */
13527 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13528 if (attr)
13529 {
13530 type = get_DW_AT_signature_type (die, attr, cu);
13531
13532 /* The type's CU may not be the same as CU.
13533 Ensure TYPE is recorded with CU in die_type_hash. */
13534 return set_die_type (die, type, cu);
13535 }
13536
13537 type = alloc_type (objfile);
13538
13539 TYPE_CODE (type) = TYPE_CODE_ENUM;
13540 name = dwarf2_full_name (NULL, die, cu);
13541 if (name != NULL)
13542 TYPE_TAG_NAME (type) = name;
13543
13544 attr = dwarf2_attr (die, DW_AT_type, cu);
13545 if (attr != NULL)
13546 {
13547 struct type *underlying_type = die_type (die, cu);
13548
13549 TYPE_TARGET_TYPE (type) = underlying_type;
13550 }
13551
13552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13553 if (attr)
13554 {
13555 TYPE_LENGTH (type) = DW_UNSND (attr);
13556 }
13557 else
13558 {
13559 TYPE_LENGTH (type) = 0;
13560 }
13561
13562 /* The enumeration DIE can be incomplete. In Ada, any type can be
13563 declared as private in the package spec, and then defined only
13564 inside the package body. Such types are known as Taft Amendment
13565 Types. When another package uses such a type, an incomplete DIE
13566 may be generated by the compiler. */
13567 if (die_is_declaration (die, cu))
13568 TYPE_STUB (type) = 1;
13569
13570 /* Finish the creation of this type by using the enum's children.
13571 We must call this even when the underlying type has been provided
13572 so that we can determine if we're looking at a "flag" enum. */
13573 update_enumeration_type_from_children (die, type, cu);
13574
13575 /* If this type has an underlying type that is not a stub, then we
13576 may use its attributes. We always use the "unsigned" attribute
13577 in this situation, because ordinarily we guess whether the type
13578 is unsigned -- but the guess can be wrong and the underlying type
13579 can tell us the reality. However, we defer to a local size
13580 attribute if one exists, because this lets the compiler override
13581 the underlying type if needed. */
13582 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13583 {
13584 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13585 if (TYPE_LENGTH (type) == 0)
13586 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13587 }
13588
13589 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13590
13591 return set_die_type (die, type, cu);
13592 }
13593
13594 /* Given a pointer to a die which begins an enumeration, process all
13595 the dies that define the members of the enumeration, and create the
13596 symbol for the enumeration type.
13597
13598 NOTE: We reverse the order of the element list. */
13599
13600 static void
13601 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13602 {
13603 struct type *this_type;
13604
13605 this_type = get_die_type (die, cu);
13606 if (this_type == NULL)
13607 this_type = read_enumeration_type (die, cu);
13608
13609 if (die->child != NULL)
13610 {
13611 struct die_info *child_die;
13612 struct symbol *sym;
13613 struct field *fields = NULL;
13614 int num_fields = 0;
13615 const char *name;
13616
13617 child_die = die->child;
13618 while (child_die && child_die->tag)
13619 {
13620 if (child_die->tag != DW_TAG_enumerator)
13621 {
13622 process_die (child_die, cu);
13623 }
13624 else
13625 {
13626 name = dwarf2_name (child_die, cu);
13627 if (name)
13628 {
13629 sym = new_symbol (child_die, this_type, cu);
13630
13631 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13632 {
13633 fields = (struct field *)
13634 xrealloc (fields,
13635 (num_fields + DW_FIELD_ALLOC_CHUNK)
13636 * sizeof (struct field));
13637 }
13638
13639 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13640 FIELD_TYPE (fields[num_fields]) = NULL;
13641 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13642 FIELD_BITSIZE (fields[num_fields]) = 0;
13643
13644 num_fields++;
13645 }
13646 }
13647
13648 child_die = sibling_die (child_die);
13649 }
13650
13651 if (num_fields)
13652 {
13653 TYPE_NFIELDS (this_type) = num_fields;
13654 TYPE_FIELDS (this_type) = (struct field *)
13655 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13656 memcpy (TYPE_FIELDS (this_type), fields,
13657 sizeof (struct field) * num_fields);
13658 xfree (fields);
13659 }
13660 }
13661
13662 /* If we are reading an enum from a .debug_types unit, and the enum
13663 is a declaration, and the enum is not the signatured type in the
13664 unit, then we do not want to add a symbol for it. Adding a
13665 symbol would in some cases obscure the true definition of the
13666 enum, giving users an incomplete type when the definition is
13667 actually available. Note that we do not want to do this for all
13668 enums which are just declarations, because C++0x allows forward
13669 enum declarations. */
13670 if (cu->per_cu->is_debug_types
13671 && die_is_declaration (die, cu))
13672 {
13673 struct signatured_type *sig_type;
13674
13675 sig_type = (struct signatured_type *) cu->per_cu;
13676 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13677 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13678 return;
13679 }
13680
13681 new_symbol (die, this_type, cu);
13682 }
13683
13684 /* Extract all information from a DW_TAG_array_type DIE and put it in
13685 the DIE's type field. For now, this only handles one dimensional
13686 arrays. */
13687
13688 static struct type *
13689 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13690 {
13691 struct objfile *objfile = cu->objfile;
13692 struct die_info *child_die;
13693 struct type *type;
13694 struct type *element_type, *range_type, *index_type;
13695 struct type **range_types = NULL;
13696 struct attribute *attr;
13697 int ndim = 0;
13698 struct cleanup *back_to;
13699 const char *name;
13700 unsigned int bit_stride = 0;
13701
13702 element_type = die_type (die, cu);
13703
13704 /* The die_type call above may have already set the type for this DIE. */
13705 type = get_die_type (die, cu);
13706 if (type)
13707 return type;
13708
13709 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13710 if (attr != NULL)
13711 bit_stride = DW_UNSND (attr) * 8;
13712
13713 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13714 if (attr != NULL)
13715 bit_stride = DW_UNSND (attr);
13716
13717 /* Irix 6.2 native cc creates array types without children for
13718 arrays with unspecified length. */
13719 if (die->child == NULL)
13720 {
13721 index_type = objfile_type (objfile)->builtin_int;
13722 range_type = create_static_range_type (NULL, index_type, 0, -1);
13723 type = create_array_type_with_stride (NULL, element_type, range_type,
13724 bit_stride);
13725 return set_die_type (die, type, cu);
13726 }
13727
13728 back_to = make_cleanup (null_cleanup, NULL);
13729 child_die = die->child;
13730 while (child_die && child_die->tag)
13731 {
13732 if (child_die->tag == DW_TAG_subrange_type)
13733 {
13734 struct type *child_type = read_type_die (child_die, cu);
13735
13736 if (child_type != NULL)
13737 {
13738 /* The range type was succesfully read. Save it for the
13739 array type creation. */
13740 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13741 {
13742 range_types = (struct type **)
13743 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13744 * sizeof (struct type *));
13745 if (ndim == 0)
13746 make_cleanup (free_current_contents, &range_types);
13747 }
13748 range_types[ndim++] = child_type;
13749 }
13750 }
13751 child_die = sibling_die (child_die);
13752 }
13753
13754 /* Dwarf2 dimensions are output from left to right, create the
13755 necessary array types in backwards order. */
13756
13757 type = element_type;
13758
13759 if (read_array_order (die, cu) == DW_ORD_col_major)
13760 {
13761 int i = 0;
13762
13763 while (i < ndim)
13764 type = create_array_type_with_stride (NULL, type, range_types[i++],
13765 bit_stride);
13766 }
13767 else
13768 {
13769 while (ndim-- > 0)
13770 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13771 bit_stride);
13772 }
13773
13774 /* Understand Dwarf2 support for vector types (like they occur on
13775 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13776 array type. This is not part of the Dwarf2/3 standard yet, but a
13777 custom vendor extension. The main difference between a regular
13778 array and the vector variant is that vectors are passed by value
13779 to functions. */
13780 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13781 if (attr)
13782 make_vector_type (type);
13783
13784 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13785 implementation may choose to implement triple vectors using this
13786 attribute. */
13787 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13788 if (attr)
13789 {
13790 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13791 TYPE_LENGTH (type) = DW_UNSND (attr);
13792 else
13793 complaint (&symfile_complaints,
13794 _("DW_AT_byte_size for array type smaller "
13795 "than the total size of elements"));
13796 }
13797
13798 name = dwarf2_name (die, cu);
13799 if (name)
13800 TYPE_NAME (type) = name;
13801
13802 /* Install the type in the die. */
13803 set_die_type (die, type, cu);
13804
13805 /* set_die_type should be already done. */
13806 set_descriptive_type (type, die, cu);
13807
13808 do_cleanups (back_to);
13809
13810 return type;
13811 }
13812
13813 static enum dwarf_array_dim_ordering
13814 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13815 {
13816 struct attribute *attr;
13817
13818 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13819
13820 if (attr)
13821 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13822
13823 /* GNU F77 is a special case, as at 08/2004 array type info is the
13824 opposite order to the dwarf2 specification, but data is still
13825 laid out as per normal fortran.
13826
13827 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13828 version checking. */
13829
13830 if (cu->language == language_fortran
13831 && cu->producer && strstr (cu->producer, "GNU F77"))
13832 {
13833 return DW_ORD_row_major;
13834 }
13835
13836 switch (cu->language_defn->la_array_ordering)
13837 {
13838 case array_column_major:
13839 return DW_ORD_col_major;
13840 case array_row_major:
13841 default:
13842 return DW_ORD_row_major;
13843 };
13844 }
13845
13846 /* Extract all information from a DW_TAG_set_type DIE and put it in
13847 the DIE's type field. */
13848
13849 static struct type *
13850 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13851 {
13852 struct type *domain_type, *set_type;
13853 struct attribute *attr;
13854
13855 domain_type = die_type (die, cu);
13856
13857 /* The die_type call above may have already set the type for this DIE. */
13858 set_type = get_die_type (die, cu);
13859 if (set_type)
13860 return set_type;
13861
13862 set_type = create_set_type (NULL, domain_type);
13863
13864 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13865 if (attr)
13866 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13867
13868 return set_die_type (die, set_type, cu);
13869 }
13870
13871 /* A helper for read_common_block that creates a locexpr baton.
13872 SYM is the symbol which we are marking as computed.
13873 COMMON_DIE is the DIE for the common block.
13874 COMMON_LOC is the location expression attribute for the common
13875 block itself.
13876 MEMBER_LOC is the location expression attribute for the particular
13877 member of the common block that we are processing.
13878 CU is the CU from which the above come. */
13879
13880 static void
13881 mark_common_block_symbol_computed (struct symbol *sym,
13882 struct die_info *common_die,
13883 struct attribute *common_loc,
13884 struct attribute *member_loc,
13885 struct dwarf2_cu *cu)
13886 {
13887 struct objfile *objfile = dwarf2_per_objfile->objfile;
13888 struct dwarf2_locexpr_baton *baton;
13889 gdb_byte *ptr;
13890 unsigned int cu_off;
13891 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13892 LONGEST offset = 0;
13893
13894 gdb_assert (common_loc && member_loc);
13895 gdb_assert (attr_form_is_block (common_loc));
13896 gdb_assert (attr_form_is_block (member_loc)
13897 || attr_form_is_constant (member_loc));
13898
13899 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13900 baton->per_cu = cu->per_cu;
13901 gdb_assert (baton->per_cu);
13902
13903 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13904
13905 if (attr_form_is_constant (member_loc))
13906 {
13907 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13908 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13909 }
13910 else
13911 baton->size += DW_BLOCK (member_loc)->size;
13912
13913 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13914 baton->data = ptr;
13915
13916 *ptr++ = DW_OP_call4;
13917 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13918 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13919 ptr += 4;
13920
13921 if (attr_form_is_constant (member_loc))
13922 {
13923 *ptr++ = DW_OP_addr;
13924 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13925 ptr += cu->header.addr_size;
13926 }
13927 else
13928 {
13929 /* We have to copy the data here, because DW_OP_call4 will only
13930 use a DW_AT_location attribute. */
13931 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13932 ptr += DW_BLOCK (member_loc)->size;
13933 }
13934
13935 *ptr++ = DW_OP_plus;
13936 gdb_assert (ptr - baton->data == baton->size);
13937
13938 SYMBOL_LOCATION_BATON (sym) = baton;
13939 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13940 }
13941
13942 /* Create appropriate locally-scoped variables for all the
13943 DW_TAG_common_block entries. Also create a struct common_block
13944 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13945 is used to sepate the common blocks name namespace from regular
13946 variable names. */
13947
13948 static void
13949 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13950 {
13951 struct attribute *attr;
13952
13953 attr = dwarf2_attr (die, DW_AT_location, cu);
13954 if (attr)
13955 {
13956 /* Support the .debug_loc offsets. */
13957 if (attr_form_is_block (attr))
13958 {
13959 /* Ok. */
13960 }
13961 else if (attr_form_is_section_offset (attr))
13962 {
13963 dwarf2_complex_location_expr_complaint ();
13964 attr = NULL;
13965 }
13966 else
13967 {
13968 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13969 "common block member");
13970 attr = NULL;
13971 }
13972 }
13973
13974 if (die->child != NULL)
13975 {
13976 struct objfile *objfile = cu->objfile;
13977 struct die_info *child_die;
13978 size_t n_entries = 0, size;
13979 struct common_block *common_block;
13980 struct symbol *sym;
13981
13982 for (child_die = die->child;
13983 child_die && child_die->tag;
13984 child_die = sibling_die (child_die))
13985 ++n_entries;
13986
13987 size = (sizeof (struct common_block)
13988 + (n_entries - 1) * sizeof (struct symbol *));
13989 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13990 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13991 common_block->n_entries = 0;
13992
13993 for (child_die = die->child;
13994 child_die && child_die->tag;
13995 child_die = sibling_die (child_die))
13996 {
13997 /* Create the symbol in the DW_TAG_common_block block in the current
13998 symbol scope. */
13999 sym = new_symbol (child_die, NULL, cu);
14000 if (sym != NULL)
14001 {
14002 struct attribute *member_loc;
14003
14004 common_block->contents[common_block->n_entries++] = sym;
14005
14006 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14007 cu);
14008 if (member_loc)
14009 {
14010 /* GDB has handled this for a long time, but it is
14011 not specified by DWARF. It seems to have been
14012 emitted by gfortran at least as recently as:
14013 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14014 complaint (&symfile_complaints,
14015 _("Variable in common block has "
14016 "DW_AT_data_member_location "
14017 "- DIE at 0x%x [in module %s]"),
14018 child_die->offset.sect_off,
14019 objfile_name (cu->objfile));
14020
14021 if (attr_form_is_section_offset (member_loc))
14022 dwarf2_complex_location_expr_complaint ();
14023 else if (attr_form_is_constant (member_loc)
14024 || attr_form_is_block (member_loc))
14025 {
14026 if (attr)
14027 mark_common_block_symbol_computed (sym, die, attr,
14028 member_loc, cu);
14029 }
14030 else
14031 dwarf2_complex_location_expr_complaint ();
14032 }
14033 }
14034 }
14035
14036 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14037 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14038 }
14039 }
14040
14041 /* Create a type for a C++ namespace. */
14042
14043 static struct type *
14044 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14045 {
14046 struct objfile *objfile = cu->objfile;
14047 const char *previous_prefix, *name;
14048 int is_anonymous;
14049 struct type *type;
14050
14051 /* For extensions, reuse the type of the original namespace. */
14052 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14053 {
14054 struct die_info *ext_die;
14055 struct dwarf2_cu *ext_cu = cu;
14056
14057 ext_die = dwarf2_extension (die, &ext_cu);
14058 type = read_type_die (ext_die, ext_cu);
14059
14060 /* EXT_CU may not be the same as CU.
14061 Ensure TYPE is recorded with CU in die_type_hash. */
14062 return set_die_type (die, type, cu);
14063 }
14064
14065 name = namespace_name (die, &is_anonymous, cu);
14066
14067 /* Now build the name of the current namespace. */
14068
14069 previous_prefix = determine_prefix (die, cu);
14070 if (previous_prefix[0] != '\0')
14071 name = typename_concat (&objfile->objfile_obstack,
14072 previous_prefix, name, 0, cu);
14073
14074 /* Create the type. */
14075 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14076 objfile);
14077 TYPE_NAME (type) = name;
14078 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14079
14080 return set_die_type (die, type, cu);
14081 }
14082
14083 /* Read a namespace scope. */
14084
14085 static void
14086 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14087 {
14088 struct objfile *objfile = cu->objfile;
14089 int is_anonymous;
14090
14091 /* Add a symbol associated to this if we haven't seen the namespace
14092 before. Also, add a using directive if it's an anonymous
14093 namespace. */
14094
14095 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14096 {
14097 struct type *type;
14098
14099 type = read_type_die (die, cu);
14100 new_symbol (die, type, cu);
14101
14102 namespace_name (die, &is_anonymous, cu);
14103 if (is_anonymous)
14104 {
14105 const char *previous_prefix = determine_prefix (die, cu);
14106
14107 add_using_directive (using_directives (cu->language),
14108 previous_prefix, TYPE_NAME (type), NULL,
14109 NULL, NULL, 0, &objfile->objfile_obstack);
14110 }
14111 }
14112
14113 if (die->child != NULL)
14114 {
14115 struct die_info *child_die = die->child;
14116
14117 while (child_die && child_die->tag)
14118 {
14119 process_die (child_die, cu);
14120 child_die = sibling_die (child_die);
14121 }
14122 }
14123 }
14124
14125 /* Read a Fortran module as type. This DIE can be only a declaration used for
14126 imported module. Still we need that type as local Fortran "use ... only"
14127 declaration imports depend on the created type in determine_prefix. */
14128
14129 static struct type *
14130 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14131 {
14132 struct objfile *objfile = cu->objfile;
14133 const char *module_name;
14134 struct type *type;
14135
14136 module_name = dwarf2_name (die, cu);
14137 if (!module_name)
14138 complaint (&symfile_complaints,
14139 _("DW_TAG_module has no name, offset 0x%x"),
14140 die->offset.sect_off);
14141 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14142
14143 /* determine_prefix uses TYPE_TAG_NAME. */
14144 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14145
14146 return set_die_type (die, type, cu);
14147 }
14148
14149 /* Read a Fortran module. */
14150
14151 static void
14152 read_module (struct die_info *die, struct dwarf2_cu *cu)
14153 {
14154 struct die_info *child_die = die->child;
14155 struct type *type;
14156
14157 type = read_type_die (die, cu);
14158 new_symbol (die, type, cu);
14159
14160 while (child_die && child_die->tag)
14161 {
14162 process_die (child_die, cu);
14163 child_die = sibling_die (child_die);
14164 }
14165 }
14166
14167 /* Return the name of the namespace represented by DIE. Set
14168 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14169 namespace. */
14170
14171 static const char *
14172 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14173 {
14174 struct die_info *current_die;
14175 const char *name = NULL;
14176
14177 /* Loop through the extensions until we find a name. */
14178
14179 for (current_die = die;
14180 current_die != NULL;
14181 current_die = dwarf2_extension (die, &cu))
14182 {
14183 /* We don't use dwarf2_name here so that we can detect the absence
14184 of a name -> anonymous namespace. */
14185 name = dwarf2_string_attr (die, DW_AT_name, cu);
14186
14187 if (name != NULL)
14188 break;
14189 }
14190
14191 /* Is it an anonymous namespace? */
14192
14193 *is_anonymous = (name == NULL);
14194 if (*is_anonymous)
14195 name = CP_ANONYMOUS_NAMESPACE_STR;
14196
14197 return name;
14198 }
14199
14200 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14201 the user defined type vector. */
14202
14203 static struct type *
14204 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14205 {
14206 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14207 struct comp_unit_head *cu_header = &cu->header;
14208 struct type *type;
14209 struct attribute *attr_byte_size;
14210 struct attribute *attr_address_class;
14211 int byte_size, addr_class;
14212 struct type *target_type;
14213
14214 target_type = die_type (die, cu);
14215
14216 /* The die_type call above may have already set the type for this DIE. */
14217 type = get_die_type (die, cu);
14218 if (type)
14219 return type;
14220
14221 type = lookup_pointer_type (target_type);
14222
14223 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14224 if (attr_byte_size)
14225 byte_size = DW_UNSND (attr_byte_size);
14226 else
14227 byte_size = cu_header->addr_size;
14228
14229 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14230 if (attr_address_class)
14231 addr_class = DW_UNSND (attr_address_class);
14232 else
14233 addr_class = DW_ADDR_none;
14234
14235 /* If the pointer size or address class is different than the
14236 default, create a type variant marked as such and set the
14237 length accordingly. */
14238 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14239 {
14240 if (gdbarch_address_class_type_flags_p (gdbarch))
14241 {
14242 int type_flags;
14243
14244 type_flags = gdbarch_address_class_type_flags
14245 (gdbarch, byte_size, addr_class);
14246 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14247 == 0);
14248 type = make_type_with_address_space (type, type_flags);
14249 }
14250 else if (TYPE_LENGTH (type) != byte_size)
14251 {
14252 complaint (&symfile_complaints,
14253 _("invalid pointer size %d"), byte_size);
14254 }
14255 else
14256 {
14257 /* Should we also complain about unhandled address classes? */
14258 }
14259 }
14260
14261 TYPE_LENGTH (type) = byte_size;
14262 return set_die_type (die, type, cu);
14263 }
14264
14265 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14266 the user defined type vector. */
14267
14268 static struct type *
14269 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14270 {
14271 struct type *type;
14272 struct type *to_type;
14273 struct type *domain;
14274
14275 to_type = die_type (die, cu);
14276 domain = die_containing_type (die, cu);
14277
14278 /* The calls above may have already set the type for this DIE. */
14279 type = get_die_type (die, cu);
14280 if (type)
14281 return type;
14282
14283 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14284 type = lookup_methodptr_type (to_type);
14285 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14286 {
14287 struct type *new_type = alloc_type (cu->objfile);
14288
14289 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14290 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14291 TYPE_VARARGS (to_type));
14292 type = lookup_methodptr_type (new_type);
14293 }
14294 else
14295 type = lookup_memberptr_type (to_type, domain);
14296
14297 return set_die_type (die, type, cu);
14298 }
14299
14300 /* Extract all information from a DW_TAG_reference_type DIE and add to
14301 the user defined type vector. */
14302
14303 static struct type *
14304 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14305 {
14306 struct comp_unit_head *cu_header = &cu->header;
14307 struct type *type, *target_type;
14308 struct attribute *attr;
14309
14310 target_type = die_type (die, cu);
14311
14312 /* The die_type call above may have already set the type for this DIE. */
14313 type = get_die_type (die, cu);
14314 if (type)
14315 return type;
14316
14317 type = lookup_reference_type (target_type);
14318 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14319 if (attr)
14320 {
14321 TYPE_LENGTH (type) = DW_UNSND (attr);
14322 }
14323 else
14324 {
14325 TYPE_LENGTH (type) = cu_header->addr_size;
14326 }
14327 return set_die_type (die, type, cu);
14328 }
14329
14330 /* Add the given cv-qualifiers to the element type of the array. GCC
14331 outputs DWARF type qualifiers that apply to an array, not the
14332 element type. But GDB relies on the array element type to carry
14333 the cv-qualifiers. This mimics section 6.7.3 of the C99
14334 specification. */
14335
14336 static struct type *
14337 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14338 struct type *base_type, int cnst, int voltl)
14339 {
14340 struct type *el_type, *inner_array;
14341
14342 base_type = copy_type (base_type);
14343 inner_array = base_type;
14344
14345 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14346 {
14347 TYPE_TARGET_TYPE (inner_array) =
14348 copy_type (TYPE_TARGET_TYPE (inner_array));
14349 inner_array = TYPE_TARGET_TYPE (inner_array);
14350 }
14351
14352 el_type = TYPE_TARGET_TYPE (inner_array);
14353 cnst |= TYPE_CONST (el_type);
14354 voltl |= TYPE_VOLATILE (el_type);
14355 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14356
14357 return set_die_type (die, base_type, cu);
14358 }
14359
14360 static struct type *
14361 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14362 {
14363 struct type *base_type, *cv_type;
14364
14365 base_type = die_type (die, cu);
14366
14367 /* The die_type call above may have already set the type for this DIE. */
14368 cv_type = get_die_type (die, cu);
14369 if (cv_type)
14370 return cv_type;
14371
14372 /* In case the const qualifier is applied to an array type, the element type
14373 is so qualified, not the array type (section 6.7.3 of C99). */
14374 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14375 return add_array_cv_type (die, cu, base_type, 1, 0);
14376
14377 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14378 return set_die_type (die, cv_type, cu);
14379 }
14380
14381 static struct type *
14382 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14383 {
14384 struct type *base_type, *cv_type;
14385
14386 base_type = die_type (die, cu);
14387
14388 /* The die_type call above may have already set the type for this DIE. */
14389 cv_type = get_die_type (die, cu);
14390 if (cv_type)
14391 return cv_type;
14392
14393 /* In case the volatile qualifier is applied to an array type, the
14394 element type is so qualified, not the array type (section 6.7.3
14395 of C99). */
14396 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14397 return add_array_cv_type (die, cu, base_type, 0, 1);
14398
14399 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14400 return set_die_type (die, cv_type, cu);
14401 }
14402
14403 /* Handle DW_TAG_restrict_type. */
14404
14405 static struct type *
14406 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14407 {
14408 struct type *base_type, *cv_type;
14409
14410 base_type = die_type (die, cu);
14411
14412 /* The die_type call above may have already set the type for this DIE. */
14413 cv_type = get_die_type (die, cu);
14414 if (cv_type)
14415 return cv_type;
14416
14417 cv_type = make_restrict_type (base_type);
14418 return set_die_type (die, cv_type, cu);
14419 }
14420
14421 /* Handle DW_TAG_atomic_type. */
14422
14423 static struct type *
14424 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14425 {
14426 struct type *base_type, *cv_type;
14427
14428 base_type = die_type (die, cu);
14429
14430 /* The die_type call above may have already set the type for this DIE. */
14431 cv_type = get_die_type (die, cu);
14432 if (cv_type)
14433 return cv_type;
14434
14435 cv_type = make_atomic_type (base_type);
14436 return set_die_type (die, cv_type, cu);
14437 }
14438
14439 /* Extract all information from a DW_TAG_string_type DIE and add to
14440 the user defined type vector. It isn't really a user defined type,
14441 but it behaves like one, with other DIE's using an AT_user_def_type
14442 attribute to reference it. */
14443
14444 static struct type *
14445 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14446 {
14447 struct objfile *objfile = cu->objfile;
14448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14449 struct type *type, *range_type, *index_type, *char_type;
14450 struct attribute *attr;
14451 unsigned int length;
14452
14453 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14454 if (attr)
14455 {
14456 length = DW_UNSND (attr);
14457 }
14458 else
14459 {
14460 /* Check for the DW_AT_byte_size attribute. */
14461 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14462 if (attr)
14463 {
14464 length = DW_UNSND (attr);
14465 }
14466 else
14467 {
14468 length = 1;
14469 }
14470 }
14471
14472 index_type = objfile_type (objfile)->builtin_int;
14473 range_type = create_static_range_type (NULL, index_type, 1, length);
14474 char_type = language_string_char_type (cu->language_defn, gdbarch);
14475 type = create_string_type (NULL, char_type, range_type);
14476
14477 return set_die_type (die, type, cu);
14478 }
14479
14480 /* Assuming that DIE corresponds to a function, returns nonzero
14481 if the function is prototyped. */
14482
14483 static int
14484 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14485 {
14486 struct attribute *attr;
14487
14488 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14489 if (attr && (DW_UNSND (attr) != 0))
14490 return 1;
14491
14492 /* The DWARF standard implies that the DW_AT_prototyped attribute
14493 is only meaninful for C, but the concept also extends to other
14494 languages that allow unprototyped functions (Eg: Objective C).
14495 For all other languages, assume that functions are always
14496 prototyped. */
14497 if (cu->language != language_c
14498 && cu->language != language_objc
14499 && cu->language != language_opencl)
14500 return 1;
14501
14502 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14503 prototyped and unprototyped functions; default to prototyped,
14504 since that is more common in modern code (and RealView warns
14505 about unprototyped functions). */
14506 if (producer_is_realview (cu->producer))
14507 return 1;
14508
14509 return 0;
14510 }
14511
14512 /* Handle DIES due to C code like:
14513
14514 struct foo
14515 {
14516 int (*funcp)(int a, long l);
14517 int b;
14518 };
14519
14520 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14521
14522 static struct type *
14523 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14524 {
14525 struct objfile *objfile = cu->objfile;
14526 struct type *type; /* Type that this function returns. */
14527 struct type *ftype; /* Function that returns above type. */
14528 struct attribute *attr;
14529
14530 type = die_type (die, cu);
14531
14532 /* The die_type call above may have already set the type for this DIE. */
14533 ftype = get_die_type (die, cu);
14534 if (ftype)
14535 return ftype;
14536
14537 ftype = lookup_function_type (type);
14538
14539 if (prototyped_function_p (die, cu))
14540 TYPE_PROTOTYPED (ftype) = 1;
14541
14542 /* Store the calling convention in the type if it's available in
14543 the subroutine die. Otherwise set the calling convention to
14544 the default value DW_CC_normal. */
14545 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14546 if (attr)
14547 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14548 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14549 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14550 else
14551 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14552
14553 /* Record whether the function returns normally to its caller or not
14554 if the DWARF producer set that information. */
14555 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14556 if (attr && (DW_UNSND (attr) != 0))
14557 TYPE_NO_RETURN (ftype) = 1;
14558
14559 /* We need to add the subroutine type to the die immediately so
14560 we don't infinitely recurse when dealing with parameters
14561 declared as the same subroutine type. */
14562 set_die_type (die, ftype, cu);
14563
14564 if (die->child != NULL)
14565 {
14566 struct type *void_type = objfile_type (objfile)->builtin_void;
14567 struct die_info *child_die;
14568 int nparams, iparams;
14569
14570 /* Count the number of parameters.
14571 FIXME: GDB currently ignores vararg functions, but knows about
14572 vararg member functions. */
14573 nparams = 0;
14574 child_die = die->child;
14575 while (child_die && child_die->tag)
14576 {
14577 if (child_die->tag == DW_TAG_formal_parameter)
14578 nparams++;
14579 else if (child_die->tag == DW_TAG_unspecified_parameters)
14580 TYPE_VARARGS (ftype) = 1;
14581 child_die = sibling_die (child_die);
14582 }
14583
14584 /* Allocate storage for parameters and fill them in. */
14585 TYPE_NFIELDS (ftype) = nparams;
14586 TYPE_FIELDS (ftype) = (struct field *)
14587 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14588
14589 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14590 even if we error out during the parameters reading below. */
14591 for (iparams = 0; iparams < nparams; iparams++)
14592 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14593
14594 iparams = 0;
14595 child_die = die->child;
14596 while (child_die && child_die->tag)
14597 {
14598 if (child_die->tag == DW_TAG_formal_parameter)
14599 {
14600 struct type *arg_type;
14601
14602 /* DWARF version 2 has no clean way to discern C++
14603 static and non-static member functions. G++ helps
14604 GDB by marking the first parameter for non-static
14605 member functions (which is the this pointer) as
14606 artificial. We pass this information to
14607 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14608
14609 DWARF version 3 added DW_AT_object_pointer, which GCC
14610 4.5 does not yet generate. */
14611 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14612 if (attr)
14613 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14614 else
14615 {
14616 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14617
14618 /* GCC/43521: In java, the formal parameter
14619 "this" is sometimes not marked with DW_AT_artificial. */
14620 if (cu->language == language_java)
14621 {
14622 const char *name = dwarf2_name (child_die, cu);
14623
14624 if (name && !strcmp (name, "this"))
14625 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14626 }
14627 }
14628 arg_type = die_type (child_die, cu);
14629
14630 /* RealView does not mark THIS as const, which the testsuite
14631 expects. GCC marks THIS as const in method definitions,
14632 but not in the class specifications (GCC PR 43053). */
14633 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14634 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14635 {
14636 int is_this = 0;
14637 struct dwarf2_cu *arg_cu = cu;
14638 const char *name = dwarf2_name (child_die, cu);
14639
14640 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14641 if (attr)
14642 {
14643 /* If the compiler emits this, use it. */
14644 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14645 is_this = 1;
14646 }
14647 else if (name && strcmp (name, "this") == 0)
14648 /* Function definitions will have the argument names. */
14649 is_this = 1;
14650 else if (name == NULL && iparams == 0)
14651 /* Declarations may not have the names, so like
14652 elsewhere in GDB, assume an artificial first
14653 argument is "this". */
14654 is_this = 1;
14655
14656 if (is_this)
14657 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14658 arg_type, 0);
14659 }
14660
14661 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14662 iparams++;
14663 }
14664 child_die = sibling_die (child_die);
14665 }
14666 }
14667
14668 return ftype;
14669 }
14670
14671 static struct type *
14672 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14673 {
14674 struct objfile *objfile = cu->objfile;
14675 const char *name = NULL;
14676 struct type *this_type, *target_type;
14677
14678 name = dwarf2_full_name (NULL, die, cu);
14679 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14680 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14681 TYPE_NAME (this_type) = name;
14682 set_die_type (die, this_type, cu);
14683 target_type = die_type (die, cu);
14684 if (target_type != this_type)
14685 TYPE_TARGET_TYPE (this_type) = target_type;
14686 else
14687 {
14688 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14689 spec and cause infinite loops in GDB. */
14690 complaint (&symfile_complaints,
14691 _("Self-referential DW_TAG_typedef "
14692 "- DIE at 0x%x [in module %s]"),
14693 die->offset.sect_off, objfile_name (objfile));
14694 TYPE_TARGET_TYPE (this_type) = NULL;
14695 }
14696 return this_type;
14697 }
14698
14699 /* Find a representation of a given base type and install
14700 it in the TYPE field of the die. */
14701
14702 static struct type *
14703 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14704 {
14705 struct objfile *objfile = cu->objfile;
14706 struct type *type;
14707 struct attribute *attr;
14708 int encoding = 0, size = 0;
14709 const char *name;
14710 enum type_code code = TYPE_CODE_INT;
14711 int type_flags = 0;
14712 struct type *target_type = NULL;
14713
14714 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14715 if (attr)
14716 {
14717 encoding = DW_UNSND (attr);
14718 }
14719 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14720 if (attr)
14721 {
14722 size = DW_UNSND (attr);
14723 }
14724 name = dwarf2_name (die, cu);
14725 if (!name)
14726 {
14727 complaint (&symfile_complaints,
14728 _("DW_AT_name missing from DW_TAG_base_type"));
14729 }
14730
14731 switch (encoding)
14732 {
14733 case DW_ATE_address:
14734 /* Turn DW_ATE_address into a void * pointer. */
14735 code = TYPE_CODE_PTR;
14736 type_flags |= TYPE_FLAG_UNSIGNED;
14737 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14738 break;
14739 case DW_ATE_boolean:
14740 code = TYPE_CODE_BOOL;
14741 type_flags |= TYPE_FLAG_UNSIGNED;
14742 break;
14743 case DW_ATE_complex_float:
14744 code = TYPE_CODE_COMPLEX;
14745 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14746 break;
14747 case DW_ATE_decimal_float:
14748 code = TYPE_CODE_DECFLOAT;
14749 break;
14750 case DW_ATE_float:
14751 code = TYPE_CODE_FLT;
14752 break;
14753 case DW_ATE_signed:
14754 break;
14755 case DW_ATE_unsigned:
14756 type_flags |= TYPE_FLAG_UNSIGNED;
14757 if (cu->language == language_fortran
14758 && name
14759 && startswith (name, "character("))
14760 code = TYPE_CODE_CHAR;
14761 break;
14762 case DW_ATE_signed_char:
14763 if (cu->language == language_ada || cu->language == language_m2
14764 || cu->language == language_pascal
14765 || cu->language == language_fortran)
14766 code = TYPE_CODE_CHAR;
14767 break;
14768 case DW_ATE_unsigned_char:
14769 if (cu->language == language_ada || cu->language == language_m2
14770 || cu->language == language_pascal
14771 || cu->language == language_fortran)
14772 code = TYPE_CODE_CHAR;
14773 type_flags |= TYPE_FLAG_UNSIGNED;
14774 break;
14775 case DW_ATE_UTF:
14776 /* We just treat this as an integer and then recognize the
14777 type by name elsewhere. */
14778 break;
14779
14780 default:
14781 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14782 dwarf_type_encoding_name (encoding));
14783 break;
14784 }
14785
14786 type = init_type (code, size, type_flags, NULL, objfile);
14787 TYPE_NAME (type) = name;
14788 TYPE_TARGET_TYPE (type) = target_type;
14789
14790 if (name && strcmp (name, "char") == 0)
14791 TYPE_NOSIGN (type) = 1;
14792
14793 return set_die_type (die, type, cu);
14794 }
14795
14796 /* Parse dwarf attribute if it's a block, reference or constant and put the
14797 resulting value of the attribute into struct bound_prop.
14798 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14799
14800 static int
14801 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14802 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14803 {
14804 struct dwarf2_property_baton *baton;
14805 struct obstack *obstack = &cu->objfile->objfile_obstack;
14806
14807 if (attr == NULL || prop == NULL)
14808 return 0;
14809
14810 if (attr_form_is_block (attr))
14811 {
14812 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14813 baton->referenced_type = NULL;
14814 baton->locexpr.per_cu = cu->per_cu;
14815 baton->locexpr.size = DW_BLOCK (attr)->size;
14816 baton->locexpr.data = DW_BLOCK (attr)->data;
14817 prop->data.baton = baton;
14818 prop->kind = PROP_LOCEXPR;
14819 gdb_assert (prop->data.baton != NULL);
14820 }
14821 else if (attr_form_is_ref (attr))
14822 {
14823 struct dwarf2_cu *target_cu = cu;
14824 struct die_info *target_die;
14825 struct attribute *target_attr;
14826
14827 target_die = follow_die_ref (die, attr, &target_cu);
14828 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14829 if (target_attr == NULL)
14830 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14831 target_cu);
14832 if (target_attr == NULL)
14833 return 0;
14834
14835 switch (target_attr->name)
14836 {
14837 case DW_AT_location:
14838 if (attr_form_is_section_offset (target_attr))
14839 {
14840 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14841 baton->referenced_type = die_type (target_die, target_cu);
14842 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14843 prop->data.baton = baton;
14844 prop->kind = PROP_LOCLIST;
14845 gdb_assert (prop->data.baton != NULL);
14846 }
14847 else if (attr_form_is_block (target_attr))
14848 {
14849 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14850 baton->referenced_type = die_type (target_die, target_cu);
14851 baton->locexpr.per_cu = cu->per_cu;
14852 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14853 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14854 prop->data.baton = baton;
14855 prop->kind = PROP_LOCEXPR;
14856 gdb_assert (prop->data.baton != NULL);
14857 }
14858 else
14859 {
14860 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14861 "dynamic property");
14862 return 0;
14863 }
14864 break;
14865 case DW_AT_data_member_location:
14866 {
14867 LONGEST offset;
14868
14869 if (!handle_data_member_location (target_die, target_cu,
14870 &offset))
14871 return 0;
14872
14873 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14874 baton->referenced_type = read_type_die (target_die->parent,
14875 target_cu);
14876 baton->offset_info.offset = offset;
14877 baton->offset_info.type = die_type (target_die, target_cu);
14878 prop->data.baton = baton;
14879 prop->kind = PROP_ADDR_OFFSET;
14880 break;
14881 }
14882 }
14883 }
14884 else if (attr_form_is_constant (attr))
14885 {
14886 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14887 prop->kind = PROP_CONST;
14888 }
14889 else
14890 {
14891 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14892 dwarf2_name (die, cu));
14893 return 0;
14894 }
14895
14896 return 1;
14897 }
14898
14899 /* Read the given DW_AT_subrange DIE. */
14900
14901 static struct type *
14902 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14903 {
14904 struct type *base_type, *orig_base_type;
14905 struct type *range_type;
14906 struct attribute *attr;
14907 struct dynamic_prop low, high;
14908 int low_default_is_valid;
14909 int high_bound_is_count = 0;
14910 const char *name;
14911 LONGEST negative_mask;
14912
14913 orig_base_type = die_type (die, cu);
14914 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14915 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14916 creating the range type, but we use the result of check_typedef
14917 when examining properties of the type. */
14918 base_type = check_typedef (orig_base_type);
14919
14920 /* The die_type call above may have already set the type for this DIE. */
14921 range_type = get_die_type (die, cu);
14922 if (range_type)
14923 return range_type;
14924
14925 low.kind = PROP_CONST;
14926 high.kind = PROP_CONST;
14927 high.data.const_val = 0;
14928
14929 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14930 omitting DW_AT_lower_bound. */
14931 switch (cu->language)
14932 {
14933 case language_c:
14934 case language_cplus:
14935 low.data.const_val = 0;
14936 low_default_is_valid = 1;
14937 break;
14938 case language_fortran:
14939 low.data.const_val = 1;
14940 low_default_is_valid = 1;
14941 break;
14942 case language_d:
14943 case language_java:
14944 case language_objc:
14945 low.data.const_val = 0;
14946 low_default_is_valid = (cu->header.version >= 4);
14947 break;
14948 case language_ada:
14949 case language_m2:
14950 case language_pascal:
14951 low.data.const_val = 1;
14952 low_default_is_valid = (cu->header.version >= 4);
14953 break;
14954 default:
14955 low.data.const_val = 0;
14956 low_default_is_valid = 0;
14957 break;
14958 }
14959
14960 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14961 if (attr)
14962 attr_to_dynamic_prop (attr, die, cu, &low);
14963 else if (!low_default_is_valid)
14964 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14965 "- DIE at 0x%x [in module %s]"),
14966 die->offset.sect_off, objfile_name (cu->objfile));
14967
14968 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14969 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14970 {
14971 attr = dwarf2_attr (die, DW_AT_count, cu);
14972 if (attr_to_dynamic_prop (attr, die, cu, &high))
14973 {
14974 /* If bounds are constant do the final calculation here. */
14975 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14976 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14977 else
14978 high_bound_is_count = 1;
14979 }
14980 }
14981
14982 /* Dwarf-2 specifications explicitly allows to create subrange types
14983 without specifying a base type.
14984 In that case, the base type must be set to the type of
14985 the lower bound, upper bound or count, in that order, if any of these
14986 three attributes references an object that has a type.
14987 If no base type is found, the Dwarf-2 specifications say that
14988 a signed integer type of size equal to the size of an address should
14989 be used.
14990 For the following C code: `extern char gdb_int [];'
14991 GCC produces an empty range DIE.
14992 FIXME: muller/2010-05-28: Possible references to object for low bound,
14993 high bound or count are not yet handled by this code. */
14994 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14995 {
14996 struct objfile *objfile = cu->objfile;
14997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14998 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14999 struct type *int_type = objfile_type (objfile)->builtin_int;
15000
15001 /* Test "int", "long int", and "long long int" objfile types,
15002 and select the first one having a size above or equal to the
15003 architecture address size. */
15004 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15005 base_type = int_type;
15006 else
15007 {
15008 int_type = objfile_type (objfile)->builtin_long;
15009 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15010 base_type = int_type;
15011 else
15012 {
15013 int_type = objfile_type (objfile)->builtin_long_long;
15014 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15015 base_type = int_type;
15016 }
15017 }
15018 }
15019
15020 /* Normally, the DWARF producers are expected to use a signed
15021 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15022 But this is unfortunately not always the case, as witnessed
15023 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15024 is used instead. To work around that ambiguity, we treat
15025 the bounds as signed, and thus sign-extend their values, when
15026 the base type is signed. */
15027 negative_mask =
15028 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15029 if (low.kind == PROP_CONST
15030 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15031 low.data.const_val |= negative_mask;
15032 if (high.kind == PROP_CONST
15033 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15034 high.data.const_val |= negative_mask;
15035
15036 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15037
15038 if (high_bound_is_count)
15039 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15040
15041 /* Ada expects an empty array on no boundary attributes. */
15042 if (attr == NULL && cu->language != language_ada)
15043 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15044
15045 name = dwarf2_name (die, cu);
15046 if (name)
15047 TYPE_NAME (range_type) = name;
15048
15049 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15050 if (attr)
15051 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15052
15053 set_die_type (die, range_type, cu);
15054
15055 /* set_die_type should be already done. */
15056 set_descriptive_type (range_type, die, cu);
15057
15058 return range_type;
15059 }
15060
15061 static struct type *
15062 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15063 {
15064 struct type *type;
15065
15066 /* For now, we only support the C meaning of an unspecified type: void. */
15067
15068 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15069 TYPE_NAME (type) = dwarf2_name (die, cu);
15070
15071 return set_die_type (die, type, cu);
15072 }
15073
15074 /* Read a single die and all its descendents. Set the die's sibling
15075 field to NULL; set other fields in the die correctly, and set all
15076 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15077 location of the info_ptr after reading all of those dies. PARENT
15078 is the parent of the die in question. */
15079
15080 static struct die_info *
15081 read_die_and_children (const struct die_reader_specs *reader,
15082 const gdb_byte *info_ptr,
15083 const gdb_byte **new_info_ptr,
15084 struct die_info *parent)
15085 {
15086 struct die_info *die;
15087 const gdb_byte *cur_ptr;
15088 int has_children;
15089
15090 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15091 if (die == NULL)
15092 {
15093 *new_info_ptr = cur_ptr;
15094 return NULL;
15095 }
15096 store_in_ref_table (die, reader->cu);
15097
15098 if (has_children)
15099 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15100 else
15101 {
15102 die->child = NULL;
15103 *new_info_ptr = cur_ptr;
15104 }
15105
15106 die->sibling = NULL;
15107 die->parent = parent;
15108 return die;
15109 }
15110
15111 /* Read a die, all of its descendents, and all of its siblings; set
15112 all of the fields of all of the dies correctly. Arguments are as
15113 in read_die_and_children. */
15114
15115 static struct die_info *
15116 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15117 const gdb_byte *info_ptr,
15118 const gdb_byte **new_info_ptr,
15119 struct die_info *parent)
15120 {
15121 struct die_info *first_die, *last_sibling;
15122 const gdb_byte *cur_ptr;
15123
15124 cur_ptr = info_ptr;
15125 first_die = last_sibling = NULL;
15126
15127 while (1)
15128 {
15129 struct die_info *die
15130 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15131
15132 if (die == NULL)
15133 {
15134 *new_info_ptr = cur_ptr;
15135 return first_die;
15136 }
15137
15138 if (!first_die)
15139 first_die = die;
15140 else
15141 last_sibling->sibling = die;
15142
15143 last_sibling = die;
15144 }
15145 }
15146
15147 /* Read a die, all of its descendents, and all of its siblings; set
15148 all of the fields of all of the dies correctly. Arguments are as
15149 in read_die_and_children.
15150 This the main entry point for reading a DIE and all its children. */
15151
15152 static struct die_info *
15153 read_die_and_siblings (const struct die_reader_specs *reader,
15154 const gdb_byte *info_ptr,
15155 const gdb_byte **new_info_ptr,
15156 struct die_info *parent)
15157 {
15158 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15159 new_info_ptr, parent);
15160
15161 if (dwarf_die_debug)
15162 {
15163 fprintf_unfiltered (gdb_stdlog,
15164 "Read die from %s@0x%x of %s:\n",
15165 get_section_name (reader->die_section),
15166 (unsigned) (info_ptr - reader->die_section->buffer),
15167 bfd_get_filename (reader->abfd));
15168 dump_die (die, dwarf_die_debug);
15169 }
15170
15171 return die;
15172 }
15173
15174 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15175 attributes.
15176 The caller is responsible for filling in the extra attributes
15177 and updating (*DIEP)->num_attrs.
15178 Set DIEP to point to a newly allocated die with its information,
15179 except for its child, sibling, and parent fields.
15180 Set HAS_CHILDREN to tell whether the die has children or not. */
15181
15182 static const gdb_byte *
15183 read_full_die_1 (const struct die_reader_specs *reader,
15184 struct die_info **diep, const gdb_byte *info_ptr,
15185 int *has_children, int num_extra_attrs)
15186 {
15187 unsigned int abbrev_number, bytes_read, i;
15188 sect_offset offset;
15189 struct abbrev_info *abbrev;
15190 struct die_info *die;
15191 struct dwarf2_cu *cu = reader->cu;
15192 bfd *abfd = reader->abfd;
15193
15194 offset.sect_off = info_ptr - reader->buffer;
15195 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15196 info_ptr += bytes_read;
15197 if (!abbrev_number)
15198 {
15199 *diep = NULL;
15200 *has_children = 0;
15201 return info_ptr;
15202 }
15203
15204 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15205 if (!abbrev)
15206 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15207 abbrev_number,
15208 bfd_get_filename (abfd));
15209
15210 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15211 die->offset = offset;
15212 die->tag = abbrev->tag;
15213 die->abbrev = abbrev_number;
15214
15215 /* Make the result usable.
15216 The caller needs to update num_attrs after adding the extra
15217 attributes. */
15218 die->num_attrs = abbrev->num_attrs;
15219
15220 for (i = 0; i < abbrev->num_attrs; ++i)
15221 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15222 info_ptr);
15223
15224 *diep = die;
15225 *has_children = abbrev->has_children;
15226 return info_ptr;
15227 }
15228
15229 /* Read a die and all its attributes.
15230 Set DIEP to point to a newly allocated die with its information,
15231 except for its child, sibling, and parent fields.
15232 Set HAS_CHILDREN to tell whether the die has children or not. */
15233
15234 static const gdb_byte *
15235 read_full_die (const struct die_reader_specs *reader,
15236 struct die_info **diep, const gdb_byte *info_ptr,
15237 int *has_children)
15238 {
15239 const gdb_byte *result;
15240
15241 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15242
15243 if (dwarf_die_debug)
15244 {
15245 fprintf_unfiltered (gdb_stdlog,
15246 "Read die from %s@0x%x of %s:\n",
15247 get_section_name (reader->die_section),
15248 (unsigned) (info_ptr - reader->die_section->buffer),
15249 bfd_get_filename (reader->abfd));
15250 dump_die (*diep, dwarf_die_debug);
15251 }
15252
15253 return result;
15254 }
15255 \f
15256 /* Abbreviation tables.
15257
15258 In DWARF version 2, the description of the debugging information is
15259 stored in a separate .debug_abbrev section. Before we read any
15260 dies from a section we read in all abbreviations and install them
15261 in a hash table. */
15262
15263 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15264
15265 static struct abbrev_info *
15266 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15267 {
15268 struct abbrev_info *abbrev;
15269
15270 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15271 memset (abbrev, 0, sizeof (struct abbrev_info));
15272
15273 return abbrev;
15274 }
15275
15276 /* Add an abbreviation to the table. */
15277
15278 static void
15279 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15280 unsigned int abbrev_number,
15281 struct abbrev_info *abbrev)
15282 {
15283 unsigned int hash_number;
15284
15285 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15286 abbrev->next = abbrev_table->abbrevs[hash_number];
15287 abbrev_table->abbrevs[hash_number] = abbrev;
15288 }
15289
15290 /* Look up an abbrev in the table.
15291 Returns NULL if the abbrev is not found. */
15292
15293 static struct abbrev_info *
15294 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15295 unsigned int abbrev_number)
15296 {
15297 unsigned int hash_number;
15298 struct abbrev_info *abbrev;
15299
15300 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15301 abbrev = abbrev_table->abbrevs[hash_number];
15302
15303 while (abbrev)
15304 {
15305 if (abbrev->number == abbrev_number)
15306 return abbrev;
15307 abbrev = abbrev->next;
15308 }
15309 return NULL;
15310 }
15311
15312 /* Read in an abbrev table. */
15313
15314 static struct abbrev_table *
15315 abbrev_table_read_table (struct dwarf2_section_info *section,
15316 sect_offset offset)
15317 {
15318 struct objfile *objfile = dwarf2_per_objfile->objfile;
15319 bfd *abfd = get_section_bfd_owner (section);
15320 struct abbrev_table *abbrev_table;
15321 const gdb_byte *abbrev_ptr;
15322 struct abbrev_info *cur_abbrev;
15323 unsigned int abbrev_number, bytes_read, abbrev_name;
15324 unsigned int abbrev_form;
15325 struct attr_abbrev *cur_attrs;
15326 unsigned int allocated_attrs;
15327
15328 abbrev_table = XNEW (struct abbrev_table);
15329 abbrev_table->offset = offset;
15330 obstack_init (&abbrev_table->abbrev_obstack);
15331 abbrev_table->abbrevs =
15332 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15333 ABBREV_HASH_SIZE);
15334 memset (abbrev_table->abbrevs, 0,
15335 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15336
15337 dwarf2_read_section (objfile, section);
15338 abbrev_ptr = section->buffer + offset.sect_off;
15339 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15340 abbrev_ptr += bytes_read;
15341
15342 allocated_attrs = ATTR_ALLOC_CHUNK;
15343 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15344
15345 /* Loop until we reach an abbrev number of 0. */
15346 while (abbrev_number)
15347 {
15348 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15349
15350 /* read in abbrev header */
15351 cur_abbrev->number = abbrev_number;
15352 cur_abbrev->tag
15353 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15354 abbrev_ptr += bytes_read;
15355 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15356 abbrev_ptr += 1;
15357
15358 /* now read in declarations */
15359 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15362 abbrev_ptr += bytes_read;
15363 while (abbrev_name)
15364 {
15365 if (cur_abbrev->num_attrs == allocated_attrs)
15366 {
15367 allocated_attrs += ATTR_ALLOC_CHUNK;
15368 cur_attrs
15369 = xrealloc (cur_attrs, (allocated_attrs
15370 * sizeof (struct attr_abbrev)));
15371 }
15372
15373 cur_attrs[cur_abbrev->num_attrs].name
15374 = (enum dwarf_attribute) abbrev_name;
15375 cur_attrs[cur_abbrev->num_attrs++].form
15376 = (enum dwarf_form) abbrev_form;
15377 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 }
15382
15383 cur_abbrev->attrs =
15384 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15385 cur_abbrev->num_attrs);
15386 memcpy (cur_abbrev->attrs, cur_attrs,
15387 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15388
15389 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15390
15391 /* Get next abbreviation.
15392 Under Irix6 the abbreviations for a compilation unit are not
15393 always properly terminated with an abbrev number of 0.
15394 Exit loop if we encounter an abbreviation which we have
15395 already read (which means we are about to read the abbreviations
15396 for the next compile unit) or if the end of the abbreviation
15397 table is reached. */
15398 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15399 break;
15400 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15401 abbrev_ptr += bytes_read;
15402 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15403 break;
15404 }
15405
15406 xfree (cur_attrs);
15407 return abbrev_table;
15408 }
15409
15410 /* Free the resources held by ABBREV_TABLE. */
15411
15412 static void
15413 abbrev_table_free (struct abbrev_table *abbrev_table)
15414 {
15415 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15416 xfree (abbrev_table);
15417 }
15418
15419 /* Same as abbrev_table_free but as a cleanup.
15420 We pass in a pointer to the pointer to the table so that we can
15421 set the pointer to NULL when we're done. It also simplifies
15422 build_type_psymtabs_1. */
15423
15424 static void
15425 abbrev_table_free_cleanup (void *table_ptr)
15426 {
15427 struct abbrev_table **abbrev_table_ptr = table_ptr;
15428
15429 if (*abbrev_table_ptr != NULL)
15430 abbrev_table_free (*abbrev_table_ptr);
15431 *abbrev_table_ptr = NULL;
15432 }
15433
15434 /* Read the abbrev table for CU from ABBREV_SECTION. */
15435
15436 static void
15437 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15438 struct dwarf2_section_info *abbrev_section)
15439 {
15440 cu->abbrev_table =
15441 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15442 }
15443
15444 /* Release the memory used by the abbrev table for a compilation unit. */
15445
15446 static void
15447 dwarf2_free_abbrev_table (void *ptr_to_cu)
15448 {
15449 struct dwarf2_cu *cu = ptr_to_cu;
15450
15451 if (cu->abbrev_table != NULL)
15452 abbrev_table_free (cu->abbrev_table);
15453 /* Set this to NULL so that we SEGV if we try to read it later,
15454 and also because free_comp_unit verifies this is NULL. */
15455 cu->abbrev_table = NULL;
15456 }
15457 \f
15458 /* Returns nonzero if TAG represents a type that we might generate a partial
15459 symbol for. */
15460
15461 static int
15462 is_type_tag_for_partial (int tag)
15463 {
15464 switch (tag)
15465 {
15466 #if 0
15467 /* Some types that would be reasonable to generate partial symbols for,
15468 that we don't at present. */
15469 case DW_TAG_array_type:
15470 case DW_TAG_file_type:
15471 case DW_TAG_ptr_to_member_type:
15472 case DW_TAG_set_type:
15473 case DW_TAG_string_type:
15474 case DW_TAG_subroutine_type:
15475 #endif
15476 case DW_TAG_base_type:
15477 case DW_TAG_class_type:
15478 case DW_TAG_interface_type:
15479 case DW_TAG_enumeration_type:
15480 case DW_TAG_structure_type:
15481 case DW_TAG_subrange_type:
15482 case DW_TAG_typedef:
15483 case DW_TAG_union_type:
15484 return 1;
15485 default:
15486 return 0;
15487 }
15488 }
15489
15490 /* Load all DIEs that are interesting for partial symbols into memory. */
15491
15492 static struct partial_die_info *
15493 load_partial_dies (const struct die_reader_specs *reader,
15494 const gdb_byte *info_ptr, int building_psymtab)
15495 {
15496 struct dwarf2_cu *cu = reader->cu;
15497 struct objfile *objfile = cu->objfile;
15498 struct partial_die_info *part_die;
15499 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15500 struct abbrev_info *abbrev;
15501 unsigned int bytes_read;
15502 unsigned int load_all = 0;
15503 int nesting_level = 1;
15504
15505 parent_die = NULL;
15506 last_die = NULL;
15507
15508 gdb_assert (cu->per_cu != NULL);
15509 if (cu->per_cu->load_all_dies)
15510 load_all = 1;
15511
15512 cu->partial_dies
15513 = htab_create_alloc_ex (cu->header.length / 12,
15514 partial_die_hash,
15515 partial_die_eq,
15516 NULL,
15517 &cu->comp_unit_obstack,
15518 hashtab_obstack_allocate,
15519 dummy_obstack_deallocate);
15520
15521 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15522
15523 while (1)
15524 {
15525 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15526
15527 /* A NULL abbrev means the end of a series of children. */
15528 if (abbrev == NULL)
15529 {
15530 if (--nesting_level == 0)
15531 {
15532 /* PART_DIE was probably the last thing allocated on the
15533 comp_unit_obstack, so we could call obstack_free
15534 here. We don't do that because the waste is small,
15535 and will be cleaned up when we're done with this
15536 compilation unit. This way, we're also more robust
15537 against other users of the comp_unit_obstack. */
15538 return first_die;
15539 }
15540 info_ptr += bytes_read;
15541 last_die = parent_die;
15542 parent_die = parent_die->die_parent;
15543 continue;
15544 }
15545
15546 /* Check for template arguments. We never save these; if
15547 they're seen, we just mark the parent, and go on our way. */
15548 if (parent_die != NULL
15549 && cu->language == language_cplus
15550 && (abbrev->tag == DW_TAG_template_type_param
15551 || abbrev->tag == DW_TAG_template_value_param))
15552 {
15553 parent_die->has_template_arguments = 1;
15554
15555 if (!load_all)
15556 {
15557 /* We don't need a partial DIE for the template argument. */
15558 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15559 continue;
15560 }
15561 }
15562
15563 /* We only recurse into c++ subprograms looking for template arguments.
15564 Skip their other children. */
15565 if (!load_all
15566 && cu->language == language_cplus
15567 && parent_die != NULL
15568 && parent_die->tag == DW_TAG_subprogram)
15569 {
15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15571 continue;
15572 }
15573
15574 /* Check whether this DIE is interesting enough to save. Normally
15575 we would not be interested in members here, but there may be
15576 later variables referencing them via DW_AT_specification (for
15577 static members). */
15578 if (!load_all
15579 && !is_type_tag_for_partial (abbrev->tag)
15580 && abbrev->tag != DW_TAG_constant
15581 && abbrev->tag != DW_TAG_enumerator
15582 && abbrev->tag != DW_TAG_subprogram
15583 && abbrev->tag != DW_TAG_lexical_block
15584 && abbrev->tag != DW_TAG_variable
15585 && abbrev->tag != DW_TAG_namespace
15586 && abbrev->tag != DW_TAG_module
15587 && abbrev->tag != DW_TAG_member
15588 && abbrev->tag != DW_TAG_imported_unit
15589 && abbrev->tag != DW_TAG_imported_declaration)
15590 {
15591 /* Otherwise we skip to the next sibling, if any. */
15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15593 continue;
15594 }
15595
15596 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15597 info_ptr);
15598
15599 /* This two-pass algorithm for processing partial symbols has a
15600 high cost in cache pressure. Thus, handle some simple cases
15601 here which cover the majority of C partial symbols. DIEs
15602 which neither have specification tags in them, nor could have
15603 specification tags elsewhere pointing at them, can simply be
15604 processed and discarded.
15605
15606 This segment is also optional; scan_partial_symbols and
15607 add_partial_symbol will handle these DIEs if we chain
15608 them in normally. When compilers which do not emit large
15609 quantities of duplicate debug information are more common,
15610 this code can probably be removed. */
15611
15612 /* Any complete simple types at the top level (pretty much all
15613 of them, for a language without namespaces), can be processed
15614 directly. */
15615 if (parent_die == NULL
15616 && part_die->has_specification == 0
15617 && part_die->is_declaration == 0
15618 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15619 || part_die->tag == DW_TAG_base_type
15620 || part_die->tag == DW_TAG_subrange_type))
15621 {
15622 if (building_psymtab && part_die->name != NULL)
15623 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15624 VAR_DOMAIN, LOC_TYPEDEF,
15625 &objfile->static_psymbols,
15626 0, cu->language, objfile);
15627 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15628 continue;
15629 }
15630
15631 /* The exception for DW_TAG_typedef with has_children above is
15632 a workaround of GCC PR debug/47510. In the case of this complaint
15633 type_name_no_tag_or_error will error on such types later.
15634
15635 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15636 it could not find the child DIEs referenced later, this is checked
15637 above. In correct DWARF DW_TAG_typedef should have no children. */
15638
15639 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15640 complaint (&symfile_complaints,
15641 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15642 "- DIE at 0x%x [in module %s]"),
15643 part_die->offset.sect_off, objfile_name (objfile));
15644
15645 /* If we're at the second level, and we're an enumerator, and
15646 our parent has no specification (meaning possibly lives in a
15647 namespace elsewhere), then we can add the partial symbol now
15648 instead of queueing it. */
15649 if (part_die->tag == DW_TAG_enumerator
15650 && parent_die != NULL
15651 && parent_die->die_parent == NULL
15652 && parent_die->tag == DW_TAG_enumeration_type
15653 && parent_die->has_specification == 0)
15654 {
15655 if (part_die->name == NULL)
15656 complaint (&symfile_complaints,
15657 _("malformed enumerator DIE ignored"));
15658 else if (building_psymtab)
15659 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15660 VAR_DOMAIN, LOC_CONST,
15661 (cu->language == language_cplus
15662 || cu->language == language_java)
15663 ? &objfile->global_psymbols
15664 : &objfile->static_psymbols,
15665 0, cu->language, objfile);
15666
15667 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15668 continue;
15669 }
15670
15671 /* We'll save this DIE so link it in. */
15672 part_die->die_parent = parent_die;
15673 part_die->die_sibling = NULL;
15674 part_die->die_child = NULL;
15675
15676 if (last_die && last_die == parent_die)
15677 last_die->die_child = part_die;
15678 else if (last_die)
15679 last_die->die_sibling = part_die;
15680
15681 last_die = part_die;
15682
15683 if (first_die == NULL)
15684 first_die = part_die;
15685
15686 /* Maybe add the DIE to the hash table. Not all DIEs that we
15687 find interesting need to be in the hash table, because we
15688 also have the parent/sibling/child chains; only those that we
15689 might refer to by offset later during partial symbol reading.
15690
15691 For now this means things that might have be the target of a
15692 DW_AT_specification, DW_AT_abstract_origin, or
15693 DW_AT_extension. DW_AT_extension will refer only to
15694 namespaces; DW_AT_abstract_origin refers to functions (and
15695 many things under the function DIE, but we do not recurse
15696 into function DIEs during partial symbol reading) and
15697 possibly variables as well; DW_AT_specification refers to
15698 declarations. Declarations ought to have the DW_AT_declaration
15699 flag. It happens that GCC forgets to put it in sometimes, but
15700 only for functions, not for types.
15701
15702 Adding more things than necessary to the hash table is harmless
15703 except for the performance cost. Adding too few will result in
15704 wasted time in find_partial_die, when we reread the compilation
15705 unit with load_all_dies set. */
15706
15707 if (load_all
15708 || abbrev->tag == DW_TAG_constant
15709 || abbrev->tag == DW_TAG_subprogram
15710 || abbrev->tag == DW_TAG_variable
15711 || abbrev->tag == DW_TAG_namespace
15712 || part_die->is_declaration)
15713 {
15714 void **slot;
15715
15716 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15717 part_die->offset.sect_off, INSERT);
15718 *slot = part_die;
15719 }
15720
15721 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15722
15723 /* For some DIEs we want to follow their children (if any). For C
15724 we have no reason to follow the children of structures; for other
15725 languages we have to, so that we can get at method physnames
15726 to infer fully qualified class names, for DW_AT_specification,
15727 and for C++ template arguments. For C++, we also look one level
15728 inside functions to find template arguments (if the name of the
15729 function does not already contain the template arguments).
15730
15731 For Ada, we need to scan the children of subprograms and lexical
15732 blocks as well because Ada allows the definition of nested
15733 entities that could be interesting for the debugger, such as
15734 nested subprograms for instance. */
15735 if (last_die->has_children
15736 && (load_all
15737 || last_die->tag == DW_TAG_namespace
15738 || last_die->tag == DW_TAG_module
15739 || last_die->tag == DW_TAG_enumeration_type
15740 || (cu->language == language_cplus
15741 && last_die->tag == DW_TAG_subprogram
15742 && (last_die->name == NULL
15743 || strchr (last_die->name, '<') == NULL))
15744 || (cu->language != language_c
15745 && (last_die->tag == DW_TAG_class_type
15746 || last_die->tag == DW_TAG_interface_type
15747 || last_die->tag == DW_TAG_structure_type
15748 || last_die->tag == DW_TAG_union_type))
15749 || (cu->language == language_ada
15750 && (last_die->tag == DW_TAG_subprogram
15751 || last_die->tag == DW_TAG_lexical_block))))
15752 {
15753 nesting_level++;
15754 parent_die = last_die;
15755 continue;
15756 }
15757
15758 /* Otherwise we skip to the next sibling, if any. */
15759 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15760
15761 /* Back to the top, do it again. */
15762 }
15763 }
15764
15765 /* Read a minimal amount of information into the minimal die structure. */
15766
15767 static const gdb_byte *
15768 read_partial_die (const struct die_reader_specs *reader,
15769 struct partial_die_info *part_die,
15770 struct abbrev_info *abbrev, unsigned int abbrev_len,
15771 const gdb_byte *info_ptr)
15772 {
15773 struct dwarf2_cu *cu = reader->cu;
15774 struct objfile *objfile = cu->objfile;
15775 const gdb_byte *buffer = reader->buffer;
15776 unsigned int i;
15777 struct attribute attr;
15778 int has_low_pc_attr = 0;
15779 int has_high_pc_attr = 0;
15780 int high_pc_relative = 0;
15781
15782 memset (part_die, 0, sizeof (struct partial_die_info));
15783
15784 part_die->offset.sect_off = info_ptr - buffer;
15785
15786 info_ptr += abbrev_len;
15787
15788 if (abbrev == NULL)
15789 return info_ptr;
15790
15791 part_die->tag = abbrev->tag;
15792 part_die->has_children = abbrev->has_children;
15793
15794 for (i = 0; i < abbrev->num_attrs; ++i)
15795 {
15796 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15797
15798 /* Store the data if it is of an attribute we want to keep in a
15799 partial symbol table. */
15800 switch (attr.name)
15801 {
15802 case DW_AT_name:
15803 switch (part_die->tag)
15804 {
15805 case DW_TAG_compile_unit:
15806 case DW_TAG_partial_unit:
15807 case DW_TAG_type_unit:
15808 /* Compilation units have a DW_AT_name that is a filename, not
15809 a source language identifier. */
15810 case DW_TAG_enumeration_type:
15811 case DW_TAG_enumerator:
15812 /* These tags always have simple identifiers already; no need
15813 to canonicalize them. */
15814 part_die->name = DW_STRING (&attr);
15815 break;
15816 default:
15817 part_die->name
15818 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15819 &objfile->per_bfd->storage_obstack);
15820 break;
15821 }
15822 break;
15823 case DW_AT_linkage_name:
15824 case DW_AT_MIPS_linkage_name:
15825 /* Note that both forms of linkage name might appear. We
15826 assume they will be the same, and we only store the last
15827 one we see. */
15828 if (cu->language == language_ada)
15829 part_die->name = DW_STRING (&attr);
15830 part_die->linkage_name = DW_STRING (&attr);
15831 break;
15832 case DW_AT_low_pc:
15833 has_low_pc_attr = 1;
15834 part_die->lowpc = attr_value_as_address (&attr);
15835 break;
15836 case DW_AT_high_pc:
15837 has_high_pc_attr = 1;
15838 part_die->highpc = attr_value_as_address (&attr);
15839 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15840 high_pc_relative = 1;
15841 break;
15842 case DW_AT_location:
15843 /* Support the .debug_loc offsets. */
15844 if (attr_form_is_block (&attr))
15845 {
15846 part_die->d.locdesc = DW_BLOCK (&attr);
15847 }
15848 else if (attr_form_is_section_offset (&attr))
15849 {
15850 dwarf2_complex_location_expr_complaint ();
15851 }
15852 else
15853 {
15854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15855 "partial symbol information");
15856 }
15857 break;
15858 case DW_AT_external:
15859 part_die->is_external = DW_UNSND (&attr);
15860 break;
15861 case DW_AT_declaration:
15862 part_die->is_declaration = DW_UNSND (&attr);
15863 break;
15864 case DW_AT_type:
15865 part_die->has_type = 1;
15866 break;
15867 case DW_AT_abstract_origin:
15868 case DW_AT_specification:
15869 case DW_AT_extension:
15870 part_die->has_specification = 1;
15871 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15872 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15873 || cu->per_cu->is_dwz);
15874 break;
15875 case DW_AT_sibling:
15876 /* Ignore absolute siblings, they might point outside of
15877 the current compile unit. */
15878 if (attr.form == DW_FORM_ref_addr)
15879 complaint (&symfile_complaints,
15880 _("ignoring absolute DW_AT_sibling"));
15881 else
15882 {
15883 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15884 const gdb_byte *sibling_ptr = buffer + off;
15885
15886 if (sibling_ptr < info_ptr)
15887 complaint (&symfile_complaints,
15888 _("DW_AT_sibling points backwards"));
15889 else if (sibling_ptr > reader->buffer_end)
15890 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15891 else
15892 part_die->sibling = sibling_ptr;
15893 }
15894 break;
15895 case DW_AT_byte_size:
15896 part_die->has_byte_size = 1;
15897 break;
15898 case DW_AT_const_value:
15899 part_die->has_const_value = 1;
15900 break;
15901 case DW_AT_calling_convention:
15902 /* DWARF doesn't provide a way to identify a program's source-level
15903 entry point. DW_AT_calling_convention attributes are only meant
15904 to describe functions' calling conventions.
15905
15906 However, because it's a necessary piece of information in
15907 Fortran, and because DW_CC_program is the only piece of debugging
15908 information whose definition refers to a 'main program' at all,
15909 several compilers have begun marking Fortran main programs with
15910 DW_CC_program --- even when those functions use the standard
15911 calling conventions.
15912
15913 So until DWARF specifies a way to provide this information and
15914 compilers pick up the new representation, we'll support this
15915 practice. */
15916 if (DW_UNSND (&attr) == DW_CC_program
15917 && cu->language == language_fortran)
15918 set_objfile_main_name (objfile, part_die->name, language_fortran);
15919 break;
15920 case DW_AT_inline:
15921 if (DW_UNSND (&attr) == DW_INL_inlined
15922 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15923 part_die->may_be_inlined = 1;
15924 break;
15925
15926 case DW_AT_import:
15927 if (part_die->tag == DW_TAG_imported_unit)
15928 {
15929 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15930 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15931 || cu->per_cu->is_dwz);
15932 }
15933 break;
15934
15935 default:
15936 break;
15937 }
15938 }
15939
15940 if (high_pc_relative)
15941 part_die->highpc += part_die->lowpc;
15942
15943 if (has_low_pc_attr && has_high_pc_attr)
15944 {
15945 /* When using the GNU linker, .gnu.linkonce. sections are used to
15946 eliminate duplicate copies of functions and vtables and such.
15947 The linker will arbitrarily choose one and discard the others.
15948 The AT_*_pc values for such functions refer to local labels in
15949 these sections. If the section from that file was discarded, the
15950 labels are not in the output, so the relocs get a value of 0.
15951 If this is a discarded function, mark the pc bounds as invalid,
15952 so that GDB will ignore it. */
15953 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15954 {
15955 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15956
15957 complaint (&symfile_complaints,
15958 _("DW_AT_low_pc %s is zero "
15959 "for DIE at 0x%x [in module %s]"),
15960 paddress (gdbarch, part_die->lowpc),
15961 part_die->offset.sect_off, objfile_name (objfile));
15962 }
15963 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15964 else if (part_die->lowpc >= part_die->highpc)
15965 {
15966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15967
15968 complaint (&symfile_complaints,
15969 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15970 "for DIE at 0x%x [in module %s]"),
15971 paddress (gdbarch, part_die->lowpc),
15972 paddress (gdbarch, part_die->highpc),
15973 part_die->offset.sect_off, objfile_name (objfile));
15974 }
15975 else
15976 part_die->has_pc_info = 1;
15977 }
15978
15979 return info_ptr;
15980 }
15981
15982 /* Find a cached partial DIE at OFFSET in CU. */
15983
15984 static struct partial_die_info *
15985 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15986 {
15987 struct partial_die_info *lookup_die = NULL;
15988 struct partial_die_info part_die;
15989
15990 part_die.offset = offset;
15991 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15992 offset.sect_off);
15993
15994 return lookup_die;
15995 }
15996
15997 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15998 except in the case of .debug_types DIEs which do not reference
15999 outside their CU (they do however referencing other types via
16000 DW_FORM_ref_sig8). */
16001
16002 static struct partial_die_info *
16003 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16004 {
16005 struct objfile *objfile = cu->objfile;
16006 struct dwarf2_per_cu_data *per_cu = NULL;
16007 struct partial_die_info *pd = NULL;
16008
16009 if (offset_in_dwz == cu->per_cu->is_dwz
16010 && offset_in_cu_p (&cu->header, offset))
16011 {
16012 pd = find_partial_die_in_comp_unit (offset, cu);
16013 if (pd != NULL)
16014 return pd;
16015 /* We missed recording what we needed.
16016 Load all dies and try again. */
16017 per_cu = cu->per_cu;
16018 }
16019 else
16020 {
16021 /* TUs don't reference other CUs/TUs (except via type signatures). */
16022 if (cu->per_cu->is_debug_types)
16023 {
16024 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16025 " external reference to offset 0x%lx [in module %s].\n"),
16026 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16027 bfd_get_filename (objfile->obfd));
16028 }
16029 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16030 objfile);
16031
16032 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16033 load_partial_comp_unit (per_cu);
16034
16035 per_cu->cu->last_used = 0;
16036 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16037 }
16038
16039 /* If we didn't find it, and not all dies have been loaded,
16040 load them all and try again. */
16041
16042 if (pd == NULL && per_cu->load_all_dies == 0)
16043 {
16044 per_cu->load_all_dies = 1;
16045
16046 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16047 THIS_CU->cu may already be in use. So we can't just free it and
16048 replace its DIEs with the ones we read in. Instead, we leave those
16049 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16050 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16051 set. */
16052 load_partial_comp_unit (per_cu);
16053
16054 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16055 }
16056
16057 if (pd == NULL)
16058 internal_error (__FILE__, __LINE__,
16059 _("could not find partial DIE 0x%x "
16060 "in cache [from module %s]\n"),
16061 offset.sect_off, bfd_get_filename (objfile->obfd));
16062 return pd;
16063 }
16064
16065 /* See if we can figure out if the class lives in a namespace. We do
16066 this by looking for a member function; its demangled name will
16067 contain namespace info, if there is any. */
16068
16069 static void
16070 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16071 struct dwarf2_cu *cu)
16072 {
16073 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16074 what template types look like, because the demangler
16075 frequently doesn't give the same name as the debug info. We
16076 could fix this by only using the demangled name to get the
16077 prefix (but see comment in read_structure_type). */
16078
16079 struct partial_die_info *real_pdi;
16080 struct partial_die_info *child_pdi;
16081
16082 /* If this DIE (this DIE's specification, if any) has a parent, then
16083 we should not do this. We'll prepend the parent's fully qualified
16084 name when we create the partial symbol. */
16085
16086 real_pdi = struct_pdi;
16087 while (real_pdi->has_specification)
16088 real_pdi = find_partial_die (real_pdi->spec_offset,
16089 real_pdi->spec_is_dwz, cu);
16090
16091 if (real_pdi->die_parent != NULL)
16092 return;
16093
16094 for (child_pdi = struct_pdi->die_child;
16095 child_pdi != NULL;
16096 child_pdi = child_pdi->die_sibling)
16097 {
16098 if (child_pdi->tag == DW_TAG_subprogram
16099 && child_pdi->linkage_name != NULL)
16100 {
16101 char *actual_class_name
16102 = language_class_name_from_physname (cu->language_defn,
16103 child_pdi->linkage_name);
16104 if (actual_class_name != NULL)
16105 {
16106 struct_pdi->name
16107 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16108 actual_class_name,
16109 strlen (actual_class_name));
16110 xfree (actual_class_name);
16111 }
16112 break;
16113 }
16114 }
16115 }
16116
16117 /* Adjust PART_DIE before generating a symbol for it. This function
16118 may set the is_external flag or change the DIE's name. */
16119
16120 static void
16121 fixup_partial_die (struct partial_die_info *part_die,
16122 struct dwarf2_cu *cu)
16123 {
16124 /* Once we've fixed up a die, there's no point in doing so again.
16125 This also avoids a memory leak if we were to call
16126 guess_partial_die_structure_name multiple times. */
16127 if (part_die->fixup_called)
16128 return;
16129
16130 /* If we found a reference attribute and the DIE has no name, try
16131 to find a name in the referred to DIE. */
16132
16133 if (part_die->name == NULL && part_die->has_specification)
16134 {
16135 struct partial_die_info *spec_die;
16136
16137 spec_die = find_partial_die (part_die->spec_offset,
16138 part_die->spec_is_dwz, cu);
16139
16140 fixup_partial_die (spec_die, cu);
16141
16142 if (spec_die->name)
16143 {
16144 part_die->name = spec_die->name;
16145
16146 /* Copy DW_AT_external attribute if it is set. */
16147 if (spec_die->is_external)
16148 part_die->is_external = spec_die->is_external;
16149 }
16150 }
16151
16152 /* Set default names for some unnamed DIEs. */
16153
16154 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16155 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16156
16157 /* If there is no parent die to provide a namespace, and there are
16158 children, see if we can determine the namespace from their linkage
16159 name. */
16160 if (cu->language == language_cplus
16161 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16162 && part_die->die_parent == NULL
16163 && part_die->has_children
16164 && (part_die->tag == DW_TAG_class_type
16165 || part_die->tag == DW_TAG_structure_type
16166 || part_die->tag == DW_TAG_union_type))
16167 guess_partial_die_structure_name (part_die, cu);
16168
16169 /* GCC might emit a nameless struct or union that has a linkage
16170 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16171 if (part_die->name == NULL
16172 && (part_die->tag == DW_TAG_class_type
16173 || part_die->tag == DW_TAG_interface_type
16174 || part_die->tag == DW_TAG_structure_type
16175 || part_die->tag == DW_TAG_union_type)
16176 && part_die->linkage_name != NULL)
16177 {
16178 char *demangled;
16179
16180 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16181 if (demangled)
16182 {
16183 const char *base;
16184
16185 /* Strip any leading namespaces/classes, keep only the base name.
16186 DW_AT_name for named DIEs does not contain the prefixes. */
16187 base = strrchr (demangled, ':');
16188 if (base && base > demangled && base[-1] == ':')
16189 base++;
16190 else
16191 base = demangled;
16192
16193 part_die->name
16194 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16195 base, strlen (base));
16196 xfree (demangled);
16197 }
16198 }
16199
16200 part_die->fixup_called = 1;
16201 }
16202
16203 /* Read an attribute value described by an attribute form. */
16204
16205 static const gdb_byte *
16206 read_attribute_value (const struct die_reader_specs *reader,
16207 struct attribute *attr, unsigned form,
16208 const gdb_byte *info_ptr)
16209 {
16210 struct dwarf2_cu *cu = reader->cu;
16211 struct objfile *objfile = cu->objfile;
16212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16213 bfd *abfd = reader->abfd;
16214 struct comp_unit_head *cu_header = &cu->header;
16215 unsigned int bytes_read;
16216 struct dwarf_block *blk;
16217
16218 attr->form = (enum dwarf_form) form;
16219 switch (form)
16220 {
16221 case DW_FORM_ref_addr:
16222 if (cu->header.version == 2)
16223 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16224 else
16225 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16226 &cu->header, &bytes_read);
16227 info_ptr += bytes_read;
16228 break;
16229 case DW_FORM_GNU_ref_alt:
16230 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16231 info_ptr += bytes_read;
16232 break;
16233 case DW_FORM_addr:
16234 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16235 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16236 info_ptr += bytes_read;
16237 break;
16238 case DW_FORM_block2:
16239 blk = dwarf_alloc_block (cu);
16240 blk->size = read_2_bytes (abfd, info_ptr);
16241 info_ptr += 2;
16242 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16243 info_ptr += blk->size;
16244 DW_BLOCK (attr) = blk;
16245 break;
16246 case DW_FORM_block4:
16247 blk = dwarf_alloc_block (cu);
16248 blk->size = read_4_bytes (abfd, info_ptr);
16249 info_ptr += 4;
16250 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16251 info_ptr += blk->size;
16252 DW_BLOCK (attr) = blk;
16253 break;
16254 case DW_FORM_data2:
16255 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16256 info_ptr += 2;
16257 break;
16258 case DW_FORM_data4:
16259 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16260 info_ptr += 4;
16261 break;
16262 case DW_FORM_data8:
16263 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16264 info_ptr += 8;
16265 break;
16266 case DW_FORM_sec_offset:
16267 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16268 info_ptr += bytes_read;
16269 break;
16270 case DW_FORM_string:
16271 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16272 DW_STRING_IS_CANONICAL (attr) = 0;
16273 info_ptr += bytes_read;
16274 break;
16275 case DW_FORM_strp:
16276 if (!cu->per_cu->is_dwz)
16277 {
16278 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16279 &bytes_read);
16280 DW_STRING_IS_CANONICAL (attr) = 0;
16281 info_ptr += bytes_read;
16282 break;
16283 }
16284 /* FALLTHROUGH */
16285 case DW_FORM_GNU_strp_alt:
16286 {
16287 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16288 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16289 &bytes_read);
16290
16291 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16292 DW_STRING_IS_CANONICAL (attr) = 0;
16293 info_ptr += bytes_read;
16294 }
16295 break;
16296 case DW_FORM_exprloc:
16297 case DW_FORM_block:
16298 blk = dwarf_alloc_block (cu);
16299 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16300 info_ptr += bytes_read;
16301 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16302 info_ptr += blk->size;
16303 DW_BLOCK (attr) = blk;
16304 break;
16305 case DW_FORM_block1:
16306 blk = dwarf_alloc_block (cu);
16307 blk->size = read_1_byte (abfd, info_ptr);
16308 info_ptr += 1;
16309 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16310 info_ptr += blk->size;
16311 DW_BLOCK (attr) = blk;
16312 break;
16313 case DW_FORM_data1:
16314 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16315 info_ptr += 1;
16316 break;
16317 case DW_FORM_flag:
16318 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16319 info_ptr += 1;
16320 break;
16321 case DW_FORM_flag_present:
16322 DW_UNSND (attr) = 1;
16323 break;
16324 case DW_FORM_sdata:
16325 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16326 info_ptr += bytes_read;
16327 break;
16328 case DW_FORM_udata:
16329 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16330 info_ptr += bytes_read;
16331 break;
16332 case DW_FORM_ref1:
16333 DW_UNSND (attr) = (cu->header.offset.sect_off
16334 + read_1_byte (abfd, info_ptr));
16335 info_ptr += 1;
16336 break;
16337 case DW_FORM_ref2:
16338 DW_UNSND (attr) = (cu->header.offset.sect_off
16339 + read_2_bytes (abfd, info_ptr));
16340 info_ptr += 2;
16341 break;
16342 case DW_FORM_ref4:
16343 DW_UNSND (attr) = (cu->header.offset.sect_off
16344 + read_4_bytes (abfd, info_ptr));
16345 info_ptr += 4;
16346 break;
16347 case DW_FORM_ref8:
16348 DW_UNSND (attr) = (cu->header.offset.sect_off
16349 + read_8_bytes (abfd, info_ptr));
16350 info_ptr += 8;
16351 break;
16352 case DW_FORM_ref_sig8:
16353 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16354 info_ptr += 8;
16355 break;
16356 case DW_FORM_ref_udata:
16357 DW_UNSND (attr) = (cu->header.offset.sect_off
16358 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16359 info_ptr += bytes_read;
16360 break;
16361 case DW_FORM_indirect:
16362 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16363 info_ptr += bytes_read;
16364 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16365 break;
16366 case DW_FORM_GNU_addr_index:
16367 if (reader->dwo_file == NULL)
16368 {
16369 /* For now flag a hard error.
16370 Later we can turn this into a complaint. */
16371 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16372 dwarf_form_name (form),
16373 bfd_get_filename (abfd));
16374 }
16375 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16376 info_ptr += bytes_read;
16377 break;
16378 case DW_FORM_GNU_str_index:
16379 if (reader->dwo_file == NULL)
16380 {
16381 /* For now flag a hard error.
16382 Later we can turn this into a complaint if warranted. */
16383 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16384 dwarf_form_name (form),
16385 bfd_get_filename (abfd));
16386 }
16387 {
16388 ULONGEST str_index =
16389 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16390
16391 DW_STRING (attr) = read_str_index (reader, str_index);
16392 DW_STRING_IS_CANONICAL (attr) = 0;
16393 info_ptr += bytes_read;
16394 }
16395 break;
16396 default:
16397 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16398 dwarf_form_name (form),
16399 bfd_get_filename (abfd));
16400 }
16401
16402 /* Super hack. */
16403 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16404 attr->form = DW_FORM_GNU_ref_alt;
16405
16406 /* We have seen instances where the compiler tried to emit a byte
16407 size attribute of -1 which ended up being encoded as an unsigned
16408 0xffffffff. Although 0xffffffff is technically a valid size value,
16409 an object of this size seems pretty unlikely so we can relatively
16410 safely treat these cases as if the size attribute was invalid and
16411 treat them as zero by default. */
16412 if (attr->name == DW_AT_byte_size
16413 && form == DW_FORM_data4
16414 && DW_UNSND (attr) >= 0xffffffff)
16415 {
16416 complaint
16417 (&symfile_complaints,
16418 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16419 hex_string (DW_UNSND (attr)));
16420 DW_UNSND (attr) = 0;
16421 }
16422
16423 return info_ptr;
16424 }
16425
16426 /* Read an attribute described by an abbreviated attribute. */
16427
16428 static const gdb_byte *
16429 read_attribute (const struct die_reader_specs *reader,
16430 struct attribute *attr, struct attr_abbrev *abbrev,
16431 const gdb_byte *info_ptr)
16432 {
16433 attr->name = abbrev->name;
16434 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16435 }
16436
16437 /* Read dwarf information from a buffer. */
16438
16439 static unsigned int
16440 read_1_byte (bfd *abfd, const gdb_byte *buf)
16441 {
16442 return bfd_get_8 (abfd, buf);
16443 }
16444
16445 static int
16446 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16447 {
16448 return bfd_get_signed_8 (abfd, buf);
16449 }
16450
16451 static unsigned int
16452 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16453 {
16454 return bfd_get_16 (abfd, buf);
16455 }
16456
16457 static int
16458 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16459 {
16460 return bfd_get_signed_16 (abfd, buf);
16461 }
16462
16463 static unsigned int
16464 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16465 {
16466 return bfd_get_32 (abfd, buf);
16467 }
16468
16469 static int
16470 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16471 {
16472 return bfd_get_signed_32 (abfd, buf);
16473 }
16474
16475 static ULONGEST
16476 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16477 {
16478 return bfd_get_64 (abfd, buf);
16479 }
16480
16481 static CORE_ADDR
16482 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16483 unsigned int *bytes_read)
16484 {
16485 struct comp_unit_head *cu_header = &cu->header;
16486 CORE_ADDR retval = 0;
16487
16488 if (cu_header->signed_addr_p)
16489 {
16490 switch (cu_header->addr_size)
16491 {
16492 case 2:
16493 retval = bfd_get_signed_16 (abfd, buf);
16494 break;
16495 case 4:
16496 retval = bfd_get_signed_32 (abfd, buf);
16497 break;
16498 case 8:
16499 retval = bfd_get_signed_64 (abfd, buf);
16500 break;
16501 default:
16502 internal_error (__FILE__, __LINE__,
16503 _("read_address: bad switch, signed [in module %s]"),
16504 bfd_get_filename (abfd));
16505 }
16506 }
16507 else
16508 {
16509 switch (cu_header->addr_size)
16510 {
16511 case 2:
16512 retval = bfd_get_16 (abfd, buf);
16513 break;
16514 case 4:
16515 retval = bfd_get_32 (abfd, buf);
16516 break;
16517 case 8:
16518 retval = bfd_get_64 (abfd, buf);
16519 break;
16520 default:
16521 internal_error (__FILE__, __LINE__,
16522 _("read_address: bad switch, "
16523 "unsigned [in module %s]"),
16524 bfd_get_filename (abfd));
16525 }
16526 }
16527
16528 *bytes_read = cu_header->addr_size;
16529 return retval;
16530 }
16531
16532 /* Read the initial length from a section. The (draft) DWARF 3
16533 specification allows the initial length to take up either 4 bytes
16534 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16535 bytes describe the length and all offsets will be 8 bytes in length
16536 instead of 4.
16537
16538 An older, non-standard 64-bit format is also handled by this
16539 function. The older format in question stores the initial length
16540 as an 8-byte quantity without an escape value. Lengths greater
16541 than 2^32 aren't very common which means that the initial 4 bytes
16542 is almost always zero. Since a length value of zero doesn't make
16543 sense for the 32-bit format, this initial zero can be considered to
16544 be an escape value which indicates the presence of the older 64-bit
16545 format. As written, the code can't detect (old format) lengths
16546 greater than 4GB. If it becomes necessary to handle lengths
16547 somewhat larger than 4GB, we could allow other small values (such
16548 as the non-sensical values of 1, 2, and 3) to also be used as
16549 escape values indicating the presence of the old format.
16550
16551 The value returned via bytes_read should be used to increment the
16552 relevant pointer after calling read_initial_length().
16553
16554 [ Note: read_initial_length() and read_offset() are based on the
16555 document entitled "DWARF Debugging Information Format", revision
16556 3, draft 8, dated November 19, 2001. This document was obtained
16557 from:
16558
16559 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16560
16561 This document is only a draft and is subject to change. (So beware.)
16562
16563 Details regarding the older, non-standard 64-bit format were
16564 determined empirically by examining 64-bit ELF files produced by
16565 the SGI toolchain on an IRIX 6.5 machine.
16566
16567 - Kevin, July 16, 2002
16568 ] */
16569
16570 static LONGEST
16571 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16572 {
16573 LONGEST length = bfd_get_32 (abfd, buf);
16574
16575 if (length == 0xffffffff)
16576 {
16577 length = bfd_get_64 (abfd, buf + 4);
16578 *bytes_read = 12;
16579 }
16580 else if (length == 0)
16581 {
16582 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16583 length = bfd_get_64 (abfd, buf);
16584 *bytes_read = 8;
16585 }
16586 else
16587 {
16588 *bytes_read = 4;
16589 }
16590
16591 return length;
16592 }
16593
16594 /* Cover function for read_initial_length.
16595 Returns the length of the object at BUF, and stores the size of the
16596 initial length in *BYTES_READ and stores the size that offsets will be in
16597 *OFFSET_SIZE.
16598 If the initial length size is not equivalent to that specified in
16599 CU_HEADER then issue a complaint.
16600 This is useful when reading non-comp-unit headers. */
16601
16602 static LONGEST
16603 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16604 const struct comp_unit_head *cu_header,
16605 unsigned int *bytes_read,
16606 unsigned int *offset_size)
16607 {
16608 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16609
16610 gdb_assert (cu_header->initial_length_size == 4
16611 || cu_header->initial_length_size == 8
16612 || cu_header->initial_length_size == 12);
16613
16614 if (cu_header->initial_length_size != *bytes_read)
16615 complaint (&symfile_complaints,
16616 _("intermixed 32-bit and 64-bit DWARF sections"));
16617
16618 *offset_size = (*bytes_read == 4) ? 4 : 8;
16619 return length;
16620 }
16621
16622 /* Read an offset from the data stream. The size of the offset is
16623 given by cu_header->offset_size. */
16624
16625 static LONGEST
16626 read_offset (bfd *abfd, const gdb_byte *buf,
16627 const struct comp_unit_head *cu_header,
16628 unsigned int *bytes_read)
16629 {
16630 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16631
16632 *bytes_read = cu_header->offset_size;
16633 return offset;
16634 }
16635
16636 /* Read an offset from the data stream. */
16637
16638 static LONGEST
16639 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16640 {
16641 LONGEST retval = 0;
16642
16643 switch (offset_size)
16644 {
16645 case 4:
16646 retval = bfd_get_32 (abfd, buf);
16647 break;
16648 case 8:
16649 retval = bfd_get_64 (abfd, buf);
16650 break;
16651 default:
16652 internal_error (__FILE__, __LINE__,
16653 _("read_offset_1: bad switch [in module %s]"),
16654 bfd_get_filename (abfd));
16655 }
16656
16657 return retval;
16658 }
16659
16660 static const gdb_byte *
16661 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16662 {
16663 /* If the size of a host char is 8 bits, we can return a pointer
16664 to the buffer, otherwise we have to copy the data to a buffer
16665 allocated on the temporary obstack. */
16666 gdb_assert (HOST_CHAR_BIT == 8);
16667 return buf;
16668 }
16669
16670 static const char *
16671 read_direct_string (bfd *abfd, const gdb_byte *buf,
16672 unsigned int *bytes_read_ptr)
16673 {
16674 /* If the size of a host char is 8 bits, we can return a pointer
16675 to the string, otherwise we have to copy the string to a buffer
16676 allocated on the temporary obstack. */
16677 gdb_assert (HOST_CHAR_BIT == 8);
16678 if (*buf == '\0')
16679 {
16680 *bytes_read_ptr = 1;
16681 return NULL;
16682 }
16683 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16684 return (const char *) buf;
16685 }
16686
16687 static const char *
16688 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16689 {
16690 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16691 if (dwarf2_per_objfile->str.buffer == NULL)
16692 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16693 bfd_get_filename (abfd));
16694 if (str_offset >= dwarf2_per_objfile->str.size)
16695 error (_("DW_FORM_strp pointing outside of "
16696 ".debug_str section [in module %s]"),
16697 bfd_get_filename (abfd));
16698 gdb_assert (HOST_CHAR_BIT == 8);
16699 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16700 return NULL;
16701 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16702 }
16703
16704 /* Read a string at offset STR_OFFSET in the .debug_str section from
16705 the .dwz file DWZ. Throw an error if the offset is too large. If
16706 the string consists of a single NUL byte, return NULL; otherwise
16707 return a pointer to the string. */
16708
16709 static const char *
16710 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16711 {
16712 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16713
16714 if (dwz->str.buffer == NULL)
16715 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16716 "section [in module %s]"),
16717 bfd_get_filename (dwz->dwz_bfd));
16718 if (str_offset >= dwz->str.size)
16719 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16720 ".debug_str section [in module %s]"),
16721 bfd_get_filename (dwz->dwz_bfd));
16722 gdb_assert (HOST_CHAR_BIT == 8);
16723 if (dwz->str.buffer[str_offset] == '\0')
16724 return NULL;
16725 return (const char *) (dwz->str.buffer + str_offset);
16726 }
16727
16728 static const char *
16729 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16730 const struct comp_unit_head *cu_header,
16731 unsigned int *bytes_read_ptr)
16732 {
16733 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16734
16735 return read_indirect_string_at_offset (abfd, str_offset);
16736 }
16737
16738 static ULONGEST
16739 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16740 unsigned int *bytes_read_ptr)
16741 {
16742 ULONGEST result;
16743 unsigned int num_read;
16744 int i, shift;
16745 unsigned char byte;
16746
16747 result = 0;
16748 shift = 0;
16749 num_read = 0;
16750 i = 0;
16751 while (1)
16752 {
16753 byte = bfd_get_8 (abfd, buf);
16754 buf++;
16755 num_read++;
16756 result |= ((ULONGEST) (byte & 127) << shift);
16757 if ((byte & 128) == 0)
16758 {
16759 break;
16760 }
16761 shift += 7;
16762 }
16763 *bytes_read_ptr = num_read;
16764 return result;
16765 }
16766
16767 static LONGEST
16768 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16769 unsigned int *bytes_read_ptr)
16770 {
16771 LONGEST result;
16772 int i, shift, num_read;
16773 unsigned char byte;
16774
16775 result = 0;
16776 shift = 0;
16777 num_read = 0;
16778 i = 0;
16779 while (1)
16780 {
16781 byte = bfd_get_8 (abfd, buf);
16782 buf++;
16783 num_read++;
16784 result |= ((LONGEST) (byte & 127) << shift);
16785 shift += 7;
16786 if ((byte & 128) == 0)
16787 {
16788 break;
16789 }
16790 }
16791 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16792 result |= -(((LONGEST) 1) << shift);
16793 *bytes_read_ptr = num_read;
16794 return result;
16795 }
16796
16797 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16798 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16799 ADDR_SIZE is the size of addresses from the CU header. */
16800
16801 static CORE_ADDR
16802 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16803 {
16804 struct objfile *objfile = dwarf2_per_objfile->objfile;
16805 bfd *abfd = objfile->obfd;
16806 const gdb_byte *info_ptr;
16807
16808 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16809 if (dwarf2_per_objfile->addr.buffer == NULL)
16810 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16811 objfile_name (objfile));
16812 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16813 error (_("DW_FORM_addr_index pointing outside of "
16814 ".debug_addr section [in module %s]"),
16815 objfile_name (objfile));
16816 info_ptr = (dwarf2_per_objfile->addr.buffer
16817 + addr_base + addr_index * addr_size);
16818 if (addr_size == 4)
16819 return bfd_get_32 (abfd, info_ptr);
16820 else
16821 return bfd_get_64 (abfd, info_ptr);
16822 }
16823
16824 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16825
16826 static CORE_ADDR
16827 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16828 {
16829 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16830 }
16831
16832 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16833
16834 static CORE_ADDR
16835 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16836 unsigned int *bytes_read)
16837 {
16838 bfd *abfd = cu->objfile->obfd;
16839 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16840
16841 return read_addr_index (cu, addr_index);
16842 }
16843
16844 /* Data structure to pass results from dwarf2_read_addr_index_reader
16845 back to dwarf2_read_addr_index. */
16846
16847 struct dwarf2_read_addr_index_data
16848 {
16849 ULONGEST addr_base;
16850 int addr_size;
16851 };
16852
16853 /* die_reader_func for dwarf2_read_addr_index. */
16854
16855 static void
16856 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16857 const gdb_byte *info_ptr,
16858 struct die_info *comp_unit_die,
16859 int has_children,
16860 void *data)
16861 {
16862 struct dwarf2_cu *cu = reader->cu;
16863 struct dwarf2_read_addr_index_data *aidata =
16864 (struct dwarf2_read_addr_index_data *) data;
16865
16866 aidata->addr_base = cu->addr_base;
16867 aidata->addr_size = cu->header.addr_size;
16868 }
16869
16870 /* Given an index in .debug_addr, fetch the value.
16871 NOTE: This can be called during dwarf expression evaluation,
16872 long after the debug information has been read, and thus per_cu->cu
16873 may no longer exist. */
16874
16875 CORE_ADDR
16876 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16877 unsigned int addr_index)
16878 {
16879 struct objfile *objfile = per_cu->objfile;
16880 struct dwarf2_cu *cu = per_cu->cu;
16881 ULONGEST addr_base;
16882 int addr_size;
16883
16884 /* This is intended to be called from outside this file. */
16885 dw2_setup (objfile);
16886
16887 /* We need addr_base and addr_size.
16888 If we don't have PER_CU->cu, we have to get it.
16889 Nasty, but the alternative is storing the needed info in PER_CU,
16890 which at this point doesn't seem justified: it's not clear how frequently
16891 it would get used and it would increase the size of every PER_CU.
16892 Entry points like dwarf2_per_cu_addr_size do a similar thing
16893 so we're not in uncharted territory here.
16894 Alas we need to be a bit more complicated as addr_base is contained
16895 in the DIE.
16896
16897 We don't need to read the entire CU(/TU).
16898 We just need the header and top level die.
16899
16900 IWBN to use the aging mechanism to let us lazily later discard the CU.
16901 For now we skip this optimization. */
16902
16903 if (cu != NULL)
16904 {
16905 addr_base = cu->addr_base;
16906 addr_size = cu->header.addr_size;
16907 }
16908 else
16909 {
16910 struct dwarf2_read_addr_index_data aidata;
16911
16912 /* Note: We can't use init_cutu_and_read_dies_simple here,
16913 we need addr_base. */
16914 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16915 dwarf2_read_addr_index_reader, &aidata);
16916 addr_base = aidata.addr_base;
16917 addr_size = aidata.addr_size;
16918 }
16919
16920 return read_addr_index_1 (addr_index, addr_base, addr_size);
16921 }
16922
16923 /* Given a DW_FORM_GNU_str_index, fetch the string.
16924 This is only used by the Fission support. */
16925
16926 static const char *
16927 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16928 {
16929 struct objfile *objfile = dwarf2_per_objfile->objfile;
16930 const char *objf_name = objfile_name (objfile);
16931 bfd *abfd = objfile->obfd;
16932 struct dwarf2_cu *cu = reader->cu;
16933 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16934 struct dwarf2_section_info *str_offsets_section =
16935 &reader->dwo_file->sections.str_offsets;
16936 const gdb_byte *info_ptr;
16937 ULONGEST str_offset;
16938 static const char form_name[] = "DW_FORM_GNU_str_index";
16939
16940 dwarf2_read_section (objfile, str_section);
16941 dwarf2_read_section (objfile, str_offsets_section);
16942 if (str_section->buffer == NULL)
16943 error (_("%s used without .debug_str.dwo section"
16944 " in CU at offset 0x%lx [in module %s]"),
16945 form_name, (long) cu->header.offset.sect_off, objf_name);
16946 if (str_offsets_section->buffer == NULL)
16947 error (_("%s used without .debug_str_offsets.dwo section"
16948 " in CU at offset 0x%lx [in module %s]"),
16949 form_name, (long) cu->header.offset.sect_off, objf_name);
16950 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16951 error (_("%s pointing outside of .debug_str_offsets.dwo"
16952 " section in CU at offset 0x%lx [in module %s]"),
16953 form_name, (long) cu->header.offset.sect_off, objf_name);
16954 info_ptr = (str_offsets_section->buffer
16955 + str_index * cu->header.offset_size);
16956 if (cu->header.offset_size == 4)
16957 str_offset = bfd_get_32 (abfd, info_ptr);
16958 else
16959 str_offset = bfd_get_64 (abfd, info_ptr);
16960 if (str_offset >= str_section->size)
16961 error (_("Offset from %s pointing outside of"
16962 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16963 form_name, (long) cu->header.offset.sect_off, objf_name);
16964 return (const char *) (str_section->buffer + str_offset);
16965 }
16966
16967 /* Return the length of an LEB128 number in BUF. */
16968
16969 static int
16970 leb128_size (const gdb_byte *buf)
16971 {
16972 const gdb_byte *begin = buf;
16973 gdb_byte byte;
16974
16975 while (1)
16976 {
16977 byte = *buf++;
16978 if ((byte & 128) == 0)
16979 return buf - begin;
16980 }
16981 }
16982
16983 static void
16984 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16985 {
16986 switch (lang)
16987 {
16988 case DW_LANG_C89:
16989 case DW_LANG_C99:
16990 case DW_LANG_C11:
16991 case DW_LANG_C:
16992 case DW_LANG_UPC:
16993 cu->language = language_c;
16994 break;
16995 case DW_LANG_C_plus_plus:
16996 case DW_LANG_C_plus_plus_11:
16997 case DW_LANG_C_plus_plus_14:
16998 cu->language = language_cplus;
16999 break;
17000 case DW_LANG_D:
17001 cu->language = language_d;
17002 break;
17003 case DW_LANG_Fortran77:
17004 case DW_LANG_Fortran90:
17005 case DW_LANG_Fortran95:
17006 case DW_LANG_Fortran03:
17007 case DW_LANG_Fortran08:
17008 cu->language = language_fortran;
17009 break;
17010 case DW_LANG_Go:
17011 cu->language = language_go;
17012 break;
17013 case DW_LANG_Mips_Assembler:
17014 cu->language = language_asm;
17015 break;
17016 case DW_LANG_Java:
17017 cu->language = language_java;
17018 break;
17019 case DW_LANG_Ada83:
17020 case DW_LANG_Ada95:
17021 cu->language = language_ada;
17022 break;
17023 case DW_LANG_Modula2:
17024 cu->language = language_m2;
17025 break;
17026 case DW_LANG_Pascal83:
17027 cu->language = language_pascal;
17028 break;
17029 case DW_LANG_ObjC:
17030 cu->language = language_objc;
17031 break;
17032 case DW_LANG_Cobol74:
17033 case DW_LANG_Cobol85:
17034 default:
17035 cu->language = language_minimal;
17036 break;
17037 }
17038 cu->language_defn = language_def (cu->language);
17039 }
17040
17041 /* Return the named attribute or NULL if not there. */
17042
17043 static struct attribute *
17044 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17045 {
17046 for (;;)
17047 {
17048 unsigned int i;
17049 struct attribute *spec = NULL;
17050
17051 for (i = 0; i < die->num_attrs; ++i)
17052 {
17053 if (die->attrs[i].name == name)
17054 return &die->attrs[i];
17055 if (die->attrs[i].name == DW_AT_specification
17056 || die->attrs[i].name == DW_AT_abstract_origin)
17057 spec = &die->attrs[i];
17058 }
17059
17060 if (!spec)
17061 break;
17062
17063 die = follow_die_ref (die, spec, &cu);
17064 }
17065
17066 return NULL;
17067 }
17068
17069 /* Return the named attribute or NULL if not there,
17070 but do not follow DW_AT_specification, etc.
17071 This is for use in contexts where we're reading .debug_types dies.
17072 Following DW_AT_specification, DW_AT_abstract_origin will take us
17073 back up the chain, and we want to go down. */
17074
17075 static struct attribute *
17076 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17077 {
17078 unsigned int i;
17079
17080 for (i = 0; i < die->num_attrs; ++i)
17081 if (die->attrs[i].name == name)
17082 return &die->attrs[i];
17083
17084 return NULL;
17085 }
17086
17087 /* Return the string associated with a string-typed attribute, or NULL if it
17088 is either not found or is of an incorrect type. */
17089
17090 static const char *
17091 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17092 {
17093 struct attribute *attr;
17094 const char *str = NULL;
17095
17096 attr = dwarf2_attr (die, name, cu);
17097
17098 if (attr != NULL)
17099 {
17100 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17101 || attr->form == DW_FORM_GNU_strp_alt)
17102 str = DW_STRING (attr);
17103 else
17104 complaint (&symfile_complaints,
17105 _("string type expected for attribute %s for "
17106 "DIE at 0x%x in module %s"),
17107 dwarf_attr_name (name), die->offset.sect_off,
17108 objfile_name (cu->objfile));
17109 }
17110
17111 return str;
17112 }
17113
17114 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17115 and holds a non-zero value. This function should only be used for
17116 DW_FORM_flag or DW_FORM_flag_present attributes. */
17117
17118 static int
17119 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17120 {
17121 struct attribute *attr = dwarf2_attr (die, name, cu);
17122
17123 return (attr && DW_UNSND (attr));
17124 }
17125
17126 static int
17127 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17128 {
17129 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17130 which value is non-zero. However, we have to be careful with
17131 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17132 (via dwarf2_flag_true_p) follows this attribute. So we may
17133 end up accidently finding a declaration attribute that belongs
17134 to a different DIE referenced by the specification attribute,
17135 even though the given DIE does not have a declaration attribute. */
17136 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17137 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17138 }
17139
17140 /* Return the die giving the specification for DIE, if there is
17141 one. *SPEC_CU is the CU containing DIE on input, and the CU
17142 containing the return value on output. If there is no
17143 specification, but there is an abstract origin, that is
17144 returned. */
17145
17146 static struct die_info *
17147 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17148 {
17149 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17150 *spec_cu);
17151
17152 if (spec_attr == NULL)
17153 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17154
17155 if (spec_attr == NULL)
17156 return NULL;
17157 else
17158 return follow_die_ref (die, spec_attr, spec_cu);
17159 }
17160
17161 /* Free the line_header structure *LH, and any arrays and strings it
17162 refers to.
17163 NOTE: This is also used as a "cleanup" function. */
17164
17165 static void
17166 free_line_header (struct line_header *lh)
17167 {
17168 if (lh->standard_opcode_lengths)
17169 xfree (lh->standard_opcode_lengths);
17170
17171 /* Remember that all the lh->file_names[i].name pointers are
17172 pointers into debug_line_buffer, and don't need to be freed. */
17173 if (lh->file_names)
17174 xfree (lh->file_names);
17175
17176 /* Similarly for the include directory names. */
17177 if (lh->include_dirs)
17178 xfree (lh->include_dirs);
17179
17180 xfree (lh);
17181 }
17182
17183 /* Stub for free_line_header to match void * callback types. */
17184
17185 static void
17186 free_line_header_voidp (void *arg)
17187 {
17188 struct line_header *lh = arg;
17189
17190 free_line_header (lh);
17191 }
17192
17193 /* Add an entry to LH's include directory table. */
17194
17195 static void
17196 add_include_dir (struct line_header *lh, const char *include_dir)
17197 {
17198 if (dwarf_line_debug >= 2)
17199 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17200 lh->num_include_dirs + 1, include_dir);
17201
17202 /* Grow the array if necessary. */
17203 if (lh->include_dirs_size == 0)
17204 {
17205 lh->include_dirs_size = 1; /* for testing */
17206 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17207 }
17208 else if (lh->num_include_dirs >= lh->include_dirs_size)
17209 {
17210 lh->include_dirs_size *= 2;
17211 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17212 lh->include_dirs_size);
17213 }
17214
17215 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17216 }
17217
17218 /* Add an entry to LH's file name table. */
17219
17220 static void
17221 add_file_name (struct line_header *lh,
17222 const char *name,
17223 unsigned int dir_index,
17224 unsigned int mod_time,
17225 unsigned int length)
17226 {
17227 struct file_entry *fe;
17228
17229 if (dwarf_line_debug >= 2)
17230 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17231 lh->num_file_names + 1, name);
17232
17233 /* Grow the array if necessary. */
17234 if (lh->file_names_size == 0)
17235 {
17236 lh->file_names_size = 1; /* for testing */
17237 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17238 }
17239 else if (lh->num_file_names >= lh->file_names_size)
17240 {
17241 lh->file_names_size *= 2;
17242 lh->file_names = xrealloc (lh->file_names,
17243 (lh->file_names_size
17244 * sizeof (*lh->file_names)));
17245 }
17246
17247 fe = &lh->file_names[lh->num_file_names++];
17248 fe->name = name;
17249 fe->dir_index = dir_index;
17250 fe->mod_time = mod_time;
17251 fe->length = length;
17252 fe->included_p = 0;
17253 fe->symtab = NULL;
17254 }
17255
17256 /* A convenience function to find the proper .debug_line section for a CU. */
17257
17258 static struct dwarf2_section_info *
17259 get_debug_line_section (struct dwarf2_cu *cu)
17260 {
17261 struct dwarf2_section_info *section;
17262
17263 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17264 DWO file. */
17265 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17266 section = &cu->dwo_unit->dwo_file->sections.line;
17267 else if (cu->per_cu->is_dwz)
17268 {
17269 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17270
17271 section = &dwz->line;
17272 }
17273 else
17274 section = &dwarf2_per_objfile->line;
17275
17276 return section;
17277 }
17278
17279 /* Read the statement program header starting at OFFSET in
17280 .debug_line, or .debug_line.dwo. Return a pointer
17281 to a struct line_header, allocated using xmalloc.
17282 Returns NULL if there is a problem reading the header, e.g., if it
17283 has a version we don't understand.
17284
17285 NOTE: the strings in the include directory and file name tables of
17286 the returned object point into the dwarf line section buffer,
17287 and must not be freed. */
17288
17289 static struct line_header *
17290 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17291 {
17292 struct cleanup *back_to;
17293 struct line_header *lh;
17294 const gdb_byte *line_ptr;
17295 unsigned int bytes_read, offset_size;
17296 int i;
17297 const char *cur_dir, *cur_file;
17298 struct dwarf2_section_info *section;
17299 bfd *abfd;
17300
17301 section = get_debug_line_section (cu);
17302 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17303 if (section->buffer == NULL)
17304 {
17305 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17306 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17307 else
17308 complaint (&symfile_complaints, _("missing .debug_line section"));
17309 return 0;
17310 }
17311
17312 /* We can't do this until we know the section is non-empty.
17313 Only then do we know we have such a section. */
17314 abfd = get_section_bfd_owner (section);
17315
17316 /* Make sure that at least there's room for the total_length field.
17317 That could be 12 bytes long, but we're just going to fudge that. */
17318 if (offset + 4 >= section->size)
17319 {
17320 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17321 return 0;
17322 }
17323
17324 lh = XNEW (struct line_header);
17325 memset (lh, 0, sizeof (*lh));
17326 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17327 (void *) lh);
17328
17329 lh->offset.sect_off = offset;
17330 lh->offset_in_dwz = cu->per_cu->is_dwz;
17331
17332 line_ptr = section->buffer + offset;
17333
17334 /* Read in the header. */
17335 lh->total_length =
17336 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17337 &bytes_read, &offset_size);
17338 line_ptr += bytes_read;
17339 if (line_ptr + lh->total_length > (section->buffer + section->size))
17340 {
17341 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17342 do_cleanups (back_to);
17343 return 0;
17344 }
17345 lh->statement_program_end = line_ptr + lh->total_length;
17346 lh->version = read_2_bytes (abfd, line_ptr);
17347 line_ptr += 2;
17348 if (lh->version > 4)
17349 {
17350 /* This is a version we don't understand. The format could have
17351 changed in ways we don't handle properly so just punt. */
17352 complaint (&symfile_complaints,
17353 _("unsupported version in .debug_line section"));
17354 return NULL;
17355 }
17356 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17357 line_ptr += offset_size;
17358 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17359 line_ptr += 1;
17360 if (lh->version >= 4)
17361 {
17362 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17363 line_ptr += 1;
17364 }
17365 else
17366 lh->maximum_ops_per_instruction = 1;
17367
17368 if (lh->maximum_ops_per_instruction == 0)
17369 {
17370 lh->maximum_ops_per_instruction = 1;
17371 complaint (&symfile_complaints,
17372 _("invalid maximum_ops_per_instruction "
17373 "in `.debug_line' section"));
17374 }
17375
17376 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17379 line_ptr += 1;
17380 lh->line_range = read_1_byte (abfd, line_ptr);
17381 line_ptr += 1;
17382 lh->opcode_base = read_1_byte (abfd, line_ptr);
17383 line_ptr += 1;
17384 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17385
17386 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17387 for (i = 1; i < lh->opcode_base; ++i)
17388 {
17389 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17390 line_ptr += 1;
17391 }
17392
17393 /* Read directory table. */
17394 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17395 {
17396 line_ptr += bytes_read;
17397 add_include_dir (lh, cur_dir);
17398 }
17399 line_ptr += bytes_read;
17400
17401 /* Read file name table. */
17402 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17403 {
17404 unsigned int dir_index, mod_time, length;
17405
17406 line_ptr += bytes_read;
17407 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17408 line_ptr += bytes_read;
17409 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17410 line_ptr += bytes_read;
17411 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17412 line_ptr += bytes_read;
17413
17414 add_file_name (lh, cur_file, dir_index, mod_time, length);
17415 }
17416 line_ptr += bytes_read;
17417 lh->statement_program_start = line_ptr;
17418
17419 if (line_ptr > (section->buffer + section->size))
17420 complaint (&symfile_complaints,
17421 _("line number info header doesn't "
17422 "fit in `.debug_line' section"));
17423
17424 discard_cleanups (back_to);
17425 return lh;
17426 }
17427
17428 /* Subroutine of dwarf_decode_lines to simplify it.
17429 Return the file name of the psymtab for included file FILE_INDEX
17430 in line header LH of PST.
17431 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17432 If space for the result is malloc'd, it will be freed by a cleanup.
17433 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17434
17435 The function creates dangling cleanup registration. */
17436
17437 static const char *
17438 psymtab_include_file_name (const struct line_header *lh, int file_index,
17439 const struct partial_symtab *pst,
17440 const char *comp_dir)
17441 {
17442 const struct file_entry fe = lh->file_names [file_index];
17443 const char *include_name = fe.name;
17444 const char *include_name_to_compare = include_name;
17445 const char *dir_name = NULL;
17446 const char *pst_filename;
17447 char *copied_name = NULL;
17448 int file_is_pst;
17449
17450 if (fe.dir_index && lh->include_dirs != NULL)
17451 dir_name = lh->include_dirs[fe.dir_index - 1];
17452
17453 if (!IS_ABSOLUTE_PATH (include_name)
17454 && (dir_name != NULL || comp_dir != NULL))
17455 {
17456 /* Avoid creating a duplicate psymtab for PST.
17457 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17458 Before we do the comparison, however, we need to account
17459 for DIR_NAME and COMP_DIR.
17460 First prepend dir_name (if non-NULL). If we still don't
17461 have an absolute path prepend comp_dir (if non-NULL).
17462 However, the directory we record in the include-file's
17463 psymtab does not contain COMP_DIR (to match the
17464 corresponding symtab(s)).
17465
17466 Example:
17467
17468 bash$ cd /tmp
17469 bash$ gcc -g ./hello.c
17470 include_name = "hello.c"
17471 dir_name = "."
17472 DW_AT_comp_dir = comp_dir = "/tmp"
17473 DW_AT_name = "./hello.c"
17474
17475 */
17476
17477 if (dir_name != NULL)
17478 {
17479 char *tem = concat (dir_name, SLASH_STRING,
17480 include_name, (char *)NULL);
17481
17482 make_cleanup (xfree, tem);
17483 include_name = tem;
17484 include_name_to_compare = include_name;
17485 }
17486 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17487 {
17488 char *tem = concat (comp_dir, SLASH_STRING,
17489 include_name, (char *)NULL);
17490
17491 make_cleanup (xfree, tem);
17492 include_name_to_compare = tem;
17493 }
17494 }
17495
17496 pst_filename = pst->filename;
17497 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17498 {
17499 copied_name = concat (pst->dirname, SLASH_STRING,
17500 pst_filename, (char *)NULL);
17501 pst_filename = copied_name;
17502 }
17503
17504 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17505
17506 if (copied_name != NULL)
17507 xfree (copied_name);
17508
17509 if (file_is_pst)
17510 return NULL;
17511 return include_name;
17512 }
17513
17514 /* State machine to track the state of the line number program. */
17515
17516 typedef struct
17517 {
17518 /* These are part of the standard DWARF line number state machine. */
17519
17520 unsigned char op_index;
17521 unsigned int file;
17522 unsigned int line;
17523 CORE_ADDR address;
17524 int is_stmt;
17525 unsigned int discriminator;
17526
17527 /* Additional bits of state we need to track. */
17528
17529 /* The last file that we called dwarf2_start_subfile for.
17530 This is only used for TLLs. */
17531 unsigned int last_file;
17532 /* The last file a line number was recorded for. */
17533 struct subfile *last_subfile;
17534
17535 /* The function to call to record a line. */
17536 record_line_ftype *record_line;
17537
17538 /* The last line number that was recorded, used to coalesce
17539 consecutive entries for the same line. This can happen, for
17540 example, when discriminators are present. PR 17276. */
17541 unsigned int last_line;
17542 int line_has_non_zero_discriminator;
17543 } lnp_state_machine;
17544
17545 /* There's a lot of static state to pass to dwarf_record_line.
17546 This keeps it all together. */
17547
17548 typedef struct
17549 {
17550 /* The gdbarch. */
17551 struct gdbarch *gdbarch;
17552
17553 /* The line number header. */
17554 struct line_header *line_header;
17555
17556 /* Non-zero if we're recording lines.
17557 Otherwise we're building partial symtabs and are just interested in
17558 finding include files mentioned by the line number program. */
17559 int record_lines_p;
17560 } lnp_reader_state;
17561
17562 /* Ignore this record_line request. */
17563
17564 static void
17565 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17566 {
17567 return;
17568 }
17569
17570 /* Return non-zero if we should add LINE to the line number table.
17571 LINE is the line to add, LAST_LINE is the last line that was added,
17572 LAST_SUBFILE is the subfile for LAST_LINE.
17573 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17574 had a non-zero discriminator.
17575
17576 We have to be careful in the presence of discriminators.
17577 E.g., for this line:
17578
17579 for (i = 0; i < 100000; i++);
17580
17581 clang can emit four line number entries for that one line,
17582 each with a different discriminator.
17583 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17584
17585 However, we want gdb to coalesce all four entries into one.
17586 Otherwise the user could stepi into the middle of the line and
17587 gdb would get confused about whether the pc really was in the
17588 middle of the line.
17589
17590 Things are further complicated by the fact that two consecutive
17591 line number entries for the same line is a heuristic used by gcc
17592 to denote the end of the prologue. So we can't just discard duplicate
17593 entries, we have to be selective about it. The heuristic we use is
17594 that we only collapse consecutive entries for the same line if at least
17595 one of those entries has a non-zero discriminator. PR 17276.
17596
17597 Note: Addresses in the line number state machine can never go backwards
17598 within one sequence, thus this coalescing is ok. */
17599
17600 static int
17601 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17602 int line_has_non_zero_discriminator,
17603 struct subfile *last_subfile)
17604 {
17605 if (current_subfile != last_subfile)
17606 return 1;
17607 if (line != last_line)
17608 return 1;
17609 /* Same line for the same file that we've seen already.
17610 As a last check, for pr 17276, only record the line if the line
17611 has never had a non-zero discriminator. */
17612 if (!line_has_non_zero_discriminator)
17613 return 1;
17614 return 0;
17615 }
17616
17617 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17618 in the line table of subfile SUBFILE. */
17619
17620 static void
17621 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17622 unsigned int line, CORE_ADDR address,
17623 record_line_ftype p_record_line)
17624 {
17625 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17626
17627 if (dwarf_line_debug)
17628 {
17629 fprintf_unfiltered (gdb_stdlog,
17630 "Recording line %u, file %s, address %s\n",
17631 line, lbasename (subfile->name),
17632 paddress (gdbarch, address));
17633 }
17634
17635 (*p_record_line) (subfile, line, addr);
17636 }
17637
17638 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17639 Mark the end of a set of line number records.
17640 The arguments are the same as for dwarf_record_line_1.
17641 If SUBFILE is NULL the request is ignored. */
17642
17643 static void
17644 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17645 CORE_ADDR address, record_line_ftype p_record_line)
17646 {
17647 if (subfile == NULL)
17648 return;
17649
17650 if (dwarf_line_debug)
17651 {
17652 fprintf_unfiltered (gdb_stdlog,
17653 "Finishing current line, file %s, address %s\n",
17654 lbasename (subfile->name),
17655 paddress (gdbarch, address));
17656 }
17657
17658 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17659 }
17660
17661 /* Record the line in STATE.
17662 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17663
17664 static void
17665 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17666 int end_sequence)
17667 {
17668 const struct line_header *lh = reader->line_header;
17669 unsigned int file, line, discriminator;
17670 int is_stmt;
17671
17672 file = state->file;
17673 line = state->line;
17674 is_stmt = state->is_stmt;
17675 discriminator = state->discriminator;
17676
17677 if (dwarf_line_debug)
17678 {
17679 fprintf_unfiltered (gdb_stdlog,
17680 "Processing actual line %u: file %u,"
17681 " address %s, is_stmt %u, discrim %u\n",
17682 line, file,
17683 paddress (reader->gdbarch, state->address),
17684 is_stmt, discriminator);
17685 }
17686
17687 if (file == 0 || file - 1 >= lh->num_file_names)
17688 dwarf2_debug_line_missing_file_complaint ();
17689 /* For now we ignore lines not starting on an instruction boundary.
17690 But not when processing end_sequence for compatibility with the
17691 previous version of the code. */
17692 else if (state->op_index == 0 || end_sequence)
17693 {
17694 lh->file_names[file - 1].included_p = 1;
17695 if (reader->record_lines_p && is_stmt)
17696 {
17697 if (state->last_subfile != current_subfile || end_sequence)
17698 {
17699 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17700 state->address, state->record_line);
17701 }
17702
17703 if (!end_sequence)
17704 {
17705 if (dwarf_record_line_p (line, state->last_line,
17706 state->line_has_non_zero_discriminator,
17707 state->last_subfile))
17708 {
17709 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17710 line, state->address,
17711 state->record_line);
17712 }
17713 state->last_subfile = current_subfile;
17714 state->last_line = line;
17715 }
17716 }
17717 }
17718 }
17719
17720 /* Initialize STATE for the start of a line number program. */
17721
17722 static void
17723 init_lnp_state_machine (lnp_state_machine *state,
17724 const lnp_reader_state *reader)
17725 {
17726 memset (state, 0, sizeof (*state));
17727
17728 /* Just starting, there is no "last file". */
17729 state->last_file = 0;
17730 state->last_subfile = NULL;
17731
17732 state->record_line = record_line;
17733
17734 state->last_line = 0;
17735 state->line_has_non_zero_discriminator = 0;
17736
17737 /* Initialize these according to the DWARF spec. */
17738 state->op_index = 0;
17739 state->file = 1;
17740 state->line = 1;
17741 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17742 was a line entry for it so that the backend has a chance to adjust it
17743 and also record it in case it needs it. This is currently used by MIPS
17744 code, cf. `mips_adjust_dwarf2_line'. */
17745 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17746 state->is_stmt = reader->line_header->default_is_stmt;
17747 state->discriminator = 0;
17748 }
17749
17750 /* Check address and if invalid nop-out the rest of the lines in this
17751 sequence. */
17752
17753 static void
17754 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17755 const gdb_byte *line_ptr,
17756 CORE_ADDR lowpc, CORE_ADDR address)
17757 {
17758 /* If address < lowpc then it's not a usable value, it's outside the
17759 pc range of the CU. However, we restrict the test to only address
17760 values of zero to preserve GDB's previous behaviour which is to
17761 handle the specific case of a function being GC'd by the linker. */
17762
17763 if (address == 0 && address < lowpc)
17764 {
17765 /* This line table is for a function which has been
17766 GCd by the linker. Ignore it. PR gdb/12528 */
17767
17768 struct objfile *objfile = cu->objfile;
17769 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17770
17771 complaint (&symfile_complaints,
17772 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17773 line_offset, objfile_name (objfile));
17774 state->record_line = noop_record_line;
17775 /* Note: sm.record_line is left as noop_record_line
17776 until we see DW_LNE_end_sequence. */
17777 }
17778 }
17779
17780 /* Subroutine of dwarf_decode_lines to simplify it.
17781 Process the line number information in LH.
17782 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17783 program in order to set included_p for every referenced header. */
17784
17785 static void
17786 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17787 const int decode_for_pst_p, CORE_ADDR lowpc)
17788 {
17789 const gdb_byte *line_ptr, *extended_end;
17790 const gdb_byte *line_end;
17791 unsigned int bytes_read, extended_len;
17792 unsigned char op_code, extended_op;
17793 CORE_ADDR baseaddr;
17794 struct objfile *objfile = cu->objfile;
17795 bfd *abfd = objfile->obfd;
17796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17797 /* Non-zero if we're recording line info (as opposed to building partial
17798 symtabs). */
17799 int record_lines_p = !decode_for_pst_p;
17800 /* A collection of things we need to pass to dwarf_record_line. */
17801 lnp_reader_state reader_state;
17802
17803 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17804
17805 line_ptr = lh->statement_program_start;
17806 line_end = lh->statement_program_end;
17807
17808 reader_state.gdbarch = gdbarch;
17809 reader_state.line_header = lh;
17810 reader_state.record_lines_p = record_lines_p;
17811
17812 /* Read the statement sequences until there's nothing left. */
17813 while (line_ptr < line_end)
17814 {
17815 /* The DWARF line number program state machine. */
17816 lnp_state_machine state_machine;
17817 int end_sequence = 0;
17818
17819 /* Reset the state machine at the start of each sequence. */
17820 init_lnp_state_machine (&state_machine, &reader_state);
17821
17822 if (record_lines_p && lh->num_file_names >= state_machine.file)
17823 {
17824 /* Start a subfile for the current file of the state machine. */
17825 /* lh->include_dirs and lh->file_names are 0-based, but the
17826 directory and file name numbers in the statement program
17827 are 1-based. */
17828 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17829 const char *dir = NULL;
17830
17831 if (fe->dir_index && lh->include_dirs != NULL)
17832 dir = lh->include_dirs[fe->dir_index - 1];
17833
17834 dwarf2_start_subfile (fe->name, dir);
17835 }
17836
17837 /* Decode the table. */
17838 while (line_ptr < line_end && !end_sequence)
17839 {
17840 op_code = read_1_byte (abfd, line_ptr);
17841 line_ptr += 1;
17842
17843 if (op_code >= lh->opcode_base)
17844 {
17845 /* Special opcode. */
17846 unsigned char adj_opcode;
17847 CORE_ADDR addr_adj;
17848 int line_delta;
17849
17850 adj_opcode = op_code - lh->opcode_base;
17851 addr_adj = (((state_machine.op_index
17852 + (adj_opcode / lh->line_range))
17853 / lh->maximum_ops_per_instruction)
17854 * lh->minimum_instruction_length);
17855 state_machine.address
17856 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17857 state_machine.op_index = ((state_machine.op_index
17858 + (adj_opcode / lh->line_range))
17859 % lh->maximum_ops_per_instruction);
17860 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17861 state_machine.line += line_delta;
17862 if (line_delta != 0)
17863 state_machine.line_has_non_zero_discriminator
17864 = state_machine.discriminator != 0;
17865
17866 dwarf_record_line (&reader_state, &state_machine, 0);
17867 state_machine.discriminator = 0;
17868 }
17869 else switch (op_code)
17870 {
17871 case DW_LNS_extended_op:
17872 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17873 &bytes_read);
17874 line_ptr += bytes_read;
17875 extended_end = line_ptr + extended_len;
17876 extended_op = read_1_byte (abfd, line_ptr);
17877 line_ptr += 1;
17878 switch (extended_op)
17879 {
17880 case DW_LNE_end_sequence:
17881 state_machine.record_line = record_line;
17882 end_sequence = 1;
17883 break;
17884 case DW_LNE_set_address:
17885 {
17886 CORE_ADDR address
17887 = read_address (abfd, line_ptr, cu, &bytes_read);
17888
17889 line_ptr += bytes_read;
17890 check_line_address (cu, &state_machine, line_ptr,
17891 lowpc, address);
17892 state_machine.op_index = 0;
17893 address += baseaddr;
17894 state_machine.address
17895 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17896 }
17897 break;
17898 case DW_LNE_define_file:
17899 {
17900 const char *cur_file;
17901 unsigned int dir_index, mod_time, length;
17902
17903 cur_file = read_direct_string (abfd, line_ptr,
17904 &bytes_read);
17905 line_ptr += bytes_read;
17906 dir_index =
17907 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17908 line_ptr += bytes_read;
17909 mod_time =
17910 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17911 line_ptr += bytes_read;
17912 length =
17913 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17914 line_ptr += bytes_read;
17915 add_file_name (lh, cur_file, dir_index, mod_time, length);
17916 }
17917 break;
17918 case DW_LNE_set_discriminator:
17919 /* The discriminator is not interesting to the debugger;
17920 just ignore it. We still need to check its value though:
17921 if there are consecutive entries for the same
17922 (non-prologue) line we want to coalesce them.
17923 PR 17276. */
17924 state_machine.discriminator
17925 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17926 state_machine.line_has_non_zero_discriminator
17927 |= state_machine.discriminator != 0;
17928 line_ptr += bytes_read;
17929 break;
17930 default:
17931 complaint (&symfile_complaints,
17932 _("mangled .debug_line section"));
17933 return;
17934 }
17935 /* Make sure that we parsed the extended op correctly. If e.g.
17936 we expected a different address size than the producer used,
17937 we may have read the wrong number of bytes. */
17938 if (line_ptr != extended_end)
17939 {
17940 complaint (&symfile_complaints,
17941 _("mangled .debug_line section"));
17942 return;
17943 }
17944 break;
17945 case DW_LNS_copy:
17946 dwarf_record_line (&reader_state, &state_machine, 0);
17947 state_machine.discriminator = 0;
17948 break;
17949 case DW_LNS_advance_pc:
17950 {
17951 CORE_ADDR adjust
17952 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17953 CORE_ADDR addr_adj;
17954
17955 addr_adj = (((state_machine.op_index + adjust)
17956 / lh->maximum_ops_per_instruction)
17957 * lh->minimum_instruction_length);
17958 state_machine.address
17959 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17960 state_machine.op_index = ((state_machine.op_index + adjust)
17961 % lh->maximum_ops_per_instruction);
17962 line_ptr += bytes_read;
17963 }
17964 break;
17965 case DW_LNS_advance_line:
17966 {
17967 int line_delta
17968 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17969
17970 state_machine.line += line_delta;
17971 if (line_delta != 0)
17972 state_machine.line_has_non_zero_discriminator
17973 = state_machine.discriminator != 0;
17974 line_ptr += bytes_read;
17975 }
17976 break;
17977 case DW_LNS_set_file:
17978 {
17979 /* The arrays lh->include_dirs and lh->file_names are
17980 0-based, but the directory and file name numbers in
17981 the statement program are 1-based. */
17982 struct file_entry *fe;
17983 const char *dir = NULL;
17984
17985 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17986 &bytes_read);
17987 line_ptr += bytes_read;
17988 if (state_machine.file == 0
17989 || state_machine.file - 1 >= lh->num_file_names)
17990 dwarf2_debug_line_missing_file_complaint ();
17991 else
17992 {
17993 fe = &lh->file_names[state_machine.file - 1];
17994 if (fe->dir_index && lh->include_dirs != NULL)
17995 dir = lh->include_dirs[fe->dir_index - 1];
17996 if (record_lines_p)
17997 {
17998 state_machine.last_subfile = current_subfile;
17999 state_machine.line_has_non_zero_discriminator
18000 = state_machine.discriminator != 0;
18001 dwarf2_start_subfile (fe->name, dir);
18002 }
18003 }
18004 }
18005 break;
18006 case DW_LNS_set_column:
18007 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18008 line_ptr += bytes_read;
18009 break;
18010 case DW_LNS_negate_stmt:
18011 state_machine.is_stmt = (!state_machine.is_stmt);
18012 break;
18013 case DW_LNS_set_basic_block:
18014 break;
18015 /* Add to the address register of the state machine the
18016 address increment value corresponding to special opcode
18017 255. I.e., this value is scaled by the minimum
18018 instruction length since special opcode 255 would have
18019 scaled the increment. */
18020 case DW_LNS_const_add_pc:
18021 {
18022 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18023 CORE_ADDR addr_adj;
18024
18025 addr_adj = (((state_machine.op_index + adjust)
18026 / lh->maximum_ops_per_instruction)
18027 * lh->minimum_instruction_length);
18028 state_machine.address
18029 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18030 state_machine.op_index = ((state_machine.op_index + adjust)
18031 % lh->maximum_ops_per_instruction);
18032 }
18033 break;
18034 case DW_LNS_fixed_advance_pc:
18035 {
18036 CORE_ADDR addr_adj;
18037
18038 addr_adj = read_2_bytes (abfd, line_ptr);
18039 state_machine.address
18040 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18041 state_machine.op_index = 0;
18042 line_ptr += 2;
18043 }
18044 break;
18045 default:
18046 {
18047 /* Unknown standard opcode, ignore it. */
18048 int i;
18049
18050 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18051 {
18052 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18053 line_ptr += bytes_read;
18054 }
18055 }
18056 }
18057 }
18058
18059 if (!end_sequence)
18060 dwarf2_debug_line_missing_end_sequence_complaint ();
18061
18062 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18063 in which case we still finish recording the last line). */
18064 dwarf_record_line (&reader_state, &state_machine, 1);
18065 }
18066 }
18067
18068 /* Decode the Line Number Program (LNP) for the given line_header
18069 structure and CU. The actual information extracted and the type
18070 of structures created from the LNP depends on the value of PST.
18071
18072 1. If PST is NULL, then this procedure uses the data from the program
18073 to create all necessary symbol tables, and their linetables.
18074
18075 2. If PST is not NULL, this procedure reads the program to determine
18076 the list of files included by the unit represented by PST, and
18077 builds all the associated partial symbol tables.
18078
18079 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18080 It is used for relative paths in the line table.
18081 NOTE: When processing partial symtabs (pst != NULL),
18082 comp_dir == pst->dirname.
18083
18084 NOTE: It is important that psymtabs have the same file name (via strcmp)
18085 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18086 symtab we don't use it in the name of the psymtabs we create.
18087 E.g. expand_line_sal requires this when finding psymtabs to expand.
18088 A good testcase for this is mb-inline.exp.
18089
18090 LOWPC is the lowest address in CU (or 0 if not known).
18091
18092 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18093 for its PC<->lines mapping information. Otherwise only the filename
18094 table is read in. */
18095
18096 static void
18097 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18098 struct dwarf2_cu *cu, struct partial_symtab *pst,
18099 CORE_ADDR lowpc, int decode_mapping)
18100 {
18101 struct objfile *objfile = cu->objfile;
18102 const int decode_for_pst_p = (pst != NULL);
18103
18104 if (decode_mapping)
18105 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18106
18107 if (decode_for_pst_p)
18108 {
18109 int file_index;
18110
18111 /* Now that we're done scanning the Line Header Program, we can
18112 create the psymtab of each included file. */
18113 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18114 if (lh->file_names[file_index].included_p == 1)
18115 {
18116 const char *include_name =
18117 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18118 if (include_name != NULL)
18119 dwarf2_create_include_psymtab (include_name, pst, objfile);
18120 }
18121 }
18122 else
18123 {
18124 /* Make sure a symtab is created for every file, even files
18125 which contain only variables (i.e. no code with associated
18126 line numbers). */
18127 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18128 int i;
18129
18130 for (i = 0; i < lh->num_file_names; i++)
18131 {
18132 const char *dir = NULL;
18133 struct file_entry *fe;
18134
18135 fe = &lh->file_names[i];
18136 if (fe->dir_index && lh->include_dirs != NULL)
18137 dir = lh->include_dirs[fe->dir_index - 1];
18138 dwarf2_start_subfile (fe->name, dir);
18139
18140 if (current_subfile->symtab == NULL)
18141 {
18142 current_subfile->symtab
18143 = allocate_symtab (cust, current_subfile->name);
18144 }
18145 fe->symtab = current_subfile->symtab;
18146 }
18147 }
18148 }
18149
18150 /* Start a subfile for DWARF. FILENAME is the name of the file and
18151 DIRNAME the name of the source directory which contains FILENAME
18152 or NULL if not known.
18153 This routine tries to keep line numbers from identical absolute and
18154 relative file names in a common subfile.
18155
18156 Using the `list' example from the GDB testsuite, which resides in
18157 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18158 of /srcdir/list0.c yields the following debugging information for list0.c:
18159
18160 DW_AT_name: /srcdir/list0.c
18161 DW_AT_comp_dir: /compdir
18162 files.files[0].name: list0.h
18163 files.files[0].dir: /srcdir
18164 files.files[1].name: list0.c
18165 files.files[1].dir: /srcdir
18166
18167 The line number information for list0.c has to end up in a single
18168 subfile, so that `break /srcdir/list0.c:1' works as expected.
18169 start_subfile will ensure that this happens provided that we pass the
18170 concatenation of files.files[1].dir and files.files[1].name as the
18171 subfile's name. */
18172
18173 static void
18174 dwarf2_start_subfile (const char *filename, const char *dirname)
18175 {
18176 char *copy = NULL;
18177
18178 /* In order not to lose the line information directory,
18179 we concatenate it to the filename when it makes sense.
18180 Note that the Dwarf3 standard says (speaking of filenames in line
18181 information): ``The directory index is ignored for file names
18182 that represent full path names''. Thus ignoring dirname in the
18183 `else' branch below isn't an issue. */
18184
18185 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18186 {
18187 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18188 filename = copy;
18189 }
18190
18191 start_subfile (filename);
18192
18193 if (copy != NULL)
18194 xfree (copy);
18195 }
18196
18197 /* Start a symtab for DWARF.
18198 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18199
18200 static struct compunit_symtab *
18201 dwarf2_start_symtab (struct dwarf2_cu *cu,
18202 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18203 {
18204 struct compunit_symtab *cust
18205 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18206
18207 record_debugformat ("DWARF 2");
18208 record_producer (cu->producer);
18209
18210 /* We assume that we're processing GCC output. */
18211 processing_gcc_compilation = 2;
18212
18213 cu->processing_has_namespace_info = 0;
18214
18215 return cust;
18216 }
18217
18218 static void
18219 var_decode_location (struct attribute *attr, struct symbol *sym,
18220 struct dwarf2_cu *cu)
18221 {
18222 struct objfile *objfile = cu->objfile;
18223 struct comp_unit_head *cu_header = &cu->header;
18224
18225 /* NOTE drow/2003-01-30: There used to be a comment and some special
18226 code here to turn a symbol with DW_AT_external and a
18227 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18228 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18229 with some versions of binutils) where shared libraries could have
18230 relocations against symbols in their debug information - the
18231 minimal symbol would have the right address, but the debug info
18232 would not. It's no longer necessary, because we will explicitly
18233 apply relocations when we read in the debug information now. */
18234
18235 /* A DW_AT_location attribute with no contents indicates that a
18236 variable has been optimized away. */
18237 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18238 {
18239 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18240 return;
18241 }
18242
18243 /* Handle one degenerate form of location expression specially, to
18244 preserve GDB's previous behavior when section offsets are
18245 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18246 then mark this symbol as LOC_STATIC. */
18247
18248 if (attr_form_is_block (attr)
18249 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18250 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18251 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18252 && (DW_BLOCK (attr)->size
18253 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18254 {
18255 unsigned int dummy;
18256
18257 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18258 SYMBOL_VALUE_ADDRESS (sym) =
18259 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18260 else
18261 SYMBOL_VALUE_ADDRESS (sym) =
18262 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18263 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18264 fixup_symbol_section (sym, objfile);
18265 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18266 SYMBOL_SECTION (sym));
18267 return;
18268 }
18269
18270 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18271 expression evaluator, and use LOC_COMPUTED only when necessary
18272 (i.e. when the value of a register or memory location is
18273 referenced, or a thread-local block, etc.). Then again, it might
18274 not be worthwhile. I'm assuming that it isn't unless performance
18275 or memory numbers show me otherwise. */
18276
18277 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18278
18279 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18280 cu->has_loclist = 1;
18281 }
18282
18283 /* Given a pointer to a DWARF information entry, figure out if we need
18284 to make a symbol table entry for it, and if so, create a new entry
18285 and return a pointer to it.
18286 If TYPE is NULL, determine symbol type from the die, otherwise
18287 used the passed type.
18288 If SPACE is not NULL, use it to hold the new symbol. If it is
18289 NULL, allocate a new symbol on the objfile's obstack. */
18290
18291 static struct symbol *
18292 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18293 struct symbol *space)
18294 {
18295 struct objfile *objfile = cu->objfile;
18296 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18297 struct symbol *sym = NULL;
18298 const char *name;
18299 struct attribute *attr = NULL;
18300 struct attribute *attr2 = NULL;
18301 CORE_ADDR baseaddr;
18302 struct pending **list_to_add = NULL;
18303
18304 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18305
18306 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18307
18308 name = dwarf2_name (die, cu);
18309 if (name)
18310 {
18311 const char *linkagename;
18312 int suppress_add = 0;
18313
18314 if (space)
18315 sym = space;
18316 else
18317 sym = allocate_symbol (objfile);
18318 OBJSTAT (objfile, n_syms++);
18319
18320 /* Cache this symbol's name and the name's demangled form (if any). */
18321 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18322 linkagename = dwarf2_physname (name, die, cu);
18323 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18324
18325 /* Fortran does not have mangling standard and the mangling does differ
18326 between gfortran, iFort etc. */
18327 if (cu->language == language_fortran
18328 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18329 symbol_set_demangled_name (&(sym->ginfo),
18330 dwarf2_full_name (name, die, cu),
18331 NULL);
18332
18333 /* Default assumptions.
18334 Use the passed type or decode it from the die. */
18335 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18336 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18337 if (type != NULL)
18338 SYMBOL_TYPE (sym) = type;
18339 else
18340 SYMBOL_TYPE (sym) = die_type (die, cu);
18341 attr = dwarf2_attr (die,
18342 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18343 cu);
18344 if (attr)
18345 {
18346 SYMBOL_LINE (sym) = DW_UNSND (attr);
18347 }
18348
18349 attr = dwarf2_attr (die,
18350 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18351 cu);
18352 if (attr)
18353 {
18354 int file_index = DW_UNSND (attr);
18355
18356 if (cu->line_header == NULL
18357 || file_index > cu->line_header->num_file_names)
18358 complaint (&symfile_complaints,
18359 _("file index out of range"));
18360 else if (file_index > 0)
18361 {
18362 struct file_entry *fe;
18363
18364 fe = &cu->line_header->file_names[file_index - 1];
18365 symbol_set_symtab (sym, fe->symtab);
18366 }
18367 }
18368
18369 switch (die->tag)
18370 {
18371 case DW_TAG_label:
18372 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18373 if (attr)
18374 {
18375 CORE_ADDR addr;
18376
18377 addr = attr_value_as_address (attr);
18378 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18379 SYMBOL_VALUE_ADDRESS (sym) = addr;
18380 }
18381 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18382 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18383 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18384 add_symbol_to_list (sym, cu->list_in_scope);
18385 break;
18386 case DW_TAG_subprogram:
18387 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18388 finish_block. */
18389 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18390 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18391 if ((attr2 && (DW_UNSND (attr2) != 0))
18392 || cu->language == language_ada)
18393 {
18394 /* Subprograms marked external are stored as a global symbol.
18395 Ada subprograms, whether marked external or not, are always
18396 stored as a global symbol, because we want to be able to
18397 access them globally. For instance, we want to be able
18398 to break on a nested subprogram without having to
18399 specify the context. */
18400 list_to_add = &global_symbols;
18401 }
18402 else
18403 {
18404 list_to_add = cu->list_in_scope;
18405 }
18406 break;
18407 case DW_TAG_inlined_subroutine:
18408 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18409 finish_block. */
18410 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18411 SYMBOL_INLINED (sym) = 1;
18412 list_to_add = cu->list_in_scope;
18413 break;
18414 case DW_TAG_template_value_param:
18415 suppress_add = 1;
18416 /* Fall through. */
18417 case DW_TAG_constant:
18418 case DW_TAG_variable:
18419 case DW_TAG_member:
18420 /* Compilation with minimal debug info may result in
18421 variables with missing type entries. Change the
18422 misleading `void' type to something sensible. */
18423 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18424 SYMBOL_TYPE (sym)
18425 = objfile_type (objfile)->nodebug_data_symbol;
18426
18427 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18428 /* In the case of DW_TAG_member, we should only be called for
18429 static const members. */
18430 if (die->tag == DW_TAG_member)
18431 {
18432 /* dwarf2_add_field uses die_is_declaration,
18433 so we do the same. */
18434 gdb_assert (die_is_declaration (die, cu));
18435 gdb_assert (attr);
18436 }
18437 if (attr)
18438 {
18439 dwarf2_const_value (attr, sym, cu);
18440 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18441 if (!suppress_add)
18442 {
18443 if (attr2 && (DW_UNSND (attr2) != 0))
18444 list_to_add = &global_symbols;
18445 else
18446 list_to_add = cu->list_in_scope;
18447 }
18448 break;
18449 }
18450 attr = dwarf2_attr (die, DW_AT_location, cu);
18451 if (attr)
18452 {
18453 var_decode_location (attr, sym, cu);
18454 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18455
18456 /* Fortran explicitly imports any global symbols to the local
18457 scope by DW_TAG_common_block. */
18458 if (cu->language == language_fortran && die->parent
18459 && die->parent->tag == DW_TAG_common_block)
18460 attr2 = NULL;
18461
18462 if (SYMBOL_CLASS (sym) == LOC_STATIC
18463 && SYMBOL_VALUE_ADDRESS (sym) == 0
18464 && !dwarf2_per_objfile->has_section_at_zero)
18465 {
18466 /* When a static variable is eliminated by the linker,
18467 the corresponding debug information is not stripped
18468 out, but the variable address is set to null;
18469 do not add such variables into symbol table. */
18470 }
18471 else if (attr2 && (DW_UNSND (attr2) != 0))
18472 {
18473 /* Workaround gfortran PR debug/40040 - it uses
18474 DW_AT_location for variables in -fPIC libraries which may
18475 get overriden by other libraries/executable and get
18476 a different address. Resolve it by the minimal symbol
18477 which may come from inferior's executable using copy
18478 relocation. Make this workaround only for gfortran as for
18479 other compilers GDB cannot guess the minimal symbol
18480 Fortran mangling kind. */
18481 if (cu->language == language_fortran && die->parent
18482 && die->parent->tag == DW_TAG_module
18483 && cu->producer
18484 && startswith (cu->producer, "GNU Fortran "))
18485 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18486
18487 /* A variable with DW_AT_external is never static,
18488 but it may be block-scoped. */
18489 list_to_add = (cu->list_in_scope == &file_symbols
18490 ? &global_symbols : cu->list_in_scope);
18491 }
18492 else
18493 list_to_add = cu->list_in_scope;
18494 }
18495 else
18496 {
18497 /* We do not know the address of this symbol.
18498 If it is an external symbol and we have type information
18499 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18500 The address of the variable will then be determined from
18501 the minimal symbol table whenever the variable is
18502 referenced. */
18503 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18504
18505 /* Fortran explicitly imports any global symbols to the local
18506 scope by DW_TAG_common_block. */
18507 if (cu->language == language_fortran && die->parent
18508 && die->parent->tag == DW_TAG_common_block)
18509 {
18510 /* SYMBOL_CLASS doesn't matter here because
18511 read_common_block is going to reset it. */
18512 if (!suppress_add)
18513 list_to_add = cu->list_in_scope;
18514 }
18515 else if (attr2 && (DW_UNSND (attr2) != 0)
18516 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18517 {
18518 /* A variable with DW_AT_external is never static, but it
18519 may be block-scoped. */
18520 list_to_add = (cu->list_in_scope == &file_symbols
18521 ? &global_symbols : cu->list_in_scope);
18522
18523 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18524 }
18525 else if (!die_is_declaration (die, cu))
18526 {
18527 /* Use the default LOC_OPTIMIZED_OUT class. */
18528 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18529 if (!suppress_add)
18530 list_to_add = cu->list_in_scope;
18531 }
18532 }
18533 break;
18534 case DW_TAG_formal_parameter:
18535 /* If we are inside a function, mark this as an argument. If
18536 not, we might be looking at an argument to an inlined function
18537 when we do not have enough information to show inlined frames;
18538 pretend it's a local variable in that case so that the user can
18539 still see it. */
18540 if (context_stack_depth > 0
18541 && context_stack[context_stack_depth - 1].name != NULL)
18542 SYMBOL_IS_ARGUMENT (sym) = 1;
18543 attr = dwarf2_attr (die, DW_AT_location, cu);
18544 if (attr)
18545 {
18546 var_decode_location (attr, sym, cu);
18547 }
18548 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18549 if (attr)
18550 {
18551 dwarf2_const_value (attr, sym, cu);
18552 }
18553
18554 list_to_add = cu->list_in_scope;
18555 break;
18556 case DW_TAG_unspecified_parameters:
18557 /* From varargs functions; gdb doesn't seem to have any
18558 interest in this information, so just ignore it for now.
18559 (FIXME?) */
18560 break;
18561 case DW_TAG_template_type_param:
18562 suppress_add = 1;
18563 /* Fall through. */
18564 case DW_TAG_class_type:
18565 case DW_TAG_interface_type:
18566 case DW_TAG_structure_type:
18567 case DW_TAG_union_type:
18568 case DW_TAG_set_type:
18569 case DW_TAG_enumeration_type:
18570 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18571 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18572
18573 {
18574 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18575 really ever be static objects: otherwise, if you try
18576 to, say, break of a class's method and you're in a file
18577 which doesn't mention that class, it won't work unless
18578 the check for all static symbols in lookup_symbol_aux
18579 saves you. See the OtherFileClass tests in
18580 gdb.c++/namespace.exp. */
18581
18582 if (!suppress_add)
18583 {
18584 list_to_add = (cu->list_in_scope == &file_symbols
18585 && (cu->language == language_cplus
18586 || cu->language == language_java)
18587 ? &global_symbols : cu->list_in_scope);
18588
18589 /* The semantics of C++ state that "struct foo {
18590 ... }" also defines a typedef for "foo". A Java
18591 class declaration also defines a typedef for the
18592 class. */
18593 if (cu->language == language_cplus
18594 || cu->language == language_java
18595 || cu->language == language_ada
18596 || cu->language == language_d)
18597 {
18598 /* The symbol's name is already allocated along
18599 with this objfile, so we don't need to
18600 duplicate it for the type. */
18601 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18602 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18603 }
18604 }
18605 }
18606 break;
18607 case DW_TAG_typedef:
18608 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18609 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18610 list_to_add = cu->list_in_scope;
18611 break;
18612 case DW_TAG_base_type:
18613 case DW_TAG_subrange_type:
18614 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18615 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18616 list_to_add = cu->list_in_scope;
18617 break;
18618 case DW_TAG_enumerator:
18619 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18620 if (attr)
18621 {
18622 dwarf2_const_value (attr, sym, cu);
18623 }
18624 {
18625 /* NOTE: carlton/2003-11-10: See comment above in the
18626 DW_TAG_class_type, etc. block. */
18627
18628 list_to_add = (cu->list_in_scope == &file_symbols
18629 && (cu->language == language_cplus
18630 || cu->language == language_java)
18631 ? &global_symbols : cu->list_in_scope);
18632 }
18633 break;
18634 case DW_TAG_imported_declaration:
18635 case DW_TAG_namespace:
18636 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18637 list_to_add = &global_symbols;
18638 break;
18639 case DW_TAG_module:
18640 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18641 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18642 list_to_add = &global_symbols;
18643 break;
18644 case DW_TAG_common_block:
18645 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18646 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18647 add_symbol_to_list (sym, cu->list_in_scope);
18648 break;
18649 default:
18650 /* Not a tag we recognize. Hopefully we aren't processing
18651 trash data, but since we must specifically ignore things
18652 we don't recognize, there is nothing else we should do at
18653 this point. */
18654 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18655 dwarf_tag_name (die->tag));
18656 break;
18657 }
18658
18659 if (suppress_add)
18660 {
18661 sym->hash_next = objfile->template_symbols;
18662 objfile->template_symbols = sym;
18663 list_to_add = NULL;
18664 }
18665
18666 if (list_to_add != NULL)
18667 add_symbol_to_list (sym, list_to_add);
18668
18669 /* For the benefit of old versions of GCC, check for anonymous
18670 namespaces based on the demangled name. */
18671 if (!cu->processing_has_namespace_info
18672 && cu->language == language_cplus)
18673 cp_scan_for_anonymous_namespaces (sym, objfile);
18674 }
18675 return (sym);
18676 }
18677
18678 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18679
18680 static struct symbol *
18681 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18682 {
18683 return new_symbol_full (die, type, cu, NULL);
18684 }
18685
18686 /* Given an attr with a DW_FORM_dataN value in host byte order,
18687 zero-extend it as appropriate for the symbol's type. The DWARF
18688 standard (v4) is not entirely clear about the meaning of using
18689 DW_FORM_dataN for a constant with a signed type, where the type is
18690 wider than the data. The conclusion of a discussion on the DWARF
18691 list was that this is unspecified. We choose to always zero-extend
18692 because that is the interpretation long in use by GCC. */
18693
18694 static gdb_byte *
18695 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18696 struct dwarf2_cu *cu, LONGEST *value, int bits)
18697 {
18698 struct objfile *objfile = cu->objfile;
18699 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18700 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18701 LONGEST l = DW_UNSND (attr);
18702
18703 if (bits < sizeof (*value) * 8)
18704 {
18705 l &= ((LONGEST) 1 << bits) - 1;
18706 *value = l;
18707 }
18708 else if (bits == sizeof (*value) * 8)
18709 *value = l;
18710 else
18711 {
18712 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18713 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18714 return bytes;
18715 }
18716
18717 return NULL;
18718 }
18719
18720 /* Read a constant value from an attribute. Either set *VALUE, or if
18721 the value does not fit in *VALUE, set *BYTES - either already
18722 allocated on the objfile obstack, or newly allocated on OBSTACK,
18723 or, set *BATON, if we translated the constant to a location
18724 expression. */
18725
18726 static void
18727 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18728 const char *name, struct obstack *obstack,
18729 struct dwarf2_cu *cu,
18730 LONGEST *value, const gdb_byte **bytes,
18731 struct dwarf2_locexpr_baton **baton)
18732 {
18733 struct objfile *objfile = cu->objfile;
18734 struct comp_unit_head *cu_header = &cu->header;
18735 struct dwarf_block *blk;
18736 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18737 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18738
18739 *value = 0;
18740 *bytes = NULL;
18741 *baton = NULL;
18742
18743 switch (attr->form)
18744 {
18745 case DW_FORM_addr:
18746 case DW_FORM_GNU_addr_index:
18747 {
18748 gdb_byte *data;
18749
18750 if (TYPE_LENGTH (type) != cu_header->addr_size)
18751 dwarf2_const_value_length_mismatch_complaint (name,
18752 cu_header->addr_size,
18753 TYPE_LENGTH (type));
18754 /* Symbols of this form are reasonably rare, so we just
18755 piggyback on the existing location code rather than writing
18756 a new implementation of symbol_computed_ops. */
18757 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18758 (*baton)->per_cu = cu->per_cu;
18759 gdb_assert ((*baton)->per_cu);
18760
18761 (*baton)->size = 2 + cu_header->addr_size;
18762 data = obstack_alloc (obstack, (*baton)->size);
18763 (*baton)->data = data;
18764
18765 data[0] = DW_OP_addr;
18766 store_unsigned_integer (&data[1], cu_header->addr_size,
18767 byte_order, DW_ADDR (attr));
18768 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18769 }
18770 break;
18771 case DW_FORM_string:
18772 case DW_FORM_strp:
18773 case DW_FORM_GNU_str_index:
18774 case DW_FORM_GNU_strp_alt:
18775 /* DW_STRING is already allocated on the objfile obstack, point
18776 directly to it. */
18777 *bytes = (const gdb_byte *) DW_STRING (attr);
18778 break;
18779 case DW_FORM_block1:
18780 case DW_FORM_block2:
18781 case DW_FORM_block4:
18782 case DW_FORM_block:
18783 case DW_FORM_exprloc:
18784 blk = DW_BLOCK (attr);
18785 if (TYPE_LENGTH (type) != blk->size)
18786 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18787 TYPE_LENGTH (type));
18788 *bytes = blk->data;
18789 break;
18790
18791 /* The DW_AT_const_value attributes are supposed to carry the
18792 symbol's value "represented as it would be on the target
18793 architecture." By the time we get here, it's already been
18794 converted to host endianness, so we just need to sign- or
18795 zero-extend it as appropriate. */
18796 case DW_FORM_data1:
18797 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18798 break;
18799 case DW_FORM_data2:
18800 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18801 break;
18802 case DW_FORM_data4:
18803 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18804 break;
18805 case DW_FORM_data8:
18806 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18807 break;
18808
18809 case DW_FORM_sdata:
18810 *value = DW_SND (attr);
18811 break;
18812
18813 case DW_FORM_udata:
18814 *value = DW_UNSND (attr);
18815 break;
18816
18817 default:
18818 complaint (&symfile_complaints,
18819 _("unsupported const value attribute form: '%s'"),
18820 dwarf_form_name (attr->form));
18821 *value = 0;
18822 break;
18823 }
18824 }
18825
18826
18827 /* Copy constant value from an attribute to a symbol. */
18828
18829 static void
18830 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18831 struct dwarf2_cu *cu)
18832 {
18833 struct objfile *objfile = cu->objfile;
18834 struct comp_unit_head *cu_header = &cu->header;
18835 LONGEST value;
18836 const gdb_byte *bytes;
18837 struct dwarf2_locexpr_baton *baton;
18838
18839 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18840 SYMBOL_PRINT_NAME (sym),
18841 &objfile->objfile_obstack, cu,
18842 &value, &bytes, &baton);
18843
18844 if (baton != NULL)
18845 {
18846 SYMBOL_LOCATION_BATON (sym) = baton;
18847 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18848 }
18849 else if (bytes != NULL)
18850 {
18851 SYMBOL_VALUE_BYTES (sym) = bytes;
18852 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18853 }
18854 else
18855 {
18856 SYMBOL_VALUE (sym) = value;
18857 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18858 }
18859 }
18860
18861 /* Return the type of the die in question using its DW_AT_type attribute. */
18862
18863 static struct type *
18864 die_type (struct die_info *die, struct dwarf2_cu *cu)
18865 {
18866 struct attribute *type_attr;
18867
18868 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18869 if (!type_attr)
18870 {
18871 /* A missing DW_AT_type represents a void type. */
18872 return objfile_type (cu->objfile)->builtin_void;
18873 }
18874
18875 return lookup_die_type (die, type_attr, cu);
18876 }
18877
18878 /* True iff CU's producer generates GNAT Ada auxiliary information
18879 that allows to find parallel types through that information instead
18880 of having to do expensive parallel lookups by type name. */
18881
18882 static int
18883 need_gnat_info (struct dwarf2_cu *cu)
18884 {
18885 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18886 of GNAT produces this auxiliary information, without any indication
18887 that it is produced. Part of enhancing the FSF version of GNAT
18888 to produce that information will be to put in place an indicator
18889 that we can use in order to determine whether the descriptive type
18890 info is available or not. One suggestion that has been made is
18891 to use a new attribute, attached to the CU die. For now, assume
18892 that the descriptive type info is not available. */
18893 return 0;
18894 }
18895
18896 /* Return the auxiliary type of the die in question using its
18897 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18898 attribute is not present. */
18899
18900 static struct type *
18901 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18902 {
18903 struct attribute *type_attr;
18904
18905 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18906 if (!type_attr)
18907 return NULL;
18908
18909 return lookup_die_type (die, type_attr, cu);
18910 }
18911
18912 /* If DIE has a descriptive_type attribute, then set the TYPE's
18913 descriptive type accordingly. */
18914
18915 static void
18916 set_descriptive_type (struct type *type, struct die_info *die,
18917 struct dwarf2_cu *cu)
18918 {
18919 struct type *descriptive_type = die_descriptive_type (die, cu);
18920
18921 if (descriptive_type)
18922 {
18923 ALLOCATE_GNAT_AUX_TYPE (type);
18924 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18925 }
18926 }
18927
18928 /* Return the containing type of the die in question using its
18929 DW_AT_containing_type attribute. */
18930
18931 static struct type *
18932 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18933 {
18934 struct attribute *type_attr;
18935
18936 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18937 if (!type_attr)
18938 error (_("Dwarf Error: Problem turning containing type into gdb type "
18939 "[in module %s]"), objfile_name (cu->objfile));
18940
18941 return lookup_die_type (die, type_attr, cu);
18942 }
18943
18944 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18945
18946 static struct type *
18947 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18948 {
18949 struct objfile *objfile = dwarf2_per_objfile->objfile;
18950 char *message, *saved;
18951
18952 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18953 objfile_name (objfile),
18954 cu->header.offset.sect_off,
18955 die->offset.sect_off);
18956 saved = obstack_copy0 (&objfile->objfile_obstack,
18957 message, strlen (message));
18958 xfree (message);
18959
18960 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18961 }
18962
18963 /* Look up the type of DIE in CU using its type attribute ATTR.
18964 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18965 DW_AT_containing_type.
18966 If there is no type substitute an error marker. */
18967
18968 static struct type *
18969 lookup_die_type (struct die_info *die, const struct attribute *attr,
18970 struct dwarf2_cu *cu)
18971 {
18972 struct objfile *objfile = cu->objfile;
18973 struct type *this_type;
18974
18975 gdb_assert (attr->name == DW_AT_type
18976 || attr->name == DW_AT_GNAT_descriptive_type
18977 || attr->name == DW_AT_containing_type);
18978
18979 /* First see if we have it cached. */
18980
18981 if (attr->form == DW_FORM_GNU_ref_alt)
18982 {
18983 struct dwarf2_per_cu_data *per_cu;
18984 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18985
18986 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18987 this_type = get_die_type_at_offset (offset, per_cu);
18988 }
18989 else if (attr_form_is_ref (attr))
18990 {
18991 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18992
18993 this_type = get_die_type_at_offset (offset, cu->per_cu);
18994 }
18995 else if (attr->form == DW_FORM_ref_sig8)
18996 {
18997 ULONGEST signature = DW_SIGNATURE (attr);
18998
18999 return get_signatured_type (die, signature, cu);
19000 }
19001 else
19002 {
19003 complaint (&symfile_complaints,
19004 _("Dwarf Error: Bad type attribute %s in DIE"
19005 " at 0x%x [in module %s]"),
19006 dwarf_attr_name (attr->name), die->offset.sect_off,
19007 objfile_name (objfile));
19008 return build_error_marker_type (cu, die);
19009 }
19010
19011 /* If not cached we need to read it in. */
19012
19013 if (this_type == NULL)
19014 {
19015 struct die_info *type_die = NULL;
19016 struct dwarf2_cu *type_cu = cu;
19017
19018 if (attr_form_is_ref (attr))
19019 type_die = follow_die_ref (die, attr, &type_cu);
19020 if (type_die == NULL)
19021 return build_error_marker_type (cu, die);
19022 /* If we find the type now, it's probably because the type came
19023 from an inter-CU reference and the type's CU got expanded before
19024 ours. */
19025 this_type = read_type_die (type_die, type_cu);
19026 }
19027
19028 /* If we still don't have a type use an error marker. */
19029
19030 if (this_type == NULL)
19031 return build_error_marker_type (cu, die);
19032
19033 return this_type;
19034 }
19035
19036 /* Return the type in DIE, CU.
19037 Returns NULL for invalid types.
19038
19039 This first does a lookup in die_type_hash,
19040 and only reads the die in if necessary.
19041
19042 NOTE: This can be called when reading in partial or full symbols. */
19043
19044 static struct type *
19045 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19046 {
19047 struct type *this_type;
19048
19049 this_type = get_die_type (die, cu);
19050 if (this_type)
19051 return this_type;
19052
19053 return read_type_die_1 (die, cu);
19054 }
19055
19056 /* Read the type in DIE, CU.
19057 Returns NULL for invalid types. */
19058
19059 static struct type *
19060 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19061 {
19062 struct type *this_type = NULL;
19063
19064 switch (die->tag)
19065 {
19066 case DW_TAG_class_type:
19067 case DW_TAG_interface_type:
19068 case DW_TAG_structure_type:
19069 case DW_TAG_union_type:
19070 this_type = read_structure_type (die, cu);
19071 break;
19072 case DW_TAG_enumeration_type:
19073 this_type = read_enumeration_type (die, cu);
19074 break;
19075 case DW_TAG_subprogram:
19076 case DW_TAG_subroutine_type:
19077 case DW_TAG_inlined_subroutine:
19078 this_type = read_subroutine_type (die, cu);
19079 break;
19080 case DW_TAG_array_type:
19081 this_type = read_array_type (die, cu);
19082 break;
19083 case DW_TAG_set_type:
19084 this_type = read_set_type (die, cu);
19085 break;
19086 case DW_TAG_pointer_type:
19087 this_type = read_tag_pointer_type (die, cu);
19088 break;
19089 case DW_TAG_ptr_to_member_type:
19090 this_type = read_tag_ptr_to_member_type (die, cu);
19091 break;
19092 case DW_TAG_reference_type:
19093 this_type = read_tag_reference_type (die, cu);
19094 break;
19095 case DW_TAG_const_type:
19096 this_type = read_tag_const_type (die, cu);
19097 break;
19098 case DW_TAG_volatile_type:
19099 this_type = read_tag_volatile_type (die, cu);
19100 break;
19101 case DW_TAG_restrict_type:
19102 this_type = read_tag_restrict_type (die, cu);
19103 break;
19104 case DW_TAG_string_type:
19105 this_type = read_tag_string_type (die, cu);
19106 break;
19107 case DW_TAG_typedef:
19108 this_type = read_typedef (die, cu);
19109 break;
19110 case DW_TAG_subrange_type:
19111 this_type = read_subrange_type (die, cu);
19112 break;
19113 case DW_TAG_base_type:
19114 this_type = read_base_type (die, cu);
19115 break;
19116 case DW_TAG_unspecified_type:
19117 this_type = read_unspecified_type (die, cu);
19118 break;
19119 case DW_TAG_namespace:
19120 this_type = read_namespace_type (die, cu);
19121 break;
19122 case DW_TAG_module:
19123 this_type = read_module_type (die, cu);
19124 break;
19125 case DW_TAG_atomic_type:
19126 this_type = read_tag_atomic_type (die, cu);
19127 break;
19128 default:
19129 complaint (&symfile_complaints,
19130 _("unexpected tag in read_type_die: '%s'"),
19131 dwarf_tag_name (die->tag));
19132 break;
19133 }
19134
19135 return this_type;
19136 }
19137
19138 /* See if we can figure out if the class lives in a namespace. We do
19139 this by looking for a member function; its demangled name will
19140 contain namespace info, if there is any.
19141 Return the computed name or NULL.
19142 Space for the result is allocated on the objfile's obstack.
19143 This is the full-die version of guess_partial_die_structure_name.
19144 In this case we know DIE has no useful parent. */
19145
19146 static char *
19147 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19148 {
19149 struct die_info *spec_die;
19150 struct dwarf2_cu *spec_cu;
19151 struct die_info *child;
19152
19153 spec_cu = cu;
19154 spec_die = die_specification (die, &spec_cu);
19155 if (spec_die != NULL)
19156 {
19157 die = spec_die;
19158 cu = spec_cu;
19159 }
19160
19161 for (child = die->child;
19162 child != NULL;
19163 child = child->sibling)
19164 {
19165 if (child->tag == DW_TAG_subprogram)
19166 {
19167 const char *linkage_name;
19168
19169 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19170 if (linkage_name == NULL)
19171 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19172 cu);
19173 if (linkage_name != NULL)
19174 {
19175 char *actual_name
19176 = language_class_name_from_physname (cu->language_defn,
19177 linkage_name);
19178 char *name = NULL;
19179
19180 if (actual_name != NULL)
19181 {
19182 const char *die_name = dwarf2_name (die, cu);
19183
19184 if (die_name != NULL
19185 && strcmp (die_name, actual_name) != 0)
19186 {
19187 /* Strip off the class name from the full name.
19188 We want the prefix. */
19189 int die_name_len = strlen (die_name);
19190 int actual_name_len = strlen (actual_name);
19191
19192 /* Test for '::' as a sanity check. */
19193 if (actual_name_len > die_name_len + 2
19194 && actual_name[actual_name_len
19195 - die_name_len - 1] == ':')
19196 name =
19197 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19198 actual_name,
19199 actual_name_len - die_name_len - 2);
19200 }
19201 }
19202 xfree (actual_name);
19203 return name;
19204 }
19205 }
19206 }
19207
19208 return NULL;
19209 }
19210
19211 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19212 prefix part in such case. See
19213 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19214
19215 static char *
19216 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19217 {
19218 struct attribute *attr;
19219 char *base;
19220
19221 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19222 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19223 return NULL;
19224
19225 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19226 return NULL;
19227
19228 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19229 if (attr == NULL)
19230 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19231 if (attr == NULL || DW_STRING (attr) == NULL)
19232 return NULL;
19233
19234 /* dwarf2_name had to be already called. */
19235 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19236
19237 /* Strip the base name, keep any leading namespaces/classes. */
19238 base = strrchr (DW_STRING (attr), ':');
19239 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19240 return "";
19241
19242 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19243 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19244 }
19245
19246 /* Return the name of the namespace/class that DIE is defined within,
19247 or "" if we can't tell. The caller should not xfree the result.
19248
19249 For example, if we're within the method foo() in the following
19250 code:
19251
19252 namespace N {
19253 class C {
19254 void foo () {
19255 }
19256 };
19257 }
19258
19259 then determine_prefix on foo's die will return "N::C". */
19260
19261 static const char *
19262 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19263 {
19264 struct die_info *parent, *spec_die;
19265 struct dwarf2_cu *spec_cu;
19266 struct type *parent_type;
19267 char *retval;
19268
19269 if (cu->language != language_cplus && cu->language != language_java
19270 && cu->language != language_fortran && cu->language != language_d)
19271 return "";
19272
19273 retval = anonymous_struct_prefix (die, cu);
19274 if (retval)
19275 return retval;
19276
19277 /* We have to be careful in the presence of DW_AT_specification.
19278 For example, with GCC 3.4, given the code
19279
19280 namespace N {
19281 void foo() {
19282 // Definition of N::foo.
19283 }
19284 }
19285
19286 then we'll have a tree of DIEs like this:
19287
19288 1: DW_TAG_compile_unit
19289 2: DW_TAG_namespace // N
19290 3: DW_TAG_subprogram // declaration of N::foo
19291 4: DW_TAG_subprogram // definition of N::foo
19292 DW_AT_specification // refers to die #3
19293
19294 Thus, when processing die #4, we have to pretend that we're in
19295 the context of its DW_AT_specification, namely the contex of die
19296 #3. */
19297 spec_cu = cu;
19298 spec_die = die_specification (die, &spec_cu);
19299 if (spec_die == NULL)
19300 parent = die->parent;
19301 else
19302 {
19303 parent = spec_die->parent;
19304 cu = spec_cu;
19305 }
19306
19307 if (parent == NULL)
19308 return "";
19309 else if (parent->building_fullname)
19310 {
19311 const char *name;
19312 const char *parent_name;
19313
19314 /* It has been seen on RealView 2.2 built binaries,
19315 DW_TAG_template_type_param types actually _defined_ as
19316 children of the parent class:
19317
19318 enum E {};
19319 template class <class Enum> Class{};
19320 Class<enum E> class_e;
19321
19322 1: DW_TAG_class_type (Class)
19323 2: DW_TAG_enumeration_type (E)
19324 3: DW_TAG_enumerator (enum1:0)
19325 3: DW_TAG_enumerator (enum2:1)
19326 ...
19327 2: DW_TAG_template_type_param
19328 DW_AT_type DW_FORM_ref_udata (E)
19329
19330 Besides being broken debug info, it can put GDB into an
19331 infinite loop. Consider:
19332
19333 When we're building the full name for Class<E>, we'll start
19334 at Class, and go look over its template type parameters,
19335 finding E. We'll then try to build the full name of E, and
19336 reach here. We're now trying to build the full name of E,
19337 and look over the parent DIE for containing scope. In the
19338 broken case, if we followed the parent DIE of E, we'd again
19339 find Class, and once again go look at its template type
19340 arguments, etc., etc. Simply don't consider such parent die
19341 as source-level parent of this die (it can't be, the language
19342 doesn't allow it), and break the loop here. */
19343 name = dwarf2_name (die, cu);
19344 parent_name = dwarf2_name (parent, cu);
19345 complaint (&symfile_complaints,
19346 _("template param type '%s' defined within parent '%s'"),
19347 name ? name : "<unknown>",
19348 parent_name ? parent_name : "<unknown>");
19349 return "";
19350 }
19351 else
19352 switch (parent->tag)
19353 {
19354 case DW_TAG_namespace:
19355 parent_type = read_type_die (parent, cu);
19356 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19357 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19358 Work around this problem here. */
19359 if (cu->language == language_cplus
19360 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19361 return "";
19362 /* We give a name to even anonymous namespaces. */
19363 return TYPE_TAG_NAME (parent_type);
19364 case DW_TAG_class_type:
19365 case DW_TAG_interface_type:
19366 case DW_TAG_structure_type:
19367 case DW_TAG_union_type:
19368 case DW_TAG_module:
19369 parent_type = read_type_die (parent, cu);
19370 if (TYPE_TAG_NAME (parent_type) != NULL)
19371 return TYPE_TAG_NAME (parent_type);
19372 else
19373 /* An anonymous structure is only allowed non-static data
19374 members; no typedefs, no member functions, et cetera.
19375 So it does not need a prefix. */
19376 return "";
19377 case DW_TAG_compile_unit:
19378 case DW_TAG_partial_unit:
19379 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19380 if (cu->language == language_cplus
19381 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19382 && die->child != NULL
19383 && (die->tag == DW_TAG_class_type
19384 || die->tag == DW_TAG_structure_type
19385 || die->tag == DW_TAG_union_type))
19386 {
19387 char *name = guess_full_die_structure_name (die, cu);
19388 if (name != NULL)
19389 return name;
19390 }
19391 return "";
19392 case DW_TAG_enumeration_type:
19393 parent_type = read_type_die (parent, cu);
19394 if (TYPE_DECLARED_CLASS (parent_type))
19395 {
19396 if (TYPE_TAG_NAME (parent_type) != NULL)
19397 return TYPE_TAG_NAME (parent_type);
19398 return "";
19399 }
19400 /* Fall through. */
19401 default:
19402 return determine_prefix (parent, cu);
19403 }
19404 }
19405
19406 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19407 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19408 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19409 an obconcat, otherwise allocate storage for the result. The CU argument is
19410 used to determine the language and hence, the appropriate separator. */
19411
19412 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19413
19414 static char *
19415 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19416 int physname, struct dwarf2_cu *cu)
19417 {
19418 const char *lead = "";
19419 const char *sep;
19420
19421 if (suffix == NULL || suffix[0] == '\0'
19422 || prefix == NULL || prefix[0] == '\0')
19423 sep = "";
19424 else if (cu->language == language_java)
19425 sep = ".";
19426 else if (cu->language == language_d)
19427 {
19428 /* For D, the 'main' function could be defined in any module, but it
19429 should never be prefixed. */
19430 if (strcmp (suffix, "D main") == 0)
19431 {
19432 prefix = "";
19433 sep = "";
19434 }
19435 else
19436 sep = ".";
19437 }
19438 else if (cu->language == language_fortran && physname)
19439 {
19440 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19441 DW_AT_MIPS_linkage_name is preferred and used instead. */
19442
19443 lead = "__";
19444 sep = "_MOD_";
19445 }
19446 else
19447 sep = "::";
19448
19449 if (prefix == NULL)
19450 prefix = "";
19451 if (suffix == NULL)
19452 suffix = "";
19453
19454 if (obs == NULL)
19455 {
19456 char *retval
19457 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19458
19459 strcpy (retval, lead);
19460 strcat (retval, prefix);
19461 strcat (retval, sep);
19462 strcat (retval, suffix);
19463 return retval;
19464 }
19465 else
19466 {
19467 /* We have an obstack. */
19468 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19469 }
19470 }
19471
19472 /* Return sibling of die, NULL if no sibling. */
19473
19474 static struct die_info *
19475 sibling_die (struct die_info *die)
19476 {
19477 return die->sibling;
19478 }
19479
19480 /* Get name of a die, return NULL if not found. */
19481
19482 static const char *
19483 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19484 struct obstack *obstack)
19485 {
19486 if (name && cu->language == language_cplus)
19487 {
19488 char *canon_name = cp_canonicalize_string (name);
19489
19490 if (canon_name != NULL)
19491 {
19492 if (strcmp (canon_name, name) != 0)
19493 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19494 xfree (canon_name);
19495 }
19496 }
19497
19498 return name;
19499 }
19500
19501 /* Get name of a die, return NULL if not found.
19502 Anonymous namespaces are converted to their magic string. */
19503
19504 static const char *
19505 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19506 {
19507 struct attribute *attr;
19508
19509 attr = dwarf2_attr (die, DW_AT_name, cu);
19510 if ((!attr || !DW_STRING (attr))
19511 && die->tag != DW_TAG_namespace
19512 && die->tag != DW_TAG_class_type
19513 && die->tag != DW_TAG_interface_type
19514 && die->tag != DW_TAG_structure_type
19515 && die->tag != DW_TAG_union_type)
19516 return NULL;
19517
19518 switch (die->tag)
19519 {
19520 case DW_TAG_compile_unit:
19521 case DW_TAG_partial_unit:
19522 /* Compilation units have a DW_AT_name that is a filename, not
19523 a source language identifier. */
19524 case DW_TAG_enumeration_type:
19525 case DW_TAG_enumerator:
19526 /* These tags always have simple identifiers already; no need
19527 to canonicalize them. */
19528 return DW_STRING (attr);
19529
19530 case DW_TAG_namespace:
19531 if (attr != NULL && DW_STRING (attr) != NULL)
19532 return DW_STRING (attr);
19533 return CP_ANONYMOUS_NAMESPACE_STR;
19534
19535 case DW_TAG_subprogram:
19536 /* Java constructors will all be named "<init>", so return
19537 the class name when we see this special case. */
19538 if (cu->language == language_java
19539 && DW_STRING (attr) != NULL
19540 && strcmp (DW_STRING (attr), "<init>") == 0)
19541 {
19542 struct dwarf2_cu *spec_cu = cu;
19543 struct die_info *spec_die;
19544
19545 /* GCJ will output '<init>' for Java constructor names.
19546 For this special case, return the name of the parent class. */
19547
19548 /* GCJ may output subprogram DIEs with AT_specification set.
19549 If so, use the name of the specified DIE. */
19550 spec_die = die_specification (die, &spec_cu);
19551 if (spec_die != NULL)
19552 return dwarf2_name (spec_die, spec_cu);
19553
19554 do
19555 {
19556 die = die->parent;
19557 if (die->tag == DW_TAG_class_type)
19558 return dwarf2_name (die, cu);
19559 }
19560 while (die->tag != DW_TAG_compile_unit
19561 && die->tag != DW_TAG_partial_unit);
19562 }
19563 break;
19564
19565 case DW_TAG_class_type:
19566 case DW_TAG_interface_type:
19567 case DW_TAG_structure_type:
19568 case DW_TAG_union_type:
19569 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19570 structures or unions. These were of the form "._%d" in GCC 4.1,
19571 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19572 and GCC 4.4. We work around this problem by ignoring these. */
19573 if (attr && DW_STRING (attr)
19574 && (startswith (DW_STRING (attr), "._")
19575 || startswith (DW_STRING (attr), "<anonymous")))
19576 return NULL;
19577
19578 /* GCC might emit a nameless typedef that has a linkage name. See
19579 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19580 if (!attr || DW_STRING (attr) == NULL)
19581 {
19582 char *demangled = NULL;
19583
19584 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19585 if (attr == NULL)
19586 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19587
19588 if (attr == NULL || DW_STRING (attr) == NULL)
19589 return NULL;
19590
19591 /* Avoid demangling DW_STRING (attr) the second time on a second
19592 call for the same DIE. */
19593 if (!DW_STRING_IS_CANONICAL (attr))
19594 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19595
19596 if (demangled)
19597 {
19598 char *base;
19599
19600 /* FIXME: we already did this for the partial symbol... */
19601 DW_STRING (attr)
19602 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19603 demangled, strlen (demangled));
19604 DW_STRING_IS_CANONICAL (attr) = 1;
19605 xfree (demangled);
19606
19607 /* Strip any leading namespaces/classes, keep only the base name.
19608 DW_AT_name for named DIEs does not contain the prefixes. */
19609 base = strrchr (DW_STRING (attr), ':');
19610 if (base && base > DW_STRING (attr) && base[-1] == ':')
19611 return &base[1];
19612 else
19613 return DW_STRING (attr);
19614 }
19615 }
19616 break;
19617
19618 default:
19619 break;
19620 }
19621
19622 if (!DW_STRING_IS_CANONICAL (attr))
19623 {
19624 DW_STRING (attr)
19625 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19626 &cu->objfile->per_bfd->storage_obstack);
19627 DW_STRING_IS_CANONICAL (attr) = 1;
19628 }
19629 return DW_STRING (attr);
19630 }
19631
19632 /* Return the die that this die in an extension of, or NULL if there
19633 is none. *EXT_CU is the CU containing DIE on input, and the CU
19634 containing the return value on output. */
19635
19636 static struct die_info *
19637 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19638 {
19639 struct attribute *attr;
19640
19641 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19642 if (attr == NULL)
19643 return NULL;
19644
19645 return follow_die_ref (die, attr, ext_cu);
19646 }
19647
19648 /* Convert a DIE tag into its string name. */
19649
19650 static const char *
19651 dwarf_tag_name (unsigned tag)
19652 {
19653 const char *name = get_DW_TAG_name (tag);
19654
19655 if (name == NULL)
19656 return "DW_TAG_<unknown>";
19657
19658 return name;
19659 }
19660
19661 /* Convert a DWARF attribute code into its string name. */
19662
19663 static const char *
19664 dwarf_attr_name (unsigned attr)
19665 {
19666 const char *name;
19667
19668 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19669 if (attr == DW_AT_MIPS_fde)
19670 return "DW_AT_MIPS_fde";
19671 #else
19672 if (attr == DW_AT_HP_block_index)
19673 return "DW_AT_HP_block_index";
19674 #endif
19675
19676 name = get_DW_AT_name (attr);
19677
19678 if (name == NULL)
19679 return "DW_AT_<unknown>";
19680
19681 return name;
19682 }
19683
19684 /* Convert a DWARF value form code into its string name. */
19685
19686 static const char *
19687 dwarf_form_name (unsigned form)
19688 {
19689 const char *name = get_DW_FORM_name (form);
19690
19691 if (name == NULL)
19692 return "DW_FORM_<unknown>";
19693
19694 return name;
19695 }
19696
19697 static char *
19698 dwarf_bool_name (unsigned mybool)
19699 {
19700 if (mybool)
19701 return "TRUE";
19702 else
19703 return "FALSE";
19704 }
19705
19706 /* Convert a DWARF type code into its string name. */
19707
19708 static const char *
19709 dwarf_type_encoding_name (unsigned enc)
19710 {
19711 const char *name = get_DW_ATE_name (enc);
19712
19713 if (name == NULL)
19714 return "DW_ATE_<unknown>";
19715
19716 return name;
19717 }
19718
19719 static void
19720 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19721 {
19722 unsigned int i;
19723
19724 print_spaces (indent, f);
19725 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19726 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19727
19728 if (die->parent != NULL)
19729 {
19730 print_spaces (indent, f);
19731 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19732 die->parent->offset.sect_off);
19733 }
19734
19735 print_spaces (indent, f);
19736 fprintf_unfiltered (f, " has children: %s\n",
19737 dwarf_bool_name (die->child != NULL));
19738
19739 print_spaces (indent, f);
19740 fprintf_unfiltered (f, " attributes:\n");
19741
19742 for (i = 0; i < die->num_attrs; ++i)
19743 {
19744 print_spaces (indent, f);
19745 fprintf_unfiltered (f, " %s (%s) ",
19746 dwarf_attr_name (die->attrs[i].name),
19747 dwarf_form_name (die->attrs[i].form));
19748
19749 switch (die->attrs[i].form)
19750 {
19751 case DW_FORM_addr:
19752 case DW_FORM_GNU_addr_index:
19753 fprintf_unfiltered (f, "address: ");
19754 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19755 break;
19756 case DW_FORM_block2:
19757 case DW_FORM_block4:
19758 case DW_FORM_block:
19759 case DW_FORM_block1:
19760 fprintf_unfiltered (f, "block: size %s",
19761 pulongest (DW_BLOCK (&die->attrs[i])->size));
19762 break;
19763 case DW_FORM_exprloc:
19764 fprintf_unfiltered (f, "expression: size %s",
19765 pulongest (DW_BLOCK (&die->attrs[i])->size));
19766 break;
19767 case DW_FORM_ref_addr:
19768 fprintf_unfiltered (f, "ref address: ");
19769 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19770 break;
19771 case DW_FORM_GNU_ref_alt:
19772 fprintf_unfiltered (f, "alt ref address: ");
19773 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19774 break;
19775 case DW_FORM_ref1:
19776 case DW_FORM_ref2:
19777 case DW_FORM_ref4:
19778 case DW_FORM_ref8:
19779 case DW_FORM_ref_udata:
19780 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19781 (long) (DW_UNSND (&die->attrs[i])));
19782 break;
19783 case DW_FORM_data1:
19784 case DW_FORM_data2:
19785 case DW_FORM_data4:
19786 case DW_FORM_data8:
19787 case DW_FORM_udata:
19788 case DW_FORM_sdata:
19789 fprintf_unfiltered (f, "constant: %s",
19790 pulongest (DW_UNSND (&die->attrs[i])));
19791 break;
19792 case DW_FORM_sec_offset:
19793 fprintf_unfiltered (f, "section offset: %s",
19794 pulongest (DW_UNSND (&die->attrs[i])));
19795 break;
19796 case DW_FORM_ref_sig8:
19797 fprintf_unfiltered (f, "signature: %s",
19798 hex_string (DW_SIGNATURE (&die->attrs[i])));
19799 break;
19800 case DW_FORM_string:
19801 case DW_FORM_strp:
19802 case DW_FORM_GNU_str_index:
19803 case DW_FORM_GNU_strp_alt:
19804 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19805 DW_STRING (&die->attrs[i])
19806 ? DW_STRING (&die->attrs[i]) : "",
19807 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19808 break;
19809 case DW_FORM_flag:
19810 if (DW_UNSND (&die->attrs[i]))
19811 fprintf_unfiltered (f, "flag: TRUE");
19812 else
19813 fprintf_unfiltered (f, "flag: FALSE");
19814 break;
19815 case DW_FORM_flag_present:
19816 fprintf_unfiltered (f, "flag: TRUE");
19817 break;
19818 case DW_FORM_indirect:
19819 /* The reader will have reduced the indirect form to
19820 the "base form" so this form should not occur. */
19821 fprintf_unfiltered (f,
19822 "unexpected attribute form: DW_FORM_indirect");
19823 break;
19824 default:
19825 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19826 die->attrs[i].form);
19827 break;
19828 }
19829 fprintf_unfiltered (f, "\n");
19830 }
19831 }
19832
19833 static void
19834 dump_die_for_error (struct die_info *die)
19835 {
19836 dump_die_shallow (gdb_stderr, 0, die);
19837 }
19838
19839 static void
19840 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19841 {
19842 int indent = level * 4;
19843
19844 gdb_assert (die != NULL);
19845
19846 if (level >= max_level)
19847 return;
19848
19849 dump_die_shallow (f, indent, die);
19850
19851 if (die->child != NULL)
19852 {
19853 print_spaces (indent, f);
19854 fprintf_unfiltered (f, " Children:");
19855 if (level + 1 < max_level)
19856 {
19857 fprintf_unfiltered (f, "\n");
19858 dump_die_1 (f, level + 1, max_level, die->child);
19859 }
19860 else
19861 {
19862 fprintf_unfiltered (f,
19863 " [not printed, max nesting level reached]\n");
19864 }
19865 }
19866
19867 if (die->sibling != NULL && level > 0)
19868 {
19869 dump_die_1 (f, level, max_level, die->sibling);
19870 }
19871 }
19872
19873 /* This is called from the pdie macro in gdbinit.in.
19874 It's not static so gcc will keep a copy callable from gdb. */
19875
19876 void
19877 dump_die (struct die_info *die, int max_level)
19878 {
19879 dump_die_1 (gdb_stdlog, 0, max_level, die);
19880 }
19881
19882 static void
19883 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19884 {
19885 void **slot;
19886
19887 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19888 INSERT);
19889
19890 *slot = die;
19891 }
19892
19893 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19894 required kind. */
19895
19896 static sect_offset
19897 dwarf2_get_ref_die_offset (const struct attribute *attr)
19898 {
19899 sect_offset retval = { DW_UNSND (attr) };
19900
19901 if (attr_form_is_ref (attr))
19902 return retval;
19903
19904 retval.sect_off = 0;
19905 complaint (&symfile_complaints,
19906 _("unsupported die ref attribute form: '%s'"),
19907 dwarf_form_name (attr->form));
19908 return retval;
19909 }
19910
19911 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19912 * the value held by the attribute is not constant. */
19913
19914 static LONGEST
19915 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19916 {
19917 if (attr->form == DW_FORM_sdata)
19918 return DW_SND (attr);
19919 else if (attr->form == DW_FORM_udata
19920 || attr->form == DW_FORM_data1
19921 || attr->form == DW_FORM_data2
19922 || attr->form == DW_FORM_data4
19923 || attr->form == DW_FORM_data8)
19924 return DW_UNSND (attr);
19925 else
19926 {
19927 complaint (&symfile_complaints,
19928 _("Attribute value is not a constant (%s)"),
19929 dwarf_form_name (attr->form));
19930 return default_value;
19931 }
19932 }
19933
19934 /* Follow reference or signature attribute ATTR of SRC_DIE.
19935 On entry *REF_CU is the CU of SRC_DIE.
19936 On exit *REF_CU is the CU of the result. */
19937
19938 static struct die_info *
19939 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19940 struct dwarf2_cu **ref_cu)
19941 {
19942 struct die_info *die;
19943
19944 if (attr_form_is_ref (attr))
19945 die = follow_die_ref (src_die, attr, ref_cu);
19946 else if (attr->form == DW_FORM_ref_sig8)
19947 die = follow_die_sig (src_die, attr, ref_cu);
19948 else
19949 {
19950 dump_die_for_error (src_die);
19951 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19952 objfile_name ((*ref_cu)->objfile));
19953 }
19954
19955 return die;
19956 }
19957
19958 /* Follow reference OFFSET.
19959 On entry *REF_CU is the CU of the source die referencing OFFSET.
19960 On exit *REF_CU is the CU of the result.
19961 Returns NULL if OFFSET is invalid. */
19962
19963 static struct die_info *
19964 follow_die_offset (sect_offset offset, int offset_in_dwz,
19965 struct dwarf2_cu **ref_cu)
19966 {
19967 struct die_info temp_die;
19968 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19969
19970 gdb_assert (cu->per_cu != NULL);
19971
19972 target_cu = cu;
19973
19974 if (cu->per_cu->is_debug_types)
19975 {
19976 /* .debug_types CUs cannot reference anything outside their CU.
19977 If they need to, they have to reference a signatured type via
19978 DW_FORM_ref_sig8. */
19979 if (! offset_in_cu_p (&cu->header, offset))
19980 return NULL;
19981 }
19982 else if (offset_in_dwz != cu->per_cu->is_dwz
19983 || ! offset_in_cu_p (&cu->header, offset))
19984 {
19985 struct dwarf2_per_cu_data *per_cu;
19986
19987 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19988 cu->objfile);
19989
19990 /* If necessary, add it to the queue and load its DIEs. */
19991 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19992 load_full_comp_unit (per_cu, cu->language);
19993
19994 target_cu = per_cu->cu;
19995 }
19996 else if (cu->dies == NULL)
19997 {
19998 /* We're loading full DIEs during partial symbol reading. */
19999 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20000 load_full_comp_unit (cu->per_cu, language_minimal);
20001 }
20002
20003 *ref_cu = target_cu;
20004 temp_die.offset = offset;
20005 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
20006 }
20007
20008 /* Follow reference attribute ATTR of SRC_DIE.
20009 On entry *REF_CU is the CU of SRC_DIE.
20010 On exit *REF_CU is the CU of the result. */
20011
20012 static struct die_info *
20013 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20014 struct dwarf2_cu **ref_cu)
20015 {
20016 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20017 struct dwarf2_cu *cu = *ref_cu;
20018 struct die_info *die;
20019
20020 die = follow_die_offset (offset,
20021 (attr->form == DW_FORM_GNU_ref_alt
20022 || cu->per_cu->is_dwz),
20023 ref_cu);
20024 if (!die)
20025 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20026 "at 0x%x [in module %s]"),
20027 offset.sect_off, src_die->offset.sect_off,
20028 objfile_name (cu->objfile));
20029
20030 return die;
20031 }
20032
20033 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20034 Returned value is intended for DW_OP_call*. Returned
20035 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20036
20037 struct dwarf2_locexpr_baton
20038 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20039 struct dwarf2_per_cu_data *per_cu,
20040 CORE_ADDR (*get_frame_pc) (void *baton),
20041 void *baton)
20042 {
20043 struct dwarf2_cu *cu;
20044 struct die_info *die;
20045 struct attribute *attr;
20046 struct dwarf2_locexpr_baton retval;
20047
20048 dw2_setup (per_cu->objfile);
20049
20050 if (per_cu->cu == NULL)
20051 load_cu (per_cu);
20052 cu = per_cu->cu;
20053 if (cu == NULL)
20054 {
20055 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20056 Instead just throw an error, not much else we can do. */
20057 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20058 offset.sect_off, objfile_name (per_cu->objfile));
20059 }
20060
20061 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20062 if (!die)
20063 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20064 offset.sect_off, objfile_name (per_cu->objfile));
20065
20066 attr = dwarf2_attr (die, DW_AT_location, cu);
20067 if (!attr)
20068 {
20069 /* DWARF: "If there is no such attribute, then there is no effect.".
20070 DATA is ignored if SIZE is 0. */
20071
20072 retval.data = NULL;
20073 retval.size = 0;
20074 }
20075 else if (attr_form_is_section_offset (attr))
20076 {
20077 struct dwarf2_loclist_baton loclist_baton;
20078 CORE_ADDR pc = (*get_frame_pc) (baton);
20079 size_t size;
20080
20081 fill_in_loclist_baton (cu, &loclist_baton, attr);
20082
20083 retval.data = dwarf2_find_location_expression (&loclist_baton,
20084 &size, pc);
20085 retval.size = size;
20086 }
20087 else
20088 {
20089 if (!attr_form_is_block (attr))
20090 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20091 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20092 offset.sect_off, objfile_name (per_cu->objfile));
20093
20094 retval.data = DW_BLOCK (attr)->data;
20095 retval.size = DW_BLOCK (attr)->size;
20096 }
20097 retval.per_cu = cu->per_cu;
20098
20099 age_cached_comp_units ();
20100
20101 return retval;
20102 }
20103
20104 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20105 offset. */
20106
20107 struct dwarf2_locexpr_baton
20108 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20109 struct dwarf2_per_cu_data *per_cu,
20110 CORE_ADDR (*get_frame_pc) (void *baton),
20111 void *baton)
20112 {
20113 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20114
20115 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20116 }
20117
20118 /* Write a constant of a given type as target-ordered bytes into
20119 OBSTACK. */
20120
20121 static const gdb_byte *
20122 write_constant_as_bytes (struct obstack *obstack,
20123 enum bfd_endian byte_order,
20124 struct type *type,
20125 ULONGEST value,
20126 LONGEST *len)
20127 {
20128 gdb_byte *result;
20129
20130 *len = TYPE_LENGTH (type);
20131 result = obstack_alloc (obstack, *len);
20132 store_unsigned_integer (result, *len, byte_order, value);
20133
20134 return result;
20135 }
20136
20137 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20138 pointer to the constant bytes and set LEN to the length of the
20139 data. If memory is needed, allocate it on OBSTACK. If the DIE
20140 does not have a DW_AT_const_value, return NULL. */
20141
20142 const gdb_byte *
20143 dwarf2_fetch_constant_bytes (sect_offset offset,
20144 struct dwarf2_per_cu_data *per_cu,
20145 struct obstack *obstack,
20146 LONGEST *len)
20147 {
20148 struct dwarf2_cu *cu;
20149 struct die_info *die;
20150 struct attribute *attr;
20151 const gdb_byte *result = NULL;
20152 struct type *type;
20153 LONGEST value;
20154 enum bfd_endian byte_order;
20155
20156 dw2_setup (per_cu->objfile);
20157
20158 if (per_cu->cu == NULL)
20159 load_cu (per_cu);
20160 cu = per_cu->cu;
20161 if (cu == NULL)
20162 {
20163 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20164 Instead just throw an error, not much else we can do. */
20165 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20166 offset.sect_off, objfile_name (per_cu->objfile));
20167 }
20168
20169 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20170 if (!die)
20171 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20172 offset.sect_off, objfile_name (per_cu->objfile));
20173
20174
20175 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20176 if (attr == NULL)
20177 return NULL;
20178
20179 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20180 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20181
20182 switch (attr->form)
20183 {
20184 case DW_FORM_addr:
20185 case DW_FORM_GNU_addr_index:
20186 {
20187 gdb_byte *tem;
20188
20189 *len = cu->header.addr_size;
20190 tem = obstack_alloc (obstack, *len);
20191 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20192 result = tem;
20193 }
20194 break;
20195 case DW_FORM_string:
20196 case DW_FORM_strp:
20197 case DW_FORM_GNU_str_index:
20198 case DW_FORM_GNU_strp_alt:
20199 /* DW_STRING is already allocated on the objfile obstack, point
20200 directly to it. */
20201 result = (const gdb_byte *) DW_STRING (attr);
20202 *len = strlen (DW_STRING (attr));
20203 break;
20204 case DW_FORM_block1:
20205 case DW_FORM_block2:
20206 case DW_FORM_block4:
20207 case DW_FORM_block:
20208 case DW_FORM_exprloc:
20209 result = DW_BLOCK (attr)->data;
20210 *len = DW_BLOCK (attr)->size;
20211 break;
20212
20213 /* The DW_AT_const_value attributes are supposed to carry the
20214 symbol's value "represented as it would be on the target
20215 architecture." By the time we get here, it's already been
20216 converted to host endianness, so we just need to sign- or
20217 zero-extend it as appropriate. */
20218 case DW_FORM_data1:
20219 type = die_type (die, cu);
20220 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20221 if (result == NULL)
20222 result = write_constant_as_bytes (obstack, byte_order,
20223 type, value, len);
20224 break;
20225 case DW_FORM_data2:
20226 type = die_type (die, cu);
20227 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20228 if (result == NULL)
20229 result = write_constant_as_bytes (obstack, byte_order,
20230 type, value, len);
20231 break;
20232 case DW_FORM_data4:
20233 type = die_type (die, cu);
20234 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20235 if (result == NULL)
20236 result = write_constant_as_bytes (obstack, byte_order,
20237 type, value, len);
20238 break;
20239 case DW_FORM_data8:
20240 type = die_type (die, cu);
20241 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20242 if (result == NULL)
20243 result = write_constant_as_bytes (obstack, byte_order,
20244 type, value, len);
20245 break;
20246
20247 case DW_FORM_sdata:
20248 type = die_type (die, cu);
20249 result = write_constant_as_bytes (obstack, byte_order,
20250 type, DW_SND (attr), len);
20251 break;
20252
20253 case DW_FORM_udata:
20254 type = die_type (die, cu);
20255 result = write_constant_as_bytes (obstack, byte_order,
20256 type, DW_UNSND (attr), len);
20257 break;
20258
20259 default:
20260 complaint (&symfile_complaints,
20261 _("unsupported const value attribute form: '%s'"),
20262 dwarf_form_name (attr->form));
20263 break;
20264 }
20265
20266 return result;
20267 }
20268
20269 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20270 PER_CU. */
20271
20272 struct type *
20273 dwarf2_get_die_type (cu_offset die_offset,
20274 struct dwarf2_per_cu_data *per_cu)
20275 {
20276 sect_offset die_offset_sect;
20277
20278 dw2_setup (per_cu->objfile);
20279
20280 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20281 return get_die_type_at_offset (die_offset_sect, per_cu);
20282 }
20283
20284 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20285 On entry *REF_CU is the CU of SRC_DIE.
20286 On exit *REF_CU is the CU of the result.
20287 Returns NULL if the referenced DIE isn't found. */
20288
20289 static struct die_info *
20290 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20291 struct dwarf2_cu **ref_cu)
20292 {
20293 struct objfile *objfile = (*ref_cu)->objfile;
20294 struct die_info temp_die;
20295 struct dwarf2_cu *sig_cu;
20296 struct die_info *die;
20297
20298 /* While it might be nice to assert sig_type->type == NULL here,
20299 we can get here for DW_AT_imported_declaration where we need
20300 the DIE not the type. */
20301
20302 /* If necessary, add it to the queue and load its DIEs. */
20303
20304 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20305 read_signatured_type (sig_type);
20306
20307 sig_cu = sig_type->per_cu.cu;
20308 gdb_assert (sig_cu != NULL);
20309 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20310 temp_die.offset = sig_type->type_offset_in_section;
20311 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20312 temp_die.offset.sect_off);
20313 if (die)
20314 {
20315 /* For .gdb_index version 7 keep track of included TUs.
20316 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20317 if (dwarf2_per_objfile->index_table != NULL
20318 && dwarf2_per_objfile->index_table->version <= 7)
20319 {
20320 VEC_safe_push (dwarf2_per_cu_ptr,
20321 (*ref_cu)->per_cu->imported_symtabs,
20322 sig_cu->per_cu);
20323 }
20324
20325 *ref_cu = sig_cu;
20326 return die;
20327 }
20328
20329 return NULL;
20330 }
20331
20332 /* Follow signatured type referenced by ATTR in SRC_DIE.
20333 On entry *REF_CU is the CU of SRC_DIE.
20334 On exit *REF_CU is the CU of the result.
20335 The result is the DIE of the type.
20336 If the referenced type cannot be found an error is thrown. */
20337
20338 static struct die_info *
20339 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20340 struct dwarf2_cu **ref_cu)
20341 {
20342 ULONGEST signature = DW_SIGNATURE (attr);
20343 struct signatured_type *sig_type;
20344 struct die_info *die;
20345
20346 gdb_assert (attr->form == DW_FORM_ref_sig8);
20347
20348 sig_type = lookup_signatured_type (*ref_cu, signature);
20349 /* sig_type will be NULL if the signatured type is missing from
20350 the debug info. */
20351 if (sig_type == NULL)
20352 {
20353 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20354 " from DIE at 0x%x [in module %s]"),
20355 hex_string (signature), src_die->offset.sect_off,
20356 objfile_name ((*ref_cu)->objfile));
20357 }
20358
20359 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20360 if (die == NULL)
20361 {
20362 dump_die_for_error (src_die);
20363 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20364 " from DIE at 0x%x [in module %s]"),
20365 hex_string (signature), src_die->offset.sect_off,
20366 objfile_name ((*ref_cu)->objfile));
20367 }
20368
20369 return die;
20370 }
20371
20372 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20373 reading in and processing the type unit if necessary. */
20374
20375 static struct type *
20376 get_signatured_type (struct die_info *die, ULONGEST signature,
20377 struct dwarf2_cu *cu)
20378 {
20379 struct signatured_type *sig_type;
20380 struct dwarf2_cu *type_cu;
20381 struct die_info *type_die;
20382 struct type *type;
20383
20384 sig_type = lookup_signatured_type (cu, signature);
20385 /* sig_type will be NULL if the signatured type is missing from
20386 the debug info. */
20387 if (sig_type == NULL)
20388 {
20389 complaint (&symfile_complaints,
20390 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20391 " from DIE at 0x%x [in module %s]"),
20392 hex_string (signature), die->offset.sect_off,
20393 objfile_name (dwarf2_per_objfile->objfile));
20394 return build_error_marker_type (cu, die);
20395 }
20396
20397 /* If we already know the type we're done. */
20398 if (sig_type->type != NULL)
20399 return sig_type->type;
20400
20401 type_cu = cu;
20402 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20403 if (type_die != NULL)
20404 {
20405 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20406 is created. This is important, for example, because for c++ classes
20407 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20408 type = read_type_die (type_die, type_cu);
20409 if (type == NULL)
20410 {
20411 complaint (&symfile_complaints,
20412 _("Dwarf Error: Cannot build signatured type %s"
20413 " referenced from DIE at 0x%x [in module %s]"),
20414 hex_string (signature), die->offset.sect_off,
20415 objfile_name (dwarf2_per_objfile->objfile));
20416 type = build_error_marker_type (cu, die);
20417 }
20418 }
20419 else
20420 {
20421 complaint (&symfile_complaints,
20422 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20423 " from DIE at 0x%x [in module %s]"),
20424 hex_string (signature), die->offset.sect_off,
20425 objfile_name (dwarf2_per_objfile->objfile));
20426 type = build_error_marker_type (cu, die);
20427 }
20428 sig_type->type = type;
20429
20430 return type;
20431 }
20432
20433 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20434 reading in and processing the type unit if necessary. */
20435
20436 static struct type *
20437 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20438 struct dwarf2_cu *cu) /* ARI: editCase function */
20439 {
20440 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20441 if (attr_form_is_ref (attr))
20442 {
20443 struct dwarf2_cu *type_cu = cu;
20444 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20445
20446 return read_type_die (type_die, type_cu);
20447 }
20448 else if (attr->form == DW_FORM_ref_sig8)
20449 {
20450 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20451 }
20452 else
20453 {
20454 complaint (&symfile_complaints,
20455 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20456 " at 0x%x [in module %s]"),
20457 dwarf_form_name (attr->form), die->offset.sect_off,
20458 objfile_name (dwarf2_per_objfile->objfile));
20459 return build_error_marker_type (cu, die);
20460 }
20461 }
20462
20463 /* Load the DIEs associated with type unit PER_CU into memory. */
20464
20465 static void
20466 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20467 {
20468 struct signatured_type *sig_type;
20469
20470 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20471 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20472
20473 /* We have the per_cu, but we need the signatured_type.
20474 Fortunately this is an easy translation. */
20475 gdb_assert (per_cu->is_debug_types);
20476 sig_type = (struct signatured_type *) per_cu;
20477
20478 gdb_assert (per_cu->cu == NULL);
20479
20480 read_signatured_type (sig_type);
20481
20482 gdb_assert (per_cu->cu != NULL);
20483 }
20484
20485 /* die_reader_func for read_signatured_type.
20486 This is identical to load_full_comp_unit_reader,
20487 but is kept separate for now. */
20488
20489 static void
20490 read_signatured_type_reader (const struct die_reader_specs *reader,
20491 const gdb_byte *info_ptr,
20492 struct die_info *comp_unit_die,
20493 int has_children,
20494 void *data)
20495 {
20496 struct dwarf2_cu *cu = reader->cu;
20497
20498 gdb_assert (cu->die_hash == NULL);
20499 cu->die_hash =
20500 htab_create_alloc_ex (cu->header.length / 12,
20501 die_hash,
20502 die_eq,
20503 NULL,
20504 &cu->comp_unit_obstack,
20505 hashtab_obstack_allocate,
20506 dummy_obstack_deallocate);
20507
20508 if (has_children)
20509 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20510 &info_ptr, comp_unit_die);
20511 cu->dies = comp_unit_die;
20512 /* comp_unit_die is not stored in die_hash, no need. */
20513
20514 /* We try not to read any attributes in this function, because not
20515 all CUs needed for references have been loaded yet, and symbol
20516 table processing isn't initialized. But we have to set the CU language,
20517 or we won't be able to build types correctly.
20518 Similarly, if we do not read the producer, we can not apply
20519 producer-specific interpretation. */
20520 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20521 }
20522
20523 /* Read in a signatured type and build its CU and DIEs.
20524 If the type is a stub for the real type in a DWO file,
20525 read in the real type from the DWO file as well. */
20526
20527 static void
20528 read_signatured_type (struct signatured_type *sig_type)
20529 {
20530 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20531
20532 gdb_assert (per_cu->is_debug_types);
20533 gdb_assert (per_cu->cu == NULL);
20534
20535 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20536 read_signatured_type_reader, NULL);
20537 sig_type->per_cu.tu_read = 1;
20538 }
20539
20540 /* Decode simple location descriptions.
20541 Given a pointer to a dwarf block that defines a location, compute
20542 the location and return the value.
20543
20544 NOTE drow/2003-11-18: This function is called in two situations
20545 now: for the address of static or global variables (partial symbols
20546 only) and for offsets into structures which are expected to be
20547 (more or less) constant. The partial symbol case should go away,
20548 and only the constant case should remain. That will let this
20549 function complain more accurately. A few special modes are allowed
20550 without complaint for global variables (for instance, global
20551 register values and thread-local values).
20552
20553 A location description containing no operations indicates that the
20554 object is optimized out. The return value is 0 for that case.
20555 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20556 callers will only want a very basic result and this can become a
20557 complaint.
20558
20559 Note that stack[0] is unused except as a default error return. */
20560
20561 static CORE_ADDR
20562 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20563 {
20564 struct objfile *objfile = cu->objfile;
20565 size_t i;
20566 size_t size = blk->size;
20567 const gdb_byte *data = blk->data;
20568 CORE_ADDR stack[64];
20569 int stacki;
20570 unsigned int bytes_read, unsnd;
20571 gdb_byte op;
20572
20573 i = 0;
20574 stacki = 0;
20575 stack[stacki] = 0;
20576 stack[++stacki] = 0;
20577
20578 while (i < size)
20579 {
20580 op = data[i++];
20581 switch (op)
20582 {
20583 case DW_OP_lit0:
20584 case DW_OP_lit1:
20585 case DW_OP_lit2:
20586 case DW_OP_lit3:
20587 case DW_OP_lit4:
20588 case DW_OP_lit5:
20589 case DW_OP_lit6:
20590 case DW_OP_lit7:
20591 case DW_OP_lit8:
20592 case DW_OP_lit9:
20593 case DW_OP_lit10:
20594 case DW_OP_lit11:
20595 case DW_OP_lit12:
20596 case DW_OP_lit13:
20597 case DW_OP_lit14:
20598 case DW_OP_lit15:
20599 case DW_OP_lit16:
20600 case DW_OP_lit17:
20601 case DW_OP_lit18:
20602 case DW_OP_lit19:
20603 case DW_OP_lit20:
20604 case DW_OP_lit21:
20605 case DW_OP_lit22:
20606 case DW_OP_lit23:
20607 case DW_OP_lit24:
20608 case DW_OP_lit25:
20609 case DW_OP_lit26:
20610 case DW_OP_lit27:
20611 case DW_OP_lit28:
20612 case DW_OP_lit29:
20613 case DW_OP_lit30:
20614 case DW_OP_lit31:
20615 stack[++stacki] = op - DW_OP_lit0;
20616 break;
20617
20618 case DW_OP_reg0:
20619 case DW_OP_reg1:
20620 case DW_OP_reg2:
20621 case DW_OP_reg3:
20622 case DW_OP_reg4:
20623 case DW_OP_reg5:
20624 case DW_OP_reg6:
20625 case DW_OP_reg7:
20626 case DW_OP_reg8:
20627 case DW_OP_reg9:
20628 case DW_OP_reg10:
20629 case DW_OP_reg11:
20630 case DW_OP_reg12:
20631 case DW_OP_reg13:
20632 case DW_OP_reg14:
20633 case DW_OP_reg15:
20634 case DW_OP_reg16:
20635 case DW_OP_reg17:
20636 case DW_OP_reg18:
20637 case DW_OP_reg19:
20638 case DW_OP_reg20:
20639 case DW_OP_reg21:
20640 case DW_OP_reg22:
20641 case DW_OP_reg23:
20642 case DW_OP_reg24:
20643 case DW_OP_reg25:
20644 case DW_OP_reg26:
20645 case DW_OP_reg27:
20646 case DW_OP_reg28:
20647 case DW_OP_reg29:
20648 case DW_OP_reg30:
20649 case DW_OP_reg31:
20650 stack[++stacki] = op - DW_OP_reg0;
20651 if (i < size)
20652 dwarf2_complex_location_expr_complaint ();
20653 break;
20654
20655 case DW_OP_regx:
20656 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20657 i += bytes_read;
20658 stack[++stacki] = unsnd;
20659 if (i < size)
20660 dwarf2_complex_location_expr_complaint ();
20661 break;
20662
20663 case DW_OP_addr:
20664 stack[++stacki] = read_address (objfile->obfd, &data[i],
20665 cu, &bytes_read);
20666 i += bytes_read;
20667 break;
20668
20669 case DW_OP_const1u:
20670 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20671 i += 1;
20672 break;
20673
20674 case DW_OP_const1s:
20675 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20676 i += 1;
20677 break;
20678
20679 case DW_OP_const2u:
20680 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20681 i += 2;
20682 break;
20683
20684 case DW_OP_const2s:
20685 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20686 i += 2;
20687 break;
20688
20689 case DW_OP_const4u:
20690 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20691 i += 4;
20692 break;
20693
20694 case DW_OP_const4s:
20695 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20696 i += 4;
20697 break;
20698
20699 case DW_OP_const8u:
20700 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20701 i += 8;
20702 break;
20703
20704 case DW_OP_constu:
20705 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20706 &bytes_read);
20707 i += bytes_read;
20708 break;
20709
20710 case DW_OP_consts:
20711 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20712 i += bytes_read;
20713 break;
20714
20715 case DW_OP_dup:
20716 stack[stacki + 1] = stack[stacki];
20717 stacki++;
20718 break;
20719
20720 case DW_OP_plus:
20721 stack[stacki - 1] += stack[stacki];
20722 stacki--;
20723 break;
20724
20725 case DW_OP_plus_uconst:
20726 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20727 &bytes_read);
20728 i += bytes_read;
20729 break;
20730
20731 case DW_OP_minus:
20732 stack[stacki - 1] -= stack[stacki];
20733 stacki--;
20734 break;
20735
20736 case DW_OP_deref:
20737 /* If we're not the last op, then we definitely can't encode
20738 this using GDB's address_class enum. This is valid for partial
20739 global symbols, although the variable's address will be bogus
20740 in the psymtab. */
20741 if (i < size)
20742 dwarf2_complex_location_expr_complaint ();
20743 break;
20744
20745 case DW_OP_GNU_push_tls_address:
20746 /* The top of the stack has the offset from the beginning
20747 of the thread control block at which the variable is located. */
20748 /* Nothing should follow this operator, so the top of stack would
20749 be returned. */
20750 /* This is valid for partial global symbols, but the variable's
20751 address will be bogus in the psymtab. Make it always at least
20752 non-zero to not look as a variable garbage collected by linker
20753 which have DW_OP_addr 0. */
20754 if (i < size)
20755 dwarf2_complex_location_expr_complaint ();
20756 stack[stacki]++;
20757 break;
20758
20759 case DW_OP_GNU_uninit:
20760 break;
20761
20762 case DW_OP_GNU_addr_index:
20763 case DW_OP_GNU_const_index:
20764 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20765 &bytes_read);
20766 i += bytes_read;
20767 break;
20768
20769 default:
20770 {
20771 const char *name = get_DW_OP_name (op);
20772
20773 if (name)
20774 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20775 name);
20776 else
20777 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20778 op);
20779 }
20780
20781 return (stack[stacki]);
20782 }
20783
20784 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20785 outside of the allocated space. Also enforce minimum>0. */
20786 if (stacki >= ARRAY_SIZE (stack) - 1)
20787 {
20788 complaint (&symfile_complaints,
20789 _("location description stack overflow"));
20790 return 0;
20791 }
20792
20793 if (stacki <= 0)
20794 {
20795 complaint (&symfile_complaints,
20796 _("location description stack underflow"));
20797 return 0;
20798 }
20799 }
20800 return (stack[stacki]);
20801 }
20802
20803 /* memory allocation interface */
20804
20805 static struct dwarf_block *
20806 dwarf_alloc_block (struct dwarf2_cu *cu)
20807 {
20808 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20809 }
20810
20811 static struct die_info *
20812 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20813 {
20814 struct die_info *die;
20815 size_t size = sizeof (struct die_info);
20816
20817 if (num_attrs > 1)
20818 size += (num_attrs - 1) * sizeof (struct attribute);
20819
20820 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20821 memset (die, 0, sizeof (struct die_info));
20822 return (die);
20823 }
20824
20825 \f
20826 /* Macro support. */
20827
20828 /* Return file name relative to the compilation directory of file number I in
20829 *LH's file name table. The result is allocated using xmalloc; the caller is
20830 responsible for freeing it. */
20831
20832 static char *
20833 file_file_name (int file, struct line_header *lh)
20834 {
20835 /* Is the file number a valid index into the line header's file name
20836 table? Remember that file numbers start with one, not zero. */
20837 if (1 <= file && file <= lh->num_file_names)
20838 {
20839 struct file_entry *fe = &lh->file_names[file - 1];
20840
20841 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20842 || lh->include_dirs == NULL)
20843 return xstrdup (fe->name);
20844 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20845 fe->name, NULL);
20846 }
20847 else
20848 {
20849 /* The compiler produced a bogus file number. We can at least
20850 record the macro definitions made in the file, even if we
20851 won't be able to find the file by name. */
20852 char fake_name[80];
20853
20854 xsnprintf (fake_name, sizeof (fake_name),
20855 "<bad macro file number %d>", file);
20856
20857 complaint (&symfile_complaints,
20858 _("bad file number in macro information (%d)"),
20859 file);
20860
20861 return xstrdup (fake_name);
20862 }
20863 }
20864
20865 /* Return the full name of file number I in *LH's file name table.
20866 Use COMP_DIR as the name of the current directory of the
20867 compilation. The result is allocated using xmalloc; the caller is
20868 responsible for freeing it. */
20869 static char *
20870 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20871 {
20872 /* Is the file number a valid index into the line header's file name
20873 table? Remember that file numbers start with one, not zero. */
20874 if (1 <= file && file <= lh->num_file_names)
20875 {
20876 char *relative = file_file_name (file, lh);
20877
20878 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20879 return relative;
20880 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20881 }
20882 else
20883 return file_file_name (file, lh);
20884 }
20885
20886
20887 static struct macro_source_file *
20888 macro_start_file (int file, int line,
20889 struct macro_source_file *current_file,
20890 struct line_header *lh)
20891 {
20892 /* File name relative to the compilation directory of this source file. */
20893 char *file_name = file_file_name (file, lh);
20894
20895 if (! current_file)
20896 {
20897 /* Note: We don't create a macro table for this compilation unit
20898 at all until we actually get a filename. */
20899 struct macro_table *macro_table = get_macro_table ();
20900
20901 /* If we have no current file, then this must be the start_file
20902 directive for the compilation unit's main source file. */
20903 current_file = macro_set_main (macro_table, file_name);
20904 macro_define_special (macro_table);
20905 }
20906 else
20907 current_file = macro_include (current_file, line, file_name);
20908
20909 xfree (file_name);
20910
20911 return current_file;
20912 }
20913
20914
20915 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20916 followed by a null byte. */
20917 static char *
20918 copy_string (const char *buf, int len)
20919 {
20920 char *s = xmalloc (len + 1);
20921
20922 memcpy (s, buf, len);
20923 s[len] = '\0';
20924 return s;
20925 }
20926
20927
20928 static const char *
20929 consume_improper_spaces (const char *p, const char *body)
20930 {
20931 if (*p == ' ')
20932 {
20933 complaint (&symfile_complaints,
20934 _("macro definition contains spaces "
20935 "in formal argument list:\n`%s'"),
20936 body);
20937
20938 while (*p == ' ')
20939 p++;
20940 }
20941
20942 return p;
20943 }
20944
20945
20946 static void
20947 parse_macro_definition (struct macro_source_file *file, int line,
20948 const char *body)
20949 {
20950 const char *p;
20951
20952 /* The body string takes one of two forms. For object-like macro
20953 definitions, it should be:
20954
20955 <macro name> " " <definition>
20956
20957 For function-like macro definitions, it should be:
20958
20959 <macro name> "() " <definition>
20960 or
20961 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20962
20963 Spaces may appear only where explicitly indicated, and in the
20964 <definition>.
20965
20966 The Dwarf 2 spec says that an object-like macro's name is always
20967 followed by a space, but versions of GCC around March 2002 omit
20968 the space when the macro's definition is the empty string.
20969
20970 The Dwarf 2 spec says that there should be no spaces between the
20971 formal arguments in a function-like macro's formal argument list,
20972 but versions of GCC around March 2002 include spaces after the
20973 commas. */
20974
20975
20976 /* Find the extent of the macro name. The macro name is terminated
20977 by either a space or null character (for an object-like macro) or
20978 an opening paren (for a function-like macro). */
20979 for (p = body; *p; p++)
20980 if (*p == ' ' || *p == '(')
20981 break;
20982
20983 if (*p == ' ' || *p == '\0')
20984 {
20985 /* It's an object-like macro. */
20986 int name_len = p - body;
20987 char *name = copy_string (body, name_len);
20988 const char *replacement;
20989
20990 if (*p == ' ')
20991 replacement = body + name_len + 1;
20992 else
20993 {
20994 dwarf2_macro_malformed_definition_complaint (body);
20995 replacement = body + name_len;
20996 }
20997
20998 macro_define_object (file, line, name, replacement);
20999
21000 xfree (name);
21001 }
21002 else if (*p == '(')
21003 {
21004 /* It's a function-like macro. */
21005 char *name = copy_string (body, p - body);
21006 int argc = 0;
21007 int argv_size = 1;
21008 char **argv = XNEWVEC (char *, argv_size);
21009
21010 p++;
21011
21012 p = consume_improper_spaces (p, body);
21013
21014 /* Parse the formal argument list. */
21015 while (*p && *p != ')')
21016 {
21017 /* Find the extent of the current argument name. */
21018 const char *arg_start = p;
21019
21020 while (*p && *p != ',' && *p != ')' && *p != ' ')
21021 p++;
21022
21023 if (! *p || p == arg_start)
21024 dwarf2_macro_malformed_definition_complaint (body);
21025 else
21026 {
21027 /* Make sure argv has room for the new argument. */
21028 if (argc >= argv_size)
21029 {
21030 argv_size *= 2;
21031 argv = xrealloc (argv, argv_size * sizeof (*argv));
21032 }
21033
21034 argv[argc++] = copy_string (arg_start, p - arg_start);
21035 }
21036
21037 p = consume_improper_spaces (p, body);
21038
21039 /* Consume the comma, if present. */
21040 if (*p == ',')
21041 {
21042 p++;
21043
21044 p = consume_improper_spaces (p, body);
21045 }
21046 }
21047
21048 if (*p == ')')
21049 {
21050 p++;
21051
21052 if (*p == ' ')
21053 /* Perfectly formed definition, no complaints. */
21054 macro_define_function (file, line, name,
21055 argc, (const char **) argv,
21056 p + 1);
21057 else if (*p == '\0')
21058 {
21059 /* Complain, but do define it. */
21060 dwarf2_macro_malformed_definition_complaint (body);
21061 macro_define_function (file, line, name,
21062 argc, (const char **) argv,
21063 p);
21064 }
21065 else
21066 /* Just complain. */
21067 dwarf2_macro_malformed_definition_complaint (body);
21068 }
21069 else
21070 /* Just complain. */
21071 dwarf2_macro_malformed_definition_complaint (body);
21072
21073 xfree (name);
21074 {
21075 int i;
21076
21077 for (i = 0; i < argc; i++)
21078 xfree (argv[i]);
21079 }
21080 xfree (argv);
21081 }
21082 else
21083 dwarf2_macro_malformed_definition_complaint (body);
21084 }
21085
21086 /* Skip some bytes from BYTES according to the form given in FORM.
21087 Returns the new pointer. */
21088
21089 static const gdb_byte *
21090 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21091 enum dwarf_form form,
21092 unsigned int offset_size,
21093 struct dwarf2_section_info *section)
21094 {
21095 unsigned int bytes_read;
21096
21097 switch (form)
21098 {
21099 case DW_FORM_data1:
21100 case DW_FORM_flag:
21101 ++bytes;
21102 break;
21103
21104 case DW_FORM_data2:
21105 bytes += 2;
21106 break;
21107
21108 case DW_FORM_data4:
21109 bytes += 4;
21110 break;
21111
21112 case DW_FORM_data8:
21113 bytes += 8;
21114 break;
21115
21116 case DW_FORM_string:
21117 read_direct_string (abfd, bytes, &bytes_read);
21118 bytes += bytes_read;
21119 break;
21120
21121 case DW_FORM_sec_offset:
21122 case DW_FORM_strp:
21123 case DW_FORM_GNU_strp_alt:
21124 bytes += offset_size;
21125 break;
21126
21127 case DW_FORM_block:
21128 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21129 bytes += bytes_read;
21130 break;
21131
21132 case DW_FORM_block1:
21133 bytes += 1 + read_1_byte (abfd, bytes);
21134 break;
21135 case DW_FORM_block2:
21136 bytes += 2 + read_2_bytes (abfd, bytes);
21137 break;
21138 case DW_FORM_block4:
21139 bytes += 4 + read_4_bytes (abfd, bytes);
21140 break;
21141
21142 case DW_FORM_sdata:
21143 case DW_FORM_udata:
21144 case DW_FORM_GNU_addr_index:
21145 case DW_FORM_GNU_str_index:
21146 bytes = gdb_skip_leb128 (bytes, buffer_end);
21147 if (bytes == NULL)
21148 {
21149 dwarf2_section_buffer_overflow_complaint (section);
21150 return NULL;
21151 }
21152 break;
21153
21154 default:
21155 {
21156 complain:
21157 complaint (&symfile_complaints,
21158 _("invalid form 0x%x in `%s'"),
21159 form, get_section_name (section));
21160 return NULL;
21161 }
21162 }
21163
21164 return bytes;
21165 }
21166
21167 /* A helper for dwarf_decode_macros that handles skipping an unknown
21168 opcode. Returns an updated pointer to the macro data buffer; or,
21169 on error, issues a complaint and returns NULL. */
21170
21171 static const gdb_byte *
21172 skip_unknown_opcode (unsigned int opcode,
21173 const gdb_byte **opcode_definitions,
21174 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21175 bfd *abfd,
21176 unsigned int offset_size,
21177 struct dwarf2_section_info *section)
21178 {
21179 unsigned int bytes_read, i;
21180 unsigned long arg;
21181 const gdb_byte *defn;
21182
21183 if (opcode_definitions[opcode] == NULL)
21184 {
21185 complaint (&symfile_complaints,
21186 _("unrecognized DW_MACFINO opcode 0x%x"),
21187 opcode);
21188 return NULL;
21189 }
21190
21191 defn = opcode_definitions[opcode];
21192 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21193 defn += bytes_read;
21194
21195 for (i = 0; i < arg; ++i)
21196 {
21197 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21198 (enum dwarf_form) defn[i], offset_size,
21199 section);
21200 if (mac_ptr == NULL)
21201 {
21202 /* skip_form_bytes already issued the complaint. */
21203 return NULL;
21204 }
21205 }
21206
21207 return mac_ptr;
21208 }
21209
21210 /* A helper function which parses the header of a macro section.
21211 If the macro section is the extended (for now called "GNU") type,
21212 then this updates *OFFSET_SIZE. Returns a pointer to just after
21213 the header, or issues a complaint and returns NULL on error. */
21214
21215 static const gdb_byte *
21216 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21217 bfd *abfd,
21218 const gdb_byte *mac_ptr,
21219 unsigned int *offset_size,
21220 int section_is_gnu)
21221 {
21222 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21223
21224 if (section_is_gnu)
21225 {
21226 unsigned int version, flags;
21227
21228 version = read_2_bytes (abfd, mac_ptr);
21229 if (version != 4)
21230 {
21231 complaint (&symfile_complaints,
21232 _("unrecognized version `%d' in .debug_macro section"),
21233 version);
21234 return NULL;
21235 }
21236 mac_ptr += 2;
21237
21238 flags = read_1_byte (abfd, mac_ptr);
21239 ++mac_ptr;
21240 *offset_size = (flags & 1) ? 8 : 4;
21241
21242 if ((flags & 2) != 0)
21243 /* We don't need the line table offset. */
21244 mac_ptr += *offset_size;
21245
21246 /* Vendor opcode descriptions. */
21247 if ((flags & 4) != 0)
21248 {
21249 unsigned int i, count;
21250
21251 count = read_1_byte (abfd, mac_ptr);
21252 ++mac_ptr;
21253 for (i = 0; i < count; ++i)
21254 {
21255 unsigned int opcode, bytes_read;
21256 unsigned long arg;
21257
21258 opcode = read_1_byte (abfd, mac_ptr);
21259 ++mac_ptr;
21260 opcode_definitions[opcode] = mac_ptr;
21261 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21262 mac_ptr += bytes_read;
21263 mac_ptr += arg;
21264 }
21265 }
21266 }
21267
21268 return mac_ptr;
21269 }
21270
21271 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21272 including DW_MACRO_GNU_transparent_include. */
21273
21274 static void
21275 dwarf_decode_macro_bytes (bfd *abfd,
21276 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21277 struct macro_source_file *current_file,
21278 struct line_header *lh,
21279 struct dwarf2_section_info *section,
21280 int section_is_gnu, int section_is_dwz,
21281 unsigned int offset_size,
21282 htab_t include_hash)
21283 {
21284 struct objfile *objfile = dwarf2_per_objfile->objfile;
21285 enum dwarf_macro_record_type macinfo_type;
21286 int at_commandline;
21287 const gdb_byte *opcode_definitions[256];
21288
21289 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21290 &offset_size, section_is_gnu);
21291 if (mac_ptr == NULL)
21292 {
21293 /* We already issued a complaint. */
21294 return;
21295 }
21296
21297 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21298 GDB is still reading the definitions from command line. First
21299 DW_MACINFO_start_file will need to be ignored as it was already executed
21300 to create CURRENT_FILE for the main source holding also the command line
21301 definitions. On first met DW_MACINFO_start_file this flag is reset to
21302 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21303
21304 at_commandline = 1;
21305
21306 do
21307 {
21308 /* Do we at least have room for a macinfo type byte? */
21309 if (mac_ptr >= mac_end)
21310 {
21311 dwarf2_section_buffer_overflow_complaint (section);
21312 break;
21313 }
21314
21315 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21316 mac_ptr++;
21317
21318 /* Note that we rely on the fact that the corresponding GNU and
21319 DWARF constants are the same. */
21320 switch (macinfo_type)
21321 {
21322 /* A zero macinfo type indicates the end of the macro
21323 information. */
21324 case 0:
21325 break;
21326
21327 case DW_MACRO_GNU_define:
21328 case DW_MACRO_GNU_undef:
21329 case DW_MACRO_GNU_define_indirect:
21330 case DW_MACRO_GNU_undef_indirect:
21331 case DW_MACRO_GNU_define_indirect_alt:
21332 case DW_MACRO_GNU_undef_indirect_alt:
21333 {
21334 unsigned int bytes_read;
21335 int line;
21336 const char *body;
21337 int is_define;
21338
21339 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21340 mac_ptr += bytes_read;
21341
21342 if (macinfo_type == DW_MACRO_GNU_define
21343 || macinfo_type == DW_MACRO_GNU_undef)
21344 {
21345 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21346 mac_ptr += bytes_read;
21347 }
21348 else
21349 {
21350 LONGEST str_offset;
21351
21352 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21353 mac_ptr += offset_size;
21354
21355 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21356 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21357 || section_is_dwz)
21358 {
21359 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21360
21361 body = read_indirect_string_from_dwz (dwz, str_offset);
21362 }
21363 else
21364 body = read_indirect_string_at_offset (abfd, str_offset);
21365 }
21366
21367 is_define = (macinfo_type == DW_MACRO_GNU_define
21368 || macinfo_type == DW_MACRO_GNU_define_indirect
21369 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21370 if (! current_file)
21371 {
21372 /* DWARF violation as no main source is present. */
21373 complaint (&symfile_complaints,
21374 _("debug info with no main source gives macro %s "
21375 "on line %d: %s"),
21376 is_define ? _("definition") : _("undefinition"),
21377 line, body);
21378 break;
21379 }
21380 if ((line == 0 && !at_commandline)
21381 || (line != 0 && at_commandline))
21382 complaint (&symfile_complaints,
21383 _("debug info gives %s macro %s with %s line %d: %s"),
21384 at_commandline ? _("command-line") : _("in-file"),
21385 is_define ? _("definition") : _("undefinition"),
21386 line == 0 ? _("zero") : _("non-zero"), line, body);
21387
21388 if (is_define)
21389 parse_macro_definition (current_file, line, body);
21390 else
21391 {
21392 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21393 || macinfo_type == DW_MACRO_GNU_undef_indirect
21394 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21395 macro_undef (current_file, line, body);
21396 }
21397 }
21398 break;
21399
21400 case DW_MACRO_GNU_start_file:
21401 {
21402 unsigned int bytes_read;
21403 int line, file;
21404
21405 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21406 mac_ptr += bytes_read;
21407 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21408 mac_ptr += bytes_read;
21409
21410 if ((line == 0 && !at_commandline)
21411 || (line != 0 && at_commandline))
21412 complaint (&symfile_complaints,
21413 _("debug info gives source %d included "
21414 "from %s at %s line %d"),
21415 file, at_commandline ? _("command-line") : _("file"),
21416 line == 0 ? _("zero") : _("non-zero"), line);
21417
21418 if (at_commandline)
21419 {
21420 /* This DW_MACRO_GNU_start_file was executed in the
21421 pass one. */
21422 at_commandline = 0;
21423 }
21424 else
21425 current_file = macro_start_file (file, line, current_file, lh);
21426 }
21427 break;
21428
21429 case DW_MACRO_GNU_end_file:
21430 if (! current_file)
21431 complaint (&symfile_complaints,
21432 _("macro debug info has an unmatched "
21433 "`close_file' directive"));
21434 else
21435 {
21436 current_file = current_file->included_by;
21437 if (! current_file)
21438 {
21439 enum dwarf_macro_record_type next_type;
21440
21441 /* GCC circa March 2002 doesn't produce the zero
21442 type byte marking the end of the compilation
21443 unit. Complain if it's not there, but exit no
21444 matter what. */
21445
21446 /* Do we at least have room for a macinfo type byte? */
21447 if (mac_ptr >= mac_end)
21448 {
21449 dwarf2_section_buffer_overflow_complaint (section);
21450 return;
21451 }
21452
21453 /* We don't increment mac_ptr here, so this is just
21454 a look-ahead. */
21455 next_type
21456 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21457 mac_ptr);
21458 if (next_type != 0)
21459 complaint (&symfile_complaints,
21460 _("no terminating 0-type entry for "
21461 "macros in `.debug_macinfo' section"));
21462
21463 return;
21464 }
21465 }
21466 break;
21467
21468 case DW_MACRO_GNU_transparent_include:
21469 case DW_MACRO_GNU_transparent_include_alt:
21470 {
21471 LONGEST offset;
21472 void **slot;
21473 bfd *include_bfd = abfd;
21474 struct dwarf2_section_info *include_section = section;
21475 struct dwarf2_section_info alt_section;
21476 const gdb_byte *include_mac_end = mac_end;
21477 int is_dwz = section_is_dwz;
21478 const gdb_byte *new_mac_ptr;
21479
21480 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21481 mac_ptr += offset_size;
21482
21483 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21484 {
21485 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21486
21487 dwarf2_read_section (objfile, &dwz->macro);
21488
21489 include_section = &dwz->macro;
21490 include_bfd = get_section_bfd_owner (include_section);
21491 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21492 is_dwz = 1;
21493 }
21494
21495 new_mac_ptr = include_section->buffer + offset;
21496 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21497
21498 if (*slot != NULL)
21499 {
21500 /* This has actually happened; see
21501 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21502 complaint (&symfile_complaints,
21503 _("recursive DW_MACRO_GNU_transparent_include in "
21504 ".debug_macro section"));
21505 }
21506 else
21507 {
21508 *slot = (void *) new_mac_ptr;
21509
21510 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21511 include_mac_end, current_file, lh,
21512 section, section_is_gnu, is_dwz,
21513 offset_size, include_hash);
21514
21515 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21516 }
21517 }
21518 break;
21519
21520 case DW_MACINFO_vendor_ext:
21521 if (!section_is_gnu)
21522 {
21523 unsigned int bytes_read;
21524 int constant;
21525
21526 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21527 mac_ptr += bytes_read;
21528 read_direct_string (abfd, mac_ptr, &bytes_read);
21529 mac_ptr += bytes_read;
21530
21531 /* We don't recognize any vendor extensions. */
21532 break;
21533 }
21534 /* FALLTHROUGH */
21535
21536 default:
21537 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21538 mac_ptr, mac_end, abfd, offset_size,
21539 section);
21540 if (mac_ptr == NULL)
21541 return;
21542 break;
21543 }
21544 } while (macinfo_type != 0);
21545 }
21546
21547 static void
21548 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21549 int section_is_gnu)
21550 {
21551 struct objfile *objfile = dwarf2_per_objfile->objfile;
21552 struct line_header *lh = cu->line_header;
21553 bfd *abfd;
21554 const gdb_byte *mac_ptr, *mac_end;
21555 struct macro_source_file *current_file = 0;
21556 enum dwarf_macro_record_type macinfo_type;
21557 unsigned int offset_size = cu->header.offset_size;
21558 const gdb_byte *opcode_definitions[256];
21559 struct cleanup *cleanup;
21560 htab_t include_hash;
21561 void **slot;
21562 struct dwarf2_section_info *section;
21563 const char *section_name;
21564
21565 if (cu->dwo_unit != NULL)
21566 {
21567 if (section_is_gnu)
21568 {
21569 section = &cu->dwo_unit->dwo_file->sections.macro;
21570 section_name = ".debug_macro.dwo";
21571 }
21572 else
21573 {
21574 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21575 section_name = ".debug_macinfo.dwo";
21576 }
21577 }
21578 else
21579 {
21580 if (section_is_gnu)
21581 {
21582 section = &dwarf2_per_objfile->macro;
21583 section_name = ".debug_macro";
21584 }
21585 else
21586 {
21587 section = &dwarf2_per_objfile->macinfo;
21588 section_name = ".debug_macinfo";
21589 }
21590 }
21591
21592 dwarf2_read_section (objfile, section);
21593 if (section->buffer == NULL)
21594 {
21595 complaint (&symfile_complaints, _("missing %s section"), section_name);
21596 return;
21597 }
21598 abfd = get_section_bfd_owner (section);
21599
21600 /* First pass: Find the name of the base filename.
21601 This filename is needed in order to process all macros whose definition
21602 (or undefinition) comes from the command line. These macros are defined
21603 before the first DW_MACINFO_start_file entry, and yet still need to be
21604 associated to the base file.
21605
21606 To determine the base file name, we scan the macro definitions until we
21607 reach the first DW_MACINFO_start_file entry. We then initialize
21608 CURRENT_FILE accordingly so that any macro definition found before the
21609 first DW_MACINFO_start_file can still be associated to the base file. */
21610
21611 mac_ptr = section->buffer + offset;
21612 mac_end = section->buffer + section->size;
21613
21614 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21615 &offset_size, section_is_gnu);
21616 if (mac_ptr == NULL)
21617 {
21618 /* We already issued a complaint. */
21619 return;
21620 }
21621
21622 do
21623 {
21624 /* Do we at least have room for a macinfo type byte? */
21625 if (mac_ptr >= mac_end)
21626 {
21627 /* Complaint is printed during the second pass as GDB will probably
21628 stop the first pass earlier upon finding
21629 DW_MACINFO_start_file. */
21630 break;
21631 }
21632
21633 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21634 mac_ptr++;
21635
21636 /* Note that we rely on the fact that the corresponding GNU and
21637 DWARF constants are the same. */
21638 switch (macinfo_type)
21639 {
21640 /* A zero macinfo type indicates the end of the macro
21641 information. */
21642 case 0:
21643 break;
21644
21645 case DW_MACRO_GNU_define:
21646 case DW_MACRO_GNU_undef:
21647 /* Only skip the data by MAC_PTR. */
21648 {
21649 unsigned int bytes_read;
21650
21651 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21652 mac_ptr += bytes_read;
21653 read_direct_string (abfd, mac_ptr, &bytes_read);
21654 mac_ptr += bytes_read;
21655 }
21656 break;
21657
21658 case DW_MACRO_GNU_start_file:
21659 {
21660 unsigned int bytes_read;
21661 int line, file;
21662
21663 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21664 mac_ptr += bytes_read;
21665 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21666 mac_ptr += bytes_read;
21667
21668 current_file = macro_start_file (file, line, current_file, lh);
21669 }
21670 break;
21671
21672 case DW_MACRO_GNU_end_file:
21673 /* No data to skip by MAC_PTR. */
21674 break;
21675
21676 case DW_MACRO_GNU_define_indirect:
21677 case DW_MACRO_GNU_undef_indirect:
21678 case DW_MACRO_GNU_define_indirect_alt:
21679 case DW_MACRO_GNU_undef_indirect_alt:
21680 {
21681 unsigned int bytes_read;
21682
21683 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21684 mac_ptr += bytes_read;
21685 mac_ptr += offset_size;
21686 }
21687 break;
21688
21689 case DW_MACRO_GNU_transparent_include:
21690 case DW_MACRO_GNU_transparent_include_alt:
21691 /* Note that, according to the spec, a transparent include
21692 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21693 skip this opcode. */
21694 mac_ptr += offset_size;
21695 break;
21696
21697 case DW_MACINFO_vendor_ext:
21698 /* Only skip the data by MAC_PTR. */
21699 if (!section_is_gnu)
21700 {
21701 unsigned int bytes_read;
21702
21703 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21704 mac_ptr += bytes_read;
21705 read_direct_string (abfd, mac_ptr, &bytes_read);
21706 mac_ptr += bytes_read;
21707 }
21708 /* FALLTHROUGH */
21709
21710 default:
21711 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21712 mac_ptr, mac_end, abfd, offset_size,
21713 section);
21714 if (mac_ptr == NULL)
21715 return;
21716 break;
21717 }
21718 } while (macinfo_type != 0 && current_file == NULL);
21719
21720 /* Second pass: Process all entries.
21721
21722 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21723 command-line macro definitions/undefinitions. This flag is unset when we
21724 reach the first DW_MACINFO_start_file entry. */
21725
21726 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21727 NULL, xcalloc, xfree);
21728 cleanup = make_cleanup_htab_delete (include_hash);
21729 mac_ptr = section->buffer + offset;
21730 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21731 *slot = (void *) mac_ptr;
21732 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21733 current_file, lh, section,
21734 section_is_gnu, 0, offset_size, include_hash);
21735 do_cleanups (cleanup);
21736 }
21737
21738 /* Check if the attribute's form is a DW_FORM_block*
21739 if so return true else false. */
21740
21741 static int
21742 attr_form_is_block (const struct attribute *attr)
21743 {
21744 return (attr == NULL ? 0 :
21745 attr->form == DW_FORM_block1
21746 || attr->form == DW_FORM_block2
21747 || attr->form == DW_FORM_block4
21748 || attr->form == DW_FORM_block
21749 || attr->form == DW_FORM_exprloc);
21750 }
21751
21752 /* Return non-zero if ATTR's value is a section offset --- classes
21753 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21754 You may use DW_UNSND (attr) to retrieve such offsets.
21755
21756 Section 7.5.4, "Attribute Encodings", explains that no attribute
21757 may have a value that belongs to more than one of these classes; it
21758 would be ambiguous if we did, because we use the same forms for all
21759 of them. */
21760
21761 static int
21762 attr_form_is_section_offset (const struct attribute *attr)
21763 {
21764 return (attr->form == DW_FORM_data4
21765 || attr->form == DW_FORM_data8
21766 || attr->form == DW_FORM_sec_offset);
21767 }
21768
21769 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21770 zero otherwise. When this function returns true, you can apply
21771 dwarf2_get_attr_constant_value to it.
21772
21773 However, note that for some attributes you must check
21774 attr_form_is_section_offset before using this test. DW_FORM_data4
21775 and DW_FORM_data8 are members of both the constant class, and of
21776 the classes that contain offsets into other debug sections
21777 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21778 that, if an attribute's can be either a constant or one of the
21779 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21780 taken as section offsets, not constants. */
21781
21782 static int
21783 attr_form_is_constant (const struct attribute *attr)
21784 {
21785 switch (attr->form)
21786 {
21787 case DW_FORM_sdata:
21788 case DW_FORM_udata:
21789 case DW_FORM_data1:
21790 case DW_FORM_data2:
21791 case DW_FORM_data4:
21792 case DW_FORM_data8:
21793 return 1;
21794 default:
21795 return 0;
21796 }
21797 }
21798
21799
21800 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21801 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21802
21803 static int
21804 attr_form_is_ref (const struct attribute *attr)
21805 {
21806 switch (attr->form)
21807 {
21808 case DW_FORM_ref_addr:
21809 case DW_FORM_ref1:
21810 case DW_FORM_ref2:
21811 case DW_FORM_ref4:
21812 case DW_FORM_ref8:
21813 case DW_FORM_ref_udata:
21814 case DW_FORM_GNU_ref_alt:
21815 return 1;
21816 default:
21817 return 0;
21818 }
21819 }
21820
21821 /* Return the .debug_loc section to use for CU.
21822 For DWO files use .debug_loc.dwo. */
21823
21824 static struct dwarf2_section_info *
21825 cu_debug_loc_section (struct dwarf2_cu *cu)
21826 {
21827 if (cu->dwo_unit)
21828 return &cu->dwo_unit->dwo_file->sections.loc;
21829 return &dwarf2_per_objfile->loc;
21830 }
21831
21832 /* A helper function that fills in a dwarf2_loclist_baton. */
21833
21834 static void
21835 fill_in_loclist_baton (struct dwarf2_cu *cu,
21836 struct dwarf2_loclist_baton *baton,
21837 const struct attribute *attr)
21838 {
21839 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21840
21841 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21842
21843 baton->per_cu = cu->per_cu;
21844 gdb_assert (baton->per_cu);
21845 /* We don't know how long the location list is, but make sure we
21846 don't run off the edge of the section. */
21847 baton->size = section->size - DW_UNSND (attr);
21848 baton->data = section->buffer + DW_UNSND (attr);
21849 baton->base_address = cu->base_address;
21850 baton->from_dwo = cu->dwo_unit != NULL;
21851 }
21852
21853 static void
21854 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21855 struct dwarf2_cu *cu, int is_block)
21856 {
21857 struct objfile *objfile = dwarf2_per_objfile->objfile;
21858 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21859
21860 if (attr_form_is_section_offset (attr)
21861 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21862 the section. If so, fall through to the complaint in the
21863 other branch. */
21864 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21865 {
21866 struct dwarf2_loclist_baton *baton;
21867
21868 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21869
21870 fill_in_loclist_baton (cu, baton, attr);
21871
21872 if (cu->base_known == 0)
21873 complaint (&symfile_complaints,
21874 _("Location list used without "
21875 "specifying the CU base address."));
21876
21877 SYMBOL_ACLASS_INDEX (sym) = (is_block
21878 ? dwarf2_loclist_block_index
21879 : dwarf2_loclist_index);
21880 SYMBOL_LOCATION_BATON (sym) = baton;
21881 }
21882 else
21883 {
21884 struct dwarf2_locexpr_baton *baton;
21885
21886 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21887 baton->per_cu = cu->per_cu;
21888 gdb_assert (baton->per_cu);
21889
21890 if (attr_form_is_block (attr))
21891 {
21892 /* Note that we're just copying the block's data pointer
21893 here, not the actual data. We're still pointing into the
21894 info_buffer for SYM's objfile; right now we never release
21895 that buffer, but when we do clean up properly this may
21896 need to change. */
21897 baton->size = DW_BLOCK (attr)->size;
21898 baton->data = DW_BLOCK (attr)->data;
21899 }
21900 else
21901 {
21902 dwarf2_invalid_attrib_class_complaint ("location description",
21903 SYMBOL_NATURAL_NAME (sym));
21904 baton->size = 0;
21905 }
21906
21907 SYMBOL_ACLASS_INDEX (sym) = (is_block
21908 ? dwarf2_locexpr_block_index
21909 : dwarf2_locexpr_index);
21910 SYMBOL_LOCATION_BATON (sym) = baton;
21911 }
21912 }
21913
21914 /* Return the OBJFILE associated with the compilation unit CU. If CU
21915 came from a separate debuginfo file, then the master objfile is
21916 returned. */
21917
21918 struct objfile *
21919 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21920 {
21921 struct objfile *objfile = per_cu->objfile;
21922
21923 /* Return the master objfile, so that we can report and look up the
21924 correct file containing this variable. */
21925 if (objfile->separate_debug_objfile_backlink)
21926 objfile = objfile->separate_debug_objfile_backlink;
21927
21928 return objfile;
21929 }
21930
21931 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21932 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21933 CU_HEADERP first. */
21934
21935 static const struct comp_unit_head *
21936 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21937 struct dwarf2_per_cu_data *per_cu)
21938 {
21939 const gdb_byte *info_ptr;
21940
21941 if (per_cu->cu)
21942 return &per_cu->cu->header;
21943
21944 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21945
21946 memset (cu_headerp, 0, sizeof (*cu_headerp));
21947 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21948
21949 return cu_headerp;
21950 }
21951
21952 /* Return the address size given in the compilation unit header for CU. */
21953
21954 int
21955 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21956 {
21957 struct comp_unit_head cu_header_local;
21958 const struct comp_unit_head *cu_headerp;
21959
21960 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21961
21962 return cu_headerp->addr_size;
21963 }
21964
21965 /* Return the offset size given in the compilation unit header for CU. */
21966
21967 int
21968 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21969 {
21970 struct comp_unit_head cu_header_local;
21971 const struct comp_unit_head *cu_headerp;
21972
21973 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21974
21975 return cu_headerp->offset_size;
21976 }
21977
21978 /* See its dwarf2loc.h declaration. */
21979
21980 int
21981 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21982 {
21983 struct comp_unit_head cu_header_local;
21984 const struct comp_unit_head *cu_headerp;
21985
21986 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21987
21988 if (cu_headerp->version == 2)
21989 return cu_headerp->addr_size;
21990 else
21991 return cu_headerp->offset_size;
21992 }
21993
21994 /* Return the text offset of the CU. The returned offset comes from
21995 this CU's objfile. If this objfile came from a separate debuginfo
21996 file, then the offset may be different from the corresponding
21997 offset in the parent objfile. */
21998
21999 CORE_ADDR
22000 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22001 {
22002 struct objfile *objfile = per_cu->objfile;
22003
22004 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22005 }
22006
22007 /* Locate the .debug_info compilation unit from CU's objfile which contains
22008 the DIE at OFFSET. Raises an error on failure. */
22009
22010 static struct dwarf2_per_cu_data *
22011 dwarf2_find_containing_comp_unit (sect_offset offset,
22012 unsigned int offset_in_dwz,
22013 struct objfile *objfile)
22014 {
22015 struct dwarf2_per_cu_data *this_cu;
22016 int low, high;
22017 const sect_offset *cu_off;
22018
22019 low = 0;
22020 high = dwarf2_per_objfile->n_comp_units - 1;
22021 while (high > low)
22022 {
22023 struct dwarf2_per_cu_data *mid_cu;
22024 int mid = low + (high - low) / 2;
22025
22026 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22027 cu_off = &mid_cu->offset;
22028 if (mid_cu->is_dwz > offset_in_dwz
22029 || (mid_cu->is_dwz == offset_in_dwz
22030 && cu_off->sect_off >= offset.sect_off))
22031 high = mid;
22032 else
22033 low = mid + 1;
22034 }
22035 gdb_assert (low == high);
22036 this_cu = dwarf2_per_objfile->all_comp_units[low];
22037 cu_off = &this_cu->offset;
22038 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22039 {
22040 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22041 error (_("Dwarf Error: could not find partial DIE containing "
22042 "offset 0x%lx [in module %s]"),
22043 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22044
22045 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22046 <= offset.sect_off);
22047 return dwarf2_per_objfile->all_comp_units[low-1];
22048 }
22049 else
22050 {
22051 this_cu = dwarf2_per_objfile->all_comp_units[low];
22052 if (low == dwarf2_per_objfile->n_comp_units - 1
22053 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22054 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22055 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22056 return this_cu;
22057 }
22058 }
22059
22060 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22061
22062 static void
22063 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22064 {
22065 memset (cu, 0, sizeof (*cu));
22066 per_cu->cu = cu;
22067 cu->per_cu = per_cu;
22068 cu->objfile = per_cu->objfile;
22069 obstack_init (&cu->comp_unit_obstack);
22070 }
22071
22072 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22073
22074 static void
22075 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22076 enum language pretend_language)
22077 {
22078 struct attribute *attr;
22079
22080 /* Set the language we're debugging. */
22081 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22082 if (attr)
22083 set_cu_language (DW_UNSND (attr), cu);
22084 else
22085 {
22086 cu->language = pretend_language;
22087 cu->language_defn = language_def (cu->language);
22088 }
22089
22090 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22091 }
22092
22093 /* Release one cached compilation unit, CU. We unlink it from the tree
22094 of compilation units, but we don't remove it from the read_in_chain;
22095 the caller is responsible for that.
22096 NOTE: DATA is a void * because this function is also used as a
22097 cleanup routine. */
22098
22099 static void
22100 free_heap_comp_unit (void *data)
22101 {
22102 struct dwarf2_cu *cu = data;
22103
22104 gdb_assert (cu->per_cu != NULL);
22105 cu->per_cu->cu = NULL;
22106 cu->per_cu = NULL;
22107
22108 obstack_free (&cu->comp_unit_obstack, NULL);
22109
22110 xfree (cu);
22111 }
22112
22113 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22114 when we're finished with it. We can't free the pointer itself, but be
22115 sure to unlink it from the cache. Also release any associated storage. */
22116
22117 static void
22118 free_stack_comp_unit (void *data)
22119 {
22120 struct dwarf2_cu *cu = data;
22121
22122 gdb_assert (cu->per_cu != NULL);
22123 cu->per_cu->cu = NULL;
22124 cu->per_cu = NULL;
22125
22126 obstack_free (&cu->comp_unit_obstack, NULL);
22127 cu->partial_dies = NULL;
22128 }
22129
22130 /* Free all cached compilation units. */
22131
22132 static void
22133 free_cached_comp_units (void *data)
22134 {
22135 struct dwarf2_per_cu_data *per_cu, **last_chain;
22136
22137 per_cu = dwarf2_per_objfile->read_in_chain;
22138 last_chain = &dwarf2_per_objfile->read_in_chain;
22139 while (per_cu != NULL)
22140 {
22141 struct dwarf2_per_cu_data *next_cu;
22142
22143 next_cu = per_cu->cu->read_in_chain;
22144
22145 free_heap_comp_unit (per_cu->cu);
22146 *last_chain = next_cu;
22147
22148 per_cu = next_cu;
22149 }
22150 }
22151
22152 /* Increase the age counter on each cached compilation unit, and free
22153 any that are too old. */
22154
22155 static void
22156 age_cached_comp_units (void)
22157 {
22158 struct dwarf2_per_cu_data *per_cu, **last_chain;
22159
22160 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22161 per_cu = dwarf2_per_objfile->read_in_chain;
22162 while (per_cu != NULL)
22163 {
22164 per_cu->cu->last_used ++;
22165 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22166 dwarf2_mark (per_cu->cu);
22167 per_cu = per_cu->cu->read_in_chain;
22168 }
22169
22170 per_cu = dwarf2_per_objfile->read_in_chain;
22171 last_chain = &dwarf2_per_objfile->read_in_chain;
22172 while (per_cu != NULL)
22173 {
22174 struct dwarf2_per_cu_data *next_cu;
22175
22176 next_cu = per_cu->cu->read_in_chain;
22177
22178 if (!per_cu->cu->mark)
22179 {
22180 free_heap_comp_unit (per_cu->cu);
22181 *last_chain = next_cu;
22182 }
22183 else
22184 last_chain = &per_cu->cu->read_in_chain;
22185
22186 per_cu = next_cu;
22187 }
22188 }
22189
22190 /* Remove a single compilation unit from the cache. */
22191
22192 static void
22193 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22194 {
22195 struct dwarf2_per_cu_data *per_cu, **last_chain;
22196
22197 per_cu = dwarf2_per_objfile->read_in_chain;
22198 last_chain = &dwarf2_per_objfile->read_in_chain;
22199 while (per_cu != NULL)
22200 {
22201 struct dwarf2_per_cu_data *next_cu;
22202
22203 next_cu = per_cu->cu->read_in_chain;
22204
22205 if (per_cu == target_per_cu)
22206 {
22207 free_heap_comp_unit (per_cu->cu);
22208 per_cu->cu = NULL;
22209 *last_chain = next_cu;
22210 break;
22211 }
22212 else
22213 last_chain = &per_cu->cu->read_in_chain;
22214
22215 per_cu = next_cu;
22216 }
22217 }
22218
22219 /* Release all extra memory associated with OBJFILE. */
22220
22221 void
22222 dwarf2_free_objfile (struct objfile *objfile)
22223 {
22224 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22225
22226 if (dwarf2_per_objfile == NULL)
22227 return;
22228
22229 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22230 free_cached_comp_units (NULL);
22231
22232 if (dwarf2_per_objfile->quick_file_names_table)
22233 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22234
22235 if (dwarf2_per_objfile->line_header_hash)
22236 htab_delete (dwarf2_per_objfile->line_header_hash);
22237
22238 /* Everything else should be on the objfile obstack. */
22239 }
22240
22241 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22242 We store these in a hash table separate from the DIEs, and preserve them
22243 when the DIEs are flushed out of cache.
22244
22245 The CU "per_cu" pointer is needed because offset alone is not enough to
22246 uniquely identify the type. A file may have multiple .debug_types sections,
22247 or the type may come from a DWO file. Furthermore, while it's more logical
22248 to use per_cu->section+offset, with Fission the section with the data is in
22249 the DWO file but we don't know that section at the point we need it.
22250 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22251 because we can enter the lookup routine, get_die_type_at_offset, from
22252 outside this file, and thus won't necessarily have PER_CU->cu.
22253 Fortunately, PER_CU is stable for the life of the objfile. */
22254
22255 struct dwarf2_per_cu_offset_and_type
22256 {
22257 const struct dwarf2_per_cu_data *per_cu;
22258 sect_offset offset;
22259 struct type *type;
22260 };
22261
22262 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22263
22264 static hashval_t
22265 per_cu_offset_and_type_hash (const void *item)
22266 {
22267 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22268
22269 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22270 }
22271
22272 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22273
22274 static int
22275 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22276 {
22277 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22278 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22279
22280 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22281 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22282 }
22283
22284 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22285 table if necessary. For convenience, return TYPE.
22286
22287 The DIEs reading must have careful ordering to:
22288 * Not cause infite loops trying to read in DIEs as a prerequisite for
22289 reading current DIE.
22290 * Not trying to dereference contents of still incompletely read in types
22291 while reading in other DIEs.
22292 * Enable referencing still incompletely read in types just by a pointer to
22293 the type without accessing its fields.
22294
22295 Therefore caller should follow these rules:
22296 * Try to fetch any prerequisite types we may need to build this DIE type
22297 before building the type and calling set_die_type.
22298 * After building type call set_die_type for current DIE as soon as
22299 possible before fetching more types to complete the current type.
22300 * Make the type as complete as possible before fetching more types. */
22301
22302 static struct type *
22303 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22304 {
22305 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22306 struct objfile *objfile = cu->objfile;
22307 struct attribute *attr;
22308 struct dynamic_prop prop;
22309
22310 /* For Ada types, make sure that the gnat-specific data is always
22311 initialized (if not already set). There are a few types where
22312 we should not be doing so, because the type-specific area is
22313 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22314 where the type-specific area is used to store the floatformat).
22315 But this is not a problem, because the gnat-specific information
22316 is actually not needed for these types. */
22317 if (need_gnat_info (cu)
22318 && TYPE_CODE (type) != TYPE_CODE_FUNC
22319 && TYPE_CODE (type) != TYPE_CODE_FLT
22320 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22321 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22322 && TYPE_CODE (type) != TYPE_CODE_METHOD
22323 && !HAVE_GNAT_AUX_INFO (type))
22324 INIT_GNAT_SPECIFIC (type);
22325
22326 /* Read DW_AT_data_location and set in type. */
22327 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22328 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22329 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22330
22331 if (dwarf2_per_objfile->die_type_hash == NULL)
22332 {
22333 dwarf2_per_objfile->die_type_hash =
22334 htab_create_alloc_ex (127,
22335 per_cu_offset_and_type_hash,
22336 per_cu_offset_and_type_eq,
22337 NULL,
22338 &objfile->objfile_obstack,
22339 hashtab_obstack_allocate,
22340 dummy_obstack_deallocate);
22341 }
22342
22343 ofs.per_cu = cu->per_cu;
22344 ofs.offset = die->offset;
22345 ofs.type = type;
22346 slot = (struct dwarf2_per_cu_offset_and_type **)
22347 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22348 if (*slot)
22349 complaint (&symfile_complaints,
22350 _("A problem internal to GDB: DIE 0x%x has type already set"),
22351 die->offset.sect_off);
22352 *slot = XOBNEW (&objfile->objfile_obstack,
22353 struct dwarf2_per_cu_offset_and_type);
22354 **slot = ofs;
22355 return type;
22356 }
22357
22358 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22359 or return NULL if the die does not have a saved type. */
22360
22361 static struct type *
22362 get_die_type_at_offset (sect_offset offset,
22363 struct dwarf2_per_cu_data *per_cu)
22364 {
22365 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22366
22367 if (dwarf2_per_objfile->die_type_hash == NULL)
22368 return NULL;
22369
22370 ofs.per_cu = per_cu;
22371 ofs.offset = offset;
22372 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22373 if (slot)
22374 return slot->type;
22375 else
22376 return NULL;
22377 }
22378
22379 /* Look up the type for DIE in CU in die_type_hash,
22380 or return NULL if DIE does not have a saved type. */
22381
22382 static struct type *
22383 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22384 {
22385 return get_die_type_at_offset (die->offset, cu->per_cu);
22386 }
22387
22388 /* Add a dependence relationship from CU to REF_PER_CU. */
22389
22390 static void
22391 dwarf2_add_dependence (struct dwarf2_cu *cu,
22392 struct dwarf2_per_cu_data *ref_per_cu)
22393 {
22394 void **slot;
22395
22396 if (cu->dependencies == NULL)
22397 cu->dependencies
22398 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22399 NULL, &cu->comp_unit_obstack,
22400 hashtab_obstack_allocate,
22401 dummy_obstack_deallocate);
22402
22403 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22404 if (*slot == NULL)
22405 *slot = ref_per_cu;
22406 }
22407
22408 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22409 Set the mark field in every compilation unit in the
22410 cache that we must keep because we are keeping CU. */
22411
22412 static int
22413 dwarf2_mark_helper (void **slot, void *data)
22414 {
22415 struct dwarf2_per_cu_data *per_cu;
22416
22417 per_cu = (struct dwarf2_per_cu_data *) *slot;
22418
22419 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22420 reading of the chain. As such dependencies remain valid it is not much
22421 useful to track and undo them during QUIT cleanups. */
22422 if (per_cu->cu == NULL)
22423 return 1;
22424
22425 if (per_cu->cu->mark)
22426 return 1;
22427 per_cu->cu->mark = 1;
22428
22429 if (per_cu->cu->dependencies != NULL)
22430 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22431
22432 return 1;
22433 }
22434
22435 /* Set the mark field in CU and in every other compilation unit in the
22436 cache that we must keep because we are keeping CU. */
22437
22438 static void
22439 dwarf2_mark (struct dwarf2_cu *cu)
22440 {
22441 if (cu->mark)
22442 return;
22443 cu->mark = 1;
22444 if (cu->dependencies != NULL)
22445 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22446 }
22447
22448 static void
22449 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22450 {
22451 while (per_cu)
22452 {
22453 per_cu->cu->mark = 0;
22454 per_cu = per_cu->cu->read_in_chain;
22455 }
22456 }
22457
22458 /* Trivial hash function for partial_die_info: the hash value of a DIE
22459 is its offset in .debug_info for this objfile. */
22460
22461 static hashval_t
22462 partial_die_hash (const void *item)
22463 {
22464 const struct partial_die_info *part_die = item;
22465
22466 return part_die->offset.sect_off;
22467 }
22468
22469 /* Trivial comparison function for partial_die_info structures: two DIEs
22470 are equal if they have the same offset. */
22471
22472 static int
22473 partial_die_eq (const void *item_lhs, const void *item_rhs)
22474 {
22475 const struct partial_die_info *part_die_lhs = item_lhs;
22476 const struct partial_die_info *part_die_rhs = item_rhs;
22477
22478 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22479 }
22480
22481 static struct cmd_list_element *set_dwarf_cmdlist;
22482 static struct cmd_list_element *show_dwarf_cmdlist;
22483
22484 static void
22485 set_dwarf_cmd (char *args, int from_tty)
22486 {
22487 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22488 gdb_stdout);
22489 }
22490
22491 static void
22492 show_dwarf_cmd (char *args, int from_tty)
22493 {
22494 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22495 }
22496
22497 /* Free data associated with OBJFILE, if necessary. */
22498
22499 static void
22500 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22501 {
22502 struct dwarf2_per_objfile *data = d;
22503 int ix;
22504
22505 /* Make sure we don't accidentally use dwarf2_per_objfile while
22506 cleaning up. */
22507 dwarf2_per_objfile = NULL;
22508
22509 for (ix = 0; ix < data->n_comp_units; ++ix)
22510 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22511
22512 for (ix = 0; ix < data->n_type_units; ++ix)
22513 VEC_free (dwarf2_per_cu_ptr,
22514 data->all_type_units[ix]->per_cu.imported_symtabs);
22515 xfree (data->all_type_units);
22516
22517 VEC_free (dwarf2_section_info_def, data->types);
22518
22519 if (data->dwo_files)
22520 free_dwo_files (data->dwo_files, objfile);
22521 if (data->dwp_file)
22522 gdb_bfd_unref (data->dwp_file->dbfd);
22523
22524 if (data->dwz_file && data->dwz_file->dwz_bfd)
22525 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22526 }
22527
22528 \f
22529 /* The "save gdb-index" command. */
22530
22531 /* The contents of the hash table we create when building the string
22532 table. */
22533 struct strtab_entry
22534 {
22535 offset_type offset;
22536 const char *str;
22537 };
22538
22539 /* Hash function for a strtab_entry.
22540
22541 Function is used only during write_hash_table so no index format backward
22542 compatibility is needed. */
22543
22544 static hashval_t
22545 hash_strtab_entry (const void *e)
22546 {
22547 const struct strtab_entry *entry = e;
22548 return mapped_index_string_hash (INT_MAX, entry->str);
22549 }
22550
22551 /* Equality function for a strtab_entry. */
22552
22553 static int
22554 eq_strtab_entry (const void *a, const void *b)
22555 {
22556 const struct strtab_entry *ea = a;
22557 const struct strtab_entry *eb = b;
22558 return !strcmp (ea->str, eb->str);
22559 }
22560
22561 /* Create a strtab_entry hash table. */
22562
22563 static htab_t
22564 create_strtab (void)
22565 {
22566 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22567 xfree, xcalloc, xfree);
22568 }
22569
22570 /* Add a string to the constant pool. Return the string's offset in
22571 host order. */
22572
22573 static offset_type
22574 add_string (htab_t table, struct obstack *cpool, const char *str)
22575 {
22576 void **slot;
22577 struct strtab_entry entry;
22578 struct strtab_entry *result;
22579
22580 entry.str = str;
22581 slot = htab_find_slot (table, &entry, INSERT);
22582 if (*slot)
22583 result = *slot;
22584 else
22585 {
22586 result = XNEW (struct strtab_entry);
22587 result->offset = obstack_object_size (cpool);
22588 result->str = str;
22589 obstack_grow_str0 (cpool, str);
22590 *slot = result;
22591 }
22592 return result->offset;
22593 }
22594
22595 /* An entry in the symbol table. */
22596 struct symtab_index_entry
22597 {
22598 /* The name of the symbol. */
22599 const char *name;
22600 /* The offset of the name in the constant pool. */
22601 offset_type index_offset;
22602 /* A sorted vector of the indices of all the CUs that hold an object
22603 of this name. */
22604 VEC (offset_type) *cu_indices;
22605 };
22606
22607 /* The symbol table. This is a power-of-2-sized hash table. */
22608 struct mapped_symtab
22609 {
22610 offset_type n_elements;
22611 offset_type size;
22612 struct symtab_index_entry **data;
22613 };
22614
22615 /* Hash function for a symtab_index_entry. */
22616
22617 static hashval_t
22618 hash_symtab_entry (const void *e)
22619 {
22620 const struct symtab_index_entry *entry = e;
22621 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22622 sizeof (offset_type) * VEC_length (offset_type,
22623 entry->cu_indices),
22624 0);
22625 }
22626
22627 /* Equality function for a symtab_index_entry. */
22628
22629 static int
22630 eq_symtab_entry (const void *a, const void *b)
22631 {
22632 const struct symtab_index_entry *ea = a;
22633 const struct symtab_index_entry *eb = b;
22634 int len = VEC_length (offset_type, ea->cu_indices);
22635 if (len != VEC_length (offset_type, eb->cu_indices))
22636 return 0;
22637 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22638 VEC_address (offset_type, eb->cu_indices),
22639 sizeof (offset_type) * len);
22640 }
22641
22642 /* Destroy a symtab_index_entry. */
22643
22644 static void
22645 delete_symtab_entry (void *p)
22646 {
22647 struct symtab_index_entry *entry = p;
22648 VEC_free (offset_type, entry->cu_indices);
22649 xfree (entry);
22650 }
22651
22652 /* Create a hash table holding symtab_index_entry objects. */
22653
22654 static htab_t
22655 create_symbol_hash_table (void)
22656 {
22657 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22658 delete_symtab_entry, xcalloc, xfree);
22659 }
22660
22661 /* Create a new mapped symtab object. */
22662
22663 static struct mapped_symtab *
22664 create_mapped_symtab (void)
22665 {
22666 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22667 symtab->n_elements = 0;
22668 symtab->size = 1024;
22669 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22670 return symtab;
22671 }
22672
22673 /* Destroy a mapped_symtab. */
22674
22675 static void
22676 cleanup_mapped_symtab (void *p)
22677 {
22678 struct mapped_symtab *symtab = p;
22679 /* The contents of the array are freed when the other hash table is
22680 destroyed. */
22681 xfree (symtab->data);
22682 xfree (symtab);
22683 }
22684
22685 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22686 the slot.
22687
22688 Function is used only during write_hash_table so no index format backward
22689 compatibility is needed. */
22690
22691 static struct symtab_index_entry **
22692 find_slot (struct mapped_symtab *symtab, const char *name)
22693 {
22694 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22695
22696 index = hash & (symtab->size - 1);
22697 step = ((hash * 17) & (symtab->size - 1)) | 1;
22698
22699 for (;;)
22700 {
22701 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22702 return &symtab->data[index];
22703 index = (index + step) & (symtab->size - 1);
22704 }
22705 }
22706
22707 /* Expand SYMTAB's hash table. */
22708
22709 static void
22710 hash_expand (struct mapped_symtab *symtab)
22711 {
22712 offset_type old_size = symtab->size;
22713 offset_type i;
22714 struct symtab_index_entry **old_entries = symtab->data;
22715
22716 symtab->size *= 2;
22717 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22718
22719 for (i = 0; i < old_size; ++i)
22720 {
22721 if (old_entries[i])
22722 {
22723 struct symtab_index_entry **slot = find_slot (symtab,
22724 old_entries[i]->name);
22725 *slot = old_entries[i];
22726 }
22727 }
22728
22729 xfree (old_entries);
22730 }
22731
22732 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22733 CU_INDEX is the index of the CU in which the symbol appears.
22734 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22735
22736 static void
22737 add_index_entry (struct mapped_symtab *symtab, const char *name,
22738 int is_static, gdb_index_symbol_kind kind,
22739 offset_type cu_index)
22740 {
22741 struct symtab_index_entry **slot;
22742 offset_type cu_index_and_attrs;
22743
22744 ++symtab->n_elements;
22745 if (4 * symtab->n_elements / 3 >= symtab->size)
22746 hash_expand (symtab);
22747
22748 slot = find_slot (symtab, name);
22749 if (!*slot)
22750 {
22751 *slot = XNEW (struct symtab_index_entry);
22752 (*slot)->name = name;
22753 /* index_offset is set later. */
22754 (*slot)->cu_indices = NULL;
22755 }
22756
22757 cu_index_and_attrs = 0;
22758 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22759 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22760 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22761
22762 /* We don't want to record an index value twice as we want to avoid the
22763 duplication.
22764 We process all global symbols and then all static symbols
22765 (which would allow us to avoid the duplication by only having to check
22766 the last entry pushed), but a symbol could have multiple kinds in one CU.
22767 To keep things simple we don't worry about the duplication here and
22768 sort and uniqufy the list after we've processed all symbols. */
22769 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22770 }
22771
22772 /* qsort helper routine for uniquify_cu_indices. */
22773
22774 static int
22775 offset_type_compare (const void *ap, const void *bp)
22776 {
22777 offset_type a = *(offset_type *) ap;
22778 offset_type b = *(offset_type *) bp;
22779
22780 return (a > b) - (b > a);
22781 }
22782
22783 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22784
22785 static void
22786 uniquify_cu_indices (struct mapped_symtab *symtab)
22787 {
22788 int i;
22789
22790 for (i = 0; i < symtab->size; ++i)
22791 {
22792 struct symtab_index_entry *entry = symtab->data[i];
22793
22794 if (entry
22795 && entry->cu_indices != NULL)
22796 {
22797 unsigned int next_to_insert, next_to_check;
22798 offset_type last_value;
22799
22800 qsort (VEC_address (offset_type, entry->cu_indices),
22801 VEC_length (offset_type, entry->cu_indices),
22802 sizeof (offset_type), offset_type_compare);
22803
22804 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22805 next_to_insert = 1;
22806 for (next_to_check = 1;
22807 next_to_check < VEC_length (offset_type, entry->cu_indices);
22808 ++next_to_check)
22809 {
22810 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22811 != last_value)
22812 {
22813 last_value = VEC_index (offset_type, entry->cu_indices,
22814 next_to_check);
22815 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22816 last_value);
22817 ++next_to_insert;
22818 }
22819 }
22820 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22821 }
22822 }
22823 }
22824
22825 /* Add a vector of indices to the constant pool. */
22826
22827 static offset_type
22828 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22829 struct symtab_index_entry *entry)
22830 {
22831 void **slot;
22832
22833 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22834 if (!*slot)
22835 {
22836 offset_type len = VEC_length (offset_type, entry->cu_indices);
22837 offset_type val = MAYBE_SWAP (len);
22838 offset_type iter;
22839 int i;
22840
22841 *slot = entry;
22842 entry->index_offset = obstack_object_size (cpool);
22843
22844 obstack_grow (cpool, &val, sizeof (val));
22845 for (i = 0;
22846 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22847 ++i)
22848 {
22849 val = MAYBE_SWAP (iter);
22850 obstack_grow (cpool, &val, sizeof (val));
22851 }
22852 }
22853 else
22854 {
22855 struct symtab_index_entry *old_entry = *slot;
22856 entry->index_offset = old_entry->index_offset;
22857 entry = old_entry;
22858 }
22859 return entry->index_offset;
22860 }
22861
22862 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22863 constant pool entries going into the obstack CPOOL. */
22864
22865 static void
22866 write_hash_table (struct mapped_symtab *symtab,
22867 struct obstack *output, struct obstack *cpool)
22868 {
22869 offset_type i;
22870 htab_t symbol_hash_table;
22871 htab_t str_table;
22872
22873 symbol_hash_table = create_symbol_hash_table ();
22874 str_table = create_strtab ();
22875
22876 /* We add all the index vectors to the constant pool first, to
22877 ensure alignment is ok. */
22878 for (i = 0; i < symtab->size; ++i)
22879 {
22880 if (symtab->data[i])
22881 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22882 }
22883
22884 /* Now write out the hash table. */
22885 for (i = 0; i < symtab->size; ++i)
22886 {
22887 offset_type str_off, vec_off;
22888
22889 if (symtab->data[i])
22890 {
22891 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22892 vec_off = symtab->data[i]->index_offset;
22893 }
22894 else
22895 {
22896 /* While 0 is a valid constant pool index, it is not valid
22897 to have 0 for both offsets. */
22898 str_off = 0;
22899 vec_off = 0;
22900 }
22901
22902 str_off = MAYBE_SWAP (str_off);
22903 vec_off = MAYBE_SWAP (vec_off);
22904
22905 obstack_grow (output, &str_off, sizeof (str_off));
22906 obstack_grow (output, &vec_off, sizeof (vec_off));
22907 }
22908
22909 htab_delete (str_table);
22910 htab_delete (symbol_hash_table);
22911 }
22912
22913 /* Struct to map psymtab to CU index in the index file. */
22914 struct psymtab_cu_index_map
22915 {
22916 struct partial_symtab *psymtab;
22917 unsigned int cu_index;
22918 };
22919
22920 static hashval_t
22921 hash_psymtab_cu_index (const void *item)
22922 {
22923 const struct psymtab_cu_index_map *map = item;
22924
22925 return htab_hash_pointer (map->psymtab);
22926 }
22927
22928 static int
22929 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22930 {
22931 const struct psymtab_cu_index_map *lhs = item_lhs;
22932 const struct psymtab_cu_index_map *rhs = item_rhs;
22933
22934 return lhs->psymtab == rhs->psymtab;
22935 }
22936
22937 /* Helper struct for building the address table. */
22938 struct addrmap_index_data
22939 {
22940 struct objfile *objfile;
22941 struct obstack *addr_obstack;
22942 htab_t cu_index_htab;
22943
22944 /* Non-zero if the previous_* fields are valid.
22945 We can't write an entry until we see the next entry (since it is only then
22946 that we know the end of the entry). */
22947 int previous_valid;
22948 /* Index of the CU in the table of all CUs in the index file. */
22949 unsigned int previous_cu_index;
22950 /* Start address of the CU. */
22951 CORE_ADDR previous_cu_start;
22952 };
22953
22954 /* Write an address entry to OBSTACK. */
22955
22956 static void
22957 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22958 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22959 {
22960 offset_type cu_index_to_write;
22961 gdb_byte addr[8];
22962 CORE_ADDR baseaddr;
22963
22964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22965
22966 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22967 obstack_grow (obstack, addr, 8);
22968 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22969 obstack_grow (obstack, addr, 8);
22970 cu_index_to_write = MAYBE_SWAP (cu_index);
22971 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22972 }
22973
22974 /* Worker function for traversing an addrmap to build the address table. */
22975
22976 static int
22977 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22978 {
22979 struct addrmap_index_data *data = datap;
22980 struct partial_symtab *pst = obj;
22981
22982 if (data->previous_valid)
22983 add_address_entry (data->objfile, data->addr_obstack,
22984 data->previous_cu_start, start_addr,
22985 data->previous_cu_index);
22986
22987 data->previous_cu_start = start_addr;
22988 if (pst != NULL)
22989 {
22990 struct psymtab_cu_index_map find_map, *map;
22991 find_map.psymtab = pst;
22992 map = htab_find (data->cu_index_htab, &find_map);
22993 gdb_assert (map != NULL);
22994 data->previous_cu_index = map->cu_index;
22995 data->previous_valid = 1;
22996 }
22997 else
22998 data->previous_valid = 0;
22999
23000 return 0;
23001 }
23002
23003 /* Write OBJFILE's address map to OBSTACK.
23004 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23005 in the index file. */
23006
23007 static void
23008 write_address_map (struct objfile *objfile, struct obstack *obstack,
23009 htab_t cu_index_htab)
23010 {
23011 struct addrmap_index_data addrmap_index_data;
23012
23013 /* When writing the address table, we have to cope with the fact that
23014 the addrmap iterator only provides the start of a region; we have to
23015 wait until the next invocation to get the start of the next region. */
23016
23017 addrmap_index_data.objfile = objfile;
23018 addrmap_index_data.addr_obstack = obstack;
23019 addrmap_index_data.cu_index_htab = cu_index_htab;
23020 addrmap_index_data.previous_valid = 0;
23021
23022 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23023 &addrmap_index_data);
23024
23025 /* It's highly unlikely the last entry (end address = 0xff...ff)
23026 is valid, but we should still handle it.
23027 The end address is recorded as the start of the next region, but that
23028 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23029 anyway. */
23030 if (addrmap_index_data.previous_valid)
23031 add_address_entry (objfile, obstack,
23032 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23033 addrmap_index_data.previous_cu_index);
23034 }
23035
23036 /* Return the symbol kind of PSYM. */
23037
23038 static gdb_index_symbol_kind
23039 symbol_kind (struct partial_symbol *psym)
23040 {
23041 domain_enum domain = PSYMBOL_DOMAIN (psym);
23042 enum address_class aclass = PSYMBOL_CLASS (psym);
23043
23044 switch (domain)
23045 {
23046 case VAR_DOMAIN:
23047 switch (aclass)
23048 {
23049 case LOC_BLOCK:
23050 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23051 case LOC_TYPEDEF:
23052 return GDB_INDEX_SYMBOL_KIND_TYPE;
23053 case LOC_COMPUTED:
23054 case LOC_CONST_BYTES:
23055 case LOC_OPTIMIZED_OUT:
23056 case LOC_STATIC:
23057 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23058 case LOC_CONST:
23059 /* Note: It's currently impossible to recognize psyms as enum values
23060 short of reading the type info. For now punt. */
23061 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23062 default:
23063 /* There are other LOC_FOO values that one might want to classify
23064 as variables, but dwarf2read.c doesn't currently use them. */
23065 return GDB_INDEX_SYMBOL_KIND_OTHER;
23066 }
23067 case STRUCT_DOMAIN:
23068 return GDB_INDEX_SYMBOL_KIND_TYPE;
23069 default:
23070 return GDB_INDEX_SYMBOL_KIND_OTHER;
23071 }
23072 }
23073
23074 /* Add a list of partial symbols to SYMTAB. */
23075
23076 static void
23077 write_psymbols (struct mapped_symtab *symtab,
23078 htab_t psyms_seen,
23079 struct partial_symbol **psymp,
23080 int count,
23081 offset_type cu_index,
23082 int is_static)
23083 {
23084 for (; count-- > 0; ++psymp)
23085 {
23086 struct partial_symbol *psym = *psymp;
23087 void **slot;
23088
23089 if (SYMBOL_LANGUAGE (psym) == language_ada)
23090 error (_("Ada is not currently supported by the index"));
23091
23092 /* Only add a given psymbol once. */
23093 slot = htab_find_slot (psyms_seen, psym, INSERT);
23094 if (!*slot)
23095 {
23096 gdb_index_symbol_kind kind = symbol_kind (psym);
23097
23098 *slot = psym;
23099 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23100 is_static, kind, cu_index);
23101 }
23102 }
23103 }
23104
23105 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23106 exception if there is an error. */
23107
23108 static void
23109 write_obstack (FILE *file, struct obstack *obstack)
23110 {
23111 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23112 file)
23113 != obstack_object_size (obstack))
23114 error (_("couldn't data write to file"));
23115 }
23116
23117 /* Unlink a file if the argument is not NULL. */
23118
23119 static void
23120 unlink_if_set (void *p)
23121 {
23122 char **filename = p;
23123 if (*filename)
23124 unlink (*filename);
23125 }
23126
23127 /* A helper struct used when iterating over debug_types. */
23128 struct signatured_type_index_data
23129 {
23130 struct objfile *objfile;
23131 struct mapped_symtab *symtab;
23132 struct obstack *types_list;
23133 htab_t psyms_seen;
23134 int cu_index;
23135 };
23136
23137 /* A helper function that writes a single signatured_type to an
23138 obstack. */
23139
23140 static int
23141 write_one_signatured_type (void **slot, void *d)
23142 {
23143 struct signatured_type_index_data *info = d;
23144 struct signatured_type *entry = (struct signatured_type *) *slot;
23145 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23146 gdb_byte val[8];
23147
23148 write_psymbols (info->symtab,
23149 info->psyms_seen,
23150 info->objfile->global_psymbols.list
23151 + psymtab->globals_offset,
23152 psymtab->n_global_syms, info->cu_index,
23153 0);
23154 write_psymbols (info->symtab,
23155 info->psyms_seen,
23156 info->objfile->static_psymbols.list
23157 + psymtab->statics_offset,
23158 psymtab->n_static_syms, info->cu_index,
23159 1);
23160
23161 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23162 entry->per_cu.offset.sect_off);
23163 obstack_grow (info->types_list, val, 8);
23164 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23165 entry->type_offset_in_tu.cu_off);
23166 obstack_grow (info->types_list, val, 8);
23167 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23168 obstack_grow (info->types_list, val, 8);
23169
23170 ++info->cu_index;
23171
23172 return 1;
23173 }
23174
23175 /* Recurse into all "included" dependencies and write their symbols as
23176 if they appeared in this psymtab. */
23177
23178 static void
23179 recursively_write_psymbols (struct objfile *objfile,
23180 struct partial_symtab *psymtab,
23181 struct mapped_symtab *symtab,
23182 htab_t psyms_seen,
23183 offset_type cu_index)
23184 {
23185 int i;
23186
23187 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23188 if (psymtab->dependencies[i]->user != NULL)
23189 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23190 symtab, psyms_seen, cu_index);
23191
23192 write_psymbols (symtab,
23193 psyms_seen,
23194 objfile->global_psymbols.list + psymtab->globals_offset,
23195 psymtab->n_global_syms, cu_index,
23196 0);
23197 write_psymbols (symtab,
23198 psyms_seen,
23199 objfile->static_psymbols.list + psymtab->statics_offset,
23200 psymtab->n_static_syms, cu_index,
23201 1);
23202 }
23203
23204 /* Create an index file for OBJFILE in the directory DIR. */
23205
23206 static void
23207 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23208 {
23209 struct cleanup *cleanup;
23210 char *filename, *cleanup_filename;
23211 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23212 struct obstack cu_list, types_cu_list;
23213 int i;
23214 FILE *out_file;
23215 struct mapped_symtab *symtab;
23216 offset_type val, size_of_contents, total_len;
23217 struct stat st;
23218 htab_t psyms_seen;
23219 htab_t cu_index_htab;
23220 struct psymtab_cu_index_map *psymtab_cu_index_map;
23221
23222 if (dwarf2_per_objfile->using_index)
23223 error (_("Cannot use an index to create the index"));
23224
23225 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23226 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23227
23228 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23229 return;
23230
23231 if (stat (objfile_name (objfile), &st) < 0)
23232 perror_with_name (objfile_name (objfile));
23233
23234 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23235 INDEX_SUFFIX, (char *) NULL);
23236 cleanup = make_cleanup (xfree, filename);
23237
23238 out_file = gdb_fopen_cloexec (filename, "wb");
23239 if (!out_file)
23240 error (_("Can't open `%s' for writing"), filename);
23241
23242 cleanup_filename = filename;
23243 make_cleanup (unlink_if_set, &cleanup_filename);
23244
23245 symtab = create_mapped_symtab ();
23246 make_cleanup (cleanup_mapped_symtab, symtab);
23247
23248 obstack_init (&addr_obstack);
23249 make_cleanup_obstack_free (&addr_obstack);
23250
23251 obstack_init (&cu_list);
23252 make_cleanup_obstack_free (&cu_list);
23253
23254 obstack_init (&types_cu_list);
23255 make_cleanup_obstack_free (&types_cu_list);
23256
23257 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23258 NULL, xcalloc, xfree);
23259 make_cleanup_htab_delete (psyms_seen);
23260
23261 /* While we're scanning CU's create a table that maps a psymtab pointer
23262 (which is what addrmap records) to its index (which is what is recorded
23263 in the index file). This will later be needed to write the address
23264 table. */
23265 cu_index_htab = htab_create_alloc (100,
23266 hash_psymtab_cu_index,
23267 eq_psymtab_cu_index,
23268 NULL, xcalloc, xfree);
23269 make_cleanup_htab_delete (cu_index_htab);
23270 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23271 dwarf2_per_objfile->n_comp_units);
23272 make_cleanup (xfree, psymtab_cu_index_map);
23273
23274 /* The CU list is already sorted, so we don't need to do additional
23275 work here. Also, the debug_types entries do not appear in
23276 all_comp_units, but only in their own hash table. */
23277 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23278 {
23279 struct dwarf2_per_cu_data *per_cu
23280 = dwarf2_per_objfile->all_comp_units[i];
23281 struct partial_symtab *psymtab = per_cu->v.psymtab;
23282 gdb_byte val[8];
23283 struct psymtab_cu_index_map *map;
23284 void **slot;
23285
23286 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23287 It may be referenced from a local scope but in such case it does not
23288 need to be present in .gdb_index. */
23289 if (psymtab == NULL)
23290 continue;
23291
23292 if (psymtab->user == NULL)
23293 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23294
23295 map = &psymtab_cu_index_map[i];
23296 map->psymtab = psymtab;
23297 map->cu_index = i;
23298 slot = htab_find_slot (cu_index_htab, map, INSERT);
23299 gdb_assert (slot != NULL);
23300 gdb_assert (*slot == NULL);
23301 *slot = map;
23302
23303 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23304 per_cu->offset.sect_off);
23305 obstack_grow (&cu_list, val, 8);
23306 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23307 obstack_grow (&cu_list, val, 8);
23308 }
23309
23310 /* Dump the address map. */
23311 write_address_map (objfile, &addr_obstack, cu_index_htab);
23312
23313 /* Write out the .debug_type entries, if any. */
23314 if (dwarf2_per_objfile->signatured_types)
23315 {
23316 struct signatured_type_index_data sig_data;
23317
23318 sig_data.objfile = objfile;
23319 sig_data.symtab = symtab;
23320 sig_data.types_list = &types_cu_list;
23321 sig_data.psyms_seen = psyms_seen;
23322 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23323 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23324 write_one_signatured_type, &sig_data);
23325 }
23326
23327 /* Now that we've processed all symbols we can shrink their cu_indices
23328 lists. */
23329 uniquify_cu_indices (symtab);
23330
23331 obstack_init (&constant_pool);
23332 make_cleanup_obstack_free (&constant_pool);
23333 obstack_init (&symtab_obstack);
23334 make_cleanup_obstack_free (&symtab_obstack);
23335 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23336
23337 obstack_init (&contents);
23338 make_cleanup_obstack_free (&contents);
23339 size_of_contents = 6 * sizeof (offset_type);
23340 total_len = size_of_contents;
23341
23342 /* The version number. */
23343 val = MAYBE_SWAP (8);
23344 obstack_grow (&contents, &val, sizeof (val));
23345
23346 /* The offset of the CU list from the start of the file. */
23347 val = MAYBE_SWAP (total_len);
23348 obstack_grow (&contents, &val, sizeof (val));
23349 total_len += obstack_object_size (&cu_list);
23350
23351 /* The offset of the types CU list from the start of the file. */
23352 val = MAYBE_SWAP (total_len);
23353 obstack_grow (&contents, &val, sizeof (val));
23354 total_len += obstack_object_size (&types_cu_list);
23355
23356 /* The offset of the address table from the start of the file. */
23357 val = MAYBE_SWAP (total_len);
23358 obstack_grow (&contents, &val, sizeof (val));
23359 total_len += obstack_object_size (&addr_obstack);
23360
23361 /* The offset of the symbol table from the start of the file. */
23362 val = MAYBE_SWAP (total_len);
23363 obstack_grow (&contents, &val, sizeof (val));
23364 total_len += obstack_object_size (&symtab_obstack);
23365
23366 /* The offset of the constant pool from the start of the file. */
23367 val = MAYBE_SWAP (total_len);
23368 obstack_grow (&contents, &val, sizeof (val));
23369 total_len += obstack_object_size (&constant_pool);
23370
23371 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23372
23373 write_obstack (out_file, &contents);
23374 write_obstack (out_file, &cu_list);
23375 write_obstack (out_file, &types_cu_list);
23376 write_obstack (out_file, &addr_obstack);
23377 write_obstack (out_file, &symtab_obstack);
23378 write_obstack (out_file, &constant_pool);
23379
23380 fclose (out_file);
23381
23382 /* We want to keep the file, so we set cleanup_filename to NULL
23383 here. See unlink_if_set. */
23384 cleanup_filename = NULL;
23385
23386 do_cleanups (cleanup);
23387 }
23388
23389 /* Implementation of the `save gdb-index' command.
23390
23391 Note that the file format used by this command is documented in the
23392 GDB manual. Any changes here must be documented there. */
23393
23394 static void
23395 save_gdb_index_command (char *arg, int from_tty)
23396 {
23397 struct objfile *objfile;
23398
23399 if (!arg || !*arg)
23400 error (_("usage: save gdb-index DIRECTORY"));
23401
23402 ALL_OBJFILES (objfile)
23403 {
23404 struct stat st;
23405
23406 /* If the objfile does not correspond to an actual file, skip it. */
23407 if (stat (objfile_name (objfile), &st) < 0)
23408 continue;
23409
23410 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23411 if (dwarf2_per_objfile)
23412 {
23413
23414 TRY
23415 {
23416 write_psymtabs_to_index (objfile, arg);
23417 }
23418 CATCH (except, RETURN_MASK_ERROR)
23419 {
23420 exception_fprintf (gdb_stderr, except,
23421 _("Error while writing index for `%s': "),
23422 objfile_name (objfile));
23423 }
23424 END_CATCH
23425 }
23426 }
23427 }
23428
23429 \f
23430
23431 int dwarf_always_disassemble;
23432
23433 static void
23434 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23435 struct cmd_list_element *c, const char *value)
23436 {
23437 fprintf_filtered (file,
23438 _("Whether to always disassemble "
23439 "DWARF expressions is %s.\n"),
23440 value);
23441 }
23442
23443 static void
23444 show_check_physname (struct ui_file *file, int from_tty,
23445 struct cmd_list_element *c, const char *value)
23446 {
23447 fprintf_filtered (file,
23448 _("Whether to check \"physname\" is %s.\n"),
23449 value);
23450 }
23451
23452 void _initialize_dwarf2_read (void);
23453
23454 void
23455 _initialize_dwarf2_read (void)
23456 {
23457 struct cmd_list_element *c;
23458
23459 dwarf2_objfile_data_key
23460 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23461
23462 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23463 Set DWARF specific variables.\n\
23464 Configure DWARF variables such as the cache size"),
23465 &set_dwarf_cmdlist, "maintenance set dwarf ",
23466 0/*allow-unknown*/, &maintenance_set_cmdlist);
23467
23468 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23469 Show DWARF specific variables\n\
23470 Show DWARF variables such as the cache size"),
23471 &show_dwarf_cmdlist, "maintenance show dwarf ",
23472 0/*allow-unknown*/, &maintenance_show_cmdlist);
23473
23474 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23475 &dwarf_max_cache_age, _("\
23476 Set the upper bound on the age of cached DWARF compilation units."), _("\
23477 Show the upper bound on the age of cached DWARF compilation units."), _("\
23478 A higher limit means that cached compilation units will be stored\n\
23479 in memory longer, and more total memory will be used. Zero disables\n\
23480 caching, which can slow down startup."),
23481 NULL,
23482 show_dwarf_max_cache_age,
23483 &set_dwarf_cmdlist,
23484 &show_dwarf_cmdlist);
23485
23486 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23487 &dwarf_always_disassemble, _("\
23488 Set whether `info address' always disassembles DWARF expressions."), _("\
23489 Show whether `info address' always disassembles DWARF expressions."), _("\
23490 When enabled, DWARF expressions are always printed in an assembly-like\n\
23491 syntax. When disabled, expressions will be printed in a more\n\
23492 conversational style, when possible."),
23493 NULL,
23494 show_dwarf_always_disassemble,
23495 &set_dwarf_cmdlist,
23496 &show_dwarf_cmdlist);
23497
23498 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23499 Set debugging of the DWARF reader."), _("\
23500 Show debugging of the DWARF reader."), _("\
23501 When enabled (non-zero), debugging messages are printed during DWARF\n\
23502 reading and symtab expansion. A value of 1 (one) provides basic\n\
23503 information. A value greater than 1 provides more verbose information."),
23504 NULL,
23505 NULL,
23506 &setdebuglist, &showdebuglist);
23507
23508 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23509 Set debugging of the DWARF DIE reader."), _("\
23510 Show debugging of the DWARF DIE reader."), _("\
23511 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23512 The value is the maximum depth to print."),
23513 NULL,
23514 NULL,
23515 &setdebuglist, &showdebuglist);
23516
23517 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23518 Set debugging of the dwarf line reader."), _("\
23519 Show debugging of the dwarf line reader."), _("\
23520 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23521 A value of 1 (one) provides basic information.\n\
23522 A value greater than 1 provides more verbose information."),
23523 NULL,
23524 NULL,
23525 &setdebuglist, &showdebuglist);
23526
23527 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23528 Set cross-checking of \"physname\" code against demangler."), _("\
23529 Show cross-checking of \"physname\" code against demangler."), _("\
23530 When enabled, GDB's internal \"physname\" code is checked against\n\
23531 the demangler."),
23532 NULL, show_check_physname,
23533 &setdebuglist, &showdebuglist);
23534
23535 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23536 no_class, &use_deprecated_index_sections, _("\
23537 Set whether to use deprecated gdb_index sections."), _("\
23538 Show whether to use deprecated gdb_index sections."), _("\
23539 When enabled, deprecated .gdb_index sections are used anyway.\n\
23540 Normally they are ignored either because of a missing feature or\n\
23541 performance issue.\n\
23542 Warning: This option must be enabled before gdb reads the file."),
23543 NULL,
23544 NULL,
23545 &setlist, &showlist);
23546
23547 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23548 _("\
23549 Save a gdb-index file.\n\
23550 Usage: save gdb-index DIRECTORY"),
23551 &save_cmdlist);
23552 set_cmd_completer (c, filename_completer);
23553
23554 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23555 &dwarf2_locexpr_funcs);
23556 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23557 &dwarf2_loclist_funcs);
23558
23559 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23560 &dwarf2_block_frame_base_locexpr_funcs);
23561 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23562 &dwarf2_block_frame_base_loclist_funcs);
23563 }