C++ify dwarf2_per_objfile
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
232
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241 private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248 public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
266
267 /* Back link. */
268 struct objfile *objfile = NULL;
269
270 /* Table of all the compilation units. This is used to locate
271 the target compilation unit of a particular reference. */
272 struct dwarf2_per_cu_data **all_comp_units = NULL;
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
275 int n_comp_units = 0;
276
277 /* The number of .debug_types-related CUs. */
278 int n_type_units = 0;
279
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
282 int n_allocated_type_units = 0;
283
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
286 struct signatured_type **all_type_units = NULL;
287
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
290 htab_t type_unit_groups {};
291
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
294 htab_t signatured_types {};
295
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
298 struct tu_stats tu_stats {};
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
302 dwarf2_per_cu_data *read_in_chain = NULL;
303
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
306 htab_t dwo_files {};
307
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
310
311 /* The DWP file if there is one, or NULL. */
312 struct dwp_file *dwp_file = NULL;
313
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
316 struct dwz_file *dwz_file = NULL;
317
318 /* A flag indicating whether this objfile has a section loaded at a
319 VMA of 0. */
320 bool has_section_at_zero = false;
321
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
324 bool using_index = false;
325
326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
327 mapped_index *index_table = NULL;
328
329 /* When using index_table, this keeps track of all quick_file_names entries.
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
336 htab_t quick_file_names_table {};
337
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
340 bool reading_partial_symbols = false;
341
342 /* Table mapping type DIEs to their struct type *.
343 This is NULL if not allocated yet.
344 The mapping is done via (CU/TU + DIE offset) -> type. */
345 htab_t die_type_hash {};
346
347 /* The CUs we recently read. */
348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
351 htab_t line_header_hash {};
352 };
353
354 static struct dwarf2_per_objfile *dwarf2_per_objfile;
355
356 /* Default names of the debugging sections. */
357
358 /* Note that if the debugging section has been compressed, it might
359 have a name like .zdebug_info. */
360
361 static const struct dwarf2_debug_sections dwarf2_elf_names =
362 {
363 { ".debug_info", ".zdebug_info" },
364 { ".debug_abbrev", ".zdebug_abbrev" },
365 { ".debug_line", ".zdebug_line" },
366 { ".debug_loc", ".zdebug_loc" },
367 { ".debug_loclists", ".zdebug_loclists" },
368 { ".debug_macinfo", ".zdebug_macinfo" },
369 { ".debug_macro", ".zdebug_macro" },
370 { ".debug_str", ".zdebug_str" },
371 { ".debug_line_str", ".zdebug_line_str" },
372 { ".debug_ranges", ".zdebug_ranges" },
373 { ".debug_rnglists", ".zdebug_rnglists" },
374 { ".debug_types", ".zdebug_types" },
375 { ".debug_addr", ".zdebug_addr" },
376 { ".debug_frame", ".zdebug_frame" },
377 { ".eh_frame", NULL },
378 { ".gdb_index", ".zgdb_index" },
379 23
380 };
381
382 /* List of DWO/DWP sections. */
383
384 static const struct dwop_section_names
385 {
386 struct dwarf2_section_names abbrev_dwo;
387 struct dwarf2_section_names info_dwo;
388 struct dwarf2_section_names line_dwo;
389 struct dwarf2_section_names loc_dwo;
390 struct dwarf2_section_names loclists_dwo;
391 struct dwarf2_section_names macinfo_dwo;
392 struct dwarf2_section_names macro_dwo;
393 struct dwarf2_section_names str_dwo;
394 struct dwarf2_section_names str_offsets_dwo;
395 struct dwarf2_section_names types_dwo;
396 struct dwarf2_section_names cu_index;
397 struct dwarf2_section_names tu_index;
398 }
399 dwop_section_names =
400 {
401 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
402 { ".debug_info.dwo", ".zdebug_info.dwo" },
403 { ".debug_line.dwo", ".zdebug_line.dwo" },
404 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
405 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
406 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
407 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
408 { ".debug_str.dwo", ".zdebug_str.dwo" },
409 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
410 { ".debug_types.dwo", ".zdebug_types.dwo" },
411 { ".debug_cu_index", ".zdebug_cu_index" },
412 { ".debug_tu_index", ".zdebug_tu_index" },
413 };
414
415 /* local data types */
416
417 /* The data in a compilation unit header, after target2host
418 translation, looks like this. */
419 struct comp_unit_head
420 {
421 unsigned int length;
422 short version;
423 unsigned char addr_size;
424 unsigned char signed_addr_p;
425 sect_offset abbrev_sect_off;
426
427 /* Size of file offsets; either 4 or 8. */
428 unsigned int offset_size;
429
430 /* Size of the length field; either 4 or 12. */
431 unsigned int initial_length_size;
432
433 enum dwarf_unit_type unit_type;
434
435 /* Offset to the first byte of this compilation unit header in the
436 .debug_info section, for resolving relative reference dies. */
437 sect_offset sect_off;
438
439 /* Offset to first die in this cu from the start of the cu.
440 This will be the first byte following the compilation unit header. */
441 cu_offset first_die_cu_offset;
442
443 /* 64-bit signature of this type unit - it is valid only for
444 UNIT_TYPE DW_UT_type. */
445 ULONGEST signature;
446
447 /* For types, offset in the type's DIE of the type defined by this TU. */
448 cu_offset type_cu_offset_in_tu;
449 };
450
451 /* Type used for delaying computation of method physnames.
452 See comments for compute_delayed_physnames. */
453 struct delayed_method_info
454 {
455 /* The type to which the method is attached, i.e., its parent class. */
456 struct type *type;
457
458 /* The index of the method in the type's function fieldlists. */
459 int fnfield_index;
460
461 /* The index of the method in the fieldlist. */
462 int index;
463
464 /* The name of the DIE. */
465 const char *name;
466
467 /* The DIE associated with this method. */
468 struct die_info *die;
469 };
470
471 typedef struct delayed_method_info delayed_method_info;
472 DEF_VEC_O (delayed_method_info);
473
474 /* Internal state when decoding a particular compilation unit. */
475 struct dwarf2_cu
476 {
477 /* The objfile containing this compilation unit. */
478 struct objfile *objfile;
479
480 /* The header of the compilation unit. */
481 struct comp_unit_head header;
482
483 /* Base address of this compilation unit. */
484 CORE_ADDR base_address;
485
486 /* Non-zero if base_address has been set. */
487 int base_known;
488
489 /* The language we are debugging. */
490 enum language language;
491 const struct language_defn *language_defn;
492
493 const char *producer;
494
495 /* The generic symbol table building routines have separate lists for
496 file scope symbols and all all other scopes (local scopes). So
497 we need to select the right one to pass to add_symbol_to_list().
498 We do it by keeping a pointer to the correct list in list_in_scope.
499
500 FIXME: The original dwarf code just treated the file scope as the
501 first local scope, and all other local scopes as nested local
502 scopes, and worked fine. Check to see if we really need to
503 distinguish these in buildsym.c. */
504 struct pending **list_in_scope;
505
506 /* The abbrev table for this CU.
507 Normally this points to the abbrev table in the objfile.
508 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
509 struct abbrev_table *abbrev_table;
510
511 /* Hash table holding all the loaded partial DIEs
512 with partial_die->offset.SECT_OFF as hash. */
513 htab_t partial_dies;
514
515 /* Storage for things with the same lifetime as this read-in compilation
516 unit, including partial DIEs. */
517 struct obstack comp_unit_obstack;
518
519 /* When multiple dwarf2_cu structures are living in memory, this field
520 chains them all together, so that they can be released efficiently.
521 We will probably also want a generation counter so that most-recently-used
522 compilation units are cached... */
523 struct dwarf2_per_cu_data *read_in_chain;
524
525 /* Backlink to our per_cu entry. */
526 struct dwarf2_per_cu_data *per_cu;
527
528 /* How many compilation units ago was this CU last referenced? */
529 int last_used;
530
531 /* A hash table of DIE cu_offset for following references with
532 die_info->offset.sect_off as hash. */
533 htab_t die_hash;
534
535 /* Full DIEs if read in. */
536 struct die_info *dies;
537
538 /* A set of pointers to dwarf2_per_cu_data objects for compilation
539 units referenced by this one. Only set during full symbol processing;
540 partial symbol tables do not have dependencies. */
541 htab_t dependencies;
542
543 /* Header data from the line table, during full symbol processing. */
544 struct line_header *line_header;
545
546 /* A list of methods which need to have physnames computed
547 after all type information has been read. */
548 VEC (delayed_method_info) *method_list;
549
550 /* To be copied to symtab->call_site_htab. */
551 htab_t call_site_htab;
552
553 /* Non-NULL if this CU came from a DWO file.
554 There is an invariant here that is important to remember:
555 Except for attributes copied from the top level DIE in the "main"
556 (or "stub") file in preparation for reading the DWO file
557 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
558 Either there isn't a DWO file (in which case this is NULL and the point
559 is moot), or there is and either we're not going to read it (in which
560 case this is NULL) or there is and we are reading it (in which case this
561 is non-NULL). */
562 struct dwo_unit *dwo_unit;
563
564 /* The DW_AT_addr_base attribute if present, zero otherwise
565 (zero is a valid value though).
566 Note this value comes from the Fission stub CU/TU's DIE. */
567 ULONGEST addr_base;
568
569 /* The DW_AT_ranges_base attribute if present, zero otherwise
570 (zero is a valid value though).
571 Note this value comes from the Fission stub CU/TU's DIE.
572 Also note that the value is zero in the non-DWO case so this value can
573 be used without needing to know whether DWO files are in use or not.
574 N.B. This does not apply to DW_AT_ranges appearing in
575 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
576 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
577 DW_AT_ranges_base *would* have to be applied, and we'd have to care
578 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
579 ULONGEST ranges_base;
580
581 /* Mark used when releasing cached dies. */
582 unsigned int mark : 1;
583
584 /* This CU references .debug_loc. See the symtab->locations_valid field.
585 This test is imperfect as there may exist optimized debug code not using
586 any location list and still facing inlining issues if handled as
587 unoptimized code. For a future better test see GCC PR other/32998. */
588 unsigned int has_loclist : 1;
589
590 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
591 if all the producer_is_* fields are valid. This information is cached
592 because profiling CU expansion showed excessive time spent in
593 producer_is_gxx_lt_4_6. */
594 unsigned int checked_producer : 1;
595 unsigned int producer_is_gxx_lt_4_6 : 1;
596 unsigned int producer_is_gcc_lt_4_3 : 1;
597 unsigned int producer_is_icc : 1;
598
599 /* When set, the file that we're processing is known to have
600 debugging info for C++ namespaces. GCC 3.3.x did not produce
601 this information, but later versions do. */
602
603 unsigned int processing_has_namespace_info : 1;
604 };
605
606 /* Persistent data held for a compilation unit, even when not
607 processing it. We put a pointer to this structure in the
608 read_symtab_private field of the psymtab. */
609
610 struct dwarf2_per_cu_data
611 {
612 /* The start offset and length of this compilation unit.
613 NOTE: Unlike comp_unit_head.length, this length includes
614 initial_length_size.
615 If the DIE refers to a DWO file, this is always of the original die,
616 not the DWO file. */
617 sect_offset sect_off;
618 unsigned int length;
619
620 /* DWARF standard version this data has been read from (such as 4 or 5). */
621 short dwarf_version;
622
623 /* Flag indicating this compilation unit will be read in before
624 any of the current compilation units are processed. */
625 unsigned int queued : 1;
626
627 /* This flag will be set when reading partial DIEs if we need to load
628 absolutely all DIEs for this compilation unit, instead of just the ones
629 we think are interesting. It gets set if we look for a DIE in the
630 hash table and don't find it. */
631 unsigned int load_all_dies : 1;
632
633 /* Non-zero if this CU is from .debug_types.
634 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
635 this is non-zero. */
636 unsigned int is_debug_types : 1;
637
638 /* Non-zero if this CU is from the .dwz file. */
639 unsigned int is_dwz : 1;
640
641 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
642 This flag is only valid if is_debug_types is true.
643 We can't read a CU directly from a DWO file: There are required
644 attributes in the stub. */
645 unsigned int reading_dwo_directly : 1;
646
647 /* Non-zero if the TU has been read.
648 This is used to assist the "Stay in DWO Optimization" for Fission:
649 When reading a DWO, it's faster to read TUs from the DWO instead of
650 fetching them from random other DWOs (due to comdat folding).
651 If the TU has already been read, the optimization is unnecessary
652 (and unwise - we don't want to change where gdb thinks the TU lives
653 "midflight").
654 This flag is only valid if is_debug_types is true. */
655 unsigned int tu_read : 1;
656
657 /* The section this CU/TU lives in.
658 If the DIE refers to a DWO file, this is always the original die,
659 not the DWO file. */
660 struct dwarf2_section_info *section;
661
662 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
663 of the CU cache it gets reset to NULL again. This is left as NULL for
664 dummy CUs (a CU header, but nothing else). */
665 struct dwarf2_cu *cu;
666
667 /* The corresponding objfile.
668 Normally we can get the objfile from dwarf2_per_objfile.
669 However we can enter this file with just a "per_cu" handle. */
670 struct objfile *objfile;
671
672 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
673 is active. Otherwise, the 'psymtab' field is active. */
674 union
675 {
676 /* The partial symbol table associated with this compilation unit,
677 or NULL for unread partial units. */
678 struct partial_symtab *psymtab;
679
680 /* Data needed by the "quick" functions. */
681 struct dwarf2_per_cu_quick_data *quick;
682 } v;
683
684 /* The CUs we import using DW_TAG_imported_unit. This is filled in
685 while reading psymtabs, used to compute the psymtab dependencies,
686 and then cleared. Then it is filled in again while reading full
687 symbols, and only deleted when the objfile is destroyed.
688
689 This is also used to work around a difference between the way gold
690 generates .gdb_index version <=7 and the way gdb does. Arguably this
691 is a gold bug. For symbols coming from TUs, gold records in the index
692 the CU that includes the TU instead of the TU itself. This breaks
693 dw2_lookup_symbol: It assumes that if the index says symbol X lives
694 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
695 will find X. Alas TUs live in their own symtab, so after expanding CU Y
696 we need to look in TU Z to find X. Fortunately, this is akin to
697 DW_TAG_imported_unit, so we just use the same mechanism: For
698 .gdb_index version <=7 this also records the TUs that the CU referred
699 to. Concurrently with this change gdb was modified to emit version 8
700 indices so we only pay a price for gold generated indices.
701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
702 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
703 };
704
705 /* Entry in the signatured_types hash table. */
706
707 struct signatured_type
708 {
709 /* The "per_cu" object of this type.
710 This struct is used iff per_cu.is_debug_types.
711 N.B.: This is the first member so that it's easy to convert pointers
712 between them. */
713 struct dwarf2_per_cu_data per_cu;
714
715 /* The type's signature. */
716 ULONGEST signature;
717
718 /* Offset in the TU of the type's DIE, as read from the TU header.
719 If this TU is a DWO stub and the definition lives in a DWO file
720 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
721 cu_offset type_offset_in_tu;
722
723 /* Offset in the section of the type's DIE.
724 If the definition lives in a DWO file, this is the offset in the
725 .debug_types.dwo section.
726 The value is zero until the actual value is known.
727 Zero is otherwise not a valid section offset. */
728 sect_offset type_offset_in_section;
729
730 /* Type units are grouped by their DW_AT_stmt_list entry so that they
731 can share them. This points to the containing symtab. */
732 struct type_unit_group *type_unit_group;
733
734 /* The type.
735 The first time we encounter this type we fully read it in and install it
736 in the symbol tables. Subsequent times we only need the type. */
737 struct type *type;
738
739 /* Containing DWO unit.
740 This field is valid iff per_cu.reading_dwo_directly. */
741 struct dwo_unit *dwo_unit;
742 };
743
744 typedef struct signatured_type *sig_type_ptr;
745 DEF_VEC_P (sig_type_ptr);
746
747 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
748 This includes type_unit_group and quick_file_names. */
749
750 struct stmt_list_hash
751 {
752 /* The DWO unit this table is from or NULL if there is none. */
753 struct dwo_unit *dwo_unit;
754
755 /* Offset in .debug_line or .debug_line.dwo. */
756 sect_offset line_sect_off;
757 };
758
759 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
760 an object of this type. */
761
762 struct type_unit_group
763 {
764 /* dwarf2read.c's main "handle" on a TU symtab.
765 To simplify things we create an artificial CU that "includes" all the
766 type units using this stmt_list so that the rest of the code still has
767 a "per_cu" handle on the symtab.
768 This PER_CU is recognized by having no section. */
769 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
770 struct dwarf2_per_cu_data per_cu;
771
772 /* The TUs that share this DW_AT_stmt_list entry.
773 This is added to while parsing type units to build partial symtabs,
774 and is deleted afterwards and not used again. */
775 VEC (sig_type_ptr) *tus;
776
777 /* The compunit symtab.
778 Type units in a group needn't all be defined in the same source file,
779 so we create an essentially anonymous symtab as the compunit symtab. */
780 struct compunit_symtab *compunit_symtab;
781
782 /* The data used to construct the hash key. */
783 struct stmt_list_hash hash;
784
785 /* The number of symtabs from the line header.
786 The value here must match line_header.num_file_names. */
787 unsigned int num_symtabs;
788
789 /* The symbol tables for this TU (obtained from the files listed in
790 DW_AT_stmt_list).
791 WARNING: The order of entries here must match the order of entries
792 in the line header. After the first TU using this type_unit_group, the
793 line header for the subsequent TUs is recreated from this. This is done
794 because we need to use the same symtabs for each TU using the same
795 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
796 there's no guarantee the line header doesn't have duplicate entries. */
797 struct symtab **symtabs;
798 };
799
800 /* These sections are what may appear in a (real or virtual) DWO file. */
801
802 struct dwo_sections
803 {
804 struct dwarf2_section_info abbrev;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info loc;
807 struct dwarf2_section_info loclists;
808 struct dwarf2_section_info macinfo;
809 struct dwarf2_section_info macro;
810 struct dwarf2_section_info str;
811 struct dwarf2_section_info str_offsets;
812 /* In the case of a virtual DWO file, these two are unused. */
813 struct dwarf2_section_info info;
814 VEC (dwarf2_section_info_def) *types;
815 };
816
817 /* CUs/TUs in DWP/DWO files. */
818
819 struct dwo_unit
820 {
821 /* Backlink to the containing struct dwo_file. */
822 struct dwo_file *dwo_file;
823
824 /* The "id" that distinguishes this CU/TU.
825 .debug_info calls this "dwo_id", .debug_types calls this "signature".
826 Since signatures came first, we stick with it for consistency. */
827 ULONGEST signature;
828
829 /* The section this CU/TU lives in, in the DWO file. */
830 struct dwarf2_section_info *section;
831
832 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
833 sect_offset sect_off;
834 unsigned int length;
835
836 /* For types, offset in the type's DIE of the type defined by this TU. */
837 cu_offset type_offset_in_tu;
838 };
839
840 /* include/dwarf2.h defines the DWP section codes.
841 It defines a max value but it doesn't define a min value, which we
842 use for error checking, so provide one. */
843
844 enum dwp_v2_section_ids
845 {
846 DW_SECT_MIN = 1
847 };
848
849 /* Data for one DWO file.
850
851 This includes virtual DWO files (a virtual DWO file is a DWO file as it
852 appears in a DWP file). DWP files don't really have DWO files per se -
853 comdat folding of types "loses" the DWO file they came from, and from
854 a high level view DWP files appear to contain a mass of random types.
855 However, to maintain consistency with the non-DWP case we pretend DWP
856 files contain virtual DWO files, and we assign each TU with one virtual
857 DWO file (generally based on the line and abbrev section offsets -
858 a heuristic that seems to work in practice). */
859
860 struct dwo_file
861 {
862 /* The DW_AT_GNU_dwo_name attribute.
863 For virtual DWO files the name is constructed from the section offsets
864 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
865 from related CU+TUs. */
866 const char *dwo_name;
867
868 /* The DW_AT_comp_dir attribute. */
869 const char *comp_dir;
870
871 /* The bfd, when the file is open. Otherwise this is NULL.
872 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
873 bfd *dbfd;
874
875 /* The sections that make up this DWO file.
876 Remember that for virtual DWO files in DWP V2, these are virtual
877 sections (for lack of a better name). */
878 struct dwo_sections sections;
879
880 /* The CUs in the file.
881 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
882 an extension to handle LLVM's Link Time Optimization output (where
883 multiple source files may be compiled into a single object/dwo pair). */
884 htab_t cus;
885
886 /* Table of TUs in the file.
887 Each element is a struct dwo_unit. */
888 htab_t tus;
889 };
890
891 /* These sections are what may appear in a DWP file. */
892
893 struct dwp_sections
894 {
895 /* These are used by both DWP version 1 and 2. */
896 struct dwarf2_section_info str;
897 struct dwarf2_section_info cu_index;
898 struct dwarf2_section_info tu_index;
899
900 /* These are only used by DWP version 2 files.
901 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
902 sections are referenced by section number, and are not recorded here.
903 In DWP version 2 there is at most one copy of all these sections, each
904 section being (effectively) comprised of the concatenation of all of the
905 individual sections that exist in the version 1 format.
906 To keep the code simple we treat each of these concatenated pieces as a
907 section itself (a virtual section?). */
908 struct dwarf2_section_info abbrev;
909 struct dwarf2_section_info info;
910 struct dwarf2_section_info line;
911 struct dwarf2_section_info loc;
912 struct dwarf2_section_info macinfo;
913 struct dwarf2_section_info macro;
914 struct dwarf2_section_info str_offsets;
915 struct dwarf2_section_info types;
916 };
917
918 /* These sections are what may appear in a virtual DWO file in DWP version 1.
919 A virtual DWO file is a DWO file as it appears in a DWP file. */
920
921 struct virtual_v1_dwo_sections
922 {
923 struct dwarf2_section_info abbrev;
924 struct dwarf2_section_info line;
925 struct dwarf2_section_info loc;
926 struct dwarf2_section_info macinfo;
927 struct dwarf2_section_info macro;
928 struct dwarf2_section_info str_offsets;
929 /* Each DWP hash table entry records one CU or one TU.
930 That is recorded here, and copied to dwo_unit.section. */
931 struct dwarf2_section_info info_or_types;
932 };
933
934 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
935 In version 2, the sections of the DWO files are concatenated together
936 and stored in one section of that name. Thus each ELF section contains
937 several "virtual" sections. */
938
939 struct virtual_v2_dwo_sections
940 {
941 bfd_size_type abbrev_offset;
942 bfd_size_type abbrev_size;
943
944 bfd_size_type line_offset;
945 bfd_size_type line_size;
946
947 bfd_size_type loc_offset;
948 bfd_size_type loc_size;
949
950 bfd_size_type macinfo_offset;
951 bfd_size_type macinfo_size;
952
953 bfd_size_type macro_offset;
954 bfd_size_type macro_size;
955
956 bfd_size_type str_offsets_offset;
957 bfd_size_type str_offsets_size;
958
959 /* Each DWP hash table entry records one CU or one TU.
960 That is recorded here, and copied to dwo_unit.section. */
961 bfd_size_type info_or_types_offset;
962 bfd_size_type info_or_types_size;
963 };
964
965 /* Contents of DWP hash tables. */
966
967 struct dwp_hash_table
968 {
969 uint32_t version, nr_columns;
970 uint32_t nr_units, nr_slots;
971 const gdb_byte *hash_table, *unit_table;
972 union
973 {
974 struct
975 {
976 const gdb_byte *indices;
977 } v1;
978 struct
979 {
980 /* This is indexed by column number and gives the id of the section
981 in that column. */
982 #define MAX_NR_V2_DWO_SECTIONS \
983 (1 /* .debug_info or .debug_types */ \
984 + 1 /* .debug_abbrev */ \
985 + 1 /* .debug_line */ \
986 + 1 /* .debug_loc */ \
987 + 1 /* .debug_str_offsets */ \
988 + 1 /* .debug_macro or .debug_macinfo */)
989 int section_ids[MAX_NR_V2_DWO_SECTIONS];
990 const gdb_byte *offsets;
991 const gdb_byte *sizes;
992 } v2;
993 } section_pool;
994 };
995
996 /* Data for one DWP file. */
997
998 struct dwp_file
999 {
1000 /* Name of the file. */
1001 const char *name;
1002
1003 /* File format version. */
1004 int version;
1005
1006 /* The bfd. */
1007 bfd *dbfd;
1008
1009 /* Section info for this file. */
1010 struct dwp_sections sections;
1011
1012 /* Table of CUs in the file. */
1013 const struct dwp_hash_table *cus;
1014
1015 /* Table of TUs in the file. */
1016 const struct dwp_hash_table *tus;
1017
1018 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1019 htab_t loaded_cus;
1020 htab_t loaded_tus;
1021
1022 /* Table to map ELF section numbers to their sections.
1023 This is only needed for the DWP V1 file format. */
1024 unsigned int num_sections;
1025 asection **elf_sections;
1026 };
1027
1028 /* This represents a '.dwz' file. */
1029
1030 struct dwz_file
1031 {
1032 /* A dwz file can only contain a few sections. */
1033 struct dwarf2_section_info abbrev;
1034 struct dwarf2_section_info info;
1035 struct dwarf2_section_info str;
1036 struct dwarf2_section_info line;
1037 struct dwarf2_section_info macro;
1038 struct dwarf2_section_info gdb_index;
1039
1040 /* The dwz's BFD. */
1041 bfd *dwz_bfd;
1042 };
1043
1044 /* Struct used to pass misc. parameters to read_die_and_children, et
1045 al. which are used for both .debug_info and .debug_types dies.
1046 All parameters here are unchanging for the life of the call. This
1047 struct exists to abstract away the constant parameters of die reading. */
1048
1049 struct die_reader_specs
1050 {
1051 /* The bfd of die_section. */
1052 bfd* abfd;
1053
1054 /* The CU of the DIE we are parsing. */
1055 struct dwarf2_cu *cu;
1056
1057 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1058 struct dwo_file *dwo_file;
1059
1060 /* The section the die comes from.
1061 This is either .debug_info or .debug_types, or the .dwo variants. */
1062 struct dwarf2_section_info *die_section;
1063
1064 /* die_section->buffer. */
1065 const gdb_byte *buffer;
1066
1067 /* The end of the buffer. */
1068 const gdb_byte *buffer_end;
1069
1070 /* The value of the DW_AT_comp_dir attribute. */
1071 const char *comp_dir;
1072 };
1073
1074 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1075 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1076 const gdb_byte *info_ptr,
1077 struct die_info *comp_unit_die,
1078 int has_children,
1079 void *data);
1080
1081 /* A 1-based directory index. This is a strong typedef to prevent
1082 accidentally using a directory index as a 0-based index into an
1083 array/vector. */
1084 enum class dir_index : unsigned int {};
1085
1086 /* Likewise, a 1-based file name index. */
1087 enum class file_name_index : unsigned int {};
1088
1089 struct file_entry
1090 {
1091 file_entry () = default;
1092
1093 file_entry (const char *name_, dir_index d_index_,
1094 unsigned int mod_time_, unsigned int length_)
1095 : name (name_),
1096 d_index (d_index_),
1097 mod_time (mod_time_),
1098 length (length_)
1099 {}
1100
1101 /* Return the include directory at D_INDEX stored in LH. Returns
1102 NULL if D_INDEX is out of bounds. */
1103 const char *include_dir (const line_header *lh) const;
1104
1105 /* The file name. Note this is an observing pointer. The memory is
1106 owned by debug_line_buffer. */
1107 const char *name {};
1108
1109 /* The directory index (1-based). */
1110 dir_index d_index {};
1111
1112 unsigned int mod_time {};
1113
1114 unsigned int length {};
1115
1116 /* True if referenced by the Line Number Program. */
1117 bool included_p {};
1118
1119 /* The associated symbol table, if any. */
1120 struct symtab *symtab {};
1121 };
1122
1123 /* The line number information for a compilation unit (found in the
1124 .debug_line section) begins with a "statement program header",
1125 which contains the following information. */
1126 struct line_header
1127 {
1128 line_header ()
1129 : offset_in_dwz {}
1130 {}
1131
1132 /* Add an entry to the include directory table. */
1133 void add_include_dir (const char *include_dir);
1134
1135 /* Add an entry to the file name table. */
1136 void add_file_name (const char *name, dir_index d_index,
1137 unsigned int mod_time, unsigned int length);
1138
1139 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1140 is out of bounds. */
1141 const char *include_dir_at (dir_index index) const
1142 {
1143 /* Convert directory index number (1-based) to vector index
1144 (0-based). */
1145 size_t vec_index = to_underlying (index) - 1;
1146
1147 if (vec_index >= include_dirs.size ())
1148 return NULL;
1149 return include_dirs[vec_index];
1150 }
1151
1152 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1153 is out of bounds. */
1154 file_entry *file_name_at (file_name_index index)
1155 {
1156 /* Convert file name index number (1-based) to vector index
1157 (0-based). */
1158 size_t vec_index = to_underlying (index) - 1;
1159
1160 if (vec_index >= file_names.size ())
1161 return NULL;
1162 return &file_names[vec_index];
1163 }
1164
1165 /* Const version of the above. */
1166 const file_entry *file_name_at (unsigned int index) const
1167 {
1168 if (index >= file_names.size ())
1169 return NULL;
1170 return &file_names[index];
1171 }
1172
1173 /* Offset of line number information in .debug_line section. */
1174 sect_offset sect_off {};
1175
1176 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1177 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1178
1179 unsigned int total_length {};
1180 unsigned short version {};
1181 unsigned int header_length {};
1182 unsigned char minimum_instruction_length {};
1183 unsigned char maximum_ops_per_instruction {};
1184 unsigned char default_is_stmt {};
1185 int line_base {};
1186 unsigned char line_range {};
1187 unsigned char opcode_base {};
1188
1189 /* standard_opcode_lengths[i] is the number of operands for the
1190 standard opcode whose value is i. This means that
1191 standard_opcode_lengths[0] is unused, and the last meaningful
1192 element is standard_opcode_lengths[opcode_base - 1]. */
1193 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1194
1195 /* The include_directories table. Note these are observing
1196 pointers. The memory is owned by debug_line_buffer. */
1197 std::vector<const char *> include_dirs;
1198
1199 /* The file_names table. */
1200 std::vector<file_entry> file_names;
1201
1202 /* The start and end of the statement program following this
1203 header. These point into dwarf2_per_objfile->line_buffer. */
1204 const gdb_byte *statement_program_start {}, *statement_program_end {};
1205 };
1206
1207 typedef std::unique_ptr<line_header> line_header_up;
1208
1209 const char *
1210 file_entry::include_dir (const line_header *lh) const
1211 {
1212 return lh->include_dir_at (d_index);
1213 }
1214
1215 /* When we construct a partial symbol table entry we only
1216 need this much information. */
1217 struct partial_die_info
1218 {
1219 /* Offset of this DIE. */
1220 sect_offset sect_off;
1221
1222 /* DWARF-2 tag for this DIE. */
1223 ENUM_BITFIELD(dwarf_tag) tag : 16;
1224
1225 /* Assorted flags describing the data found in this DIE. */
1226 unsigned int has_children : 1;
1227 unsigned int is_external : 1;
1228 unsigned int is_declaration : 1;
1229 unsigned int has_type : 1;
1230 unsigned int has_specification : 1;
1231 unsigned int has_pc_info : 1;
1232 unsigned int may_be_inlined : 1;
1233
1234 /* This DIE has been marked DW_AT_main_subprogram. */
1235 unsigned int main_subprogram : 1;
1236
1237 /* Flag set if the SCOPE field of this structure has been
1238 computed. */
1239 unsigned int scope_set : 1;
1240
1241 /* Flag set if the DIE has a byte_size attribute. */
1242 unsigned int has_byte_size : 1;
1243
1244 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1245 unsigned int has_const_value : 1;
1246
1247 /* Flag set if any of the DIE's children are template arguments. */
1248 unsigned int has_template_arguments : 1;
1249
1250 /* Flag set if fixup_partial_die has been called on this die. */
1251 unsigned int fixup_called : 1;
1252
1253 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1254 unsigned int is_dwz : 1;
1255
1256 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1257 unsigned int spec_is_dwz : 1;
1258
1259 /* The name of this DIE. Normally the value of DW_AT_name, but
1260 sometimes a default name for unnamed DIEs. */
1261 const char *name;
1262
1263 /* The linkage name, if present. */
1264 const char *linkage_name;
1265
1266 /* The scope to prepend to our children. This is generally
1267 allocated on the comp_unit_obstack, so will disappear
1268 when this compilation unit leaves the cache. */
1269 const char *scope;
1270
1271 /* Some data associated with the partial DIE. The tag determines
1272 which field is live. */
1273 union
1274 {
1275 /* The location description associated with this DIE, if any. */
1276 struct dwarf_block *locdesc;
1277 /* The offset of an import, for DW_TAG_imported_unit. */
1278 sect_offset sect_off;
1279 } d;
1280
1281 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1282 CORE_ADDR lowpc;
1283 CORE_ADDR highpc;
1284
1285 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1286 DW_AT_sibling, if any. */
1287 /* NOTE: This member isn't strictly necessary, read_partial_die could
1288 return DW_AT_sibling values to its caller load_partial_dies. */
1289 const gdb_byte *sibling;
1290
1291 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1292 DW_AT_specification (or DW_AT_abstract_origin or
1293 DW_AT_extension). */
1294 sect_offset spec_offset;
1295
1296 /* Pointers to this DIE's parent, first child, and next sibling,
1297 if any. */
1298 struct partial_die_info *die_parent, *die_child, *die_sibling;
1299 };
1300
1301 /* This data structure holds the information of an abbrev. */
1302 struct abbrev_info
1303 {
1304 unsigned int number; /* number identifying abbrev */
1305 enum dwarf_tag tag; /* dwarf tag */
1306 unsigned short has_children; /* boolean */
1307 unsigned short num_attrs; /* number of attributes */
1308 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1309 struct abbrev_info *next; /* next in chain */
1310 };
1311
1312 struct attr_abbrev
1313 {
1314 ENUM_BITFIELD(dwarf_attribute) name : 16;
1315 ENUM_BITFIELD(dwarf_form) form : 16;
1316
1317 /* It is valid only if FORM is DW_FORM_implicit_const. */
1318 LONGEST implicit_const;
1319 };
1320
1321 /* Size of abbrev_table.abbrev_hash_table. */
1322 #define ABBREV_HASH_SIZE 121
1323
1324 /* Top level data structure to contain an abbreviation table. */
1325
1326 struct abbrev_table
1327 {
1328 /* Where the abbrev table came from.
1329 This is used as a sanity check when the table is used. */
1330 sect_offset sect_off;
1331
1332 /* Storage for the abbrev table. */
1333 struct obstack abbrev_obstack;
1334
1335 /* Hash table of abbrevs.
1336 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1337 It could be statically allocated, but the previous code didn't so we
1338 don't either. */
1339 struct abbrev_info **abbrevs;
1340 };
1341
1342 /* Attributes have a name and a value. */
1343 struct attribute
1344 {
1345 ENUM_BITFIELD(dwarf_attribute) name : 16;
1346 ENUM_BITFIELD(dwarf_form) form : 15;
1347
1348 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1349 field should be in u.str (existing only for DW_STRING) but it is kept
1350 here for better struct attribute alignment. */
1351 unsigned int string_is_canonical : 1;
1352
1353 union
1354 {
1355 const char *str;
1356 struct dwarf_block *blk;
1357 ULONGEST unsnd;
1358 LONGEST snd;
1359 CORE_ADDR addr;
1360 ULONGEST signature;
1361 }
1362 u;
1363 };
1364
1365 /* This data structure holds a complete die structure. */
1366 struct die_info
1367 {
1368 /* DWARF-2 tag for this DIE. */
1369 ENUM_BITFIELD(dwarf_tag) tag : 16;
1370
1371 /* Number of attributes */
1372 unsigned char num_attrs;
1373
1374 /* True if we're presently building the full type name for the
1375 type derived from this DIE. */
1376 unsigned char building_fullname : 1;
1377
1378 /* True if this die is in process. PR 16581. */
1379 unsigned char in_process : 1;
1380
1381 /* Abbrev number */
1382 unsigned int abbrev;
1383
1384 /* Offset in .debug_info or .debug_types section. */
1385 sect_offset sect_off;
1386
1387 /* The dies in a compilation unit form an n-ary tree. PARENT
1388 points to this die's parent; CHILD points to the first child of
1389 this node; and all the children of a given node are chained
1390 together via their SIBLING fields. */
1391 struct die_info *child; /* Its first child, if any. */
1392 struct die_info *sibling; /* Its next sibling, if any. */
1393 struct die_info *parent; /* Its parent, if any. */
1394
1395 /* An array of attributes, with NUM_ATTRS elements. There may be
1396 zero, but it's not common and zero-sized arrays are not
1397 sufficiently portable C. */
1398 struct attribute attrs[1];
1399 };
1400
1401 /* Get at parts of an attribute structure. */
1402
1403 #define DW_STRING(attr) ((attr)->u.str)
1404 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1405 #define DW_UNSND(attr) ((attr)->u.unsnd)
1406 #define DW_BLOCK(attr) ((attr)->u.blk)
1407 #define DW_SND(attr) ((attr)->u.snd)
1408 #define DW_ADDR(attr) ((attr)->u.addr)
1409 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1410
1411 /* Blocks are a bunch of untyped bytes. */
1412 struct dwarf_block
1413 {
1414 size_t size;
1415
1416 /* Valid only if SIZE is not zero. */
1417 const gdb_byte *data;
1418 };
1419
1420 #ifndef ATTR_ALLOC_CHUNK
1421 #define ATTR_ALLOC_CHUNK 4
1422 #endif
1423
1424 /* Allocate fields for structs, unions and enums in this size. */
1425 #ifndef DW_FIELD_ALLOC_CHUNK
1426 #define DW_FIELD_ALLOC_CHUNK 4
1427 #endif
1428
1429 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1430 but this would require a corresponding change in unpack_field_as_long
1431 and friends. */
1432 static int bits_per_byte = 8;
1433
1434 struct nextfield
1435 {
1436 struct nextfield *next;
1437 int accessibility;
1438 int virtuality;
1439 struct field field;
1440 };
1441
1442 struct nextfnfield
1443 {
1444 struct nextfnfield *next;
1445 struct fn_field fnfield;
1446 };
1447
1448 struct fnfieldlist
1449 {
1450 const char *name;
1451 int length;
1452 struct nextfnfield *head;
1453 };
1454
1455 struct typedef_field_list
1456 {
1457 struct typedef_field field;
1458 struct typedef_field_list *next;
1459 };
1460
1461 /* The routines that read and process dies for a C struct or C++ class
1462 pass lists of data member fields and lists of member function fields
1463 in an instance of a field_info structure, as defined below. */
1464 struct field_info
1465 {
1466 /* List of data member and baseclasses fields. */
1467 struct nextfield *fields, *baseclasses;
1468
1469 /* Number of fields (including baseclasses). */
1470 int nfields;
1471
1472 /* Number of baseclasses. */
1473 int nbaseclasses;
1474
1475 /* Set if the accesibility of one of the fields is not public. */
1476 int non_public_fields;
1477
1478 /* Member function fields array, entries are allocated in the order they
1479 are encountered in the object file. */
1480 struct nextfnfield *fnfields;
1481
1482 /* Member function fieldlist array, contains name of possibly overloaded
1483 member function, number of overloaded member functions and a pointer
1484 to the head of the member function field chain. */
1485 struct fnfieldlist *fnfieldlists;
1486
1487 /* Number of entries in the fnfieldlists array. */
1488 int nfnfields;
1489
1490 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1491 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1492 struct typedef_field_list *typedef_field_list;
1493 unsigned typedef_field_list_count;
1494 };
1495
1496 /* One item on the queue of compilation units to read in full symbols
1497 for. */
1498 struct dwarf2_queue_item
1499 {
1500 struct dwarf2_per_cu_data *per_cu;
1501 enum language pretend_language;
1502 struct dwarf2_queue_item *next;
1503 };
1504
1505 /* The current queue. */
1506 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1507
1508 /* Loaded secondary compilation units are kept in memory until they
1509 have not been referenced for the processing of this many
1510 compilation units. Set this to zero to disable caching. Cache
1511 sizes of up to at least twenty will improve startup time for
1512 typical inter-CU-reference binaries, at an obvious memory cost. */
1513 static int dwarf_max_cache_age = 5;
1514 static void
1515 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1516 struct cmd_list_element *c, const char *value)
1517 {
1518 fprintf_filtered (file, _("The upper bound on the age of cached "
1519 "DWARF compilation units is %s.\n"),
1520 value);
1521 }
1522 \f
1523 /* local function prototypes */
1524
1525 static const char *get_section_name (const struct dwarf2_section_info *);
1526
1527 static const char *get_section_file_name (const struct dwarf2_section_info *);
1528
1529 static void dwarf2_find_base_address (struct die_info *die,
1530 struct dwarf2_cu *cu);
1531
1532 static struct partial_symtab *create_partial_symtab
1533 (struct dwarf2_per_cu_data *per_cu, const char *name);
1534
1535 static void dwarf2_build_psymtabs_hard (struct objfile *);
1536
1537 static void scan_partial_symbols (struct partial_die_info *,
1538 CORE_ADDR *, CORE_ADDR *,
1539 int, struct dwarf2_cu *);
1540
1541 static void add_partial_symbol (struct partial_die_info *,
1542 struct dwarf2_cu *);
1543
1544 static void add_partial_namespace (struct partial_die_info *pdi,
1545 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1546 int set_addrmap, struct dwarf2_cu *cu);
1547
1548 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1549 CORE_ADDR *highpc, int set_addrmap,
1550 struct dwarf2_cu *cu);
1551
1552 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1553 struct dwarf2_cu *cu);
1554
1555 static void add_partial_subprogram (struct partial_die_info *pdi,
1556 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1557 int need_pc, struct dwarf2_cu *cu);
1558
1559 static void dwarf2_read_symtab (struct partial_symtab *,
1560 struct objfile *);
1561
1562 static void psymtab_to_symtab_1 (struct partial_symtab *);
1563
1564 static struct abbrev_info *abbrev_table_lookup_abbrev
1565 (const struct abbrev_table *, unsigned int);
1566
1567 static struct abbrev_table *abbrev_table_read_table
1568 (struct dwarf2_section_info *, sect_offset);
1569
1570 static void abbrev_table_free (struct abbrev_table *);
1571
1572 static void abbrev_table_free_cleanup (void *);
1573
1574 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1575 struct dwarf2_section_info *);
1576
1577 static void dwarf2_free_abbrev_table (void *);
1578
1579 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1580
1581 static struct partial_die_info *load_partial_dies
1582 (const struct die_reader_specs *, const gdb_byte *, int);
1583
1584 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1585 struct partial_die_info *,
1586 struct abbrev_info *,
1587 unsigned int,
1588 const gdb_byte *);
1589
1590 static struct partial_die_info *find_partial_die (sect_offset, int,
1591 struct dwarf2_cu *);
1592
1593 static void fixup_partial_die (struct partial_die_info *,
1594 struct dwarf2_cu *);
1595
1596 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1597 struct attribute *, struct attr_abbrev *,
1598 const gdb_byte *);
1599
1600 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1601
1602 static int read_1_signed_byte (bfd *, const gdb_byte *);
1603
1604 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1605
1606 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1607
1608 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1609
1610 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1611 unsigned int *);
1612
1613 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1614
1615 static LONGEST read_checked_initial_length_and_offset
1616 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1617 unsigned int *, unsigned int *);
1618
1619 static LONGEST read_offset (bfd *, const gdb_byte *,
1620 const struct comp_unit_head *,
1621 unsigned int *);
1622
1623 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1624
1625 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1626 sect_offset);
1627
1628 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1629
1630 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1631
1632 static const char *read_indirect_string (bfd *, const gdb_byte *,
1633 const struct comp_unit_head *,
1634 unsigned int *);
1635
1636 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1637 const struct comp_unit_head *,
1638 unsigned int *);
1639
1640 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1641
1642 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1643
1644 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1645 const gdb_byte *,
1646 unsigned int *);
1647
1648 static const char *read_str_index (const struct die_reader_specs *reader,
1649 ULONGEST str_index);
1650
1651 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1652
1653 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1654 struct dwarf2_cu *);
1655
1656 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1657 unsigned int);
1658
1659 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1660 struct dwarf2_cu *cu);
1661
1662 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1663 struct dwarf2_cu *cu);
1664
1665 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1666
1667 static struct die_info *die_specification (struct die_info *die,
1668 struct dwarf2_cu **);
1669
1670 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1671 struct dwarf2_cu *cu);
1672
1673 static void dwarf_decode_lines (struct line_header *, const char *,
1674 struct dwarf2_cu *, struct partial_symtab *,
1675 CORE_ADDR, int decode_mapping);
1676
1677 static void dwarf2_start_subfile (const char *, const char *);
1678
1679 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1680 const char *, const char *,
1681 CORE_ADDR);
1682
1683 static struct symbol *new_symbol (struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1687 struct dwarf2_cu *, struct symbol *);
1688
1689 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1690 struct dwarf2_cu *);
1691
1692 static void dwarf2_const_value_attr (const struct attribute *attr,
1693 struct type *type,
1694 const char *name,
1695 struct obstack *obstack,
1696 struct dwarf2_cu *cu, LONGEST *value,
1697 const gdb_byte **bytes,
1698 struct dwarf2_locexpr_baton **baton);
1699
1700 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1701
1702 static int need_gnat_info (struct dwarf2_cu *);
1703
1704 static struct type *die_descriptive_type (struct die_info *,
1705 struct dwarf2_cu *);
1706
1707 static void set_descriptive_type (struct type *, struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static struct type *die_containing_type (struct die_info *,
1711 struct dwarf2_cu *);
1712
1713 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1714 struct dwarf2_cu *);
1715
1716 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1717
1718 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1719
1720 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1721
1722 static char *typename_concat (struct obstack *obs, const char *prefix,
1723 const char *suffix, int physname,
1724 struct dwarf2_cu *cu);
1725
1726 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1727
1728 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1729
1730 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1731
1732 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1733
1734 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1737 struct dwarf2_cu *, struct partial_symtab *);
1738
1739 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1740 values. Keep the items ordered with increasing constraints compliance. */
1741 enum pc_bounds_kind
1742 {
1743 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1744 PC_BOUNDS_NOT_PRESENT,
1745
1746 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1747 were present but they do not form a valid range of PC addresses. */
1748 PC_BOUNDS_INVALID,
1749
1750 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1751 PC_BOUNDS_RANGES,
1752
1753 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1754 PC_BOUNDS_HIGH_LOW,
1755 };
1756
1757 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1758 CORE_ADDR *, CORE_ADDR *,
1759 struct dwarf2_cu *,
1760 struct partial_symtab *);
1761
1762 static void get_scope_pc_bounds (struct die_info *,
1763 CORE_ADDR *, CORE_ADDR *,
1764 struct dwarf2_cu *);
1765
1766 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1767 CORE_ADDR, struct dwarf2_cu *);
1768
1769 static void dwarf2_add_field (struct field_info *, struct die_info *,
1770 struct dwarf2_cu *);
1771
1772 static void dwarf2_attach_fields_to_type (struct field_info *,
1773 struct type *, struct dwarf2_cu *);
1774
1775 static void dwarf2_add_member_fn (struct field_info *,
1776 struct die_info *, struct type *,
1777 struct dwarf2_cu *);
1778
1779 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1780 struct type *,
1781 struct dwarf2_cu *);
1782
1783 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1784
1785 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1786
1787 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1788
1789 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1790
1791 static struct using_direct **using_directives (enum language);
1792
1793 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1794
1795 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1796
1797 static struct type *read_module_type (struct die_info *die,
1798 struct dwarf2_cu *cu);
1799
1800 static const char *namespace_name (struct die_info *die,
1801 int *is_anonymous, struct dwarf2_cu *);
1802
1803 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1804
1805 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1806
1807 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1808 struct dwarf2_cu *);
1809
1810 static struct die_info *read_die_and_siblings_1
1811 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1812 struct die_info *);
1813
1814 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1815 const gdb_byte *info_ptr,
1816 const gdb_byte **new_info_ptr,
1817 struct die_info *parent);
1818
1819 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1820 struct die_info **, const gdb_byte *,
1821 int *, int);
1822
1823 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1824 struct die_info **, const gdb_byte *,
1825 int *);
1826
1827 static void process_die (struct die_info *, struct dwarf2_cu *);
1828
1829 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1830 struct obstack *);
1831
1832 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1833
1834 static const char *dwarf2_full_name (const char *name,
1835 struct die_info *die,
1836 struct dwarf2_cu *cu);
1837
1838 static const char *dwarf2_physname (const char *name, struct die_info *die,
1839 struct dwarf2_cu *cu);
1840
1841 static struct die_info *dwarf2_extension (struct die_info *die,
1842 struct dwarf2_cu **);
1843
1844 static const char *dwarf_tag_name (unsigned int);
1845
1846 static const char *dwarf_attr_name (unsigned int);
1847
1848 static const char *dwarf_form_name (unsigned int);
1849
1850 static const char *dwarf_bool_name (unsigned int);
1851
1852 static const char *dwarf_type_encoding_name (unsigned int);
1853
1854 static struct die_info *sibling_die (struct die_info *);
1855
1856 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1857
1858 static void dump_die_for_error (struct die_info *);
1859
1860 static void dump_die_1 (struct ui_file *, int level, int max_level,
1861 struct die_info *);
1862
1863 /*static*/ void dump_die (struct die_info *, int max_level);
1864
1865 static void store_in_ref_table (struct die_info *,
1866 struct dwarf2_cu *);
1867
1868 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1869
1870 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1871
1872 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1873 const struct attribute *,
1874 struct dwarf2_cu **);
1875
1876 static struct die_info *follow_die_ref (struct die_info *,
1877 const struct attribute *,
1878 struct dwarf2_cu **);
1879
1880 static struct die_info *follow_die_sig (struct die_info *,
1881 const struct attribute *,
1882 struct dwarf2_cu **);
1883
1884 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1885 struct dwarf2_cu *);
1886
1887 static struct type *get_DW_AT_signature_type (struct die_info *,
1888 const struct attribute *,
1889 struct dwarf2_cu *);
1890
1891 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1892
1893 static void read_signatured_type (struct signatured_type *);
1894
1895 static int attr_to_dynamic_prop (const struct attribute *attr,
1896 struct die_info *die, struct dwarf2_cu *cu,
1897 struct dynamic_prop *prop);
1898
1899 /* memory allocation interface */
1900
1901 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1902
1903 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1904
1905 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1906
1907 static int attr_form_is_block (const struct attribute *);
1908
1909 static int attr_form_is_section_offset (const struct attribute *);
1910
1911 static int attr_form_is_constant (const struct attribute *);
1912
1913 static int attr_form_is_ref (const struct attribute *);
1914
1915 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1916 struct dwarf2_loclist_baton *baton,
1917 const struct attribute *attr);
1918
1919 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1920 struct symbol *sym,
1921 struct dwarf2_cu *cu,
1922 int is_block);
1923
1924 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1925 const gdb_byte *info_ptr,
1926 struct abbrev_info *abbrev);
1927
1928 static void free_stack_comp_unit (void *);
1929
1930 static hashval_t partial_die_hash (const void *item);
1931
1932 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1933
1934 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1935 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1936
1937 static void init_one_comp_unit (struct dwarf2_cu *cu,
1938 struct dwarf2_per_cu_data *per_cu);
1939
1940 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1941 struct die_info *comp_unit_die,
1942 enum language pretend_language);
1943
1944 static void free_heap_comp_unit (void *);
1945
1946 static void free_cached_comp_units (void *);
1947
1948 static void age_cached_comp_units (void);
1949
1950 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1951
1952 static struct type *set_die_type (struct die_info *, struct type *,
1953 struct dwarf2_cu *);
1954
1955 static void create_all_comp_units (struct objfile *);
1956
1957 static int create_all_type_units (struct objfile *);
1958
1959 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1960 enum language);
1961
1962 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1963 enum language);
1964
1965 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1966 enum language);
1967
1968 static void dwarf2_add_dependence (struct dwarf2_cu *,
1969 struct dwarf2_per_cu_data *);
1970
1971 static void dwarf2_mark (struct dwarf2_cu *);
1972
1973 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1974
1975 static struct type *get_die_type_at_offset (sect_offset,
1976 struct dwarf2_per_cu_data *);
1977
1978 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1979
1980 static void dwarf2_release_queue (void *dummy);
1981
1982 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1983 enum language pretend_language);
1984
1985 static void process_queue (void);
1986
1987 /* The return type of find_file_and_directory. Note, the enclosed
1988 string pointers are only valid while this object is valid. */
1989
1990 struct file_and_directory
1991 {
1992 /* The filename. This is never NULL. */
1993 const char *name;
1994
1995 /* The compilation directory. NULL if not known. If we needed to
1996 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1997 points directly to the DW_AT_comp_dir string attribute owned by
1998 the obstack that owns the DIE. */
1999 const char *comp_dir;
2000
2001 /* If we needed to build a new string for comp_dir, this is what
2002 owns the storage. */
2003 std::string comp_dir_storage;
2004 };
2005
2006 static file_and_directory find_file_and_directory (struct die_info *die,
2007 struct dwarf2_cu *cu);
2008
2009 static char *file_full_name (int file, struct line_header *lh,
2010 const char *comp_dir);
2011
2012 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2013 enum class rcuh_kind { COMPILE, TYPE };
2014
2015 static const gdb_byte *read_and_check_comp_unit_head
2016 (struct comp_unit_head *header,
2017 struct dwarf2_section_info *section,
2018 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2019 rcuh_kind section_kind);
2020
2021 static void init_cutu_and_read_dies
2022 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2023 int use_existing_cu, int keep,
2024 die_reader_func_ftype *die_reader_func, void *data);
2025
2026 static void init_cutu_and_read_dies_simple
2027 (struct dwarf2_per_cu_data *this_cu,
2028 die_reader_func_ftype *die_reader_func, void *data);
2029
2030 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2031
2032 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2033
2034 static struct dwo_unit *lookup_dwo_unit_in_dwp
2035 (struct dwp_file *dwp_file, const char *comp_dir,
2036 ULONGEST signature, int is_debug_types);
2037
2038 static struct dwp_file *get_dwp_file (void);
2039
2040 static struct dwo_unit *lookup_dwo_comp_unit
2041 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2042
2043 static struct dwo_unit *lookup_dwo_type_unit
2044 (struct signatured_type *, const char *, const char *);
2045
2046 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2047
2048 static void free_dwo_file_cleanup (void *);
2049
2050 static void process_cu_includes (void);
2051
2052 static void check_producer (struct dwarf2_cu *cu);
2053
2054 static void free_line_header_voidp (void *arg);
2055 \f
2056 /* Various complaints about symbol reading that don't abort the process. */
2057
2058 static void
2059 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2060 {
2061 complaint (&symfile_complaints,
2062 _("statement list doesn't fit in .debug_line section"));
2063 }
2064
2065 static void
2066 dwarf2_debug_line_missing_file_complaint (void)
2067 {
2068 complaint (&symfile_complaints,
2069 _(".debug_line section has line data without a file"));
2070 }
2071
2072 static void
2073 dwarf2_debug_line_missing_end_sequence_complaint (void)
2074 {
2075 complaint (&symfile_complaints,
2076 _(".debug_line section has line "
2077 "program sequence without an end"));
2078 }
2079
2080 static void
2081 dwarf2_complex_location_expr_complaint (void)
2082 {
2083 complaint (&symfile_complaints, _("location expression too complex"));
2084 }
2085
2086 static void
2087 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2088 int arg3)
2089 {
2090 complaint (&symfile_complaints,
2091 _("const value length mismatch for '%s', got %d, expected %d"),
2092 arg1, arg2, arg3);
2093 }
2094
2095 static void
2096 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2097 {
2098 complaint (&symfile_complaints,
2099 _("debug info runs off end of %s section"
2100 " [in module %s]"),
2101 get_section_name (section),
2102 get_section_file_name (section));
2103 }
2104
2105 static void
2106 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2107 {
2108 complaint (&symfile_complaints,
2109 _("macro debug info contains a "
2110 "malformed macro definition:\n`%s'"),
2111 arg1);
2112 }
2113
2114 static void
2115 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2116 {
2117 complaint (&symfile_complaints,
2118 _("invalid attribute class or form for '%s' in '%s'"),
2119 arg1, arg2);
2120 }
2121
2122 /* Hash function for line_header_hash. */
2123
2124 static hashval_t
2125 line_header_hash (const struct line_header *ofs)
2126 {
2127 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2128 }
2129
2130 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2131
2132 static hashval_t
2133 line_header_hash_voidp (const void *item)
2134 {
2135 const struct line_header *ofs = (const struct line_header *) item;
2136
2137 return line_header_hash (ofs);
2138 }
2139
2140 /* Equality function for line_header_hash. */
2141
2142 static int
2143 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2144 {
2145 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2146 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2147
2148 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2149 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2150 }
2151
2152 \f
2153 #if WORDS_BIGENDIAN
2154
2155 /* Convert VALUE between big- and little-endian. */
2156 static offset_type
2157 byte_swap (offset_type value)
2158 {
2159 offset_type result;
2160
2161 result = (value & 0xff) << 24;
2162 result |= (value & 0xff00) << 8;
2163 result |= (value & 0xff0000) >> 8;
2164 result |= (value & 0xff000000) >> 24;
2165 return result;
2166 }
2167
2168 #define MAYBE_SWAP(V) byte_swap (V)
2169
2170 #else
2171 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2172 #endif /* WORDS_BIGENDIAN */
2173
2174 /* Read the given attribute value as an address, taking the attribute's
2175 form into account. */
2176
2177 static CORE_ADDR
2178 attr_value_as_address (struct attribute *attr)
2179 {
2180 CORE_ADDR addr;
2181
2182 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2183 {
2184 /* Aside from a few clearly defined exceptions, attributes that
2185 contain an address must always be in DW_FORM_addr form.
2186 Unfortunately, some compilers happen to be violating this
2187 requirement by encoding addresses using other forms, such
2188 as DW_FORM_data4 for example. For those broken compilers,
2189 we try to do our best, without any guarantee of success,
2190 to interpret the address correctly. It would also be nice
2191 to generate a complaint, but that would require us to maintain
2192 a list of legitimate cases where a non-address form is allowed,
2193 as well as update callers to pass in at least the CU's DWARF
2194 version. This is more overhead than what we're willing to
2195 expand for a pretty rare case. */
2196 addr = DW_UNSND (attr);
2197 }
2198 else
2199 addr = DW_ADDR (attr);
2200
2201 return addr;
2202 }
2203
2204 /* The suffix for an index file. */
2205 #define INDEX_SUFFIX ".gdb-index"
2206
2207 /* See declaration. */
2208
2209 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2210 const dwarf2_debug_sections *names)
2211 : objfile (objfile_)
2212 {
2213 if (names == NULL)
2214 names = &dwarf2_elf_names;
2215
2216 bfd *obfd = objfile->obfd;
2217
2218 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2219 locate_sections (obfd, sec, *names);
2220 }
2221
2222 dwarf2_per_objfile::~dwarf2_per_objfile ()
2223 {
2224 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2225 free_cached_comp_units ();
2226
2227 if (quick_file_names_table)
2228 htab_delete (quick_file_names_table);
2229
2230 if (line_header_hash)
2231 htab_delete (line_header_hash);
2232
2233 /* Everything else should be on the objfile obstack. */
2234 }
2235
2236 /* See declaration. */
2237
2238 void
2239 dwarf2_per_objfile::free_cached_comp_units ()
2240 {
2241 dwarf2_per_cu_data *per_cu = read_in_chain;
2242 dwarf2_per_cu_data **last_chain = &read_in_chain;
2243 while (per_cu != NULL)
2244 {
2245 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2246
2247 free_heap_comp_unit (per_cu->cu);
2248 *last_chain = next_cu;
2249 per_cu = next_cu;
2250 }
2251 }
2252
2253 /* Try to locate the sections we need for DWARF 2 debugging
2254 information and return true if we have enough to do something.
2255 NAMES points to the dwarf2 section names, or is NULL if the standard
2256 ELF names are used. */
2257
2258 int
2259 dwarf2_has_info (struct objfile *objfile,
2260 const struct dwarf2_debug_sections *names)
2261 {
2262 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2263 objfile_data (objfile, dwarf2_objfile_data_key));
2264 if (!dwarf2_per_objfile)
2265 {
2266 /* Initialize per-objfile state. */
2267 struct dwarf2_per_objfile *data
2268 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2269
2270 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2271 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2272 }
2273 return (!dwarf2_per_objfile->info.is_virtual
2274 && dwarf2_per_objfile->info.s.section != NULL
2275 && !dwarf2_per_objfile->abbrev.is_virtual
2276 && dwarf2_per_objfile->abbrev.s.section != NULL);
2277 }
2278
2279 /* Return the containing section of virtual section SECTION. */
2280
2281 static struct dwarf2_section_info *
2282 get_containing_section (const struct dwarf2_section_info *section)
2283 {
2284 gdb_assert (section->is_virtual);
2285 return section->s.containing_section;
2286 }
2287
2288 /* Return the bfd owner of SECTION. */
2289
2290 static struct bfd *
2291 get_section_bfd_owner (const struct dwarf2_section_info *section)
2292 {
2293 if (section->is_virtual)
2294 {
2295 section = get_containing_section (section);
2296 gdb_assert (!section->is_virtual);
2297 }
2298 return section->s.section->owner;
2299 }
2300
2301 /* Return the bfd section of SECTION.
2302 Returns NULL if the section is not present. */
2303
2304 static asection *
2305 get_section_bfd_section (const struct dwarf2_section_info *section)
2306 {
2307 if (section->is_virtual)
2308 {
2309 section = get_containing_section (section);
2310 gdb_assert (!section->is_virtual);
2311 }
2312 return section->s.section;
2313 }
2314
2315 /* Return the name of SECTION. */
2316
2317 static const char *
2318 get_section_name (const struct dwarf2_section_info *section)
2319 {
2320 asection *sectp = get_section_bfd_section (section);
2321
2322 gdb_assert (sectp != NULL);
2323 return bfd_section_name (get_section_bfd_owner (section), sectp);
2324 }
2325
2326 /* Return the name of the file SECTION is in. */
2327
2328 static const char *
2329 get_section_file_name (const struct dwarf2_section_info *section)
2330 {
2331 bfd *abfd = get_section_bfd_owner (section);
2332
2333 return bfd_get_filename (abfd);
2334 }
2335
2336 /* Return the id of SECTION.
2337 Returns 0 if SECTION doesn't exist. */
2338
2339 static int
2340 get_section_id (const struct dwarf2_section_info *section)
2341 {
2342 asection *sectp = get_section_bfd_section (section);
2343
2344 if (sectp == NULL)
2345 return 0;
2346 return sectp->id;
2347 }
2348
2349 /* Return the flags of SECTION.
2350 SECTION (or containing section if this is a virtual section) must exist. */
2351
2352 static int
2353 get_section_flags (const struct dwarf2_section_info *section)
2354 {
2355 asection *sectp = get_section_bfd_section (section);
2356
2357 gdb_assert (sectp != NULL);
2358 return bfd_get_section_flags (sectp->owner, sectp);
2359 }
2360
2361 /* When loading sections, we look either for uncompressed section or for
2362 compressed section names. */
2363
2364 static int
2365 section_is_p (const char *section_name,
2366 const struct dwarf2_section_names *names)
2367 {
2368 if (names->normal != NULL
2369 && strcmp (section_name, names->normal) == 0)
2370 return 1;
2371 if (names->compressed != NULL
2372 && strcmp (section_name, names->compressed) == 0)
2373 return 1;
2374 return 0;
2375 }
2376
2377 /* See declaration. */
2378
2379 void
2380 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2381 const dwarf2_debug_sections &names)
2382 {
2383 flagword aflag = bfd_get_section_flags (abfd, sectp);
2384
2385 if ((aflag & SEC_HAS_CONTENTS) == 0)
2386 {
2387 }
2388 else if (section_is_p (sectp->name, &names.info))
2389 {
2390 this->info.s.section = sectp;
2391 this->info.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.abbrev))
2394 {
2395 this->abbrev.s.section = sectp;
2396 this->abbrev.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.line))
2399 {
2400 this->line.s.section = sectp;
2401 this->line.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.loc))
2404 {
2405 this->loc.s.section = sectp;
2406 this->loc.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.loclists))
2409 {
2410 this->loclists.s.section = sectp;
2411 this->loclists.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.macinfo))
2414 {
2415 this->macinfo.s.section = sectp;
2416 this->macinfo.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.macro))
2419 {
2420 this->macro.s.section = sectp;
2421 this->macro.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.str))
2424 {
2425 this->str.s.section = sectp;
2426 this->str.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.line_str))
2429 {
2430 this->line_str.s.section = sectp;
2431 this->line_str.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.addr))
2434 {
2435 this->addr.s.section = sectp;
2436 this->addr.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.frame))
2439 {
2440 this->frame.s.section = sectp;
2441 this->frame.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.eh_frame))
2444 {
2445 this->eh_frame.s.section = sectp;
2446 this->eh_frame.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.ranges))
2449 {
2450 this->ranges.s.section = sectp;
2451 this->ranges.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.rnglists))
2454 {
2455 this->rnglists.s.section = sectp;
2456 this->rnglists.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.types))
2459 {
2460 struct dwarf2_section_info type_section;
2461
2462 memset (&type_section, 0, sizeof (type_section));
2463 type_section.s.section = sectp;
2464 type_section.size = bfd_get_section_size (sectp);
2465
2466 VEC_safe_push (dwarf2_section_info_def, this->types,
2467 &type_section);
2468 }
2469 else if (section_is_p (sectp->name, &names.gdb_index))
2470 {
2471 this->gdb_index.s.section = sectp;
2472 this->gdb_index.size = bfd_get_section_size (sectp);
2473 }
2474
2475 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2476 && bfd_section_vma (abfd, sectp) == 0)
2477 this->has_section_at_zero = true;
2478 }
2479
2480 /* A helper function that decides whether a section is empty,
2481 or not present. */
2482
2483 static int
2484 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2485 {
2486 if (section->is_virtual)
2487 return section->size == 0;
2488 return section->s.section == NULL || section->size == 0;
2489 }
2490
2491 /* Read the contents of the section INFO.
2492 OBJFILE is the main object file, but not necessarily the file where
2493 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2494 of the DWO file.
2495 If the section is compressed, uncompress it before returning. */
2496
2497 static void
2498 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2499 {
2500 asection *sectp;
2501 bfd *abfd;
2502 gdb_byte *buf, *retbuf;
2503
2504 if (info->readin)
2505 return;
2506 info->buffer = NULL;
2507 info->readin = 1;
2508
2509 if (dwarf2_section_empty_p (info))
2510 return;
2511
2512 sectp = get_section_bfd_section (info);
2513
2514 /* If this is a virtual section we need to read in the real one first. */
2515 if (info->is_virtual)
2516 {
2517 struct dwarf2_section_info *containing_section =
2518 get_containing_section (info);
2519
2520 gdb_assert (sectp != NULL);
2521 if ((sectp->flags & SEC_RELOC) != 0)
2522 {
2523 error (_("Dwarf Error: DWP format V2 with relocations is not"
2524 " supported in section %s [in module %s]"),
2525 get_section_name (info), get_section_file_name (info));
2526 }
2527 dwarf2_read_section (objfile, containing_section);
2528 /* Other code should have already caught virtual sections that don't
2529 fit. */
2530 gdb_assert (info->virtual_offset + info->size
2531 <= containing_section->size);
2532 /* If the real section is empty or there was a problem reading the
2533 section we shouldn't get here. */
2534 gdb_assert (containing_section->buffer != NULL);
2535 info->buffer = containing_section->buffer + info->virtual_offset;
2536 return;
2537 }
2538
2539 /* If the section has relocations, we must read it ourselves.
2540 Otherwise we attach it to the BFD. */
2541 if ((sectp->flags & SEC_RELOC) == 0)
2542 {
2543 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2544 return;
2545 }
2546
2547 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2548 info->buffer = buf;
2549
2550 /* When debugging .o files, we may need to apply relocations; see
2551 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2552 We never compress sections in .o files, so we only need to
2553 try this when the section is not compressed. */
2554 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2555 if (retbuf != NULL)
2556 {
2557 info->buffer = retbuf;
2558 return;
2559 }
2560
2561 abfd = get_section_bfd_owner (info);
2562 gdb_assert (abfd != NULL);
2563
2564 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2565 || bfd_bread (buf, info->size, abfd) != info->size)
2566 {
2567 error (_("Dwarf Error: Can't read DWARF data"
2568 " in section %s [in module %s]"),
2569 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2570 }
2571 }
2572
2573 /* A helper function that returns the size of a section in a safe way.
2574 If you are positive that the section has been read before using the
2575 size, then it is safe to refer to the dwarf2_section_info object's
2576 "size" field directly. In other cases, you must call this
2577 function, because for compressed sections the size field is not set
2578 correctly until the section has been read. */
2579
2580 static bfd_size_type
2581 dwarf2_section_size (struct objfile *objfile,
2582 struct dwarf2_section_info *info)
2583 {
2584 if (!info->readin)
2585 dwarf2_read_section (objfile, info);
2586 return info->size;
2587 }
2588
2589 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2590 SECTION_NAME. */
2591
2592 void
2593 dwarf2_get_section_info (struct objfile *objfile,
2594 enum dwarf2_section_enum sect,
2595 asection **sectp, const gdb_byte **bufp,
2596 bfd_size_type *sizep)
2597 {
2598 struct dwarf2_per_objfile *data
2599 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2600 dwarf2_objfile_data_key);
2601 struct dwarf2_section_info *info;
2602
2603 /* We may see an objfile without any DWARF, in which case we just
2604 return nothing. */
2605 if (data == NULL)
2606 {
2607 *sectp = NULL;
2608 *bufp = NULL;
2609 *sizep = 0;
2610 return;
2611 }
2612 switch (sect)
2613 {
2614 case DWARF2_DEBUG_FRAME:
2615 info = &data->frame;
2616 break;
2617 case DWARF2_EH_FRAME:
2618 info = &data->eh_frame;
2619 break;
2620 default:
2621 gdb_assert_not_reached ("unexpected section");
2622 }
2623
2624 dwarf2_read_section (objfile, info);
2625
2626 *sectp = get_section_bfd_section (info);
2627 *bufp = info->buffer;
2628 *sizep = info->size;
2629 }
2630
2631 /* A helper function to find the sections for a .dwz file. */
2632
2633 static void
2634 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2635 {
2636 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2637
2638 /* Note that we only support the standard ELF names, because .dwz
2639 is ELF-only (at the time of writing). */
2640 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2641 {
2642 dwz_file->abbrev.s.section = sectp;
2643 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2644 }
2645 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2646 {
2647 dwz_file->info.s.section = sectp;
2648 dwz_file->info.size = bfd_get_section_size (sectp);
2649 }
2650 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2651 {
2652 dwz_file->str.s.section = sectp;
2653 dwz_file->str.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2656 {
2657 dwz_file->line.s.section = sectp;
2658 dwz_file->line.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2661 {
2662 dwz_file->macro.s.section = sectp;
2663 dwz_file->macro.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2666 {
2667 dwz_file->gdb_index.s.section = sectp;
2668 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2669 }
2670 }
2671
2672 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2673 there is no .gnu_debugaltlink section in the file. Error if there
2674 is such a section but the file cannot be found. */
2675
2676 static struct dwz_file *
2677 dwarf2_get_dwz_file (void)
2678 {
2679 char *data;
2680 struct cleanup *cleanup;
2681 const char *filename;
2682 struct dwz_file *result;
2683 bfd_size_type buildid_len_arg;
2684 size_t buildid_len;
2685 bfd_byte *buildid;
2686
2687 if (dwarf2_per_objfile->dwz_file != NULL)
2688 return dwarf2_per_objfile->dwz_file;
2689
2690 bfd_set_error (bfd_error_no_error);
2691 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2692 &buildid_len_arg, &buildid);
2693 if (data == NULL)
2694 {
2695 if (bfd_get_error () == bfd_error_no_error)
2696 return NULL;
2697 error (_("could not read '.gnu_debugaltlink' section: %s"),
2698 bfd_errmsg (bfd_get_error ()));
2699 }
2700 cleanup = make_cleanup (xfree, data);
2701 make_cleanup (xfree, buildid);
2702
2703 buildid_len = (size_t) buildid_len_arg;
2704
2705 filename = (const char *) data;
2706
2707 std::string abs_storage;
2708 if (!IS_ABSOLUTE_PATH (filename))
2709 {
2710 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2711
2712 make_cleanup (xfree, abs);
2713 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2714 filename = abs_storage.c_str ();
2715 }
2716
2717 /* First try the file name given in the section. If that doesn't
2718 work, try to use the build-id instead. */
2719 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2720 if (dwz_bfd != NULL)
2721 {
2722 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2723 dwz_bfd.release ();
2724 }
2725
2726 if (dwz_bfd == NULL)
2727 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2728
2729 if (dwz_bfd == NULL)
2730 error (_("could not find '.gnu_debugaltlink' file for %s"),
2731 objfile_name (dwarf2_per_objfile->objfile));
2732
2733 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2734 struct dwz_file);
2735 result->dwz_bfd = dwz_bfd.release ();
2736
2737 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2738
2739 do_cleanups (cleanup);
2740
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2742 dwarf2_per_objfile->dwz_file = result;
2743 return result;
2744 }
2745 \f
2746 /* DWARF quick_symbols_functions support. */
2747
2748 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2749 unique line tables, so we maintain a separate table of all .debug_line
2750 derived entries to support the sharing.
2751 All the quick functions need is the list of file names. We discard the
2752 line_header when we're done and don't need to record it here. */
2753 struct quick_file_names
2754 {
2755 /* The data used to construct the hash key. */
2756 struct stmt_list_hash hash;
2757
2758 /* The number of entries in file_names, real_names. */
2759 unsigned int num_file_names;
2760
2761 /* The file names from the line table, after being run through
2762 file_full_name. */
2763 const char **file_names;
2764
2765 /* The file names from the line table after being run through
2766 gdb_realpath. These are computed lazily. */
2767 const char **real_names;
2768 };
2769
2770 /* When using the index (and thus not using psymtabs), each CU has an
2771 object of this type. This is used to hold information needed by
2772 the various "quick" methods. */
2773 struct dwarf2_per_cu_quick_data
2774 {
2775 /* The file table. This can be NULL if there was no file table
2776 or it's currently not read in.
2777 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2778 struct quick_file_names *file_names;
2779
2780 /* The corresponding symbol table. This is NULL if symbols for this
2781 CU have not yet been read. */
2782 struct compunit_symtab *compunit_symtab;
2783
2784 /* A temporary mark bit used when iterating over all CUs in
2785 expand_symtabs_matching. */
2786 unsigned int mark : 1;
2787
2788 /* True if we've tried to read the file table and found there isn't one.
2789 There will be no point in trying to read it again next time. */
2790 unsigned int no_file_data : 1;
2791 };
2792
2793 /* Utility hash function for a stmt_list_hash. */
2794
2795 static hashval_t
2796 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2797 {
2798 hashval_t v = 0;
2799
2800 if (stmt_list_hash->dwo_unit != NULL)
2801 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2802 v += to_underlying (stmt_list_hash->line_sect_off);
2803 return v;
2804 }
2805
2806 /* Utility equality function for a stmt_list_hash. */
2807
2808 static int
2809 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2810 const struct stmt_list_hash *rhs)
2811 {
2812 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2813 return 0;
2814 if (lhs->dwo_unit != NULL
2815 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2816 return 0;
2817
2818 return lhs->line_sect_off == rhs->line_sect_off;
2819 }
2820
2821 /* Hash function for a quick_file_names. */
2822
2823 static hashval_t
2824 hash_file_name_entry (const void *e)
2825 {
2826 const struct quick_file_names *file_data
2827 = (const struct quick_file_names *) e;
2828
2829 return hash_stmt_list_entry (&file_data->hash);
2830 }
2831
2832 /* Equality function for a quick_file_names. */
2833
2834 static int
2835 eq_file_name_entry (const void *a, const void *b)
2836 {
2837 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2838 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2839
2840 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2841 }
2842
2843 /* Delete function for a quick_file_names. */
2844
2845 static void
2846 delete_file_name_entry (void *e)
2847 {
2848 struct quick_file_names *file_data = (struct quick_file_names *) e;
2849 int i;
2850
2851 for (i = 0; i < file_data->num_file_names; ++i)
2852 {
2853 xfree ((void*) file_data->file_names[i]);
2854 if (file_data->real_names)
2855 xfree ((void*) file_data->real_names[i]);
2856 }
2857
2858 /* The space for the struct itself lives on objfile_obstack,
2859 so we don't free it here. */
2860 }
2861
2862 /* Create a quick_file_names hash table. */
2863
2864 static htab_t
2865 create_quick_file_names_table (unsigned int nr_initial_entries)
2866 {
2867 return htab_create_alloc (nr_initial_entries,
2868 hash_file_name_entry, eq_file_name_entry,
2869 delete_file_name_entry, xcalloc, xfree);
2870 }
2871
2872 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2873 have to be created afterwards. You should call age_cached_comp_units after
2874 processing PER_CU->CU. dw2_setup must have been already called. */
2875
2876 static void
2877 load_cu (struct dwarf2_per_cu_data *per_cu)
2878 {
2879 if (per_cu->is_debug_types)
2880 load_full_type_unit (per_cu);
2881 else
2882 load_full_comp_unit (per_cu, language_minimal);
2883
2884 if (per_cu->cu == NULL)
2885 return; /* Dummy CU. */
2886
2887 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2888 }
2889
2890 /* Read in the symbols for PER_CU. */
2891
2892 static void
2893 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2894 {
2895 struct cleanup *back_to;
2896
2897 /* Skip type_unit_groups, reading the type units they contain
2898 is handled elsewhere. */
2899 if (IS_TYPE_UNIT_GROUP (per_cu))
2900 return;
2901
2902 back_to = make_cleanup (dwarf2_release_queue, NULL);
2903
2904 if (dwarf2_per_objfile->using_index
2905 ? per_cu->v.quick->compunit_symtab == NULL
2906 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2907 {
2908 queue_comp_unit (per_cu, language_minimal);
2909 load_cu (per_cu);
2910
2911 /* If we just loaded a CU from a DWO, and we're working with an index
2912 that may badly handle TUs, load all the TUs in that DWO as well.
2913 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2914 if (!per_cu->is_debug_types
2915 && per_cu->cu != NULL
2916 && per_cu->cu->dwo_unit != NULL
2917 && dwarf2_per_objfile->index_table != NULL
2918 && dwarf2_per_objfile->index_table->version <= 7
2919 /* DWP files aren't supported yet. */
2920 && get_dwp_file () == NULL)
2921 queue_and_load_all_dwo_tus (per_cu);
2922 }
2923
2924 process_queue ();
2925
2926 /* Age the cache, releasing compilation units that have not
2927 been used recently. */
2928 age_cached_comp_units ();
2929
2930 do_cleanups (back_to);
2931 }
2932
2933 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2934 the objfile from which this CU came. Returns the resulting symbol
2935 table. */
2936
2937 static struct compunit_symtab *
2938 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2939 {
2940 gdb_assert (dwarf2_per_objfile->using_index);
2941 if (!per_cu->v.quick->compunit_symtab)
2942 {
2943 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2944 scoped_restore decrementer = increment_reading_symtab ();
2945 dw2_do_instantiate_symtab (per_cu);
2946 process_cu_includes ();
2947 do_cleanups (back_to);
2948 }
2949
2950 return per_cu->v.quick->compunit_symtab;
2951 }
2952
2953 /* Return the CU/TU given its index.
2954
2955 This is intended for loops like:
2956
2957 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2958 + dwarf2_per_objfile->n_type_units); ++i)
2959 {
2960 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2961
2962 ...;
2963 }
2964 */
2965
2966 static struct dwarf2_per_cu_data *
2967 dw2_get_cutu (int index)
2968 {
2969 if (index >= dwarf2_per_objfile->n_comp_units)
2970 {
2971 index -= dwarf2_per_objfile->n_comp_units;
2972 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2973 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2974 }
2975
2976 return dwarf2_per_objfile->all_comp_units[index];
2977 }
2978
2979 /* Return the CU given its index.
2980 This differs from dw2_get_cutu in that it's for when you know INDEX
2981 refers to a CU. */
2982
2983 static struct dwarf2_per_cu_data *
2984 dw2_get_cu (int index)
2985 {
2986 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2987
2988 return dwarf2_per_objfile->all_comp_units[index];
2989 }
2990
2991 /* A helper for create_cus_from_index that handles a given list of
2992 CUs. */
2993
2994 static void
2995 create_cus_from_index_list (struct objfile *objfile,
2996 const gdb_byte *cu_list, offset_type n_elements,
2997 struct dwarf2_section_info *section,
2998 int is_dwz,
2999 int base_offset)
3000 {
3001 offset_type i;
3002
3003 for (i = 0; i < n_elements; i += 2)
3004 {
3005 gdb_static_assert (sizeof (ULONGEST) >= 8);
3006
3007 sect_offset sect_off
3008 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3009 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3010 cu_list += 2 * 8;
3011
3012 dwarf2_per_cu_data *the_cu
3013 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3014 struct dwarf2_per_cu_data);
3015 the_cu->sect_off = sect_off;
3016 the_cu->length = length;
3017 the_cu->objfile = objfile;
3018 the_cu->section = section;
3019 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3020 struct dwarf2_per_cu_quick_data);
3021 the_cu->is_dwz = is_dwz;
3022 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3023 }
3024 }
3025
3026 /* Read the CU list from the mapped index, and use it to create all
3027 the CU objects for this objfile. */
3028
3029 static void
3030 create_cus_from_index (struct objfile *objfile,
3031 const gdb_byte *cu_list, offset_type cu_list_elements,
3032 const gdb_byte *dwz_list, offset_type dwz_elements)
3033 {
3034 struct dwz_file *dwz;
3035
3036 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3037 dwarf2_per_objfile->all_comp_units =
3038 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3039 dwarf2_per_objfile->n_comp_units);
3040
3041 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3042 &dwarf2_per_objfile->info, 0, 0);
3043
3044 if (dwz_elements == 0)
3045 return;
3046
3047 dwz = dwarf2_get_dwz_file ();
3048 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3049 cu_list_elements / 2);
3050 }
3051
3052 /* Create the signatured type hash table from the index. */
3053
3054 static void
3055 create_signatured_type_table_from_index (struct objfile *objfile,
3056 struct dwarf2_section_info *section,
3057 const gdb_byte *bytes,
3058 offset_type elements)
3059 {
3060 offset_type i;
3061 htab_t sig_types_hash;
3062
3063 dwarf2_per_objfile->n_type_units
3064 = dwarf2_per_objfile->n_allocated_type_units
3065 = elements / 3;
3066 dwarf2_per_objfile->all_type_units =
3067 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3068
3069 sig_types_hash = allocate_signatured_type_table (objfile);
3070
3071 for (i = 0; i < elements; i += 3)
3072 {
3073 struct signatured_type *sig_type;
3074 ULONGEST signature;
3075 void **slot;
3076 cu_offset type_offset_in_tu;
3077
3078 gdb_static_assert (sizeof (ULONGEST) >= 8);
3079 sect_offset sect_off
3080 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3081 type_offset_in_tu
3082 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3083 BFD_ENDIAN_LITTLE);
3084 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3085 bytes += 3 * 8;
3086
3087 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3088 struct signatured_type);
3089 sig_type->signature = signature;
3090 sig_type->type_offset_in_tu = type_offset_in_tu;
3091 sig_type->per_cu.is_debug_types = 1;
3092 sig_type->per_cu.section = section;
3093 sig_type->per_cu.sect_off = sect_off;
3094 sig_type->per_cu.objfile = objfile;
3095 sig_type->per_cu.v.quick
3096 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3097 struct dwarf2_per_cu_quick_data);
3098
3099 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3100 *slot = sig_type;
3101
3102 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3103 }
3104
3105 dwarf2_per_objfile->signatured_types = sig_types_hash;
3106 }
3107
3108 /* Read the address map data from the mapped index, and use it to
3109 populate the objfile's psymtabs_addrmap. */
3110
3111 static void
3112 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3113 {
3114 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3115 const gdb_byte *iter, *end;
3116 struct addrmap *mutable_map;
3117 CORE_ADDR baseaddr;
3118
3119 auto_obstack temp_obstack;
3120
3121 mutable_map = addrmap_create_mutable (&temp_obstack);
3122
3123 iter = index->address_table;
3124 end = iter + index->address_table_size;
3125
3126 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3127
3128 while (iter < end)
3129 {
3130 ULONGEST hi, lo, cu_index;
3131 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3132 iter += 8;
3133 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3134 iter += 8;
3135 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3136 iter += 4;
3137
3138 if (lo > hi)
3139 {
3140 complaint (&symfile_complaints,
3141 _(".gdb_index address table has invalid range (%s - %s)"),
3142 hex_string (lo), hex_string (hi));
3143 continue;
3144 }
3145
3146 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3147 {
3148 complaint (&symfile_complaints,
3149 _(".gdb_index address table has invalid CU number %u"),
3150 (unsigned) cu_index);
3151 continue;
3152 }
3153
3154 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3155 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3156 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3157 }
3158
3159 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3160 &objfile->objfile_obstack);
3161 }
3162
3163 /* The hash function for strings in the mapped index. This is the same as
3164 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3165 implementation. This is necessary because the hash function is tied to the
3166 format of the mapped index file. The hash values do not have to match with
3167 SYMBOL_HASH_NEXT.
3168
3169 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3170
3171 static hashval_t
3172 mapped_index_string_hash (int index_version, const void *p)
3173 {
3174 const unsigned char *str = (const unsigned char *) p;
3175 hashval_t r = 0;
3176 unsigned char c;
3177
3178 while ((c = *str++) != 0)
3179 {
3180 if (index_version >= 5)
3181 c = tolower (c);
3182 r = r * 67 + c - 113;
3183 }
3184
3185 return r;
3186 }
3187
3188 /* Find a slot in the mapped index INDEX for the object named NAME.
3189 If NAME is found, set *VEC_OUT to point to the CU vector in the
3190 constant pool and return 1. If NAME cannot be found, return 0. */
3191
3192 static int
3193 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3194 offset_type **vec_out)
3195 {
3196 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3197 offset_type hash;
3198 offset_type slot, step;
3199 int (*cmp) (const char *, const char *);
3200
3201 if (current_language->la_language == language_cplus
3202 || current_language->la_language == language_fortran
3203 || current_language->la_language == language_d)
3204 {
3205 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3206 not contain any. */
3207
3208 if (strchr (name, '(') != NULL)
3209 {
3210 char *without_params = cp_remove_params (name);
3211
3212 if (without_params != NULL)
3213 {
3214 make_cleanup (xfree, without_params);
3215 name = without_params;
3216 }
3217 }
3218 }
3219
3220 /* Index version 4 did not support case insensitive searches. But the
3221 indices for case insensitive languages are built in lowercase, therefore
3222 simulate our NAME being searched is also lowercased. */
3223 hash = mapped_index_string_hash ((index->version == 4
3224 && case_sensitivity == case_sensitive_off
3225 ? 5 : index->version),
3226 name);
3227
3228 slot = hash & (index->symbol_table_slots - 1);
3229 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3230 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3231
3232 for (;;)
3233 {
3234 /* Convert a slot number to an offset into the table. */
3235 offset_type i = 2 * slot;
3236 const char *str;
3237 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3238 {
3239 do_cleanups (back_to);
3240 return 0;
3241 }
3242
3243 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3244 if (!cmp (name, str))
3245 {
3246 *vec_out = (offset_type *) (index->constant_pool
3247 + MAYBE_SWAP (index->symbol_table[i + 1]));
3248 do_cleanups (back_to);
3249 return 1;
3250 }
3251
3252 slot = (slot + step) & (index->symbol_table_slots - 1);
3253 }
3254 }
3255
3256 /* A helper function that reads the .gdb_index from SECTION and fills
3257 in MAP. FILENAME is the name of the file containing the section;
3258 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3259 ok to use deprecated sections.
3260
3261 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3262 out parameters that are filled in with information about the CU and
3263 TU lists in the section.
3264
3265 Returns 1 if all went well, 0 otherwise. */
3266
3267 static int
3268 read_index_from_section (struct objfile *objfile,
3269 const char *filename,
3270 int deprecated_ok,
3271 struct dwarf2_section_info *section,
3272 struct mapped_index *map,
3273 const gdb_byte **cu_list,
3274 offset_type *cu_list_elements,
3275 const gdb_byte **types_list,
3276 offset_type *types_list_elements)
3277 {
3278 const gdb_byte *addr;
3279 offset_type version;
3280 offset_type *metadata;
3281 int i;
3282
3283 if (dwarf2_section_empty_p (section))
3284 return 0;
3285
3286 /* Older elfutils strip versions could keep the section in the main
3287 executable while splitting it for the separate debug info file. */
3288 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3289 return 0;
3290
3291 dwarf2_read_section (objfile, section);
3292
3293 addr = section->buffer;
3294 /* Version check. */
3295 version = MAYBE_SWAP (*(offset_type *) addr);
3296 /* Versions earlier than 3 emitted every copy of a psymbol. This
3297 causes the index to behave very poorly for certain requests. Version 3
3298 contained incomplete addrmap. So, it seems better to just ignore such
3299 indices. */
3300 if (version < 4)
3301 {
3302 static int warning_printed = 0;
3303 if (!warning_printed)
3304 {
3305 warning (_("Skipping obsolete .gdb_index section in %s."),
3306 filename);
3307 warning_printed = 1;
3308 }
3309 return 0;
3310 }
3311 /* Index version 4 uses a different hash function than index version
3312 5 and later.
3313
3314 Versions earlier than 6 did not emit psymbols for inlined
3315 functions. Using these files will cause GDB not to be able to
3316 set breakpoints on inlined functions by name, so we ignore these
3317 indices unless the user has done
3318 "set use-deprecated-index-sections on". */
3319 if (version < 6 && !deprecated_ok)
3320 {
3321 static int warning_printed = 0;
3322 if (!warning_printed)
3323 {
3324 warning (_("\
3325 Skipping deprecated .gdb_index section in %s.\n\
3326 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3327 to use the section anyway."),
3328 filename);
3329 warning_printed = 1;
3330 }
3331 return 0;
3332 }
3333 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3334 of the TU (for symbols coming from TUs),
3335 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3336 Plus gold-generated indices can have duplicate entries for global symbols,
3337 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3338 These are just performance bugs, and we can't distinguish gdb-generated
3339 indices from gold-generated ones, so issue no warning here. */
3340
3341 /* Indexes with higher version than the one supported by GDB may be no
3342 longer backward compatible. */
3343 if (version > 8)
3344 return 0;
3345
3346 map->version = version;
3347 map->total_size = section->size;
3348
3349 metadata = (offset_type *) (addr + sizeof (offset_type));
3350
3351 i = 0;
3352 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3353 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3354 / 8);
3355 ++i;
3356
3357 *types_list = addr + MAYBE_SWAP (metadata[i]);
3358 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3359 - MAYBE_SWAP (metadata[i]))
3360 / 8);
3361 ++i;
3362
3363 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3364 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3365 - MAYBE_SWAP (metadata[i]));
3366 ++i;
3367
3368 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3369 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3370 - MAYBE_SWAP (metadata[i]))
3371 / (2 * sizeof (offset_type)));
3372 ++i;
3373
3374 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3375
3376 return 1;
3377 }
3378
3379
3380 /* Read the index file. If everything went ok, initialize the "quick"
3381 elements of all the CUs and return 1. Otherwise, return 0. */
3382
3383 static int
3384 dwarf2_read_index (struct objfile *objfile)
3385 {
3386 struct mapped_index local_map, *map;
3387 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3388 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3389 struct dwz_file *dwz;
3390
3391 if (!read_index_from_section (objfile, objfile_name (objfile),
3392 use_deprecated_index_sections,
3393 &dwarf2_per_objfile->gdb_index, &local_map,
3394 &cu_list, &cu_list_elements,
3395 &types_list, &types_list_elements))
3396 return 0;
3397
3398 /* Don't use the index if it's empty. */
3399 if (local_map.symbol_table_slots == 0)
3400 return 0;
3401
3402 /* If there is a .dwz file, read it so we can get its CU list as
3403 well. */
3404 dwz = dwarf2_get_dwz_file ();
3405 if (dwz != NULL)
3406 {
3407 struct mapped_index dwz_map;
3408 const gdb_byte *dwz_types_ignore;
3409 offset_type dwz_types_elements_ignore;
3410
3411 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3412 1,
3413 &dwz->gdb_index, &dwz_map,
3414 &dwz_list, &dwz_list_elements,
3415 &dwz_types_ignore,
3416 &dwz_types_elements_ignore))
3417 {
3418 warning (_("could not read '.gdb_index' section from %s; skipping"),
3419 bfd_get_filename (dwz->dwz_bfd));
3420 return 0;
3421 }
3422 }
3423
3424 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3425 dwz_list_elements);
3426
3427 if (types_list_elements)
3428 {
3429 struct dwarf2_section_info *section;
3430
3431 /* We can only handle a single .debug_types when we have an
3432 index. */
3433 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3434 return 0;
3435
3436 section = VEC_index (dwarf2_section_info_def,
3437 dwarf2_per_objfile->types, 0);
3438
3439 create_signatured_type_table_from_index (objfile, section, types_list,
3440 types_list_elements);
3441 }
3442
3443 create_addrmap_from_index (objfile, &local_map);
3444
3445 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3446 *map = local_map;
3447
3448 dwarf2_per_objfile->index_table = map;
3449 dwarf2_per_objfile->using_index = 1;
3450 dwarf2_per_objfile->quick_file_names_table =
3451 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3452
3453 return 1;
3454 }
3455
3456 /* A helper for the "quick" functions which sets the global
3457 dwarf2_per_objfile according to OBJFILE. */
3458
3459 static void
3460 dw2_setup (struct objfile *objfile)
3461 {
3462 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3463 objfile_data (objfile, dwarf2_objfile_data_key));
3464 gdb_assert (dwarf2_per_objfile);
3465 }
3466
3467 /* die_reader_func for dw2_get_file_names. */
3468
3469 static void
3470 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3471 const gdb_byte *info_ptr,
3472 struct die_info *comp_unit_die,
3473 int has_children,
3474 void *data)
3475 {
3476 struct dwarf2_cu *cu = reader->cu;
3477 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3478 struct objfile *objfile = dwarf2_per_objfile->objfile;
3479 struct dwarf2_per_cu_data *lh_cu;
3480 struct attribute *attr;
3481 int i;
3482 void **slot;
3483 struct quick_file_names *qfn;
3484
3485 gdb_assert (! this_cu->is_debug_types);
3486
3487 /* Our callers never want to match partial units -- instead they
3488 will match the enclosing full CU. */
3489 if (comp_unit_die->tag == DW_TAG_partial_unit)
3490 {
3491 this_cu->v.quick->no_file_data = 1;
3492 return;
3493 }
3494
3495 lh_cu = this_cu;
3496 slot = NULL;
3497
3498 line_header_up lh;
3499 sect_offset line_offset {};
3500
3501 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3502 if (attr)
3503 {
3504 struct quick_file_names find_entry;
3505
3506 line_offset = (sect_offset) DW_UNSND (attr);
3507
3508 /* We may have already read in this line header (TU line header sharing).
3509 If we have we're done. */
3510 find_entry.hash.dwo_unit = cu->dwo_unit;
3511 find_entry.hash.line_sect_off = line_offset;
3512 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3513 &find_entry, INSERT);
3514 if (*slot != NULL)
3515 {
3516 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3517 return;
3518 }
3519
3520 lh = dwarf_decode_line_header (line_offset, cu);
3521 }
3522 if (lh == NULL)
3523 {
3524 lh_cu->v.quick->no_file_data = 1;
3525 return;
3526 }
3527
3528 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3529 qfn->hash.dwo_unit = cu->dwo_unit;
3530 qfn->hash.line_sect_off = line_offset;
3531 gdb_assert (slot != NULL);
3532 *slot = qfn;
3533
3534 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3535
3536 qfn->num_file_names = lh->file_names.size ();
3537 qfn->file_names =
3538 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3539 for (i = 0; i < lh->file_names.size (); ++i)
3540 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3541 qfn->real_names = NULL;
3542
3543 lh_cu->v.quick->file_names = qfn;
3544 }
3545
3546 /* A helper for the "quick" functions which attempts to read the line
3547 table for THIS_CU. */
3548
3549 static struct quick_file_names *
3550 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3551 {
3552 /* This should never be called for TUs. */
3553 gdb_assert (! this_cu->is_debug_types);
3554 /* Nor type unit groups. */
3555 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3556
3557 if (this_cu->v.quick->file_names != NULL)
3558 return this_cu->v.quick->file_names;
3559 /* If we know there is no line data, no point in looking again. */
3560 if (this_cu->v.quick->no_file_data)
3561 return NULL;
3562
3563 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3564
3565 if (this_cu->v.quick->no_file_data)
3566 return NULL;
3567 return this_cu->v.quick->file_names;
3568 }
3569
3570 /* A helper for the "quick" functions which computes and caches the
3571 real path for a given file name from the line table. */
3572
3573 static const char *
3574 dw2_get_real_path (struct objfile *objfile,
3575 struct quick_file_names *qfn, int index)
3576 {
3577 if (qfn->real_names == NULL)
3578 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3579 qfn->num_file_names, const char *);
3580
3581 if (qfn->real_names[index] == NULL)
3582 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3583
3584 return qfn->real_names[index];
3585 }
3586
3587 static struct symtab *
3588 dw2_find_last_source_symtab (struct objfile *objfile)
3589 {
3590 struct compunit_symtab *cust;
3591 int index;
3592
3593 dw2_setup (objfile);
3594 index = dwarf2_per_objfile->n_comp_units - 1;
3595 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3596 if (cust == NULL)
3597 return NULL;
3598 return compunit_primary_filetab (cust);
3599 }
3600
3601 /* Traversal function for dw2_forget_cached_source_info. */
3602
3603 static int
3604 dw2_free_cached_file_names (void **slot, void *info)
3605 {
3606 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3607
3608 if (file_data->real_names)
3609 {
3610 int i;
3611
3612 for (i = 0; i < file_data->num_file_names; ++i)
3613 {
3614 xfree ((void*) file_data->real_names[i]);
3615 file_data->real_names[i] = NULL;
3616 }
3617 }
3618
3619 return 1;
3620 }
3621
3622 static void
3623 dw2_forget_cached_source_info (struct objfile *objfile)
3624 {
3625 dw2_setup (objfile);
3626
3627 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3628 dw2_free_cached_file_names, NULL);
3629 }
3630
3631 /* Helper function for dw2_map_symtabs_matching_filename that expands
3632 the symtabs and calls the iterator. */
3633
3634 static int
3635 dw2_map_expand_apply (struct objfile *objfile,
3636 struct dwarf2_per_cu_data *per_cu,
3637 const char *name, const char *real_path,
3638 gdb::function_view<bool (symtab *)> callback)
3639 {
3640 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3641
3642 /* Don't visit already-expanded CUs. */
3643 if (per_cu->v.quick->compunit_symtab)
3644 return 0;
3645
3646 /* This may expand more than one symtab, and we want to iterate over
3647 all of them. */
3648 dw2_instantiate_symtab (per_cu);
3649
3650 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3651 last_made, callback);
3652 }
3653
3654 /* Implementation of the map_symtabs_matching_filename method. */
3655
3656 static bool
3657 dw2_map_symtabs_matching_filename
3658 (struct objfile *objfile, const char *name, const char *real_path,
3659 gdb::function_view<bool (symtab *)> callback)
3660 {
3661 int i;
3662 const char *name_basename = lbasename (name);
3663
3664 dw2_setup (objfile);
3665
3666 /* The rule is CUs specify all the files, including those used by
3667 any TU, so there's no need to scan TUs here. */
3668
3669 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3670 {
3671 int j;
3672 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3673 struct quick_file_names *file_data;
3674
3675 /* We only need to look at symtabs not already expanded. */
3676 if (per_cu->v.quick->compunit_symtab)
3677 continue;
3678
3679 file_data = dw2_get_file_names (per_cu);
3680 if (file_data == NULL)
3681 continue;
3682
3683 for (j = 0; j < file_data->num_file_names; ++j)
3684 {
3685 const char *this_name = file_data->file_names[j];
3686 const char *this_real_name;
3687
3688 if (compare_filenames_for_search (this_name, name))
3689 {
3690 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3691 callback))
3692 return true;
3693 continue;
3694 }
3695
3696 /* Before we invoke realpath, which can get expensive when many
3697 files are involved, do a quick comparison of the basenames. */
3698 if (! basenames_may_differ
3699 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3700 continue;
3701
3702 this_real_name = dw2_get_real_path (objfile, file_data, j);
3703 if (compare_filenames_for_search (this_real_name, name))
3704 {
3705 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3706 callback))
3707 return true;
3708 continue;
3709 }
3710
3711 if (real_path != NULL)
3712 {
3713 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3714 gdb_assert (IS_ABSOLUTE_PATH (name));
3715 if (this_real_name != NULL
3716 && FILENAME_CMP (real_path, this_real_name) == 0)
3717 {
3718 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3719 callback))
3720 return true;
3721 continue;
3722 }
3723 }
3724 }
3725 }
3726
3727 return false;
3728 }
3729
3730 /* Struct used to manage iterating over all CUs looking for a symbol. */
3731
3732 struct dw2_symtab_iterator
3733 {
3734 /* The internalized form of .gdb_index. */
3735 struct mapped_index *index;
3736 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3737 int want_specific_block;
3738 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3739 Unused if !WANT_SPECIFIC_BLOCK. */
3740 int block_index;
3741 /* The kind of symbol we're looking for. */
3742 domain_enum domain;
3743 /* The list of CUs from the index entry of the symbol,
3744 or NULL if not found. */
3745 offset_type *vec;
3746 /* The next element in VEC to look at. */
3747 int next;
3748 /* The number of elements in VEC, or zero if there is no match. */
3749 int length;
3750 /* Have we seen a global version of the symbol?
3751 If so we can ignore all further global instances.
3752 This is to work around gold/15646, inefficient gold-generated
3753 indices. */
3754 int global_seen;
3755 };
3756
3757 /* Initialize the index symtab iterator ITER.
3758 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3759 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3760
3761 static void
3762 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3763 struct mapped_index *index,
3764 int want_specific_block,
3765 int block_index,
3766 domain_enum domain,
3767 const char *name)
3768 {
3769 iter->index = index;
3770 iter->want_specific_block = want_specific_block;
3771 iter->block_index = block_index;
3772 iter->domain = domain;
3773 iter->next = 0;
3774 iter->global_seen = 0;
3775
3776 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3777 iter->length = MAYBE_SWAP (*iter->vec);
3778 else
3779 {
3780 iter->vec = NULL;
3781 iter->length = 0;
3782 }
3783 }
3784
3785 /* Return the next matching CU or NULL if there are no more. */
3786
3787 static struct dwarf2_per_cu_data *
3788 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3789 {
3790 for ( ; iter->next < iter->length; ++iter->next)
3791 {
3792 offset_type cu_index_and_attrs =
3793 MAYBE_SWAP (iter->vec[iter->next + 1]);
3794 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3795 struct dwarf2_per_cu_data *per_cu;
3796 int want_static = iter->block_index != GLOBAL_BLOCK;
3797 /* This value is only valid for index versions >= 7. */
3798 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3799 gdb_index_symbol_kind symbol_kind =
3800 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3801 /* Only check the symbol attributes if they're present.
3802 Indices prior to version 7 don't record them,
3803 and indices >= 7 may elide them for certain symbols
3804 (gold does this). */
3805 int attrs_valid =
3806 (iter->index->version >= 7
3807 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3808
3809 /* Don't crash on bad data. */
3810 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3811 + dwarf2_per_objfile->n_type_units))
3812 {
3813 complaint (&symfile_complaints,
3814 _(".gdb_index entry has bad CU index"
3815 " [in module %s]"),
3816 objfile_name (dwarf2_per_objfile->objfile));
3817 continue;
3818 }
3819
3820 per_cu = dw2_get_cutu (cu_index);
3821
3822 /* Skip if already read in. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 /* Check static vs global. */
3827 if (attrs_valid)
3828 {
3829 if (iter->want_specific_block
3830 && want_static != is_static)
3831 continue;
3832 /* Work around gold/15646. */
3833 if (!is_static && iter->global_seen)
3834 continue;
3835 if (!is_static)
3836 iter->global_seen = 1;
3837 }
3838
3839 /* Only check the symbol's kind if it has one. */
3840 if (attrs_valid)
3841 {
3842 switch (iter->domain)
3843 {
3844 case VAR_DOMAIN:
3845 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3846 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3847 /* Some types are also in VAR_DOMAIN. */
3848 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3849 continue;
3850 break;
3851 case STRUCT_DOMAIN:
3852 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3853 continue;
3854 break;
3855 case LABEL_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3857 continue;
3858 break;
3859 default:
3860 break;
3861 }
3862 }
3863
3864 ++iter->next;
3865 return per_cu;
3866 }
3867
3868 return NULL;
3869 }
3870
3871 static struct compunit_symtab *
3872 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3873 const char *name, domain_enum domain)
3874 {
3875 struct compunit_symtab *stab_best = NULL;
3876 struct mapped_index *index;
3877
3878 dw2_setup (objfile);
3879
3880 index = dwarf2_per_objfile->index_table;
3881
3882 /* index is NULL if OBJF_READNOW. */
3883 if (index)
3884 {
3885 struct dw2_symtab_iterator iter;
3886 struct dwarf2_per_cu_data *per_cu;
3887
3888 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3889
3890 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3891 {
3892 struct symbol *sym, *with_opaque = NULL;
3893 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3894 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3895 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3896
3897 sym = block_find_symbol (block, name, domain,
3898 block_find_non_opaque_type_preferred,
3899 &with_opaque);
3900
3901 /* Some caution must be observed with overloaded functions
3902 and methods, since the index will not contain any overload
3903 information (but NAME might contain it). */
3904
3905 if (sym != NULL
3906 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3907 return stab;
3908 if (with_opaque != NULL
3909 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3910 stab_best = stab;
3911
3912 /* Keep looking through other CUs. */
3913 }
3914 }
3915
3916 return stab_best;
3917 }
3918
3919 static void
3920 dw2_print_stats (struct objfile *objfile)
3921 {
3922 int i, total, count;
3923
3924 dw2_setup (objfile);
3925 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3926 count = 0;
3927 for (i = 0; i < total; ++i)
3928 {
3929 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3930
3931 if (!per_cu->v.quick->compunit_symtab)
3932 ++count;
3933 }
3934 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3935 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3936 }
3937
3938 /* This dumps minimal information about the index.
3939 It is called via "mt print objfiles".
3940 One use is to verify .gdb_index has been loaded by the
3941 gdb.dwarf2/gdb-index.exp testcase. */
3942
3943 static void
3944 dw2_dump (struct objfile *objfile)
3945 {
3946 dw2_setup (objfile);
3947 gdb_assert (dwarf2_per_objfile->using_index);
3948 printf_filtered (".gdb_index:");
3949 if (dwarf2_per_objfile->index_table != NULL)
3950 {
3951 printf_filtered (" version %d\n",
3952 dwarf2_per_objfile->index_table->version);
3953 }
3954 else
3955 printf_filtered (" faked for \"readnow\"\n");
3956 printf_filtered ("\n");
3957 }
3958
3959 static void
3960 dw2_relocate (struct objfile *objfile,
3961 const struct section_offsets *new_offsets,
3962 const struct section_offsets *delta)
3963 {
3964 /* There's nothing to relocate here. */
3965 }
3966
3967 static void
3968 dw2_expand_symtabs_for_function (struct objfile *objfile,
3969 const char *func_name)
3970 {
3971 struct mapped_index *index;
3972
3973 dw2_setup (objfile);
3974
3975 index = dwarf2_per_objfile->index_table;
3976
3977 /* index is NULL if OBJF_READNOW. */
3978 if (index)
3979 {
3980 struct dw2_symtab_iterator iter;
3981 struct dwarf2_per_cu_data *per_cu;
3982
3983 /* Note: It doesn't matter what we pass for block_index here. */
3984 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3985 func_name);
3986
3987 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3988 dw2_instantiate_symtab (per_cu);
3989 }
3990 }
3991
3992 static void
3993 dw2_expand_all_symtabs (struct objfile *objfile)
3994 {
3995 int i;
3996
3997 dw2_setup (objfile);
3998
3999 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4000 + dwarf2_per_objfile->n_type_units); ++i)
4001 {
4002 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4003
4004 dw2_instantiate_symtab (per_cu);
4005 }
4006 }
4007
4008 static void
4009 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4010 const char *fullname)
4011 {
4012 int i;
4013
4014 dw2_setup (objfile);
4015
4016 /* We don't need to consider type units here.
4017 This is only called for examining code, e.g. expand_line_sal.
4018 There can be an order of magnitude (or more) more type units
4019 than comp units, and we avoid them if we can. */
4020
4021 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4022 {
4023 int j;
4024 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4025 struct quick_file_names *file_data;
4026
4027 /* We only need to look at symtabs not already expanded. */
4028 if (per_cu->v.quick->compunit_symtab)
4029 continue;
4030
4031 file_data = dw2_get_file_names (per_cu);
4032 if (file_data == NULL)
4033 continue;
4034
4035 for (j = 0; j < file_data->num_file_names; ++j)
4036 {
4037 const char *this_fullname = file_data->file_names[j];
4038
4039 if (filename_cmp (this_fullname, fullname) == 0)
4040 {
4041 dw2_instantiate_symtab (per_cu);
4042 break;
4043 }
4044 }
4045 }
4046 }
4047
4048 static void
4049 dw2_map_matching_symbols (struct objfile *objfile,
4050 const char * name, domain_enum domain,
4051 int global,
4052 int (*callback) (struct block *,
4053 struct symbol *, void *),
4054 void *data, symbol_compare_ftype *match,
4055 symbol_compare_ftype *ordered_compare)
4056 {
4057 /* Currently unimplemented; used for Ada. The function can be called if the
4058 current language is Ada for a non-Ada objfile using GNU index. As Ada
4059 does not look for non-Ada symbols this function should just return. */
4060 }
4061
4062 static void
4063 dw2_expand_symtabs_matching
4064 (struct objfile *objfile,
4065 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4066 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4067 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4068 enum search_domain kind)
4069 {
4070 int i;
4071 offset_type iter;
4072 struct mapped_index *index;
4073
4074 dw2_setup (objfile);
4075
4076 /* index_table is NULL if OBJF_READNOW. */
4077 if (!dwarf2_per_objfile->index_table)
4078 return;
4079 index = dwarf2_per_objfile->index_table;
4080
4081 if (file_matcher != NULL)
4082 {
4083 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4084 htab_eq_pointer,
4085 NULL, xcalloc, xfree));
4086 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4087 htab_eq_pointer,
4088 NULL, xcalloc, xfree));
4089
4090 /* The rule is CUs specify all the files, including those used by
4091 any TU, so there's no need to scan TUs here. */
4092
4093 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4094 {
4095 int j;
4096 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4097 struct quick_file_names *file_data;
4098 void **slot;
4099
4100 QUIT;
4101
4102 per_cu->v.quick->mark = 0;
4103
4104 /* We only need to look at symtabs not already expanded. */
4105 if (per_cu->v.quick->compunit_symtab)
4106 continue;
4107
4108 file_data = dw2_get_file_names (per_cu);
4109 if (file_data == NULL)
4110 continue;
4111
4112 if (htab_find (visited_not_found.get (), file_data) != NULL)
4113 continue;
4114 else if (htab_find (visited_found.get (), file_data) != NULL)
4115 {
4116 per_cu->v.quick->mark = 1;
4117 continue;
4118 }
4119
4120 for (j = 0; j < file_data->num_file_names; ++j)
4121 {
4122 const char *this_real_name;
4123
4124 if (file_matcher (file_data->file_names[j], false))
4125 {
4126 per_cu->v.quick->mark = 1;
4127 break;
4128 }
4129
4130 /* Before we invoke realpath, which can get expensive when many
4131 files are involved, do a quick comparison of the basenames. */
4132 if (!basenames_may_differ
4133 && !file_matcher (lbasename (file_data->file_names[j]),
4134 true))
4135 continue;
4136
4137 this_real_name = dw2_get_real_path (objfile, file_data, j);
4138 if (file_matcher (this_real_name, false))
4139 {
4140 per_cu->v.quick->mark = 1;
4141 break;
4142 }
4143 }
4144
4145 slot = htab_find_slot (per_cu->v.quick->mark
4146 ? visited_found.get ()
4147 : visited_not_found.get (),
4148 file_data, INSERT);
4149 *slot = file_data;
4150 }
4151 }
4152
4153 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4154 {
4155 offset_type idx = 2 * iter;
4156 const char *name;
4157 offset_type *vec, vec_len, vec_idx;
4158 int global_seen = 0;
4159
4160 QUIT;
4161
4162 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4163 continue;
4164
4165 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4166
4167 if (!symbol_matcher (name))
4168 continue;
4169
4170 /* The name was matched, now expand corresponding CUs that were
4171 marked. */
4172 vec = (offset_type *) (index->constant_pool
4173 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4174 vec_len = MAYBE_SWAP (vec[0]);
4175 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4176 {
4177 struct dwarf2_per_cu_data *per_cu;
4178 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4179 /* This value is only valid for index versions >= 7. */
4180 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4181 gdb_index_symbol_kind symbol_kind =
4182 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4183 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4184 /* Only check the symbol attributes if they're present.
4185 Indices prior to version 7 don't record them,
4186 and indices >= 7 may elide them for certain symbols
4187 (gold does this). */
4188 int attrs_valid =
4189 (index->version >= 7
4190 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4191
4192 /* Work around gold/15646. */
4193 if (attrs_valid)
4194 {
4195 if (!is_static && global_seen)
4196 continue;
4197 if (!is_static)
4198 global_seen = 1;
4199 }
4200
4201 /* Only check the symbol's kind if it has one. */
4202 if (attrs_valid)
4203 {
4204 switch (kind)
4205 {
4206 case VARIABLES_DOMAIN:
4207 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4208 continue;
4209 break;
4210 case FUNCTIONS_DOMAIN:
4211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4212 continue;
4213 break;
4214 case TYPES_DOMAIN:
4215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4216 continue;
4217 break;
4218 default:
4219 break;
4220 }
4221 }
4222
4223 /* Don't crash on bad data. */
4224 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4225 + dwarf2_per_objfile->n_type_units))
4226 {
4227 complaint (&symfile_complaints,
4228 _(".gdb_index entry has bad CU index"
4229 " [in module %s]"), objfile_name (objfile));
4230 continue;
4231 }
4232
4233 per_cu = dw2_get_cutu (cu_index);
4234 if (file_matcher == NULL || per_cu->v.quick->mark)
4235 {
4236 int symtab_was_null =
4237 (per_cu->v.quick->compunit_symtab == NULL);
4238
4239 dw2_instantiate_symtab (per_cu);
4240
4241 if (expansion_notify != NULL
4242 && symtab_was_null
4243 && per_cu->v.quick->compunit_symtab != NULL)
4244 {
4245 expansion_notify (per_cu->v.quick->compunit_symtab);
4246 }
4247 }
4248 }
4249 }
4250 }
4251
4252 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4253 symtab. */
4254
4255 static struct compunit_symtab *
4256 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4257 CORE_ADDR pc)
4258 {
4259 int i;
4260
4261 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4262 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4263 return cust;
4264
4265 if (cust->includes == NULL)
4266 return NULL;
4267
4268 for (i = 0; cust->includes[i]; ++i)
4269 {
4270 struct compunit_symtab *s = cust->includes[i];
4271
4272 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4273 if (s != NULL)
4274 return s;
4275 }
4276
4277 return NULL;
4278 }
4279
4280 static struct compunit_symtab *
4281 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4282 struct bound_minimal_symbol msymbol,
4283 CORE_ADDR pc,
4284 struct obj_section *section,
4285 int warn_if_readin)
4286 {
4287 struct dwarf2_per_cu_data *data;
4288 struct compunit_symtab *result;
4289
4290 dw2_setup (objfile);
4291
4292 if (!objfile->psymtabs_addrmap)
4293 return NULL;
4294
4295 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4296 pc);
4297 if (!data)
4298 return NULL;
4299
4300 if (warn_if_readin && data->v.quick->compunit_symtab)
4301 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4302 paddress (get_objfile_arch (objfile), pc));
4303
4304 result
4305 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4306 pc);
4307 gdb_assert (result != NULL);
4308 return result;
4309 }
4310
4311 static void
4312 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4313 void *data, int need_fullname)
4314 {
4315 int i;
4316 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4317 NULL, xcalloc, xfree));
4318
4319 dw2_setup (objfile);
4320
4321 /* The rule is CUs specify all the files, including those used by
4322 any TU, so there's no need to scan TUs here.
4323 We can ignore file names coming from already-expanded CUs. */
4324
4325 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4326 {
4327 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4328
4329 if (per_cu->v.quick->compunit_symtab)
4330 {
4331 void **slot = htab_find_slot (visited.get (),
4332 per_cu->v.quick->file_names,
4333 INSERT);
4334
4335 *slot = per_cu->v.quick->file_names;
4336 }
4337 }
4338
4339 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4340 {
4341 int j;
4342 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4343 struct quick_file_names *file_data;
4344 void **slot;
4345
4346 /* We only need to look at symtabs not already expanded. */
4347 if (per_cu->v.quick->compunit_symtab)
4348 continue;
4349
4350 file_data = dw2_get_file_names (per_cu);
4351 if (file_data == NULL)
4352 continue;
4353
4354 slot = htab_find_slot (visited.get (), file_data, INSERT);
4355 if (*slot)
4356 {
4357 /* Already visited. */
4358 continue;
4359 }
4360 *slot = file_data;
4361
4362 for (j = 0; j < file_data->num_file_names; ++j)
4363 {
4364 const char *this_real_name;
4365
4366 if (need_fullname)
4367 this_real_name = dw2_get_real_path (objfile, file_data, j);
4368 else
4369 this_real_name = NULL;
4370 (*fun) (file_data->file_names[j], this_real_name, data);
4371 }
4372 }
4373 }
4374
4375 static int
4376 dw2_has_symbols (struct objfile *objfile)
4377 {
4378 return 1;
4379 }
4380
4381 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4382 {
4383 dw2_has_symbols,
4384 dw2_find_last_source_symtab,
4385 dw2_forget_cached_source_info,
4386 dw2_map_symtabs_matching_filename,
4387 dw2_lookup_symbol,
4388 dw2_print_stats,
4389 dw2_dump,
4390 dw2_relocate,
4391 dw2_expand_symtabs_for_function,
4392 dw2_expand_all_symtabs,
4393 dw2_expand_symtabs_with_fullname,
4394 dw2_map_matching_symbols,
4395 dw2_expand_symtabs_matching,
4396 dw2_find_pc_sect_compunit_symtab,
4397 dw2_map_symbol_filenames
4398 };
4399
4400 /* Initialize for reading DWARF for this objfile. Return 0 if this
4401 file will use psymtabs, or 1 if using the GNU index. */
4402
4403 int
4404 dwarf2_initialize_objfile (struct objfile *objfile)
4405 {
4406 /* If we're about to read full symbols, don't bother with the
4407 indices. In this case we also don't care if some other debug
4408 format is making psymtabs, because they are all about to be
4409 expanded anyway. */
4410 if ((objfile->flags & OBJF_READNOW))
4411 {
4412 int i;
4413
4414 dwarf2_per_objfile->using_index = 1;
4415 create_all_comp_units (objfile);
4416 create_all_type_units (objfile);
4417 dwarf2_per_objfile->quick_file_names_table =
4418 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4419
4420 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4421 + dwarf2_per_objfile->n_type_units); ++i)
4422 {
4423 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4424
4425 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4426 struct dwarf2_per_cu_quick_data);
4427 }
4428
4429 /* Return 1 so that gdb sees the "quick" functions. However,
4430 these functions will be no-ops because we will have expanded
4431 all symtabs. */
4432 return 1;
4433 }
4434
4435 if (dwarf2_read_index (objfile))
4436 return 1;
4437
4438 return 0;
4439 }
4440
4441 \f
4442
4443 /* Build a partial symbol table. */
4444
4445 void
4446 dwarf2_build_psymtabs (struct objfile *objfile)
4447 {
4448
4449 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4450 {
4451 init_psymbol_list (objfile, 1024);
4452 }
4453
4454 TRY
4455 {
4456 /* This isn't really ideal: all the data we allocate on the
4457 objfile's obstack is still uselessly kept around. However,
4458 freeing it seems unsafe. */
4459 psymtab_discarder psymtabs (objfile);
4460 dwarf2_build_psymtabs_hard (objfile);
4461 psymtabs.keep ();
4462 }
4463 CATCH (except, RETURN_MASK_ERROR)
4464 {
4465 exception_print (gdb_stderr, except);
4466 }
4467 END_CATCH
4468 }
4469
4470 /* Return the total length of the CU described by HEADER. */
4471
4472 static unsigned int
4473 get_cu_length (const struct comp_unit_head *header)
4474 {
4475 return header->initial_length_size + header->length;
4476 }
4477
4478 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4479
4480 static inline bool
4481 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4482 {
4483 sect_offset bottom = cu_header->sect_off;
4484 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4485
4486 return sect_off >= bottom && sect_off < top;
4487 }
4488
4489 /* Find the base address of the compilation unit for range lists and
4490 location lists. It will normally be specified by DW_AT_low_pc.
4491 In DWARF-3 draft 4, the base address could be overridden by
4492 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4493 compilation units with discontinuous ranges. */
4494
4495 static void
4496 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4497 {
4498 struct attribute *attr;
4499
4500 cu->base_known = 0;
4501 cu->base_address = 0;
4502
4503 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4504 if (attr)
4505 {
4506 cu->base_address = attr_value_as_address (attr);
4507 cu->base_known = 1;
4508 }
4509 else
4510 {
4511 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4512 if (attr)
4513 {
4514 cu->base_address = attr_value_as_address (attr);
4515 cu->base_known = 1;
4516 }
4517 }
4518 }
4519
4520 /* Read in the comp unit header information from the debug_info at info_ptr.
4521 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4522 NOTE: This leaves members offset, first_die_offset to be filled in
4523 by the caller. */
4524
4525 static const gdb_byte *
4526 read_comp_unit_head (struct comp_unit_head *cu_header,
4527 const gdb_byte *info_ptr,
4528 struct dwarf2_section_info *section,
4529 rcuh_kind section_kind)
4530 {
4531 int signed_addr;
4532 unsigned int bytes_read;
4533 const char *filename = get_section_file_name (section);
4534 bfd *abfd = get_section_bfd_owner (section);
4535
4536 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4537 cu_header->initial_length_size = bytes_read;
4538 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4539 info_ptr += bytes_read;
4540 cu_header->version = read_2_bytes (abfd, info_ptr);
4541 info_ptr += 2;
4542 if (cu_header->version < 5)
4543 switch (section_kind)
4544 {
4545 case rcuh_kind::COMPILE:
4546 cu_header->unit_type = DW_UT_compile;
4547 break;
4548 case rcuh_kind::TYPE:
4549 cu_header->unit_type = DW_UT_type;
4550 break;
4551 default:
4552 internal_error (__FILE__, __LINE__,
4553 _("read_comp_unit_head: invalid section_kind"));
4554 }
4555 else
4556 {
4557 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4558 (read_1_byte (abfd, info_ptr));
4559 info_ptr += 1;
4560 switch (cu_header->unit_type)
4561 {
4562 case DW_UT_compile:
4563 if (section_kind != rcuh_kind::COMPILE)
4564 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4565 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4566 filename);
4567 break;
4568 case DW_UT_type:
4569 section_kind = rcuh_kind::TYPE;
4570 break;
4571 default:
4572 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4573 "(is %d, should be %d or %d) [in module %s]"),
4574 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4575 }
4576
4577 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4578 info_ptr += 1;
4579 }
4580 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4581 cu_header,
4582 &bytes_read);
4583 info_ptr += bytes_read;
4584 if (cu_header->version < 5)
4585 {
4586 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4587 info_ptr += 1;
4588 }
4589 signed_addr = bfd_get_sign_extend_vma (abfd);
4590 if (signed_addr < 0)
4591 internal_error (__FILE__, __LINE__,
4592 _("read_comp_unit_head: dwarf from non elf file"));
4593 cu_header->signed_addr_p = signed_addr;
4594
4595 if (section_kind == rcuh_kind::TYPE)
4596 {
4597 LONGEST type_offset;
4598
4599 cu_header->signature = read_8_bytes (abfd, info_ptr);
4600 info_ptr += 8;
4601
4602 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4603 info_ptr += bytes_read;
4604 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4605 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4606 error (_("Dwarf Error: Too big type_offset in compilation unit "
4607 "header (is %s) [in module %s]"), plongest (type_offset),
4608 filename);
4609 }
4610
4611 return info_ptr;
4612 }
4613
4614 /* Helper function that returns the proper abbrev section for
4615 THIS_CU. */
4616
4617 static struct dwarf2_section_info *
4618 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4619 {
4620 struct dwarf2_section_info *abbrev;
4621
4622 if (this_cu->is_dwz)
4623 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4624 else
4625 abbrev = &dwarf2_per_objfile->abbrev;
4626
4627 return abbrev;
4628 }
4629
4630 /* Subroutine of read_and_check_comp_unit_head and
4631 read_and_check_type_unit_head to simplify them.
4632 Perform various error checking on the header. */
4633
4634 static void
4635 error_check_comp_unit_head (struct comp_unit_head *header,
4636 struct dwarf2_section_info *section,
4637 struct dwarf2_section_info *abbrev_section)
4638 {
4639 const char *filename = get_section_file_name (section);
4640
4641 if (header->version < 2 || header->version > 5)
4642 error (_("Dwarf Error: wrong version in compilation unit header "
4643 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4644 filename);
4645
4646 if (to_underlying (header->abbrev_sect_off)
4647 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4648 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4649 "(offset 0x%x + 6) [in module %s]"),
4650 to_underlying (header->abbrev_sect_off),
4651 to_underlying (header->sect_off),
4652 filename);
4653
4654 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4655 avoid potential 32-bit overflow. */
4656 if (((ULONGEST) header->sect_off + get_cu_length (header))
4657 > section->size)
4658 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4659 "(offset 0x%x + 0) [in module %s]"),
4660 header->length, to_underlying (header->sect_off),
4661 filename);
4662 }
4663
4664 /* Read in a CU/TU header and perform some basic error checking.
4665 The contents of the header are stored in HEADER.
4666 The result is a pointer to the start of the first DIE. */
4667
4668 static const gdb_byte *
4669 read_and_check_comp_unit_head (struct comp_unit_head *header,
4670 struct dwarf2_section_info *section,
4671 struct dwarf2_section_info *abbrev_section,
4672 const gdb_byte *info_ptr,
4673 rcuh_kind section_kind)
4674 {
4675 const gdb_byte *beg_of_comp_unit = info_ptr;
4676 bfd *abfd = get_section_bfd_owner (section);
4677
4678 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4679
4680 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4681
4682 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4683
4684 error_check_comp_unit_head (header, section, abbrev_section);
4685
4686 return info_ptr;
4687 }
4688
4689 /* Fetch the abbreviation table offset from a comp or type unit header. */
4690
4691 static sect_offset
4692 read_abbrev_offset (struct dwarf2_section_info *section,
4693 sect_offset sect_off)
4694 {
4695 bfd *abfd = get_section_bfd_owner (section);
4696 const gdb_byte *info_ptr;
4697 unsigned int initial_length_size, offset_size;
4698 uint16_t version;
4699
4700 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4701 info_ptr = section->buffer + to_underlying (sect_off);
4702 read_initial_length (abfd, info_ptr, &initial_length_size);
4703 offset_size = initial_length_size == 4 ? 4 : 8;
4704 info_ptr += initial_length_size;
4705
4706 version = read_2_bytes (abfd, info_ptr);
4707 info_ptr += 2;
4708 if (version >= 5)
4709 {
4710 /* Skip unit type and address size. */
4711 info_ptr += 2;
4712 }
4713
4714 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4715 }
4716
4717 /* Allocate a new partial symtab for file named NAME and mark this new
4718 partial symtab as being an include of PST. */
4719
4720 static void
4721 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4722 struct objfile *objfile)
4723 {
4724 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4725
4726 if (!IS_ABSOLUTE_PATH (subpst->filename))
4727 {
4728 /* It shares objfile->objfile_obstack. */
4729 subpst->dirname = pst->dirname;
4730 }
4731
4732 subpst->textlow = 0;
4733 subpst->texthigh = 0;
4734
4735 subpst->dependencies
4736 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4737 subpst->dependencies[0] = pst;
4738 subpst->number_of_dependencies = 1;
4739
4740 subpst->globals_offset = 0;
4741 subpst->n_global_syms = 0;
4742 subpst->statics_offset = 0;
4743 subpst->n_static_syms = 0;
4744 subpst->compunit_symtab = NULL;
4745 subpst->read_symtab = pst->read_symtab;
4746 subpst->readin = 0;
4747
4748 /* No private part is necessary for include psymtabs. This property
4749 can be used to differentiate between such include psymtabs and
4750 the regular ones. */
4751 subpst->read_symtab_private = NULL;
4752 }
4753
4754 /* Read the Line Number Program data and extract the list of files
4755 included by the source file represented by PST. Build an include
4756 partial symtab for each of these included files. */
4757
4758 static void
4759 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4760 struct die_info *die,
4761 struct partial_symtab *pst)
4762 {
4763 line_header_up lh;
4764 struct attribute *attr;
4765
4766 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4767 if (attr)
4768 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4769 if (lh == NULL)
4770 return; /* No linetable, so no includes. */
4771
4772 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4773 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4774 }
4775
4776 static hashval_t
4777 hash_signatured_type (const void *item)
4778 {
4779 const struct signatured_type *sig_type
4780 = (const struct signatured_type *) item;
4781
4782 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4783 return sig_type->signature;
4784 }
4785
4786 static int
4787 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4788 {
4789 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4790 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4791
4792 return lhs->signature == rhs->signature;
4793 }
4794
4795 /* Allocate a hash table for signatured types. */
4796
4797 static htab_t
4798 allocate_signatured_type_table (struct objfile *objfile)
4799 {
4800 return htab_create_alloc_ex (41,
4801 hash_signatured_type,
4802 eq_signatured_type,
4803 NULL,
4804 &objfile->objfile_obstack,
4805 hashtab_obstack_allocate,
4806 dummy_obstack_deallocate);
4807 }
4808
4809 /* A helper function to add a signatured type CU to a table. */
4810
4811 static int
4812 add_signatured_type_cu_to_table (void **slot, void *datum)
4813 {
4814 struct signatured_type *sigt = (struct signatured_type *) *slot;
4815 struct signatured_type ***datap = (struct signatured_type ***) datum;
4816
4817 **datap = sigt;
4818 ++*datap;
4819
4820 return 1;
4821 }
4822
4823 /* A helper for create_debug_types_hash_table. Read types from SECTION
4824 and fill them into TYPES_HTAB. It will process only type units,
4825 therefore DW_UT_type. */
4826
4827 static void
4828 create_debug_type_hash_table (struct dwo_file *dwo_file,
4829 dwarf2_section_info *section, htab_t &types_htab,
4830 rcuh_kind section_kind)
4831 {
4832 struct objfile *objfile = dwarf2_per_objfile->objfile;
4833 struct dwarf2_section_info *abbrev_section;
4834 bfd *abfd;
4835 const gdb_byte *info_ptr, *end_ptr;
4836
4837 abbrev_section = (dwo_file != NULL
4838 ? &dwo_file->sections.abbrev
4839 : &dwarf2_per_objfile->abbrev);
4840
4841 if (dwarf_read_debug)
4842 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4843 get_section_name (section),
4844 get_section_file_name (abbrev_section));
4845
4846 dwarf2_read_section (objfile, section);
4847 info_ptr = section->buffer;
4848
4849 if (info_ptr == NULL)
4850 return;
4851
4852 /* We can't set abfd until now because the section may be empty or
4853 not present, in which case the bfd is unknown. */
4854 abfd = get_section_bfd_owner (section);
4855
4856 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4857 because we don't need to read any dies: the signature is in the
4858 header. */
4859
4860 end_ptr = info_ptr + section->size;
4861 while (info_ptr < end_ptr)
4862 {
4863 struct signatured_type *sig_type;
4864 struct dwo_unit *dwo_tu;
4865 void **slot;
4866 const gdb_byte *ptr = info_ptr;
4867 struct comp_unit_head header;
4868 unsigned int length;
4869
4870 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4871
4872 /* Initialize it due to a false compiler warning. */
4873 header.signature = -1;
4874 header.type_cu_offset_in_tu = (cu_offset) -1;
4875
4876 /* We need to read the type's signature in order to build the hash
4877 table, but we don't need anything else just yet. */
4878
4879 ptr = read_and_check_comp_unit_head (&header, section,
4880 abbrev_section, ptr, section_kind);
4881
4882 length = get_cu_length (&header);
4883
4884 /* Skip dummy type units. */
4885 if (ptr >= info_ptr + length
4886 || peek_abbrev_code (abfd, ptr) == 0
4887 || header.unit_type != DW_UT_type)
4888 {
4889 info_ptr += length;
4890 continue;
4891 }
4892
4893 if (types_htab == NULL)
4894 {
4895 if (dwo_file)
4896 types_htab = allocate_dwo_unit_table (objfile);
4897 else
4898 types_htab = allocate_signatured_type_table (objfile);
4899 }
4900
4901 if (dwo_file)
4902 {
4903 sig_type = NULL;
4904 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4905 struct dwo_unit);
4906 dwo_tu->dwo_file = dwo_file;
4907 dwo_tu->signature = header.signature;
4908 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4909 dwo_tu->section = section;
4910 dwo_tu->sect_off = sect_off;
4911 dwo_tu->length = length;
4912 }
4913 else
4914 {
4915 /* N.B.: type_offset is not usable if this type uses a DWO file.
4916 The real type_offset is in the DWO file. */
4917 dwo_tu = NULL;
4918 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4919 struct signatured_type);
4920 sig_type->signature = header.signature;
4921 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4922 sig_type->per_cu.objfile = objfile;
4923 sig_type->per_cu.is_debug_types = 1;
4924 sig_type->per_cu.section = section;
4925 sig_type->per_cu.sect_off = sect_off;
4926 sig_type->per_cu.length = length;
4927 }
4928
4929 slot = htab_find_slot (types_htab,
4930 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4931 INSERT);
4932 gdb_assert (slot != NULL);
4933 if (*slot != NULL)
4934 {
4935 sect_offset dup_sect_off;
4936
4937 if (dwo_file)
4938 {
4939 const struct dwo_unit *dup_tu
4940 = (const struct dwo_unit *) *slot;
4941
4942 dup_sect_off = dup_tu->sect_off;
4943 }
4944 else
4945 {
4946 const struct signatured_type *dup_tu
4947 = (const struct signatured_type *) *slot;
4948
4949 dup_sect_off = dup_tu->per_cu.sect_off;
4950 }
4951
4952 complaint (&symfile_complaints,
4953 _("debug type entry at offset 0x%x is duplicate to"
4954 " the entry at offset 0x%x, signature %s"),
4955 to_underlying (sect_off), to_underlying (dup_sect_off),
4956 hex_string (header.signature));
4957 }
4958 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4959
4960 if (dwarf_read_debug > 1)
4961 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4962 to_underlying (sect_off),
4963 hex_string (header.signature));
4964
4965 info_ptr += length;
4966 }
4967 }
4968
4969 /* Create the hash table of all entries in the .debug_types
4970 (or .debug_types.dwo) section(s).
4971 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4972 otherwise it is NULL.
4973
4974 The result is a pointer to the hash table or NULL if there are no types.
4975
4976 Note: This function processes DWO files only, not DWP files. */
4977
4978 static void
4979 create_debug_types_hash_table (struct dwo_file *dwo_file,
4980 VEC (dwarf2_section_info_def) *types,
4981 htab_t &types_htab)
4982 {
4983 int ix;
4984 struct dwarf2_section_info *section;
4985
4986 if (VEC_empty (dwarf2_section_info_def, types))
4987 return;
4988
4989 for (ix = 0;
4990 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4991 ++ix)
4992 create_debug_type_hash_table (dwo_file, section, types_htab,
4993 rcuh_kind::TYPE);
4994 }
4995
4996 /* Create the hash table of all entries in the .debug_types section,
4997 and initialize all_type_units.
4998 The result is zero if there is an error (e.g. missing .debug_types section),
4999 otherwise non-zero. */
5000
5001 static int
5002 create_all_type_units (struct objfile *objfile)
5003 {
5004 htab_t types_htab = NULL;
5005 struct signatured_type **iter;
5006
5007 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5008 rcuh_kind::COMPILE);
5009 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5010 if (types_htab == NULL)
5011 {
5012 dwarf2_per_objfile->signatured_types = NULL;
5013 return 0;
5014 }
5015
5016 dwarf2_per_objfile->signatured_types = types_htab;
5017
5018 dwarf2_per_objfile->n_type_units
5019 = dwarf2_per_objfile->n_allocated_type_units
5020 = htab_elements (types_htab);
5021 dwarf2_per_objfile->all_type_units =
5022 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5023 iter = &dwarf2_per_objfile->all_type_units[0];
5024 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5025 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5026 == dwarf2_per_objfile->n_type_units);
5027
5028 return 1;
5029 }
5030
5031 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5032 If SLOT is non-NULL, it is the entry to use in the hash table.
5033 Otherwise we find one. */
5034
5035 static struct signatured_type *
5036 add_type_unit (ULONGEST sig, void **slot)
5037 {
5038 struct objfile *objfile = dwarf2_per_objfile->objfile;
5039 int n_type_units = dwarf2_per_objfile->n_type_units;
5040 struct signatured_type *sig_type;
5041
5042 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5043 ++n_type_units;
5044 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5045 {
5046 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5047 dwarf2_per_objfile->n_allocated_type_units = 1;
5048 dwarf2_per_objfile->n_allocated_type_units *= 2;
5049 dwarf2_per_objfile->all_type_units
5050 = XRESIZEVEC (struct signatured_type *,
5051 dwarf2_per_objfile->all_type_units,
5052 dwarf2_per_objfile->n_allocated_type_units);
5053 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5054 }
5055 dwarf2_per_objfile->n_type_units = n_type_units;
5056
5057 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5058 struct signatured_type);
5059 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5060 sig_type->signature = sig;
5061 sig_type->per_cu.is_debug_types = 1;
5062 if (dwarf2_per_objfile->using_index)
5063 {
5064 sig_type->per_cu.v.quick =
5065 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5066 struct dwarf2_per_cu_quick_data);
5067 }
5068
5069 if (slot == NULL)
5070 {
5071 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5072 sig_type, INSERT);
5073 }
5074 gdb_assert (*slot == NULL);
5075 *slot = sig_type;
5076 /* The rest of sig_type must be filled in by the caller. */
5077 return sig_type;
5078 }
5079
5080 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5081 Fill in SIG_ENTRY with DWO_ENTRY. */
5082
5083 static void
5084 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5085 struct signatured_type *sig_entry,
5086 struct dwo_unit *dwo_entry)
5087 {
5088 /* Make sure we're not clobbering something we don't expect to. */
5089 gdb_assert (! sig_entry->per_cu.queued);
5090 gdb_assert (sig_entry->per_cu.cu == NULL);
5091 if (dwarf2_per_objfile->using_index)
5092 {
5093 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5094 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5095 }
5096 else
5097 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5098 gdb_assert (sig_entry->signature == dwo_entry->signature);
5099 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5100 gdb_assert (sig_entry->type_unit_group == NULL);
5101 gdb_assert (sig_entry->dwo_unit == NULL);
5102
5103 sig_entry->per_cu.section = dwo_entry->section;
5104 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5105 sig_entry->per_cu.length = dwo_entry->length;
5106 sig_entry->per_cu.reading_dwo_directly = 1;
5107 sig_entry->per_cu.objfile = objfile;
5108 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5109 sig_entry->dwo_unit = dwo_entry;
5110 }
5111
5112 /* Subroutine of lookup_signatured_type.
5113 If we haven't read the TU yet, create the signatured_type data structure
5114 for a TU to be read in directly from a DWO file, bypassing the stub.
5115 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5116 using .gdb_index, then when reading a CU we want to stay in the DWO file
5117 containing that CU. Otherwise we could end up reading several other DWO
5118 files (due to comdat folding) to process the transitive closure of all the
5119 mentioned TUs, and that can be slow. The current DWO file will have every
5120 type signature that it needs.
5121 We only do this for .gdb_index because in the psymtab case we already have
5122 to read all the DWOs to build the type unit groups. */
5123
5124 static struct signatured_type *
5125 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5126 {
5127 struct objfile *objfile = dwarf2_per_objfile->objfile;
5128 struct dwo_file *dwo_file;
5129 struct dwo_unit find_dwo_entry, *dwo_entry;
5130 struct signatured_type find_sig_entry, *sig_entry;
5131 void **slot;
5132
5133 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5134
5135 /* If TU skeletons have been removed then we may not have read in any
5136 TUs yet. */
5137 if (dwarf2_per_objfile->signatured_types == NULL)
5138 {
5139 dwarf2_per_objfile->signatured_types
5140 = allocate_signatured_type_table (objfile);
5141 }
5142
5143 /* We only ever need to read in one copy of a signatured type.
5144 Use the global signatured_types array to do our own comdat-folding
5145 of types. If this is the first time we're reading this TU, and
5146 the TU has an entry in .gdb_index, replace the recorded data from
5147 .gdb_index with this TU. */
5148
5149 find_sig_entry.signature = sig;
5150 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5151 &find_sig_entry, INSERT);
5152 sig_entry = (struct signatured_type *) *slot;
5153
5154 /* We can get here with the TU already read, *or* in the process of being
5155 read. Don't reassign the global entry to point to this DWO if that's
5156 the case. Also note that if the TU is already being read, it may not
5157 have come from a DWO, the program may be a mix of Fission-compiled
5158 code and non-Fission-compiled code. */
5159
5160 /* Have we already tried to read this TU?
5161 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5162 needn't exist in the global table yet). */
5163 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5164 return sig_entry;
5165
5166 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5167 dwo_unit of the TU itself. */
5168 dwo_file = cu->dwo_unit->dwo_file;
5169
5170 /* Ok, this is the first time we're reading this TU. */
5171 if (dwo_file->tus == NULL)
5172 return NULL;
5173 find_dwo_entry.signature = sig;
5174 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5175 if (dwo_entry == NULL)
5176 return NULL;
5177
5178 /* If the global table doesn't have an entry for this TU, add one. */
5179 if (sig_entry == NULL)
5180 sig_entry = add_type_unit (sig, slot);
5181
5182 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5183 sig_entry->per_cu.tu_read = 1;
5184 return sig_entry;
5185 }
5186
5187 /* Subroutine of lookup_signatured_type.
5188 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5189 then try the DWP file. If the TU stub (skeleton) has been removed then
5190 it won't be in .gdb_index. */
5191
5192 static struct signatured_type *
5193 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5194 {
5195 struct objfile *objfile = dwarf2_per_objfile->objfile;
5196 struct dwp_file *dwp_file = get_dwp_file ();
5197 struct dwo_unit *dwo_entry;
5198 struct signatured_type find_sig_entry, *sig_entry;
5199 void **slot;
5200
5201 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5202 gdb_assert (dwp_file != NULL);
5203
5204 /* If TU skeletons have been removed then we may not have read in any
5205 TUs yet. */
5206 if (dwarf2_per_objfile->signatured_types == NULL)
5207 {
5208 dwarf2_per_objfile->signatured_types
5209 = allocate_signatured_type_table (objfile);
5210 }
5211
5212 find_sig_entry.signature = sig;
5213 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5214 &find_sig_entry, INSERT);
5215 sig_entry = (struct signatured_type *) *slot;
5216
5217 /* Have we already tried to read this TU?
5218 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5219 needn't exist in the global table yet). */
5220 if (sig_entry != NULL)
5221 return sig_entry;
5222
5223 if (dwp_file->tus == NULL)
5224 return NULL;
5225 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5226 sig, 1 /* is_debug_types */);
5227 if (dwo_entry == NULL)
5228 return NULL;
5229
5230 sig_entry = add_type_unit (sig, slot);
5231 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5232
5233 return sig_entry;
5234 }
5235
5236 /* Lookup a signature based type for DW_FORM_ref_sig8.
5237 Returns NULL if signature SIG is not present in the table.
5238 It is up to the caller to complain about this. */
5239
5240 static struct signatured_type *
5241 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5242 {
5243 if (cu->dwo_unit
5244 && dwarf2_per_objfile->using_index)
5245 {
5246 /* We're in a DWO/DWP file, and we're using .gdb_index.
5247 These cases require special processing. */
5248 if (get_dwp_file () == NULL)
5249 return lookup_dwo_signatured_type (cu, sig);
5250 else
5251 return lookup_dwp_signatured_type (cu, sig);
5252 }
5253 else
5254 {
5255 struct signatured_type find_entry, *entry;
5256
5257 if (dwarf2_per_objfile->signatured_types == NULL)
5258 return NULL;
5259 find_entry.signature = sig;
5260 entry = ((struct signatured_type *)
5261 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5262 return entry;
5263 }
5264 }
5265 \f
5266 /* Low level DIE reading support. */
5267
5268 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5269
5270 static void
5271 init_cu_die_reader (struct die_reader_specs *reader,
5272 struct dwarf2_cu *cu,
5273 struct dwarf2_section_info *section,
5274 struct dwo_file *dwo_file)
5275 {
5276 gdb_assert (section->readin && section->buffer != NULL);
5277 reader->abfd = get_section_bfd_owner (section);
5278 reader->cu = cu;
5279 reader->dwo_file = dwo_file;
5280 reader->die_section = section;
5281 reader->buffer = section->buffer;
5282 reader->buffer_end = section->buffer + section->size;
5283 reader->comp_dir = NULL;
5284 }
5285
5286 /* Subroutine of init_cutu_and_read_dies to simplify it.
5287 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5288 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5289 already.
5290
5291 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5292 from it to the DIE in the DWO. If NULL we are skipping the stub.
5293 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5294 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5295 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5296 STUB_COMP_DIR may be non-NULL.
5297 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5298 are filled in with the info of the DIE from the DWO file.
5299 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5300 provided an abbrev table to use.
5301 The result is non-zero if a valid (non-dummy) DIE was found. */
5302
5303 static int
5304 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5305 struct dwo_unit *dwo_unit,
5306 int abbrev_table_provided,
5307 struct die_info *stub_comp_unit_die,
5308 const char *stub_comp_dir,
5309 struct die_reader_specs *result_reader,
5310 const gdb_byte **result_info_ptr,
5311 struct die_info **result_comp_unit_die,
5312 int *result_has_children)
5313 {
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 struct dwarf2_cu *cu = this_cu->cu;
5316 struct dwarf2_section_info *section;
5317 bfd *abfd;
5318 const gdb_byte *begin_info_ptr, *info_ptr;
5319 ULONGEST signature; /* Or dwo_id. */
5320 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5321 int i,num_extra_attrs;
5322 struct dwarf2_section_info *dwo_abbrev_section;
5323 struct attribute *attr;
5324 struct die_info *comp_unit_die;
5325
5326 /* At most one of these may be provided. */
5327 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5328
5329 /* These attributes aren't processed until later:
5330 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5331 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5332 referenced later. However, these attributes are found in the stub
5333 which we won't have later. In order to not impose this complication
5334 on the rest of the code, we read them here and copy them to the
5335 DWO CU/TU die. */
5336
5337 stmt_list = NULL;
5338 low_pc = NULL;
5339 high_pc = NULL;
5340 ranges = NULL;
5341 comp_dir = NULL;
5342
5343 if (stub_comp_unit_die != NULL)
5344 {
5345 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5346 DWO file. */
5347 if (! this_cu->is_debug_types)
5348 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5349 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5350 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5351 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5352 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5353
5354 /* There should be a DW_AT_addr_base attribute here (if needed).
5355 We need the value before we can process DW_FORM_GNU_addr_index. */
5356 cu->addr_base = 0;
5357 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5358 if (attr)
5359 cu->addr_base = DW_UNSND (attr);
5360
5361 /* There should be a DW_AT_ranges_base attribute here (if needed).
5362 We need the value before we can process DW_AT_ranges. */
5363 cu->ranges_base = 0;
5364 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5365 if (attr)
5366 cu->ranges_base = DW_UNSND (attr);
5367 }
5368 else if (stub_comp_dir != NULL)
5369 {
5370 /* Reconstruct the comp_dir attribute to simplify the code below. */
5371 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5372 comp_dir->name = DW_AT_comp_dir;
5373 comp_dir->form = DW_FORM_string;
5374 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5375 DW_STRING (comp_dir) = stub_comp_dir;
5376 }
5377
5378 /* Set up for reading the DWO CU/TU. */
5379 cu->dwo_unit = dwo_unit;
5380 section = dwo_unit->section;
5381 dwarf2_read_section (objfile, section);
5382 abfd = get_section_bfd_owner (section);
5383 begin_info_ptr = info_ptr = (section->buffer
5384 + to_underlying (dwo_unit->sect_off));
5385 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5386 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5387
5388 if (this_cu->is_debug_types)
5389 {
5390 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5391
5392 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5393 dwo_abbrev_section,
5394 info_ptr, rcuh_kind::TYPE);
5395 /* This is not an assert because it can be caused by bad debug info. */
5396 if (sig_type->signature != cu->header.signature)
5397 {
5398 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5399 " TU at offset 0x%x [in module %s]"),
5400 hex_string (sig_type->signature),
5401 hex_string (cu->header.signature),
5402 to_underlying (dwo_unit->sect_off),
5403 bfd_get_filename (abfd));
5404 }
5405 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5406 /* For DWOs coming from DWP files, we don't know the CU length
5407 nor the type's offset in the TU until now. */
5408 dwo_unit->length = get_cu_length (&cu->header);
5409 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5410
5411 /* Establish the type offset that can be used to lookup the type.
5412 For DWO files, we don't know it until now. */
5413 sig_type->type_offset_in_section
5414 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5415 }
5416 else
5417 {
5418 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5419 dwo_abbrev_section,
5420 info_ptr, rcuh_kind::COMPILE);
5421 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5422 /* For DWOs coming from DWP files, we don't know the CU length
5423 until now. */
5424 dwo_unit->length = get_cu_length (&cu->header);
5425 }
5426
5427 /* Replace the CU's original abbrev table with the DWO's.
5428 Reminder: We can't read the abbrev table until we've read the header. */
5429 if (abbrev_table_provided)
5430 {
5431 /* Don't free the provided abbrev table, the caller of
5432 init_cutu_and_read_dies owns it. */
5433 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5434 /* Ensure the DWO abbrev table gets freed. */
5435 make_cleanup (dwarf2_free_abbrev_table, cu);
5436 }
5437 else
5438 {
5439 dwarf2_free_abbrev_table (cu);
5440 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5441 /* Leave any existing abbrev table cleanup as is. */
5442 }
5443
5444 /* Read in the die, but leave space to copy over the attributes
5445 from the stub. This has the benefit of simplifying the rest of
5446 the code - all the work to maintain the illusion of a single
5447 DW_TAG_{compile,type}_unit DIE is done here. */
5448 num_extra_attrs = ((stmt_list != NULL)
5449 + (low_pc != NULL)
5450 + (high_pc != NULL)
5451 + (ranges != NULL)
5452 + (comp_dir != NULL));
5453 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5454 result_has_children, num_extra_attrs);
5455
5456 /* Copy over the attributes from the stub to the DIE we just read in. */
5457 comp_unit_die = *result_comp_unit_die;
5458 i = comp_unit_die->num_attrs;
5459 if (stmt_list != NULL)
5460 comp_unit_die->attrs[i++] = *stmt_list;
5461 if (low_pc != NULL)
5462 comp_unit_die->attrs[i++] = *low_pc;
5463 if (high_pc != NULL)
5464 comp_unit_die->attrs[i++] = *high_pc;
5465 if (ranges != NULL)
5466 comp_unit_die->attrs[i++] = *ranges;
5467 if (comp_dir != NULL)
5468 comp_unit_die->attrs[i++] = *comp_dir;
5469 comp_unit_die->num_attrs += num_extra_attrs;
5470
5471 if (dwarf_die_debug)
5472 {
5473 fprintf_unfiltered (gdb_stdlog,
5474 "Read die from %s@0x%x of %s:\n",
5475 get_section_name (section),
5476 (unsigned) (begin_info_ptr - section->buffer),
5477 bfd_get_filename (abfd));
5478 dump_die (comp_unit_die, dwarf_die_debug);
5479 }
5480
5481 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5482 TUs by skipping the stub and going directly to the entry in the DWO file.
5483 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5484 to get it via circuitous means. Blech. */
5485 if (comp_dir != NULL)
5486 result_reader->comp_dir = DW_STRING (comp_dir);
5487
5488 /* Skip dummy compilation units. */
5489 if (info_ptr >= begin_info_ptr + dwo_unit->length
5490 || peek_abbrev_code (abfd, info_ptr) == 0)
5491 return 0;
5492
5493 *result_info_ptr = info_ptr;
5494 return 1;
5495 }
5496
5497 /* Subroutine of init_cutu_and_read_dies to simplify it.
5498 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5499 Returns NULL if the specified DWO unit cannot be found. */
5500
5501 static struct dwo_unit *
5502 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5503 struct die_info *comp_unit_die)
5504 {
5505 struct dwarf2_cu *cu = this_cu->cu;
5506 struct attribute *attr;
5507 ULONGEST signature;
5508 struct dwo_unit *dwo_unit;
5509 const char *comp_dir, *dwo_name;
5510
5511 gdb_assert (cu != NULL);
5512
5513 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5514 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5515 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5516
5517 if (this_cu->is_debug_types)
5518 {
5519 struct signatured_type *sig_type;
5520
5521 /* Since this_cu is the first member of struct signatured_type,
5522 we can go from a pointer to one to a pointer to the other. */
5523 sig_type = (struct signatured_type *) this_cu;
5524 signature = sig_type->signature;
5525 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5526 }
5527 else
5528 {
5529 struct attribute *attr;
5530
5531 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5532 if (! attr)
5533 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5534 " [in module %s]"),
5535 dwo_name, objfile_name (this_cu->objfile));
5536 signature = DW_UNSND (attr);
5537 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5538 signature);
5539 }
5540
5541 return dwo_unit;
5542 }
5543
5544 /* Subroutine of init_cutu_and_read_dies to simplify it.
5545 See it for a description of the parameters.
5546 Read a TU directly from a DWO file, bypassing the stub.
5547
5548 Note: This function could be a little bit simpler if we shared cleanups
5549 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5550 to do, so we keep this function self-contained. Or we could move this
5551 into our caller, but it's complex enough already. */
5552
5553 static void
5554 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5555 int use_existing_cu, int keep,
5556 die_reader_func_ftype *die_reader_func,
5557 void *data)
5558 {
5559 struct dwarf2_cu *cu;
5560 struct signatured_type *sig_type;
5561 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5562 struct die_reader_specs reader;
5563 const gdb_byte *info_ptr;
5564 struct die_info *comp_unit_die;
5565 int has_children;
5566
5567 /* Verify we can do the following downcast, and that we have the
5568 data we need. */
5569 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5570 sig_type = (struct signatured_type *) this_cu;
5571 gdb_assert (sig_type->dwo_unit != NULL);
5572
5573 cleanups = make_cleanup (null_cleanup, NULL);
5574
5575 if (use_existing_cu && this_cu->cu != NULL)
5576 {
5577 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5578 cu = this_cu->cu;
5579 /* There's no need to do the rereading_dwo_cu handling that
5580 init_cutu_and_read_dies does since we don't read the stub. */
5581 }
5582 else
5583 {
5584 /* If !use_existing_cu, this_cu->cu must be NULL. */
5585 gdb_assert (this_cu->cu == NULL);
5586 cu = XNEW (struct dwarf2_cu);
5587 init_one_comp_unit (cu, this_cu);
5588 /* If an error occurs while loading, release our storage. */
5589 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5590 }
5591
5592 /* A future optimization, if needed, would be to use an existing
5593 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5594 could share abbrev tables. */
5595
5596 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5597 0 /* abbrev_table_provided */,
5598 NULL /* stub_comp_unit_die */,
5599 sig_type->dwo_unit->dwo_file->comp_dir,
5600 &reader, &info_ptr,
5601 &comp_unit_die, &has_children) == 0)
5602 {
5603 /* Dummy die. */
5604 do_cleanups (cleanups);
5605 return;
5606 }
5607
5608 /* All the "real" work is done here. */
5609 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5610
5611 /* This duplicates the code in init_cutu_and_read_dies,
5612 but the alternative is making the latter more complex.
5613 This function is only for the special case of using DWO files directly:
5614 no point in overly complicating the general case just to handle this. */
5615 if (free_cu_cleanup != NULL)
5616 {
5617 if (keep)
5618 {
5619 /* We've successfully allocated this compilation unit. Let our
5620 caller clean it up when finished with it. */
5621 discard_cleanups (free_cu_cleanup);
5622
5623 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5624 So we have to manually free the abbrev table. */
5625 dwarf2_free_abbrev_table (cu);
5626
5627 /* Link this CU into read_in_chain. */
5628 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5629 dwarf2_per_objfile->read_in_chain = this_cu;
5630 }
5631 else
5632 do_cleanups (free_cu_cleanup);
5633 }
5634
5635 do_cleanups (cleanups);
5636 }
5637
5638 /* Initialize a CU (or TU) and read its DIEs.
5639 If the CU defers to a DWO file, read the DWO file as well.
5640
5641 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5642 Otherwise the table specified in the comp unit header is read in and used.
5643 This is an optimization for when we already have the abbrev table.
5644
5645 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5646 Otherwise, a new CU is allocated with xmalloc.
5647
5648 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5649 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5650
5651 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5652 linker) then DIE_READER_FUNC will not get called. */
5653
5654 static void
5655 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5656 struct abbrev_table *abbrev_table,
5657 int use_existing_cu, int keep,
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660 {
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
5662 struct dwarf2_section_info *section = this_cu->section;
5663 bfd *abfd = get_section_bfd_owner (section);
5664 struct dwarf2_cu *cu;
5665 const gdb_byte *begin_info_ptr, *info_ptr;
5666 struct die_reader_specs reader;
5667 struct die_info *comp_unit_die;
5668 int has_children;
5669 struct attribute *attr;
5670 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5671 struct signatured_type *sig_type = NULL;
5672 struct dwarf2_section_info *abbrev_section;
5673 /* Non-zero if CU currently points to a DWO file and we need to
5674 reread it. When this happens we need to reread the skeleton die
5675 before we can reread the DWO file (this only applies to CUs, not TUs). */
5676 int rereading_dwo_cu = 0;
5677
5678 if (dwarf_die_debug)
5679 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5680 this_cu->is_debug_types ? "type" : "comp",
5681 to_underlying (this_cu->sect_off));
5682
5683 if (use_existing_cu)
5684 gdb_assert (keep);
5685
5686 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5687 file (instead of going through the stub), short-circuit all of this. */
5688 if (this_cu->reading_dwo_directly)
5689 {
5690 /* Narrow down the scope of possibilities to have to understand. */
5691 gdb_assert (this_cu->is_debug_types);
5692 gdb_assert (abbrev_table == NULL);
5693 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5694 die_reader_func, data);
5695 return;
5696 }
5697
5698 cleanups = make_cleanup (null_cleanup, NULL);
5699
5700 /* This is cheap if the section is already read in. */
5701 dwarf2_read_section (objfile, section);
5702
5703 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5704
5705 abbrev_section = get_abbrev_section_for_cu (this_cu);
5706
5707 if (use_existing_cu && this_cu->cu != NULL)
5708 {
5709 cu = this_cu->cu;
5710 /* If this CU is from a DWO file we need to start over, we need to
5711 refetch the attributes from the skeleton CU.
5712 This could be optimized by retrieving those attributes from when we
5713 were here the first time: the previous comp_unit_die was stored in
5714 comp_unit_obstack. But there's no data yet that we need this
5715 optimization. */
5716 if (cu->dwo_unit != NULL)
5717 rereading_dwo_cu = 1;
5718 }
5719 else
5720 {
5721 /* If !use_existing_cu, this_cu->cu must be NULL. */
5722 gdb_assert (this_cu->cu == NULL);
5723 cu = XNEW (struct dwarf2_cu);
5724 init_one_comp_unit (cu, this_cu);
5725 /* If an error occurs while loading, release our storage. */
5726 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5727 }
5728
5729 /* Get the header. */
5730 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5731 {
5732 /* We already have the header, there's no need to read it in again. */
5733 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5734 }
5735 else
5736 {
5737 if (this_cu->is_debug_types)
5738 {
5739 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5740 abbrev_section, info_ptr,
5741 rcuh_kind::TYPE);
5742
5743 /* Since per_cu is the first member of struct signatured_type,
5744 we can go from a pointer to one to a pointer to the other. */
5745 sig_type = (struct signatured_type *) this_cu;
5746 gdb_assert (sig_type->signature == cu->header.signature);
5747 gdb_assert (sig_type->type_offset_in_tu
5748 == cu->header.type_cu_offset_in_tu);
5749 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5750
5751 /* LENGTH has not been set yet for type units if we're
5752 using .gdb_index. */
5753 this_cu->length = get_cu_length (&cu->header);
5754
5755 /* Establish the type offset that can be used to lookup the type. */
5756 sig_type->type_offset_in_section =
5757 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5758
5759 this_cu->dwarf_version = cu->header.version;
5760 }
5761 else
5762 {
5763 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5764 abbrev_section,
5765 info_ptr,
5766 rcuh_kind::COMPILE);
5767
5768 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5769 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5770 this_cu->dwarf_version = cu->header.version;
5771 }
5772 }
5773
5774 /* Skip dummy compilation units. */
5775 if (info_ptr >= begin_info_ptr + this_cu->length
5776 || peek_abbrev_code (abfd, info_ptr) == 0)
5777 {
5778 do_cleanups (cleanups);
5779 return;
5780 }
5781
5782 /* If we don't have them yet, read the abbrevs for this compilation unit.
5783 And if we need to read them now, make sure they're freed when we're
5784 done. Note that it's important that if the CU had an abbrev table
5785 on entry we don't free it when we're done: Somewhere up the call stack
5786 it may be in use. */
5787 if (abbrev_table != NULL)
5788 {
5789 gdb_assert (cu->abbrev_table == NULL);
5790 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5791 cu->abbrev_table = abbrev_table;
5792 }
5793 else if (cu->abbrev_table == NULL)
5794 {
5795 dwarf2_read_abbrevs (cu, abbrev_section);
5796 make_cleanup (dwarf2_free_abbrev_table, cu);
5797 }
5798 else if (rereading_dwo_cu)
5799 {
5800 dwarf2_free_abbrev_table (cu);
5801 dwarf2_read_abbrevs (cu, abbrev_section);
5802 }
5803
5804 /* Read the top level CU/TU die. */
5805 init_cu_die_reader (&reader, cu, section, NULL);
5806 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5807
5808 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5809 from the DWO file.
5810 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5811 DWO CU, that this test will fail (the attribute will not be present). */
5812 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5813 if (attr)
5814 {
5815 struct dwo_unit *dwo_unit;
5816 struct die_info *dwo_comp_unit_die;
5817
5818 if (has_children)
5819 {
5820 complaint (&symfile_complaints,
5821 _("compilation unit with DW_AT_GNU_dwo_name"
5822 " has children (offset 0x%x) [in module %s]"),
5823 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5824 }
5825 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5826 if (dwo_unit != NULL)
5827 {
5828 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5829 abbrev_table != NULL,
5830 comp_unit_die, NULL,
5831 &reader, &info_ptr,
5832 &dwo_comp_unit_die, &has_children) == 0)
5833 {
5834 /* Dummy die. */
5835 do_cleanups (cleanups);
5836 return;
5837 }
5838 comp_unit_die = dwo_comp_unit_die;
5839 }
5840 else
5841 {
5842 /* Yikes, we couldn't find the rest of the DIE, we only have
5843 the stub. A complaint has already been logged. There's
5844 not much more we can do except pass on the stub DIE to
5845 die_reader_func. We don't want to throw an error on bad
5846 debug info. */
5847 }
5848 }
5849
5850 /* All of the above is setup for this call. Yikes. */
5851 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5852
5853 /* Done, clean up. */
5854 if (free_cu_cleanup != NULL)
5855 {
5856 if (keep)
5857 {
5858 /* We've successfully allocated this compilation unit. Let our
5859 caller clean it up when finished with it. */
5860 discard_cleanups (free_cu_cleanup);
5861
5862 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5863 So we have to manually free the abbrev table. */
5864 dwarf2_free_abbrev_table (cu);
5865
5866 /* Link this CU into read_in_chain. */
5867 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5868 dwarf2_per_objfile->read_in_chain = this_cu;
5869 }
5870 else
5871 do_cleanups (free_cu_cleanup);
5872 }
5873
5874 do_cleanups (cleanups);
5875 }
5876
5877 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5878 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5879 to have already done the lookup to find the DWO file).
5880
5881 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5882 THIS_CU->is_debug_types, but nothing else.
5883
5884 We fill in THIS_CU->length.
5885
5886 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5887 linker) then DIE_READER_FUNC will not get called.
5888
5889 THIS_CU->cu is always freed when done.
5890 This is done in order to not leave THIS_CU->cu in a state where we have
5891 to care whether it refers to the "main" CU or the DWO CU. */
5892
5893 static void
5894 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5895 struct dwo_file *dwo_file,
5896 die_reader_func_ftype *die_reader_func,
5897 void *data)
5898 {
5899 struct objfile *objfile = dwarf2_per_objfile->objfile;
5900 struct dwarf2_section_info *section = this_cu->section;
5901 bfd *abfd = get_section_bfd_owner (section);
5902 struct dwarf2_section_info *abbrev_section;
5903 struct dwarf2_cu cu;
5904 const gdb_byte *begin_info_ptr, *info_ptr;
5905 struct die_reader_specs reader;
5906 struct cleanup *cleanups;
5907 struct die_info *comp_unit_die;
5908 int has_children;
5909
5910 if (dwarf_die_debug)
5911 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5912 this_cu->is_debug_types ? "type" : "comp",
5913 to_underlying (this_cu->sect_off));
5914
5915 gdb_assert (this_cu->cu == NULL);
5916
5917 abbrev_section = (dwo_file != NULL
5918 ? &dwo_file->sections.abbrev
5919 : get_abbrev_section_for_cu (this_cu));
5920
5921 /* This is cheap if the section is already read in. */
5922 dwarf2_read_section (objfile, section);
5923
5924 init_one_comp_unit (&cu, this_cu);
5925
5926 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5927
5928 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5929 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5930 abbrev_section, info_ptr,
5931 (this_cu->is_debug_types
5932 ? rcuh_kind::TYPE
5933 : rcuh_kind::COMPILE));
5934
5935 this_cu->length = get_cu_length (&cu.header);
5936
5937 /* Skip dummy compilation units. */
5938 if (info_ptr >= begin_info_ptr + this_cu->length
5939 || peek_abbrev_code (abfd, info_ptr) == 0)
5940 {
5941 do_cleanups (cleanups);
5942 return;
5943 }
5944
5945 dwarf2_read_abbrevs (&cu, abbrev_section);
5946 make_cleanup (dwarf2_free_abbrev_table, &cu);
5947
5948 init_cu_die_reader (&reader, &cu, section, dwo_file);
5949 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5950
5951 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5952
5953 do_cleanups (cleanups);
5954 }
5955
5956 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5957 does not lookup the specified DWO file.
5958 This cannot be used to read DWO files.
5959
5960 THIS_CU->cu is always freed when done.
5961 This is done in order to not leave THIS_CU->cu in a state where we have
5962 to care whether it refers to the "main" CU or the DWO CU.
5963 We can revisit this if the data shows there's a performance issue. */
5964
5965 static void
5966 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5967 die_reader_func_ftype *die_reader_func,
5968 void *data)
5969 {
5970 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5971 }
5972 \f
5973 /* Type Unit Groups.
5974
5975 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5976 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5977 so that all types coming from the same compilation (.o file) are grouped
5978 together. A future step could be to put the types in the same symtab as
5979 the CU the types ultimately came from. */
5980
5981 static hashval_t
5982 hash_type_unit_group (const void *item)
5983 {
5984 const struct type_unit_group *tu_group
5985 = (const struct type_unit_group *) item;
5986
5987 return hash_stmt_list_entry (&tu_group->hash);
5988 }
5989
5990 static int
5991 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5992 {
5993 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5994 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5995
5996 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5997 }
5998
5999 /* Allocate a hash table for type unit groups. */
6000
6001 static htab_t
6002 allocate_type_unit_groups_table (void)
6003 {
6004 return htab_create_alloc_ex (3,
6005 hash_type_unit_group,
6006 eq_type_unit_group,
6007 NULL,
6008 &dwarf2_per_objfile->objfile->objfile_obstack,
6009 hashtab_obstack_allocate,
6010 dummy_obstack_deallocate);
6011 }
6012
6013 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6014 partial symtabs. We combine several TUs per psymtab to not let the size
6015 of any one psymtab grow too big. */
6016 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6017 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6018
6019 /* Helper routine for get_type_unit_group.
6020 Create the type_unit_group object used to hold one or more TUs. */
6021
6022 static struct type_unit_group *
6023 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6024 {
6025 struct objfile *objfile = dwarf2_per_objfile->objfile;
6026 struct dwarf2_per_cu_data *per_cu;
6027 struct type_unit_group *tu_group;
6028
6029 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6030 struct type_unit_group);
6031 per_cu = &tu_group->per_cu;
6032 per_cu->objfile = objfile;
6033
6034 if (dwarf2_per_objfile->using_index)
6035 {
6036 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6037 struct dwarf2_per_cu_quick_data);
6038 }
6039 else
6040 {
6041 unsigned int line_offset = to_underlying (line_offset_struct);
6042 struct partial_symtab *pst;
6043 char *name;
6044
6045 /* Give the symtab a useful name for debug purposes. */
6046 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6047 name = xstrprintf ("<type_units_%d>",
6048 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6049 else
6050 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6051
6052 pst = create_partial_symtab (per_cu, name);
6053 pst->anonymous = 1;
6054
6055 xfree (name);
6056 }
6057
6058 tu_group->hash.dwo_unit = cu->dwo_unit;
6059 tu_group->hash.line_sect_off = line_offset_struct;
6060
6061 return tu_group;
6062 }
6063
6064 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6065 STMT_LIST is a DW_AT_stmt_list attribute. */
6066
6067 static struct type_unit_group *
6068 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6069 {
6070 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6071 struct type_unit_group *tu_group;
6072 void **slot;
6073 unsigned int line_offset;
6074 struct type_unit_group type_unit_group_for_lookup;
6075
6076 if (dwarf2_per_objfile->type_unit_groups == NULL)
6077 {
6078 dwarf2_per_objfile->type_unit_groups =
6079 allocate_type_unit_groups_table ();
6080 }
6081
6082 /* Do we need to create a new group, or can we use an existing one? */
6083
6084 if (stmt_list)
6085 {
6086 line_offset = DW_UNSND (stmt_list);
6087 ++tu_stats->nr_symtab_sharers;
6088 }
6089 else
6090 {
6091 /* Ugh, no stmt_list. Rare, but we have to handle it.
6092 We can do various things here like create one group per TU or
6093 spread them over multiple groups to split up the expansion work.
6094 To avoid worst case scenarios (too many groups or too large groups)
6095 we, umm, group them in bunches. */
6096 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6097 | (tu_stats->nr_stmt_less_type_units
6098 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6099 ++tu_stats->nr_stmt_less_type_units;
6100 }
6101
6102 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6103 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6104 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6105 &type_unit_group_for_lookup, INSERT);
6106 if (*slot != NULL)
6107 {
6108 tu_group = (struct type_unit_group *) *slot;
6109 gdb_assert (tu_group != NULL);
6110 }
6111 else
6112 {
6113 sect_offset line_offset_struct = (sect_offset) line_offset;
6114 tu_group = create_type_unit_group (cu, line_offset_struct);
6115 *slot = tu_group;
6116 ++tu_stats->nr_symtabs;
6117 }
6118
6119 return tu_group;
6120 }
6121 \f
6122 /* Partial symbol tables. */
6123
6124 /* Create a psymtab named NAME and assign it to PER_CU.
6125
6126 The caller must fill in the following details:
6127 dirname, textlow, texthigh. */
6128
6129 static struct partial_symtab *
6130 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6131 {
6132 struct objfile *objfile = per_cu->objfile;
6133 struct partial_symtab *pst;
6134
6135 pst = start_psymtab_common (objfile, name, 0,
6136 objfile->global_psymbols.next,
6137 objfile->static_psymbols.next);
6138
6139 pst->psymtabs_addrmap_supported = 1;
6140
6141 /* This is the glue that links PST into GDB's symbol API. */
6142 pst->read_symtab_private = per_cu;
6143 pst->read_symtab = dwarf2_read_symtab;
6144 per_cu->v.psymtab = pst;
6145
6146 return pst;
6147 }
6148
6149 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6150 type. */
6151
6152 struct process_psymtab_comp_unit_data
6153 {
6154 /* True if we are reading a DW_TAG_partial_unit. */
6155
6156 int want_partial_unit;
6157
6158 /* The "pretend" language that is used if the CU doesn't declare a
6159 language. */
6160
6161 enum language pretend_language;
6162 };
6163
6164 /* die_reader_func for process_psymtab_comp_unit. */
6165
6166 static void
6167 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6168 const gdb_byte *info_ptr,
6169 struct die_info *comp_unit_die,
6170 int has_children,
6171 void *data)
6172 {
6173 struct dwarf2_cu *cu = reader->cu;
6174 struct objfile *objfile = cu->objfile;
6175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6176 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6177 CORE_ADDR baseaddr;
6178 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6179 struct partial_symtab *pst;
6180 enum pc_bounds_kind cu_bounds_kind;
6181 const char *filename;
6182 struct process_psymtab_comp_unit_data *info
6183 = (struct process_psymtab_comp_unit_data *) data;
6184
6185 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6186 return;
6187
6188 gdb_assert (! per_cu->is_debug_types);
6189
6190 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6191
6192 cu->list_in_scope = &file_symbols;
6193
6194 /* Allocate a new partial symbol table structure. */
6195 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6196 if (filename == NULL)
6197 filename = "";
6198
6199 pst = create_partial_symtab (per_cu, filename);
6200
6201 /* This must be done before calling dwarf2_build_include_psymtabs. */
6202 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6203
6204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6205
6206 dwarf2_find_base_address (comp_unit_die, cu);
6207
6208 /* Possibly set the default values of LOWPC and HIGHPC from
6209 `DW_AT_ranges'. */
6210 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6211 &best_highpc, cu, pst);
6212 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6213 /* Store the contiguous range if it is not empty; it can be empty for
6214 CUs with no code. */
6215 addrmap_set_empty (objfile->psymtabs_addrmap,
6216 gdbarch_adjust_dwarf2_addr (gdbarch,
6217 best_lowpc + baseaddr),
6218 gdbarch_adjust_dwarf2_addr (gdbarch,
6219 best_highpc + baseaddr) - 1,
6220 pst);
6221
6222 /* Check if comp unit has_children.
6223 If so, read the rest of the partial symbols from this comp unit.
6224 If not, there's no more debug_info for this comp unit. */
6225 if (has_children)
6226 {
6227 struct partial_die_info *first_die;
6228 CORE_ADDR lowpc, highpc;
6229
6230 lowpc = ((CORE_ADDR) -1);
6231 highpc = ((CORE_ADDR) 0);
6232
6233 first_die = load_partial_dies (reader, info_ptr, 1);
6234
6235 scan_partial_symbols (first_die, &lowpc, &highpc,
6236 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6237
6238 /* If we didn't find a lowpc, set it to highpc to avoid
6239 complaints from `maint check'. */
6240 if (lowpc == ((CORE_ADDR) -1))
6241 lowpc = highpc;
6242
6243 /* If the compilation unit didn't have an explicit address range,
6244 then use the information extracted from its child dies. */
6245 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6246 {
6247 best_lowpc = lowpc;
6248 best_highpc = highpc;
6249 }
6250 }
6251 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6252 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6253
6254 end_psymtab_common (objfile, pst);
6255
6256 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6257 {
6258 int i;
6259 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6260 struct dwarf2_per_cu_data *iter;
6261
6262 /* Fill in 'dependencies' here; we fill in 'users' in a
6263 post-pass. */
6264 pst->number_of_dependencies = len;
6265 pst->dependencies =
6266 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6267 for (i = 0;
6268 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6269 i, iter);
6270 ++i)
6271 pst->dependencies[i] = iter->v.psymtab;
6272
6273 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6274 }
6275
6276 /* Get the list of files included in the current compilation unit,
6277 and build a psymtab for each of them. */
6278 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6279
6280 if (dwarf_read_debug)
6281 {
6282 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6283
6284 fprintf_unfiltered (gdb_stdlog,
6285 "Psymtab for %s unit @0x%x: %s - %s"
6286 ", %d global, %d static syms\n",
6287 per_cu->is_debug_types ? "type" : "comp",
6288 to_underlying (per_cu->sect_off),
6289 paddress (gdbarch, pst->textlow),
6290 paddress (gdbarch, pst->texthigh),
6291 pst->n_global_syms, pst->n_static_syms);
6292 }
6293 }
6294
6295 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6296 Process compilation unit THIS_CU for a psymtab. */
6297
6298 static void
6299 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6300 int want_partial_unit,
6301 enum language pretend_language)
6302 {
6303 struct process_psymtab_comp_unit_data info;
6304
6305 /* If this compilation unit was already read in, free the
6306 cached copy in order to read it in again. This is
6307 necessary because we skipped some symbols when we first
6308 read in the compilation unit (see load_partial_dies).
6309 This problem could be avoided, but the benefit is unclear. */
6310 if (this_cu->cu != NULL)
6311 free_one_cached_comp_unit (this_cu);
6312
6313 gdb_assert (! this_cu->is_debug_types);
6314 info.want_partial_unit = want_partial_unit;
6315 info.pretend_language = pretend_language;
6316 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6317 process_psymtab_comp_unit_reader,
6318 &info);
6319
6320 /* Age out any secondary CUs. */
6321 age_cached_comp_units ();
6322 }
6323
6324 /* Reader function for build_type_psymtabs. */
6325
6326 static void
6327 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6328 const gdb_byte *info_ptr,
6329 struct die_info *type_unit_die,
6330 int has_children,
6331 void *data)
6332 {
6333 struct objfile *objfile = dwarf2_per_objfile->objfile;
6334 struct dwarf2_cu *cu = reader->cu;
6335 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6336 struct signatured_type *sig_type;
6337 struct type_unit_group *tu_group;
6338 struct attribute *attr;
6339 struct partial_die_info *first_die;
6340 CORE_ADDR lowpc, highpc;
6341 struct partial_symtab *pst;
6342
6343 gdb_assert (data == NULL);
6344 gdb_assert (per_cu->is_debug_types);
6345 sig_type = (struct signatured_type *) per_cu;
6346
6347 if (! has_children)
6348 return;
6349
6350 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6351 tu_group = get_type_unit_group (cu, attr);
6352
6353 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6354
6355 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6356 cu->list_in_scope = &file_symbols;
6357 pst = create_partial_symtab (per_cu, "");
6358 pst->anonymous = 1;
6359
6360 first_die = load_partial_dies (reader, info_ptr, 1);
6361
6362 lowpc = (CORE_ADDR) -1;
6363 highpc = (CORE_ADDR) 0;
6364 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6365
6366 end_psymtab_common (objfile, pst);
6367 }
6368
6369 /* Struct used to sort TUs by their abbreviation table offset. */
6370
6371 struct tu_abbrev_offset
6372 {
6373 struct signatured_type *sig_type;
6374 sect_offset abbrev_offset;
6375 };
6376
6377 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6378
6379 static int
6380 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6381 {
6382 const struct tu_abbrev_offset * const *a
6383 = (const struct tu_abbrev_offset * const*) ap;
6384 const struct tu_abbrev_offset * const *b
6385 = (const struct tu_abbrev_offset * const*) bp;
6386 sect_offset aoff = (*a)->abbrev_offset;
6387 sect_offset boff = (*b)->abbrev_offset;
6388
6389 return (aoff > boff) - (aoff < boff);
6390 }
6391
6392 /* Efficiently read all the type units.
6393 This does the bulk of the work for build_type_psymtabs.
6394
6395 The efficiency is because we sort TUs by the abbrev table they use and
6396 only read each abbrev table once. In one program there are 200K TUs
6397 sharing 8K abbrev tables.
6398
6399 The main purpose of this function is to support building the
6400 dwarf2_per_objfile->type_unit_groups table.
6401 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6402 can collapse the search space by grouping them by stmt_list.
6403 The savings can be significant, in the same program from above the 200K TUs
6404 share 8K stmt_list tables.
6405
6406 FUNC is expected to call get_type_unit_group, which will create the
6407 struct type_unit_group if necessary and add it to
6408 dwarf2_per_objfile->type_unit_groups. */
6409
6410 static void
6411 build_type_psymtabs_1 (void)
6412 {
6413 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6414 struct cleanup *cleanups;
6415 struct abbrev_table *abbrev_table;
6416 sect_offset abbrev_offset;
6417 struct tu_abbrev_offset *sorted_by_abbrev;
6418 int i;
6419
6420 /* It's up to the caller to not call us multiple times. */
6421 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6422
6423 if (dwarf2_per_objfile->n_type_units == 0)
6424 return;
6425
6426 /* TUs typically share abbrev tables, and there can be way more TUs than
6427 abbrev tables. Sort by abbrev table to reduce the number of times we
6428 read each abbrev table in.
6429 Alternatives are to punt or to maintain a cache of abbrev tables.
6430 This is simpler and efficient enough for now.
6431
6432 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6433 symtab to use). Typically TUs with the same abbrev offset have the same
6434 stmt_list value too so in practice this should work well.
6435
6436 The basic algorithm here is:
6437
6438 sort TUs by abbrev table
6439 for each TU with same abbrev table:
6440 read abbrev table if first user
6441 read TU top level DIE
6442 [IWBN if DWO skeletons had DW_AT_stmt_list]
6443 call FUNC */
6444
6445 if (dwarf_read_debug)
6446 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6447
6448 /* Sort in a separate table to maintain the order of all_type_units
6449 for .gdb_index: TU indices directly index all_type_units. */
6450 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6451 dwarf2_per_objfile->n_type_units);
6452 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6453 {
6454 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6455
6456 sorted_by_abbrev[i].sig_type = sig_type;
6457 sorted_by_abbrev[i].abbrev_offset =
6458 read_abbrev_offset (sig_type->per_cu.section,
6459 sig_type->per_cu.sect_off);
6460 }
6461 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6462 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6463 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6464
6465 abbrev_offset = (sect_offset) ~(unsigned) 0;
6466 abbrev_table = NULL;
6467 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6468
6469 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6470 {
6471 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6472
6473 /* Switch to the next abbrev table if necessary. */
6474 if (abbrev_table == NULL
6475 || tu->abbrev_offset != abbrev_offset)
6476 {
6477 if (abbrev_table != NULL)
6478 {
6479 abbrev_table_free (abbrev_table);
6480 /* Reset to NULL in case abbrev_table_read_table throws
6481 an error: abbrev_table_free_cleanup will get called. */
6482 abbrev_table = NULL;
6483 }
6484 abbrev_offset = tu->abbrev_offset;
6485 abbrev_table =
6486 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6487 abbrev_offset);
6488 ++tu_stats->nr_uniq_abbrev_tables;
6489 }
6490
6491 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6492 build_type_psymtabs_reader, NULL);
6493 }
6494
6495 do_cleanups (cleanups);
6496 }
6497
6498 /* Print collected type unit statistics. */
6499
6500 static void
6501 print_tu_stats (void)
6502 {
6503 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6504
6505 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6506 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6507 dwarf2_per_objfile->n_type_units);
6508 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6509 tu_stats->nr_uniq_abbrev_tables);
6510 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6511 tu_stats->nr_symtabs);
6512 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6513 tu_stats->nr_symtab_sharers);
6514 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6515 tu_stats->nr_stmt_less_type_units);
6516 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6517 tu_stats->nr_all_type_units_reallocs);
6518 }
6519
6520 /* Traversal function for build_type_psymtabs. */
6521
6522 static int
6523 build_type_psymtab_dependencies (void **slot, void *info)
6524 {
6525 struct objfile *objfile = dwarf2_per_objfile->objfile;
6526 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6527 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6528 struct partial_symtab *pst = per_cu->v.psymtab;
6529 int len = VEC_length (sig_type_ptr, tu_group->tus);
6530 struct signatured_type *iter;
6531 int i;
6532
6533 gdb_assert (len > 0);
6534 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6535
6536 pst->number_of_dependencies = len;
6537 pst->dependencies =
6538 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6539 for (i = 0;
6540 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6541 ++i)
6542 {
6543 gdb_assert (iter->per_cu.is_debug_types);
6544 pst->dependencies[i] = iter->per_cu.v.psymtab;
6545 iter->type_unit_group = tu_group;
6546 }
6547
6548 VEC_free (sig_type_ptr, tu_group->tus);
6549
6550 return 1;
6551 }
6552
6553 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6554 Build partial symbol tables for the .debug_types comp-units. */
6555
6556 static void
6557 build_type_psymtabs (struct objfile *objfile)
6558 {
6559 if (! create_all_type_units (objfile))
6560 return;
6561
6562 build_type_psymtabs_1 ();
6563 }
6564
6565 /* Traversal function for process_skeletonless_type_unit.
6566 Read a TU in a DWO file and build partial symbols for it. */
6567
6568 static int
6569 process_skeletonless_type_unit (void **slot, void *info)
6570 {
6571 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6572 struct objfile *objfile = (struct objfile *) info;
6573 struct signatured_type find_entry, *entry;
6574
6575 /* If this TU doesn't exist in the global table, add it and read it in. */
6576
6577 if (dwarf2_per_objfile->signatured_types == NULL)
6578 {
6579 dwarf2_per_objfile->signatured_types
6580 = allocate_signatured_type_table (objfile);
6581 }
6582
6583 find_entry.signature = dwo_unit->signature;
6584 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6585 INSERT);
6586 /* If we've already seen this type there's nothing to do. What's happening
6587 is we're doing our own version of comdat-folding here. */
6588 if (*slot != NULL)
6589 return 1;
6590
6591 /* This does the job that create_all_type_units would have done for
6592 this TU. */
6593 entry = add_type_unit (dwo_unit->signature, slot);
6594 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6595 *slot = entry;
6596
6597 /* This does the job that build_type_psymtabs_1 would have done. */
6598 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6599 build_type_psymtabs_reader, NULL);
6600
6601 return 1;
6602 }
6603
6604 /* Traversal function for process_skeletonless_type_units. */
6605
6606 static int
6607 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6608 {
6609 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6610
6611 if (dwo_file->tus != NULL)
6612 {
6613 htab_traverse_noresize (dwo_file->tus,
6614 process_skeletonless_type_unit, info);
6615 }
6616
6617 return 1;
6618 }
6619
6620 /* Scan all TUs of DWO files, verifying we've processed them.
6621 This is needed in case a TU was emitted without its skeleton.
6622 Note: This can't be done until we know what all the DWO files are. */
6623
6624 static void
6625 process_skeletonless_type_units (struct objfile *objfile)
6626 {
6627 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6628 if (get_dwp_file () == NULL
6629 && dwarf2_per_objfile->dwo_files != NULL)
6630 {
6631 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6632 process_dwo_file_for_skeletonless_type_units,
6633 objfile);
6634 }
6635 }
6636
6637 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6638
6639 static void
6640 psymtabs_addrmap_cleanup (void *o)
6641 {
6642 struct objfile *objfile = (struct objfile *) o;
6643
6644 objfile->psymtabs_addrmap = NULL;
6645 }
6646
6647 /* Compute the 'user' field for each psymtab in OBJFILE. */
6648
6649 static void
6650 set_partial_user (struct objfile *objfile)
6651 {
6652 int i;
6653
6654 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6655 {
6656 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6657 struct partial_symtab *pst = per_cu->v.psymtab;
6658 int j;
6659
6660 if (pst == NULL)
6661 continue;
6662
6663 for (j = 0; j < pst->number_of_dependencies; ++j)
6664 {
6665 /* Set the 'user' field only if it is not already set. */
6666 if (pst->dependencies[j]->user == NULL)
6667 pst->dependencies[j]->user = pst;
6668 }
6669 }
6670 }
6671
6672 /* Build the partial symbol table by doing a quick pass through the
6673 .debug_info and .debug_abbrev sections. */
6674
6675 static void
6676 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6677 {
6678 struct cleanup *back_to, *addrmap_cleanup;
6679 int i;
6680
6681 if (dwarf_read_debug)
6682 {
6683 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6684 objfile_name (objfile));
6685 }
6686
6687 dwarf2_per_objfile->reading_partial_symbols = 1;
6688
6689 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6690
6691 /* Any cached compilation units will be linked by the per-objfile
6692 read_in_chain. Make sure to free them when we're done. */
6693 back_to = make_cleanup (free_cached_comp_units, NULL);
6694
6695 build_type_psymtabs (objfile);
6696
6697 create_all_comp_units (objfile);
6698
6699 /* Create a temporary address map on a temporary obstack. We later
6700 copy this to the final obstack. */
6701 auto_obstack temp_obstack;
6702 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6703 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6704
6705 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6706 {
6707 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6708
6709 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6710 }
6711
6712 /* This has to wait until we read the CUs, we need the list of DWOs. */
6713 process_skeletonless_type_units (objfile);
6714
6715 /* Now that all TUs have been processed we can fill in the dependencies. */
6716 if (dwarf2_per_objfile->type_unit_groups != NULL)
6717 {
6718 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6719 build_type_psymtab_dependencies, NULL);
6720 }
6721
6722 if (dwarf_read_debug)
6723 print_tu_stats ();
6724
6725 set_partial_user (objfile);
6726
6727 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6728 &objfile->objfile_obstack);
6729 discard_cleanups (addrmap_cleanup);
6730
6731 do_cleanups (back_to);
6732
6733 if (dwarf_read_debug)
6734 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6735 objfile_name (objfile));
6736 }
6737
6738 /* die_reader_func for load_partial_comp_unit. */
6739
6740 static void
6741 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6742 const gdb_byte *info_ptr,
6743 struct die_info *comp_unit_die,
6744 int has_children,
6745 void *data)
6746 {
6747 struct dwarf2_cu *cu = reader->cu;
6748
6749 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6750
6751 /* Check if comp unit has_children.
6752 If so, read the rest of the partial symbols from this comp unit.
6753 If not, there's no more debug_info for this comp unit. */
6754 if (has_children)
6755 load_partial_dies (reader, info_ptr, 0);
6756 }
6757
6758 /* Load the partial DIEs for a secondary CU into memory.
6759 This is also used when rereading a primary CU with load_all_dies. */
6760
6761 static void
6762 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6763 {
6764 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6765 load_partial_comp_unit_reader, NULL);
6766 }
6767
6768 static void
6769 read_comp_units_from_section (struct objfile *objfile,
6770 struct dwarf2_section_info *section,
6771 unsigned int is_dwz,
6772 int *n_allocated,
6773 int *n_comp_units,
6774 struct dwarf2_per_cu_data ***all_comp_units)
6775 {
6776 const gdb_byte *info_ptr;
6777 bfd *abfd = get_section_bfd_owner (section);
6778
6779 if (dwarf_read_debug)
6780 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6781 get_section_name (section),
6782 get_section_file_name (section));
6783
6784 dwarf2_read_section (objfile, section);
6785
6786 info_ptr = section->buffer;
6787
6788 while (info_ptr < section->buffer + section->size)
6789 {
6790 unsigned int length, initial_length_size;
6791 struct dwarf2_per_cu_data *this_cu;
6792
6793 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6794
6795 /* Read just enough information to find out where the next
6796 compilation unit is. */
6797 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6798
6799 /* Save the compilation unit for later lookup. */
6800 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6801 memset (this_cu, 0, sizeof (*this_cu));
6802 this_cu->sect_off = sect_off;
6803 this_cu->length = length + initial_length_size;
6804 this_cu->is_dwz = is_dwz;
6805 this_cu->objfile = objfile;
6806 this_cu->section = section;
6807
6808 if (*n_comp_units == *n_allocated)
6809 {
6810 *n_allocated *= 2;
6811 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6812 *all_comp_units, *n_allocated);
6813 }
6814 (*all_comp_units)[*n_comp_units] = this_cu;
6815 ++*n_comp_units;
6816
6817 info_ptr = info_ptr + this_cu->length;
6818 }
6819 }
6820
6821 /* Create a list of all compilation units in OBJFILE.
6822 This is only done for -readnow and building partial symtabs. */
6823
6824 static void
6825 create_all_comp_units (struct objfile *objfile)
6826 {
6827 int n_allocated;
6828 int n_comp_units;
6829 struct dwarf2_per_cu_data **all_comp_units;
6830 struct dwz_file *dwz;
6831
6832 n_comp_units = 0;
6833 n_allocated = 10;
6834 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6835
6836 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6837 &n_allocated, &n_comp_units, &all_comp_units);
6838
6839 dwz = dwarf2_get_dwz_file ();
6840 if (dwz != NULL)
6841 read_comp_units_from_section (objfile, &dwz->info, 1,
6842 &n_allocated, &n_comp_units,
6843 &all_comp_units);
6844
6845 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6846 struct dwarf2_per_cu_data *,
6847 n_comp_units);
6848 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6849 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6850 xfree (all_comp_units);
6851 dwarf2_per_objfile->n_comp_units = n_comp_units;
6852 }
6853
6854 /* Process all loaded DIEs for compilation unit CU, starting at
6855 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6856 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6857 DW_AT_ranges). See the comments of add_partial_subprogram on how
6858 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6859
6860 static void
6861 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6862 CORE_ADDR *highpc, int set_addrmap,
6863 struct dwarf2_cu *cu)
6864 {
6865 struct partial_die_info *pdi;
6866
6867 /* Now, march along the PDI's, descending into ones which have
6868 interesting children but skipping the children of the other ones,
6869 until we reach the end of the compilation unit. */
6870
6871 pdi = first_die;
6872
6873 while (pdi != NULL)
6874 {
6875 fixup_partial_die (pdi, cu);
6876
6877 /* Anonymous namespaces or modules have no name but have interesting
6878 children, so we need to look at them. Ditto for anonymous
6879 enums. */
6880
6881 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6882 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6883 || pdi->tag == DW_TAG_imported_unit)
6884 {
6885 switch (pdi->tag)
6886 {
6887 case DW_TAG_subprogram:
6888 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6889 break;
6890 case DW_TAG_constant:
6891 case DW_TAG_variable:
6892 case DW_TAG_typedef:
6893 case DW_TAG_union_type:
6894 if (!pdi->is_declaration)
6895 {
6896 add_partial_symbol (pdi, cu);
6897 }
6898 break;
6899 case DW_TAG_class_type:
6900 case DW_TAG_interface_type:
6901 case DW_TAG_structure_type:
6902 if (!pdi->is_declaration)
6903 {
6904 add_partial_symbol (pdi, cu);
6905 }
6906 if (cu->language == language_rust && pdi->has_children)
6907 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6908 set_addrmap, cu);
6909 break;
6910 case DW_TAG_enumeration_type:
6911 if (!pdi->is_declaration)
6912 add_partial_enumeration (pdi, cu);
6913 break;
6914 case DW_TAG_base_type:
6915 case DW_TAG_subrange_type:
6916 /* File scope base type definitions are added to the partial
6917 symbol table. */
6918 add_partial_symbol (pdi, cu);
6919 break;
6920 case DW_TAG_namespace:
6921 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6922 break;
6923 case DW_TAG_module:
6924 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6925 break;
6926 case DW_TAG_imported_unit:
6927 {
6928 struct dwarf2_per_cu_data *per_cu;
6929
6930 /* For now we don't handle imported units in type units. */
6931 if (cu->per_cu->is_debug_types)
6932 {
6933 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6934 " supported in type units [in module %s]"),
6935 objfile_name (cu->objfile));
6936 }
6937
6938 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6939 pdi->is_dwz,
6940 cu->objfile);
6941
6942 /* Go read the partial unit, if needed. */
6943 if (per_cu->v.psymtab == NULL)
6944 process_psymtab_comp_unit (per_cu, 1, cu->language);
6945
6946 VEC_safe_push (dwarf2_per_cu_ptr,
6947 cu->per_cu->imported_symtabs, per_cu);
6948 }
6949 break;
6950 case DW_TAG_imported_declaration:
6951 add_partial_symbol (pdi, cu);
6952 break;
6953 default:
6954 break;
6955 }
6956 }
6957
6958 /* If the die has a sibling, skip to the sibling. */
6959
6960 pdi = pdi->die_sibling;
6961 }
6962 }
6963
6964 /* Functions used to compute the fully scoped name of a partial DIE.
6965
6966 Normally, this is simple. For C++, the parent DIE's fully scoped
6967 name is concatenated with "::" and the partial DIE's name.
6968 Enumerators are an exception; they use the scope of their parent
6969 enumeration type, i.e. the name of the enumeration type is not
6970 prepended to the enumerator.
6971
6972 There are two complexities. One is DW_AT_specification; in this
6973 case "parent" means the parent of the target of the specification,
6974 instead of the direct parent of the DIE. The other is compilers
6975 which do not emit DW_TAG_namespace; in this case we try to guess
6976 the fully qualified name of structure types from their members'
6977 linkage names. This must be done using the DIE's children rather
6978 than the children of any DW_AT_specification target. We only need
6979 to do this for structures at the top level, i.e. if the target of
6980 any DW_AT_specification (if any; otherwise the DIE itself) does not
6981 have a parent. */
6982
6983 /* Compute the scope prefix associated with PDI's parent, in
6984 compilation unit CU. The result will be allocated on CU's
6985 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6986 field. NULL is returned if no prefix is necessary. */
6987 static const char *
6988 partial_die_parent_scope (struct partial_die_info *pdi,
6989 struct dwarf2_cu *cu)
6990 {
6991 const char *grandparent_scope;
6992 struct partial_die_info *parent, *real_pdi;
6993
6994 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6995 then this means the parent of the specification DIE. */
6996
6997 real_pdi = pdi;
6998 while (real_pdi->has_specification)
6999 real_pdi = find_partial_die (real_pdi->spec_offset,
7000 real_pdi->spec_is_dwz, cu);
7001
7002 parent = real_pdi->die_parent;
7003 if (parent == NULL)
7004 return NULL;
7005
7006 if (parent->scope_set)
7007 return parent->scope;
7008
7009 fixup_partial_die (parent, cu);
7010
7011 grandparent_scope = partial_die_parent_scope (parent, cu);
7012
7013 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7014 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7015 Work around this problem here. */
7016 if (cu->language == language_cplus
7017 && parent->tag == DW_TAG_namespace
7018 && strcmp (parent->name, "::") == 0
7019 && grandparent_scope == NULL)
7020 {
7021 parent->scope = NULL;
7022 parent->scope_set = 1;
7023 return NULL;
7024 }
7025
7026 if (pdi->tag == DW_TAG_enumerator)
7027 /* Enumerators should not get the name of the enumeration as a prefix. */
7028 parent->scope = grandparent_scope;
7029 else if (parent->tag == DW_TAG_namespace
7030 || parent->tag == DW_TAG_module
7031 || parent->tag == DW_TAG_structure_type
7032 || parent->tag == DW_TAG_class_type
7033 || parent->tag == DW_TAG_interface_type
7034 || parent->tag == DW_TAG_union_type
7035 || parent->tag == DW_TAG_enumeration_type)
7036 {
7037 if (grandparent_scope == NULL)
7038 parent->scope = parent->name;
7039 else
7040 parent->scope = typename_concat (&cu->comp_unit_obstack,
7041 grandparent_scope,
7042 parent->name, 0, cu);
7043 }
7044 else
7045 {
7046 /* FIXME drow/2004-04-01: What should we be doing with
7047 function-local names? For partial symbols, we should probably be
7048 ignoring them. */
7049 complaint (&symfile_complaints,
7050 _("unhandled containing DIE tag %d for DIE at %d"),
7051 parent->tag, to_underlying (pdi->sect_off));
7052 parent->scope = grandparent_scope;
7053 }
7054
7055 parent->scope_set = 1;
7056 return parent->scope;
7057 }
7058
7059 /* Return the fully scoped name associated with PDI, from compilation unit
7060 CU. The result will be allocated with malloc. */
7061
7062 static char *
7063 partial_die_full_name (struct partial_die_info *pdi,
7064 struct dwarf2_cu *cu)
7065 {
7066 const char *parent_scope;
7067
7068 /* If this is a template instantiation, we can not work out the
7069 template arguments from partial DIEs. So, unfortunately, we have
7070 to go through the full DIEs. At least any work we do building
7071 types here will be reused if full symbols are loaded later. */
7072 if (pdi->has_template_arguments)
7073 {
7074 fixup_partial_die (pdi, cu);
7075
7076 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7077 {
7078 struct die_info *die;
7079 struct attribute attr;
7080 struct dwarf2_cu *ref_cu = cu;
7081
7082 /* DW_FORM_ref_addr is using section offset. */
7083 attr.name = (enum dwarf_attribute) 0;
7084 attr.form = DW_FORM_ref_addr;
7085 attr.u.unsnd = to_underlying (pdi->sect_off);
7086 die = follow_die_ref (NULL, &attr, &ref_cu);
7087
7088 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7089 }
7090 }
7091
7092 parent_scope = partial_die_parent_scope (pdi, cu);
7093 if (parent_scope == NULL)
7094 return NULL;
7095 else
7096 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7097 }
7098
7099 static void
7100 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7101 {
7102 struct objfile *objfile = cu->objfile;
7103 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7104 CORE_ADDR addr = 0;
7105 const char *actual_name = NULL;
7106 CORE_ADDR baseaddr;
7107 char *built_actual_name;
7108
7109 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7110
7111 built_actual_name = partial_die_full_name (pdi, cu);
7112 if (built_actual_name != NULL)
7113 actual_name = built_actual_name;
7114
7115 if (actual_name == NULL)
7116 actual_name = pdi->name;
7117
7118 switch (pdi->tag)
7119 {
7120 case DW_TAG_subprogram:
7121 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7122 if (pdi->is_external || cu->language == language_ada)
7123 {
7124 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7125 of the global scope. But in Ada, we want to be able to access
7126 nested procedures globally. So all Ada subprograms are stored
7127 in the global scope. */
7128 add_psymbol_to_list (actual_name, strlen (actual_name),
7129 built_actual_name != NULL,
7130 VAR_DOMAIN, LOC_BLOCK,
7131 &objfile->global_psymbols,
7132 addr, cu->language, objfile);
7133 }
7134 else
7135 {
7136 add_psymbol_to_list (actual_name, strlen (actual_name),
7137 built_actual_name != NULL,
7138 VAR_DOMAIN, LOC_BLOCK,
7139 &objfile->static_psymbols,
7140 addr, cu->language, objfile);
7141 }
7142
7143 if (pdi->main_subprogram && actual_name != NULL)
7144 set_objfile_main_name (objfile, actual_name, cu->language);
7145 break;
7146 case DW_TAG_constant:
7147 {
7148 struct psymbol_allocation_list *list;
7149
7150 if (pdi->is_external)
7151 list = &objfile->global_psymbols;
7152 else
7153 list = &objfile->static_psymbols;
7154 add_psymbol_to_list (actual_name, strlen (actual_name),
7155 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7156 list, 0, cu->language, objfile);
7157 }
7158 break;
7159 case DW_TAG_variable:
7160 if (pdi->d.locdesc)
7161 addr = decode_locdesc (pdi->d.locdesc, cu);
7162
7163 if (pdi->d.locdesc
7164 && addr == 0
7165 && !dwarf2_per_objfile->has_section_at_zero)
7166 {
7167 /* A global or static variable may also have been stripped
7168 out by the linker if unused, in which case its address
7169 will be nullified; do not add such variables into partial
7170 symbol table then. */
7171 }
7172 else if (pdi->is_external)
7173 {
7174 /* Global Variable.
7175 Don't enter into the minimal symbol tables as there is
7176 a minimal symbol table entry from the ELF symbols already.
7177 Enter into partial symbol table if it has a location
7178 descriptor or a type.
7179 If the location descriptor is missing, new_symbol will create
7180 a LOC_UNRESOLVED symbol, the address of the variable will then
7181 be determined from the minimal symbol table whenever the variable
7182 is referenced.
7183 The address for the partial symbol table entry is not
7184 used by GDB, but it comes in handy for debugging partial symbol
7185 table building. */
7186
7187 if (pdi->d.locdesc || pdi->has_type)
7188 add_psymbol_to_list (actual_name, strlen (actual_name),
7189 built_actual_name != NULL,
7190 VAR_DOMAIN, LOC_STATIC,
7191 &objfile->global_psymbols,
7192 addr + baseaddr,
7193 cu->language, objfile);
7194 }
7195 else
7196 {
7197 int has_loc = pdi->d.locdesc != NULL;
7198
7199 /* Static Variable. Skip symbols whose value we cannot know (those
7200 without location descriptors or constant values). */
7201 if (!has_loc && !pdi->has_const_value)
7202 {
7203 xfree (built_actual_name);
7204 return;
7205 }
7206
7207 add_psymbol_to_list (actual_name, strlen (actual_name),
7208 built_actual_name != NULL,
7209 VAR_DOMAIN, LOC_STATIC,
7210 &objfile->static_psymbols,
7211 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7212 cu->language, objfile);
7213 }
7214 break;
7215 case DW_TAG_typedef:
7216 case DW_TAG_base_type:
7217 case DW_TAG_subrange_type:
7218 add_psymbol_to_list (actual_name, strlen (actual_name),
7219 built_actual_name != NULL,
7220 VAR_DOMAIN, LOC_TYPEDEF,
7221 &objfile->static_psymbols,
7222 0, cu->language, objfile);
7223 break;
7224 case DW_TAG_imported_declaration:
7225 case DW_TAG_namespace:
7226 add_psymbol_to_list (actual_name, strlen (actual_name),
7227 built_actual_name != NULL,
7228 VAR_DOMAIN, LOC_TYPEDEF,
7229 &objfile->global_psymbols,
7230 0, cu->language, objfile);
7231 break;
7232 case DW_TAG_module:
7233 add_psymbol_to_list (actual_name, strlen (actual_name),
7234 built_actual_name != NULL,
7235 MODULE_DOMAIN, LOC_TYPEDEF,
7236 &objfile->global_psymbols,
7237 0, cu->language, objfile);
7238 break;
7239 case DW_TAG_class_type:
7240 case DW_TAG_interface_type:
7241 case DW_TAG_structure_type:
7242 case DW_TAG_union_type:
7243 case DW_TAG_enumeration_type:
7244 /* Skip external references. The DWARF standard says in the section
7245 about "Structure, Union, and Class Type Entries": "An incomplete
7246 structure, union or class type is represented by a structure,
7247 union or class entry that does not have a byte size attribute
7248 and that has a DW_AT_declaration attribute." */
7249 if (!pdi->has_byte_size && pdi->is_declaration)
7250 {
7251 xfree (built_actual_name);
7252 return;
7253 }
7254
7255 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7256 static vs. global. */
7257 add_psymbol_to_list (actual_name, strlen (actual_name),
7258 built_actual_name != NULL,
7259 STRUCT_DOMAIN, LOC_TYPEDEF,
7260 cu->language == language_cplus
7261 ? &objfile->global_psymbols
7262 : &objfile->static_psymbols,
7263 0, cu->language, objfile);
7264
7265 break;
7266 case DW_TAG_enumerator:
7267 add_psymbol_to_list (actual_name, strlen (actual_name),
7268 built_actual_name != NULL,
7269 VAR_DOMAIN, LOC_CONST,
7270 cu->language == language_cplus
7271 ? &objfile->global_psymbols
7272 : &objfile->static_psymbols,
7273 0, cu->language, objfile);
7274 break;
7275 default:
7276 break;
7277 }
7278
7279 xfree (built_actual_name);
7280 }
7281
7282 /* Read a partial die corresponding to a namespace; also, add a symbol
7283 corresponding to that namespace to the symbol table. NAMESPACE is
7284 the name of the enclosing namespace. */
7285
7286 static void
7287 add_partial_namespace (struct partial_die_info *pdi,
7288 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7289 int set_addrmap, struct dwarf2_cu *cu)
7290 {
7291 /* Add a symbol for the namespace. */
7292
7293 add_partial_symbol (pdi, cu);
7294
7295 /* Now scan partial symbols in that namespace. */
7296
7297 if (pdi->has_children)
7298 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7299 }
7300
7301 /* Read a partial die corresponding to a Fortran module. */
7302
7303 static void
7304 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7305 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7306 {
7307 /* Add a symbol for the namespace. */
7308
7309 add_partial_symbol (pdi, cu);
7310
7311 /* Now scan partial symbols in that module. */
7312
7313 if (pdi->has_children)
7314 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7315 }
7316
7317 /* Read a partial die corresponding to a subprogram and create a partial
7318 symbol for that subprogram. When the CU language allows it, this
7319 routine also defines a partial symbol for each nested subprogram
7320 that this subprogram contains. If SET_ADDRMAP is true, record the
7321 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7322 and highest PC values found in PDI.
7323
7324 PDI may also be a lexical block, in which case we simply search
7325 recursively for subprograms defined inside that lexical block.
7326 Again, this is only performed when the CU language allows this
7327 type of definitions. */
7328
7329 static void
7330 add_partial_subprogram (struct partial_die_info *pdi,
7331 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7332 int set_addrmap, struct dwarf2_cu *cu)
7333 {
7334 if (pdi->tag == DW_TAG_subprogram)
7335 {
7336 if (pdi->has_pc_info)
7337 {
7338 if (pdi->lowpc < *lowpc)
7339 *lowpc = pdi->lowpc;
7340 if (pdi->highpc > *highpc)
7341 *highpc = pdi->highpc;
7342 if (set_addrmap)
7343 {
7344 struct objfile *objfile = cu->objfile;
7345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7346 CORE_ADDR baseaddr;
7347 CORE_ADDR highpc;
7348 CORE_ADDR lowpc;
7349
7350 baseaddr = ANOFFSET (objfile->section_offsets,
7351 SECT_OFF_TEXT (objfile));
7352 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7353 pdi->lowpc + baseaddr);
7354 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7355 pdi->highpc + baseaddr);
7356 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7357 cu->per_cu->v.psymtab);
7358 }
7359 }
7360
7361 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7362 {
7363 if (!pdi->is_declaration)
7364 /* Ignore subprogram DIEs that do not have a name, they are
7365 illegal. Do not emit a complaint at this point, we will
7366 do so when we convert this psymtab into a symtab. */
7367 if (pdi->name)
7368 add_partial_symbol (pdi, cu);
7369 }
7370 }
7371
7372 if (! pdi->has_children)
7373 return;
7374
7375 if (cu->language == language_ada)
7376 {
7377 pdi = pdi->die_child;
7378 while (pdi != NULL)
7379 {
7380 fixup_partial_die (pdi, cu);
7381 if (pdi->tag == DW_TAG_subprogram
7382 || pdi->tag == DW_TAG_lexical_block)
7383 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7384 pdi = pdi->die_sibling;
7385 }
7386 }
7387 }
7388
7389 /* Read a partial die corresponding to an enumeration type. */
7390
7391 static void
7392 add_partial_enumeration (struct partial_die_info *enum_pdi,
7393 struct dwarf2_cu *cu)
7394 {
7395 struct partial_die_info *pdi;
7396
7397 if (enum_pdi->name != NULL)
7398 add_partial_symbol (enum_pdi, cu);
7399
7400 pdi = enum_pdi->die_child;
7401 while (pdi)
7402 {
7403 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7404 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7405 else
7406 add_partial_symbol (pdi, cu);
7407 pdi = pdi->die_sibling;
7408 }
7409 }
7410
7411 /* Return the initial uleb128 in the die at INFO_PTR. */
7412
7413 static unsigned int
7414 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7415 {
7416 unsigned int bytes_read;
7417
7418 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7419 }
7420
7421 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7422 Return the corresponding abbrev, or NULL if the number is zero (indicating
7423 an empty DIE). In either case *BYTES_READ will be set to the length of
7424 the initial number. */
7425
7426 static struct abbrev_info *
7427 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7428 struct dwarf2_cu *cu)
7429 {
7430 bfd *abfd = cu->objfile->obfd;
7431 unsigned int abbrev_number;
7432 struct abbrev_info *abbrev;
7433
7434 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7435
7436 if (abbrev_number == 0)
7437 return NULL;
7438
7439 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7440 if (!abbrev)
7441 {
7442 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7443 " at offset 0x%x [in module %s]"),
7444 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7445 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7446 }
7447
7448 return abbrev;
7449 }
7450
7451 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7452 Returns a pointer to the end of a series of DIEs, terminated by an empty
7453 DIE. Any children of the skipped DIEs will also be skipped. */
7454
7455 static const gdb_byte *
7456 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7457 {
7458 struct dwarf2_cu *cu = reader->cu;
7459 struct abbrev_info *abbrev;
7460 unsigned int bytes_read;
7461
7462 while (1)
7463 {
7464 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7465 if (abbrev == NULL)
7466 return info_ptr + bytes_read;
7467 else
7468 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7469 }
7470 }
7471
7472 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7473 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7474 abbrev corresponding to that skipped uleb128 should be passed in
7475 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7476 children. */
7477
7478 static const gdb_byte *
7479 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7480 struct abbrev_info *abbrev)
7481 {
7482 unsigned int bytes_read;
7483 struct attribute attr;
7484 bfd *abfd = reader->abfd;
7485 struct dwarf2_cu *cu = reader->cu;
7486 const gdb_byte *buffer = reader->buffer;
7487 const gdb_byte *buffer_end = reader->buffer_end;
7488 unsigned int form, i;
7489
7490 for (i = 0; i < abbrev->num_attrs; i++)
7491 {
7492 /* The only abbrev we care about is DW_AT_sibling. */
7493 if (abbrev->attrs[i].name == DW_AT_sibling)
7494 {
7495 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7496 if (attr.form == DW_FORM_ref_addr)
7497 complaint (&symfile_complaints,
7498 _("ignoring absolute DW_AT_sibling"));
7499 else
7500 {
7501 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7502 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7503
7504 if (sibling_ptr < info_ptr)
7505 complaint (&symfile_complaints,
7506 _("DW_AT_sibling points backwards"));
7507 else if (sibling_ptr > reader->buffer_end)
7508 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7509 else
7510 return sibling_ptr;
7511 }
7512 }
7513
7514 /* If it isn't DW_AT_sibling, skip this attribute. */
7515 form = abbrev->attrs[i].form;
7516 skip_attribute:
7517 switch (form)
7518 {
7519 case DW_FORM_ref_addr:
7520 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7521 and later it is offset sized. */
7522 if (cu->header.version == 2)
7523 info_ptr += cu->header.addr_size;
7524 else
7525 info_ptr += cu->header.offset_size;
7526 break;
7527 case DW_FORM_GNU_ref_alt:
7528 info_ptr += cu->header.offset_size;
7529 break;
7530 case DW_FORM_addr:
7531 info_ptr += cu->header.addr_size;
7532 break;
7533 case DW_FORM_data1:
7534 case DW_FORM_ref1:
7535 case DW_FORM_flag:
7536 info_ptr += 1;
7537 break;
7538 case DW_FORM_flag_present:
7539 case DW_FORM_implicit_const:
7540 break;
7541 case DW_FORM_data2:
7542 case DW_FORM_ref2:
7543 info_ptr += 2;
7544 break;
7545 case DW_FORM_data4:
7546 case DW_FORM_ref4:
7547 info_ptr += 4;
7548 break;
7549 case DW_FORM_data8:
7550 case DW_FORM_ref8:
7551 case DW_FORM_ref_sig8:
7552 info_ptr += 8;
7553 break;
7554 case DW_FORM_data16:
7555 info_ptr += 16;
7556 break;
7557 case DW_FORM_string:
7558 read_direct_string (abfd, info_ptr, &bytes_read);
7559 info_ptr += bytes_read;
7560 break;
7561 case DW_FORM_sec_offset:
7562 case DW_FORM_strp:
7563 case DW_FORM_GNU_strp_alt:
7564 info_ptr += cu->header.offset_size;
7565 break;
7566 case DW_FORM_exprloc:
7567 case DW_FORM_block:
7568 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7569 info_ptr += bytes_read;
7570 break;
7571 case DW_FORM_block1:
7572 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7573 break;
7574 case DW_FORM_block2:
7575 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7576 break;
7577 case DW_FORM_block4:
7578 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7579 break;
7580 case DW_FORM_sdata:
7581 case DW_FORM_udata:
7582 case DW_FORM_ref_udata:
7583 case DW_FORM_GNU_addr_index:
7584 case DW_FORM_GNU_str_index:
7585 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7586 break;
7587 case DW_FORM_indirect:
7588 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7589 info_ptr += bytes_read;
7590 /* We need to continue parsing from here, so just go back to
7591 the top. */
7592 goto skip_attribute;
7593
7594 default:
7595 error (_("Dwarf Error: Cannot handle %s "
7596 "in DWARF reader [in module %s]"),
7597 dwarf_form_name (form),
7598 bfd_get_filename (abfd));
7599 }
7600 }
7601
7602 if (abbrev->has_children)
7603 return skip_children (reader, info_ptr);
7604 else
7605 return info_ptr;
7606 }
7607
7608 /* Locate ORIG_PDI's sibling.
7609 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7610
7611 static const gdb_byte *
7612 locate_pdi_sibling (const struct die_reader_specs *reader,
7613 struct partial_die_info *orig_pdi,
7614 const gdb_byte *info_ptr)
7615 {
7616 /* Do we know the sibling already? */
7617
7618 if (orig_pdi->sibling)
7619 return orig_pdi->sibling;
7620
7621 /* Are there any children to deal with? */
7622
7623 if (!orig_pdi->has_children)
7624 return info_ptr;
7625
7626 /* Skip the children the long way. */
7627
7628 return skip_children (reader, info_ptr);
7629 }
7630
7631 /* Expand this partial symbol table into a full symbol table. SELF is
7632 not NULL. */
7633
7634 static void
7635 dwarf2_read_symtab (struct partial_symtab *self,
7636 struct objfile *objfile)
7637 {
7638 if (self->readin)
7639 {
7640 warning (_("bug: psymtab for %s is already read in."),
7641 self->filename);
7642 }
7643 else
7644 {
7645 if (info_verbose)
7646 {
7647 printf_filtered (_("Reading in symbols for %s..."),
7648 self->filename);
7649 gdb_flush (gdb_stdout);
7650 }
7651
7652 /* Restore our global data. */
7653 dwarf2_per_objfile
7654 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7655 dwarf2_objfile_data_key);
7656
7657 /* If this psymtab is constructed from a debug-only objfile, the
7658 has_section_at_zero flag will not necessarily be correct. We
7659 can get the correct value for this flag by looking at the data
7660 associated with the (presumably stripped) associated objfile. */
7661 if (objfile->separate_debug_objfile_backlink)
7662 {
7663 struct dwarf2_per_objfile *dpo_backlink
7664 = ((struct dwarf2_per_objfile *)
7665 objfile_data (objfile->separate_debug_objfile_backlink,
7666 dwarf2_objfile_data_key));
7667
7668 dwarf2_per_objfile->has_section_at_zero
7669 = dpo_backlink->has_section_at_zero;
7670 }
7671
7672 dwarf2_per_objfile->reading_partial_symbols = 0;
7673
7674 psymtab_to_symtab_1 (self);
7675
7676 /* Finish up the debug error message. */
7677 if (info_verbose)
7678 printf_filtered (_("done.\n"));
7679 }
7680
7681 process_cu_includes ();
7682 }
7683 \f
7684 /* Reading in full CUs. */
7685
7686 /* Add PER_CU to the queue. */
7687
7688 static void
7689 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7690 enum language pretend_language)
7691 {
7692 struct dwarf2_queue_item *item;
7693
7694 per_cu->queued = 1;
7695 item = XNEW (struct dwarf2_queue_item);
7696 item->per_cu = per_cu;
7697 item->pretend_language = pretend_language;
7698 item->next = NULL;
7699
7700 if (dwarf2_queue == NULL)
7701 dwarf2_queue = item;
7702 else
7703 dwarf2_queue_tail->next = item;
7704
7705 dwarf2_queue_tail = item;
7706 }
7707
7708 /* If PER_CU is not yet queued, add it to the queue.
7709 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7710 dependency.
7711 The result is non-zero if PER_CU was queued, otherwise the result is zero
7712 meaning either PER_CU is already queued or it is already loaded.
7713
7714 N.B. There is an invariant here that if a CU is queued then it is loaded.
7715 The caller is required to load PER_CU if we return non-zero. */
7716
7717 static int
7718 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7719 struct dwarf2_per_cu_data *per_cu,
7720 enum language pretend_language)
7721 {
7722 /* We may arrive here during partial symbol reading, if we need full
7723 DIEs to process an unusual case (e.g. template arguments). Do
7724 not queue PER_CU, just tell our caller to load its DIEs. */
7725 if (dwarf2_per_objfile->reading_partial_symbols)
7726 {
7727 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7728 return 1;
7729 return 0;
7730 }
7731
7732 /* Mark the dependence relation so that we don't flush PER_CU
7733 too early. */
7734 if (dependent_cu != NULL)
7735 dwarf2_add_dependence (dependent_cu, per_cu);
7736
7737 /* If it's already on the queue, we have nothing to do. */
7738 if (per_cu->queued)
7739 return 0;
7740
7741 /* If the compilation unit is already loaded, just mark it as
7742 used. */
7743 if (per_cu->cu != NULL)
7744 {
7745 per_cu->cu->last_used = 0;
7746 return 0;
7747 }
7748
7749 /* Add it to the queue. */
7750 queue_comp_unit (per_cu, pretend_language);
7751
7752 return 1;
7753 }
7754
7755 /* Process the queue. */
7756
7757 static void
7758 process_queue (void)
7759 {
7760 struct dwarf2_queue_item *item, *next_item;
7761
7762 if (dwarf_read_debug)
7763 {
7764 fprintf_unfiltered (gdb_stdlog,
7765 "Expanding one or more symtabs of objfile %s ...\n",
7766 objfile_name (dwarf2_per_objfile->objfile));
7767 }
7768
7769 /* The queue starts out with one item, but following a DIE reference
7770 may load a new CU, adding it to the end of the queue. */
7771 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7772 {
7773 if ((dwarf2_per_objfile->using_index
7774 ? !item->per_cu->v.quick->compunit_symtab
7775 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7776 /* Skip dummy CUs. */
7777 && item->per_cu->cu != NULL)
7778 {
7779 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7780 unsigned int debug_print_threshold;
7781 char buf[100];
7782
7783 if (per_cu->is_debug_types)
7784 {
7785 struct signatured_type *sig_type =
7786 (struct signatured_type *) per_cu;
7787
7788 sprintf (buf, "TU %s at offset 0x%x",
7789 hex_string (sig_type->signature),
7790 to_underlying (per_cu->sect_off));
7791 /* There can be 100s of TUs.
7792 Only print them in verbose mode. */
7793 debug_print_threshold = 2;
7794 }
7795 else
7796 {
7797 sprintf (buf, "CU at offset 0x%x",
7798 to_underlying (per_cu->sect_off));
7799 debug_print_threshold = 1;
7800 }
7801
7802 if (dwarf_read_debug >= debug_print_threshold)
7803 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7804
7805 if (per_cu->is_debug_types)
7806 process_full_type_unit (per_cu, item->pretend_language);
7807 else
7808 process_full_comp_unit (per_cu, item->pretend_language);
7809
7810 if (dwarf_read_debug >= debug_print_threshold)
7811 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7812 }
7813
7814 item->per_cu->queued = 0;
7815 next_item = item->next;
7816 xfree (item);
7817 }
7818
7819 dwarf2_queue_tail = NULL;
7820
7821 if (dwarf_read_debug)
7822 {
7823 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7824 objfile_name (dwarf2_per_objfile->objfile));
7825 }
7826 }
7827
7828 /* Free all allocated queue entries. This function only releases anything if
7829 an error was thrown; if the queue was processed then it would have been
7830 freed as we went along. */
7831
7832 static void
7833 dwarf2_release_queue (void *dummy)
7834 {
7835 struct dwarf2_queue_item *item, *last;
7836
7837 item = dwarf2_queue;
7838 while (item)
7839 {
7840 /* Anything still marked queued is likely to be in an
7841 inconsistent state, so discard it. */
7842 if (item->per_cu->queued)
7843 {
7844 if (item->per_cu->cu != NULL)
7845 free_one_cached_comp_unit (item->per_cu);
7846 item->per_cu->queued = 0;
7847 }
7848
7849 last = item;
7850 item = item->next;
7851 xfree (last);
7852 }
7853
7854 dwarf2_queue = dwarf2_queue_tail = NULL;
7855 }
7856
7857 /* Read in full symbols for PST, and anything it depends on. */
7858
7859 static void
7860 psymtab_to_symtab_1 (struct partial_symtab *pst)
7861 {
7862 struct dwarf2_per_cu_data *per_cu;
7863 int i;
7864
7865 if (pst->readin)
7866 return;
7867
7868 for (i = 0; i < pst->number_of_dependencies; i++)
7869 if (!pst->dependencies[i]->readin
7870 && pst->dependencies[i]->user == NULL)
7871 {
7872 /* Inform about additional files that need to be read in. */
7873 if (info_verbose)
7874 {
7875 /* FIXME: i18n: Need to make this a single string. */
7876 fputs_filtered (" ", gdb_stdout);
7877 wrap_here ("");
7878 fputs_filtered ("and ", gdb_stdout);
7879 wrap_here ("");
7880 printf_filtered ("%s...", pst->dependencies[i]->filename);
7881 wrap_here (""); /* Flush output. */
7882 gdb_flush (gdb_stdout);
7883 }
7884 psymtab_to_symtab_1 (pst->dependencies[i]);
7885 }
7886
7887 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7888
7889 if (per_cu == NULL)
7890 {
7891 /* It's an include file, no symbols to read for it.
7892 Everything is in the parent symtab. */
7893 pst->readin = 1;
7894 return;
7895 }
7896
7897 dw2_do_instantiate_symtab (per_cu);
7898 }
7899
7900 /* Trivial hash function for die_info: the hash value of a DIE
7901 is its offset in .debug_info for this objfile. */
7902
7903 static hashval_t
7904 die_hash (const void *item)
7905 {
7906 const struct die_info *die = (const struct die_info *) item;
7907
7908 return to_underlying (die->sect_off);
7909 }
7910
7911 /* Trivial comparison function for die_info structures: two DIEs
7912 are equal if they have the same offset. */
7913
7914 static int
7915 die_eq (const void *item_lhs, const void *item_rhs)
7916 {
7917 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7918 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7919
7920 return die_lhs->sect_off == die_rhs->sect_off;
7921 }
7922
7923 /* die_reader_func for load_full_comp_unit.
7924 This is identical to read_signatured_type_reader,
7925 but is kept separate for now. */
7926
7927 static void
7928 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7929 const gdb_byte *info_ptr,
7930 struct die_info *comp_unit_die,
7931 int has_children,
7932 void *data)
7933 {
7934 struct dwarf2_cu *cu = reader->cu;
7935 enum language *language_ptr = (enum language *) data;
7936
7937 gdb_assert (cu->die_hash == NULL);
7938 cu->die_hash =
7939 htab_create_alloc_ex (cu->header.length / 12,
7940 die_hash,
7941 die_eq,
7942 NULL,
7943 &cu->comp_unit_obstack,
7944 hashtab_obstack_allocate,
7945 dummy_obstack_deallocate);
7946
7947 if (has_children)
7948 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7949 &info_ptr, comp_unit_die);
7950 cu->dies = comp_unit_die;
7951 /* comp_unit_die is not stored in die_hash, no need. */
7952
7953 /* We try not to read any attributes in this function, because not
7954 all CUs needed for references have been loaded yet, and symbol
7955 table processing isn't initialized. But we have to set the CU language,
7956 or we won't be able to build types correctly.
7957 Similarly, if we do not read the producer, we can not apply
7958 producer-specific interpretation. */
7959 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7960 }
7961
7962 /* Load the DIEs associated with PER_CU into memory. */
7963
7964 static void
7965 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7966 enum language pretend_language)
7967 {
7968 gdb_assert (! this_cu->is_debug_types);
7969
7970 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7971 load_full_comp_unit_reader, &pretend_language);
7972 }
7973
7974 /* Add a DIE to the delayed physname list. */
7975
7976 static void
7977 add_to_method_list (struct type *type, int fnfield_index, int index,
7978 const char *name, struct die_info *die,
7979 struct dwarf2_cu *cu)
7980 {
7981 struct delayed_method_info mi;
7982 mi.type = type;
7983 mi.fnfield_index = fnfield_index;
7984 mi.index = index;
7985 mi.name = name;
7986 mi.die = die;
7987 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7988 }
7989
7990 /* A cleanup for freeing the delayed method list. */
7991
7992 static void
7993 free_delayed_list (void *ptr)
7994 {
7995 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7996 if (cu->method_list != NULL)
7997 {
7998 VEC_free (delayed_method_info, cu->method_list);
7999 cu->method_list = NULL;
8000 }
8001 }
8002
8003 /* Compute the physnames of any methods on the CU's method list.
8004
8005 The computation of method physnames is delayed in order to avoid the
8006 (bad) condition that one of the method's formal parameters is of an as yet
8007 incomplete type. */
8008
8009 static void
8010 compute_delayed_physnames (struct dwarf2_cu *cu)
8011 {
8012 int i;
8013 struct delayed_method_info *mi;
8014 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8015 {
8016 const char *physname;
8017 struct fn_fieldlist *fn_flp
8018 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8019 physname = dwarf2_physname (mi->name, mi->die, cu);
8020 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8021 = physname ? physname : "";
8022 }
8023 }
8024
8025 /* Go objects should be embedded in a DW_TAG_module DIE,
8026 and it's not clear if/how imported objects will appear.
8027 To keep Go support simple until that's worked out,
8028 go back through what we've read and create something usable.
8029 We could do this while processing each DIE, and feels kinda cleaner,
8030 but that way is more invasive.
8031 This is to, for example, allow the user to type "p var" or "b main"
8032 without having to specify the package name, and allow lookups
8033 of module.object to work in contexts that use the expression
8034 parser. */
8035
8036 static void
8037 fixup_go_packaging (struct dwarf2_cu *cu)
8038 {
8039 char *package_name = NULL;
8040 struct pending *list;
8041 int i;
8042
8043 for (list = global_symbols; list != NULL; list = list->next)
8044 {
8045 for (i = 0; i < list->nsyms; ++i)
8046 {
8047 struct symbol *sym = list->symbol[i];
8048
8049 if (SYMBOL_LANGUAGE (sym) == language_go
8050 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8051 {
8052 char *this_package_name = go_symbol_package_name (sym);
8053
8054 if (this_package_name == NULL)
8055 continue;
8056 if (package_name == NULL)
8057 package_name = this_package_name;
8058 else
8059 {
8060 if (strcmp (package_name, this_package_name) != 0)
8061 complaint (&symfile_complaints,
8062 _("Symtab %s has objects from two different Go packages: %s and %s"),
8063 (symbol_symtab (sym) != NULL
8064 ? symtab_to_filename_for_display
8065 (symbol_symtab (sym))
8066 : objfile_name (cu->objfile)),
8067 this_package_name, package_name);
8068 xfree (this_package_name);
8069 }
8070 }
8071 }
8072 }
8073
8074 if (package_name != NULL)
8075 {
8076 struct objfile *objfile = cu->objfile;
8077 const char *saved_package_name
8078 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8079 package_name,
8080 strlen (package_name));
8081 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8082 saved_package_name);
8083 struct symbol *sym;
8084
8085 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8086
8087 sym = allocate_symbol (objfile);
8088 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8089 SYMBOL_SET_NAMES (sym, saved_package_name,
8090 strlen (saved_package_name), 0, objfile);
8091 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8092 e.g., "main" finds the "main" module and not C's main(). */
8093 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8094 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8095 SYMBOL_TYPE (sym) = type;
8096
8097 add_symbol_to_list (sym, &global_symbols);
8098
8099 xfree (package_name);
8100 }
8101 }
8102
8103 /* Return the symtab for PER_CU. This works properly regardless of
8104 whether we're using the index or psymtabs. */
8105
8106 static struct compunit_symtab *
8107 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8108 {
8109 return (dwarf2_per_objfile->using_index
8110 ? per_cu->v.quick->compunit_symtab
8111 : per_cu->v.psymtab->compunit_symtab);
8112 }
8113
8114 /* A helper function for computing the list of all symbol tables
8115 included by PER_CU. */
8116
8117 static void
8118 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8119 htab_t all_children, htab_t all_type_symtabs,
8120 struct dwarf2_per_cu_data *per_cu,
8121 struct compunit_symtab *immediate_parent)
8122 {
8123 void **slot;
8124 int ix;
8125 struct compunit_symtab *cust;
8126 struct dwarf2_per_cu_data *iter;
8127
8128 slot = htab_find_slot (all_children, per_cu, INSERT);
8129 if (*slot != NULL)
8130 {
8131 /* This inclusion and its children have been processed. */
8132 return;
8133 }
8134
8135 *slot = per_cu;
8136 /* Only add a CU if it has a symbol table. */
8137 cust = get_compunit_symtab (per_cu);
8138 if (cust != NULL)
8139 {
8140 /* If this is a type unit only add its symbol table if we haven't
8141 seen it yet (type unit per_cu's can share symtabs). */
8142 if (per_cu->is_debug_types)
8143 {
8144 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8145 if (*slot == NULL)
8146 {
8147 *slot = cust;
8148 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8149 if (cust->user == NULL)
8150 cust->user = immediate_parent;
8151 }
8152 }
8153 else
8154 {
8155 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8156 if (cust->user == NULL)
8157 cust->user = immediate_parent;
8158 }
8159 }
8160
8161 for (ix = 0;
8162 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8163 ++ix)
8164 {
8165 recursively_compute_inclusions (result, all_children,
8166 all_type_symtabs, iter, cust);
8167 }
8168 }
8169
8170 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8171 PER_CU. */
8172
8173 static void
8174 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8175 {
8176 gdb_assert (! per_cu->is_debug_types);
8177
8178 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8179 {
8180 int ix, len;
8181 struct dwarf2_per_cu_data *per_cu_iter;
8182 struct compunit_symtab *compunit_symtab_iter;
8183 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8184 htab_t all_children, all_type_symtabs;
8185 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8186
8187 /* If we don't have a symtab, we can just skip this case. */
8188 if (cust == NULL)
8189 return;
8190
8191 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8192 NULL, xcalloc, xfree);
8193 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8194 NULL, xcalloc, xfree);
8195
8196 for (ix = 0;
8197 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8198 ix, per_cu_iter);
8199 ++ix)
8200 {
8201 recursively_compute_inclusions (&result_symtabs, all_children,
8202 all_type_symtabs, per_cu_iter,
8203 cust);
8204 }
8205
8206 /* Now we have a transitive closure of all the included symtabs. */
8207 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8208 cust->includes
8209 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8210 struct compunit_symtab *, len + 1);
8211 for (ix = 0;
8212 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8213 compunit_symtab_iter);
8214 ++ix)
8215 cust->includes[ix] = compunit_symtab_iter;
8216 cust->includes[len] = NULL;
8217
8218 VEC_free (compunit_symtab_ptr, result_symtabs);
8219 htab_delete (all_children);
8220 htab_delete (all_type_symtabs);
8221 }
8222 }
8223
8224 /* Compute the 'includes' field for the symtabs of all the CUs we just
8225 read. */
8226
8227 static void
8228 process_cu_includes (void)
8229 {
8230 int ix;
8231 struct dwarf2_per_cu_data *iter;
8232
8233 for (ix = 0;
8234 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8235 ix, iter);
8236 ++ix)
8237 {
8238 if (! iter->is_debug_types)
8239 compute_compunit_symtab_includes (iter);
8240 }
8241
8242 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8243 }
8244
8245 /* Generate full symbol information for PER_CU, whose DIEs have
8246 already been loaded into memory. */
8247
8248 static void
8249 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8250 enum language pretend_language)
8251 {
8252 struct dwarf2_cu *cu = per_cu->cu;
8253 struct objfile *objfile = per_cu->objfile;
8254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8255 CORE_ADDR lowpc, highpc;
8256 struct compunit_symtab *cust;
8257 struct cleanup *back_to, *delayed_list_cleanup;
8258 CORE_ADDR baseaddr;
8259 struct block *static_block;
8260 CORE_ADDR addr;
8261
8262 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8263
8264 buildsym_init ();
8265 back_to = make_cleanup (really_free_pendings, NULL);
8266 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8267
8268 cu->list_in_scope = &file_symbols;
8269
8270 cu->language = pretend_language;
8271 cu->language_defn = language_def (cu->language);
8272
8273 /* Do line number decoding in read_file_scope () */
8274 process_die (cu->dies, cu);
8275
8276 /* For now fudge the Go package. */
8277 if (cu->language == language_go)
8278 fixup_go_packaging (cu);
8279
8280 /* Now that we have processed all the DIEs in the CU, all the types
8281 should be complete, and it should now be safe to compute all of the
8282 physnames. */
8283 compute_delayed_physnames (cu);
8284 do_cleanups (delayed_list_cleanup);
8285
8286 /* Some compilers don't define a DW_AT_high_pc attribute for the
8287 compilation unit. If the DW_AT_high_pc is missing, synthesize
8288 it, by scanning the DIE's below the compilation unit. */
8289 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8290
8291 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8292 static_block = end_symtab_get_static_block (addr, 0, 1);
8293
8294 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8295 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8296 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8297 addrmap to help ensure it has an accurate map of pc values belonging to
8298 this comp unit. */
8299 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8300
8301 cust = end_symtab_from_static_block (static_block,
8302 SECT_OFF_TEXT (objfile), 0);
8303
8304 if (cust != NULL)
8305 {
8306 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8307
8308 /* Set symtab language to language from DW_AT_language. If the
8309 compilation is from a C file generated by language preprocessors, do
8310 not set the language if it was already deduced by start_subfile. */
8311 if (!(cu->language == language_c
8312 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8313 COMPUNIT_FILETABS (cust)->language = cu->language;
8314
8315 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8316 produce DW_AT_location with location lists but it can be possibly
8317 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8318 there were bugs in prologue debug info, fixed later in GCC-4.5
8319 by "unwind info for epilogues" patch (which is not directly related).
8320
8321 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8322 needed, it would be wrong due to missing DW_AT_producer there.
8323
8324 Still one can confuse GDB by using non-standard GCC compilation
8325 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8326 */
8327 if (cu->has_loclist && gcc_4_minor >= 5)
8328 cust->locations_valid = 1;
8329
8330 if (gcc_4_minor >= 5)
8331 cust->epilogue_unwind_valid = 1;
8332
8333 cust->call_site_htab = cu->call_site_htab;
8334 }
8335
8336 if (dwarf2_per_objfile->using_index)
8337 per_cu->v.quick->compunit_symtab = cust;
8338 else
8339 {
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 pst->compunit_symtab = cust;
8342 pst->readin = 1;
8343 }
8344
8345 /* Push it for inclusion processing later. */
8346 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8347
8348 do_cleanups (back_to);
8349 }
8350
8351 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8352 already been loaded into memory. */
8353
8354 static void
8355 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8356 enum language pretend_language)
8357 {
8358 struct dwarf2_cu *cu = per_cu->cu;
8359 struct objfile *objfile = per_cu->objfile;
8360 struct compunit_symtab *cust;
8361 struct cleanup *back_to, *delayed_list_cleanup;
8362 struct signatured_type *sig_type;
8363
8364 gdb_assert (per_cu->is_debug_types);
8365 sig_type = (struct signatured_type *) per_cu;
8366
8367 buildsym_init ();
8368 back_to = make_cleanup (really_free_pendings, NULL);
8369 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8370
8371 cu->list_in_scope = &file_symbols;
8372
8373 cu->language = pretend_language;
8374 cu->language_defn = language_def (cu->language);
8375
8376 /* The symbol tables are set up in read_type_unit_scope. */
8377 process_die (cu->dies, cu);
8378
8379 /* For now fudge the Go package. */
8380 if (cu->language == language_go)
8381 fixup_go_packaging (cu);
8382
8383 /* Now that we have processed all the DIEs in the CU, all the types
8384 should be complete, and it should now be safe to compute all of the
8385 physnames. */
8386 compute_delayed_physnames (cu);
8387 do_cleanups (delayed_list_cleanup);
8388
8389 /* TUs share symbol tables.
8390 If this is the first TU to use this symtab, complete the construction
8391 of it with end_expandable_symtab. Otherwise, complete the addition of
8392 this TU's symbols to the existing symtab. */
8393 if (sig_type->type_unit_group->compunit_symtab == NULL)
8394 {
8395 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8396 sig_type->type_unit_group->compunit_symtab = cust;
8397
8398 if (cust != NULL)
8399 {
8400 /* Set symtab language to language from DW_AT_language. If the
8401 compilation is from a C file generated by language preprocessors,
8402 do not set the language if it was already deduced by
8403 start_subfile. */
8404 if (!(cu->language == language_c
8405 && COMPUNIT_FILETABS (cust)->language != language_c))
8406 COMPUNIT_FILETABS (cust)->language = cu->language;
8407 }
8408 }
8409 else
8410 {
8411 augment_type_symtab ();
8412 cust = sig_type->type_unit_group->compunit_symtab;
8413 }
8414
8415 if (dwarf2_per_objfile->using_index)
8416 per_cu->v.quick->compunit_symtab = cust;
8417 else
8418 {
8419 struct partial_symtab *pst = per_cu->v.psymtab;
8420 pst->compunit_symtab = cust;
8421 pst->readin = 1;
8422 }
8423
8424 do_cleanups (back_to);
8425 }
8426
8427 /* Process an imported unit DIE. */
8428
8429 static void
8430 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8431 {
8432 struct attribute *attr;
8433
8434 /* For now we don't handle imported units in type units. */
8435 if (cu->per_cu->is_debug_types)
8436 {
8437 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8438 " supported in type units [in module %s]"),
8439 objfile_name (cu->objfile));
8440 }
8441
8442 attr = dwarf2_attr (die, DW_AT_import, cu);
8443 if (attr != NULL)
8444 {
8445 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8446 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8447 dwarf2_per_cu_data *per_cu
8448 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8449
8450 /* If necessary, add it to the queue and load its DIEs. */
8451 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8452 load_full_comp_unit (per_cu, cu->language);
8453
8454 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8455 per_cu);
8456 }
8457 }
8458
8459 /* Reset the in_process bit of a die. */
8460
8461 static void
8462 reset_die_in_process (void *arg)
8463 {
8464 struct die_info *die = (struct die_info *) arg;
8465
8466 die->in_process = 0;
8467 }
8468
8469 /* Process a die and its children. */
8470
8471 static void
8472 process_die (struct die_info *die, struct dwarf2_cu *cu)
8473 {
8474 struct cleanup *in_process;
8475
8476 /* We should only be processing those not already in process. */
8477 gdb_assert (!die->in_process);
8478
8479 die->in_process = 1;
8480 in_process = make_cleanup (reset_die_in_process,die);
8481
8482 switch (die->tag)
8483 {
8484 case DW_TAG_padding:
8485 break;
8486 case DW_TAG_compile_unit:
8487 case DW_TAG_partial_unit:
8488 read_file_scope (die, cu);
8489 break;
8490 case DW_TAG_type_unit:
8491 read_type_unit_scope (die, cu);
8492 break;
8493 case DW_TAG_subprogram:
8494 case DW_TAG_inlined_subroutine:
8495 read_func_scope (die, cu);
8496 break;
8497 case DW_TAG_lexical_block:
8498 case DW_TAG_try_block:
8499 case DW_TAG_catch_block:
8500 read_lexical_block_scope (die, cu);
8501 break;
8502 case DW_TAG_call_site:
8503 case DW_TAG_GNU_call_site:
8504 read_call_site_scope (die, cu);
8505 break;
8506 case DW_TAG_class_type:
8507 case DW_TAG_interface_type:
8508 case DW_TAG_structure_type:
8509 case DW_TAG_union_type:
8510 process_structure_scope (die, cu);
8511 break;
8512 case DW_TAG_enumeration_type:
8513 process_enumeration_scope (die, cu);
8514 break;
8515
8516 /* These dies have a type, but processing them does not create
8517 a symbol or recurse to process the children. Therefore we can
8518 read them on-demand through read_type_die. */
8519 case DW_TAG_subroutine_type:
8520 case DW_TAG_set_type:
8521 case DW_TAG_array_type:
8522 case DW_TAG_pointer_type:
8523 case DW_TAG_ptr_to_member_type:
8524 case DW_TAG_reference_type:
8525 case DW_TAG_rvalue_reference_type:
8526 case DW_TAG_string_type:
8527 break;
8528
8529 case DW_TAG_base_type:
8530 case DW_TAG_subrange_type:
8531 case DW_TAG_typedef:
8532 /* Add a typedef symbol for the type definition, if it has a
8533 DW_AT_name. */
8534 new_symbol (die, read_type_die (die, cu), cu);
8535 break;
8536 case DW_TAG_common_block:
8537 read_common_block (die, cu);
8538 break;
8539 case DW_TAG_common_inclusion:
8540 break;
8541 case DW_TAG_namespace:
8542 cu->processing_has_namespace_info = 1;
8543 read_namespace (die, cu);
8544 break;
8545 case DW_TAG_module:
8546 cu->processing_has_namespace_info = 1;
8547 read_module (die, cu);
8548 break;
8549 case DW_TAG_imported_declaration:
8550 cu->processing_has_namespace_info = 1;
8551 if (read_namespace_alias (die, cu))
8552 break;
8553 /* The declaration is not a global namespace alias: fall through. */
8554 case DW_TAG_imported_module:
8555 cu->processing_has_namespace_info = 1;
8556 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8557 || cu->language != language_fortran))
8558 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8559 dwarf_tag_name (die->tag));
8560 read_import_statement (die, cu);
8561 break;
8562
8563 case DW_TAG_imported_unit:
8564 process_imported_unit_die (die, cu);
8565 break;
8566
8567 default:
8568 new_symbol (die, NULL, cu);
8569 break;
8570 }
8571
8572 do_cleanups (in_process);
8573 }
8574 \f
8575 /* DWARF name computation. */
8576
8577 /* A helper function for dwarf2_compute_name which determines whether DIE
8578 needs to have the name of the scope prepended to the name listed in the
8579 die. */
8580
8581 static int
8582 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8583 {
8584 struct attribute *attr;
8585
8586 switch (die->tag)
8587 {
8588 case DW_TAG_namespace:
8589 case DW_TAG_typedef:
8590 case DW_TAG_class_type:
8591 case DW_TAG_interface_type:
8592 case DW_TAG_structure_type:
8593 case DW_TAG_union_type:
8594 case DW_TAG_enumeration_type:
8595 case DW_TAG_enumerator:
8596 case DW_TAG_subprogram:
8597 case DW_TAG_inlined_subroutine:
8598 case DW_TAG_member:
8599 case DW_TAG_imported_declaration:
8600 return 1;
8601
8602 case DW_TAG_variable:
8603 case DW_TAG_constant:
8604 /* We only need to prefix "globally" visible variables. These include
8605 any variable marked with DW_AT_external or any variable that
8606 lives in a namespace. [Variables in anonymous namespaces
8607 require prefixing, but they are not DW_AT_external.] */
8608
8609 if (dwarf2_attr (die, DW_AT_specification, cu))
8610 {
8611 struct dwarf2_cu *spec_cu = cu;
8612
8613 return die_needs_namespace (die_specification (die, &spec_cu),
8614 spec_cu);
8615 }
8616
8617 attr = dwarf2_attr (die, DW_AT_external, cu);
8618 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8619 && die->parent->tag != DW_TAG_module)
8620 return 0;
8621 /* A variable in a lexical block of some kind does not need a
8622 namespace, even though in C++ such variables may be external
8623 and have a mangled name. */
8624 if (die->parent->tag == DW_TAG_lexical_block
8625 || die->parent->tag == DW_TAG_try_block
8626 || die->parent->tag == DW_TAG_catch_block
8627 || die->parent->tag == DW_TAG_subprogram)
8628 return 0;
8629 return 1;
8630
8631 default:
8632 return 0;
8633 }
8634 }
8635
8636 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8637 compute the physname for the object, which include a method's:
8638 - formal parameters (C++),
8639 - receiver type (Go),
8640
8641 The term "physname" is a bit confusing.
8642 For C++, for example, it is the demangled name.
8643 For Go, for example, it's the mangled name.
8644
8645 For Ada, return the DIE's linkage name rather than the fully qualified
8646 name. PHYSNAME is ignored..
8647
8648 The result is allocated on the objfile_obstack and canonicalized. */
8649
8650 static const char *
8651 dwarf2_compute_name (const char *name,
8652 struct die_info *die, struct dwarf2_cu *cu,
8653 int physname)
8654 {
8655 struct objfile *objfile = cu->objfile;
8656
8657 if (name == NULL)
8658 name = dwarf2_name (die, cu);
8659
8660 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8661 but otherwise compute it by typename_concat inside GDB.
8662 FIXME: Actually this is not really true, or at least not always true.
8663 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8664 Fortran names because there is no mangling standard. So new_symbol_full
8665 will set the demangled name to the result of dwarf2_full_name, and it is
8666 the demangled name that GDB uses if it exists. */
8667 if (cu->language == language_ada
8668 || (cu->language == language_fortran && physname))
8669 {
8670 /* For Ada unit, we prefer the linkage name over the name, as
8671 the former contains the exported name, which the user expects
8672 to be able to reference. Ideally, we want the user to be able
8673 to reference this entity using either natural or linkage name,
8674 but we haven't started looking at this enhancement yet. */
8675 const char *linkage_name;
8676
8677 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8678 if (linkage_name == NULL)
8679 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8680 if (linkage_name != NULL)
8681 return linkage_name;
8682 }
8683
8684 /* These are the only languages we know how to qualify names in. */
8685 if (name != NULL
8686 && (cu->language == language_cplus
8687 || cu->language == language_fortran || cu->language == language_d
8688 || cu->language == language_rust))
8689 {
8690 if (die_needs_namespace (die, cu))
8691 {
8692 long length;
8693 const char *prefix;
8694 const char *canonical_name = NULL;
8695
8696 string_file buf;
8697
8698 prefix = determine_prefix (die, cu);
8699 if (*prefix != '\0')
8700 {
8701 char *prefixed_name = typename_concat (NULL, prefix, name,
8702 physname, cu);
8703
8704 buf.puts (prefixed_name);
8705 xfree (prefixed_name);
8706 }
8707 else
8708 buf.puts (name);
8709
8710 /* Template parameters may be specified in the DIE's DW_AT_name, or
8711 as children with DW_TAG_template_type_param or
8712 DW_TAG_value_type_param. If the latter, add them to the name
8713 here. If the name already has template parameters, then
8714 skip this step; some versions of GCC emit both, and
8715 it is more efficient to use the pre-computed name.
8716
8717 Something to keep in mind about this process: it is very
8718 unlikely, or in some cases downright impossible, to produce
8719 something that will match the mangled name of a function.
8720 If the definition of the function has the same debug info,
8721 we should be able to match up with it anyway. But fallbacks
8722 using the minimal symbol, for instance to find a method
8723 implemented in a stripped copy of libstdc++, will not work.
8724 If we do not have debug info for the definition, we will have to
8725 match them up some other way.
8726
8727 When we do name matching there is a related problem with function
8728 templates; two instantiated function templates are allowed to
8729 differ only by their return types, which we do not add here. */
8730
8731 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8732 {
8733 struct attribute *attr;
8734 struct die_info *child;
8735 int first = 1;
8736
8737 die->building_fullname = 1;
8738
8739 for (child = die->child; child != NULL; child = child->sibling)
8740 {
8741 struct type *type;
8742 LONGEST value;
8743 const gdb_byte *bytes;
8744 struct dwarf2_locexpr_baton *baton;
8745 struct value *v;
8746
8747 if (child->tag != DW_TAG_template_type_param
8748 && child->tag != DW_TAG_template_value_param)
8749 continue;
8750
8751 if (first)
8752 {
8753 buf.puts ("<");
8754 first = 0;
8755 }
8756 else
8757 buf.puts (", ");
8758
8759 attr = dwarf2_attr (child, DW_AT_type, cu);
8760 if (attr == NULL)
8761 {
8762 complaint (&symfile_complaints,
8763 _("template parameter missing DW_AT_type"));
8764 buf.puts ("UNKNOWN_TYPE");
8765 continue;
8766 }
8767 type = die_type (child, cu);
8768
8769 if (child->tag == DW_TAG_template_type_param)
8770 {
8771 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8772 continue;
8773 }
8774
8775 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8776 if (attr == NULL)
8777 {
8778 complaint (&symfile_complaints,
8779 _("template parameter missing "
8780 "DW_AT_const_value"));
8781 buf.puts ("UNKNOWN_VALUE");
8782 continue;
8783 }
8784
8785 dwarf2_const_value_attr (attr, type, name,
8786 &cu->comp_unit_obstack, cu,
8787 &value, &bytes, &baton);
8788
8789 if (TYPE_NOSIGN (type))
8790 /* GDB prints characters as NUMBER 'CHAR'. If that's
8791 changed, this can use value_print instead. */
8792 c_printchar (value, type, &buf);
8793 else
8794 {
8795 struct value_print_options opts;
8796
8797 if (baton != NULL)
8798 v = dwarf2_evaluate_loc_desc (type, NULL,
8799 baton->data,
8800 baton->size,
8801 baton->per_cu);
8802 else if (bytes != NULL)
8803 {
8804 v = allocate_value (type);
8805 memcpy (value_contents_writeable (v), bytes,
8806 TYPE_LENGTH (type));
8807 }
8808 else
8809 v = value_from_longest (type, value);
8810
8811 /* Specify decimal so that we do not depend on
8812 the radix. */
8813 get_formatted_print_options (&opts, 'd');
8814 opts.raw = 1;
8815 value_print (v, &buf, &opts);
8816 release_value (v);
8817 value_free (v);
8818 }
8819 }
8820
8821 die->building_fullname = 0;
8822
8823 if (!first)
8824 {
8825 /* Close the argument list, with a space if necessary
8826 (nested templates). */
8827 if (!buf.empty () && buf.string ().back () == '>')
8828 buf.puts (" >");
8829 else
8830 buf.puts (">");
8831 }
8832 }
8833
8834 /* For C++ methods, append formal parameter type
8835 information, if PHYSNAME. */
8836
8837 if (physname && die->tag == DW_TAG_subprogram
8838 && cu->language == language_cplus)
8839 {
8840 struct type *type = read_type_die (die, cu);
8841
8842 c_type_print_args (type, &buf, 1, cu->language,
8843 &type_print_raw_options);
8844
8845 if (cu->language == language_cplus)
8846 {
8847 /* Assume that an artificial first parameter is
8848 "this", but do not crash if it is not. RealView
8849 marks unnamed (and thus unused) parameters as
8850 artificial; there is no way to differentiate
8851 the two cases. */
8852 if (TYPE_NFIELDS (type) > 0
8853 && TYPE_FIELD_ARTIFICIAL (type, 0)
8854 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8855 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8856 0))))
8857 buf.puts (" const");
8858 }
8859 }
8860
8861 const std::string &intermediate_name = buf.string ();
8862
8863 if (cu->language == language_cplus)
8864 canonical_name
8865 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8866 &objfile->per_bfd->storage_obstack);
8867
8868 /* If we only computed INTERMEDIATE_NAME, or if
8869 INTERMEDIATE_NAME is already canonical, then we need to
8870 copy it to the appropriate obstack. */
8871 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8872 name = ((const char *)
8873 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8874 intermediate_name.c_str (),
8875 intermediate_name.length ()));
8876 else
8877 name = canonical_name;
8878 }
8879 }
8880
8881 return name;
8882 }
8883
8884 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8885 If scope qualifiers are appropriate they will be added. The result
8886 will be allocated on the storage_obstack, or NULL if the DIE does
8887 not have a name. NAME may either be from a previous call to
8888 dwarf2_name or NULL.
8889
8890 The output string will be canonicalized (if C++). */
8891
8892 static const char *
8893 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8894 {
8895 return dwarf2_compute_name (name, die, cu, 0);
8896 }
8897
8898 /* Construct a physname for the given DIE in CU. NAME may either be
8899 from a previous call to dwarf2_name or NULL. The result will be
8900 allocated on the objfile_objstack or NULL if the DIE does not have a
8901 name.
8902
8903 The output string will be canonicalized (if C++). */
8904
8905 static const char *
8906 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8907 {
8908 struct objfile *objfile = cu->objfile;
8909 const char *retval, *mangled = NULL, *canon = NULL;
8910 struct cleanup *back_to;
8911 int need_copy = 1;
8912
8913 /* In this case dwarf2_compute_name is just a shortcut not building anything
8914 on its own. */
8915 if (!die_needs_namespace (die, cu))
8916 return dwarf2_compute_name (name, die, cu, 1);
8917
8918 back_to = make_cleanup (null_cleanup, NULL);
8919
8920 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8921 if (mangled == NULL)
8922 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8923
8924 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8925 See https://github.com/rust-lang/rust/issues/32925. */
8926 if (cu->language == language_rust && mangled != NULL
8927 && strchr (mangled, '{') != NULL)
8928 mangled = NULL;
8929
8930 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8931 has computed. */
8932 if (mangled != NULL)
8933 {
8934 char *demangled;
8935
8936 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8937 type. It is easier for GDB users to search for such functions as
8938 `name(params)' than `long name(params)'. In such case the minimal
8939 symbol names do not match the full symbol names but for template
8940 functions there is never a need to look up their definition from their
8941 declaration so the only disadvantage remains the minimal symbol
8942 variant `long name(params)' does not have the proper inferior type.
8943 */
8944
8945 if (cu->language == language_go)
8946 {
8947 /* This is a lie, but we already lie to the caller new_symbol_full.
8948 new_symbol_full assumes we return the mangled name.
8949 This just undoes that lie until things are cleaned up. */
8950 demangled = NULL;
8951 }
8952 else
8953 {
8954 demangled = gdb_demangle (mangled,
8955 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8956 }
8957 if (demangled)
8958 {
8959 make_cleanup (xfree, demangled);
8960 canon = demangled;
8961 }
8962 else
8963 {
8964 canon = mangled;
8965 need_copy = 0;
8966 }
8967 }
8968
8969 if (canon == NULL || check_physname)
8970 {
8971 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8972
8973 if (canon != NULL && strcmp (physname, canon) != 0)
8974 {
8975 /* It may not mean a bug in GDB. The compiler could also
8976 compute DW_AT_linkage_name incorrectly. But in such case
8977 GDB would need to be bug-to-bug compatible. */
8978
8979 complaint (&symfile_complaints,
8980 _("Computed physname <%s> does not match demangled <%s> "
8981 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8982 physname, canon, mangled, to_underlying (die->sect_off),
8983 objfile_name (objfile));
8984
8985 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8986 is available here - over computed PHYSNAME. It is safer
8987 against both buggy GDB and buggy compilers. */
8988
8989 retval = canon;
8990 }
8991 else
8992 {
8993 retval = physname;
8994 need_copy = 0;
8995 }
8996 }
8997 else
8998 retval = canon;
8999
9000 if (need_copy)
9001 retval = ((const char *)
9002 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9003 retval, strlen (retval)));
9004
9005 do_cleanups (back_to);
9006 return retval;
9007 }
9008
9009 /* Inspect DIE in CU for a namespace alias. If one exists, record
9010 a new symbol for it.
9011
9012 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9013
9014 static int
9015 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9016 {
9017 struct attribute *attr;
9018
9019 /* If the die does not have a name, this is not a namespace
9020 alias. */
9021 attr = dwarf2_attr (die, DW_AT_name, cu);
9022 if (attr != NULL)
9023 {
9024 int num;
9025 struct die_info *d = die;
9026 struct dwarf2_cu *imported_cu = cu;
9027
9028 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9029 keep inspecting DIEs until we hit the underlying import. */
9030 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9031 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9032 {
9033 attr = dwarf2_attr (d, DW_AT_import, cu);
9034 if (attr == NULL)
9035 break;
9036
9037 d = follow_die_ref (d, attr, &imported_cu);
9038 if (d->tag != DW_TAG_imported_declaration)
9039 break;
9040 }
9041
9042 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9043 {
9044 complaint (&symfile_complaints,
9045 _("DIE at 0x%x has too many recursively imported "
9046 "declarations"), to_underlying (d->sect_off));
9047 return 0;
9048 }
9049
9050 if (attr != NULL)
9051 {
9052 struct type *type;
9053 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9054
9055 type = get_die_type_at_offset (sect_off, cu->per_cu);
9056 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9057 {
9058 /* This declaration is a global namespace alias. Add
9059 a symbol for it whose type is the aliased namespace. */
9060 new_symbol (die, type, cu);
9061 return 1;
9062 }
9063 }
9064 }
9065
9066 return 0;
9067 }
9068
9069 /* Return the using directives repository (global or local?) to use in the
9070 current context for LANGUAGE.
9071
9072 For Ada, imported declarations can materialize renamings, which *may* be
9073 global. However it is impossible (for now?) in DWARF to distinguish
9074 "external" imported declarations and "static" ones. As all imported
9075 declarations seem to be static in all other languages, make them all CU-wide
9076 global only in Ada. */
9077
9078 static struct using_direct **
9079 using_directives (enum language language)
9080 {
9081 if (language == language_ada && context_stack_depth == 0)
9082 return &global_using_directives;
9083 else
9084 return &local_using_directives;
9085 }
9086
9087 /* Read the import statement specified by the given die and record it. */
9088
9089 static void
9090 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9091 {
9092 struct objfile *objfile = cu->objfile;
9093 struct attribute *import_attr;
9094 struct die_info *imported_die, *child_die;
9095 struct dwarf2_cu *imported_cu;
9096 const char *imported_name;
9097 const char *imported_name_prefix;
9098 const char *canonical_name;
9099 const char *import_alias;
9100 const char *imported_declaration = NULL;
9101 const char *import_prefix;
9102 VEC (const_char_ptr) *excludes = NULL;
9103 struct cleanup *cleanups;
9104
9105 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9106 if (import_attr == NULL)
9107 {
9108 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9109 dwarf_tag_name (die->tag));
9110 return;
9111 }
9112
9113 imported_cu = cu;
9114 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9115 imported_name = dwarf2_name (imported_die, imported_cu);
9116 if (imported_name == NULL)
9117 {
9118 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9119
9120 The import in the following code:
9121 namespace A
9122 {
9123 typedef int B;
9124 }
9125
9126 int main ()
9127 {
9128 using A::B;
9129 B b;
9130 return b;
9131 }
9132
9133 ...
9134 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9135 <52> DW_AT_decl_file : 1
9136 <53> DW_AT_decl_line : 6
9137 <54> DW_AT_import : <0x75>
9138 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9139 <59> DW_AT_name : B
9140 <5b> DW_AT_decl_file : 1
9141 <5c> DW_AT_decl_line : 2
9142 <5d> DW_AT_type : <0x6e>
9143 ...
9144 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9145 <76> DW_AT_byte_size : 4
9146 <77> DW_AT_encoding : 5 (signed)
9147
9148 imports the wrong die ( 0x75 instead of 0x58 ).
9149 This case will be ignored until the gcc bug is fixed. */
9150 return;
9151 }
9152
9153 /* Figure out the local name after import. */
9154 import_alias = dwarf2_name (die, cu);
9155
9156 /* Figure out where the statement is being imported to. */
9157 import_prefix = determine_prefix (die, cu);
9158
9159 /* Figure out what the scope of the imported die is and prepend it
9160 to the name of the imported die. */
9161 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9162
9163 if (imported_die->tag != DW_TAG_namespace
9164 && imported_die->tag != DW_TAG_module)
9165 {
9166 imported_declaration = imported_name;
9167 canonical_name = imported_name_prefix;
9168 }
9169 else if (strlen (imported_name_prefix) > 0)
9170 canonical_name = obconcat (&objfile->objfile_obstack,
9171 imported_name_prefix,
9172 (cu->language == language_d ? "." : "::"),
9173 imported_name, (char *) NULL);
9174 else
9175 canonical_name = imported_name;
9176
9177 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9178
9179 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9180 for (child_die = die->child; child_die && child_die->tag;
9181 child_die = sibling_die (child_die))
9182 {
9183 /* DWARF-4: A Fortran use statement with a “rename list” may be
9184 represented by an imported module entry with an import attribute
9185 referring to the module and owned entries corresponding to those
9186 entities that are renamed as part of being imported. */
9187
9188 if (child_die->tag != DW_TAG_imported_declaration)
9189 {
9190 complaint (&symfile_complaints,
9191 _("child DW_TAG_imported_declaration expected "
9192 "- DIE at 0x%x [in module %s]"),
9193 to_underlying (child_die->sect_off), objfile_name (objfile));
9194 continue;
9195 }
9196
9197 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9198 if (import_attr == NULL)
9199 {
9200 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9201 dwarf_tag_name (child_die->tag));
9202 continue;
9203 }
9204
9205 imported_cu = cu;
9206 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9207 &imported_cu);
9208 imported_name = dwarf2_name (imported_die, imported_cu);
9209 if (imported_name == NULL)
9210 {
9211 complaint (&symfile_complaints,
9212 _("child DW_TAG_imported_declaration has unknown "
9213 "imported name - DIE at 0x%x [in module %s]"),
9214 to_underlying (child_die->sect_off), objfile_name (objfile));
9215 continue;
9216 }
9217
9218 VEC_safe_push (const_char_ptr, excludes, imported_name);
9219
9220 process_die (child_die, cu);
9221 }
9222
9223 add_using_directive (using_directives (cu->language),
9224 import_prefix,
9225 canonical_name,
9226 import_alias,
9227 imported_declaration,
9228 excludes,
9229 0,
9230 &objfile->objfile_obstack);
9231
9232 do_cleanups (cleanups);
9233 }
9234
9235 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9236 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9237 this, it was first present in GCC release 4.3.0. */
9238
9239 static int
9240 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9241 {
9242 if (!cu->checked_producer)
9243 check_producer (cu);
9244
9245 return cu->producer_is_gcc_lt_4_3;
9246 }
9247
9248 static file_and_directory
9249 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9250 {
9251 file_and_directory res;
9252
9253 /* Find the filename. Do not use dwarf2_name here, since the filename
9254 is not a source language identifier. */
9255 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9256 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9257
9258 if (res.comp_dir == NULL
9259 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9260 && IS_ABSOLUTE_PATH (res.name))
9261 {
9262 res.comp_dir_storage = ldirname (res.name);
9263 if (!res.comp_dir_storage.empty ())
9264 res.comp_dir = res.comp_dir_storage.c_str ();
9265 }
9266 if (res.comp_dir != NULL)
9267 {
9268 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9269 directory, get rid of it. */
9270 const char *cp = strchr (res.comp_dir, ':');
9271
9272 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9273 res.comp_dir = cp + 1;
9274 }
9275
9276 if (res.name == NULL)
9277 res.name = "<unknown>";
9278
9279 return res;
9280 }
9281
9282 /* Handle DW_AT_stmt_list for a compilation unit.
9283 DIE is the DW_TAG_compile_unit die for CU.
9284 COMP_DIR is the compilation directory. LOWPC is passed to
9285 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9286
9287 static void
9288 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9289 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9290 {
9291 struct objfile *objfile = dwarf2_per_objfile->objfile;
9292 struct attribute *attr;
9293 struct line_header line_header_local;
9294 hashval_t line_header_local_hash;
9295 unsigned u;
9296 void **slot;
9297 int decode_mapping;
9298
9299 gdb_assert (! cu->per_cu->is_debug_types);
9300
9301 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9302 if (attr == NULL)
9303 return;
9304
9305 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9306
9307 /* The line header hash table is only created if needed (it exists to
9308 prevent redundant reading of the line table for partial_units).
9309 If we're given a partial_unit, we'll need it. If we're given a
9310 compile_unit, then use the line header hash table if it's already
9311 created, but don't create one just yet. */
9312
9313 if (dwarf2_per_objfile->line_header_hash == NULL
9314 && die->tag == DW_TAG_partial_unit)
9315 {
9316 dwarf2_per_objfile->line_header_hash
9317 = htab_create_alloc_ex (127, line_header_hash_voidp,
9318 line_header_eq_voidp,
9319 free_line_header_voidp,
9320 &objfile->objfile_obstack,
9321 hashtab_obstack_allocate,
9322 dummy_obstack_deallocate);
9323 }
9324
9325 line_header_local.sect_off = line_offset;
9326 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9327 line_header_local_hash = line_header_hash (&line_header_local);
9328 if (dwarf2_per_objfile->line_header_hash != NULL)
9329 {
9330 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9331 &line_header_local,
9332 line_header_local_hash, NO_INSERT);
9333
9334 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9335 is not present in *SLOT (since if there is something in *SLOT then
9336 it will be for a partial_unit). */
9337 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9338 {
9339 gdb_assert (*slot != NULL);
9340 cu->line_header = (struct line_header *) *slot;
9341 return;
9342 }
9343 }
9344
9345 /* dwarf_decode_line_header does not yet provide sufficient information.
9346 We always have to call also dwarf_decode_lines for it. */
9347 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9348 if (lh == NULL)
9349 return;
9350 cu->line_header = lh.get ();
9351
9352 if (dwarf2_per_objfile->line_header_hash == NULL)
9353 slot = NULL;
9354 else
9355 {
9356 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9357 &line_header_local,
9358 line_header_local_hash, INSERT);
9359 gdb_assert (slot != NULL);
9360 }
9361 if (slot != NULL && *slot == NULL)
9362 {
9363 /* This newly decoded line number information unit will be owned
9364 by line_header_hash hash table. */
9365 *slot = cu->line_header;
9366 }
9367 else
9368 {
9369 /* We cannot free any current entry in (*slot) as that struct line_header
9370 may be already used by multiple CUs. Create only temporary decoded
9371 line_header for this CU - it may happen at most once for each line
9372 number information unit. And if we're not using line_header_hash
9373 then this is what we want as well. */
9374 gdb_assert (die->tag != DW_TAG_partial_unit);
9375 }
9376 decode_mapping = (die->tag != DW_TAG_partial_unit);
9377 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9378 decode_mapping);
9379
9380 lh.release ();
9381 }
9382
9383 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9384
9385 static void
9386 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9387 {
9388 struct objfile *objfile = dwarf2_per_objfile->objfile;
9389 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9390 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9391 CORE_ADDR highpc = ((CORE_ADDR) 0);
9392 struct attribute *attr;
9393 struct die_info *child_die;
9394 CORE_ADDR baseaddr;
9395
9396 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9397
9398 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9399
9400 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9401 from finish_block. */
9402 if (lowpc == ((CORE_ADDR) -1))
9403 lowpc = highpc;
9404 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9405
9406 file_and_directory fnd = find_file_and_directory (die, cu);
9407
9408 prepare_one_comp_unit (cu, die, cu->language);
9409
9410 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9411 standardised yet. As a workaround for the language detection we fall
9412 back to the DW_AT_producer string. */
9413 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9414 cu->language = language_opencl;
9415
9416 /* Similar hack for Go. */
9417 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9418 set_cu_language (DW_LANG_Go, cu);
9419
9420 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9421
9422 /* Decode line number information if present. We do this before
9423 processing child DIEs, so that the line header table is available
9424 for DW_AT_decl_file. */
9425 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9426
9427 /* Process all dies in compilation unit. */
9428 if (die->child != NULL)
9429 {
9430 child_die = die->child;
9431 while (child_die && child_die->tag)
9432 {
9433 process_die (child_die, cu);
9434 child_die = sibling_die (child_die);
9435 }
9436 }
9437
9438 /* Decode macro information, if present. Dwarf 2 macro information
9439 refers to information in the line number info statement program
9440 header, so we can only read it if we've read the header
9441 successfully. */
9442 attr = dwarf2_attr (die, DW_AT_macros, cu);
9443 if (attr == NULL)
9444 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9445 if (attr && cu->line_header)
9446 {
9447 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9448 complaint (&symfile_complaints,
9449 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9450
9451 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9452 }
9453 else
9454 {
9455 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9456 if (attr && cu->line_header)
9457 {
9458 unsigned int macro_offset = DW_UNSND (attr);
9459
9460 dwarf_decode_macros (cu, macro_offset, 0);
9461 }
9462 }
9463 }
9464
9465 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9466 Create the set of symtabs used by this TU, or if this TU is sharing
9467 symtabs with another TU and the symtabs have already been created
9468 then restore those symtabs in the line header.
9469 We don't need the pc/line-number mapping for type units. */
9470
9471 static void
9472 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9473 {
9474 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9475 struct type_unit_group *tu_group;
9476 int first_time;
9477 struct attribute *attr;
9478 unsigned int i;
9479 struct signatured_type *sig_type;
9480
9481 gdb_assert (per_cu->is_debug_types);
9482 sig_type = (struct signatured_type *) per_cu;
9483
9484 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9485
9486 /* If we're using .gdb_index (includes -readnow) then
9487 per_cu->type_unit_group may not have been set up yet. */
9488 if (sig_type->type_unit_group == NULL)
9489 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9490 tu_group = sig_type->type_unit_group;
9491
9492 /* If we've already processed this stmt_list there's no real need to
9493 do it again, we could fake it and just recreate the part we need
9494 (file name,index -> symtab mapping). If data shows this optimization
9495 is useful we can do it then. */
9496 first_time = tu_group->compunit_symtab == NULL;
9497
9498 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9499 debug info. */
9500 line_header_up lh;
9501 if (attr != NULL)
9502 {
9503 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9504 lh = dwarf_decode_line_header (line_offset, cu);
9505 }
9506 if (lh == NULL)
9507 {
9508 if (first_time)
9509 dwarf2_start_symtab (cu, "", NULL, 0);
9510 else
9511 {
9512 gdb_assert (tu_group->symtabs == NULL);
9513 restart_symtab (tu_group->compunit_symtab, "", 0);
9514 }
9515 return;
9516 }
9517
9518 cu->line_header = lh.get ();
9519
9520 if (first_time)
9521 {
9522 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9523
9524 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9525 still initializing it, and our caller (a few levels up)
9526 process_full_type_unit still needs to know if this is the first
9527 time. */
9528
9529 tu_group->num_symtabs = lh->file_names.size ();
9530 tu_group->symtabs = XNEWVEC (struct symtab *, lh->file_names.size ());
9531
9532 for (i = 0; i < lh->file_names.size (); ++i)
9533 {
9534 file_entry &fe = lh->file_names[i];
9535
9536 dwarf2_start_subfile (fe.name, fe.include_dir (lh.get ()));
9537
9538 if (current_subfile->symtab == NULL)
9539 {
9540 /* NOTE: start_subfile will recognize when it's been passed
9541 a file it has already seen. So we can't assume there's a
9542 simple mapping from lh->file_names to subfiles, plus
9543 lh->file_names may contain dups. */
9544 current_subfile->symtab
9545 = allocate_symtab (cust, current_subfile->name);
9546 }
9547
9548 fe.symtab = current_subfile->symtab;
9549 tu_group->symtabs[i] = fe.symtab;
9550 }
9551 }
9552 else
9553 {
9554 restart_symtab (tu_group->compunit_symtab, "", 0);
9555
9556 for (i = 0; i < lh->file_names.size (); ++i)
9557 {
9558 struct file_entry *fe = &lh->file_names[i];
9559
9560 fe->symtab = tu_group->symtabs[i];
9561 }
9562 }
9563
9564 lh.release ();
9565
9566 /* The main symtab is allocated last. Type units don't have DW_AT_name
9567 so they don't have a "real" (so to speak) symtab anyway.
9568 There is later code that will assign the main symtab to all symbols
9569 that don't have one. We need to handle the case of a symbol with a
9570 missing symtab (DW_AT_decl_file) anyway. */
9571 }
9572
9573 /* Process DW_TAG_type_unit.
9574 For TUs we want to skip the first top level sibling if it's not the
9575 actual type being defined by this TU. In this case the first top
9576 level sibling is there to provide context only. */
9577
9578 static void
9579 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9580 {
9581 struct die_info *child_die;
9582
9583 prepare_one_comp_unit (cu, die, language_minimal);
9584
9585 /* Initialize (or reinitialize) the machinery for building symtabs.
9586 We do this before processing child DIEs, so that the line header table
9587 is available for DW_AT_decl_file. */
9588 setup_type_unit_groups (die, cu);
9589
9590 if (die->child != NULL)
9591 {
9592 child_die = die->child;
9593 while (child_die && child_die->tag)
9594 {
9595 process_die (child_die, cu);
9596 child_die = sibling_die (child_die);
9597 }
9598 }
9599 }
9600 \f
9601 /* DWO/DWP files.
9602
9603 http://gcc.gnu.org/wiki/DebugFission
9604 http://gcc.gnu.org/wiki/DebugFissionDWP
9605
9606 To simplify handling of both DWO files ("object" files with the DWARF info)
9607 and DWP files (a file with the DWOs packaged up into one file), we treat
9608 DWP files as having a collection of virtual DWO files. */
9609
9610 static hashval_t
9611 hash_dwo_file (const void *item)
9612 {
9613 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9614 hashval_t hash;
9615
9616 hash = htab_hash_string (dwo_file->dwo_name);
9617 if (dwo_file->comp_dir != NULL)
9618 hash += htab_hash_string (dwo_file->comp_dir);
9619 return hash;
9620 }
9621
9622 static int
9623 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9624 {
9625 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9626 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9627
9628 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9629 return 0;
9630 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9631 return lhs->comp_dir == rhs->comp_dir;
9632 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9633 }
9634
9635 /* Allocate a hash table for DWO files. */
9636
9637 static htab_t
9638 allocate_dwo_file_hash_table (void)
9639 {
9640 struct objfile *objfile = dwarf2_per_objfile->objfile;
9641
9642 return htab_create_alloc_ex (41,
9643 hash_dwo_file,
9644 eq_dwo_file,
9645 NULL,
9646 &objfile->objfile_obstack,
9647 hashtab_obstack_allocate,
9648 dummy_obstack_deallocate);
9649 }
9650
9651 /* Lookup DWO file DWO_NAME. */
9652
9653 static void **
9654 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9655 {
9656 struct dwo_file find_entry;
9657 void **slot;
9658
9659 if (dwarf2_per_objfile->dwo_files == NULL)
9660 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9661
9662 memset (&find_entry, 0, sizeof (find_entry));
9663 find_entry.dwo_name = dwo_name;
9664 find_entry.comp_dir = comp_dir;
9665 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9666
9667 return slot;
9668 }
9669
9670 static hashval_t
9671 hash_dwo_unit (const void *item)
9672 {
9673 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9674
9675 /* This drops the top 32 bits of the id, but is ok for a hash. */
9676 return dwo_unit->signature;
9677 }
9678
9679 static int
9680 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9681 {
9682 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9683 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9684
9685 /* The signature is assumed to be unique within the DWO file.
9686 So while object file CU dwo_id's always have the value zero,
9687 that's OK, assuming each object file DWO file has only one CU,
9688 and that's the rule for now. */
9689 return lhs->signature == rhs->signature;
9690 }
9691
9692 /* Allocate a hash table for DWO CUs,TUs.
9693 There is one of these tables for each of CUs,TUs for each DWO file. */
9694
9695 static htab_t
9696 allocate_dwo_unit_table (struct objfile *objfile)
9697 {
9698 /* Start out with a pretty small number.
9699 Generally DWO files contain only one CU and maybe some TUs. */
9700 return htab_create_alloc_ex (3,
9701 hash_dwo_unit,
9702 eq_dwo_unit,
9703 NULL,
9704 &objfile->objfile_obstack,
9705 hashtab_obstack_allocate,
9706 dummy_obstack_deallocate);
9707 }
9708
9709 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9710
9711 struct create_dwo_cu_data
9712 {
9713 struct dwo_file *dwo_file;
9714 struct dwo_unit dwo_unit;
9715 };
9716
9717 /* die_reader_func for create_dwo_cu. */
9718
9719 static void
9720 create_dwo_cu_reader (const struct die_reader_specs *reader,
9721 const gdb_byte *info_ptr,
9722 struct die_info *comp_unit_die,
9723 int has_children,
9724 void *datap)
9725 {
9726 struct dwarf2_cu *cu = reader->cu;
9727 sect_offset sect_off = cu->per_cu->sect_off;
9728 struct dwarf2_section_info *section = cu->per_cu->section;
9729 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9730 struct dwo_file *dwo_file = data->dwo_file;
9731 struct dwo_unit *dwo_unit = &data->dwo_unit;
9732 struct attribute *attr;
9733
9734 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9735 if (attr == NULL)
9736 {
9737 complaint (&symfile_complaints,
9738 _("Dwarf Error: debug entry at offset 0x%x is missing"
9739 " its dwo_id [in module %s]"),
9740 to_underlying (sect_off), dwo_file->dwo_name);
9741 return;
9742 }
9743
9744 dwo_unit->dwo_file = dwo_file;
9745 dwo_unit->signature = DW_UNSND (attr);
9746 dwo_unit->section = section;
9747 dwo_unit->sect_off = sect_off;
9748 dwo_unit->length = cu->per_cu->length;
9749
9750 if (dwarf_read_debug)
9751 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9752 to_underlying (sect_off),
9753 hex_string (dwo_unit->signature));
9754 }
9755
9756 /* Create the dwo_units for the CUs in a DWO_FILE.
9757 Note: This function processes DWO files only, not DWP files. */
9758
9759 static void
9760 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9761 htab_t &cus_htab)
9762 {
9763 struct objfile *objfile = dwarf2_per_objfile->objfile;
9764 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9765 const gdb_byte *info_ptr, *end_ptr;
9766
9767 dwarf2_read_section (objfile, &section);
9768 info_ptr = section.buffer;
9769
9770 if (info_ptr == NULL)
9771 return;
9772
9773 if (dwarf_read_debug)
9774 {
9775 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9776 get_section_name (&section),
9777 get_section_file_name (&section));
9778 }
9779
9780 end_ptr = info_ptr + section.size;
9781 while (info_ptr < end_ptr)
9782 {
9783 struct dwarf2_per_cu_data per_cu;
9784 struct create_dwo_cu_data create_dwo_cu_data;
9785 struct dwo_unit *dwo_unit;
9786 void **slot;
9787 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9788
9789 memset (&create_dwo_cu_data.dwo_unit, 0,
9790 sizeof (create_dwo_cu_data.dwo_unit));
9791 memset (&per_cu, 0, sizeof (per_cu));
9792 per_cu.objfile = objfile;
9793 per_cu.is_debug_types = 0;
9794 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9795 per_cu.section = &section;
9796
9797 init_cutu_and_read_dies_no_follow (
9798 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9799 info_ptr += per_cu.length;
9800
9801 // If the unit could not be parsed, skip it.
9802 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9803 continue;
9804
9805 if (cus_htab == NULL)
9806 cus_htab = allocate_dwo_unit_table (objfile);
9807
9808 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9809 *dwo_unit = create_dwo_cu_data.dwo_unit;
9810 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9811 gdb_assert (slot != NULL);
9812 if (*slot != NULL)
9813 {
9814 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9815 sect_offset dup_sect_off = dup_cu->sect_off;
9816
9817 complaint (&symfile_complaints,
9818 _("debug cu entry at offset 0x%x is duplicate to"
9819 " the entry at offset 0x%x, signature %s"),
9820 to_underlying (sect_off), to_underlying (dup_sect_off),
9821 hex_string (dwo_unit->signature));
9822 }
9823 *slot = (void *)dwo_unit;
9824 }
9825 }
9826
9827 /* DWP file .debug_{cu,tu}_index section format:
9828 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9829
9830 DWP Version 1:
9831
9832 Both index sections have the same format, and serve to map a 64-bit
9833 signature to a set of section numbers. Each section begins with a header,
9834 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9835 indexes, and a pool of 32-bit section numbers. The index sections will be
9836 aligned at 8-byte boundaries in the file.
9837
9838 The index section header consists of:
9839
9840 V, 32 bit version number
9841 -, 32 bits unused
9842 N, 32 bit number of compilation units or type units in the index
9843 M, 32 bit number of slots in the hash table
9844
9845 Numbers are recorded using the byte order of the application binary.
9846
9847 The hash table begins at offset 16 in the section, and consists of an array
9848 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9849 order of the application binary). Unused slots in the hash table are 0.
9850 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9851
9852 The parallel table begins immediately after the hash table
9853 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9854 array of 32-bit indexes (using the byte order of the application binary),
9855 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9856 table contains a 32-bit index into the pool of section numbers. For unused
9857 hash table slots, the corresponding entry in the parallel table will be 0.
9858
9859 The pool of section numbers begins immediately following the hash table
9860 (at offset 16 + 12 * M from the beginning of the section). The pool of
9861 section numbers consists of an array of 32-bit words (using the byte order
9862 of the application binary). Each item in the array is indexed starting
9863 from 0. The hash table entry provides the index of the first section
9864 number in the set. Additional section numbers in the set follow, and the
9865 set is terminated by a 0 entry (section number 0 is not used in ELF).
9866
9867 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9868 section must be the first entry in the set, and the .debug_abbrev.dwo must
9869 be the second entry. Other members of the set may follow in any order.
9870
9871 ---
9872
9873 DWP Version 2:
9874
9875 DWP Version 2 combines all the .debug_info, etc. sections into one,
9876 and the entries in the index tables are now offsets into these sections.
9877 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9878 section.
9879
9880 Index Section Contents:
9881 Header
9882 Hash Table of Signatures dwp_hash_table.hash_table
9883 Parallel Table of Indices dwp_hash_table.unit_table
9884 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9885 Table of Section Sizes dwp_hash_table.v2.sizes
9886
9887 The index section header consists of:
9888
9889 V, 32 bit version number
9890 L, 32 bit number of columns in the table of section offsets
9891 N, 32 bit number of compilation units or type units in the index
9892 M, 32 bit number of slots in the hash table
9893
9894 Numbers are recorded using the byte order of the application binary.
9895
9896 The hash table has the same format as version 1.
9897 The parallel table of indices has the same format as version 1,
9898 except that the entries are origin-1 indices into the table of sections
9899 offsets and the table of section sizes.
9900
9901 The table of offsets begins immediately following the parallel table
9902 (at offset 16 + 12 * M from the beginning of the section). The table is
9903 a two-dimensional array of 32-bit words (using the byte order of the
9904 application binary), with L columns and N+1 rows, in row-major order.
9905 Each row in the array is indexed starting from 0. The first row provides
9906 a key to the remaining rows: each column in this row provides an identifier
9907 for a debug section, and the offsets in the same column of subsequent rows
9908 refer to that section. The section identifiers are:
9909
9910 DW_SECT_INFO 1 .debug_info.dwo
9911 DW_SECT_TYPES 2 .debug_types.dwo
9912 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9913 DW_SECT_LINE 4 .debug_line.dwo
9914 DW_SECT_LOC 5 .debug_loc.dwo
9915 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9916 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9917 DW_SECT_MACRO 8 .debug_macro.dwo
9918
9919 The offsets provided by the CU and TU index sections are the base offsets
9920 for the contributions made by each CU or TU to the corresponding section
9921 in the package file. Each CU and TU header contains an abbrev_offset
9922 field, used to find the abbreviations table for that CU or TU within the
9923 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9924 be interpreted as relative to the base offset given in the index section.
9925 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9926 should be interpreted as relative to the base offset for .debug_line.dwo,
9927 and offsets into other debug sections obtained from DWARF attributes should
9928 also be interpreted as relative to the corresponding base offset.
9929
9930 The table of sizes begins immediately following the table of offsets.
9931 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9932 with L columns and N rows, in row-major order. Each row in the array is
9933 indexed starting from 1 (row 0 is shared by the two tables).
9934
9935 ---
9936
9937 Hash table lookup is handled the same in version 1 and 2:
9938
9939 We assume that N and M will not exceed 2^32 - 1.
9940 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9941
9942 Given a 64-bit compilation unit signature or a type signature S, an entry
9943 in the hash table is located as follows:
9944
9945 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9946 the low-order k bits all set to 1.
9947
9948 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9949
9950 3) If the hash table entry at index H matches the signature, use that
9951 entry. If the hash table entry at index H is unused (all zeroes),
9952 terminate the search: the signature is not present in the table.
9953
9954 4) Let H = (H + H') modulo M. Repeat at Step 3.
9955
9956 Because M > N and H' and M are relatively prime, the search is guaranteed
9957 to stop at an unused slot or find the match. */
9958
9959 /* Create a hash table to map DWO IDs to their CU/TU entry in
9960 .debug_{info,types}.dwo in DWP_FILE.
9961 Returns NULL if there isn't one.
9962 Note: This function processes DWP files only, not DWO files. */
9963
9964 static struct dwp_hash_table *
9965 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9966 {
9967 struct objfile *objfile = dwarf2_per_objfile->objfile;
9968 bfd *dbfd = dwp_file->dbfd;
9969 const gdb_byte *index_ptr, *index_end;
9970 struct dwarf2_section_info *index;
9971 uint32_t version, nr_columns, nr_units, nr_slots;
9972 struct dwp_hash_table *htab;
9973
9974 if (is_debug_types)
9975 index = &dwp_file->sections.tu_index;
9976 else
9977 index = &dwp_file->sections.cu_index;
9978
9979 if (dwarf2_section_empty_p (index))
9980 return NULL;
9981 dwarf2_read_section (objfile, index);
9982
9983 index_ptr = index->buffer;
9984 index_end = index_ptr + index->size;
9985
9986 version = read_4_bytes (dbfd, index_ptr);
9987 index_ptr += 4;
9988 if (version == 2)
9989 nr_columns = read_4_bytes (dbfd, index_ptr);
9990 else
9991 nr_columns = 0;
9992 index_ptr += 4;
9993 nr_units = read_4_bytes (dbfd, index_ptr);
9994 index_ptr += 4;
9995 nr_slots = read_4_bytes (dbfd, index_ptr);
9996 index_ptr += 4;
9997
9998 if (version != 1 && version != 2)
9999 {
10000 error (_("Dwarf Error: unsupported DWP file version (%s)"
10001 " [in module %s]"),
10002 pulongest (version), dwp_file->name);
10003 }
10004 if (nr_slots != (nr_slots & -nr_slots))
10005 {
10006 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10007 " is not power of 2 [in module %s]"),
10008 pulongest (nr_slots), dwp_file->name);
10009 }
10010
10011 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10012 htab->version = version;
10013 htab->nr_columns = nr_columns;
10014 htab->nr_units = nr_units;
10015 htab->nr_slots = nr_slots;
10016 htab->hash_table = index_ptr;
10017 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10018
10019 /* Exit early if the table is empty. */
10020 if (nr_slots == 0 || nr_units == 0
10021 || (version == 2 && nr_columns == 0))
10022 {
10023 /* All must be zero. */
10024 if (nr_slots != 0 || nr_units != 0
10025 || (version == 2 && nr_columns != 0))
10026 {
10027 complaint (&symfile_complaints,
10028 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10029 " all zero [in modules %s]"),
10030 dwp_file->name);
10031 }
10032 return htab;
10033 }
10034
10035 if (version == 1)
10036 {
10037 htab->section_pool.v1.indices =
10038 htab->unit_table + sizeof (uint32_t) * nr_slots;
10039 /* It's harder to decide whether the section is too small in v1.
10040 V1 is deprecated anyway so we punt. */
10041 }
10042 else
10043 {
10044 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10045 int *ids = htab->section_pool.v2.section_ids;
10046 /* Reverse map for error checking. */
10047 int ids_seen[DW_SECT_MAX + 1];
10048 int i;
10049
10050 if (nr_columns < 2)
10051 {
10052 error (_("Dwarf Error: bad DWP hash table, too few columns"
10053 " in section table [in module %s]"),
10054 dwp_file->name);
10055 }
10056 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10057 {
10058 error (_("Dwarf Error: bad DWP hash table, too many columns"
10059 " in section table [in module %s]"),
10060 dwp_file->name);
10061 }
10062 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10063 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10064 for (i = 0; i < nr_columns; ++i)
10065 {
10066 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10067
10068 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10069 {
10070 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10071 " in section table [in module %s]"),
10072 id, dwp_file->name);
10073 }
10074 if (ids_seen[id] != -1)
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10077 " id %d in section table [in module %s]"),
10078 id, dwp_file->name);
10079 }
10080 ids_seen[id] = i;
10081 ids[i] = id;
10082 }
10083 /* Must have exactly one info or types section. */
10084 if (((ids_seen[DW_SECT_INFO] != -1)
10085 + (ids_seen[DW_SECT_TYPES] != -1))
10086 != 1)
10087 {
10088 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10089 " DWO info/types section [in module %s]"),
10090 dwp_file->name);
10091 }
10092 /* Must have an abbrev section. */
10093 if (ids_seen[DW_SECT_ABBREV] == -1)
10094 {
10095 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10096 " section [in module %s]"),
10097 dwp_file->name);
10098 }
10099 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10100 htab->section_pool.v2.sizes =
10101 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10102 * nr_units * nr_columns);
10103 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10104 * nr_units * nr_columns))
10105 > index_end)
10106 {
10107 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10108 " [in module %s]"),
10109 dwp_file->name);
10110 }
10111 }
10112
10113 return htab;
10114 }
10115
10116 /* Update SECTIONS with the data from SECTP.
10117
10118 This function is like the other "locate" section routines that are
10119 passed to bfd_map_over_sections, but in this context the sections to
10120 read comes from the DWP V1 hash table, not the full ELF section table.
10121
10122 The result is non-zero for success, or zero if an error was found. */
10123
10124 static int
10125 locate_v1_virtual_dwo_sections (asection *sectp,
10126 struct virtual_v1_dwo_sections *sections)
10127 {
10128 const struct dwop_section_names *names = &dwop_section_names;
10129
10130 if (section_is_p (sectp->name, &names->abbrev_dwo))
10131 {
10132 /* There can be only one. */
10133 if (sections->abbrev.s.section != NULL)
10134 return 0;
10135 sections->abbrev.s.section = sectp;
10136 sections->abbrev.size = bfd_get_section_size (sectp);
10137 }
10138 else if (section_is_p (sectp->name, &names->info_dwo)
10139 || section_is_p (sectp->name, &names->types_dwo))
10140 {
10141 /* There can be only one. */
10142 if (sections->info_or_types.s.section != NULL)
10143 return 0;
10144 sections->info_or_types.s.section = sectp;
10145 sections->info_or_types.size = bfd_get_section_size (sectp);
10146 }
10147 else if (section_is_p (sectp->name, &names->line_dwo))
10148 {
10149 /* There can be only one. */
10150 if (sections->line.s.section != NULL)
10151 return 0;
10152 sections->line.s.section = sectp;
10153 sections->line.size = bfd_get_section_size (sectp);
10154 }
10155 else if (section_is_p (sectp->name, &names->loc_dwo))
10156 {
10157 /* There can be only one. */
10158 if (sections->loc.s.section != NULL)
10159 return 0;
10160 sections->loc.s.section = sectp;
10161 sections->loc.size = bfd_get_section_size (sectp);
10162 }
10163 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10164 {
10165 /* There can be only one. */
10166 if (sections->macinfo.s.section != NULL)
10167 return 0;
10168 sections->macinfo.s.section = sectp;
10169 sections->macinfo.size = bfd_get_section_size (sectp);
10170 }
10171 else if (section_is_p (sectp->name, &names->macro_dwo))
10172 {
10173 /* There can be only one. */
10174 if (sections->macro.s.section != NULL)
10175 return 0;
10176 sections->macro.s.section = sectp;
10177 sections->macro.size = bfd_get_section_size (sectp);
10178 }
10179 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10180 {
10181 /* There can be only one. */
10182 if (sections->str_offsets.s.section != NULL)
10183 return 0;
10184 sections->str_offsets.s.section = sectp;
10185 sections->str_offsets.size = bfd_get_section_size (sectp);
10186 }
10187 else
10188 {
10189 /* No other kind of section is valid. */
10190 return 0;
10191 }
10192
10193 return 1;
10194 }
10195
10196 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10197 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10198 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10199 This is for DWP version 1 files. */
10200
10201 static struct dwo_unit *
10202 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10203 uint32_t unit_index,
10204 const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206 {
10207 struct objfile *objfile = dwarf2_per_objfile->objfile;
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 const char *kind = is_debug_types ? "TU" : "CU";
10212 struct dwo_file *dwo_file;
10213 struct dwo_unit *dwo_unit;
10214 struct virtual_v1_dwo_sections sections;
10215 void **dwo_file_slot;
10216 char *virtual_dwo_name;
10217 struct cleanup *cleanups;
10218 int i;
10219
10220 gdb_assert (dwp_file->version == 1);
10221
10222 if (dwarf_read_debug)
10223 {
10224 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10225 kind,
10226 pulongest (unit_index), hex_string (signature),
10227 dwp_file->name);
10228 }
10229
10230 /* Fetch the sections of this DWO unit.
10231 Put a limit on the number of sections we look for so that bad data
10232 doesn't cause us to loop forever. */
10233
10234 #define MAX_NR_V1_DWO_SECTIONS \
10235 (1 /* .debug_info or .debug_types */ \
10236 + 1 /* .debug_abbrev */ \
10237 + 1 /* .debug_line */ \
10238 + 1 /* .debug_loc */ \
10239 + 1 /* .debug_str_offsets */ \
10240 + 1 /* .debug_macro or .debug_macinfo */ \
10241 + 1 /* trailing zero */)
10242
10243 memset (&sections, 0, sizeof (sections));
10244 cleanups = make_cleanup (null_cleanup, 0);
10245
10246 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10247 {
10248 asection *sectp;
10249 uint32_t section_nr =
10250 read_4_bytes (dbfd,
10251 dwp_htab->section_pool.v1.indices
10252 + (unit_index + i) * sizeof (uint32_t));
10253
10254 if (section_nr == 0)
10255 break;
10256 if (section_nr >= dwp_file->num_sections)
10257 {
10258 error (_("Dwarf Error: bad DWP hash table, section number too large"
10259 " [in module %s]"),
10260 dwp_file->name);
10261 }
10262
10263 sectp = dwp_file->elf_sections[section_nr];
10264 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10265 {
10266 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10267 " [in module %s]"),
10268 dwp_file->name);
10269 }
10270 }
10271
10272 if (i < 2
10273 || dwarf2_section_empty_p (&sections.info_or_types)
10274 || dwarf2_section_empty_p (&sections.abbrev))
10275 {
10276 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10277 " [in module %s]"),
10278 dwp_file->name);
10279 }
10280 if (i == MAX_NR_V1_DWO_SECTIONS)
10281 {
10282 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10283 " [in module %s]"),
10284 dwp_file->name);
10285 }
10286
10287 /* It's easier for the rest of the code if we fake a struct dwo_file and
10288 have dwo_unit "live" in that. At least for now.
10289
10290 The DWP file can be made up of a random collection of CUs and TUs.
10291 However, for each CU + set of TUs that came from the same original DWO
10292 file, we can combine them back into a virtual DWO file to save space
10293 (fewer struct dwo_file objects to allocate). Remember that for really
10294 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10295
10296 virtual_dwo_name =
10297 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10298 get_section_id (&sections.abbrev),
10299 get_section_id (&sections.line),
10300 get_section_id (&sections.loc),
10301 get_section_id (&sections.str_offsets));
10302 make_cleanup (xfree, virtual_dwo_name);
10303 /* Can we use an existing virtual DWO file? */
10304 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10305 /* Create one if necessary. */
10306 if (*dwo_file_slot == NULL)
10307 {
10308 if (dwarf_read_debug)
10309 {
10310 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10311 virtual_dwo_name);
10312 }
10313 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10314 dwo_file->dwo_name
10315 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10316 virtual_dwo_name,
10317 strlen (virtual_dwo_name));
10318 dwo_file->comp_dir = comp_dir;
10319 dwo_file->sections.abbrev = sections.abbrev;
10320 dwo_file->sections.line = sections.line;
10321 dwo_file->sections.loc = sections.loc;
10322 dwo_file->sections.macinfo = sections.macinfo;
10323 dwo_file->sections.macro = sections.macro;
10324 dwo_file->sections.str_offsets = sections.str_offsets;
10325 /* The "str" section is global to the entire DWP file. */
10326 dwo_file->sections.str = dwp_file->sections.str;
10327 /* The info or types section is assigned below to dwo_unit,
10328 there's no need to record it in dwo_file.
10329 Also, we can't simply record type sections in dwo_file because
10330 we record a pointer into the vector in dwo_unit. As we collect more
10331 types we'll grow the vector and eventually have to reallocate space
10332 for it, invalidating all copies of pointers into the previous
10333 contents. */
10334 *dwo_file_slot = dwo_file;
10335 }
10336 else
10337 {
10338 if (dwarf_read_debug)
10339 {
10340 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10341 virtual_dwo_name);
10342 }
10343 dwo_file = (struct dwo_file *) *dwo_file_slot;
10344 }
10345 do_cleanups (cleanups);
10346
10347 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10348 dwo_unit->dwo_file = dwo_file;
10349 dwo_unit->signature = signature;
10350 dwo_unit->section =
10351 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10352 *dwo_unit->section = sections.info_or_types;
10353 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10354
10355 return dwo_unit;
10356 }
10357
10358 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10359 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10360 piece within that section used by a TU/CU, return a virtual section
10361 of just that piece. */
10362
10363 static struct dwarf2_section_info
10364 create_dwp_v2_section (struct dwarf2_section_info *section,
10365 bfd_size_type offset, bfd_size_type size)
10366 {
10367 struct dwarf2_section_info result;
10368 asection *sectp;
10369
10370 gdb_assert (section != NULL);
10371 gdb_assert (!section->is_virtual);
10372
10373 memset (&result, 0, sizeof (result));
10374 result.s.containing_section = section;
10375 result.is_virtual = 1;
10376
10377 if (size == 0)
10378 return result;
10379
10380 sectp = get_section_bfd_section (section);
10381
10382 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10383 bounds of the real section. This is a pretty-rare event, so just
10384 flag an error (easier) instead of a warning and trying to cope. */
10385 if (sectp == NULL
10386 || offset + size > bfd_get_section_size (sectp))
10387 {
10388 bfd *abfd = sectp->owner;
10389
10390 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10391 " in section %s [in module %s]"),
10392 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10393 objfile_name (dwarf2_per_objfile->objfile));
10394 }
10395
10396 result.virtual_offset = offset;
10397 result.size = size;
10398 return result;
10399 }
10400
10401 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10402 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10403 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10404 This is for DWP version 2 files. */
10405
10406 static struct dwo_unit *
10407 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10408 uint32_t unit_index,
10409 const char *comp_dir,
10410 ULONGEST signature, int is_debug_types)
10411 {
10412 struct objfile *objfile = dwarf2_per_objfile->objfile;
10413 const struct dwp_hash_table *dwp_htab =
10414 is_debug_types ? dwp_file->tus : dwp_file->cus;
10415 bfd *dbfd = dwp_file->dbfd;
10416 const char *kind = is_debug_types ? "TU" : "CU";
10417 struct dwo_file *dwo_file;
10418 struct dwo_unit *dwo_unit;
10419 struct virtual_v2_dwo_sections sections;
10420 void **dwo_file_slot;
10421 char *virtual_dwo_name;
10422 struct cleanup *cleanups;
10423 int i;
10424
10425 gdb_assert (dwp_file->version == 2);
10426
10427 if (dwarf_read_debug)
10428 {
10429 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10430 kind,
10431 pulongest (unit_index), hex_string (signature),
10432 dwp_file->name);
10433 }
10434
10435 /* Fetch the section offsets of this DWO unit. */
10436
10437 memset (&sections, 0, sizeof (sections));
10438 cleanups = make_cleanup (null_cleanup, 0);
10439
10440 for (i = 0; i < dwp_htab->nr_columns; ++i)
10441 {
10442 uint32_t offset = read_4_bytes (dbfd,
10443 dwp_htab->section_pool.v2.offsets
10444 + (((unit_index - 1) * dwp_htab->nr_columns
10445 + i)
10446 * sizeof (uint32_t)));
10447 uint32_t size = read_4_bytes (dbfd,
10448 dwp_htab->section_pool.v2.sizes
10449 + (((unit_index - 1) * dwp_htab->nr_columns
10450 + i)
10451 * sizeof (uint32_t)));
10452
10453 switch (dwp_htab->section_pool.v2.section_ids[i])
10454 {
10455 case DW_SECT_INFO:
10456 case DW_SECT_TYPES:
10457 sections.info_or_types_offset = offset;
10458 sections.info_or_types_size = size;
10459 break;
10460 case DW_SECT_ABBREV:
10461 sections.abbrev_offset = offset;
10462 sections.abbrev_size = size;
10463 break;
10464 case DW_SECT_LINE:
10465 sections.line_offset = offset;
10466 sections.line_size = size;
10467 break;
10468 case DW_SECT_LOC:
10469 sections.loc_offset = offset;
10470 sections.loc_size = size;
10471 break;
10472 case DW_SECT_STR_OFFSETS:
10473 sections.str_offsets_offset = offset;
10474 sections.str_offsets_size = size;
10475 break;
10476 case DW_SECT_MACINFO:
10477 sections.macinfo_offset = offset;
10478 sections.macinfo_size = size;
10479 break;
10480 case DW_SECT_MACRO:
10481 sections.macro_offset = offset;
10482 sections.macro_size = size;
10483 break;
10484 }
10485 }
10486
10487 /* It's easier for the rest of the code if we fake a struct dwo_file and
10488 have dwo_unit "live" in that. At least for now.
10489
10490 The DWP file can be made up of a random collection of CUs and TUs.
10491 However, for each CU + set of TUs that came from the same original DWO
10492 file, we can combine them back into a virtual DWO file to save space
10493 (fewer struct dwo_file objects to allocate). Remember that for really
10494 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10495
10496 virtual_dwo_name =
10497 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10498 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10499 (long) (sections.line_size ? sections.line_offset : 0),
10500 (long) (sections.loc_size ? sections.loc_offset : 0),
10501 (long) (sections.str_offsets_size
10502 ? sections.str_offsets_offset : 0));
10503 make_cleanup (xfree, virtual_dwo_name);
10504 /* Can we use an existing virtual DWO file? */
10505 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10506 /* Create one if necessary. */
10507 if (*dwo_file_slot == NULL)
10508 {
10509 if (dwarf_read_debug)
10510 {
10511 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10512 virtual_dwo_name);
10513 }
10514 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10515 dwo_file->dwo_name
10516 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10517 virtual_dwo_name,
10518 strlen (virtual_dwo_name));
10519 dwo_file->comp_dir = comp_dir;
10520 dwo_file->sections.abbrev =
10521 create_dwp_v2_section (&dwp_file->sections.abbrev,
10522 sections.abbrev_offset, sections.abbrev_size);
10523 dwo_file->sections.line =
10524 create_dwp_v2_section (&dwp_file->sections.line,
10525 sections.line_offset, sections.line_size);
10526 dwo_file->sections.loc =
10527 create_dwp_v2_section (&dwp_file->sections.loc,
10528 sections.loc_offset, sections.loc_size);
10529 dwo_file->sections.macinfo =
10530 create_dwp_v2_section (&dwp_file->sections.macinfo,
10531 sections.macinfo_offset, sections.macinfo_size);
10532 dwo_file->sections.macro =
10533 create_dwp_v2_section (&dwp_file->sections.macro,
10534 sections.macro_offset, sections.macro_size);
10535 dwo_file->sections.str_offsets =
10536 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10537 sections.str_offsets_offset,
10538 sections.str_offsets_size);
10539 /* The "str" section is global to the entire DWP file. */
10540 dwo_file->sections.str = dwp_file->sections.str;
10541 /* The info or types section is assigned below to dwo_unit,
10542 there's no need to record it in dwo_file.
10543 Also, we can't simply record type sections in dwo_file because
10544 we record a pointer into the vector in dwo_unit. As we collect more
10545 types we'll grow the vector and eventually have to reallocate space
10546 for it, invalidating all copies of pointers into the previous
10547 contents. */
10548 *dwo_file_slot = dwo_file;
10549 }
10550 else
10551 {
10552 if (dwarf_read_debug)
10553 {
10554 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10555 virtual_dwo_name);
10556 }
10557 dwo_file = (struct dwo_file *) *dwo_file_slot;
10558 }
10559 do_cleanups (cleanups);
10560
10561 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10562 dwo_unit->dwo_file = dwo_file;
10563 dwo_unit->signature = signature;
10564 dwo_unit->section =
10565 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10566 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10567 ? &dwp_file->sections.types
10568 : &dwp_file->sections.info,
10569 sections.info_or_types_offset,
10570 sections.info_or_types_size);
10571 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10572
10573 return dwo_unit;
10574 }
10575
10576 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10577 Returns NULL if the signature isn't found. */
10578
10579 static struct dwo_unit *
10580 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10581 ULONGEST signature, int is_debug_types)
10582 {
10583 const struct dwp_hash_table *dwp_htab =
10584 is_debug_types ? dwp_file->tus : dwp_file->cus;
10585 bfd *dbfd = dwp_file->dbfd;
10586 uint32_t mask = dwp_htab->nr_slots - 1;
10587 uint32_t hash = signature & mask;
10588 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10589 unsigned int i;
10590 void **slot;
10591 struct dwo_unit find_dwo_cu;
10592
10593 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10594 find_dwo_cu.signature = signature;
10595 slot = htab_find_slot (is_debug_types
10596 ? dwp_file->loaded_tus
10597 : dwp_file->loaded_cus,
10598 &find_dwo_cu, INSERT);
10599
10600 if (*slot != NULL)
10601 return (struct dwo_unit *) *slot;
10602
10603 /* Use a for loop so that we don't loop forever on bad debug info. */
10604 for (i = 0; i < dwp_htab->nr_slots; ++i)
10605 {
10606 ULONGEST signature_in_table;
10607
10608 signature_in_table =
10609 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10610 if (signature_in_table == signature)
10611 {
10612 uint32_t unit_index =
10613 read_4_bytes (dbfd,
10614 dwp_htab->unit_table + hash * sizeof (uint32_t));
10615
10616 if (dwp_file->version == 1)
10617 {
10618 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10619 comp_dir, signature,
10620 is_debug_types);
10621 }
10622 else
10623 {
10624 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10625 comp_dir, signature,
10626 is_debug_types);
10627 }
10628 return (struct dwo_unit *) *slot;
10629 }
10630 if (signature_in_table == 0)
10631 return NULL;
10632 hash = (hash + hash2) & mask;
10633 }
10634
10635 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10636 " [in module %s]"),
10637 dwp_file->name);
10638 }
10639
10640 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10641 Open the file specified by FILE_NAME and hand it off to BFD for
10642 preliminary analysis. Return a newly initialized bfd *, which
10643 includes a canonicalized copy of FILE_NAME.
10644 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10645 SEARCH_CWD is true if the current directory is to be searched.
10646 It will be searched before debug-file-directory.
10647 If successful, the file is added to the bfd include table of the
10648 objfile's bfd (see gdb_bfd_record_inclusion).
10649 If unable to find/open the file, return NULL.
10650 NOTE: This function is derived from symfile_bfd_open. */
10651
10652 static gdb_bfd_ref_ptr
10653 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10654 {
10655 int desc, flags;
10656 char *absolute_name;
10657 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10658 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10659 to debug_file_directory. */
10660 char *search_path;
10661 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10662
10663 if (search_cwd)
10664 {
10665 if (*debug_file_directory != '\0')
10666 search_path = concat (".", dirname_separator_string,
10667 debug_file_directory, (char *) NULL);
10668 else
10669 search_path = xstrdup (".");
10670 }
10671 else
10672 search_path = xstrdup (debug_file_directory);
10673
10674 flags = OPF_RETURN_REALPATH;
10675 if (is_dwp)
10676 flags |= OPF_SEARCH_IN_PATH;
10677 desc = openp (search_path, flags, file_name,
10678 O_RDONLY | O_BINARY, &absolute_name);
10679 xfree (search_path);
10680 if (desc < 0)
10681 return NULL;
10682
10683 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10684 xfree (absolute_name);
10685 if (sym_bfd == NULL)
10686 return NULL;
10687 bfd_set_cacheable (sym_bfd.get (), 1);
10688
10689 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10690 return NULL;
10691
10692 /* Success. Record the bfd as having been included by the objfile's bfd.
10693 This is important because things like demangled_names_hash lives in the
10694 objfile's per_bfd space and may have references to things like symbol
10695 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10696 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10697
10698 return sym_bfd;
10699 }
10700
10701 /* Try to open DWO file FILE_NAME.
10702 COMP_DIR is the DW_AT_comp_dir attribute.
10703 The result is the bfd handle of the file.
10704 If there is a problem finding or opening the file, return NULL.
10705 Upon success, the canonicalized path of the file is stored in the bfd,
10706 same as symfile_bfd_open. */
10707
10708 static gdb_bfd_ref_ptr
10709 open_dwo_file (const char *file_name, const char *comp_dir)
10710 {
10711 if (IS_ABSOLUTE_PATH (file_name))
10712 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10713
10714 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10715
10716 if (comp_dir != NULL)
10717 {
10718 char *path_to_try = concat (comp_dir, SLASH_STRING,
10719 file_name, (char *) NULL);
10720
10721 /* NOTE: If comp_dir is a relative path, this will also try the
10722 search path, which seems useful. */
10723 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10724 1 /*search_cwd*/));
10725 xfree (path_to_try);
10726 if (abfd != NULL)
10727 return abfd;
10728 }
10729
10730 /* That didn't work, try debug-file-directory, which, despite its name,
10731 is a list of paths. */
10732
10733 if (*debug_file_directory == '\0')
10734 return NULL;
10735
10736 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10737 }
10738
10739 /* This function is mapped across the sections and remembers the offset and
10740 size of each of the DWO debugging sections we are interested in. */
10741
10742 static void
10743 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10744 {
10745 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10746 const struct dwop_section_names *names = &dwop_section_names;
10747
10748 if (section_is_p (sectp->name, &names->abbrev_dwo))
10749 {
10750 dwo_sections->abbrev.s.section = sectp;
10751 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10752 }
10753 else if (section_is_p (sectp->name, &names->info_dwo))
10754 {
10755 dwo_sections->info.s.section = sectp;
10756 dwo_sections->info.size = bfd_get_section_size (sectp);
10757 }
10758 else if (section_is_p (sectp->name, &names->line_dwo))
10759 {
10760 dwo_sections->line.s.section = sectp;
10761 dwo_sections->line.size = bfd_get_section_size (sectp);
10762 }
10763 else if (section_is_p (sectp->name, &names->loc_dwo))
10764 {
10765 dwo_sections->loc.s.section = sectp;
10766 dwo_sections->loc.size = bfd_get_section_size (sectp);
10767 }
10768 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10769 {
10770 dwo_sections->macinfo.s.section = sectp;
10771 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10772 }
10773 else if (section_is_p (sectp->name, &names->macro_dwo))
10774 {
10775 dwo_sections->macro.s.section = sectp;
10776 dwo_sections->macro.size = bfd_get_section_size (sectp);
10777 }
10778 else if (section_is_p (sectp->name, &names->str_dwo))
10779 {
10780 dwo_sections->str.s.section = sectp;
10781 dwo_sections->str.size = bfd_get_section_size (sectp);
10782 }
10783 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10784 {
10785 dwo_sections->str_offsets.s.section = sectp;
10786 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10787 }
10788 else if (section_is_p (sectp->name, &names->types_dwo))
10789 {
10790 struct dwarf2_section_info type_section;
10791
10792 memset (&type_section, 0, sizeof (type_section));
10793 type_section.s.section = sectp;
10794 type_section.size = bfd_get_section_size (sectp);
10795 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10796 &type_section);
10797 }
10798 }
10799
10800 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10801 by PER_CU. This is for the non-DWP case.
10802 The result is NULL if DWO_NAME can't be found. */
10803
10804 static struct dwo_file *
10805 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10806 const char *dwo_name, const char *comp_dir)
10807 {
10808 struct objfile *objfile = dwarf2_per_objfile->objfile;
10809 struct dwo_file *dwo_file;
10810 struct cleanup *cleanups;
10811
10812 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10813 if (dbfd == NULL)
10814 {
10815 if (dwarf_read_debug)
10816 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10817 return NULL;
10818 }
10819 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10820 dwo_file->dwo_name = dwo_name;
10821 dwo_file->comp_dir = comp_dir;
10822 dwo_file->dbfd = dbfd.release ();
10823
10824 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10825
10826 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10827 &dwo_file->sections);
10828
10829 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10830
10831 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10832 dwo_file->tus);
10833
10834 discard_cleanups (cleanups);
10835
10836 if (dwarf_read_debug)
10837 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10838
10839 return dwo_file;
10840 }
10841
10842 /* This function is mapped across the sections and remembers the offset and
10843 size of each of the DWP debugging sections common to version 1 and 2 that
10844 we are interested in. */
10845
10846 static void
10847 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10848 void *dwp_file_ptr)
10849 {
10850 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10851 const struct dwop_section_names *names = &dwop_section_names;
10852 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10853
10854 /* Record the ELF section number for later lookup: this is what the
10855 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10856 gdb_assert (elf_section_nr < dwp_file->num_sections);
10857 dwp_file->elf_sections[elf_section_nr] = sectp;
10858
10859 /* Look for specific sections that we need. */
10860 if (section_is_p (sectp->name, &names->str_dwo))
10861 {
10862 dwp_file->sections.str.s.section = sectp;
10863 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10864 }
10865 else if (section_is_p (sectp->name, &names->cu_index))
10866 {
10867 dwp_file->sections.cu_index.s.section = sectp;
10868 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10869 }
10870 else if (section_is_p (sectp->name, &names->tu_index))
10871 {
10872 dwp_file->sections.tu_index.s.section = sectp;
10873 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10874 }
10875 }
10876
10877 /* This function is mapped across the sections and remembers the offset and
10878 size of each of the DWP version 2 debugging sections that we are interested
10879 in. This is split into a separate function because we don't know if we
10880 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10881
10882 static void
10883 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10884 {
10885 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10886 const struct dwop_section_names *names = &dwop_section_names;
10887 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10888
10889 /* Record the ELF section number for later lookup: this is what the
10890 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10891 gdb_assert (elf_section_nr < dwp_file->num_sections);
10892 dwp_file->elf_sections[elf_section_nr] = sectp;
10893
10894 /* Look for specific sections that we need. */
10895 if (section_is_p (sectp->name, &names->abbrev_dwo))
10896 {
10897 dwp_file->sections.abbrev.s.section = sectp;
10898 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10899 }
10900 else if (section_is_p (sectp->name, &names->info_dwo))
10901 {
10902 dwp_file->sections.info.s.section = sectp;
10903 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10904 }
10905 else if (section_is_p (sectp->name, &names->line_dwo))
10906 {
10907 dwp_file->sections.line.s.section = sectp;
10908 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10909 }
10910 else if (section_is_p (sectp->name, &names->loc_dwo))
10911 {
10912 dwp_file->sections.loc.s.section = sectp;
10913 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10914 }
10915 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10916 {
10917 dwp_file->sections.macinfo.s.section = sectp;
10918 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10919 }
10920 else if (section_is_p (sectp->name, &names->macro_dwo))
10921 {
10922 dwp_file->sections.macro.s.section = sectp;
10923 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10924 }
10925 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10926 {
10927 dwp_file->sections.str_offsets.s.section = sectp;
10928 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10929 }
10930 else if (section_is_p (sectp->name, &names->types_dwo))
10931 {
10932 dwp_file->sections.types.s.section = sectp;
10933 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10934 }
10935 }
10936
10937 /* Hash function for dwp_file loaded CUs/TUs. */
10938
10939 static hashval_t
10940 hash_dwp_loaded_cutus (const void *item)
10941 {
10942 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10943
10944 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10945 return dwo_unit->signature;
10946 }
10947
10948 /* Equality function for dwp_file loaded CUs/TUs. */
10949
10950 static int
10951 eq_dwp_loaded_cutus (const void *a, const void *b)
10952 {
10953 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10954 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10955
10956 return dua->signature == dub->signature;
10957 }
10958
10959 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10960
10961 static htab_t
10962 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10963 {
10964 return htab_create_alloc_ex (3,
10965 hash_dwp_loaded_cutus,
10966 eq_dwp_loaded_cutus,
10967 NULL,
10968 &objfile->objfile_obstack,
10969 hashtab_obstack_allocate,
10970 dummy_obstack_deallocate);
10971 }
10972
10973 /* Try to open DWP file FILE_NAME.
10974 The result is the bfd handle of the file.
10975 If there is a problem finding or opening the file, return NULL.
10976 Upon success, the canonicalized path of the file is stored in the bfd,
10977 same as symfile_bfd_open. */
10978
10979 static gdb_bfd_ref_ptr
10980 open_dwp_file (const char *file_name)
10981 {
10982 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10983 1 /*search_cwd*/));
10984 if (abfd != NULL)
10985 return abfd;
10986
10987 /* Work around upstream bug 15652.
10988 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10989 [Whether that's a "bug" is debatable, but it is getting in our way.]
10990 We have no real idea where the dwp file is, because gdb's realpath-ing
10991 of the executable's path may have discarded the needed info.
10992 [IWBN if the dwp file name was recorded in the executable, akin to
10993 .gnu_debuglink, but that doesn't exist yet.]
10994 Strip the directory from FILE_NAME and search again. */
10995 if (*debug_file_directory != '\0')
10996 {
10997 /* Don't implicitly search the current directory here.
10998 If the user wants to search "." to handle this case,
10999 it must be added to debug-file-directory. */
11000 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11001 0 /*search_cwd*/);
11002 }
11003
11004 return NULL;
11005 }
11006
11007 /* Initialize the use of the DWP file for the current objfile.
11008 By convention the name of the DWP file is ${objfile}.dwp.
11009 The result is NULL if it can't be found. */
11010
11011 static struct dwp_file *
11012 open_and_init_dwp_file (void)
11013 {
11014 struct objfile *objfile = dwarf2_per_objfile->objfile;
11015 struct dwp_file *dwp_file;
11016
11017 /* Try to find first .dwp for the binary file before any symbolic links
11018 resolving. */
11019
11020 /* If the objfile is a debug file, find the name of the real binary
11021 file and get the name of dwp file from there. */
11022 std::string dwp_name;
11023 if (objfile->separate_debug_objfile_backlink != NULL)
11024 {
11025 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11026 const char *backlink_basename = lbasename (backlink->original_name);
11027
11028 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11029 }
11030 else
11031 dwp_name = objfile->original_name;
11032
11033 dwp_name += ".dwp";
11034
11035 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11036 if (dbfd == NULL
11037 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11038 {
11039 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11040 dwp_name = objfile_name (objfile);
11041 dwp_name += ".dwp";
11042 dbfd = open_dwp_file (dwp_name.c_str ());
11043 }
11044
11045 if (dbfd == NULL)
11046 {
11047 if (dwarf_read_debug)
11048 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11049 return NULL;
11050 }
11051 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11052 dwp_file->name = bfd_get_filename (dbfd.get ());
11053 dwp_file->dbfd = dbfd.release ();
11054
11055 /* +1: section 0 is unused */
11056 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11057 dwp_file->elf_sections =
11058 OBSTACK_CALLOC (&objfile->objfile_obstack,
11059 dwp_file->num_sections, asection *);
11060
11061 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11062 dwp_file);
11063
11064 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11065
11066 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11067
11068 /* The DWP file version is stored in the hash table. Oh well. */
11069 if (dwp_file->cus->version != dwp_file->tus->version)
11070 {
11071 /* Technically speaking, we should try to limp along, but this is
11072 pretty bizarre. We use pulongest here because that's the established
11073 portability solution (e.g, we cannot use %u for uint32_t). */
11074 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11075 " TU version %s [in DWP file %s]"),
11076 pulongest (dwp_file->cus->version),
11077 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11078 }
11079 dwp_file->version = dwp_file->cus->version;
11080
11081 if (dwp_file->version == 2)
11082 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11083 dwp_file);
11084
11085 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11086 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11087
11088 if (dwarf_read_debug)
11089 {
11090 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11091 fprintf_unfiltered (gdb_stdlog,
11092 " %s CUs, %s TUs\n",
11093 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11094 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11095 }
11096
11097 return dwp_file;
11098 }
11099
11100 /* Wrapper around open_and_init_dwp_file, only open it once. */
11101
11102 static struct dwp_file *
11103 get_dwp_file (void)
11104 {
11105 if (! dwarf2_per_objfile->dwp_checked)
11106 {
11107 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11108 dwarf2_per_objfile->dwp_checked = 1;
11109 }
11110 return dwarf2_per_objfile->dwp_file;
11111 }
11112
11113 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11114 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11115 or in the DWP file for the objfile, referenced by THIS_UNIT.
11116 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11117 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11118
11119 This is called, for example, when wanting to read a variable with a
11120 complex location. Therefore we don't want to do file i/o for every call.
11121 Therefore we don't want to look for a DWO file on every call.
11122 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11123 then we check if we've already seen DWO_NAME, and only THEN do we check
11124 for a DWO file.
11125
11126 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11127 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11128
11129 static struct dwo_unit *
11130 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11131 const char *dwo_name, const char *comp_dir,
11132 ULONGEST signature, int is_debug_types)
11133 {
11134 struct objfile *objfile = dwarf2_per_objfile->objfile;
11135 const char *kind = is_debug_types ? "TU" : "CU";
11136 void **dwo_file_slot;
11137 struct dwo_file *dwo_file;
11138 struct dwp_file *dwp_file;
11139
11140 /* First see if there's a DWP file.
11141 If we have a DWP file but didn't find the DWO inside it, don't
11142 look for the original DWO file. It makes gdb behave differently
11143 depending on whether one is debugging in the build tree. */
11144
11145 dwp_file = get_dwp_file ();
11146 if (dwp_file != NULL)
11147 {
11148 const struct dwp_hash_table *dwp_htab =
11149 is_debug_types ? dwp_file->tus : dwp_file->cus;
11150
11151 if (dwp_htab != NULL)
11152 {
11153 struct dwo_unit *dwo_cutu =
11154 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11155 signature, is_debug_types);
11156
11157 if (dwo_cutu != NULL)
11158 {
11159 if (dwarf_read_debug)
11160 {
11161 fprintf_unfiltered (gdb_stdlog,
11162 "Virtual DWO %s %s found: @%s\n",
11163 kind, hex_string (signature),
11164 host_address_to_string (dwo_cutu));
11165 }
11166 return dwo_cutu;
11167 }
11168 }
11169 }
11170 else
11171 {
11172 /* No DWP file, look for the DWO file. */
11173
11174 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11175 if (*dwo_file_slot == NULL)
11176 {
11177 /* Read in the file and build a table of the CUs/TUs it contains. */
11178 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11179 }
11180 /* NOTE: This will be NULL if unable to open the file. */
11181 dwo_file = (struct dwo_file *) *dwo_file_slot;
11182
11183 if (dwo_file != NULL)
11184 {
11185 struct dwo_unit *dwo_cutu = NULL;
11186
11187 if (is_debug_types && dwo_file->tus)
11188 {
11189 struct dwo_unit find_dwo_cutu;
11190
11191 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11192 find_dwo_cutu.signature = signature;
11193 dwo_cutu
11194 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11195 }
11196 else if (!is_debug_types && dwo_file->cus)
11197 {
11198 struct dwo_unit find_dwo_cutu;
11199
11200 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11201 find_dwo_cutu.signature = signature;
11202 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11203 &find_dwo_cutu);
11204 }
11205
11206 if (dwo_cutu != NULL)
11207 {
11208 if (dwarf_read_debug)
11209 {
11210 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11211 kind, dwo_name, hex_string (signature),
11212 host_address_to_string (dwo_cutu));
11213 }
11214 return dwo_cutu;
11215 }
11216 }
11217 }
11218
11219 /* We didn't find it. This could mean a dwo_id mismatch, or
11220 someone deleted the DWO/DWP file, or the search path isn't set up
11221 correctly to find the file. */
11222
11223 if (dwarf_read_debug)
11224 {
11225 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11226 kind, dwo_name, hex_string (signature));
11227 }
11228
11229 /* This is a warning and not a complaint because it can be caused by
11230 pilot error (e.g., user accidentally deleting the DWO). */
11231 {
11232 /* Print the name of the DWP file if we looked there, helps the user
11233 better diagnose the problem. */
11234 char *dwp_text = NULL;
11235 struct cleanup *cleanups;
11236
11237 if (dwp_file != NULL)
11238 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11239 cleanups = make_cleanup (xfree, dwp_text);
11240
11241 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11242 " [in module %s]"),
11243 kind, dwo_name, hex_string (signature),
11244 dwp_text != NULL ? dwp_text : "",
11245 this_unit->is_debug_types ? "TU" : "CU",
11246 to_underlying (this_unit->sect_off), objfile_name (objfile));
11247
11248 do_cleanups (cleanups);
11249 }
11250 return NULL;
11251 }
11252
11253 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11254 See lookup_dwo_cutu_unit for details. */
11255
11256 static struct dwo_unit *
11257 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11258 const char *dwo_name, const char *comp_dir,
11259 ULONGEST signature)
11260 {
11261 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11262 }
11263
11264 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11265 See lookup_dwo_cutu_unit for details. */
11266
11267 static struct dwo_unit *
11268 lookup_dwo_type_unit (struct signatured_type *this_tu,
11269 const char *dwo_name, const char *comp_dir)
11270 {
11271 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11272 }
11273
11274 /* Traversal function for queue_and_load_all_dwo_tus. */
11275
11276 static int
11277 queue_and_load_dwo_tu (void **slot, void *info)
11278 {
11279 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11280 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11281 ULONGEST signature = dwo_unit->signature;
11282 struct signatured_type *sig_type =
11283 lookup_dwo_signatured_type (per_cu->cu, signature);
11284
11285 if (sig_type != NULL)
11286 {
11287 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11288
11289 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11290 a real dependency of PER_CU on SIG_TYPE. That is detected later
11291 while processing PER_CU. */
11292 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11293 load_full_type_unit (sig_cu);
11294 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11295 }
11296
11297 return 1;
11298 }
11299
11300 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11301 The DWO may have the only definition of the type, though it may not be
11302 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11303 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11304
11305 static void
11306 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11307 {
11308 struct dwo_unit *dwo_unit;
11309 struct dwo_file *dwo_file;
11310
11311 gdb_assert (!per_cu->is_debug_types);
11312 gdb_assert (get_dwp_file () == NULL);
11313 gdb_assert (per_cu->cu != NULL);
11314
11315 dwo_unit = per_cu->cu->dwo_unit;
11316 gdb_assert (dwo_unit != NULL);
11317
11318 dwo_file = dwo_unit->dwo_file;
11319 if (dwo_file->tus != NULL)
11320 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11321 }
11322
11323 /* Free all resources associated with DWO_FILE.
11324 Close the DWO file and munmap the sections.
11325 All memory should be on the objfile obstack. */
11326
11327 static void
11328 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11329 {
11330
11331 /* Note: dbfd is NULL for virtual DWO files. */
11332 gdb_bfd_unref (dwo_file->dbfd);
11333
11334 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11335 }
11336
11337 /* Wrapper for free_dwo_file for use in cleanups. */
11338
11339 static void
11340 free_dwo_file_cleanup (void *arg)
11341 {
11342 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11343 struct objfile *objfile = dwarf2_per_objfile->objfile;
11344
11345 free_dwo_file (dwo_file, objfile);
11346 }
11347
11348 /* Traversal function for free_dwo_files. */
11349
11350 static int
11351 free_dwo_file_from_slot (void **slot, void *info)
11352 {
11353 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11354 struct objfile *objfile = (struct objfile *) info;
11355
11356 free_dwo_file (dwo_file, objfile);
11357
11358 return 1;
11359 }
11360
11361 /* Free all resources associated with DWO_FILES. */
11362
11363 static void
11364 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11365 {
11366 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11367 }
11368 \f
11369 /* Read in various DIEs. */
11370
11371 /* qsort helper for inherit_abstract_dies. */
11372
11373 static int
11374 unsigned_int_compar (const void *ap, const void *bp)
11375 {
11376 unsigned int a = *(unsigned int *) ap;
11377 unsigned int b = *(unsigned int *) bp;
11378
11379 return (a > b) - (b > a);
11380 }
11381
11382 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11383 Inherit only the children of the DW_AT_abstract_origin DIE not being
11384 already referenced by DW_AT_abstract_origin from the children of the
11385 current DIE. */
11386
11387 static void
11388 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11389 {
11390 struct die_info *child_die;
11391 unsigned die_children_count;
11392 /* CU offsets which were referenced by children of the current DIE. */
11393 sect_offset *offsets;
11394 sect_offset *offsets_end, *offsetp;
11395 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11396 struct die_info *origin_die;
11397 /* Iterator of the ORIGIN_DIE children. */
11398 struct die_info *origin_child_die;
11399 struct cleanup *cleanups;
11400 struct attribute *attr;
11401 struct dwarf2_cu *origin_cu;
11402 struct pending **origin_previous_list_in_scope;
11403
11404 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11405 if (!attr)
11406 return;
11407
11408 /* Note that following die references may follow to a die in a
11409 different cu. */
11410
11411 origin_cu = cu;
11412 origin_die = follow_die_ref (die, attr, &origin_cu);
11413
11414 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11415 symbols in. */
11416 origin_previous_list_in_scope = origin_cu->list_in_scope;
11417 origin_cu->list_in_scope = cu->list_in_scope;
11418
11419 if (die->tag != origin_die->tag
11420 && !(die->tag == DW_TAG_inlined_subroutine
11421 && origin_die->tag == DW_TAG_subprogram))
11422 complaint (&symfile_complaints,
11423 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11424 to_underlying (die->sect_off),
11425 to_underlying (origin_die->sect_off));
11426
11427 child_die = die->child;
11428 die_children_count = 0;
11429 while (child_die && child_die->tag)
11430 {
11431 child_die = sibling_die (child_die);
11432 die_children_count++;
11433 }
11434 offsets = XNEWVEC (sect_offset, die_children_count);
11435 cleanups = make_cleanup (xfree, offsets);
11436
11437 offsets_end = offsets;
11438 for (child_die = die->child;
11439 child_die && child_die->tag;
11440 child_die = sibling_die (child_die))
11441 {
11442 struct die_info *child_origin_die;
11443 struct dwarf2_cu *child_origin_cu;
11444
11445 /* We are trying to process concrete instance entries:
11446 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11447 it's not relevant to our analysis here. i.e. detecting DIEs that are
11448 present in the abstract instance but not referenced in the concrete
11449 one. */
11450 if (child_die->tag == DW_TAG_call_site
11451 || child_die->tag == DW_TAG_GNU_call_site)
11452 continue;
11453
11454 /* For each CHILD_DIE, find the corresponding child of
11455 ORIGIN_DIE. If there is more than one layer of
11456 DW_AT_abstract_origin, follow them all; there shouldn't be,
11457 but GCC versions at least through 4.4 generate this (GCC PR
11458 40573). */
11459 child_origin_die = child_die;
11460 child_origin_cu = cu;
11461 while (1)
11462 {
11463 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11464 child_origin_cu);
11465 if (attr == NULL)
11466 break;
11467 child_origin_die = follow_die_ref (child_origin_die, attr,
11468 &child_origin_cu);
11469 }
11470
11471 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11472 counterpart may exist. */
11473 if (child_origin_die != child_die)
11474 {
11475 if (child_die->tag != child_origin_die->tag
11476 && !(child_die->tag == DW_TAG_inlined_subroutine
11477 && child_origin_die->tag == DW_TAG_subprogram))
11478 complaint (&symfile_complaints,
11479 _("Child DIE 0x%x and its abstract origin 0x%x have "
11480 "different tags"),
11481 to_underlying (child_die->sect_off),
11482 to_underlying (child_origin_die->sect_off));
11483 if (child_origin_die->parent != origin_die)
11484 complaint (&symfile_complaints,
11485 _("Child DIE 0x%x and its abstract origin 0x%x have "
11486 "different parents"),
11487 to_underlying (child_die->sect_off),
11488 to_underlying (child_origin_die->sect_off));
11489 else
11490 *offsets_end++ = child_origin_die->sect_off;
11491 }
11492 }
11493 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11494 unsigned_int_compar);
11495 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11496 if (offsetp[-1] == *offsetp)
11497 complaint (&symfile_complaints,
11498 _("Multiple children of DIE 0x%x refer "
11499 "to DIE 0x%x as their abstract origin"),
11500 to_underlying (die->sect_off), to_underlying (*offsetp));
11501
11502 offsetp = offsets;
11503 origin_child_die = origin_die->child;
11504 while (origin_child_die && origin_child_die->tag)
11505 {
11506 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11507 while (offsetp < offsets_end
11508 && *offsetp < origin_child_die->sect_off)
11509 offsetp++;
11510 if (offsetp >= offsets_end
11511 || *offsetp > origin_child_die->sect_off)
11512 {
11513 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11514 Check whether we're already processing ORIGIN_CHILD_DIE.
11515 This can happen with mutually referenced abstract_origins.
11516 PR 16581. */
11517 if (!origin_child_die->in_process)
11518 process_die (origin_child_die, origin_cu);
11519 }
11520 origin_child_die = sibling_die (origin_child_die);
11521 }
11522 origin_cu->list_in_scope = origin_previous_list_in_scope;
11523
11524 do_cleanups (cleanups);
11525 }
11526
11527 static void
11528 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11529 {
11530 struct objfile *objfile = cu->objfile;
11531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11532 struct context_stack *newobj;
11533 CORE_ADDR lowpc;
11534 CORE_ADDR highpc;
11535 struct die_info *child_die;
11536 struct attribute *attr, *call_line, *call_file;
11537 const char *name;
11538 CORE_ADDR baseaddr;
11539 struct block *block;
11540 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11541 VEC (symbolp) *template_args = NULL;
11542 struct template_symbol *templ_func = NULL;
11543
11544 if (inlined_func)
11545 {
11546 /* If we do not have call site information, we can't show the
11547 caller of this inlined function. That's too confusing, so
11548 only use the scope for local variables. */
11549 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11550 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11551 if (call_line == NULL || call_file == NULL)
11552 {
11553 read_lexical_block_scope (die, cu);
11554 return;
11555 }
11556 }
11557
11558 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11559
11560 name = dwarf2_name (die, cu);
11561
11562 /* Ignore functions with missing or empty names. These are actually
11563 illegal according to the DWARF standard. */
11564 if (name == NULL)
11565 {
11566 complaint (&symfile_complaints,
11567 _("missing name for subprogram DIE at %d"),
11568 to_underlying (die->sect_off));
11569 return;
11570 }
11571
11572 /* Ignore functions with missing or invalid low and high pc attributes. */
11573 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11574 <= PC_BOUNDS_INVALID)
11575 {
11576 attr = dwarf2_attr (die, DW_AT_external, cu);
11577 if (!attr || !DW_UNSND (attr))
11578 complaint (&symfile_complaints,
11579 _("cannot get low and high bounds "
11580 "for subprogram DIE at %d"),
11581 to_underlying (die->sect_off));
11582 return;
11583 }
11584
11585 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11586 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11587
11588 /* If we have any template arguments, then we must allocate a
11589 different sort of symbol. */
11590 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11591 {
11592 if (child_die->tag == DW_TAG_template_type_param
11593 || child_die->tag == DW_TAG_template_value_param)
11594 {
11595 templ_func = allocate_template_symbol (objfile);
11596 templ_func->base.is_cplus_template_function = 1;
11597 break;
11598 }
11599 }
11600
11601 newobj = push_context (0, lowpc);
11602 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11603 (struct symbol *) templ_func);
11604
11605 /* If there is a location expression for DW_AT_frame_base, record
11606 it. */
11607 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11608 if (attr)
11609 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11610
11611 /* If there is a location for the static link, record it. */
11612 newobj->static_link = NULL;
11613 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11614 if (attr)
11615 {
11616 newobj->static_link
11617 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11618 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11619 }
11620
11621 cu->list_in_scope = &local_symbols;
11622
11623 if (die->child != NULL)
11624 {
11625 child_die = die->child;
11626 while (child_die && child_die->tag)
11627 {
11628 if (child_die->tag == DW_TAG_template_type_param
11629 || child_die->tag == DW_TAG_template_value_param)
11630 {
11631 struct symbol *arg = new_symbol (child_die, NULL, cu);
11632
11633 if (arg != NULL)
11634 VEC_safe_push (symbolp, template_args, arg);
11635 }
11636 else
11637 process_die (child_die, cu);
11638 child_die = sibling_die (child_die);
11639 }
11640 }
11641
11642 inherit_abstract_dies (die, cu);
11643
11644 /* If we have a DW_AT_specification, we might need to import using
11645 directives from the context of the specification DIE. See the
11646 comment in determine_prefix. */
11647 if (cu->language == language_cplus
11648 && dwarf2_attr (die, DW_AT_specification, cu))
11649 {
11650 struct dwarf2_cu *spec_cu = cu;
11651 struct die_info *spec_die = die_specification (die, &spec_cu);
11652
11653 while (spec_die)
11654 {
11655 child_die = spec_die->child;
11656 while (child_die && child_die->tag)
11657 {
11658 if (child_die->tag == DW_TAG_imported_module)
11659 process_die (child_die, spec_cu);
11660 child_die = sibling_die (child_die);
11661 }
11662
11663 /* In some cases, GCC generates specification DIEs that
11664 themselves contain DW_AT_specification attributes. */
11665 spec_die = die_specification (spec_die, &spec_cu);
11666 }
11667 }
11668
11669 newobj = pop_context ();
11670 /* Make a block for the local symbols within. */
11671 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11672 newobj->static_link, lowpc, highpc);
11673
11674 /* For C++, set the block's scope. */
11675 if ((cu->language == language_cplus
11676 || cu->language == language_fortran
11677 || cu->language == language_d
11678 || cu->language == language_rust)
11679 && cu->processing_has_namespace_info)
11680 block_set_scope (block, determine_prefix (die, cu),
11681 &objfile->objfile_obstack);
11682
11683 /* If we have address ranges, record them. */
11684 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11685
11686 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11687
11688 /* Attach template arguments to function. */
11689 if (! VEC_empty (symbolp, template_args))
11690 {
11691 gdb_assert (templ_func != NULL);
11692
11693 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11694 templ_func->template_arguments
11695 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11696 templ_func->n_template_arguments);
11697 memcpy (templ_func->template_arguments,
11698 VEC_address (symbolp, template_args),
11699 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11700 VEC_free (symbolp, template_args);
11701 }
11702
11703 /* In C++, we can have functions nested inside functions (e.g., when
11704 a function declares a class that has methods). This means that
11705 when we finish processing a function scope, we may need to go
11706 back to building a containing block's symbol lists. */
11707 local_symbols = newobj->locals;
11708 local_using_directives = newobj->local_using_directives;
11709
11710 /* If we've finished processing a top-level function, subsequent
11711 symbols go in the file symbol list. */
11712 if (outermost_context_p ())
11713 cu->list_in_scope = &file_symbols;
11714 }
11715
11716 /* Process all the DIES contained within a lexical block scope. Start
11717 a new scope, process the dies, and then close the scope. */
11718
11719 static void
11720 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11721 {
11722 struct objfile *objfile = cu->objfile;
11723 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11724 struct context_stack *newobj;
11725 CORE_ADDR lowpc, highpc;
11726 struct die_info *child_die;
11727 CORE_ADDR baseaddr;
11728
11729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11730
11731 /* Ignore blocks with missing or invalid low and high pc attributes. */
11732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11733 as multiple lexical blocks? Handling children in a sane way would
11734 be nasty. Might be easier to properly extend generic blocks to
11735 describe ranges. */
11736 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11737 {
11738 case PC_BOUNDS_NOT_PRESENT:
11739 /* DW_TAG_lexical_block has no attributes, process its children as if
11740 there was no wrapping by that DW_TAG_lexical_block.
11741 GCC does no longer produces such DWARF since GCC r224161. */
11742 for (child_die = die->child;
11743 child_die != NULL && child_die->tag;
11744 child_die = sibling_die (child_die))
11745 process_die (child_die, cu);
11746 return;
11747 case PC_BOUNDS_INVALID:
11748 return;
11749 }
11750 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11751 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11752
11753 push_context (0, lowpc);
11754 if (die->child != NULL)
11755 {
11756 child_die = die->child;
11757 while (child_die && child_die->tag)
11758 {
11759 process_die (child_die, cu);
11760 child_die = sibling_die (child_die);
11761 }
11762 }
11763 inherit_abstract_dies (die, cu);
11764 newobj = pop_context ();
11765
11766 if (local_symbols != NULL || local_using_directives != NULL)
11767 {
11768 struct block *block
11769 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11770 newobj->start_addr, highpc);
11771
11772 /* Note that recording ranges after traversing children, as we
11773 do here, means that recording a parent's ranges entails
11774 walking across all its children's ranges as they appear in
11775 the address map, which is quadratic behavior.
11776
11777 It would be nicer to record the parent's ranges before
11778 traversing its children, simply overriding whatever you find
11779 there. But since we don't even decide whether to create a
11780 block until after we've traversed its children, that's hard
11781 to do. */
11782 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11783 }
11784 local_symbols = newobj->locals;
11785 local_using_directives = newobj->local_using_directives;
11786 }
11787
11788 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11789
11790 static void
11791 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11792 {
11793 struct objfile *objfile = cu->objfile;
11794 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11795 CORE_ADDR pc, baseaddr;
11796 struct attribute *attr;
11797 struct call_site *call_site, call_site_local;
11798 void **slot;
11799 int nparams;
11800 struct die_info *child_die;
11801
11802 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11803
11804 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11805 if (attr == NULL)
11806 {
11807 /* This was a pre-DWARF-5 GNU extension alias
11808 for DW_AT_call_return_pc. */
11809 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11810 }
11811 if (!attr)
11812 {
11813 complaint (&symfile_complaints,
11814 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11815 "DIE 0x%x [in module %s]"),
11816 to_underlying (die->sect_off), objfile_name (objfile));
11817 return;
11818 }
11819 pc = attr_value_as_address (attr) + baseaddr;
11820 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11821
11822 if (cu->call_site_htab == NULL)
11823 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11824 NULL, &objfile->objfile_obstack,
11825 hashtab_obstack_allocate, NULL);
11826 call_site_local.pc = pc;
11827 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11828 if (*slot != NULL)
11829 {
11830 complaint (&symfile_complaints,
11831 _("Duplicate PC %s for DW_TAG_call_site "
11832 "DIE 0x%x [in module %s]"),
11833 paddress (gdbarch, pc), to_underlying (die->sect_off),
11834 objfile_name (objfile));
11835 return;
11836 }
11837
11838 /* Count parameters at the caller. */
11839
11840 nparams = 0;
11841 for (child_die = die->child; child_die && child_die->tag;
11842 child_die = sibling_die (child_die))
11843 {
11844 if (child_die->tag != DW_TAG_call_site_parameter
11845 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11846 {
11847 complaint (&symfile_complaints,
11848 _("Tag %d is not DW_TAG_call_site_parameter in "
11849 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11850 child_die->tag, to_underlying (child_die->sect_off),
11851 objfile_name (objfile));
11852 continue;
11853 }
11854
11855 nparams++;
11856 }
11857
11858 call_site
11859 = ((struct call_site *)
11860 obstack_alloc (&objfile->objfile_obstack,
11861 sizeof (*call_site)
11862 + (sizeof (*call_site->parameter) * (nparams - 1))));
11863 *slot = call_site;
11864 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11865 call_site->pc = pc;
11866
11867 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11868 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11869 {
11870 struct die_info *func_die;
11871
11872 /* Skip also over DW_TAG_inlined_subroutine. */
11873 for (func_die = die->parent;
11874 func_die && func_die->tag != DW_TAG_subprogram
11875 && func_die->tag != DW_TAG_subroutine_type;
11876 func_die = func_die->parent);
11877
11878 /* DW_AT_call_all_calls is a superset
11879 of DW_AT_call_all_tail_calls. */
11880 if (func_die
11881 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11882 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11883 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11884 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11885 {
11886 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11887 not complete. But keep CALL_SITE for look ups via call_site_htab,
11888 both the initial caller containing the real return address PC and
11889 the final callee containing the current PC of a chain of tail
11890 calls do not need to have the tail call list complete. But any
11891 function candidate for a virtual tail call frame searched via
11892 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11893 determined unambiguously. */
11894 }
11895 else
11896 {
11897 struct type *func_type = NULL;
11898
11899 if (func_die)
11900 func_type = get_die_type (func_die, cu);
11901 if (func_type != NULL)
11902 {
11903 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11904
11905 /* Enlist this call site to the function. */
11906 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11907 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11908 }
11909 else
11910 complaint (&symfile_complaints,
11911 _("Cannot find function owning DW_TAG_call_site "
11912 "DIE 0x%x [in module %s]"),
11913 to_underlying (die->sect_off), objfile_name (objfile));
11914 }
11915 }
11916
11917 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11918 if (attr == NULL)
11919 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11920 if (attr == NULL)
11921 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11922 if (attr == NULL)
11923 {
11924 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11925 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11926 }
11927 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11928 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11929 /* Keep NULL DWARF_BLOCK. */;
11930 else if (attr_form_is_block (attr))
11931 {
11932 struct dwarf2_locexpr_baton *dlbaton;
11933
11934 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11935 dlbaton->data = DW_BLOCK (attr)->data;
11936 dlbaton->size = DW_BLOCK (attr)->size;
11937 dlbaton->per_cu = cu->per_cu;
11938
11939 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11940 }
11941 else if (attr_form_is_ref (attr))
11942 {
11943 struct dwarf2_cu *target_cu = cu;
11944 struct die_info *target_die;
11945
11946 target_die = follow_die_ref (die, attr, &target_cu);
11947 gdb_assert (target_cu->objfile == objfile);
11948 if (die_is_declaration (target_die, target_cu))
11949 {
11950 const char *target_physname;
11951
11952 /* Prefer the mangled name; otherwise compute the demangled one. */
11953 target_physname = dwarf2_string_attr (target_die,
11954 DW_AT_linkage_name,
11955 target_cu);
11956 if (target_physname == NULL)
11957 target_physname = dwarf2_string_attr (target_die,
11958 DW_AT_MIPS_linkage_name,
11959 target_cu);
11960 if (target_physname == NULL)
11961 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11962 if (target_physname == NULL)
11963 complaint (&symfile_complaints,
11964 _("DW_AT_call_target target DIE has invalid "
11965 "physname, for referencing DIE 0x%x [in module %s]"),
11966 to_underlying (die->sect_off), objfile_name (objfile));
11967 else
11968 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11969 }
11970 else
11971 {
11972 CORE_ADDR lowpc;
11973
11974 /* DW_AT_entry_pc should be preferred. */
11975 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11976 <= PC_BOUNDS_INVALID)
11977 complaint (&symfile_complaints,
11978 _("DW_AT_call_target target DIE has invalid "
11979 "low pc, for referencing DIE 0x%x [in module %s]"),
11980 to_underlying (die->sect_off), objfile_name (objfile));
11981 else
11982 {
11983 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11984 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11985 }
11986 }
11987 }
11988 else
11989 complaint (&symfile_complaints,
11990 _("DW_TAG_call_site DW_AT_call_target is neither "
11991 "block nor reference, for DIE 0x%x [in module %s]"),
11992 to_underlying (die->sect_off), objfile_name (objfile));
11993
11994 call_site->per_cu = cu->per_cu;
11995
11996 for (child_die = die->child;
11997 child_die && child_die->tag;
11998 child_die = sibling_die (child_die))
11999 {
12000 struct call_site_parameter *parameter;
12001 struct attribute *loc, *origin;
12002
12003 if (child_die->tag != DW_TAG_call_site_parameter
12004 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12005 {
12006 /* Already printed the complaint above. */
12007 continue;
12008 }
12009
12010 gdb_assert (call_site->parameter_count < nparams);
12011 parameter = &call_site->parameter[call_site->parameter_count];
12012
12013 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12014 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12015 register is contained in DW_AT_call_value. */
12016
12017 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12018 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12019 if (origin == NULL)
12020 {
12021 /* This was a pre-DWARF-5 GNU extension alias
12022 for DW_AT_call_parameter. */
12023 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12024 }
12025 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12026 {
12027 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12028
12029 sect_offset sect_off
12030 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12031 if (!offset_in_cu_p (&cu->header, sect_off))
12032 {
12033 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12034 binding can be done only inside one CU. Such referenced DIE
12035 therefore cannot be even moved to DW_TAG_partial_unit. */
12036 complaint (&symfile_complaints,
12037 _("DW_AT_call_parameter offset is not in CU for "
12038 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12039 to_underlying (child_die->sect_off),
12040 objfile_name (objfile));
12041 continue;
12042 }
12043 parameter->u.param_cu_off
12044 = (cu_offset) (sect_off - cu->header.sect_off);
12045 }
12046 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12047 {
12048 complaint (&symfile_complaints,
12049 _("No DW_FORM_block* DW_AT_location for "
12050 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12051 to_underlying (child_die->sect_off), objfile_name (objfile));
12052 continue;
12053 }
12054 else
12055 {
12056 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12057 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12058 if (parameter->u.dwarf_reg != -1)
12059 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12060 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12061 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12062 &parameter->u.fb_offset))
12063 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12064 else
12065 {
12066 complaint (&symfile_complaints,
12067 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12068 "for DW_FORM_block* DW_AT_location is supported for "
12069 "DW_TAG_call_site child DIE 0x%x "
12070 "[in module %s]"),
12071 to_underlying (child_die->sect_off),
12072 objfile_name (objfile));
12073 continue;
12074 }
12075 }
12076
12077 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12078 if (attr == NULL)
12079 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12080 if (!attr_form_is_block (attr))
12081 {
12082 complaint (&symfile_complaints,
12083 _("No DW_FORM_block* DW_AT_call_value for "
12084 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12085 to_underlying (child_die->sect_off),
12086 objfile_name (objfile));
12087 continue;
12088 }
12089 parameter->value = DW_BLOCK (attr)->data;
12090 parameter->value_size = DW_BLOCK (attr)->size;
12091
12092 /* Parameters are not pre-cleared by memset above. */
12093 parameter->data_value = NULL;
12094 parameter->data_value_size = 0;
12095 call_site->parameter_count++;
12096
12097 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12098 if (attr == NULL)
12099 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12100 if (attr)
12101 {
12102 if (!attr_form_is_block (attr))
12103 complaint (&symfile_complaints,
12104 _("No DW_FORM_block* DW_AT_call_data_value for "
12105 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12106 to_underlying (child_die->sect_off),
12107 objfile_name (objfile));
12108 else
12109 {
12110 parameter->data_value = DW_BLOCK (attr)->data;
12111 parameter->data_value_size = DW_BLOCK (attr)->size;
12112 }
12113 }
12114 }
12115 }
12116
12117 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12118 reading .debug_rnglists.
12119 Callback's type should be:
12120 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12121 Return true if the attributes are present and valid, otherwise,
12122 return false. */
12123
12124 template <typename Callback>
12125 static bool
12126 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12127 Callback &&callback)
12128 {
12129 struct objfile *objfile = cu->objfile;
12130 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12131 struct comp_unit_head *cu_header = &cu->header;
12132 bfd *obfd = objfile->obfd;
12133 unsigned int addr_size = cu_header->addr_size;
12134 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12135 /* Base address selection entry. */
12136 CORE_ADDR base;
12137 int found_base;
12138 unsigned int dummy;
12139 const gdb_byte *buffer;
12140 CORE_ADDR low = 0;
12141 CORE_ADDR high = 0;
12142 CORE_ADDR baseaddr;
12143 bool overflow = false;
12144
12145 found_base = cu->base_known;
12146 base = cu->base_address;
12147
12148 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12149 if (offset >= dwarf2_per_objfile->rnglists.size)
12150 {
12151 complaint (&symfile_complaints,
12152 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12153 offset);
12154 return false;
12155 }
12156 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12157
12158 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12159
12160 while (1)
12161 {
12162 /* Initialize it due to a false compiler warning. */
12163 CORE_ADDR range_beginning = 0, range_end = 0;
12164 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12165 + dwarf2_per_objfile->rnglists.size);
12166 unsigned int bytes_read;
12167
12168 if (buffer == buf_end)
12169 {
12170 overflow = true;
12171 break;
12172 }
12173 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12174 switch (rlet)
12175 {
12176 case DW_RLE_end_of_list:
12177 break;
12178 case DW_RLE_base_address:
12179 if (buffer + cu->header.addr_size > buf_end)
12180 {
12181 overflow = true;
12182 break;
12183 }
12184 base = read_address (obfd, buffer, cu, &bytes_read);
12185 found_base = 1;
12186 buffer += bytes_read;
12187 break;
12188 case DW_RLE_start_length:
12189 if (buffer + cu->header.addr_size > buf_end)
12190 {
12191 overflow = true;
12192 break;
12193 }
12194 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12195 buffer += bytes_read;
12196 range_end = (range_beginning
12197 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12198 buffer += bytes_read;
12199 if (buffer > buf_end)
12200 {
12201 overflow = true;
12202 break;
12203 }
12204 break;
12205 case DW_RLE_offset_pair:
12206 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12207 buffer += bytes_read;
12208 if (buffer > buf_end)
12209 {
12210 overflow = true;
12211 break;
12212 }
12213 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12214 buffer += bytes_read;
12215 if (buffer > buf_end)
12216 {
12217 overflow = true;
12218 break;
12219 }
12220 break;
12221 case DW_RLE_start_end:
12222 if (buffer + 2 * cu->header.addr_size > buf_end)
12223 {
12224 overflow = true;
12225 break;
12226 }
12227 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12228 buffer += bytes_read;
12229 range_end = read_address (obfd, buffer, cu, &bytes_read);
12230 buffer += bytes_read;
12231 break;
12232 default:
12233 complaint (&symfile_complaints,
12234 _("Invalid .debug_rnglists data (no base address)"));
12235 return false;
12236 }
12237 if (rlet == DW_RLE_end_of_list || overflow)
12238 break;
12239 if (rlet == DW_RLE_base_address)
12240 continue;
12241
12242 if (!found_base)
12243 {
12244 /* We have no valid base address for the ranges
12245 data. */
12246 complaint (&symfile_complaints,
12247 _("Invalid .debug_rnglists data (no base address)"));
12248 return false;
12249 }
12250
12251 if (range_beginning > range_end)
12252 {
12253 /* Inverted range entries are invalid. */
12254 complaint (&symfile_complaints,
12255 _("Invalid .debug_rnglists data (inverted range)"));
12256 return false;
12257 }
12258
12259 /* Empty range entries have no effect. */
12260 if (range_beginning == range_end)
12261 continue;
12262
12263 range_beginning += base;
12264 range_end += base;
12265
12266 /* A not-uncommon case of bad debug info.
12267 Don't pollute the addrmap with bad data. */
12268 if (range_beginning + baseaddr == 0
12269 && !dwarf2_per_objfile->has_section_at_zero)
12270 {
12271 complaint (&symfile_complaints,
12272 _(".debug_rnglists entry has start address of zero"
12273 " [in module %s]"), objfile_name (objfile));
12274 continue;
12275 }
12276
12277 callback (range_beginning, range_end);
12278 }
12279
12280 if (overflow)
12281 {
12282 complaint (&symfile_complaints,
12283 _("Offset %d is not terminated "
12284 "for DW_AT_ranges attribute"),
12285 offset);
12286 return false;
12287 }
12288
12289 return true;
12290 }
12291
12292 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12293 Callback's type should be:
12294 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12295 Return 1 if the attributes are present and valid, otherwise, return 0. */
12296
12297 template <typename Callback>
12298 static int
12299 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12300 Callback &&callback)
12301 {
12302 struct objfile *objfile = cu->objfile;
12303 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12304 struct comp_unit_head *cu_header = &cu->header;
12305 bfd *obfd = objfile->obfd;
12306 unsigned int addr_size = cu_header->addr_size;
12307 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12308 /* Base address selection entry. */
12309 CORE_ADDR base;
12310 int found_base;
12311 unsigned int dummy;
12312 const gdb_byte *buffer;
12313 CORE_ADDR baseaddr;
12314
12315 if (cu_header->version >= 5)
12316 return dwarf2_rnglists_process (offset, cu, callback);
12317
12318 found_base = cu->base_known;
12319 base = cu->base_address;
12320
12321 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12322 if (offset >= dwarf2_per_objfile->ranges.size)
12323 {
12324 complaint (&symfile_complaints,
12325 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12326 offset);
12327 return 0;
12328 }
12329 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12330
12331 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12332
12333 while (1)
12334 {
12335 CORE_ADDR range_beginning, range_end;
12336
12337 range_beginning = read_address (obfd, buffer, cu, &dummy);
12338 buffer += addr_size;
12339 range_end = read_address (obfd, buffer, cu, &dummy);
12340 buffer += addr_size;
12341 offset += 2 * addr_size;
12342
12343 /* An end of list marker is a pair of zero addresses. */
12344 if (range_beginning == 0 && range_end == 0)
12345 /* Found the end of list entry. */
12346 break;
12347
12348 /* Each base address selection entry is a pair of 2 values.
12349 The first is the largest possible address, the second is
12350 the base address. Check for a base address here. */
12351 if ((range_beginning & mask) == mask)
12352 {
12353 /* If we found the largest possible address, then we already
12354 have the base address in range_end. */
12355 base = range_end;
12356 found_base = 1;
12357 continue;
12358 }
12359
12360 if (!found_base)
12361 {
12362 /* We have no valid base address for the ranges
12363 data. */
12364 complaint (&symfile_complaints,
12365 _("Invalid .debug_ranges data (no base address)"));
12366 return 0;
12367 }
12368
12369 if (range_beginning > range_end)
12370 {
12371 /* Inverted range entries are invalid. */
12372 complaint (&symfile_complaints,
12373 _("Invalid .debug_ranges data (inverted range)"));
12374 return 0;
12375 }
12376
12377 /* Empty range entries have no effect. */
12378 if (range_beginning == range_end)
12379 continue;
12380
12381 range_beginning += base;
12382 range_end += base;
12383
12384 /* A not-uncommon case of bad debug info.
12385 Don't pollute the addrmap with bad data. */
12386 if (range_beginning + baseaddr == 0
12387 && !dwarf2_per_objfile->has_section_at_zero)
12388 {
12389 complaint (&symfile_complaints,
12390 _(".debug_ranges entry has start address of zero"
12391 " [in module %s]"), objfile_name (objfile));
12392 continue;
12393 }
12394
12395 callback (range_beginning, range_end);
12396 }
12397
12398 return 1;
12399 }
12400
12401 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12402 Return 1 if the attributes are present and valid, otherwise, return 0.
12403 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12404
12405 static int
12406 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12407 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12408 struct partial_symtab *ranges_pst)
12409 {
12410 struct objfile *objfile = cu->objfile;
12411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12412 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12413 SECT_OFF_TEXT (objfile));
12414 int low_set = 0;
12415 CORE_ADDR low = 0;
12416 CORE_ADDR high = 0;
12417 int retval;
12418
12419 retval = dwarf2_ranges_process (offset, cu,
12420 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12421 {
12422 if (ranges_pst != NULL)
12423 {
12424 CORE_ADDR lowpc;
12425 CORE_ADDR highpc;
12426
12427 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12428 range_beginning + baseaddr);
12429 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12430 range_end + baseaddr);
12431 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12432 ranges_pst);
12433 }
12434
12435 /* FIXME: This is recording everything as a low-high
12436 segment of consecutive addresses. We should have a
12437 data structure for discontiguous block ranges
12438 instead. */
12439 if (! low_set)
12440 {
12441 low = range_beginning;
12442 high = range_end;
12443 low_set = 1;
12444 }
12445 else
12446 {
12447 if (range_beginning < low)
12448 low = range_beginning;
12449 if (range_end > high)
12450 high = range_end;
12451 }
12452 });
12453 if (!retval)
12454 return 0;
12455
12456 if (! low_set)
12457 /* If the first entry is an end-of-list marker, the range
12458 describes an empty scope, i.e. no instructions. */
12459 return 0;
12460
12461 if (low_return)
12462 *low_return = low;
12463 if (high_return)
12464 *high_return = high;
12465 return 1;
12466 }
12467
12468 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12469 definition for the return value. *LOWPC and *HIGHPC are set iff
12470 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12471
12472 static enum pc_bounds_kind
12473 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12474 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12475 struct partial_symtab *pst)
12476 {
12477 struct attribute *attr;
12478 struct attribute *attr_high;
12479 CORE_ADDR low = 0;
12480 CORE_ADDR high = 0;
12481 enum pc_bounds_kind ret;
12482
12483 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12484 if (attr_high)
12485 {
12486 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12487 if (attr)
12488 {
12489 low = attr_value_as_address (attr);
12490 high = attr_value_as_address (attr_high);
12491 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12492 high += low;
12493 }
12494 else
12495 /* Found high w/o low attribute. */
12496 return PC_BOUNDS_INVALID;
12497
12498 /* Found consecutive range of addresses. */
12499 ret = PC_BOUNDS_HIGH_LOW;
12500 }
12501 else
12502 {
12503 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12504 if (attr != NULL)
12505 {
12506 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12507 We take advantage of the fact that DW_AT_ranges does not appear
12508 in DW_TAG_compile_unit of DWO files. */
12509 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12510 unsigned int ranges_offset = (DW_UNSND (attr)
12511 + (need_ranges_base
12512 ? cu->ranges_base
12513 : 0));
12514
12515 /* Value of the DW_AT_ranges attribute is the offset in the
12516 .debug_ranges section. */
12517 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12518 return PC_BOUNDS_INVALID;
12519 /* Found discontinuous range of addresses. */
12520 ret = PC_BOUNDS_RANGES;
12521 }
12522 else
12523 return PC_BOUNDS_NOT_PRESENT;
12524 }
12525
12526 /* read_partial_die has also the strict LOW < HIGH requirement. */
12527 if (high <= low)
12528 return PC_BOUNDS_INVALID;
12529
12530 /* When using the GNU linker, .gnu.linkonce. sections are used to
12531 eliminate duplicate copies of functions and vtables and such.
12532 The linker will arbitrarily choose one and discard the others.
12533 The AT_*_pc values for such functions refer to local labels in
12534 these sections. If the section from that file was discarded, the
12535 labels are not in the output, so the relocs get a value of 0.
12536 If this is a discarded function, mark the pc bounds as invalid,
12537 so that GDB will ignore it. */
12538 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12539 return PC_BOUNDS_INVALID;
12540
12541 *lowpc = low;
12542 if (highpc)
12543 *highpc = high;
12544 return ret;
12545 }
12546
12547 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12548 its low and high PC addresses. Do nothing if these addresses could not
12549 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12550 and HIGHPC to the high address if greater than HIGHPC. */
12551
12552 static void
12553 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12554 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12555 struct dwarf2_cu *cu)
12556 {
12557 CORE_ADDR low, high;
12558 struct die_info *child = die->child;
12559
12560 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12561 {
12562 *lowpc = std::min (*lowpc, low);
12563 *highpc = std::max (*highpc, high);
12564 }
12565
12566 /* If the language does not allow nested subprograms (either inside
12567 subprograms or lexical blocks), we're done. */
12568 if (cu->language != language_ada)
12569 return;
12570
12571 /* Check all the children of the given DIE. If it contains nested
12572 subprograms, then check their pc bounds. Likewise, we need to
12573 check lexical blocks as well, as they may also contain subprogram
12574 definitions. */
12575 while (child && child->tag)
12576 {
12577 if (child->tag == DW_TAG_subprogram
12578 || child->tag == DW_TAG_lexical_block)
12579 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12580 child = sibling_die (child);
12581 }
12582 }
12583
12584 /* Get the low and high pc's represented by the scope DIE, and store
12585 them in *LOWPC and *HIGHPC. If the correct values can't be
12586 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12587
12588 static void
12589 get_scope_pc_bounds (struct die_info *die,
12590 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12591 struct dwarf2_cu *cu)
12592 {
12593 CORE_ADDR best_low = (CORE_ADDR) -1;
12594 CORE_ADDR best_high = (CORE_ADDR) 0;
12595 CORE_ADDR current_low, current_high;
12596
12597 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12598 >= PC_BOUNDS_RANGES)
12599 {
12600 best_low = current_low;
12601 best_high = current_high;
12602 }
12603 else
12604 {
12605 struct die_info *child = die->child;
12606
12607 while (child && child->tag)
12608 {
12609 switch (child->tag) {
12610 case DW_TAG_subprogram:
12611 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12612 break;
12613 case DW_TAG_namespace:
12614 case DW_TAG_module:
12615 /* FIXME: carlton/2004-01-16: Should we do this for
12616 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12617 that current GCC's always emit the DIEs corresponding
12618 to definitions of methods of classes as children of a
12619 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12620 the DIEs giving the declarations, which could be
12621 anywhere). But I don't see any reason why the
12622 standards says that they have to be there. */
12623 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12624
12625 if (current_low != ((CORE_ADDR) -1))
12626 {
12627 best_low = std::min (best_low, current_low);
12628 best_high = std::max (best_high, current_high);
12629 }
12630 break;
12631 default:
12632 /* Ignore. */
12633 break;
12634 }
12635
12636 child = sibling_die (child);
12637 }
12638 }
12639
12640 *lowpc = best_low;
12641 *highpc = best_high;
12642 }
12643
12644 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12645 in DIE. */
12646
12647 static void
12648 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12649 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12650 {
12651 struct objfile *objfile = cu->objfile;
12652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12653 struct attribute *attr;
12654 struct attribute *attr_high;
12655
12656 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12657 if (attr_high)
12658 {
12659 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12660 if (attr)
12661 {
12662 CORE_ADDR low = attr_value_as_address (attr);
12663 CORE_ADDR high = attr_value_as_address (attr_high);
12664
12665 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12666 high += low;
12667
12668 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12669 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12670 record_block_range (block, low, high - 1);
12671 }
12672 }
12673
12674 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12675 if (attr)
12676 {
12677 bfd *obfd = objfile->obfd;
12678 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12679 We take advantage of the fact that DW_AT_ranges does not appear
12680 in DW_TAG_compile_unit of DWO files. */
12681 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12682
12683 /* The value of the DW_AT_ranges attribute is the offset of the
12684 address range list in the .debug_ranges section. */
12685 unsigned long offset = (DW_UNSND (attr)
12686 + (need_ranges_base ? cu->ranges_base : 0));
12687 const gdb_byte *buffer;
12688
12689 /* For some target architectures, but not others, the
12690 read_address function sign-extends the addresses it returns.
12691 To recognize base address selection entries, we need a
12692 mask. */
12693 unsigned int addr_size = cu->header.addr_size;
12694 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12695
12696 /* The base address, to which the next pair is relative. Note
12697 that this 'base' is a DWARF concept: most entries in a range
12698 list are relative, to reduce the number of relocs against the
12699 debugging information. This is separate from this function's
12700 'baseaddr' argument, which GDB uses to relocate debugging
12701 information from a shared library based on the address at
12702 which the library was loaded. */
12703 CORE_ADDR base = cu->base_address;
12704 int base_known = cu->base_known;
12705
12706 dwarf2_ranges_process (offset, cu,
12707 [&] (CORE_ADDR start, CORE_ADDR end)
12708 {
12709 start += baseaddr;
12710 end += baseaddr;
12711 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12712 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12713 record_block_range (block, start, end - 1);
12714 });
12715 }
12716 }
12717
12718 /* Check whether the producer field indicates either of GCC < 4.6, or the
12719 Intel C/C++ compiler, and cache the result in CU. */
12720
12721 static void
12722 check_producer (struct dwarf2_cu *cu)
12723 {
12724 int major, minor;
12725
12726 if (cu->producer == NULL)
12727 {
12728 /* For unknown compilers expect their behavior is DWARF version
12729 compliant.
12730
12731 GCC started to support .debug_types sections by -gdwarf-4 since
12732 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12733 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12734 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12735 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12736 }
12737 else if (producer_is_gcc (cu->producer, &major, &minor))
12738 {
12739 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12740 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12741 }
12742 else if (startswith (cu->producer, "Intel(R) C"))
12743 cu->producer_is_icc = 1;
12744 else
12745 {
12746 /* For other non-GCC compilers, expect their behavior is DWARF version
12747 compliant. */
12748 }
12749
12750 cu->checked_producer = 1;
12751 }
12752
12753 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12754 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12755 during 4.6.0 experimental. */
12756
12757 static int
12758 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12759 {
12760 if (!cu->checked_producer)
12761 check_producer (cu);
12762
12763 return cu->producer_is_gxx_lt_4_6;
12764 }
12765
12766 /* Return the default accessibility type if it is not overriden by
12767 DW_AT_accessibility. */
12768
12769 static enum dwarf_access_attribute
12770 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12771 {
12772 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12773 {
12774 /* The default DWARF 2 accessibility for members is public, the default
12775 accessibility for inheritance is private. */
12776
12777 if (die->tag != DW_TAG_inheritance)
12778 return DW_ACCESS_public;
12779 else
12780 return DW_ACCESS_private;
12781 }
12782 else
12783 {
12784 /* DWARF 3+ defines the default accessibility a different way. The same
12785 rules apply now for DW_TAG_inheritance as for the members and it only
12786 depends on the container kind. */
12787
12788 if (die->parent->tag == DW_TAG_class_type)
12789 return DW_ACCESS_private;
12790 else
12791 return DW_ACCESS_public;
12792 }
12793 }
12794
12795 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12796 offset. If the attribute was not found return 0, otherwise return
12797 1. If it was found but could not properly be handled, set *OFFSET
12798 to 0. */
12799
12800 static int
12801 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12802 LONGEST *offset)
12803 {
12804 struct attribute *attr;
12805
12806 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12807 if (attr != NULL)
12808 {
12809 *offset = 0;
12810
12811 /* Note that we do not check for a section offset first here.
12812 This is because DW_AT_data_member_location is new in DWARF 4,
12813 so if we see it, we can assume that a constant form is really
12814 a constant and not a section offset. */
12815 if (attr_form_is_constant (attr))
12816 *offset = dwarf2_get_attr_constant_value (attr, 0);
12817 else if (attr_form_is_section_offset (attr))
12818 dwarf2_complex_location_expr_complaint ();
12819 else if (attr_form_is_block (attr))
12820 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12821 else
12822 dwarf2_complex_location_expr_complaint ();
12823
12824 return 1;
12825 }
12826
12827 return 0;
12828 }
12829
12830 /* Add an aggregate field to the field list. */
12831
12832 static void
12833 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12834 struct dwarf2_cu *cu)
12835 {
12836 struct objfile *objfile = cu->objfile;
12837 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12838 struct nextfield *new_field;
12839 struct attribute *attr;
12840 struct field *fp;
12841 const char *fieldname = "";
12842
12843 /* Allocate a new field list entry and link it in. */
12844 new_field = XNEW (struct nextfield);
12845 make_cleanup (xfree, new_field);
12846 memset (new_field, 0, sizeof (struct nextfield));
12847
12848 if (die->tag == DW_TAG_inheritance)
12849 {
12850 new_field->next = fip->baseclasses;
12851 fip->baseclasses = new_field;
12852 }
12853 else
12854 {
12855 new_field->next = fip->fields;
12856 fip->fields = new_field;
12857 }
12858 fip->nfields++;
12859
12860 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12861 if (attr)
12862 new_field->accessibility = DW_UNSND (attr);
12863 else
12864 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12865 if (new_field->accessibility != DW_ACCESS_public)
12866 fip->non_public_fields = 1;
12867
12868 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12869 if (attr)
12870 new_field->virtuality = DW_UNSND (attr);
12871 else
12872 new_field->virtuality = DW_VIRTUALITY_none;
12873
12874 fp = &new_field->field;
12875
12876 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12877 {
12878 LONGEST offset;
12879
12880 /* Data member other than a C++ static data member. */
12881
12882 /* Get type of field. */
12883 fp->type = die_type (die, cu);
12884
12885 SET_FIELD_BITPOS (*fp, 0);
12886
12887 /* Get bit size of field (zero if none). */
12888 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12889 if (attr)
12890 {
12891 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12892 }
12893 else
12894 {
12895 FIELD_BITSIZE (*fp) = 0;
12896 }
12897
12898 /* Get bit offset of field. */
12899 if (handle_data_member_location (die, cu, &offset))
12900 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12901 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12902 if (attr)
12903 {
12904 if (gdbarch_bits_big_endian (gdbarch))
12905 {
12906 /* For big endian bits, the DW_AT_bit_offset gives the
12907 additional bit offset from the MSB of the containing
12908 anonymous object to the MSB of the field. We don't
12909 have to do anything special since we don't need to
12910 know the size of the anonymous object. */
12911 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12912 }
12913 else
12914 {
12915 /* For little endian bits, compute the bit offset to the
12916 MSB of the anonymous object, subtract off the number of
12917 bits from the MSB of the field to the MSB of the
12918 object, and then subtract off the number of bits of
12919 the field itself. The result is the bit offset of
12920 the LSB of the field. */
12921 int anonymous_size;
12922 int bit_offset = DW_UNSND (attr);
12923
12924 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12925 if (attr)
12926 {
12927 /* The size of the anonymous object containing
12928 the bit field is explicit, so use the
12929 indicated size (in bytes). */
12930 anonymous_size = DW_UNSND (attr);
12931 }
12932 else
12933 {
12934 /* The size of the anonymous object containing
12935 the bit field must be inferred from the type
12936 attribute of the data member containing the
12937 bit field. */
12938 anonymous_size = TYPE_LENGTH (fp->type);
12939 }
12940 SET_FIELD_BITPOS (*fp,
12941 (FIELD_BITPOS (*fp)
12942 + anonymous_size * bits_per_byte
12943 - bit_offset - FIELD_BITSIZE (*fp)));
12944 }
12945 }
12946 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12947 if (attr != NULL)
12948 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12949 + dwarf2_get_attr_constant_value (attr, 0)));
12950
12951 /* Get name of field. */
12952 fieldname = dwarf2_name (die, cu);
12953 if (fieldname == NULL)
12954 fieldname = "";
12955
12956 /* The name is already allocated along with this objfile, so we don't
12957 need to duplicate it for the type. */
12958 fp->name = fieldname;
12959
12960 /* Change accessibility for artificial fields (e.g. virtual table
12961 pointer or virtual base class pointer) to private. */
12962 if (dwarf2_attr (die, DW_AT_artificial, cu))
12963 {
12964 FIELD_ARTIFICIAL (*fp) = 1;
12965 new_field->accessibility = DW_ACCESS_private;
12966 fip->non_public_fields = 1;
12967 }
12968 }
12969 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12970 {
12971 /* C++ static member. */
12972
12973 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12974 is a declaration, but all versions of G++ as of this writing
12975 (so through at least 3.2.1) incorrectly generate
12976 DW_TAG_variable tags. */
12977
12978 const char *physname;
12979
12980 /* Get name of field. */
12981 fieldname = dwarf2_name (die, cu);
12982 if (fieldname == NULL)
12983 return;
12984
12985 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12986 if (attr
12987 /* Only create a symbol if this is an external value.
12988 new_symbol checks this and puts the value in the global symbol
12989 table, which we want. If it is not external, new_symbol
12990 will try to put the value in cu->list_in_scope which is wrong. */
12991 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12992 {
12993 /* A static const member, not much different than an enum as far as
12994 we're concerned, except that we can support more types. */
12995 new_symbol (die, NULL, cu);
12996 }
12997
12998 /* Get physical name. */
12999 physname = dwarf2_physname (fieldname, die, cu);
13000
13001 /* The name is already allocated along with this objfile, so we don't
13002 need to duplicate it for the type. */
13003 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13004 FIELD_TYPE (*fp) = die_type (die, cu);
13005 FIELD_NAME (*fp) = fieldname;
13006 }
13007 else if (die->tag == DW_TAG_inheritance)
13008 {
13009 LONGEST offset;
13010
13011 /* C++ base class field. */
13012 if (handle_data_member_location (die, cu, &offset))
13013 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13014 FIELD_BITSIZE (*fp) = 0;
13015 FIELD_TYPE (*fp) = die_type (die, cu);
13016 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13017 fip->nbaseclasses++;
13018 }
13019 }
13020
13021 /* Add a typedef defined in the scope of the FIP's class. */
13022
13023 static void
13024 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13025 struct dwarf2_cu *cu)
13026 {
13027 struct typedef_field_list *new_field;
13028 struct typedef_field *fp;
13029
13030 /* Allocate a new field list entry and link it in. */
13031 new_field = XCNEW (struct typedef_field_list);
13032 make_cleanup (xfree, new_field);
13033
13034 gdb_assert (die->tag == DW_TAG_typedef);
13035
13036 fp = &new_field->field;
13037
13038 /* Get name of field. */
13039 fp->name = dwarf2_name (die, cu);
13040 if (fp->name == NULL)
13041 return;
13042
13043 fp->type = read_type_die (die, cu);
13044
13045 new_field->next = fip->typedef_field_list;
13046 fip->typedef_field_list = new_field;
13047 fip->typedef_field_list_count++;
13048 }
13049
13050 /* Create the vector of fields, and attach it to the type. */
13051
13052 static void
13053 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13054 struct dwarf2_cu *cu)
13055 {
13056 int nfields = fip->nfields;
13057
13058 /* Record the field count, allocate space for the array of fields,
13059 and create blank accessibility bitfields if necessary. */
13060 TYPE_NFIELDS (type) = nfields;
13061 TYPE_FIELDS (type) = (struct field *)
13062 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13063 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13064
13065 if (fip->non_public_fields && cu->language != language_ada)
13066 {
13067 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13068
13069 TYPE_FIELD_PRIVATE_BITS (type) =
13070 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13071 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13072
13073 TYPE_FIELD_PROTECTED_BITS (type) =
13074 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13075 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13076
13077 TYPE_FIELD_IGNORE_BITS (type) =
13078 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13079 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13080 }
13081
13082 /* If the type has baseclasses, allocate and clear a bit vector for
13083 TYPE_FIELD_VIRTUAL_BITS. */
13084 if (fip->nbaseclasses && cu->language != language_ada)
13085 {
13086 int num_bytes = B_BYTES (fip->nbaseclasses);
13087 unsigned char *pointer;
13088
13089 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13090 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13091 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13092 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13093 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13094 }
13095
13096 /* Copy the saved-up fields into the field vector. Start from the head of
13097 the list, adding to the tail of the field array, so that they end up in
13098 the same order in the array in which they were added to the list. */
13099 while (nfields-- > 0)
13100 {
13101 struct nextfield *fieldp;
13102
13103 if (fip->fields)
13104 {
13105 fieldp = fip->fields;
13106 fip->fields = fieldp->next;
13107 }
13108 else
13109 {
13110 fieldp = fip->baseclasses;
13111 fip->baseclasses = fieldp->next;
13112 }
13113
13114 TYPE_FIELD (type, nfields) = fieldp->field;
13115 switch (fieldp->accessibility)
13116 {
13117 case DW_ACCESS_private:
13118 if (cu->language != language_ada)
13119 SET_TYPE_FIELD_PRIVATE (type, nfields);
13120 break;
13121
13122 case DW_ACCESS_protected:
13123 if (cu->language != language_ada)
13124 SET_TYPE_FIELD_PROTECTED (type, nfields);
13125 break;
13126
13127 case DW_ACCESS_public:
13128 break;
13129
13130 default:
13131 /* Unknown accessibility. Complain and treat it as public. */
13132 {
13133 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13134 fieldp->accessibility);
13135 }
13136 break;
13137 }
13138 if (nfields < fip->nbaseclasses)
13139 {
13140 switch (fieldp->virtuality)
13141 {
13142 case DW_VIRTUALITY_virtual:
13143 case DW_VIRTUALITY_pure_virtual:
13144 if (cu->language == language_ada)
13145 error (_("unexpected virtuality in component of Ada type"));
13146 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13147 break;
13148 }
13149 }
13150 }
13151 }
13152
13153 /* Return true if this member function is a constructor, false
13154 otherwise. */
13155
13156 static int
13157 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13158 {
13159 const char *fieldname;
13160 const char *type_name;
13161 int len;
13162
13163 if (die->parent == NULL)
13164 return 0;
13165
13166 if (die->parent->tag != DW_TAG_structure_type
13167 && die->parent->tag != DW_TAG_union_type
13168 && die->parent->tag != DW_TAG_class_type)
13169 return 0;
13170
13171 fieldname = dwarf2_name (die, cu);
13172 type_name = dwarf2_name (die->parent, cu);
13173 if (fieldname == NULL || type_name == NULL)
13174 return 0;
13175
13176 len = strlen (fieldname);
13177 return (strncmp (fieldname, type_name, len) == 0
13178 && (type_name[len] == '\0' || type_name[len] == '<'));
13179 }
13180
13181 /* Add a member function to the proper fieldlist. */
13182
13183 static void
13184 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13185 struct type *type, struct dwarf2_cu *cu)
13186 {
13187 struct objfile *objfile = cu->objfile;
13188 struct attribute *attr;
13189 struct fnfieldlist *flp;
13190 int i;
13191 struct fn_field *fnp;
13192 const char *fieldname;
13193 struct nextfnfield *new_fnfield;
13194 struct type *this_type;
13195 enum dwarf_access_attribute accessibility;
13196
13197 if (cu->language == language_ada)
13198 error (_("unexpected member function in Ada type"));
13199
13200 /* Get name of member function. */
13201 fieldname = dwarf2_name (die, cu);
13202 if (fieldname == NULL)
13203 return;
13204
13205 /* Look up member function name in fieldlist. */
13206 for (i = 0; i < fip->nfnfields; i++)
13207 {
13208 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13209 break;
13210 }
13211
13212 /* Create new list element if necessary. */
13213 if (i < fip->nfnfields)
13214 flp = &fip->fnfieldlists[i];
13215 else
13216 {
13217 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13218 {
13219 fip->fnfieldlists = (struct fnfieldlist *)
13220 xrealloc (fip->fnfieldlists,
13221 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13222 * sizeof (struct fnfieldlist));
13223 if (fip->nfnfields == 0)
13224 make_cleanup (free_current_contents, &fip->fnfieldlists);
13225 }
13226 flp = &fip->fnfieldlists[fip->nfnfields];
13227 flp->name = fieldname;
13228 flp->length = 0;
13229 flp->head = NULL;
13230 i = fip->nfnfields++;
13231 }
13232
13233 /* Create a new member function field and chain it to the field list
13234 entry. */
13235 new_fnfield = XNEW (struct nextfnfield);
13236 make_cleanup (xfree, new_fnfield);
13237 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13238 new_fnfield->next = flp->head;
13239 flp->head = new_fnfield;
13240 flp->length++;
13241
13242 /* Fill in the member function field info. */
13243 fnp = &new_fnfield->fnfield;
13244
13245 /* Delay processing of the physname until later. */
13246 if (cu->language == language_cplus)
13247 {
13248 add_to_method_list (type, i, flp->length - 1, fieldname,
13249 die, cu);
13250 }
13251 else
13252 {
13253 const char *physname = dwarf2_physname (fieldname, die, cu);
13254 fnp->physname = physname ? physname : "";
13255 }
13256
13257 fnp->type = alloc_type (objfile);
13258 this_type = read_type_die (die, cu);
13259 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13260 {
13261 int nparams = TYPE_NFIELDS (this_type);
13262
13263 /* TYPE is the domain of this method, and THIS_TYPE is the type
13264 of the method itself (TYPE_CODE_METHOD). */
13265 smash_to_method_type (fnp->type, type,
13266 TYPE_TARGET_TYPE (this_type),
13267 TYPE_FIELDS (this_type),
13268 TYPE_NFIELDS (this_type),
13269 TYPE_VARARGS (this_type));
13270
13271 /* Handle static member functions.
13272 Dwarf2 has no clean way to discern C++ static and non-static
13273 member functions. G++ helps GDB by marking the first
13274 parameter for non-static member functions (which is the this
13275 pointer) as artificial. We obtain this information from
13276 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13277 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13278 fnp->voffset = VOFFSET_STATIC;
13279 }
13280 else
13281 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13282 dwarf2_full_name (fieldname, die, cu));
13283
13284 /* Get fcontext from DW_AT_containing_type if present. */
13285 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13286 fnp->fcontext = die_containing_type (die, cu);
13287
13288 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13289 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13290
13291 /* Get accessibility. */
13292 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13293 if (attr)
13294 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13295 else
13296 accessibility = dwarf2_default_access_attribute (die, cu);
13297 switch (accessibility)
13298 {
13299 case DW_ACCESS_private:
13300 fnp->is_private = 1;
13301 break;
13302 case DW_ACCESS_protected:
13303 fnp->is_protected = 1;
13304 break;
13305 }
13306
13307 /* Check for artificial methods. */
13308 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13309 if (attr && DW_UNSND (attr) != 0)
13310 fnp->is_artificial = 1;
13311
13312 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13313
13314 /* Get index in virtual function table if it is a virtual member
13315 function. For older versions of GCC, this is an offset in the
13316 appropriate virtual table, as specified by DW_AT_containing_type.
13317 For everyone else, it is an expression to be evaluated relative
13318 to the object address. */
13319
13320 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13321 if (attr)
13322 {
13323 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13324 {
13325 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13326 {
13327 /* Old-style GCC. */
13328 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13329 }
13330 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13331 || (DW_BLOCK (attr)->size > 1
13332 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13333 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13334 {
13335 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13336 if ((fnp->voffset % cu->header.addr_size) != 0)
13337 dwarf2_complex_location_expr_complaint ();
13338 else
13339 fnp->voffset /= cu->header.addr_size;
13340 fnp->voffset += 2;
13341 }
13342 else
13343 dwarf2_complex_location_expr_complaint ();
13344
13345 if (!fnp->fcontext)
13346 {
13347 /* If there is no `this' field and no DW_AT_containing_type,
13348 we cannot actually find a base class context for the
13349 vtable! */
13350 if (TYPE_NFIELDS (this_type) == 0
13351 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13352 {
13353 complaint (&symfile_complaints,
13354 _("cannot determine context for virtual member "
13355 "function \"%s\" (offset %d)"),
13356 fieldname, to_underlying (die->sect_off));
13357 }
13358 else
13359 {
13360 fnp->fcontext
13361 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13362 }
13363 }
13364 }
13365 else if (attr_form_is_section_offset (attr))
13366 {
13367 dwarf2_complex_location_expr_complaint ();
13368 }
13369 else
13370 {
13371 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13372 fieldname);
13373 }
13374 }
13375 else
13376 {
13377 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13378 if (attr && DW_UNSND (attr))
13379 {
13380 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13381 complaint (&symfile_complaints,
13382 _("Member function \"%s\" (offset %d) is virtual "
13383 "but the vtable offset is not specified"),
13384 fieldname, to_underlying (die->sect_off));
13385 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13386 TYPE_CPLUS_DYNAMIC (type) = 1;
13387 }
13388 }
13389 }
13390
13391 /* Create the vector of member function fields, and attach it to the type. */
13392
13393 static void
13394 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13395 struct dwarf2_cu *cu)
13396 {
13397 struct fnfieldlist *flp;
13398 int i;
13399
13400 if (cu->language == language_ada)
13401 error (_("unexpected member functions in Ada type"));
13402
13403 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13404 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13405 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13406
13407 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13408 {
13409 struct nextfnfield *nfp = flp->head;
13410 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13411 int k;
13412
13413 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13414 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13415 fn_flp->fn_fields = (struct fn_field *)
13416 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13417 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13418 fn_flp->fn_fields[k] = nfp->fnfield;
13419 }
13420
13421 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13422 }
13423
13424 /* Returns non-zero if NAME is the name of a vtable member in CU's
13425 language, zero otherwise. */
13426 static int
13427 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13428 {
13429 static const char vptr[] = "_vptr";
13430 static const char vtable[] = "vtable";
13431
13432 /* Look for the C++ form of the vtable. */
13433 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13434 return 1;
13435
13436 return 0;
13437 }
13438
13439 /* GCC outputs unnamed structures that are really pointers to member
13440 functions, with the ABI-specified layout. If TYPE describes
13441 such a structure, smash it into a member function type.
13442
13443 GCC shouldn't do this; it should just output pointer to member DIEs.
13444 This is GCC PR debug/28767. */
13445
13446 static void
13447 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13448 {
13449 struct type *pfn_type, *self_type, *new_type;
13450
13451 /* Check for a structure with no name and two children. */
13452 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13453 return;
13454
13455 /* Check for __pfn and __delta members. */
13456 if (TYPE_FIELD_NAME (type, 0) == NULL
13457 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13458 || TYPE_FIELD_NAME (type, 1) == NULL
13459 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13460 return;
13461
13462 /* Find the type of the method. */
13463 pfn_type = TYPE_FIELD_TYPE (type, 0);
13464 if (pfn_type == NULL
13465 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13466 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13467 return;
13468
13469 /* Look for the "this" argument. */
13470 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13471 if (TYPE_NFIELDS (pfn_type) == 0
13472 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13473 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13474 return;
13475
13476 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13477 new_type = alloc_type (objfile);
13478 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13479 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13480 TYPE_VARARGS (pfn_type));
13481 smash_to_methodptr_type (type, new_type);
13482 }
13483
13484 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13485 (icc). */
13486
13487 static int
13488 producer_is_icc (struct dwarf2_cu *cu)
13489 {
13490 if (!cu->checked_producer)
13491 check_producer (cu);
13492
13493 return cu->producer_is_icc;
13494 }
13495
13496 /* Called when we find the DIE that starts a structure or union scope
13497 (definition) to create a type for the structure or union. Fill in
13498 the type's name and general properties; the members will not be
13499 processed until process_structure_scope. A symbol table entry for
13500 the type will also not be done until process_structure_scope (assuming
13501 the type has a name).
13502
13503 NOTE: we need to call these functions regardless of whether or not the
13504 DIE has a DW_AT_name attribute, since it might be an anonymous
13505 structure or union. This gets the type entered into our set of
13506 user defined types. */
13507
13508 static struct type *
13509 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13510 {
13511 struct objfile *objfile = cu->objfile;
13512 struct type *type;
13513 struct attribute *attr;
13514 const char *name;
13515
13516 /* If the definition of this type lives in .debug_types, read that type.
13517 Don't follow DW_AT_specification though, that will take us back up
13518 the chain and we want to go down. */
13519 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13520 if (attr)
13521 {
13522 type = get_DW_AT_signature_type (die, attr, cu);
13523
13524 /* The type's CU may not be the same as CU.
13525 Ensure TYPE is recorded with CU in die_type_hash. */
13526 return set_die_type (die, type, cu);
13527 }
13528
13529 type = alloc_type (objfile);
13530 INIT_CPLUS_SPECIFIC (type);
13531
13532 name = dwarf2_name (die, cu);
13533 if (name != NULL)
13534 {
13535 if (cu->language == language_cplus
13536 || cu->language == language_d
13537 || cu->language == language_rust)
13538 {
13539 const char *full_name = dwarf2_full_name (name, die, cu);
13540
13541 /* dwarf2_full_name might have already finished building the DIE's
13542 type. If so, there is no need to continue. */
13543 if (get_die_type (die, cu) != NULL)
13544 return get_die_type (die, cu);
13545
13546 TYPE_TAG_NAME (type) = full_name;
13547 if (die->tag == DW_TAG_structure_type
13548 || die->tag == DW_TAG_class_type)
13549 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13550 }
13551 else
13552 {
13553 /* The name is already allocated along with this objfile, so
13554 we don't need to duplicate it for the type. */
13555 TYPE_TAG_NAME (type) = name;
13556 if (die->tag == DW_TAG_class_type)
13557 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13558 }
13559 }
13560
13561 if (die->tag == DW_TAG_structure_type)
13562 {
13563 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13564 }
13565 else if (die->tag == DW_TAG_union_type)
13566 {
13567 TYPE_CODE (type) = TYPE_CODE_UNION;
13568 }
13569 else
13570 {
13571 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13572 }
13573
13574 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13575 TYPE_DECLARED_CLASS (type) = 1;
13576
13577 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13578 if (attr)
13579 {
13580 if (attr_form_is_constant (attr))
13581 TYPE_LENGTH (type) = DW_UNSND (attr);
13582 else
13583 {
13584 /* For the moment, dynamic type sizes are not supported
13585 by GDB's struct type. The actual size is determined
13586 on-demand when resolving the type of a given object,
13587 so set the type's length to zero for now. Otherwise,
13588 we record an expression as the length, and that expression
13589 could lead to a very large value, which could eventually
13590 lead to us trying to allocate that much memory when creating
13591 a value of that type. */
13592 TYPE_LENGTH (type) = 0;
13593 }
13594 }
13595 else
13596 {
13597 TYPE_LENGTH (type) = 0;
13598 }
13599
13600 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13601 {
13602 /* ICC does not output the required DW_AT_declaration
13603 on incomplete types, but gives them a size of zero. */
13604 TYPE_STUB (type) = 1;
13605 }
13606 else
13607 TYPE_STUB_SUPPORTED (type) = 1;
13608
13609 if (die_is_declaration (die, cu))
13610 TYPE_STUB (type) = 1;
13611 else if (attr == NULL && die->child == NULL
13612 && producer_is_realview (cu->producer))
13613 /* RealView does not output the required DW_AT_declaration
13614 on incomplete types. */
13615 TYPE_STUB (type) = 1;
13616
13617 /* We need to add the type field to the die immediately so we don't
13618 infinitely recurse when dealing with pointers to the structure
13619 type within the structure itself. */
13620 set_die_type (die, type, cu);
13621
13622 /* set_die_type should be already done. */
13623 set_descriptive_type (type, die, cu);
13624
13625 return type;
13626 }
13627
13628 /* Finish creating a structure or union type, including filling in
13629 its members and creating a symbol for it. */
13630
13631 static void
13632 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13633 {
13634 struct objfile *objfile = cu->objfile;
13635 struct die_info *child_die;
13636 struct type *type;
13637
13638 type = get_die_type (die, cu);
13639 if (type == NULL)
13640 type = read_structure_type (die, cu);
13641
13642 if (die->child != NULL && ! die_is_declaration (die, cu))
13643 {
13644 struct field_info fi;
13645 VEC (symbolp) *template_args = NULL;
13646 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13647
13648 memset (&fi, 0, sizeof (struct field_info));
13649
13650 child_die = die->child;
13651
13652 while (child_die && child_die->tag)
13653 {
13654 if (child_die->tag == DW_TAG_member
13655 || child_die->tag == DW_TAG_variable)
13656 {
13657 /* NOTE: carlton/2002-11-05: A C++ static data member
13658 should be a DW_TAG_member that is a declaration, but
13659 all versions of G++ as of this writing (so through at
13660 least 3.2.1) incorrectly generate DW_TAG_variable
13661 tags for them instead. */
13662 dwarf2_add_field (&fi, child_die, cu);
13663 }
13664 else if (child_die->tag == DW_TAG_subprogram)
13665 {
13666 /* Rust doesn't have member functions in the C++ sense.
13667 However, it does emit ordinary functions as children
13668 of a struct DIE. */
13669 if (cu->language == language_rust)
13670 read_func_scope (child_die, cu);
13671 else
13672 {
13673 /* C++ member function. */
13674 dwarf2_add_member_fn (&fi, child_die, type, cu);
13675 }
13676 }
13677 else if (child_die->tag == DW_TAG_inheritance)
13678 {
13679 /* C++ base class field. */
13680 dwarf2_add_field (&fi, child_die, cu);
13681 }
13682 else if (child_die->tag == DW_TAG_typedef)
13683 dwarf2_add_typedef (&fi, child_die, cu);
13684 else if (child_die->tag == DW_TAG_template_type_param
13685 || child_die->tag == DW_TAG_template_value_param)
13686 {
13687 struct symbol *arg = new_symbol (child_die, NULL, cu);
13688
13689 if (arg != NULL)
13690 VEC_safe_push (symbolp, template_args, arg);
13691 }
13692
13693 child_die = sibling_die (child_die);
13694 }
13695
13696 /* Attach template arguments to type. */
13697 if (! VEC_empty (symbolp, template_args))
13698 {
13699 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13700 TYPE_N_TEMPLATE_ARGUMENTS (type)
13701 = VEC_length (symbolp, template_args);
13702 TYPE_TEMPLATE_ARGUMENTS (type)
13703 = XOBNEWVEC (&objfile->objfile_obstack,
13704 struct symbol *,
13705 TYPE_N_TEMPLATE_ARGUMENTS (type));
13706 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13707 VEC_address (symbolp, template_args),
13708 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13709 * sizeof (struct symbol *)));
13710 VEC_free (symbolp, template_args);
13711 }
13712
13713 /* Attach fields and member functions to the type. */
13714 if (fi.nfields)
13715 dwarf2_attach_fields_to_type (&fi, type, cu);
13716 if (fi.nfnfields)
13717 {
13718 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13719
13720 /* Get the type which refers to the base class (possibly this
13721 class itself) which contains the vtable pointer for the current
13722 class from the DW_AT_containing_type attribute. This use of
13723 DW_AT_containing_type is a GNU extension. */
13724
13725 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13726 {
13727 struct type *t = die_containing_type (die, cu);
13728
13729 set_type_vptr_basetype (type, t);
13730 if (type == t)
13731 {
13732 int i;
13733
13734 /* Our own class provides vtbl ptr. */
13735 for (i = TYPE_NFIELDS (t) - 1;
13736 i >= TYPE_N_BASECLASSES (t);
13737 --i)
13738 {
13739 const char *fieldname = TYPE_FIELD_NAME (t, i);
13740
13741 if (is_vtable_name (fieldname, cu))
13742 {
13743 set_type_vptr_fieldno (type, i);
13744 break;
13745 }
13746 }
13747
13748 /* Complain if virtual function table field not found. */
13749 if (i < TYPE_N_BASECLASSES (t))
13750 complaint (&symfile_complaints,
13751 _("virtual function table pointer "
13752 "not found when defining class '%s'"),
13753 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13754 "");
13755 }
13756 else
13757 {
13758 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13759 }
13760 }
13761 else if (cu->producer
13762 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13763 {
13764 /* The IBM XLC compiler does not provide direct indication
13765 of the containing type, but the vtable pointer is
13766 always named __vfp. */
13767
13768 int i;
13769
13770 for (i = TYPE_NFIELDS (type) - 1;
13771 i >= TYPE_N_BASECLASSES (type);
13772 --i)
13773 {
13774 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13775 {
13776 set_type_vptr_fieldno (type, i);
13777 set_type_vptr_basetype (type, type);
13778 break;
13779 }
13780 }
13781 }
13782 }
13783
13784 /* Copy fi.typedef_field_list linked list elements content into the
13785 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13786 if (fi.typedef_field_list)
13787 {
13788 int i = fi.typedef_field_list_count;
13789
13790 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13791 TYPE_TYPEDEF_FIELD_ARRAY (type)
13792 = ((struct typedef_field *)
13793 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13794 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13795
13796 /* Reverse the list order to keep the debug info elements order. */
13797 while (--i >= 0)
13798 {
13799 struct typedef_field *dest, *src;
13800
13801 dest = &TYPE_TYPEDEF_FIELD (type, i);
13802 src = &fi.typedef_field_list->field;
13803 fi.typedef_field_list = fi.typedef_field_list->next;
13804 *dest = *src;
13805 }
13806 }
13807
13808 do_cleanups (back_to);
13809 }
13810
13811 quirk_gcc_member_function_pointer (type, objfile);
13812
13813 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13814 snapshots) has been known to create a die giving a declaration
13815 for a class that has, as a child, a die giving a definition for a
13816 nested class. So we have to process our children even if the
13817 current die is a declaration. Normally, of course, a declaration
13818 won't have any children at all. */
13819
13820 child_die = die->child;
13821
13822 while (child_die != NULL && child_die->tag)
13823 {
13824 if (child_die->tag == DW_TAG_member
13825 || child_die->tag == DW_TAG_variable
13826 || child_die->tag == DW_TAG_inheritance
13827 || child_die->tag == DW_TAG_template_value_param
13828 || child_die->tag == DW_TAG_template_type_param)
13829 {
13830 /* Do nothing. */
13831 }
13832 else
13833 process_die (child_die, cu);
13834
13835 child_die = sibling_die (child_die);
13836 }
13837
13838 /* Do not consider external references. According to the DWARF standard,
13839 these DIEs are identified by the fact that they have no byte_size
13840 attribute, and a declaration attribute. */
13841 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13842 || !die_is_declaration (die, cu))
13843 new_symbol (die, type, cu);
13844 }
13845
13846 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13847 update TYPE using some information only available in DIE's children. */
13848
13849 static void
13850 update_enumeration_type_from_children (struct die_info *die,
13851 struct type *type,
13852 struct dwarf2_cu *cu)
13853 {
13854 struct die_info *child_die;
13855 int unsigned_enum = 1;
13856 int flag_enum = 1;
13857 ULONGEST mask = 0;
13858
13859 auto_obstack obstack;
13860
13861 for (child_die = die->child;
13862 child_die != NULL && child_die->tag;
13863 child_die = sibling_die (child_die))
13864 {
13865 struct attribute *attr;
13866 LONGEST value;
13867 const gdb_byte *bytes;
13868 struct dwarf2_locexpr_baton *baton;
13869 const char *name;
13870
13871 if (child_die->tag != DW_TAG_enumerator)
13872 continue;
13873
13874 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13875 if (attr == NULL)
13876 continue;
13877
13878 name = dwarf2_name (child_die, cu);
13879 if (name == NULL)
13880 name = "<anonymous enumerator>";
13881
13882 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13883 &value, &bytes, &baton);
13884 if (value < 0)
13885 {
13886 unsigned_enum = 0;
13887 flag_enum = 0;
13888 }
13889 else if ((mask & value) != 0)
13890 flag_enum = 0;
13891 else
13892 mask |= value;
13893
13894 /* If we already know that the enum type is neither unsigned, nor
13895 a flag type, no need to look at the rest of the enumerates. */
13896 if (!unsigned_enum && !flag_enum)
13897 break;
13898 }
13899
13900 if (unsigned_enum)
13901 TYPE_UNSIGNED (type) = 1;
13902 if (flag_enum)
13903 TYPE_FLAG_ENUM (type) = 1;
13904 }
13905
13906 /* Given a DW_AT_enumeration_type die, set its type. We do not
13907 complete the type's fields yet, or create any symbols. */
13908
13909 static struct type *
13910 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13911 {
13912 struct objfile *objfile = cu->objfile;
13913 struct type *type;
13914 struct attribute *attr;
13915 const char *name;
13916
13917 /* If the definition of this type lives in .debug_types, read that type.
13918 Don't follow DW_AT_specification though, that will take us back up
13919 the chain and we want to go down. */
13920 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13921 if (attr)
13922 {
13923 type = get_DW_AT_signature_type (die, attr, cu);
13924
13925 /* The type's CU may not be the same as CU.
13926 Ensure TYPE is recorded with CU in die_type_hash. */
13927 return set_die_type (die, type, cu);
13928 }
13929
13930 type = alloc_type (objfile);
13931
13932 TYPE_CODE (type) = TYPE_CODE_ENUM;
13933 name = dwarf2_full_name (NULL, die, cu);
13934 if (name != NULL)
13935 TYPE_TAG_NAME (type) = name;
13936
13937 attr = dwarf2_attr (die, DW_AT_type, cu);
13938 if (attr != NULL)
13939 {
13940 struct type *underlying_type = die_type (die, cu);
13941
13942 TYPE_TARGET_TYPE (type) = underlying_type;
13943 }
13944
13945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13946 if (attr)
13947 {
13948 TYPE_LENGTH (type) = DW_UNSND (attr);
13949 }
13950 else
13951 {
13952 TYPE_LENGTH (type) = 0;
13953 }
13954
13955 /* The enumeration DIE can be incomplete. In Ada, any type can be
13956 declared as private in the package spec, and then defined only
13957 inside the package body. Such types are known as Taft Amendment
13958 Types. When another package uses such a type, an incomplete DIE
13959 may be generated by the compiler. */
13960 if (die_is_declaration (die, cu))
13961 TYPE_STUB (type) = 1;
13962
13963 /* Finish the creation of this type by using the enum's children.
13964 We must call this even when the underlying type has been provided
13965 so that we can determine if we're looking at a "flag" enum. */
13966 update_enumeration_type_from_children (die, type, cu);
13967
13968 /* If this type has an underlying type that is not a stub, then we
13969 may use its attributes. We always use the "unsigned" attribute
13970 in this situation, because ordinarily we guess whether the type
13971 is unsigned -- but the guess can be wrong and the underlying type
13972 can tell us the reality. However, we defer to a local size
13973 attribute if one exists, because this lets the compiler override
13974 the underlying type if needed. */
13975 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13976 {
13977 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13978 if (TYPE_LENGTH (type) == 0)
13979 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13980 }
13981
13982 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13983
13984 return set_die_type (die, type, cu);
13985 }
13986
13987 /* Given a pointer to a die which begins an enumeration, process all
13988 the dies that define the members of the enumeration, and create the
13989 symbol for the enumeration type.
13990
13991 NOTE: We reverse the order of the element list. */
13992
13993 static void
13994 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13995 {
13996 struct type *this_type;
13997
13998 this_type = get_die_type (die, cu);
13999 if (this_type == NULL)
14000 this_type = read_enumeration_type (die, cu);
14001
14002 if (die->child != NULL)
14003 {
14004 struct die_info *child_die;
14005 struct symbol *sym;
14006 struct field *fields = NULL;
14007 int num_fields = 0;
14008 const char *name;
14009
14010 child_die = die->child;
14011 while (child_die && child_die->tag)
14012 {
14013 if (child_die->tag != DW_TAG_enumerator)
14014 {
14015 process_die (child_die, cu);
14016 }
14017 else
14018 {
14019 name = dwarf2_name (child_die, cu);
14020 if (name)
14021 {
14022 sym = new_symbol (child_die, this_type, cu);
14023
14024 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14025 {
14026 fields = (struct field *)
14027 xrealloc (fields,
14028 (num_fields + DW_FIELD_ALLOC_CHUNK)
14029 * sizeof (struct field));
14030 }
14031
14032 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14033 FIELD_TYPE (fields[num_fields]) = NULL;
14034 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14035 FIELD_BITSIZE (fields[num_fields]) = 0;
14036
14037 num_fields++;
14038 }
14039 }
14040
14041 child_die = sibling_die (child_die);
14042 }
14043
14044 if (num_fields)
14045 {
14046 TYPE_NFIELDS (this_type) = num_fields;
14047 TYPE_FIELDS (this_type) = (struct field *)
14048 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14049 memcpy (TYPE_FIELDS (this_type), fields,
14050 sizeof (struct field) * num_fields);
14051 xfree (fields);
14052 }
14053 }
14054
14055 /* If we are reading an enum from a .debug_types unit, and the enum
14056 is a declaration, and the enum is not the signatured type in the
14057 unit, then we do not want to add a symbol for it. Adding a
14058 symbol would in some cases obscure the true definition of the
14059 enum, giving users an incomplete type when the definition is
14060 actually available. Note that we do not want to do this for all
14061 enums which are just declarations, because C++0x allows forward
14062 enum declarations. */
14063 if (cu->per_cu->is_debug_types
14064 && die_is_declaration (die, cu))
14065 {
14066 struct signatured_type *sig_type;
14067
14068 sig_type = (struct signatured_type *) cu->per_cu;
14069 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14070 if (sig_type->type_offset_in_section != die->sect_off)
14071 return;
14072 }
14073
14074 new_symbol (die, this_type, cu);
14075 }
14076
14077 /* Extract all information from a DW_TAG_array_type DIE and put it in
14078 the DIE's type field. For now, this only handles one dimensional
14079 arrays. */
14080
14081 static struct type *
14082 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14083 {
14084 struct objfile *objfile = cu->objfile;
14085 struct die_info *child_die;
14086 struct type *type;
14087 struct type *element_type, *range_type, *index_type;
14088 struct type **range_types = NULL;
14089 struct attribute *attr;
14090 int ndim = 0;
14091 struct cleanup *back_to;
14092 const char *name;
14093 unsigned int bit_stride = 0;
14094
14095 element_type = die_type (die, cu);
14096
14097 /* The die_type call above may have already set the type for this DIE. */
14098 type = get_die_type (die, cu);
14099 if (type)
14100 return type;
14101
14102 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14103 if (attr != NULL)
14104 bit_stride = DW_UNSND (attr) * 8;
14105
14106 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14107 if (attr != NULL)
14108 bit_stride = DW_UNSND (attr);
14109
14110 /* Irix 6.2 native cc creates array types without children for
14111 arrays with unspecified length. */
14112 if (die->child == NULL)
14113 {
14114 index_type = objfile_type (objfile)->builtin_int;
14115 range_type = create_static_range_type (NULL, index_type, 0, -1);
14116 type = create_array_type_with_stride (NULL, element_type, range_type,
14117 bit_stride);
14118 return set_die_type (die, type, cu);
14119 }
14120
14121 back_to = make_cleanup (null_cleanup, NULL);
14122 child_die = die->child;
14123 while (child_die && child_die->tag)
14124 {
14125 if (child_die->tag == DW_TAG_subrange_type)
14126 {
14127 struct type *child_type = read_type_die (child_die, cu);
14128
14129 if (child_type != NULL)
14130 {
14131 /* The range type was succesfully read. Save it for the
14132 array type creation. */
14133 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14134 {
14135 range_types = (struct type **)
14136 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14137 * sizeof (struct type *));
14138 if (ndim == 0)
14139 make_cleanup (free_current_contents, &range_types);
14140 }
14141 range_types[ndim++] = child_type;
14142 }
14143 }
14144 child_die = sibling_die (child_die);
14145 }
14146
14147 /* Dwarf2 dimensions are output from left to right, create the
14148 necessary array types in backwards order. */
14149
14150 type = element_type;
14151
14152 if (read_array_order (die, cu) == DW_ORD_col_major)
14153 {
14154 int i = 0;
14155
14156 while (i < ndim)
14157 type = create_array_type_with_stride (NULL, type, range_types[i++],
14158 bit_stride);
14159 }
14160 else
14161 {
14162 while (ndim-- > 0)
14163 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14164 bit_stride);
14165 }
14166
14167 /* Understand Dwarf2 support for vector types (like they occur on
14168 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14169 array type. This is not part of the Dwarf2/3 standard yet, but a
14170 custom vendor extension. The main difference between a regular
14171 array and the vector variant is that vectors are passed by value
14172 to functions. */
14173 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14174 if (attr)
14175 make_vector_type (type);
14176
14177 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14178 implementation may choose to implement triple vectors using this
14179 attribute. */
14180 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14181 if (attr)
14182 {
14183 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14184 TYPE_LENGTH (type) = DW_UNSND (attr);
14185 else
14186 complaint (&symfile_complaints,
14187 _("DW_AT_byte_size for array type smaller "
14188 "than the total size of elements"));
14189 }
14190
14191 name = dwarf2_name (die, cu);
14192 if (name)
14193 TYPE_NAME (type) = name;
14194
14195 /* Install the type in the die. */
14196 set_die_type (die, type, cu);
14197
14198 /* set_die_type should be already done. */
14199 set_descriptive_type (type, die, cu);
14200
14201 do_cleanups (back_to);
14202
14203 return type;
14204 }
14205
14206 static enum dwarf_array_dim_ordering
14207 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14208 {
14209 struct attribute *attr;
14210
14211 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14212
14213 if (attr)
14214 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14215
14216 /* GNU F77 is a special case, as at 08/2004 array type info is the
14217 opposite order to the dwarf2 specification, but data is still
14218 laid out as per normal fortran.
14219
14220 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14221 version checking. */
14222
14223 if (cu->language == language_fortran
14224 && cu->producer && strstr (cu->producer, "GNU F77"))
14225 {
14226 return DW_ORD_row_major;
14227 }
14228
14229 switch (cu->language_defn->la_array_ordering)
14230 {
14231 case array_column_major:
14232 return DW_ORD_col_major;
14233 case array_row_major:
14234 default:
14235 return DW_ORD_row_major;
14236 };
14237 }
14238
14239 /* Extract all information from a DW_TAG_set_type DIE and put it in
14240 the DIE's type field. */
14241
14242 static struct type *
14243 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct type *domain_type, *set_type;
14246 struct attribute *attr;
14247
14248 domain_type = die_type (die, cu);
14249
14250 /* The die_type call above may have already set the type for this DIE. */
14251 set_type = get_die_type (die, cu);
14252 if (set_type)
14253 return set_type;
14254
14255 set_type = create_set_type (NULL, domain_type);
14256
14257 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14258 if (attr)
14259 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14260
14261 return set_die_type (die, set_type, cu);
14262 }
14263
14264 /* A helper for read_common_block that creates a locexpr baton.
14265 SYM is the symbol which we are marking as computed.
14266 COMMON_DIE is the DIE for the common block.
14267 COMMON_LOC is the location expression attribute for the common
14268 block itself.
14269 MEMBER_LOC is the location expression attribute for the particular
14270 member of the common block that we are processing.
14271 CU is the CU from which the above come. */
14272
14273 static void
14274 mark_common_block_symbol_computed (struct symbol *sym,
14275 struct die_info *common_die,
14276 struct attribute *common_loc,
14277 struct attribute *member_loc,
14278 struct dwarf2_cu *cu)
14279 {
14280 struct objfile *objfile = dwarf2_per_objfile->objfile;
14281 struct dwarf2_locexpr_baton *baton;
14282 gdb_byte *ptr;
14283 unsigned int cu_off;
14284 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14285 LONGEST offset = 0;
14286
14287 gdb_assert (common_loc && member_loc);
14288 gdb_assert (attr_form_is_block (common_loc));
14289 gdb_assert (attr_form_is_block (member_loc)
14290 || attr_form_is_constant (member_loc));
14291
14292 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14293 baton->per_cu = cu->per_cu;
14294 gdb_assert (baton->per_cu);
14295
14296 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14297
14298 if (attr_form_is_constant (member_loc))
14299 {
14300 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14301 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14302 }
14303 else
14304 baton->size += DW_BLOCK (member_loc)->size;
14305
14306 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14307 baton->data = ptr;
14308
14309 *ptr++ = DW_OP_call4;
14310 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14311 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14312 ptr += 4;
14313
14314 if (attr_form_is_constant (member_loc))
14315 {
14316 *ptr++ = DW_OP_addr;
14317 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14318 ptr += cu->header.addr_size;
14319 }
14320 else
14321 {
14322 /* We have to copy the data here, because DW_OP_call4 will only
14323 use a DW_AT_location attribute. */
14324 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14325 ptr += DW_BLOCK (member_loc)->size;
14326 }
14327
14328 *ptr++ = DW_OP_plus;
14329 gdb_assert (ptr - baton->data == baton->size);
14330
14331 SYMBOL_LOCATION_BATON (sym) = baton;
14332 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14333 }
14334
14335 /* Create appropriate locally-scoped variables for all the
14336 DW_TAG_common_block entries. Also create a struct common_block
14337 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14338 is used to sepate the common blocks name namespace from regular
14339 variable names. */
14340
14341 static void
14342 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14343 {
14344 struct attribute *attr;
14345
14346 attr = dwarf2_attr (die, DW_AT_location, cu);
14347 if (attr)
14348 {
14349 /* Support the .debug_loc offsets. */
14350 if (attr_form_is_block (attr))
14351 {
14352 /* Ok. */
14353 }
14354 else if (attr_form_is_section_offset (attr))
14355 {
14356 dwarf2_complex_location_expr_complaint ();
14357 attr = NULL;
14358 }
14359 else
14360 {
14361 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14362 "common block member");
14363 attr = NULL;
14364 }
14365 }
14366
14367 if (die->child != NULL)
14368 {
14369 struct objfile *objfile = cu->objfile;
14370 struct die_info *child_die;
14371 size_t n_entries = 0, size;
14372 struct common_block *common_block;
14373 struct symbol *sym;
14374
14375 for (child_die = die->child;
14376 child_die && child_die->tag;
14377 child_die = sibling_die (child_die))
14378 ++n_entries;
14379
14380 size = (sizeof (struct common_block)
14381 + (n_entries - 1) * sizeof (struct symbol *));
14382 common_block
14383 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14384 size);
14385 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14386 common_block->n_entries = 0;
14387
14388 for (child_die = die->child;
14389 child_die && child_die->tag;
14390 child_die = sibling_die (child_die))
14391 {
14392 /* Create the symbol in the DW_TAG_common_block block in the current
14393 symbol scope. */
14394 sym = new_symbol (child_die, NULL, cu);
14395 if (sym != NULL)
14396 {
14397 struct attribute *member_loc;
14398
14399 common_block->contents[common_block->n_entries++] = sym;
14400
14401 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14402 cu);
14403 if (member_loc)
14404 {
14405 /* GDB has handled this for a long time, but it is
14406 not specified by DWARF. It seems to have been
14407 emitted by gfortran at least as recently as:
14408 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14409 complaint (&symfile_complaints,
14410 _("Variable in common block has "
14411 "DW_AT_data_member_location "
14412 "- DIE at 0x%x [in module %s]"),
14413 to_underlying (child_die->sect_off),
14414 objfile_name (cu->objfile));
14415
14416 if (attr_form_is_section_offset (member_loc))
14417 dwarf2_complex_location_expr_complaint ();
14418 else if (attr_form_is_constant (member_loc)
14419 || attr_form_is_block (member_loc))
14420 {
14421 if (attr)
14422 mark_common_block_symbol_computed (sym, die, attr,
14423 member_loc, cu);
14424 }
14425 else
14426 dwarf2_complex_location_expr_complaint ();
14427 }
14428 }
14429 }
14430
14431 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14432 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14433 }
14434 }
14435
14436 /* Create a type for a C++ namespace. */
14437
14438 static struct type *
14439 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14440 {
14441 struct objfile *objfile = cu->objfile;
14442 const char *previous_prefix, *name;
14443 int is_anonymous;
14444 struct type *type;
14445
14446 /* For extensions, reuse the type of the original namespace. */
14447 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14448 {
14449 struct die_info *ext_die;
14450 struct dwarf2_cu *ext_cu = cu;
14451
14452 ext_die = dwarf2_extension (die, &ext_cu);
14453 type = read_type_die (ext_die, ext_cu);
14454
14455 /* EXT_CU may not be the same as CU.
14456 Ensure TYPE is recorded with CU in die_type_hash. */
14457 return set_die_type (die, type, cu);
14458 }
14459
14460 name = namespace_name (die, &is_anonymous, cu);
14461
14462 /* Now build the name of the current namespace. */
14463
14464 previous_prefix = determine_prefix (die, cu);
14465 if (previous_prefix[0] != '\0')
14466 name = typename_concat (&objfile->objfile_obstack,
14467 previous_prefix, name, 0, cu);
14468
14469 /* Create the type. */
14470 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14471 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14472
14473 return set_die_type (die, type, cu);
14474 }
14475
14476 /* Read a namespace scope. */
14477
14478 static void
14479 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14480 {
14481 struct objfile *objfile = cu->objfile;
14482 int is_anonymous;
14483
14484 /* Add a symbol associated to this if we haven't seen the namespace
14485 before. Also, add a using directive if it's an anonymous
14486 namespace. */
14487
14488 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14489 {
14490 struct type *type;
14491
14492 type = read_type_die (die, cu);
14493 new_symbol (die, type, cu);
14494
14495 namespace_name (die, &is_anonymous, cu);
14496 if (is_anonymous)
14497 {
14498 const char *previous_prefix = determine_prefix (die, cu);
14499
14500 add_using_directive (using_directives (cu->language),
14501 previous_prefix, TYPE_NAME (type), NULL,
14502 NULL, NULL, 0, &objfile->objfile_obstack);
14503 }
14504 }
14505
14506 if (die->child != NULL)
14507 {
14508 struct die_info *child_die = die->child;
14509
14510 while (child_die && child_die->tag)
14511 {
14512 process_die (child_die, cu);
14513 child_die = sibling_die (child_die);
14514 }
14515 }
14516 }
14517
14518 /* Read a Fortran module as type. This DIE can be only a declaration used for
14519 imported module. Still we need that type as local Fortran "use ... only"
14520 declaration imports depend on the created type in determine_prefix. */
14521
14522 static struct type *
14523 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14524 {
14525 struct objfile *objfile = cu->objfile;
14526 const char *module_name;
14527 struct type *type;
14528
14529 module_name = dwarf2_name (die, cu);
14530 if (!module_name)
14531 complaint (&symfile_complaints,
14532 _("DW_TAG_module has no name, offset 0x%x"),
14533 to_underlying (die->sect_off));
14534 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14535
14536 /* determine_prefix uses TYPE_TAG_NAME. */
14537 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14538
14539 return set_die_type (die, type, cu);
14540 }
14541
14542 /* Read a Fortran module. */
14543
14544 static void
14545 read_module (struct die_info *die, struct dwarf2_cu *cu)
14546 {
14547 struct die_info *child_die = die->child;
14548 struct type *type;
14549
14550 type = read_type_die (die, cu);
14551 new_symbol (die, type, cu);
14552
14553 while (child_die && child_die->tag)
14554 {
14555 process_die (child_die, cu);
14556 child_die = sibling_die (child_die);
14557 }
14558 }
14559
14560 /* Return the name of the namespace represented by DIE. Set
14561 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14562 namespace. */
14563
14564 static const char *
14565 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14566 {
14567 struct die_info *current_die;
14568 const char *name = NULL;
14569
14570 /* Loop through the extensions until we find a name. */
14571
14572 for (current_die = die;
14573 current_die != NULL;
14574 current_die = dwarf2_extension (die, &cu))
14575 {
14576 /* We don't use dwarf2_name here so that we can detect the absence
14577 of a name -> anonymous namespace. */
14578 name = dwarf2_string_attr (die, DW_AT_name, cu);
14579
14580 if (name != NULL)
14581 break;
14582 }
14583
14584 /* Is it an anonymous namespace? */
14585
14586 *is_anonymous = (name == NULL);
14587 if (*is_anonymous)
14588 name = CP_ANONYMOUS_NAMESPACE_STR;
14589
14590 return name;
14591 }
14592
14593 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14594 the user defined type vector. */
14595
14596 static struct type *
14597 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14598 {
14599 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14600 struct comp_unit_head *cu_header = &cu->header;
14601 struct type *type;
14602 struct attribute *attr_byte_size;
14603 struct attribute *attr_address_class;
14604 int byte_size, addr_class;
14605 struct type *target_type;
14606
14607 target_type = die_type (die, cu);
14608
14609 /* The die_type call above may have already set the type for this DIE. */
14610 type = get_die_type (die, cu);
14611 if (type)
14612 return type;
14613
14614 type = lookup_pointer_type (target_type);
14615
14616 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14617 if (attr_byte_size)
14618 byte_size = DW_UNSND (attr_byte_size);
14619 else
14620 byte_size = cu_header->addr_size;
14621
14622 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14623 if (attr_address_class)
14624 addr_class = DW_UNSND (attr_address_class);
14625 else
14626 addr_class = DW_ADDR_none;
14627
14628 /* If the pointer size or address class is different than the
14629 default, create a type variant marked as such and set the
14630 length accordingly. */
14631 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14632 {
14633 if (gdbarch_address_class_type_flags_p (gdbarch))
14634 {
14635 int type_flags;
14636
14637 type_flags = gdbarch_address_class_type_flags
14638 (gdbarch, byte_size, addr_class);
14639 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14640 == 0);
14641 type = make_type_with_address_space (type, type_flags);
14642 }
14643 else if (TYPE_LENGTH (type) != byte_size)
14644 {
14645 complaint (&symfile_complaints,
14646 _("invalid pointer size %d"), byte_size);
14647 }
14648 else
14649 {
14650 /* Should we also complain about unhandled address classes? */
14651 }
14652 }
14653
14654 TYPE_LENGTH (type) = byte_size;
14655 return set_die_type (die, type, cu);
14656 }
14657
14658 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14659 the user defined type vector. */
14660
14661 static struct type *
14662 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14663 {
14664 struct type *type;
14665 struct type *to_type;
14666 struct type *domain;
14667
14668 to_type = die_type (die, cu);
14669 domain = die_containing_type (die, cu);
14670
14671 /* The calls above may have already set the type for this DIE. */
14672 type = get_die_type (die, cu);
14673 if (type)
14674 return type;
14675
14676 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14677 type = lookup_methodptr_type (to_type);
14678 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14679 {
14680 struct type *new_type = alloc_type (cu->objfile);
14681
14682 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14683 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14684 TYPE_VARARGS (to_type));
14685 type = lookup_methodptr_type (new_type);
14686 }
14687 else
14688 type = lookup_memberptr_type (to_type, domain);
14689
14690 return set_die_type (die, type, cu);
14691 }
14692
14693 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14694 the user defined type vector. */
14695
14696 static struct type *
14697 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14698 enum type_code refcode)
14699 {
14700 struct comp_unit_head *cu_header = &cu->header;
14701 struct type *type, *target_type;
14702 struct attribute *attr;
14703
14704 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14705
14706 target_type = die_type (die, cu);
14707
14708 /* The die_type call above may have already set the type for this DIE. */
14709 type = get_die_type (die, cu);
14710 if (type)
14711 return type;
14712
14713 type = lookup_reference_type (target_type, refcode);
14714 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14715 if (attr)
14716 {
14717 TYPE_LENGTH (type) = DW_UNSND (attr);
14718 }
14719 else
14720 {
14721 TYPE_LENGTH (type) = cu_header->addr_size;
14722 }
14723 return set_die_type (die, type, cu);
14724 }
14725
14726 /* Add the given cv-qualifiers to the element type of the array. GCC
14727 outputs DWARF type qualifiers that apply to an array, not the
14728 element type. But GDB relies on the array element type to carry
14729 the cv-qualifiers. This mimics section 6.7.3 of the C99
14730 specification. */
14731
14732 static struct type *
14733 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14734 struct type *base_type, int cnst, int voltl)
14735 {
14736 struct type *el_type, *inner_array;
14737
14738 base_type = copy_type (base_type);
14739 inner_array = base_type;
14740
14741 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14742 {
14743 TYPE_TARGET_TYPE (inner_array) =
14744 copy_type (TYPE_TARGET_TYPE (inner_array));
14745 inner_array = TYPE_TARGET_TYPE (inner_array);
14746 }
14747
14748 el_type = TYPE_TARGET_TYPE (inner_array);
14749 cnst |= TYPE_CONST (el_type);
14750 voltl |= TYPE_VOLATILE (el_type);
14751 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14752
14753 return set_die_type (die, base_type, cu);
14754 }
14755
14756 static struct type *
14757 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14758 {
14759 struct type *base_type, *cv_type;
14760
14761 base_type = die_type (die, cu);
14762
14763 /* The die_type call above may have already set the type for this DIE. */
14764 cv_type = get_die_type (die, cu);
14765 if (cv_type)
14766 return cv_type;
14767
14768 /* In case the const qualifier is applied to an array type, the element type
14769 is so qualified, not the array type (section 6.7.3 of C99). */
14770 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14771 return add_array_cv_type (die, cu, base_type, 1, 0);
14772
14773 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14774 return set_die_type (die, cv_type, cu);
14775 }
14776
14777 static struct type *
14778 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14779 {
14780 struct type *base_type, *cv_type;
14781
14782 base_type = die_type (die, cu);
14783
14784 /* The die_type call above may have already set the type for this DIE. */
14785 cv_type = get_die_type (die, cu);
14786 if (cv_type)
14787 return cv_type;
14788
14789 /* In case the volatile qualifier is applied to an array type, the
14790 element type is so qualified, not the array type (section 6.7.3
14791 of C99). */
14792 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14793 return add_array_cv_type (die, cu, base_type, 0, 1);
14794
14795 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14796 return set_die_type (die, cv_type, cu);
14797 }
14798
14799 /* Handle DW_TAG_restrict_type. */
14800
14801 static struct type *
14802 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14803 {
14804 struct type *base_type, *cv_type;
14805
14806 base_type = die_type (die, cu);
14807
14808 /* The die_type call above may have already set the type for this DIE. */
14809 cv_type = get_die_type (die, cu);
14810 if (cv_type)
14811 return cv_type;
14812
14813 cv_type = make_restrict_type (base_type);
14814 return set_die_type (die, cv_type, cu);
14815 }
14816
14817 /* Handle DW_TAG_atomic_type. */
14818
14819 static struct type *
14820 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14821 {
14822 struct type *base_type, *cv_type;
14823
14824 base_type = die_type (die, cu);
14825
14826 /* The die_type call above may have already set the type for this DIE. */
14827 cv_type = get_die_type (die, cu);
14828 if (cv_type)
14829 return cv_type;
14830
14831 cv_type = make_atomic_type (base_type);
14832 return set_die_type (die, cv_type, cu);
14833 }
14834
14835 /* Extract all information from a DW_TAG_string_type DIE and add to
14836 the user defined type vector. It isn't really a user defined type,
14837 but it behaves like one, with other DIE's using an AT_user_def_type
14838 attribute to reference it. */
14839
14840 static struct type *
14841 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14842 {
14843 struct objfile *objfile = cu->objfile;
14844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14845 struct type *type, *range_type, *index_type, *char_type;
14846 struct attribute *attr;
14847 unsigned int length;
14848
14849 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14850 if (attr)
14851 {
14852 length = DW_UNSND (attr);
14853 }
14854 else
14855 {
14856 /* Check for the DW_AT_byte_size attribute. */
14857 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14858 if (attr)
14859 {
14860 length = DW_UNSND (attr);
14861 }
14862 else
14863 {
14864 length = 1;
14865 }
14866 }
14867
14868 index_type = objfile_type (objfile)->builtin_int;
14869 range_type = create_static_range_type (NULL, index_type, 1, length);
14870 char_type = language_string_char_type (cu->language_defn, gdbarch);
14871 type = create_string_type (NULL, char_type, range_type);
14872
14873 return set_die_type (die, type, cu);
14874 }
14875
14876 /* Assuming that DIE corresponds to a function, returns nonzero
14877 if the function is prototyped. */
14878
14879 static int
14880 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14881 {
14882 struct attribute *attr;
14883
14884 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14885 if (attr && (DW_UNSND (attr) != 0))
14886 return 1;
14887
14888 /* The DWARF standard implies that the DW_AT_prototyped attribute
14889 is only meaninful for C, but the concept also extends to other
14890 languages that allow unprototyped functions (Eg: Objective C).
14891 For all other languages, assume that functions are always
14892 prototyped. */
14893 if (cu->language != language_c
14894 && cu->language != language_objc
14895 && cu->language != language_opencl)
14896 return 1;
14897
14898 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14899 prototyped and unprototyped functions; default to prototyped,
14900 since that is more common in modern code (and RealView warns
14901 about unprototyped functions). */
14902 if (producer_is_realview (cu->producer))
14903 return 1;
14904
14905 return 0;
14906 }
14907
14908 /* Handle DIES due to C code like:
14909
14910 struct foo
14911 {
14912 int (*funcp)(int a, long l);
14913 int b;
14914 };
14915
14916 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14917
14918 static struct type *
14919 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14920 {
14921 struct objfile *objfile = cu->objfile;
14922 struct type *type; /* Type that this function returns. */
14923 struct type *ftype; /* Function that returns above type. */
14924 struct attribute *attr;
14925
14926 type = die_type (die, cu);
14927
14928 /* The die_type call above may have already set the type for this DIE. */
14929 ftype = get_die_type (die, cu);
14930 if (ftype)
14931 return ftype;
14932
14933 ftype = lookup_function_type (type);
14934
14935 if (prototyped_function_p (die, cu))
14936 TYPE_PROTOTYPED (ftype) = 1;
14937
14938 /* Store the calling convention in the type if it's available in
14939 the subroutine die. Otherwise set the calling convention to
14940 the default value DW_CC_normal. */
14941 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14942 if (attr)
14943 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14944 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14945 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14946 else
14947 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14948
14949 /* Record whether the function returns normally to its caller or not
14950 if the DWARF producer set that information. */
14951 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14952 if (attr && (DW_UNSND (attr) != 0))
14953 TYPE_NO_RETURN (ftype) = 1;
14954
14955 /* We need to add the subroutine type to the die immediately so
14956 we don't infinitely recurse when dealing with parameters
14957 declared as the same subroutine type. */
14958 set_die_type (die, ftype, cu);
14959
14960 if (die->child != NULL)
14961 {
14962 struct type *void_type = objfile_type (objfile)->builtin_void;
14963 struct die_info *child_die;
14964 int nparams, iparams;
14965
14966 /* Count the number of parameters.
14967 FIXME: GDB currently ignores vararg functions, but knows about
14968 vararg member functions. */
14969 nparams = 0;
14970 child_die = die->child;
14971 while (child_die && child_die->tag)
14972 {
14973 if (child_die->tag == DW_TAG_formal_parameter)
14974 nparams++;
14975 else if (child_die->tag == DW_TAG_unspecified_parameters)
14976 TYPE_VARARGS (ftype) = 1;
14977 child_die = sibling_die (child_die);
14978 }
14979
14980 /* Allocate storage for parameters and fill them in. */
14981 TYPE_NFIELDS (ftype) = nparams;
14982 TYPE_FIELDS (ftype) = (struct field *)
14983 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14984
14985 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14986 even if we error out during the parameters reading below. */
14987 for (iparams = 0; iparams < nparams; iparams++)
14988 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14989
14990 iparams = 0;
14991 child_die = die->child;
14992 while (child_die && child_die->tag)
14993 {
14994 if (child_die->tag == DW_TAG_formal_parameter)
14995 {
14996 struct type *arg_type;
14997
14998 /* DWARF version 2 has no clean way to discern C++
14999 static and non-static member functions. G++ helps
15000 GDB by marking the first parameter for non-static
15001 member functions (which is the this pointer) as
15002 artificial. We pass this information to
15003 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15004
15005 DWARF version 3 added DW_AT_object_pointer, which GCC
15006 4.5 does not yet generate. */
15007 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15008 if (attr)
15009 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15010 else
15011 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15012 arg_type = die_type (child_die, cu);
15013
15014 /* RealView does not mark THIS as const, which the testsuite
15015 expects. GCC marks THIS as const in method definitions,
15016 but not in the class specifications (GCC PR 43053). */
15017 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15018 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15019 {
15020 int is_this = 0;
15021 struct dwarf2_cu *arg_cu = cu;
15022 const char *name = dwarf2_name (child_die, cu);
15023
15024 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15025 if (attr)
15026 {
15027 /* If the compiler emits this, use it. */
15028 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15029 is_this = 1;
15030 }
15031 else if (name && strcmp (name, "this") == 0)
15032 /* Function definitions will have the argument names. */
15033 is_this = 1;
15034 else if (name == NULL && iparams == 0)
15035 /* Declarations may not have the names, so like
15036 elsewhere in GDB, assume an artificial first
15037 argument is "this". */
15038 is_this = 1;
15039
15040 if (is_this)
15041 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15042 arg_type, 0);
15043 }
15044
15045 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15046 iparams++;
15047 }
15048 child_die = sibling_die (child_die);
15049 }
15050 }
15051
15052 return ftype;
15053 }
15054
15055 static struct type *
15056 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15057 {
15058 struct objfile *objfile = cu->objfile;
15059 const char *name = NULL;
15060 struct type *this_type, *target_type;
15061
15062 name = dwarf2_full_name (NULL, die, cu);
15063 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15064 TYPE_TARGET_STUB (this_type) = 1;
15065 set_die_type (die, this_type, cu);
15066 target_type = die_type (die, cu);
15067 if (target_type != this_type)
15068 TYPE_TARGET_TYPE (this_type) = target_type;
15069 else
15070 {
15071 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15072 spec and cause infinite loops in GDB. */
15073 complaint (&symfile_complaints,
15074 _("Self-referential DW_TAG_typedef "
15075 "- DIE at 0x%x [in module %s]"),
15076 to_underlying (die->sect_off), objfile_name (objfile));
15077 TYPE_TARGET_TYPE (this_type) = NULL;
15078 }
15079 return this_type;
15080 }
15081
15082 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15083 (which may be different from NAME) to the architecture back-end to allow
15084 it to guess the correct format if necessary. */
15085
15086 static struct type *
15087 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15088 const char *name_hint)
15089 {
15090 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15091 const struct floatformat **format;
15092 struct type *type;
15093
15094 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15095 if (format)
15096 type = init_float_type (objfile, bits, name, format);
15097 else
15098 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15099
15100 return type;
15101 }
15102
15103 /* Find a representation of a given base type and install
15104 it in the TYPE field of the die. */
15105
15106 static struct type *
15107 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15108 {
15109 struct objfile *objfile = cu->objfile;
15110 struct type *type;
15111 struct attribute *attr;
15112 int encoding = 0, bits = 0;
15113 const char *name;
15114
15115 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15116 if (attr)
15117 {
15118 encoding = DW_UNSND (attr);
15119 }
15120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15121 if (attr)
15122 {
15123 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15124 }
15125 name = dwarf2_name (die, cu);
15126 if (!name)
15127 {
15128 complaint (&symfile_complaints,
15129 _("DW_AT_name missing from DW_TAG_base_type"));
15130 }
15131
15132 switch (encoding)
15133 {
15134 case DW_ATE_address:
15135 /* Turn DW_ATE_address into a void * pointer. */
15136 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15137 type = init_pointer_type (objfile, bits, name, type);
15138 break;
15139 case DW_ATE_boolean:
15140 type = init_boolean_type (objfile, bits, 1, name);
15141 break;
15142 case DW_ATE_complex_float:
15143 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15144 type = init_complex_type (objfile, name, type);
15145 break;
15146 case DW_ATE_decimal_float:
15147 type = init_decfloat_type (objfile, bits, name);
15148 break;
15149 case DW_ATE_float:
15150 type = dwarf2_init_float_type (objfile, bits, name, name);
15151 break;
15152 case DW_ATE_signed:
15153 type = init_integer_type (objfile, bits, 0, name);
15154 break;
15155 case DW_ATE_unsigned:
15156 if (cu->language == language_fortran
15157 && name
15158 && startswith (name, "character("))
15159 type = init_character_type (objfile, bits, 1, name);
15160 else
15161 type = init_integer_type (objfile, bits, 1, name);
15162 break;
15163 case DW_ATE_signed_char:
15164 if (cu->language == language_ada || cu->language == language_m2
15165 || cu->language == language_pascal
15166 || cu->language == language_fortran)
15167 type = init_character_type (objfile, bits, 0, name);
15168 else
15169 type = init_integer_type (objfile, bits, 0, name);
15170 break;
15171 case DW_ATE_unsigned_char:
15172 if (cu->language == language_ada || cu->language == language_m2
15173 || cu->language == language_pascal
15174 || cu->language == language_fortran
15175 || cu->language == language_rust)
15176 type = init_character_type (objfile, bits, 1, name);
15177 else
15178 type = init_integer_type (objfile, bits, 1, name);
15179 break;
15180 case DW_ATE_UTF:
15181 {
15182 gdbarch *arch = get_objfile_arch (objfile);
15183
15184 if (bits == 16)
15185 type = builtin_type (arch)->builtin_char16;
15186 else if (bits == 32)
15187 type = builtin_type (arch)->builtin_char32;
15188 else
15189 {
15190 complaint (&symfile_complaints,
15191 _("unsupported DW_ATE_UTF bit size: '%d'"),
15192 bits);
15193 type = init_integer_type (objfile, bits, 1, name);
15194 }
15195 return set_die_type (die, type, cu);
15196 }
15197 break;
15198
15199 default:
15200 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15201 dwarf_type_encoding_name (encoding));
15202 type = init_type (objfile, TYPE_CODE_ERROR,
15203 bits / TARGET_CHAR_BIT, name);
15204 break;
15205 }
15206
15207 if (name && strcmp (name, "char") == 0)
15208 TYPE_NOSIGN (type) = 1;
15209
15210 return set_die_type (die, type, cu);
15211 }
15212
15213 /* Parse dwarf attribute if it's a block, reference or constant and put the
15214 resulting value of the attribute into struct bound_prop.
15215 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15216
15217 static int
15218 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15219 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15220 {
15221 struct dwarf2_property_baton *baton;
15222 struct obstack *obstack = &cu->objfile->objfile_obstack;
15223
15224 if (attr == NULL || prop == NULL)
15225 return 0;
15226
15227 if (attr_form_is_block (attr))
15228 {
15229 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15230 baton->referenced_type = NULL;
15231 baton->locexpr.per_cu = cu->per_cu;
15232 baton->locexpr.size = DW_BLOCK (attr)->size;
15233 baton->locexpr.data = DW_BLOCK (attr)->data;
15234 prop->data.baton = baton;
15235 prop->kind = PROP_LOCEXPR;
15236 gdb_assert (prop->data.baton != NULL);
15237 }
15238 else if (attr_form_is_ref (attr))
15239 {
15240 struct dwarf2_cu *target_cu = cu;
15241 struct die_info *target_die;
15242 struct attribute *target_attr;
15243
15244 target_die = follow_die_ref (die, attr, &target_cu);
15245 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15246 if (target_attr == NULL)
15247 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15248 target_cu);
15249 if (target_attr == NULL)
15250 return 0;
15251
15252 switch (target_attr->name)
15253 {
15254 case DW_AT_location:
15255 if (attr_form_is_section_offset (target_attr))
15256 {
15257 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15258 baton->referenced_type = die_type (target_die, target_cu);
15259 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15260 prop->data.baton = baton;
15261 prop->kind = PROP_LOCLIST;
15262 gdb_assert (prop->data.baton != NULL);
15263 }
15264 else if (attr_form_is_block (target_attr))
15265 {
15266 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15267 baton->referenced_type = die_type (target_die, target_cu);
15268 baton->locexpr.per_cu = cu->per_cu;
15269 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15270 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15271 prop->data.baton = baton;
15272 prop->kind = PROP_LOCEXPR;
15273 gdb_assert (prop->data.baton != NULL);
15274 }
15275 else
15276 {
15277 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15278 "dynamic property");
15279 return 0;
15280 }
15281 break;
15282 case DW_AT_data_member_location:
15283 {
15284 LONGEST offset;
15285
15286 if (!handle_data_member_location (target_die, target_cu,
15287 &offset))
15288 return 0;
15289
15290 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15291 baton->referenced_type = read_type_die (target_die->parent,
15292 target_cu);
15293 baton->offset_info.offset = offset;
15294 baton->offset_info.type = die_type (target_die, target_cu);
15295 prop->data.baton = baton;
15296 prop->kind = PROP_ADDR_OFFSET;
15297 break;
15298 }
15299 }
15300 }
15301 else if (attr_form_is_constant (attr))
15302 {
15303 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15304 prop->kind = PROP_CONST;
15305 }
15306 else
15307 {
15308 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15309 dwarf2_name (die, cu));
15310 return 0;
15311 }
15312
15313 return 1;
15314 }
15315
15316 /* Read the given DW_AT_subrange DIE. */
15317
15318 static struct type *
15319 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15320 {
15321 struct type *base_type, *orig_base_type;
15322 struct type *range_type;
15323 struct attribute *attr;
15324 struct dynamic_prop low, high;
15325 int low_default_is_valid;
15326 int high_bound_is_count = 0;
15327 const char *name;
15328 LONGEST negative_mask;
15329
15330 orig_base_type = die_type (die, cu);
15331 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15332 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15333 creating the range type, but we use the result of check_typedef
15334 when examining properties of the type. */
15335 base_type = check_typedef (orig_base_type);
15336
15337 /* The die_type call above may have already set the type for this DIE. */
15338 range_type = get_die_type (die, cu);
15339 if (range_type)
15340 return range_type;
15341
15342 low.kind = PROP_CONST;
15343 high.kind = PROP_CONST;
15344 high.data.const_val = 0;
15345
15346 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15347 omitting DW_AT_lower_bound. */
15348 switch (cu->language)
15349 {
15350 case language_c:
15351 case language_cplus:
15352 low.data.const_val = 0;
15353 low_default_is_valid = 1;
15354 break;
15355 case language_fortran:
15356 low.data.const_val = 1;
15357 low_default_is_valid = 1;
15358 break;
15359 case language_d:
15360 case language_objc:
15361 case language_rust:
15362 low.data.const_val = 0;
15363 low_default_is_valid = (cu->header.version >= 4);
15364 break;
15365 case language_ada:
15366 case language_m2:
15367 case language_pascal:
15368 low.data.const_val = 1;
15369 low_default_is_valid = (cu->header.version >= 4);
15370 break;
15371 default:
15372 low.data.const_val = 0;
15373 low_default_is_valid = 0;
15374 break;
15375 }
15376
15377 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15378 if (attr)
15379 attr_to_dynamic_prop (attr, die, cu, &low);
15380 else if (!low_default_is_valid)
15381 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15382 "- DIE at 0x%x [in module %s]"),
15383 to_underlying (die->sect_off), objfile_name (cu->objfile));
15384
15385 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15386 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15387 {
15388 attr = dwarf2_attr (die, DW_AT_count, cu);
15389 if (attr_to_dynamic_prop (attr, die, cu, &high))
15390 {
15391 /* If bounds are constant do the final calculation here. */
15392 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15393 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15394 else
15395 high_bound_is_count = 1;
15396 }
15397 }
15398
15399 /* Dwarf-2 specifications explicitly allows to create subrange types
15400 without specifying a base type.
15401 In that case, the base type must be set to the type of
15402 the lower bound, upper bound or count, in that order, if any of these
15403 three attributes references an object that has a type.
15404 If no base type is found, the Dwarf-2 specifications say that
15405 a signed integer type of size equal to the size of an address should
15406 be used.
15407 For the following C code: `extern char gdb_int [];'
15408 GCC produces an empty range DIE.
15409 FIXME: muller/2010-05-28: Possible references to object for low bound,
15410 high bound or count are not yet handled by this code. */
15411 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15412 {
15413 struct objfile *objfile = cu->objfile;
15414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15415 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15416 struct type *int_type = objfile_type (objfile)->builtin_int;
15417
15418 /* Test "int", "long int", and "long long int" objfile types,
15419 and select the first one having a size above or equal to the
15420 architecture address size. */
15421 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15422 base_type = int_type;
15423 else
15424 {
15425 int_type = objfile_type (objfile)->builtin_long;
15426 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15427 base_type = int_type;
15428 else
15429 {
15430 int_type = objfile_type (objfile)->builtin_long_long;
15431 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15432 base_type = int_type;
15433 }
15434 }
15435 }
15436
15437 /* Normally, the DWARF producers are expected to use a signed
15438 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15439 But this is unfortunately not always the case, as witnessed
15440 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15441 is used instead. To work around that ambiguity, we treat
15442 the bounds as signed, and thus sign-extend their values, when
15443 the base type is signed. */
15444 negative_mask =
15445 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15446 if (low.kind == PROP_CONST
15447 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15448 low.data.const_val |= negative_mask;
15449 if (high.kind == PROP_CONST
15450 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15451 high.data.const_val |= negative_mask;
15452
15453 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15454
15455 if (high_bound_is_count)
15456 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15457
15458 /* Ada expects an empty array on no boundary attributes. */
15459 if (attr == NULL && cu->language != language_ada)
15460 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15461
15462 name = dwarf2_name (die, cu);
15463 if (name)
15464 TYPE_NAME (range_type) = name;
15465
15466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15467 if (attr)
15468 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15469
15470 set_die_type (die, range_type, cu);
15471
15472 /* set_die_type should be already done. */
15473 set_descriptive_type (range_type, die, cu);
15474
15475 return range_type;
15476 }
15477
15478 static struct type *
15479 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15480 {
15481 struct type *type;
15482
15483 /* For now, we only support the C meaning of an unspecified type: void. */
15484
15485 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15486 TYPE_NAME (type) = dwarf2_name (die, cu);
15487
15488 return set_die_type (die, type, cu);
15489 }
15490
15491 /* Read a single die and all its descendents. Set the die's sibling
15492 field to NULL; set other fields in the die correctly, and set all
15493 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15494 location of the info_ptr after reading all of those dies. PARENT
15495 is the parent of the die in question. */
15496
15497 static struct die_info *
15498 read_die_and_children (const struct die_reader_specs *reader,
15499 const gdb_byte *info_ptr,
15500 const gdb_byte **new_info_ptr,
15501 struct die_info *parent)
15502 {
15503 struct die_info *die;
15504 const gdb_byte *cur_ptr;
15505 int has_children;
15506
15507 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15508 if (die == NULL)
15509 {
15510 *new_info_ptr = cur_ptr;
15511 return NULL;
15512 }
15513 store_in_ref_table (die, reader->cu);
15514
15515 if (has_children)
15516 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15517 else
15518 {
15519 die->child = NULL;
15520 *new_info_ptr = cur_ptr;
15521 }
15522
15523 die->sibling = NULL;
15524 die->parent = parent;
15525 return die;
15526 }
15527
15528 /* Read a die, all of its descendents, and all of its siblings; set
15529 all of the fields of all of the dies correctly. Arguments are as
15530 in read_die_and_children. */
15531
15532 static struct die_info *
15533 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15534 const gdb_byte *info_ptr,
15535 const gdb_byte **new_info_ptr,
15536 struct die_info *parent)
15537 {
15538 struct die_info *first_die, *last_sibling;
15539 const gdb_byte *cur_ptr;
15540
15541 cur_ptr = info_ptr;
15542 first_die = last_sibling = NULL;
15543
15544 while (1)
15545 {
15546 struct die_info *die
15547 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15548
15549 if (die == NULL)
15550 {
15551 *new_info_ptr = cur_ptr;
15552 return first_die;
15553 }
15554
15555 if (!first_die)
15556 first_die = die;
15557 else
15558 last_sibling->sibling = die;
15559
15560 last_sibling = die;
15561 }
15562 }
15563
15564 /* Read a die, all of its descendents, and all of its siblings; set
15565 all of the fields of all of the dies correctly. Arguments are as
15566 in read_die_and_children.
15567 This the main entry point for reading a DIE and all its children. */
15568
15569 static struct die_info *
15570 read_die_and_siblings (const struct die_reader_specs *reader,
15571 const gdb_byte *info_ptr,
15572 const gdb_byte **new_info_ptr,
15573 struct die_info *parent)
15574 {
15575 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15576 new_info_ptr, parent);
15577
15578 if (dwarf_die_debug)
15579 {
15580 fprintf_unfiltered (gdb_stdlog,
15581 "Read die from %s@0x%x of %s:\n",
15582 get_section_name (reader->die_section),
15583 (unsigned) (info_ptr - reader->die_section->buffer),
15584 bfd_get_filename (reader->abfd));
15585 dump_die (die, dwarf_die_debug);
15586 }
15587
15588 return die;
15589 }
15590
15591 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15592 attributes.
15593 The caller is responsible for filling in the extra attributes
15594 and updating (*DIEP)->num_attrs.
15595 Set DIEP to point to a newly allocated die with its information,
15596 except for its child, sibling, and parent fields.
15597 Set HAS_CHILDREN to tell whether the die has children or not. */
15598
15599 static const gdb_byte *
15600 read_full_die_1 (const struct die_reader_specs *reader,
15601 struct die_info **diep, const gdb_byte *info_ptr,
15602 int *has_children, int num_extra_attrs)
15603 {
15604 unsigned int abbrev_number, bytes_read, i;
15605 struct abbrev_info *abbrev;
15606 struct die_info *die;
15607 struct dwarf2_cu *cu = reader->cu;
15608 bfd *abfd = reader->abfd;
15609
15610 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15611 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15612 info_ptr += bytes_read;
15613 if (!abbrev_number)
15614 {
15615 *diep = NULL;
15616 *has_children = 0;
15617 return info_ptr;
15618 }
15619
15620 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15621 if (!abbrev)
15622 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15623 abbrev_number,
15624 bfd_get_filename (abfd));
15625
15626 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15627 die->sect_off = sect_off;
15628 die->tag = abbrev->tag;
15629 die->abbrev = abbrev_number;
15630
15631 /* Make the result usable.
15632 The caller needs to update num_attrs after adding the extra
15633 attributes. */
15634 die->num_attrs = abbrev->num_attrs;
15635
15636 for (i = 0; i < abbrev->num_attrs; ++i)
15637 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15638 info_ptr);
15639
15640 *diep = die;
15641 *has_children = abbrev->has_children;
15642 return info_ptr;
15643 }
15644
15645 /* Read a die and all its attributes.
15646 Set DIEP to point to a newly allocated die with its information,
15647 except for its child, sibling, and parent fields.
15648 Set HAS_CHILDREN to tell whether the die has children or not. */
15649
15650 static const gdb_byte *
15651 read_full_die (const struct die_reader_specs *reader,
15652 struct die_info **diep, const gdb_byte *info_ptr,
15653 int *has_children)
15654 {
15655 const gdb_byte *result;
15656
15657 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15658
15659 if (dwarf_die_debug)
15660 {
15661 fprintf_unfiltered (gdb_stdlog,
15662 "Read die from %s@0x%x of %s:\n",
15663 get_section_name (reader->die_section),
15664 (unsigned) (info_ptr - reader->die_section->buffer),
15665 bfd_get_filename (reader->abfd));
15666 dump_die (*diep, dwarf_die_debug);
15667 }
15668
15669 return result;
15670 }
15671 \f
15672 /* Abbreviation tables.
15673
15674 In DWARF version 2, the description of the debugging information is
15675 stored in a separate .debug_abbrev section. Before we read any
15676 dies from a section we read in all abbreviations and install them
15677 in a hash table. */
15678
15679 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15680
15681 static struct abbrev_info *
15682 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15683 {
15684 struct abbrev_info *abbrev;
15685
15686 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15687 memset (abbrev, 0, sizeof (struct abbrev_info));
15688
15689 return abbrev;
15690 }
15691
15692 /* Add an abbreviation to the table. */
15693
15694 static void
15695 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15696 unsigned int abbrev_number,
15697 struct abbrev_info *abbrev)
15698 {
15699 unsigned int hash_number;
15700
15701 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15702 abbrev->next = abbrev_table->abbrevs[hash_number];
15703 abbrev_table->abbrevs[hash_number] = abbrev;
15704 }
15705
15706 /* Look up an abbrev in the table.
15707 Returns NULL if the abbrev is not found. */
15708
15709 static struct abbrev_info *
15710 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15711 unsigned int abbrev_number)
15712 {
15713 unsigned int hash_number;
15714 struct abbrev_info *abbrev;
15715
15716 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15717 abbrev = abbrev_table->abbrevs[hash_number];
15718
15719 while (abbrev)
15720 {
15721 if (abbrev->number == abbrev_number)
15722 return abbrev;
15723 abbrev = abbrev->next;
15724 }
15725 return NULL;
15726 }
15727
15728 /* Read in an abbrev table. */
15729
15730 static struct abbrev_table *
15731 abbrev_table_read_table (struct dwarf2_section_info *section,
15732 sect_offset sect_off)
15733 {
15734 struct objfile *objfile = dwarf2_per_objfile->objfile;
15735 bfd *abfd = get_section_bfd_owner (section);
15736 struct abbrev_table *abbrev_table;
15737 const gdb_byte *abbrev_ptr;
15738 struct abbrev_info *cur_abbrev;
15739 unsigned int abbrev_number, bytes_read, abbrev_name;
15740 unsigned int abbrev_form;
15741 struct attr_abbrev *cur_attrs;
15742 unsigned int allocated_attrs;
15743
15744 abbrev_table = XNEW (struct abbrev_table);
15745 abbrev_table->sect_off = sect_off;
15746 obstack_init (&abbrev_table->abbrev_obstack);
15747 abbrev_table->abbrevs =
15748 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15749 ABBREV_HASH_SIZE);
15750 memset (abbrev_table->abbrevs, 0,
15751 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15752
15753 dwarf2_read_section (objfile, section);
15754 abbrev_ptr = section->buffer + to_underlying (sect_off);
15755 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15756 abbrev_ptr += bytes_read;
15757
15758 allocated_attrs = ATTR_ALLOC_CHUNK;
15759 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15760
15761 /* Loop until we reach an abbrev number of 0. */
15762 while (abbrev_number)
15763 {
15764 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15765
15766 /* read in abbrev header */
15767 cur_abbrev->number = abbrev_number;
15768 cur_abbrev->tag
15769 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15770 abbrev_ptr += bytes_read;
15771 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15772 abbrev_ptr += 1;
15773
15774 /* now read in declarations */
15775 for (;;)
15776 {
15777 LONGEST implicit_const;
15778
15779 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15780 abbrev_ptr += bytes_read;
15781 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15782 abbrev_ptr += bytes_read;
15783 if (abbrev_form == DW_FORM_implicit_const)
15784 {
15785 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15786 &bytes_read);
15787 abbrev_ptr += bytes_read;
15788 }
15789 else
15790 {
15791 /* Initialize it due to a false compiler warning. */
15792 implicit_const = -1;
15793 }
15794
15795 if (abbrev_name == 0)
15796 break;
15797
15798 if (cur_abbrev->num_attrs == allocated_attrs)
15799 {
15800 allocated_attrs += ATTR_ALLOC_CHUNK;
15801 cur_attrs
15802 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15803 }
15804
15805 cur_attrs[cur_abbrev->num_attrs].name
15806 = (enum dwarf_attribute) abbrev_name;
15807 cur_attrs[cur_abbrev->num_attrs].form
15808 = (enum dwarf_form) abbrev_form;
15809 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15810 ++cur_abbrev->num_attrs;
15811 }
15812
15813 cur_abbrev->attrs =
15814 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15815 cur_abbrev->num_attrs);
15816 memcpy (cur_abbrev->attrs, cur_attrs,
15817 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15818
15819 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15820
15821 /* Get next abbreviation.
15822 Under Irix6 the abbreviations for a compilation unit are not
15823 always properly terminated with an abbrev number of 0.
15824 Exit loop if we encounter an abbreviation which we have
15825 already read (which means we are about to read the abbreviations
15826 for the next compile unit) or if the end of the abbreviation
15827 table is reached. */
15828 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15829 break;
15830 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15831 abbrev_ptr += bytes_read;
15832 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15833 break;
15834 }
15835
15836 xfree (cur_attrs);
15837 return abbrev_table;
15838 }
15839
15840 /* Free the resources held by ABBREV_TABLE. */
15841
15842 static void
15843 abbrev_table_free (struct abbrev_table *abbrev_table)
15844 {
15845 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15846 xfree (abbrev_table);
15847 }
15848
15849 /* Same as abbrev_table_free but as a cleanup.
15850 We pass in a pointer to the pointer to the table so that we can
15851 set the pointer to NULL when we're done. It also simplifies
15852 build_type_psymtabs_1. */
15853
15854 static void
15855 abbrev_table_free_cleanup (void *table_ptr)
15856 {
15857 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15858
15859 if (*abbrev_table_ptr != NULL)
15860 abbrev_table_free (*abbrev_table_ptr);
15861 *abbrev_table_ptr = NULL;
15862 }
15863
15864 /* Read the abbrev table for CU from ABBREV_SECTION. */
15865
15866 static void
15867 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15868 struct dwarf2_section_info *abbrev_section)
15869 {
15870 cu->abbrev_table =
15871 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15872 }
15873
15874 /* Release the memory used by the abbrev table for a compilation unit. */
15875
15876 static void
15877 dwarf2_free_abbrev_table (void *ptr_to_cu)
15878 {
15879 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15880
15881 if (cu->abbrev_table != NULL)
15882 abbrev_table_free (cu->abbrev_table);
15883 /* Set this to NULL so that we SEGV if we try to read it later,
15884 and also because free_comp_unit verifies this is NULL. */
15885 cu->abbrev_table = NULL;
15886 }
15887 \f
15888 /* Returns nonzero if TAG represents a type that we might generate a partial
15889 symbol for. */
15890
15891 static int
15892 is_type_tag_for_partial (int tag)
15893 {
15894 switch (tag)
15895 {
15896 #if 0
15897 /* Some types that would be reasonable to generate partial symbols for,
15898 that we don't at present. */
15899 case DW_TAG_array_type:
15900 case DW_TAG_file_type:
15901 case DW_TAG_ptr_to_member_type:
15902 case DW_TAG_set_type:
15903 case DW_TAG_string_type:
15904 case DW_TAG_subroutine_type:
15905 #endif
15906 case DW_TAG_base_type:
15907 case DW_TAG_class_type:
15908 case DW_TAG_interface_type:
15909 case DW_TAG_enumeration_type:
15910 case DW_TAG_structure_type:
15911 case DW_TAG_subrange_type:
15912 case DW_TAG_typedef:
15913 case DW_TAG_union_type:
15914 return 1;
15915 default:
15916 return 0;
15917 }
15918 }
15919
15920 /* Load all DIEs that are interesting for partial symbols into memory. */
15921
15922 static struct partial_die_info *
15923 load_partial_dies (const struct die_reader_specs *reader,
15924 const gdb_byte *info_ptr, int building_psymtab)
15925 {
15926 struct dwarf2_cu *cu = reader->cu;
15927 struct objfile *objfile = cu->objfile;
15928 struct partial_die_info *part_die;
15929 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15930 struct abbrev_info *abbrev;
15931 unsigned int bytes_read;
15932 unsigned int load_all = 0;
15933 int nesting_level = 1;
15934
15935 parent_die = NULL;
15936 last_die = NULL;
15937
15938 gdb_assert (cu->per_cu != NULL);
15939 if (cu->per_cu->load_all_dies)
15940 load_all = 1;
15941
15942 cu->partial_dies
15943 = htab_create_alloc_ex (cu->header.length / 12,
15944 partial_die_hash,
15945 partial_die_eq,
15946 NULL,
15947 &cu->comp_unit_obstack,
15948 hashtab_obstack_allocate,
15949 dummy_obstack_deallocate);
15950
15951 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15952
15953 while (1)
15954 {
15955 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15956
15957 /* A NULL abbrev means the end of a series of children. */
15958 if (abbrev == NULL)
15959 {
15960 if (--nesting_level == 0)
15961 {
15962 /* PART_DIE was probably the last thing allocated on the
15963 comp_unit_obstack, so we could call obstack_free
15964 here. We don't do that because the waste is small,
15965 and will be cleaned up when we're done with this
15966 compilation unit. This way, we're also more robust
15967 against other users of the comp_unit_obstack. */
15968 return first_die;
15969 }
15970 info_ptr += bytes_read;
15971 last_die = parent_die;
15972 parent_die = parent_die->die_parent;
15973 continue;
15974 }
15975
15976 /* Check for template arguments. We never save these; if
15977 they're seen, we just mark the parent, and go on our way. */
15978 if (parent_die != NULL
15979 && cu->language == language_cplus
15980 && (abbrev->tag == DW_TAG_template_type_param
15981 || abbrev->tag == DW_TAG_template_value_param))
15982 {
15983 parent_die->has_template_arguments = 1;
15984
15985 if (!load_all)
15986 {
15987 /* We don't need a partial DIE for the template argument. */
15988 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15989 continue;
15990 }
15991 }
15992
15993 /* We only recurse into c++ subprograms looking for template arguments.
15994 Skip their other children. */
15995 if (!load_all
15996 && cu->language == language_cplus
15997 && parent_die != NULL
15998 && parent_die->tag == DW_TAG_subprogram)
15999 {
16000 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16001 continue;
16002 }
16003
16004 /* Check whether this DIE is interesting enough to save. Normally
16005 we would not be interested in members here, but there may be
16006 later variables referencing them via DW_AT_specification (for
16007 static members). */
16008 if (!load_all
16009 && !is_type_tag_for_partial (abbrev->tag)
16010 && abbrev->tag != DW_TAG_constant
16011 && abbrev->tag != DW_TAG_enumerator
16012 && abbrev->tag != DW_TAG_subprogram
16013 && abbrev->tag != DW_TAG_lexical_block
16014 && abbrev->tag != DW_TAG_variable
16015 && abbrev->tag != DW_TAG_namespace
16016 && abbrev->tag != DW_TAG_module
16017 && abbrev->tag != DW_TAG_member
16018 && abbrev->tag != DW_TAG_imported_unit
16019 && abbrev->tag != DW_TAG_imported_declaration)
16020 {
16021 /* Otherwise we skip to the next sibling, if any. */
16022 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16023 continue;
16024 }
16025
16026 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16027 info_ptr);
16028
16029 /* This two-pass algorithm for processing partial symbols has a
16030 high cost in cache pressure. Thus, handle some simple cases
16031 here which cover the majority of C partial symbols. DIEs
16032 which neither have specification tags in them, nor could have
16033 specification tags elsewhere pointing at them, can simply be
16034 processed and discarded.
16035
16036 This segment is also optional; scan_partial_symbols and
16037 add_partial_symbol will handle these DIEs if we chain
16038 them in normally. When compilers which do not emit large
16039 quantities of duplicate debug information are more common,
16040 this code can probably be removed. */
16041
16042 /* Any complete simple types at the top level (pretty much all
16043 of them, for a language without namespaces), can be processed
16044 directly. */
16045 if (parent_die == NULL
16046 && part_die->has_specification == 0
16047 && part_die->is_declaration == 0
16048 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16049 || part_die->tag == DW_TAG_base_type
16050 || part_die->tag == DW_TAG_subrange_type))
16051 {
16052 if (building_psymtab && part_die->name != NULL)
16053 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16054 VAR_DOMAIN, LOC_TYPEDEF,
16055 &objfile->static_psymbols,
16056 0, cu->language, objfile);
16057 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16058 continue;
16059 }
16060
16061 /* The exception for DW_TAG_typedef with has_children above is
16062 a workaround of GCC PR debug/47510. In the case of this complaint
16063 type_name_no_tag_or_error will error on such types later.
16064
16065 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16066 it could not find the child DIEs referenced later, this is checked
16067 above. In correct DWARF DW_TAG_typedef should have no children. */
16068
16069 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16070 complaint (&symfile_complaints,
16071 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16072 "- DIE at 0x%x [in module %s]"),
16073 to_underlying (part_die->sect_off), objfile_name (objfile));
16074
16075 /* If we're at the second level, and we're an enumerator, and
16076 our parent has no specification (meaning possibly lives in a
16077 namespace elsewhere), then we can add the partial symbol now
16078 instead of queueing it. */
16079 if (part_die->tag == DW_TAG_enumerator
16080 && parent_die != NULL
16081 && parent_die->die_parent == NULL
16082 && parent_die->tag == DW_TAG_enumeration_type
16083 && parent_die->has_specification == 0)
16084 {
16085 if (part_die->name == NULL)
16086 complaint (&symfile_complaints,
16087 _("malformed enumerator DIE ignored"));
16088 else if (building_psymtab)
16089 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16090 VAR_DOMAIN, LOC_CONST,
16091 cu->language == language_cplus
16092 ? &objfile->global_psymbols
16093 : &objfile->static_psymbols,
16094 0, cu->language, objfile);
16095
16096 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16097 continue;
16098 }
16099
16100 /* We'll save this DIE so link it in. */
16101 part_die->die_parent = parent_die;
16102 part_die->die_sibling = NULL;
16103 part_die->die_child = NULL;
16104
16105 if (last_die && last_die == parent_die)
16106 last_die->die_child = part_die;
16107 else if (last_die)
16108 last_die->die_sibling = part_die;
16109
16110 last_die = part_die;
16111
16112 if (first_die == NULL)
16113 first_die = part_die;
16114
16115 /* Maybe add the DIE to the hash table. Not all DIEs that we
16116 find interesting need to be in the hash table, because we
16117 also have the parent/sibling/child chains; only those that we
16118 might refer to by offset later during partial symbol reading.
16119
16120 For now this means things that might have be the target of a
16121 DW_AT_specification, DW_AT_abstract_origin, or
16122 DW_AT_extension. DW_AT_extension will refer only to
16123 namespaces; DW_AT_abstract_origin refers to functions (and
16124 many things under the function DIE, but we do not recurse
16125 into function DIEs during partial symbol reading) and
16126 possibly variables as well; DW_AT_specification refers to
16127 declarations. Declarations ought to have the DW_AT_declaration
16128 flag. It happens that GCC forgets to put it in sometimes, but
16129 only for functions, not for types.
16130
16131 Adding more things than necessary to the hash table is harmless
16132 except for the performance cost. Adding too few will result in
16133 wasted time in find_partial_die, when we reread the compilation
16134 unit with load_all_dies set. */
16135
16136 if (load_all
16137 || abbrev->tag == DW_TAG_constant
16138 || abbrev->tag == DW_TAG_subprogram
16139 || abbrev->tag == DW_TAG_variable
16140 || abbrev->tag == DW_TAG_namespace
16141 || part_die->is_declaration)
16142 {
16143 void **slot;
16144
16145 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16146 to_underlying (part_die->sect_off),
16147 INSERT);
16148 *slot = part_die;
16149 }
16150
16151 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16152
16153 /* For some DIEs we want to follow their children (if any). For C
16154 we have no reason to follow the children of structures; for other
16155 languages we have to, so that we can get at method physnames
16156 to infer fully qualified class names, for DW_AT_specification,
16157 and for C++ template arguments. For C++, we also look one level
16158 inside functions to find template arguments (if the name of the
16159 function does not already contain the template arguments).
16160
16161 For Ada, we need to scan the children of subprograms and lexical
16162 blocks as well because Ada allows the definition of nested
16163 entities that could be interesting for the debugger, such as
16164 nested subprograms for instance. */
16165 if (last_die->has_children
16166 && (load_all
16167 || last_die->tag == DW_TAG_namespace
16168 || last_die->tag == DW_TAG_module
16169 || last_die->tag == DW_TAG_enumeration_type
16170 || (cu->language == language_cplus
16171 && last_die->tag == DW_TAG_subprogram
16172 && (last_die->name == NULL
16173 || strchr (last_die->name, '<') == NULL))
16174 || (cu->language != language_c
16175 && (last_die->tag == DW_TAG_class_type
16176 || last_die->tag == DW_TAG_interface_type
16177 || last_die->tag == DW_TAG_structure_type
16178 || last_die->tag == DW_TAG_union_type))
16179 || (cu->language == language_ada
16180 && (last_die->tag == DW_TAG_subprogram
16181 || last_die->tag == DW_TAG_lexical_block))))
16182 {
16183 nesting_level++;
16184 parent_die = last_die;
16185 continue;
16186 }
16187
16188 /* Otherwise we skip to the next sibling, if any. */
16189 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16190
16191 /* Back to the top, do it again. */
16192 }
16193 }
16194
16195 /* Read a minimal amount of information into the minimal die structure. */
16196
16197 static const gdb_byte *
16198 read_partial_die (const struct die_reader_specs *reader,
16199 struct partial_die_info *part_die,
16200 struct abbrev_info *abbrev, unsigned int abbrev_len,
16201 const gdb_byte *info_ptr)
16202 {
16203 struct dwarf2_cu *cu = reader->cu;
16204 struct objfile *objfile = cu->objfile;
16205 const gdb_byte *buffer = reader->buffer;
16206 unsigned int i;
16207 struct attribute attr;
16208 int has_low_pc_attr = 0;
16209 int has_high_pc_attr = 0;
16210 int high_pc_relative = 0;
16211
16212 memset (part_die, 0, sizeof (struct partial_die_info));
16213
16214 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16215
16216 info_ptr += abbrev_len;
16217
16218 if (abbrev == NULL)
16219 return info_ptr;
16220
16221 part_die->tag = abbrev->tag;
16222 part_die->has_children = abbrev->has_children;
16223
16224 for (i = 0; i < abbrev->num_attrs; ++i)
16225 {
16226 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16227
16228 /* Store the data if it is of an attribute we want to keep in a
16229 partial symbol table. */
16230 switch (attr.name)
16231 {
16232 case DW_AT_name:
16233 switch (part_die->tag)
16234 {
16235 case DW_TAG_compile_unit:
16236 case DW_TAG_partial_unit:
16237 case DW_TAG_type_unit:
16238 /* Compilation units have a DW_AT_name that is a filename, not
16239 a source language identifier. */
16240 case DW_TAG_enumeration_type:
16241 case DW_TAG_enumerator:
16242 /* These tags always have simple identifiers already; no need
16243 to canonicalize them. */
16244 part_die->name = DW_STRING (&attr);
16245 break;
16246 default:
16247 part_die->name
16248 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16249 &objfile->per_bfd->storage_obstack);
16250 break;
16251 }
16252 break;
16253 case DW_AT_linkage_name:
16254 case DW_AT_MIPS_linkage_name:
16255 /* Note that both forms of linkage name might appear. We
16256 assume they will be the same, and we only store the last
16257 one we see. */
16258 if (cu->language == language_ada)
16259 part_die->name = DW_STRING (&attr);
16260 part_die->linkage_name = DW_STRING (&attr);
16261 break;
16262 case DW_AT_low_pc:
16263 has_low_pc_attr = 1;
16264 part_die->lowpc = attr_value_as_address (&attr);
16265 break;
16266 case DW_AT_high_pc:
16267 has_high_pc_attr = 1;
16268 part_die->highpc = attr_value_as_address (&attr);
16269 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16270 high_pc_relative = 1;
16271 break;
16272 case DW_AT_location:
16273 /* Support the .debug_loc offsets. */
16274 if (attr_form_is_block (&attr))
16275 {
16276 part_die->d.locdesc = DW_BLOCK (&attr);
16277 }
16278 else if (attr_form_is_section_offset (&attr))
16279 {
16280 dwarf2_complex_location_expr_complaint ();
16281 }
16282 else
16283 {
16284 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16285 "partial symbol information");
16286 }
16287 break;
16288 case DW_AT_external:
16289 part_die->is_external = DW_UNSND (&attr);
16290 break;
16291 case DW_AT_declaration:
16292 part_die->is_declaration = DW_UNSND (&attr);
16293 break;
16294 case DW_AT_type:
16295 part_die->has_type = 1;
16296 break;
16297 case DW_AT_abstract_origin:
16298 case DW_AT_specification:
16299 case DW_AT_extension:
16300 part_die->has_specification = 1;
16301 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16302 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16303 || cu->per_cu->is_dwz);
16304 break;
16305 case DW_AT_sibling:
16306 /* Ignore absolute siblings, they might point outside of
16307 the current compile unit. */
16308 if (attr.form == DW_FORM_ref_addr)
16309 complaint (&symfile_complaints,
16310 _("ignoring absolute DW_AT_sibling"));
16311 else
16312 {
16313 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16314 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16315
16316 if (sibling_ptr < info_ptr)
16317 complaint (&symfile_complaints,
16318 _("DW_AT_sibling points backwards"));
16319 else if (sibling_ptr > reader->buffer_end)
16320 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16321 else
16322 part_die->sibling = sibling_ptr;
16323 }
16324 break;
16325 case DW_AT_byte_size:
16326 part_die->has_byte_size = 1;
16327 break;
16328 case DW_AT_const_value:
16329 part_die->has_const_value = 1;
16330 break;
16331 case DW_AT_calling_convention:
16332 /* DWARF doesn't provide a way to identify a program's source-level
16333 entry point. DW_AT_calling_convention attributes are only meant
16334 to describe functions' calling conventions.
16335
16336 However, because it's a necessary piece of information in
16337 Fortran, and before DWARF 4 DW_CC_program was the only
16338 piece of debugging information whose definition refers to
16339 a 'main program' at all, several compilers marked Fortran
16340 main programs with DW_CC_program --- even when those
16341 functions use the standard calling conventions.
16342
16343 Although DWARF now specifies a way to provide this
16344 information, we support this practice for backward
16345 compatibility. */
16346 if (DW_UNSND (&attr) == DW_CC_program
16347 && cu->language == language_fortran)
16348 part_die->main_subprogram = 1;
16349 break;
16350 case DW_AT_inline:
16351 if (DW_UNSND (&attr) == DW_INL_inlined
16352 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16353 part_die->may_be_inlined = 1;
16354 break;
16355
16356 case DW_AT_import:
16357 if (part_die->tag == DW_TAG_imported_unit)
16358 {
16359 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16360 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16361 || cu->per_cu->is_dwz);
16362 }
16363 break;
16364
16365 case DW_AT_main_subprogram:
16366 part_die->main_subprogram = DW_UNSND (&attr);
16367 break;
16368
16369 default:
16370 break;
16371 }
16372 }
16373
16374 if (high_pc_relative)
16375 part_die->highpc += part_die->lowpc;
16376
16377 if (has_low_pc_attr && has_high_pc_attr)
16378 {
16379 /* When using the GNU linker, .gnu.linkonce. sections are used to
16380 eliminate duplicate copies of functions and vtables and such.
16381 The linker will arbitrarily choose one and discard the others.
16382 The AT_*_pc values for such functions refer to local labels in
16383 these sections. If the section from that file was discarded, the
16384 labels are not in the output, so the relocs get a value of 0.
16385 If this is a discarded function, mark the pc bounds as invalid,
16386 so that GDB will ignore it. */
16387 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16388 {
16389 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16390
16391 complaint (&symfile_complaints,
16392 _("DW_AT_low_pc %s is zero "
16393 "for DIE at 0x%x [in module %s]"),
16394 paddress (gdbarch, part_die->lowpc),
16395 to_underlying (part_die->sect_off), objfile_name (objfile));
16396 }
16397 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16398 else if (part_die->lowpc >= part_die->highpc)
16399 {
16400 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16401
16402 complaint (&symfile_complaints,
16403 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16404 "for DIE at 0x%x [in module %s]"),
16405 paddress (gdbarch, part_die->lowpc),
16406 paddress (gdbarch, part_die->highpc),
16407 to_underlying (part_die->sect_off),
16408 objfile_name (objfile));
16409 }
16410 else
16411 part_die->has_pc_info = 1;
16412 }
16413
16414 return info_ptr;
16415 }
16416
16417 /* Find a cached partial DIE at OFFSET in CU. */
16418
16419 static struct partial_die_info *
16420 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16421 {
16422 struct partial_die_info *lookup_die = NULL;
16423 struct partial_die_info part_die;
16424
16425 part_die.sect_off = sect_off;
16426 lookup_die = ((struct partial_die_info *)
16427 htab_find_with_hash (cu->partial_dies, &part_die,
16428 to_underlying (sect_off)));
16429
16430 return lookup_die;
16431 }
16432
16433 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16434 except in the case of .debug_types DIEs which do not reference
16435 outside their CU (they do however referencing other types via
16436 DW_FORM_ref_sig8). */
16437
16438 static struct partial_die_info *
16439 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16440 {
16441 struct objfile *objfile = cu->objfile;
16442 struct dwarf2_per_cu_data *per_cu = NULL;
16443 struct partial_die_info *pd = NULL;
16444
16445 if (offset_in_dwz == cu->per_cu->is_dwz
16446 && offset_in_cu_p (&cu->header, sect_off))
16447 {
16448 pd = find_partial_die_in_comp_unit (sect_off, cu);
16449 if (pd != NULL)
16450 return pd;
16451 /* We missed recording what we needed.
16452 Load all dies and try again. */
16453 per_cu = cu->per_cu;
16454 }
16455 else
16456 {
16457 /* TUs don't reference other CUs/TUs (except via type signatures). */
16458 if (cu->per_cu->is_debug_types)
16459 {
16460 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16461 " external reference to offset 0x%x [in module %s].\n"),
16462 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16463 bfd_get_filename (objfile->obfd));
16464 }
16465 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16466 objfile);
16467
16468 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16469 load_partial_comp_unit (per_cu);
16470
16471 per_cu->cu->last_used = 0;
16472 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16473 }
16474
16475 /* If we didn't find it, and not all dies have been loaded,
16476 load them all and try again. */
16477
16478 if (pd == NULL && per_cu->load_all_dies == 0)
16479 {
16480 per_cu->load_all_dies = 1;
16481
16482 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16483 THIS_CU->cu may already be in use. So we can't just free it and
16484 replace its DIEs with the ones we read in. Instead, we leave those
16485 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16486 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16487 set. */
16488 load_partial_comp_unit (per_cu);
16489
16490 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16491 }
16492
16493 if (pd == NULL)
16494 internal_error (__FILE__, __LINE__,
16495 _("could not find partial DIE 0x%x "
16496 "in cache [from module %s]\n"),
16497 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16498 return pd;
16499 }
16500
16501 /* See if we can figure out if the class lives in a namespace. We do
16502 this by looking for a member function; its demangled name will
16503 contain namespace info, if there is any. */
16504
16505 static void
16506 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16507 struct dwarf2_cu *cu)
16508 {
16509 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16510 what template types look like, because the demangler
16511 frequently doesn't give the same name as the debug info. We
16512 could fix this by only using the demangled name to get the
16513 prefix (but see comment in read_structure_type). */
16514
16515 struct partial_die_info *real_pdi;
16516 struct partial_die_info *child_pdi;
16517
16518 /* If this DIE (this DIE's specification, if any) has a parent, then
16519 we should not do this. We'll prepend the parent's fully qualified
16520 name when we create the partial symbol. */
16521
16522 real_pdi = struct_pdi;
16523 while (real_pdi->has_specification)
16524 real_pdi = find_partial_die (real_pdi->spec_offset,
16525 real_pdi->spec_is_dwz, cu);
16526
16527 if (real_pdi->die_parent != NULL)
16528 return;
16529
16530 for (child_pdi = struct_pdi->die_child;
16531 child_pdi != NULL;
16532 child_pdi = child_pdi->die_sibling)
16533 {
16534 if (child_pdi->tag == DW_TAG_subprogram
16535 && child_pdi->linkage_name != NULL)
16536 {
16537 char *actual_class_name
16538 = language_class_name_from_physname (cu->language_defn,
16539 child_pdi->linkage_name);
16540 if (actual_class_name != NULL)
16541 {
16542 struct_pdi->name
16543 = ((const char *)
16544 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16545 actual_class_name,
16546 strlen (actual_class_name)));
16547 xfree (actual_class_name);
16548 }
16549 break;
16550 }
16551 }
16552 }
16553
16554 /* Adjust PART_DIE before generating a symbol for it. This function
16555 may set the is_external flag or change the DIE's name. */
16556
16557 static void
16558 fixup_partial_die (struct partial_die_info *part_die,
16559 struct dwarf2_cu *cu)
16560 {
16561 /* Once we've fixed up a die, there's no point in doing so again.
16562 This also avoids a memory leak if we were to call
16563 guess_partial_die_structure_name multiple times. */
16564 if (part_die->fixup_called)
16565 return;
16566
16567 /* If we found a reference attribute and the DIE has no name, try
16568 to find a name in the referred to DIE. */
16569
16570 if (part_die->name == NULL && part_die->has_specification)
16571 {
16572 struct partial_die_info *spec_die;
16573
16574 spec_die = find_partial_die (part_die->spec_offset,
16575 part_die->spec_is_dwz, cu);
16576
16577 fixup_partial_die (spec_die, cu);
16578
16579 if (spec_die->name)
16580 {
16581 part_die->name = spec_die->name;
16582
16583 /* Copy DW_AT_external attribute if it is set. */
16584 if (spec_die->is_external)
16585 part_die->is_external = spec_die->is_external;
16586 }
16587 }
16588
16589 /* Set default names for some unnamed DIEs. */
16590
16591 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16592 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16593
16594 /* If there is no parent die to provide a namespace, and there are
16595 children, see if we can determine the namespace from their linkage
16596 name. */
16597 if (cu->language == language_cplus
16598 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16599 && part_die->die_parent == NULL
16600 && part_die->has_children
16601 && (part_die->tag == DW_TAG_class_type
16602 || part_die->tag == DW_TAG_structure_type
16603 || part_die->tag == DW_TAG_union_type))
16604 guess_partial_die_structure_name (part_die, cu);
16605
16606 /* GCC might emit a nameless struct or union that has a linkage
16607 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16608 if (part_die->name == NULL
16609 && (part_die->tag == DW_TAG_class_type
16610 || part_die->tag == DW_TAG_interface_type
16611 || part_die->tag == DW_TAG_structure_type
16612 || part_die->tag == DW_TAG_union_type)
16613 && part_die->linkage_name != NULL)
16614 {
16615 char *demangled;
16616
16617 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16618 if (demangled)
16619 {
16620 const char *base;
16621
16622 /* Strip any leading namespaces/classes, keep only the base name.
16623 DW_AT_name for named DIEs does not contain the prefixes. */
16624 base = strrchr (demangled, ':');
16625 if (base && base > demangled && base[-1] == ':')
16626 base++;
16627 else
16628 base = demangled;
16629
16630 part_die->name
16631 = ((const char *)
16632 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16633 base, strlen (base)));
16634 xfree (demangled);
16635 }
16636 }
16637
16638 part_die->fixup_called = 1;
16639 }
16640
16641 /* Read an attribute value described by an attribute form. */
16642
16643 static const gdb_byte *
16644 read_attribute_value (const struct die_reader_specs *reader,
16645 struct attribute *attr, unsigned form,
16646 LONGEST implicit_const, const gdb_byte *info_ptr)
16647 {
16648 struct dwarf2_cu *cu = reader->cu;
16649 struct objfile *objfile = cu->objfile;
16650 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16651 bfd *abfd = reader->abfd;
16652 struct comp_unit_head *cu_header = &cu->header;
16653 unsigned int bytes_read;
16654 struct dwarf_block *blk;
16655
16656 attr->form = (enum dwarf_form) form;
16657 switch (form)
16658 {
16659 case DW_FORM_ref_addr:
16660 if (cu->header.version == 2)
16661 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16662 else
16663 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16664 &cu->header, &bytes_read);
16665 info_ptr += bytes_read;
16666 break;
16667 case DW_FORM_GNU_ref_alt:
16668 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16669 info_ptr += bytes_read;
16670 break;
16671 case DW_FORM_addr:
16672 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16673 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16674 info_ptr += bytes_read;
16675 break;
16676 case DW_FORM_block2:
16677 blk = dwarf_alloc_block (cu);
16678 blk->size = read_2_bytes (abfd, info_ptr);
16679 info_ptr += 2;
16680 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16681 info_ptr += blk->size;
16682 DW_BLOCK (attr) = blk;
16683 break;
16684 case DW_FORM_block4:
16685 blk = dwarf_alloc_block (cu);
16686 blk->size = read_4_bytes (abfd, info_ptr);
16687 info_ptr += 4;
16688 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16689 info_ptr += blk->size;
16690 DW_BLOCK (attr) = blk;
16691 break;
16692 case DW_FORM_data2:
16693 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16694 info_ptr += 2;
16695 break;
16696 case DW_FORM_data4:
16697 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16698 info_ptr += 4;
16699 break;
16700 case DW_FORM_data8:
16701 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16702 info_ptr += 8;
16703 break;
16704 case DW_FORM_data16:
16705 blk = dwarf_alloc_block (cu);
16706 blk->size = 16;
16707 blk->data = read_n_bytes (abfd, info_ptr, 16);
16708 info_ptr += 16;
16709 DW_BLOCK (attr) = blk;
16710 break;
16711 case DW_FORM_sec_offset:
16712 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16713 info_ptr += bytes_read;
16714 break;
16715 case DW_FORM_string:
16716 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16717 DW_STRING_IS_CANONICAL (attr) = 0;
16718 info_ptr += bytes_read;
16719 break;
16720 case DW_FORM_strp:
16721 if (!cu->per_cu->is_dwz)
16722 {
16723 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16724 &bytes_read);
16725 DW_STRING_IS_CANONICAL (attr) = 0;
16726 info_ptr += bytes_read;
16727 break;
16728 }
16729 /* FALLTHROUGH */
16730 case DW_FORM_line_strp:
16731 if (!cu->per_cu->is_dwz)
16732 {
16733 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16734 cu_header, &bytes_read);
16735 DW_STRING_IS_CANONICAL (attr) = 0;
16736 info_ptr += bytes_read;
16737 break;
16738 }
16739 /* FALLTHROUGH */
16740 case DW_FORM_GNU_strp_alt:
16741 {
16742 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16743 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16744 &bytes_read);
16745
16746 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16747 DW_STRING_IS_CANONICAL (attr) = 0;
16748 info_ptr += bytes_read;
16749 }
16750 break;
16751 case DW_FORM_exprloc:
16752 case DW_FORM_block:
16753 blk = dwarf_alloc_block (cu);
16754 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16755 info_ptr += bytes_read;
16756 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16757 info_ptr += blk->size;
16758 DW_BLOCK (attr) = blk;
16759 break;
16760 case DW_FORM_block1:
16761 blk = dwarf_alloc_block (cu);
16762 blk->size = read_1_byte (abfd, info_ptr);
16763 info_ptr += 1;
16764 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16765 info_ptr += blk->size;
16766 DW_BLOCK (attr) = blk;
16767 break;
16768 case DW_FORM_data1:
16769 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16770 info_ptr += 1;
16771 break;
16772 case DW_FORM_flag:
16773 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16774 info_ptr += 1;
16775 break;
16776 case DW_FORM_flag_present:
16777 DW_UNSND (attr) = 1;
16778 break;
16779 case DW_FORM_sdata:
16780 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16781 info_ptr += bytes_read;
16782 break;
16783 case DW_FORM_udata:
16784 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16785 info_ptr += bytes_read;
16786 break;
16787 case DW_FORM_ref1:
16788 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16789 + read_1_byte (abfd, info_ptr));
16790 info_ptr += 1;
16791 break;
16792 case DW_FORM_ref2:
16793 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16794 + read_2_bytes (abfd, info_ptr));
16795 info_ptr += 2;
16796 break;
16797 case DW_FORM_ref4:
16798 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16799 + read_4_bytes (abfd, info_ptr));
16800 info_ptr += 4;
16801 break;
16802 case DW_FORM_ref8:
16803 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16804 + read_8_bytes (abfd, info_ptr));
16805 info_ptr += 8;
16806 break;
16807 case DW_FORM_ref_sig8:
16808 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16809 info_ptr += 8;
16810 break;
16811 case DW_FORM_ref_udata:
16812 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16813 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16814 info_ptr += bytes_read;
16815 break;
16816 case DW_FORM_indirect:
16817 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16818 info_ptr += bytes_read;
16819 if (form == DW_FORM_implicit_const)
16820 {
16821 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16822 info_ptr += bytes_read;
16823 }
16824 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16825 info_ptr);
16826 break;
16827 case DW_FORM_implicit_const:
16828 DW_SND (attr) = implicit_const;
16829 break;
16830 case DW_FORM_GNU_addr_index:
16831 if (reader->dwo_file == NULL)
16832 {
16833 /* For now flag a hard error.
16834 Later we can turn this into a complaint. */
16835 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16836 dwarf_form_name (form),
16837 bfd_get_filename (abfd));
16838 }
16839 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16840 info_ptr += bytes_read;
16841 break;
16842 case DW_FORM_GNU_str_index:
16843 if (reader->dwo_file == NULL)
16844 {
16845 /* For now flag a hard error.
16846 Later we can turn this into a complaint if warranted. */
16847 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16848 dwarf_form_name (form),
16849 bfd_get_filename (abfd));
16850 }
16851 {
16852 ULONGEST str_index =
16853 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16854
16855 DW_STRING (attr) = read_str_index (reader, str_index);
16856 DW_STRING_IS_CANONICAL (attr) = 0;
16857 info_ptr += bytes_read;
16858 }
16859 break;
16860 default:
16861 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16862 dwarf_form_name (form),
16863 bfd_get_filename (abfd));
16864 }
16865
16866 /* Super hack. */
16867 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16868 attr->form = DW_FORM_GNU_ref_alt;
16869
16870 /* We have seen instances where the compiler tried to emit a byte
16871 size attribute of -1 which ended up being encoded as an unsigned
16872 0xffffffff. Although 0xffffffff is technically a valid size value,
16873 an object of this size seems pretty unlikely so we can relatively
16874 safely treat these cases as if the size attribute was invalid and
16875 treat them as zero by default. */
16876 if (attr->name == DW_AT_byte_size
16877 && form == DW_FORM_data4
16878 && DW_UNSND (attr) >= 0xffffffff)
16879 {
16880 complaint
16881 (&symfile_complaints,
16882 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16883 hex_string (DW_UNSND (attr)));
16884 DW_UNSND (attr) = 0;
16885 }
16886
16887 return info_ptr;
16888 }
16889
16890 /* Read an attribute described by an abbreviated attribute. */
16891
16892 static const gdb_byte *
16893 read_attribute (const struct die_reader_specs *reader,
16894 struct attribute *attr, struct attr_abbrev *abbrev,
16895 const gdb_byte *info_ptr)
16896 {
16897 attr->name = abbrev->name;
16898 return read_attribute_value (reader, attr, abbrev->form,
16899 abbrev->implicit_const, info_ptr);
16900 }
16901
16902 /* Read dwarf information from a buffer. */
16903
16904 static unsigned int
16905 read_1_byte (bfd *abfd, const gdb_byte *buf)
16906 {
16907 return bfd_get_8 (abfd, buf);
16908 }
16909
16910 static int
16911 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16912 {
16913 return bfd_get_signed_8 (abfd, buf);
16914 }
16915
16916 static unsigned int
16917 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16918 {
16919 return bfd_get_16 (abfd, buf);
16920 }
16921
16922 static int
16923 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16924 {
16925 return bfd_get_signed_16 (abfd, buf);
16926 }
16927
16928 static unsigned int
16929 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16930 {
16931 return bfd_get_32 (abfd, buf);
16932 }
16933
16934 static int
16935 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16936 {
16937 return bfd_get_signed_32 (abfd, buf);
16938 }
16939
16940 static ULONGEST
16941 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16942 {
16943 return bfd_get_64 (abfd, buf);
16944 }
16945
16946 static CORE_ADDR
16947 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16948 unsigned int *bytes_read)
16949 {
16950 struct comp_unit_head *cu_header = &cu->header;
16951 CORE_ADDR retval = 0;
16952
16953 if (cu_header->signed_addr_p)
16954 {
16955 switch (cu_header->addr_size)
16956 {
16957 case 2:
16958 retval = bfd_get_signed_16 (abfd, buf);
16959 break;
16960 case 4:
16961 retval = bfd_get_signed_32 (abfd, buf);
16962 break;
16963 case 8:
16964 retval = bfd_get_signed_64 (abfd, buf);
16965 break;
16966 default:
16967 internal_error (__FILE__, __LINE__,
16968 _("read_address: bad switch, signed [in module %s]"),
16969 bfd_get_filename (abfd));
16970 }
16971 }
16972 else
16973 {
16974 switch (cu_header->addr_size)
16975 {
16976 case 2:
16977 retval = bfd_get_16 (abfd, buf);
16978 break;
16979 case 4:
16980 retval = bfd_get_32 (abfd, buf);
16981 break;
16982 case 8:
16983 retval = bfd_get_64 (abfd, buf);
16984 break;
16985 default:
16986 internal_error (__FILE__, __LINE__,
16987 _("read_address: bad switch, "
16988 "unsigned [in module %s]"),
16989 bfd_get_filename (abfd));
16990 }
16991 }
16992
16993 *bytes_read = cu_header->addr_size;
16994 return retval;
16995 }
16996
16997 /* Read the initial length from a section. The (draft) DWARF 3
16998 specification allows the initial length to take up either 4 bytes
16999 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17000 bytes describe the length and all offsets will be 8 bytes in length
17001 instead of 4.
17002
17003 An older, non-standard 64-bit format is also handled by this
17004 function. The older format in question stores the initial length
17005 as an 8-byte quantity without an escape value. Lengths greater
17006 than 2^32 aren't very common which means that the initial 4 bytes
17007 is almost always zero. Since a length value of zero doesn't make
17008 sense for the 32-bit format, this initial zero can be considered to
17009 be an escape value which indicates the presence of the older 64-bit
17010 format. As written, the code can't detect (old format) lengths
17011 greater than 4GB. If it becomes necessary to handle lengths
17012 somewhat larger than 4GB, we could allow other small values (such
17013 as the non-sensical values of 1, 2, and 3) to also be used as
17014 escape values indicating the presence of the old format.
17015
17016 The value returned via bytes_read should be used to increment the
17017 relevant pointer after calling read_initial_length().
17018
17019 [ Note: read_initial_length() and read_offset() are based on the
17020 document entitled "DWARF Debugging Information Format", revision
17021 3, draft 8, dated November 19, 2001. This document was obtained
17022 from:
17023
17024 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17025
17026 This document is only a draft and is subject to change. (So beware.)
17027
17028 Details regarding the older, non-standard 64-bit format were
17029 determined empirically by examining 64-bit ELF files produced by
17030 the SGI toolchain on an IRIX 6.5 machine.
17031
17032 - Kevin, July 16, 2002
17033 ] */
17034
17035 static LONGEST
17036 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17037 {
17038 LONGEST length = bfd_get_32 (abfd, buf);
17039
17040 if (length == 0xffffffff)
17041 {
17042 length = bfd_get_64 (abfd, buf + 4);
17043 *bytes_read = 12;
17044 }
17045 else if (length == 0)
17046 {
17047 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17048 length = bfd_get_64 (abfd, buf);
17049 *bytes_read = 8;
17050 }
17051 else
17052 {
17053 *bytes_read = 4;
17054 }
17055
17056 return length;
17057 }
17058
17059 /* Cover function for read_initial_length.
17060 Returns the length of the object at BUF, and stores the size of the
17061 initial length in *BYTES_READ and stores the size that offsets will be in
17062 *OFFSET_SIZE.
17063 If the initial length size is not equivalent to that specified in
17064 CU_HEADER then issue a complaint.
17065 This is useful when reading non-comp-unit headers. */
17066
17067 static LONGEST
17068 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17069 const struct comp_unit_head *cu_header,
17070 unsigned int *bytes_read,
17071 unsigned int *offset_size)
17072 {
17073 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17074
17075 gdb_assert (cu_header->initial_length_size == 4
17076 || cu_header->initial_length_size == 8
17077 || cu_header->initial_length_size == 12);
17078
17079 if (cu_header->initial_length_size != *bytes_read)
17080 complaint (&symfile_complaints,
17081 _("intermixed 32-bit and 64-bit DWARF sections"));
17082
17083 *offset_size = (*bytes_read == 4) ? 4 : 8;
17084 return length;
17085 }
17086
17087 /* Read an offset from the data stream. The size of the offset is
17088 given by cu_header->offset_size. */
17089
17090 static LONGEST
17091 read_offset (bfd *abfd, const gdb_byte *buf,
17092 const struct comp_unit_head *cu_header,
17093 unsigned int *bytes_read)
17094 {
17095 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17096
17097 *bytes_read = cu_header->offset_size;
17098 return offset;
17099 }
17100
17101 /* Read an offset from the data stream. */
17102
17103 static LONGEST
17104 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17105 {
17106 LONGEST retval = 0;
17107
17108 switch (offset_size)
17109 {
17110 case 4:
17111 retval = bfd_get_32 (abfd, buf);
17112 break;
17113 case 8:
17114 retval = bfd_get_64 (abfd, buf);
17115 break;
17116 default:
17117 internal_error (__FILE__, __LINE__,
17118 _("read_offset_1: bad switch [in module %s]"),
17119 bfd_get_filename (abfd));
17120 }
17121
17122 return retval;
17123 }
17124
17125 static const gdb_byte *
17126 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17127 {
17128 /* If the size of a host char is 8 bits, we can return a pointer
17129 to the buffer, otherwise we have to copy the data to a buffer
17130 allocated on the temporary obstack. */
17131 gdb_assert (HOST_CHAR_BIT == 8);
17132 return buf;
17133 }
17134
17135 static const char *
17136 read_direct_string (bfd *abfd, const gdb_byte *buf,
17137 unsigned int *bytes_read_ptr)
17138 {
17139 /* If the size of a host char is 8 bits, we can return a pointer
17140 to the string, otherwise we have to copy the string to a buffer
17141 allocated on the temporary obstack. */
17142 gdb_assert (HOST_CHAR_BIT == 8);
17143 if (*buf == '\0')
17144 {
17145 *bytes_read_ptr = 1;
17146 return NULL;
17147 }
17148 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17149 return (const char *) buf;
17150 }
17151
17152 /* Return pointer to string at section SECT offset STR_OFFSET with error
17153 reporting strings FORM_NAME and SECT_NAME. */
17154
17155 static const char *
17156 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17157 struct dwarf2_section_info *sect,
17158 const char *form_name,
17159 const char *sect_name)
17160 {
17161 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17162 if (sect->buffer == NULL)
17163 error (_("%s used without %s section [in module %s]"),
17164 form_name, sect_name, bfd_get_filename (abfd));
17165 if (str_offset >= sect->size)
17166 error (_("%s pointing outside of %s section [in module %s]"),
17167 form_name, sect_name, bfd_get_filename (abfd));
17168 gdb_assert (HOST_CHAR_BIT == 8);
17169 if (sect->buffer[str_offset] == '\0')
17170 return NULL;
17171 return (const char *) (sect->buffer + str_offset);
17172 }
17173
17174 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17175
17176 static const char *
17177 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17178 {
17179 return read_indirect_string_at_offset_from (abfd, str_offset,
17180 &dwarf2_per_objfile->str,
17181 "DW_FORM_strp", ".debug_str");
17182 }
17183
17184 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17185
17186 static const char *
17187 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17188 {
17189 return read_indirect_string_at_offset_from (abfd, str_offset,
17190 &dwarf2_per_objfile->line_str,
17191 "DW_FORM_line_strp",
17192 ".debug_line_str");
17193 }
17194
17195 /* Read a string at offset STR_OFFSET in the .debug_str section from
17196 the .dwz file DWZ. Throw an error if the offset is too large. If
17197 the string consists of a single NUL byte, return NULL; otherwise
17198 return a pointer to the string. */
17199
17200 static const char *
17201 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17202 {
17203 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17204
17205 if (dwz->str.buffer == NULL)
17206 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17207 "section [in module %s]"),
17208 bfd_get_filename (dwz->dwz_bfd));
17209 if (str_offset >= dwz->str.size)
17210 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17211 ".debug_str section [in module %s]"),
17212 bfd_get_filename (dwz->dwz_bfd));
17213 gdb_assert (HOST_CHAR_BIT == 8);
17214 if (dwz->str.buffer[str_offset] == '\0')
17215 return NULL;
17216 return (const char *) (dwz->str.buffer + str_offset);
17217 }
17218
17219 /* Return pointer to string at .debug_str offset as read from BUF.
17220 BUF is assumed to be in a compilation unit described by CU_HEADER.
17221 Return *BYTES_READ_PTR count of bytes read from BUF. */
17222
17223 static const char *
17224 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17225 const struct comp_unit_head *cu_header,
17226 unsigned int *bytes_read_ptr)
17227 {
17228 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17229
17230 return read_indirect_string_at_offset (abfd, str_offset);
17231 }
17232
17233 /* Return pointer to string at .debug_line_str offset as read from BUF.
17234 BUF is assumed to be in a compilation unit described by CU_HEADER.
17235 Return *BYTES_READ_PTR count of bytes read from BUF. */
17236
17237 static const char *
17238 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17239 const struct comp_unit_head *cu_header,
17240 unsigned int *bytes_read_ptr)
17241 {
17242 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17243
17244 return read_indirect_line_string_at_offset (abfd, str_offset);
17245 }
17246
17247 ULONGEST
17248 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17249 unsigned int *bytes_read_ptr)
17250 {
17251 ULONGEST result;
17252 unsigned int num_read;
17253 int shift;
17254 unsigned char byte;
17255
17256 result = 0;
17257 shift = 0;
17258 num_read = 0;
17259 while (1)
17260 {
17261 byte = bfd_get_8 (abfd, buf);
17262 buf++;
17263 num_read++;
17264 result |= ((ULONGEST) (byte & 127) << shift);
17265 if ((byte & 128) == 0)
17266 {
17267 break;
17268 }
17269 shift += 7;
17270 }
17271 *bytes_read_ptr = num_read;
17272 return result;
17273 }
17274
17275 static LONGEST
17276 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17277 unsigned int *bytes_read_ptr)
17278 {
17279 LONGEST result;
17280 int shift, num_read;
17281 unsigned char byte;
17282
17283 result = 0;
17284 shift = 0;
17285 num_read = 0;
17286 while (1)
17287 {
17288 byte = bfd_get_8 (abfd, buf);
17289 buf++;
17290 num_read++;
17291 result |= ((LONGEST) (byte & 127) << shift);
17292 shift += 7;
17293 if ((byte & 128) == 0)
17294 {
17295 break;
17296 }
17297 }
17298 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17299 result |= -(((LONGEST) 1) << shift);
17300 *bytes_read_ptr = num_read;
17301 return result;
17302 }
17303
17304 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17305 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17306 ADDR_SIZE is the size of addresses from the CU header. */
17307
17308 static CORE_ADDR
17309 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17310 {
17311 struct objfile *objfile = dwarf2_per_objfile->objfile;
17312 bfd *abfd = objfile->obfd;
17313 const gdb_byte *info_ptr;
17314
17315 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17316 if (dwarf2_per_objfile->addr.buffer == NULL)
17317 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17318 objfile_name (objfile));
17319 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17320 error (_("DW_FORM_addr_index pointing outside of "
17321 ".debug_addr section [in module %s]"),
17322 objfile_name (objfile));
17323 info_ptr = (dwarf2_per_objfile->addr.buffer
17324 + addr_base + addr_index * addr_size);
17325 if (addr_size == 4)
17326 return bfd_get_32 (abfd, info_ptr);
17327 else
17328 return bfd_get_64 (abfd, info_ptr);
17329 }
17330
17331 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17332
17333 static CORE_ADDR
17334 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17335 {
17336 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17337 }
17338
17339 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17340
17341 static CORE_ADDR
17342 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17343 unsigned int *bytes_read)
17344 {
17345 bfd *abfd = cu->objfile->obfd;
17346 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17347
17348 return read_addr_index (cu, addr_index);
17349 }
17350
17351 /* Data structure to pass results from dwarf2_read_addr_index_reader
17352 back to dwarf2_read_addr_index. */
17353
17354 struct dwarf2_read_addr_index_data
17355 {
17356 ULONGEST addr_base;
17357 int addr_size;
17358 };
17359
17360 /* die_reader_func for dwarf2_read_addr_index. */
17361
17362 static void
17363 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17364 const gdb_byte *info_ptr,
17365 struct die_info *comp_unit_die,
17366 int has_children,
17367 void *data)
17368 {
17369 struct dwarf2_cu *cu = reader->cu;
17370 struct dwarf2_read_addr_index_data *aidata =
17371 (struct dwarf2_read_addr_index_data *) data;
17372
17373 aidata->addr_base = cu->addr_base;
17374 aidata->addr_size = cu->header.addr_size;
17375 }
17376
17377 /* Given an index in .debug_addr, fetch the value.
17378 NOTE: This can be called during dwarf expression evaluation,
17379 long after the debug information has been read, and thus per_cu->cu
17380 may no longer exist. */
17381
17382 CORE_ADDR
17383 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17384 unsigned int addr_index)
17385 {
17386 struct objfile *objfile = per_cu->objfile;
17387 struct dwarf2_cu *cu = per_cu->cu;
17388 ULONGEST addr_base;
17389 int addr_size;
17390
17391 /* This is intended to be called from outside this file. */
17392 dw2_setup (objfile);
17393
17394 /* We need addr_base and addr_size.
17395 If we don't have PER_CU->cu, we have to get it.
17396 Nasty, but the alternative is storing the needed info in PER_CU,
17397 which at this point doesn't seem justified: it's not clear how frequently
17398 it would get used and it would increase the size of every PER_CU.
17399 Entry points like dwarf2_per_cu_addr_size do a similar thing
17400 so we're not in uncharted territory here.
17401 Alas we need to be a bit more complicated as addr_base is contained
17402 in the DIE.
17403
17404 We don't need to read the entire CU(/TU).
17405 We just need the header and top level die.
17406
17407 IWBN to use the aging mechanism to let us lazily later discard the CU.
17408 For now we skip this optimization. */
17409
17410 if (cu != NULL)
17411 {
17412 addr_base = cu->addr_base;
17413 addr_size = cu->header.addr_size;
17414 }
17415 else
17416 {
17417 struct dwarf2_read_addr_index_data aidata;
17418
17419 /* Note: We can't use init_cutu_and_read_dies_simple here,
17420 we need addr_base. */
17421 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17422 dwarf2_read_addr_index_reader, &aidata);
17423 addr_base = aidata.addr_base;
17424 addr_size = aidata.addr_size;
17425 }
17426
17427 return read_addr_index_1 (addr_index, addr_base, addr_size);
17428 }
17429
17430 /* Given a DW_FORM_GNU_str_index, fetch the string.
17431 This is only used by the Fission support. */
17432
17433 static const char *
17434 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17435 {
17436 struct objfile *objfile = dwarf2_per_objfile->objfile;
17437 const char *objf_name = objfile_name (objfile);
17438 bfd *abfd = objfile->obfd;
17439 struct dwarf2_cu *cu = reader->cu;
17440 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17441 struct dwarf2_section_info *str_offsets_section =
17442 &reader->dwo_file->sections.str_offsets;
17443 const gdb_byte *info_ptr;
17444 ULONGEST str_offset;
17445 static const char form_name[] = "DW_FORM_GNU_str_index";
17446
17447 dwarf2_read_section (objfile, str_section);
17448 dwarf2_read_section (objfile, str_offsets_section);
17449 if (str_section->buffer == NULL)
17450 error (_("%s used without .debug_str.dwo section"
17451 " in CU at offset 0x%x [in module %s]"),
17452 form_name, to_underlying (cu->header.sect_off), objf_name);
17453 if (str_offsets_section->buffer == NULL)
17454 error (_("%s used without .debug_str_offsets.dwo section"
17455 " in CU at offset 0x%x [in module %s]"),
17456 form_name, to_underlying (cu->header.sect_off), objf_name);
17457 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17458 error (_("%s pointing outside of .debug_str_offsets.dwo"
17459 " section in CU at offset 0x%x [in module %s]"),
17460 form_name, to_underlying (cu->header.sect_off), objf_name);
17461 info_ptr = (str_offsets_section->buffer
17462 + str_index * cu->header.offset_size);
17463 if (cu->header.offset_size == 4)
17464 str_offset = bfd_get_32 (abfd, info_ptr);
17465 else
17466 str_offset = bfd_get_64 (abfd, info_ptr);
17467 if (str_offset >= str_section->size)
17468 error (_("Offset from %s pointing outside of"
17469 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17470 form_name, to_underlying (cu->header.sect_off), objf_name);
17471 return (const char *) (str_section->buffer + str_offset);
17472 }
17473
17474 /* Return the length of an LEB128 number in BUF. */
17475
17476 static int
17477 leb128_size (const gdb_byte *buf)
17478 {
17479 const gdb_byte *begin = buf;
17480 gdb_byte byte;
17481
17482 while (1)
17483 {
17484 byte = *buf++;
17485 if ((byte & 128) == 0)
17486 return buf - begin;
17487 }
17488 }
17489
17490 static void
17491 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17492 {
17493 switch (lang)
17494 {
17495 case DW_LANG_C89:
17496 case DW_LANG_C99:
17497 case DW_LANG_C11:
17498 case DW_LANG_C:
17499 case DW_LANG_UPC:
17500 cu->language = language_c;
17501 break;
17502 case DW_LANG_Java:
17503 case DW_LANG_C_plus_plus:
17504 case DW_LANG_C_plus_plus_11:
17505 case DW_LANG_C_plus_plus_14:
17506 cu->language = language_cplus;
17507 break;
17508 case DW_LANG_D:
17509 cu->language = language_d;
17510 break;
17511 case DW_LANG_Fortran77:
17512 case DW_LANG_Fortran90:
17513 case DW_LANG_Fortran95:
17514 case DW_LANG_Fortran03:
17515 case DW_LANG_Fortran08:
17516 cu->language = language_fortran;
17517 break;
17518 case DW_LANG_Go:
17519 cu->language = language_go;
17520 break;
17521 case DW_LANG_Mips_Assembler:
17522 cu->language = language_asm;
17523 break;
17524 case DW_LANG_Ada83:
17525 case DW_LANG_Ada95:
17526 cu->language = language_ada;
17527 break;
17528 case DW_LANG_Modula2:
17529 cu->language = language_m2;
17530 break;
17531 case DW_LANG_Pascal83:
17532 cu->language = language_pascal;
17533 break;
17534 case DW_LANG_ObjC:
17535 cu->language = language_objc;
17536 break;
17537 case DW_LANG_Rust:
17538 case DW_LANG_Rust_old:
17539 cu->language = language_rust;
17540 break;
17541 case DW_LANG_Cobol74:
17542 case DW_LANG_Cobol85:
17543 default:
17544 cu->language = language_minimal;
17545 break;
17546 }
17547 cu->language_defn = language_def (cu->language);
17548 }
17549
17550 /* Return the named attribute or NULL if not there. */
17551
17552 static struct attribute *
17553 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17554 {
17555 for (;;)
17556 {
17557 unsigned int i;
17558 struct attribute *spec = NULL;
17559
17560 for (i = 0; i < die->num_attrs; ++i)
17561 {
17562 if (die->attrs[i].name == name)
17563 return &die->attrs[i];
17564 if (die->attrs[i].name == DW_AT_specification
17565 || die->attrs[i].name == DW_AT_abstract_origin)
17566 spec = &die->attrs[i];
17567 }
17568
17569 if (!spec)
17570 break;
17571
17572 die = follow_die_ref (die, spec, &cu);
17573 }
17574
17575 return NULL;
17576 }
17577
17578 /* Return the named attribute or NULL if not there,
17579 but do not follow DW_AT_specification, etc.
17580 This is for use in contexts where we're reading .debug_types dies.
17581 Following DW_AT_specification, DW_AT_abstract_origin will take us
17582 back up the chain, and we want to go down. */
17583
17584 static struct attribute *
17585 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17586 {
17587 unsigned int i;
17588
17589 for (i = 0; i < die->num_attrs; ++i)
17590 if (die->attrs[i].name == name)
17591 return &die->attrs[i];
17592
17593 return NULL;
17594 }
17595
17596 /* Return the string associated with a string-typed attribute, or NULL if it
17597 is either not found or is of an incorrect type. */
17598
17599 static const char *
17600 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17601 {
17602 struct attribute *attr;
17603 const char *str = NULL;
17604
17605 attr = dwarf2_attr (die, name, cu);
17606
17607 if (attr != NULL)
17608 {
17609 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17610 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17611 str = DW_STRING (attr);
17612 else
17613 complaint (&symfile_complaints,
17614 _("string type expected for attribute %s for "
17615 "DIE at 0x%x in module %s"),
17616 dwarf_attr_name (name), to_underlying (die->sect_off),
17617 objfile_name (cu->objfile));
17618 }
17619
17620 return str;
17621 }
17622
17623 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17624 and holds a non-zero value. This function should only be used for
17625 DW_FORM_flag or DW_FORM_flag_present attributes. */
17626
17627 static int
17628 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17629 {
17630 struct attribute *attr = dwarf2_attr (die, name, cu);
17631
17632 return (attr && DW_UNSND (attr));
17633 }
17634
17635 static int
17636 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17637 {
17638 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17639 which value is non-zero. However, we have to be careful with
17640 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17641 (via dwarf2_flag_true_p) follows this attribute. So we may
17642 end up accidently finding a declaration attribute that belongs
17643 to a different DIE referenced by the specification attribute,
17644 even though the given DIE does not have a declaration attribute. */
17645 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17646 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17647 }
17648
17649 /* Return the die giving the specification for DIE, if there is
17650 one. *SPEC_CU is the CU containing DIE on input, and the CU
17651 containing the return value on output. If there is no
17652 specification, but there is an abstract origin, that is
17653 returned. */
17654
17655 static struct die_info *
17656 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17657 {
17658 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17659 *spec_cu);
17660
17661 if (spec_attr == NULL)
17662 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17663
17664 if (spec_attr == NULL)
17665 return NULL;
17666 else
17667 return follow_die_ref (die, spec_attr, spec_cu);
17668 }
17669
17670 /* Stub for free_line_header to match void * callback types. */
17671
17672 static void
17673 free_line_header_voidp (void *arg)
17674 {
17675 struct line_header *lh = (struct line_header *) arg;
17676
17677 delete lh;
17678 }
17679
17680 void
17681 line_header::add_include_dir (const char *include_dir)
17682 {
17683 if (dwarf_line_debug >= 2)
17684 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17685 include_dirs.size () + 1, include_dir);
17686
17687 include_dirs.push_back (include_dir);
17688 }
17689
17690 void
17691 line_header::add_file_name (const char *name,
17692 dir_index d_index,
17693 unsigned int mod_time,
17694 unsigned int length)
17695 {
17696 if (dwarf_line_debug >= 2)
17697 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17698 (unsigned) file_names.size () + 1, name);
17699
17700 file_names.emplace_back (name, d_index, mod_time, length);
17701 }
17702
17703 /* A convenience function to find the proper .debug_line section for a CU. */
17704
17705 static struct dwarf2_section_info *
17706 get_debug_line_section (struct dwarf2_cu *cu)
17707 {
17708 struct dwarf2_section_info *section;
17709
17710 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17711 DWO file. */
17712 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17713 section = &cu->dwo_unit->dwo_file->sections.line;
17714 else if (cu->per_cu->is_dwz)
17715 {
17716 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17717
17718 section = &dwz->line;
17719 }
17720 else
17721 section = &dwarf2_per_objfile->line;
17722
17723 return section;
17724 }
17725
17726 /* Read directory or file name entry format, starting with byte of
17727 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17728 entries count and the entries themselves in the described entry
17729 format. */
17730
17731 static void
17732 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17733 struct line_header *lh,
17734 const struct comp_unit_head *cu_header,
17735 void (*callback) (struct line_header *lh,
17736 const char *name,
17737 dir_index d_index,
17738 unsigned int mod_time,
17739 unsigned int length))
17740 {
17741 gdb_byte format_count, formati;
17742 ULONGEST data_count, datai;
17743 const gdb_byte *buf = *bufp;
17744 const gdb_byte *format_header_data;
17745 int i;
17746 unsigned int bytes_read;
17747
17748 format_count = read_1_byte (abfd, buf);
17749 buf += 1;
17750 format_header_data = buf;
17751 for (formati = 0; formati < format_count; formati++)
17752 {
17753 read_unsigned_leb128 (abfd, buf, &bytes_read);
17754 buf += bytes_read;
17755 read_unsigned_leb128 (abfd, buf, &bytes_read);
17756 buf += bytes_read;
17757 }
17758
17759 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17760 buf += bytes_read;
17761 for (datai = 0; datai < data_count; datai++)
17762 {
17763 const gdb_byte *format = format_header_data;
17764 struct file_entry fe;
17765
17766 for (formati = 0; formati < format_count; formati++)
17767 {
17768 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17769 format += bytes_read;
17770
17771 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17772 format += bytes_read;
17773
17774 gdb::optional<const char *> string;
17775 gdb::optional<unsigned int> uint;
17776
17777 switch (form)
17778 {
17779 case DW_FORM_string:
17780 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17781 buf += bytes_read;
17782 break;
17783
17784 case DW_FORM_line_strp:
17785 string.emplace (read_indirect_line_string (abfd, buf,
17786 cu_header,
17787 &bytes_read));
17788 buf += bytes_read;
17789 break;
17790
17791 case DW_FORM_data1:
17792 uint.emplace (read_1_byte (abfd, buf));
17793 buf += 1;
17794 break;
17795
17796 case DW_FORM_data2:
17797 uint.emplace (read_2_bytes (abfd, buf));
17798 buf += 2;
17799 break;
17800
17801 case DW_FORM_data4:
17802 uint.emplace (read_4_bytes (abfd, buf));
17803 buf += 4;
17804 break;
17805
17806 case DW_FORM_data8:
17807 uint.emplace (read_8_bytes (abfd, buf));
17808 buf += 8;
17809 break;
17810
17811 case DW_FORM_udata:
17812 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17813 buf += bytes_read;
17814 break;
17815
17816 case DW_FORM_block:
17817 /* It is valid only for DW_LNCT_timestamp which is ignored by
17818 current GDB. */
17819 break;
17820 }
17821
17822 switch (content_type)
17823 {
17824 case DW_LNCT_path:
17825 if (string.has_value ())
17826 fe.name = *string;
17827 break;
17828 case DW_LNCT_directory_index:
17829 if (uint.has_value ())
17830 fe.d_index = (dir_index) *uint;
17831 break;
17832 case DW_LNCT_timestamp:
17833 if (uint.has_value ())
17834 fe.mod_time = *uint;
17835 break;
17836 case DW_LNCT_size:
17837 if (uint.has_value ())
17838 fe.length = *uint;
17839 break;
17840 case DW_LNCT_MD5:
17841 break;
17842 default:
17843 complaint (&symfile_complaints,
17844 _("Unknown format content type %s"),
17845 pulongest (content_type));
17846 }
17847 }
17848
17849 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17850 }
17851
17852 *bufp = buf;
17853 }
17854
17855 /* Read the statement program header starting at OFFSET in
17856 .debug_line, or .debug_line.dwo. Return a pointer
17857 to a struct line_header, allocated using xmalloc.
17858 Returns NULL if there is a problem reading the header, e.g., if it
17859 has a version we don't understand.
17860
17861 NOTE: the strings in the include directory and file name tables of
17862 the returned object point into the dwarf line section buffer,
17863 and must not be freed. */
17864
17865 static line_header_up
17866 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17867 {
17868 const gdb_byte *line_ptr;
17869 unsigned int bytes_read, offset_size;
17870 int i;
17871 const char *cur_dir, *cur_file;
17872 struct dwarf2_section_info *section;
17873 bfd *abfd;
17874
17875 section = get_debug_line_section (cu);
17876 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17877 if (section->buffer == NULL)
17878 {
17879 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17880 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17881 else
17882 complaint (&symfile_complaints, _("missing .debug_line section"));
17883 return 0;
17884 }
17885
17886 /* We can't do this until we know the section is non-empty.
17887 Only then do we know we have such a section. */
17888 abfd = get_section_bfd_owner (section);
17889
17890 /* Make sure that at least there's room for the total_length field.
17891 That could be 12 bytes long, but we're just going to fudge that. */
17892 if (to_underlying (sect_off) + 4 >= section->size)
17893 {
17894 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17895 return 0;
17896 }
17897
17898 line_header_up lh (new line_header ());
17899
17900 lh->sect_off = sect_off;
17901 lh->offset_in_dwz = cu->per_cu->is_dwz;
17902
17903 line_ptr = section->buffer + to_underlying (sect_off);
17904
17905 /* Read in the header. */
17906 lh->total_length =
17907 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17908 &bytes_read, &offset_size);
17909 line_ptr += bytes_read;
17910 if (line_ptr + lh->total_length > (section->buffer + section->size))
17911 {
17912 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17913 return 0;
17914 }
17915 lh->statement_program_end = line_ptr + lh->total_length;
17916 lh->version = read_2_bytes (abfd, line_ptr);
17917 line_ptr += 2;
17918 if (lh->version > 5)
17919 {
17920 /* This is a version we don't understand. The format could have
17921 changed in ways we don't handle properly so just punt. */
17922 complaint (&symfile_complaints,
17923 _("unsupported version in .debug_line section"));
17924 return NULL;
17925 }
17926 if (lh->version >= 5)
17927 {
17928 gdb_byte segment_selector_size;
17929
17930 /* Skip address size. */
17931 read_1_byte (abfd, line_ptr);
17932 line_ptr += 1;
17933
17934 segment_selector_size = read_1_byte (abfd, line_ptr);
17935 line_ptr += 1;
17936 if (segment_selector_size != 0)
17937 {
17938 complaint (&symfile_complaints,
17939 _("unsupported segment selector size %u "
17940 "in .debug_line section"),
17941 segment_selector_size);
17942 return NULL;
17943 }
17944 }
17945 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17946 line_ptr += offset_size;
17947 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17948 line_ptr += 1;
17949 if (lh->version >= 4)
17950 {
17951 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17952 line_ptr += 1;
17953 }
17954 else
17955 lh->maximum_ops_per_instruction = 1;
17956
17957 if (lh->maximum_ops_per_instruction == 0)
17958 {
17959 lh->maximum_ops_per_instruction = 1;
17960 complaint (&symfile_complaints,
17961 _("invalid maximum_ops_per_instruction "
17962 "in `.debug_line' section"));
17963 }
17964
17965 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17966 line_ptr += 1;
17967 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17968 line_ptr += 1;
17969 lh->line_range = read_1_byte (abfd, line_ptr);
17970 line_ptr += 1;
17971 lh->opcode_base = read_1_byte (abfd, line_ptr);
17972 line_ptr += 1;
17973 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
17974
17975 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17976 for (i = 1; i < lh->opcode_base; ++i)
17977 {
17978 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17979 line_ptr += 1;
17980 }
17981
17982 if (lh->version >= 5)
17983 {
17984 /* Read directory table. */
17985 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
17986 [] (struct line_header *lh, const char *name,
17987 dir_index d_index, unsigned int mod_time,
17988 unsigned int length)
17989 {
17990 lh->add_include_dir (name);
17991 });
17992
17993 /* Read file name table. */
17994 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
17995 [] (struct line_header *lh, const char *name,
17996 dir_index d_index, unsigned int mod_time,
17997 unsigned int length)
17998 {
17999 lh->add_file_name (name, d_index, mod_time, length);
18000 });
18001 }
18002 else
18003 {
18004 /* Read directory table. */
18005 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18006 {
18007 line_ptr += bytes_read;
18008 lh->add_include_dir (cur_dir);
18009 }
18010 line_ptr += bytes_read;
18011
18012 /* Read file name table. */
18013 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18014 {
18015 unsigned int mod_time, length;
18016 dir_index d_index;
18017
18018 line_ptr += bytes_read;
18019 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18020 line_ptr += bytes_read;
18021 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18022 line_ptr += bytes_read;
18023 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18024 line_ptr += bytes_read;
18025
18026 lh->add_file_name (cur_file, d_index, mod_time, length);
18027 }
18028 line_ptr += bytes_read;
18029 }
18030 lh->statement_program_start = line_ptr;
18031
18032 if (line_ptr > (section->buffer + section->size))
18033 complaint (&symfile_complaints,
18034 _("line number info header doesn't "
18035 "fit in `.debug_line' section"));
18036
18037 return lh;
18038 }
18039
18040 /* Subroutine of dwarf_decode_lines to simplify it.
18041 Return the file name of the psymtab for included file FILE_INDEX
18042 in line header LH of PST.
18043 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18044 If space for the result is malloc'd, it will be freed by a cleanup.
18045 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18046
18047 The function creates dangling cleanup registration. */
18048
18049 static const char *
18050 psymtab_include_file_name (const struct line_header *lh, int file_index,
18051 const struct partial_symtab *pst,
18052 const char *comp_dir)
18053 {
18054 const file_entry &fe = lh->file_names[file_index];
18055 const char *include_name = fe.name;
18056 const char *include_name_to_compare = include_name;
18057 const char *pst_filename;
18058 char *copied_name = NULL;
18059 int file_is_pst;
18060
18061 const char *dir_name = fe.include_dir (lh);
18062
18063 if (!IS_ABSOLUTE_PATH (include_name)
18064 && (dir_name != NULL || comp_dir != NULL))
18065 {
18066 /* Avoid creating a duplicate psymtab for PST.
18067 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18068 Before we do the comparison, however, we need to account
18069 for DIR_NAME and COMP_DIR.
18070 First prepend dir_name (if non-NULL). If we still don't
18071 have an absolute path prepend comp_dir (if non-NULL).
18072 However, the directory we record in the include-file's
18073 psymtab does not contain COMP_DIR (to match the
18074 corresponding symtab(s)).
18075
18076 Example:
18077
18078 bash$ cd /tmp
18079 bash$ gcc -g ./hello.c
18080 include_name = "hello.c"
18081 dir_name = "."
18082 DW_AT_comp_dir = comp_dir = "/tmp"
18083 DW_AT_name = "./hello.c"
18084
18085 */
18086
18087 if (dir_name != NULL)
18088 {
18089 char *tem = concat (dir_name, SLASH_STRING,
18090 include_name, (char *)NULL);
18091
18092 make_cleanup (xfree, tem);
18093 include_name = tem;
18094 include_name_to_compare = include_name;
18095 }
18096 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18097 {
18098 char *tem = concat (comp_dir, SLASH_STRING,
18099 include_name, (char *)NULL);
18100
18101 make_cleanup (xfree, tem);
18102 include_name_to_compare = tem;
18103 }
18104 }
18105
18106 pst_filename = pst->filename;
18107 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18108 {
18109 copied_name = concat (pst->dirname, SLASH_STRING,
18110 pst_filename, (char *)NULL);
18111 pst_filename = copied_name;
18112 }
18113
18114 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18115
18116 if (copied_name != NULL)
18117 xfree (copied_name);
18118
18119 if (file_is_pst)
18120 return NULL;
18121 return include_name;
18122 }
18123
18124 /* State machine to track the state of the line number program. */
18125
18126 class lnp_state_machine
18127 {
18128 public:
18129 /* Initialize a machine state for the start of a line number
18130 program. */
18131 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18132
18133 file_entry *current_file ()
18134 {
18135 /* lh->file_names is 0-based, but the file name numbers in the
18136 statement program are 1-based. */
18137 return m_line_header->file_name_at (m_file);
18138 }
18139
18140 /* Record the line in the state machine. END_SEQUENCE is true if
18141 we're processing the end of a sequence. */
18142 void record_line (bool end_sequence);
18143
18144 /* Check address and if invalid nop-out the rest of the lines in this
18145 sequence. */
18146 void check_line_address (struct dwarf2_cu *cu,
18147 const gdb_byte *line_ptr,
18148 CORE_ADDR lowpc, CORE_ADDR address);
18149
18150 void handle_set_discriminator (unsigned int discriminator)
18151 {
18152 m_discriminator = discriminator;
18153 m_line_has_non_zero_discriminator |= discriminator != 0;
18154 }
18155
18156 /* Handle DW_LNE_set_address. */
18157 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18158 {
18159 m_op_index = 0;
18160 address += baseaddr;
18161 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18162 }
18163
18164 /* Handle DW_LNS_advance_pc. */
18165 void handle_advance_pc (CORE_ADDR adjust);
18166
18167 /* Handle a special opcode. */
18168 void handle_special_opcode (unsigned char op_code);
18169
18170 /* Handle DW_LNS_advance_line. */
18171 void handle_advance_line (int line_delta)
18172 {
18173 advance_line (line_delta);
18174 }
18175
18176 /* Handle DW_LNS_set_file. */
18177 void handle_set_file (file_name_index file);
18178
18179 /* Handle DW_LNS_negate_stmt. */
18180 void handle_negate_stmt ()
18181 {
18182 m_is_stmt = !m_is_stmt;
18183 }
18184
18185 /* Handle DW_LNS_const_add_pc. */
18186 void handle_const_add_pc ();
18187
18188 /* Handle DW_LNS_fixed_advance_pc. */
18189 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18190 {
18191 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18192 m_op_index = 0;
18193 }
18194
18195 /* Handle DW_LNS_copy. */
18196 void handle_copy ()
18197 {
18198 record_line (false);
18199 m_discriminator = 0;
18200 }
18201
18202 /* Handle DW_LNE_end_sequence. */
18203 void handle_end_sequence ()
18204 {
18205 m_record_line_callback = ::record_line;
18206 }
18207
18208 private:
18209 /* Advance the line by LINE_DELTA. */
18210 void advance_line (int line_delta)
18211 {
18212 m_line += line_delta;
18213
18214 if (line_delta != 0)
18215 m_line_has_non_zero_discriminator = m_discriminator != 0;
18216 }
18217
18218 gdbarch *m_gdbarch;
18219
18220 /* True if we're recording lines.
18221 Otherwise we're building partial symtabs and are just interested in
18222 finding include files mentioned by the line number program. */
18223 bool m_record_lines_p;
18224
18225 /* The line number header. */
18226 line_header *m_line_header;
18227
18228 /* These are part of the standard DWARF line number state machine,
18229 and initialized according to the DWARF spec. */
18230
18231 unsigned char m_op_index = 0;
18232 /* The line table index (1-based) of the current file. */
18233 file_name_index m_file = (file_name_index) 1;
18234 unsigned int m_line = 1;
18235
18236 /* These are initialized in the constructor. */
18237
18238 CORE_ADDR m_address;
18239 bool m_is_stmt;
18240 unsigned int m_discriminator;
18241
18242 /* Additional bits of state we need to track. */
18243
18244 /* The last file that we called dwarf2_start_subfile for.
18245 This is only used for TLLs. */
18246 unsigned int m_last_file = 0;
18247 /* The last file a line number was recorded for. */
18248 struct subfile *m_last_subfile = NULL;
18249
18250 /* The function to call to record a line. */
18251 record_line_ftype *m_record_line_callback = NULL;
18252
18253 /* The last line number that was recorded, used to coalesce
18254 consecutive entries for the same line. This can happen, for
18255 example, when discriminators are present. PR 17276. */
18256 unsigned int m_last_line = 0;
18257 bool m_line_has_non_zero_discriminator = false;
18258 };
18259
18260 void
18261 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18262 {
18263 CORE_ADDR addr_adj = (((m_op_index + adjust)
18264 / m_line_header->maximum_ops_per_instruction)
18265 * m_line_header->minimum_instruction_length);
18266 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18267 m_op_index = ((m_op_index + adjust)
18268 % m_line_header->maximum_ops_per_instruction);
18269 }
18270
18271 void
18272 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18273 {
18274 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18275 CORE_ADDR addr_adj = (((m_op_index
18276 + (adj_opcode / m_line_header->line_range))
18277 / m_line_header->maximum_ops_per_instruction)
18278 * m_line_header->minimum_instruction_length);
18279 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18280 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18281 % m_line_header->maximum_ops_per_instruction);
18282
18283 int line_delta = (m_line_header->line_base
18284 + (adj_opcode % m_line_header->line_range));
18285 advance_line (line_delta);
18286 record_line (false);
18287 m_discriminator = 0;
18288 }
18289
18290 void
18291 lnp_state_machine::handle_set_file (file_name_index file)
18292 {
18293 m_file = file;
18294
18295 const file_entry *fe = current_file ();
18296 if (fe == NULL)
18297 dwarf2_debug_line_missing_file_complaint ();
18298 else if (m_record_lines_p)
18299 {
18300 const char *dir = fe->include_dir (m_line_header);
18301
18302 m_last_subfile = current_subfile;
18303 m_line_has_non_zero_discriminator = m_discriminator != 0;
18304 dwarf2_start_subfile (fe->name, dir);
18305 }
18306 }
18307
18308 void
18309 lnp_state_machine::handle_const_add_pc ()
18310 {
18311 CORE_ADDR adjust
18312 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18313
18314 CORE_ADDR addr_adj
18315 = (((m_op_index + adjust)
18316 / m_line_header->maximum_ops_per_instruction)
18317 * m_line_header->minimum_instruction_length);
18318
18319 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18320 m_op_index = ((m_op_index + adjust)
18321 % m_line_header->maximum_ops_per_instruction);
18322 }
18323
18324 /* Ignore this record_line request. */
18325
18326 static void
18327 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18328 {
18329 return;
18330 }
18331
18332 /* Return non-zero if we should add LINE to the line number table.
18333 LINE is the line to add, LAST_LINE is the last line that was added,
18334 LAST_SUBFILE is the subfile for LAST_LINE.
18335 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18336 had a non-zero discriminator.
18337
18338 We have to be careful in the presence of discriminators.
18339 E.g., for this line:
18340
18341 for (i = 0; i < 100000; i++);
18342
18343 clang can emit four line number entries for that one line,
18344 each with a different discriminator.
18345 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18346
18347 However, we want gdb to coalesce all four entries into one.
18348 Otherwise the user could stepi into the middle of the line and
18349 gdb would get confused about whether the pc really was in the
18350 middle of the line.
18351
18352 Things are further complicated by the fact that two consecutive
18353 line number entries for the same line is a heuristic used by gcc
18354 to denote the end of the prologue. So we can't just discard duplicate
18355 entries, we have to be selective about it. The heuristic we use is
18356 that we only collapse consecutive entries for the same line if at least
18357 one of those entries has a non-zero discriminator. PR 17276.
18358
18359 Note: Addresses in the line number state machine can never go backwards
18360 within one sequence, thus this coalescing is ok. */
18361
18362 static int
18363 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18364 int line_has_non_zero_discriminator,
18365 struct subfile *last_subfile)
18366 {
18367 if (current_subfile != last_subfile)
18368 return 1;
18369 if (line != last_line)
18370 return 1;
18371 /* Same line for the same file that we've seen already.
18372 As a last check, for pr 17276, only record the line if the line
18373 has never had a non-zero discriminator. */
18374 if (!line_has_non_zero_discriminator)
18375 return 1;
18376 return 0;
18377 }
18378
18379 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18380 in the line table of subfile SUBFILE. */
18381
18382 static void
18383 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18384 unsigned int line, CORE_ADDR address,
18385 record_line_ftype p_record_line)
18386 {
18387 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18388
18389 if (dwarf_line_debug)
18390 {
18391 fprintf_unfiltered (gdb_stdlog,
18392 "Recording line %u, file %s, address %s\n",
18393 line, lbasename (subfile->name),
18394 paddress (gdbarch, address));
18395 }
18396
18397 (*p_record_line) (subfile, line, addr);
18398 }
18399
18400 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18401 Mark the end of a set of line number records.
18402 The arguments are the same as for dwarf_record_line_1.
18403 If SUBFILE is NULL the request is ignored. */
18404
18405 static void
18406 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18407 CORE_ADDR address, record_line_ftype p_record_line)
18408 {
18409 if (subfile == NULL)
18410 return;
18411
18412 if (dwarf_line_debug)
18413 {
18414 fprintf_unfiltered (gdb_stdlog,
18415 "Finishing current line, file %s, address %s\n",
18416 lbasename (subfile->name),
18417 paddress (gdbarch, address));
18418 }
18419
18420 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18421 }
18422
18423 void
18424 lnp_state_machine::record_line (bool end_sequence)
18425 {
18426 if (dwarf_line_debug)
18427 {
18428 fprintf_unfiltered (gdb_stdlog,
18429 "Processing actual line %u: file %u,"
18430 " address %s, is_stmt %u, discrim %u\n",
18431 m_line, to_underlying (m_file),
18432 paddress (m_gdbarch, m_address),
18433 m_is_stmt, m_discriminator);
18434 }
18435
18436 file_entry *fe = current_file ();
18437
18438 if (fe == NULL)
18439 dwarf2_debug_line_missing_file_complaint ();
18440 /* For now we ignore lines not starting on an instruction boundary.
18441 But not when processing end_sequence for compatibility with the
18442 previous version of the code. */
18443 else if (m_op_index == 0 || end_sequence)
18444 {
18445 fe->included_p = 1;
18446 if (m_record_lines_p && m_is_stmt)
18447 {
18448 if (m_last_subfile != current_subfile || end_sequence)
18449 {
18450 dwarf_finish_line (m_gdbarch, m_last_subfile,
18451 m_address, m_record_line_callback);
18452 }
18453
18454 if (!end_sequence)
18455 {
18456 if (dwarf_record_line_p (m_line, m_last_line,
18457 m_line_has_non_zero_discriminator,
18458 m_last_subfile))
18459 {
18460 dwarf_record_line_1 (m_gdbarch, current_subfile,
18461 m_line, m_address,
18462 m_record_line_callback);
18463 }
18464 m_last_subfile = current_subfile;
18465 m_last_line = m_line;
18466 }
18467 }
18468 }
18469 }
18470
18471 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18472 bool record_lines_p)
18473 {
18474 m_gdbarch = arch;
18475 m_record_lines_p = record_lines_p;
18476 m_line_header = lh;
18477
18478 m_record_line_callback = ::record_line;
18479
18480 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18481 was a line entry for it so that the backend has a chance to adjust it
18482 and also record it in case it needs it. This is currently used by MIPS
18483 code, cf. `mips_adjust_dwarf2_line'. */
18484 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18485 m_is_stmt = lh->default_is_stmt;
18486 m_discriminator = 0;
18487 }
18488
18489 void
18490 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18491 const gdb_byte *line_ptr,
18492 CORE_ADDR lowpc, CORE_ADDR address)
18493 {
18494 /* If address < lowpc then it's not a usable value, it's outside the
18495 pc range of the CU. However, we restrict the test to only address
18496 values of zero to preserve GDB's previous behaviour which is to
18497 handle the specific case of a function being GC'd by the linker. */
18498
18499 if (address == 0 && address < lowpc)
18500 {
18501 /* This line table is for a function which has been
18502 GCd by the linker. Ignore it. PR gdb/12528 */
18503
18504 struct objfile *objfile = cu->objfile;
18505 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18506
18507 complaint (&symfile_complaints,
18508 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18509 line_offset, objfile_name (objfile));
18510 m_record_line_callback = noop_record_line;
18511 /* Note: record_line_callback is left as noop_record_line until
18512 we see DW_LNE_end_sequence. */
18513 }
18514 }
18515
18516 /* Subroutine of dwarf_decode_lines to simplify it.
18517 Process the line number information in LH.
18518 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18519 program in order to set included_p for every referenced header. */
18520
18521 static void
18522 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18523 const int decode_for_pst_p, CORE_ADDR lowpc)
18524 {
18525 const gdb_byte *line_ptr, *extended_end;
18526 const gdb_byte *line_end;
18527 unsigned int bytes_read, extended_len;
18528 unsigned char op_code, extended_op;
18529 CORE_ADDR baseaddr;
18530 struct objfile *objfile = cu->objfile;
18531 bfd *abfd = objfile->obfd;
18532 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18533 /* True if we're recording line info (as opposed to building partial
18534 symtabs and just interested in finding include files mentioned by
18535 the line number program). */
18536 bool record_lines_p = !decode_for_pst_p;
18537
18538 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18539
18540 line_ptr = lh->statement_program_start;
18541 line_end = lh->statement_program_end;
18542
18543 /* Read the statement sequences until there's nothing left. */
18544 while (line_ptr < line_end)
18545 {
18546 /* The DWARF line number program state machine. Reset the state
18547 machine at the start of each sequence. */
18548 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18549 bool end_sequence = false;
18550
18551 if (record_lines_p)
18552 {
18553 /* Start a subfile for the current file of the state
18554 machine. */
18555 const file_entry *fe = state_machine.current_file ();
18556
18557 if (fe != NULL)
18558 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18559 }
18560
18561 /* Decode the table. */
18562 while (line_ptr < line_end && !end_sequence)
18563 {
18564 op_code = read_1_byte (abfd, line_ptr);
18565 line_ptr += 1;
18566
18567 if (op_code >= lh->opcode_base)
18568 {
18569 /* Special opcode. */
18570 state_machine.handle_special_opcode (op_code);
18571 }
18572 else switch (op_code)
18573 {
18574 case DW_LNS_extended_op:
18575 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18576 &bytes_read);
18577 line_ptr += bytes_read;
18578 extended_end = line_ptr + extended_len;
18579 extended_op = read_1_byte (abfd, line_ptr);
18580 line_ptr += 1;
18581 switch (extended_op)
18582 {
18583 case DW_LNE_end_sequence:
18584 state_machine.handle_end_sequence ();
18585 end_sequence = true;
18586 break;
18587 case DW_LNE_set_address:
18588 {
18589 CORE_ADDR address
18590 = read_address (abfd, line_ptr, cu, &bytes_read);
18591 line_ptr += bytes_read;
18592
18593 state_machine.check_line_address (cu, line_ptr,
18594 lowpc, address);
18595 state_machine.handle_set_address (baseaddr, address);
18596 }
18597 break;
18598 case DW_LNE_define_file:
18599 {
18600 const char *cur_file;
18601 unsigned int mod_time, length;
18602 dir_index dindex;
18603
18604 cur_file = read_direct_string (abfd, line_ptr,
18605 &bytes_read);
18606 line_ptr += bytes_read;
18607 dindex = (dir_index)
18608 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18609 line_ptr += bytes_read;
18610 mod_time =
18611 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18612 line_ptr += bytes_read;
18613 length =
18614 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18615 line_ptr += bytes_read;
18616 lh->add_file_name (cur_file, dindex, mod_time, length);
18617 }
18618 break;
18619 case DW_LNE_set_discriminator:
18620 {
18621 /* The discriminator is not interesting to the
18622 debugger; just ignore it. We still need to
18623 check its value though:
18624 if there are consecutive entries for the same
18625 (non-prologue) line we want to coalesce them.
18626 PR 17276. */
18627 unsigned int discr
18628 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18629 line_ptr += bytes_read;
18630
18631 state_machine.handle_set_discriminator (discr);
18632 }
18633 break;
18634 default:
18635 complaint (&symfile_complaints,
18636 _("mangled .debug_line section"));
18637 return;
18638 }
18639 /* Make sure that we parsed the extended op correctly. If e.g.
18640 we expected a different address size than the producer used,
18641 we may have read the wrong number of bytes. */
18642 if (line_ptr != extended_end)
18643 {
18644 complaint (&symfile_complaints,
18645 _("mangled .debug_line section"));
18646 return;
18647 }
18648 break;
18649 case DW_LNS_copy:
18650 state_machine.handle_copy ();
18651 break;
18652 case DW_LNS_advance_pc:
18653 {
18654 CORE_ADDR adjust
18655 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18656 line_ptr += bytes_read;
18657
18658 state_machine.handle_advance_pc (adjust);
18659 }
18660 break;
18661 case DW_LNS_advance_line:
18662 {
18663 int line_delta
18664 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18665 line_ptr += bytes_read;
18666
18667 state_machine.handle_advance_line (line_delta);
18668 }
18669 break;
18670 case DW_LNS_set_file:
18671 {
18672 file_name_index file
18673 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18674 &bytes_read);
18675 line_ptr += bytes_read;
18676
18677 state_machine.handle_set_file (file);
18678 }
18679 break;
18680 case DW_LNS_set_column:
18681 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18682 line_ptr += bytes_read;
18683 break;
18684 case DW_LNS_negate_stmt:
18685 state_machine.handle_negate_stmt ();
18686 break;
18687 case DW_LNS_set_basic_block:
18688 break;
18689 /* Add to the address register of the state machine the
18690 address increment value corresponding to special opcode
18691 255. I.e., this value is scaled by the minimum
18692 instruction length since special opcode 255 would have
18693 scaled the increment. */
18694 case DW_LNS_const_add_pc:
18695 state_machine.handle_const_add_pc ();
18696 break;
18697 case DW_LNS_fixed_advance_pc:
18698 {
18699 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18700 line_ptr += 2;
18701
18702 state_machine.handle_fixed_advance_pc (addr_adj);
18703 }
18704 break;
18705 default:
18706 {
18707 /* Unknown standard opcode, ignore it. */
18708 int i;
18709
18710 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18711 {
18712 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18713 line_ptr += bytes_read;
18714 }
18715 }
18716 }
18717 }
18718
18719 if (!end_sequence)
18720 dwarf2_debug_line_missing_end_sequence_complaint ();
18721
18722 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18723 in which case we still finish recording the last line). */
18724 state_machine.record_line (true);
18725 }
18726 }
18727
18728 /* Decode the Line Number Program (LNP) for the given line_header
18729 structure and CU. The actual information extracted and the type
18730 of structures created from the LNP depends on the value of PST.
18731
18732 1. If PST is NULL, then this procedure uses the data from the program
18733 to create all necessary symbol tables, and their linetables.
18734
18735 2. If PST is not NULL, this procedure reads the program to determine
18736 the list of files included by the unit represented by PST, and
18737 builds all the associated partial symbol tables.
18738
18739 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18740 It is used for relative paths in the line table.
18741 NOTE: When processing partial symtabs (pst != NULL),
18742 comp_dir == pst->dirname.
18743
18744 NOTE: It is important that psymtabs have the same file name (via strcmp)
18745 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18746 symtab we don't use it in the name of the psymtabs we create.
18747 E.g. expand_line_sal requires this when finding psymtabs to expand.
18748 A good testcase for this is mb-inline.exp.
18749
18750 LOWPC is the lowest address in CU (or 0 if not known).
18751
18752 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18753 for its PC<->lines mapping information. Otherwise only the filename
18754 table is read in. */
18755
18756 static void
18757 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18758 struct dwarf2_cu *cu, struct partial_symtab *pst,
18759 CORE_ADDR lowpc, int decode_mapping)
18760 {
18761 struct objfile *objfile = cu->objfile;
18762 const int decode_for_pst_p = (pst != NULL);
18763
18764 if (decode_mapping)
18765 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18766
18767 if (decode_for_pst_p)
18768 {
18769 int file_index;
18770
18771 /* Now that we're done scanning the Line Header Program, we can
18772 create the psymtab of each included file. */
18773 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18774 if (lh->file_names[file_index].included_p == 1)
18775 {
18776 const char *include_name =
18777 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18778 if (include_name != NULL)
18779 dwarf2_create_include_psymtab (include_name, pst, objfile);
18780 }
18781 }
18782 else
18783 {
18784 /* Make sure a symtab is created for every file, even files
18785 which contain only variables (i.e. no code with associated
18786 line numbers). */
18787 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18788 int i;
18789
18790 for (i = 0; i < lh->file_names.size (); i++)
18791 {
18792 file_entry &fe = lh->file_names[i];
18793
18794 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18795
18796 if (current_subfile->symtab == NULL)
18797 {
18798 current_subfile->symtab
18799 = allocate_symtab (cust, current_subfile->name);
18800 }
18801 fe.symtab = current_subfile->symtab;
18802 }
18803 }
18804 }
18805
18806 /* Start a subfile for DWARF. FILENAME is the name of the file and
18807 DIRNAME the name of the source directory which contains FILENAME
18808 or NULL if not known.
18809 This routine tries to keep line numbers from identical absolute and
18810 relative file names in a common subfile.
18811
18812 Using the `list' example from the GDB testsuite, which resides in
18813 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18814 of /srcdir/list0.c yields the following debugging information for list0.c:
18815
18816 DW_AT_name: /srcdir/list0.c
18817 DW_AT_comp_dir: /compdir
18818 files.files[0].name: list0.h
18819 files.files[0].dir: /srcdir
18820 files.files[1].name: list0.c
18821 files.files[1].dir: /srcdir
18822
18823 The line number information for list0.c has to end up in a single
18824 subfile, so that `break /srcdir/list0.c:1' works as expected.
18825 start_subfile will ensure that this happens provided that we pass the
18826 concatenation of files.files[1].dir and files.files[1].name as the
18827 subfile's name. */
18828
18829 static void
18830 dwarf2_start_subfile (const char *filename, const char *dirname)
18831 {
18832 char *copy = NULL;
18833
18834 /* In order not to lose the line information directory,
18835 we concatenate it to the filename when it makes sense.
18836 Note that the Dwarf3 standard says (speaking of filenames in line
18837 information): ``The directory index is ignored for file names
18838 that represent full path names''. Thus ignoring dirname in the
18839 `else' branch below isn't an issue. */
18840
18841 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18842 {
18843 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18844 filename = copy;
18845 }
18846
18847 start_subfile (filename);
18848
18849 if (copy != NULL)
18850 xfree (copy);
18851 }
18852
18853 /* Start a symtab for DWARF.
18854 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18855
18856 static struct compunit_symtab *
18857 dwarf2_start_symtab (struct dwarf2_cu *cu,
18858 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18859 {
18860 struct compunit_symtab *cust
18861 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18862
18863 record_debugformat ("DWARF 2");
18864 record_producer (cu->producer);
18865
18866 /* We assume that we're processing GCC output. */
18867 processing_gcc_compilation = 2;
18868
18869 cu->processing_has_namespace_info = 0;
18870
18871 return cust;
18872 }
18873
18874 static void
18875 var_decode_location (struct attribute *attr, struct symbol *sym,
18876 struct dwarf2_cu *cu)
18877 {
18878 struct objfile *objfile = cu->objfile;
18879 struct comp_unit_head *cu_header = &cu->header;
18880
18881 /* NOTE drow/2003-01-30: There used to be a comment and some special
18882 code here to turn a symbol with DW_AT_external and a
18883 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18884 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18885 with some versions of binutils) where shared libraries could have
18886 relocations against symbols in their debug information - the
18887 minimal symbol would have the right address, but the debug info
18888 would not. It's no longer necessary, because we will explicitly
18889 apply relocations when we read in the debug information now. */
18890
18891 /* A DW_AT_location attribute with no contents indicates that a
18892 variable has been optimized away. */
18893 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18894 {
18895 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18896 return;
18897 }
18898
18899 /* Handle one degenerate form of location expression specially, to
18900 preserve GDB's previous behavior when section offsets are
18901 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18902 then mark this symbol as LOC_STATIC. */
18903
18904 if (attr_form_is_block (attr)
18905 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18906 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18907 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18908 && (DW_BLOCK (attr)->size
18909 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18910 {
18911 unsigned int dummy;
18912
18913 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18914 SYMBOL_VALUE_ADDRESS (sym) =
18915 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18916 else
18917 SYMBOL_VALUE_ADDRESS (sym) =
18918 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18919 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18920 fixup_symbol_section (sym, objfile);
18921 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18922 SYMBOL_SECTION (sym));
18923 return;
18924 }
18925
18926 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18927 expression evaluator, and use LOC_COMPUTED only when necessary
18928 (i.e. when the value of a register or memory location is
18929 referenced, or a thread-local block, etc.). Then again, it might
18930 not be worthwhile. I'm assuming that it isn't unless performance
18931 or memory numbers show me otherwise. */
18932
18933 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18934
18935 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18936 cu->has_loclist = 1;
18937 }
18938
18939 /* Given a pointer to a DWARF information entry, figure out if we need
18940 to make a symbol table entry for it, and if so, create a new entry
18941 and return a pointer to it.
18942 If TYPE is NULL, determine symbol type from the die, otherwise
18943 used the passed type.
18944 If SPACE is not NULL, use it to hold the new symbol. If it is
18945 NULL, allocate a new symbol on the objfile's obstack. */
18946
18947 static struct symbol *
18948 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18949 struct symbol *space)
18950 {
18951 struct objfile *objfile = cu->objfile;
18952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18953 struct symbol *sym = NULL;
18954 const char *name;
18955 struct attribute *attr = NULL;
18956 struct attribute *attr2 = NULL;
18957 CORE_ADDR baseaddr;
18958 struct pending **list_to_add = NULL;
18959
18960 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18961
18962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18963
18964 name = dwarf2_name (die, cu);
18965 if (name)
18966 {
18967 const char *linkagename;
18968 int suppress_add = 0;
18969
18970 if (space)
18971 sym = space;
18972 else
18973 sym = allocate_symbol (objfile);
18974 OBJSTAT (objfile, n_syms++);
18975
18976 /* Cache this symbol's name and the name's demangled form (if any). */
18977 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18978 linkagename = dwarf2_physname (name, die, cu);
18979 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18980
18981 /* Fortran does not have mangling standard and the mangling does differ
18982 between gfortran, iFort etc. */
18983 if (cu->language == language_fortran
18984 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18985 symbol_set_demangled_name (&(sym->ginfo),
18986 dwarf2_full_name (name, die, cu),
18987 NULL);
18988
18989 /* Default assumptions.
18990 Use the passed type or decode it from the die. */
18991 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18992 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18993 if (type != NULL)
18994 SYMBOL_TYPE (sym) = type;
18995 else
18996 SYMBOL_TYPE (sym) = die_type (die, cu);
18997 attr = dwarf2_attr (die,
18998 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18999 cu);
19000 if (attr)
19001 {
19002 SYMBOL_LINE (sym) = DW_UNSND (attr);
19003 }
19004
19005 attr = dwarf2_attr (die,
19006 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19007 cu);
19008 if (attr)
19009 {
19010 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19011 struct file_entry *fe;
19012
19013 if (cu->line_header != NULL)
19014 fe = cu->line_header->file_name_at (file_index);
19015 else
19016 fe = NULL;
19017
19018 if (fe == NULL)
19019 complaint (&symfile_complaints,
19020 _("file index out of range"));
19021 else
19022 symbol_set_symtab (sym, fe->symtab);
19023 }
19024
19025 switch (die->tag)
19026 {
19027 case DW_TAG_label:
19028 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19029 if (attr)
19030 {
19031 CORE_ADDR addr;
19032
19033 addr = attr_value_as_address (attr);
19034 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19035 SYMBOL_VALUE_ADDRESS (sym) = addr;
19036 }
19037 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19038 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19039 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19040 add_symbol_to_list (sym, cu->list_in_scope);
19041 break;
19042 case DW_TAG_subprogram:
19043 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19044 finish_block. */
19045 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19046 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19047 if ((attr2 && (DW_UNSND (attr2) != 0))
19048 || cu->language == language_ada)
19049 {
19050 /* Subprograms marked external are stored as a global symbol.
19051 Ada subprograms, whether marked external or not, are always
19052 stored as a global symbol, because we want to be able to
19053 access them globally. For instance, we want to be able
19054 to break on a nested subprogram without having to
19055 specify the context. */
19056 list_to_add = &global_symbols;
19057 }
19058 else
19059 {
19060 list_to_add = cu->list_in_scope;
19061 }
19062 break;
19063 case DW_TAG_inlined_subroutine:
19064 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19065 finish_block. */
19066 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19067 SYMBOL_INLINED (sym) = 1;
19068 list_to_add = cu->list_in_scope;
19069 break;
19070 case DW_TAG_template_value_param:
19071 suppress_add = 1;
19072 /* Fall through. */
19073 case DW_TAG_constant:
19074 case DW_TAG_variable:
19075 case DW_TAG_member:
19076 /* Compilation with minimal debug info may result in
19077 variables with missing type entries. Change the
19078 misleading `void' type to something sensible. */
19079 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19080 SYMBOL_TYPE (sym)
19081 = objfile_type (objfile)->nodebug_data_symbol;
19082
19083 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19084 /* In the case of DW_TAG_member, we should only be called for
19085 static const members. */
19086 if (die->tag == DW_TAG_member)
19087 {
19088 /* dwarf2_add_field uses die_is_declaration,
19089 so we do the same. */
19090 gdb_assert (die_is_declaration (die, cu));
19091 gdb_assert (attr);
19092 }
19093 if (attr)
19094 {
19095 dwarf2_const_value (attr, sym, cu);
19096 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19097 if (!suppress_add)
19098 {
19099 if (attr2 && (DW_UNSND (attr2) != 0))
19100 list_to_add = &global_symbols;
19101 else
19102 list_to_add = cu->list_in_scope;
19103 }
19104 break;
19105 }
19106 attr = dwarf2_attr (die, DW_AT_location, cu);
19107 if (attr)
19108 {
19109 var_decode_location (attr, sym, cu);
19110 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19111
19112 /* Fortran explicitly imports any global symbols to the local
19113 scope by DW_TAG_common_block. */
19114 if (cu->language == language_fortran && die->parent
19115 && die->parent->tag == DW_TAG_common_block)
19116 attr2 = NULL;
19117
19118 if (SYMBOL_CLASS (sym) == LOC_STATIC
19119 && SYMBOL_VALUE_ADDRESS (sym) == 0
19120 && !dwarf2_per_objfile->has_section_at_zero)
19121 {
19122 /* When a static variable is eliminated by the linker,
19123 the corresponding debug information is not stripped
19124 out, but the variable address is set to null;
19125 do not add such variables into symbol table. */
19126 }
19127 else if (attr2 && (DW_UNSND (attr2) != 0))
19128 {
19129 /* Workaround gfortran PR debug/40040 - it uses
19130 DW_AT_location for variables in -fPIC libraries which may
19131 get overriden by other libraries/executable and get
19132 a different address. Resolve it by the minimal symbol
19133 which may come from inferior's executable using copy
19134 relocation. Make this workaround only for gfortran as for
19135 other compilers GDB cannot guess the minimal symbol
19136 Fortran mangling kind. */
19137 if (cu->language == language_fortran && die->parent
19138 && die->parent->tag == DW_TAG_module
19139 && cu->producer
19140 && startswith (cu->producer, "GNU Fortran"))
19141 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19142
19143 /* A variable with DW_AT_external is never static,
19144 but it may be block-scoped. */
19145 list_to_add = (cu->list_in_scope == &file_symbols
19146 ? &global_symbols : cu->list_in_scope);
19147 }
19148 else
19149 list_to_add = cu->list_in_scope;
19150 }
19151 else
19152 {
19153 /* We do not know the address of this symbol.
19154 If it is an external symbol and we have type information
19155 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19156 The address of the variable will then be determined from
19157 the minimal symbol table whenever the variable is
19158 referenced. */
19159 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19160
19161 /* Fortran explicitly imports any global symbols to the local
19162 scope by DW_TAG_common_block. */
19163 if (cu->language == language_fortran && die->parent
19164 && die->parent->tag == DW_TAG_common_block)
19165 {
19166 /* SYMBOL_CLASS doesn't matter here because
19167 read_common_block is going to reset it. */
19168 if (!suppress_add)
19169 list_to_add = cu->list_in_scope;
19170 }
19171 else if (attr2 && (DW_UNSND (attr2) != 0)
19172 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19173 {
19174 /* A variable with DW_AT_external is never static, but it
19175 may be block-scoped. */
19176 list_to_add = (cu->list_in_scope == &file_symbols
19177 ? &global_symbols : cu->list_in_scope);
19178
19179 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19180 }
19181 else if (!die_is_declaration (die, cu))
19182 {
19183 /* Use the default LOC_OPTIMIZED_OUT class. */
19184 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19185 if (!suppress_add)
19186 list_to_add = cu->list_in_scope;
19187 }
19188 }
19189 break;
19190 case DW_TAG_formal_parameter:
19191 /* If we are inside a function, mark this as an argument. If
19192 not, we might be looking at an argument to an inlined function
19193 when we do not have enough information to show inlined frames;
19194 pretend it's a local variable in that case so that the user can
19195 still see it. */
19196 if (context_stack_depth > 0
19197 && context_stack[context_stack_depth - 1].name != NULL)
19198 SYMBOL_IS_ARGUMENT (sym) = 1;
19199 attr = dwarf2_attr (die, DW_AT_location, cu);
19200 if (attr)
19201 {
19202 var_decode_location (attr, sym, cu);
19203 }
19204 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19205 if (attr)
19206 {
19207 dwarf2_const_value (attr, sym, cu);
19208 }
19209
19210 list_to_add = cu->list_in_scope;
19211 break;
19212 case DW_TAG_unspecified_parameters:
19213 /* From varargs functions; gdb doesn't seem to have any
19214 interest in this information, so just ignore it for now.
19215 (FIXME?) */
19216 break;
19217 case DW_TAG_template_type_param:
19218 suppress_add = 1;
19219 /* Fall through. */
19220 case DW_TAG_class_type:
19221 case DW_TAG_interface_type:
19222 case DW_TAG_structure_type:
19223 case DW_TAG_union_type:
19224 case DW_TAG_set_type:
19225 case DW_TAG_enumeration_type:
19226 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19227 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19228
19229 {
19230 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19231 really ever be static objects: otherwise, if you try
19232 to, say, break of a class's method and you're in a file
19233 which doesn't mention that class, it won't work unless
19234 the check for all static symbols in lookup_symbol_aux
19235 saves you. See the OtherFileClass tests in
19236 gdb.c++/namespace.exp. */
19237
19238 if (!suppress_add)
19239 {
19240 list_to_add = (cu->list_in_scope == &file_symbols
19241 && cu->language == language_cplus
19242 ? &global_symbols : cu->list_in_scope);
19243
19244 /* The semantics of C++ state that "struct foo {
19245 ... }" also defines a typedef for "foo". */
19246 if (cu->language == language_cplus
19247 || cu->language == language_ada
19248 || cu->language == language_d
19249 || cu->language == language_rust)
19250 {
19251 /* The symbol's name is already allocated along
19252 with this objfile, so we don't need to
19253 duplicate it for the type. */
19254 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19255 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19256 }
19257 }
19258 }
19259 break;
19260 case DW_TAG_typedef:
19261 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19262 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19263 list_to_add = cu->list_in_scope;
19264 break;
19265 case DW_TAG_base_type:
19266 case DW_TAG_subrange_type:
19267 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19268 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19269 list_to_add = cu->list_in_scope;
19270 break;
19271 case DW_TAG_enumerator:
19272 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19273 if (attr)
19274 {
19275 dwarf2_const_value (attr, sym, cu);
19276 }
19277 {
19278 /* NOTE: carlton/2003-11-10: See comment above in the
19279 DW_TAG_class_type, etc. block. */
19280
19281 list_to_add = (cu->list_in_scope == &file_symbols
19282 && cu->language == language_cplus
19283 ? &global_symbols : cu->list_in_scope);
19284 }
19285 break;
19286 case DW_TAG_imported_declaration:
19287 case DW_TAG_namespace:
19288 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19289 list_to_add = &global_symbols;
19290 break;
19291 case DW_TAG_module:
19292 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19293 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19294 list_to_add = &global_symbols;
19295 break;
19296 case DW_TAG_common_block:
19297 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19298 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19299 add_symbol_to_list (sym, cu->list_in_scope);
19300 break;
19301 default:
19302 /* Not a tag we recognize. Hopefully we aren't processing
19303 trash data, but since we must specifically ignore things
19304 we don't recognize, there is nothing else we should do at
19305 this point. */
19306 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19307 dwarf_tag_name (die->tag));
19308 break;
19309 }
19310
19311 if (suppress_add)
19312 {
19313 sym->hash_next = objfile->template_symbols;
19314 objfile->template_symbols = sym;
19315 list_to_add = NULL;
19316 }
19317
19318 if (list_to_add != NULL)
19319 add_symbol_to_list (sym, list_to_add);
19320
19321 /* For the benefit of old versions of GCC, check for anonymous
19322 namespaces based on the demangled name. */
19323 if (!cu->processing_has_namespace_info
19324 && cu->language == language_cplus)
19325 cp_scan_for_anonymous_namespaces (sym, objfile);
19326 }
19327 return (sym);
19328 }
19329
19330 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19331
19332 static struct symbol *
19333 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19334 {
19335 return new_symbol_full (die, type, cu, NULL);
19336 }
19337
19338 /* Given an attr with a DW_FORM_dataN value in host byte order,
19339 zero-extend it as appropriate for the symbol's type. The DWARF
19340 standard (v4) is not entirely clear about the meaning of using
19341 DW_FORM_dataN for a constant with a signed type, where the type is
19342 wider than the data. The conclusion of a discussion on the DWARF
19343 list was that this is unspecified. We choose to always zero-extend
19344 because that is the interpretation long in use by GCC. */
19345
19346 static gdb_byte *
19347 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19348 struct dwarf2_cu *cu, LONGEST *value, int bits)
19349 {
19350 struct objfile *objfile = cu->objfile;
19351 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19352 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19353 LONGEST l = DW_UNSND (attr);
19354
19355 if (bits < sizeof (*value) * 8)
19356 {
19357 l &= ((LONGEST) 1 << bits) - 1;
19358 *value = l;
19359 }
19360 else if (bits == sizeof (*value) * 8)
19361 *value = l;
19362 else
19363 {
19364 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19365 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19366 return bytes;
19367 }
19368
19369 return NULL;
19370 }
19371
19372 /* Read a constant value from an attribute. Either set *VALUE, or if
19373 the value does not fit in *VALUE, set *BYTES - either already
19374 allocated on the objfile obstack, or newly allocated on OBSTACK,
19375 or, set *BATON, if we translated the constant to a location
19376 expression. */
19377
19378 static void
19379 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19380 const char *name, struct obstack *obstack,
19381 struct dwarf2_cu *cu,
19382 LONGEST *value, const gdb_byte **bytes,
19383 struct dwarf2_locexpr_baton **baton)
19384 {
19385 struct objfile *objfile = cu->objfile;
19386 struct comp_unit_head *cu_header = &cu->header;
19387 struct dwarf_block *blk;
19388 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19389 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19390
19391 *value = 0;
19392 *bytes = NULL;
19393 *baton = NULL;
19394
19395 switch (attr->form)
19396 {
19397 case DW_FORM_addr:
19398 case DW_FORM_GNU_addr_index:
19399 {
19400 gdb_byte *data;
19401
19402 if (TYPE_LENGTH (type) != cu_header->addr_size)
19403 dwarf2_const_value_length_mismatch_complaint (name,
19404 cu_header->addr_size,
19405 TYPE_LENGTH (type));
19406 /* Symbols of this form are reasonably rare, so we just
19407 piggyback on the existing location code rather than writing
19408 a new implementation of symbol_computed_ops. */
19409 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19410 (*baton)->per_cu = cu->per_cu;
19411 gdb_assert ((*baton)->per_cu);
19412
19413 (*baton)->size = 2 + cu_header->addr_size;
19414 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19415 (*baton)->data = data;
19416
19417 data[0] = DW_OP_addr;
19418 store_unsigned_integer (&data[1], cu_header->addr_size,
19419 byte_order, DW_ADDR (attr));
19420 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19421 }
19422 break;
19423 case DW_FORM_string:
19424 case DW_FORM_strp:
19425 case DW_FORM_GNU_str_index:
19426 case DW_FORM_GNU_strp_alt:
19427 /* DW_STRING is already allocated on the objfile obstack, point
19428 directly to it. */
19429 *bytes = (const gdb_byte *) DW_STRING (attr);
19430 break;
19431 case DW_FORM_block1:
19432 case DW_FORM_block2:
19433 case DW_FORM_block4:
19434 case DW_FORM_block:
19435 case DW_FORM_exprloc:
19436 case DW_FORM_data16:
19437 blk = DW_BLOCK (attr);
19438 if (TYPE_LENGTH (type) != blk->size)
19439 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19440 TYPE_LENGTH (type));
19441 *bytes = blk->data;
19442 break;
19443
19444 /* The DW_AT_const_value attributes are supposed to carry the
19445 symbol's value "represented as it would be on the target
19446 architecture." By the time we get here, it's already been
19447 converted to host endianness, so we just need to sign- or
19448 zero-extend it as appropriate. */
19449 case DW_FORM_data1:
19450 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19451 break;
19452 case DW_FORM_data2:
19453 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19454 break;
19455 case DW_FORM_data4:
19456 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19457 break;
19458 case DW_FORM_data8:
19459 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19460 break;
19461
19462 case DW_FORM_sdata:
19463 *value = DW_SND (attr);
19464 break;
19465
19466 case DW_FORM_udata:
19467 *value = DW_UNSND (attr);
19468 break;
19469
19470 default:
19471 complaint (&symfile_complaints,
19472 _("unsupported const value attribute form: '%s'"),
19473 dwarf_form_name (attr->form));
19474 *value = 0;
19475 break;
19476 }
19477 }
19478
19479
19480 /* Copy constant value from an attribute to a symbol. */
19481
19482 static void
19483 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19484 struct dwarf2_cu *cu)
19485 {
19486 struct objfile *objfile = cu->objfile;
19487 LONGEST value;
19488 const gdb_byte *bytes;
19489 struct dwarf2_locexpr_baton *baton;
19490
19491 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19492 SYMBOL_PRINT_NAME (sym),
19493 &objfile->objfile_obstack, cu,
19494 &value, &bytes, &baton);
19495
19496 if (baton != NULL)
19497 {
19498 SYMBOL_LOCATION_BATON (sym) = baton;
19499 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19500 }
19501 else if (bytes != NULL)
19502 {
19503 SYMBOL_VALUE_BYTES (sym) = bytes;
19504 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19505 }
19506 else
19507 {
19508 SYMBOL_VALUE (sym) = value;
19509 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19510 }
19511 }
19512
19513 /* Return the type of the die in question using its DW_AT_type attribute. */
19514
19515 static struct type *
19516 die_type (struct die_info *die, struct dwarf2_cu *cu)
19517 {
19518 struct attribute *type_attr;
19519
19520 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19521 if (!type_attr)
19522 {
19523 /* A missing DW_AT_type represents a void type. */
19524 return objfile_type (cu->objfile)->builtin_void;
19525 }
19526
19527 return lookup_die_type (die, type_attr, cu);
19528 }
19529
19530 /* True iff CU's producer generates GNAT Ada auxiliary information
19531 that allows to find parallel types through that information instead
19532 of having to do expensive parallel lookups by type name. */
19533
19534 static int
19535 need_gnat_info (struct dwarf2_cu *cu)
19536 {
19537 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19538 of GNAT produces this auxiliary information, without any indication
19539 that it is produced. Part of enhancing the FSF version of GNAT
19540 to produce that information will be to put in place an indicator
19541 that we can use in order to determine whether the descriptive type
19542 info is available or not. One suggestion that has been made is
19543 to use a new attribute, attached to the CU die. For now, assume
19544 that the descriptive type info is not available. */
19545 return 0;
19546 }
19547
19548 /* Return the auxiliary type of the die in question using its
19549 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19550 attribute is not present. */
19551
19552 static struct type *
19553 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19554 {
19555 struct attribute *type_attr;
19556
19557 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19558 if (!type_attr)
19559 return NULL;
19560
19561 return lookup_die_type (die, type_attr, cu);
19562 }
19563
19564 /* If DIE has a descriptive_type attribute, then set the TYPE's
19565 descriptive type accordingly. */
19566
19567 static void
19568 set_descriptive_type (struct type *type, struct die_info *die,
19569 struct dwarf2_cu *cu)
19570 {
19571 struct type *descriptive_type = die_descriptive_type (die, cu);
19572
19573 if (descriptive_type)
19574 {
19575 ALLOCATE_GNAT_AUX_TYPE (type);
19576 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19577 }
19578 }
19579
19580 /* Return the containing type of the die in question using its
19581 DW_AT_containing_type attribute. */
19582
19583 static struct type *
19584 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19585 {
19586 struct attribute *type_attr;
19587
19588 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19589 if (!type_attr)
19590 error (_("Dwarf Error: Problem turning containing type into gdb type "
19591 "[in module %s]"), objfile_name (cu->objfile));
19592
19593 return lookup_die_type (die, type_attr, cu);
19594 }
19595
19596 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19597
19598 static struct type *
19599 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19600 {
19601 struct objfile *objfile = dwarf2_per_objfile->objfile;
19602 char *message, *saved;
19603
19604 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19605 objfile_name (objfile),
19606 to_underlying (cu->header.sect_off),
19607 to_underlying (die->sect_off));
19608 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19609 message, strlen (message));
19610 xfree (message);
19611
19612 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19613 }
19614
19615 /* Look up the type of DIE in CU using its type attribute ATTR.
19616 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19617 DW_AT_containing_type.
19618 If there is no type substitute an error marker. */
19619
19620 static struct type *
19621 lookup_die_type (struct die_info *die, const struct attribute *attr,
19622 struct dwarf2_cu *cu)
19623 {
19624 struct objfile *objfile = cu->objfile;
19625 struct type *this_type;
19626
19627 gdb_assert (attr->name == DW_AT_type
19628 || attr->name == DW_AT_GNAT_descriptive_type
19629 || attr->name == DW_AT_containing_type);
19630
19631 /* First see if we have it cached. */
19632
19633 if (attr->form == DW_FORM_GNU_ref_alt)
19634 {
19635 struct dwarf2_per_cu_data *per_cu;
19636 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19637
19638 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19639 this_type = get_die_type_at_offset (sect_off, per_cu);
19640 }
19641 else if (attr_form_is_ref (attr))
19642 {
19643 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19644
19645 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19646 }
19647 else if (attr->form == DW_FORM_ref_sig8)
19648 {
19649 ULONGEST signature = DW_SIGNATURE (attr);
19650
19651 return get_signatured_type (die, signature, cu);
19652 }
19653 else
19654 {
19655 complaint (&symfile_complaints,
19656 _("Dwarf Error: Bad type attribute %s in DIE"
19657 " at 0x%x [in module %s]"),
19658 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19659 objfile_name (objfile));
19660 return build_error_marker_type (cu, die);
19661 }
19662
19663 /* If not cached we need to read it in. */
19664
19665 if (this_type == NULL)
19666 {
19667 struct die_info *type_die = NULL;
19668 struct dwarf2_cu *type_cu = cu;
19669
19670 if (attr_form_is_ref (attr))
19671 type_die = follow_die_ref (die, attr, &type_cu);
19672 if (type_die == NULL)
19673 return build_error_marker_type (cu, die);
19674 /* If we find the type now, it's probably because the type came
19675 from an inter-CU reference and the type's CU got expanded before
19676 ours. */
19677 this_type = read_type_die (type_die, type_cu);
19678 }
19679
19680 /* If we still don't have a type use an error marker. */
19681
19682 if (this_type == NULL)
19683 return build_error_marker_type (cu, die);
19684
19685 return this_type;
19686 }
19687
19688 /* Return the type in DIE, CU.
19689 Returns NULL for invalid types.
19690
19691 This first does a lookup in die_type_hash,
19692 and only reads the die in if necessary.
19693
19694 NOTE: This can be called when reading in partial or full symbols. */
19695
19696 static struct type *
19697 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19698 {
19699 struct type *this_type;
19700
19701 this_type = get_die_type (die, cu);
19702 if (this_type)
19703 return this_type;
19704
19705 return read_type_die_1 (die, cu);
19706 }
19707
19708 /* Read the type in DIE, CU.
19709 Returns NULL for invalid types. */
19710
19711 static struct type *
19712 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19713 {
19714 struct type *this_type = NULL;
19715
19716 switch (die->tag)
19717 {
19718 case DW_TAG_class_type:
19719 case DW_TAG_interface_type:
19720 case DW_TAG_structure_type:
19721 case DW_TAG_union_type:
19722 this_type = read_structure_type (die, cu);
19723 break;
19724 case DW_TAG_enumeration_type:
19725 this_type = read_enumeration_type (die, cu);
19726 break;
19727 case DW_TAG_subprogram:
19728 case DW_TAG_subroutine_type:
19729 case DW_TAG_inlined_subroutine:
19730 this_type = read_subroutine_type (die, cu);
19731 break;
19732 case DW_TAG_array_type:
19733 this_type = read_array_type (die, cu);
19734 break;
19735 case DW_TAG_set_type:
19736 this_type = read_set_type (die, cu);
19737 break;
19738 case DW_TAG_pointer_type:
19739 this_type = read_tag_pointer_type (die, cu);
19740 break;
19741 case DW_TAG_ptr_to_member_type:
19742 this_type = read_tag_ptr_to_member_type (die, cu);
19743 break;
19744 case DW_TAG_reference_type:
19745 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19746 break;
19747 case DW_TAG_rvalue_reference_type:
19748 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19749 break;
19750 case DW_TAG_const_type:
19751 this_type = read_tag_const_type (die, cu);
19752 break;
19753 case DW_TAG_volatile_type:
19754 this_type = read_tag_volatile_type (die, cu);
19755 break;
19756 case DW_TAG_restrict_type:
19757 this_type = read_tag_restrict_type (die, cu);
19758 break;
19759 case DW_TAG_string_type:
19760 this_type = read_tag_string_type (die, cu);
19761 break;
19762 case DW_TAG_typedef:
19763 this_type = read_typedef (die, cu);
19764 break;
19765 case DW_TAG_subrange_type:
19766 this_type = read_subrange_type (die, cu);
19767 break;
19768 case DW_TAG_base_type:
19769 this_type = read_base_type (die, cu);
19770 break;
19771 case DW_TAG_unspecified_type:
19772 this_type = read_unspecified_type (die, cu);
19773 break;
19774 case DW_TAG_namespace:
19775 this_type = read_namespace_type (die, cu);
19776 break;
19777 case DW_TAG_module:
19778 this_type = read_module_type (die, cu);
19779 break;
19780 case DW_TAG_atomic_type:
19781 this_type = read_tag_atomic_type (die, cu);
19782 break;
19783 default:
19784 complaint (&symfile_complaints,
19785 _("unexpected tag in read_type_die: '%s'"),
19786 dwarf_tag_name (die->tag));
19787 break;
19788 }
19789
19790 return this_type;
19791 }
19792
19793 /* See if we can figure out if the class lives in a namespace. We do
19794 this by looking for a member function; its demangled name will
19795 contain namespace info, if there is any.
19796 Return the computed name or NULL.
19797 Space for the result is allocated on the objfile's obstack.
19798 This is the full-die version of guess_partial_die_structure_name.
19799 In this case we know DIE has no useful parent. */
19800
19801 static char *
19802 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19803 {
19804 struct die_info *spec_die;
19805 struct dwarf2_cu *spec_cu;
19806 struct die_info *child;
19807
19808 spec_cu = cu;
19809 spec_die = die_specification (die, &spec_cu);
19810 if (spec_die != NULL)
19811 {
19812 die = spec_die;
19813 cu = spec_cu;
19814 }
19815
19816 for (child = die->child;
19817 child != NULL;
19818 child = child->sibling)
19819 {
19820 if (child->tag == DW_TAG_subprogram)
19821 {
19822 const char *linkage_name;
19823
19824 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19825 if (linkage_name == NULL)
19826 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19827 cu);
19828 if (linkage_name != NULL)
19829 {
19830 char *actual_name
19831 = language_class_name_from_physname (cu->language_defn,
19832 linkage_name);
19833 char *name = NULL;
19834
19835 if (actual_name != NULL)
19836 {
19837 const char *die_name = dwarf2_name (die, cu);
19838
19839 if (die_name != NULL
19840 && strcmp (die_name, actual_name) != 0)
19841 {
19842 /* Strip off the class name from the full name.
19843 We want the prefix. */
19844 int die_name_len = strlen (die_name);
19845 int actual_name_len = strlen (actual_name);
19846
19847 /* Test for '::' as a sanity check. */
19848 if (actual_name_len > die_name_len + 2
19849 && actual_name[actual_name_len
19850 - die_name_len - 1] == ':')
19851 name = (char *) obstack_copy0 (
19852 &cu->objfile->per_bfd->storage_obstack,
19853 actual_name, actual_name_len - die_name_len - 2);
19854 }
19855 }
19856 xfree (actual_name);
19857 return name;
19858 }
19859 }
19860 }
19861
19862 return NULL;
19863 }
19864
19865 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19866 prefix part in such case. See
19867 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19868
19869 static const char *
19870 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19871 {
19872 struct attribute *attr;
19873 const char *base;
19874
19875 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19876 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19877 return NULL;
19878
19879 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19880 return NULL;
19881
19882 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19883 if (attr == NULL)
19884 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19885 if (attr == NULL || DW_STRING (attr) == NULL)
19886 return NULL;
19887
19888 /* dwarf2_name had to be already called. */
19889 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19890
19891 /* Strip the base name, keep any leading namespaces/classes. */
19892 base = strrchr (DW_STRING (attr), ':');
19893 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19894 return "";
19895
19896 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19897 DW_STRING (attr),
19898 &base[-1] - DW_STRING (attr));
19899 }
19900
19901 /* Return the name of the namespace/class that DIE is defined within,
19902 or "" if we can't tell. The caller should not xfree the result.
19903
19904 For example, if we're within the method foo() in the following
19905 code:
19906
19907 namespace N {
19908 class C {
19909 void foo () {
19910 }
19911 };
19912 }
19913
19914 then determine_prefix on foo's die will return "N::C". */
19915
19916 static const char *
19917 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19918 {
19919 struct die_info *parent, *spec_die;
19920 struct dwarf2_cu *spec_cu;
19921 struct type *parent_type;
19922 const char *retval;
19923
19924 if (cu->language != language_cplus
19925 && cu->language != language_fortran && cu->language != language_d
19926 && cu->language != language_rust)
19927 return "";
19928
19929 retval = anonymous_struct_prefix (die, cu);
19930 if (retval)
19931 return retval;
19932
19933 /* We have to be careful in the presence of DW_AT_specification.
19934 For example, with GCC 3.4, given the code
19935
19936 namespace N {
19937 void foo() {
19938 // Definition of N::foo.
19939 }
19940 }
19941
19942 then we'll have a tree of DIEs like this:
19943
19944 1: DW_TAG_compile_unit
19945 2: DW_TAG_namespace // N
19946 3: DW_TAG_subprogram // declaration of N::foo
19947 4: DW_TAG_subprogram // definition of N::foo
19948 DW_AT_specification // refers to die #3
19949
19950 Thus, when processing die #4, we have to pretend that we're in
19951 the context of its DW_AT_specification, namely the contex of die
19952 #3. */
19953 spec_cu = cu;
19954 spec_die = die_specification (die, &spec_cu);
19955 if (spec_die == NULL)
19956 parent = die->parent;
19957 else
19958 {
19959 parent = spec_die->parent;
19960 cu = spec_cu;
19961 }
19962
19963 if (parent == NULL)
19964 return "";
19965 else if (parent->building_fullname)
19966 {
19967 const char *name;
19968 const char *parent_name;
19969
19970 /* It has been seen on RealView 2.2 built binaries,
19971 DW_TAG_template_type_param types actually _defined_ as
19972 children of the parent class:
19973
19974 enum E {};
19975 template class <class Enum> Class{};
19976 Class<enum E> class_e;
19977
19978 1: DW_TAG_class_type (Class)
19979 2: DW_TAG_enumeration_type (E)
19980 3: DW_TAG_enumerator (enum1:0)
19981 3: DW_TAG_enumerator (enum2:1)
19982 ...
19983 2: DW_TAG_template_type_param
19984 DW_AT_type DW_FORM_ref_udata (E)
19985
19986 Besides being broken debug info, it can put GDB into an
19987 infinite loop. Consider:
19988
19989 When we're building the full name for Class<E>, we'll start
19990 at Class, and go look over its template type parameters,
19991 finding E. We'll then try to build the full name of E, and
19992 reach here. We're now trying to build the full name of E,
19993 and look over the parent DIE for containing scope. In the
19994 broken case, if we followed the parent DIE of E, we'd again
19995 find Class, and once again go look at its template type
19996 arguments, etc., etc. Simply don't consider such parent die
19997 as source-level parent of this die (it can't be, the language
19998 doesn't allow it), and break the loop here. */
19999 name = dwarf2_name (die, cu);
20000 parent_name = dwarf2_name (parent, cu);
20001 complaint (&symfile_complaints,
20002 _("template param type '%s' defined within parent '%s'"),
20003 name ? name : "<unknown>",
20004 parent_name ? parent_name : "<unknown>");
20005 return "";
20006 }
20007 else
20008 switch (parent->tag)
20009 {
20010 case DW_TAG_namespace:
20011 parent_type = read_type_die (parent, cu);
20012 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20013 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20014 Work around this problem here. */
20015 if (cu->language == language_cplus
20016 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20017 return "";
20018 /* We give a name to even anonymous namespaces. */
20019 return TYPE_TAG_NAME (parent_type);
20020 case DW_TAG_class_type:
20021 case DW_TAG_interface_type:
20022 case DW_TAG_structure_type:
20023 case DW_TAG_union_type:
20024 case DW_TAG_module:
20025 parent_type = read_type_die (parent, cu);
20026 if (TYPE_TAG_NAME (parent_type) != NULL)
20027 return TYPE_TAG_NAME (parent_type);
20028 else
20029 /* An anonymous structure is only allowed non-static data
20030 members; no typedefs, no member functions, et cetera.
20031 So it does not need a prefix. */
20032 return "";
20033 case DW_TAG_compile_unit:
20034 case DW_TAG_partial_unit:
20035 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20036 if (cu->language == language_cplus
20037 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20038 && die->child != NULL
20039 && (die->tag == DW_TAG_class_type
20040 || die->tag == DW_TAG_structure_type
20041 || die->tag == DW_TAG_union_type))
20042 {
20043 char *name = guess_full_die_structure_name (die, cu);
20044 if (name != NULL)
20045 return name;
20046 }
20047 return "";
20048 case DW_TAG_enumeration_type:
20049 parent_type = read_type_die (parent, cu);
20050 if (TYPE_DECLARED_CLASS (parent_type))
20051 {
20052 if (TYPE_TAG_NAME (parent_type) != NULL)
20053 return TYPE_TAG_NAME (parent_type);
20054 return "";
20055 }
20056 /* Fall through. */
20057 default:
20058 return determine_prefix (parent, cu);
20059 }
20060 }
20061
20062 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20063 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20064 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20065 an obconcat, otherwise allocate storage for the result. The CU argument is
20066 used to determine the language and hence, the appropriate separator. */
20067
20068 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20069
20070 static char *
20071 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20072 int physname, struct dwarf2_cu *cu)
20073 {
20074 const char *lead = "";
20075 const char *sep;
20076
20077 if (suffix == NULL || suffix[0] == '\0'
20078 || prefix == NULL || prefix[0] == '\0')
20079 sep = "";
20080 else if (cu->language == language_d)
20081 {
20082 /* For D, the 'main' function could be defined in any module, but it
20083 should never be prefixed. */
20084 if (strcmp (suffix, "D main") == 0)
20085 {
20086 prefix = "";
20087 sep = "";
20088 }
20089 else
20090 sep = ".";
20091 }
20092 else if (cu->language == language_fortran && physname)
20093 {
20094 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20095 DW_AT_MIPS_linkage_name is preferred and used instead. */
20096
20097 lead = "__";
20098 sep = "_MOD_";
20099 }
20100 else
20101 sep = "::";
20102
20103 if (prefix == NULL)
20104 prefix = "";
20105 if (suffix == NULL)
20106 suffix = "";
20107
20108 if (obs == NULL)
20109 {
20110 char *retval
20111 = ((char *)
20112 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20113
20114 strcpy (retval, lead);
20115 strcat (retval, prefix);
20116 strcat (retval, sep);
20117 strcat (retval, suffix);
20118 return retval;
20119 }
20120 else
20121 {
20122 /* We have an obstack. */
20123 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20124 }
20125 }
20126
20127 /* Return sibling of die, NULL if no sibling. */
20128
20129 static struct die_info *
20130 sibling_die (struct die_info *die)
20131 {
20132 return die->sibling;
20133 }
20134
20135 /* Get name of a die, return NULL if not found. */
20136
20137 static const char *
20138 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20139 struct obstack *obstack)
20140 {
20141 if (name && cu->language == language_cplus)
20142 {
20143 std::string canon_name = cp_canonicalize_string (name);
20144
20145 if (!canon_name.empty ())
20146 {
20147 if (canon_name != name)
20148 name = (const char *) obstack_copy0 (obstack,
20149 canon_name.c_str (),
20150 canon_name.length ());
20151 }
20152 }
20153
20154 return name;
20155 }
20156
20157 /* Get name of a die, return NULL if not found.
20158 Anonymous namespaces are converted to their magic string. */
20159
20160 static const char *
20161 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20162 {
20163 struct attribute *attr;
20164
20165 attr = dwarf2_attr (die, DW_AT_name, cu);
20166 if ((!attr || !DW_STRING (attr))
20167 && die->tag != DW_TAG_namespace
20168 && die->tag != DW_TAG_class_type
20169 && die->tag != DW_TAG_interface_type
20170 && die->tag != DW_TAG_structure_type
20171 && die->tag != DW_TAG_union_type)
20172 return NULL;
20173
20174 switch (die->tag)
20175 {
20176 case DW_TAG_compile_unit:
20177 case DW_TAG_partial_unit:
20178 /* Compilation units have a DW_AT_name that is a filename, not
20179 a source language identifier. */
20180 case DW_TAG_enumeration_type:
20181 case DW_TAG_enumerator:
20182 /* These tags always have simple identifiers already; no need
20183 to canonicalize them. */
20184 return DW_STRING (attr);
20185
20186 case DW_TAG_namespace:
20187 if (attr != NULL && DW_STRING (attr) != NULL)
20188 return DW_STRING (attr);
20189 return CP_ANONYMOUS_NAMESPACE_STR;
20190
20191 case DW_TAG_class_type:
20192 case DW_TAG_interface_type:
20193 case DW_TAG_structure_type:
20194 case DW_TAG_union_type:
20195 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20196 structures or unions. These were of the form "._%d" in GCC 4.1,
20197 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20198 and GCC 4.4. We work around this problem by ignoring these. */
20199 if (attr && DW_STRING (attr)
20200 && (startswith (DW_STRING (attr), "._")
20201 || startswith (DW_STRING (attr), "<anonymous")))
20202 return NULL;
20203
20204 /* GCC might emit a nameless typedef that has a linkage name. See
20205 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20206 if (!attr || DW_STRING (attr) == NULL)
20207 {
20208 char *demangled = NULL;
20209
20210 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20211 if (attr == NULL)
20212 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20213
20214 if (attr == NULL || DW_STRING (attr) == NULL)
20215 return NULL;
20216
20217 /* Avoid demangling DW_STRING (attr) the second time on a second
20218 call for the same DIE. */
20219 if (!DW_STRING_IS_CANONICAL (attr))
20220 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20221
20222 if (demangled)
20223 {
20224 const char *base;
20225
20226 /* FIXME: we already did this for the partial symbol... */
20227 DW_STRING (attr)
20228 = ((const char *)
20229 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20230 demangled, strlen (demangled)));
20231 DW_STRING_IS_CANONICAL (attr) = 1;
20232 xfree (demangled);
20233
20234 /* Strip any leading namespaces/classes, keep only the base name.
20235 DW_AT_name for named DIEs does not contain the prefixes. */
20236 base = strrchr (DW_STRING (attr), ':');
20237 if (base && base > DW_STRING (attr) && base[-1] == ':')
20238 return &base[1];
20239 else
20240 return DW_STRING (attr);
20241 }
20242 }
20243 break;
20244
20245 default:
20246 break;
20247 }
20248
20249 if (!DW_STRING_IS_CANONICAL (attr))
20250 {
20251 DW_STRING (attr)
20252 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20253 &cu->objfile->per_bfd->storage_obstack);
20254 DW_STRING_IS_CANONICAL (attr) = 1;
20255 }
20256 return DW_STRING (attr);
20257 }
20258
20259 /* Return the die that this die in an extension of, or NULL if there
20260 is none. *EXT_CU is the CU containing DIE on input, and the CU
20261 containing the return value on output. */
20262
20263 static struct die_info *
20264 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20265 {
20266 struct attribute *attr;
20267
20268 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20269 if (attr == NULL)
20270 return NULL;
20271
20272 return follow_die_ref (die, attr, ext_cu);
20273 }
20274
20275 /* Convert a DIE tag into its string name. */
20276
20277 static const char *
20278 dwarf_tag_name (unsigned tag)
20279 {
20280 const char *name = get_DW_TAG_name (tag);
20281
20282 if (name == NULL)
20283 return "DW_TAG_<unknown>";
20284
20285 return name;
20286 }
20287
20288 /* Convert a DWARF attribute code into its string name. */
20289
20290 static const char *
20291 dwarf_attr_name (unsigned attr)
20292 {
20293 const char *name;
20294
20295 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20296 if (attr == DW_AT_MIPS_fde)
20297 return "DW_AT_MIPS_fde";
20298 #else
20299 if (attr == DW_AT_HP_block_index)
20300 return "DW_AT_HP_block_index";
20301 #endif
20302
20303 name = get_DW_AT_name (attr);
20304
20305 if (name == NULL)
20306 return "DW_AT_<unknown>";
20307
20308 return name;
20309 }
20310
20311 /* Convert a DWARF value form code into its string name. */
20312
20313 static const char *
20314 dwarf_form_name (unsigned form)
20315 {
20316 const char *name = get_DW_FORM_name (form);
20317
20318 if (name == NULL)
20319 return "DW_FORM_<unknown>";
20320
20321 return name;
20322 }
20323
20324 static const char *
20325 dwarf_bool_name (unsigned mybool)
20326 {
20327 if (mybool)
20328 return "TRUE";
20329 else
20330 return "FALSE";
20331 }
20332
20333 /* Convert a DWARF type code into its string name. */
20334
20335 static const char *
20336 dwarf_type_encoding_name (unsigned enc)
20337 {
20338 const char *name = get_DW_ATE_name (enc);
20339
20340 if (name == NULL)
20341 return "DW_ATE_<unknown>";
20342
20343 return name;
20344 }
20345
20346 static void
20347 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20348 {
20349 unsigned int i;
20350
20351 print_spaces (indent, f);
20352 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20353 dwarf_tag_name (die->tag), die->abbrev,
20354 to_underlying (die->sect_off));
20355
20356 if (die->parent != NULL)
20357 {
20358 print_spaces (indent, f);
20359 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20360 to_underlying (die->parent->sect_off));
20361 }
20362
20363 print_spaces (indent, f);
20364 fprintf_unfiltered (f, " has children: %s\n",
20365 dwarf_bool_name (die->child != NULL));
20366
20367 print_spaces (indent, f);
20368 fprintf_unfiltered (f, " attributes:\n");
20369
20370 for (i = 0; i < die->num_attrs; ++i)
20371 {
20372 print_spaces (indent, f);
20373 fprintf_unfiltered (f, " %s (%s) ",
20374 dwarf_attr_name (die->attrs[i].name),
20375 dwarf_form_name (die->attrs[i].form));
20376
20377 switch (die->attrs[i].form)
20378 {
20379 case DW_FORM_addr:
20380 case DW_FORM_GNU_addr_index:
20381 fprintf_unfiltered (f, "address: ");
20382 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20383 break;
20384 case DW_FORM_block2:
20385 case DW_FORM_block4:
20386 case DW_FORM_block:
20387 case DW_FORM_block1:
20388 fprintf_unfiltered (f, "block: size %s",
20389 pulongest (DW_BLOCK (&die->attrs[i])->size));
20390 break;
20391 case DW_FORM_exprloc:
20392 fprintf_unfiltered (f, "expression: size %s",
20393 pulongest (DW_BLOCK (&die->attrs[i])->size));
20394 break;
20395 case DW_FORM_data16:
20396 fprintf_unfiltered (f, "constant of 16 bytes");
20397 break;
20398 case DW_FORM_ref_addr:
20399 fprintf_unfiltered (f, "ref address: ");
20400 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20401 break;
20402 case DW_FORM_GNU_ref_alt:
20403 fprintf_unfiltered (f, "alt ref address: ");
20404 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20405 break;
20406 case DW_FORM_ref1:
20407 case DW_FORM_ref2:
20408 case DW_FORM_ref4:
20409 case DW_FORM_ref8:
20410 case DW_FORM_ref_udata:
20411 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20412 (long) (DW_UNSND (&die->attrs[i])));
20413 break;
20414 case DW_FORM_data1:
20415 case DW_FORM_data2:
20416 case DW_FORM_data4:
20417 case DW_FORM_data8:
20418 case DW_FORM_udata:
20419 case DW_FORM_sdata:
20420 fprintf_unfiltered (f, "constant: %s",
20421 pulongest (DW_UNSND (&die->attrs[i])));
20422 break;
20423 case DW_FORM_sec_offset:
20424 fprintf_unfiltered (f, "section offset: %s",
20425 pulongest (DW_UNSND (&die->attrs[i])));
20426 break;
20427 case DW_FORM_ref_sig8:
20428 fprintf_unfiltered (f, "signature: %s",
20429 hex_string (DW_SIGNATURE (&die->attrs[i])));
20430 break;
20431 case DW_FORM_string:
20432 case DW_FORM_strp:
20433 case DW_FORM_line_strp:
20434 case DW_FORM_GNU_str_index:
20435 case DW_FORM_GNU_strp_alt:
20436 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20437 DW_STRING (&die->attrs[i])
20438 ? DW_STRING (&die->attrs[i]) : "",
20439 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20440 break;
20441 case DW_FORM_flag:
20442 if (DW_UNSND (&die->attrs[i]))
20443 fprintf_unfiltered (f, "flag: TRUE");
20444 else
20445 fprintf_unfiltered (f, "flag: FALSE");
20446 break;
20447 case DW_FORM_flag_present:
20448 fprintf_unfiltered (f, "flag: TRUE");
20449 break;
20450 case DW_FORM_indirect:
20451 /* The reader will have reduced the indirect form to
20452 the "base form" so this form should not occur. */
20453 fprintf_unfiltered (f,
20454 "unexpected attribute form: DW_FORM_indirect");
20455 break;
20456 default:
20457 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20458 die->attrs[i].form);
20459 break;
20460 }
20461 fprintf_unfiltered (f, "\n");
20462 }
20463 }
20464
20465 static void
20466 dump_die_for_error (struct die_info *die)
20467 {
20468 dump_die_shallow (gdb_stderr, 0, die);
20469 }
20470
20471 static void
20472 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20473 {
20474 int indent = level * 4;
20475
20476 gdb_assert (die != NULL);
20477
20478 if (level >= max_level)
20479 return;
20480
20481 dump_die_shallow (f, indent, die);
20482
20483 if (die->child != NULL)
20484 {
20485 print_spaces (indent, f);
20486 fprintf_unfiltered (f, " Children:");
20487 if (level + 1 < max_level)
20488 {
20489 fprintf_unfiltered (f, "\n");
20490 dump_die_1 (f, level + 1, max_level, die->child);
20491 }
20492 else
20493 {
20494 fprintf_unfiltered (f,
20495 " [not printed, max nesting level reached]\n");
20496 }
20497 }
20498
20499 if (die->sibling != NULL && level > 0)
20500 {
20501 dump_die_1 (f, level, max_level, die->sibling);
20502 }
20503 }
20504
20505 /* This is called from the pdie macro in gdbinit.in.
20506 It's not static so gcc will keep a copy callable from gdb. */
20507
20508 void
20509 dump_die (struct die_info *die, int max_level)
20510 {
20511 dump_die_1 (gdb_stdlog, 0, max_level, die);
20512 }
20513
20514 static void
20515 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20516 {
20517 void **slot;
20518
20519 slot = htab_find_slot_with_hash (cu->die_hash, die,
20520 to_underlying (die->sect_off),
20521 INSERT);
20522
20523 *slot = die;
20524 }
20525
20526 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20527 required kind. */
20528
20529 static sect_offset
20530 dwarf2_get_ref_die_offset (const struct attribute *attr)
20531 {
20532 if (attr_form_is_ref (attr))
20533 return (sect_offset) DW_UNSND (attr);
20534
20535 complaint (&symfile_complaints,
20536 _("unsupported die ref attribute form: '%s'"),
20537 dwarf_form_name (attr->form));
20538 return {};
20539 }
20540
20541 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20542 * the value held by the attribute is not constant. */
20543
20544 static LONGEST
20545 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20546 {
20547 if (attr->form == DW_FORM_sdata)
20548 return DW_SND (attr);
20549 else if (attr->form == DW_FORM_udata
20550 || attr->form == DW_FORM_data1
20551 || attr->form == DW_FORM_data2
20552 || attr->form == DW_FORM_data4
20553 || attr->form == DW_FORM_data8)
20554 return DW_UNSND (attr);
20555 else
20556 {
20557 /* For DW_FORM_data16 see attr_form_is_constant. */
20558 complaint (&symfile_complaints,
20559 _("Attribute value is not a constant (%s)"),
20560 dwarf_form_name (attr->form));
20561 return default_value;
20562 }
20563 }
20564
20565 /* Follow reference or signature attribute ATTR of SRC_DIE.
20566 On entry *REF_CU is the CU of SRC_DIE.
20567 On exit *REF_CU is the CU of the result. */
20568
20569 static struct die_info *
20570 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20571 struct dwarf2_cu **ref_cu)
20572 {
20573 struct die_info *die;
20574
20575 if (attr_form_is_ref (attr))
20576 die = follow_die_ref (src_die, attr, ref_cu);
20577 else if (attr->form == DW_FORM_ref_sig8)
20578 die = follow_die_sig (src_die, attr, ref_cu);
20579 else
20580 {
20581 dump_die_for_error (src_die);
20582 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20583 objfile_name ((*ref_cu)->objfile));
20584 }
20585
20586 return die;
20587 }
20588
20589 /* Follow reference OFFSET.
20590 On entry *REF_CU is the CU of the source die referencing OFFSET.
20591 On exit *REF_CU is the CU of the result.
20592 Returns NULL if OFFSET is invalid. */
20593
20594 static struct die_info *
20595 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20596 struct dwarf2_cu **ref_cu)
20597 {
20598 struct die_info temp_die;
20599 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20600
20601 gdb_assert (cu->per_cu != NULL);
20602
20603 target_cu = cu;
20604
20605 if (cu->per_cu->is_debug_types)
20606 {
20607 /* .debug_types CUs cannot reference anything outside their CU.
20608 If they need to, they have to reference a signatured type via
20609 DW_FORM_ref_sig8. */
20610 if (!offset_in_cu_p (&cu->header, sect_off))
20611 return NULL;
20612 }
20613 else if (offset_in_dwz != cu->per_cu->is_dwz
20614 || !offset_in_cu_p (&cu->header, sect_off))
20615 {
20616 struct dwarf2_per_cu_data *per_cu;
20617
20618 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20619 cu->objfile);
20620
20621 /* If necessary, add it to the queue and load its DIEs. */
20622 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20623 load_full_comp_unit (per_cu, cu->language);
20624
20625 target_cu = per_cu->cu;
20626 }
20627 else if (cu->dies == NULL)
20628 {
20629 /* We're loading full DIEs during partial symbol reading. */
20630 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20631 load_full_comp_unit (cu->per_cu, language_minimal);
20632 }
20633
20634 *ref_cu = target_cu;
20635 temp_die.sect_off = sect_off;
20636 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20637 &temp_die,
20638 to_underlying (sect_off));
20639 }
20640
20641 /* Follow reference attribute ATTR of SRC_DIE.
20642 On entry *REF_CU is the CU of SRC_DIE.
20643 On exit *REF_CU is the CU of the result. */
20644
20645 static struct die_info *
20646 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20647 struct dwarf2_cu **ref_cu)
20648 {
20649 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20650 struct dwarf2_cu *cu = *ref_cu;
20651 struct die_info *die;
20652
20653 die = follow_die_offset (sect_off,
20654 (attr->form == DW_FORM_GNU_ref_alt
20655 || cu->per_cu->is_dwz),
20656 ref_cu);
20657 if (!die)
20658 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20659 "at 0x%x [in module %s]"),
20660 to_underlying (sect_off), to_underlying (src_die->sect_off),
20661 objfile_name (cu->objfile));
20662
20663 return die;
20664 }
20665
20666 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20667 Returned value is intended for DW_OP_call*. Returned
20668 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20669
20670 struct dwarf2_locexpr_baton
20671 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20672 struct dwarf2_per_cu_data *per_cu,
20673 CORE_ADDR (*get_frame_pc) (void *baton),
20674 void *baton)
20675 {
20676 struct dwarf2_cu *cu;
20677 struct die_info *die;
20678 struct attribute *attr;
20679 struct dwarf2_locexpr_baton retval;
20680
20681 dw2_setup (per_cu->objfile);
20682
20683 if (per_cu->cu == NULL)
20684 load_cu (per_cu);
20685 cu = per_cu->cu;
20686 if (cu == NULL)
20687 {
20688 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20689 Instead just throw an error, not much else we can do. */
20690 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20691 to_underlying (sect_off), objfile_name (per_cu->objfile));
20692 }
20693
20694 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20695 if (!die)
20696 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20697 to_underlying (sect_off), objfile_name (per_cu->objfile));
20698
20699 attr = dwarf2_attr (die, DW_AT_location, cu);
20700 if (!attr)
20701 {
20702 /* DWARF: "If there is no such attribute, then there is no effect.".
20703 DATA is ignored if SIZE is 0. */
20704
20705 retval.data = NULL;
20706 retval.size = 0;
20707 }
20708 else if (attr_form_is_section_offset (attr))
20709 {
20710 struct dwarf2_loclist_baton loclist_baton;
20711 CORE_ADDR pc = (*get_frame_pc) (baton);
20712 size_t size;
20713
20714 fill_in_loclist_baton (cu, &loclist_baton, attr);
20715
20716 retval.data = dwarf2_find_location_expression (&loclist_baton,
20717 &size, pc);
20718 retval.size = size;
20719 }
20720 else
20721 {
20722 if (!attr_form_is_block (attr))
20723 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20724 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20725 to_underlying (sect_off), objfile_name (per_cu->objfile));
20726
20727 retval.data = DW_BLOCK (attr)->data;
20728 retval.size = DW_BLOCK (attr)->size;
20729 }
20730 retval.per_cu = cu->per_cu;
20731
20732 age_cached_comp_units ();
20733
20734 return retval;
20735 }
20736
20737 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20738 offset. */
20739
20740 struct dwarf2_locexpr_baton
20741 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20742 struct dwarf2_per_cu_data *per_cu,
20743 CORE_ADDR (*get_frame_pc) (void *baton),
20744 void *baton)
20745 {
20746 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20747
20748 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20749 }
20750
20751 /* Write a constant of a given type as target-ordered bytes into
20752 OBSTACK. */
20753
20754 static const gdb_byte *
20755 write_constant_as_bytes (struct obstack *obstack,
20756 enum bfd_endian byte_order,
20757 struct type *type,
20758 ULONGEST value,
20759 LONGEST *len)
20760 {
20761 gdb_byte *result;
20762
20763 *len = TYPE_LENGTH (type);
20764 result = (gdb_byte *) obstack_alloc (obstack, *len);
20765 store_unsigned_integer (result, *len, byte_order, value);
20766
20767 return result;
20768 }
20769
20770 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20771 pointer to the constant bytes and set LEN to the length of the
20772 data. If memory is needed, allocate it on OBSTACK. If the DIE
20773 does not have a DW_AT_const_value, return NULL. */
20774
20775 const gdb_byte *
20776 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20777 struct dwarf2_per_cu_data *per_cu,
20778 struct obstack *obstack,
20779 LONGEST *len)
20780 {
20781 struct dwarf2_cu *cu;
20782 struct die_info *die;
20783 struct attribute *attr;
20784 const gdb_byte *result = NULL;
20785 struct type *type;
20786 LONGEST value;
20787 enum bfd_endian byte_order;
20788
20789 dw2_setup (per_cu->objfile);
20790
20791 if (per_cu->cu == NULL)
20792 load_cu (per_cu);
20793 cu = per_cu->cu;
20794 if (cu == NULL)
20795 {
20796 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20797 Instead just throw an error, not much else we can do. */
20798 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20799 to_underlying (sect_off), objfile_name (per_cu->objfile));
20800 }
20801
20802 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20803 if (!die)
20804 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20805 to_underlying (sect_off), objfile_name (per_cu->objfile));
20806
20807
20808 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20809 if (attr == NULL)
20810 return NULL;
20811
20812 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20813 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20814
20815 switch (attr->form)
20816 {
20817 case DW_FORM_addr:
20818 case DW_FORM_GNU_addr_index:
20819 {
20820 gdb_byte *tem;
20821
20822 *len = cu->header.addr_size;
20823 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20824 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20825 result = tem;
20826 }
20827 break;
20828 case DW_FORM_string:
20829 case DW_FORM_strp:
20830 case DW_FORM_GNU_str_index:
20831 case DW_FORM_GNU_strp_alt:
20832 /* DW_STRING is already allocated on the objfile obstack, point
20833 directly to it. */
20834 result = (const gdb_byte *) DW_STRING (attr);
20835 *len = strlen (DW_STRING (attr));
20836 break;
20837 case DW_FORM_block1:
20838 case DW_FORM_block2:
20839 case DW_FORM_block4:
20840 case DW_FORM_block:
20841 case DW_FORM_exprloc:
20842 case DW_FORM_data16:
20843 result = DW_BLOCK (attr)->data;
20844 *len = DW_BLOCK (attr)->size;
20845 break;
20846
20847 /* The DW_AT_const_value attributes are supposed to carry the
20848 symbol's value "represented as it would be on the target
20849 architecture." By the time we get here, it's already been
20850 converted to host endianness, so we just need to sign- or
20851 zero-extend it as appropriate. */
20852 case DW_FORM_data1:
20853 type = die_type (die, cu);
20854 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20855 if (result == NULL)
20856 result = write_constant_as_bytes (obstack, byte_order,
20857 type, value, len);
20858 break;
20859 case DW_FORM_data2:
20860 type = die_type (die, cu);
20861 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20862 if (result == NULL)
20863 result = write_constant_as_bytes (obstack, byte_order,
20864 type, value, len);
20865 break;
20866 case DW_FORM_data4:
20867 type = die_type (die, cu);
20868 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20869 if (result == NULL)
20870 result = write_constant_as_bytes (obstack, byte_order,
20871 type, value, len);
20872 break;
20873 case DW_FORM_data8:
20874 type = die_type (die, cu);
20875 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20876 if (result == NULL)
20877 result = write_constant_as_bytes (obstack, byte_order,
20878 type, value, len);
20879 break;
20880
20881 case DW_FORM_sdata:
20882 type = die_type (die, cu);
20883 result = write_constant_as_bytes (obstack, byte_order,
20884 type, DW_SND (attr), len);
20885 break;
20886
20887 case DW_FORM_udata:
20888 type = die_type (die, cu);
20889 result = write_constant_as_bytes (obstack, byte_order,
20890 type, DW_UNSND (attr), len);
20891 break;
20892
20893 default:
20894 complaint (&symfile_complaints,
20895 _("unsupported const value attribute form: '%s'"),
20896 dwarf_form_name (attr->form));
20897 break;
20898 }
20899
20900 return result;
20901 }
20902
20903 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20904 valid type for this die is found. */
20905
20906 struct type *
20907 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20908 struct dwarf2_per_cu_data *per_cu)
20909 {
20910 struct dwarf2_cu *cu;
20911 struct die_info *die;
20912
20913 dw2_setup (per_cu->objfile);
20914
20915 if (per_cu->cu == NULL)
20916 load_cu (per_cu);
20917 cu = per_cu->cu;
20918 if (!cu)
20919 return NULL;
20920
20921 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20922 if (!die)
20923 return NULL;
20924
20925 return die_type (die, cu);
20926 }
20927
20928 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20929 PER_CU. */
20930
20931 struct type *
20932 dwarf2_get_die_type (cu_offset die_offset,
20933 struct dwarf2_per_cu_data *per_cu)
20934 {
20935 dw2_setup (per_cu->objfile);
20936
20937 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20938 return get_die_type_at_offset (die_offset_sect, per_cu);
20939 }
20940
20941 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20942 On entry *REF_CU is the CU of SRC_DIE.
20943 On exit *REF_CU is the CU of the result.
20944 Returns NULL if the referenced DIE isn't found. */
20945
20946 static struct die_info *
20947 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20948 struct dwarf2_cu **ref_cu)
20949 {
20950 struct die_info temp_die;
20951 struct dwarf2_cu *sig_cu;
20952 struct die_info *die;
20953
20954 /* While it might be nice to assert sig_type->type == NULL here,
20955 we can get here for DW_AT_imported_declaration where we need
20956 the DIE not the type. */
20957
20958 /* If necessary, add it to the queue and load its DIEs. */
20959
20960 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20961 read_signatured_type (sig_type);
20962
20963 sig_cu = sig_type->per_cu.cu;
20964 gdb_assert (sig_cu != NULL);
20965 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
20966 temp_die.sect_off = sig_type->type_offset_in_section;
20967 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20968 to_underlying (temp_die.sect_off));
20969 if (die)
20970 {
20971 /* For .gdb_index version 7 keep track of included TUs.
20972 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20973 if (dwarf2_per_objfile->index_table != NULL
20974 && dwarf2_per_objfile->index_table->version <= 7)
20975 {
20976 VEC_safe_push (dwarf2_per_cu_ptr,
20977 (*ref_cu)->per_cu->imported_symtabs,
20978 sig_cu->per_cu);
20979 }
20980
20981 *ref_cu = sig_cu;
20982 return die;
20983 }
20984
20985 return NULL;
20986 }
20987
20988 /* Follow signatured type referenced by ATTR in SRC_DIE.
20989 On entry *REF_CU is the CU of SRC_DIE.
20990 On exit *REF_CU is the CU of the result.
20991 The result is the DIE of the type.
20992 If the referenced type cannot be found an error is thrown. */
20993
20994 static struct die_info *
20995 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20996 struct dwarf2_cu **ref_cu)
20997 {
20998 ULONGEST signature = DW_SIGNATURE (attr);
20999 struct signatured_type *sig_type;
21000 struct die_info *die;
21001
21002 gdb_assert (attr->form == DW_FORM_ref_sig8);
21003
21004 sig_type = lookup_signatured_type (*ref_cu, signature);
21005 /* sig_type will be NULL if the signatured type is missing from
21006 the debug info. */
21007 if (sig_type == NULL)
21008 {
21009 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21010 " from DIE at 0x%x [in module %s]"),
21011 hex_string (signature), to_underlying (src_die->sect_off),
21012 objfile_name ((*ref_cu)->objfile));
21013 }
21014
21015 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21016 if (die == NULL)
21017 {
21018 dump_die_for_error (src_die);
21019 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21020 " from DIE at 0x%x [in module %s]"),
21021 hex_string (signature), to_underlying (src_die->sect_off),
21022 objfile_name ((*ref_cu)->objfile));
21023 }
21024
21025 return die;
21026 }
21027
21028 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21029 reading in and processing the type unit if necessary. */
21030
21031 static struct type *
21032 get_signatured_type (struct die_info *die, ULONGEST signature,
21033 struct dwarf2_cu *cu)
21034 {
21035 struct signatured_type *sig_type;
21036 struct dwarf2_cu *type_cu;
21037 struct die_info *type_die;
21038 struct type *type;
21039
21040 sig_type = lookup_signatured_type (cu, signature);
21041 /* sig_type will be NULL if the signatured type is missing from
21042 the debug info. */
21043 if (sig_type == NULL)
21044 {
21045 complaint (&symfile_complaints,
21046 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21047 " from DIE at 0x%x [in module %s]"),
21048 hex_string (signature), to_underlying (die->sect_off),
21049 objfile_name (dwarf2_per_objfile->objfile));
21050 return build_error_marker_type (cu, die);
21051 }
21052
21053 /* If we already know the type we're done. */
21054 if (sig_type->type != NULL)
21055 return sig_type->type;
21056
21057 type_cu = cu;
21058 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21059 if (type_die != NULL)
21060 {
21061 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21062 is created. This is important, for example, because for c++ classes
21063 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21064 type = read_type_die (type_die, type_cu);
21065 if (type == NULL)
21066 {
21067 complaint (&symfile_complaints,
21068 _("Dwarf Error: Cannot build signatured type %s"
21069 " referenced from DIE at 0x%x [in module %s]"),
21070 hex_string (signature), to_underlying (die->sect_off),
21071 objfile_name (dwarf2_per_objfile->objfile));
21072 type = build_error_marker_type (cu, die);
21073 }
21074 }
21075 else
21076 {
21077 complaint (&symfile_complaints,
21078 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21079 " from DIE at 0x%x [in module %s]"),
21080 hex_string (signature), to_underlying (die->sect_off),
21081 objfile_name (dwarf2_per_objfile->objfile));
21082 type = build_error_marker_type (cu, die);
21083 }
21084 sig_type->type = type;
21085
21086 return type;
21087 }
21088
21089 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21090 reading in and processing the type unit if necessary. */
21091
21092 static struct type *
21093 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21094 struct dwarf2_cu *cu) /* ARI: editCase function */
21095 {
21096 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21097 if (attr_form_is_ref (attr))
21098 {
21099 struct dwarf2_cu *type_cu = cu;
21100 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21101
21102 return read_type_die (type_die, type_cu);
21103 }
21104 else if (attr->form == DW_FORM_ref_sig8)
21105 {
21106 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21107 }
21108 else
21109 {
21110 complaint (&symfile_complaints,
21111 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21112 " at 0x%x [in module %s]"),
21113 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21114 objfile_name (dwarf2_per_objfile->objfile));
21115 return build_error_marker_type (cu, die);
21116 }
21117 }
21118
21119 /* Load the DIEs associated with type unit PER_CU into memory. */
21120
21121 static void
21122 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21123 {
21124 struct signatured_type *sig_type;
21125
21126 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21127 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21128
21129 /* We have the per_cu, but we need the signatured_type.
21130 Fortunately this is an easy translation. */
21131 gdb_assert (per_cu->is_debug_types);
21132 sig_type = (struct signatured_type *) per_cu;
21133
21134 gdb_assert (per_cu->cu == NULL);
21135
21136 read_signatured_type (sig_type);
21137
21138 gdb_assert (per_cu->cu != NULL);
21139 }
21140
21141 /* die_reader_func for read_signatured_type.
21142 This is identical to load_full_comp_unit_reader,
21143 but is kept separate for now. */
21144
21145 static void
21146 read_signatured_type_reader (const struct die_reader_specs *reader,
21147 const gdb_byte *info_ptr,
21148 struct die_info *comp_unit_die,
21149 int has_children,
21150 void *data)
21151 {
21152 struct dwarf2_cu *cu = reader->cu;
21153
21154 gdb_assert (cu->die_hash == NULL);
21155 cu->die_hash =
21156 htab_create_alloc_ex (cu->header.length / 12,
21157 die_hash,
21158 die_eq,
21159 NULL,
21160 &cu->comp_unit_obstack,
21161 hashtab_obstack_allocate,
21162 dummy_obstack_deallocate);
21163
21164 if (has_children)
21165 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21166 &info_ptr, comp_unit_die);
21167 cu->dies = comp_unit_die;
21168 /* comp_unit_die is not stored in die_hash, no need. */
21169
21170 /* We try not to read any attributes in this function, because not
21171 all CUs needed for references have been loaded yet, and symbol
21172 table processing isn't initialized. But we have to set the CU language,
21173 or we won't be able to build types correctly.
21174 Similarly, if we do not read the producer, we can not apply
21175 producer-specific interpretation. */
21176 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21177 }
21178
21179 /* Read in a signatured type and build its CU and DIEs.
21180 If the type is a stub for the real type in a DWO file,
21181 read in the real type from the DWO file as well. */
21182
21183 static void
21184 read_signatured_type (struct signatured_type *sig_type)
21185 {
21186 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21187
21188 gdb_assert (per_cu->is_debug_types);
21189 gdb_assert (per_cu->cu == NULL);
21190
21191 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21192 read_signatured_type_reader, NULL);
21193 sig_type->per_cu.tu_read = 1;
21194 }
21195
21196 /* Decode simple location descriptions.
21197 Given a pointer to a dwarf block that defines a location, compute
21198 the location and return the value.
21199
21200 NOTE drow/2003-11-18: This function is called in two situations
21201 now: for the address of static or global variables (partial symbols
21202 only) and for offsets into structures which are expected to be
21203 (more or less) constant. The partial symbol case should go away,
21204 and only the constant case should remain. That will let this
21205 function complain more accurately. A few special modes are allowed
21206 without complaint for global variables (for instance, global
21207 register values and thread-local values).
21208
21209 A location description containing no operations indicates that the
21210 object is optimized out. The return value is 0 for that case.
21211 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21212 callers will only want a very basic result and this can become a
21213 complaint.
21214
21215 Note that stack[0] is unused except as a default error return. */
21216
21217 static CORE_ADDR
21218 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21219 {
21220 struct objfile *objfile = cu->objfile;
21221 size_t i;
21222 size_t size = blk->size;
21223 const gdb_byte *data = blk->data;
21224 CORE_ADDR stack[64];
21225 int stacki;
21226 unsigned int bytes_read, unsnd;
21227 gdb_byte op;
21228
21229 i = 0;
21230 stacki = 0;
21231 stack[stacki] = 0;
21232 stack[++stacki] = 0;
21233
21234 while (i < size)
21235 {
21236 op = data[i++];
21237 switch (op)
21238 {
21239 case DW_OP_lit0:
21240 case DW_OP_lit1:
21241 case DW_OP_lit2:
21242 case DW_OP_lit3:
21243 case DW_OP_lit4:
21244 case DW_OP_lit5:
21245 case DW_OP_lit6:
21246 case DW_OP_lit7:
21247 case DW_OP_lit8:
21248 case DW_OP_lit9:
21249 case DW_OP_lit10:
21250 case DW_OP_lit11:
21251 case DW_OP_lit12:
21252 case DW_OP_lit13:
21253 case DW_OP_lit14:
21254 case DW_OP_lit15:
21255 case DW_OP_lit16:
21256 case DW_OP_lit17:
21257 case DW_OP_lit18:
21258 case DW_OP_lit19:
21259 case DW_OP_lit20:
21260 case DW_OP_lit21:
21261 case DW_OP_lit22:
21262 case DW_OP_lit23:
21263 case DW_OP_lit24:
21264 case DW_OP_lit25:
21265 case DW_OP_lit26:
21266 case DW_OP_lit27:
21267 case DW_OP_lit28:
21268 case DW_OP_lit29:
21269 case DW_OP_lit30:
21270 case DW_OP_lit31:
21271 stack[++stacki] = op - DW_OP_lit0;
21272 break;
21273
21274 case DW_OP_reg0:
21275 case DW_OP_reg1:
21276 case DW_OP_reg2:
21277 case DW_OP_reg3:
21278 case DW_OP_reg4:
21279 case DW_OP_reg5:
21280 case DW_OP_reg6:
21281 case DW_OP_reg7:
21282 case DW_OP_reg8:
21283 case DW_OP_reg9:
21284 case DW_OP_reg10:
21285 case DW_OP_reg11:
21286 case DW_OP_reg12:
21287 case DW_OP_reg13:
21288 case DW_OP_reg14:
21289 case DW_OP_reg15:
21290 case DW_OP_reg16:
21291 case DW_OP_reg17:
21292 case DW_OP_reg18:
21293 case DW_OP_reg19:
21294 case DW_OP_reg20:
21295 case DW_OP_reg21:
21296 case DW_OP_reg22:
21297 case DW_OP_reg23:
21298 case DW_OP_reg24:
21299 case DW_OP_reg25:
21300 case DW_OP_reg26:
21301 case DW_OP_reg27:
21302 case DW_OP_reg28:
21303 case DW_OP_reg29:
21304 case DW_OP_reg30:
21305 case DW_OP_reg31:
21306 stack[++stacki] = op - DW_OP_reg0;
21307 if (i < size)
21308 dwarf2_complex_location_expr_complaint ();
21309 break;
21310
21311 case DW_OP_regx:
21312 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21313 i += bytes_read;
21314 stack[++stacki] = unsnd;
21315 if (i < size)
21316 dwarf2_complex_location_expr_complaint ();
21317 break;
21318
21319 case DW_OP_addr:
21320 stack[++stacki] = read_address (objfile->obfd, &data[i],
21321 cu, &bytes_read);
21322 i += bytes_read;
21323 break;
21324
21325 case DW_OP_const1u:
21326 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21327 i += 1;
21328 break;
21329
21330 case DW_OP_const1s:
21331 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21332 i += 1;
21333 break;
21334
21335 case DW_OP_const2u:
21336 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21337 i += 2;
21338 break;
21339
21340 case DW_OP_const2s:
21341 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21342 i += 2;
21343 break;
21344
21345 case DW_OP_const4u:
21346 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21347 i += 4;
21348 break;
21349
21350 case DW_OP_const4s:
21351 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21352 i += 4;
21353 break;
21354
21355 case DW_OP_const8u:
21356 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21357 i += 8;
21358 break;
21359
21360 case DW_OP_constu:
21361 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21362 &bytes_read);
21363 i += bytes_read;
21364 break;
21365
21366 case DW_OP_consts:
21367 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21368 i += bytes_read;
21369 break;
21370
21371 case DW_OP_dup:
21372 stack[stacki + 1] = stack[stacki];
21373 stacki++;
21374 break;
21375
21376 case DW_OP_plus:
21377 stack[stacki - 1] += stack[stacki];
21378 stacki--;
21379 break;
21380
21381 case DW_OP_plus_uconst:
21382 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21383 &bytes_read);
21384 i += bytes_read;
21385 break;
21386
21387 case DW_OP_minus:
21388 stack[stacki - 1] -= stack[stacki];
21389 stacki--;
21390 break;
21391
21392 case DW_OP_deref:
21393 /* If we're not the last op, then we definitely can't encode
21394 this using GDB's address_class enum. This is valid for partial
21395 global symbols, although the variable's address will be bogus
21396 in the psymtab. */
21397 if (i < size)
21398 dwarf2_complex_location_expr_complaint ();
21399 break;
21400
21401 case DW_OP_GNU_push_tls_address:
21402 case DW_OP_form_tls_address:
21403 /* The top of the stack has the offset from the beginning
21404 of the thread control block at which the variable is located. */
21405 /* Nothing should follow this operator, so the top of stack would
21406 be returned. */
21407 /* This is valid for partial global symbols, but the variable's
21408 address will be bogus in the psymtab. Make it always at least
21409 non-zero to not look as a variable garbage collected by linker
21410 which have DW_OP_addr 0. */
21411 if (i < size)
21412 dwarf2_complex_location_expr_complaint ();
21413 stack[stacki]++;
21414 break;
21415
21416 case DW_OP_GNU_uninit:
21417 break;
21418
21419 case DW_OP_GNU_addr_index:
21420 case DW_OP_GNU_const_index:
21421 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21422 &bytes_read);
21423 i += bytes_read;
21424 break;
21425
21426 default:
21427 {
21428 const char *name = get_DW_OP_name (op);
21429
21430 if (name)
21431 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21432 name);
21433 else
21434 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21435 op);
21436 }
21437
21438 return (stack[stacki]);
21439 }
21440
21441 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21442 outside of the allocated space. Also enforce minimum>0. */
21443 if (stacki >= ARRAY_SIZE (stack) - 1)
21444 {
21445 complaint (&symfile_complaints,
21446 _("location description stack overflow"));
21447 return 0;
21448 }
21449
21450 if (stacki <= 0)
21451 {
21452 complaint (&symfile_complaints,
21453 _("location description stack underflow"));
21454 return 0;
21455 }
21456 }
21457 return (stack[stacki]);
21458 }
21459
21460 /* memory allocation interface */
21461
21462 static struct dwarf_block *
21463 dwarf_alloc_block (struct dwarf2_cu *cu)
21464 {
21465 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21466 }
21467
21468 static struct die_info *
21469 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21470 {
21471 struct die_info *die;
21472 size_t size = sizeof (struct die_info);
21473
21474 if (num_attrs > 1)
21475 size += (num_attrs - 1) * sizeof (struct attribute);
21476
21477 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21478 memset (die, 0, sizeof (struct die_info));
21479 return (die);
21480 }
21481
21482 \f
21483 /* Macro support. */
21484
21485 /* Return file name relative to the compilation directory of file number I in
21486 *LH's file name table. The result is allocated using xmalloc; the caller is
21487 responsible for freeing it. */
21488
21489 static char *
21490 file_file_name (int file, struct line_header *lh)
21491 {
21492 /* Is the file number a valid index into the line header's file name
21493 table? Remember that file numbers start with one, not zero. */
21494 if (1 <= file && file <= lh->file_names.size ())
21495 {
21496 const file_entry &fe = lh->file_names[file - 1];
21497
21498 if (!IS_ABSOLUTE_PATH (fe.name))
21499 {
21500 const char *dir = fe.include_dir (lh);
21501 if (dir != NULL)
21502 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21503 }
21504 return xstrdup (fe.name);
21505 }
21506 else
21507 {
21508 /* The compiler produced a bogus file number. We can at least
21509 record the macro definitions made in the file, even if we
21510 won't be able to find the file by name. */
21511 char fake_name[80];
21512
21513 xsnprintf (fake_name, sizeof (fake_name),
21514 "<bad macro file number %d>", file);
21515
21516 complaint (&symfile_complaints,
21517 _("bad file number in macro information (%d)"),
21518 file);
21519
21520 return xstrdup (fake_name);
21521 }
21522 }
21523
21524 /* Return the full name of file number I in *LH's file name table.
21525 Use COMP_DIR as the name of the current directory of the
21526 compilation. The result is allocated using xmalloc; the caller is
21527 responsible for freeing it. */
21528 static char *
21529 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21530 {
21531 /* Is the file number a valid index into the line header's file name
21532 table? Remember that file numbers start with one, not zero. */
21533 if (1 <= file && file <= lh->file_names.size ())
21534 {
21535 char *relative = file_file_name (file, lh);
21536
21537 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21538 return relative;
21539 return reconcat (relative, comp_dir, SLASH_STRING,
21540 relative, (char *) NULL);
21541 }
21542 else
21543 return file_file_name (file, lh);
21544 }
21545
21546
21547 static struct macro_source_file *
21548 macro_start_file (int file, int line,
21549 struct macro_source_file *current_file,
21550 struct line_header *lh)
21551 {
21552 /* File name relative to the compilation directory of this source file. */
21553 char *file_name = file_file_name (file, lh);
21554
21555 if (! current_file)
21556 {
21557 /* Note: We don't create a macro table for this compilation unit
21558 at all until we actually get a filename. */
21559 struct macro_table *macro_table = get_macro_table ();
21560
21561 /* If we have no current file, then this must be the start_file
21562 directive for the compilation unit's main source file. */
21563 current_file = macro_set_main (macro_table, file_name);
21564 macro_define_special (macro_table);
21565 }
21566 else
21567 current_file = macro_include (current_file, line, file_name);
21568
21569 xfree (file_name);
21570
21571 return current_file;
21572 }
21573
21574
21575 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21576 followed by a null byte. */
21577 static char *
21578 copy_string (const char *buf, int len)
21579 {
21580 char *s = (char *) xmalloc (len + 1);
21581
21582 memcpy (s, buf, len);
21583 s[len] = '\0';
21584 return s;
21585 }
21586
21587
21588 static const char *
21589 consume_improper_spaces (const char *p, const char *body)
21590 {
21591 if (*p == ' ')
21592 {
21593 complaint (&symfile_complaints,
21594 _("macro definition contains spaces "
21595 "in formal argument list:\n`%s'"),
21596 body);
21597
21598 while (*p == ' ')
21599 p++;
21600 }
21601
21602 return p;
21603 }
21604
21605
21606 static void
21607 parse_macro_definition (struct macro_source_file *file, int line,
21608 const char *body)
21609 {
21610 const char *p;
21611
21612 /* The body string takes one of two forms. For object-like macro
21613 definitions, it should be:
21614
21615 <macro name> " " <definition>
21616
21617 For function-like macro definitions, it should be:
21618
21619 <macro name> "() " <definition>
21620 or
21621 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21622
21623 Spaces may appear only where explicitly indicated, and in the
21624 <definition>.
21625
21626 The Dwarf 2 spec says that an object-like macro's name is always
21627 followed by a space, but versions of GCC around March 2002 omit
21628 the space when the macro's definition is the empty string.
21629
21630 The Dwarf 2 spec says that there should be no spaces between the
21631 formal arguments in a function-like macro's formal argument list,
21632 but versions of GCC around March 2002 include spaces after the
21633 commas. */
21634
21635
21636 /* Find the extent of the macro name. The macro name is terminated
21637 by either a space or null character (for an object-like macro) or
21638 an opening paren (for a function-like macro). */
21639 for (p = body; *p; p++)
21640 if (*p == ' ' || *p == '(')
21641 break;
21642
21643 if (*p == ' ' || *p == '\0')
21644 {
21645 /* It's an object-like macro. */
21646 int name_len = p - body;
21647 char *name = copy_string (body, name_len);
21648 const char *replacement;
21649
21650 if (*p == ' ')
21651 replacement = body + name_len + 1;
21652 else
21653 {
21654 dwarf2_macro_malformed_definition_complaint (body);
21655 replacement = body + name_len;
21656 }
21657
21658 macro_define_object (file, line, name, replacement);
21659
21660 xfree (name);
21661 }
21662 else if (*p == '(')
21663 {
21664 /* It's a function-like macro. */
21665 char *name = copy_string (body, p - body);
21666 int argc = 0;
21667 int argv_size = 1;
21668 char **argv = XNEWVEC (char *, argv_size);
21669
21670 p++;
21671
21672 p = consume_improper_spaces (p, body);
21673
21674 /* Parse the formal argument list. */
21675 while (*p && *p != ')')
21676 {
21677 /* Find the extent of the current argument name. */
21678 const char *arg_start = p;
21679
21680 while (*p && *p != ',' && *p != ')' && *p != ' ')
21681 p++;
21682
21683 if (! *p || p == arg_start)
21684 dwarf2_macro_malformed_definition_complaint (body);
21685 else
21686 {
21687 /* Make sure argv has room for the new argument. */
21688 if (argc >= argv_size)
21689 {
21690 argv_size *= 2;
21691 argv = XRESIZEVEC (char *, argv, argv_size);
21692 }
21693
21694 argv[argc++] = copy_string (arg_start, p - arg_start);
21695 }
21696
21697 p = consume_improper_spaces (p, body);
21698
21699 /* Consume the comma, if present. */
21700 if (*p == ',')
21701 {
21702 p++;
21703
21704 p = consume_improper_spaces (p, body);
21705 }
21706 }
21707
21708 if (*p == ')')
21709 {
21710 p++;
21711
21712 if (*p == ' ')
21713 /* Perfectly formed definition, no complaints. */
21714 macro_define_function (file, line, name,
21715 argc, (const char **) argv,
21716 p + 1);
21717 else if (*p == '\0')
21718 {
21719 /* Complain, but do define it. */
21720 dwarf2_macro_malformed_definition_complaint (body);
21721 macro_define_function (file, line, name,
21722 argc, (const char **) argv,
21723 p);
21724 }
21725 else
21726 /* Just complain. */
21727 dwarf2_macro_malformed_definition_complaint (body);
21728 }
21729 else
21730 /* Just complain. */
21731 dwarf2_macro_malformed_definition_complaint (body);
21732
21733 xfree (name);
21734 {
21735 int i;
21736
21737 for (i = 0; i < argc; i++)
21738 xfree (argv[i]);
21739 }
21740 xfree (argv);
21741 }
21742 else
21743 dwarf2_macro_malformed_definition_complaint (body);
21744 }
21745
21746 /* Skip some bytes from BYTES according to the form given in FORM.
21747 Returns the new pointer. */
21748
21749 static const gdb_byte *
21750 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21751 enum dwarf_form form,
21752 unsigned int offset_size,
21753 struct dwarf2_section_info *section)
21754 {
21755 unsigned int bytes_read;
21756
21757 switch (form)
21758 {
21759 case DW_FORM_data1:
21760 case DW_FORM_flag:
21761 ++bytes;
21762 break;
21763
21764 case DW_FORM_data2:
21765 bytes += 2;
21766 break;
21767
21768 case DW_FORM_data4:
21769 bytes += 4;
21770 break;
21771
21772 case DW_FORM_data8:
21773 bytes += 8;
21774 break;
21775
21776 case DW_FORM_data16:
21777 bytes += 16;
21778 break;
21779
21780 case DW_FORM_string:
21781 read_direct_string (abfd, bytes, &bytes_read);
21782 bytes += bytes_read;
21783 break;
21784
21785 case DW_FORM_sec_offset:
21786 case DW_FORM_strp:
21787 case DW_FORM_GNU_strp_alt:
21788 bytes += offset_size;
21789 break;
21790
21791 case DW_FORM_block:
21792 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21793 bytes += bytes_read;
21794 break;
21795
21796 case DW_FORM_block1:
21797 bytes += 1 + read_1_byte (abfd, bytes);
21798 break;
21799 case DW_FORM_block2:
21800 bytes += 2 + read_2_bytes (abfd, bytes);
21801 break;
21802 case DW_FORM_block4:
21803 bytes += 4 + read_4_bytes (abfd, bytes);
21804 break;
21805
21806 case DW_FORM_sdata:
21807 case DW_FORM_udata:
21808 case DW_FORM_GNU_addr_index:
21809 case DW_FORM_GNU_str_index:
21810 bytes = gdb_skip_leb128 (bytes, buffer_end);
21811 if (bytes == NULL)
21812 {
21813 dwarf2_section_buffer_overflow_complaint (section);
21814 return NULL;
21815 }
21816 break;
21817
21818 default:
21819 {
21820 complain:
21821 complaint (&symfile_complaints,
21822 _("invalid form 0x%x in `%s'"),
21823 form, get_section_name (section));
21824 return NULL;
21825 }
21826 }
21827
21828 return bytes;
21829 }
21830
21831 /* A helper for dwarf_decode_macros that handles skipping an unknown
21832 opcode. Returns an updated pointer to the macro data buffer; or,
21833 on error, issues a complaint and returns NULL. */
21834
21835 static const gdb_byte *
21836 skip_unknown_opcode (unsigned int opcode,
21837 const gdb_byte **opcode_definitions,
21838 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21839 bfd *abfd,
21840 unsigned int offset_size,
21841 struct dwarf2_section_info *section)
21842 {
21843 unsigned int bytes_read, i;
21844 unsigned long arg;
21845 const gdb_byte *defn;
21846
21847 if (opcode_definitions[opcode] == NULL)
21848 {
21849 complaint (&symfile_complaints,
21850 _("unrecognized DW_MACFINO opcode 0x%x"),
21851 opcode);
21852 return NULL;
21853 }
21854
21855 defn = opcode_definitions[opcode];
21856 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21857 defn += bytes_read;
21858
21859 for (i = 0; i < arg; ++i)
21860 {
21861 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21862 (enum dwarf_form) defn[i], offset_size,
21863 section);
21864 if (mac_ptr == NULL)
21865 {
21866 /* skip_form_bytes already issued the complaint. */
21867 return NULL;
21868 }
21869 }
21870
21871 return mac_ptr;
21872 }
21873
21874 /* A helper function which parses the header of a macro section.
21875 If the macro section is the extended (for now called "GNU") type,
21876 then this updates *OFFSET_SIZE. Returns a pointer to just after
21877 the header, or issues a complaint and returns NULL on error. */
21878
21879 static const gdb_byte *
21880 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21881 bfd *abfd,
21882 const gdb_byte *mac_ptr,
21883 unsigned int *offset_size,
21884 int section_is_gnu)
21885 {
21886 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21887
21888 if (section_is_gnu)
21889 {
21890 unsigned int version, flags;
21891
21892 version = read_2_bytes (abfd, mac_ptr);
21893 if (version != 4 && version != 5)
21894 {
21895 complaint (&symfile_complaints,
21896 _("unrecognized version `%d' in .debug_macro section"),
21897 version);
21898 return NULL;
21899 }
21900 mac_ptr += 2;
21901
21902 flags = read_1_byte (abfd, mac_ptr);
21903 ++mac_ptr;
21904 *offset_size = (flags & 1) ? 8 : 4;
21905
21906 if ((flags & 2) != 0)
21907 /* We don't need the line table offset. */
21908 mac_ptr += *offset_size;
21909
21910 /* Vendor opcode descriptions. */
21911 if ((flags & 4) != 0)
21912 {
21913 unsigned int i, count;
21914
21915 count = read_1_byte (abfd, mac_ptr);
21916 ++mac_ptr;
21917 for (i = 0; i < count; ++i)
21918 {
21919 unsigned int opcode, bytes_read;
21920 unsigned long arg;
21921
21922 opcode = read_1_byte (abfd, mac_ptr);
21923 ++mac_ptr;
21924 opcode_definitions[opcode] = mac_ptr;
21925 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21926 mac_ptr += bytes_read;
21927 mac_ptr += arg;
21928 }
21929 }
21930 }
21931
21932 return mac_ptr;
21933 }
21934
21935 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21936 including DW_MACRO_import. */
21937
21938 static void
21939 dwarf_decode_macro_bytes (bfd *abfd,
21940 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21941 struct macro_source_file *current_file,
21942 struct line_header *lh,
21943 struct dwarf2_section_info *section,
21944 int section_is_gnu, int section_is_dwz,
21945 unsigned int offset_size,
21946 htab_t include_hash)
21947 {
21948 struct objfile *objfile = dwarf2_per_objfile->objfile;
21949 enum dwarf_macro_record_type macinfo_type;
21950 int at_commandline;
21951 const gdb_byte *opcode_definitions[256];
21952
21953 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21954 &offset_size, section_is_gnu);
21955 if (mac_ptr == NULL)
21956 {
21957 /* We already issued a complaint. */
21958 return;
21959 }
21960
21961 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21962 GDB is still reading the definitions from command line. First
21963 DW_MACINFO_start_file will need to be ignored as it was already executed
21964 to create CURRENT_FILE for the main source holding also the command line
21965 definitions. On first met DW_MACINFO_start_file this flag is reset to
21966 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21967
21968 at_commandline = 1;
21969
21970 do
21971 {
21972 /* Do we at least have room for a macinfo type byte? */
21973 if (mac_ptr >= mac_end)
21974 {
21975 dwarf2_section_buffer_overflow_complaint (section);
21976 break;
21977 }
21978
21979 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21980 mac_ptr++;
21981
21982 /* Note that we rely on the fact that the corresponding GNU and
21983 DWARF constants are the same. */
21984 switch (macinfo_type)
21985 {
21986 /* A zero macinfo type indicates the end of the macro
21987 information. */
21988 case 0:
21989 break;
21990
21991 case DW_MACRO_define:
21992 case DW_MACRO_undef:
21993 case DW_MACRO_define_strp:
21994 case DW_MACRO_undef_strp:
21995 case DW_MACRO_define_sup:
21996 case DW_MACRO_undef_sup:
21997 {
21998 unsigned int bytes_read;
21999 int line;
22000 const char *body;
22001 int is_define;
22002
22003 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22004 mac_ptr += bytes_read;
22005
22006 if (macinfo_type == DW_MACRO_define
22007 || macinfo_type == DW_MACRO_undef)
22008 {
22009 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22010 mac_ptr += bytes_read;
22011 }
22012 else
22013 {
22014 LONGEST str_offset;
22015
22016 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22017 mac_ptr += offset_size;
22018
22019 if (macinfo_type == DW_MACRO_define_sup
22020 || macinfo_type == DW_MACRO_undef_sup
22021 || section_is_dwz)
22022 {
22023 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22024
22025 body = read_indirect_string_from_dwz (dwz, str_offset);
22026 }
22027 else
22028 body = read_indirect_string_at_offset (abfd, str_offset);
22029 }
22030
22031 is_define = (macinfo_type == DW_MACRO_define
22032 || macinfo_type == DW_MACRO_define_strp
22033 || macinfo_type == DW_MACRO_define_sup);
22034 if (! current_file)
22035 {
22036 /* DWARF violation as no main source is present. */
22037 complaint (&symfile_complaints,
22038 _("debug info with no main source gives macro %s "
22039 "on line %d: %s"),
22040 is_define ? _("definition") : _("undefinition"),
22041 line, body);
22042 break;
22043 }
22044 if ((line == 0 && !at_commandline)
22045 || (line != 0 && at_commandline))
22046 complaint (&symfile_complaints,
22047 _("debug info gives %s macro %s with %s line %d: %s"),
22048 at_commandline ? _("command-line") : _("in-file"),
22049 is_define ? _("definition") : _("undefinition"),
22050 line == 0 ? _("zero") : _("non-zero"), line, body);
22051
22052 if (is_define)
22053 parse_macro_definition (current_file, line, body);
22054 else
22055 {
22056 gdb_assert (macinfo_type == DW_MACRO_undef
22057 || macinfo_type == DW_MACRO_undef_strp
22058 || macinfo_type == DW_MACRO_undef_sup);
22059 macro_undef (current_file, line, body);
22060 }
22061 }
22062 break;
22063
22064 case DW_MACRO_start_file:
22065 {
22066 unsigned int bytes_read;
22067 int line, file;
22068
22069 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22070 mac_ptr += bytes_read;
22071 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22072 mac_ptr += bytes_read;
22073
22074 if ((line == 0 && !at_commandline)
22075 || (line != 0 && at_commandline))
22076 complaint (&symfile_complaints,
22077 _("debug info gives source %d included "
22078 "from %s at %s line %d"),
22079 file, at_commandline ? _("command-line") : _("file"),
22080 line == 0 ? _("zero") : _("non-zero"), line);
22081
22082 if (at_commandline)
22083 {
22084 /* This DW_MACRO_start_file was executed in the
22085 pass one. */
22086 at_commandline = 0;
22087 }
22088 else
22089 current_file = macro_start_file (file, line, current_file, lh);
22090 }
22091 break;
22092
22093 case DW_MACRO_end_file:
22094 if (! current_file)
22095 complaint (&symfile_complaints,
22096 _("macro debug info has an unmatched "
22097 "`close_file' directive"));
22098 else
22099 {
22100 current_file = current_file->included_by;
22101 if (! current_file)
22102 {
22103 enum dwarf_macro_record_type next_type;
22104
22105 /* GCC circa March 2002 doesn't produce the zero
22106 type byte marking the end of the compilation
22107 unit. Complain if it's not there, but exit no
22108 matter what. */
22109
22110 /* Do we at least have room for a macinfo type byte? */
22111 if (mac_ptr >= mac_end)
22112 {
22113 dwarf2_section_buffer_overflow_complaint (section);
22114 return;
22115 }
22116
22117 /* We don't increment mac_ptr here, so this is just
22118 a look-ahead. */
22119 next_type
22120 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22121 mac_ptr);
22122 if (next_type != 0)
22123 complaint (&symfile_complaints,
22124 _("no terminating 0-type entry for "
22125 "macros in `.debug_macinfo' section"));
22126
22127 return;
22128 }
22129 }
22130 break;
22131
22132 case DW_MACRO_import:
22133 case DW_MACRO_import_sup:
22134 {
22135 LONGEST offset;
22136 void **slot;
22137 bfd *include_bfd = abfd;
22138 struct dwarf2_section_info *include_section = section;
22139 const gdb_byte *include_mac_end = mac_end;
22140 int is_dwz = section_is_dwz;
22141 const gdb_byte *new_mac_ptr;
22142
22143 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22144 mac_ptr += offset_size;
22145
22146 if (macinfo_type == DW_MACRO_import_sup)
22147 {
22148 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22149
22150 dwarf2_read_section (objfile, &dwz->macro);
22151
22152 include_section = &dwz->macro;
22153 include_bfd = get_section_bfd_owner (include_section);
22154 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22155 is_dwz = 1;
22156 }
22157
22158 new_mac_ptr = include_section->buffer + offset;
22159 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22160
22161 if (*slot != NULL)
22162 {
22163 /* This has actually happened; see
22164 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22165 complaint (&symfile_complaints,
22166 _("recursive DW_MACRO_import in "
22167 ".debug_macro section"));
22168 }
22169 else
22170 {
22171 *slot = (void *) new_mac_ptr;
22172
22173 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22174 include_mac_end, current_file, lh,
22175 section, section_is_gnu, is_dwz,
22176 offset_size, include_hash);
22177
22178 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22179 }
22180 }
22181 break;
22182
22183 case DW_MACINFO_vendor_ext:
22184 if (!section_is_gnu)
22185 {
22186 unsigned int bytes_read;
22187
22188 /* This reads the constant, but since we don't recognize
22189 any vendor extensions, we ignore it. */
22190 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22191 mac_ptr += bytes_read;
22192 read_direct_string (abfd, mac_ptr, &bytes_read);
22193 mac_ptr += bytes_read;
22194
22195 /* We don't recognize any vendor extensions. */
22196 break;
22197 }
22198 /* FALLTHROUGH */
22199
22200 default:
22201 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22202 mac_ptr, mac_end, abfd, offset_size,
22203 section);
22204 if (mac_ptr == NULL)
22205 return;
22206 break;
22207 }
22208 } while (macinfo_type != 0);
22209 }
22210
22211 static void
22212 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22213 int section_is_gnu)
22214 {
22215 struct objfile *objfile = dwarf2_per_objfile->objfile;
22216 struct line_header *lh = cu->line_header;
22217 bfd *abfd;
22218 const gdb_byte *mac_ptr, *mac_end;
22219 struct macro_source_file *current_file = 0;
22220 enum dwarf_macro_record_type macinfo_type;
22221 unsigned int offset_size = cu->header.offset_size;
22222 const gdb_byte *opcode_definitions[256];
22223 struct cleanup *cleanup;
22224 void **slot;
22225 struct dwarf2_section_info *section;
22226 const char *section_name;
22227
22228 if (cu->dwo_unit != NULL)
22229 {
22230 if (section_is_gnu)
22231 {
22232 section = &cu->dwo_unit->dwo_file->sections.macro;
22233 section_name = ".debug_macro.dwo";
22234 }
22235 else
22236 {
22237 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22238 section_name = ".debug_macinfo.dwo";
22239 }
22240 }
22241 else
22242 {
22243 if (section_is_gnu)
22244 {
22245 section = &dwarf2_per_objfile->macro;
22246 section_name = ".debug_macro";
22247 }
22248 else
22249 {
22250 section = &dwarf2_per_objfile->macinfo;
22251 section_name = ".debug_macinfo";
22252 }
22253 }
22254
22255 dwarf2_read_section (objfile, section);
22256 if (section->buffer == NULL)
22257 {
22258 complaint (&symfile_complaints, _("missing %s section"), section_name);
22259 return;
22260 }
22261 abfd = get_section_bfd_owner (section);
22262
22263 /* First pass: Find the name of the base filename.
22264 This filename is needed in order to process all macros whose definition
22265 (or undefinition) comes from the command line. These macros are defined
22266 before the first DW_MACINFO_start_file entry, and yet still need to be
22267 associated to the base file.
22268
22269 To determine the base file name, we scan the macro definitions until we
22270 reach the first DW_MACINFO_start_file entry. We then initialize
22271 CURRENT_FILE accordingly so that any macro definition found before the
22272 first DW_MACINFO_start_file can still be associated to the base file. */
22273
22274 mac_ptr = section->buffer + offset;
22275 mac_end = section->buffer + section->size;
22276
22277 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22278 &offset_size, section_is_gnu);
22279 if (mac_ptr == NULL)
22280 {
22281 /* We already issued a complaint. */
22282 return;
22283 }
22284
22285 do
22286 {
22287 /* Do we at least have room for a macinfo type byte? */
22288 if (mac_ptr >= mac_end)
22289 {
22290 /* Complaint is printed during the second pass as GDB will probably
22291 stop the first pass earlier upon finding
22292 DW_MACINFO_start_file. */
22293 break;
22294 }
22295
22296 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22297 mac_ptr++;
22298
22299 /* Note that we rely on the fact that the corresponding GNU and
22300 DWARF constants are the same. */
22301 switch (macinfo_type)
22302 {
22303 /* A zero macinfo type indicates the end of the macro
22304 information. */
22305 case 0:
22306 break;
22307
22308 case DW_MACRO_define:
22309 case DW_MACRO_undef:
22310 /* Only skip the data by MAC_PTR. */
22311 {
22312 unsigned int bytes_read;
22313
22314 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22315 mac_ptr += bytes_read;
22316 read_direct_string (abfd, mac_ptr, &bytes_read);
22317 mac_ptr += bytes_read;
22318 }
22319 break;
22320
22321 case DW_MACRO_start_file:
22322 {
22323 unsigned int bytes_read;
22324 int line, file;
22325
22326 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22327 mac_ptr += bytes_read;
22328 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22329 mac_ptr += bytes_read;
22330
22331 current_file = macro_start_file (file, line, current_file, lh);
22332 }
22333 break;
22334
22335 case DW_MACRO_end_file:
22336 /* No data to skip by MAC_PTR. */
22337 break;
22338
22339 case DW_MACRO_define_strp:
22340 case DW_MACRO_undef_strp:
22341 case DW_MACRO_define_sup:
22342 case DW_MACRO_undef_sup:
22343 {
22344 unsigned int bytes_read;
22345
22346 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22347 mac_ptr += bytes_read;
22348 mac_ptr += offset_size;
22349 }
22350 break;
22351
22352 case DW_MACRO_import:
22353 case DW_MACRO_import_sup:
22354 /* Note that, according to the spec, a transparent include
22355 chain cannot call DW_MACRO_start_file. So, we can just
22356 skip this opcode. */
22357 mac_ptr += offset_size;
22358 break;
22359
22360 case DW_MACINFO_vendor_ext:
22361 /* Only skip the data by MAC_PTR. */
22362 if (!section_is_gnu)
22363 {
22364 unsigned int bytes_read;
22365
22366 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22367 mac_ptr += bytes_read;
22368 read_direct_string (abfd, mac_ptr, &bytes_read);
22369 mac_ptr += bytes_read;
22370 }
22371 /* FALLTHROUGH */
22372
22373 default:
22374 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22375 mac_ptr, mac_end, abfd, offset_size,
22376 section);
22377 if (mac_ptr == NULL)
22378 return;
22379 break;
22380 }
22381 } while (macinfo_type != 0 && current_file == NULL);
22382
22383 /* Second pass: Process all entries.
22384
22385 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22386 command-line macro definitions/undefinitions. This flag is unset when we
22387 reach the first DW_MACINFO_start_file entry. */
22388
22389 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22390 htab_eq_pointer,
22391 NULL, xcalloc, xfree));
22392 mac_ptr = section->buffer + offset;
22393 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22394 *slot = (void *) mac_ptr;
22395 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22396 current_file, lh, section,
22397 section_is_gnu, 0, offset_size,
22398 include_hash.get ());
22399 }
22400
22401 /* Check if the attribute's form is a DW_FORM_block*
22402 if so return true else false. */
22403
22404 static int
22405 attr_form_is_block (const struct attribute *attr)
22406 {
22407 return (attr == NULL ? 0 :
22408 attr->form == DW_FORM_block1
22409 || attr->form == DW_FORM_block2
22410 || attr->form == DW_FORM_block4
22411 || attr->form == DW_FORM_block
22412 || attr->form == DW_FORM_exprloc);
22413 }
22414
22415 /* Return non-zero if ATTR's value is a section offset --- classes
22416 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22417 You may use DW_UNSND (attr) to retrieve such offsets.
22418
22419 Section 7.5.4, "Attribute Encodings", explains that no attribute
22420 may have a value that belongs to more than one of these classes; it
22421 would be ambiguous if we did, because we use the same forms for all
22422 of them. */
22423
22424 static int
22425 attr_form_is_section_offset (const struct attribute *attr)
22426 {
22427 return (attr->form == DW_FORM_data4
22428 || attr->form == DW_FORM_data8
22429 || attr->form == DW_FORM_sec_offset);
22430 }
22431
22432 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22433 zero otherwise. When this function returns true, you can apply
22434 dwarf2_get_attr_constant_value to it.
22435
22436 However, note that for some attributes you must check
22437 attr_form_is_section_offset before using this test. DW_FORM_data4
22438 and DW_FORM_data8 are members of both the constant class, and of
22439 the classes that contain offsets into other debug sections
22440 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22441 that, if an attribute's can be either a constant or one of the
22442 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22443 taken as section offsets, not constants.
22444
22445 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22446 cannot handle that. */
22447
22448 static int
22449 attr_form_is_constant (const struct attribute *attr)
22450 {
22451 switch (attr->form)
22452 {
22453 case DW_FORM_sdata:
22454 case DW_FORM_udata:
22455 case DW_FORM_data1:
22456 case DW_FORM_data2:
22457 case DW_FORM_data4:
22458 case DW_FORM_data8:
22459 return 1;
22460 default:
22461 return 0;
22462 }
22463 }
22464
22465
22466 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22467 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22468
22469 static int
22470 attr_form_is_ref (const struct attribute *attr)
22471 {
22472 switch (attr->form)
22473 {
22474 case DW_FORM_ref_addr:
22475 case DW_FORM_ref1:
22476 case DW_FORM_ref2:
22477 case DW_FORM_ref4:
22478 case DW_FORM_ref8:
22479 case DW_FORM_ref_udata:
22480 case DW_FORM_GNU_ref_alt:
22481 return 1;
22482 default:
22483 return 0;
22484 }
22485 }
22486
22487 /* Return the .debug_loc section to use for CU.
22488 For DWO files use .debug_loc.dwo. */
22489
22490 static struct dwarf2_section_info *
22491 cu_debug_loc_section (struct dwarf2_cu *cu)
22492 {
22493 if (cu->dwo_unit)
22494 {
22495 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22496
22497 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22498 }
22499 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22500 : &dwarf2_per_objfile->loc);
22501 }
22502
22503 /* A helper function that fills in a dwarf2_loclist_baton. */
22504
22505 static void
22506 fill_in_loclist_baton (struct dwarf2_cu *cu,
22507 struct dwarf2_loclist_baton *baton,
22508 const struct attribute *attr)
22509 {
22510 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22511
22512 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22513
22514 baton->per_cu = cu->per_cu;
22515 gdb_assert (baton->per_cu);
22516 /* We don't know how long the location list is, but make sure we
22517 don't run off the edge of the section. */
22518 baton->size = section->size - DW_UNSND (attr);
22519 baton->data = section->buffer + DW_UNSND (attr);
22520 baton->base_address = cu->base_address;
22521 baton->from_dwo = cu->dwo_unit != NULL;
22522 }
22523
22524 static void
22525 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22526 struct dwarf2_cu *cu, int is_block)
22527 {
22528 struct objfile *objfile = dwarf2_per_objfile->objfile;
22529 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22530
22531 if (attr_form_is_section_offset (attr)
22532 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22533 the section. If so, fall through to the complaint in the
22534 other branch. */
22535 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22536 {
22537 struct dwarf2_loclist_baton *baton;
22538
22539 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22540
22541 fill_in_loclist_baton (cu, baton, attr);
22542
22543 if (cu->base_known == 0)
22544 complaint (&symfile_complaints,
22545 _("Location list used without "
22546 "specifying the CU base address."));
22547
22548 SYMBOL_ACLASS_INDEX (sym) = (is_block
22549 ? dwarf2_loclist_block_index
22550 : dwarf2_loclist_index);
22551 SYMBOL_LOCATION_BATON (sym) = baton;
22552 }
22553 else
22554 {
22555 struct dwarf2_locexpr_baton *baton;
22556
22557 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22558 baton->per_cu = cu->per_cu;
22559 gdb_assert (baton->per_cu);
22560
22561 if (attr_form_is_block (attr))
22562 {
22563 /* Note that we're just copying the block's data pointer
22564 here, not the actual data. We're still pointing into the
22565 info_buffer for SYM's objfile; right now we never release
22566 that buffer, but when we do clean up properly this may
22567 need to change. */
22568 baton->size = DW_BLOCK (attr)->size;
22569 baton->data = DW_BLOCK (attr)->data;
22570 }
22571 else
22572 {
22573 dwarf2_invalid_attrib_class_complaint ("location description",
22574 SYMBOL_NATURAL_NAME (sym));
22575 baton->size = 0;
22576 }
22577
22578 SYMBOL_ACLASS_INDEX (sym) = (is_block
22579 ? dwarf2_locexpr_block_index
22580 : dwarf2_locexpr_index);
22581 SYMBOL_LOCATION_BATON (sym) = baton;
22582 }
22583 }
22584
22585 /* Return the OBJFILE associated with the compilation unit CU. If CU
22586 came from a separate debuginfo file, then the master objfile is
22587 returned. */
22588
22589 struct objfile *
22590 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22591 {
22592 struct objfile *objfile = per_cu->objfile;
22593
22594 /* Return the master objfile, so that we can report and look up the
22595 correct file containing this variable. */
22596 if (objfile->separate_debug_objfile_backlink)
22597 objfile = objfile->separate_debug_objfile_backlink;
22598
22599 return objfile;
22600 }
22601
22602 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22603 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22604 CU_HEADERP first. */
22605
22606 static const struct comp_unit_head *
22607 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22608 struct dwarf2_per_cu_data *per_cu)
22609 {
22610 const gdb_byte *info_ptr;
22611
22612 if (per_cu->cu)
22613 return &per_cu->cu->header;
22614
22615 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22616
22617 memset (cu_headerp, 0, sizeof (*cu_headerp));
22618 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22619 rcuh_kind::COMPILE);
22620
22621 return cu_headerp;
22622 }
22623
22624 /* Return the address size given in the compilation unit header for CU. */
22625
22626 int
22627 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22628 {
22629 struct comp_unit_head cu_header_local;
22630 const struct comp_unit_head *cu_headerp;
22631
22632 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22633
22634 return cu_headerp->addr_size;
22635 }
22636
22637 /* Return the offset size given in the compilation unit header for CU. */
22638
22639 int
22640 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22641 {
22642 struct comp_unit_head cu_header_local;
22643 const struct comp_unit_head *cu_headerp;
22644
22645 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22646
22647 return cu_headerp->offset_size;
22648 }
22649
22650 /* See its dwarf2loc.h declaration. */
22651
22652 int
22653 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22654 {
22655 struct comp_unit_head cu_header_local;
22656 const struct comp_unit_head *cu_headerp;
22657
22658 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22659
22660 if (cu_headerp->version == 2)
22661 return cu_headerp->addr_size;
22662 else
22663 return cu_headerp->offset_size;
22664 }
22665
22666 /* Return the text offset of the CU. The returned offset comes from
22667 this CU's objfile. If this objfile came from a separate debuginfo
22668 file, then the offset may be different from the corresponding
22669 offset in the parent objfile. */
22670
22671 CORE_ADDR
22672 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22673 {
22674 struct objfile *objfile = per_cu->objfile;
22675
22676 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22677 }
22678
22679 /* Return DWARF version number of PER_CU. */
22680
22681 short
22682 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22683 {
22684 return per_cu->dwarf_version;
22685 }
22686
22687 /* Locate the .debug_info compilation unit from CU's objfile which contains
22688 the DIE at OFFSET. Raises an error on failure. */
22689
22690 static struct dwarf2_per_cu_data *
22691 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22692 unsigned int offset_in_dwz,
22693 struct objfile *objfile)
22694 {
22695 struct dwarf2_per_cu_data *this_cu;
22696 int low, high;
22697 const sect_offset *cu_off;
22698
22699 low = 0;
22700 high = dwarf2_per_objfile->n_comp_units - 1;
22701 while (high > low)
22702 {
22703 struct dwarf2_per_cu_data *mid_cu;
22704 int mid = low + (high - low) / 2;
22705
22706 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22707 cu_off = &mid_cu->sect_off;
22708 if (mid_cu->is_dwz > offset_in_dwz
22709 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22710 high = mid;
22711 else
22712 low = mid + 1;
22713 }
22714 gdb_assert (low == high);
22715 this_cu = dwarf2_per_objfile->all_comp_units[low];
22716 cu_off = &this_cu->sect_off;
22717 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22718 {
22719 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22720 error (_("Dwarf Error: could not find partial DIE containing "
22721 "offset 0x%x [in module %s]"),
22722 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22723
22724 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22725 <= sect_off);
22726 return dwarf2_per_objfile->all_comp_units[low-1];
22727 }
22728 else
22729 {
22730 this_cu = dwarf2_per_objfile->all_comp_units[low];
22731 if (low == dwarf2_per_objfile->n_comp_units - 1
22732 && sect_off >= this_cu->sect_off + this_cu->length)
22733 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22734 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22735 return this_cu;
22736 }
22737 }
22738
22739 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22740
22741 static void
22742 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22743 {
22744 memset (cu, 0, sizeof (*cu));
22745 per_cu->cu = cu;
22746 cu->per_cu = per_cu;
22747 cu->objfile = per_cu->objfile;
22748 obstack_init (&cu->comp_unit_obstack);
22749 }
22750
22751 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22752
22753 static void
22754 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22755 enum language pretend_language)
22756 {
22757 struct attribute *attr;
22758
22759 /* Set the language we're debugging. */
22760 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22761 if (attr)
22762 set_cu_language (DW_UNSND (attr), cu);
22763 else
22764 {
22765 cu->language = pretend_language;
22766 cu->language_defn = language_def (cu->language);
22767 }
22768
22769 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22770 }
22771
22772 /* Release one cached compilation unit, CU. We unlink it from the tree
22773 of compilation units, but we don't remove it from the read_in_chain;
22774 the caller is responsible for that.
22775 NOTE: DATA is a void * because this function is also used as a
22776 cleanup routine. */
22777
22778 static void
22779 free_heap_comp_unit (void *data)
22780 {
22781 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22782
22783 gdb_assert (cu->per_cu != NULL);
22784 cu->per_cu->cu = NULL;
22785 cu->per_cu = NULL;
22786
22787 obstack_free (&cu->comp_unit_obstack, NULL);
22788
22789 xfree (cu);
22790 }
22791
22792 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22793 when we're finished with it. We can't free the pointer itself, but be
22794 sure to unlink it from the cache. Also release any associated storage. */
22795
22796 static void
22797 free_stack_comp_unit (void *data)
22798 {
22799 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22800
22801 gdb_assert (cu->per_cu != NULL);
22802 cu->per_cu->cu = NULL;
22803 cu->per_cu = NULL;
22804
22805 obstack_free (&cu->comp_unit_obstack, NULL);
22806 cu->partial_dies = NULL;
22807 }
22808
22809 /* Free all cached compilation units. */
22810
22811 static void
22812 free_cached_comp_units (void *data)
22813 {
22814 dwarf2_per_objfile->free_cached_comp_units ();
22815 }
22816
22817 /* Increase the age counter on each cached compilation unit, and free
22818 any that are too old. */
22819
22820 static void
22821 age_cached_comp_units (void)
22822 {
22823 struct dwarf2_per_cu_data *per_cu, **last_chain;
22824
22825 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22826 per_cu = dwarf2_per_objfile->read_in_chain;
22827 while (per_cu != NULL)
22828 {
22829 per_cu->cu->last_used ++;
22830 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22831 dwarf2_mark (per_cu->cu);
22832 per_cu = per_cu->cu->read_in_chain;
22833 }
22834
22835 per_cu = dwarf2_per_objfile->read_in_chain;
22836 last_chain = &dwarf2_per_objfile->read_in_chain;
22837 while (per_cu != NULL)
22838 {
22839 struct dwarf2_per_cu_data *next_cu;
22840
22841 next_cu = per_cu->cu->read_in_chain;
22842
22843 if (!per_cu->cu->mark)
22844 {
22845 free_heap_comp_unit (per_cu->cu);
22846 *last_chain = next_cu;
22847 }
22848 else
22849 last_chain = &per_cu->cu->read_in_chain;
22850
22851 per_cu = next_cu;
22852 }
22853 }
22854
22855 /* Remove a single compilation unit from the cache. */
22856
22857 static void
22858 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22859 {
22860 struct dwarf2_per_cu_data *per_cu, **last_chain;
22861
22862 per_cu = dwarf2_per_objfile->read_in_chain;
22863 last_chain = &dwarf2_per_objfile->read_in_chain;
22864 while (per_cu != NULL)
22865 {
22866 struct dwarf2_per_cu_data *next_cu;
22867
22868 next_cu = per_cu->cu->read_in_chain;
22869
22870 if (per_cu == target_per_cu)
22871 {
22872 free_heap_comp_unit (per_cu->cu);
22873 per_cu->cu = NULL;
22874 *last_chain = next_cu;
22875 break;
22876 }
22877 else
22878 last_chain = &per_cu->cu->read_in_chain;
22879
22880 per_cu = next_cu;
22881 }
22882 }
22883
22884 /* Release all extra memory associated with OBJFILE. */
22885
22886 void
22887 dwarf2_free_objfile (struct objfile *objfile)
22888 {
22889 dwarf2_per_objfile
22890 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22891 dwarf2_objfile_data_key);
22892
22893 if (dwarf2_per_objfile == NULL)
22894 return;
22895
22896 dwarf2_per_objfile->~dwarf2_per_objfile ();
22897 }
22898
22899 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22900 We store these in a hash table separate from the DIEs, and preserve them
22901 when the DIEs are flushed out of cache.
22902
22903 The CU "per_cu" pointer is needed because offset alone is not enough to
22904 uniquely identify the type. A file may have multiple .debug_types sections,
22905 or the type may come from a DWO file. Furthermore, while it's more logical
22906 to use per_cu->section+offset, with Fission the section with the data is in
22907 the DWO file but we don't know that section at the point we need it.
22908 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22909 because we can enter the lookup routine, get_die_type_at_offset, from
22910 outside this file, and thus won't necessarily have PER_CU->cu.
22911 Fortunately, PER_CU is stable for the life of the objfile. */
22912
22913 struct dwarf2_per_cu_offset_and_type
22914 {
22915 const struct dwarf2_per_cu_data *per_cu;
22916 sect_offset sect_off;
22917 struct type *type;
22918 };
22919
22920 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22921
22922 static hashval_t
22923 per_cu_offset_and_type_hash (const void *item)
22924 {
22925 const struct dwarf2_per_cu_offset_and_type *ofs
22926 = (const struct dwarf2_per_cu_offset_and_type *) item;
22927
22928 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22929 }
22930
22931 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22932
22933 static int
22934 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22935 {
22936 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22937 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22938 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22939 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22940
22941 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22942 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22943 }
22944
22945 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22946 table if necessary. For convenience, return TYPE.
22947
22948 The DIEs reading must have careful ordering to:
22949 * Not cause infite loops trying to read in DIEs as a prerequisite for
22950 reading current DIE.
22951 * Not trying to dereference contents of still incompletely read in types
22952 while reading in other DIEs.
22953 * Enable referencing still incompletely read in types just by a pointer to
22954 the type without accessing its fields.
22955
22956 Therefore caller should follow these rules:
22957 * Try to fetch any prerequisite types we may need to build this DIE type
22958 before building the type and calling set_die_type.
22959 * After building type call set_die_type for current DIE as soon as
22960 possible before fetching more types to complete the current type.
22961 * Make the type as complete as possible before fetching more types. */
22962
22963 static struct type *
22964 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22965 {
22966 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22967 struct objfile *objfile = cu->objfile;
22968 struct attribute *attr;
22969 struct dynamic_prop prop;
22970
22971 /* For Ada types, make sure that the gnat-specific data is always
22972 initialized (if not already set). There are a few types where
22973 we should not be doing so, because the type-specific area is
22974 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22975 where the type-specific area is used to store the floatformat).
22976 But this is not a problem, because the gnat-specific information
22977 is actually not needed for these types. */
22978 if (need_gnat_info (cu)
22979 && TYPE_CODE (type) != TYPE_CODE_FUNC
22980 && TYPE_CODE (type) != TYPE_CODE_FLT
22981 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22982 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22983 && TYPE_CODE (type) != TYPE_CODE_METHOD
22984 && !HAVE_GNAT_AUX_INFO (type))
22985 INIT_GNAT_SPECIFIC (type);
22986
22987 /* Read DW_AT_allocated and set in type. */
22988 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22989 if (attr_form_is_block (attr))
22990 {
22991 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22992 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22993 }
22994 else if (attr != NULL)
22995 {
22996 complaint (&symfile_complaints,
22997 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22998 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22999 to_underlying (die->sect_off));
23000 }
23001
23002 /* Read DW_AT_associated and set in type. */
23003 attr = dwarf2_attr (die, DW_AT_associated, cu);
23004 if (attr_form_is_block (attr))
23005 {
23006 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23007 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23008 }
23009 else if (attr != NULL)
23010 {
23011 complaint (&symfile_complaints,
23012 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23013 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23014 to_underlying (die->sect_off));
23015 }
23016
23017 /* Read DW_AT_data_location and set in type. */
23018 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23019 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23020 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23021
23022 if (dwarf2_per_objfile->die_type_hash == NULL)
23023 {
23024 dwarf2_per_objfile->die_type_hash =
23025 htab_create_alloc_ex (127,
23026 per_cu_offset_and_type_hash,
23027 per_cu_offset_and_type_eq,
23028 NULL,
23029 &objfile->objfile_obstack,
23030 hashtab_obstack_allocate,
23031 dummy_obstack_deallocate);
23032 }
23033
23034 ofs.per_cu = cu->per_cu;
23035 ofs.sect_off = die->sect_off;
23036 ofs.type = type;
23037 slot = (struct dwarf2_per_cu_offset_and_type **)
23038 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23039 if (*slot)
23040 complaint (&symfile_complaints,
23041 _("A problem internal to GDB: DIE 0x%x has type already set"),
23042 to_underlying (die->sect_off));
23043 *slot = XOBNEW (&objfile->objfile_obstack,
23044 struct dwarf2_per_cu_offset_and_type);
23045 **slot = ofs;
23046 return type;
23047 }
23048
23049 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23050 or return NULL if the die does not have a saved type. */
23051
23052 static struct type *
23053 get_die_type_at_offset (sect_offset sect_off,
23054 struct dwarf2_per_cu_data *per_cu)
23055 {
23056 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23057
23058 if (dwarf2_per_objfile->die_type_hash == NULL)
23059 return NULL;
23060
23061 ofs.per_cu = per_cu;
23062 ofs.sect_off = sect_off;
23063 slot = ((struct dwarf2_per_cu_offset_and_type *)
23064 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23065 if (slot)
23066 return slot->type;
23067 else
23068 return NULL;
23069 }
23070
23071 /* Look up the type for DIE in CU in die_type_hash,
23072 or return NULL if DIE does not have a saved type. */
23073
23074 static struct type *
23075 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23076 {
23077 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23078 }
23079
23080 /* Add a dependence relationship from CU to REF_PER_CU. */
23081
23082 static void
23083 dwarf2_add_dependence (struct dwarf2_cu *cu,
23084 struct dwarf2_per_cu_data *ref_per_cu)
23085 {
23086 void **slot;
23087
23088 if (cu->dependencies == NULL)
23089 cu->dependencies
23090 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23091 NULL, &cu->comp_unit_obstack,
23092 hashtab_obstack_allocate,
23093 dummy_obstack_deallocate);
23094
23095 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23096 if (*slot == NULL)
23097 *slot = ref_per_cu;
23098 }
23099
23100 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23101 Set the mark field in every compilation unit in the
23102 cache that we must keep because we are keeping CU. */
23103
23104 static int
23105 dwarf2_mark_helper (void **slot, void *data)
23106 {
23107 struct dwarf2_per_cu_data *per_cu;
23108
23109 per_cu = (struct dwarf2_per_cu_data *) *slot;
23110
23111 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23112 reading of the chain. As such dependencies remain valid it is not much
23113 useful to track and undo them during QUIT cleanups. */
23114 if (per_cu->cu == NULL)
23115 return 1;
23116
23117 if (per_cu->cu->mark)
23118 return 1;
23119 per_cu->cu->mark = 1;
23120
23121 if (per_cu->cu->dependencies != NULL)
23122 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23123
23124 return 1;
23125 }
23126
23127 /* Set the mark field in CU and in every other compilation unit in the
23128 cache that we must keep because we are keeping CU. */
23129
23130 static void
23131 dwarf2_mark (struct dwarf2_cu *cu)
23132 {
23133 if (cu->mark)
23134 return;
23135 cu->mark = 1;
23136 if (cu->dependencies != NULL)
23137 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23138 }
23139
23140 static void
23141 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23142 {
23143 while (per_cu)
23144 {
23145 per_cu->cu->mark = 0;
23146 per_cu = per_cu->cu->read_in_chain;
23147 }
23148 }
23149
23150 /* Trivial hash function for partial_die_info: the hash value of a DIE
23151 is its offset in .debug_info for this objfile. */
23152
23153 static hashval_t
23154 partial_die_hash (const void *item)
23155 {
23156 const struct partial_die_info *part_die
23157 = (const struct partial_die_info *) item;
23158
23159 return to_underlying (part_die->sect_off);
23160 }
23161
23162 /* Trivial comparison function for partial_die_info structures: two DIEs
23163 are equal if they have the same offset. */
23164
23165 static int
23166 partial_die_eq (const void *item_lhs, const void *item_rhs)
23167 {
23168 const struct partial_die_info *part_die_lhs
23169 = (const struct partial_die_info *) item_lhs;
23170 const struct partial_die_info *part_die_rhs
23171 = (const struct partial_die_info *) item_rhs;
23172
23173 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23174 }
23175
23176 static struct cmd_list_element *set_dwarf_cmdlist;
23177 static struct cmd_list_element *show_dwarf_cmdlist;
23178
23179 static void
23180 set_dwarf_cmd (char *args, int from_tty)
23181 {
23182 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23183 gdb_stdout);
23184 }
23185
23186 static void
23187 show_dwarf_cmd (char *args, int from_tty)
23188 {
23189 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23190 }
23191
23192 /* Free data associated with OBJFILE, if necessary. */
23193
23194 static void
23195 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23196 {
23197 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23198 int ix;
23199
23200 /* Make sure we don't accidentally use dwarf2_per_objfile while
23201 cleaning up. */
23202 dwarf2_per_objfile = NULL;
23203
23204 for (ix = 0; ix < data->n_comp_units; ++ix)
23205 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23206
23207 for (ix = 0; ix < data->n_type_units; ++ix)
23208 VEC_free (dwarf2_per_cu_ptr,
23209 data->all_type_units[ix]->per_cu.imported_symtabs);
23210 xfree (data->all_type_units);
23211
23212 VEC_free (dwarf2_section_info_def, data->types);
23213
23214 if (data->dwo_files)
23215 free_dwo_files (data->dwo_files, objfile);
23216 if (data->dwp_file)
23217 gdb_bfd_unref (data->dwp_file->dbfd);
23218
23219 if (data->dwz_file && data->dwz_file->dwz_bfd)
23220 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23221 }
23222
23223 \f
23224 /* The "save gdb-index" command. */
23225
23226 /* In-memory buffer to prepare data to be written later to a file. */
23227 class data_buf
23228 {
23229 public:
23230 /* Copy DATA to the end of the buffer. */
23231 template<typename T>
23232 void append_data (const T &data)
23233 {
23234 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23235 reinterpret_cast<const gdb_byte *> (&data + 1),
23236 grow (sizeof (data)));
23237 }
23238
23239 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23240 terminating zero is appended too. */
23241 void append_cstr0 (const char *cstr)
23242 {
23243 const size_t size = strlen (cstr) + 1;
23244 std::copy (cstr, cstr + size, grow (size));
23245 }
23246
23247 /* Accept a host-format integer in VAL and append it to the buffer
23248 as a target-format integer which is LEN bytes long. */
23249 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23250 {
23251 ::store_unsigned_integer (grow (len), len, byte_order, val);
23252 }
23253
23254 /* Return the size of the buffer. */
23255 size_t size () const
23256 {
23257 return m_vec.size ();
23258 }
23259
23260 /* Write the buffer to FILE. */
23261 void file_write (FILE *file) const
23262 {
23263 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23264 error (_("couldn't write data to file"));
23265 }
23266
23267 private:
23268 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23269 the start of the new block. */
23270 gdb_byte *grow (size_t size)
23271 {
23272 m_vec.resize (m_vec.size () + size);
23273 return &*m_vec.end () - size;
23274 }
23275
23276 gdb::byte_vector m_vec;
23277 };
23278
23279 /* An entry in the symbol table. */
23280 struct symtab_index_entry
23281 {
23282 /* The name of the symbol. */
23283 const char *name;
23284 /* The offset of the name in the constant pool. */
23285 offset_type index_offset;
23286 /* A sorted vector of the indices of all the CUs that hold an object
23287 of this name. */
23288 std::vector<offset_type> cu_indices;
23289 };
23290
23291 /* The symbol table. This is a power-of-2-sized hash table. */
23292 struct mapped_symtab
23293 {
23294 mapped_symtab ()
23295 {
23296 data.resize (1024);
23297 }
23298
23299 offset_type n_elements = 0;
23300 std::vector<symtab_index_entry> data;
23301 };
23302
23303 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23304 the slot.
23305
23306 Function is used only during write_hash_table so no index format backward
23307 compatibility is needed. */
23308
23309 static symtab_index_entry &
23310 find_slot (struct mapped_symtab *symtab, const char *name)
23311 {
23312 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23313
23314 index = hash & (symtab->data.size () - 1);
23315 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23316
23317 for (;;)
23318 {
23319 if (symtab->data[index].name == NULL
23320 || strcmp (name, symtab->data[index].name) == 0)
23321 return symtab->data[index];
23322 index = (index + step) & (symtab->data.size () - 1);
23323 }
23324 }
23325
23326 /* Expand SYMTAB's hash table. */
23327
23328 static void
23329 hash_expand (struct mapped_symtab *symtab)
23330 {
23331 auto old_entries = std::move (symtab->data);
23332
23333 symtab->data.clear ();
23334 symtab->data.resize (old_entries.size () * 2);
23335
23336 for (auto &it : old_entries)
23337 if (it.name != NULL)
23338 {
23339 auto &ref = find_slot (symtab, it.name);
23340 ref = std::move (it);
23341 }
23342 }
23343
23344 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23345 CU_INDEX is the index of the CU in which the symbol appears.
23346 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23347
23348 static void
23349 add_index_entry (struct mapped_symtab *symtab, const char *name,
23350 int is_static, gdb_index_symbol_kind kind,
23351 offset_type cu_index)
23352 {
23353 offset_type cu_index_and_attrs;
23354
23355 ++symtab->n_elements;
23356 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23357 hash_expand (symtab);
23358
23359 symtab_index_entry &slot = find_slot (symtab, name);
23360 if (slot.name == NULL)
23361 {
23362 slot.name = name;
23363 /* index_offset is set later. */
23364 }
23365
23366 cu_index_and_attrs = 0;
23367 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23368 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23369 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23370
23371 /* We don't want to record an index value twice as we want to avoid the
23372 duplication.
23373 We process all global symbols and then all static symbols
23374 (which would allow us to avoid the duplication by only having to check
23375 the last entry pushed), but a symbol could have multiple kinds in one CU.
23376 To keep things simple we don't worry about the duplication here and
23377 sort and uniqufy the list after we've processed all symbols. */
23378 slot.cu_indices.push_back (cu_index_and_attrs);
23379 }
23380
23381 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23382
23383 static void
23384 uniquify_cu_indices (struct mapped_symtab *symtab)
23385 {
23386 for (auto &entry : symtab->data)
23387 {
23388 if (entry.name != NULL && !entry.cu_indices.empty ())
23389 {
23390 auto &cu_indices = entry.cu_indices;
23391 std::sort (cu_indices.begin (), cu_indices.end ());
23392 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23393 cu_indices.erase (from, cu_indices.end ());
23394 }
23395 }
23396 }
23397
23398 /* A form of 'const char *' suitable for container keys. Only the
23399 pointer is stored. The strings themselves are compared, not the
23400 pointers. */
23401 class c_str_view
23402 {
23403 public:
23404 c_str_view (const char *cstr)
23405 : m_cstr (cstr)
23406 {}
23407
23408 bool operator== (const c_str_view &other) const
23409 {
23410 return strcmp (m_cstr, other.m_cstr) == 0;
23411 }
23412
23413 private:
23414 friend class c_str_view_hasher;
23415 const char *const m_cstr;
23416 };
23417
23418 /* A std::unordered_map::hasher for c_str_view that uses the right
23419 hash function for strings in a mapped index. */
23420 class c_str_view_hasher
23421 {
23422 public:
23423 size_t operator () (const c_str_view &x) const
23424 {
23425 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23426 }
23427 };
23428
23429 /* A std::unordered_map::hasher for std::vector<>. */
23430 template<typename T>
23431 class vector_hasher
23432 {
23433 public:
23434 size_t operator () (const std::vector<T> &key) const
23435 {
23436 return iterative_hash (key.data (),
23437 sizeof (key.front ()) * key.size (), 0);
23438 }
23439 };
23440
23441 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23442 constant pool entries going into the data buffer CPOOL. */
23443
23444 static void
23445 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23446 {
23447 {
23448 /* Elements are sorted vectors of the indices of all the CUs that
23449 hold an object of this name. */
23450 std::unordered_map<std::vector<offset_type>, offset_type,
23451 vector_hasher<offset_type>>
23452 symbol_hash_table;
23453
23454 /* We add all the index vectors to the constant pool first, to
23455 ensure alignment is ok. */
23456 for (symtab_index_entry &entry : symtab->data)
23457 {
23458 if (entry.name == NULL)
23459 continue;
23460 gdb_assert (entry.index_offset == 0);
23461
23462 /* Finding before inserting is faster than always trying to
23463 insert, because inserting always allocates a node, does the
23464 lookup, and then destroys the new node if another node
23465 already had the same key. C++17 try_emplace will avoid
23466 this. */
23467 const auto found
23468 = symbol_hash_table.find (entry.cu_indices);
23469 if (found != symbol_hash_table.end ())
23470 {
23471 entry.index_offset = found->second;
23472 continue;
23473 }
23474
23475 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23476 entry.index_offset = cpool.size ();
23477 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23478 for (const auto index : entry.cu_indices)
23479 cpool.append_data (MAYBE_SWAP (index));
23480 }
23481 }
23482
23483 /* Now write out the hash table. */
23484 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23485 for (const auto &entry : symtab->data)
23486 {
23487 offset_type str_off, vec_off;
23488
23489 if (entry.name != NULL)
23490 {
23491 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23492 if (insertpair.second)
23493 cpool.append_cstr0 (entry.name);
23494 str_off = insertpair.first->second;
23495 vec_off = entry.index_offset;
23496 }
23497 else
23498 {
23499 /* While 0 is a valid constant pool index, it is not valid
23500 to have 0 for both offsets. */
23501 str_off = 0;
23502 vec_off = 0;
23503 }
23504
23505 output.append_data (MAYBE_SWAP (str_off));
23506 output.append_data (MAYBE_SWAP (vec_off));
23507 }
23508 }
23509
23510 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23511
23512 /* Helper struct for building the address table. */
23513 struct addrmap_index_data
23514 {
23515 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23516 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23517 {}
23518
23519 struct objfile *objfile;
23520 data_buf &addr_vec;
23521 psym_index_map &cu_index_htab;
23522
23523 /* Non-zero if the previous_* fields are valid.
23524 We can't write an entry until we see the next entry (since it is only then
23525 that we know the end of the entry). */
23526 int previous_valid;
23527 /* Index of the CU in the table of all CUs in the index file. */
23528 unsigned int previous_cu_index;
23529 /* Start address of the CU. */
23530 CORE_ADDR previous_cu_start;
23531 };
23532
23533 /* Write an address entry to ADDR_VEC. */
23534
23535 static void
23536 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23537 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23538 {
23539 CORE_ADDR baseaddr;
23540
23541 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23542
23543 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23544 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23545 addr_vec.append_data (MAYBE_SWAP (cu_index));
23546 }
23547
23548 /* Worker function for traversing an addrmap to build the address table. */
23549
23550 static int
23551 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23552 {
23553 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23554 struct partial_symtab *pst = (struct partial_symtab *) obj;
23555
23556 if (data->previous_valid)
23557 add_address_entry (data->objfile, data->addr_vec,
23558 data->previous_cu_start, start_addr,
23559 data->previous_cu_index);
23560
23561 data->previous_cu_start = start_addr;
23562 if (pst != NULL)
23563 {
23564 const auto it = data->cu_index_htab.find (pst);
23565 gdb_assert (it != data->cu_index_htab.cend ());
23566 data->previous_cu_index = it->second;
23567 data->previous_valid = 1;
23568 }
23569 else
23570 data->previous_valid = 0;
23571
23572 return 0;
23573 }
23574
23575 /* Write OBJFILE's address map to ADDR_VEC.
23576 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23577 in the index file. */
23578
23579 static void
23580 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23581 psym_index_map &cu_index_htab)
23582 {
23583 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23584
23585 /* When writing the address table, we have to cope with the fact that
23586 the addrmap iterator only provides the start of a region; we have to
23587 wait until the next invocation to get the start of the next region. */
23588
23589 addrmap_index_data.objfile = objfile;
23590 addrmap_index_data.previous_valid = 0;
23591
23592 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23593 &addrmap_index_data);
23594
23595 /* It's highly unlikely the last entry (end address = 0xff...ff)
23596 is valid, but we should still handle it.
23597 The end address is recorded as the start of the next region, but that
23598 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23599 anyway. */
23600 if (addrmap_index_data.previous_valid)
23601 add_address_entry (objfile, addr_vec,
23602 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23603 addrmap_index_data.previous_cu_index);
23604 }
23605
23606 /* Return the symbol kind of PSYM. */
23607
23608 static gdb_index_symbol_kind
23609 symbol_kind (struct partial_symbol *psym)
23610 {
23611 domain_enum domain = PSYMBOL_DOMAIN (psym);
23612 enum address_class aclass = PSYMBOL_CLASS (psym);
23613
23614 switch (domain)
23615 {
23616 case VAR_DOMAIN:
23617 switch (aclass)
23618 {
23619 case LOC_BLOCK:
23620 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23621 case LOC_TYPEDEF:
23622 return GDB_INDEX_SYMBOL_KIND_TYPE;
23623 case LOC_COMPUTED:
23624 case LOC_CONST_BYTES:
23625 case LOC_OPTIMIZED_OUT:
23626 case LOC_STATIC:
23627 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23628 case LOC_CONST:
23629 /* Note: It's currently impossible to recognize psyms as enum values
23630 short of reading the type info. For now punt. */
23631 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23632 default:
23633 /* There are other LOC_FOO values that one might want to classify
23634 as variables, but dwarf2read.c doesn't currently use them. */
23635 return GDB_INDEX_SYMBOL_KIND_OTHER;
23636 }
23637 case STRUCT_DOMAIN:
23638 return GDB_INDEX_SYMBOL_KIND_TYPE;
23639 default:
23640 return GDB_INDEX_SYMBOL_KIND_OTHER;
23641 }
23642 }
23643
23644 /* Add a list of partial symbols to SYMTAB. */
23645
23646 static void
23647 write_psymbols (struct mapped_symtab *symtab,
23648 std::unordered_set<partial_symbol *> &psyms_seen,
23649 struct partial_symbol **psymp,
23650 int count,
23651 offset_type cu_index,
23652 int is_static)
23653 {
23654 for (; count-- > 0; ++psymp)
23655 {
23656 struct partial_symbol *psym = *psymp;
23657
23658 if (SYMBOL_LANGUAGE (psym) == language_ada)
23659 error (_("Ada is not currently supported by the index"));
23660
23661 /* Only add a given psymbol once. */
23662 if (psyms_seen.insert (psym).second)
23663 {
23664 gdb_index_symbol_kind kind = symbol_kind (psym);
23665
23666 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23667 is_static, kind, cu_index);
23668 }
23669 }
23670 }
23671
23672 /* A helper struct used when iterating over debug_types. */
23673 struct signatured_type_index_data
23674 {
23675 signatured_type_index_data (data_buf &types_list_,
23676 std::unordered_set<partial_symbol *> &psyms_seen_)
23677 : types_list (types_list_), psyms_seen (psyms_seen_)
23678 {}
23679
23680 struct objfile *objfile;
23681 struct mapped_symtab *symtab;
23682 data_buf &types_list;
23683 std::unordered_set<partial_symbol *> &psyms_seen;
23684 int cu_index;
23685 };
23686
23687 /* A helper function that writes a single signatured_type to an
23688 obstack. */
23689
23690 static int
23691 write_one_signatured_type (void **slot, void *d)
23692 {
23693 struct signatured_type_index_data *info
23694 = (struct signatured_type_index_data *) d;
23695 struct signatured_type *entry = (struct signatured_type *) *slot;
23696 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23697
23698 write_psymbols (info->symtab,
23699 info->psyms_seen,
23700 info->objfile->global_psymbols.list
23701 + psymtab->globals_offset,
23702 psymtab->n_global_syms, info->cu_index,
23703 0);
23704 write_psymbols (info->symtab,
23705 info->psyms_seen,
23706 info->objfile->static_psymbols.list
23707 + psymtab->statics_offset,
23708 psymtab->n_static_syms, info->cu_index,
23709 1);
23710
23711 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23712 to_underlying (entry->per_cu.sect_off));
23713 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23714 to_underlying (entry->type_offset_in_tu));
23715 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23716
23717 ++info->cu_index;
23718
23719 return 1;
23720 }
23721
23722 /* Recurse into all "included" dependencies and count their symbols as
23723 if they appeared in this psymtab. */
23724
23725 static void
23726 recursively_count_psymbols (struct partial_symtab *psymtab,
23727 size_t &psyms_seen)
23728 {
23729 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23730 if (psymtab->dependencies[i]->user != NULL)
23731 recursively_count_psymbols (psymtab->dependencies[i],
23732 psyms_seen);
23733
23734 psyms_seen += psymtab->n_global_syms;
23735 psyms_seen += psymtab->n_static_syms;
23736 }
23737
23738 /* Recurse into all "included" dependencies and write their symbols as
23739 if they appeared in this psymtab. */
23740
23741 static void
23742 recursively_write_psymbols (struct objfile *objfile,
23743 struct partial_symtab *psymtab,
23744 struct mapped_symtab *symtab,
23745 std::unordered_set<partial_symbol *> &psyms_seen,
23746 offset_type cu_index)
23747 {
23748 int i;
23749
23750 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23751 if (psymtab->dependencies[i]->user != NULL)
23752 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23753 symtab, psyms_seen, cu_index);
23754
23755 write_psymbols (symtab,
23756 psyms_seen,
23757 objfile->global_psymbols.list + psymtab->globals_offset,
23758 psymtab->n_global_syms, cu_index,
23759 0);
23760 write_psymbols (symtab,
23761 psyms_seen,
23762 objfile->static_psymbols.list + psymtab->statics_offset,
23763 psymtab->n_static_syms, cu_index,
23764 1);
23765 }
23766
23767 /* Closes FILE on scope exit. */
23768 struct file_closer
23769 {
23770 explicit file_closer (FILE *file)
23771 : m_file (file)
23772 {}
23773
23774 ~file_closer ()
23775 { fclose (m_file); }
23776
23777 private:
23778 FILE *m_file;
23779 };
23780
23781 /* Create an index file for OBJFILE in the directory DIR. */
23782
23783 static void
23784 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23785 {
23786 if (dwarf2_per_objfile->using_index)
23787 error (_("Cannot use an index to create the index"));
23788
23789 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23790 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23791
23792 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23793 return;
23794
23795 struct stat st;
23796 if (stat (objfile_name (objfile), &st) < 0)
23797 perror_with_name (objfile_name (objfile));
23798
23799 std::string filename (std::string (dir) + SLASH_STRING
23800 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23801
23802 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb");
23803 if (!out_file)
23804 error (_("Can't open `%s' for writing"), filename.c_str ());
23805
23806 /* Order matters here; we want FILE to be closed before FILENAME is
23807 unlinked, because on MS-Windows one cannot delete a file that is
23808 still open. (Don't call anything here that might throw until
23809 file_closer is created.) */
23810 gdb::unlinker unlink_file (filename.c_str ());
23811 file_closer close_out_file (out_file);
23812
23813 mapped_symtab symtab;
23814 data_buf cu_list;
23815
23816 /* While we're scanning CU's create a table that maps a psymtab pointer
23817 (which is what addrmap records) to its index (which is what is recorded
23818 in the index file). This will later be needed to write the address
23819 table. */
23820 psym_index_map cu_index_htab;
23821 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23822
23823 /* The CU list is already sorted, so we don't need to do additional
23824 work here. Also, the debug_types entries do not appear in
23825 all_comp_units, but only in their own hash table. */
23826
23827 /* The psyms_seen set is potentially going to be largish (~40k
23828 elements when indexing a -g3 build of GDB itself). Estimate the
23829 number of elements in order to avoid too many rehashes, which
23830 require rebuilding buckets and thus many trips to
23831 malloc/free. */
23832 size_t psyms_count = 0;
23833 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23834 {
23835 struct dwarf2_per_cu_data *per_cu
23836 = dwarf2_per_objfile->all_comp_units[i];
23837 struct partial_symtab *psymtab = per_cu->v.psymtab;
23838
23839 if (psymtab != NULL && psymtab->user == NULL)
23840 recursively_count_psymbols (psymtab, psyms_count);
23841 }
23842 /* Generating an index for gdb itself shows a ratio of
23843 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23844 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23845 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23846 {
23847 struct dwarf2_per_cu_data *per_cu
23848 = dwarf2_per_objfile->all_comp_units[i];
23849 struct partial_symtab *psymtab = per_cu->v.psymtab;
23850
23851 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23852 It may be referenced from a local scope but in such case it does not
23853 need to be present in .gdb_index. */
23854 if (psymtab == NULL)
23855 continue;
23856
23857 if (psymtab->user == NULL)
23858 recursively_write_psymbols (objfile, psymtab, &symtab,
23859 psyms_seen, i);
23860
23861 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23862 gdb_assert (insertpair.second);
23863
23864 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23865 to_underlying (per_cu->sect_off));
23866 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23867 }
23868
23869 /* Dump the address map. */
23870 data_buf addr_vec;
23871 write_address_map (objfile, addr_vec, cu_index_htab);
23872
23873 /* Write out the .debug_type entries, if any. */
23874 data_buf types_cu_list;
23875 if (dwarf2_per_objfile->signatured_types)
23876 {
23877 signatured_type_index_data sig_data (types_cu_list,
23878 psyms_seen);
23879
23880 sig_data.objfile = objfile;
23881 sig_data.symtab = &symtab;
23882 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23883 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23884 write_one_signatured_type, &sig_data);
23885 }
23886
23887 /* Now that we've processed all symbols we can shrink their cu_indices
23888 lists. */
23889 uniquify_cu_indices (&symtab);
23890
23891 data_buf symtab_vec, constant_pool;
23892 write_hash_table (&symtab, symtab_vec, constant_pool);
23893
23894 data_buf contents;
23895 const offset_type size_of_contents = 6 * sizeof (offset_type);
23896 offset_type total_len = size_of_contents;
23897
23898 /* The version number. */
23899 contents.append_data (MAYBE_SWAP (8));
23900
23901 /* The offset of the CU list from the start of the file. */
23902 contents.append_data (MAYBE_SWAP (total_len));
23903 total_len += cu_list.size ();
23904
23905 /* The offset of the types CU list from the start of the file. */
23906 contents.append_data (MAYBE_SWAP (total_len));
23907 total_len += types_cu_list.size ();
23908
23909 /* The offset of the address table from the start of the file. */
23910 contents.append_data (MAYBE_SWAP (total_len));
23911 total_len += addr_vec.size ();
23912
23913 /* The offset of the symbol table from the start of the file. */
23914 contents.append_data (MAYBE_SWAP (total_len));
23915 total_len += symtab_vec.size ();
23916
23917 /* The offset of the constant pool from the start of the file. */
23918 contents.append_data (MAYBE_SWAP (total_len));
23919 total_len += constant_pool.size ();
23920
23921 gdb_assert (contents.size () == size_of_contents);
23922
23923 contents.file_write (out_file);
23924 cu_list.file_write (out_file);
23925 types_cu_list.file_write (out_file);
23926 addr_vec.file_write (out_file);
23927 symtab_vec.file_write (out_file);
23928 constant_pool.file_write (out_file);
23929
23930 /* We want to keep the file. */
23931 unlink_file.keep ();
23932 }
23933
23934 /* Implementation of the `save gdb-index' command.
23935
23936 Note that the file format used by this command is documented in the
23937 GDB manual. Any changes here must be documented there. */
23938
23939 static void
23940 save_gdb_index_command (char *arg, int from_tty)
23941 {
23942 struct objfile *objfile;
23943
23944 if (!arg || !*arg)
23945 error (_("usage: save gdb-index DIRECTORY"));
23946
23947 ALL_OBJFILES (objfile)
23948 {
23949 struct stat st;
23950
23951 /* If the objfile does not correspond to an actual file, skip it. */
23952 if (stat (objfile_name (objfile), &st) < 0)
23953 continue;
23954
23955 dwarf2_per_objfile
23956 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23957 dwarf2_objfile_data_key);
23958 if (dwarf2_per_objfile)
23959 {
23960
23961 TRY
23962 {
23963 write_psymtabs_to_index (objfile, arg);
23964 }
23965 CATCH (except, RETURN_MASK_ERROR)
23966 {
23967 exception_fprintf (gdb_stderr, except,
23968 _("Error while writing index for `%s': "),
23969 objfile_name (objfile));
23970 }
23971 END_CATCH
23972 }
23973 }
23974 }
23975
23976 \f
23977
23978 int dwarf_always_disassemble;
23979
23980 static void
23981 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23982 struct cmd_list_element *c, const char *value)
23983 {
23984 fprintf_filtered (file,
23985 _("Whether to always disassemble "
23986 "DWARF expressions is %s.\n"),
23987 value);
23988 }
23989
23990 static void
23991 show_check_physname (struct ui_file *file, int from_tty,
23992 struct cmd_list_element *c, const char *value)
23993 {
23994 fprintf_filtered (file,
23995 _("Whether to check \"physname\" is %s.\n"),
23996 value);
23997 }
23998
23999 void _initialize_dwarf2_read (void);
24000
24001 void
24002 _initialize_dwarf2_read (void)
24003 {
24004 struct cmd_list_element *c;
24005
24006 dwarf2_objfile_data_key
24007 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24008
24009 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24010 Set DWARF specific variables.\n\
24011 Configure DWARF variables such as the cache size"),
24012 &set_dwarf_cmdlist, "maintenance set dwarf ",
24013 0/*allow-unknown*/, &maintenance_set_cmdlist);
24014
24015 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24016 Show DWARF specific variables\n\
24017 Show DWARF variables such as the cache size"),
24018 &show_dwarf_cmdlist, "maintenance show dwarf ",
24019 0/*allow-unknown*/, &maintenance_show_cmdlist);
24020
24021 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24022 &dwarf_max_cache_age, _("\
24023 Set the upper bound on the age of cached DWARF compilation units."), _("\
24024 Show the upper bound on the age of cached DWARF compilation units."), _("\
24025 A higher limit means that cached compilation units will be stored\n\
24026 in memory longer, and more total memory will be used. Zero disables\n\
24027 caching, which can slow down startup."),
24028 NULL,
24029 show_dwarf_max_cache_age,
24030 &set_dwarf_cmdlist,
24031 &show_dwarf_cmdlist);
24032
24033 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24034 &dwarf_always_disassemble, _("\
24035 Set whether `info address' always disassembles DWARF expressions."), _("\
24036 Show whether `info address' always disassembles DWARF expressions."), _("\
24037 When enabled, DWARF expressions are always printed in an assembly-like\n\
24038 syntax. When disabled, expressions will be printed in a more\n\
24039 conversational style, when possible."),
24040 NULL,
24041 show_dwarf_always_disassemble,
24042 &set_dwarf_cmdlist,
24043 &show_dwarf_cmdlist);
24044
24045 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24046 Set debugging of the DWARF reader."), _("\
24047 Show debugging of the DWARF reader."), _("\
24048 When enabled (non-zero), debugging messages are printed during DWARF\n\
24049 reading and symtab expansion. A value of 1 (one) provides basic\n\
24050 information. A value greater than 1 provides more verbose information."),
24051 NULL,
24052 NULL,
24053 &setdebuglist, &showdebuglist);
24054
24055 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24056 Set debugging of the DWARF DIE reader."), _("\
24057 Show debugging of the DWARF DIE reader."), _("\
24058 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24059 The value is the maximum depth to print."),
24060 NULL,
24061 NULL,
24062 &setdebuglist, &showdebuglist);
24063
24064 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24065 Set debugging of the dwarf line reader."), _("\
24066 Show debugging of the dwarf line reader."), _("\
24067 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24068 A value of 1 (one) provides basic information.\n\
24069 A value greater than 1 provides more verbose information."),
24070 NULL,
24071 NULL,
24072 &setdebuglist, &showdebuglist);
24073
24074 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24075 Set cross-checking of \"physname\" code against demangler."), _("\
24076 Show cross-checking of \"physname\" code against demangler."), _("\
24077 When enabled, GDB's internal \"physname\" code is checked against\n\
24078 the demangler."),
24079 NULL, show_check_physname,
24080 &setdebuglist, &showdebuglist);
24081
24082 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24083 no_class, &use_deprecated_index_sections, _("\
24084 Set whether to use deprecated gdb_index sections."), _("\
24085 Show whether to use deprecated gdb_index sections."), _("\
24086 When enabled, deprecated .gdb_index sections are used anyway.\n\
24087 Normally they are ignored either because of a missing feature or\n\
24088 performance issue.\n\
24089 Warning: This option must be enabled before gdb reads the file."),
24090 NULL,
24091 NULL,
24092 &setlist, &showlist);
24093
24094 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24095 _("\
24096 Save a gdb-index file.\n\
24097 Usage: save gdb-index DIRECTORY"),
24098 &save_cmdlist);
24099 set_cmd_completer (c, filename_completer);
24100
24101 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24102 &dwarf2_locexpr_funcs);
24103 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24104 &dwarf2_loclist_funcs);
24105
24106 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24107 &dwarf2_block_frame_base_locexpr_funcs);
24108 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24109 &dwarf2_block_frame_base_loclist_funcs);
24110 }