Issue complaint instead of assert for invalid/unhandled DW_AT_accessibility
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 /* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187 struct mapped_index
188 {
189 /* Index data format version. */
190 int version;
191
192 /* The total length of the buffer. */
193 off_t total_size;
194
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
197
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
200
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
203
204 /* Size in slots, each slot is 2 offset_types. */
205 offset_type symbol_table_slots;
206
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209 };
210
211 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212 DEF_VEC_P (dwarf2_per_cu_ptr);
213
214 struct tu_stats
215 {
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221 };
222
223 /* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
226 struct dwarf2_per_objfile
227 {
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
233
234 ~dwarf2_per_objfile ();
235
236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240 private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247 public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
265
266 /* Back link. */
267 struct objfile *objfile = NULL;
268
269 /* Table of all the compilation units. This is used to locate
270 the target compilation unit of a particular reference. */
271 struct dwarf2_per_cu_data **all_comp_units = NULL;
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
274 int n_comp_units = 0;
275
276 /* The number of .debug_types-related CUs. */
277 int n_type_units = 0;
278
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
281 int n_allocated_type_units = 0;
282
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
285 struct signatured_type **all_type_units = NULL;
286
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
289 htab_t type_unit_groups {};
290
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
293 htab_t signatured_types {};
294
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
297 struct tu_stats tu_stats {};
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
301 dwarf2_per_cu_data *read_in_chain = NULL;
302
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
305 htab_t dwo_files {};
306
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
309
310 /* The DWP file if there is one, or NULL. */
311 struct dwp_file *dwp_file = NULL;
312
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
315 struct dwz_file *dwz_file = NULL;
316
317 /* A flag indicating whether this objfile has a section loaded at a
318 VMA of 0. */
319 bool has_section_at_zero = false;
320
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
323 bool using_index = false;
324
325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
326 mapped_index *index_table = NULL;
327
328 /* When using index_table, this keeps track of all quick_file_names entries.
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
335 htab_t quick_file_names_table {};
336
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
339 bool reading_partial_symbols = false;
340
341 /* Table mapping type DIEs to their struct type *.
342 This is NULL if not allocated yet.
343 The mapping is done via (CU/TU + DIE offset) -> type. */
344 htab_t die_type_hash {};
345
346 /* The CUs we recently read. */
347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
350 htab_t line_header_hash {};
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
355 };
356
357 static struct dwarf2_per_objfile *dwarf2_per_objfile;
358
359 /* Default names of the debugging sections. */
360
361 /* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
364 static const struct dwarf2_debug_sections dwarf2_elf_names =
365 {
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
370 { ".debug_loclists", ".zdebug_loclists" },
371 { ".debug_macinfo", ".zdebug_macinfo" },
372 { ".debug_macro", ".zdebug_macro" },
373 { ".debug_str", ".zdebug_str" },
374 { ".debug_line_str", ".zdebug_line_str" },
375 { ".debug_ranges", ".zdebug_ranges" },
376 { ".debug_rnglists", ".zdebug_rnglists" },
377 { ".debug_types", ".zdebug_types" },
378 { ".debug_addr", ".zdebug_addr" },
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
381 { ".gdb_index", ".zgdb_index" },
382 23
383 };
384
385 /* List of DWO/DWP sections. */
386
387 static const struct dwop_section_names
388 {
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
393 struct dwarf2_section_names loclists_dwo;
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
401 }
402 dwop_section_names =
403 {
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
416 };
417
418 /* local data types */
419
420 /* The data in a compilation unit header, after target2host
421 translation, looks like this. */
422 struct comp_unit_head
423 {
424 unsigned int length;
425 short version;
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
428 sect_offset abbrev_sect_off;
429
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
432
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
435
436 enum dwarf_unit_type unit_type;
437
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
440 sect_offset sect_off;
441
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
444 cu_offset first_die_cu_offset;
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
451 cu_offset type_cu_offset_in_tu;
452 };
453
454 /* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456 struct delayed_method_info
457 {
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472 };
473
474 typedef struct delayed_method_info delayed_method_info;
475 DEF_VEC_O (delayed_method_info);
476
477 /* Internal state when decoding a particular compilation unit. */
478 struct dwarf2_cu
479 {
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
483 /* The header of the compilation unit. */
484 struct comp_unit_head header;
485
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
496 const char *producer;
497
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
513
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
528 /* Backlink to our per_cu entry. */
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
536 htab_t die_hash;
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
554
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE. */
576 ULONGEST addr_base;
577
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
580 Note this value comes from the Fission stub CU/TU's DIE.
581 Also note that the value is zero in the non-DWO case so this value can
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
588 ULONGEST ranges_base;
589
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
597 unsigned int has_loclist : 1;
598
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
605 unsigned int producer_is_gcc_lt_4_3 : 1;
606 unsigned int producer_is_icc_lt_14 : 1;
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
613 };
614
615 /* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
617 read_symtab_private field of the psymtab. */
618
619 struct dwarf2_per_cu_data
620 {
621 /* The start offset and length of this compilation unit.
622 NOTE: Unlike comp_unit_head.length, this length includes
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
626 sect_offset sect_off;
627 unsigned int length;
628
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
634 unsigned int queued : 1;
635
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
645 unsigned int is_debug_types : 1;
646
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
669 struct dwarf2_section_info *section;
670
671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
674 struct dwarf2_cu *cu;
675
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
679 struct objfile *objfile;
680
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
686 or NULL for unread partial units. */
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
692
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
712 };
713
714 /* Entry in the signatured_types hash table. */
715
716 struct signatured_type
717 {
718 /* The "per_cu" object of this type.
719 This struct is used iff per_cu.is_debug_types.
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The type's signature. */
725 ULONGEST signature;
726
727 /* Offset in the TU of the type's DIE, as read from the TU header.
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
751 };
752
753 typedef struct signatured_type *sig_type_ptr;
754 DEF_VEC_P (sig_type_ptr);
755
756 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759 struct stmt_list_hash
760 {
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
765 sect_offset line_sect_off;
766 };
767
768 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771 struct type_unit_group
772 {
773 /* dwarf2read.c's main "handle" on a TU symtab.
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
778 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
779 struct dwarf2_per_cu_data per_cu;
780
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
785
786 /* The compunit symtab.
787 Type units in a group needn't all be defined in the same source file,
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
790
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807 };
808
809 /* These sections are what may appear in a (real or virtual) DWO file. */
810
811 struct dwo_sections
812 {
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
816 struct dwarf2_section_info loclists;
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
823 VEC (dwarf2_section_info_def) *types;
824 };
825
826 /* CUs/TUs in DWP/DWO files. */
827
828 struct dwo_unit
829 {
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
839 struct dwarf2_section_info *section;
840
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847 };
848
849 /* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853 enum dwp_v2_section_ids
854 {
855 DW_SECT_MIN = 1
856 };
857
858 /* Data for one DWO file.
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
868
869 struct dwo_file
870 {
871 /* The DW_AT_GNU_dwo_name attribute.
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
879
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
883
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
887 struct dwo_sections sections;
888
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898 };
899
900 /* These sections are what may appear in a DWP file. */
901
902 struct dwp_sections
903 {
904 /* These are used by both DWP version 1 and 2. */
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
925 };
926
927 /* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
929
930 struct virtual_v1_dwo_sections
931 {
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
939 That is recorded here, and copied to dwo_unit.section. */
940 struct dwarf2_section_info info_or_types;
941 };
942
943 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948 struct virtual_v2_dwo_sections
949 {
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972 };
973
974 /* Contents of DWP hash tables. */
975
976 struct dwp_hash_table
977 {
978 uint32_t version, nr_columns;
979 uint32_t nr_units, nr_slots;
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991 #define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
1003 };
1004
1005 /* Data for one DWP file. */
1006
1007 struct dwp_file
1008 {
1009 /* Name of the file. */
1010 const char *name;
1011
1012 /* File format version. */
1013 int version;
1014
1015 /* The bfd. */
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
1021 /* Table of CUs in the file. */
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
1030
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035 };
1036
1037 /* This represents a '.dwz' file. */
1038
1039 struct dwz_file
1040 {
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
1047 struct dwarf2_section_info gdb_index;
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051 };
1052
1053 /* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
1056 struct exists to abstract away the constant parameters of die reading. */
1057
1058 struct die_reader_specs
1059 {
1060 /* The bfd of die_section. */
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1067 struct dwo_file *dwo_file;
1068
1069 /* The section the die comes from.
1070 This is either .debug_info or .debug_types, or the .dwo variants. */
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
1074 const gdb_byte *buffer;
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
1081 };
1082
1083 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1084 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1085 const gdb_byte *info_ptr,
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
1090 /* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093 enum class dir_index : unsigned int {};
1094
1095 /* Likewise, a 1-based file name index. */
1096 enum class file_name_index : unsigned int {};
1097
1098 struct file_entry
1099 {
1100 file_entry () = default;
1101
1102 file_entry (const char *name_, dir_index d_index_,
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
1105 d_index (d_index_),
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
1112 const char *include_dir (const line_header *lh) const;
1113
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
1118 /* The directory index (1-based). */
1119 dir_index d_index {};
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
1128 /* The associated symbol table, if any. */
1129 struct symtab *symtab {};
1130 };
1131
1132 /* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135 struct line_header
1136 {
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
1145 void add_file_name (const char *name, dir_index d_index,
1146 unsigned int mod_time, unsigned int length);
1147
1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1149 is out of bounds. */
1150 const char *include_dir_at (dir_index index) const
1151 {
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
1157 return NULL;
1158 return include_dirs[vec_index];
1159 }
1160
1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1162 is out of bounds. */
1163 file_entry *file_name_at (file_name_index index)
1164 {
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
1170 return NULL;
1171 return &file_names[vec_index];
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
1182 /* Offset of line number information in .debug_line section. */
1183 sect_offset sect_off {};
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1203
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
1207
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
1210
1211 /* The start and end of the statement program following this
1212 header. These point into dwarf2_per_objfile->line_buffer. */
1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
1214 };
1215
1216 typedef std::unique_ptr<line_header> line_header_up;
1217
1218 const char *
1219 file_entry::include_dir (const line_header *lh) const
1220 {
1221 return lh->include_dir_at (d_index);
1222 }
1223
1224 /* When we construct a partial symbol table entry we only
1225 need this much information. */
1226 struct partial_die_info
1227 {
1228 /* Offset of this DIE. */
1229 sect_offset sect_off;
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
1241 unsigned int may_be_inlined : 1;
1242
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
1268 /* The name of this DIE. Normally the value of DW_AT_name, but
1269 sometimes a default name for unnamed DIEs. */
1270 const char *name;
1271
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
1278 const char *scope;
1279
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
1287 sect_offset sect_off;
1288 } d;
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
1293
1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1295 DW_AT_sibling, if any. */
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
1298 const gdb_byte *sibling;
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
1303 sect_offset spec_offset;
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
1308 };
1309
1310 /* This data structure holds the information of an abbrev. */
1311 struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321 struct attr_abbrev
1322 {
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
1328 };
1329
1330 /* Size of abbrev_table.abbrev_hash_table. */
1331 #define ABBREV_HASH_SIZE 121
1332
1333 /* Top level data structure to contain an abbreviation table. */
1334
1335 struct abbrev_table
1336 {
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
1339 sect_offset sect_off;
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349 };
1350
1351 /* Attributes have a name and a value. */
1352 struct attribute
1353 {
1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
1362 union
1363 {
1364 const char *str;
1365 struct dwarf_block *blk;
1366 ULONGEST unsnd;
1367 LONGEST snd;
1368 CORE_ADDR addr;
1369 ULONGEST signature;
1370 }
1371 u;
1372 };
1373
1374 /* This data structure holds a complete die structure. */
1375 struct die_info
1376 {
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
1386
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
1393 /* Offset in .debug_info or .debug_types section. */
1394 sect_offset sect_off;
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
1399 together via their SIBLING fields. */
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
1403
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
1408 };
1409
1410 /* Get at parts of an attribute structure. */
1411
1412 #define DW_STRING(attr) ((attr)->u.str)
1413 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1414 #define DW_UNSND(attr) ((attr)->u.unsnd)
1415 #define DW_BLOCK(attr) ((attr)->u.blk)
1416 #define DW_SND(attr) ((attr)->u.snd)
1417 #define DW_ADDR(attr) ((attr)->u.addr)
1418 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1419
1420 /* Blocks are a bunch of untyped bytes. */
1421 struct dwarf_block
1422 {
1423 size_t size;
1424
1425 /* Valid only if SIZE is not zero. */
1426 const gdb_byte *data;
1427 };
1428
1429 #ifndef ATTR_ALLOC_CHUNK
1430 #define ATTR_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* Allocate fields for structs, unions and enums in this size. */
1434 #ifndef DW_FIELD_ALLOC_CHUNK
1435 #define DW_FIELD_ALLOC_CHUNK 4
1436 #endif
1437
1438 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441 static int bits_per_byte = 8;
1442
1443 struct nextfield
1444 {
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449 };
1450
1451 struct nextfnfield
1452 {
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455 };
1456
1457 struct fnfieldlist
1458 {
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462 };
1463
1464 struct typedef_field_list
1465 {
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468 };
1469
1470 /* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473 struct field_info
1474 {
1475 /* List of data member and baseclasses fields. */
1476 struct nextfield *fields, *baseclasses;
1477
1478 /* Number of fields (including baseclasses). */
1479 int nfields;
1480
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
1483
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
1486
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
1490 struct fnfieldlist *fnfieldlists;
1491
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1497 struct typedef_field_list *typedef_field_list;
1498 unsigned typedef_field_list_count;
1499 };
1500
1501 /* One item on the queue of compilation units to read in full symbols
1502 for. */
1503 struct dwarf2_queue_item
1504 {
1505 struct dwarf2_per_cu_data *per_cu;
1506 enum language pretend_language;
1507 struct dwarf2_queue_item *next;
1508 };
1509
1510 /* The current queue. */
1511 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
1513 /* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
1518 static int dwarf_max_cache_age = 5;
1519 static void
1520 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
1522 {
1523 fprintf_filtered (file, _("The upper bound on the age of cached "
1524 "DWARF compilation units is %s.\n"),
1525 value);
1526 }
1527 \f
1528 /* local function prototypes */
1529
1530 static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532 static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
1534 static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
1537 static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
1540 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
1545 static void dwarf2_build_psymtabs_hard (struct objfile *);
1546
1547 static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
1549 int, struct dwarf2_cu *);
1550
1551 static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
1553
1554 static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1556 int set_addrmap, struct dwarf2_cu *cu);
1557
1558 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1559 CORE_ADDR *highpc, int set_addrmap,
1560 struct dwarf2_cu *cu);
1561
1562 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
1564
1565 static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1567 int need_pc, struct dwarf2_cu *cu);
1568
1569 static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
1571
1572 static void psymtab_to_symtab_1 (struct partial_symtab *);
1573
1574 static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577 static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580 static void abbrev_table_free (struct abbrev_table *);
1581
1582 static void abbrev_table_free_cleanup (void *);
1583
1584 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
1586
1587 static void dwarf2_free_abbrev_table (void *);
1588
1589 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1590
1591 static struct partial_die_info *load_partial_dies
1592 (const struct die_reader_specs *, const gdb_byte *, int);
1593
1594 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
1599
1600 static struct partial_die_info *find_partial_die (sect_offset, int,
1601 struct dwarf2_cu *);
1602
1603 static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
1606 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
1609
1610 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1611
1612 static int read_1_signed_byte (bfd *, const gdb_byte *);
1613
1614 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1615
1616 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1617
1618 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1619
1620 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1621 unsigned int *);
1622
1623 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static LONGEST read_checked_initial_length_and_offset
1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1627 unsigned int *, unsigned int *);
1628
1629 static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
1631 unsigned int *);
1632
1633 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1634
1635 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
1638 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1639
1640 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1641
1642 static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
1645
1646 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
1649
1650 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1651
1652 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1653
1654 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
1656 unsigned int *);
1657
1658 static const char *read_str_index (const struct die_reader_specs *reader,
1659 ULONGEST str_index);
1660
1661 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1662
1663 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
1665
1666 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1667 unsigned int);
1668
1669 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
1672 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
1675 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1676
1677 static struct die_info *die_specification (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1681 struct dwarf2_cu *cu);
1682
1683 static void dwarf_decode_lines (struct line_header *, const char *,
1684 struct dwarf2_cu *, struct partial_symtab *,
1685 CORE_ADDR, int decode_mapping);
1686
1687 static void dwarf2_start_subfile (const char *, const char *);
1688
1689 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
1692
1693 static struct symbol *new_symbol (struct die_info *, struct type *,
1694 struct dwarf2_cu *);
1695
1696 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
1699 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_const_value_attr (const struct attribute *attr,
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
1706 struct dwarf2_cu *cu, LONGEST *value,
1707 const gdb_byte **bytes,
1708 struct dwarf2_locexpr_baton **baton);
1709
1710 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1711
1712 static int need_gnat_info (struct dwarf2_cu *);
1713
1714 static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1724 struct dwarf2_cu *);
1725
1726 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1727
1728 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1731
1732 static char *typename_concat (struct obstack *obs, const char *prefix,
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
1735
1736 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
1740 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1741
1742 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
1746 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
1749 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1750 values. Keep the items ordered with increasing constraints compliance. */
1751 enum pc_bounds_kind
1752 {
1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1754 PC_BOUNDS_NOT_PRESENT,
1755
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765 };
1766
1767 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
1771
1772 static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_field (struct field_info *, struct die_info *,
1780 struct dwarf2_cu *);
1781
1782 static void dwarf2_attach_fields_to_type (struct field_info *,
1783 struct type *, struct dwarf2_cu *);
1784
1785 static void dwarf2_add_member_fn (struct field_info *,
1786 struct die_info *, struct type *,
1787 struct dwarf2_cu *);
1788
1789 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1790 struct type *,
1791 struct dwarf2_cu *);
1792
1793 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1794
1795 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1796
1797 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1798
1799 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct using_direct **using_directives (enum language);
1802
1803 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
1805 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
1807 static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
1810 static const char *namespace_name (struct die_info *die,
1811 int *is_anonymous, struct dwarf2_cu *);
1812
1813 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1814
1815 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1816
1817 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1818 struct dwarf2_cu *);
1819
1820 static struct die_info *read_die_and_siblings_1
1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1822 struct die_info *);
1823
1824 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
1827 struct die_info *parent);
1828
1829 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
1832
1833 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
1836
1837 static void process_die (struct die_info *, struct dwarf2_cu *);
1838
1839 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
1841
1842 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_full_name (const char *name,
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
1848 static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
1851 static struct die_info *dwarf2_extension (struct die_info *die,
1852 struct dwarf2_cu **);
1853
1854 static const char *dwarf_tag_name (unsigned int);
1855
1856 static const char *dwarf_attr_name (unsigned int);
1857
1858 static const char *dwarf_form_name (unsigned int);
1859
1860 static const char *dwarf_bool_name (unsigned int);
1861
1862 static const char *dwarf_type_encoding_name (unsigned int);
1863
1864 static struct die_info *sibling_die (struct die_info *);
1865
1866 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868 static void dump_die_for_error (struct die_info *);
1869
1870 static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
1872
1873 /*static*/ void dump_die (struct die_info *, int max_level);
1874
1875 static void store_in_ref_table (struct die_info *,
1876 struct dwarf2_cu *);
1877
1878 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1879
1880 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1881
1882 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1883 const struct attribute *,
1884 struct dwarf2_cu **);
1885
1886 static struct die_info *follow_die_ref (struct die_info *,
1887 const struct attribute *,
1888 struct dwarf2_cu **);
1889
1890 static struct die_info *follow_die_sig (struct die_info *,
1891 const struct attribute *,
1892 struct dwarf2_cu **);
1893
1894 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897 static struct type *get_DW_AT_signature_type (struct die_info *,
1898 const struct attribute *,
1899 struct dwarf2_cu *);
1900
1901 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1902
1903 static void read_signatured_type (struct signatured_type *);
1904
1905 static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
1909 /* memory allocation interface */
1910
1911 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1912
1913 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1914
1915 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1916
1917 static int attr_form_is_block (const struct attribute *);
1918
1919 static int attr_form_is_section_offset (const struct attribute *);
1920
1921 static int attr_form_is_constant (const struct attribute *);
1922
1923 static int attr_form_is_ref (const struct attribute *);
1924
1925 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
1927 const struct attribute *attr);
1928
1929 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1930 struct symbol *sym,
1931 struct dwarf2_cu *cu,
1932 int is_block);
1933
1934 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
1937
1938 static void free_stack_comp_unit (void *);
1939
1940 static hashval_t partial_die_hash (const void *item);
1941
1942 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
1944 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1946
1947 static void init_one_comp_unit (struct dwarf2_cu *cu,
1948 struct dwarf2_per_cu_data *per_cu);
1949
1950 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
1953
1954 static void free_heap_comp_unit (void *);
1955
1956 static void free_cached_comp_units (void *);
1957
1958 static void age_cached_comp_units (void);
1959
1960 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1961
1962 static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1964
1965 static void create_all_comp_units (struct objfile *);
1966
1967 static int create_all_type_units (struct objfile *);
1968
1969 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
1974
1975 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
1978 static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
1981 static void dwarf2_mark (struct dwarf2_cu *);
1982
1983 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
1985 static struct type *get_die_type_at_offset (sect_offset,
1986 struct dwarf2_per_cu_data *);
1987
1988 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1989
1990 static void dwarf2_release_queue (void *dummy);
1991
1992 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
1995 static void process_queue (void);
1996
1997 /* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000 struct file_and_directory
2001 {
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014 };
2015
2016 static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
2018
2019 static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
2022 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023 enum class rcuh_kind { COMPILE, TYPE };
2024
2025 static const gdb_byte *read_and_check_comp_unit_head
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2029 rcuh_kind section_kind);
2030
2031 static void init_cutu_and_read_dies
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
2036 static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
2039
2040 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2041
2042 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
2044 static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
2047
2048 static struct dwp_file *get_dwp_file (void);
2049
2050 static struct dwo_unit *lookup_dwo_comp_unit
2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2052
2053 static struct dwo_unit *lookup_dwo_type_unit
2054 (struct signatured_type *, const char *, const char *);
2055
2056 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
2058 static void free_dwo_file_cleanup (void *);
2059
2060 static void process_cu_includes (void);
2061
2062 static void check_producer (struct dwarf2_cu *cu);
2063
2064 static void free_line_header_voidp (void *arg);
2065 \f
2066 /* Various complaints about symbol reading that don't abort the process. */
2067
2068 static void
2069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070 {
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073 }
2074
2075 static void
2076 dwarf2_debug_line_missing_file_complaint (void)
2077 {
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080 }
2081
2082 static void
2083 dwarf2_debug_line_missing_end_sequence_complaint (void)
2084 {
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088 }
2089
2090 static void
2091 dwarf2_complex_location_expr_complaint (void)
2092 {
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094 }
2095
2096 static void
2097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099 {
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103 }
2104
2105 static void
2106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107 {
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
2111 get_section_name (section),
2112 get_section_file_name (section));
2113 }
2114
2115 static void
2116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117 {
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122 }
2123
2124 static void
2125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126 {
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130 }
2131
2132 /* Hash function for line_header_hash. */
2133
2134 static hashval_t
2135 line_header_hash (const struct line_header *ofs)
2136 {
2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2138 }
2139
2140 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142 static hashval_t
2143 line_header_hash_voidp (const void *item)
2144 {
2145 const struct line_header *ofs = (const struct line_header *) item;
2146
2147 return line_header_hash (ofs);
2148 }
2149
2150 /* Equality function for line_header_hash. */
2151
2152 static int
2153 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154 {
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2157
2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160 }
2161
2162 \f
2163 #if WORDS_BIGENDIAN
2164
2165 /* Convert VALUE between big- and little-endian. */
2166 static offset_type
2167 byte_swap (offset_type value)
2168 {
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176 }
2177
2178 #define MAYBE_SWAP(V) byte_swap (V)
2179
2180 #else
2181 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2182 #endif /* WORDS_BIGENDIAN */
2183
2184 /* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187 static CORE_ADDR
2188 attr_value_as_address (struct attribute *attr)
2189 {
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212 }
2213
2214 /* The suffix for an index file. */
2215 #define INDEX_SUFFIX ".gdb-index"
2216
2217 /* See declaration. */
2218
2219 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222 {
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230 }
2231
2232 dwarf2_per_objfile::~dwarf2_per_objfile ()
2233 {
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244 }
2245
2246 /* See declaration. */
2247
2248 void
2249 dwarf2_per_objfile::free_cached_comp_units ()
2250 {
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261 }
2262
2263 /* Try to locate the sections we need for DWARF 2 debugging
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
2267
2268 int
2269 dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
2271 {
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2279
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2282 }
2283 return (!dwarf2_per_objfile->info.is_virtual
2284 && dwarf2_per_objfile->info.s.section != NULL
2285 && !dwarf2_per_objfile->abbrev.is_virtual
2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
2287 }
2288
2289 /* Return the containing section of virtual section SECTION. */
2290
2291 static struct dwarf2_section_info *
2292 get_containing_section (const struct dwarf2_section_info *section)
2293 {
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
2296 }
2297
2298 /* Return the bfd owner of SECTION. */
2299
2300 static struct bfd *
2301 get_section_bfd_owner (const struct dwarf2_section_info *section)
2302 {
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
2308 return section->s.section->owner;
2309 }
2310
2311 /* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314 static asection *
2315 get_section_bfd_section (const struct dwarf2_section_info *section)
2316 {
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
2322 return section->s.section;
2323 }
2324
2325 /* Return the name of SECTION. */
2326
2327 static const char *
2328 get_section_name (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334 }
2335
2336 /* Return the name of the file SECTION is in. */
2337
2338 static const char *
2339 get_section_file_name (const struct dwarf2_section_info *section)
2340 {
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344 }
2345
2346 /* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349 static int
2350 get_section_id (const struct dwarf2_section_info *section)
2351 {
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357 }
2358
2359 /* Return the flags of SECTION.
2360 SECTION (or containing section if this is a virtual section) must exist. */
2361
2362 static int
2363 get_section_flags (const struct dwarf2_section_info *section)
2364 {
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369 }
2370
2371 /* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
2373
2374 static int
2375 section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
2377 {
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
2385 }
2386
2387 /* See declaration. */
2388
2389 void
2390 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
2392 {
2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
2394
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
2398 else if (section_is_p (sectp->name, &names.info))
2399 {
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.abbrev))
2404 {
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.line))
2409 {
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.loc))
2414 {
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loclists))
2419 {
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.macinfo))
2424 {
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macro))
2429 {
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.str))
2434 {
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.line_str))
2439 {
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.addr))
2444 {
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.frame))
2449 {
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.eh_frame))
2454 {
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.ranges))
2459 {
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.rnglists))
2464 {
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.types))
2469 {
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
2473 type_section.s.section = sectp;
2474 type_section.size = bfd_get_section_size (sectp);
2475
2476 VEC_safe_push (dwarf2_section_info_def, this->types,
2477 &type_section);
2478 }
2479 else if (section_is_p (sectp->name, &names.gdb_index))
2480 {
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
2483 }
2484
2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2486 && bfd_section_vma (abfd, sectp) == 0)
2487 this->has_section_at_zero = true;
2488 }
2489
2490 /* A helper function that decides whether a section is empty,
2491 or not present. */
2492
2493 static int
2494 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2495 {
2496 if (section->is_virtual)
2497 return section->size == 0;
2498 return section->s.section == NULL || section->size == 0;
2499 }
2500
2501 /* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
2505 If the section is compressed, uncompress it before returning. */
2506
2507 static void
2508 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2509 {
2510 asection *sectp;
2511 bfd *abfd;
2512 gdb_byte *buf, *retbuf;
2513
2514 if (info->readin)
2515 return;
2516 info->buffer = NULL;
2517 info->readin = 1;
2518
2519 if (dwarf2_section_empty_p (info))
2520 return;
2521
2522 sectp = get_section_bfd_section (info);
2523
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
2552 {
2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2554 return;
2555 }
2556
2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2558 info->buffer = buf;
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
2581 }
2582
2583 /* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590 static bfd_size_type
2591 dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593 {
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597 }
2598
2599 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2600 SECTION_NAME. */
2601
2602 void
2603 dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
2605 asection **sectp, const gdb_byte **bufp,
2606 bfd_size_type *sizep)
2607 {
2608 struct dwarf2_per_objfile *data
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
2611 struct dwarf2_section_info *info;
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
2633
2634 dwarf2_read_section (objfile, info);
2635
2636 *sectp = get_section_bfd_section (info);
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639 }
2640
2641 /* A helper function to find the sections for a .dwz file. */
2642
2643 static void
2644 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645 {
2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
2652 dwz_file->abbrev.s.section = sectp;
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
2657 dwz_file->info.s.section = sectp;
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
2662 dwz_file->str.s.section = sectp;
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
2667 dwz_file->line.s.section = sectp;
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
2672 dwz_file->macro.s.section = sectp;
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
2677 dwz_file->gdb_index.s.section = sectp;
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
2680 }
2681
2682 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
2685
2686 static struct dwz_file *
2687 dwarf2_get_dwz_file (void)
2688 {
2689 const char *filename;
2690 struct dwz_file *result;
2691 bfd_size_type buildid_len_arg;
2692 size_t buildid_len;
2693 bfd_byte *buildid;
2694
2695 if (dwarf2_per_objfile->dwz_file != NULL)
2696 return dwarf2_per_objfile->dwz_file;
2697
2698 bfd_set_error (bfd_error_no_error);
2699 gdb::unique_xmalloc_ptr<char> data
2700 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2701 &buildid_len_arg, &buildid));
2702 if (data == NULL)
2703 {
2704 if (bfd_get_error () == bfd_error_no_error)
2705 return NULL;
2706 error (_("could not read '.gnu_debugaltlink' section: %s"),
2707 bfd_errmsg (bfd_get_error ()));
2708 }
2709
2710 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2711
2712 buildid_len = (size_t) buildid_len_arg;
2713
2714 filename = data.get ();
2715
2716 std::string abs_storage;
2717 if (!IS_ABSOLUTE_PATH (filename))
2718 {
2719 gdb::unique_xmalloc_ptr<char> abs
2720 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2721
2722 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2723 filename = abs_storage.c_str ();
2724 }
2725
2726 /* First try the file name given in the section. If that doesn't
2727 work, try to use the build-id instead. */
2728 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2729 if (dwz_bfd != NULL)
2730 {
2731 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2732 dwz_bfd.release ();
2733 }
2734
2735 if (dwz_bfd == NULL)
2736 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2737
2738 if (dwz_bfd == NULL)
2739 error (_("could not find '.gnu_debugaltlink' file for %s"),
2740 objfile_name (dwarf2_per_objfile->objfile));
2741
2742 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2743 struct dwz_file);
2744 result->dwz_bfd = dwz_bfd.release ();
2745
2746 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2747
2748 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2749 dwarf2_per_objfile->dwz_file = result;
2750 return result;
2751 }
2752 \f
2753 /* DWARF quick_symbols_functions support. */
2754
2755 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2756 unique line tables, so we maintain a separate table of all .debug_line
2757 derived entries to support the sharing.
2758 All the quick functions need is the list of file names. We discard the
2759 line_header when we're done and don't need to record it here. */
2760 struct quick_file_names
2761 {
2762 /* The data used to construct the hash key. */
2763 struct stmt_list_hash hash;
2764
2765 /* The number of entries in file_names, real_names. */
2766 unsigned int num_file_names;
2767
2768 /* The file names from the line table, after being run through
2769 file_full_name. */
2770 const char **file_names;
2771
2772 /* The file names from the line table after being run through
2773 gdb_realpath. These are computed lazily. */
2774 const char **real_names;
2775 };
2776
2777 /* When using the index (and thus not using psymtabs), each CU has an
2778 object of this type. This is used to hold information needed by
2779 the various "quick" methods. */
2780 struct dwarf2_per_cu_quick_data
2781 {
2782 /* The file table. This can be NULL if there was no file table
2783 or it's currently not read in.
2784 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2785 struct quick_file_names *file_names;
2786
2787 /* The corresponding symbol table. This is NULL if symbols for this
2788 CU have not yet been read. */
2789 struct compunit_symtab *compunit_symtab;
2790
2791 /* A temporary mark bit used when iterating over all CUs in
2792 expand_symtabs_matching. */
2793 unsigned int mark : 1;
2794
2795 /* True if we've tried to read the file table and found there isn't one.
2796 There will be no point in trying to read it again next time. */
2797 unsigned int no_file_data : 1;
2798 };
2799
2800 /* Utility hash function for a stmt_list_hash. */
2801
2802 static hashval_t
2803 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2804 {
2805 hashval_t v = 0;
2806
2807 if (stmt_list_hash->dwo_unit != NULL)
2808 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2809 v += to_underlying (stmt_list_hash->line_sect_off);
2810 return v;
2811 }
2812
2813 /* Utility equality function for a stmt_list_hash. */
2814
2815 static int
2816 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2817 const struct stmt_list_hash *rhs)
2818 {
2819 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2820 return 0;
2821 if (lhs->dwo_unit != NULL
2822 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2823 return 0;
2824
2825 return lhs->line_sect_off == rhs->line_sect_off;
2826 }
2827
2828 /* Hash function for a quick_file_names. */
2829
2830 static hashval_t
2831 hash_file_name_entry (const void *e)
2832 {
2833 const struct quick_file_names *file_data
2834 = (const struct quick_file_names *) e;
2835
2836 return hash_stmt_list_entry (&file_data->hash);
2837 }
2838
2839 /* Equality function for a quick_file_names. */
2840
2841 static int
2842 eq_file_name_entry (const void *a, const void *b)
2843 {
2844 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2845 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2846
2847 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2848 }
2849
2850 /* Delete function for a quick_file_names. */
2851
2852 static void
2853 delete_file_name_entry (void *e)
2854 {
2855 struct quick_file_names *file_data = (struct quick_file_names *) e;
2856 int i;
2857
2858 for (i = 0; i < file_data->num_file_names; ++i)
2859 {
2860 xfree ((void*) file_data->file_names[i]);
2861 if (file_data->real_names)
2862 xfree ((void*) file_data->real_names[i]);
2863 }
2864
2865 /* The space for the struct itself lives on objfile_obstack,
2866 so we don't free it here. */
2867 }
2868
2869 /* Create a quick_file_names hash table. */
2870
2871 static htab_t
2872 create_quick_file_names_table (unsigned int nr_initial_entries)
2873 {
2874 return htab_create_alloc (nr_initial_entries,
2875 hash_file_name_entry, eq_file_name_entry,
2876 delete_file_name_entry, xcalloc, xfree);
2877 }
2878
2879 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2880 have to be created afterwards. You should call age_cached_comp_units after
2881 processing PER_CU->CU. dw2_setup must have been already called. */
2882
2883 static void
2884 load_cu (struct dwarf2_per_cu_data *per_cu)
2885 {
2886 if (per_cu->is_debug_types)
2887 load_full_type_unit (per_cu);
2888 else
2889 load_full_comp_unit (per_cu, language_minimal);
2890
2891 if (per_cu->cu == NULL)
2892 return; /* Dummy CU. */
2893
2894 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2895 }
2896
2897 /* Read in the symbols for PER_CU. */
2898
2899 static void
2900 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct cleanup *back_to;
2903
2904 /* Skip type_unit_groups, reading the type units they contain
2905 is handled elsewhere. */
2906 if (IS_TYPE_UNIT_GROUP (per_cu))
2907 return;
2908
2909 back_to = make_cleanup (dwarf2_release_queue, NULL);
2910
2911 if (dwarf2_per_objfile->using_index
2912 ? per_cu->v.quick->compunit_symtab == NULL
2913 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2914 {
2915 queue_comp_unit (per_cu, language_minimal);
2916 load_cu (per_cu);
2917
2918 /* If we just loaded a CU from a DWO, and we're working with an index
2919 that may badly handle TUs, load all the TUs in that DWO as well.
2920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2921 if (!per_cu->is_debug_types
2922 && per_cu->cu != NULL
2923 && per_cu->cu->dwo_unit != NULL
2924 && dwarf2_per_objfile->index_table != NULL
2925 && dwarf2_per_objfile->index_table->version <= 7
2926 /* DWP files aren't supported yet. */
2927 && get_dwp_file () == NULL)
2928 queue_and_load_all_dwo_tus (per_cu);
2929 }
2930
2931 process_queue ();
2932
2933 /* Age the cache, releasing compilation units that have not
2934 been used recently. */
2935 age_cached_comp_units ();
2936
2937 do_cleanups (back_to);
2938 }
2939
2940 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2941 the objfile from which this CU came. Returns the resulting symbol
2942 table. */
2943
2944 static struct compunit_symtab *
2945 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2946 {
2947 gdb_assert (dwarf2_per_objfile->using_index);
2948 if (!per_cu->v.quick->compunit_symtab)
2949 {
2950 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2951 scoped_restore decrementer = increment_reading_symtab ();
2952 dw2_do_instantiate_symtab (per_cu);
2953 process_cu_includes ();
2954 do_cleanups (back_to);
2955 }
2956
2957 return per_cu->v.quick->compunit_symtab;
2958 }
2959
2960 /* Return the CU/TU given its index.
2961
2962 This is intended for loops like:
2963
2964 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2965 + dwarf2_per_objfile->n_type_units); ++i)
2966 {
2967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2968
2969 ...;
2970 }
2971 */
2972
2973 static struct dwarf2_per_cu_data *
2974 dw2_get_cutu (int index)
2975 {
2976 if (index >= dwarf2_per_objfile->n_comp_units)
2977 {
2978 index -= dwarf2_per_objfile->n_comp_units;
2979 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2980 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2981 }
2982
2983 return dwarf2_per_objfile->all_comp_units[index];
2984 }
2985
2986 /* Return the CU given its index.
2987 This differs from dw2_get_cutu in that it's for when you know INDEX
2988 refers to a CU. */
2989
2990 static struct dwarf2_per_cu_data *
2991 dw2_get_cu (int index)
2992 {
2993 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2994
2995 return dwarf2_per_objfile->all_comp_units[index];
2996 }
2997
2998 /* A helper for create_cus_from_index that handles a given list of
2999 CUs. */
3000
3001 static void
3002 create_cus_from_index_list (struct objfile *objfile,
3003 const gdb_byte *cu_list, offset_type n_elements,
3004 struct dwarf2_section_info *section,
3005 int is_dwz,
3006 int base_offset)
3007 {
3008 offset_type i;
3009
3010 for (i = 0; i < n_elements; i += 2)
3011 {
3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3017 cu_list += 2 * 8;
3018
3019 dwarf2_per_cu_data *the_cu
3020 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3021 struct dwarf2_per_cu_data);
3022 the_cu->sect_off = sect_off;
3023 the_cu->length = length;
3024 the_cu->objfile = objfile;
3025 the_cu->section = section;
3026 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3027 struct dwarf2_per_cu_quick_data);
3028 the_cu->is_dwz = is_dwz;
3029 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3030 }
3031 }
3032
3033 /* Read the CU list from the mapped index, and use it to create all
3034 the CU objects for this objfile. */
3035
3036 static void
3037 create_cus_from_index (struct objfile *objfile,
3038 const gdb_byte *cu_list, offset_type cu_list_elements,
3039 const gdb_byte *dwz_list, offset_type dwz_elements)
3040 {
3041 struct dwz_file *dwz;
3042
3043 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3044 dwarf2_per_objfile->all_comp_units =
3045 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3046 dwarf2_per_objfile->n_comp_units);
3047
3048 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3049 &dwarf2_per_objfile->info, 0, 0);
3050
3051 if (dwz_elements == 0)
3052 return;
3053
3054 dwz = dwarf2_get_dwz_file ();
3055 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3056 cu_list_elements / 2);
3057 }
3058
3059 /* Create the signatured type hash table from the index. */
3060
3061 static void
3062 create_signatured_type_table_from_index (struct objfile *objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 offset_type i;
3068 htab_t sig_types_hash;
3069
3070 dwarf2_per_objfile->n_type_units
3071 = dwarf2_per_objfile->n_allocated_type_units
3072 = elements / 3;
3073 dwarf2_per_objfile->all_type_units =
3074 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3075
3076 sig_types_hash = allocate_signatured_type_table (objfile);
3077
3078 for (i = 0; i < elements; i += 3)
3079 {
3080 struct signatured_type *sig_type;
3081 ULONGEST signature;
3082 void **slot;
3083 cu_offset type_offset_in_tu;
3084
3085 gdb_static_assert (sizeof (ULONGEST) >= 8);
3086 sect_offset sect_off
3087 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3088 type_offset_in_tu
3089 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3090 BFD_ENDIAN_LITTLE);
3091 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3092 bytes += 3 * 8;
3093
3094 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3095 struct signatured_type);
3096 sig_type->signature = signature;
3097 sig_type->type_offset_in_tu = type_offset_in_tu;
3098 sig_type->per_cu.is_debug_types = 1;
3099 sig_type->per_cu.section = section;
3100 sig_type->per_cu.sect_off = sect_off;
3101 sig_type->per_cu.objfile = objfile;
3102 sig_type->per_cu.v.quick
3103 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3104 struct dwarf2_per_cu_quick_data);
3105
3106 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3107 *slot = sig_type;
3108
3109 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3110 }
3111
3112 dwarf2_per_objfile->signatured_types = sig_types_hash;
3113 }
3114
3115 /* Read the address map data from the mapped index, and use it to
3116 populate the objfile's psymtabs_addrmap. */
3117
3118 static void
3119 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3120 {
3121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3122 const gdb_byte *iter, *end;
3123 struct addrmap *mutable_map;
3124 CORE_ADDR baseaddr;
3125
3126 auto_obstack temp_obstack;
3127
3128 mutable_map = addrmap_create_mutable (&temp_obstack);
3129
3130 iter = index->address_table;
3131 end = iter + index->address_table_size;
3132
3133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3134
3135 while (iter < end)
3136 {
3137 ULONGEST hi, lo, cu_index;
3138 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3139 iter += 8;
3140 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3141 iter += 8;
3142 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3143 iter += 4;
3144
3145 if (lo > hi)
3146 {
3147 complaint (&symfile_complaints,
3148 _(".gdb_index address table has invalid range (%s - %s)"),
3149 hex_string (lo), hex_string (hi));
3150 continue;
3151 }
3152
3153 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3154 {
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid CU number %u"),
3157 (unsigned) cu_index);
3158 continue;
3159 }
3160
3161 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3162 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3163 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3164 }
3165
3166 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3167 &objfile->objfile_obstack);
3168 }
3169
3170 /* The hash function for strings in the mapped index. This is the same as
3171 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3172 implementation. This is necessary because the hash function is tied to the
3173 format of the mapped index file. The hash values do not have to match with
3174 SYMBOL_HASH_NEXT.
3175
3176 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3177
3178 static hashval_t
3179 mapped_index_string_hash (int index_version, const void *p)
3180 {
3181 const unsigned char *str = (const unsigned char *) p;
3182 hashval_t r = 0;
3183 unsigned char c;
3184
3185 while ((c = *str++) != 0)
3186 {
3187 if (index_version >= 5)
3188 c = tolower (c);
3189 r = r * 67 + c - 113;
3190 }
3191
3192 return r;
3193 }
3194
3195 /* Find a slot in the mapped index INDEX for the object named NAME.
3196 If NAME is found, set *VEC_OUT to point to the CU vector in the
3197 constant pool and return true. If NAME cannot be found, return
3198 false. */
3199
3200 static bool
3201 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3202 offset_type **vec_out)
3203 {
3204 offset_type hash;
3205 offset_type slot, step;
3206 int (*cmp) (const char *, const char *);
3207
3208 gdb::unique_xmalloc_ptr<char> without_params;
3209 if (current_language->la_language == language_cplus
3210 || current_language->la_language == language_fortran
3211 || current_language->la_language == language_d)
3212 {
3213 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3214 not contain any. */
3215
3216 if (strchr (name, '(') != NULL)
3217 {
3218 without_params = cp_remove_params (name);
3219
3220 if (without_params != NULL)
3221 name = without_params.get ();
3222 }
3223 }
3224
3225 /* Index version 4 did not support case insensitive searches. But the
3226 indices for case insensitive languages are built in lowercase, therefore
3227 simulate our NAME being searched is also lowercased. */
3228 hash = mapped_index_string_hash ((index->version == 4
3229 && case_sensitivity == case_sensitive_off
3230 ? 5 : index->version),
3231 name);
3232
3233 slot = hash & (index->symbol_table_slots - 1);
3234 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3235 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3236
3237 for (;;)
3238 {
3239 /* Convert a slot number to an offset into the table. */
3240 offset_type i = 2 * slot;
3241 const char *str;
3242 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3243 return false;
3244
3245 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3246 if (!cmp (name, str))
3247 {
3248 *vec_out = (offset_type *) (index->constant_pool
3249 + MAYBE_SWAP (index->symbol_table[i + 1]));
3250 return true;
3251 }
3252
3253 slot = (slot + step) & (index->symbol_table_slots - 1);
3254 }
3255 }
3256
3257 /* A helper function that reads the .gdb_index from SECTION and fills
3258 in MAP. FILENAME is the name of the file containing the section;
3259 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3260 ok to use deprecated sections.
3261
3262 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3263 out parameters that are filled in with information about the CU and
3264 TU lists in the section.
3265
3266 Returns 1 if all went well, 0 otherwise. */
3267
3268 static int
3269 read_index_from_section (struct objfile *objfile,
3270 const char *filename,
3271 int deprecated_ok,
3272 struct dwarf2_section_info *section,
3273 struct mapped_index *map,
3274 const gdb_byte **cu_list,
3275 offset_type *cu_list_elements,
3276 const gdb_byte **types_list,
3277 offset_type *types_list_elements)
3278 {
3279 const gdb_byte *addr;
3280 offset_type version;
3281 offset_type *metadata;
3282 int i;
3283
3284 if (dwarf2_section_empty_p (section))
3285 return 0;
3286
3287 /* Older elfutils strip versions could keep the section in the main
3288 executable while splitting it for the separate debug info file. */
3289 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3290 return 0;
3291
3292 dwarf2_read_section (objfile, section);
3293
3294 addr = section->buffer;
3295 /* Version check. */
3296 version = MAYBE_SWAP (*(offset_type *) addr);
3297 /* Versions earlier than 3 emitted every copy of a psymbol. This
3298 causes the index to behave very poorly for certain requests. Version 3
3299 contained incomplete addrmap. So, it seems better to just ignore such
3300 indices. */
3301 if (version < 4)
3302 {
3303 static int warning_printed = 0;
3304 if (!warning_printed)
3305 {
3306 warning (_("Skipping obsolete .gdb_index section in %s."),
3307 filename);
3308 warning_printed = 1;
3309 }
3310 return 0;
3311 }
3312 /* Index version 4 uses a different hash function than index version
3313 5 and later.
3314
3315 Versions earlier than 6 did not emit psymbols for inlined
3316 functions. Using these files will cause GDB not to be able to
3317 set breakpoints on inlined functions by name, so we ignore these
3318 indices unless the user has done
3319 "set use-deprecated-index-sections on". */
3320 if (version < 6 && !deprecated_ok)
3321 {
3322 static int warning_printed = 0;
3323 if (!warning_printed)
3324 {
3325 warning (_("\
3326 Skipping deprecated .gdb_index section in %s.\n\
3327 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3328 to use the section anyway."),
3329 filename);
3330 warning_printed = 1;
3331 }
3332 return 0;
3333 }
3334 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3335 of the TU (for symbols coming from TUs),
3336 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3337 Plus gold-generated indices can have duplicate entries for global symbols,
3338 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3339 These are just performance bugs, and we can't distinguish gdb-generated
3340 indices from gold-generated ones, so issue no warning here. */
3341
3342 /* Indexes with higher version than the one supported by GDB may be no
3343 longer backward compatible. */
3344 if (version > 8)
3345 return 0;
3346
3347 map->version = version;
3348 map->total_size = section->size;
3349
3350 metadata = (offset_type *) (addr + sizeof (offset_type));
3351
3352 i = 0;
3353 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3354 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3355 / 8);
3356 ++i;
3357
3358 *types_list = addr + MAYBE_SWAP (metadata[i]);
3359 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3360 - MAYBE_SWAP (metadata[i]))
3361 / 8);
3362 ++i;
3363
3364 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3365 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3366 - MAYBE_SWAP (metadata[i]));
3367 ++i;
3368
3369 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3370 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3371 - MAYBE_SWAP (metadata[i]))
3372 / (2 * sizeof (offset_type)));
3373 ++i;
3374
3375 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3376
3377 return 1;
3378 }
3379
3380
3381 /* Read the index file. If everything went ok, initialize the "quick"
3382 elements of all the CUs and return 1. Otherwise, return 0. */
3383
3384 static int
3385 dwarf2_read_index (struct objfile *objfile)
3386 {
3387 struct mapped_index local_map, *map;
3388 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3389 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3390 struct dwz_file *dwz;
3391
3392 if (!read_index_from_section (objfile, objfile_name (objfile),
3393 use_deprecated_index_sections,
3394 &dwarf2_per_objfile->gdb_index, &local_map,
3395 &cu_list, &cu_list_elements,
3396 &types_list, &types_list_elements))
3397 return 0;
3398
3399 /* Don't use the index if it's empty. */
3400 if (local_map.symbol_table_slots == 0)
3401 return 0;
3402
3403 /* If there is a .dwz file, read it so we can get its CU list as
3404 well. */
3405 dwz = dwarf2_get_dwz_file ();
3406 if (dwz != NULL)
3407 {
3408 struct mapped_index dwz_map;
3409 const gdb_byte *dwz_types_ignore;
3410 offset_type dwz_types_elements_ignore;
3411
3412 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3413 1,
3414 &dwz->gdb_index, &dwz_map,
3415 &dwz_list, &dwz_list_elements,
3416 &dwz_types_ignore,
3417 &dwz_types_elements_ignore))
3418 {
3419 warning (_("could not read '.gdb_index' section from %s; skipping"),
3420 bfd_get_filename (dwz->dwz_bfd));
3421 return 0;
3422 }
3423 }
3424
3425 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3426 dwz_list_elements);
3427
3428 if (types_list_elements)
3429 {
3430 struct dwarf2_section_info *section;
3431
3432 /* We can only handle a single .debug_types when we have an
3433 index. */
3434 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3435 return 0;
3436
3437 section = VEC_index (dwarf2_section_info_def,
3438 dwarf2_per_objfile->types, 0);
3439
3440 create_signatured_type_table_from_index (objfile, section, types_list,
3441 types_list_elements);
3442 }
3443
3444 create_addrmap_from_index (objfile, &local_map);
3445
3446 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3447 *map = local_map;
3448
3449 dwarf2_per_objfile->index_table = map;
3450 dwarf2_per_objfile->using_index = 1;
3451 dwarf2_per_objfile->quick_file_names_table =
3452 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3453
3454 return 1;
3455 }
3456
3457 /* A helper for the "quick" functions which sets the global
3458 dwarf2_per_objfile according to OBJFILE. */
3459
3460 static void
3461 dw2_setup (struct objfile *objfile)
3462 {
3463 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3464 objfile_data (objfile, dwarf2_objfile_data_key));
3465 gdb_assert (dwarf2_per_objfile);
3466 }
3467
3468 /* die_reader_func for dw2_get_file_names. */
3469
3470 static void
3471 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3472 const gdb_byte *info_ptr,
3473 struct die_info *comp_unit_die,
3474 int has_children,
3475 void *data)
3476 {
3477 struct dwarf2_cu *cu = reader->cu;
3478 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3479 struct objfile *objfile = dwarf2_per_objfile->objfile;
3480 struct dwarf2_per_cu_data *lh_cu;
3481 struct attribute *attr;
3482 int i;
3483 void **slot;
3484 struct quick_file_names *qfn;
3485
3486 gdb_assert (! this_cu->is_debug_types);
3487
3488 /* Our callers never want to match partial units -- instead they
3489 will match the enclosing full CU. */
3490 if (comp_unit_die->tag == DW_TAG_partial_unit)
3491 {
3492 this_cu->v.quick->no_file_data = 1;
3493 return;
3494 }
3495
3496 lh_cu = this_cu;
3497 slot = NULL;
3498
3499 line_header_up lh;
3500 sect_offset line_offset {};
3501
3502 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3503 if (attr)
3504 {
3505 struct quick_file_names find_entry;
3506
3507 line_offset = (sect_offset) DW_UNSND (attr);
3508
3509 /* We may have already read in this line header (TU line header sharing).
3510 If we have we're done. */
3511 find_entry.hash.dwo_unit = cu->dwo_unit;
3512 find_entry.hash.line_sect_off = line_offset;
3513 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3514 &find_entry, INSERT);
3515 if (*slot != NULL)
3516 {
3517 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3518 return;
3519 }
3520
3521 lh = dwarf_decode_line_header (line_offset, cu);
3522 }
3523 if (lh == NULL)
3524 {
3525 lh_cu->v.quick->no_file_data = 1;
3526 return;
3527 }
3528
3529 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3530 qfn->hash.dwo_unit = cu->dwo_unit;
3531 qfn->hash.line_sect_off = line_offset;
3532 gdb_assert (slot != NULL);
3533 *slot = qfn;
3534
3535 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3536
3537 qfn->num_file_names = lh->file_names.size ();
3538 qfn->file_names =
3539 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3540 for (i = 0; i < lh->file_names.size (); ++i)
3541 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3542 qfn->real_names = NULL;
3543
3544 lh_cu->v.quick->file_names = qfn;
3545 }
3546
3547 /* A helper for the "quick" functions which attempts to read the line
3548 table for THIS_CU. */
3549
3550 static struct quick_file_names *
3551 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3552 {
3553 /* This should never be called for TUs. */
3554 gdb_assert (! this_cu->is_debug_types);
3555 /* Nor type unit groups. */
3556 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3557
3558 if (this_cu->v.quick->file_names != NULL)
3559 return this_cu->v.quick->file_names;
3560 /* If we know there is no line data, no point in looking again. */
3561 if (this_cu->v.quick->no_file_data)
3562 return NULL;
3563
3564 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3565
3566 if (this_cu->v.quick->no_file_data)
3567 return NULL;
3568 return this_cu->v.quick->file_names;
3569 }
3570
3571 /* A helper for the "quick" functions which computes and caches the
3572 real path for a given file name from the line table. */
3573
3574 static const char *
3575 dw2_get_real_path (struct objfile *objfile,
3576 struct quick_file_names *qfn, int index)
3577 {
3578 if (qfn->real_names == NULL)
3579 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3580 qfn->num_file_names, const char *);
3581
3582 if (qfn->real_names[index] == NULL)
3583 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3584
3585 return qfn->real_names[index];
3586 }
3587
3588 static struct symtab *
3589 dw2_find_last_source_symtab (struct objfile *objfile)
3590 {
3591 struct compunit_symtab *cust;
3592 int index;
3593
3594 dw2_setup (objfile);
3595 index = dwarf2_per_objfile->n_comp_units - 1;
3596 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3597 if (cust == NULL)
3598 return NULL;
3599 return compunit_primary_filetab (cust);
3600 }
3601
3602 /* Traversal function for dw2_forget_cached_source_info. */
3603
3604 static int
3605 dw2_free_cached_file_names (void **slot, void *info)
3606 {
3607 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3608
3609 if (file_data->real_names)
3610 {
3611 int i;
3612
3613 for (i = 0; i < file_data->num_file_names; ++i)
3614 {
3615 xfree ((void*) file_data->real_names[i]);
3616 file_data->real_names[i] = NULL;
3617 }
3618 }
3619
3620 return 1;
3621 }
3622
3623 static void
3624 dw2_forget_cached_source_info (struct objfile *objfile)
3625 {
3626 dw2_setup (objfile);
3627
3628 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3629 dw2_free_cached_file_names, NULL);
3630 }
3631
3632 /* Helper function for dw2_map_symtabs_matching_filename that expands
3633 the symtabs and calls the iterator. */
3634
3635 static int
3636 dw2_map_expand_apply (struct objfile *objfile,
3637 struct dwarf2_per_cu_data *per_cu,
3638 const char *name, const char *real_path,
3639 gdb::function_view<bool (symtab *)> callback)
3640 {
3641 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3642
3643 /* Don't visit already-expanded CUs. */
3644 if (per_cu->v.quick->compunit_symtab)
3645 return 0;
3646
3647 /* This may expand more than one symtab, and we want to iterate over
3648 all of them. */
3649 dw2_instantiate_symtab (per_cu);
3650
3651 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3652 last_made, callback);
3653 }
3654
3655 /* Implementation of the map_symtabs_matching_filename method. */
3656
3657 static bool
3658 dw2_map_symtabs_matching_filename
3659 (struct objfile *objfile, const char *name, const char *real_path,
3660 gdb::function_view<bool (symtab *)> callback)
3661 {
3662 int i;
3663 const char *name_basename = lbasename (name);
3664
3665 dw2_setup (objfile);
3666
3667 /* The rule is CUs specify all the files, including those used by
3668 any TU, so there's no need to scan TUs here. */
3669
3670 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3671 {
3672 int j;
3673 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3674 struct quick_file_names *file_data;
3675
3676 /* We only need to look at symtabs not already expanded. */
3677 if (per_cu->v.quick->compunit_symtab)
3678 continue;
3679
3680 file_data = dw2_get_file_names (per_cu);
3681 if (file_data == NULL)
3682 continue;
3683
3684 for (j = 0; j < file_data->num_file_names; ++j)
3685 {
3686 const char *this_name = file_data->file_names[j];
3687 const char *this_real_name;
3688
3689 if (compare_filenames_for_search (this_name, name))
3690 {
3691 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3692 callback))
3693 return true;
3694 continue;
3695 }
3696
3697 /* Before we invoke realpath, which can get expensive when many
3698 files are involved, do a quick comparison of the basenames. */
3699 if (! basenames_may_differ
3700 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3701 continue;
3702
3703 this_real_name = dw2_get_real_path (objfile, file_data, j);
3704 if (compare_filenames_for_search (this_real_name, name))
3705 {
3706 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3707 callback))
3708 return true;
3709 continue;
3710 }
3711
3712 if (real_path != NULL)
3713 {
3714 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3715 gdb_assert (IS_ABSOLUTE_PATH (name));
3716 if (this_real_name != NULL
3717 && FILENAME_CMP (real_path, this_real_name) == 0)
3718 {
3719 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3720 callback))
3721 return true;
3722 continue;
3723 }
3724 }
3725 }
3726 }
3727
3728 return false;
3729 }
3730
3731 /* Struct used to manage iterating over all CUs looking for a symbol. */
3732
3733 struct dw2_symtab_iterator
3734 {
3735 /* The internalized form of .gdb_index. */
3736 struct mapped_index *index;
3737 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3738 int want_specific_block;
3739 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3740 Unused if !WANT_SPECIFIC_BLOCK. */
3741 int block_index;
3742 /* The kind of symbol we're looking for. */
3743 domain_enum domain;
3744 /* The list of CUs from the index entry of the symbol,
3745 or NULL if not found. */
3746 offset_type *vec;
3747 /* The next element in VEC to look at. */
3748 int next;
3749 /* The number of elements in VEC, or zero if there is no match. */
3750 int length;
3751 /* Have we seen a global version of the symbol?
3752 If so we can ignore all further global instances.
3753 This is to work around gold/15646, inefficient gold-generated
3754 indices. */
3755 int global_seen;
3756 };
3757
3758 /* Initialize the index symtab iterator ITER.
3759 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3760 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3761
3762 static void
3763 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3764 struct mapped_index *index,
3765 int want_specific_block,
3766 int block_index,
3767 domain_enum domain,
3768 const char *name)
3769 {
3770 iter->index = index;
3771 iter->want_specific_block = want_specific_block;
3772 iter->block_index = block_index;
3773 iter->domain = domain;
3774 iter->next = 0;
3775 iter->global_seen = 0;
3776
3777 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3778 iter->length = MAYBE_SWAP (*iter->vec);
3779 else
3780 {
3781 iter->vec = NULL;
3782 iter->length = 0;
3783 }
3784 }
3785
3786 /* Return the next matching CU or NULL if there are no more. */
3787
3788 static struct dwarf2_per_cu_data *
3789 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3790 {
3791 for ( ; iter->next < iter->length; ++iter->next)
3792 {
3793 offset_type cu_index_and_attrs =
3794 MAYBE_SWAP (iter->vec[iter->next + 1]);
3795 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3796 struct dwarf2_per_cu_data *per_cu;
3797 int want_static = iter->block_index != GLOBAL_BLOCK;
3798 /* This value is only valid for index versions >= 7. */
3799 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3800 gdb_index_symbol_kind symbol_kind =
3801 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3802 /* Only check the symbol attributes if they're present.
3803 Indices prior to version 7 don't record them,
3804 and indices >= 7 may elide them for certain symbols
3805 (gold does this). */
3806 int attrs_valid =
3807 (iter->index->version >= 7
3808 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3809
3810 /* Don't crash on bad data. */
3811 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3812 + dwarf2_per_objfile->n_type_units))
3813 {
3814 complaint (&symfile_complaints,
3815 _(".gdb_index entry has bad CU index"
3816 " [in module %s]"),
3817 objfile_name (dwarf2_per_objfile->objfile));
3818 continue;
3819 }
3820
3821 per_cu = dw2_get_cutu (cu_index);
3822
3823 /* Skip if already read in. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 /* Check static vs global. */
3828 if (attrs_valid)
3829 {
3830 if (iter->want_specific_block
3831 && want_static != is_static)
3832 continue;
3833 /* Work around gold/15646. */
3834 if (!is_static && iter->global_seen)
3835 continue;
3836 if (!is_static)
3837 iter->global_seen = 1;
3838 }
3839
3840 /* Only check the symbol's kind if it has one. */
3841 if (attrs_valid)
3842 {
3843 switch (iter->domain)
3844 {
3845 case VAR_DOMAIN:
3846 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3847 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3848 /* Some types are also in VAR_DOMAIN. */
3849 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3850 continue;
3851 break;
3852 case STRUCT_DOMAIN:
3853 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3854 continue;
3855 break;
3856 case LABEL_DOMAIN:
3857 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3858 continue;
3859 break;
3860 default:
3861 break;
3862 }
3863 }
3864
3865 ++iter->next;
3866 return per_cu;
3867 }
3868
3869 return NULL;
3870 }
3871
3872 static struct compunit_symtab *
3873 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3874 const char *name, domain_enum domain)
3875 {
3876 struct compunit_symtab *stab_best = NULL;
3877 struct mapped_index *index;
3878
3879 dw2_setup (objfile);
3880
3881 index = dwarf2_per_objfile->index_table;
3882
3883 /* index is NULL if OBJF_READNOW. */
3884 if (index)
3885 {
3886 struct dw2_symtab_iterator iter;
3887 struct dwarf2_per_cu_data *per_cu;
3888
3889 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3890
3891 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3892 {
3893 struct symbol *sym, *with_opaque = NULL;
3894 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3895 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3896 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3897
3898 sym = block_find_symbol (block, name, domain,
3899 block_find_non_opaque_type_preferred,
3900 &with_opaque);
3901
3902 /* Some caution must be observed with overloaded functions
3903 and methods, since the index will not contain any overload
3904 information (but NAME might contain it). */
3905
3906 if (sym != NULL
3907 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3908 return stab;
3909 if (with_opaque != NULL
3910 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3911 stab_best = stab;
3912
3913 /* Keep looking through other CUs. */
3914 }
3915 }
3916
3917 return stab_best;
3918 }
3919
3920 static void
3921 dw2_print_stats (struct objfile *objfile)
3922 {
3923 int i, total, count;
3924
3925 dw2_setup (objfile);
3926 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3927 count = 0;
3928 for (i = 0; i < total; ++i)
3929 {
3930 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3931
3932 if (!per_cu->v.quick->compunit_symtab)
3933 ++count;
3934 }
3935 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3936 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3937 }
3938
3939 /* This dumps minimal information about the index.
3940 It is called via "mt print objfiles".
3941 One use is to verify .gdb_index has been loaded by the
3942 gdb.dwarf2/gdb-index.exp testcase. */
3943
3944 static void
3945 dw2_dump (struct objfile *objfile)
3946 {
3947 dw2_setup (objfile);
3948 gdb_assert (dwarf2_per_objfile->using_index);
3949 printf_filtered (".gdb_index:");
3950 if (dwarf2_per_objfile->index_table != NULL)
3951 {
3952 printf_filtered (" version %d\n",
3953 dwarf2_per_objfile->index_table->version);
3954 }
3955 else
3956 printf_filtered (" faked for \"readnow\"\n");
3957 printf_filtered ("\n");
3958 }
3959
3960 static void
3961 dw2_relocate (struct objfile *objfile,
3962 const struct section_offsets *new_offsets,
3963 const struct section_offsets *delta)
3964 {
3965 /* There's nothing to relocate here. */
3966 }
3967
3968 static void
3969 dw2_expand_symtabs_for_function (struct objfile *objfile,
3970 const char *func_name)
3971 {
3972 struct mapped_index *index;
3973
3974 dw2_setup (objfile);
3975
3976 index = dwarf2_per_objfile->index_table;
3977
3978 /* index is NULL if OBJF_READNOW. */
3979 if (index)
3980 {
3981 struct dw2_symtab_iterator iter;
3982 struct dwarf2_per_cu_data *per_cu;
3983
3984 /* Note: It doesn't matter what we pass for block_index here. */
3985 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3986 func_name);
3987
3988 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3989 dw2_instantiate_symtab (per_cu);
3990 }
3991 }
3992
3993 static void
3994 dw2_expand_all_symtabs (struct objfile *objfile)
3995 {
3996 int i;
3997
3998 dw2_setup (objfile);
3999
4000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4001 + dwarf2_per_objfile->n_type_units); ++i)
4002 {
4003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4004
4005 dw2_instantiate_symtab (per_cu);
4006 }
4007 }
4008
4009 static void
4010 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4011 const char *fullname)
4012 {
4013 int i;
4014
4015 dw2_setup (objfile);
4016
4017 /* We don't need to consider type units here.
4018 This is only called for examining code, e.g. expand_line_sal.
4019 There can be an order of magnitude (or more) more type units
4020 than comp units, and we avoid them if we can. */
4021
4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4023 {
4024 int j;
4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4026 struct quick_file_names *file_data;
4027
4028 /* We only need to look at symtabs not already expanded. */
4029 if (per_cu->v.quick->compunit_symtab)
4030 continue;
4031
4032 file_data = dw2_get_file_names (per_cu);
4033 if (file_data == NULL)
4034 continue;
4035
4036 for (j = 0; j < file_data->num_file_names; ++j)
4037 {
4038 const char *this_fullname = file_data->file_names[j];
4039
4040 if (filename_cmp (this_fullname, fullname) == 0)
4041 {
4042 dw2_instantiate_symtab (per_cu);
4043 break;
4044 }
4045 }
4046 }
4047 }
4048
4049 static void
4050 dw2_map_matching_symbols (struct objfile *objfile,
4051 const char * name, domain_enum domain,
4052 int global,
4053 int (*callback) (struct block *,
4054 struct symbol *, void *),
4055 void *data, symbol_compare_ftype *match,
4056 symbol_compare_ftype *ordered_compare)
4057 {
4058 /* Currently unimplemented; used for Ada. The function can be called if the
4059 current language is Ada for a non-Ada objfile using GNU index. As Ada
4060 does not look for non-Ada symbols this function should just return. */
4061 }
4062
4063 static void
4064 dw2_expand_symtabs_matching
4065 (struct objfile *objfile,
4066 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4067 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4068 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4069 enum search_domain kind)
4070 {
4071 int i;
4072 offset_type iter;
4073 struct mapped_index *index;
4074
4075 dw2_setup (objfile);
4076
4077 /* index_table is NULL if OBJF_READNOW. */
4078 if (!dwarf2_per_objfile->index_table)
4079 return;
4080 index = dwarf2_per_objfile->index_table;
4081
4082 if (file_matcher != NULL)
4083 {
4084 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4085 htab_eq_pointer,
4086 NULL, xcalloc, xfree));
4087 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
4090
4091 /* The rule is CUs specify all the files, including those used by
4092 any TU, so there's no need to scan TUs here. */
4093
4094 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4095 {
4096 int j;
4097 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4098 struct quick_file_names *file_data;
4099 void **slot;
4100
4101 QUIT;
4102
4103 per_cu->v.quick->mark = 0;
4104
4105 /* We only need to look at symtabs not already expanded. */
4106 if (per_cu->v.quick->compunit_symtab)
4107 continue;
4108
4109 file_data = dw2_get_file_names (per_cu);
4110 if (file_data == NULL)
4111 continue;
4112
4113 if (htab_find (visited_not_found.get (), file_data) != NULL)
4114 continue;
4115 else if (htab_find (visited_found.get (), file_data) != NULL)
4116 {
4117 per_cu->v.quick->mark = 1;
4118 continue;
4119 }
4120
4121 for (j = 0; j < file_data->num_file_names; ++j)
4122 {
4123 const char *this_real_name;
4124
4125 if (file_matcher (file_data->file_names[j], false))
4126 {
4127 per_cu->v.quick->mark = 1;
4128 break;
4129 }
4130
4131 /* Before we invoke realpath, which can get expensive when many
4132 files are involved, do a quick comparison of the basenames. */
4133 if (!basenames_may_differ
4134 && !file_matcher (lbasename (file_data->file_names[j]),
4135 true))
4136 continue;
4137
4138 this_real_name = dw2_get_real_path (objfile, file_data, j);
4139 if (file_matcher (this_real_name, false))
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
4144 }
4145
4146 slot = htab_find_slot (per_cu->v.quick->mark
4147 ? visited_found.get ()
4148 : visited_not_found.get (),
4149 file_data, INSERT);
4150 *slot = file_data;
4151 }
4152 }
4153
4154 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4155 {
4156 offset_type idx = 2 * iter;
4157 const char *name;
4158 offset_type *vec, vec_len, vec_idx;
4159 int global_seen = 0;
4160
4161 QUIT;
4162
4163 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4164 continue;
4165
4166 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4167
4168 if (!symbol_matcher (name))
4169 continue;
4170
4171 /* The name was matched, now expand corresponding CUs that were
4172 marked. */
4173 vec = (offset_type *) (index->constant_pool
4174 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4175 vec_len = MAYBE_SWAP (vec[0]);
4176 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4177 {
4178 struct dwarf2_per_cu_data *per_cu;
4179 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4180 /* This value is only valid for index versions >= 7. */
4181 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4182 gdb_index_symbol_kind symbol_kind =
4183 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4184 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4185 /* Only check the symbol attributes if they're present.
4186 Indices prior to version 7 don't record them,
4187 and indices >= 7 may elide them for certain symbols
4188 (gold does this). */
4189 int attrs_valid =
4190 (index->version >= 7
4191 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4192
4193 /* Work around gold/15646. */
4194 if (attrs_valid)
4195 {
4196 if (!is_static && global_seen)
4197 continue;
4198 if (!is_static)
4199 global_seen = 1;
4200 }
4201
4202 /* Only check the symbol's kind if it has one. */
4203 if (attrs_valid)
4204 {
4205 switch (kind)
4206 {
4207 case VARIABLES_DOMAIN:
4208 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4209 continue;
4210 break;
4211 case FUNCTIONS_DOMAIN:
4212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4213 continue;
4214 break;
4215 case TYPES_DOMAIN:
4216 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4217 continue;
4218 break;
4219 default:
4220 break;
4221 }
4222 }
4223
4224 /* Don't crash on bad data. */
4225 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4226 + dwarf2_per_objfile->n_type_units))
4227 {
4228 complaint (&symfile_complaints,
4229 _(".gdb_index entry has bad CU index"
4230 " [in module %s]"), objfile_name (objfile));
4231 continue;
4232 }
4233
4234 per_cu = dw2_get_cutu (cu_index);
4235 if (file_matcher == NULL || per_cu->v.quick->mark)
4236 {
4237 int symtab_was_null =
4238 (per_cu->v.quick->compunit_symtab == NULL);
4239
4240 dw2_instantiate_symtab (per_cu);
4241
4242 if (expansion_notify != NULL
4243 && symtab_was_null
4244 && per_cu->v.quick->compunit_symtab != NULL)
4245 {
4246 expansion_notify (per_cu->v.quick->compunit_symtab);
4247 }
4248 }
4249 }
4250 }
4251 }
4252
4253 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4254 symtab. */
4255
4256 static struct compunit_symtab *
4257 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4258 CORE_ADDR pc)
4259 {
4260 int i;
4261
4262 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4263 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4264 return cust;
4265
4266 if (cust->includes == NULL)
4267 return NULL;
4268
4269 for (i = 0; cust->includes[i]; ++i)
4270 {
4271 struct compunit_symtab *s = cust->includes[i];
4272
4273 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4274 if (s != NULL)
4275 return s;
4276 }
4277
4278 return NULL;
4279 }
4280
4281 static struct compunit_symtab *
4282 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4283 struct bound_minimal_symbol msymbol,
4284 CORE_ADDR pc,
4285 struct obj_section *section,
4286 int warn_if_readin)
4287 {
4288 struct dwarf2_per_cu_data *data;
4289 struct compunit_symtab *result;
4290
4291 dw2_setup (objfile);
4292
4293 if (!objfile->psymtabs_addrmap)
4294 return NULL;
4295
4296 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4297 pc);
4298 if (!data)
4299 return NULL;
4300
4301 if (warn_if_readin && data->v.quick->compunit_symtab)
4302 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4303 paddress (get_objfile_arch (objfile), pc));
4304
4305 result
4306 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4307 pc);
4308 gdb_assert (result != NULL);
4309 return result;
4310 }
4311
4312 static void
4313 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4314 void *data, int need_fullname)
4315 {
4316 dw2_setup (objfile);
4317
4318 if (!dwarf2_per_objfile->filenames_cache)
4319 {
4320 dwarf2_per_objfile->filenames_cache.emplace ();
4321
4322 htab_up visited (htab_create_alloc (10,
4323 htab_hash_pointer, htab_eq_pointer,
4324 NULL, xcalloc, xfree));
4325
4326 /* The rule is CUs specify all the files, including those used
4327 by any TU, so there's no need to scan TUs here. We can
4328 ignore file names coming from already-expanded CUs. */
4329
4330 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4331 {
4332 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4333
4334 if (per_cu->v.quick->compunit_symtab)
4335 {
4336 void **slot = htab_find_slot (visited.get (),
4337 per_cu->v.quick->file_names,
4338 INSERT);
4339
4340 *slot = per_cu->v.quick->file_names;
4341 }
4342 }
4343
4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4345 {
4346 int j;
4347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4348 struct quick_file_names *file_data;
4349 void **slot;
4350
4351 /* We only need to look at symtabs not already expanded. */
4352 if (per_cu->v.quick->compunit_symtab)
4353 continue;
4354
4355 file_data = dw2_get_file_names (per_cu);
4356 if (file_data == NULL)
4357 continue;
4358
4359 slot = htab_find_slot (visited.get (), file_data, INSERT);
4360 if (*slot)
4361 {
4362 /* Already visited. */
4363 continue;
4364 }
4365 *slot = file_data;
4366
4367 for (int j = 0; j < file_data->num_file_names; ++j)
4368 {
4369 const char *filename = file_data->file_names[j];
4370 dwarf2_per_objfile->filenames_cache->seen (filename);
4371 }
4372 }
4373 }
4374
4375 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4376 {
4377 gdb::unique_xmalloc_ptr<char> this_real_name;
4378
4379 if (need_fullname)
4380 this_real_name = gdb_realpath (filename);
4381 (*fun) (filename, this_real_name.get (), data);
4382 });
4383 }
4384
4385 static int
4386 dw2_has_symbols (struct objfile *objfile)
4387 {
4388 return 1;
4389 }
4390
4391 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4392 {
4393 dw2_has_symbols,
4394 dw2_find_last_source_symtab,
4395 dw2_forget_cached_source_info,
4396 dw2_map_symtabs_matching_filename,
4397 dw2_lookup_symbol,
4398 dw2_print_stats,
4399 dw2_dump,
4400 dw2_relocate,
4401 dw2_expand_symtabs_for_function,
4402 dw2_expand_all_symtabs,
4403 dw2_expand_symtabs_with_fullname,
4404 dw2_map_matching_symbols,
4405 dw2_expand_symtabs_matching,
4406 dw2_find_pc_sect_compunit_symtab,
4407 dw2_map_symbol_filenames
4408 };
4409
4410 /* Initialize for reading DWARF for this objfile. Return 0 if this
4411 file will use psymtabs, or 1 if using the GNU index. */
4412
4413 int
4414 dwarf2_initialize_objfile (struct objfile *objfile)
4415 {
4416 /* If we're about to read full symbols, don't bother with the
4417 indices. In this case we also don't care if some other debug
4418 format is making psymtabs, because they are all about to be
4419 expanded anyway. */
4420 if ((objfile->flags & OBJF_READNOW))
4421 {
4422 int i;
4423
4424 dwarf2_per_objfile->using_index = 1;
4425 create_all_comp_units (objfile);
4426 create_all_type_units (objfile);
4427 dwarf2_per_objfile->quick_file_names_table =
4428 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4429
4430 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4431 + dwarf2_per_objfile->n_type_units); ++i)
4432 {
4433 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4434
4435 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4436 struct dwarf2_per_cu_quick_data);
4437 }
4438
4439 /* Return 1 so that gdb sees the "quick" functions. However,
4440 these functions will be no-ops because we will have expanded
4441 all symtabs. */
4442 return 1;
4443 }
4444
4445 if (dwarf2_read_index (objfile))
4446 return 1;
4447
4448 return 0;
4449 }
4450
4451 \f
4452
4453 /* Build a partial symbol table. */
4454
4455 void
4456 dwarf2_build_psymtabs (struct objfile *objfile)
4457 {
4458
4459 if (objfile->global_psymbols.capacity () == 0
4460 && objfile->static_psymbols.capacity () == 0)
4461 init_psymbol_list (objfile, 1024);
4462
4463 TRY
4464 {
4465 /* This isn't really ideal: all the data we allocate on the
4466 objfile's obstack is still uselessly kept around. However,
4467 freeing it seems unsafe. */
4468 psymtab_discarder psymtabs (objfile);
4469 dwarf2_build_psymtabs_hard (objfile);
4470 psymtabs.keep ();
4471 }
4472 CATCH (except, RETURN_MASK_ERROR)
4473 {
4474 exception_print (gdb_stderr, except);
4475 }
4476 END_CATCH
4477 }
4478
4479 /* Return the total length of the CU described by HEADER. */
4480
4481 static unsigned int
4482 get_cu_length (const struct comp_unit_head *header)
4483 {
4484 return header->initial_length_size + header->length;
4485 }
4486
4487 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4488
4489 static inline bool
4490 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4491 {
4492 sect_offset bottom = cu_header->sect_off;
4493 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4494
4495 return sect_off >= bottom && sect_off < top;
4496 }
4497
4498 /* Find the base address of the compilation unit for range lists and
4499 location lists. It will normally be specified by DW_AT_low_pc.
4500 In DWARF-3 draft 4, the base address could be overridden by
4501 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4502 compilation units with discontinuous ranges. */
4503
4504 static void
4505 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4506 {
4507 struct attribute *attr;
4508
4509 cu->base_known = 0;
4510 cu->base_address = 0;
4511
4512 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4513 if (attr)
4514 {
4515 cu->base_address = attr_value_as_address (attr);
4516 cu->base_known = 1;
4517 }
4518 else
4519 {
4520 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4521 if (attr)
4522 {
4523 cu->base_address = attr_value_as_address (attr);
4524 cu->base_known = 1;
4525 }
4526 }
4527 }
4528
4529 /* Read in the comp unit header information from the debug_info at info_ptr.
4530 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4531 NOTE: This leaves members offset, first_die_offset to be filled in
4532 by the caller. */
4533
4534 static const gdb_byte *
4535 read_comp_unit_head (struct comp_unit_head *cu_header,
4536 const gdb_byte *info_ptr,
4537 struct dwarf2_section_info *section,
4538 rcuh_kind section_kind)
4539 {
4540 int signed_addr;
4541 unsigned int bytes_read;
4542 const char *filename = get_section_file_name (section);
4543 bfd *abfd = get_section_bfd_owner (section);
4544
4545 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4546 cu_header->initial_length_size = bytes_read;
4547 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4548 info_ptr += bytes_read;
4549 cu_header->version = read_2_bytes (abfd, info_ptr);
4550 info_ptr += 2;
4551 if (cu_header->version < 5)
4552 switch (section_kind)
4553 {
4554 case rcuh_kind::COMPILE:
4555 cu_header->unit_type = DW_UT_compile;
4556 break;
4557 case rcuh_kind::TYPE:
4558 cu_header->unit_type = DW_UT_type;
4559 break;
4560 default:
4561 internal_error (__FILE__, __LINE__,
4562 _("read_comp_unit_head: invalid section_kind"));
4563 }
4564 else
4565 {
4566 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4567 (read_1_byte (abfd, info_ptr));
4568 info_ptr += 1;
4569 switch (cu_header->unit_type)
4570 {
4571 case DW_UT_compile:
4572 if (section_kind != rcuh_kind::COMPILE)
4573 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4574 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4575 filename);
4576 break;
4577 case DW_UT_type:
4578 section_kind = rcuh_kind::TYPE;
4579 break;
4580 default:
4581 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4582 "(is %d, should be %d or %d) [in module %s]"),
4583 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4584 }
4585
4586 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4587 info_ptr += 1;
4588 }
4589 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4590 cu_header,
4591 &bytes_read);
4592 info_ptr += bytes_read;
4593 if (cu_header->version < 5)
4594 {
4595 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4596 info_ptr += 1;
4597 }
4598 signed_addr = bfd_get_sign_extend_vma (abfd);
4599 if (signed_addr < 0)
4600 internal_error (__FILE__, __LINE__,
4601 _("read_comp_unit_head: dwarf from non elf file"));
4602 cu_header->signed_addr_p = signed_addr;
4603
4604 if (section_kind == rcuh_kind::TYPE)
4605 {
4606 LONGEST type_offset;
4607
4608 cu_header->signature = read_8_bytes (abfd, info_ptr);
4609 info_ptr += 8;
4610
4611 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4612 info_ptr += bytes_read;
4613 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4614 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4615 error (_("Dwarf Error: Too big type_offset in compilation unit "
4616 "header (is %s) [in module %s]"), plongest (type_offset),
4617 filename);
4618 }
4619
4620 return info_ptr;
4621 }
4622
4623 /* Helper function that returns the proper abbrev section for
4624 THIS_CU. */
4625
4626 static struct dwarf2_section_info *
4627 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4628 {
4629 struct dwarf2_section_info *abbrev;
4630
4631 if (this_cu->is_dwz)
4632 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4633 else
4634 abbrev = &dwarf2_per_objfile->abbrev;
4635
4636 return abbrev;
4637 }
4638
4639 /* Subroutine of read_and_check_comp_unit_head and
4640 read_and_check_type_unit_head to simplify them.
4641 Perform various error checking on the header. */
4642
4643 static void
4644 error_check_comp_unit_head (struct comp_unit_head *header,
4645 struct dwarf2_section_info *section,
4646 struct dwarf2_section_info *abbrev_section)
4647 {
4648 const char *filename = get_section_file_name (section);
4649
4650 if (header->version < 2 || header->version > 5)
4651 error (_("Dwarf Error: wrong version in compilation unit header "
4652 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4653 filename);
4654
4655 if (to_underlying (header->abbrev_sect_off)
4656 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4657 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4658 "(offset 0x%x + 6) [in module %s]"),
4659 to_underlying (header->abbrev_sect_off),
4660 to_underlying (header->sect_off),
4661 filename);
4662
4663 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4664 avoid potential 32-bit overflow. */
4665 if (((ULONGEST) header->sect_off + get_cu_length (header))
4666 > section->size)
4667 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4668 "(offset 0x%x + 0) [in module %s]"),
4669 header->length, to_underlying (header->sect_off),
4670 filename);
4671 }
4672
4673 /* Read in a CU/TU header and perform some basic error checking.
4674 The contents of the header are stored in HEADER.
4675 The result is a pointer to the start of the first DIE. */
4676
4677 static const gdb_byte *
4678 read_and_check_comp_unit_head (struct comp_unit_head *header,
4679 struct dwarf2_section_info *section,
4680 struct dwarf2_section_info *abbrev_section,
4681 const gdb_byte *info_ptr,
4682 rcuh_kind section_kind)
4683 {
4684 const gdb_byte *beg_of_comp_unit = info_ptr;
4685 bfd *abfd = get_section_bfd_owner (section);
4686
4687 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4688
4689 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4690
4691 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4692
4693 error_check_comp_unit_head (header, section, abbrev_section);
4694
4695 return info_ptr;
4696 }
4697
4698 /* Fetch the abbreviation table offset from a comp or type unit header. */
4699
4700 static sect_offset
4701 read_abbrev_offset (struct dwarf2_section_info *section,
4702 sect_offset sect_off)
4703 {
4704 bfd *abfd = get_section_bfd_owner (section);
4705 const gdb_byte *info_ptr;
4706 unsigned int initial_length_size, offset_size;
4707 uint16_t version;
4708
4709 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4710 info_ptr = section->buffer + to_underlying (sect_off);
4711 read_initial_length (abfd, info_ptr, &initial_length_size);
4712 offset_size = initial_length_size == 4 ? 4 : 8;
4713 info_ptr += initial_length_size;
4714
4715 version = read_2_bytes (abfd, info_ptr);
4716 info_ptr += 2;
4717 if (version >= 5)
4718 {
4719 /* Skip unit type and address size. */
4720 info_ptr += 2;
4721 }
4722
4723 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4724 }
4725
4726 /* Allocate a new partial symtab for file named NAME and mark this new
4727 partial symtab as being an include of PST. */
4728
4729 static void
4730 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4731 struct objfile *objfile)
4732 {
4733 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4734
4735 if (!IS_ABSOLUTE_PATH (subpst->filename))
4736 {
4737 /* It shares objfile->objfile_obstack. */
4738 subpst->dirname = pst->dirname;
4739 }
4740
4741 subpst->textlow = 0;
4742 subpst->texthigh = 0;
4743
4744 subpst->dependencies
4745 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4746 subpst->dependencies[0] = pst;
4747 subpst->number_of_dependencies = 1;
4748
4749 subpst->globals_offset = 0;
4750 subpst->n_global_syms = 0;
4751 subpst->statics_offset = 0;
4752 subpst->n_static_syms = 0;
4753 subpst->compunit_symtab = NULL;
4754 subpst->read_symtab = pst->read_symtab;
4755 subpst->readin = 0;
4756
4757 /* No private part is necessary for include psymtabs. This property
4758 can be used to differentiate between such include psymtabs and
4759 the regular ones. */
4760 subpst->read_symtab_private = NULL;
4761 }
4762
4763 /* Read the Line Number Program data and extract the list of files
4764 included by the source file represented by PST. Build an include
4765 partial symtab for each of these included files. */
4766
4767 static void
4768 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4769 struct die_info *die,
4770 struct partial_symtab *pst)
4771 {
4772 line_header_up lh;
4773 struct attribute *attr;
4774
4775 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4776 if (attr)
4777 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4778 if (lh == NULL)
4779 return; /* No linetable, so no includes. */
4780
4781 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4782 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4783 }
4784
4785 static hashval_t
4786 hash_signatured_type (const void *item)
4787 {
4788 const struct signatured_type *sig_type
4789 = (const struct signatured_type *) item;
4790
4791 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4792 return sig_type->signature;
4793 }
4794
4795 static int
4796 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4797 {
4798 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4799 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4800
4801 return lhs->signature == rhs->signature;
4802 }
4803
4804 /* Allocate a hash table for signatured types. */
4805
4806 static htab_t
4807 allocate_signatured_type_table (struct objfile *objfile)
4808 {
4809 return htab_create_alloc_ex (41,
4810 hash_signatured_type,
4811 eq_signatured_type,
4812 NULL,
4813 &objfile->objfile_obstack,
4814 hashtab_obstack_allocate,
4815 dummy_obstack_deallocate);
4816 }
4817
4818 /* A helper function to add a signatured type CU to a table. */
4819
4820 static int
4821 add_signatured_type_cu_to_table (void **slot, void *datum)
4822 {
4823 struct signatured_type *sigt = (struct signatured_type *) *slot;
4824 struct signatured_type ***datap = (struct signatured_type ***) datum;
4825
4826 **datap = sigt;
4827 ++*datap;
4828
4829 return 1;
4830 }
4831
4832 /* A helper for create_debug_types_hash_table. Read types from SECTION
4833 and fill them into TYPES_HTAB. It will process only type units,
4834 therefore DW_UT_type. */
4835
4836 static void
4837 create_debug_type_hash_table (struct dwo_file *dwo_file,
4838 dwarf2_section_info *section, htab_t &types_htab,
4839 rcuh_kind section_kind)
4840 {
4841 struct objfile *objfile = dwarf2_per_objfile->objfile;
4842 struct dwarf2_section_info *abbrev_section;
4843 bfd *abfd;
4844 const gdb_byte *info_ptr, *end_ptr;
4845
4846 abbrev_section = (dwo_file != NULL
4847 ? &dwo_file->sections.abbrev
4848 : &dwarf2_per_objfile->abbrev);
4849
4850 if (dwarf_read_debug)
4851 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4852 get_section_name (section),
4853 get_section_file_name (abbrev_section));
4854
4855 dwarf2_read_section (objfile, section);
4856 info_ptr = section->buffer;
4857
4858 if (info_ptr == NULL)
4859 return;
4860
4861 /* We can't set abfd until now because the section may be empty or
4862 not present, in which case the bfd is unknown. */
4863 abfd = get_section_bfd_owner (section);
4864
4865 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4866 because we don't need to read any dies: the signature is in the
4867 header. */
4868
4869 end_ptr = info_ptr + section->size;
4870 while (info_ptr < end_ptr)
4871 {
4872 struct signatured_type *sig_type;
4873 struct dwo_unit *dwo_tu;
4874 void **slot;
4875 const gdb_byte *ptr = info_ptr;
4876 struct comp_unit_head header;
4877 unsigned int length;
4878
4879 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4880
4881 /* Initialize it due to a false compiler warning. */
4882 header.signature = -1;
4883 header.type_cu_offset_in_tu = (cu_offset) -1;
4884
4885 /* We need to read the type's signature in order to build the hash
4886 table, but we don't need anything else just yet. */
4887
4888 ptr = read_and_check_comp_unit_head (&header, section,
4889 abbrev_section, ptr, section_kind);
4890
4891 length = get_cu_length (&header);
4892
4893 /* Skip dummy type units. */
4894 if (ptr >= info_ptr + length
4895 || peek_abbrev_code (abfd, ptr) == 0
4896 || header.unit_type != DW_UT_type)
4897 {
4898 info_ptr += length;
4899 continue;
4900 }
4901
4902 if (types_htab == NULL)
4903 {
4904 if (dwo_file)
4905 types_htab = allocate_dwo_unit_table (objfile);
4906 else
4907 types_htab = allocate_signatured_type_table (objfile);
4908 }
4909
4910 if (dwo_file)
4911 {
4912 sig_type = NULL;
4913 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4914 struct dwo_unit);
4915 dwo_tu->dwo_file = dwo_file;
4916 dwo_tu->signature = header.signature;
4917 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4918 dwo_tu->section = section;
4919 dwo_tu->sect_off = sect_off;
4920 dwo_tu->length = length;
4921 }
4922 else
4923 {
4924 /* N.B.: type_offset is not usable if this type uses a DWO file.
4925 The real type_offset is in the DWO file. */
4926 dwo_tu = NULL;
4927 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4928 struct signatured_type);
4929 sig_type->signature = header.signature;
4930 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4931 sig_type->per_cu.objfile = objfile;
4932 sig_type->per_cu.is_debug_types = 1;
4933 sig_type->per_cu.section = section;
4934 sig_type->per_cu.sect_off = sect_off;
4935 sig_type->per_cu.length = length;
4936 }
4937
4938 slot = htab_find_slot (types_htab,
4939 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4940 INSERT);
4941 gdb_assert (slot != NULL);
4942 if (*slot != NULL)
4943 {
4944 sect_offset dup_sect_off;
4945
4946 if (dwo_file)
4947 {
4948 const struct dwo_unit *dup_tu
4949 = (const struct dwo_unit *) *slot;
4950
4951 dup_sect_off = dup_tu->sect_off;
4952 }
4953 else
4954 {
4955 const struct signatured_type *dup_tu
4956 = (const struct signatured_type *) *slot;
4957
4958 dup_sect_off = dup_tu->per_cu.sect_off;
4959 }
4960
4961 complaint (&symfile_complaints,
4962 _("debug type entry at offset 0x%x is duplicate to"
4963 " the entry at offset 0x%x, signature %s"),
4964 to_underlying (sect_off), to_underlying (dup_sect_off),
4965 hex_string (header.signature));
4966 }
4967 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4968
4969 if (dwarf_read_debug > 1)
4970 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4971 to_underlying (sect_off),
4972 hex_string (header.signature));
4973
4974 info_ptr += length;
4975 }
4976 }
4977
4978 /* Create the hash table of all entries in the .debug_types
4979 (or .debug_types.dwo) section(s).
4980 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4981 otherwise it is NULL.
4982
4983 The result is a pointer to the hash table or NULL if there are no types.
4984
4985 Note: This function processes DWO files only, not DWP files. */
4986
4987 static void
4988 create_debug_types_hash_table (struct dwo_file *dwo_file,
4989 VEC (dwarf2_section_info_def) *types,
4990 htab_t &types_htab)
4991 {
4992 int ix;
4993 struct dwarf2_section_info *section;
4994
4995 if (VEC_empty (dwarf2_section_info_def, types))
4996 return;
4997
4998 for (ix = 0;
4999 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5000 ++ix)
5001 create_debug_type_hash_table (dwo_file, section, types_htab,
5002 rcuh_kind::TYPE);
5003 }
5004
5005 /* Create the hash table of all entries in the .debug_types section,
5006 and initialize all_type_units.
5007 The result is zero if there is an error (e.g. missing .debug_types section),
5008 otherwise non-zero. */
5009
5010 static int
5011 create_all_type_units (struct objfile *objfile)
5012 {
5013 htab_t types_htab = NULL;
5014 struct signatured_type **iter;
5015
5016 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5017 rcuh_kind::COMPILE);
5018 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5019 if (types_htab == NULL)
5020 {
5021 dwarf2_per_objfile->signatured_types = NULL;
5022 return 0;
5023 }
5024
5025 dwarf2_per_objfile->signatured_types = types_htab;
5026
5027 dwarf2_per_objfile->n_type_units
5028 = dwarf2_per_objfile->n_allocated_type_units
5029 = htab_elements (types_htab);
5030 dwarf2_per_objfile->all_type_units =
5031 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5032 iter = &dwarf2_per_objfile->all_type_units[0];
5033 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5034 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5035 == dwarf2_per_objfile->n_type_units);
5036
5037 return 1;
5038 }
5039
5040 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5041 If SLOT is non-NULL, it is the entry to use in the hash table.
5042 Otherwise we find one. */
5043
5044 static struct signatured_type *
5045 add_type_unit (ULONGEST sig, void **slot)
5046 {
5047 struct objfile *objfile = dwarf2_per_objfile->objfile;
5048 int n_type_units = dwarf2_per_objfile->n_type_units;
5049 struct signatured_type *sig_type;
5050
5051 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5052 ++n_type_units;
5053 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5054 {
5055 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5056 dwarf2_per_objfile->n_allocated_type_units = 1;
5057 dwarf2_per_objfile->n_allocated_type_units *= 2;
5058 dwarf2_per_objfile->all_type_units
5059 = XRESIZEVEC (struct signatured_type *,
5060 dwarf2_per_objfile->all_type_units,
5061 dwarf2_per_objfile->n_allocated_type_units);
5062 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5063 }
5064 dwarf2_per_objfile->n_type_units = n_type_units;
5065
5066 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5067 struct signatured_type);
5068 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5069 sig_type->signature = sig;
5070 sig_type->per_cu.is_debug_types = 1;
5071 if (dwarf2_per_objfile->using_index)
5072 {
5073 sig_type->per_cu.v.quick =
5074 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5075 struct dwarf2_per_cu_quick_data);
5076 }
5077
5078 if (slot == NULL)
5079 {
5080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5081 sig_type, INSERT);
5082 }
5083 gdb_assert (*slot == NULL);
5084 *slot = sig_type;
5085 /* The rest of sig_type must be filled in by the caller. */
5086 return sig_type;
5087 }
5088
5089 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5090 Fill in SIG_ENTRY with DWO_ENTRY. */
5091
5092 static void
5093 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5094 struct signatured_type *sig_entry,
5095 struct dwo_unit *dwo_entry)
5096 {
5097 /* Make sure we're not clobbering something we don't expect to. */
5098 gdb_assert (! sig_entry->per_cu.queued);
5099 gdb_assert (sig_entry->per_cu.cu == NULL);
5100 if (dwarf2_per_objfile->using_index)
5101 {
5102 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5103 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5104 }
5105 else
5106 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5107 gdb_assert (sig_entry->signature == dwo_entry->signature);
5108 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5109 gdb_assert (sig_entry->type_unit_group == NULL);
5110 gdb_assert (sig_entry->dwo_unit == NULL);
5111
5112 sig_entry->per_cu.section = dwo_entry->section;
5113 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5114 sig_entry->per_cu.length = dwo_entry->length;
5115 sig_entry->per_cu.reading_dwo_directly = 1;
5116 sig_entry->per_cu.objfile = objfile;
5117 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5118 sig_entry->dwo_unit = dwo_entry;
5119 }
5120
5121 /* Subroutine of lookup_signatured_type.
5122 If we haven't read the TU yet, create the signatured_type data structure
5123 for a TU to be read in directly from a DWO file, bypassing the stub.
5124 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5125 using .gdb_index, then when reading a CU we want to stay in the DWO file
5126 containing that CU. Otherwise we could end up reading several other DWO
5127 files (due to comdat folding) to process the transitive closure of all the
5128 mentioned TUs, and that can be slow. The current DWO file will have every
5129 type signature that it needs.
5130 We only do this for .gdb_index because in the psymtab case we already have
5131 to read all the DWOs to build the type unit groups. */
5132
5133 static struct signatured_type *
5134 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5135 {
5136 struct objfile *objfile = dwarf2_per_objfile->objfile;
5137 struct dwo_file *dwo_file;
5138 struct dwo_unit find_dwo_entry, *dwo_entry;
5139 struct signatured_type find_sig_entry, *sig_entry;
5140 void **slot;
5141
5142 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5143
5144 /* If TU skeletons have been removed then we may not have read in any
5145 TUs yet. */
5146 if (dwarf2_per_objfile->signatured_types == NULL)
5147 {
5148 dwarf2_per_objfile->signatured_types
5149 = allocate_signatured_type_table (objfile);
5150 }
5151
5152 /* We only ever need to read in one copy of a signatured type.
5153 Use the global signatured_types array to do our own comdat-folding
5154 of types. If this is the first time we're reading this TU, and
5155 the TU has an entry in .gdb_index, replace the recorded data from
5156 .gdb_index with this TU. */
5157
5158 find_sig_entry.signature = sig;
5159 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5160 &find_sig_entry, INSERT);
5161 sig_entry = (struct signatured_type *) *slot;
5162
5163 /* We can get here with the TU already read, *or* in the process of being
5164 read. Don't reassign the global entry to point to this DWO if that's
5165 the case. Also note that if the TU is already being read, it may not
5166 have come from a DWO, the program may be a mix of Fission-compiled
5167 code and non-Fission-compiled code. */
5168
5169 /* Have we already tried to read this TU?
5170 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5171 needn't exist in the global table yet). */
5172 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5173 return sig_entry;
5174
5175 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5176 dwo_unit of the TU itself. */
5177 dwo_file = cu->dwo_unit->dwo_file;
5178
5179 /* Ok, this is the first time we're reading this TU. */
5180 if (dwo_file->tus == NULL)
5181 return NULL;
5182 find_dwo_entry.signature = sig;
5183 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5184 if (dwo_entry == NULL)
5185 return NULL;
5186
5187 /* If the global table doesn't have an entry for this TU, add one. */
5188 if (sig_entry == NULL)
5189 sig_entry = add_type_unit (sig, slot);
5190
5191 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5192 sig_entry->per_cu.tu_read = 1;
5193 return sig_entry;
5194 }
5195
5196 /* Subroutine of lookup_signatured_type.
5197 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5198 then try the DWP file. If the TU stub (skeleton) has been removed then
5199 it won't be in .gdb_index. */
5200
5201 static struct signatured_type *
5202 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5203 {
5204 struct objfile *objfile = dwarf2_per_objfile->objfile;
5205 struct dwp_file *dwp_file = get_dwp_file ();
5206 struct dwo_unit *dwo_entry;
5207 struct signatured_type find_sig_entry, *sig_entry;
5208 void **slot;
5209
5210 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5211 gdb_assert (dwp_file != NULL);
5212
5213 /* If TU skeletons have been removed then we may not have read in any
5214 TUs yet. */
5215 if (dwarf2_per_objfile->signatured_types == NULL)
5216 {
5217 dwarf2_per_objfile->signatured_types
5218 = allocate_signatured_type_table (objfile);
5219 }
5220
5221 find_sig_entry.signature = sig;
5222 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5223 &find_sig_entry, INSERT);
5224 sig_entry = (struct signatured_type *) *slot;
5225
5226 /* Have we already tried to read this TU?
5227 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5228 needn't exist in the global table yet). */
5229 if (sig_entry != NULL)
5230 return sig_entry;
5231
5232 if (dwp_file->tus == NULL)
5233 return NULL;
5234 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5235 sig, 1 /* is_debug_types */);
5236 if (dwo_entry == NULL)
5237 return NULL;
5238
5239 sig_entry = add_type_unit (sig, slot);
5240 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5241
5242 return sig_entry;
5243 }
5244
5245 /* Lookup a signature based type for DW_FORM_ref_sig8.
5246 Returns NULL if signature SIG is not present in the table.
5247 It is up to the caller to complain about this. */
5248
5249 static struct signatured_type *
5250 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5251 {
5252 if (cu->dwo_unit
5253 && dwarf2_per_objfile->using_index)
5254 {
5255 /* We're in a DWO/DWP file, and we're using .gdb_index.
5256 These cases require special processing. */
5257 if (get_dwp_file () == NULL)
5258 return lookup_dwo_signatured_type (cu, sig);
5259 else
5260 return lookup_dwp_signatured_type (cu, sig);
5261 }
5262 else
5263 {
5264 struct signatured_type find_entry, *entry;
5265
5266 if (dwarf2_per_objfile->signatured_types == NULL)
5267 return NULL;
5268 find_entry.signature = sig;
5269 entry = ((struct signatured_type *)
5270 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5271 return entry;
5272 }
5273 }
5274 \f
5275 /* Low level DIE reading support. */
5276
5277 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5278
5279 static void
5280 init_cu_die_reader (struct die_reader_specs *reader,
5281 struct dwarf2_cu *cu,
5282 struct dwarf2_section_info *section,
5283 struct dwo_file *dwo_file)
5284 {
5285 gdb_assert (section->readin && section->buffer != NULL);
5286 reader->abfd = get_section_bfd_owner (section);
5287 reader->cu = cu;
5288 reader->dwo_file = dwo_file;
5289 reader->die_section = section;
5290 reader->buffer = section->buffer;
5291 reader->buffer_end = section->buffer + section->size;
5292 reader->comp_dir = NULL;
5293 }
5294
5295 /* Subroutine of init_cutu_and_read_dies to simplify it.
5296 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5297 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5298 already.
5299
5300 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5301 from it to the DIE in the DWO. If NULL we are skipping the stub.
5302 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5303 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5304 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5305 STUB_COMP_DIR may be non-NULL.
5306 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5307 are filled in with the info of the DIE from the DWO file.
5308 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5309 provided an abbrev table to use.
5310 The result is non-zero if a valid (non-dummy) DIE was found. */
5311
5312 static int
5313 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5314 struct dwo_unit *dwo_unit,
5315 int abbrev_table_provided,
5316 struct die_info *stub_comp_unit_die,
5317 const char *stub_comp_dir,
5318 struct die_reader_specs *result_reader,
5319 const gdb_byte **result_info_ptr,
5320 struct die_info **result_comp_unit_die,
5321 int *result_has_children)
5322 {
5323 struct objfile *objfile = dwarf2_per_objfile->objfile;
5324 struct dwarf2_cu *cu = this_cu->cu;
5325 struct dwarf2_section_info *section;
5326 bfd *abfd;
5327 const gdb_byte *begin_info_ptr, *info_ptr;
5328 ULONGEST signature; /* Or dwo_id. */
5329 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5330 int i,num_extra_attrs;
5331 struct dwarf2_section_info *dwo_abbrev_section;
5332 struct attribute *attr;
5333 struct die_info *comp_unit_die;
5334
5335 /* At most one of these may be provided. */
5336 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5337
5338 /* These attributes aren't processed until later:
5339 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5340 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5341 referenced later. However, these attributes are found in the stub
5342 which we won't have later. In order to not impose this complication
5343 on the rest of the code, we read them here and copy them to the
5344 DWO CU/TU die. */
5345
5346 stmt_list = NULL;
5347 low_pc = NULL;
5348 high_pc = NULL;
5349 ranges = NULL;
5350 comp_dir = NULL;
5351
5352 if (stub_comp_unit_die != NULL)
5353 {
5354 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5355 DWO file. */
5356 if (! this_cu->is_debug_types)
5357 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5358 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5359 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5360 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5361 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5362
5363 /* There should be a DW_AT_addr_base attribute here (if needed).
5364 We need the value before we can process DW_FORM_GNU_addr_index. */
5365 cu->addr_base = 0;
5366 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5367 if (attr)
5368 cu->addr_base = DW_UNSND (attr);
5369
5370 /* There should be a DW_AT_ranges_base attribute here (if needed).
5371 We need the value before we can process DW_AT_ranges. */
5372 cu->ranges_base = 0;
5373 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5374 if (attr)
5375 cu->ranges_base = DW_UNSND (attr);
5376 }
5377 else if (stub_comp_dir != NULL)
5378 {
5379 /* Reconstruct the comp_dir attribute to simplify the code below. */
5380 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5381 comp_dir->name = DW_AT_comp_dir;
5382 comp_dir->form = DW_FORM_string;
5383 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5384 DW_STRING (comp_dir) = stub_comp_dir;
5385 }
5386
5387 /* Set up for reading the DWO CU/TU. */
5388 cu->dwo_unit = dwo_unit;
5389 section = dwo_unit->section;
5390 dwarf2_read_section (objfile, section);
5391 abfd = get_section_bfd_owner (section);
5392 begin_info_ptr = info_ptr = (section->buffer
5393 + to_underlying (dwo_unit->sect_off));
5394 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5395 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5396
5397 if (this_cu->is_debug_types)
5398 {
5399 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5400
5401 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5402 dwo_abbrev_section,
5403 info_ptr, rcuh_kind::TYPE);
5404 /* This is not an assert because it can be caused by bad debug info. */
5405 if (sig_type->signature != cu->header.signature)
5406 {
5407 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5408 " TU at offset 0x%x [in module %s]"),
5409 hex_string (sig_type->signature),
5410 hex_string (cu->header.signature),
5411 to_underlying (dwo_unit->sect_off),
5412 bfd_get_filename (abfd));
5413 }
5414 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5415 /* For DWOs coming from DWP files, we don't know the CU length
5416 nor the type's offset in the TU until now. */
5417 dwo_unit->length = get_cu_length (&cu->header);
5418 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5419
5420 /* Establish the type offset that can be used to lookup the type.
5421 For DWO files, we don't know it until now. */
5422 sig_type->type_offset_in_section
5423 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5424 }
5425 else
5426 {
5427 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5428 dwo_abbrev_section,
5429 info_ptr, rcuh_kind::COMPILE);
5430 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5431 /* For DWOs coming from DWP files, we don't know the CU length
5432 until now. */
5433 dwo_unit->length = get_cu_length (&cu->header);
5434 }
5435
5436 /* Replace the CU's original abbrev table with the DWO's.
5437 Reminder: We can't read the abbrev table until we've read the header. */
5438 if (abbrev_table_provided)
5439 {
5440 /* Don't free the provided abbrev table, the caller of
5441 init_cutu_and_read_dies owns it. */
5442 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5443 /* Ensure the DWO abbrev table gets freed. */
5444 make_cleanup (dwarf2_free_abbrev_table, cu);
5445 }
5446 else
5447 {
5448 dwarf2_free_abbrev_table (cu);
5449 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5450 /* Leave any existing abbrev table cleanup as is. */
5451 }
5452
5453 /* Read in the die, but leave space to copy over the attributes
5454 from the stub. This has the benefit of simplifying the rest of
5455 the code - all the work to maintain the illusion of a single
5456 DW_TAG_{compile,type}_unit DIE is done here. */
5457 num_extra_attrs = ((stmt_list != NULL)
5458 + (low_pc != NULL)
5459 + (high_pc != NULL)
5460 + (ranges != NULL)
5461 + (comp_dir != NULL));
5462 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5463 result_has_children, num_extra_attrs);
5464
5465 /* Copy over the attributes from the stub to the DIE we just read in. */
5466 comp_unit_die = *result_comp_unit_die;
5467 i = comp_unit_die->num_attrs;
5468 if (stmt_list != NULL)
5469 comp_unit_die->attrs[i++] = *stmt_list;
5470 if (low_pc != NULL)
5471 comp_unit_die->attrs[i++] = *low_pc;
5472 if (high_pc != NULL)
5473 comp_unit_die->attrs[i++] = *high_pc;
5474 if (ranges != NULL)
5475 comp_unit_die->attrs[i++] = *ranges;
5476 if (comp_dir != NULL)
5477 comp_unit_die->attrs[i++] = *comp_dir;
5478 comp_unit_die->num_attrs += num_extra_attrs;
5479
5480 if (dwarf_die_debug)
5481 {
5482 fprintf_unfiltered (gdb_stdlog,
5483 "Read die from %s@0x%x of %s:\n",
5484 get_section_name (section),
5485 (unsigned) (begin_info_ptr - section->buffer),
5486 bfd_get_filename (abfd));
5487 dump_die (comp_unit_die, dwarf_die_debug);
5488 }
5489
5490 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5491 TUs by skipping the stub and going directly to the entry in the DWO file.
5492 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5493 to get it via circuitous means. Blech. */
5494 if (comp_dir != NULL)
5495 result_reader->comp_dir = DW_STRING (comp_dir);
5496
5497 /* Skip dummy compilation units. */
5498 if (info_ptr >= begin_info_ptr + dwo_unit->length
5499 || peek_abbrev_code (abfd, info_ptr) == 0)
5500 return 0;
5501
5502 *result_info_ptr = info_ptr;
5503 return 1;
5504 }
5505
5506 /* Subroutine of init_cutu_and_read_dies to simplify it.
5507 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5508 Returns NULL if the specified DWO unit cannot be found. */
5509
5510 static struct dwo_unit *
5511 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5512 struct die_info *comp_unit_die)
5513 {
5514 struct dwarf2_cu *cu = this_cu->cu;
5515 struct attribute *attr;
5516 ULONGEST signature;
5517 struct dwo_unit *dwo_unit;
5518 const char *comp_dir, *dwo_name;
5519
5520 gdb_assert (cu != NULL);
5521
5522 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5523 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5524 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5525
5526 if (this_cu->is_debug_types)
5527 {
5528 struct signatured_type *sig_type;
5529
5530 /* Since this_cu is the first member of struct signatured_type,
5531 we can go from a pointer to one to a pointer to the other. */
5532 sig_type = (struct signatured_type *) this_cu;
5533 signature = sig_type->signature;
5534 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5535 }
5536 else
5537 {
5538 struct attribute *attr;
5539
5540 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5541 if (! attr)
5542 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5543 " [in module %s]"),
5544 dwo_name, objfile_name (this_cu->objfile));
5545 signature = DW_UNSND (attr);
5546 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5547 signature);
5548 }
5549
5550 return dwo_unit;
5551 }
5552
5553 /* Subroutine of init_cutu_and_read_dies to simplify it.
5554 See it for a description of the parameters.
5555 Read a TU directly from a DWO file, bypassing the stub.
5556
5557 Note: This function could be a little bit simpler if we shared cleanups
5558 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5559 to do, so we keep this function self-contained. Or we could move this
5560 into our caller, but it's complex enough already. */
5561
5562 static void
5563 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5564 int use_existing_cu, int keep,
5565 die_reader_func_ftype *die_reader_func,
5566 void *data)
5567 {
5568 struct dwarf2_cu *cu;
5569 struct signatured_type *sig_type;
5570 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5571 struct die_reader_specs reader;
5572 const gdb_byte *info_ptr;
5573 struct die_info *comp_unit_die;
5574 int has_children;
5575
5576 /* Verify we can do the following downcast, and that we have the
5577 data we need. */
5578 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5579 sig_type = (struct signatured_type *) this_cu;
5580 gdb_assert (sig_type->dwo_unit != NULL);
5581
5582 cleanups = make_cleanup (null_cleanup, NULL);
5583
5584 if (use_existing_cu && this_cu->cu != NULL)
5585 {
5586 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5587 cu = this_cu->cu;
5588 /* There's no need to do the rereading_dwo_cu handling that
5589 init_cutu_and_read_dies does since we don't read the stub. */
5590 }
5591 else
5592 {
5593 /* If !use_existing_cu, this_cu->cu must be NULL. */
5594 gdb_assert (this_cu->cu == NULL);
5595 cu = XNEW (struct dwarf2_cu);
5596 init_one_comp_unit (cu, this_cu);
5597 /* If an error occurs while loading, release our storage. */
5598 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5599 }
5600
5601 /* A future optimization, if needed, would be to use an existing
5602 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5603 could share abbrev tables. */
5604
5605 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5606 0 /* abbrev_table_provided */,
5607 NULL /* stub_comp_unit_die */,
5608 sig_type->dwo_unit->dwo_file->comp_dir,
5609 &reader, &info_ptr,
5610 &comp_unit_die, &has_children) == 0)
5611 {
5612 /* Dummy die. */
5613 do_cleanups (cleanups);
5614 return;
5615 }
5616
5617 /* All the "real" work is done here. */
5618 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5619
5620 /* This duplicates the code in init_cutu_and_read_dies,
5621 but the alternative is making the latter more complex.
5622 This function is only for the special case of using DWO files directly:
5623 no point in overly complicating the general case just to handle this. */
5624 if (free_cu_cleanup != NULL)
5625 {
5626 if (keep)
5627 {
5628 /* We've successfully allocated this compilation unit. Let our
5629 caller clean it up when finished with it. */
5630 discard_cleanups (free_cu_cleanup);
5631
5632 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5633 So we have to manually free the abbrev table. */
5634 dwarf2_free_abbrev_table (cu);
5635
5636 /* Link this CU into read_in_chain. */
5637 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5638 dwarf2_per_objfile->read_in_chain = this_cu;
5639 }
5640 else
5641 do_cleanups (free_cu_cleanup);
5642 }
5643
5644 do_cleanups (cleanups);
5645 }
5646
5647 /* Initialize a CU (or TU) and read its DIEs.
5648 If the CU defers to a DWO file, read the DWO file as well.
5649
5650 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5651 Otherwise the table specified in the comp unit header is read in and used.
5652 This is an optimization for when we already have the abbrev table.
5653
5654 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5655 Otherwise, a new CU is allocated with xmalloc.
5656
5657 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5658 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5659
5660 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5661 linker) then DIE_READER_FUNC will not get called. */
5662
5663 static void
5664 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5665 struct abbrev_table *abbrev_table,
5666 int use_existing_cu, int keep,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_cu *cu;
5674 const gdb_byte *begin_info_ptr, *info_ptr;
5675 struct die_reader_specs reader;
5676 struct die_info *comp_unit_die;
5677 int has_children;
5678 struct attribute *attr;
5679 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5680 struct signatured_type *sig_type = NULL;
5681 struct dwarf2_section_info *abbrev_section;
5682 /* Non-zero if CU currently points to a DWO file and we need to
5683 reread it. When this happens we need to reread the skeleton die
5684 before we can reread the DWO file (this only applies to CUs, not TUs). */
5685 int rereading_dwo_cu = 0;
5686
5687 if (dwarf_die_debug)
5688 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5689 this_cu->is_debug_types ? "type" : "comp",
5690 to_underlying (this_cu->sect_off));
5691
5692 if (use_existing_cu)
5693 gdb_assert (keep);
5694
5695 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5696 file (instead of going through the stub), short-circuit all of this. */
5697 if (this_cu->reading_dwo_directly)
5698 {
5699 /* Narrow down the scope of possibilities to have to understand. */
5700 gdb_assert (this_cu->is_debug_types);
5701 gdb_assert (abbrev_table == NULL);
5702 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5703 die_reader_func, data);
5704 return;
5705 }
5706
5707 cleanups = make_cleanup (null_cleanup, NULL);
5708
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5713
5714 abbrev_section = get_abbrev_section_for_cu (this_cu);
5715
5716 if (use_existing_cu && this_cu->cu != NULL)
5717 {
5718 cu = this_cu->cu;
5719 /* If this CU is from a DWO file we need to start over, we need to
5720 refetch the attributes from the skeleton CU.
5721 This could be optimized by retrieving those attributes from when we
5722 were here the first time: the previous comp_unit_die was stored in
5723 comp_unit_obstack. But there's no data yet that we need this
5724 optimization. */
5725 if (cu->dwo_unit != NULL)
5726 rereading_dwo_cu = 1;
5727 }
5728 else
5729 {
5730 /* If !use_existing_cu, this_cu->cu must be NULL. */
5731 gdb_assert (this_cu->cu == NULL);
5732 cu = XNEW (struct dwarf2_cu);
5733 init_one_comp_unit (cu, this_cu);
5734 /* If an error occurs while loading, release our storage. */
5735 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5736 }
5737
5738 /* Get the header. */
5739 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5740 {
5741 /* We already have the header, there's no need to read it in again. */
5742 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5743 }
5744 else
5745 {
5746 if (this_cu->is_debug_types)
5747 {
5748 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5749 abbrev_section, info_ptr,
5750 rcuh_kind::TYPE);
5751
5752 /* Since per_cu is the first member of struct signatured_type,
5753 we can go from a pointer to one to a pointer to the other. */
5754 sig_type = (struct signatured_type *) this_cu;
5755 gdb_assert (sig_type->signature == cu->header.signature);
5756 gdb_assert (sig_type->type_offset_in_tu
5757 == cu->header.type_cu_offset_in_tu);
5758 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5759
5760 /* LENGTH has not been set yet for type units if we're
5761 using .gdb_index. */
5762 this_cu->length = get_cu_length (&cu->header);
5763
5764 /* Establish the type offset that can be used to lookup the type. */
5765 sig_type->type_offset_in_section =
5766 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5767
5768 this_cu->dwarf_version = cu->header.version;
5769 }
5770 else
5771 {
5772 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5773 abbrev_section,
5774 info_ptr,
5775 rcuh_kind::COMPILE);
5776
5777 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5778 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5779 this_cu->dwarf_version = cu->header.version;
5780 }
5781 }
5782
5783 /* Skip dummy compilation units. */
5784 if (info_ptr >= begin_info_ptr + this_cu->length
5785 || peek_abbrev_code (abfd, info_ptr) == 0)
5786 {
5787 do_cleanups (cleanups);
5788 return;
5789 }
5790
5791 /* If we don't have them yet, read the abbrevs for this compilation unit.
5792 And if we need to read them now, make sure they're freed when we're
5793 done. Note that it's important that if the CU had an abbrev table
5794 on entry we don't free it when we're done: Somewhere up the call stack
5795 it may be in use. */
5796 if (abbrev_table != NULL)
5797 {
5798 gdb_assert (cu->abbrev_table == NULL);
5799 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5800 cu->abbrev_table = abbrev_table;
5801 }
5802 else if (cu->abbrev_table == NULL)
5803 {
5804 dwarf2_read_abbrevs (cu, abbrev_section);
5805 make_cleanup (dwarf2_free_abbrev_table, cu);
5806 }
5807 else if (rereading_dwo_cu)
5808 {
5809 dwarf2_free_abbrev_table (cu);
5810 dwarf2_read_abbrevs (cu, abbrev_section);
5811 }
5812
5813 /* Read the top level CU/TU die. */
5814 init_cu_die_reader (&reader, cu, section, NULL);
5815 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5816
5817 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5818 from the DWO file.
5819 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5820 DWO CU, that this test will fail (the attribute will not be present). */
5821 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5822 if (attr)
5823 {
5824 struct dwo_unit *dwo_unit;
5825 struct die_info *dwo_comp_unit_die;
5826
5827 if (has_children)
5828 {
5829 complaint (&symfile_complaints,
5830 _("compilation unit with DW_AT_GNU_dwo_name"
5831 " has children (offset 0x%x) [in module %s]"),
5832 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5833 }
5834 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5835 if (dwo_unit != NULL)
5836 {
5837 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5838 abbrev_table != NULL,
5839 comp_unit_die, NULL,
5840 &reader, &info_ptr,
5841 &dwo_comp_unit_die, &has_children) == 0)
5842 {
5843 /* Dummy die. */
5844 do_cleanups (cleanups);
5845 return;
5846 }
5847 comp_unit_die = dwo_comp_unit_die;
5848 }
5849 else
5850 {
5851 /* Yikes, we couldn't find the rest of the DIE, we only have
5852 the stub. A complaint has already been logged. There's
5853 not much more we can do except pass on the stub DIE to
5854 die_reader_func. We don't want to throw an error on bad
5855 debug info. */
5856 }
5857 }
5858
5859 /* All of the above is setup for this call. Yikes. */
5860 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5861
5862 /* Done, clean up. */
5863 if (free_cu_cleanup != NULL)
5864 {
5865 if (keep)
5866 {
5867 /* We've successfully allocated this compilation unit. Let our
5868 caller clean it up when finished with it. */
5869 discard_cleanups (free_cu_cleanup);
5870
5871 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5872 So we have to manually free the abbrev table. */
5873 dwarf2_free_abbrev_table (cu);
5874
5875 /* Link this CU into read_in_chain. */
5876 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5877 dwarf2_per_objfile->read_in_chain = this_cu;
5878 }
5879 else
5880 do_cleanups (free_cu_cleanup);
5881 }
5882
5883 do_cleanups (cleanups);
5884 }
5885
5886 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5887 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5888 to have already done the lookup to find the DWO file).
5889
5890 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5891 THIS_CU->is_debug_types, but nothing else.
5892
5893 We fill in THIS_CU->length.
5894
5895 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5896 linker) then DIE_READER_FUNC will not get called.
5897
5898 THIS_CU->cu is always freed when done.
5899 This is done in order to not leave THIS_CU->cu in a state where we have
5900 to care whether it refers to the "main" CU or the DWO CU. */
5901
5902 static void
5903 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5904 struct dwo_file *dwo_file,
5905 die_reader_func_ftype *die_reader_func,
5906 void *data)
5907 {
5908 struct objfile *objfile = dwarf2_per_objfile->objfile;
5909 struct dwarf2_section_info *section = this_cu->section;
5910 bfd *abfd = get_section_bfd_owner (section);
5911 struct dwarf2_section_info *abbrev_section;
5912 struct dwarf2_cu cu;
5913 const gdb_byte *begin_info_ptr, *info_ptr;
5914 struct die_reader_specs reader;
5915 struct cleanup *cleanups;
5916 struct die_info *comp_unit_die;
5917 int has_children;
5918
5919 if (dwarf_die_debug)
5920 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5921 this_cu->is_debug_types ? "type" : "comp",
5922 to_underlying (this_cu->sect_off));
5923
5924 gdb_assert (this_cu->cu == NULL);
5925
5926 abbrev_section = (dwo_file != NULL
5927 ? &dwo_file->sections.abbrev
5928 : get_abbrev_section_for_cu (this_cu));
5929
5930 /* This is cheap if the section is already read in. */
5931 dwarf2_read_section (objfile, section);
5932
5933 init_one_comp_unit (&cu, this_cu);
5934
5935 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5936
5937 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5938 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5939 abbrev_section, info_ptr,
5940 (this_cu->is_debug_types
5941 ? rcuh_kind::TYPE
5942 : rcuh_kind::COMPILE));
5943
5944 this_cu->length = get_cu_length (&cu.header);
5945
5946 /* Skip dummy compilation units. */
5947 if (info_ptr >= begin_info_ptr + this_cu->length
5948 || peek_abbrev_code (abfd, info_ptr) == 0)
5949 {
5950 do_cleanups (cleanups);
5951 return;
5952 }
5953
5954 dwarf2_read_abbrevs (&cu, abbrev_section);
5955 make_cleanup (dwarf2_free_abbrev_table, &cu);
5956
5957 init_cu_die_reader (&reader, &cu, section, dwo_file);
5958 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5959
5960 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5961
5962 do_cleanups (cleanups);
5963 }
5964
5965 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5966 does not lookup the specified DWO file.
5967 This cannot be used to read DWO files.
5968
5969 THIS_CU->cu is always freed when done.
5970 This is done in order to not leave THIS_CU->cu in a state where we have
5971 to care whether it refers to the "main" CU or the DWO CU.
5972 We can revisit this if the data shows there's a performance issue. */
5973
5974 static void
5975 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5976 die_reader_func_ftype *die_reader_func,
5977 void *data)
5978 {
5979 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5980 }
5981 \f
5982 /* Type Unit Groups.
5983
5984 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5985 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5986 so that all types coming from the same compilation (.o file) are grouped
5987 together. A future step could be to put the types in the same symtab as
5988 the CU the types ultimately came from. */
5989
5990 static hashval_t
5991 hash_type_unit_group (const void *item)
5992 {
5993 const struct type_unit_group *tu_group
5994 = (const struct type_unit_group *) item;
5995
5996 return hash_stmt_list_entry (&tu_group->hash);
5997 }
5998
5999 static int
6000 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6001 {
6002 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6003 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6004
6005 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6006 }
6007
6008 /* Allocate a hash table for type unit groups. */
6009
6010 static htab_t
6011 allocate_type_unit_groups_table (void)
6012 {
6013 return htab_create_alloc_ex (3,
6014 hash_type_unit_group,
6015 eq_type_unit_group,
6016 NULL,
6017 &dwarf2_per_objfile->objfile->objfile_obstack,
6018 hashtab_obstack_allocate,
6019 dummy_obstack_deallocate);
6020 }
6021
6022 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6023 partial symtabs. We combine several TUs per psymtab to not let the size
6024 of any one psymtab grow too big. */
6025 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6026 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6027
6028 /* Helper routine for get_type_unit_group.
6029 Create the type_unit_group object used to hold one or more TUs. */
6030
6031 static struct type_unit_group *
6032 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6033 {
6034 struct objfile *objfile = dwarf2_per_objfile->objfile;
6035 struct dwarf2_per_cu_data *per_cu;
6036 struct type_unit_group *tu_group;
6037
6038 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6039 struct type_unit_group);
6040 per_cu = &tu_group->per_cu;
6041 per_cu->objfile = objfile;
6042
6043 if (dwarf2_per_objfile->using_index)
6044 {
6045 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6046 struct dwarf2_per_cu_quick_data);
6047 }
6048 else
6049 {
6050 unsigned int line_offset = to_underlying (line_offset_struct);
6051 struct partial_symtab *pst;
6052 char *name;
6053
6054 /* Give the symtab a useful name for debug purposes. */
6055 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6056 name = xstrprintf ("<type_units_%d>",
6057 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6058 else
6059 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6060
6061 pst = create_partial_symtab (per_cu, name);
6062 pst->anonymous = 1;
6063
6064 xfree (name);
6065 }
6066
6067 tu_group->hash.dwo_unit = cu->dwo_unit;
6068 tu_group->hash.line_sect_off = line_offset_struct;
6069
6070 return tu_group;
6071 }
6072
6073 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6074 STMT_LIST is a DW_AT_stmt_list attribute. */
6075
6076 static struct type_unit_group *
6077 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6078 {
6079 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6080 struct type_unit_group *tu_group;
6081 void **slot;
6082 unsigned int line_offset;
6083 struct type_unit_group type_unit_group_for_lookup;
6084
6085 if (dwarf2_per_objfile->type_unit_groups == NULL)
6086 {
6087 dwarf2_per_objfile->type_unit_groups =
6088 allocate_type_unit_groups_table ();
6089 }
6090
6091 /* Do we need to create a new group, or can we use an existing one? */
6092
6093 if (stmt_list)
6094 {
6095 line_offset = DW_UNSND (stmt_list);
6096 ++tu_stats->nr_symtab_sharers;
6097 }
6098 else
6099 {
6100 /* Ugh, no stmt_list. Rare, but we have to handle it.
6101 We can do various things here like create one group per TU or
6102 spread them over multiple groups to split up the expansion work.
6103 To avoid worst case scenarios (too many groups or too large groups)
6104 we, umm, group them in bunches. */
6105 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6106 | (tu_stats->nr_stmt_less_type_units
6107 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6108 ++tu_stats->nr_stmt_less_type_units;
6109 }
6110
6111 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6112 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6113 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6114 &type_unit_group_for_lookup, INSERT);
6115 if (*slot != NULL)
6116 {
6117 tu_group = (struct type_unit_group *) *slot;
6118 gdb_assert (tu_group != NULL);
6119 }
6120 else
6121 {
6122 sect_offset line_offset_struct = (sect_offset) line_offset;
6123 tu_group = create_type_unit_group (cu, line_offset_struct);
6124 *slot = tu_group;
6125 ++tu_stats->nr_symtabs;
6126 }
6127
6128 return tu_group;
6129 }
6130 \f
6131 /* Partial symbol tables. */
6132
6133 /* Create a psymtab named NAME and assign it to PER_CU.
6134
6135 The caller must fill in the following details:
6136 dirname, textlow, texthigh. */
6137
6138 static struct partial_symtab *
6139 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6140 {
6141 struct objfile *objfile = per_cu->objfile;
6142 struct partial_symtab *pst;
6143
6144 pst = start_psymtab_common (objfile, name, 0,
6145 objfile->global_psymbols,
6146 objfile->static_psymbols);
6147
6148 pst->psymtabs_addrmap_supported = 1;
6149
6150 /* This is the glue that links PST into GDB's symbol API. */
6151 pst->read_symtab_private = per_cu;
6152 pst->read_symtab = dwarf2_read_symtab;
6153 per_cu->v.psymtab = pst;
6154
6155 return pst;
6156 }
6157
6158 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6159 type. */
6160
6161 struct process_psymtab_comp_unit_data
6162 {
6163 /* True if we are reading a DW_TAG_partial_unit. */
6164
6165 int want_partial_unit;
6166
6167 /* The "pretend" language that is used if the CU doesn't declare a
6168 language. */
6169
6170 enum language pretend_language;
6171 };
6172
6173 /* die_reader_func for process_psymtab_comp_unit. */
6174
6175 static void
6176 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6177 const gdb_byte *info_ptr,
6178 struct die_info *comp_unit_die,
6179 int has_children,
6180 void *data)
6181 {
6182 struct dwarf2_cu *cu = reader->cu;
6183 struct objfile *objfile = cu->objfile;
6184 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6185 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6186 CORE_ADDR baseaddr;
6187 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6188 struct partial_symtab *pst;
6189 enum pc_bounds_kind cu_bounds_kind;
6190 const char *filename;
6191 struct process_psymtab_comp_unit_data *info
6192 = (struct process_psymtab_comp_unit_data *) data;
6193
6194 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6195 return;
6196
6197 gdb_assert (! per_cu->is_debug_types);
6198
6199 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6200
6201 cu->list_in_scope = &file_symbols;
6202
6203 /* Allocate a new partial symbol table structure. */
6204 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6205 if (filename == NULL)
6206 filename = "";
6207
6208 pst = create_partial_symtab (per_cu, filename);
6209
6210 /* This must be done before calling dwarf2_build_include_psymtabs. */
6211 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6212
6213 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6214
6215 dwarf2_find_base_address (comp_unit_die, cu);
6216
6217 /* Possibly set the default values of LOWPC and HIGHPC from
6218 `DW_AT_ranges'. */
6219 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6220 &best_highpc, cu, pst);
6221 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6222 /* Store the contiguous range if it is not empty; it can be empty for
6223 CUs with no code. */
6224 addrmap_set_empty (objfile->psymtabs_addrmap,
6225 gdbarch_adjust_dwarf2_addr (gdbarch,
6226 best_lowpc + baseaddr),
6227 gdbarch_adjust_dwarf2_addr (gdbarch,
6228 best_highpc + baseaddr) - 1,
6229 pst);
6230
6231 /* Check if comp unit has_children.
6232 If so, read the rest of the partial symbols from this comp unit.
6233 If not, there's no more debug_info for this comp unit. */
6234 if (has_children)
6235 {
6236 struct partial_die_info *first_die;
6237 CORE_ADDR lowpc, highpc;
6238
6239 lowpc = ((CORE_ADDR) -1);
6240 highpc = ((CORE_ADDR) 0);
6241
6242 first_die = load_partial_dies (reader, info_ptr, 1);
6243
6244 scan_partial_symbols (first_die, &lowpc, &highpc,
6245 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6246
6247 /* If we didn't find a lowpc, set it to highpc to avoid
6248 complaints from `maint check'. */
6249 if (lowpc == ((CORE_ADDR) -1))
6250 lowpc = highpc;
6251
6252 /* If the compilation unit didn't have an explicit address range,
6253 then use the information extracted from its child dies. */
6254 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6255 {
6256 best_lowpc = lowpc;
6257 best_highpc = highpc;
6258 }
6259 }
6260 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6261 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6262
6263 end_psymtab_common (objfile, pst);
6264
6265 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6266 {
6267 int i;
6268 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6269 struct dwarf2_per_cu_data *iter;
6270
6271 /* Fill in 'dependencies' here; we fill in 'users' in a
6272 post-pass. */
6273 pst->number_of_dependencies = len;
6274 pst->dependencies =
6275 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6276 for (i = 0;
6277 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6278 i, iter);
6279 ++i)
6280 pst->dependencies[i] = iter->v.psymtab;
6281
6282 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6283 }
6284
6285 /* Get the list of files included in the current compilation unit,
6286 and build a psymtab for each of them. */
6287 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6288
6289 if (dwarf_read_debug)
6290 {
6291 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6292
6293 fprintf_unfiltered (gdb_stdlog,
6294 "Psymtab for %s unit @0x%x: %s - %s"
6295 ", %d global, %d static syms\n",
6296 per_cu->is_debug_types ? "type" : "comp",
6297 to_underlying (per_cu->sect_off),
6298 paddress (gdbarch, pst->textlow),
6299 paddress (gdbarch, pst->texthigh),
6300 pst->n_global_syms, pst->n_static_syms);
6301 }
6302 }
6303
6304 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6305 Process compilation unit THIS_CU for a psymtab. */
6306
6307 static void
6308 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6309 int want_partial_unit,
6310 enum language pretend_language)
6311 {
6312 /* If this compilation unit was already read in, free the
6313 cached copy in order to read it in again. This is
6314 necessary because we skipped some symbols when we first
6315 read in the compilation unit (see load_partial_dies).
6316 This problem could be avoided, but the benefit is unclear. */
6317 if (this_cu->cu != NULL)
6318 free_one_cached_comp_unit (this_cu);
6319
6320 if (this_cu->is_debug_types)
6321 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6322 NULL);
6323 else
6324 {
6325 process_psymtab_comp_unit_data info;
6326 info.want_partial_unit = want_partial_unit;
6327 info.pretend_language = pretend_language;
6328 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6329 process_psymtab_comp_unit_reader, &info);
6330 }
6331
6332 /* Age out any secondary CUs. */
6333 age_cached_comp_units ();
6334 }
6335
6336 /* Reader function for build_type_psymtabs. */
6337
6338 static void
6339 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6340 const gdb_byte *info_ptr,
6341 struct die_info *type_unit_die,
6342 int has_children,
6343 void *data)
6344 {
6345 struct objfile *objfile = dwarf2_per_objfile->objfile;
6346 struct dwarf2_cu *cu = reader->cu;
6347 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6348 struct signatured_type *sig_type;
6349 struct type_unit_group *tu_group;
6350 struct attribute *attr;
6351 struct partial_die_info *first_die;
6352 CORE_ADDR lowpc, highpc;
6353 struct partial_symtab *pst;
6354
6355 gdb_assert (data == NULL);
6356 gdb_assert (per_cu->is_debug_types);
6357 sig_type = (struct signatured_type *) per_cu;
6358
6359 if (! has_children)
6360 return;
6361
6362 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6363 tu_group = get_type_unit_group (cu, attr);
6364
6365 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6366
6367 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6368 cu->list_in_scope = &file_symbols;
6369 pst = create_partial_symtab (per_cu, "");
6370 pst->anonymous = 1;
6371
6372 first_die = load_partial_dies (reader, info_ptr, 1);
6373
6374 lowpc = (CORE_ADDR) -1;
6375 highpc = (CORE_ADDR) 0;
6376 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6377
6378 end_psymtab_common (objfile, pst);
6379 }
6380
6381 /* Struct used to sort TUs by their abbreviation table offset. */
6382
6383 struct tu_abbrev_offset
6384 {
6385 struct signatured_type *sig_type;
6386 sect_offset abbrev_offset;
6387 };
6388
6389 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6390
6391 static int
6392 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6393 {
6394 const struct tu_abbrev_offset * const *a
6395 = (const struct tu_abbrev_offset * const*) ap;
6396 const struct tu_abbrev_offset * const *b
6397 = (const struct tu_abbrev_offset * const*) bp;
6398 sect_offset aoff = (*a)->abbrev_offset;
6399 sect_offset boff = (*b)->abbrev_offset;
6400
6401 return (aoff > boff) - (aoff < boff);
6402 }
6403
6404 /* Efficiently read all the type units.
6405 This does the bulk of the work for build_type_psymtabs.
6406
6407 The efficiency is because we sort TUs by the abbrev table they use and
6408 only read each abbrev table once. In one program there are 200K TUs
6409 sharing 8K abbrev tables.
6410
6411 The main purpose of this function is to support building the
6412 dwarf2_per_objfile->type_unit_groups table.
6413 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6414 can collapse the search space by grouping them by stmt_list.
6415 The savings can be significant, in the same program from above the 200K TUs
6416 share 8K stmt_list tables.
6417
6418 FUNC is expected to call get_type_unit_group, which will create the
6419 struct type_unit_group if necessary and add it to
6420 dwarf2_per_objfile->type_unit_groups. */
6421
6422 static void
6423 build_type_psymtabs_1 (void)
6424 {
6425 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6426 struct cleanup *cleanups;
6427 struct abbrev_table *abbrev_table;
6428 sect_offset abbrev_offset;
6429 struct tu_abbrev_offset *sorted_by_abbrev;
6430 int i;
6431
6432 /* It's up to the caller to not call us multiple times. */
6433 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6434
6435 if (dwarf2_per_objfile->n_type_units == 0)
6436 return;
6437
6438 /* TUs typically share abbrev tables, and there can be way more TUs than
6439 abbrev tables. Sort by abbrev table to reduce the number of times we
6440 read each abbrev table in.
6441 Alternatives are to punt or to maintain a cache of abbrev tables.
6442 This is simpler and efficient enough for now.
6443
6444 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6445 symtab to use). Typically TUs with the same abbrev offset have the same
6446 stmt_list value too so in practice this should work well.
6447
6448 The basic algorithm here is:
6449
6450 sort TUs by abbrev table
6451 for each TU with same abbrev table:
6452 read abbrev table if first user
6453 read TU top level DIE
6454 [IWBN if DWO skeletons had DW_AT_stmt_list]
6455 call FUNC */
6456
6457 if (dwarf_read_debug)
6458 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6459
6460 /* Sort in a separate table to maintain the order of all_type_units
6461 for .gdb_index: TU indices directly index all_type_units. */
6462 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6463 dwarf2_per_objfile->n_type_units);
6464 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6465 {
6466 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6467
6468 sorted_by_abbrev[i].sig_type = sig_type;
6469 sorted_by_abbrev[i].abbrev_offset =
6470 read_abbrev_offset (sig_type->per_cu.section,
6471 sig_type->per_cu.sect_off);
6472 }
6473 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6474 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6475 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6476
6477 abbrev_offset = (sect_offset) ~(unsigned) 0;
6478 abbrev_table = NULL;
6479 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6480
6481 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6482 {
6483 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6484
6485 /* Switch to the next abbrev table if necessary. */
6486 if (abbrev_table == NULL
6487 || tu->abbrev_offset != abbrev_offset)
6488 {
6489 if (abbrev_table != NULL)
6490 {
6491 abbrev_table_free (abbrev_table);
6492 /* Reset to NULL in case abbrev_table_read_table throws
6493 an error: abbrev_table_free_cleanup will get called. */
6494 abbrev_table = NULL;
6495 }
6496 abbrev_offset = tu->abbrev_offset;
6497 abbrev_table =
6498 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6499 abbrev_offset);
6500 ++tu_stats->nr_uniq_abbrev_tables;
6501 }
6502
6503 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6504 build_type_psymtabs_reader, NULL);
6505 }
6506
6507 do_cleanups (cleanups);
6508 }
6509
6510 /* Print collected type unit statistics. */
6511
6512 static void
6513 print_tu_stats (void)
6514 {
6515 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6516
6517 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6518 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6519 dwarf2_per_objfile->n_type_units);
6520 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6521 tu_stats->nr_uniq_abbrev_tables);
6522 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6523 tu_stats->nr_symtabs);
6524 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6525 tu_stats->nr_symtab_sharers);
6526 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6527 tu_stats->nr_stmt_less_type_units);
6528 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6529 tu_stats->nr_all_type_units_reallocs);
6530 }
6531
6532 /* Traversal function for build_type_psymtabs. */
6533
6534 static int
6535 build_type_psymtab_dependencies (void **slot, void *info)
6536 {
6537 struct objfile *objfile = dwarf2_per_objfile->objfile;
6538 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6539 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6540 struct partial_symtab *pst = per_cu->v.psymtab;
6541 int len = VEC_length (sig_type_ptr, tu_group->tus);
6542 struct signatured_type *iter;
6543 int i;
6544
6545 gdb_assert (len > 0);
6546 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6547
6548 pst->number_of_dependencies = len;
6549 pst->dependencies =
6550 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6551 for (i = 0;
6552 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6553 ++i)
6554 {
6555 gdb_assert (iter->per_cu.is_debug_types);
6556 pst->dependencies[i] = iter->per_cu.v.psymtab;
6557 iter->type_unit_group = tu_group;
6558 }
6559
6560 VEC_free (sig_type_ptr, tu_group->tus);
6561
6562 return 1;
6563 }
6564
6565 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6566 Build partial symbol tables for the .debug_types comp-units. */
6567
6568 static void
6569 build_type_psymtabs (struct objfile *objfile)
6570 {
6571 if (! create_all_type_units (objfile))
6572 return;
6573
6574 build_type_psymtabs_1 ();
6575 }
6576
6577 /* Traversal function for process_skeletonless_type_unit.
6578 Read a TU in a DWO file and build partial symbols for it. */
6579
6580 static int
6581 process_skeletonless_type_unit (void **slot, void *info)
6582 {
6583 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6584 struct objfile *objfile = (struct objfile *) info;
6585 struct signatured_type find_entry, *entry;
6586
6587 /* If this TU doesn't exist in the global table, add it and read it in. */
6588
6589 if (dwarf2_per_objfile->signatured_types == NULL)
6590 {
6591 dwarf2_per_objfile->signatured_types
6592 = allocate_signatured_type_table (objfile);
6593 }
6594
6595 find_entry.signature = dwo_unit->signature;
6596 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6597 INSERT);
6598 /* If we've already seen this type there's nothing to do. What's happening
6599 is we're doing our own version of comdat-folding here. */
6600 if (*slot != NULL)
6601 return 1;
6602
6603 /* This does the job that create_all_type_units would have done for
6604 this TU. */
6605 entry = add_type_unit (dwo_unit->signature, slot);
6606 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6607 *slot = entry;
6608
6609 /* This does the job that build_type_psymtabs_1 would have done. */
6610 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6611 build_type_psymtabs_reader, NULL);
6612
6613 return 1;
6614 }
6615
6616 /* Traversal function for process_skeletonless_type_units. */
6617
6618 static int
6619 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6620 {
6621 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6622
6623 if (dwo_file->tus != NULL)
6624 {
6625 htab_traverse_noresize (dwo_file->tus,
6626 process_skeletonless_type_unit, info);
6627 }
6628
6629 return 1;
6630 }
6631
6632 /* Scan all TUs of DWO files, verifying we've processed them.
6633 This is needed in case a TU was emitted without its skeleton.
6634 Note: This can't be done until we know what all the DWO files are. */
6635
6636 static void
6637 process_skeletonless_type_units (struct objfile *objfile)
6638 {
6639 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6640 if (get_dwp_file () == NULL
6641 && dwarf2_per_objfile->dwo_files != NULL)
6642 {
6643 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6644 process_dwo_file_for_skeletonless_type_units,
6645 objfile);
6646 }
6647 }
6648
6649 /* Compute the 'user' field for each psymtab in OBJFILE. */
6650
6651 static void
6652 set_partial_user (struct objfile *objfile)
6653 {
6654 int i;
6655
6656 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6657 {
6658 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6659 struct partial_symtab *pst = per_cu->v.psymtab;
6660 int j;
6661
6662 if (pst == NULL)
6663 continue;
6664
6665 for (j = 0; j < pst->number_of_dependencies; ++j)
6666 {
6667 /* Set the 'user' field only if it is not already set. */
6668 if (pst->dependencies[j]->user == NULL)
6669 pst->dependencies[j]->user = pst;
6670 }
6671 }
6672 }
6673
6674 /* Build the partial symbol table by doing a quick pass through the
6675 .debug_info and .debug_abbrev sections. */
6676
6677 static void
6678 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6679 {
6680 struct cleanup *back_to;
6681 int i;
6682
6683 if (dwarf_read_debug)
6684 {
6685 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6686 objfile_name (objfile));
6687 }
6688
6689 dwarf2_per_objfile->reading_partial_symbols = 1;
6690
6691 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6692
6693 /* Any cached compilation units will be linked by the per-objfile
6694 read_in_chain. Make sure to free them when we're done. */
6695 back_to = make_cleanup (free_cached_comp_units, NULL);
6696
6697 build_type_psymtabs (objfile);
6698
6699 create_all_comp_units (objfile);
6700
6701 /* Create a temporary address map on a temporary obstack. We later
6702 copy this to the final obstack. */
6703 auto_obstack temp_obstack;
6704
6705 scoped_restore save_psymtabs_addrmap
6706 = make_scoped_restore (&objfile->psymtabs_addrmap,
6707 addrmap_create_mutable (&temp_obstack));
6708
6709 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6710 {
6711 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6712
6713 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6714 }
6715
6716 /* This has to wait until we read the CUs, we need the list of DWOs. */
6717 process_skeletonless_type_units (objfile);
6718
6719 /* Now that all TUs have been processed we can fill in the dependencies. */
6720 if (dwarf2_per_objfile->type_unit_groups != NULL)
6721 {
6722 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6723 build_type_psymtab_dependencies, NULL);
6724 }
6725
6726 if (dwarf_read_debug)
6727 print_tu_stats ();
6728
6729 set_partial_user (objfile);
6730
6731 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6732 &objfile->objfile_obstack);
6733 /* At this point we want to keep the address map. */
6734 save_psymtabs_addrmap.release ();
6735
6736 do_cleanups (back_to);
6737
6738 if (dwarf_read_debug)
6739 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6740 objfile_name (objfile));
6741 }
6742
6743 /* die_reader_func for load_partial_comp_unit. */
6744
6745 static void
6746 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6747 const gdb_byte *info_ptr,
6748 struct die_info *comp_unit_die,
6749 int has_children,
6750 void *data)
6751 {
6752 struct dwarf2_cu *cu = reader->cu;
6753
6754 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6755
6756 /* Check if comp unit has_children.
6757 If so, read the rest of the partial symbols from this comp unit.
6758 If not, there's no more debug_info for this comp unit. */
6759 if (has_children)
6760 load_partial_dies (reader, info_ptr, 0);
6761 }
6762
6763 /* Load the partial DIEs for a secondary CU into memory.
6764 This is also used when rereading a primary CU with load_all_dies. */
6765
6766 static void
6767 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6768 {
6769 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6770 load_partial_comp_unit_reader, NULL);
6771 }
6772
6773 static void
6774 read_comp_units_from_section (struct objfile *objfile,
6775 struct dwarf2_section_info *section,
6776 struct dwarf2_section_info *abbrev_section,
6777 unsigned int is_dwz,
6778 int *n_allocated,
6779 int *n_comp_units,
6780 struct dwarf2_per_cu_data ***all_comp_units)
6781 {
6782 const gdb_byte *info_ptr;
6783 bfd *abfd = get_section_bfd_owner (section);
6784
6785 if (dwarf_read_debug)
6786 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6787 get_section_name (section),
6788 get_section_file_name (section));
6789
6790 dwarf2_read_section (objfile, section);
6791
6792 info_ptr = section->buffer;
6793
6794 while (info_ptr < section->buffer + section->size)
6795 {
6796 struct dwarf2_per_cu_data *this_cu;
6797
6798 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6799
6800 comp_unit_head cu_header;
6801 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6802 info_ptr, rcuh_kind::COMPILE);
6803
6804 /* Save the compilation unit for later lookup. */
6805 if (cu_header.unit_type != DW_UT_type)
6806 {
6807 this_cu = XOBNEW (&objfile->objfile_obstack,
6808 struct dwarf2_per_cu_data);
6809 memset (this_cu, 0, sizeof (*this_cu));
6810 }
6811 else
6812 {
6813 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6814 struct signatured_type);
6815 memset (sig_type, 0, sizeof (*sig_type));
6816 sig_type->signature = cu_header.signature;
6817 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6818 this_cu = &sig_type->per_cu;
6819 }
6820 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6821 this_cu->sect_off = sect_off;
6822 this_cu->length = cu_header.length + cu_header.initial_length_size;
6823 this_cu->is_dwz = is_dwz;
6824 this_cu->objfile = objfile;
6825 this_cu->section = section;
6826
6827 if (*n_comp_units == *n_allocated)
6828 {
6829 *n_allocated *= 2;
6830 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6831 *all_comp_units, *n_allocated);
6832 }
6833 (*all_comp_units)[*n_comp_units] = this_cu;
6834 ++*n_comp_units;
6835
6836 info_ptr = info_ptr + this_cu->length;
6837 }
6838 }
6839
6840 /* Create a list of all compilation units in OBJFILE.
6841 This is only done for -readnow and building partial symtabs. */
6842
6843 static void
6844 create_all_comp_units (struct objfile *objfile)
6845 {
6846 int n_allocated;
6847 int n_comp_units;
6848 struct dwarf2_per_cu_data **all_comp_units;
6849 struct dwz_file *dwz;
6850
6851 n_comp_units = 0;
6852 n_allocated = 10;
6853 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6854
6855 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6856 &dwarf2_per_objfile->abbrev, 0,
6857 &n_allocated, &n_comp_units, &all_comp_units);
6858
6859 dwz = dwarf2_get_dwz_file ();
6860 if (dwz != NULL)
6861 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6862 &n_allocated, &n_comp_units,
6863 &all_comp_units);
6864
6865 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6866 struct dwarf2_per_cu_data *,
6867 n_comp_units);
6868 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6869 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6870 xfree (all_comp_units);
6871 dwarf2_per_objfile->n_comp_units = n_comp_units;
6872 }
6873
6874 /* Process all loaded DIEs for compilation unit CU, starting at
6875 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6876 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6877 DW_AT_ranges). See the comments of add_partial_subprogram on how
6878 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6879
6880 static void
6881 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6882 CORE_ADDR *highpc, int set_addrmap,
6883 struct dwarf2_cu *cu)
6884 {
6885 struct partial_die_info *pdi;
6886
6887 /* Now, march along the PDI's, descending into ones which have
6888 interesting children but skipping the children of the other ones,
6889 until we reach the end of the compilation unit. */
6890
6891 pdi = first_die;
6892
6893 while (pdi != NULL)
6894 {
6895 fixup_partial_die (pdi, cu);
6896
6897 /* Anonymous namespaces or modules have no name but have interesting
6898 children, so we need to look at them. Ditto for anonymous
6899 enums. */
6900
6901 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6902 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6903 || pdi->tag == DW_TAG_imported_unit)
6904 {
6905 switch (pdi->tag)
6906 {
6907 case DW_TAG_subprogram:
6908 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6909 break;
6910 case DW_TAG_constant:
6911 case DW_TAG_variable:
6912 case DW_TAG_typedef:
6913 case DW_TAG_union_type:
6914 if (!pdi->is_declaration)
6915 {
6916 add_partial_symbol (pdi, cu);
6917 }
6918 break;
6919 case DW_TAG_class_type:
6920 case DW_TAG_interface_type:
6921 case DW_TAG_structure_type:
6922 if (!pdi->is_declaration)
6923 {
6924 add_partial_symbol (pdi, cu);
6925 }
6926 if (cu->language == language_rust && pdi->has_children)
6927 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6928 set_addrmap, cu);
6929 break;
6930 case DW_TAG_enumeration_type:
6931 if (!pdi->is_declaration)
6932 add_partial_enumeration (pdi, cu);
6933 break;
6934 case DW_TAG_base_type:
6935 case DW_TAG_subrange_type:
6936 /* File scope base type definitions are added to the partial
6937 symbol table. */
6938 add_partial_symbol (pdi, cu);
6939 break;
6940 case DW_TAG_namespace:
6941 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6942 break;
6943 case DW_TAG_module:
6944 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6945 break;
6946 case DW_TAG_imported_unit:
6947 {
6948 struct dwarf2_per_cu_data *per_cu;
6949
6950 /* For now we don't handle imported units in type units. */
6951 if (cu->per_cu->is_debug_types)
6952 {
6953 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6954 " supported in type units [in module %s]"),
6955 objfile_name (cu->objfile));
6956 }
6957
6958 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6959 pdi->is_dwz,
6960 cu->objfile);
6961
6962 /* Go read the partial unit, if needed. */
6963 if (per_cu->v.psymtab == NULL)
6964 process_psymtab_comp_unit (per_cu, 1, cu->language);
6965
6966 VEC_safe_push (dwarf2_per_cu_ptr,
6967 cu->per_cu->imported_symtabs, per_cu);
6968 }
6969 break;
6970 case DW_TAG_imported_declaration:
6971 add_partial_symbol (pdi, cu);
6972 break;
6973 default:
6974 break;
6975 }
6976 }
6977
6978 /* If the die has a sibling, skip to the sibling. */
6979
6980 pdi = pdi->die_sibling;
6981 }
6982 }
6983
6984 /* Functions used to compute the fully scoped name of a partial DIE.
6985
6986 Normally, this is simple. For C++, the parent DIE's fully scoped
6987 name is concatenated with "::" and the partial DIE's name.
6988 Enumerators are an exception; they use the scope of their parent
6989 enumeration type, i.e. the name of the enumeration type is not
6990 prepended to the enumerator.
6991
6992 There are two complexities. One is DW_AT_specification; in this
6993 case "parent" means the parent of the target of the specification,
6994 instead of the direct parent of the DIE. The other is compilers
6995 which do not emit DW_TAG_namespace; in this case we try to guess
6996 the fully qualified name of structure types from their members'
6997 linkage names. This must be done using the DIE's children rather
6998 than the children of any DW_AT_specification target. We only need
6999 to do this for structures at the top level, i.e. if the target of
7000 any DW_AT_specification (if any; otherwise the DIE itself) does not
7001 have a parent. */
7002
7003 /* Compute the scope prefix associated with PDI's parent, in
7004 compilation unit CU. The result will be allocated on CU's
7005 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7006 field. NULL is returned if no prefix is necessary. */
7007 static const char *
7008 partial_die_parent_scope (struct partial_die_info *pdi,
7009 struct dwarf2_cu *cu)
7010 {
7011 const char *grandparent_scope;
7012 struct partial_die_info *parent, *real_pdi;
7013
7014 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7015 then this means the parent of the specification DIE. */
7016
7017 real_pdi = pdi;
7018 while (real_pdi->has_specification)
7019 real_pdi = find_partial_die (real_pdi->spec_offset,
7020 real_pdi->spec_is_dwz, cu);
7021
7022 parent = real_pdi->die_parent;
7023 if (parent == NULL)
7024 return NULL;
7025
7026 if (parent->scope_set)
7027 return parent->scope;
7028
7029 fixup_partial_die (parent, cu);
7030
7031 grandparent_scope = partial_die_parent_scope (parent, cu);
7032
7033 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7034 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7035 Work around this problem here. */
7036 if (cu->language == language_cplus
7037 && parent->tag == DW_TAG_namespace
7038 && strcmp (parent->name, "::") == 0
7039 && grandparent_scope == NULL)
7040 {
7041 parent->scope = NULL;
7042 parent->scope_set = 1;
7043 return NULL;
7044 }
7045
7046 if (pdi->tag == DW_TAG_enumerator)
7047 /* Enumerators should not get the name of the enumeration as a prefix. */
7048 parent->scope = grandparent_scope;
7049 else if (parent->tag == DW_TAG_namespace
7050 || parent->tag == DW_TAG_module
7051 || parent->tag == DW_TAG_structure_type
7052 || parent->tag == DW_TAG_class_type
7053 || parent->tag == DW_TAG_interface_type
7054 || parent->tag == DW_TAG_union_type
7055 || parent->tag == DW_TAG_enumeration_type)
7056 {
7057 if (grandparent_scope == NULL)
7058 parent->scope = parent->name;
7059 else
7060 parent->scope = typename_concat (&cu->comp_unit_obstack,
7061 grandparent_scope,
7062 parent->name, 0, cu);
7063 }
7064 else
7065 {
7066 /* FIXME drow/2004-04-01: What should we be doing with
7067 function-local names? For partial symbols, we should probably be
7068 ignoring them. */
7069 complaint (&symfile_complaints,
7070 _("unhandled containing DIE tag %d for DIE at %d"),
7071 parent->tag, to_underlying (pdi->sect_off));
7072 parent->scope = grandparent_scope;
7073 }
7074
7075 parent->scope_set = 1;
7076 return parent->scope;
7077 }
7078
7079 /* Return the fully scoped name associated with PDI, from compilation unit
7080 CU. The result will be allocated with malloc. */
7081
7082 static char *
7083 partial_die_full_name (struct partial_die_info *pdi,
7084 struct dwarf2_cu *cu)
7085 {
7086 const char *parent_scope;
7087
7088 /* If this is a template instantiation, we can not work out the
7089 template arguments from partial DIEs. So, unfortunately, we have
7090 to go through the full DIEs. At least any work we do building
7091 types here will be reused if full symbols are loaded later. */
7092 if (pdi->has_template_arguments)
7093 {
7094 fixup_partial_die (pdi, cu);
7095
7096 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7097 {
7098 struct die_info *die;
7099 struct attribute attr;
7100 struct dwarf2_cu *ref_cu = cu;
7101
7102 /* DW_FORM_ref_addr is using section offset. */
7103 attr.name = (enum dwarf_attribute) 0;
7104 attr.form = DW_FORM_ref_addr;
7105 attr.u.unsnd = to_underlying (pdi->sect_off);
7106 die = follow_die_ref (NULL, &attr, &ref_cu);
7107
7108 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7109 }
7110 }
7111
7112 parent_scope = partial_die_parent_scope (pdi, cu);
7113 if (parent_scope == NULL)
7114 return NULL;
7115 else
7116 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7117 }
7118
7119 static void
7120 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7121 {
7122 struct objfile *objfile = cu->objfile;
7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 CORE_ADDR addr = 0;
7125 const char *actual_name = NULL;
7126 CORE_ADDR baseaddr;
7127 char *built_actual_name;
7128
7129 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7130
7131 built_actual_name = partial_die_full_name (pdi, cu);
7132 if (built_actual_name != NULL)
7133 actual_name = built_actual_name;
7134
7135 if (actual_name == NULL)
7136 actual_name = pdi->name;
7137
7138 switch (pdi->tag)
7139 {
7140 case DW_TAG_subprogram:
7141 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7142 if (pdi->is_external || cu->language == language_ada)
7143 {
7144 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7145 of the global scope. But in Ada, we want to be able to access
7146 nested procedures globally. So all Ada subprograms are stored
7147 in the global scope. */
7148 add_psymbol_to_list (actual_name, strlen (actual_name),
7149 built_actual_name != NULL,
7150 VAR_DOMAIN, LOC_BLOCK,
7151 &objfile->global_psymbols,
7152 addr, cu->language, objfile);
7153 }
7154 else
7155 {
7156 add_psymbol_to_list (actual_name, strlen (actual_name),
7157 built_actual_name != NULL,
7158 VAR_DOMAIN, LOC_BLOCK,
7159 &objfile->static_psymbols,
7160 addr, cu->language, objfile);
7161 }
7162
7163 if (pdi->main_subprogram && actual_name != NULL)
7164 set_objfile_main_name (objfile, actual_name, cu->language);
7165 break;
7166 case DW_TAG_constant:
7167 {
7168 std::vector<partial_symbol *> *list;
7169
7170 if (pdi->is_external)
7171 list = &objfile->global_psymbols;
7172 else
7173 list = &objfile->static_psymbols;
7174 add_psymbol_to_list (actual_name, strlen (actual_name),
7175 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7176 list, 0, cu->language, objfile);
7177 }
7178 break;
7179 case DW_TAG_variable:
7180 if (pdi->d.locdesc)
7181 addr = decode_locdesc (pdi->d.locdesc, cu);
7182
7183 if (pdi->d.locdesc
7184 && addr == 0
7185 && !dwarf2_per_objfile->has_section_at_zero)
7186 {
7187 /* A global or static variable may also have been stripped
7188 out by the linker if unused, in which case its address
7189 will be nullified; do not add such variables into partial
7190 symbol table then. */
7191 }
7192 else if (pdi->is_external)
7193 {
7194 /* Global Variable.
7195 Don't enter into the minimal symbol tables as there is
7196 a minimal symbol table entry from the ELF symbols already.
7197 Enter into partial symbol table if it has a location
7198 descriptor or a type.
7199 If the location descriptor is missing, new_symbol will create
7200 a LOC_UNRESOLVED symbol, the address of the variable will then
7201 be determined from the minimal symbol table whenever the variable
7202 is referenced.
7203 The address for the partial symbol table entry is not
7204 used by GDB, but it comes in handy for debugging partial symbol
7205 table building. */
7206
7207 if (pdi->d.locdesc || pdi->has_type)
7208 add_psymbol_to_list (actual_name, strlen (actual_name),
7209 built_actual_name != NULL,
7210 VAR_DOMAIN, LOC_STATIC,
7211 &objfile->global_psymbols,
7212 addr + baseaddr,
7213 cu->language, objfile);
7214 }
7215 else
7216 {
7217 int has_loc = pdi->d.locdesc != NULL;
7218
7219 /* Static Variable. Skip symbols whose value we cannot know (those
7220 without location descriptors or constant values). */
7221 if (!has_loc && !pdi->has_const_value)
7222 {
7223 xfree (built_actual_name);
7224 return;
7225 }
7226
7227 add_psymbol_to_list (actual_name, strlen (actual_name),
7228 built_actual_name != NULL,
7229 VAR_DOMAIN, LOC_STATIC,
7230 &objfile->static_psymbols,
7231 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7232 cu->language, objfile);
7233 }
7234 break;
7235 case DW_TAG_typedef:
7236 case DW_TAG_base_type:
7237 case DW_TAG_subrange_type:
7238 add_psymbol_to_list (actual_name, strlen (actual_name),
7239 built_actual_name != NULL,
7240 VAR_DOMAIN, LOC_TYPEDEF,
7241 &objfile->static_psymbols,
7242 0, cu->language, objfile);
7243 break;
7244 case DW_TAG_imported_declaration:
7245 case DW_TAG_namespace:
7246 add_psymbol_to_list (actual_name, strlen (actual_name),
7247 built_actual_name != NULL,
7248 VAR_DOMAIN, LOC_TYPEDEF,
7249 &objfile->global_psymbols,
7250 0, cu->language, objfile);
7251 break;
7252 case DW_TAG_module:
7253 add_psymbol_to_list (actual_name, strlen (actual_name),
7254 built_actual_name != NULL,
7255 MODULE_DOMAIN, LOC_TYPEDEF,
7256 &objfile->global_psymbols,
7257 0, cu->language, objfile);
7258 break;
7259 case DW_TAG_class_type:
7260 case DW_TAG_interface_type:
7261 case DW_TAG_structure_type:
7262 case DW_TAG_union_type:
7263 case DW_TAG_enumeration_type:
7264 /* Skip external references. The DWARF standard says in the section
7265 about "Structure, Union, and Class Type Entries": "An incomplete
7266 structure, union or class type is represented by a structure,
7267 union or class entry that does not have a byte size attribute
7268 and that has a DW_AT_declaration attribute." */
7269 if (!pdi->has_byte_size && pdi->is_declaration)
7270 {
7271 xfree (built_actual_name);
7272 return;
7273 }
7274
7275 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7276 static vs. global. */
7277 add_psymbol_to_list (actual_name, strlen (actual_name),
7278 built_actual_name != NULL,
7279 STRUCT_DOMAIN, LOC_TYPEDEF,
7280 cu->language == language_cplus
7281 ? &objfile->global_psymbols
7282 : &objfile->static_psymbols,
7283 0, cu->language, objfile);
7284
7285 break;
7286 case DW_TAG_enumerator:
7287 add_psymbol_to_list (actual_name, strlen (actual_name),
7288 built_actual_name != NULL,
7289 VAR_DOMAIN, LOC_CONST,
7290 cu->language == language_cplus
7291 ? &objfile->global_psymbols
7292 : &objfile->static_psymbols,
7293 0, cu->language, objfile);
7294 break;
7295 default:
7296 break;
7297 }
7298
7299 xfree (built_actual_name);
7300 }
7301
7302 /* Read a partial die corresponding to a namespace; also, add a symbol
7303 corresponding to that namespace to the symbol table. NAMESPACE is
7304 the name of the enclosing namespace. */
7305
7306 static void
7307 add_partial_namespace (struct partial_die_info *pdi,
7308 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7309 int set_addrmap, struct dwarf2_cu *cu)
7310 {
7311 /* Add a symbol for the namespace. */
7312
7313 add_partial_symbol (pdi, cu);
7314
7315 /* Now scan partial symbols in that namespace. */
7316
7317 if (pdi->has_children)
7318 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7319 }
7320
7321 /* Read a partial die corresponding to a Fortran module. */
7322
7323 static void
7324 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7325 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7326 {
7327 /* Add a symbol for the namespace. */
7328
7329 add_partial_symbol (pdi, cu);
7330
7331 /* Now scan partial symbols in that module. */
7332
7333 if (pdi->has_children)
7334 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7335 }
7336
7337 /* Read a partial die corresponding to a subprogram and create a partial
7338 symbol for that subprogram. When the CU language allows it, this
7339 routine also defines a partial symbol for each nested subprogram
7340 that this subprogram contains. If SET_ADDRMAP is true, record the
7341 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7342 and highest PC values found in PDI.
7343
7344 PDI may also be a lexical block, in which case we simply search
7345 recursively for subprograms defined inside that lexical block.
7346 Again, this is only performed when the CU language allows this
7347 type of definitions. */
7348
7349 static void
7350 add_partial_subprogram (struct partial_die_info *pdi,
7351 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7352 int set_addrmap, struct dwarf2_cu *cu)
7353 {
7354 if (pdi->tag == DW_TAG_subprogram)
7355 {
7356 if (pdi->has_pc_info)
7357 {
7358 if (pdi->lowpc < *lowpc)
7359 *lowpc = pdi->lowpc;
7360 if (pdi->highpc > *highpc)
7361 *highpc = pdi->highpc;
7362 if (set_addrmap)
7363 {
7364 struct objfile *objfile = cu->objfile;
7365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7366 CORE_ADDR baseaddr;
7367 CORE_ADDR highpc;
7368 CORE_ADDR lowpc;
7369
7370 baseaddr = ANOFFSET (objfile->section_offsets,
7371 SECT_OFF_TEXT (objfile));
7372 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7373 pdi->lowpc + baseaddr);
7374 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7375 pdi->highpc + baseaddr);
7376 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7377 cu->per_cu->v.psymtab);
7378 }
7379 }
7380
7381 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7382 {
7383 if (!pdi->is_declaration)
7384 /* Ignore subprogram DIEs that do not have a name, they are
7385 illegal. Do not emit a complaint at this point, we will
7386 do so when we convert this psymtab into a symtab. */
7387 if (pdi->name)
7388 add_partial_symbol (pdi, cu);
7389 }
7390 }
7391
7392 if (! pdi->has_children)
7393 return;
7394
7395 if (cu->language == language_ada)
7396 {
7397 pdi = pdi->die_child;
7398 while (pdi != NULL)
7399 {
7400 fixup_partial_die (pdi, cu);
7401 if (pdi->tag == DW_TAG_subprogram
7402 || pdi->tag == DW_TAG_lexical_block)
7403 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7404 pdi = pdi->die_sibling;
7405 }
7406 }
7407 }
7408
7409 /* Read a partial die corresponding to an enumeration type. */
7410
7411 static void
7412 add_partial_enumeration (struct partial_die_info *enum_pdi,
7413 struct dwarf2_cu *cu)
7414 {
7415 struct partial_die_info *pdi;
7416
7417 if (enum_pdi->name != NULL)
7418 add_partial_symbol (enum_pdi, cu);
7419
7420 pdi = enum_pdi->die_child;
7421 while (pdi)
7422 {
7423 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7424 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7425 else
7426 add_partial_symbol (pdi, cu);
7427 pdi = pdi->die_sibling;
7428 }
7429 }
7430
7431 /* Return the initial uleb128 in the die at INFO_PTR. */
7432
7433 static unsigned int
7434 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7435 {
7436 unsigned int bytes_read;
7437
7438 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7439 }
7440
7441 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7442 Return the corresponding abbrev, or NULL if the number is zero (indicating
7443 an empty DIE). In either case *BYTES_READ will be set to the length of
7444 the initial number. */
7445
7446 static struct abbrev_info *
7447 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7448 struct dwarf2_cu *cu)
7449 {
7450 bfd *abfd = cu->objfile->obfd;
7451 unsigned int abbrev_number;
7452 struct abbrev_info *abbrev;
7453
7454 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7455
7456 if (abbrev_number == 0)
7457 return NULL;
7458
7459 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7460 if (!abbrev)
7461 {
7462 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7463 " at offset 0x%x [in module %s]"),
7464 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7465 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7466 }
7467
7468 return abbrev;
7469 }
7470
7471 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7472 Returns a pointer to the end of a series of DIEs, terminated by an empty
7473 DIE. Any children of the skipped DIEs will also be skipped. */
7474
7475 static const gdb_byte *
7476 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7477 {
7478 struct dwarf2_cu *cu = reader->cu;
7479 struct abbrev_info *abbrev;
7480 unsigned int bytes_read;
7481
7482 while (1)
7483 {
7484 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7485 if (abbrev == NULL)
7486 return info_ptr + bytes_read;
7487 else
7488 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7489 }
7490 }
7491
7492 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7493 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7494 abbrev corresponding to that skipped uleb128 should be passed in
7495 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7496 children. */
7497
7498 static const gdb_byte *
7499 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7500 struct abbrev_info *abbrev)
7501 {
7502 unsigned int bytes_read;
7503 struct attribute attr;
7504 bfd *abfd = reader->abfd;
7505 struct dwarf2_cu *cu = reader->cu;
7506 const gdb_byte *buffer = reader->buffer;
7507 const gdb_byte *buffer_end = reader->buffer_end;
7508 unsigned int form, i;
7509
7510 for (i = 0; i < abbrev->num_attrs; i++)
7511 {
7512 /* The only abbrev we care about is DW_AT_sibling. */
7513 if (abbrev->attrs[i].name == DW_AT_sibling)
7514 {
7515 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7516 if (attr.form == DW_FORM_ref_addr)
7517 complaint (&symfile_complaints,
7518 _("ignoring absolute DW_AT_sibling"));
7519 else
7520 {
7521 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7522 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7523
7524 if (sibling_ptr < info_ptr)
7525 complaint (&symfile_complaints,
7526 _("DW_AT_sibling points backwards"));
7527 else if (sibling_ptr > reader->buffer_end)
7528 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7529 else
7530 return sibling_ptr;
7531 }
7532 }
7533
7534 /* If it isn't DW_AT_sibling, skip this attribute. */
7535 form = abbrev->attrs[i].form;
7536 skip_attribute:
7537 switch (form)
7538 {
7539 case DW_FORM_ref_addr:
7540 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7541 and later it is offset sized. */
7542 if (cu->header.version == 2)
7543 info_ptr += cu->header.addr_size;
7544 else
7545 info_ptr += cu->header.offset_size;
7546 break;
7547 case DW_FORM_GNU_ref_alt:
7548 info_ptr += cu->header.offset_size;
7549 break;
7550 case DW_FORM_addr:
7551 info_ptr += cu->header.addr_size;
7552 break;
7553 case DW_FORM_data1:
7554 case DW_FORM_ref1:
7555 case DW_FORM_flag:
7556 info_ptr += 1;
7557 break;
7558 case DW_FORM_flag_present:
7559 case DW_FORM_implicit_const:
7560 break;
7561 case DW_FORM_data2:
7562 case DW_FORM_ref2:
7563 info_ptr += 2;
7564 break;
7565 case DW_FORM_data4:
7566 case DW_FORM_ref4:
7567 info_ptr += 4;
7568 break;
7569 case DW_FORM_data8:
7570 case DW_FORM_ref8:
7571 case DW_FORM_ref_sig8:
7572 info_ptr += 8;
7573 break;
7574 case DW_FORM_data16:
7575 info_ptr += 16;
7576 break;
7577 case DW_FORM_string:
7578 read_direct_string (abfd, info_ptr, &bytes_read);
7579 info_ptr += bytes_read;
7580 break;
7581 case DW_FORM_sec_offset:
7582 case DW_FORM_strp:
7583 case DW_FORM_GNU_strp_alt:
7584 info_ptr += cu->header.offset_size;
7585 break;
7586 case DW_FORM_exprloc:
7587 case DW_FORM_block:
7588 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7589 info_ptr += bytes_read;
7590 break;
7591 case DW_FORM_block1:
7592 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7593 break;
7594 case DW_FORM_block2:
7595 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7596 break;
7597 case DW_FORM_block4:
7598 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7599 break;
7600 case DW_FORM_sdata:
7601 case DW_FORM_udata:
7602 case DW_FORM_ref_udata:
7603 case DW_FORM_GNU_addr_index:
7604 case DW_FORM_GNU_str_index:
7605 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7606 break;
7607 case DW_FORM_indirect:
7608 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7609 info_ptr += bytes_read;
7610 /* We need to continue parsing from here, so just go back to
7611 the top. */
7612 goto skip_attribute;
7613
7614 default:
7615 error (_("Dwarf Error: Cannot handle %s "
7616 "in DWARF reader [in module %s]"),
7617 dwarf_form_name (form),
7618 bfd_get_filename (abfd));
7619 }
7620 }
7621
7622 if (abbrev->has_children)
7623 return skip_children (reader, info_ptr);
7624 else
7625 return info_ptr;
7626 }
7627
7628 /* Locate ORIG_PDI's sibling.
7629 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7630
7631 static const gdb_byte *
7632 locate_pdi_sibling (const struct die_reader_specs *reader,
7633 struct partial_die_info *orig_pdi,
7634 const gdb_byte *info_ptr)
7635 {
7636 /* Do we know the sibling already? */
7637
7638 if (orig_pdi->sibling)
7639 return orig_pdi->sibling;
7640
7641 /* Are there any children to deal with? */
7642
7643 if (!orig_pdi->has_children)
7644 return info_ptr;
7645
7646 /* Skip the children the long way. */
7647
7648 return skip_children (reader, info_ptr);
7649 }
7650
7651 /* Expand this partial symbol table into a full symbol table. SELF is
7652 not NULL. */
7653
7654 static void
7655 dwarf2_read_symtab (struct partial_symtab *self,
7656 struct objfile *objfile)
7657 {
7658 if (self->readin)
7659 {
7660 warning (_("bug: psymtab for %s is already read in."),
7661 self->filename);
7662 }
7663 else
7664 {
7665 if (info_verbose)
7666 {
7667 printf_filtered (_("Reading in symbols for %s..."),
7668 self->filename);
7669 gdb_flush (gdb_stdout);
7670 }
7671
7672 /* Restore our global data. */
7673 dwarf2_per_objfile
7674 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7675 dwarf2_objfile_data_key);
7676
7677 /* If this psymtab is constructed from a debug-only objfile, the
7678 has_section_at_zero flag will not necessarily be correct. We
7679 can get the correct value for this flag by looking at the data
7680 associated with the (presumably stripped) associated objfile. */
7681 if (objfile->separate_debug_objfile_backlink)
7682 {
7683 struct dwarf2_per_objfile *dpo_backlink
7684 = ((struct dwarf2_per_objfile *)
7685 objfile_data (objfile->separate_debug_objfile_backlink,
7686 dwarf2_objfile_data_key));
7687
7688 dwarf2_per_objfile->has_section_at_zero
7689 = dpo_backlink->has_section_at_zero;
7690 }
7691
7692 dwarf2_per_objfile->reading_partial_symbols = 0;
7693
7694 psymtab_to_symtab_1 (self);
7695
7696 /* Finish up the debug error message. */
7697 if (info_verbose)
7698 printf_filtered (_("done.\n"));
7699 }
7700
7701 process_cu_includes ();
7702 }
7703 \f
7704 /* Reading in full CUs. */
7705
7706 /* Add PER_CU to the queue. */
7707
7708 static void
7709 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7710 enum language pretend_language)
7711 {
7712 struct dwarf2_queue_item *item;
7713
7714 per_cu->queued = 1;
7715 item = XNEW (struct dwarf2_queue_item);
7716 item->per_cu = per_cu;
7717 item->pretend_language = pretend_language;
7718 item->next = NULL;
7719
7720 if (dwarf2_queue == NULL)
7721 dwarf2_queue = item;
7722 else
7723 dwarf2_queue_tail->next = item;
7724
7725 dwarf2_queue_tail = item;
7726 }
7727
7728 /* If PER_CU is not yet queued, add it to the queue.
7729 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7730 dependency.
7731 The result is non-zero if PER_CU was queued, otherwise the result is zero
7732 meaning either PER_CU is already queued or it is already loaded.
7733
7734 N.B. There is an invariant here that if a CU is queued then it is loaded.
7735 The caller is required to load PER_CU if we return non-zero. */
7736
7737 static int
7738 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7739 struct dwarf2_per_cu_data *per_cu,
7740 enum language pretend_language)
7741 {
7742 /* We may arrive here during partial symbol reading, if we need full
7743 DIEs to process an unusual case (e.g. template arguments). Do
7744 not queue PER_CU, just tell our caller to load its DIEs. */
7745 if (dwarf2_per_objfile->reading_partial_symbols)
7746 {
7747 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7748 return 1;
7749 return 0;
7750 }
7751
7752 /* Mark the dependence relation so that we don't flush PER_CU
7753 too early. */
7754 if (dependent_cu != NULL)
7755 dwarf2_add_dependence (dependent_cu, per_cu);
7756
7757 /* If it's already on the queue, we have nothing to do. */
7758 if (per_cu->queued)
7759 return 0;
7760
7761 /* If the compilation unit is already loaded, just mark it as
7762 used. */
7763 if (per_cu->cu != NULL)
7764 {
7765 per_cu->cu->last_used = 0;
7766 return 0;
7767 }
7768
7769 /* Add it to the queue. */
7770 queue_comp_unit (per_cu, pretend_language);
7771
7772 return 1;
7773 }
7774
7775 /* Process the queue. */
7776
7777 static void
7778 process_queue (void)
7779 {
7780 struct dwarf2_queue_item *item, *next_item;
7781
7782 if (dwarf_read_debug)
7783 {
7784 fprintf_unfiltered (gdb_stdlog,
7785 "Expanding one or more symtabs of objfile %s ...\n",
7786 objfile_name (dwarf2_per_objfile->objfile));
7787 }
7788
7789 /* The queue starts out with one item, but following a DIE reference
7790 may load a new CU, adding it to the end of the queue. */
7791 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7792 {
7793 if ((dwarf2_per_objfile->using_index
7794 ? !item->per_cu->v.quick->compunit_symtab
7795 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7796 /* Skip dummy CUs. */
7797 && item->per_cu->cu != NULL)
7798 {
7799 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7800 unsigned int debug_print_threshold;
7801 char buf[100];
7802
7803 if (per_cu->is_debug_types)
7804 {
7805 struct signatured_type *sig_type =
7806 (struct signatured_type *) per_cu;
7807
7808 sprintf (buf, "TU %s at offset 0x%x",
7809 hex_string (sig_type->signature),
7810 to_underlying (per_cu->sect_off));
7811 /* There can be 100s of TUs.
7812 Only print them in verbose mode. */
7813 debug_print_threshold = 2;
7814 }
7815 else
7816 {
7817 sprintf (buf, "CU at offset 0x%x",
7818 to_underlying (per_cu->sect_off));
7819 debug_print_threshold = 1;
7820 }
7821
7822 if (dwarf_read_debug >= debug_print_threshold)
7823 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7824
7825 if (per_cu->is_debug_types)
7826 process_full_type_unit (per_cu, item->pretend_language);
7827 else
7828 process_full_comp_unit (per_cu, item->pretend_language);
7829
7830 if (dwarf_read_debug >= debug_print_threshold)
7831 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7832 }
7833
7834 item->per_cu->queued = 0;
7835 next_item = item->next;
7836 xfree (item);
7837 }
7838
7839 dwarf2_queue_tail = NULL;
7840
7841 if (dwarf_read_debug)
7842 {
7843 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7844 objfile_name (dwarf2_per_objfile->objfile));
7845 }
7846 }
7847
7848 /* Free all allocated queue entries. This function only releases anything if
7849 an error was thrown; if the queue was processed then it would have been
7850 freed as we went along. */
7851
7852 static void
7853 dwarf2_release_queue (void *dummy)
7854 {
7855 struct dwarf2_queue_item *item, *last;
7856
7857 item = dwarf2_queue;
7858 while (item)
7859 {
7860 /* Anything still marked queued is likely to be in an
7861 inconsistent state, so discard it. */
7862 if (item->per_cu->queued)
7863 {
7864 if (item->per_cu->cu != NULL)
7865 free_one_cached_comp_unit (item->per_cu);
7866 item->per_cu->queued = 0;
7867 }
7868
7869 last = item;
7870 item = item->next;
7871 xfree (last);
7872 }
7873
7874 dwarf2_queue = dwarf2_queue_tail = NULL;
7875 }
7876
7877 /* Read in full symbols for PST, and anything it depends on. */
7878
7879 static void
7880 psymtab_to_symtab_1 (struct partial_symtab *pst)
7881 {
7882 struct dwarf2_per_cu_data *per_cu;
7883 int i;
7884
7885 if (pst->readin)
7886 return;
7887
7888 for (i = 0; i < pst->number_of_dependencies; i++)
7889 if (!pst->dependencies[i]->readin
7890 && pst->dependencies[i]->user == NULL)
7891 {
7892 /* Inform about additional files that need to be read in. */
7893 if (info_verbose)
7894 {
7895 /* FIXME: i18n: Need to make this a single string. */
7896 fputs_filtered (" ", gdb_stdout);
7897 wrap_here ("");
7898 fputs_filtered ("and ", gdb_stdout);
7899 wrap_here ("");
7900 printf_filtered ("%s...", pst->dependencies[i]->filename);
7901 wrap_here (""); /* Flush output. */
7902 gdb_flush (gdb_stdout);
7903 }
7904 psymtab_to_symtab_1 (pst->dependencies[i]);
7905 }
7906
7907 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7908
7909 if (per_cu == NULL)
7910 {
7911 /* It's an include file, no symbols to read for it.
7912 Everything is in the parent symtab. */
7913 pst->readin = 1;
7914 return;
7915 }
7916
7917 dw2_do_instantiate_symtab (per_cu);
7918 }
7919
7920 /* Trivial hash function for die_info: the hash value of a DIE
7921 is its offset in .debug_info for this objfile. */
7922
7923 static hashval_t
7924 die_hash (const void *item)
7925 {
7926 const struct die_info *die = (const struct die_info *) item;
7927
7928 return to_underlying (die->sect_off);
7929 }
7930
7931 /* Trivial comparison function for die_info structures: two DIEs
7932 are equal if they have the same offset. */
7933
7934 static int
7935 die_eq (const void *item_lhs, const void *item_rhs)
7936 {
7937 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7938 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7939
7940 return die_lhs->sect_off == die_rhs->sect_off;
7941 }
7942
7943 /* die_reader_func for load_full_comp_unit.
7944 This is identical to read_signatured_type_reader,
7945 but is kept separate for now. */
7946
7947 static void
7948 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7949 const gdb_byte *info_ptr,
7950 struct die_info *comp_unit_die,
7951 int has_children,
7952 void *data)
7953 {
7954 struct dwarf2_cu *cu = reader->cu;
7955 enum language *language_ptr = (enum language *) data;
7956
7957 gdb_assert (cu->die_hash == NULL);
7958 cu->die_hash =
7959 htab_create_alloc_ex (cu->header.length / 12,
7960 die_hash,
7961 die_eq,
7962 NULL,
7963 &cu->comp_unit_obstack,
7964 hashtab_obstack_allocate,
7965 dummy_obstack_deallocate);
7966
7967 if (has_children)
7968 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7969 &info_ptr, comp_unit_die);
7970 cu->dies = comp_unit_die;
7971 /* comp_unit_die is not stored in die_hash, no need. */
7972
7973 /* We try not to read any attributes in this function, because not
7974 all CUs needed for references have been loaded yet, and symbol
7975 table processing isn't initialized. But we have to set the CU language,
7976 or we won't be able to build types correctly.
7977 Similarly, if we do not read the producer, we can not apply
7978 producer-specific interpretation. */
7979 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7980 }
7981
7982 /* Load the DIEs associated with PER_CU into memory. */
7983
7984 static void
7985 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7986 enum language pretend_language)
7987 {
7988 gdb_assert (! this_cu->is_debug_types);
7989
7990 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7991 load_full_comp_unit_reader, &pretend_language);
7992 }
7993
7994 /* Add a DIE to the delayed physname list. */
7995
7996 static void
7997 add_to_method_list (struct type *type, int fnfield_index, int index,
7998 const char *name, struct die_info *die,
7999 struct dwarf2_cu *cu)
8000 {
8001 struct delayed_method_info mi;
8002 mi.type = type;
8003 mi.fnfield_index = fnfield_index;
8004 mi.index = index;
8005 mi.name = name;
8006 mi.die = die;
8007 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8008 }
8009
8010 /* A cleanup for freeing the delayed method list. */
8011
8012 static void
8013 free_delayed_list (void *ptr)
8014 {
8015 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8016 if (cu->method_list != NULL)
8017 {
8018 VEC_free (delayed_method_info, cu->method_list);
8019 cu->method_list = NULL;
8020 }
8021 }
8022
8023 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8024 "const" / "volatile". If so, decrements LEN by the length of the
8025 modifier and return true. Otherwise return false. */
8026
8027 template<size_t N>
8028 static bool
8029 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8030 {
8031 size_t mod_len = sizeof (mod) - 1;
8032 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8033 {
8034 len -= mod_len;
8035 return true;
8036 }
8037 return false;
8038 }
8039
8040 /* Compute the physnames of any methods on the CU's method list.
8041
8042 The computation of method physnames is delayed in order to avoid the
8043 (bad) condition that one of the method's formal parameters is of an as yet
8044 incomplete type. */
8045
8046 static void
8047 compute_delayed_physnames (struct dwarf2_cu *cu)
8048 {
8049 int i;
8050 struct delayed_method_info *mi;
8051
8052 /* Only C++ delays computing physnames. */
8053 if (VEC_empty (delayed_method_info, cu->method_list))
8054 return;
8055 gdb_assert (cu->language == language_cplus);
8056
8057 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8058 {
8059 const char *physname;
8060 struct fn_fieldlist *fn_flp
8061 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8062 physname = dwarf2_physname (mi->name, mi->die, cu);
8063 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8064 = physname ? physname : "";
8065
8066 /* Since there's no tag to indicate whether a method is a
8067 const/volatile overload, extract that information out of the
8068 demangled name. */
8069 if (physname != NULL)
8070 {
8071 size_t len = strlen (physname);
8072
8073 while (1)
8074 {
8075 if (physname[len] == ')') /* shortcut */
8076 break;
8077 else if (check_modifier (physname, len, " const"))
8078 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8079 else if (check_modifier (physname, len, " volatile"))
8080 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8081 else
8082 break;
8083 }
8084 }
8085 }
8086 }
8087
8088 /* Go objects should be embedded in a DW_TAG_module DIE,
8089 and it's not clear if/how imported objects will appear.
8090 To keep Go support simple until that's worked out,
8091 go back through what we've read and create something usable.
8092 We could do this while processing each DIE, and feels kinda cleaner,
8093 but that way is more invasive.
8094 This is to, for example, allow the user to type "p var" or "b main"
8095 without having to specify the package name, and allow lookups
8096 of module.object to work in contexts that use the expression
8097 parser. */
8098
8099 static void
8100 fixup_go_packaging (struct dwarf2_cu *cu)
8101 {
8102 char *package_name = NULL;
8103 struct pending *list;
8104 int i;
8105
8106 for (list = global_symbols; list != NULL; list = list->next)
8107 {
8108 for (i = 0; i < list->nsyms; ++i)
8109 {
8110 struct symbol *sym = list->symbol[i];
8111
8112 if (SYMBOL_LANGUAGE (sym) == language_go
8113 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8114 {
8115 char *this_package_name = go_symbol_package_name (sym);
8116
8117 if (this_package_name == NULL)
8118 continue;
8119 if (package_name == NULL)
8120 package_name = this_package_name;
8121 else
8122 {
8123 if (strcmp (package_name, this_package_name) != 0)
8124 complaint (&symfile_complaints,
8125 _("Symtab %s has objects from two different Go packages: %s and %s"),
8126 (symbol_symtab (sym) != NULL
8127 ? symtab_to_filename_for_display
8128 (symbol_symtab (sym))
8129 : objfile_name (cu->objfile)),
8130 this_package_name, package_name);
8131 xfree (this_package_name);
8132 }
8133 }
8134 }
8135 }
8136
8137 if (package_name != NULL)
8138 {
8139 struct objfile *objfile = cu->objfile;
8140 const char *saved_package_name
8141 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8142 package_name,
8143 strlen (package_name));
8144 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8145 saved_package_name);
8146 struct symbol *sym;
8147
8148 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8149
8150 sym = allocate_symbol (objfile);
8151 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8152 SYMBOL_SET_NAMES (sym, saved_package_name,
8153 strlen (saved_package_name), 0, objfile);
8154 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8155 e.g., "main" finds the "main" module and not C's main(). */
8156 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8157 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8158 SYMBOL_TYPE (sym) = type;
8159
8160 add_symbol_to_list (sym, &global_symbols);
8161
8162 xfree (package_name);
8163 }
8164 }
8165
8166 /* Return the symtab for PER_CU. This works properly regardless of
8167 whether we're using the index or psymtabs. */
8168
8169 static struct compunit_symtab *
8170 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8171 {
8172 return (dwarf2_per_objfile->using_index
8173 ? per_cu->v.quick->compunit_symtab
8174 : per_cu->v.psymtab->compunit_symtab);
8175 }
8176
8177 /* A helper function for computing the list of all symbol tables
8178 included by PER_CU. */
8179
8180 static void
8181 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8182 htab_t all_children, htab_t all_type_symtabs,
8183 struct dwarf2_per_cu_data *per_cu,
8184 struct compunit_symtab *immediate_parent)
8185 {
8186 void **slot;
8187 int ix;
8188 struct compunit_symtab *cust;
8189 struct dwarf2_per_cu_data *iter;
8190
8191 slot = htab_find_slot (all_children, per_cu, INSERT);
8192 if (*slot != NULL)
8193 {
8194 /* This inclusion and its children have been processed. */
8195 return;
8196 }
8197
8198 *slot = per_cu;
8199 /* Only add a CU if it has a symbol table. */
8200 cust = get_compunit_symtab (per_cu);
8201 if (cust != NULL)
8202 {
8203 /* If this is a type unit only add its symbol table if we haven't
8204 seen it yet (type unit per_cu's can share symtabs). */
8205 if (per_cu->is_debug_types)
8206 {
8207 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8208 if (*slot == NULL)
8209 {
8210 *slot = cust;
8211 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8212 if (cust->user == NULL)
8213 cust->user = immediate_parent;
8214 }
8215 }
8216 else
8217 {
8218 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8219 if (cust->user == NULL)
8220 cust->user = immediate_parent;
8221 }
8222 }
8223
8224 for (ix = 0;
8225 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8226 ++ix)
8227 {
8228 recursively_compute_inclusions (result, all_children,
8229 all_type_symtabs, iter, cust);
8230 }
8231 }
8232
8233 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8234 PER_CU. */
8235
8236 static void
8237 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8238 {
8239 gdb_assert (! per_cu->is_debug_types);
8240
8241 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8242 {
8243 int ix, len;
8244 struct dwarf2_per_cu_data *per_cu_iter;
8245 struct compunit_symtab *compunit_symtab_iter;
8246 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8247 htab_t all_children, all_type_symtabs;
8248 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8249
8250 /* If we don't have a symtab, we can just skip this case. */
8251 if (cust == NULL)
8252 return;
8253
8254 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8255 NULL, xcalloc, xfree);
8256 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8257 NULL, xcalloc, xfree);
8258
8259 for (ix = 0;
8260 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8261 ix, per_cu_iter);
8262 ++ix)
8263 {
8264 recursively_compute_inclusions (&result_symtabs, all_children,
8265 all_type_symtabs, per_cu_iter,
8266 cust);
8267 }
8268
8269 /* Now we have a transitive closure of all the included symtabs. */
8270 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8271 cust->includes
8272 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8273 struct compunit_symtab *, len + 1);
8274 for (ix = 0;
8275 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8276 compunit_symtab_iter);
8277 ++ix)
8278 cust->includes[ix] = compunit_symtab_iter;
8279 cust->includes[len] = NULL;
8280
8281 VEC_free (compunit_symtab_ptr, result_symtabs);
8282 htab_delete (all_children);
8283 htab_delete (all_type_symtabs);
8284 }
8285 }
8286
8287 /* Compute the 'includes' field for the symtabs of all the CUs we just
8288 read. */
8289
8290 static void
8291 process_cu_includes (void)
8292 {
8293 int ix;
8294 struct dwarf2_per_cu_data *iter;
8295
8296 for (ix = 0;
8297 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8298 ix, iter);
8299 ++ix)
8300 {
8301 if (! iter->is_debug_types)
8302 compute_compunit_symtab_includes (iter);
8303 }
8304
8305 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8306 }
8307
8308 /* Generate full symbol information for PER_CU, whose DIEs have
8309 already been loaded into memory. */
8310
8311 static void
8312 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8313 enum language pretend_language)
8314 {
8315 struct dwarf2_cu *cu = per_cu->cu;
8316 struct objfile *objfile = per_cu->objfile;
8317 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8318 CORE_ADDR lowpc, highpc;
8319 struct compunit_symtab *cust;
8320 struct cleanup *back_to, *delayed_list_cleanup;
8321 CORE_ADDR baseaddr;
8322 struct block *static_block;
8323 CORE_ADDR addr;
8324
8325 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8326
8327 buildsym_init ();
8328 back_to = make_cleanup (really_free_pendings, NULL);
8329 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8330
8331 cu->list_in_scope = &file_symbols;
8332
8333 cu->language = pretend_language;
8334 cu->language_defn = language_def (cu->language);
8335
8336 /* Do line number decoding in read_file_scope () */
8337 process_die (cu->dies, cu);
8338
8339 /* For now fudge the Go package. */
8340 if (cu->language == language_go)
8341 fixup_go_packaging (cu);
8342
8343 /* Now that we have processed all the DIEs in the CU, all the types
8344 should be complete, and it should now be safe to compute all of the
8345 physnames. */
8346 compute_delayed_physnames (cu);
8347 do_cleanups (delayed_list_cleanup);
8348
8349 /* Some compilers don't define a DW_AT_high_pc attribute for the
8350 compilation unit. If the DW_AT_high_pc is missing, synthesize
8351 it, by scanning the DIE's below the compilation unit. */
8352 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8353
8354 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8355 static_block = end_symtab_get_static_block (addr, 0, 1);
8356
8357 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8358 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8359 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8360 addrmap to help ensure it has an accurate map of pc values belonging to
8361 this comp unit. */
8362 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8363
8364 cust = end_symtab_from_static_block (static_block,
8365 SECT_OFF_TEXT (objfile), 0);
8366
8367 if (cust != NULL)
8368 {
8369 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8370
8371 /* Set symtab language to language from DW_AT_language. If the
8372 compilation is from a C file generated by language preprocessors, do
8373 not set the language if it was already deduced by start_subfile. */
8374 if (!(cu->language == language_c
8375 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8376 COMPUNIT_FILETABS (cust)->language = cu->language;
8377
8378 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8379 produce DW_AT_location with location lists but it can be possibly
8380 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8381 there were bugs in prologue debug info, fixed later in GCC-4.5
8382 by "unwind info for epilogues" patch (which is not directly related).
8383
8384 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8385 needed, it would be wrong due to missing DW_AT_producer there.
8386
8387 Still one can confuse GDB by using non-standard GCC compilation
8388 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8389 */
8390 if (cu->has_loclist && gcc_4_minor >= 5)
8391 cust->locations_valid = 1;
8392
8393 if (gcc_4_minor >= 5)
8394 cust->epilogue_unwind_valid = 1;
8395
8396 cust->call_site_htab = cu->call_site_htab;
8397 }
8398
8399 if (dwarf2_per_objfile->using_index)
8400 per_cu->v.quick->compunit_symtab = cust;
8401 else
8402 {
8403 struct partial_symtab *pst = per_cu->v.psymtab;
8404 pst->compunit_symtab = cust;
8405 pst->readin = 1;
8406 }
8407
8408 /* Push it for inclusion processing later. */
8409 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8410
8411 do_cleanups (back_to);
8412 }
8413
8414 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8415 already been loaded into memory. */
8416
8417 static void
8418 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8419 enum language pretend_language)
8420 {
8421 struct dwarf2_cu *cu = per_cu->cu;
8422 struct objfile *objfile = per_cu->objfile;
8423 struct compunit_symtab *cust;
8424 struct cleanup *back_to, *delayed_list_cleanup;
8425 struct signatured_type *sig_type;
8426
8427 gdb_assert (per_cu->is_debug_types);
8428 sig_type = (struct signatured_type *) per_cu;
8429
8430 buildsym_init ();
8431 back_to = make_cleanup (really_free_pendings, NULL);
8432 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8433
8434 cu->list_in_scope = &file_symbols;
8435
8436 cu->language = pretend_language;
8437 cu->language_defn = language_def (cu->language);
8438
8439 /* The symbol tables are set up in read_type_unit_scope. */
8440 process_die (cu->dies, cu);
8441
8442 /* For now fudge the Go package. */
8443 if (cu->language == language_go)
8444 fixup_go_packaging (cu);
8445
8446 /* Now that we have processed all the DIEs in the CU, all the types
8447 should be complete, and it should now be safe to compute all of the
8448 physnames. */
8449 compute_delayed_physnames (cu);
8450 do_cleanups (delayed_list_cleanup);
8451
8452 /* TUs share symbol tables.
8453 If this is the first TU to use this symtab, complete the construction
8454 of it with end_expandable_symtab. Otherwise, complete the addition of
8455 this TU's symbols to the existing symtab. */
8456 if (sig_type->type_unit_group->compunit_symtab == NULL)
8457 {
8458 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8459 sig_type->type_unit_group->compunit_symtab = cust;
8460
8461 if (cust != NULL)
8462 {
8463 /* Set symtab language to language from DW_AT_language. If the
8464 compilation is from a C file generated by language preprocessors,
8465 do not set the language if it was already deduced by
8466 start_subfile. */
8467 if (!(cu->language == language_c
8468 && COMPUNIT_FILETABS (cust)->language != language_c))
8469 COMPUNIT_FILETABS (cust)->language = cu->language;
8470 }
8471 }
8472 else
8473 {
8474 augment_type_symtab ();
8475 cust = sig_type->type_unit_group->compunit_symtab;
8476 }
8477
8478 if (dwarf2_per_objfile->using_index)
8479 per_cu->v.quick->compunit_symtab = cust;
8480 else
8481 {
8482 struct partial_symtab *pst = per_cu->v.psymtab;
8483 pst->compunit_symtab = cust;
8484 pst->readin = 1;
8485 }
8486
8487 do_cleanups (back_to);
8488 }
8489
8490 /* Process an imported unit DIE. */
8491
8492 static void
8493 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8494 {
8495 struct attribute *attr;
8496
8497 /* For now we don't handle imported units in type units. */
8498 if (cu->per_cu->is_debug_types)
8499 {
8500 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8501 " supported in type units [in module %s]"),
8502 objfile_name (cu->objfile));
8503 }
8504
8505 attr = dwarf2_attr (die, DW_AT_import, cu);
8506 if (attr != NULL)
8507 {
8508 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8509 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8510 dwarf2_per_cu_data *per_cu
8511 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8512
8513 /* If necessary, add it to the queue and load its DIEs. */
8514 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8515 load_full_comp_unit (per_cu, cu->language);
8516
8517 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8518 per_cu);
8519 }
8520 }
8521
8522 /* RAII object that represents a process_die scope: i.e.,
8523 starts/finishes processing a DIE. */
8524 class process_die_scope
8525 {
8526 public:
8527 process_die_scope (die_info *die, dwarf2_cu *cu)
8528 : m_die (die), m_cu (cu)
8529 {
8530 /* We should only be processing DIEs not already in process. */
8531 gdb_assert (!m_die->in_process);
8532 m_die->in_process = true;
8533 }
8534
8535 ~process_die_scope ()
8536 {
8537 m_die->in_process = false;
8538
8539 /* If we're done processing the DIE for the CU that owns the line
8540 header, we don't need the line header anymore. */
8541 if (m_cu->line_header_die_owner == m_die)
8542 {
8543 delete m_cu->line_header;
8544 m_cu->line_header = NULL;
8545 m_cu->line_header_die_owner = NULL;
8546 }
8547 }
8548
8549 private:
8550 die_info *m_die;
8551 dwarf2_cu *m_cu;
8552 };
8553
8554 /* Process a die and its children. */
8555
8556 static void
8557 process_die (struct die_info *die, struct dwarf2_cu *cu)
8558 {
8559 process_die_scope scope (die, cu);
8560
8561 switch (die->tag)
8562 {
8563 case DW_TAG_padding:
8564 break;
8565 case DW_TAG_compile_unit:
8566 case DW_TAG_partial_unit:
8567 read_file_scope (die, cu);
8568 break;
8569 case DW_TAG_type_unit:
8570 read_type_unit_scope (die, cu);
8571 break;
8572 case DW_TAG_subprogram:
8573 case DW_TAG_inlined_subroutine:
8574 read_func_scope (die, cu);
8575 break;
8576 case DW_TAG_lexical_block:
8577 case DW_TAG_try_block:
8578 case DW_TAG_catch_block:
8579 read_lexical_block_scope (die, cu);
8580 break;
8581 case DW_TAG_call_site:
8582 case DW_TAG_GNU_call_site:
8583 read_call_site_scope (die, cu);
8584 break;
8585 case DW_TAG_class_type:
8586 case DW_TAG_interface_type:
8587 case DW_TAG_structure_type:
8588 case DW_TAG_union_type:
8589 process_structure_scope (die, cu);
8590 break;
8591 case DW_TAG_enumeration_type:
8592 process_enumeration_scope (die, cu);
8593 break;
8594
8595 /* These dies have a type, but processing them does not create
8596 a symbol or recurse to process the children. Therefore we can
8597 read them on-demand through read_type_die. */
8598 case DW_TAG_subroutine_type:
8599 case DW_TAG_set_type:
8600 case DW_TAG_array_type:
8601 case DW_TAG_pointer_type:
8602 case DW_TAG_ptr_to_member_type:
8603 case DW_TAG_reference_type:
8604 case DW_TAG_rvalue_reference_type:
8605 case DW_TAG_string_type:
8606 break;
8607
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 case DW_TAG_typedef:
8611 /* Add a typedef symbol for the type definition, if it has a
8612 DW_AT_name. */
8613 new_symbol (die, read_type_die (die, cu), cu);
8614 break;
8615 case DW_TAG_common_block:
8616 read_common_block (die, cu);
8617 break;
8618 case DW_TAG_common_inclusion:
8619 break;
8620 case DW_TAG_namespace:
8621 cu->processing_has_namespace_info = 1;
8622 read_namespace (die, cu);
8623 break;
8624 case DW_TAG_module:
8625 cu->processing_has_namespace_info = 1;
8626 read_module (die, cu);
8627 break;
8628 case DW_TAG_imported_declaration:
8629 cu->processing_has_namespace_info = 1;
8630 if (read_namespace_alias (die, cu))
8631 break;
8632 /* The declaration is not a global namespace alias: fall through. */
8633 case DW_TAG_imported_module:
8634 cu->processing_has_namespace_info = 1;
8635 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8636 || cu->language != language_fortran))
8637 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8638 dwarf_tag_name (die->tag));
8639 read_import_statement (die, cu);
8640 break;
8641
8642 case DW_TAG_imported_unit:
8643 process_imported_unit_die (die, cu);
8644 break;
8645
8646 default:
8647 new_symbol (die, NULL, cu);
8648 break;
8649 }
8650 }
8651 \f
8652 /* DWARF name computation. */
8653
8654 /* A helper function for dwarf2_compute_name which determines whether DIE
8655 needs to have the name of the scope prepended to the name listed in the
8656 die. */
8657
8658 static int
8659 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8660 {
8661 struct attribute *attr;
8662
8663 switch (die->tag)
8664 {
8665 case DW_TAG_namespace:
8666 case DW_TAG_typedef:
8667 case DW_TAG_class_type:
8668 case DW_TAG_interface_type:
8669 case DW_TAG_structure_type:
8670 case DW_TAG_union_type:
8671 case DW_TAG_enumeration_type:
8672 case DW_TAG_enumerator:
8673 case DW_TAG_subprogram:
8674 case DW_TAG_inlined_subroutine:
8675 case DW_TAG_member:
8676 case DW_TAG_imported_declaration:
8677 return 1;
8678
8679 case DW_TAG_variable:
8680 case DW_TAG_constant:
8681 /* We only need to prefix "globally" visible variables. These include
8682 any variable marked with DW_AT_external or any variable that
8683 lives in a namespace. [Variables in anonymous namespaces
8684 require prefixing, but they are not DW_AT_external.] */
8685
8686 if (dwarf2_attr (die, DW_AT_specification, cu))
8687 {
8688 struct dwarf2_cu *spec_cu = cu;
8689
8690 return die_needs_namespace (die_specification (die, &spec_cu),
8691 spec_cu);
8692 }
8693
8694 attr = dwarf2_attr (die, DW_AT_external, cu);
8695 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8696 && die->parent->tag != DW_TAG_module)
8697 return 0;
8698 /* A variable in a lexical block of some kind does not need a
8699 namespace, even though in C++ such variables may be external
8700 and have a mangled name. */
8701 if (die->parent->tag == DW_TAG_lexical_block
8702 || die->parent->tag == DW_TAG_try_block
8703 || die->parent->tag == DW_TAG_catch_block
8704 || die->parent->tag == DW_TAG_subprogram)
8705 return 0;
8706 return 1;
8707
8708 default:
8709 return 0;
8710 }
8711 }
8712
8713 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8714 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8715 defined for the given DIE. */
8716
8717 static struct attribute *
8718 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8719 {
8720 struct attribute *attr;
8721
8722 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8723 if (attr == NULL)
8724 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8725
8726 return attr;
8727 }
8728
8729 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8730 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8731 defined for the given DIE. */
8732
8733 static const char *
8734 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8735 {
8736 const char *linkage_name;
8737
8738 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8739 if (linkage_name == NULL)
8740 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8741
8742 return linkage_name;
8743 }
8744
8745 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8746 compute the physname for the object, which include a method's:
8747 - formal parameters (C++),
8748 - receiver type (Go),
8749
8750 The term "physname" is a bit confusing.
8751 For C++, for example, it is the demangled name.
8752 For Go, for example, it's the mangled name.
8753
8754 For Ada, return the DIE's linkage name rather than the fully qualified
8755 name. PHYSNAME is ignored..
8756
8757 The result is allocated on the objfile_obstack and canonicalized. */
8758
8759 static const char *
8760 dwarf2_compute_name (const char *name,
8761 struct die_info *die, struct dwarf2_cu *cu,
8762 int physname)
8763 {
8764 struct objfile *objfile = cu->objfile;
8765
8766 if (name == NULL)
8767 name = dwarf2_name (die, cu);
8768
8769 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8770 but otherwise compute it by typename_concat inside GDB.
8771 FIXME: Actually this is not really true, or at least not always true.
8772 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8773 Fortran names because there is no mangling standard. So new_symbol_full
8774 will set the demangled name to the result of dwarf2_full_name, and it is
8775 the demangled name that GDB uses if it exists. */
8776 if (cu->language == language_ada
8777 || (cu->language == language_fortran && physname))
8778 {
8779 /* For Ada unit, we prefer the linkage name over the name, as
8780 the former contains the exported name, which the user expects
8781 to be able to reference. Ideally, we want the user to be able
8782 to reference this entity using either natural or linkage name,
8783 but we haven't started looking at this enhancement yet. */
8784 const char *linkage_name = dw2_linkage_name (die, cu);
8785
8786 if (linkage_name != NULL)
8787 return linkage_name;
8788 }
8789
8790 /* These are the only languages we know how to qualify names in. */
8791 if (name != NULL
8792 && (cu->language == language_cplus
8793 || cu->language == language_fortran || cu->language == language_d
8794 || cu->language == language_rust))
8795 {
8796 if (die_needs_namespace (die, cu))
8797 {
8798 long length;
8799 const char *prefix;
8800 const char *canonical_name = NULL;
8801
8802 string_file buf;
8803
8804 prefix = determine_prefix (die, cu);
8805 if (*prefix != '\0')
8806 {
8807 char *prefixed_name = typename_concat (NULL, prefix, name,
8808 physname, cu);
8809
8810 buf.puts (prefixed_name);
8811 xfree (prefixed_name);
8812 }
8813 else
8814 buf.puts (name);
8815
8816 /* Template parameters may be specified in the DIE's DW_AT_name, or
8817 as children with DW_TAG_template_type_param or
8818 DW_TAG_value_type_param. If the latter, add them to the name
8819 here. If the name already has template parameters, then
8820 skip this step; some versions of GCC emit both, and
8821 it is more efficient to use the pre-computed name.
8822
8823 Something to keep in mind about this process: it is very
8824 unlikely, or in some cases downright impossible, to produce
8825 something that will match the mangled name of a function.
8826 If the definition of the function has the same debug info,
8827 we should be able to match up with it anyway. But fallbacks
8828 using the minimal symbol, for instance to find a method
8829 implemented in a stripped copy of libstdc++, will not work.
8830 If we do not have debug info for the definition, we will have to
8831 match them up some other way.
8832
8833 When we do name matching there is a related problem with function
8834 templates; two instantiated function templates are allowed to
8835 differ only by their return types, which we do not add here. */
8836
8837 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8838 {
8839 struct attribute *attr;
8840 struct die_info *child;
8841 int first = 1;
8842
8843 die->building_fullname = 1;
8844
8845 for (child = die->child; child != NULL; child = child->sibling)
8846 {
8847 struct type *type;
8848 LONGEST value;
8849 const gdb_byte *bytes;
8850 struct dwarf2_locexpr_baton *baton;
8851 struct value *v;
8852
8853 if (child->tag != DW_TAG_template_type_param
8854 && child->tag != DW_TAG_template_value_param)
8855 continue;
8856
8857 if (first)
8858 {
8859 buf.puts ("<");
8860 first = 0;
8861 }
8862 else
8863 buf.puts (", ");
8864
8865 attr = dwarf2_attr (child, DW_AT_type, cu);
8866 if (attr == NULL)
8867 {
8868 complaint (&symfile_complaints,
8869 _("template parameter missing DW_AT_type"));
8870 buf.puts ("UNKNOWN_TYPE");
8871 continue;
8872 }
8873 type = die_type (child, cu);
8874
8875 if (child->tag == DW_TAG_template_type_param)
8876 {
8877 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8878 continue;
8879 }
8880
8881 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8882 if (attr == NULL)
8883 {
8884 complaint (&symfile_complaints,
8885 _("template parameter missing "
8886 "DW_AT_const_value"));
8887 buf.puts ("UNKNOWN_VALUE");
8888 continue;
8889 }
8890
8891 dwarf2_const_value_attr (attr, type, name,
8892 &cu->comp_unit_obstack, cu,
8893 &value, &bytes, &baton);
8894
8895 if (TYPE_NOSIGN (type))
8896 /* GDB prints characters as NUMBER 'CHAR'. If that's
8897 changed, this can use value_print instead. */
8898 c_printchar (value, type, &buf);
8899 else
8900 {
8901 struct value_print_options opts;
8902
8903 if (baton != NULL)
8904 v = dwarf2_evaluate_loc_desc (type, NULL,
8905 baton->data,
8906 baton->size,
8907 baton->per_cu);
8908 else if (bytes != NULL)
8909 {
8910 v = allocate_value (type);
8911 memcpy (value_contents_writeable (v), bytes,
8912 TYPE_LENGTH (type));
8913 }
8914 else
8915 v = value_from_longest (type, value);
8916
8917 /* Specify decimal so that we do not depend on
8918 the radix. */
8919 get_formatted_print_options (&opts, 'd');
8920 opts.raw = 1;
8921 value_print (v, &buf, &opts);
8922 release_value (v);
8923 value_free (v);
8924 }
8925 }
8926
8927 die->building_fullname = 0;
8928
8929 if (!first)
8930 {
8931 /* Close the argument list, with a space if necessary
8932 (nested templates). */
8933 if (!buf.empty () && buf.string ().back () == '>')
8934 buf.puts (" >");
8935 else
8936 buf.puts (">");
8937 }
8938 }
8939
8940 /* For C++ methods, append formal parameter type
8941 information, if PHYSNAME. */
8942
8943 if (physname && die->tag == DW_TAG_subprogram
8944 && cu->language == language_cplus)
8945 {
8946 struct type *type = read_type_die (die, cu);
8947
8948 c_type_print_args (type, &buf, 1, cu->language,
8949 &type_print_raw_options);
8950
8951 if (cu->language == language_cplus)
8952 {
8953 /* Assume that an artificial first parameter is
8954 "this", but do not crash if it is not. RealView
8955 marks unnamed (and thus unused) parameters as
8956 artificial; there is no way to differentiate
8957 the two cases. */
8958 if (TYPE_NFIELDS (type) > 0
8959 && TYPE_FIELD_ARTIFICIAL (type, 0)
8960 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8961 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8962 0))))
8963 buf.puts (" const");
8964 }
8965 }
8966
8967 const std::string &intermediate_name = buf.string ();
8968
8969 if (cu->language == language_cplus)
8970 canonical_name
8971 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8972 &objfile->per_bfd->storage_obstack);
8973
8974 /* If we only computed INTERMEDIATE_NAME, or if
8975 INTERMEDIATE_NAME is already canonical, then we need to
8976 copy it to the appropriate obstack. */
8977 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8978 name = ((const char *)
8979 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8980 intermediate_name.c_str (),
8981 intermediate_name.length ()));
8982 else
8983 name = canonical_name;
8984 }
8985 }
8986
8987 return name;
8988 }
8989
8990 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8991 If scope qualifiers are appropriate they will be added. The result
8992 will be allocated on the storage_obstack, or NULL if the DIE does
8993 not have a name. NAME may either be from a previous call to
8994 dwarf2_name or NULL.
8995
8996 The output string will be canonicalized (if C++). */
8997
8998 static const char *
8999 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9000 {
9001 return dwarf2_compute_name (name, die, cu, 0);
9002 }
9003
9004 /* Construct a physname for the given DIE in CU. NAME may either be
9005 from a previous call to dwarf2_name or NULL. The result will be
9006 allocated on the objfile_objstack or NULL if the DIE does not have a
9007 name.
9008
9009 The output string will be canonicalized (if C++). */
9010
9011 static const char *
9012 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9013 {
9014 struct objfile *objfile = cu->objfile;
9015 const char *retval, *mangled = NULL, *canon = NULL;
9016 int need_copy = 1;
9017
9018 /* In this case dwarf2_compute_name is just a shortcut not building anything
9019 on its own. */
9020 if (!die_needs_namespace (die, cu))
9021 return dwarf2_compute_name (name, die, cu, 1);
9022
9023 mangled = dw2_linkage_name (die, cu);
9024
9025 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9026 See https://github.com/rust-lang/rust/issues/32925. */
9027 if (cu->language == language_rust && mangled != NULL
9028 && strchr (mangled, '{') != NULL)
9029 mangled = NULL;
9030
9031 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9032 has computed. */
9033 gdb::unique_xmalloc_ptr<char> demangled;
9034 if (mangled != NULL)
9035 {
9036 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9037 type. It is easier for GDB users to search for such functions as
9038 `name(params)' than `long name(params)'. In such case the minimal
9039 symbol names do not match the full symbol names but for template
9040 functions there is never a need to look up their definition from their
9041 declaration so the only disadvantage remains the minimal symbol
9042 variant `long name(params)' does not have the proper inferior type.
9043 */
9044
9045 if (cu->language == language_go)
9046 {
9047 /* This is a lie, but we already lie to the caller new_symbol_full.
9048 new_symbol_full assumes we return the mangled name.
9049 This just undoes that lie until things are cleaned up. */
9050 }
9051 else
9052 {
9053 demangled.reset (gdb_demangle (mangled,
9054 (DMGL_PARAMS | DMGL_ANSI
9055 | DMGL_RET_DROP)));
9056 }
9057 if (demangled)
9058 canon = demangled.get ();
9059 else
9060 {
9061 canon = mangled;
9062 need_copy = 0;
9063 }
9064 }
9065
9066 if (canon == NULL || check_physname)
9067 {
9068 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9069
9070 if (canon != NULL && strcmp (physname, canon) != 0)
9071 {
9072 /* It may not mean a bug in GDB. The compiler could also
9073 compute DW_AT_linkage_name incorrectly. But in such case
9074 GDB would need to be bug-to-bug compatible. */
9075
9076 complaint (&symfile_complaints,
9077 _("Computed physname <%s> does not match demangled <%s> "
9078 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9079 physname, canon, mangled, to_underlying (die->sect_off),
9080 objfile_name (objfile));
9081
9082 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9083 is available here - over computed PHYSNAME. It is safer
9084 against both buggy GDB and buggy compilers. */
9085
9086 retval = canon;
9087 }
9088 else
9089 {
9090 retval = physname;
9091 need_copy = 0;
9092 }
9093 }
9094 else
9095 retval = canon;
9096
9097 if (need_copy)
9098 retval = ((const char *)
9099 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9100 retval, strlen (retval)));
9101
9102 return retval;
9103 }
9104
9105 /* Inspect DIE in CU for a namespace alias. If one exists, record
9106 a new symbol for it.
9107
9108 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9109
9110 static int
9111 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9112 {
9113 struct attribute *attr;
9114
9115 /* If the die does not have a name, this is not a namespace
9116 alias. */
9117 attr = dwarf2_attr (die, DW_AT_name, cu);
9118 if (attr != NULL)
9119 {
9120 int num;
9121 struct die_info *d = die;
9122 struct dwarf2_cu *imported_cu = cu;
9123
9124 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9125 keep inspecting DIEs until we hit the underlying import. */
9126 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9127 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9128 {
9129 attr = dwarf2_attr (d, DW_AT_import, cu);
9130 if (attr == NULL)
9131 break;
9132
9133 d = follow_die_ref (d, attr, &imported_cu);
9134 if (d->tag != DW_TAG_imported_declaration)
9135 break;
9136 }
9137
9138 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9139 {
9140 complaint (&symfile_complaints,
9141 _("DIE at 0x%x has too many recursively imported "
9142 "declarations"), to_underlying (d->sect_off));
9143 return 0;
9144 }
9145
9146 if (attr != NULL)
9147 {
9148 struct type *type;
9149 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9150
9151 type = get_die_type_at_offset (sect_off, cu->per_cu);
9152 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9153 {
9154 /* This declaration is a global namespace alias. Add
9155 a symbol for it whose type is the aliased namespace. */
9156 new_symbol (die, type, cu);
9157 return 1;
9158 }
9159 }
9160 }
9161
9162 return 0;
9163 }
9164
9165 /* Return the using directives repository (global or local?) to use in the
9166 current context for LANGUAGE.
9167
9168 For Ada, imported declarations can materialize renamings, which *may* be
9169 global. However it is impossible (for now?) in DWARF to distinguish
9170 "external" imported declarations and "static" ones. As all imported
9171 declarations seem to be static in all other languages, make them all CU-wide
9172 global only in Ada. */
9173
9174 static struct using_direct **
9175 using_directives (enum language language)
9176 {
9177 if (language == language_ada && context_stack_depth == 0)
9178 return &global_using_directives;
9179 else
9180 return &local_using_directives;
9181 }
9182
9183 /* Read the import statement specified by the given die and record it. */
9184
9185 static void
9186 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9187 {
9188 struct objfile *objfile = cu->objfile;
9189 struct attribute *import_attr;
9190 struct die_info *imported_die, *child_die;
9191 struct dwarf2_cu *imported_cu;
9192 const char *imported_name;
9193 const char *imported_name_prefix;
9194 const char *canonical_name;
9195 const char *import_alias;
9196 const char *imported_declaration = NULL;
9197 const char *import_prefix;
9198 std::vector<const char *> excludes;
9199
9200 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9201 if (import_attr == NULL)
9202 {
9203 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9204 dwarf_tag_name (die->tag));
9205 return;
9206 }
9207
9208 imported_cu = cu;
9209 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9210 imported_name = dwarf2_name (imported_die, imported_cu);
9211 if (imported_name == NULL)
9212 {
9213 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9214
9215 The import in the following code:
9216 namespace A
9217 {
9218 typedef int B;
9219 }
9220
9221 int main ()
9222 {
9223 using A::B;
9224 B b;
9225 return b;
9226 }
9227
9228 ...
9229 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9230 <52> DW_AT_decl_file : 1
9231 <53> DW_AT_decl_line : 6
9232 <54> DW_AT_import : <0x75>
9233 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9234 <59> DW_AT_name : B
9235 <5b> DW_AT_decl_file : 1
9236 <5c> DW_AT_decl_line : 2
9237 <5d> DW_AT_type : <0x6e>
9238 ...
9239 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9240 <76> DW_AT_byte_size : 4
9241 <77> DW_AT_encoding : 5 (signed)
9242
9243 imports the wrong die ( 0x75 instead of 0x58 ).
9244 This case will be ignored until the gcc bug is fixed. */
9245 return;
9246 }
9247
9248 /* Figure out the local name after import. */
9249 import_alias = dwarf2_name (die, cu);
9250
9251 /* Figure out where the statement is being imported to. */
9252 import_prefix = determine_prefix (die, cu);
9253
9254 /* Figure out what the scope of the imported die is and prepend it
9255 to the name of the imported die. */
9256 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9257
9258 if (imported_die->tag != DW_TAG_namespace
9259 && imported_die->tag != DW_TAG_module)
9260 {
9261 imported_declaration = imported_name;
9262 canonical_name = imported_name_prefix;
9263 }
9264 else if (strlen (imported_name_prefix) > 0)
9265 canonical_name = obconcat (&objfile->objfile_obstack,
9266 imported_name_prefix,
9267 (cu->language == language_d ? "." : "::"),
9268 imported_name, (char *) NULL);
9269 else
9270 canonical_name = imported_name;
9271
9272 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9273 for (child_die = die->child; child_die && child_die->tag;
9274 child_die = sibling_die (child_die))
9275 {
9276 /* DWARF-4: A Fortran use statement with a “rename list” may be
9277 represented by an imported module entry with an import attribute
9278 referring to the module and owned entries corresponding to those
9279 entities that are renamed as part of being imported. */
9280
9281 if (child_die->tag != DW_TAG_imported_declaration)
9282 {
9283 complaint (&symfile_complaints,
9284 _("child DW_TAG_imported_declaration expected "
9285 "- DIE at 0x%x [in module %s]"),
9286 to_underlying (child_die->sect_off), objfile_name (objfile));
9287 continue;
9288 }
9289
9290 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9291 if (import_attr == NULL)
9292 {
9293 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9294 dwarf_tag_name (child_die->tag));
9295 continue;
9296 }
9297
9298 imported_cu = cu;
9299 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9300 &imported_cu);
9301 imported_name = dwarf2_name (imported_die, imported_cu);
9302 if (imported_name == NULL)
9303 {
9304 complaint (&symfile_complaints,
9305 _("child DW_TAG_imported_declaration has unknown "
9306 "imported name - DIE at 0x%x [in module %s]"),
9307 to_underlying (child_die->sect_off), objfile_name (objfile));
9308 continue;
9309 }
9310
9311 excludes.push_back (imported_name);
9312
9313 process_die (child_die, cu);
9314 }
9315
9316 add_using_directive (using_directives (cu->language),
9317 import_prefix,
9318 canonical_name,
9319 import_alias,
9320 imported_declaration,
9321 excludes,
9322 0,
9323 &objfile->objfile_obstack);
9324 }
9325
9326 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9327 types, but gives them a size of zero. Starting with version 14,
9328 ICC is compatible with GCC. */
9329
9330 static int
9331 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9332 {
9333 if (!cu->checked_producer)
9334 check_producer (cu);
9335
9336 return cu->producer_is_icc_lt_14;
9337 }
9338
9339 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9340 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9341 this, it was first present in GCC release 4.3.0. */
9342
9343 static int
9344 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9345 {
9346 if (!cu->checked_producer)
9347 check_producer (cu);
9348
9349 return cu->producer_is_gcc_lt_4_3;
9350 }
9351
9352 static file_and_directory
9353 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9354 {
9355 file_and_directory res;
9356
9357 /* Find the filename. Do not use dwarf2_name here, since the filename
9358 is not a source language identifier. */
9359 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9360 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9361
9362 if (res.comp_dir == NULL
9363 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9364 && IS_ABSOLUTE_PATH (res.name))
9365 {
9366 res.comp_dir_storage = ldirname (res.name);
9367 if (!res.comp_dir_storage.empty ())
9368 res.comp_dir = res.comp_dir_storage.c_str ();
9369 }
9370 if (res.comp_dir != NULL)
9371 {
9372 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9373 directory, get rid of it. */
9374 const char *cp = strchr (res.comp_dir, ':');
9375
9376 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9377 res.comp_dir = cp + 1;
9378 }
9379
9380 if (res.name == NULL)
9381 res.name = "<unknown>";
9382
9383 return res;
9384 }
9385
9386 /* Handle DW_AT_stmt_list for a compilation unit.
9387 DIE is the DW_TAG_compile_unit die for CU.
9388 COMP_DIR is the compilation directory. LOWPC is passed to
9389 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9390
9391 static void
9392 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9393 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9394 {
9395 struct objfile *objfile = dwarf2_per_objfile->objfile;
9396 struct attribute *attr;
9397 struct line_header line_header_local;
9398 hashval_t line_header_local_hash;
9399 unsigned u;
9400 void **slot;
9401 int decode_mapping;
9402
9403 gdb_assert (! cu->per_cu->is_debug_types);
9404
9405 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9406 if (attr == NULL)
9407 return;
9408
9409 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9410
9411 /* The line header hash table is only created if needed (it exists to
9412 prevent redundant reading of the line table for partial_units).
9413 If we're given a partial_unit, we'll need it. If we're given a
9414 compile_unit, then use the line header hash table if it's already
9415 created, but don't create one just yet. */
9416
9417 if (dwarf2_per_objfile->line_header_hash == NULL
9418 && die->tag == DW_TAG_partial_unit)
9419 {
9420 dwarf2_per_objfile->line_header_hash
9421 = htab_create_alloc_ex (127, line_header_hash_voidp,
9422 line_header_eq_voidp,
9423 free_line_header_voidp,
9424 &objfile->objfile_obstack,
9425 hashtab_obstack_allocate,
9426 dummy_obstack_deallocate);
9427 }
9428
9429 line_header_local.sect_off = line_offset;
9430 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9431 line_header_local_hash = line_header_hash (&line_header_local);
9432 if (dwarf2_per_objfile->line_header_hash != NULL)
9433 {
9434 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9435 &line_header_local,
9436 line_header_local_hash, NO_INSERT);
9437
9438 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9439 is not present in *SLOT (since if there is something in *SLOT then
9440 it will be for a partial_unit). */
9441 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9442 {
9443 gdb_assert (*slot != NULL);
9444 cu->line_header = (struct line_header *) *slot;
9445 return;
9446 }
9447 }
9448
9449 /* dwarf_decode_line_header does not yet provide sufficient information.
9450 We always have to call also dwarf_decode_lines for it. */
9451 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9452 if (lh == NULL)
9453 return;
9454
9455 cu->line_header = lh.release ();
9456 cu->line_header_die_owner = die;
9457
9458 if (dwarf2_per_objfile->line_header_hash == NULL)
9459 slot = NULL;
9460 else
9461 {
9462 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9463 &line_header_local,
9464 line_header_local_hash, INSERT);
9465 gdb_assert (slot != NULL);
9466 }
9467 if (slot != NULL && *slot == NULL)
9468 {
9469 /* This newly decoded line number information unit will be owned
9470 by line_header_hash hash table. */
9471 *slot = cu->line_header;
9472 cu->line_header_die_owner = NULL;
9473 }
9474 else
9475 {
9476 /* We cannot free any current entry in (*slot) as that struct line_header
9477 may be already used by multiple CUs. Create only temporary decoded
9478 line_header for this CU - it may happen at most once for each line
9479 number information unit. And if we're not using line_header_hash
9480 then this is what we want as well. */
9481 gdb_assert (die->tag != DW_TAG_partial_unit);
9482 }
9483 decode_mapping = (die->tag != DW_TAG_partial_unit);
9484 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9485 decode_mapping);
9486
9487 }
9488
9489 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9490
9491 static void
9492 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9493 {
9494 struct objfile *objfile = dwarf2_per_objfile->objfile;
9495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9496 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9497 CORE_ADDR highpc = ((CORE_ADDR) 0);
9498 struct attribute *attr;
9499 struct die_info *child_die;
9500 CORE_ADDR baseaddr;
9501
9502 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9503
9504 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9505
9506 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9507 from finish_block. */
9508 if (lowpc == ((CORE_ADDR) -1))
9509 lowpc = highpc;
9510 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9511
9512 file_and_directory fnd = find_file_and_directory (die, cu);
9513
9514 prepare_one_comp_unit (cu, die, cu->language);
9515
9516 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9517 standardised yet. As a workaround for the language detection we fall
9518 back to the DW_AT_producer string. */
9519 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9520 cu->language = language_opencl;
9521
9522 /* Similar hack for Go. */
9523 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9524 set_cu_language (DW_LANG_Go, cu);
9525
9526 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9527
9528 /* Decode line number information if present. We do this before
9529 processing child DIEs, so that the line header table is available
9530 for DW_AT_decl_file. */
9531 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9532
9533 /* Process all dies in compilation unit. */
9534 if (die->child != NULL)
9535 {
9536 child_die = die->child;
9537 while (child_die && child_die->tag)
9538 {
9539 process_die (child_die, cu);
9540 child_die = sibling_die (child_die);
9541 }
9542 }
9543
9544 /* Decode macro information, if present. Dwarf 2 macro information
9545 refers to information in the line number info statement program
9546 header, so we can only read it if we've read the header
9547 successfully. */
9548 attr = dwarf2_attr (die, DW_AT_macros, cu);
9549 if (attr == NULL)
9550 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9551 if (attr && cu->line_header)
9552 {
9553 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9554 complaint (&symfile_complaints,
9555 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9556
9557 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9558 }
9559 else
9560 {
9561 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9562 if (attr && cu->line_header)
9563 {
9564 unsigned int macro_offset = DW_UNSND (attr);
9565
9566 dwarf_decode_macros (cu, macro_offset, 0);
9567 }
9568 }
9569 }
9570
9571 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9572 Create the set of symtabs used by this TU, or if this TU is sharing
9573 symtabs with another TU and the symtabs have already been created
9574 then restore those symtabs in the line header.
9575 We don't need the pc/line-number mapping for type units. */
9576
9577 static void
9578 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9579 {
9580 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9581 struct type_unit_group *tu_group;
9582 int first_time;
9583 struct attribute *attr;
9584 unsigned int i;
9585 struct signatured_type *sig_type;
9586
9587 gdb_assert (per_cu->is_debug_types);
9588 sig_type = (struct signatured_type *) per_cu;
9589
9590 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9591
9592 /* If we're using .gdb_index (includes -readnow) then
9593 per_cu->type_unit_group may not have been set up yet. */
9594 if (sig_type->type_unit_group == NULL)
9595 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9596 tu_group = sig_type->type_unit_group;
9597
9598 /* If we've already processed this stmt_list there's no real need to
9599 do it again, we could fake it and just recreate the part we need
9600 (file name,index -> symtab mapping). If data shows this optimization
9601 is useful we can do it then. */
9602 first_time = tu_group->compunit_symtab == NULL;
9603
9604 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9605 debug info. */
9606 line_header_up lh;
9607 if (attr != NULL)
9608 {
9609 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9610 lh = dwarf_decode_line_header (line_offset, cu);
9611 }
9612 if (lh == NULL)
9613 {
9614 if (first_time)
9615 dwarf2_start_symtab (cu, "", NULL, 0);
9616 else
9617 {
9618 gdb_assert (tu_group->symtabs == NULL);
9619 restart_symtab (tu_group->compunit_symtab, "", 0);
9620 }
9621 return;
9622 }
9623
9624 cu->line_header = lh.release ();
9625 cu->line_header_die_owner = die;
9626
9627 if (first_time)
9628 {
9629 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9630
9631 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9632 still initializing it, and our caller (a few levels up)
9633 process_full_type_unit still needs to know if this is the first
9634 time. */
9635
9636 tu_group->num_symtabs = cu->line_header->file_names.size ();
9637 tu_group->symtabs = XNEWVEC (struct symtab *,
9638 cu->line_header->file_names.size ());
9639
9640 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9641 {
9642 file_entry &fe = cu->line_header->file_names[i];
9643
9644 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9645
9646 if (current_subfile->symtab == NULL)
9647 {
9648 /* NOTE: start_subfile will recognize when it's been
9649 passed a file it has already seen. So we can't
9650 assume there's a simple mapping from
9651 cu->line_header->file_names to subfiles, plus
9652 cu->line_header->file_names may contain dups. */
9653 current_subfile->symtab
9654 = allocate_symtab (cust, current_subfile->name);
9655 }
9656
9657 fe.symtab = current_subfile->symtab;
9658 tu_group->symtabs[i] = fe.symtab;
9659 }
9660 }
9661 else
9662 {
9663 restart_symtab (tu_group->compunit_symtab, "", 0);
9664
9665 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9666 {
9667 file_entry &fe = cu->line_header->file_names[i];
9668
9669 fe.symtab = tu_group->symtabs[i];
9670 }
9671 }
9672
9673 /* The main symtab is allocated last. Type units don't have DW_AT_name
9674 so they don't have a "real" (so to speak) symtab anyway.
9675 There is later code that will assign the main symtab to all symbols
9676 that don't have one. We need to handle the case of a symbol with a
9677 missing symtab (DW_AT_decl_file) anyway. */
9678 }
9679
9680 /* Process DW_TAG_type_unit.
9681 For TUs we want to skip the first top level sibling if it's not the
9682 actual type being defined by this TU. In this case the first top
9683 level sibling is there to provide context only. */
9684
9685 static void
9686 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9687 {
9688 struct die_info *child_die;
9689
9690 prepare_one_comp_unit (cu, die, language_minimal);
9691
9692 /* Initialize (or reinitialize) the machinery for building symtabs.
9693 We do this before processing child DIEs, so that the line header table
9694 is available for DW_AT_decl_file. */
9695 setup_type_unit_groups (die, cu);
9696
9697 if (die->child != NULL)
9698 {
9699 child_die = die->child;
9700 while (child_die && child_die->tag)
9701 {
9702 process_die (child_die, cu);
9703 child_die = sibling_die (child_die);
9704 }
9705 }
9706 }
9707 \f
9708 /* DWO/DWP files.
9709
9710 http://gcc.gnu.org/wiki/DebugFission
9711 http://gcc.gnu.org/wiki/DebugFissionDWP
9712
9713 To simplify handling of both DWO files ("object" files with the DWARF info)
9714 and DWP files (a file with the DWOs packaged up into one file), we treat
9715 DWP files as having a collection of virtual DWO files. */
9716
9717 static hashval_t
9718 hash_dwo_file (const void *item)
9719 {
9720 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9721 hashval_t hash;
9722
9723 hash = htab_hash_string (dwo_file->dwo_name);
9724 if (dwo_file->comp_dir != NULL)
9725 hash += htab_hash_string (dwo_file->comp_dir);
9726 return hash;
9727 }
9728
9729 static int
9730 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9731 {
9732 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9733 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9734
9735 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9736 return 0;
9737 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9738 return lhs->comp_dir == rhs->comp_dir;
9739 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9740 }
9741
9742 /* Allocate a hash table for DWO files. */
9743
9744 static htab_t
9745 allocate_dwo_file_hash_table (void)
9746 {
9747 struct objfile *objfile = dwarf2_per_objfile->objfile;
9748
9749 return htab_create_alloc_ex (41,
9750 hash_dwo_file,
9751 eq_dwo_file,
9752 NULL,
9753 &objfile->objfile_obstack,
9754 hashtab_obstack_allocate,
9755 dummy_obstack_deallocate);
9756 }
9757
9758 /* Lookup DWO file DWO_NAME. */
9759
9760 static void **
9761 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9762 {
9763 struct dwo_file find_entry;
9764 void **slot;
9765
9766 if (dwarf2_per_objfile->dwo_files == NULL)
9767 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9768
9769 memset (&find_entry, 0, sizeof (find_entry));
9770 find_entry.dwo_name = dwo_name;
9771 find_entry.comp_dir = comp_dir;
9772 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9773
9774 return slot;
9775 }
9776
9777 static hashval_t
9778 hash_dwo_unit (const void *item)
9779 {
9780 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9781
9782 /* This drops the top 32 bits of the id, but is ok for a hash. */
9783 return dwo_unit->signature;
9784 }
9785
9786 static int
9787 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9788 {
9789 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9790 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9791
9792 /* The signature is assumed to be unique within the DWO file.
9793 So while object file CU dwo_id's always have the value zero,
9794 that's OK, assuming each object file DWO file has only one CU,
9795 and that's the rule for now. */
9796 return lhs->signature == rhs->signature;
9797 }
9798
9799 /* Allocate a hash table for DWO CUs,TUs.
9800 There is one of these tables for each of CUs,TUs for each DWO file. */
9801
9802 static htab_t
9803 allocate_dwo_unit_table (struct objfile *objfile)
9804 {
9805 /* Start out with a pretty small number.
9806 Generally DWO files contain only one CU and maybe some TUs. */
9807 return htab_create_alloc_ex (3,
9808 hash_dwo_unit,
9809 eq_dwo_unit,
9810 NULL,
9811 &objfile->objfile_obstack,
9812 hashtab_obstack_allocate,
9813 dummy_obstack_deallocate);
9814 }
9815
9816 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9817
9818 struct create_dwo_cu_data
9819 {
9820 struct dwo_file *dwo_file;
9821 struct dwo_unit dwo_unit;
9822 };
9823
9824 /* die_reader_func for create_dwo_cu. */
9825
9826 static void
9827 create_dwo_cu_reader (const struct die_reader_specs *reader,
9828 const gdb_byte *info_ptr,
9829 struct die_info *comp_unit_die,
9830 int has_children,
9831 void *datap)
9832 {
9833 struct dwarf2_cu *cu = reader->cu;
9834 sect_offset sect_off = cu->per_cu->sect_off;
9835 struct dwarf2_section_info *section = cu->per_cu->section;
9836 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9837 struct dwo_file *dwo_file = data->dwo_file;
9838 struct dwo_unit *dwo_unit = &data->dwo_unit;
9839 struct attribute *attr;
9840
9841 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9842 if (attr == NULL)
9843 {
9844 complaint (&symfile_complaints,
9845 _("Dwarf Error: debug entry at offset 0x%x is missing"
9846 " its dwo_id [in module %s]"),
9847 to_underlying (sect_off), dwo_file->dwo_name);
9848 return;
9849 }
9850
9851 dwo_unit->dwo_file = dwo_file;
9852 dwo_unit->signature = DW_UNSND (attr);
9853 dwo_unit->section = section;
9854 dwo_unit->sect_off = sect_off;
9855 dwo_unit->length = cu->per_cu->length;
9856
9857 if (dwarf_read_debug)
9858 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9859 to_underlying (sect_off),
9860 hex_string (dwo_unit->signature));
9861 }
9862
9863 /* Create the dwo_units for the CUs in a DWO_FILE.
9864 Note: This function processes DWO files only, not DWP files. */
9865
9866 static void
9867 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9868 htab_t &cus_htab)
9869 {
9870 struct objfile *objfile = dwarf2_per_objfile->objfile;
9871 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9872 const gdb_byte *info_ptr, *end_ptr;
9873
9874 dwarf2_read_section (objfile, &section);
9875 info_ptr = section.buffer;
9876
9877 if (info_ptr == NULL)
9878 return;
9879
9880 if (dwarf_read_debug)
9881 {
9882 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9883 get_section_name (&section),
9884 get_section_file_name (&section));
9885 }
9886
9887 end_ptr = info_ptr + section.size;
9888 while (info_ptr < end_ptr)
9889 {
9890 struct dwarf2_per_cu_data per_cu;
9891 struct create_dwo_cu_data create_dwo_cu_data;
9892 struct dwo_unit *dwo_unit;
9893 void **slot;
9894 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9895
9896 memset (&create_dwo_cu_data.dwo_unit, 0,
9897 sizeof (create_dwo_cu_data.dwo_unit));
9898 memset (&per_cu, 0, sizeof (per_cu));
9899 per_cu.objfile = objfile;
9900 per_cu.is_debug_types = 0;
9901 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9902 per_cu.section = &section;
9903 create_dwo_cu_data.dwo_file = &dwo_file;
9904
9905 init_cutu_and_read_dies_no_follow (
9906 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9907 info_ptr += per_cu.length;
9908
9909 // If the unit could not be parsed, skip it.
9910 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9911 continue;
9912
9913 if (cus_htab == NULL)
9914 cus_htab = allocate_dwo_unit_table (objfile);
9915
9916 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9917 *dwo_unit = create_dwo_cu_data.dwo_unit;
9918 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9919 gdb_assert (slot != NULL);
9920 if (*slot != NULL)
9921 {
9922 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9923 sect_offset dup_sect_off = dup_cu->sect_off;
9924
9925 complaint (&symfile_complaints,
9926 _("debug cu entry at offset 0x%x is duplicate to"
9927 " the entry at offset 0x%x, signature %s"),
9928 to_underlying (sect_off), to_underlying (dup_sect_off),
9929 hex_string (dwo_unit->signature));
9930 }
9931 *slot = (void *)dwo_unit;
9932 }
9933 }
9934
9935 /* DWP file .debug_{cu,tu}_index section format:
9936 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9937
9938 DWP Version 1:
9939
9940 Both index sections have the same format, and serve to map a 64-bit
9941 signature to a set of section numbers. Each section begins with a header,
9942 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9943 indexes, and a pool of 32-bit section numbers. The index sections will be
9944 aligned at 8-byte boundaries in the file.
9945
9946 The index section header consists of:
9947
9948 V, 32 bit version number
9949 -, 32 bits unused
9950 N, 32 bit number of compilation units or type units in the index
9951 M, 32 bit number of slots in the hash table
9952
9953 Numbers are recorded using the byte order of the application binary.
9954
9955 The hash table begins at offset 16 in the section, and consists of an array
9956 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9957 order of the application binary). Unused slots in the hash table are 0.
9958 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9959
9960 The parallel table begins immediately after the hash table
9961 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9962 array of 32-bit indexes (using the byte order of the application binary),
9963 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9964 table contains a 32-bit index into the pool of section numbers. For unused
9965 hash table slots, the corresponding entry in the parallel table will be 0.
9966
9967 The pool of section numbers begins immediately following the hash table
9968 (at offset 16 + 12 * M from the beginning of the section). The pool of
9969 section numbers consists of an array of 32-bit words (using the byte order
9970 of the application binary). Each item in the array is indexed starting
9971 from 0. The hash table entry provides the index of the first section
9972 number in the set. Additional section numbers in the set follow, and the
9973 set is terminated by a 0 entry (section number 0 is not used in ELF).
9974
9975 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9976 section must be the first entry in the set, and the .debug_abbrev.dwo must
9977 be the second entry. Other members of the set may follow in any order.
9978
9979 ---
9980
9981 DWP Version 2:
9982
9983 DWP Version 2 combines all the .debug_info, etc. sections into one,
9984 and the entries in the index tables are now offsets into these sections.
9985 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9986 section.
9987
9988 Index Section Contents:
9989 Header
9990 Hash Table of Signatures dwp_hash_table.hash_table
9991 Parallel Table of Indices dwp_hash_table.unit_table
9992 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9993 Table of Section Sizes dwp_hash_table.v2.sizes
9994
9995 The index section header consists of:
9996
9997 V, 32 bit version number
9998 L, 32 bit number of columns in the table of section offsets
9999 N, 32 bit number of compilation units or type units in the index
10000 M, 32 bit number of slots in the hash table
10001
10002 Numbers are recorded using the byte order of the application binary.
10003
10004 The hash table has the same format as version 1.
10005 The parallel table of indices has the same format as version 1,
10006 except that the entries are origin-1 indices into the table of sections
10007 offsets and the table of section sizes.
10008
10009 The table of offsets begins immediately following the parallel table
10010 (at offset 16 + 12 * M from the beginning of the section). The table is
10011 a two-dimensional array of 32-bit words (using the byte order of the
10012 application binary), with L columns and N+1 rows, in row-major order.
10013 Each row in the array is indexed starting from 0. The first row provides
10014 a key to the remaining rows: each column in this row provides an identifier
10015 for a debug section, and the offsets in the same column of subsequent rows
10016 refer to that section. The section identifiers are:
10017
10018 DW_SECT_INFO 1 .debug_info.dwo
10019 DW_SECT_TYPES 2 .debug_types.dwo
10020 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10021 DW_SECT_LINE 4 .debug_line.dwo
10022 DW_SECT_LOC 5 .debug_loc.dwo
10023 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10024 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10025 DW_SECT_MACRO 8 .debug_macro.dwo
10026
10027 The offsets provided by the CU and TU index sections are the base offsets
10028 for the contributions made by each CU or TU to the corresponding section
10029 in the package file. Each CU and TU header contains an abbrev_offset
10030 field, used to find the abbreviations table for that CU or TU within the
10031 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10032 be interpreted as relative to the base offset given in the index section.
10033 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10034 should be interpreted as relative to the base offset for .debug_line.dwo,
10035 and offsets into other debug sections obtained from DWARF attributes should
10036 also be interpreted as relative to the corresponding base offset.
10037
10038 The table of sizes begins immediately following the table of offsets.
10039 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10040 with L columns and N rows, in row-major order. Each row in the array is
10041 indexed starting from 1 (row 0 is shared by the two tables).
10042
10043 ---
10044
10045 Hash table lookup is handled the same in version 1 and 2:
10046
10047 We assume that N and M will not exceed 2^32 - 1.
10048 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10049
10050 Given a 64-bit compilation unit signature or a type signature S, an entry
10051 in the hash table is located as follows:
10052
10053 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10054 the low-order k bits all set to 1.
10055
10056 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10057
10058 3) If the hash table entry at index H matches the signature, use that
10059 entry. If the hash table entry at index H is unused (all zeroes),
10060 terminate the search: the signature is not present in the table.
10061
10062 4) Let H = (H + H') modulo M. Repeat at Step 3.
10063
10064 Because M > N and H' and M are relatively prime, the search is guaranteed
10065 to stop at an unused slot or find the match. */
10066
10067 /* Create a hash table to map DWO IDs to their CU/TU entry in
10068 .debug_{info,types}.dwo in DWP_FILE.
10069 Returns NULL if there isn't one.
10070 Note: This function processes DWP files only, not DWO files. */
10071
10072 static struct dwp_hash_table *
10073 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10074 {
10075 struct objfile *objfile = dwarf2_per_objfile->objfile;
10076 bfd *dbfd = dwp_file->dbfd;
10077 const gdb_byte *index_ptr, *index_end;
10078 struct dwarf2_section_info *index;
10079 uint32_t version, nr_columns, nr_units, nr_slots;
10080 struct dwp_hash_table *htab;
10081
10082 if (is_debug_types)
10083 index = &dwp_file->sections.tu_index;
10084 else
10085 index = &dwp_file->sections.cu_index;
10086
10087 if (dwarf2_section_empty_p (index))
10088 return NULL;
10089 dwarf2_read_section (objfile, index);
10090
10091 index_ptr = index->buffer;
10092 index_end = index_ptr + index->size;
10093
10094 version = read_4_bytes (dbfd, index_ptr);
10095 index_ptr += 4;
10096 if (version == 2)
10097 nr_columns = read_4_bytes (dbfd, index_ptr);
10098 else
10099 nr_columns = 0;
10100 index_ptr += 4;
10101 nr_units = read_4_bytes (dbfd, index_ptr);
10102 index_ptr += 4;
10103 nr_slots = read_4_bytes (dbfd, index_ptr);
10104 index_ptr += 4;
10105
10106 if (version != 1 && version != 2)
10107 {
10108 error (_("Dwarf Error: unsupported DWP file version (%s)"
10109 " [in module %s]"),
10110 pulongest (version), dwp_file->name);
10111 }
10112 if (nr_slots != (nr_slots & -nr_slots))
10113 {
10114 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10115 " is not power of 2 [in module %s]"),
10116 pulongest (nr_slots), dwp_file->name);
10117 }
10118
10119 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10120 htab->version = version;
10121 htab->nr_columns = nr_columns;
10122 htab->nr_units = nr_units;
10123 htab->nr_slots = nr_slots;
10124 htab->hash_table = index_ptr;
10125 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10126
10127 /* Exit early if the table is empty. */
10128 if (nr_slots == 0 || nr_units == 0
10129 || (version == 2 && nr_columns == 0))
10130 {
10131 /* All must be zero. */
10132 if (nr_slots != 0 || nr_units != 0
10133 || (version == 2 && nr_columns != 0))
10134 {
10135 complaint (&symfile_complaints,
10136 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10137 " all zero [in modules %s]"),
10138 dwp_file->name);
10139 }
10140 return htab;
10141 }
10142
10143 if (version == 1)
10144 {
10145 htab->section_pool.v1.indices =
10146 htab->unit_table + sizeof (uint32_t) * nr_slots;
10147 /* It's harder to decide whether the section is too small in v1.
10148 V1 is deprecated anyway so we punt. */
10149 }
10150 else
10151 {
10152 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10153 int *ids = htab->section_pool.v2.section_ids;
10154 /* Reverse map for error checking. */
10155 int ids_seen[DW_SECT_MAX + 1];
10156 int i;
10157
10158 if (nr_columns < 2)
10159 {
10160 error (_("Dwarf Error: bad DWP hash table, too few columns"
10161 " in section table [in module %s]"),
10162 dwp_file->name);
10163 }
10164 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10165 {
10166 error (_("Dwarf Error: bad DWP hash table, too many columns"
10167 " in section table [in module %s]"),
10168 dwp_file->name);
10169 }
10170 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10171 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10172 for (i = 0; i < nr_columns; ++i)
10173 {
10174 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10175
10176 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10177 {
10178 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10179 " in section table [in module %s]"),
10180 id, dwp_file->name);
10181 }
10182 if (ids_seen[id] != -1)
10183 {
10184 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10185 " id %d in section table [in module %s]"),
10186 id, dwp_file->name);
10187 }
10188 ids_seen[id] = i;
10189 ids[i] = id;
10190 }
10191 /* Must have exactly one info or types section. */
10192 if (((ids_seen[DW_SECT_INFO] != -1)
10193 + (ids_seen[DW_SECT_TYPES] != -1))
10194 != 1)
10195 {
10196 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10197 " DWO info/types section [in module %s]"),
10198 dwp_file->name);
10199 }
10200 /* Must have an abbrev section. */
10201 if (ids_seen[DW_SECT_ABBREV] == -1)
10202 {
10203 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10204 " section [in module %s]"),
10205 dwp_file->name);
10206 }
10207 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10208 htab->section_pool.v2.sizes =
10209 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10210 * nr_units * nr_columns);
10211 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10212 * nr_units * nr_columns))
10213 > index_end)
10214 {
10215 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10216 " [in module %s]"),
10217 dwp_file->name);
10218 }
10219 }
10220
10221 return htab;
10222 }
10223
10224 /* Update SECTIONS with the data from SECTP.
10225
10226 This function is like the other "locate" section routines that are
10227 passed to bfd_map_over_sections, but in this context the sections to
10228 read comes from the DWP V1 hash table, not the full ELF section table.
10229
10230 The result is non-zero for success, or zero if an error was found. */
10231
10232 static int
10233 locate_v1_virtual_dwo_sections (asection *sectp,
10234 struct virtual_v1_dwo_sections *sections)
10235 {
10236 const struct dwop_section_names *names = &dwop_section_names;
10237
10238 if (section_is_p (sectp->name, &names->abbrev_dwo))
10239 {
10240 /* There can be only one. */
10241 if (sections->abbrev.s.section != NULL)
10242 return 0;
10243 sections->abbrev.s.section = sectp;
10244 sections->abbrev.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->info_dwo)
10247 || section_is_p (sectp->name, &names->types_dwo))
10248 {
10249 /* There can be only one. */
10250 if (sections->info_or_types.s.section != NULL)
10251 return 0;
10252 sections->info_or_types.s.section = sectp;
10253 sections->info_or_types.size = bfd_get_section_size (sectp);
10254 }
10255 else if (section_is_p (sectp->name, &names->line_dwo))
10256 {
10257 /* There can be only one. */
10258 if (sections->line.s.section != NULL)
10259 return 0;
10260 sections->line.s.section = sectp;
10261 sections->line.size = bfd_get_section_size (sectp);
10262 }
10263 else if (section_is_p (sectp->name, &names->loc_dwo))
10264 {
10265 /* There can be only one. */
10266 if (sections->loc.s.section != NULL)
10267 return 0;
10268 sections->loc.s.section = sectp;
10269 sections->loc.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10272 {
10273 /* There can be only one. */
10274 if (sections->macinfo.s.section != NULL)
10275 return 0;
10276 sections->macinfo.s.section = sectp;
10277 sections->macinfo.size = bfd_get_section_size (sectp);
10278 }
10279 else if (section_is_p (sectp->name, &names->macro_dwo))
10280 {
10281 /* There can be only one. */
10282 if (sections->macro.s.section != NULL)
10283 return 0;
10284 sections->macro.s.section = sectp;
10285 sections->macro.size = bfd_get_section_size (sectp);
10286 }
10287 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10288 {
10289 /* There can be only one. */
10290 if (sections->str_offsets.s.section != NULL)
10291 return 0;
10292 sections->str_offsets.s.section = sectp;
10293 sections->str_offsets.size = bfd_get_section_size (sectp);
10294 }
10295 else
10296 {
10297 /* No other kind of section is valid. */
10298 return 0;
10299 }
10300
10301 return 1;
10302 }
10303
10304 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10305 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10306 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10307 This is for DWP version 1 files. */
10308
10309 static struct dwo_unit *
10310 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10311 uint32_t unit_index,
10312 const char *comp_dir,
10313 ULONGEST signature, int is_debug_types)
10314 {
10315 struct objfile *objfile = dwarf2_per_objfile->objfile;
10316 const struct dwp_hash_table *dwp_htab =
10317 is_debug_types ? dwp_file->tus : dwp_file->cus;
10318 bfd *dbfd = dwp_file->dbfd;
10319 const char *kind = is_debug_types ? "TU" : "CU";
10320 struct dwo_file *dwo_file;
10321 struct dwo_unit *dwo_unit;
10322 struct virtual_v1_dwo_sections sections;
10323 void **dwo_file_slot;
10324 int i;
10325
10326 gdb_assert (dwp_file->version == 1);
10327
10328 if (dwarf_read_debug)
10329 {
10330 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10331 kind,
10332 pulongest (unit_index), hex_string (signature),
10333 dwp_file->name);
10334 }
10335
10336 /* Fetch the sections of this DWO unit.
10337 Put a limit on the number of sections we look for so that bad data
10338 doesn't cause us to loop forever. */
10339
10340 #define MAX_NR_V1_DWO_SECTIONS \
10341 (1 /* .debug_info or .debug_types */ \
10342 + 1 /* .debug_abbrev */ \
10343 + 1 /* .debug_line */ \
10344 + 1 /* .debug_loc */ \
10345 + 1 /* .debug_str_offsets */ \
10346 + 1 /* .debug_macro or .debug_macinfo */ \
10347 + 1 /* trailing zero */)
10348
10349 memset (&sections, 0, sizeof (sections));
10350
10351 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10352 {
10353 asection *sectp;
10354 uint32_t section_nr =
10355 read_4_bytes (dbfd,
10356 dwp_htab->section_pool.v1.indices
10357 + (unit_index + i) * sizeof (uint32_t));
10358
10359 if (section_nr == 0)
10360 break;
10361 if (section_nr >= dwp_file->num_sections)
10362 {
10363 error (_("Dwarf Error: bad DWP hash table, section number too large"
10364 " [in module %s]"),
10365 dwp_file->name);
10366 }
10367
10368 sectp = dwp_file->elf_sections[section_nr];
10369 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10370 {
10371 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10372 " [in module %s]"),
10373 dwp_file->name);
10374 }
10375 }
10376
10377 if (i < 2
10378 || dwarf2_section_empty_p (&sections.info_or_types)
10379 || dwarf2_section_empty_p (&sections.abbrev))
10380 {
10381 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10382 " [in module %s]"),
10383 dwp_file->name);
10384 }
10385 if (i == MAX_NR_V1_DWO_SECTIONS)
10386 {
10387 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10388 " [in module %s]"),
10389 dwp_file->name);
10390 }
10391
10392 /* It's easier for the rest of the code if we fake a struct dwo_file and
10393 have dwo_unit "live" in that. At least for now.
10394
10395 The DWP file can be made up of a random collection of CUs and TUs.
10396 However, for each CU + set of TUs that came from the same original DWO
10397 file, we can combine them back into a virtual DWO file to save space
10398 (fewer struct dwo_file objects to allocate). Remember that for really
10399 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10400
10401 std::string virtual_dwo_name =
10402 string_printf ("virtual-dwo/%d-%d-%d-%d",
10403 get_section_id (&sections.abbrev),
10404 get_section_id (&sections.line),
10405 get_section_id (&sections.loc),
10406 get_section_id (&sections.str_offsets));
10407 /* Can we use an existing virtual DWO file? */
10408 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10409 /* Create one if necessary. */
10410 if (*dwo_file_slot == NULL)
10411 {
10412 if (dwarf_read_debug)
10413 {
10414 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10415 virtual_dwo_name.c_str ());
10416 }
10417 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10418 dwo_file->dwo_name
10419 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10420 virtual_dwo_name.c_str (),
10421 virtual_dwo_name.size ());
10422 dwo_file->comp_dir = comp_dir;
10423 dwo_file->sections.abbrev = sections.abbrev;
10424 dwo_file->sections.line = sections.line;
10425 dwo_file->sections.loc = sections.loc;
10426 dwo_file->sections.macinfo = sections.macinfo;
10427 dwo_file->sections.macro = sections.macro;
10428 dwo_file->sections.str_offsets = sections.str_offsets;
10429 /* The "str" section is global to the entire DWP file. */
10430 dwo_file->sections.str = dwp_file->sections.str;
10431 /* The info or types section is assigned below to dwo_unit,
10432 there's no need to record it in dwo_file.
10433 Also, we can't simply record type sections in dwo_file because
10434 we record a pointer into the vector in dwo_unit. As we collect more
10435 types we'll grow the vector and eventually have to reallocate space
10436 for it, invalidating all copies of pointers into the previous
10437 contents. */
10438 *dwo_file_slot = dwo_file;
10439 }
10440 else
10441 {
10442 if (dwarf_read_debug)
10443 {
10444 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10445 virtual_dwo_name.c_str ());
10446 }
10447 dwo_file = (struct dwo_file *) *dwo_file_slot;
10448 }
10449
10450 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10451 dwo_unit->dwo_file = dwo_file;
10452 dwo_unit->signature = signature;
10453 dwo_unit->section =
10454 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10455 *dwo_unit->section = sections.info_or_types;
10456 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10457
10458 return dwo_unit;
10459 }
10460
10461 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10462 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10463 piece within that section used by a TU/CU, return a virtual section
10464 of just that piece. */
10465
10466 static struct dwarf2_section_info
10467 create_dwp_v2_section (struct dwarf2_section_info *section,
10468 bfd_size_type offset, bfd_size_type size)
10469 {
10470 struct dwarf2_section_info result;
10471 asection *sectp;
10472
10473 gdb_assert (section != NULL);
10474 gdb_assert (!section->is_virtual);
10475
10476 memset (&result, 0, sizeof (result));
10477 result.s.containing_section = section;
10478 result.is_virtual = 1;
10479
10480 if (size == 0)
10481 return result;
10482
10483 sectp = get_section_bfd_section (section);
10484
10485 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10486 bounds of the real section. This is a pretty-rare event, so just
10487 flag an error (easier) instead of a warning and trying to cope. */
10488 if (sectp == NULL
10489 || offset + size > bfd_get_section_size (sectp))
10490 {
10491 bfd *abfd = sectp->owner;
10492
10493 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10494 " in section %s [in module %s]"),
10495 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10496 objfile_name (dwarf2_per_objfile->objfile));
10497 }
10498
10499 result.virtual_offset = offset;
10500 result.size = size;
10501 return result;
10502 }
10503
10504 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10505 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10506 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10507 This is for DWP version 2 files. */
10508
10509 static struct dwo_unit *
10510 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10511 uint32_t unit_index,
10512 const char *comp_dir,
10513 ULONGEST signature, int is_debug_types)
10514 {
10515 struct objfile *objfile = dwarf2_per_objfile->objfile;
10516 const struct dwp_hash_table *dwp_htab =
10517 is_debug_types ? dwp_file->tus : dwp_file->cus;
10518 bfd *dbfd = dwp_file->dbfd;
10519 const char *kind = is_debug_types ? "TU" : "CU";
10520 struct dwo_file *dwo_file;
10521 struct dwo_unit *dwo_unit;
10522 struct virtual_v2_dwo_sections sections;
10523 void **dwo_file_slot;
10524 int i;
10525
10526 gdb_assert (dwp_file->version == 2);
10527
10528 if (dwarf_read_debug)
10529 {
10530 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10531 kind,
10532 pulongest (unit_index), hex_string (signature),
10533 dwp_file->name);
10534 }
10535
10536 /* Fetch the section offsets of this DWO unit. */
10537
10538 memset (&sections, 0, sizeof (sections));
10539
10540 for (i = 0; i < dwp_htab->nr_columns; ++i)
10541 {
10542 uint32_t offset = read_4_bytes (dbfd,
10543 dwp_htab->section_pool.v2.offsets
10544 + (((unit_index - 1) * dwp_htab->nr_columns
10545 + i)
10546 * sizeof (uint32_t)));
10547 uint32_t size = read_4_bytes (dbfd,
10548 dwp_htab->section_pool.v2.sizes
10549 + (((unit_index - 1) * dwp_htab->nr_columns
10550 + i)
10551 * sizeof (uint32_t)));
10552
10553 switch (dwp_htab->section_pool.v2.section_ids[i])
10554 {
10555 case DW_SECT_INFO:
10556 case DW_SECT_TYPES:
10557 sections.info_or_types_offset = offset;
10558 sections.info_or_types_size = size;
10559 break;
10560 case DW_SECT_ABBREV:
10561 sections.abbrev_offset = offset;
10562 sections.abbrev_size = size;
10563 break;
10564 case DW_SECT_LINE:
10565 sections.line_offset = offset;
10566 sections.line_size = size;
10567 break;
10568 case DW_SECT_LOC:
10569 sections.loc_offset = offset;
10570 sections.loc_size = size;
10571 break;
10572 case DW_SECT_STR_OFFSETS:
10573 sections.str_offsets_offset = offset;
10574 sections.str_offsets_size = size;
10575 break;
10576 case DW_SECT_MACINFO:
10577 sections.macinfo_offset = offset;
10578 sections.macinfo_size = size;
10579 break;
10580 case DW_SECT_MACRO:
10581 sections.macro_offset = offset;
10582 sections.macro_size = size;
10583 break;
10584 }
10585 }
10586
10587 /* It's easier for the rest of the code if we fake a struct dwo_file and
10588 have dwo_unit "live" in that. At least for now.
10589
10590 The DWP file can be made up of a random collection of CUs and TUs.
10591 However, for each CU + set of TUs that came from the same original DWO
10592 file, we can combine them back into a virtual DWO file to save space
10593 (fewer struct dwo_file objects to allocate). Remember that for really
10594 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10595
10596 std::string virtual_dwo_name =
10597 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10598 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10599 (long) (sections.line_size ? sections.line_offset : 0),
10600 (long) (sections.loc_size ? sections.loc_offset : 0),
10601 (long) (sections.str_offsets_size
10602 ? sections.str_offsets_offset : 0));
10603 /* Can we use an existing virtual DWO file? */
10604 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10605 /* Create one if necessary. */
10606 if (*dwo_file_slot == NULL)
10607 {
10608 if (dwarf_read_debug)
10609 {
10610 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10611 virtual_dwo_name.c_str ());
10612 }
10613 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10614 dwo_file->dwo_name
10615 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10616 virtual_dwo_name.c_str (),
10617 virtual_dwo_name.size ());
10618 dwo_file->comp_dir = comp_dir;
10619 dwo_file->sections.abbrev =
10620 create_dwp_v2_section (&dwp_file->sections.abbrev,
10621 sections.abbrev_offset, sections.abbrev_size);
10622 dwo_file->sections.line =
10623 create_dwp_v2_section (&dwp_file->sections.line,
10624 sections.line_offset, sections.line_size);
10625 dwo_file->sections.loc =
10626 create_dwp_v2_section (&dwp_file->sections.loc,
10627 sections.loc_offset, sections.loc_size);
10628 dwo_file->sections.macinfo =
10629 create_dwp_v2_section (&dwp_file->sections.macinfo,
10630 sections.macinfo_offset, sections.macinfo_size);
10631 dwo_file->sections.macro =
10632 create_dwp_v2_section (&dwp_file->sections.macro,
10633 sections.macro_offset, sections.macro_size);
10634 dwo_file->sections.str_offsets =
10635 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10636 sections.str_offsets_offset,
10637 sections.str_offsets_size);
10638 /* The "str" section is global to the entire DWP file. */
10639 dwo_file->sections.str = dwp_file->sections.str;
10640 /* The info or types section is assigned below to dwo_unit,
10641 there's no need to record it in dwo_file.
10642 Also, we can't simply record type sections in dwo_file because
10643 we record a pointer into the vector in dwo_unit. As we collect more
10644 types we'll grow the vector and eventually have to reallocate space
10645 for it, invalidating all copies of pointers into the previous
10646 contents. */
10647 *dwo_file_slot = dwo_file;
10648 }
10649 else
10650 {
10651 if (dwarf_read_debug)
10652 {
10653 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10654 virtual_dwo_name.c_str ());
10655 }
10656 dwo_file = (struct dwo_file *) *dwo_file_slot;
10657 }
10658
10659 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10660 dwo_unit->dwo_file = dwo_file;
10661 dwo_unit->signature = signature;
10662 dwo_unit->section =
10663 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10664 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10665 ? &dwp_file->sections.types
10666 : &dwp_file->sections.info,
10667 sections.info_or_types_offset,
10668 sections.info_or_types_size);
10669 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10670
10671 return dwo_unit;
10672 }
10673
10674 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10675 Returns NULL if the signature isn't found. */
10676
10677 static struct dwo_unit *
10678 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10679 ULONGEST signature, int is_debug_types)
10680 {
10681 const struct dwp_hash_table *dwp_htab =
10682 is_debug_types ? dwp_file->tus : dwp_file->cus;
10683 bfd *dbfd = dwp_file->dbfd;
10684 uint32_t mask = dwp_htab->nr_slots - 1;
10685 uint32_t hash = signature & mask;
10686 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10687 unsigned int i;
10688 void **slot;
10689 struct dwo_unit find_dwo_cu;
10690
10691 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10692 find_dwo_cu.signature = signature;
10693 slot = htab_find_slot (is_debug_types
10694 ? dwp_file->loaded_tus
10695 : dwp_file->loaded_cus,
10696 &find_dwo_cu, INSERT);
10697
10698 if (*slot != NULL)
10699 return (struct dwo_unit *) *slot;
10700
10701 /* Use a for loop so that we don't loop forever on bad debug info. */
10702 for (i = 0; i < dwp_htab->nr_slots; ++i)
10703 {
10704 ULONGEST signature_in_table;
10705
10706 signature_in_table =
10707 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10708 if (signature_in_table == signature)
10709 {
10710 uint32_t unit_index =
10711 read_4_bytes (dbfd,
10712 dwp_htab->unit_table + hash * sizeof (uint32_t));
10713
10714 if (dwp_file->version == 1)
10715 {
10716 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10717 comp_dir, signature,
10718 is_debug_types);
10719 }
10720 else
10721 {
10722 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10723 comp_dir, signature,
10724 is_debug_types);
10725 }
10726 return (struct dwo_unit *) *slot;
10727 }
10728 if (signature_in_table == 0)
10729 return NULL;
10730 hash = (hash + hash2) & mask;
10731 }
10732
10733 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10734 " [in module %s]"),
10735 dwp_file->name);
10736 }
10737
10738 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10739 Open the file specified by FILE_NAME and hand it off to BFD for
10740 preliminary analysis. Return a newly initialized bfd *, which
10741 includes a canonicalized copy of FILE_NAME.
10742 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10743 SEARCH_CWD is true if the current directory is to be searched.
10744 It will be searched before debug-file-directory.
10745 If successful, the file is added to the bfd include table of the
10746 objfile's bfd (see gdb_bfd_record_inclusion).
10747 If unable to find/open the file, return NULL.
10748 NOTE: This function is derived from symfile_bfd_open. */
10749
10750 static gdb_bfd_ref_ptr
10751 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10752 {
10753 int desc, flags;
10754 char *absolute_name;
10755 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10756 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10757 to debug_file_directory. */
10758 char *search_path;
10759 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10760
10761 if (search_cwd)
10762 {
10763 if (*debug_file_directory != '\0')
10764 search_path = concat (".", dirname_separator_string,
10765 debug_file_directory, (char *) NULL);
10766 else
10767 search_path = xstrdup (".");
10768 }
10769 else
10770 search_path = xstrdup (debug_file_directory);
10771
10772 flags = OPF_RETURN_REALPATH;
10773 if (is_dwp)
10774 flags |= OPF_SEARCH_IN_PATH;
10775 desc = openp (search_path, flags, file_name,
10776 O_RDONLY | O_BINARY, &absolute_name);
10777 xfree (search_path);
10778 if (desc < 0)
10779 return NULL;
10780
10781 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10782 xfree (absolute_name);
10783 if (sym_bfd == NULL)
10784 return NULL;
10785 bfd_set_cacheable (sym_bfd.get (), 1);
10786
10787 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10788 return NULL;
10789
10790 /* Success. Record the bfd as having been included by the objfile's bfd.
10791 This is important because things like demangled_names_hash lives in the
10792 objfile's per_bfd space and may have references to things like symbol
10793 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10794 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10795
10796 return sym_bfd;
10797 }
10798
10799 /* Try to open DWO file FILE_NAME.
10800 COMP_DIR is the DW_AT_comp_dir attribute.
10801 The result is the bfd handle of the file.
10802 If there is a problem finding or opening the file, return NULL.
10803 Upon success, the canonicalized path of the file is stored in the bfd,
10804 same as symfile_bfd_open. */
10805
10806 static gdb_bfd_ref_ptr
10807 open_dwo_file (const char *file_name, const char *comp_dir)
10808 {
10809 if (IS_ABSOLUTE_PATH (file_name))
10810 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10811
10812 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10813
10814 if (comp_dir != NULL)
10815 {
10816 char *path_to_try = concat (comp_dir, SLASH_STRING,
10817 file_name, (char *) NULL);
10818
10819 /* NOTE: If comp_dir is a relative path, this will also try the
10820 search path, which seems useful. */
10821 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10822 1 /*search_cwd*/));
10823 xfree (path_to_try);
10824 if (abfd != NULL)
10825 return abfd;
10826 }
10827
10828 /* That didn't work, try debug-file-directory, which, despite its name,
10829 is a list of paths. */
10830
10831 if (*debug_file_directory == '\0')
10832 return NULL;
10833
10834 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10835 }
10836
10837 /* This function is mapped across the sections and remembers the offset and
10838 size of each of the DWO debugging sections we are interested in. */
10839
10840 static void
10841 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10842 {
10843 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10844 const struct dwop_section_names *names = &dwop_section_names;
10845
10846 if (section_is_p (sectp->name, &names->abbrev_dwo))
10847 {
10848 dwo_sections->abbrev.s.section = sectp;
10849 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10850 }
10851 else if (section_is_p (sectp->name, &names->info_dwo))
10852 {
10853 dwo_sections->info.s.section = sectp;
10854 dwo_sections->info.size = bfd_get_section_size (sectp);
10855 }
10856 else if (section_is_p (sectp->name, &names->line_dwo))
10857 {
10858 dwo_sections->line.s.section = sectp;
10859 dwo_sections->line.size = bfd_get_section_size (sectp);
10860 }
10861 else if (section_is_p (sectp->name, &names->loc_dwo))
10862 {
10863 dwo_sections->loc.s.section = sectp;
10864 dwo_sections->loc.size = bfd_get_section_size (sectp);
10865 }
10866 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10867 {
10868 dwo_sections->macinfo.s.section = sectp;
10869 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10870 }
10871 else if (section_is_p (sectp->name, &names->macro_dwo))
10872 {
10873 dwo_sections->macro.s.section = sectp;
10874 dwo_sections->macro.size = bfd_get_section_size (sectp);
10875 }
10876 else if (section_is_p (sectp->name, &names->str_dwo))
10877 {
10878 dwo_sections->str.s.section = sectp;
10879 dwo_sections->str.size = bfd_get_section_size (sectp);
10880 }
10881 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10882 {
10883 dwo_sections->str_offsets.s.section = sectp;
10884 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->types_dwo))
10887 {
10888 struct dwarf2_section_info type_section;
10889
10890 memset (&type_section, 0, sizeof (type_section));
10891 type_section.s.section = sectp;
10892 type_section.size = bfd_get_section_size (sectp);
10893 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10894 &type_section);
10895 }
10896 }
10897
10898 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10899 by PER_CU. This is for the non-DWP case.
10900 The result is NULL if DWO_NAME can't be found. */
10901
10902 static struct dwo_file *
10903 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10904 const char *dwo_name, const char *comp_dir)
10905 {
10906 struct objfile *objfile = dwarf2_per_objfile->objfile;
10907 struct dwo_file *dwo_file;
10908 struct cleanup *cleanups;
10909
10910 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10911 if (dbfd == NULL)
10912 {
10913 if (dwarf_read_debug)
10914 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10915 return NULL;
10916 }
10917 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10918 dwo_file->dwo_name = dwo_name;
10919 dwo_file->comp_dir = comp_dir;
10920 dwo_file->dbfd = dbfd.release ();
10921
10922 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10923
10924 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10925 &dwo_file->sections);
10926
10927 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10928
10929 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10930 dwo_file->tus);
10931
10932 discard_cleanups (cleanups);
10933
10934 if (dwarf_read_debug)
10935 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10936
10937 return dwo_file;
10938 }
10939
10940 /* This function is mapped across the sections and remembers the offset and
10941 size of each of the DWP debugging sections common to version 1 and 2 that
10942 we are interested in. */
10943
10944 static void
10945 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10946 void *dwp_file_ptr)
10947 {
10948 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10949 const struct dwop_section_names *names = &dwop_section_names;
10950 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10951
10952 /* Record the ELF section number for later lookup: this is what the
10953 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10954 gdb_assert (elf_section_nr < dwp_file->num_sections);
10955 dwp_file->elf_sections[elf_section_nr] = sectp;
10956
10957 /* Look for specific sections that we need. */
10958 if (section_is_p (sectp->name, &names->str_dwo))
10959 {
10960 dwp_file->sections.str.s.section = sectp;
10961 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10962 }
10963 else if (section_is_p (sectp->name, &names->cu_index))
10964 {
10965 dwp_file->sections.cu_index.s.section = sectp;
10966 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10967 }
10968 else if (section_is_p (sectp->name, &names->tu_index))
10969 {
10970 dwp_file->sections.tu_index.s.section = sectp;
10971 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10972 }
10973 }
10974
10975 /* This function is mapped across the sections and remembers the offset and
10976 size of each of the DWP version 2 debugging sections that we are interested
10977 in. This is split into a separate function because we don't know if we
10978 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10979
10980 static void
10981 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10982 {
10983 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10984 const struct dwop_section_names *names = &dwop_section_names;
10985 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10986
10987 /* Record the ELF section number for later lookup: this is what the
10988 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10989 gdb_assert (elf_section_nr < dwp_file->num_sections);
10990 dwp_file->elf_sections[elf_section_nr] = sectp;
10991
10992 /* Look for specific sections that we need. */
10993 if (section_is_p (sectp->name, &names->abbrev_dwo))
10994 {
10995 dwp_file->sections.abbrev.s.section = sectp;
10996 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10997 }
10998 else if (section_is_p (sectp->name, &names->info_dwo))
10999 {
11000 dwp_file->sections.info.s.section = sectp;
11001 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11002 }
11003 else if (section_is_p (sectp->name, &names->line_dwo))
11004 {
11005 dwp_file->sections.line.s.section = sectp;
11006 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11007 }
11008 else if (section_is_p (sectp->name, &names->loc_dwo))
11009 {
11010 dwp_file->sections.loc.s.section = sectp;
11011 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11012 }
11013 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11014 {
11015 dwp_file->sections.macinfo.s.section = sectp;
11016 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11017 }
11018 else if (section_is_p (sectp->name, &names->macro_dwo))
11019 {
11020 dwp_file->sections.macro.s.section = sectp;
11021 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11022 }
11023 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11024 {
11025 dwp_file->sections.str_offsets.s.section = sectp;
11026 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11027 }
11028 else if (section_is_p (sectp->name, &names->types_dwo))
11029 {
11030 dwp_file->sections.types.s.section = sectp;
11031 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11032 }
11033 }
11034
11035 /* Hash function for dwp_file loaded CUs/TUs. */
11036
11037 static hashval_t
11038 hash_dwp_loaded_cutus (const void *item)
11039 {
11040 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11041
11042 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11043 return dwo_unit->signature;
11044 }
11045
11046 /* Equality function for dwp_file loaded CUs/TUs. */
11047
11048 static int
11049 eq_dwp_loaded_cutus (const void *a, const void *b)
11050 {
11051 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11052 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11053
11054 return dua->signature == dub->signature;
11055 }
11056
11057 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11058
11059 static htab_t
11060 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11061 {
11062 return htab_create_alloc_ex (3,
11063 hash_dwp_loaded_cutus,
11064 eq_dwp_loaded_cutus,
11065 NULL,
11066 &objfile->objfile_obstack,
11067 hashtab_obstack_allocate,
11068 dummy_obstack_deallocate);
11069 }
11070
11071 /* Try to open DWP file FILE_NAME.
11072 The result is the bfd handle of the file.
11073 If there is a problem finding or opening the file, return NULL.
11074 Upon success, the canonicalized path of the file is stored in the bfd,
11075 same as symfile_bfd_open. */
11076
11077 static gdb_bfd_ref_ptr
11078 open_dwp_file (const char *file_name)
11079 {
11080 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11081 1 /*search_cwd*/));
11082 if (abfd != NULL)
11083 return abfd;
11084
11085 /* Work around upstream bug 15652.
11086 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11087 [Whether that's a "bug" is debatable, but it is getting in our way.]
11088 We have no real idea where the dwp file is, because gdb's realpath-ing
11089 of the executable's path may have discarded the needed info.
11090 [IWBN if the dwp file name was recorded in the executable, akin to
11091 .gnu_debuglink, but that doesn't exist yet.]
11092 Strip the directory from FILE_NAME and search again. */
11093 if (*debug_file_directory != '\0')
11094 {
11095 /* Don't implicitly search the current directory here.
11096 If the user wants to search "." to handle this case,
11097 it must be added to debug-file-directory. */
11098 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11099 0 /*search_cwd*/);
11100 }
11101
11102 return NULL;
11103 }
11104
11105 /* Initialize the use of the DWP file for the current objfile.
11106 By convention the name of the DWP file is ${objfile}.dwp.
11107 The result is NULL if it can't be found. */
11108
11109 static struct dwp_file *
11110 open_and_init_dwp_file (void)
11111 {
11112 struct objfile *objfile = dwarf2_per_objfile->objfile;
11113 struct dwp_file *dwp_file;
11114
11115 /* Try to find first .dwp for the binary file before any symbolic links
11116 resolving. */
11117
11118 /* If the objfile is a debug file, find the name of the real binary
11119 file and get the name of dwp file from there. */
11120 std::string dwp_name;
11121 if (objfile->separate_debug_objfile_backlink != NULL)
11122 {
11123 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11124 const char *backlink_basename = lbasename (backlink->original_name);
11125
11126 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11127 }
11128 else
11129 dwp_name = objfile->original_name;
11130
11131 dwp_name += ".dwp";
11132
11133 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11134 if (dbfd == NULL
11135 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11136 {
11137 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11138 dwp_name = objfile_name (objfile);
11139 dwp_name += ".dwp";
11140 dbfd = open_dwp_file (dwp_name.c_str ());
11141 }
11142
11143 if (dbfd == NULL)
11144 {
11145 if (dwarf_read_debug)
11146 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11147 return NULL;
11148 }
11149 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11150 dwp_file->name = bfd_get_filename (dbfd.get ());
11151 dwp_file->dbfd = dbfd.release ();
11152
11153 /* +1: section 0 is unused */
11154 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11155 dwp_file->elf_sections =
11156 OBSTACK_CALLOC (&objfile->objfile_obstack,
11157 dwp_file->num_sections, asection *);
11158
11159 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11160 dwp_file);
11161
11162 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11163
11164 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11165
11166 /* The DWP file version is stored in the hash table. Oh well. */
11167 if (dwp_file->cus && dwp_file->tus
11168 && dwp_file->cus->version != dwp_file->tus->version)
11169 {
11170 /* Technically speaking, we should try to limp along, but this is
11171 pretty bizarre. We use pulongest here because that's the established
11172 portability solution (e.g, we cannot use %u for uint32_t). */
11173 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11174 " TU version %s [in DWP file %s]"),
11175 pulongest (dwp_file->cus->version),
11176 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11177 }
11178
11179 if (dwp_file->cus)
11180 dwp_file->version = dwp_file->cus->version;
11181 else if (dwp_file->tus)
11182 dwp_file->version = dwp_file->tus->version;
11183 else
11184 dwp_file->version = 2;
11185
11186 if (dwp_file->version == 2)
11187 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11188 dwp_file);
11189
11190 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11191 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11192
11193 if (dwarf_read_debug)
11194 {
11195 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11196 fprintf_unfiltered (gdb_stdlog,
11197 " %s CUs, %s TUs\n",
11198 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11199 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11200 }
11201
11202 return dwp_file;
11203 }
11204
11205 /* Wrapper around open_and_init_dwp_file, only open it once. */
11206
11207 static struct dwp_file *
11208 get_dwp_file (void)
11209 {
11210 if (! dwarf2_per_objfile->dwp_checked)
11211 {
11212 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11213 dwarf2_per_objfile->dwp_checked = 1;
11214 }
11215 return dwarf2_per_objfile->dwp_file;
11216 }
11217
11218 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11219 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11220 or in the DWP file for the objfile, referenced by THIS_UNIT.
11221 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11222 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11223
11224 This is called, for example, when wanting to read a variable with a
11225 complex location. Therefore we don't want to do file i/o for every call.
11226 Therefore we don't want to look for a DWO file on every call.
11227 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11228 then we check if we've already seen DWO_NAME, and only THEN do we check
11229 for a DWO file.
11230
11231 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11232 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11233
11234 static struct dwo_unit *
11235 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11236 const char *dwo_name, const char *comp_dir,
11237 ULONGEST signature, int is_debug_types)
11238 {
11239 struct objfile *objfile = dwarf2_per_objfile->objfile;
11240 const char *kind = is_debug_types ? "TU" : "CU";
11241 void **dwo_file_slot;
11242 struct dwo_file *dwo_file;
11243 struct dwp_file *dwp_file;
11244
11245 /* First see if there's a DWP file.
11246 If we have a DWP file but didn't find the DWO inside it, don't
11247 look for the original DWO file. It makes gdb behave differently
11248 depending on whether one is debugging in the build tree. */
11249
11250 dwp_file = get_dwp_file ();
11251 if (dwp_file != NULL)
11252 {
11253 const struct dwp_hash_table *dwp_htab =
11254 is_debug_types ? dwp_file->tus : dwp_file->cus;
11255
11256 if (dwp_htab != NULL)
11257 {
11258 struct dwo_unit *dwo_cutu =
11259 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11260 signature, is_debug_types);
11261
11262 if (dwo_cutu != NULL)
11263 {
11264 if (dwarf_read_debug)
11265 {
11266 fprintf_unfiltered (gdb_stdlog,
11267 "Virtual DWO %s %s found: @%s\n",
11268 kind, hex_string (signature),
11269 host_address_to_string (dwo_cutu));
11270 }
11271 return dwo_cutu;
11272 }
11273 }
11274 }
11275 else
11276 {
11277 /* No DWP file, look for the DWO file. */
11278
11279 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11280 if (*dwo_file_slot == NULL)
11281 {
11282 /* Read in the file and build a table of the CUs/TUs it contains. */
11283 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11284 }
11285 /* NOTE: This will be NULL if unable to open the file. */
11286 dwo_file = (struct dwo_file *) *dwo_file_slot;
11287
11288 if (dwo_file != NULL)
11289 {
11290 struct dwo_unit *dwo_cutu = NULL;
11291
11292 if (is_debug_types && dwo_file->tus)
11293 {
11294 struct dwo_unit find_dwo_cutu;
11295
11296 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11297 find_dwo_cutu.signature = signature;
11298 dwo_cutu
11299 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11300 }
11301 else if (!is_debug_types && dwo_file->cus)
11302 {
11303 struct dwo_unit find_dwo_cutu;
11304
11305 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11306 find_dwo_cutu.signature = signature;
11307 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11308 &find_dwo_cutu);
11309 }
11310
11311 if (dwo_cutu != NULL)
11312 {
11313 if (dwarf_read_debug)
11314 {
11315 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11316 kind, dwo_name, hex_string (signature),
11317 host_address_to_string (dwo_cutu));
11318 }
11319 return dwo_cutu;
11320 }
11321 }
11322 }
11323
11324 /* We didn't find it. This could mean a dwo_id mismatch, or
11325 someone deleted the DWO/DWP file, or the search path isn't set up
11326 correctly to find the file. */
11327
11328 if (dwarf_read_debug)
11329 {
11330 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11331 kind, dwo_name, hex_string (signature));
11332 }
11333
11334 /* This is a warning and not a complaint because it can be caused by
11335 pilot error (e.g., user accidentally deleting the DWO). */
11336 {
11337 /* Print the name of the DWP file if we looked there, helps the user
11338 better diagnose the problem. */
11339 std::string dwp_text;
11340
11341 if (dwp_file != NULL)
11342 dwp_text = string_printf (" [in DWP file %s]",
11343 lbasename (dwp_file->name));
11344
11345 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11346 " [in module %s]"),
11347 kind, dwo_name, hex_string (signature),
11348 dwp_text.c_str (),
11349 this_unit->is_debug_types ? "TU" : "CU",
11350 to_underlying (this_unit->sect_off), objfile_name (objfile));
11351 }
11352 return NULL;
11353 }
11354
11355 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11356 See lookup_dwo_cutu_unit for details. */
11357
11358 static struct dwo_unit *
11359 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11360 const char *dwo_name, const char *comp_dir,
11361 ULONGEST signature)
11362 {
11363 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11364 }
11365
11366 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11367 See lookup_dwo_cutu_unit for details. */
11368
11369 static struct dwo_unit *
11370 lookup_dwo_type_unit (struct signatured_type *this_tu,
11371 const char *dwo_name, const char *comp_dir)
11372 {
11373 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11374 }
11375
11376 /* Traversal function for queue_and_load_all_dwo_tus. */
11377
11378 static int
11379 queue_and_load_dwo_tu (void **slot, void *info)
11380 {
11381 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11382 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11383 ULONGEST signature = dwo_unit->signature;
11384 struct signatured_type *sig_type =
11385 lookup_dwo_signatured_type (per_cu->cu, signature);
11386
11387 if (sig_type != NULL)
11388 {
11389 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11390
11391 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11392 a real dependency of PER_CU on SIG_TYPE. That is detected later
11393 while processing PER_CU. */
11394 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11395 load_full_type_unit (sig_cu);
11396 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11397 }
11398
11399 return 1;
11400 }
11401
11402 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11403 The DWO may have the only definition of the type, though it may not be
11404 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11405 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11406
11407 static void
11408 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11409 {
11410 struct dwo_unit *dwo_unit;
11411 struct dwo_file *dwo_file;
11412
11413 gdb_assert (!per_cu->is_debug_types);
11414 gdb_assert (get_dwp_file () == NULL);
11415 gdb_assert (per_cu->cu != NULL);
11416
11417 dwo_unit = per_cu->cu->dwo_unit;
11418 gdb_assert (dwo_unit != NULL);
11419
11420 dwo_file = dwo_unit->dwo_file;
11421 if (dwo_file->tus != NULL)
11422 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11423 }
11424
11425 /* Free all resources associated with DWO_FILE.
11426 Close the DWO file and munmap the sections.
11427 All memory should be on the objfile obstack. */
11428
11429 static void
11430 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11431 {
11432
11433 /* Note: dbfd is NULL for virtual DWO files. */
11434 gdb_bfd_unref (dwo_file->dbfd);
11435
11436 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11437 }
11438
11439 /* Wrapper for free_dwo_file for use in cleanups. */
11440
11441 static void
11442 free_dwo_file_cleanup (void *arg)
11443 {
11444 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11445 struct objfile *objfile = dwarf2_per_objfile->objfile;
11446
11447 free_dwo_file (dwo_file, objfile);
11448 }
11449
11450 /* Traversal function for free_dwo_files. */
11451
11452 static int
11453 free_dwo_file_from_slot (void **slot, void *info)
11454 {
11455 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11456 struct objfile *objfile = (struct objfile *) info;
11457
11458 free_dwo_file (dwo_file, objfile);
11459
11460 return 1;
11461 }
11462
11463 /* Free all resources associated with DWO_FILES. */
11464
11465 static void
11466 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11467 {
11468 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11469 }
11470 \f
11471 /* Read in various DIEs. */
11472
11473 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11474 Inherit only the children of the DW_AT_abstract_origin DIE not being
11475 already referenced by DW_AT_abstract_origin from the children of the
11476 current DIE. */
11477
11478 static void
11479 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11480 {
11481 struct die_info *child_die;
11482 sect_offset *offsetp;
11483 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11484 struct die_info *origin_die;
11485 /* Iterator of the ORIGIN_DIE children. */
11486 struct die_info *origin_child_die;
11487 struct attribute *attr;
11488 struct dwarf2_cu *origin_cu;
11489 struct pending **origin_previous_list_in_scope;
11490
11491 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11492 if (!attr)
11493 return;
11494
11495 /* Note that following die references may follow to a die in a
11496 different cu. */
11497
11498 origin_cu = cu;
11499 origin_die = follow_die_ref (die, attr, &origin_cu);
11500
11501 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11502 symbols in. */
11503 origin_previous_list_in_scope = origin_cu->list_in_scope;
11504 origin_cu->list_in_scope = cu->list_in_scope;
11505
11506 if (die->tag != origin_die->tag
11507 && !(die->tag == DW_TAG_inlined_subroutine
11508 && origin_die->tag == DW_TAG_subprogram))
11509 complaint (&symfile_complaints,
11510 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11511 to_underlying (die->sect_off),
11512 to_underlying (origin_die->sect_off));
11513
11514 std::vector<sect_offset> offsets;
11515
11516 for (child_die = die->child;
11517 child_die && child_die->tag;
11518 child_die = sibling_die (child_die))
11519 {
11520 struct die_info *child_origin_die;
11521 struct dwarf2_cu *child_origin_cu;
11522
11523 /* We are trying to process concrete instance entries:
11524 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11525 it's not relevant to our analysis here. i.e. detecting DIEs that are
11526 present in the abstract instance but not referenced in the concrete
11527 one. */
11528 if (child_die->tag == DW_TAG_call_site
11529 || child_die->tag == DW_TAG_GNU_call_site)
11530 continue;
11531
11532 /* For each CHILD_DIE, find the corresponding child of
11533 ORIGIN_DIE. If there is more than one layer of
11534 DW_AT_abstract_origin, follow them all; there shouldn't be,
11535 but GCC versions at least through 4.4 generate this (GCC PR
11536 40573). */
11537 child_origin_die = child_die;
11538 child_origin_cu = cu;
11539 while (1)
11540 {
11541 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11542 child_origin_cu);
11543 if (attr == NULL)
11544 break;
11545 child_origin_die = follow_die_ref (child_origin_die, attr,
11546 &child_origin_cu);
11547 }
11548
11549 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11550 counterpart may exist. */
11551 if (child_origin_die != child_die)
11552 {
11553 if (child_die->tag != child_origin_die->tag
11554 && !(child_die->tag == DW_TAG_inlined_subroutine
11555 && child_origin_die->tag == DW_TAG_subprogram))
11556 complaint (&symfile_complaints,
11557 _("Child DIE 0x%x and its abstract origin 0x%x have "
11558 "different tags"),
11559 to_underlying (child_die->sect_off),
11560 to_underlying (child_origin_die->sect_off));
11561 if (child_origin_die->parent != origin_die)
11562 complaint (&symfile_complaints,
11563 _("Child DIE 0x%x and its abstract origin 0x%x have "
11564 "different parents"),
11565 to_underlying (child_die->sect_off),
11566 to_underlying (child_origin_die->sect_off));
11567 else
11568 offsets.push_back (child_origin_die->sect_off);
11569 }
11570 }
11571 std::sort (offsets.begin (), offsets.end ());
11572 sect_offset *offsets_end = offsets.data () + offsets.size ();
11573 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
11574 if (offsetp[-1] == *offsetp)
11575 complaint (&symfile_complaints,
11576 _("Multiple children of DIE 0x%x refer "
11577 "to DIE 0x%x as their abstract origin"),
11578 to_underlying (die->sect_off), to_underlying (*offsetp));
11579
11580 offsetp = offsets.data ();
11581 origin_child_die = origin_die->child;
11582 while (origin_child_die && origin_child_die->tag)
11583 {
11584 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11585 while (offsetp < offsets_end
11586 && *offsetp < origin_child_die->sect_off)
11587 offsetp++;
11588 if (offsetp >= offsets_end
11589 || *offsetp > origin_child_die->sect_off)
11590 {
11591 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11592 Check whether we're already processing ORIGIN_CHILD_DIE.
11593 This can happen with mutually referenced abstract_origins.
11594 PR 16581. */
11595 if (!origin_child_die->in_process)
11596 process_die (origin_child_die, origin_cu);
11597 }
11598 origin_child_die = sibling_die (origin_child_die);
11599 }
11600 origin_cu->list_in_scope = origin_previous_list_in_scope;
11601 }
11602
11603 static void
11604 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11605 {
11606 struct objfile *objfile = cu->objfile;
11607 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11608 struct context_stack *newobj;
11609 CORE_ADDR lowpc;
11610 CORE_ADDR highpc;
11611 struct die_info *child_die;
11612 struct attribute *attr, *call_line, *call_file;
11613 const char *name;
11614 CORE_ADDR baseaddr;
11615 struct block *block;
11616 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11617 VEC (symbolp) *template_args = NULL;
11618 struct template_symbol *templ_func = NULL;
11619
11620 if (inlined_func)
11621 {
11622 /* If we do not have call site information, we can't show the
11623 caller of this inlined function. That's too confusing, so
11624 only use the scope for local variables. */
11625 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11626 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11627 if (call_line == NULL || call_file == NULL)
11628 {
11629 read_lexical_block_scope (die, cu);
11630 return;
11631 }
11632 }
11633
11634 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11635
11636 name = dwarf2_name (die, cu);
11637
11638 /* Ignore functions with missing or empty names. These are actually
11639 illegal according to the DWARF standard. */
11640 if (name == NULL)
11641 {
11642 complaint (&symfile_complaints,
11643 _("missing name for subprogram DIE at %d"),
11644 to_underlying (die->sect_off));
11645 return;
11646 }
11647
11648 /* Ignore functions with missing or invalid low and high pc attributes. */
11649 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11650 <= PC_BOUNDS_INVALID)
11651 {
11652 attr = dwarf2_attr (die, DW_AT_external, cu);
11653 if (!attr || !DW_UNSND (attr))
11654 complaint (&symfile_complaints,
11655 _("cannot get low and high bounds "
11656 "for subprogram DIE at %d"),
11657 to_underlying (die->sect_off));
11658 return;
11659 }
11660
11661 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11662 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11663
11664 /* If we have any template arguments, then we must allocate a
11665 different sort of symbol. */
11666 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11667 {
11668 if (child_die->tag == DW_TAG_template_type_param
11669 || child_die->tag == DW_TAG_template_value_param)
11670 {
11671 templ_func = allocate_template_symbol (objfile);
11672 templ_func->base.is_cplus_template_function = 1;
11673 break;
11674 }
11675 }
11676
11677 newobj = push_context (0, lowpc);
11678 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11679 (struct symbol *) templ_func);
11680
11681 /* If there is a location expression for DW_AT_frame_base, record
11682 it. */
11683 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11684 if (attr)
11685 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11686
11687 /* If there is a location for the static link, record it. */
11688 newobj->static_link = NULL;
11689 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11690 if (attr)
11691 {
11692 newobj->static_link
11693 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11694 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11695 }
11696
11697 cu->list_in_scope = &local_symbols;
11698
11699 if (die->child != NULL)
11700 {
11701 child_die = die->child;
11702 while (child_die && child_die->tag)
11703 {
11704 if (child_die->tag == DW_TAG_template_type_param
11705 || child_die->tag == DW_TAG_template_value_param)
11706 {
11707 struct symbol *arg = new_symbol (child_die, NULL, cu);
11708
11709 if (arg != NULL)
11710 VEC_safe_push (symbolp, template_args, arg);
11711 }
11712 else
11713 process_die (child_die, cu);
11714 child_die = sibling_die (child_die);
11715 }
11716 }
11717
11718 inherit_abstract_dies (die, cu);
11719
11720 /* If we have a DW_AT_specification, we might need to import using
11721 directives from the context of the specification DIE. See the
11722 comment in determine_prefix. */
11723 if (cu->language == language_cplus
11724 && dwarf2_attr (die, DW_AT_specification, cu))
11725 {
11726 struct dwarf2_cu *spec_cu = cu;
11727 struct die_info *spec_die = die_specification (die, &spec_cu);
11728
11729 while (spec_die)
11730 {
11731 child_die = spec_die->child;
11732 while (child_die && child_die->tag)
11733 {
11734 if (child_die->tag == DW_TAG_imported_module)
11735 process_die (child_die, spec_cu);
11736 child_die = sibling_die (child_die);
11737 }
11738
11739 /* In some cases, GCC generates specification DIEs that
11740 themselves contain DW_AT_specification attributes. */
11741 spec_die = die_specification (spec_die, &spec_cu);
11742 }
11743 }
11744
11745 newobj = pop_context ();
11746 /* Make a block for the local symbols within. */
11747 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11748 newobj->static_link, lowpc, highpc);
11749
11750 /* For C++, set the block's scope. */
11751 if ((cu->language == language_cplus
11752 || cu->language == language_fortran
11753 || cu->language == language_d
11754 || cu->language == language_rust)
11755 && cu->processing_has_namespace_info)
11756 block_set_scope (block, determine_prefix (die, cu),
11757 &objfile->objfile_obstack);
11758
11759 /* If we have address ranges, record them. */
11760 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11761
11762 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11763
11764 /* Attach template arguments to function. */
11765 if (! VEC_empty (symbolp, template_args))
11766 {
11767 gdb_assert (templ_func != NULL);
11768
11769 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11770 templ_func->template_arguments
11771 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11772 templ_func->n_template_arguments);
11773 memcpy (templ_func->template_arguments,
11774 VEC_address (symbolp, template_args),
11775 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11776 VEC_free (symbolp, template_args);
11777 }
11778
11779 /* In C++, we can have functions nested inside functions (e.g., when
11780 a function declares a class that has methods). This means that
11781 when we finish processing a function scope, we may need to go
11782 back to building a containing block's symbol lists. */
11783 local_symbols = newobj->locals;
11784 local_using_directives = newobj->local_using_directives;
11785
11786 /* If we've finished processing a top-level function, subsequent
11787 symbols go in the file symbol list. */
11788 if (outermost_context_p ())
11789 cu->list_in_scope = &file_symbols;
11790 }
11791
11792 /* Process all the DIES contained within a lexical block scope. Start
11793 a new scope, process the dies, and then close the scope. */
11794
11795 static void
11796 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11797 {
11798 struct objfile *objfile = cu->objfile;
11799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11800 struct context_stack *newobj;
11801 CORE_ADDR lowpc, highpc;
11802 struct die_info *child_die;
11803 CORE_ADDR baseaddr;
11804
11805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11806
11807 /* Ignore blocks with missing or invalid low and high pc attributes. */
11808 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11809 as multiple lexical blocks? Handling children in a sane way would
11810 be nasty. Might be easier to properly extend generic blocks to
11811 describe ranges. */
11812 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11813 {
11814 case PC_BOUNDS_NOT_PRESENT:
11815 /* DW_TAG_lexical_block has no attributes, process its children as if
11816 there was no wrapping by that DW_TAG_lexical_block.
11817 GCC does no longer produces such DWARF since GCC r224161. */
11818 for (child_die = die->child;
11819 child_die != NULL && child_die->tag;
11820 child_die = sibling_die (child_die))
11821 process_die (child_die, cu);
11822 return;
11823 case PC_BOUNDS_INVALID:
11824 return;
11825 }
11826 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11827 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11828
11829 push_context (0, lowpc);
11830 if (die->child != NULL)
11831 {
11832 child_die = die->child;
11833 while (child_die && child_die->tag)
11834 {
11835 process_die (child_die, cu);
11836 child_die = sibling_die (child_die);
11837 }
11838 }
11839 inherit_abstract_dies (die, cu);
11840 newobj = pop_context ();
11841
11842 if (local_symbols != NULL || local_using_directives != NULL)
11843 {
11844 struct block *block
11845 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11846 newobj->start_addr, highpc);
11847
11848 /* Note that recording ranges after traversing children, as we
11849 do here, means that recording a parent's ranges entails
11850 walking across all its children's ranges as they appear in
11851 the address map, which is quadratic behavior.
11852
11853 It would be nicer to record the parent's ranges before
11854 traversing its children, simply overriding whatever you find
11855 there. But since we don't even decide whether to create a
11856 block until after we've traversed its children, that's hard
11857 to do. */
11858 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11859 }
11860 local_symbols = newobj->locals;
11861 local_using_directives = newobj->local_using_directives;
11862 }
11863
11864 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11865
11866 static void
11867 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11868 {
11869 struct objfile *objfile = cu->objfile;
11870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11871 CORE_ADDR pc, baseaddr;
11872 struct attribute *attr;
11873 struct call_site *call_site, call_site_local;
11874 void **slot;
11875 int nparams;
11876 struct die_info *child_die;
11877
11878 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11879
11880 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11881 if (attr == NULL)
11882 {
11883 /* This was a pre-DWARF-5 GNU extension alias
11884 for DW_AT_call_return_pc. */
11885 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11886 }
11887 if (!attr)
11888 {
11889 complaint (&symfile_complaints,
11890 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11891 "DIE 0x%x [in module %s]"),
11892 to_underlying (die->sect_off), objfile_name (objfile));
11893 return;
11894 }
11895 pc = attr_value_as_address (attr) + baseaddr;
11896 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11897
11898 if (cu->call_site_htab == NULL)
11899 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11900 NULL, &objfile->objfile_obstack,
11901 hashtab_obstack_allocate, NULL);
11902 call_site_local.pc = pc;
11903 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11904 if (*slot != NULL)
11905 {
11906 complaint (&symfile_complaints,
11907 _("Duplicate PC %s for DW_TAG_call_site "
11908 "DIE 0x%x [in module %s]"),
11909 paddress (gdbarch, pc), to_underlying (die->sect_off),
11910 objfile_name (objfile));
11911 return;
11912 }
11913
11914 /* Count parameters at the caller. */
11915
11916 nparams = 0;
11917 for (child_die = die->child; child_die && child_die->tag;
11918 child_die = sibling_die (child_die))
11919 {
11920 if (child_die->tag != DW_TAG_call_site_parameter
11921 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11922 {
11923 complaint (&symfile_complaints,
11924 _("Tag %d is not DW_TAG_call_site_parameter in "
11925 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11926 child_die->tag, to_underlying (child_die->sect_off),
11927 objfile_name (objfile));
11928 continue;
11929 }
11930
11931 nparams++;
11932 }
11933
11934 call_site
11935 = ((struct call_site *)
11936 obstack_alloc (&objfile->objfile_obstack,
11937 sizeof (*call_site)
11938 + (sizeof (*call_site->parameter) * (nparams - 1))));
11939 *slot = call_site;
11940 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11941 call_site->pc = pc;
11942
11943 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11944 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11945 {
11946 struct die_info *func_die;
11947
11948 /* Skip also over DW_TAG_inlined_subroutine. */
11949 for (func_die = die->parent;
11950 func_die && func_die->tag != DW_TAG_subprogram
11951 && func_die->tag != DW_TAG_subroutine_type;
11952 func_die = func_die->parent);
11953
11954 /* DW_AT_call_all_calls is a superset
11955 of DW_AT_call_all_tail_calls. */
11956 if (func_die
11957 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11958 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11959 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11960 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11961 {
11962 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11963 not complete. But keep CALL_SITE for look ups via call_site_htab,
11964 both the initial caller containing the real return address PC and
11965 the final callee containing the current PC of a chain of tail
11966 calls do not need to have the tail call list complete. But any
11967 function candidate for a virtual tail call frame searched via
11968 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11969 determined unambiguously. */
11970 }
11971 else
11972 {
11973 struct type *func_type = NULL;
11974
11975 if (func_die)
11976 func_type = get_die_type (func_die, cu);
11977 if (func_type != NULL)
11978 {
11979 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11980
11981 /* Enlist this call site to the function. */
11982 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11983 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11984 }
11985 else
11986 complaint (&symfile_complaints,
11987 _("Cannot find function owning DW_TAG_call_site "
11988 "DIE 0x%x [in module %s]"),
11989 to_underlying (die->sect_off), objfile_name (objfile));
11990 }
11991 }
11992
11993 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11994 if (attr == NULL)
11995 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11996 if (attr == NULL)
11997 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11998 if (attr == NULL)
11999 {
12000 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12001 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12002 }
12003 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12004 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12005 /* Keep NULL DWARF_BLOCK. */;
12006 else if (attr_form_is_block (attr))
12007 {
12008 struct dwarf2_locexpr_baton *dlbaton;
12009
12010 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12011 dlbaton->data = DW_BLOCK (attr)->data;
12012 dlbaton->size = DW_BLOCK (attr)->size;
12013 dlbaton->per_cu = cu->per_cu;
12014
12015 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12016 }
12017 else if (attr_form_is_ref (attr))
12018 {
12019 struct dwarf2_cu *target_cu = cu;
12020 struct die_info *target_die;
12021
12022 target_die = follow_die_ref (die, attr, &target_cu);
12023 gdb_assert (target_cu->objfile == objfile);
12024 if (die_is_declaration (target_die, target_cu))
12025 {
12026 const char *target_physname;
12027
12028 /* Prefer the mangled name; otherwise compute the demangled one. */
12029 target_physname = dw2_linkage_name (target_die, target_cu);
12030 if (target_physname == NULL)
12031 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12032 if (target_physname == NULL)
12033 complaint (&symfile_complaints,
12034 _("DW_AT_call_target target DIE has invalid "
12035 "physname, for referencing DIE 0x%x [in module %s]"),
12036 to_underlying (die->sect_off), objfile_name (objfile));
12037 else
12038 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12039 }
12040 else
12041 {
12042 CORE_ADDR lowpc;
12043
12044 /* DW_AT_entry_pc should be preferred. */
12045 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12046 <= PC_BOUNDS_INVALID)
12047 complaint (&symfile_complaints,
12048 _("DW_AT_call_target target DIE has invalid "
12049 "low pc, for referencing DIE 0x%x [in module %s]"),
12050 to_underlying (die->sect_off), objfile_name (objfile));
12051 else
12052 {
12053 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12054 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12055 }
12056 }
12057 }
12058 else
12059 complaint (&symfile_complaints,
12060 _("DW_TAG_call_site DW_AT_call_target is neither "
12061 "block nor reference, for DIE 0x%x [in module %s]"),
12062 to_underlying (die->sect_off), objfile_name (objfile));
12063
12064 call_site->per_cu = cu->per_cu;
12065
12066 for (child_die = die->child;
12067 child_die && child_die->tag;
12068 child_die = sibling_die (child_die))
12069 {
12070 struct call_site_parameter *parameter;
12071 struct attribute *loc, *origin;
12072
12073 if (child_die->tag != DW_TAG_call_site_parameter
12074 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12075 {
12076 /* Already printed the complaint above. */
12077 continue;
12078 }
12079
12080 gdb_assert (call_site->parameter_count < nparams);
12081 parameter = &call_site->parameter[call_site->parameter_count];
12082
12083 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12084 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12085 register is contained in DW_AT_call_value. */
12086
12087 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12088 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12089 if (origin == NULL)
12090 {
12091 /* This was a pre-DWARF-5 GNU extension alias
12092 for DW_AT_call_parameter. */
12093 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12094 }
12095 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12096 {
12097 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12098
12099 sect_offset sect_off
12100 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12101 if (!offset_in_cu_p (&cu->header, sect_off))
12102 {
12103 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12104 binding can be done only inside one CU. Such referenced DIE
12105 therefore cannot be even moved to DW_TAG_partial_unit. */
12106 complaint (&symfile_complaints,
12107 _("DW_AT_call_parameter offset is not in CU for "
12108 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12109 to_underlying (child_die->sect_off),
12110 objfile_name (objfile));
12111 continue;
12112 }
12113 parameter->u.param_cu_off
12114 = (cu_offset) (sect_off - cu->header.sect_off);
12115 }
12116 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12117 {
12118 complaint (&symfile_complaints,
12119 _("No DW_FORM_block* DW_AT_location for "
12120 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12121 to_underlying (child_die->sect_off), objfile_name (objfile));
12122 continue;
12123 }
12124 else
12125 {
12126 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12127 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12128 if (parameter->u.dwarf_reg != -1)
12129 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12130 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12131 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12132 &parameter->u.fb_offset))
12133 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12134 else
12135 {
12136 complaint (&symfile_complaints,
12137 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12138 "for DW_FORM_block* DW_AT_location is supported for "
12139 "DW_TAG_call_site child DIE 0x%x "
12140 "[in module %s]"),
12141 to_underlying (child_die->sect_off),
12142 objfile_name (objfile));
12143 continue;
12144 }
12145 }
12146
12147 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12148 if (attr == NULL)
12149 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12150 if (!attr_form_is_block (attr))
12151 {
12152 complaint (&symfile_complaints,
12153 _("No DW_FORM_block* DW_AT_call_value for "
12154 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12155 to_underlying (child_die->sect_off),
12156 objfile_name (objfile));
12157 continue;
12158 }
12159 parameter->value = DW_BLOCK (attr)->data;
12160 parameter->value_size = DW_BLOCK (attr)->size;
12161
12162 /* Parameters are not pre-cleared by memset above. */
12163 parameter->data_value = NULL;
12164 parameter->data_value_size = 0;
12165 call_site->parameter_count++;
12166
12167 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12168 if (attr == NULL)
12169 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12170 if (attr)
12171 {
12172 if (!attr_form_is_block (attr))
12173 complaint (&symfile_complaints,
12174 _("No DW_FORM_block* DW_AT_call_data_value for "
12175 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12176 to_underlying (child_die->sect_off),
12177 objfile_name (objfile));
12178 else
12179 {
12180 parameter->data_value = DW_BLOCK (attr)->data;
12181 parameter->data_value_size = DW_BLOCK (attr)->size;
12182 }
12183 }
12184 }
12185 }
12186
12187 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12188 reading .debug_rnglists.
12189 Callback's type should be:
12190 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12191 Return true if the attributes are present and valid, otherwise,
12192 return false. */
12193
12194 template <typename Callback>
12195 static bool
12196 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12197 Callback &&callback)
12198 {
12199 struct objfile *objfile = cu->objfile;
12200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12201 struct comp_unit_head *cu_header = &cu->header;
12202 bfd *obfd = objfile->obfd;
12203 unsigned int addr_size = cu_header->addr_size;
12204 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12205 /* Base address selection entry. */
12206 CORE_ADDR base;
12207 int found_base;
12208 unsigned int dummy;
12209 const gdb_byte *buffer;
12210 CORE_ADDR low = 0;
12211 CORE_ADDR high = 0;
12212 CORE_ADDR baseaddr;
12213 bool overflow = false;
12214
12215 found_base = cu->base_known;
12216 base = cu->base_address;
12217
12218 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12219 if (offset >= dwarf2_per_objfile->rnglists.size)
12220 {
12221 complaint (&symfile_complaints,
12222 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12223 offset);
12224 return false;
12225 }
12226 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12227
12228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12229
12230 while (1)
12231 {
12232 /* Initialize it due to a false compiler warning. */
12233 CORE_ADDR range_beginning = 0, range_end = 0;
12234 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12235 + dwarf2_per_objfile->rnglists.size);
12236 unsigned int bytes_read;
12237
12238 if (buffer == buf_end)
12239 {
12240 overflow = true;
12241 break;
12242 }
12243 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12244 switch (rlet)
12245 {
12246 case DW_RLE_end_of_list:
12247 break;
12248 case DW_RLE_base_address:
12249 if (buffer + cu->header.addr_size > buf_end)
12250 {
12251 overflow = true;
12252 break;
12253 }
12254 base = read_address (obfd, buffer, cu, &bytes_read);
12255 found_base = 1;
12256 buffer += bytes_read;
12257 break;
12258 case DW_RLE_start_length:
12259 if (buffer + cu->header.addr_size > buf_end)
12260 {
12261 overflow = true;
12262 break;
12263 }
12264 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12265 buffer += bytes_read;
12266 range_end = (range_beginning
12267 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12268 buffer += bytes_read;
12269 if (buffer > buf_end)
12270 {
12271 overflow = true;
12272 break;
12273 }
12274 break;
12275 case DW_RLE_offset_pair:
12276 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12277 buffer += bytes_read;
12278 if (buffer > buf_end)
12279 {
12280 overflow = true;
12281 break;
12282 }
12283 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12284 buffer += bytes_read;
12285 if (buffer > buf_end)
12286 {
12287 overflow = true;
12288 break;
12289 }
12290 break;
12291 case DW_RLE_start_end:
12292 if (buffer + 2 * cu->header.addr_size > buf_end)
12293 {
12294 overflow = true;
12295 break;
12296 }
12297 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12298 buffer += bytes_read;
12299 range_end = read_address (obfd, buffer, cu, &bytes_read);
12300 buffer += bytes_read;
12301 break;
12302 default:
12303 complaint (&symfile_complaints,
12304 _("Invalid .debug_rnglists data (no base address)"));
12305 return false;
12306 }
12307 if (rlet == DW_RLE_end_of_list || overflow)
12308 break;
12309 if (rlet == DW_RLE_base_address)
12310 continue;
12311
12312 if (!found_base)
12313 {
12314 /* We have no valid base address for the ranges
12315 data. */
12316 complaint (&symfile_complaints,
12317 _("Invalid .debug_rnglists data (no base address)"));
12318 return false;
12319 }
12320
12321 if (range_beginning > range_end)
12322 {
12323 /* Inverted range entries are invalid. */
12324 complaint (&symfile_complaints,
12325 _("Invalid .debug_rnglists data (inverted range)"));
12326 return false;
12327 }
12328
12329 /* Empty range entries have no effect. */
12330 if (range_beginning == range_end)
12331 continue;
12332
12333 range_beginning += base;
12334 range_end += base;
12335
12336 /* A not-uncommon case of bad debug info.
12337 Don't pollute the addrmap with bad data. */
12338 if (range_beginning + baseaddr == 0
12339 && !dwarf2_per_objfile->has_section_at_zero)
12340 {
12341 complaint (&symfile_complaints,
12342 _(".debug_rnglists entry has start address of zero"
12343 " [in module %s]"), objfile_name (objfile));
12344 continue;
12345 }
12346
12347 callback (range_beginning, range_end);
12348 }
12349
12350 if (overflow)
12351 {
12352 complaint (&symfile_complaints,
12353 _("Offset %d is not terminated "
12354 "for DW_AT_ranges attribute"),
12355 offset);
12356 return false;
12357 }
12358
12359 return true;
12360 }
12361
12362 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12363 Callback's type should be:
12364 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12365 Return 1 if the attributes are present and valid, otherwise, return 0. */
12366
12367 template <typename Callback>
12368 static int
12369 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12370 Callback &&callback)
12371 {
12372 struct objfile *objfile = cu->objfile;
12373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12374 struct comp_unit_head *cu_header = &cu->header;
12375 bfd *obfd = objfile->obfd;
12376 unsigned int addr_size = cu_header->addr_size;
12377 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12378 /* Base address selection entry. */
12379 CORE_ADDR base;
12380 int found_base;
12381 unsigned int dummy;
12382 const gdb_byte *buffer;
12383 CORE_ADDR baseaddr;
12384
12385 if (cu_header->version >= 5)
12386 return dwarf2_rnglists_process (offset, cu, callback);
12387
12388 found_base = cu->base_known;
12389 base = cu->base_address;
12390
12391 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12392 if (offset >= dwarf2_per_objfile->ranges.size)
12393 {
12394 complaint (&symfile_complaints,
12395 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12396 offset);
12397 return 0;
12398 }
12399 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12400
12401 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12402
12403 while (1)
12404 {
12405 CORE_ADDR range_beginning, range_end;
12406
12407 range_beginning = read_address (obfd, buffer, cu, &dummy);
12408 buffer += addr_size;
12409 range_end = read_address (obfd, buffer, cu, &dummy);
12410 buffer += addr_size;
12411 offset += 2 * addr_size;
12412
12413 /* An end of list marker is a pair of zero addresses. */
12414 if (range_beginning == 0 && range_end == 0)
12415 /* Found the end of list entry. */
12416 break;
12417
12418 /* Each base address selection entry is a pair of 2 values.
12419 The first is the largest possible address, the second is
12420 the base address. Check for a base address here. */
12421 if ((range_beginning & mask) == mask)
12422 {
12423 /* If we found the largest possible address, then we already
12424 have the base address in range_end. */
12425 base = range_end;
12426 found_base = 1;
12427 continue;
12428 }
12429
12430 if (!found_base)
12431 {
12432 /* We have no valid base address for the ranges
12433 data. */
12434 complaint (&symfile_complaints,
12435 _("Invalid .debug_ranges data (no base address)"));
12436 return 0;
12437 }
12438
12439 if (range_beginning > range_end)
12440 {
12441 /* Inverted range entries are invalid. */
12442 complaint (&symfile_complaints,
12443 _("Invalid .debug_ranges data (inverted range)"));
12444 return 0;
12445 }
12446
12447 /* Empty range entries have no effect. */
12448 if (range_beginning == range_end)
12449 continue;
12450
12451 range_beginning += base;
12452 range_end += base;
12453
12454 /* A not-uncommon case of bad debug info.
12455 Don't pollute the addrmap with bad data. */
12456 if (range_beginning + baseaddr == 0
12457 && !dwarf2_per_objfile->has_section_at_zero)
12458 {
12459 complaint (&symfile_complaints,
12460 _(".debug_ranges entry has start address of zero"
12461 " [in module %s]"), objfile_name (objfile));
12462 continue;
12463 }
12464
12465 callback (range_beginning, range_end);
12466 }
12467
12468 return 1;
12469 }
12470
12471 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12472 Return 1 if the attributes are present and valid, otherwise, return 0.
12473 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12474
12475 static int
12476 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12477 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12478 struct partial_symtab *ranges_pst)
12479 {
12480 struct objfile *objfile = cu->objfile;
12481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12482 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12483 SECT_OFF_TEXT (objfile));
12484 int low_set = 0;
12485 CORE_ADDR low = 0;
12486 CORE_ADDR high = 0;
12487 int retval;
12488
12489 retval = dwarf2_ranges_process (offset, cu,
12490 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12491 {
12492 if (ranges_pst != NULL)
12493 {
12494 CORE_ADDR lowpc;
12495 CORE_ADDR highpc;
12496
12497 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12498 range_beginning + baseaddr);
12499 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12500 range_end + baseaddr);
12501 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12502 ranges_pst);
12503 }
12504
12505 /* FIXME: This is recording everything as a low-high
12506 segment of consecutive addresses. We should have a
12507 data structure for discontiguous block ranges
12508 instead. */
12509 if (! low_set)
12510 {
12511 low = range_beginning;
12512 high = range_end;
12513 low_set = 1;
12514 }
12515 else
12516 {
12517 if (range_beginning < low)
12518 low = range_beginning;
12519 if (range_end > high)
12520 high = range_end;
12521 }
12522 });
12523 if (!retval)
12524 return 0;
12525
12526 if (! low_set)
12527 /* If the first entry is an end-of-list marker, the range
12528 describes an empty scope, i.e. no instructions. */
12529 return 0;
12530
12531 if (low_return)
12532 *low_return = low;
12533 if (high_return)
12534 *high_return = high;
12535 return 1;
12536 }
12537
12538 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12539 definition for the return value. *LOWPC and *HIGHPC are set iff
12540 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12541
12542 static enum pc_bounds_kind
12543 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12544 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12545 struct partial_symtab *pst)
12546 {
12547 struct attribute *attr;
12548 struct attribute *attr_high;
12549 CORE_ADDR low = 0;
12550 CORE_ADDR high = 0;
12551 enum pc_bounds_kind ret;
12552
12553 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12554 if (attr_high)
12555 {
12556 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12557 if (attr)
12558 {
12559 low = attr_value_as_address (attr);
12560 high = attr_value_as_address (attr_high);
12561 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12562 high += low;
12563 }
12564 else
12565 /* Found high w/o low attribute. */
12566 return PC_BOUNDS_INVALID;
12567
12568 /* Found consecutive range of addresses. */
12569 ret = PC_BOUNDS_HIGH_LOW;
12570 }
12571 else
12572 {
12573 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12574 if (attr != NULL)
12575 {
12576 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12577 We take advantage of the fact that DW_AT_ranges does not appear
12578 in DW_TAG_compile_unit of DWO files. */
12579 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12580 unsigned int ranges_offset = (DW_UNSND (attr)
12581 + (need_ranges_base
12582 ? cu->ranges_base
12583 : 0));
12584
12585 /* Value of the DW_AT_ranges attribute is the offset in the
12586 .debug_ranges section. */
12587 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12588 return PC_BOUNDS_INVALID;
12589 /* Found discontinuous range of addresses. */
12590 ret = PC_BOUNDS_RANGES;
12591 }
12592 else
12593 return PC_BOUNDS_NOT_PRESENT;
12594 }
12595
12596 /* read_partial_die has also the strict LOW < HIGH requirement. */
12597 if (high <= low)
12598 return PC_BOUNDS_INVALID;
12599
12600 /* When using the GNU linker, .gnu.linkonce. sections are used to
12601 eliminate duplicate copies of functions and vtables and such.
12602 The linker will arbitrarily choose one and discard the others.
12603 The AT_*_pc values for such functions refer to local labels in
12604 these sections. If the section from that file was discarded, the
12605 labels are not in the output, so the relocs get a value of 0.
12606 If this is a discarded function, mark the pc bounds as invalid,
12607 so that GDB will ignore it. */
12608 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12609 return PC_BOUNDS_INVALID;
12610
12611 *lowpc = low;
12612 if (highpc)
12613 *highpc = high;
12614 return ret;
12615 }
12616
12617 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12618 its low and high PC addresses. Do nothing if these addresses could not
12619 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12620 and HIGHPC to the high address if greater than HIGHPC. */
12621
12622 static void
12623 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12624 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12625 struct dwarf2_cu *cu)
12626 {
12627 CORE_ADDR low, high;
12628 struct die_info *child = die->child;
12629
12630 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12631 {
12632 *lowpc = std::min (*lowpc, low);
12633 *highpc = std::max (*highpc, high);
12634 }
12635
12636 /* If the language does not allow nested subprograms (either inside
12637 subprograms or lexical blocks), we're done. */
12638 if (cu->language != language_ada)
12639 return;
12640
12641 /* Check all the children of the given DIE. If it contains nested
12642 subprograms, then check their pc bounds. Likewise, we need to
12643 check lexical blocks as well, as they may also contain subprogram
12644 definitions. */
12645 while (child && child->tag)
12646 {
12647 if (child->tag == DW_TAG_subprogram
12648 || child->tag == DW_TAG_lexical_block)
12649 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12650 child = sibling_die (child);
12651 }
12652 }
12653
12654 /* Get the low and high pc's represented by the scope DIE, and store
12655 them in *LOWPC and *HIGHPC. If the correct values can't be
12656 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12657
12658 static void
12659 get_scope_pc_bounds (struct die_info *die,
12660 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12661 struct dwarf2_cu *cu)
12662 {
12663 CORE_ADDR best_low = (CORE_ADDR) -1;
12664 CORE_ADDR best_high = (CORE_ADDR) 0;
12665 CORE_ADDR current_low, current_high;
12666
12667 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12668 >= PC_BOUNDS_RANGES)
12669 {
12670 best_low = current_low;
12671 best_high = current_high;
12672 }
12673 else
12674 {
12675 struct die_info *child = die->child;
12676
12677 while (child && child->tag)
12678 {
12679 switch (child->tag) {
12680 case DW_TAG_subprogram:
12681 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12682 break;
12683 case DW_TAG_namespace:
12684 case DW_TAG_module:
12685 /* FIXME: carlton/2004-01-16: Should we do this for
12686 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12687 that current GCC's always emit the DIEs corresponding
12688 to definitions of methods of classes as children of a
12689 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12690 the DIEs giving the declarations, which could be
12691 anywhere). But I don't see any reason why the
12692 standards says that they have to be there. */
12693 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12694
12695 if (current_low != ((CORE_ADDR) -1))
12696 {
12697 best_low = std::min (best_low, current_low);
12698 best_high = std::max (best_high, current_high);
12699 }
12700 break;
12701 default:
12702 /* Ignore. */
12703 break;
12704 }
12705
12706 child = sibling_die (child);
12707 }
12708 }
12709
12710 *lowpc = best_low;
12711 *highpc = best_high;
12712 }
12713
12714 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12715 in DIE. */
12716
12717 static void
12718 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12719 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12720 {
12721 struct objfile *objfile = cu->objfile;
12722 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12723 struct attribute *attr;
12724 struct attribute *attr_high;
12725
12726 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12727 if (attr_high)
12728 {
12729 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12730 if (attr)
12731 {
12732 CORE_ADDR low = attr_value_as_address (attr);
12733 CORE_ADDR high = attr_value_as_address (attr_high);
12734
12735 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12736 high += low;
12737
12738 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12739 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12740 record_block_range (block, low, high - 1);
12741 }
12742 }
12743
12744 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12745 if (attr)
12746 {
12747 bfd *obfd = objfile->obfd;
12748 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12749 We take advantage of the fact that DW_AT_ranges does not appear
12750 in DW_TAG_compile_unit of DWO files. */
12751 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12752
12753 /* The value of the DW_AT_ranges attribute is the offset of the
12754 address range list in the .debug_ranges section. */
12755 unsigned long offset = (DW_UNSND (attr)
12756 + (need_ranges_base ? cu->ranges_base : 0));
12757 const gdb_byte *buffer;
12758
12759 /* For some target architectures, but not others, the
12760 read_address function sign-extends the addresses it returns.
12761 To recognize base address selection entries, we need a
12762 mask. */
12763 unsigned int addr_size = cu->header.addr_size;
12764 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12765
12766 /* The base address, to which the next pair is relative. Note
12767 that this 'base' is a DWARF concept: most entries in a range
12768 list are relative, to reduce the number of relocs against the
12769 debugging information. This is separate from this function's
12770 'baseaddr' argument, which GDB uses to relocate debugging
12771 information from a shared library based on the address at
12772 which the library was loaded. */
12773 CORE_ADDR base = cu->base_address;
12774 int base_known = cu->base_known;
12775
12776 dwarf2_ranges_process (offset, cu,
12777 [&] (CORE_ADDR start, CORE_ADDR end)
12778 {
12779 start += baseaddr;
12780 end += baseaddr;
12781 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12782 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12783 record_block_range (block, start, end - 1);
12784 });
12785 }
12786 }
12787
12788 /* Check whether the producer field indicates either of GCC < 4.6, or the
12789 Intel C/C++ compiler, and cache the result in CU. */
12790
12791 static void
12792 check_producer (struct dwarf2_cu *cu)
12793 {
12794 int major, minor;
12795
12796 if (cu->producer == NULL)
12797 {
12798 /* For unknown compilers expect their behavior is DWARF version
12799 compliant.
12800
12801 GCC started to support .debug_types sections by -gdwarf-4 since
12802 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12803 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12804 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12805 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12806 }
12807 else if (producer_is_gcc (cu->producer, &major, &minor))
12808 {
12809 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12810 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12811 }
12812 else if (producer_is_icc (cu->producer, &major, &minor))
12813 cu->producer_is_icc_lt_14 = major < 14;
12814 else
12815 {
12816 /* For other non-GCC compilers, expect their behavior is DWARF version
12817 compliant. */
12818 }
12819
12820 cu->checked_producer = 1;
12821 }
12822
12823 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12824 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12825 during 4.6.0 experimental. */
12826
12827 static int
12828 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12829 {
12830 if (!cu->checked_producer)
12831 check_producer (cu);
12832
12833 return cu->producer_is_gxx_lt_4_6;
12834 }
12835
12836 /* Return the default accessibility type if it is not overriden by
12837 DW_AT_accessibility. */
12838
12839 static enum dwarf_access_attribute
12840 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12841 {
12842 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12843 {
12844 /* The default DWARF 2 accessibility for members is public, the default
12845 accessibility for inheritance is private. */
12846
12847 if (die->tag != DW_TAG_inheritance)
12848 return DW_ACCESS_public;
12849 else
12850 return DW_ACCESS_private;
12851 }
12852 else
12853 {
12854 /* DWARF 3+ defines the default accessibility a different way. The same
12855 rules apply now for DW_TAG_inheritance as for the members and it only
12856 depends on the container kind. */
12857
12858 if (die->parent->tag == DW_TAG_class_type)
12859 return DW_ACCESS_private;
12860 else
12861 return DW_ACCESS_public;
12862 }
12863 }
12864
12865 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12866 offset. If the attribute was not found return 0, otherwise return
12867 1. If it was found but could not properly be handled, set *OFFSET
12868 to 0. */
12869
12870 static int
12871 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12872 LONGEST *offset)
12873 {
12874 struct attribute *attr;
12875
12876 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12877 if (attr != NULL)
12878 {
12879 *offset = 0;
12880
12881 /* Note that we do not check for a section offset first here.
12882 This is because DW_AT_data_member_location is new in DWARF 4,
12883 so if we see it, we can assume that a constant form is really
12884 a constant and not a section offset. */
12885 if (attr_form_is_constant (attr))
12886 *offset = dwarf2_get_attr_constant_value (attr, 0);
12887 else if (attr_form_is_section_offset (attr))
12888 dwarf2_complex_location_expr_complaint ();
12889 else if (attr_form_is_block (attr))
12890 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12891 else
12892 dwarf2_complex_location_expr_complaint ();
12893
12894 return 1;
12895 }
12896
12897 return 0;
12898 }
12899
12900 /* Add an aggregate field to the field list. */
12901
12902 static void
12903 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12904 struct dwarf2_cu *cu)
12905 {
12906 struct objfile *objfile = cu->objfile;
12907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12908 struct nextfield *new_field;
12909 struct attribute *attr;
12910 struct field *fp;
12911 const char *fieldname = "";
12912
12913 /* Allocate a new field list entry and link it in. */
12914 new_field = XNEW (struct nextfield);
12915 make_cleanup (xfree, new_field);
12916 memset (new_field, 0, sizeof (struct nextfield));
12917
12918 if (die->tag == DW_TAG_inheritance)
12919 {
12920 new_field->next = fip->baseclasses;
12921 fip->baseclasses = new_field;
12922 }
12923 else
12924 {
12925 new_field->next = fip->fields;
12926 fip->fields = new_field;
12927 }
12928 fip->nfields++;
12929
12930 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12931 if (attr)
12932 new_field->accessibility = DW_UNSND (attr);
12933 else
12934 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12935 if (new_field->accessibility != DW_ACCESS_public)
12936 fip->non_public_fields = 1;
12937
12938 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12939 if (attr)
12940 new_field->virtuality = DW_UNSND (attr);
12941 else
12942 new_field->virtuality = DW_VIRTUALITY_none;
12943
12944 fp = &new_field->field;
12945
12946 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12947 {
12948 LONGEST offset;
12949
12950 /* Data member other than a C++ static data member. */
12951
12952 /* Get type of field. */
12953 fp->type = die_type (die, cu);
12954
12955 SET_FIELD_BITPOS (*fp, 0);
12956
12957 /* Get bit size of field (zero if none). */
12958 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12959 if (attr)
12960 {
12961 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12962 }
12963 else
12964 {
12965 FIELD_BITSIZE (*fp) = 0;
12966 }
12967
12968 /* Get bit offset of field. */
12969 if (handle_data_member_location (die, cu, &offset))
12970 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12971 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12972 if (attr)
12973 {
12974 if (gdbarch_bits_big_endian (gdbarch))
12975 {
12976 /* For big endian bits, the DW_AT_bit_offset gives the
12977 additional bit offset from the MSB of the containing
12978 anonymous object to the MSB of the field. We don't
12979 have to do anything special since we don't need to
12980 know the size of the anonymous object. */
12981 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12982 }
12983 else
12984 {
12985 /* For little endian bits, compute the bit offset to the
12986 MSB of the anonymous object, subtract off the number of
12987 bits from the MSB of the field to the MSB of the
12988 object, and then subtract off the number of bits of
12989 the field itself. The result is the bit offset of
12990 the LSB of the field. */
12991 int anonymous_size;
12992 int bit_offset = DW_UNSND (attr);
12993
12994 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12995 if (attr)
12996 {
12997 /* The size of the anonymous object containing
12998 the bit field is explicit, so use the
12999 indicated size (in bytes). */
13000 anonymous_size = DW_UNSND (attr);
13001 }
13002 else
13003 {
13004 /* The size of the anonymous object containing
13005 the bit field must be inferred from the type
13006 attribute of the data member containing the
13007 bit field. */
13008 anonymous_size = TYPE_LENGTH (fp->type);
13009 }
13010 SET_FIELD_BITPOS (*fp,
13011 (FIELD_BITPOS (*fp)
13012 + anonymous_size * bits_per_byte
13013 - bit_offset - FIELD_BITSIZE (*fp)));
13014 }
13015 }
13016 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13017 if (attr != NULL)
13018 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13019 + dwarf2_get_attr_constant_value (attr, 0)));
13020
13021 /* Get name of field. */
13022 fieldname = dwarf2_name (die, cu);
13023 if (fieldname == NULL)
13024 fieldname = "";
13025
13026 /* The name is already allocated along with this objfile, so we don't
13027 need to duplicate it for the type. */
13028 fp->name = fieldname;
13029
13030 /* Change accessibility for artificial fields (e.g. virtual table
13031 pointer or virtual base class pointer) to private. */
13032 if (dwarf2_attr (die, DW_AT_artificial, cu))
13033 {
13034 FIELD_ARTIFICIAL (*fp) = 1;
13035 new_field->accessibility = DW_ACCESS_private;
13036 fip->non_public_fields = 1;
13037 }
13038 }
13039 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13040 {
13041 /* C++ static member. */
13042
13043 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13044 is a declaration, but all versions of G++ as of this writing
13045 (so through at least 3.2.1) incorrectly generate
13046 DW_TAG_variable tags. */
13047
13048 const char *physname;
13049
13050 /* Get name of field. */
13051 fieldname = dwarf2_name (die, cu);
13052 if (fieldname == NULL)
13053 return;
13054
13055 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13056 if (attr
13057 /* Only create a symbol if this is an external value.
13058 new_symbol checks this and puts the value in the global symbol
13059 table, which we want. If it is not external, new_symbol
13060 will try to put the value in cu->list_in_scope which is wrong. */
13061 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13062 {
13063 /* A static const member, not much different than an enum as far as
13064 we're concerned, except that we can support more types. */
13065 new_symbol (die, NULL, cu);
13066 }
13067
13068 /* Get physical name. */
13069 physname = dwarf2_physname (fieldname, die, cu);
13070
13071 /* The name is already allocated along with this objfile, so we don't
13072 need to duplicate it for the type. */
13073 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13074 FIELD_TYPE (*fp) = die_type (die, cu);
13075 FIELD_NAME (*fp) = fieldname;
13076 }
13077 else if (die->tag == DW_TAG_inheritance)
13078 {
13079 LONGEST offset;
13080
13081 /* C++ base class field. */
13082 if (handle_data_member_location (die, cu, &offset))
13083 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13084 FIELD_BITSIZE (*fp) = 0;
13085 FIELD_TYPE (*fp) = die_type (die, cu);
13086 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13087 fip->nbaseclasses++;
13088 }
13089 }
13090
13091 /* Add a typedef defined in the scope of the FIP's class. */
13092
13093 static void
13094 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13095 struct dwarf2_cu *cu)
13096 {
13097 struct typedef_field_list *new_field;
13098 struct typedef_field *fp;
13099
13100 /* Allocate a new field list entry and link it in. */
13101 new_field = XCNEW (struct typedef_field_list);
13102 make_cleanup (xfree, new_field);
13103
13104 gdb_assert (die->tag == DW_TAG_typedef);
13105
13106 fp = &new_field->field;
13107
13108 /* Get name of field. */
13109 fp->name = dwarf2_name (die, cu);
13110 if (fp->name == NULL)
13111 return;
13112
13113 fp->type = read_type_die (die, cu);
13114
13115 /* Save accessibility. */
13116 enum dwarf_access_attribute accessibility;
13117 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13118 if (attr != NULL)
13119 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13120 else
13121 accessibility = dwarf2_default_access_attribute (die, cu);
13122 switch (accessibility)
13123 {
13124 case DW_ACCESS_public:
13125 /* The assumed value if neither private nor protected. */
13126 break;
13127 case DW_ACCESS_private:
13128 fp->is_private = 1;
13129 break;
13130 case DW_ACCESS_protected:
13131 fp->is_protected = 1;
13132 break;
13133 default:
13134 complaint (&symfile_complaints,
13135 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
13136 }
13137
13138 new_field->next = fip->typedef_field_list;
13139 fip->typedef_field_list = new_field;
13140 fip->typedef_field_list_count++;
13141 }
13142
13143 /* Create the vector of fields, and attach it to the type. */
13144
13145 static void
13146 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13147 struct dwarf2_cu *cu)
13148 {
13149 int nfields = fip->nfields;
13150
13151 /* Record the field count, allocate space for the array of fields,
13152 and create blank accessibility bitfields if necessary. */
13153 TYPE_NFIELDS (type) = nfields;
13154 TYPE_FIELDS (type) = (struct field *)
13155 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13156 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13157
13158 if (fip->non_public_fields && cu->language != language_ada)
13159 {
13160 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13161
13162 TYPE_FIELD_PRIVATE_BITS (type) =
13163 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13164 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13165
13166 TYPE_FIELD_PROTECTED_BITS (type) =
13167 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13168 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13169
13170 TYPE_FIELD_IGNORE_BITS (type) =
13171 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13172 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13173 }
13174
13175 /* If the type has baseclasses, allocate and clear a bit vector for
13176 TYPE_FIELD_VIRTUAL_BITS. */
13177 if (fip->nbaseclasses && cu->language != language_ada)
13178 {
13179 int num_bytes = B_BYTES (fip->nbaseclasses);
13180 unsigned char *pointer;
13181
13182 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13183 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13184 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13185 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13186 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13187 }
13188
13189 /* Copy the saved-up fields into the field vector. Start from the head of
13190 the list, adding to the tail of the field array, so that they end up in
13191 the same order in the array in which they were added to the list. */
13192 while (nfields-- > 0)
13193 {
13194 struct nextfield *fieldp;
13195
13196 if (fip->fields)
13197 {
13198 fieldp = fip->fields;
13199 fip->fields = fieldp->next;
13200 }
13201 else
13202 {
13203 fieldp = fip->baseclasses;
13204 fip->baseclasses = fieldp->next;
13205 }
13206
13207 TYPE_FIELD (type, nfields) = fieldp->field;
13208 switch (fieldp->accessibility)
13209 {
13210 case DW_ACCESS_private:
13211 if (cu->language != language_ada)
13212 SET_TYPE_FIELD_PRIVATE (type, nfields);
13213 break;
13214
13215 case DW_ACCESS_protected:
13216 if (cu->language != language_ada)
13217 SET_TYPE_FIELD_PROTECTED (type, nfields);
13218 break;
13219
13220 case DW_ACCESS_public:
13221 break;
13222
13223 default:
13224 /* Unknown accessibility. Complain and treat it as public. */
13225 {
13226 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13227 fieldp->accessibility);
13228 }
13229 break;
13230 }
13231 if (nfields < fip->nbaseclasses)
13232 {
13233 switch (fieldp->virtuality)
13234 {
13235 case DW_VIRTUALITY_virtual:
13236 case DW_VIRTUALITY_pure_virtual:
13237 if (cu->language == language_ada)
13238 error (_("unexpected virtuality in component of Ada type"));
13239 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13240 break;
13241 }
13242 }
13243 }
13244 }
13245
13246 /* Return true if this member function is a constructor, false
13247 otherwise. */
13248
13249 static int
13250 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13251 {
13252 const char *fieldname;
13253 const char *type_name;
13254 int len;
13255
13256 if (die->parent == NULL)
13257 return 0;
13258
13259 if (die->parent->tag != DW_TAG_structure_type
13260 && die->parent->tag != DW_TAG_union_type
13261 && die->parent->tag != DW_TAG_class_type)
13262 return 0;
13263
13264 fieldname = dwarf2_name (die, cu);
13265 type_name = dwarf2_name (die->parent, cu);
13266 if (fieldname == NULL || type_name == NULL)
13267 return 0;
13268
13269 len = strlen (fieldname);
13270 return (strncmp (fieldname, type_name, len) == 0
13271 && (type_name[len] == '\0' || type_name[len] == '<'));
13272 }
13273
13274 /* Add a member function to the proper fieldlist. */
13275
13276 static void
13277 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13278 struct type *type, struct dwarf2_cu *cu)
13279 {
13280 struct objfile *objfile = cu->objfile;
13281 struct attribute *attr;
13282 struct fnfieldlist *flp;
13283 int i;
13284 struct fn_field *fnp;
13285 const char *fieldname;
13286 struct nextfnfield *new_fnfield;
13287 struct type *this_type;
13288 enum dwarf_access_attribute accessibility;
13289
13290 if (cu->language == language_ada)
13291 error (_("unexpected member function in Ada type"));
13292
13293 /* Get name of member function. */
13294 fieldname = dwarf2_name (die, cu);
13295 if (fieldname == NULL)
13296 return;
13297
13298 /* Look up member function name in fieldlist. */
13299 for (i = 0; i < fip->nfnfields; i++)
13300 {
13301 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13302 break;
13303 }
13304
13305 /* Create new list element if necessary. */
13306 if (i < fip->nfnfields)
13307 flp = &fip->fnfieldlists[i];
13308 else
13309 {
13310 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13311 {
13312 fip->fnfieldlists = (struct fnfieldlist *)
13313 xrealloc (fip->fnfieldlists,
13314 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13315 * sizeof (struct fnfieldlist));
13316 if (fip->nfnfields == 0)
13317 make_cleanup (free_current_contents, &fip->fnfieldlists);
13318 }
13319 flp = &fip->fnfieldlists[fip->nfnfields];
13320 flp->name = fieldname;
13321 flp->length = 0;
13322 flp->head = NULL;
13323 i = fip->nfnfields++;
13324 }
13325
13326 /* Create a new member function field and chain it to the field list
13327 entry. */
13328 new_fnfield = XNEW (struct nextfnfield);
13329 make_cleanup (xfree, new_fnfield);
13330 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13331 new_fnfield->next = flp->head;
13332 flp->head = new_fnfield;
13333 flp->length++;
13334
13335 /* Fill in the member function field info. */
13336 fnp = &new_fnfield->fnfield;
13337
13338 /* Delay processing of the physname until later. */
13339 if (cu->language == language_cplus)
13340 {
13341 add_to_method_list (type, i, flp->length - 1, fieldname,
13342 die, cu);
13343 }
13344 else
13345 {
13346 const char *physname = dwarf2_physname (fieldname, die, cu);
13347 fnp->physname = physname ? physname : "";
13348 }
13349
13350 fnp->type = alloc_type (objfile);
13351 this_type = read_type_die (die, cu);
13352 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13353 {
13354 int nparams = TYPE_NFIELDS (this_type);
13355
13356 /* TYPE is the domain of this method, and THIS_TYPE is the type
13357 of the method itself (TYPE_CODE_METHOD). */
13358 smash_to_method_type (fnp->type, type,
13359 TYPE_TARGET_TYPE (this_type),
13360 TYPE_FIELDS (this_type),
13361 TYPE_NFIELDS (this_type),
13362 TYPE_VARARGS (this_type));
13363
13364 /* Handle static member functions.
13365 Dwarf2 has no clean way to discern C++ static and non-static
13366 member functions. G++ helps GDB by marking the first
13367 parameter for non-static member functions (which is the this
13368 pointer) as artificial. We obtain this information from
13369 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13370 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13371 fnp->voffset = VOFFSET_STATIC;
13372 }
13373 else
13374 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13375 dwarf2_full_name (fieldname, die, cu));
13376
13377 /* Get fcontext from DW_AT_containing_type if present. */
13378 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13379 fnp->fcontext = die_containing_type (die, cu);
13380
13381 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13382 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13383
13384 /* Get accessibility. */
13385 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13386 if (attr)
13387 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13388 else
13389 accessibility = dwarf2_default_access_attribute (die, cu);
13390 switch (accessibility)
13391 {
13392 case DW_ACCESS_private:
13393 fnp->is_private = 1;
13394 break;
13395 case DW_ACCESS_protected:
13396 fnp->is_protected = 1;
13397 break;
13398 }
13399
13400 /* Check for artificial methods. */
13401 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13402 if (attr && DW_UNSND (attr) != 0)
13403 fnp->is_artificial = 1;
13404
13405 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13406
13407 /* Get index in virtual function table if it is a virtual member
13408 function. For older versions of GCC, this is an offset in the
13409 appropriate virtual table, as specified by DW_AT_containing_type.
13410 For everyone else, it is an expression to be evaluated relative
13411 to the object address. */
13412
13413 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13414 if (attr)
13415 {
13416 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13417 {
13418 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13419 {
13420 /* Old-style GCC. */
13421 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13422 }
13423 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13424 || (DW_BLOCK (attr)->size > 1
13425 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13426 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13427 {
13428 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13429 if ((fnp->voffset % cu->header.addr_size) != 0)
13430 dwarf2_complex_location_expr_complaint ();
13431 else
13432 fnp->voffset /= cu->header.addr_size;
13433 fnp->voffset += 2;
13434 }
13435 else
13436 dwarf2_complex_location_expr_complaint ();
13437
13438 if (!fnp->fcontext)
13439 {
13440 /* If there is no `this' field and no DW_AT_containing_type,
13441 we cannot actually find a base class context for the
13442 vtable! */
13443 if (TYPE_NFIELDS (this_type) == 0
13444 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13445 {
13446 complaint (&symfile_complaints,
13447 _("cannot determine context for virtual member "
13448 "function \"%s\" (offset %d)"),
13449 fieldname, to_underlying (die->sect_off));
13450 }
13451 else
13452 {
13453 fnp->fcontext
13454 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13455 }
13456 }
13457 }
13458 else if (attr_form_is_section_offset (attr))
13459 {
13460 dwarf2_complex_location_expr_complaint ();
13461 }
13462 else
13463 {
13464 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13465 fieldname);
13466 }
13467 }
13468 else
13469 {
13470 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13471 if (attr && DW_UNSND (attr))
13472 {
13473 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13474 complaint (&symfile_complaints,
13475 _("Member function \"%s\" (offset %d) is virtual "
13476 "but the vtable offset is not specified"),
13477 fieldname, to_underlying (die->sect_off));
13478 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13479 TYPE_CPLUS_DYNAMIC (type) = 1;
13480 }
13481 }
13482 }
13483
13484 /* Create the vector of member function fields, and attach it to the type. */
13485
13486 static void
13487 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13488 struct dwarf2_cu *cu)
13489 {
13490 struct fnfieldlist *flp;
13491 int i;
13492
13493 if (cu->language == language_ada)
13494 error (_("unexpected member functions in Ada type"));
13495
13496 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13497 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13498 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13499
13500 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13501 {
13502 struct nextfnfield *nfp = flp->head;
13503 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13504 int k;
13505
13506 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13507 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13508 fn_flp->fn_fields = (struct fn_field *)
13509 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13510 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13511 fn_flp->fn_fields[k] = nfp->fnfield;
13512 }
13513
13514 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13515 }
13516
13517 /* Returns non-zero if NAME is the name of a vtable member in CU's
13518 language, zero otherwise. */
13519 static int
13520 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13521 {
13522 static const char vptr[] = "_vptr";
13523 static const char vtable[] = "vtable";
13524
13525 /* Look for the C++ form of the vtable. */
13526 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13527 return 1;
13528
13529 return 0;
13530 }
13531
13532 /* GCC outputs unnamed structures that are really pointers to member
13533 functions, with the ABI-specified layout. If TYPE describes
13534 such a structure, smash it into a member function type.
13535
13536 GCC shouldn't do this; it should just output pointer to member DIEs.
13537 This is GCC PR debug/28767. */
13538
13539 static void
13540 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13541 {
13542 struct type *pfn_type, *self_type, *new_type;
13543
13544 /* Check for a structure with no name and two children. */
13545 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13546 return;
13547
13548 /* Check for __pfn and __delta members. */
13549 if (TYPE_FIELD_NAME (type, 0) == NULL
13550 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13551 || TYPE_FIELD_NAME (type, 1) == NULL
13552 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13553 return;
13554
13555 /* Find the type of the method. */
13556 pfn_type = TYPE_FIELD_TYPE (type, 0);
13557 if (pfn_type == NULL
13558 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13559 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13560 return;
13561
13562 /* Look for the "this" argument. */
13563 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13564 if (TYPE_NFIELDS (pfn_type) == 0
13565 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13566 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13567 return;
13568
13569 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13570 new_type = alloc_type (objfile);
13571 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13572 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13573 TYPE_VARARGS (pfn_type));
13574 smash_to_methodptr_type (type, new_type);
13575 }
13576
13577
13578 /* Called when we find the DIE that starts a structure or union scope
13579 (definition) to create a type for the structure or union. Fill in
13580 the type's name and general properties; the members will not be
13581 processed until process_structure_scope. A symbol table entry for
13582 the type will also not be done until process_structure_scope (assuming
13583 the type has a name).
13584
13585 NOTE: we need to call these functions regardless of whether or not the
13586 DIE has a DW_AT_name attribute, since it might be an anonymous
13587 structure or union. This gets the type entered into our set of
13588 user defined types. */
13589
13590 static struct type *
13591 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13592 {
13593 struct objfile *objfile = cu->objfile;
13594 struct type *type;
13595 struct attribute *attr;
13596 const char *name;
13597
13598 /* If the definition of this type lives in .debug_types, read that type.
13599 Don't follow DW_AT_specification though, that will take us back up
13600 the chain and we want to go down. */
13601 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13602 if (attr)
13603 {
13604 type = get_DW_AT_signature_type (die, attr, cu);
13605
13606 /* The type's CU may not be the same as CU.
13607 Ensure TYPE is recorded with CU in die_type_hash. */
13608 return set_die_type (die, type, cu);
13609 }
13610
13611 type = alloc_type (objfile);
13612 INIT_CPLUS_SPECIFIC (type);
13613
13614 name = dwarf2_name (die, cu);
13615 if (name != NULL)
13616 {
13617 if (cu->language == language_cplus
13618 || cu->language == language_d
13619 || cu->language == language_rust)
13620 {
13621 const char *full_name = dwarf2_full_name (name, die, cu);
13622
13623 /* dwarf2_full_name might have already finished building the DIE's
13624 type. If so, there is no need to continue. */
13625 if (get_die_type (die, cu) != NULL)
13626 return get_die_type (die, cu);
13627
13628 TYPE_TAG_NAME (type) = full_name;
13629 if (die->tag == DW_TAG_structure_type
13630 || die->tag == DW_TAG_class_type)
13631 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13632 }
13633 else
13634 {
13635 /* The name is already allocated along with this objfile, so
13636 we don't need to duplicate it for the type. */
13637 TYPE_TAG_NAME (type) = name;
13638 if (die->tag == DW_TAG_class_type)
13639 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13640 }
13641 }
13642
13643 if (die->tag == DW_TAG_structure_type)
13644 {
13645 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13646 }
13647 else if (die->tag == DW_TAG_union_type)
13648 {
13649 TYPE_CODE (type) = TYPE_CODE_UNION;
13650 }
13651 else
13652 {
13653 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13654 }
13655
13656 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13657 TYPE_DECLARED_CLASS (type) = 1;
13658
13659 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13660 if (attr)
13661 {
13662 if (attr_form_is_constant (attr))
13663 TYPE_LENGTH (type) = DW_UNSND (attr);
13664 else
13665 {
13666 /* For the moment, dynamic type sizes are not supported
13667 by GDB's struct type. The actual size is determined
13668 on-demand when resolving the type of a given object,
13669 so set the type's length to zero for now. Otherwise,
13670 we record an expression as the length, and that expression
13671 could lead to a very large value, which could eventually
13672 lead to us trying to allocate that much memory when creating
13673 a value of that type. */
13674 TYPE_LENGTH (type) = 0;
13675 }
13676 }
13677 else
13678 {
13679 TYPE_LENGTH (type) = 0;
13680 }
13681
13682 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
13683 {
13684 /* ICC<14 does not output the required DW_AT_declaration on
13685 incomplete types, but gives them a size of zero. */
13686 TYPE_STUB (type) = 1;
13687 }
13688 else
13689 TYPE_STUB_SUPPORTED (type) = 1;
13690
13691 if (die_is_declaration (die, cu))
13692 TYPE_STUB (type) = 1;
13693 else if (attr == NULL && die->child == NULL
13694 && producer_is_realview (cu->producer))
13695 /* RealView does not output the required DW_AT_declaration
13696 on incomplete types. */
13697 TYPE_STUB (type) = 1;
13698
13699 /* We need to add the type field to the die immediately so we don't
13700 infinitely recurse when dealing with pointers to the structure
13701 type within the structure itself. */
13702 set_die_type (die, type, cu);
13703
13704 /* set_die_type should be already done. */
13705 set_descriptive_type (type, die, cu);
13706
13707 return type;
13708 }
13709
13710 /* Finish creating a structure or union type, including filling in
13711 its members and creating a symbol for it. */
13712
13713 static void
13714 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13715 {
13716 struct objfile *objfile = cu->objfile;
13717 struct die_info *child_die;
13718 struct type *type;
13719
13720 type = get_die_type (die, cu);
13721 if (type == NULL)
13722 type = read_structure_type (die, cu);
13723
13724 if (die->child != NULL && ! die_is_declaration (die, cu))
13725 {
13726 struct field_info fi;
13727 VEC (symbolp) *template_args = NULL;
13728 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13729
13730 memset (&fi, 0, sizeof (struct field_info));
13731
13732 child_die = die->child;
13733
13734 while (child_die && child_die->tag)
13735 {
13736 if (child_die->tag == DW_TAG_member
13737 || child_die->tag == DW_TAG_variable)
13738 {
13739 /* NOTE: carlton/2002-11-05: A C++ static data member
13740 should be a DW_TAG_member that is a declaration, but
13741 all versions of G++ as of this writing (so through at
13742 least 3.2.1) incorrectly generate DW_TAG_variable
13743 tags for them instead. */
13744 dwarf2_add_field (&fi, child_die, cu);
13745 }
13746 else if (child_die->tag == DW_TAG_subprogram)
13747 {
13748 /* Rust doesn't have member functions in the C++ sense.
13749 However, it does emit ordinary functions as children
13750 of a struct DIE. */
13751 if (cu->language == language_rust)
13752 read_func_scope (child_die, cu);
13753 else
13754 {
13755 /* C++ member function. */
13756 dwarf2_add_member_fn (&fi, child_die, type, cu);
13757 }
13758 }
13759 else if (child_die->tag == DW_TAG_inheritance)
13760 {
13761 /* C++ base class field. */
13762 dwarf2_add_field (&fi, child_die, cu);
13763 }
13764 else if (child_die->tag == DW_TAG_typedef)
13765 dwarf2_add_typedef (&fi, child_die, cu);
13766 else if (child_die->tag == DW_TAG_template_type_param
13767 || child_die->tag == DW_TAG_template_value_param)
13768 {
13769 struct symbol *arg = new_symbol (child_die, NULL, cu);
13770
13771 if (arg != NULL)
13772 VEC_safe_push (symbolp, template_args, arg);
13773 }
13774
13775 child_die = sibling_die (child_die);
13776 }
13777
13778 /* Attach template arguments to type. */
13779 if (! VEC_empty (symbolp, template_args))
13780 {
13781 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13782 TYPE_N_TEMPLATE_ARGUMENTS (type)
13783 = VEC_length (symbolp, template_args);
13784 TYPE_TEMPLATE_ARGUMENTS (type)
13785 = XOBNEWVEC (&objfile->objfile_obstack,
13786 struct symbol *,
13787 TYPE_N_TEMPLATE_ARGUMENTS (type));
13788 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13789 VEC_address (symbolp, template_args),
13790 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13791 * sizeof (struct symbol *)));
13792 VEC_free (symbolp, template_args);
13793 }
13794
13795 /* Attach fields and member functions to the type. */
13796 if (fi.nfields)
13797 dwarf2_attach_fields_to_type (&fi, type, cu);
13798 if (fi.nfnfields)
13799 {
13800 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13801
13802 /* Get the type which refers to the base class (possibly this
13803 class itself) which contains the vtable pointer for the current
13804 class from the DW_AT_containing_type attribute. This use of
13805 DW_AT_containing_type is a GNU extension. */
13806
13807 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13808 {
13809 struct type *t = die_containing_type (die, cu);
13810
13811 set_type_vptr_basetype (type, t);
13812 if (type == t)
13813 {
13814 int i;
13815
13816 /* Our own class provides vtbl ptr. */
13817 for (i = TYPE_NFIELDS (t) - 1;
13818 i >= TYPE_N_BASECLASSES (t);
13819 --i)
13820 {
13821 const char *fieldname = TYPE_FIELD_NAME (t, i);
13822
13823 if (is_vtable_name (fieldname, cu))
13824 {
13825 set_type_vptr_fieldno (type, i);
13826 break;
13827 }
13828 }
13829
13830 /* Complain if virtual function table field not found. */
13831 if (i < TYPE_N_BASECLASSES (t))
13832 complaint (&symfile_complaints,
13833 _("virtual function table pointer "
13834 "not found when defining class '%s'"),
13835 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13836 "");
13837 }
13838 else
13839 {
13840 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13841 }
13842 }
13843 else if (cu->producer
13844 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13845 {
13846 /* The IBM XLC compiler does not provide direct indication
13847 of the containing type, but the vtable pointer is
13848 always named __vfp. */
13849
13850 int i;
13851
13852 for (i = TYPE_NFIELDS (type) - 1;
13853 i >= TYPE_N_BASECLASSES (type);
13854 --i)
13855 {
13856 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13857 {
13858 set_type_vptr_fieldno (type, i);
13859 set_type_vptr_basetype (type, type);
13860 break;
13861 }
13862 }
13863 }
13864 }
13865
13866 /* Copy fi.typedef_field_list linked list elements content into the
13867 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13868 if (fi.typedef_field_list)
13869 {
13870 int i = fi.typedef_field_list_count;
13871
13872 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13873 TYPE_TYPEDEF_FIELD_ARRAY (type)
13874 = ((struct typedef_field *)
13875 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13876 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13877
13878 /* Reverse the list order to keep the debug info elements order. */
13879 while (--i >= 0)
13880 {
13881 struct typedef_field *dest, *src;
13882
13883 dest = &TYPE_TYPEDEF_FIELD (type, i);
13884 src = &fi.typedef_field_list->field;
13885 fi.typedef_field_list = fi.typedef_field_list->next;
13886 *dest = *src;
13887 }
13888 }
13889
13890 do_cleanups (back_to);
13891 }
13892
13893 quirk_gcc_member_function_pointer (type, objfile);
13894
13895 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13896 snapshots) has been known to create a die giving a declaration
13897 for a class that has, as a child, a die giving a definition for a
13898 nested class. So we have to process our children even if the
13899 current die is a declaration. Normally, of course, a declaration
13900 won't have any children at all. */
13901
13902 child_die = die->child;
13903
13904 while (child_die != NULL && child_die->tag)
13905 {
13906 if (child_die->tag == DW_TAG_member
13907 || child_die->tag == DW_TAG_variable
13908 || child_die->tag == DW_TAG_inheritance
13909 || child_die->tag == DW_TAG_template_value_param
13910 || child_die->tag == DW_TAG_template_type_param)
13911 {
13912 /* Do nothing. */
13913 }
13914 else
13915 process_die (child_die, cu);
13916
13917 child_die = sibling_die (child_die);
13918 }
13919
13920 /* Do not consider external references. According to the DWARF standard,
13921 these DIEs are identified by the fact that they have no byte_size
13922 attribute, and a declaration attribute. */
13923 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13924 || !die_is_declaration (die, cu))
13925 new_symbol (die, type, cu);
13926 }
13927
13928 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13929 update TYPE using some information only available in DIE's children. */
13930
13931 static void
13932 update_enumeration_type_from_children (struct die_info *die,
13933 struct type *type,
13934 struct dwarf2_cu *cu)
13935 {
13936 struct die_info *child_die;
13937 int unsigned_enum = 1;
13938 int flag_enum = 1;
13939 ULONGEST mask = 0;
13940
13941 auto_obstack obstack;
13942
13943 for (child_die = die->child;
13944 child_die != NULL && child_die->tag;
13945 child_die = sibling_die (child_die))
13946 {
13947 struct attribute *attr;
13948 LONGEST value;
13949 const gdb_byte *bytes;
13950 struct dwarf2_locexpr_baton *baton;
13951 const char *name;
13952
13953 if (child_die->tag != DW_TAG_enumerator)
13954 continue;
13955
13956 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13957 if (attr == NULL)
13958 continue;
13959
13960 name = dwarf2_name (child_die, cu);
13961 if (name == NULL)
13962 name = "<anonymous enumerator>";
13963
13964 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13965 &value, &bytes, &baton);
13966 if (value < 0)
13967 {
13968 unsigned_enum = 0;
13969 flag_enum = 0;
13970 }
13971 else if ((mask & value) != 0)
13972 flag_enum = 0;
13973 else
13974 mask |= value;
13975
13976 /* If we already know that the enum type is neither unsigned, nor
13977 a flag type, no need to look at the rest of the enumerates. */
13978 if (!unsigned_enum && !flag_enum)
13979 break;
13980 }
13981
13982 if (unsigned_enum)
13983 TYPE_UNSIGNED (type) = 1;
13984 if (flag_enum)
13985 TYPE_FLAG_ENUM (type) = 1;
13986 }
13987
13988 /* Given a DW_AT_enumeration_type die, set its type. We do not
13989 complete the type's fields yet, or create any symbols. */
13990
13991 static struct type *
13992 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13993 {
13994 struct objfile *objfile = cu->objfile;
13995 struct type *type;
13996 struct attribute *attr;
13997 const char *name;
13998
13999 /* If the definition of this type lives in .debug_types, read that type.
14000 Don't follow DW_AT_specification though, that will take us back up
14001 the chain and we want to go down. */
14002 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14003 if (attr)
14004 {
14005 type = get_DW_AT_signature_type (die, attr, cu);
14006
14007 /* The type's CU may not be the same as CU.
14008 Ensure TYPE is recorded with CU in die_type_hash. */
14009 return set_die_type (die, type, cu);
14010 }
14011
14012 type = alloc_type (objfile);
14013
14014 TYPE_CODE (type) = TYPE_CODE_ENUM;
14015 name = dwarf2_full_name (NULL, die, cu);
14016 if (name != NULL)
14017 TYPE_TAG_NAME (type) = name;
14018
14019 attr = dwarf2_attr (die, DW_AT_type, cu);
14020 if (attr != NULL)
14021 {
14022 struct type *underlying_type = die_type (die, cu);
14023
14024 TYPE_TARGET_TYPE (type) = underlying_type;
14025 }
14026
14027 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14028 if (attr)
14029 {
14030 TYPE_LENGTH (type) = DW_UNSND (attr);
14031 }
14032 else
14033 {
14034 TYPE_LENGTH (type) = 0;
14035 }
14036
14037 /* The enumeration DIE can be incomplete. In Ada, any type can be
14038 declared as private in the package spec, and then defined only
14039 inside the package body. Such types are known as Taft Amendment
14040 Types. When another package uses such a type, an incomplete DIE
14041 may be generated by the compiler. */
14042 if (die_is_declaration (die, cu))
14043 TYPE_STUB (type) = 1;
14044
14045 /* Finish the creation of this type by using the enum's children.
14046 We must call this even when the underlying type has been provided
14047 so that we can determine if we're looking at a "flag" enum. */
14048 update_enumeration_type_from_children (die, type, cu);
14049
14050 /* If this type has an underlying type that is not a stub, then we
14051 may use its attributes. We always use the "unsigned" attribute
14052 in this situation, because ordinarily we guess whether the type
14053 is unsigned -- but the guess can be wrong and the underlying type
14054 can tell us the reality. However, we defer to a local size
14055 attribute if one exists, because this lets the compiler override
14056 the underlying type if needed. */
14057 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14058 {
14059 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14060 if (TYPE_LENGTH (type) == 0)
14061 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14062 }
14063
14064 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14065
14066 return set_die_type (die, type, cu);
14067 }
14068
14069 /* Given a pointer to a die which begins an enumeration, process all
14070 the dies that define the members of the enumeration, and create the
14071 symbol for the enumeration type.
14072
14073 NOTE: We reverse the order of the element list. */
14074
14075 static void
14076 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14077 {
14078 struct type *this_type;
14079
14080 this_type = get_die_type (die, cu);
14081 if (this_type == NULL)
14082 this_type = read_enumeration_type (die, cu);
14083
14084 if (die->child != NULL)
14085 {
14086 struct die_info *child_die;
14087 struct symbol *sym;
14088 struct field *fields = NULL;
14089 int num_fields = 0;
14090 const char *name;
14091
14092 child_die = die->child;
14093 while (child_die && child_die->tag)
14094 {
14095 if (child_die->tag != DW_TAG_enumerator)
14096 {
14097 process_die (child_die, cu);
14098 }
14099 else
14100 {
14101 name = dwarf2_name (child_die, cu);
14102 if (name)
14103 {
14104 sym = new_symbol (child_die, this_type, cu);
14105
14106 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14107 {
14108 fields = (struct field *)
14109 xrealloc (fields,
14110 (num_fields + DW_FIELD_ALLOC_CHUNK)
14111 * sizeof (struct field));
14112 }
14113
14114 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14115 FIELD_TYPE (fields[num_fields]) = NULL;
14116 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14117 FIELD_BITSIZE (fields[num_fields]) = 0;
14118
14119 num_fields++;
14120 }
14121 }
14122
14123 child_die = sibling_die (child_die);
14124 }
14125
14126 if (num_fields)
14127 {
14128 TYPE_NFIELDS (this_type) = num_fields;
14129 TYPE_FIELDS (this_type) = (struct field *)
14130 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14131 memcpy (TYPE_FIELDS (this_type), fields,
14132 sizeof (struct field) * num_fields);
14133 xfree (fields);
14134 }
14135 }
14136
14137 /* If we are reading an enum from a .debug_types unit, and the enum
14138 is a declaration, and the enum is not the signatured type in the
14139 unit, then we do not want to add a symbol for it. Adding a
14140 symbol would in some cases obscure the true definition of the
14141 enum, giving users an incomplete type when the definition is
14142 actually available. Note that we do not want to do this for all
14143 enums which are just declarations, because C++0x allows forward
14144 enum declarations. */
14145 if (cu->per_cu->is_debug_types
14146 && die_is_declaration (die, cu))
14147 {
14148 struct signatured_type *sig_type;
14149
14150 sig_type = (struct signatured_type *) cu->per_cu;
14151 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14152 if (sig_type->type_offset_in_section != die->sect_off)
14153 return;
14154 }
14155
14156 new_symbol (die, this_type, cu);
14157 }
14158
14159 /* Extract all information from a DW_TAG_array_type DIE and put it in
14160 the DIE's type field. For now, this only handles one dimensional
14161 arrays. */
14162
14163 static struct type *
14164 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14165 {
14166 struct objfile *objfile = cu->objfile;
14167 struct die_info *child_die;
14168 struct type *type;
14169 struct type *element_type, *range_type, *index_type;
14170 struct attribute *attr;
14171 const char *name;
14172 unsigned int bit_stride = 0;
14173
14174 element_type = die_type (die, cu);
14175
14176 /* The die_type call above may have already set the type for this DIE. */
14177 type = get_die_type (die, cu);
14178 if (type)
14179 return type;
14180
14181 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14182 if (attr != NULL)
14183 bit_stride = DW_UNSND (attr) * 8;
14184
14185 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14186 if (attr != NULL)
14187 bit_stride = DW_UNSND (attr);
14188
14189 /* Irix 6.2 native cc creates array types without children for
14190 arrays with unspecified length. */
14191 if (die->child == NULL)
14192 {
14193 index_type = objfile_type (objfile)->builtin_int;
14194 range_type = create_static_range_type (NULL, index_type, 0, -1);
14195 type = create_array_type_with_stride (NULL, element_type, range_type,
14196 bit_stride);
14197 return set_die_type (die, type, cu);
14198 }
14199
14200 std::vector<struct type *> range_types;
14201 child_die = die->child;
14202 while (child_die && child_die->tag)
14203 {
14204 if (child_die->tag == DW_TAG_subrange_type)
14205 {
14206 struct type *child_type = read_type_die (child_die, cu);
14207
14208 if (child_type != NULL)
14209 {
14210 /* The range type was succesfully read. Save it for the
14211 array type creation. */
14212 range_types.push_back (child_type);
14213 }
14214 }
14215 child_die = sibling_die (child_die);
14216 }
14217
14218 /* Dwarf2 dimensions are output from left to right, create the
14219 necessary array types in backwards order. */
14220
14221 type = element_type;
14222
14223 if (read_array_order (die, cu) == DW_ORD_col_major)
14224 {
14225 int i = 0;
14226
14227 while (i < range_types.size ())
14228 type = create_array_type_with_stride (NULL, type, range_types[i++],
14229 bit_stride);
14230 }
14231 else
14232 {
14233 size_t ndim = range_types.size ();
14234 while (ndim-- > 0)
14235 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14236 bit_stride);
14237 }
14238
14239 /* Understand Dwarf2 support for vector types (like they occur on
14240 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14241 array type. This is not part of the Dwarf2/3 standard yet, but a
14242 custom vendor extension. The main difference between a regular
14243 array and the vector variant is that vectors are passed by value
14244 to functions. */
14245 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14246 if (attr)
14247 make_vector_type (type);
14248
14249 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14250 implementation may choose to implement triple vectors using this
14251 attribute. */
14252 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14253 if (attr)
14254 {
14255 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14256 TYPE_LENGTH (type) = DW_UNSND (attr);
14257 else
14258 complaint (&symfile_complaints,
14259 _("DW_AT_byte_size for array type smaller "
14260 "than the total size of elements"));
14261 }
14262
14263 name = dwarf2_name (die, cu);
14264 if (name)
14265 TYPE_NAME (type) = name;
14266
14267 /* Install the type in the die. */
14268 set_die_type (die, type, cu);
14269
14270 /* set_die_type should be already done. */
14271 set_descriptive_type (type, die, cu);
14272
14273 return type;
14274 }
14275
14276 static enum dwarf_array_dim_ordering
14277 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14278 {
14279 struct attribute *attr;
14280
14281 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14282
14283 if (attr)
14284 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14285
14286 /* GNU F77 is a special case, as at 08/2004 array type info is the
14287 opposite order to the dwarf2 specification, but data is still
14288 laid out as per normal fortran.
14289
14290 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14291 version checking. */
14292
14293 if (cu->language == language_fortran
14294 && cu->producer && strstr (cu->producer, "GNU F77"))
14295 {
14296 return DW_ORD_row_major;
14297 }
14298
14299 switch (cu->language_defn->la_array_ordering)
14300 {
14301 case array_column_major:
14302 return DW_ORD_col_major;
14303 case array_row_major:
14304 default:
14305 return DW_ORD_row_major;
14306 };
14307 }
14308
14309 /* Extract all information from a DW_TAG_set_type DIE and put it in
14310 the DIE's type field. */
14311
14312 static struct type *
14313 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14314 {
14315 struct type *domain_type, *set_type;
14316 struct attribute *attr;
14317
14318 domain_type = die_type (die, cu);
14319
14320 /* The die_type call above may have already set the type for this DIE. */
14321 set_type = get_die_type (die, cu);
14322 if (set_type)
14323 return set_type;
14324
14325 set_type = create_set_type (NULL, domain_type);
14326
14327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14328 if (attr)
14329 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14330
14331 return set_die_type (die, set_type, cu);
14332 }
14333
14334 /* A helper for read_common_block that creates a locexpr baton.
14335 SYM is the symbol which we are marking as computed.
14336 COMMON_DIE is the DIE for the common block.
14337 COMMON_LOC is the location expression attribute for the common
14338 block itself.
14339 MEMBER_LOC is the location expression attribute for the particular
14340 member of the common block that we are processing.
14341 CU is the CU from which the above come. */
14342
14343 static void
14344 mark_common_block_symbol_computed (struct symbol *sym,
14345 struct die_info *common_die,
14346 struct attribute *common_loc,
14347 struct attribute *member_loc,
14348 struct dwarf2_cu *cu)
14349 {
14350 struct objfile *objfile = dwarf2_per_objfile->objfile;
14351 struct dwarf2_locexpr_baton *baton;
14352 gdb_byte *ptr;
14353 unsigned int cu_off;
14354 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14355 LONGEST offset = 0;
14356
14357 gdb_assert (common_loc && member_loc);
14358 gdb_assert (attr_form_is_block (common_loc));
14359 gdb_assert (attr_form_is_block (member_loc)
14360 || attr_form_is_constant (member_loc));
14361
14362 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14363 baton->per_cu = cu->per_cu;
14364 gdb_assert (baton->per_cu);
14365
14366 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14367
14368 if (attr_form_is_constant (member_loc))
14369 {
14370 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14371 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14372 }
14373 else
14374 baton->size += DW_BLOCK (member_loc)->size;
14375
14376 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14377 baton->data = ptr;
14378
14379 *ptr++ = DW_OP_call4;
14380 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14381 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14382 ptr += 4;
14383
14384 if (attr_form_is_constant (member_loc))
14385 {
14386 *ptr++ = DW_OP_addr;
14387 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14388 ptr += cu->header.addr_size;
14389 }
14390 else
14391 {
14392 /* We have to copy the data here, because DW_OP_call4 will only
14393 use a DW_AT_location attribute. */
14394 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14395 ptr += DW_BLOCK (member_loc)->size;
14396 }
14397
14398 *ptr++ = DW_OP_plus;
14399 gdb_assert (ptr - baton->data == baton->size);
14400
14401 SYMBOL_LOCATION_BATON (sym) = baton;
14402 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14403 }
14404
14405 /* Create appropriate locally-scoped variables for all the
14406 DW_TAG_common_block entries. Also create a struct common_block
14407 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14408 is used to sepate the common blocks name namespace from regular
14409 variable names. */
14410
14411 static void
14412 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14413 {
14414 struct attribute *attr;
14415
14416 attr = dwarf2_attr (die, DW_AT_location, cu);
14417 if (attr)
14418 {
14419 /* Support the .debug_loc offsets. */
14420 if (attr_form_is_block (attr))
14421 {
14422 /* Ok. */
14423 }
14424 else if (attr_form_is_section_offset (attr))
14425 {
14426 dwarf2_complex_location_expr_complaint ();
14427 attr = NULL;
14428 }
14429 else
14430 {
14431 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14432 "common block member");
14433 attr = NULL;
14434 }
14435 }
14436
14437 if (die->child != NULL)
14438 {
14439 struct objfile *objfile = cu->objfile;
14440 struct die_info *child_die;
14441 size_t n_entries = 0, size;
14442 struct common_block *common_block;
14443 struct symbol *sym;
14444
14445 for (child_die = die->child;
14446 child_die && child_die->tag;
14447 child_die = sibling_die (child_die))
14448 ++n_entries;
14449
14450 size = (sizeof (struct common_block)
14451 + (n_entries - 1) * sizeof (struct symbol *));
14452 common_block
14453 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14454 size);
14455 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14456 common_block->n_entries = 0;
14457
14458 for (child_die = die->child;
14459 child_die && child_die->tag;
14460 child_die = sibling_die (child_die))
14461 {
14462 /* Create the symbol in the DW_TAG_common_block block in the current
14463 symbol scope. */
14464 sym = new_symbol (child_die, NULL, cu);
14465 if (sym != NULL)
14466 {
14467 struct attribute *member_loc;
14468
14469 common_block->contents[common_block->n_entries++] = sym;
14470
14471 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14472 cu);
14473 if (member_loc)
14474 {
14475 /* GDB has handled this for a long time, but it is
14476 not specified by DWARF. It seems to have been
14477 emitted by gfortran at least as recently as:
14478 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14479 complaint (&symfile_complaints,
14480 _("Variable in common block has "
14481 "DW_AT_data_member_location "
14482 "- DIE at 0x%x [in module %s]"),
14483 to_underlying (child_die->sect_off),
14484 objfile_name (cu->objfile));
14485
14486 if (attr_form_is_section_offset (member_loc))
14487 dwarf2_complex_location_expr_complaint ();
14488 else if (attr_form_is_constant (member_loc)
14489 || attr_form_is_block (member_loc))
14490 {
14491 if (attr)
14492 mark_common_block_symbol_computed (sym, die, attr,
14493 member_loc, cu);
14494 }
14495 else
14496 dwarf2_complex_location_expr_complaint ();
14497 }
14498 }
14499 }
14500
14501 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14502 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14503 }
14504 }
14505
14506 /* Create a type for a C++ namespace. */
14507
14508 static struct type *
14509 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14510 {
14511 struct objfile *objfile = cu->objfile;
14512 const char *previous_prefix, *name;
14513 int is_anonymous;
14514 struct type *type;
14515
14516 /* For extensions, reuse the type of the original namespace. */
14517 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14518 {
14519 struct die_info *ext_die;
14520 struct dwarf2_cu *ext_cu = cu;
14521
14522 ext_die = dwarf2_extension (die, &ext_cu);
14523 type = read_type_die (ext_die, ext_cu);
14524
14525 /* EXT_CU may not be the same as CU.
14526 Ensure TYPE is recorded with CU in die_type_hash. */
14527 return set_die_type (die, type, cu);
14528 }
14529
14530 name = namespace_name (die, &is_anonymous, cu);
14531
14532 /* Now build the name of the current namespace. */
14533
14534 previous_prefix = determine_prefix (die, cu);
14535 if (previous_prefix[0] != '\0')
14536 name = typename_concat (&objfile->objfile_obstack,
14537 previous_prefix, name, 0, cu);
14538
14539 /* Create the type. */
14540 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14541 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14542
14543 return set_die_type (die, type, cu);
14544 }
14545
14546 /* Read a namespace scope. */
14547
14548 static void
14549 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14550 {
14551 struct objfile *objfile = cu->objfile;
14552 int is_anonymous;
14553
14554 /* Add a symbol associated to this if we haven't seen the namespace
14555 before. Also, add a using directive if it's an anonymous
14556 namespace. */
14557
14558 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14559 {
14560 struct type *type;
14561
14562 type = read_type_die (die, cu);
14563 new_symbol (die, type, cu);
14564
14565 namespace_name (die, &is_anonymous, cu);
14566 if (is_anonymous)
14567 {
14568 const char *previous_prefix = determine_prefix (die, cu);
14569
14570 std::vector<const char *> excludes;
14571 add_using_directive (using_directives (cu->language),
14572 previous_prefix, TYPE_NAME (type), NULL,
14573 NULL, excludes, 0, &objfile->objfile_obstack);
14574 }
14575 }
14576
14577 if (die->child != NULL)
14578 {
14579 struct die_info *child_die = die->child;
14580
14581 while (child_die && child_die->tag)
14582 {
14583 process_die (child_die, cu);
14584 child_die = sibling_die (child_die);
14585 }
14586 }
14587 }
14588
14589 /* Read a Fortran module as type. This DIE can be only a declaration used for
14590 imported module. Still we need that type as local Fortran "use ... only"
14591 declaration imports depend on the created type in determine_prefix. */
14592
14593 static struct type *
14594 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14595 {
14596 struct objfile *objfile = cu->objfile;
14597 const char *module_name;
14598 struct type *type;
14599
14600 module_name = dwarf2_name (die, cu);
14601 if (!module_name)
14602 complaint (&symfile_complaints,
14603 _("DW_TAG_module has no name, offset 0x%x"),
14604 to_underlying (die->sect_off));
14605 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14606
14607 /* determine_prefix uses TYPE_TAG_NAME. */
14608 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14609
14610 return set_die_type (die, type, cu);
14611 }
14612
14613 /* Read a Fortran module. */
14614
14615 static void
14616 read_module (struct die_info *die, struct dwarf2_cu *cu)
14617 {
14618 struct die_info *child_die = die->child;
14619 struct type *type;
14620
14621 type = read_type_die (die, cu);
14622 new_symbol (die, type, cu);
14623
14624 while (child_die && child_die->tag)
14625 {
14626 process_die (child_die, cu);
14627 child_die = sibling_die (child_die);
14628 }
14629 }
14630
14631 /* Return the name of the namespace represented by DIE. Set
14632 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14633 namespace. */
14634
14635 static const char *
14636 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14637 {
14638 struct die_info *current_die;
14639 const char *name = NULL;
14640
14641 /* Loop through the extensions until we find a name. */
14642
14643 for (current_die = die;
14644 current_die != NULL;
14645 current_die = dwarf2_extension (die, &cu))
14646 {
14647 /* We don't use dwarf2_name here so that we can detect the absence
14648 of a name -> anonymous namespace. */
14649 name = dwarf2_string_attr (die, DW_AT_name, cu);
14650
14651 if (name != NULL)
14652 break;
14653 }
14654
14655 /* Is it an anonymous namespace? */
14656
14657 *is_anonymous = (name == NULL);
14658 if (*is_anonymous)
14659 name = CP_ANONYMOUS_NAMESPACE_STR;
14660
14661 return name;
14662 }
14663
14664 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14665 the user defined type vector. */
14666
14667 static struct type *
14668 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14669 {
14670 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14671 struct comp_unit_head *cu_header = &cu->header;
14672 struct type *type;
14673 struct attribute *attr_byte_size;
14674 struct attribute *attr_address_class;
14675 int byte_size, addr_class;
14676 struct type *target_type;
14677
14678 target_type = die_type (die, cu);
14679
14680 /* The die_type call above may have already set the type for this DIE. */
14681 type = get_die_type (die, cu);
14682 if (type)
14683 return type;
14684
14685 type = lookup_pointer_type (target_type);
14686
14687 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14688 if (attr_byte_size)
14689 byte_size = DW_UNSND (attr_byte_size);
14690 else
14691 byte_size = cu_header->addr_size;
14692
14693 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14694 if (attr_address_class)
14695 addr_class = DW_UNSND (attr_address_class);
14696 else
14697 addr_class = DW_ADDR_none;
14698
14699 /* If the pointer size or address class is different than the
14700 default, create a type variant marked as such and set the
14701 length accordingly. */
14702 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14703 {
14704 if (gdbarch_address_class_type_flags_p (gdbarch))
14705 {
14706 int type_flags;
14707
14708 type_flags = gdbarch_address_class_type_flags
14709 (gdbarch, byte_size, addr_class);
14710 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14711 == 0);
14712 type = make_type_with_address_space (type, type_flags);
14713 }
14714 else if (TYPE_LENGTH (type) != byte_size)
14715 {
14716 complaint (&symfile_complaints,
14717 _("invalid pointer size %d"), byte_size);
14718 }
14719 else
14720 {
14721 /* Should we also complain about unhandled address classes? */
14722 }
14723 }
14724
14725 TYPE_LENGTH (type) = byte_size;
14726 return set_die_type (die, type, cu);
14727 }
14728
14729 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14730 the user defined type vector. */
14731
14732 static struct type *
14733 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14734 {
14735 struct type *type;
14736 struct type *to_type;
14737 struct type *domain;
14738
14739 to_type = die_type (die, cu);
14740 domain = die_containing_type (die, cu);
14741
14742 /* The calls above may have already set the type for this DIE. */
14743 type = get_die_type (die, cu);
14744 if (type)
14745 return type;
14746
14747 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14748 type = lookup_methodptr_type (to_type);
14749 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14750 {
14751 struct type *new_type = alloc_type (cu->objfile);
14752
14753 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14754 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14755 TYPE_VARARGS (to_type));
14756 type = lookup_methodptr_type (new_type);
14757 }
14758 else
14759 type = lookup_memberptr_type (to_type, domain);
14760
14761 return set_die_type (die, type, cu);
14762 }
14763
14764 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14765 the user defined type vector. */
14766
14767 static struct type *
14768 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14769 enum type_code refcode)
14770 {
14771 struct comp_unit_head *cu_header = &cu->header;
14772 struct type *type, *target_type;
14773 struct attribute *attr;
14774
14775 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14776
14777 target_type = die_type (die, cu);
14778
14779 /* The die_type call above may have already set the type for this DIE. */
14780 type = get_die_type (die, cu);
14781 if (type)
14782 return type;
14783
14784 type = lookup_reference_type (target_type, refcode);
14785 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14786 if (attr)
14787 {
14788 TYPE_LENGTH (type) = DW_UNSND (attr);
14789 }
14790 else
14791 {
14792 TYPE_LENGTH (type) = cu_header->addr_size;
14793 }
14794 return set_die_type (die, type, cu);
14795 }
14796
14797 /* Add the given cv-qualifiers to the element type of the array. GCC
14798 outputs DWARF type qualifiers that apply to an array, not the
14799 element type. But GDB relies on the array element type to carry
14800 the cv-qualifiers. This mimics section 6.7.3 of the C99
14801 specification. */
14802
14803 static struct type *
14804 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14805 struct type *base_type, int cnst, int voltl)
14806 {
14807 struct type *el_type, *inner_array;
14808
14809 base_type = copy_type (base_type);
14810 inner_array = base_type;
14811
14812 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14813 {
14814 TYPE_TARGET_TYPE (inner_array) =
14815 copy_type (TYPE_TARGET_TYPE (inner_array));
14816 inner_array = TYPE_TARGET_TYPE (inner_array);
14817 }
14818
14819 el_type = TYPE_TARGET_TYPE (inner_array);
14820 cnst |= TYPE_CONST (el_type);
14821 voltl |= TYPE_VOLATILE (el_type);
14822 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14823
14824 return set_die_type (die, base_type, cu);
14825 }
14826
14827 static struct type *
14828 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14829 {
14830 struct type *base_type, *cv_type;
14831
14832 base_type = die_type (die, cu);
14833
14834 /* The die_type call above may have already set the type for this DIE. */
14835 cv_type = get_die_type (die, cu);
14836 if (cv_type)
14837 return cv_type;
14838
14839 /* In case the const qualifier is applied to an array type, the element type
14840 is so qualified, not the array type (section 6.7.3 of C99). */
14841 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14842 return add_array_cv_type (die, cu, base_type, 1, 0);
14843
14844 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14845 return set_die_type (die, cv_type, cu);
14846 }
14847
14848 static struct type *
14849 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14850 {
14851 struct type *base_type, *cv_type;
14852
14853 base_type = die_type (die, cu);
14854
14855 /* The die_type call above may have already set the type for this DIE. */
14856 cv_type = get_die_type (die, cu);
14857 if (cv_type)
14858 return cv_type;
14859
14860 /* In case the volatile qualifier is applied to an array type, the
14861 element type is so qualified, not the array type (section 6.7.3
14862 of C99). */
14863 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14864 return add_array_cv_type (die, cu, base_type, 0, 1);
14865
14866 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14867 return set_die_type (die, cv_type, cu);
14868 }
14869
14870 /* Handle DW_TAG_restrict_type. */
14871
14872 static struct type *
14873 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14874 {
14875 struct type *base_type, *cv_type;
14876
14877 base_type = die_type (die, cu);
14878
14879 /* The die_type call above may have already set the type for this DIE. */
14880 cv_type = get_die_type (die, cu);
14881 if (cv_type)
14882 return cv_type;
14883
14884 cv_type = make_restrict_type (base_type);
14885 return set_die_type (die, cv_type, cu);
14886 }
14887
14888 /* Handle DW_TAG_atomic_type. */
14889
14890 static struct type *
14891 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14892 {
14893 struct type *base_type, *cv_type;
14894
14895 base_type = die_type (die, cu);
14896
14897 /* The die_type call above may have already set the type for this DIE. */
14898 cv_type = get_die_type (die, cu);
14899 if (cv_type)
14900 return cv_type;
14901
14902 cv_type = make_atomic_type (base_type);
14903 return set_die_type (die, cv_type, cu);
14904 }
14905
14906 /* Extract all information from a DW_TAG_string_type DIE and add to
14907 the user defined type vector. It isn't really a user defined type,
14908 but it behaves like one, with other DIE's using an AT_user_def_type
14909 attribute to reference it. */
14910
14911 static struct type *
14912 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14913 {
14914 struct objfile *objfile = cu->objfile;
14915 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14916 struct type *type, *range_type, *index_type, *char_type;
14917 struct attribute *attr;
14918 unsigned int length;
14919
14920 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14921 if (attr)
14922 {
14923 length = DW_UNSND (attr);
14924 }
14925 else
14926 {
14927 /* Check for the DW_AT_byte_size attribute. */
14928 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14929 if (attr)
14930 {
14931 length = DW_UNSND (attr);
14932 }
14933 else
14934 {
14935 length = 1;
14936 }
14937 }
14938
14939 index_type = objfile_type (objfile)->builtin_int;
14940 range_type = create_static_range_type (NULL, index_type, 1, length);
14941 char_type = language_string_char_type (cu->language_defn, gdbarch);
14942 type = create_string_type (NULL, char_type, range_type);
14943
14944 return set_die_type (die, type, cu);
14945 }
14946
14947 /* Assuming that DIE corresponds to a function, returns nonzero
14948 if the function is prototyped. */
14949
14950 static int
14951 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14952 {
14953 struct attribute *attr;
14954
14955 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14956 if (attr && (DW_UNSND (attr) != 0))
14957 return 1;
14958
14959 /* The DWARF standard implies that the DW_AT_prototyped attribute
14960 is only meaninful for C, but the concept also extends to other
14961 languages that allow unprototyped functions (Eg: Objective C).
14962 For all other languages, assume that functions are always
14963 prototyped. */
14964 if (cu->language != language_c
14965 && cu->language != language_objc
14966 && cu->language != language_opencl)
14967 return 1;
14968
14969 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14970 prototyped and unprototyped functions; default to prototyped,
14971 since that is more common in modern code (and RealView warns
14972 about unprototyped functions). */
14973 if (producer_is_realview (cu->producer))
14974 return 1;
14975
14976 return 0;
14977 }
14978
14979 /* Handle DIES due to C code like:
14980
14981 struct foo
14982 {
14983 int (*funcp)(int a, long l);
14984 int b;
14985 };
14986
14987 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14988
14989 static struct type *
14990 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14991 {
14992 struct objfile *objfile = cu->objfile;
14993 struct type *type; /* Type that this function returns. */
14994 struct type *ftype; /* Function that returns above type. */
14995 struct attribute *attr;
14996
14997 type = die_type (die, cu);
14998
14999 /* The die_type call above may have already set the type for this DIE. */
15000 ftype = get_die_type (die, cu);
15001 if (ftype)
15002 return ftype;
15003
15004 ftype = lookup_function_type (type);
15005
15006 if (prototyped_function_p (die, cu))
15007 TYPE_PROTOTYPED (ftype) = 1;
15008
15009 /* Store the calling convention in the type if it's available in
15010 the subroutine die. Otherwise set the calling convention to
15011 the default value DW_CC_normal. */
15012 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15013 if (attr)
15014 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15015 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15016 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15017 else
15018 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15019
15020 /* Record whether the function returns normally to its caller or not
15021 if the DWARF producer set that information. */
15022 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15023 if (attr && (DW_UNSND (attr) != 0))
15024 TYPE_NO_RETURN (ftype) = 1;
15025
15026 /* We need to add the subroutine type to the die immediately so
15027 we don't infinitely recurse when dealing with parameters
15028 declared as the same subroutine type. */
15029 set_die_type (die, ftype, cu);
15030
15031 if (die->child != NULL)
15032 {
15033 struct type *void_type = objfile_type (objfile)->builtin_void;
15034 struct die_info *child_die;
15035 int nparams, iparams;
15036
15037 /* Count the number of parameters.
15038 FIXME: GDB currently ignores vararg functions, but knows about
15039 vararg member functions. */
15040 nparams = 0;
15041 child_die = die->child;
15042 while (child_die && child_die->tag)
15043 {
15044 if (child_die->tag == DW_TAG_formal_parameter)
15045 nparams++;
15046 else if (child_die->tag == DW_TAG_unspecified_parameters)
15047 TYPE_VARARGS (ftype) = 1;
15048 child_die = sibling_die (child_die);
15049 }
15050
15051 /* Allocate storage for parameters and fill them in. */
15052 TYPE_NFIELDS (ftype) = nparams;
15053 TYPE_FIELDS (ftype) = (struct field *)
15054 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15055
15056 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15057 even if we error out during the parameters reading below. */
15058 for (iparams = 0; iparams < nparams; iparams++)
15059 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15060
15061 iparams = 0;
15062 child_die = die->child;
15063 while (child_die && child_die->tag)
15064 {
15065 if (child_die->tag == DW_TAG_formal_parameter)
15066 {
15067 struct type *arg_type;
15068
15069 /* DWARF version 2 has no clean way to discern C++
15070 static and non-static member functions. G++ helps
15071 GDB by marking the first parameter for non-static
15072 member functions (which is the this pointer) as
15073 artificial. We pass this information to
15074 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15075
15076 DWARF version 3 added DW_AT_object_pointer, which GCC
15077 4.5 does not yet generate. */
15078 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15079 if (attr)
15080 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15081 else
15082 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15083 arg_type = die_type (child_die, cu);
15084
15085 /* RealView does not mark THIS as const, which the testsuite
15086 expects. GCC marks THIS as const in method definitions,
15087 but not in the class specifications (GCC PR 43053). */
15088 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15089 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15090 {
15091 int is_this = 0;
15092 struct dwarf2_cu *arg_cu = cu;
15093 const char *name = dwarf2_name (child_die, cu);
15094
15095 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15096 if (attr)
15097 {
15098 /* If the compiler emits this, use it. */
15099 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15100 is_this = 1;
15101 }
15102 else if (name && strcmp (name, "this") == 0)
15103 /* Function definitions will have the argument names. */
15104 is_this = 1;
15105 else if (name == NULL && iparams == 0)
15106 /* Declarations may not have the names, so like
15107 elsewhere in GDB, assume an artificial first
15108 argument is "this". */
15109 is_this = 1;
15110
15111 if (is_this)
15112 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15113 arg_type, 0);
15114 }
15115
15116 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15117 iparams++;
15118 }
15119 child_die = sibling_die (child_die);
15120 }
15121 }
15122
15123 return ftype;
15124 }
15125
15126 static struct type *
15127 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15128 {
15129 struct objfile *objfile = cu->objfile;
15130 const char *name = NULL;
15131 struct type *this_type, *target_type;
15132
15133 name = dwarf2_full_name (NULL, die, cu);
15134 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15135 TYPE_TARGET_STUB (this_type) = 1;
15136 set_die_type (die, this_type, cu);
15137 target_type = die_type (die, cu);
15138 if (target_type != this_type)
15139 TYPE_TARGET_TYPE (this_type) = target_type;
15140 else
15141 {
15142 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15143 spec and cause infinite loops in GDB. */
15144 complaint (&symfile_complaints,
15145 _("Self-referential DW_TAG_typedef "
15146 "- DIE at 0x%x [in module %s]"),
15147 to_underlying (die->sect_off), objfile_name (objfile));
15148 TYPE_TARGET_TYPE (this_type) = NULL;
15149 }
15150 return this_type;
15151 }
15152
15153 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15154 (which may be different from NAME) to the architecture back-end to allow
15155 it to guess the correct format if necessary. */
15156
15157 static struct type *
15158 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15159 const char *name_hint)
15160 {
15161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15162 const struct floatformat **format;
15163 struct type *type;
15164
15165 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15166 if (format)
15167 type = init_float_type (objfile, bits, name, format);
15168 else
15169 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15170
15171 return type;
15172 }
15173
15174 /* Find a representation of a given base type and install
15175 it in the TYPE field of the die. */
15176
15177 static struct type *
15178 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15179 {
15180 struct objfile *objfile = cu->objfile;
15181 struct type *type;
15182 struct attribute *attr;
15183 int encoding = 0, bits = 0;
15184 const char *name;
15185
15186 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15187 if (attr)
15188 {
15189 encoding = DW_UNSND (attr);
15190 }
15191 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15192 if (attr)
15193 {
15194 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15195 }
15196 name = dwarf2_name (die, cu);
15197 if (!name)
15198 {
15199 complaint (&symfile_complaints,
15200 _("DW_AT_name missing from DW_TAG_base_type"));
15201 }
15202
15203 switch (encoding)
15204 {
15205 case DW_ATE_address:
15206 /* Turn DW_ATE_address into a void * pointer. */
15207 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15208 type = init_pointer_type (objfile, bits, name, type);
15209 break;
15210 case DW_ATE_boolean:
15211 type = init_boolean_type (objfile, bits, 1, name);
15212 break;
15213 case DW_ATE_complex_float:
15214 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15215 type = init_complex_type (objfile, name, type);
15216 break;
15217 case DW_ATE_decimal_float:
15218 type = init_decfloat_type (objfile, bits, name);
15219 break;
15220 case DW_ATE_float:
15221 type = dwarf2_init_float_type (objfile, bits, name, name);
15222 break;
15223 case DW_ATE_signed:
15224 type = init_integer_type (objfile, bits, 0, name);
15225 break;
15226 case DW_ATE_unsigned:
15227 if (cu->language == language_fortran
15228 && name
15229 && startswith (name, "character("))
15230 type = init_character_type (objfile, bits, 1, name);
15231 else
15232 type = init_integer_type (objfile, bits, 1, name);
15233 break;
15234 case DW_ATE_signed_char:
15235 if (cu->language == language_ada || cu->language == language_m2
15236 || cu->language == language_pascal
15237 || cu->language == language_fortran)
15238 type = init_character_type (objfile, bits, 0, name);
15239 else
15240 type = init_integer_type (objfile, bits, 0, name);
15241 break;
15242 case DW_ATE_unsigned_char:
15243 if (cu->language == language_ada || cu->language == language_m2
15244 || cu->language == language_pascal
15245 || cu->language == language_fortran
15246 || cu->language == language_rust)
15247 type = init_character_type (objfile, bits, 1, name);
15248 else
15249 type = init_integer_type (objfile, bits, 1, name);
15250 break;
15251 case DW_ATE_UTF:
15252 {
15253 gdbarch *arch = get_objfile_arch (objfile);
15254
15255 if (bits == 16)
15256 type = builtin_type (arch)->builtin_char16;
15257 else if (bits == 32)
15258 type = builtin_type (arch)->builtin_char32;
15259 else
15260 {
15261 complaint (&symfile_complaints,
15262 _("unsupported DW_ATE_UTF bit size: '%d'"),
15263 bits);
15264 type = init_integer_type (objfile, bits, 1, name);
15265 }
15266 return set_die_type (die, type, cu);
15267 }
15268 break;
15269
15270 default:
15271 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15272 dwarf_type_encoding_name (encoding));
15273 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15274 break;
15275 }
15276
15277 if (name && strcmp (name, "char") == 0)
15278 TYPE_NOSIGN (type) = 1;
15279
15280 return set_die_type (die, type, cu);
15281 }
15282
15283 /* Parse dwarf attribute if it's a block, reference or constant and put the
15284 resulting value of the attribute into struct bound_prop.
15285 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15286
15287 static int
15288 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15289 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15290 {
15291 struct dwarf2_property_baton *baton;
15292 struct obstack *obstack = &cu->objfile->objfile_obstack;
15293
15294 if (attr == NULL || prop == NULL)
15295 return 0;
15296
15297 if (attr_form_is_block (attr))
15298 {
15299 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15300 baton->referenced_type = NULL;
15301 baton->locexpr.per_cu = cu->per_cu;
15302 baton->locexpr.size = DW_BLOCK (attr)->size;
15303 baton->locexpr.data = DW_BLOCK (attr)->data;
15304 prop->data.baton = baton;
15305 prop->kind = PROP_LOCEXPR;
15306 gdb_assert (prop->data.baton != NULL);
15307 }
15308 else if (attr_form_is_ref (attr))
15309 {
15310 struct dwarf2_cu *target_cu = cu;
15311 struct die_info *target_die;
15312 struct attribute *target_attr;
15313
15314 target_die = follow_die_ref (die, attr, &target_cu);
15315 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15316 if (target_attr == NULL)
15317 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15318 target_cu);
15319 if (target_attr == NULL)
15320 return 0;
15321
15322 switch (target_attr->name)
15323 {
15324 case DW_AT_location:
15325 if (attr_form_is_section_offset (target_attr))
15326 {
15327 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15328 baton->referenced_type = die_type (target_die, target_cu);
15329 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15330 prop->data.baton = baton;
15331 prop->kind = PROP_LOCLIST;
15332 gdb_assert (prop->data.baton != NULL);
15333 }
15334 else if (attr_form_is_block (target_attr))
15335 {
15336 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15337 baton->referenced_type = die_type (target_die, target_cu);
15338 baton->locexpr.per_cu = cu->per_cu;
15339 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15340 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15341 prop->data.baton = baton;
15342 prop->kind = PROP_LOCEXPR;
15343 gdb_assert (prop->data.baton != NULL);
15344 }
15345 else
15346 {
15347 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15348 "dynamic property");
15349 return 0;
15350 }
15351 break;
15352 case DW_AT_data_member_location:
15353 {
15354 LONGEST offset;
15355
15356 if (!handle_data_member_location (target_die, target_cu,
15357 &offset))
15358 return 0;
15359
15360 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15361 baton->referenced_type = read_type_die (target_die->parent,
15362 target_cu);
15363 baton->offset_info.offset = offset;
15364 baton->offset_info.type = die_type (target_die, target_cu);
15365 prop->data.baton = baton;
15366 prop->kind = PROP_ADDR_OFFSET;
15367 break;
15368 }
15369 }
15370 }
15371 else if (attr_form_is_constant (attr))
15372 {
15373 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15374 prop->kind = PROP_CONST;
15375 }
15376 else
15377 {
15378 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15379 dwarf2_name (die, cu));
15380 return 0;
15381 }
15382
15383 return 1;
15384 }
15385
15386 /* Read the given DW_AT_subrange DIE. */
15387
15388 static struct type *
15389 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15390 {
15391 struct type *base_type, *orig_base_type;
15392 struct type *range_type;
15393 struct attribute *attr;
15394 struct dynamic_prop low, high;
15395 int low_default_is_valid;
15396 int high_bound_is_count = 0;
15397 const char *name;
15398 LONGEST negative_mask;
15399
15400 orig_base_type = die_type (die, cu);
15401 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15402 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15403 creating the range type, but we use the result of check_typedef
15404 when examining properties of the type. */
15405 base_type = check_typedef (orig_base_type);
15406
15407 /* The die_type call above may have already set the type for this DIE. */
15408 range_type = get_die_type (die, cu);
15409 if (range_type)
15410 return range_type;
15411
15412 low.kind = PROP_CONST;
15413 high.kind = PROP_CONST;
15414 high.data.const_val = 0;
15415
15416 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15417 omitting DW_AT_lower_bound. */
15418 switch (cu->language)
15419 {
15420 case language_c:
15421 case language_cplus:
15422 low.data.const_val = 0;
15423 low_default_is_valid = 1;
15424 break;
15425 case language_fortran:
15426 low.data.const_val = 1;
15427 low_default_is_valid = 1;
15428 break;
15429 case language_d:
15430 case language_objc:
15431 case language_rust:
15432 low.data.const_val = 0;
15433 low_default_is_valid = (cu->header.version >= 4);
15434 break;
15435 case language_ada:
15436 case language_m2:
15437 case language_pascal:
15438 low.data.const_val = 1;
15439 low_default_is_valid = (cu->header.version >= 4);
15440 break;
15441 default:
15442 low.data.const_val = 0;
15443 low_default_is_valid = 0;
15444 break;
15445 }
15446
15447 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15448 if (attr)
15449 attr_to_dynamic_prop (attr, die, cu, &low);
15450 else if (!low_default_is_valid)
15451 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15452 "- DIE at 0x%x [in module %s]"),
15453 to_underlying (die->sect_off), objfile_name (cu->objfile));
15454
15455 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15456 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15457 {
15458 attr = dwarf2_attr (die, DW_AT_count, cu);
15459 if (attr_to_dynamic_prop (attr, die, cu, &high))
15460 {
15461 /* If bounds are constant do the final calculation here. */
15462 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15463 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15464 else
15465 high_bound_is_count = 1;
15466 }
15467 }
15468
15469 /* Dwarf-2 specifications explicitly allows to create subrange types
15470 without specifying a base type.
15471 In that case, the base type must be set to the type of
15472 the lower bound, upper bound or count, in that order, if any of these
15473 three attributes references an object that has a type.
15474 If no base type is found, the Dwarf-2 specifications say that
15475 a signed integer type of size equal to the size of an address should
15476 be used.
15477 For the following C code: `extern char gdb_int [];'
15478 GCC produces an empty range DIE.
15479 FIXME: muller/2010-05-28: Possible references to object for low bound,
15480 high bound or count are not yet handled by this code. */
15481 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15482 {
15483 struct objfile *objfile = cu->objfile;
15484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15485 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15486 struct type *int_type = objfile_type (objfile)->builtin_int;
15487
15488 /* Test "int", "long int", and "long long int" objfile types,
15489 and select the first one having a size above or equal to the
15490 architecture address size. */
15491 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15492 base_type = int_type;
15493 else
15494 {
15495 int_type = objfile_type (objfile)->builtin_long;
15496 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15497 base_type = int_type;
15498 else
15499 {
15500 int_type = objfile_type (objfile)->builtin_long_long;
15501 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15502 base_type = int_type;
15503 }
15504 }
15505 }
15506
15507 /* Normally, the DWARF producers are expected to use a signed
15508 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15509 But this is unfortunately not always the case, as witnessed
15510 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15511 is used instead. To work around that ambiguity, we treat
15512 the bounds as signed, and thus sign-extend their values, when
15513 the base type is signed. */
15514 negative_mask =
15515 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15516 if (low.kind == PROP_CONST
15517 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15518 low.data.const_val |= negative_mask;
15519 if (high.kind == PROP_CONST
15520 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15521 high.data.const_val |= negative_mask;
15522
15523 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15524
15525 if (high_bound_is_count)
15526 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15527
15528 /* Ada expects an empty array on no boundary attributes. */
15529 if (attr == NULL && cu->language != language_ada)
15530 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15531
15532 name = dwarf2_name (die, cu);
15533 if (name)
15534 TYPE_NAME (range_type) = name;
15535
15536 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15537 if (attr)
15538 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15539
15540 set_die_type (die, range_type, cu);
15541
15542 /* set_die_type should be already done. */
15543 set_descriptive_type (range_type, die, cu);
15544
15545 return range_type;
15546 }
15547
15548 static struct type *
15549 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15550 {
15551 struct type *type;
15552
15553 /* For now, we only support the C meaning of an unspecified type: void. */
15554
15555 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15556 TYPE_NAME (type) = dwarf2_name (die, cu);
15557
15558 return set_die_type (die, type, cu);
15559 }
15560
15561 /* Read a single die and all its descendents. Set the die's sibling
15562 field to NULL; set other fields in the die correctly, and set all
15563 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15564 location of the info_ptr after reading all of those dies. PARENT
15565 is the parent of the die in question. */
15566
15567 static struct die_info *
15568 read_die_and_children (const struct die_reader_specs *reader,
15569 const gdb_byte *info_ptr,
15570 const gdb_byte **new_info_ptr,
15571 struct die_info *parent)
15572 {
15573 struct die_info *die;
15574 const gdb_byte *cur_ptr;
15575 int has_children;
15576
15577 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15578 if (die == NULL)
15579 {
15580 *new_info_ptr = cur_ptr;
15581 return NULL;
15582 }
15583 store_in_ref_table (die, reader->cu);
15584
15585 if (has_children)
15586 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15587 else
15588 {
15589 die->child = NULL;
15590 *new_info_ptr = cur_ptr;
15591 }
15592
15593 die->sibling = NULL;
15594 die->parent = parent;
15595 return die;
15596 }
15597
15598 /* Read a die, all of its descendents, and all of its siblings; set
15599 all of the fields of all of the dies correctly. Arguments are as
15600 in read_die_and_children. */
15601
15602 static struct die_info *
15603 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15604 const gdb_byte *info_ptr,
15605 const gdb_byte **new_info_ptr,
15606 struct die_info *parent)
15607 {
15608 struct die_info *first_die, *last_sibling;
15609 const gdb_byte *cur_ptr;
15610
15611 cur_ptr = info_ptr;
15612 first_die = last_sibling = NULL;
15613
15614 while (1)
15615 {
15616 struct die_info *die
15617 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15618
15619 if (die == NULL)
15620 {
15621 *new_info_ptr = cur_ptr;
15622 return first_die;
15623 }
15624
15625 if (!first_die)
15626 first_die = die;
15627 else
15628 last_sibling->sibling = die;
15629
15630 last_sibling = die;
15631 }
15632 }
15633
15634 /* Read a die, all of its descendents, and all of its siblings; set
15635 all of the fields of all of the dies correctly. Arguments are as
15636 in read_die_and_children.
15637 This the main entry point for reading a DIE and all its children. */
15638
15639 static struct die_info *
15640 read_die_and_siblings (const struct die_reader_specs *reader,
15641 const gdb_byte *info_ptr,
15642 const gdb_byte **new_info_ptr,
15643 struct die_info *parent)
15644 {
15645 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15646 new_info_ptr, parent);
15647
15648 if (dwarf_die_debug)
15649 {
15650 fprintf_unfiltered (gdb_stdlog,
15651 "Read die from %s@0x%x of %s:\n",
15652 get_section_name (reader->die_section),
15653 (unsigned) (info_ptr - reader->die_section->buffer),
15654 bfd_get_filename (reader->abfd));
15655 dump_die (die, dwarf_die_debug);
15656 }
15657
15658 return die;
15659 }
15660
15661 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15662 attributes.
15663 The caller is responsible for filling in the extra attributes
15664 and updating (*DIEP)->num_attrs.
15665 Set DIEP to point to a newly allocated die with its information,
15666 except for its child, sibling, and parent fields.
15667 Set HAS_CHILDREN to tell whether the die has children or not. */
15668
15669 static const gdb_byte *
15670 read_full_die_1 (const struct die_reader_specs *reader,
15671 struct die_info **diep, const gdb_byte *info_ptr,
15672 int *has_children, int num_extra_attrs)
15673 {
15674 unsigned int abbrev_number, bytes_read, i;
15675 struct abbrev_info *abbrev;
15676 struct die_info *die;
15677 struct dwarf2_cu *cu = reader->cu;
15678 bfd *abfd = reader->abfd;
15679
15680 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15681 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15682 info_ptr += bytes_read;
15683 if (!abbrev_number)
15684 {
15685 *diep = NULL;
15686 *has_children = 0;
15687 return info_ptr;
15688 }
15689
15690 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15691 if (!abbrev)
15692 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15693 abbrev_number,
15694 bfd_get_filename (abfd));
15695
15696 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15697 die->sect_off = sect_off;
15698 die->tag = abbrev->tag;
15699 die->abbrev = abbrev_number;
15700
15701 /* Make the result usable.
15702 The caller needs to update num_attrs after adding the extra
15703 attributes. */
15704 die->num_attrs = abbrev->num_attrs;
15705
15706 for (i = 0; i < abbrev->num_attrs; ++i)
15707 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15708 info_ptr);
15709
15710 *diep = die;
15711 *has_children = abbrev->has_children;
15712 return info_ptr;
15713 }
15714
15715 /* Read a die and all its attributes.
15716 Set DIEP to point to a newly allocated die with its information,
15717 except for its child, sibling, and parent fields.
15718 Set HAS_CHILDREN to tell whether the die has children or not. */
15719
15720 static const gdb_byte *
15721 read_full_die (const struct die_reader_specs *reader,
15722 struct die_info **diep, const gdb_byte *info_ptr,
15723 int *has_children)
15724 {
15725 const gdb_byte *result;
15726
15727 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15728
15729 if (dwarf_die_debug)
15730 {
15731 fprintf_unfiltered (gdb_stdlog,
15732 "Read die from %s@0x%x of %s:\n",
15733 get_section_name (reader->die_section),
15734 (unsigned) (info_ptr - reader->die_section->buffer),
15735 bfd_get_filename (reader->abfd));
15736 dump_die (*diep, dwarf_die_debug);
15737 }
15738
15739 return result;
15740 }
15741 \f
15742 /* Abbreviation tables.
15743
15744 In DWARF version 2, the description of the debugging information is
15745 stored in a separate .debug_abbrev section. Before we read any
15746 dies from a section we read in all abbreviations and install them
15747 in a hash table. */
15748
15749 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15750
15751 static struct abbrev_info *
15752 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15753 {
15754 struct abbrev_info *abbrev;
15755
15756 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15757 memset (abbrev, 0, sizeof (struct abbrev_info));
15758
15759 return abbrev;
15760 }
15761
15762 /* Add an abbreviation to the table. */
15763
15764 static void
15765 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15766 unsigned int abbrev_number,
15767 struct abbrev_info *abbrev)
15768 {
15769 unsigned int hash_number;
15770
15771 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15772 abbrev->next = abbrev_table->abbrevs[hash_number];
15773 abbrev_table->abbrevs[hash_number] = abbrev;
15774 }
15775
15776 /* Look up an abbrev in the table.
15777 Returns NULL if the abbrev is not found. */
15778
15779 static struct abbrev_info *
15780 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15781 unsigned int abbrev_number)
15782 {
15783 unsigned int hash_number;
15784 struct abbrev_info *abbrev;
15785
15786 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15787 abbrev = abbrev_table->abbrevs[hash_number];
15788
15789 while (abbrev)
15790 {
15791 if (abbrev->number == abbrev_number)
15792 return abbrev;
15793 abbrev = abbrev->next;
15794 }
15795 return NULL;
15796 }
15797
15798 /* Read in an abbrev table. */
15799
15800 static struct abbrev_table *
15801 abbrev_table_read_table (struct dwarf2_section_info *section,
15802 sect_offset sect_off)
15803 {
15804 struct objfile *objfile = dwarf2_per_objfile->objfile;
15805 bfd *abfd = get_section_bfd_owner (section);
15806 struct abbrev_table *abbrev_table;
15807 const gdb_byte *abbrev_ptr;
15808 struct abbrev_info *cur_abbrev;
15809 unsigned int abbrev_number, bytes_read, abbrev_name;
15810 unsigned int abbrev_form;
15811 struct attr_abbrev *cur_attrs;
15812 unsigned int allocated_attrs;
15813
15814 abbrev_table = XNEW (struct abbrev_table);
15815 abbrev_table->sect_off = sect_off;
15816 obstack_init (&abbrev_table->abbrev_obstack);
15817 abbrev_table->abbrevs =
15818 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15819 ABBREV_HASH_SIZE);
15820 memset (abbrev_table->abbrevs, 0,
15821 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15822
15823 dwarf2_read_section (objfile, section);
15824 abbrev_ptr = section->buffer + to_underlying (sect_off);
15825 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15826 abbrev_ptr += bytes_read;
15827
15828 allocated_attrs = ATTR_ALLOC_CHUNK;
15829 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15830
15831 /* Loop until we reach an abbrev number of 0. */
15832 while (abbrev_number)
15833 {
15834 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15835
15836 /* read in abbrev header */
15837 cur_abbrev->number = abbrev_number;
15838 cur_abbrev->tag
15839 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15840 abbrev_ptr += bytes_read;
15841 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15842 abbrev_ptr += 1;
15843
15844 /* now read in declarations */
15845 for (;;)
15846 {
15847 LONGEST implicit_const;
15848
15849 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15850 abbrev_ptr += bytes_read;
15851 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15852 abbrev_ptr += bytes_read;
15853 if (abbrev_form == DW_FORM_implicit_const)
15854 {
15855 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15856 &bytes_read);
15857 abbrev_ptr += bytes_read;
15858 }
15859 else
15860 {
15861 /* Initialize it due to a false compiler warning. */
15862 implicit_const = -1;
15863 }
15864
15865 if (abbrev_name == 0)
15866 break;
15867
15868 if (cur_abbrev->num_attrs == allocated_attrs)
15869 {
15870 allocated_attrs += ATTR_ALLOC_CHUNK;
15871 cur_attrs
15872 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15873 }
15874
15875 cur_attrs[cur_abbrev->num_attrs].name
15876 = (enum dwarf_attribute) abbrev_name;
15877 cur_attrs[cur_abbrev->num_attrs].form
15878 = (enum dwarf_form) abbrev_form;
15879 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15880 ++cur_abbrev->num_attrs;
15881 }
15882
15883 cur_abbrev->attrs =
15884 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15885 cur_abbrev->num_attrs);
15886 memcpy (cur_abbrev->attrs, cur_attrs,
15887 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15888
15889 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15890
15891 /* Get next abbreviation.
15892 Under Irix6 the abbreviations for a compilation unit are not
15893 always properly terminated with an abbrev number of 0.
15894 Exit loop if we encounter an abbreviation which we have
15895 already read (which means we are about to read the abbreviations
15896 for the next compile unit) or if the end of the abbreviation
15897 table is reached. */
15898 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15899 break;
15900 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15901 abbrev_ptr += bytes_read;
15902 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15903 break;
15904 }
15905
15906 xfree (cur_attrs);
15907 return abbrev_table;
15908 }
15909
15910 /* Free the resources held by ABBREV_TABLE. */
15911
15912 static void
15913 abbrev_table_free (struct abbrev_table *abbrev_table)
15914 {
15915 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15916 xfree (abbrev_table);
15917 }
15918
15919 /* Same as abbrev_table_free but as a cleanup.
15920 We pass in a pointer to the pointer to the table so that we can
15921 set the pointer to NULL when we're done. It also simplifies
15922 build_type_psymtabs_1. */
15923
15924 static void
15925 abbrev_table_free_cleanup (void *table_ptr)
15926 {
15927 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15928
15929 if (*abbrev_table_ptr != NULL)
15930 abbrev_table_free (*abbrev_table_ptr);
15931 *abbrev_table_ptr = NULL;
15932 }
15933
15934 /* Read the abbrev table for CU from ABBREV_SECTION. */
15935
15936 static void
15937 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15938 struct dwarf2_section_info *abbrev_section)
15939 {
15940 cu->abbrev_table =
15941 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15942 }
15943
15944 /* Release the memory used by the abbrev table for a compilation unit. */
15945
15946 static void
15947 dwarf2_free_abbrev_table (void *ptr_to_cu)
15948 {
15949 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15950
15951 if (cu->abbrev_table != NULL)
15952 abbrev_table_free (cu->abbrev_table);
15953 /* Set this to NULL so that we SEGV if we try to read it later,
15954 and also because free_comp_unit verifies this is NULL. */
15955 cu->abbrev_table = NULL;
15956 }
15957 \f
15958 /* Returns nonzero if TAG represents a type that we might generate a partial
15959 symbol for. */
15960
15961 static int
15962 is_type_tag_for_partial (int tag)
15963 {
15964 switch (tag)
15965 {
15966 #if 0
15967 /* Some types that would be reasonable to generate partial symbols for,
15968 that we don't at present. */
15969 case DW_TAG_array_type:
15970 case DW_TAG_file_type:
15971 case DW_TAG_ptr_to_member_type:
15972 case DW_TAG_set_type:
15973 case DW_TAG_string_type:
15974 case DW_TAG_subroutine_type:
15975 #endif
15976 case DW_TAG_base_type:
15977 case DW_TAG_class_type:
15978 case DW_TAG_interface_type:
15979 case DW_TAG_enumeration_type:
15980 case DW_TAG_structure_type:
15981 case DW_TAG_subrange_type:
15982 case DW_TAG_typedef:
15983 case DW_TAG_union_type:
15984 return 1;
15985 default:
15986 return 0;
15987 }
15988 }
15989
15990 /* Load all DIEs that are interesting for partial symbols into memory. */
15991
15992 static struct partial_die_info *
15993 load_partial_dies (const struct die_reader_specs *reader,
15994 const gdb_byte *info_ptr, int building_psymtab)
15995 {
15996 struct dwarf2_cu *cu = reader->cu;
15997 struct objfile *objfile = cu->objfile;
15998 struct partial_die_info *part_die;
15999 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16000 struct abbrev_info *abbrev;
16001 unsigned int bytes_read;
16002 unsigned int load_all = 0;
16003 int nesting_level = 1;
16004
16005 parent_die = NULL;
16006 last_die = NULL;
16007
16008 gdb_assert (cu->per_cu != NULL);
16009 if (cu->per_cu->load_all_dies)
16010 load_all = 1;
16011
16012 cu->partial_dies
16013 = htab_create_alloc_ex (cu->header.length / 12,
16014 partial_die_hash,
16015 partial_die_eq,
16016 NULL,
16017 &cu->comp_unit_obstack,
16018 hashtab_obstack_allocate,
16019 dummy_obstack_deallocate);
16020
16021 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16022
16023 while (1)
16024 {
16025 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16026
16027 /* A NULL abbrev means the end of a series of children. */
16028 if (abbrev == NULL)
16029 {
16030 if (--nesting_level == 0)
16031 {
16032 /* PART_DIE was probably the last thing allocated on the
16033 comp_unit_obstack, so we could call obstack_free
16034 here. We don't do that because the waste is small,
16035 and will be cleaned up when we're done with this
16036 compilation unit. This way, we're also more robust
16037 against other users of the comp_unit_obstack. */
16038 return first_die;
16039 }
16040 info_ptr += bytes_read;
16041 last_die = parent_die;
16042 parent_die = parent_die->die_parent;
16043 continue;
16044 }
16045
16046 /* Check for template arguments. We never save these; if
16047 they're seen, we just mark the parent, and go on our way. */
16048 if (parent_die != NULL
16049 && cu->language == language_cplus
16050 && (abbrev->tag == DW_TAG_template_type_param
16051 || abbrev->tag == DW_TAG_template_value_param))
16052 {
16053 parent_die->has_template_arguments = 1;
16054
16055 if (!load_all)
16056 {
16057 /* We don't need a partial DIE for the template argument. */
16058 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16059 continue;
16060 }
16061 }
16062
16063 /* We only recurse into c++ subprograms looking for template arguments.
16064 Skip their other children. */
16065 if (!load_all
16066 && cu->language == language_cplus
16067 && parent_die != NULL
16068 && parent_die->tag == DW_TAG_subprogram)
16069 {
16070 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16071 continue;
16072 }
16073
16074 /* Check whether this DIE is interesting enough to save. Normally
16075 we would not be interested in members here, but there may be
16076 later variables referencing them via DW_AT_specification (for
16077 static members). */
16078 if (!load_all
16079 && !is_type_tag_for_partial (abbrev->tag)
16080 && abbrev->tag != DW_TAG_constant
16081 && abbrev->tag != DW_TAG_enumerator
16082 && abbrev->tag != DW_TAG_subprogram
16083 && abbrev->tag != DW_TAG_lexical_block
16084 && abbrev->tag != DW_TAG_variable
16085 && abbrev->tag != DW_TAG_namespace
16086 && abbrev->tag != DW_TAG_module
16087 && abbrev->tag != DW_TAG_member
16088 && abbrev->tag != DW_TAG_imported_unit
16089 && abbrev->tag != DW_TAG_imported_declaration)
16090 {
16091 /* Otherwise we skip to the next sibling, if any. */
16092 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16093 continue;
16094 }
16095
16096 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16097 info_ptr);
16098
16099 /* This two-pass algorithm for processing partial symbols has a
16100 high cost in cache pressure. Thus, handle some simple cases
16101 here which cover the majority of C partial symbols. DIEs
16102 which neither have specification tags in them, nor could have
16103 specification tags elsewhere pointing at them, can simply be
16104 processed and discarded.
16105
16106 This segment is also optional; scan_partial_symbols and
16107 add_partial_symbol will handle these DIEs if we chain
16108 them in normally. When compilers which do not emit large
16109 quantities of duplicate debug information are more common,
16110 this code can probably be removed. */
16111
16112 /* Any complete simple types at the top level (pretty much all
16113 of them, for a language without namespaces), can be processed
16114 directly. */
16115 if (parent_die == NULL
16116 && part_die->has_specification == 0
16117 && part_die->is_declaration == 0
16118 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16119 || part_die->tag == DW_TAG_base_type
16120 || part_die->tag == DW_TAG_subrange_type))
16121 {
16122 if (building_psymtab && part_die->name != NULL)
16123 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16124 VAR_DOMAIN, LOC_TYPEDEF,
16125 &objfile->static_psymbols,
16126 0, cu->language, objfile);
16127 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16128 continue;
16129 }
16130
16131 /* The exception for DW_TAG_typedef with has_children above is
16132 a workaround of GCC PR debug/47510. In the case of this complaint
16133 type_name_no_tag_or_error will error on such types later.
16134
16135 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16136 it could not find the child DIEs referenced later, this is checked
16137 above. In correct DWARF DW_TAG_typedef should have no children. */
16138
16139 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16140 complaint (&symfile_complaints,
16141 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16142 "- DIE at 0x%x [in module %s]"),
16143 to_underlying (part_die->sect_off), objfile_name (objfile));
16144
16145 /* If we're at the second level, and we're an enumerator, and
16146 our parent has no specification (meaning possibly lives in a
16147 namespace elsewhere), then we can add the partial symbol now
16148 instead of queueing it. */
16149 if (part_die->tag == DW_TAG_enumerator
16150 && parent_die != NULL
16151 && parent_die->die_parent == NULL
16152 && parent_die->tag == DW_TAG_enumeration_type
16153 && parent_die->has_specification == 0)
16154 {
16155 if (part_die->name == NULL)
16156 complaint (&symfile_complaints,
16157 _("malformed enumerator DIE ignored"));
16158 else if (building_psymtab)
16159 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16160 VAR_DOMAIN, LOC_CONST,
16161 cu->language == language_cplus
16162 ? &objfile->global_psymbols
16163 : &objfile->static_psymbols,
16164 0, cu->language, objfile);
16165
16166 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16167 continue;
16168 }
16169
16170 /* We'll save this DIE so link it in. */
16171 part_die->die_parent = parent_die;
16172 part_die->die_sibling = NULL;
16173 part_die->die_child = NULL;
16174
16175 if (last_die && last_die == parent_die)
16176 last_die->die_child = part_die;
16177 else if (last_die)
16178 last_die->die_sibling = part_die;
16179
16180 last_die = part_die;
16181
16182 if (first_die == NULL)
16183 first_die = part_die;
16184
16185 /* Maybe add the DIE to the hash table. Not all DIEs that we
16186 find interesting need to be in the hash table, because we
16187 also have the parent/sibling/child chains; only those that we
16188 might refer to by offset later during partial symbol reading.
16189
16190 For now this means things that might have be the target of a
16191 DW_AT_specification, DW_AT_abstract_origin, or
16192 DW_AT_extension. DW_AT_extension will refer only to
16193 namespaces; DW_AT_abstract_origin refers to functions (and
16194 many things under the function DIE, but we do not recurse
16195 into function DIEs during partial symbol reading) and
16196 possibly variables as well; DW_AT_specification refers to
16197 declarations. Declarations ought to have the DW_AT_declaration
16198 flag. It happens that GCC forgets to put it in sometimes, but
16199 only for functions, not for types.
16200
16201 Adding more things than necessary to the hash table is harmless
16202 except for the performance cost. Adding too few will result in
16203 wasted time in find_partial_die, when we reread the compilation
16204 unit with load_all_dies set. */
16205
16206 if (load_all
16207 || abbrev->tag == DW_TAG_constant
16208 || abbrev->tag == DW_TAG_subprogram
16209 || abbrev->tag == DW_TAG_variable
16210 || abbrev->tag == DW_TAG_namespace
16211 || part_die->is_declaration)
16212 {
16213 void **slot;
16214
16215 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16216 to_underlying (part_die->sect_off),
16217 INSERT);
16218 *slot = part_die;
16219 }
16220
16221 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16222
16223 /* For some DIEs we want to follow their children (if any). For C
16224 we have no reason to follow the children of structures; for other
16225 languages we have to, so that we can get at method physnames
16226 to infer fully qualified class names, for DW_AT_specification,
16227 and for C++ template arguments. For C++, we also look one level
16228 inside functions to find template arguments (if the name of the
16229 function does not already contain the template arguments).
16230
16231 For Ada, we need to scan the children of subprograms and lexical
16232 blocks as well because Ada allows the definition of nested
16233 entities that could be interesting for the debugger, such as
16234 nested subprograms for instance. */
16235 if (last_die->has_children
16236 && (load_all
16237 || last_die->tag == DW_TAG_namespace
16238 || last_die->tag == DW_TAG_module
16239 || last_die->tag == DW_TAG_enumeration_type
16240 || (cu->language == language_cplus
16241 && last_die->tag == DW_TAG_subprogram
16242 && (last_die->name == NULL
16243 || strchr (last_die->name, '<') == NULL))
16244 || (cu->language != language_c
16245 && (last_die->tag == DW_TAG_class_type
16246 || last_die->tag == DW_TAG_interface_type
16247 || last_die->tag == DW_TAG_structure_type
16248 || last_die->tag == DW_TAG_union_type))
16249 || (cu->language == language_ada
16250 && (last_die->tag == DW_TAG_subprogram
16251 || last_die->tag == DW_TAG_lexical_block))))
16252 {
16253 nesting_level++;
16254 parent_die = last_die;
16255 continue;
16256 }
16257
16258 /* Otherwise we skip to the next sibling, if any. */
16259 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16260
16261 /* Back to the top, do it again. */
16262 }
16263 }
16264
16265 /* Read a minimal amount of information into the minimal die structure. */
16266
16267 static const gdb_byte *
16268 read_partial_die (const struct die_reader_specs *reader,
16269 struct partial_die_info *part_die,
16270 struct abbrev_info *abbrev, unsigned int abbrev_len,
16271 const gdb_byte *info_ptr)
16272 {
16273 struct dwarf2_cu *cu = reader->cu;
16274 struct objfile *objfile = cu->objfile;
16275 const gdb_byte *buffer = reader->buffer;
16276 unsigned int i;
16277 struct attribute attr;
16278 int has_low_pc_attr = 0;
16279 int has_high_pc_attr = 0;
16280 int high_pc_relative = 0;
16281
16282 memset (part_die, 0, sizeof (struct partial_die_info));
16283
16284 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16285
16286 info_ptr += abbrev_len;
16287
16288 if (abbrev == NULL)
16289 return info_ptr;
16290
16291 part_die->tag = abbrev->tag;
16292 part_die->has_children = abbrev->has_children;
16293
16294 for (i = 0; i < abbrev->num_attrs; ++i)
16295 {
16296 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16297
16298 /* Store the data if it is of an attribute we want to keep in a
16299 partial symbol table. */
16300 switch (attr.name)
16301 {
16302 case DW_AT_name:
16303 switch (part_die->tag)
16304 {
16305 case DW_TAG_compile_unit:
16306 case DW_TAG_partial_unit:
16307 case DW_TAG_type_unit:
16308 /* Compilation units have a DW_AT_name that is a filename, not
16309 a source language identifier. */
16310 case DW_TAG_enumeration_type:
16311 case DW_TAG_enumerator:
16312 /* These tags always have simple identifiers already; no need
16313 to canonicalize them. */
16314 part_die->name = DW_STRING (&attr);
16315 break;
16316 default:
16317 part_die->name
16318 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16319 &objfile->per_bfd->storage_obstack);
16320 break;
16321 }
16322 break;
16323 case DW_AT_linkage_name:
16324 case DW_AT_MIPS_linkage_name:
16325 /* Note that both forms of linkage name might appear. We
16326 assume they will be the same, and we only store the last
16327 one we see. */
16328 if (cu->language == language_ada)
16329 part_die->name = DW_STRING (&attr);
16330 part_die->linkage_name = DW_STRING (&attr);
16331 break;
16332 case DW_AT_low_pc:
16333 has_low_pc_attr = 1;
16334 part_die->lowpc = attr_value_as_address (&attr);
16335 break;
16336 case DW_AT_high_pc:
16337 has_high_pc_attr = 1;
16338 part_die->highpc = attr_value_as_address (&attr);
16339 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16340 high_pc_relative = 1;
16341 break;
16342 case DW_AT_location:
16343 /* Support the .debug_loc offsets. */
16344 if (attr_form_is_block (&attr))
16345 {
16346 part_die->d.locdesc = DW_BLOCK (&attr);
16347 }
16348 else if (attr_form_is_section_offset (&attr))
16349 {
16350 dwarf2_complex_location_expr_complaint ();
16351 }
16352 else
16353 {
16354 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16355 "partial symbol information");
16356 }
16357 break;
16358 case DW_AT_external:
16359 part_die->is_external = DW_UNSND (&attr);
16360 break;
16361 case DW_AT_declaration:
16362 part_die->is_declaration = DW_UNSND (&attr);
16363 break;
16364 case DW_AT_type:
16365 part_die->has_type = 1;
16366 break;
16367 case DW_AT_abstract_origin:
16368 case DW_AT_specification:
16369 case DW_AT_extension:
16370 part_die->has_specification = 1;
16371 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16372 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16373 || cu->per_cu->is_dwz);
16374 break;
16375 case DW_AT_sibling:
16376 /* Ignore absolute siblings, they might point outside of
16377 the current compile unit. */
16378 if (attr.form == DW_FORM_ref_addr)
16379 complaint (&symfile_complaints,
16380 _("ignoring absolute DW_AT_sibling"));
16381 else
16382 {
16383 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16384 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16385
16386 if (sibling_ptr < info_ptr)
16387 complaint (&symfile_complaints,
16388 _("DW_AT_sibling points backwards"));
16389 else if (sibling_ptr > reader->buffer_end)
16390 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16391 else
16392 part_die->sibling = sibling_ptr;
16393 }
16394 break;
16395 case DW_AT_byte_size:
16396 part_die->has_byte_size = 1;
16397 break;
16398 case DW_AT_const_value:
16399 part_die->has_const_value = 1;
16400 break;
16401 case DW_AT_calling_convention:
16402 /* DWARF doesn't provide a way to identify a program's source-level
16403 entry point. DW_AT_calling_convention attributes are only meant
16404 to describe functions' calling conventions.
16405
16406 However, because it's a necessary piece of information in
16407 Fortran, and before DWARF 4 DW_CC_program was the only
16408 piece of debugging information whose definition refers to
16409 a 'main program' at all, several compilers marked Fortran
16410 main programs with DW_CC_program --- even when those
16411 functions use the standard calling conventions.
16412
16413 Although DWARF now specifies a way to provide this
16414 information, we support this practice for backward
16415 compatibility. */
16416 if (DW_UNSND (&attr) == DW_CC_program
16417 && cu->language == language_fortran)
16418 part_die->main_subprogram = 1;
16419 break;
16420 case DW_AT_inline:
16421 if (DW_UNSND (&attr) == DW_INL_inlined
16422 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16423 part_die->may_be_inlined = 1;
16424 break;
16425
16426 case DW_AT_import:
16427 if (part_die->tag == DW_TAG_imported_unit)
16428 {
16429 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16430 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16431 || cu->per_cu->is_dwz);
16432 }
16433 break;
16434
16435 case DW_AT_main_subprogram:
16436 part_die->main_subprogram = DW_UNSND (&attr);
16437 break;
16438
16439 default:
16440 break;
16441 }
16442 }
16443
16444 if (high_pc_relative)
16445 part_die->highpc += part_die->lowpc;
16446
16447 if (has_low_pc_attr && has_high_pc_attr)
16448 {
16449 /* When using the GNU linker, .gnu.linkonce. sections are used to
16450 eliminate duplicate copies of functions and vtables and such.
16451 The linker will arbitrarily choose one and discard the others.
16452 The AT_*_pc values for such functions refer to local labels in
16453 these sections. If the section from that file was discarded, the
16454 labels are not in the output, so the relocs get a value of 0.
16455 If this is a discarded function, mark the pc bounds as invalid,
16456 so that GDB will ignore it. */
16457 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16458 {
16459 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16460
16461 complaint (&symfile_complaints,
16462 _("DW_AT_low_pc %s is zero "
16463 "for DIE at 0x%x [in module %s]"),
16464 paddress (gdbarch, part_die->lowpc),
16465 to_underlying (part_die->sect_off), objfile_name (objfile));
16466 }
16467 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16468 else if (part_die->lowpc >= part_die->highpc)
16469 {
16470 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16471
16472 complaint (&symfile_complaints,
16473 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16474 "for DIE at 0x%x [in module %s]"),
16475 paddress (gdbarch, part_die->lowpc),
16476 paddress (gdbarch, part_die->highpc),
16477 to_underlying (part_die->sect_off),
16478 objfile_name (objfile));
16479 }
16480 else
16481 part_die->has_pc_info = 1;
16482 }
16483
16484 return info_ptr;
16485 }
16486
16487 /* Find a cached partial DIE at OFFSET in CU. */
16488
16489 static struct partial_die_info *
16490 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16491 {
16492 struct partial_die_info *lookup_die = NULL;
16493 struct partial_die_info part_die;
16494
16495 part_die.sect_off = sect_off;
16496 lookup_die = ((struct partial_die_info *)
16497 htab_find_with_hash (cu->partial_dies, &part_die,
16498 to_underlying (sect_off)));
16499
16500 return lookup_die;
16501 }
16502
16503 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16504 except in the case of .debug_types DIEs which do not reference
16505 outside their CU (they do however referencing other types via
16506 DW_FORM_ref_sig8). */
16507
16508 static struct partial_die_info *
16509 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16510 {
16511 struct objfile *objfile = cu->objfile;
16512 struct dwarf2_per_cu_data *per_cu = NULL;
16513 struct partial_die_info *pd = NULL;
16514
16515 if (offset_in_dwz == cu->per_cu->is_dwz
16516 && offset_in_cu_p (&cu->header, sect_off))
16517 {
16518 pd = find_partial_die_in_comp_unit (sect_off, cu);
16519 if (pd != NULL)
16520 return pd;
16521 /* We missed recording what we needed.
16522 Load all dies and try again. */
16523 per_cu = cu->per_cu;
16524 }
16525 else
16526 {
16527 /* TUs don't reference other CUs/TUs (except via type signatures). */
16528 if (cu->per_cu->is_debug_types)
16529 {
16530 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16531 " external reference to offset 0x%x [in module %s].\n"),
16532 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16533 bfd_get_filename (objfile->obfd));
16534 }
16535 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16536 objfile);
16537
16538 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16539 load_partial_comp_unit (per_cu);
16540
16541 per_cu->cu->last_used = 0;
16542 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16543 }
16544
16545 /* If we didn't find it, and not all dies have been loaded,
16546 load them all and try again. */
16547
16548 if (pd == NULL && per_cu->load_all_dies == 0)
16549 {
16550 per_cu->load_all_dies = 1;
16551
16552 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16553 THIS_CU->cu may already be in use. So we can't just free it and
16554 replace its DIEs with the ones we read in. Instead, we leave those
16555 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16556 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16557 set. */
16558 load_partial_comp_unit (per_cu);
16559
16560 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16561 }
16562
16563 if (pd == NULL)
16564 internal_error (__FILE__, __LINE__,
16565 _("could not find partial DIE 0x%x "
16566 "in cache [from module %s]\n"),
16567 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16568 return pd;
16569 }
16570
16571 /* See if we can figure out if the class lives in a namespace. We do
16572 this by looking for a member function; its demangled name will
16573 contain namespace info, if there is any. */
16574
16575 static void
16576 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16577 struct dwarf2_cu *cu)
16578 {
16579 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16580 what template types look like, because the demangler
16581 frequently doesn't give the same name as the debug info. We
16582 could fix this by only using the demangled name to get the
16583 prefix (but see comment in read_structure_type). */
16584
16585 struct partial_die_info *real_pdi;
16586 struct partial_die_info *child_pdi;
16587
16588 /* If this DIE (this DIE's specification, if any) has a parent, then
16589 we should not do this. We'll prepend the parent's fully qualified
16590 name when we create the partial symbol. */
16591
16592 real_pdi = struct_pdi;
16593 while (real_pdi->has_specification)
16594 real_pdi = find_partial_die (real_pdi->spec_offset,
16595 real_pdi->spec_is_dwz, cu);
16596
16597 if (real_pdi->die_parent != NULL)
16598 return;
16599
16600 for (child_pdi = struct_pdi->die_child;
16601 child_pdi != NULL;
16602 child_pdi = child_pdi->die_sibling)
16603 {
16604 if (child_pdi->tag == DW_TAG_subprogram
16605 && child_pdi->linkage_name != NULL)
16606 {
16607 char *actual_class_name
16608 = language_class_name_from_physname (cu->language_defn,
16609 child_pdi->linkage_name);
16610 if (actual_class_name != NULL)
16611 {
16612 struct_pdi->name
16613 = ((const char *)
16614 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16615 actual_class_name,
16616 strlen (actual_class_name)));
16617 xfree (actual_class_name);
16618 }
16619 break;
16620 }
16621 }
16622 }
16623
16624 /* Adjust PART_DIE before generating a symbol for it. This function
16625 may set the is_external flag or change the DIE's name. */
16626
16627 static void
16628 fixup_partial_die (struct partial_die_info *part_die,
16629 struct dwarf2_cu *cu)
16630 {
16631 /* Once we've fixed up a die, there's no point in doing so again.
16632 This also avoids a memory leak if we were to call
16633 guess_partial_die_structure_name multiple times. */
16634 if (part_die->fixup_called)
16635 return;
16636
16637 /* If we found a reference attribute and the DIE has no name, try
16638 to find a name in the referred to DIE. */
16639
16640 if (part_die->name == NULL && part_die->has_specification)
16641 {
16642 struct partial_die_info *spec_die;
16643
16644 spec_die = find_partial_die (part_die->spec_offset,
16645 part_die->spec_is_dwz, cu);
16646
16647 fixup_partial_die (spec_die, cu);
16648
16649 if (spec_die->name)
16650 {
16651 part_die->name = spec_die->name;
16652
16653 /* Copy DW_AT_external attribute if it is set. */
16654 if (spec_die->is_external)
16655 part_die->is_external = spec_die->is_external;
16656 }
16657 }
16658
16659 /* Set default names for some unnamed DIEs. */
16660
16661 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16662 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16663
16664 /* If there is no parent die to provide a namespace, and there are
16665 children, see if we can determine the namespace from their linkage
16666 name. */
16667 if (cu->language == language_cplus
16668 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16669 && part_die->die_parent == NULL
16670 && part_die->has_children
16671 && (part_die->tag == DW_TAG_class_type
16672 || part_die->tag == DW_TAG_structure_type
16673 || part_die->tag == DW_TAG_union_type))
16674 guess_partial_die_structure_name (part_die, cu);
16675
16676 /* GCC might emit a nameless struct or union that has a linkage
16677 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16678 if (part_die->name == NULL
16679 && (part_die->tag == DW_TAG_class_type
16680 || part_die->tag == DW_TAG_interface_type
16681 || part_die->tag == DW_TAG_structure_type
16682 || part_die->tag == DW_TAG_union_type)
16683 && part_die->linkage_name != NULL)
16684 {
16685 char *demangled;
16686
16687 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16688 if (demangled)
16689 {
16690 const char *base;
16691
16692 /* Strip any leading namespaces/classes, keep only the base name.
16693 DW_AT_name for named DIEs does not contain the prefixes. */
16694 base = strrchr (demangled, ':');
16695 if (base && base > demangled && base[-1] == ':')
16696 base++;
16697 else
16698 base = demangled;
16699
16700 part_die->name
16701 = ((const char *)
16702 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16703 base, strlen (base)));
16704 xfree (demangled);
16705 }
16706 }
16707
16708 part_die->fixup_called = 1;
16709 }
16710
16711 /* Read an attribute value described by an attribute form. */
16712
16713 static const gdb_byte *
16714 read_attribute_value (const struct die_reader_specs *reader,
16715 struct attribute *attr, unsigned form,
16716 LONGEST implicit_const, const gdb_byte *info_ptr)
16717 {
16718 struct dwarf2_cu *cu = reader->cu;
16719 struct objfile *objfile = cu->objfile;
16720 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16721 bfd *abfd = reader->abfd;
16722 struct comp_unit_head *cu_header = &cu->header;
16723 unsigned int bytes_read;
16724 struct dwarf_block *blk;
16725
16726 attr->form = (enum dwarf_form) form;
16727 switch (form)
16728 {
16729 case DW_FORM_ref_addr:
16730 if (cu->header.version == 2)
16731 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16732 else
16733 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16734 &cu->header, &bytes_read);
16735 info_ptr += bytes_read;
16736 break;
16737 case DW_FORM_GNU_ref_alt:
16738 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16739 info_ptr += bytes_read;
16740 break;
16741 case DW_FORM_addr:
16742 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16743 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16744 info_ptr += bytes_read;
16745 break;
16746 case DW_FORM_block2:
16747 blk = dwarf_alloc_block (cu);
16748 blk->size = read_2_bytes (abfd, info_ptr);
16749 info_ptr += 2;
16750 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16751 info_ptr += blk->size;
16752 DW_BLOCK (attr) = blk;
16753 break;
16754 case DW_FORM_block4:
16755 blk = dwarf_alloc_block (cu);
16756 blk->size = read_4_bytes (abfd, info_ptr);
16757 info_ptr += 4;
16758 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16759 info_ptr += blk->size;
16760 DW_BLOCK (attr) = blk;
16761 break;
16762 case DW_FORM_data2:
16763 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16764 info_ptr += 2;
16765 break;
16766 case DW_FORM_data4:
16767 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16768 info_ptr += 4;
16769 break;
16770 case DW_FORM_data8:
16771 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16772 info_ptr += 8;
16773 break;
16774 case DW_FORM_data16:
16775 blk = dwarf_alloc_block (cu);
16776 blk->size = 16;
16777 blk->data = read_n_bytes (abfd, info_ptr, 16);
16778 info_ptr += 16;
16779 DW_BLOCK (attr) = blk;
16780 break;
16781 case DW_FORM_sec_offset:
16782 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16783 info_ptr += bytes_read;
16784 break;
16785 case DW_FORM_string:
16786 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16787 DW_STRING_IS_CANONICAL (attr) = 0;
16788 info_ptr += bytes_read;
16789 break;
16790 case DW_FORM_strp:
16791 if (!cu->per_cu->is_dwz)
16792 {
16793 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16794 &bytes_read);
16795 DW_STRING_IS_CANONICAL (attr) = 0;
16796 info_ptr += bytes_read;
16797 break;
16798 }
16799 /* FALLTHROUGH */
16800 case DW_FORM_line_strp:
16801 if (!cu->per_cu->is_dwz)
16802 {
16803 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16804 cu_header, &bytes_read);
16805 DW_STRING_IS_CANONICAL (attr) = 0;
16806 info_ptr += bytes_read;
16807 break;
16808 }
16809 /* FALLTHROUGH */
16810 case DW_FORM_GNU_strp_alt:
16811 {
16812 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16813 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16814 &bytes_read);
16815
16816 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16817 DW_STRING_IS_CANONICAL (attr) = 0;
16818 info_ptr += bytes_read;
16819 }
16820 break;
16821 case DW_FORM_exprloc:
16822 case DW_FORM_block:
16823 blk = dwarf_alloc_block (cu);
16824 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16825 info_ptr += bytes_read;
16826 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16827 info_ptr += blk->size;
16828 DW_BLOCK (attr) = blk;
16829 break;
16830 case DW_FORM_block1:
16831 blk = dwarf_alloc_block (cu);
16832 blk->size = read_1_byte (abfd, info_ptr);
16833 info_ptr += 1;
16834 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16835 info_ptr += blk->size;
16836 DW_BLOCK (attr) = blk;
16837 break;
16838 case DW_FORM_data1:
16839 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16840 info_ptr += 1;
16841 break;
16842 case DW_FORM_flag:
16843 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16844 info_ptr += 1;
16845 break;
16846 case DW_FORM_flag_present:
16847 DW_UNSND (attr) = 1;
16848 break;
16849 case DW_FORM_sdata:
16850 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16851 info_ptr += bytes_read;
16852 break;
16853 case DW_FORM_udata:
16854 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16855 info_ptr += bytes_read;
16856 break;
16857 case DW_FORM_ref1:
16858 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16859 + read_1_byte (abfd, info_ptr));
16860 info_ptr += 1;
16861 break;
16862 case DW_FORM_ref2:
16863 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16864 + read_2_bytes (abfd, info_ptr));
16865 info_ptr += 2;
16866 break;
16867 case DW_FORM_ref4:
16868 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16869 + read_4_bytes (abfd, info_ptr));
16870 info_ptr += 4;
16871 break;
16872 case DW_FORM_ref8:
16873 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16874 + read_8_bytes (abfd, info_ptr));
16875 info_ptr += 8;
16876 break;
16877 case DW_FORM_ref_sig8:
16878 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16879 info_ptr += 8;
16880 break;
16881 case DW_FORM_ref_udata:
16882 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16883 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16884 info_ptr += bytes_read;
16885 break;
16886 case DW_FORM_indirect:
16887 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16888 info_ptr += bytes_read;
16889 if (form == DW_FORM_implicit_const)
16890 {
16891 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16892 info_ptr += bytes_read;
16893 }
16894 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16895 info_ptr);
16896 break;
16897 case DW_FORM_implicit_const:
16898 DW_SND (attr) = implicit_const;
16899 break;
16900 case DW_FORM_GNU_addr_index:
16901 if (reader->dwo_file == NULL)
16902 {
16903 /* For now flag a hard error.
16904 Later we can turn this into a complaint. */
16905 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16906 dwarf_form_name (form),
16907 bfd_get_filename (abfd));
16908 }
16909 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16910 info_ptr += bytes_read;
16911 break;
16912 case DW_FORM_GNU_str_index:
16913 if (reader->dwo_file == NULL)
16914 {
16915 /* For now flag a hard error.
16916 Later we can turn this into a complaint if warranted. */
16917 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16918 dwarf_form_name (form),
16919 bfd_get_filename (abfd));
16920 }
16921 {
16922 ULONGEST str_index =
16923 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16924
16925 DW_STRING (attr) = read_str_index (reader, str_index);
16926 DW_STRING_IS_CANONICAL (attr) = 0;
16927 info_ptr += bytes_read;
16928 }
16929 break;
16930 default:
16931 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16932 dwarf_form_name (form),
16933 bfd_get_filename (abfd));
16934 }
16935
16936 /* Super hack. */
16937 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16938 attr->form = DW_FORM_GNU_ref_alt;
16939
16940 /* We have seen instances where the compiler tried to emit a byte
16941 size attribute of -1 which ended up being encoded as an unsigned
16942 0xffffffff. Although 0xffffffff is technically a valid size value,
16943 an object of this size seems pretty unlikely so we can relatively
16944 safely treat these cases as if the size attribute was invalid and
16945 treat them as zero by default. */
16946 if (attr->name == DW_AT_byte_size
16947 && form == DW_FORM_data4
16948 && DW_UNSND (attr) >= 0xffffffff)
16949 {
16950 complaint
16951 (&symfile_complaints,
16952 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16953 hex_string (DW_UNSND (attr)));
16954 DW_UNSND (attr) = 0;
16955 }
16956
16957 return info_ptr;
16958 }
16959
16960 /* Read an attribute described by an abbreviated attribute. */
16961
16962 static const gdb_byte *
16963 read_attribute (const struct die_reader_specs *reader,
16964 struct attribute *attr, struct attr_abbrev *abbrev,
16965 const gdb_byte *info_ptr)
16966 {
16967 attr->name = abbrev->name;
16968 return read_attribute_value (reader, attr, abbrev->form,
16969 abbrev->implicit_const, info_ptr);
16970 }
16971
16972 /* Read dwarf information from a buffer. */
16973
16974 static unsigned int
16975 read_1_byte (bfd *abfd, const gdb_byte *buf)
16976 {
16977 return bfd_get_8 (abfd, buf);
16978 }
16979
16980 static int
16981 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16982 {
16983 return bfd_get_signed_8 (abfd, buf);
16984 }
16985
16986 static unsigned int
16987 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16988 {
16989 return bfd_get_16 (abfd, buf);
16990 }
16991
16992 static int
16993 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16994 {
16995 return bfd_get_signed_16 (abfd, buf);
16996 }
16997
16998 static unsigned int
16999 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17000 {
17001 return bfd_get_32 (abfd, buf);
17002 }
17003
17004 static int
17005 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17006 {
17007 return bfd_get_signed_32 (abfd, buf);
17008 }
17009
17010 static ULONGEST
17011 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17012 {
17013 return bfd_get_64 (abfd, buf);
17014 }
17015
17016 static CORE_ADDR
17017 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17018 unsigned int *bytes_read)
17019 {
17020 struct comp_unit_head *cu_header = &cu->header;
17021 CORE_ADDR retval = 0;
17022
17023 if (cu_header->signed_addr_p)
17024 {
17025 switch (cu_header->addr_size)
17026 {
17027 case 2:
17028 retval = bfd_get_signed_16 (abfd, buf);
17029 break;
17030 case 4:
17031 retval = bfd_get_signed_32 (abfd, buf);
17032 break;
17033 case 8:
17034 retval = bfd_get_signed_64 (abfd, buf);
17035 break;
17036 default:
17037 internal_error (__FILE__, __LINE__,
17038 _("read_address: bad switch, signed [in module %s]"),
17039 bfd_get_filename (abfd));
17040 }
17041 }
17042 else
17043 {
17044 switch (cu_header->addr_size)
17045 {
17046 case 2:
17047 retval = bfd_get_16 (abfd, buf);
17048 break;
17049 case 4:
17050 retval = bfd_get_32 (abfd, buf);
17051 break;
17052 case 8:
17053 retval = bfd_get_64 (abfd, buf);
17054 break;
17055 default:
17056 internal_error (__FILE__, __LINE__,
17057 _("read_address: bad switch, "
17058 "unsigned [in module %s]"),
17059 bfd_get_filename (abfd));
17060 }
17061 }
17062
17063 *bytes_read = cu_header->addr_size;
17064 return retval;
17065 }
17066
17067 /* Read the initial length from a section. The (draft) DWARF 3
17068 specification allows the initial length to take up either 4 bytes
17069 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17070 bytes describe the length and all offsets will be 8 bytes in length
17071 instead of 4.
17072
17073 An older, non-standard 64-bit format is also handled by this
17074 function. The older format in question stores the initial length
17075 as an 8-byte quantity without an escape value. Lengths greater
17076 than 2^32 aren't very common which means that the initial 4 bytes
17077 is almost always zero. Since a length value of zero doesn't make
17078 sense for the 32-bit format, this initial zero can be considered to
17079 be an escape value which indicates the presence of the older 64-bit
17080 format. As written, the code can't detect (old format) lengths
17081 greater than 4GB. If it becomes necessary to handle lengths
17082 somewhat larger than 4GB, we could allow other small values (such
17083 as the non-sensical values of 1, 2, and 3) to also be used as
17084 escape values indicating the presence of the old format.
17085
17086 The value returned via bytes_read should be used to increment the
17087 relevant pointer after calling read_initial_length().
17088
17089 [ Note: read_initial_length() and read_offset() are based on the
17090 document entitled "DWARF Debugging Information Format", revision
17091 3, draft 8, dated November 19, 2001. This document was obtained
17092 from:
17093
17094 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17095
17096 This document is only a draft and is subject to change. (So beware.)
17097
17098 Details regarding the older, non-standard 64-bit format were
17099 determined empirically by examining 64-bit ELF files produced by
17100 the SGI toolchain on an IRIX 6.5 machine.
17101
17102 - Kevin, July 16, 2002
17103 ] */
17104
17105 static LONGEST
17106 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17107 {
17108 LONGEST length = bfd_get_32 (abfd, buf);
17109
17110 if (length == 0xffffffff)
17111 {
17112 length = bfd_get_64 (abfd, buf + 4);
17113 *bytes_read = 12;
17114 }
17115 else if (length == 0)
17116 {
17117 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17118 length = bfd_get_64 (abfd, buf);
17119 *bytes_read = 8;
17120 }
17121 else
17122 {
17123 *bytes_read = 4;
17124 }
17125
17126 return length;
17127 }
17128
17129 /* Cover function for read_initial_length.
17130 Returns the length of the object at BUF, and stores the size of the
17131 initial length in *BYTES_READ and stores the size that offsets will be in
17132 *OFFSET_SIZE.
17133 If the initial length size is not equivalent to that specified in
17134 CU_HEADER then issue a complaint.
17135 This is useful when reading non-comp-unit headers. */
17136
17137 static LONGEST
17138 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17139 const struct comp_unit_head *cu_header,
17140 unsigned int *bytes_read,
17141 unsigned int *offset_size)
17142 {
17143 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17144
17145 gdb_assert (cu_header->initial_length_size == 4
17146 || cu_header->initial_length_size == 8
17147 || cu_header->initial_length_size == 12);
17148
17149 if (cu_header->initial_length_size != *bytes_read)
17150 complaint (&symfile_complaints,
17151 _("intermixed 32-bit and 64-bit DWARF sections"));
17152
17153 *offset_size = (*bytes_read == 4) ? 4 : 8;
17154 return length;
17155 }
17156
17157 /* Read an offset from the data stream. The size of the offset is
17158 given by cu_header->offset_size. */
17159
17160 static LONGEST
17161 read_offset (bfd *abfd, const gdb_byte *buf,
17162 const struct comp_unit_head *cu_header,
17163 unsigned int *bytes_read)
17164 {
17165 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17166
17167 *bytes_read = cu_header->offset_size;
17168 return offset;
17169 }
17170
17171 /* Read an offset from the data stream. */
17172
17173 static LONGEST
17174 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17175 {
17176 LONGEST retval = 0;
17177
17178 switch (offset_size)
17179 {
17180 case 4:
17181 retval = bfd_get_32 (abfd, buf);
17182 break;
17183 case 8:
17184 retval = bfd_get_64 (abfd, buf);
17185 break;
17186 default:
17187 internal_error (__FILE__, __LINE__,
17188 _("read_offset_1: bad switch [in module %s]"),
17189 bfd_get_filename (abfd));
17190 }
17191
17192 return retval;
17193 }
17194
17195 static const gdb_byte *
17196 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17197 {
17198 /* If the size of a host char is 8 bits, we can return a pointer
17199 to the buffer, otherwise we have to copy the data to a buffer
17200 allocated on the temporary obstack. */
17201 gdb_assert (HOST_CHAR_BIT == 8);
17202 return buf;
17203 }
17204
17205 static const char *
17206 read_direct_string (bfd *abfd, const gdb_byte *buf,
17207 unsigned int *bytes_read_ptr)
17208 {
17209 /* If the size of a host char is 8 bits, we can return a pointer
17210 to the string, otherwise we have to copy the string to a buffer
17211 allocated on the temporary obstack. */
17212 gdb_assert (HOST_CHAR_BIT == 8);
17213 if (*buf == '\0')
17214 {
17215 *bytes_read_ptr = 1;
17216 return NULL;
17217 }
17218 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17219 return (const char *) buf;
17220 }
17221
17222 /* Return pointer to string at section SECT offset STR_OFFSET with error
17223 reporting strings FORM_NAME and SECT_NAME. */
17224
17225 static const char *
17226 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17227 struct dwarf2_section_info *sect,
17228 const char *form_name,
17229 const char *sect_name)
17230 {
17231 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17232 if (sect->buffer == NULL)
17233 error (_("%s used without %s section [in module %s]"),
17234 form_name, sect_name, bfd_get_filename (abfd));
17235 if (str_offset >= sect->size)
17236 error (_("%s pointing outside of %s section [in module %s]"),
17237 form_name, sect_name, bfd_get_filename (abfd));
17238 gdb_assert (HOST_CHAR_BIT == 8);
17239 if (sect->buffer[str_offset] == '\0')
17240 return NULL;
17241 return (const char *) (sect->buffer + str_offset);
17242 }
17243
17244 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17245
17246 static const char *
17247 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17248 {
17249 return read_indirect_string_at_offset_from (abfd, str_offset,
17250 &dwarf2_per_objfile->str,
17251 "DW_FORM_strp", ".debug_str");
17252 }
17253
17254 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17255
17256 static const char *
17257 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17258 {
17259 return read_indirect_string_at_offset_from (abfd, str_offset,
17260 &dwarf2_per_objfile->line_str,
17261 "DW_FORM_line_strp",
17262 ".debug_line_str");
17263 }
17264
17265 /* Read a string at offset STR_OFFSET in the .debug_str section from
17266 the .dwz file DWZ. Throw an error if the offset is too large. If
17267 the string consists of a single NUL byte, return NULL; otherwise
17268 return a pointer to the string. */
17269
17270 static const char *
17271 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17272 {
17273 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17274
17275 if (dwz->str.buffer == NULL)
17276 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17277 "section [in module %s]"),
17278 bfd_get_filename (dwz->dwz_bfd));
17279 if (str_offset >= dwz->str.size)
17280 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17281 ".debug_str section [in module %s]"),
17282 bfd_get_filename (dwz->dwz_bfd));
17283 gdb_assert (HOST_CHAR_BIT == 8);
17284 if (dwz->str.buffer[str_offset] == '\0')
17285 return NULL;
17286 return (const char *) (dwz->str.buffer + str_offset);
17287 }
17288
17289 /* Return pointer to string at .debug_str offset as read from BUF.
17290 BUF is assumed to be in a compilation unit described by CU_HEADER.
17291 Return *BYTES_READ_PTR count of bytes read from BUF. */
17292
17293 static const char *
17294 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17295 const struct comp_unit_head *cu_header,
17296 unsigned int *bytes_read_ptr)
17297 {
17298 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17299
17300 return read_indirect_string_at_offset (abfd, str_offset);
17301 }
17302
17303 /* Return pointer to string at .debug_line_str offset as read from BUF.
17304 BUF is assumed to be in a compilation unit described by CU_HEADER.
17305 Return *BYTES_READ_PTR count of bytes read from BUF. */
17306
17307 static const char *
17308 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17309 const struct comp_unit_head *cu_header,
17310 unsigned int *bytes_read_ptr)
17311 {
17312 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17313
17314 return read_indirect_line_string_at_offset (abfd, str_offset);
17315 }
17316
17317 ULONGEST
17318 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17319 unsigned int *bytes_read_ptr)
17320 {
17321 ULONGEST result;
17322 unsigned int num_read;
17323 int shift;
17324 unsigned char byte;
17325
17326 result = 0;
17327 shift = 0;
17328 num_read = 0;
17329 while (1)
17330 {
17331 byte = bfd_get_8 (abfd, buf);
17332 buf++;
17333 num_read++;
17334 result |= ((ULONGEST) (byte & 127) << shift);
17335 if ((byte & 128) == 0)
17336 {
17337 break;
17338 }
17339 shift += 7;
17340 }
17341 *bytes_read_ptr = num_read;
17342 return result;
17343 }
17344
17345 static LONGEST
17346 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17347 unsigned int *bytes_read_ptr)
17348 {
17349 LONGEST result;
17350 int shift, num_read;
17351 unsigned char byte;
17352
17353 result = 0;
17354 shift = 0;
17355 num_read = 0;
17356 while (1)
17357 {
17358 byte = bfd_get_8 (abfd, buf);
17359 buf++;
17360 num_read++;
17361 result |= ((LONGEST) (byte & 127) << shift);
17362 shift += 7;
17363 if ((byte & 128) == 0)
17364 {
17365 break;
17366 }
17367 }
17368 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17369 result |= -(((LONGEST) 1) << shift);
17370 *bytes_read_ptr = num_read;
17371 return result;
17372 }
17373
17374 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17375 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17376 ADDR_SIZE is the size of addresses from the CU header. */
17377
17378 static CORE_ADDR
17379 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17380 {
17381 struct objfile *objfile = dwarf2_per_objfile->objfile;
17382 bfd *abfd = objfile->obfd;
17383 const gdb_byte *info_ptr;
17384
17385 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17386 if (dwarf2_per_objfile->addr.buffer == NULL)
17387 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17388 objfile_name (objfile));
17389 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17390 error (_("DW_FORM_addr_index pointing outside of "
17391 ".debug_addr section [in module %s]"),
17392 objfile_name (objfile));
17393 info_ptr = (dwarf2_per_objfile->addr.buffer
17394 + addr_base + addr_index * addr_size);
17395 if (addr_size == 4)
17396 return bfd_get_32 (abfd, info_ptr);
17397 else
17398 return bfd_get_64 (abfd, info_ptr);
17399 }
17400
17401 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17402
17403 static CORE_ADDR
17404 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17405 {
17406 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17407 }
17408
17409 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17410
17411 static CORE_ADDR
17412 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17413 unsigned int *bytes_read)
17414 {
17415 bfd *abfd = cu->objfile->obfd;
17416 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17417
17418 return read_addr_index (cu, addr_index);
17419 }
17420
17421 /* Data structure to pass results from dwarf2_read_addr_index_reader
17422 back to dwarf2_read_addr_index. */
17423
17424 struct dwarf2_read_addr_index_data
17425 {
17426 ULONGEST addr_base;
17427 int addr_size;
17428 };
17429
17430 /* die_reader_func for dwarf2_read_addr_index. */
17431
17432 static void
17433 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17434 const gdb_byte *info_ptr,
17435 struct die_info *comp_unit_die,
17436 int has_children,
17437 void *data)
17438 {
17439 struct dwarf2_cu *cu = reader->cu;
17440 struct dwarf2_read_addr_index_data *aidata =
17441 (struct dwarf2_read_addr_index_data *) data;
17442
17443 aidata->addr_base = cu->addr_base;
17444 aidata->addr_size = cu->header.addr_size;
17445 }
17446
17447 /* Given an index in .debug_addr, fetch the value.
17448 NOTE: This can be called during dwarf expression evaluation,
17449 long after the debug information has been read, and thus per_cu->cu
17450 may no longer exist. */
17451
17452 CORE_ADDR
17453 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17454 unsigned int addr_index)
17455 {
17456 struct objfile *objfile = per_cu->objfile;
17457 struct dwarf2_cu *cu = per_cu->cu;
17458 ULONGEST addr_base;
17459 int addr_size;
17460
17461 /* This is intended to be called from outside this file. */
17462 dw2_setup (objfile);
17463
17464 /* We need addr_base and addr_size.
17465 If we don't have PER_CU->cu, we have to get it.
17466 Nasty, but the alternative is storing the needed info in PER_CU,
17467 which at this point doesn't seem justified: it's not clear how frequently
17468 it would get used and it would increase the size of every PER_CU.
17469 Entry points like dwarf2_per_cu_addr_size do a similar thing
17470 so we're not in uncharted territory here.
17471 Alas we need to be a bit more complicated as addr_base is contained
17472 in the DIE.
17473
17474 We don't need to read the entire CU(/TU).
17475 We just need the header and top level die.
17476
17477 IWBN to use the aging mechanism to let us lazily later discard the CU.
17478 For now we skip this optimization. */
17479
17480 if (cu != NULL)
17481 {
17482 addr_base = cu->addr_base;
17483 addr_size = cu->header.addr_size;
17484 }
17485 else
17486 {
17487 struct dwarf2_read_addr_index_data aidata;
17488
17489 /* Note: We can't use init_cutu_and_read_dies_simple here,
17490 we need addr_base. */
17491 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17492 dwarf2_read_addr_index_reader, &aidata);
17493 addr_base = aidata.addr_base;
17494 addr_size = aidata.addr_size;
17495 }
17496
17497 return read_addr_index_1 (addr_index, addr_base, addr_size);
17498 }
17499
17500 /* Given a DW_FORM_GNU_str_index, fetch the string.
17501 This is only used by the Fission support. */
17502
17503 static const char *
17504 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17505 {
17506 struct objfile *objfile = dwarf2_per_objfile->objfile;
17507 const char *objf_name = objfile_name (objfile);
17508 bfd *abfd = objfile->obfd;
17509 struct dwarf2_cu *cu = reader->cu;
17510 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17511 struct dwarf2_section_info *str_offsets_section =
17512 &reader->dwo_file->sections.str_offsets;
17513 const gdb_byte *info_ptr;
17514 ULONGEST str_offset;
17515 static const char form_name[] = "DW_FORM_GNU_str_index";
17516
17517 dwarf2_read_section (objfile, str_section);
17518 dwarf2_read_section (objfile, str_offsets_section);
17519 if (str_section->buffer == NULL)
17520 error (_("%s used without .debug_str.dwo section"
17521 " in CU at offset 0x%x [in module %s]"),
17522 form_name, to_underlying (cu->header.sect_off), objf_name);
17523 if (str_offsets_section->buffer == NULL)
17524 error (_("%s used without .debug_str_offsets.dwo section"
17525 " in CU at offset 0x%x [in module %s]"),
17526 form_name, to_underlying (cu->header.sect_off), objf_name);
17527 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17528 error (_("%s pointing outside of .debug_str_offsets.dwo"
17529 " section in CU at offset 0x%x [in module %s]"),
17530 form_name, to_underlying (cu->header.sect_off), objf_name);
17531 info_ptr = (str_offsets_section->buffer
17532 + str_index * cu->header.offset_size);
17533 if (cu->header.offset_size == 4)
17534 str_offset = bfd_get_32 (abfd, info_ptr);
17535 else
17536 str_offset = bfd_get_64 (abfd, info_ptr);
17537 if (str_offset >= str_section->size)
17538 error (_("Offset from %s pointing outside of"
17539 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17540 form_name, to_underlying (cu->header.sect_off), objf_name);
17541 return (const char *) (str_section->buffer + str_offset);
17542 }
17543
17544 /* Return the length of an LEB128 number in BUF. */
17545
17546 static int
17547 leb128_size (const gdb_byte *buf)
17548 {
17549 const gdb_byte *begin = buf;
17550 gdb_byte byte;
17551
17552 while (1)
17553 {
17554 byte = *buf++;
17555 if ((byte & 128) == 0)
17556 return buf - begin;
17557 }
17558 }
17559
17560 static void
17561 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17562 {
17563 switch (lang)
17564 {
17565 case DW_LANG_C89:
17566 case DW_LANG_C99:
17567 case DW_LANG_C11:
17568 case DW_LANG_C:
17569 case DW_LANG_UPC:
17570 cu->language = language_c;
17571 break;
17572 case DW_LANG_Java:
17573 case DW_LANG_C_plus_plus:
17574 case DW_LANG_C_plus_plus_11:
17575 case DW_LANG_C_plus_plus_14:
17576 cu->language = language_cplus;
17577 break;
17578 case DW_LANG_D:
17579 cu->language = language_d;
17580 break;
17581 case DW_LANG_Fortran77:
17582 case DW_LANG_Fortran90:
17583 case DW_LANG_Fortran95:
17584 case DW_LANG_Fortran03:
17585 case DW_LANG_Fortran08:
17586 cu->language = language_fortran;
17587 break;
17588 case DW_LANG_Go:
17589 cu->language = language_go;
17590 break;
17591 case DW_LANG_Mips_Assembler:
17592 cu->language = language_asm;
17593 break;
17594 case DW_LANG_Ada83:
17595 case DW_LANG_Ada95:
17596 cu->language = language_ada;
17597 break;
17598 case DW_LANG_Modula2:
17599 cu->language = language_m2;
17600 break;
17601 case DW_LANG_Pascal83:
17602 cu->language = language_pascal;
17603 break;
17604 case DW_LANG_ObjC:
17605 cu->language = language_objc;
17606 break;
17607 case DW_LANG_Rust:
17608 case DW_LANG_Rust_old:
17609 cu->language = language_rust;
17610 break;
17611 case DW_LANG_Cobol74:
17612 case DW_LANG_Cobol85:
17613 default:
17614 cu->language = language_minimal;
17615 break;
17616 }
17617 cu->language_defn = language_def (cu->language);
17618 }
17619
17620 /* Return the named attribute or NULL if not there. */
17621
17622 static struct attribute *
17623 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17624 {
17625 for (;;)
17626 {
17627 unsigned int i;
17628 struct attribute *spec = NULL;
17629
17630 for (i = 0; i < die->num_attrs; ++i)
17631 {
17632 if (die->attrs[i].name == name)
17633 return &die->attrs[i];
17634 if (die->attrs[i].name == DW_AT_specification
17635 || die->attrs[i].name == DW_AT_abstract_origin)
17636 spec = &die->attrs[i];
17637 }
17638
17639 if (!spec)
17640 break;
17641
17642 die = follow_die_ref (die, spec, &cu);
17643 }
17644
17645 return NULL;
17646 }
17647
17648 /* Return the named attribute or NULL if not there,
17649 but do not follow DW_AT_specification, etc.
17650 This is for use in contexts where we're reading .debug_types dies.
17651 Following DW_AT_specification, DW_AT_abstract_origin will take us
17652 back up the chain, and we want to go down. */
17653
17654 static struct attribute *
17655 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17656 {
17657 unsigned int i;
17658
17659 for (i = 0; i < die->num_attrs; ++i)
17660 if (die->attrs[i].name == name)
17661 return &die->attrs[i];
17662
17663 return NULL;
17664 }
17665
17666 /* Return the string associated with a string-typed attribute, or NULL if it
17667 is either not found or is of an incorrect type. */
17668
17669 static const char *
17670 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17671 {
17672 struct attribute *attr;
17673 const char *str = NULL;
17674
17675 attr = dwarf2_attr (die, name, cu);
17676
17677 if (attr != NULL)
17678 {
17679 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17680 || attr->form == DW_FORM_string
17681 || attr->form == DW_FORM_GNU_str_index
17682 || attr->form == DW_FORM_GNU_strp_alt)
17683 str = DW_STRING (attr);
17684 else
17685 complaint (&symfile_complaints,
17686 _("string type expected for attribute %s for "
17687 "DIE at 0x%x in module %s"),
17688 dwarf_attr_name (name), to_underlying (die->sect_off),
17689 objfile_name (cu->objfile));
17690 }
17691
17692 return str;
17693 }
17694
17695 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17696 and holds a non-zero value. This function should only be used for
17697 DW_FORM_flag or DW_FORM_flag_present attributes. */
17698
17699 static int
17700 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17701 {
17702 struct attribute *attr = dwarf2_attr (die, name, cu);
17703
17704 return (attr && DW_UNSND (attr));
17705 }
17706
17707 static int
17708 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17709 {
17710 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17711 which value is non-zero. However, we have to be careful with
17712 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17713 (via dwarf2_flag_true_p) follows this attribute. So we may
17714 end up accidently finding a declaration attribute that belongs
17715 to a different DIE referenced by the specification attribute,
17716 even though the given DIE does not have a declaration attribute. */
17717 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17718 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17719 }
17720
17721 /* Return the die giving the specification for DIE, if there is
17722 one. *SPEC_CU is the CU containing DIE on input, and the CU
17723 containing the return value on output. If there is no
17724 specification, but there is an abstract origin, that is
17725 returned. */
17726
17727 static struct die_info *
17728 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17729 {
17730 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17731 *spec_cu);
17732
17733 if (spec_attr == NULL)
17734 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17735
17736 if (spec_attr == NULL)
17737 return NULL;
17738 else
17739 return follow_die_ref (die, spec_attr, spec_cu);
17740 }
17741
17742 /* Stub for free_line_header to match void * callback types. */
17743
17744 static void
17745 free_line_header_voidp (void *arg)
17746 {
17747 struct line_header *lh = (struct line_header *) arg;
17748
17749 delete lh;
17750 }
17751
17752 void
17753 line_header::add_include_dir (const char *include_dir)
17754 {
17755 if (dwarf_line_debug >= 2)
17756 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17757 include_dirs.size () + 1, include_dir);
17758
17759 include_dirs.push_back (include_dir);
17760 }
17761
17762 void
17763 line_header::add_file_name (const char *name,
17764 dir_index d_index,
17765 unsigned int mod_time,
17766 unsigned int length)
17767 {
17768 if (dwarf_line_debug >= 2)
17769 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17770 (unsigned) file_names.size () + 1, name);
17771
17772 file_names.emplace_back (name, d_index, mod_time, length);
17773 }
17774
17775 /* A convenience function to find the proper .debug_line section for a CU. */
17776
17777 static struct dwarf2_section_info *
17778 get_debug_line_section (struct dwarf2_cu *cu)
17779 {
17780 struct dwarf2_section_info *section;
17781
17782 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17783 DWO file. */
17784 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17785 section = &cu->dwo_unit->dwo_file->sections.line;
17786 else if (cu->per_cu->is_dwz)
17787 {
17788 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17789
17790 section = &dwz->line;
17791 }
17792 else
17793 section = &dwarf2_per_objfile->line;
17794
17795 return section;
17796 }
17797
17798 /* Read directory or file name entry format, starting with byte of
17799 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17800 entries count and the entries themselves in the described entry
17801 format. */
17802
17803 static void
17804 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17805 struct line_header *lh,
17806 const struct comp_unit_head *cu_header,
17807 void (*callback) (struct line_header *lh,
17808 const char *name,
17809 dir_index d_index,
17810 unsigned int mod_time,
17811 unsigned int length))
17812 {
17813 gdb_byte format_count, formati;
17814 ULONGEST data_count, datai;
17815 const gdb_byte *buf = *bufp;
17816 const gdb_byte *format_header_data;
17817 int i;
17818 unsigned int bytes_read;
17819
17820 format_count = read_1_byte (abfd, buf);
17821 buf += 1;
17822 format_header_data = buf;
17823 for (formati = 0; formati < format_count; formati++)
17824 {
17825 read_unsigned_leb128 (abfd, buf, &bytes_read);
17826 buf += bytes_read;
17827 read_unsigned_leb128 (abfd, buf, &bytes_read);
17828 buf += bytes_read;
17829 }
17830
17831 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17832 buf += bytes_read;
17833 for (datai = 0; datai < data_count; datai++)
17834 {
17835 const gdb_byte *format = format_header_data;
17836 struct file_entry fe;
17837
17838 for (formati = 0; formati < format_count; formati++)
17839 {
17840 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17841 format += bytes_read;
17842
17843 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17844 format += bytes_read;
17845
17846 gdb::optional<const char *> string;
17847 gdb::optional<unsigned int> uint;
17848
17849 switch (form)
17850 {
17851 case DW_FORM_string:
17852 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17853 buf += bytes_read;
17854 break;
17855
17856 case DW_FORM_line_strp:
17857 string.emplace (read_indirect_line_string (abfd, buf,
17858 cu_header,
17859 &bytes_read));
17860 buf += bytes_read;
17861 break;
17862
17863 case DW_FORM_data1:
17864 uint.emplace (read_1_byte (abfd, buf));
17865 buf += 1;
17866 break;
17867
17868 case DW_FORM_data2:
17869 uint.emplace (read_2_bytes (abfd, buf));
17870 buf += 2;
17871 break;
17872
17873 case DW_FORM_data4:
17874 uint.emplace (read_4_bytes (abfd, buf));
17875 buf += 4;
17876 break;
17877
17878 case DW_FORM_data8:
17879 uint.emplace (read_8_bytes (abfd, buf));
17880 buf += 8;
17881 break;
17882
17883 case DW_FORM_udata:
17884 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17885 buf += bytes_read;
17886 break;
17887
17888 case DW_FORM_block:
17889 /* It is valid only for DW_LNCT_timestamp which is ignored by
17890 current GDB. */
17891 break;
17892 }
17893
17894 switch (content_type)
17895 {
17896 case DW_LNCT_path:
17897 if (string.has_value ())
17898 fe.name = *string;
17899 break;
17900 case DW_LNCT_directory_index:
17901 if (uint.has_value ())
17902 fe.d_index = (dir_index) *uint;
17903 break;
17904 case DW_LNCT_timestamp:
17905 if (uint.has_value ())
17906 fe.mod_time = *uint;
17907 break;
17908 case DW_LNCT_size:
17909 if (uint.has_value ())
17910 fe.length = *uint;
17911 break;
17912 case DW_LNCT_MD5:
17913 break;
17914 default:
17915 complaint (&symfile_complaints,
17916 _("Unknown format content type %s"),
17917 pulongest (content_type));
17918 }
17919 }
17920
17921 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17922 }
17923
17924 *bufp = buf;
17925 }
17926
17927 /* Read the statement program header starting at OFFSET in
17928 .debug_line, or .debug_line.dwo. Return a pointer
17929 to a struct line_header, allocated using xmalloc.
17930 Returns NULL if there is a problem reading the header, e.g., if it
17931 has a version we don't understand.
17932
17933 NOTE: the strings in the include directory and file name tables of
17934 the returned object point into the dwarf line section buffer,
17935 and must not be freed. */
17936
17937 static line_header_up
17938 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17939 {
17940 const gdb_byte *line_ptr;
17941 unsigned int bytes_read, offset_size;
17942 int i;
17943 const char *cur_dir, *cur_file;
17944 struct dwarf2_section_info *section;
17945 bfd *abfd;
17946
17947 section = get_debug_line_section (cu);
17948 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17949 if (section->buffer == NULL)
17950 {
17951 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17952 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17953 else
17954 complaint (&symfile_complaints, _("missing .debug_line section"));
17955 return 0;
17956 }
17957
17958 /* We can't do this until we know the section is non-empty.
17959 Only then do we know we have such a section. */
17960 abfd = get_section_bfd_owner (section);
17961
17962 /* Make sure that at least there's room for the total_length field.
17963 That could be 12 bytes long, but we're just going to fudge that. */
17964 if (to_underlying (sect_off) + 4 >= section->size)
17965 {
17966 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17967 return 0;
17968 }
17969
17970 line_header_up lh (new line_header ());
17971
17972 lh->sect_off = sect_off;
17973 lh->offset_in_dwz = cu->per_cu->is_dwz;
17974
17975 line_ptr = section->buffer + to_underlying (sect_off);
17976
17977 /* Read in the header. */
17978 lh->total_length =
17979 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17980 &bytes_read, &offset_size);
17981 line_ptr += bytes_read;
17982 if (line_ptr + lh->total_length > (section->buffer + section->size))
17983 {
17984 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17985 return 0;
17986 }
17987 lh->statement_program_end = line_ptr + lh->total_length;
17988 lh->version = read_2_bytes (abfd, line_ptr);
17989 line_ptr += 2;
17990 if (lh->version > 5)
17991 {
17992 /* This is a version we don't understand. The format could have
17993 changed in ways we don't handle properly so just punt. */
17994 complaint (&symfile_complaints,
17995 _("unsupported version in .debug_line section"));
17996 return NULL;
17997 }
17998 if (lh->version >= 5)
17999 {
18000 gdb_byte segment_selector_size;
18001
18002 /* Skip address size. */
18003 read_1_byte (abfd, line_ptr);
18004 line_ptr += 1;
18005
18006 segment_selector_size = read_1_byte (abfd, line_ptr);
18007 line_ptr += 1;
18008 if (segment_selector_size != 0)
18009 {
18010 complaint (&symfile_complaints,
18011 _("unsupported segment selector size %u "
18012 "in .debug_line section"),
18013 segment_selector_size);
18014 return NULL;
18015 }
18016 }
18017 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18018 line_ptr += offset_size;
18019 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18020 line_ptr += 1;
18021 if (lh->version >= 4)
18022 {
18023 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18024 line_ptr += 1;
18025 }
18026 else
18027 lh->maximum_ops_per_instruction = 1;
18028
18029 if (lh->maximum_ops_per_instruction == 0)
18030 {
18031 lh->maximum_ops_per_instruction = 1;
18032 complaint (&symfile_complaints,
18033 _("invalid maximum_ops_per_instruction "
18034 "in `.debug_line' section"));
18035 }
18036
18037 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18038 line_ptr += 1;
18039 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18040 line_ptr += 1;
18041 lh->line_range = read_1_byte (abfd, line_ptr);
18042 line_ptr += 1;
18043 lh->opcode_base = read_1_byte (abfd, line_ptr);
18044 line_ptr += 1;
18045 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18046
18047 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18048 for (i = 1; i < lh->opcode_base; ++i)
18049 {
18050 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18051 line_ptr += 1;
18052 }
18053
18054 if (lh->version >= 5)
18055 {
18056 /* Read directory table. */
18057 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18058 [] (struct line_header *lh, const char *name,
18059 dir_index d_index, unsigned int mod_time,
18060 unsigned int length)
18061 {
18062 lh->add_include_dir (name);
18063 });
18064
18065 /* Read file name table. */
18066 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18067 [] (struct line_header *lh, const char *name,
18068 dir_index d_index, unsigned int mod_time,
18069 unsigned int length)
18070 {
18071 lh->add_file_name (name, d_index, mod_time, length);
18072 });
18073 }
18074 else
18075 {
18076 /* Read directory table. */
18077 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18078 {
18079 line_ptr += bytes_read;
18080 lh->add_include_dir (cur_dir);
18081 }
18082 line_ptr += bytes_read;
18083
18084 /* Read file name table. */
18085 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18086 {
18087 unsigned int mod_time, length;
18088 dir_index d_index;
18089
18090 line_ptr += bytes_read;
18091 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18092 line_ptr += bytes_read;
18093 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18094 line_ptr += bytes_read;
18095 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18096 line_ptr += bytes_read;
18097
18098 lh->add_file_name (cur_file, d_index, mod_time, length);
18099 }
18100 line_ptr += bytes_read;
18101 }
18102 lh->statement_program_start = line_ptr;
18103
18104 if (line_ptr > (section->buffer + section->size))
18105 complaint (&symfile_complaints,
18106 _("line number info header doesn't "
18107 "fit in `.debug_line' section"));
18108
18109 return lh;
18110 }
18111
18112 /* Subroutine of dwarf_decode_lines to simplify it.
18113 Return the file name of the psymtab for included file FILE_INDEX
18114 in line header LH of PST.
18115 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18116 If space for the result is malloc'd, it will be freed by a cleanup.
18117 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18118
18119 The function creates dangling cleanup registration. */
18120
18121 static const char *
18122 psymtab_include_file_name (const struct line_header *lh, int file_index,
18123 const struct partial_symtab *pst,
18124 const char *comp_dir)
18125 {
18126 const file_entry &fe = lh->file_names[file_index];
18127 const char *include_name = fe.name;
18128 const char *include_name_to_compare = include_name;
18129 const char *pst_filename;
18130 char *copied_name = NULL;
18131 int file_is_pst;
18132
18133 const char *dir_name = fe.include_dir (lh);
18134
18135 if (!IS_ABSOLUTE_PATH (include_name)
18136 && (dir_name != NULL || comp_dir != NULL))
18137 {
18138 /* Avoid creating a duplicate psymtab for PST.
18139 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18140 Before we do the comparison, however, we need to account
18141 for DIR_NAME and COMP_DIR.
18142 First prepend dir_name (if non-NULL). If we still don't
18143 have an absolute path prepend comp_dir (if non-NULL).
18144 However, the directory we record in the include-file's
18145 psymtab does not contain COMP_DIR (to match the
18146 corresponding symtab(s)).
18147
18148 Example:
18149
18150 bash$ cd /tmp
18151 bash$ gcc -g ./hello.c
18152 include_name = "hello.c"
18153 dir_name = "."
18154 DW_AT_comp_dir = comp_dir = "/tmp"
18155 DW_AT_name = "./hello.c"
18156
18157 */
18158
18159 if (dir_name != NULL)
18160 {
18161 char *tem = concat (dir_name, SLASH_STRING,
18162 include_name, (char *)NULL);
18163
18164 make_cleanup (xfree, tem);
18165 include_name = tem;
18166 include_name_to_compare = include_name;
18167 }
18168 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18169 {
18170 char *tem = concat (comp_dir, SLASH_STRING,
18171 include_name, (char *)NULL);
18172
18173 make_cleanup (xfree, tem);
18174 include_name_to_compare = tem;
18175 }
18176 }
18177
18178 pst_filename = pst->filename;
18179 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18180 {
18181 copied_name = concat (pst->dirname, SLASH_STRING,
18182 pst_filename, (char *)NULL);
18183 pst_filename = copied_name;
18184 }
18185
18186 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18187
18188 if (copied_name != NULL)
18189 xfree (copied_name);
18190
18191 if (file_is_pst)
18192 return NULL;
18193 return include_name;
18194 }
18195
18196 /* State machine to track the state of the line number program. */
18197
18198 class lnp_state_machine
18199 {
18200 public:
18201 /* Initialize a machine state for the start of a line number
18202 program. */
18203 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18204
18205 file_entry *current_file ()
18206 {
18207 /* lh->file_names is 0-based, but the file name numbers in the
18208 statement program are 1-based. */
18209 return m_line_header->file_name_at (m_file);
18210 }
18211
18212 /* Record the line in the state machine. END_SEQUENCE is true if
18213 we're processing the end of a sequence. */
18214 void record_line (bool end_sequence);
18215
18216 /* Check address and if invalid nop-out the rest of the lines in this
18217 sequence. */
18218 void check_line_address (struct dwarf2_cu *cu,
18219 const gdb_byte *line_ptr,
18220 CORE_ADDR lowpc, CORE_ADDR address);
18221
18222 void handle_set_discriminator (unsigned int discriminator)
18223 {
18224 m_discriminator = discriminator;
18225 m_line_has_non_zero_discriminator |= discriminator != 0;
18226 }
18227
18228 /* Handle DW_LNE_set_address. */
18229 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18230 {
18231 m_op_index = 0;
18232 address += baseaddr;
18233 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18234 }
18235
18236 /* Handle DW_LNS_advance_pc. */
18237 void handle_advance_pc (CORE_ADDR adjust);
18238
18239 /* Handle a special opcode. */
18240 void handle_special_opcode (unsigned char op_code);
18241
18242 /* Handle DW_LNS_advance_line. */
18243 void handle_advance_line (int line_delta)
18244 {
18245 advance_line (line_delta);
18246 }
18247
18248 /* Handle DW_LNS_set_file. */
18249 void handle_set_file (file_name_index file);
18250
18251 /* Handle DW_LNS_negate_stmt. */
18252 void handle_negate_stmt ()
18253 {
18254 m_is_stmt = !m_is_stmt;
18255 }
18256
18257 /* Handle DW_LNS_const_add_pc. */
18258 void handle_const_add_pc ();
18259
18260 /* Handle DW_LNS_fixed_advance_pc. */
18261 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18262 {
18263 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18264 m_op_index = 0;
18265 }
18266
18267 /* Handle DW_LNS_copy. */
18268 void handle_copy ()
18269 {
18270 record_line (false);
18271 m_discriminator = 0;
18272 }
18273
18274 /* Handle DW_LNE_end_sequence. */
18275 void handle_end_sequence ()
18276 {
18277 m_record_line_callback = ::record_line;
18278 }
18279
18280 private:
18281 /* Advance the line by LINE_DELTA. */
18282 void advance_line (int line_delta)
18283 {
18284 m_line += line_delta;
18285
18286 if (line_delta != 0)
18287 m_line_has_non_zero_discriminator = m_discriminator != 0;
18288 }
18289
18290 gdbarch *m_gdbarch;
18291
18292 /* True if we're recording lines.
18293 Otherwise we're building partial symtabs and are just interested in
18294 finding include files mentioned by the line number program. */
18295 bool m_record_lines_p;
18296
18297 /* The line number header. */
18298 line_header *m_line_header;
18299
18300 /* These are part of the standard DWARF line number state machine,
18301 and initialized according to the DWARF spec. */
18302
18303 unsigned char m_op_index = 0;
18304 /* The line table index (1-based) of the current file. */
18305 file_name_index m_file = (file_name_index) 1;
18306 unsigned int m_line = 1;
18307
18308 /* These are initialized in the constructor. */
18309
18310 CORE_ADDR m_address;
18311 bool m_is_stmt;
18312 unsigned int m_discriminator;
18313
18314 /* Additional bits of state we need to track. */
18315
18316 /* The last file that we called dwarf2_start_subfile for.
18317 This is only used for TLLs. */
18318 unsigned int m_last_file = 0;
18319 /* The last file a line number was recorded for. */
18320 struct subfile *m_last_subfile = NULL;
18321
18322 /* The function to call to record a line. */
18323 record_line_ftype *m_record_line_callback = NULL;
18324
18325 /* The last line number that was recorded, used to coalesce
18326 consecutive entries for the same line. This can happen, for
18327 example, when discriminators are present. PR 17276. */
18328 unsigned int m_last_line = 0;
18329 bool m_line_has_non_zero_discriminator = false;
18330 };
18331
18332 void
18333 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18334 {
18335 CORE_ADDR addr_adj = (((m_op_index + adjust)
18336 / m_line_header->maximum_ops_per_instruction)
18337 * m_line_header->minimum_instruction_length);
18338 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18339 m_op_index = ((m_op_index + adjust)
18340 % m_line_header->maximum_ops_per_instruction);
18341 }
18342
18343 void
18344 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18345 {
18346 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18347 CORE_ADDR addr_adj = (((m_op_index
18348 + (adj_opcode / m_line_header->line_range))
18349 / m_line_header->maximum_ops_per_instruction)
18350 * m_line_header->minimum_instruction_length);
18351 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18352 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18353 % m_line_header->maximum_ops_per_instruction);
18354
18355 int line_delta = (m_line_header->line_base
18356 + (adj_opcode % m_line_header->line_range));
18357 advance_line (line_delta);
18358 record_line (false);
18359 m_discriminator = 0;
18360 }
18361
18362 void
18363 lnp_state_machine::handle_set_file (file_name_index file)
18364 {
18365 m_file = file;
18366
18367 const file_entry *fe = current_file ();
18368 if (fe == NULL)
18369 dwarf2_debug_line_missing_file_complaint ();
18370 else if (m_record_lines_p)
18371 {
18372 const char *dir = fe->include_dir (m_line_header);
18373
18374 m_last_subfile = current_subfile;
18375 m_line_has_non_zero_discriminator = m_discriminator != 0;
18376 dwarf2_start_subfile (fe->name, dir);
18377 }
18378 }
18379
18380 void
18381 lnp_state_machine::handle_const_add_pc ()
18382 {
18383 CORE_ADDR adjust
18384 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18385
18386 CORE_ADDR addr_adj
18387 = (((m_op_index + adjust)
18388 / m_line_header->maximum_ops_per_instruction)
18389 * m_line_header->minimum_instruction_length);
18390
18391 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18392 m_op_index = ((m_op_index + adjust)
18393 % m_line_header->maximum_ops_per_instruction);
18394 }
18395
18396 /* Ignore this record_line request. */
18397
18398 static void
18399 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18400 {
18401 return;
18402 }
18403
18404 /* Return non-zero if we should add LINE to the line number table.
18405 LINE is the line to add, LAST_LINE is the last line that was added,
18406 LAST_SUBFILE is the subfile for LAST_LINE.
18407 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18408 had a non-zero discriminator.
18409
18410 We have to be careful in the presence of discriminators.
18411 E.g., for this line:
18412
18413 for (i = 0; i < 100000; i++);
18414
18415 clang can emit four line number entries for that one line,
18416 each with a different discriminator.
18417 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18418
18419 However, we want gdb to coalesce all four entries into one.
18420 Otherwise the user could stepi into the middle of the line and
18421 gdb would get confused about whether the pc really was in the
18422 middle of the line.
18423
18424 Things are further complicated by the fact that two consecutive
18425 line number entries for the same line is a heuristic used by gcc
18426 to denote the end of the prologue. So we can't just discard duplicate
18427 entries, we have to be selective about it. The heuristic we use is
18428 that we only collapse consecutive entries for the same line if at least
18429 one of those entries has a non-zero discriminator. PR 17276.
18430
18431 Note: Addresses in the line number state machine can never go backwards
18432 within one sequence, thus this coalescing is ok. */
18433
18434 static int
18435 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18436 int line_has_non_zero_discriminator,
18437 struct subfile *last_subfile)
18438 {
18439 if (current_subfile != last_subfile)
18440 return 1;
18441 if (line != last_line)
18442 return 1;
18443 /* Same line for the same file that we've seen already.
18444 As a last check, for pr 17276, only record the line if the line
18445 has never had a non-zero discriminator. */
18446 if (!line_has_non_zero_discriminator)
18447 return 1;
18448 return 0;
18449 }
18450
18451 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18452 in the line table of subfile SUBFILE. */
18453
18454 static void
18455 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18456 unsigned int line, CORE_ADDR address,
18457 record_line_ftype p_record_line)
18458 {
18459 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18460
18461 if (dwarf_line_debug)
18462 {
18463 fprintf_unfiltered (gdb_stdlog,
18464 "Recording line %u, file %s, address %s\n",
18465 line, lbasename (subfile->name),
18466 paddress (gdbarch, address));
18467 }
18468
18469 (*p_record_line) (subfile, line, addr);
18470 }
18471
18472 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18473 Mark the end of a set of line number records.
18474 The arguments are the same as for dwarf_record_line_1.
18475 If SUBFILE is NULL the request is ignored. */
18476
18477 static void
18478 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18479 CORE_ADDR address, record_line_ftype p_record_line)
18480 {
18481 if (subfile == NULL)
18482 return;
18483
18484 if (dwarf_line_debug)
18485 {
18486 fprintf_unfiltered (gdb_stdlog,
18487 "Finishing current line, file %s, address %s\n",
18488 lbasename (subfile->name),
18489 paddress (gdbarch, address));
18490 }
18491
18492 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18493 }
18494
18495 void
18496 lnp_state_machine::record_line (bool end_sequence)
18497 {
18498 if (dwarf_line_debug)
18499 {
18500 fprintf_unfiltered (gdb_stdlog,
18501 "Processing actual line %u: file %u,"
18502 " address %s, is_stmt %u, discrim %u\n",
18503 m_line, to_underlying (m_file),
18504 paddress (m_gdbarch, m_address),
18505 m_is_stmt, m_discriminator);
18506 }
18507
18508 file_entry *fe = current_file ();
18509
18510 if (fe == NULL)
18511 dwarf2_debug_line_missing_file_complaint ();
18512 /* For now we ignore lines not starting on an instruction boundary.
18513 But not when processing end_sequence for compatibility with the
18514 previous version of the code. */
18515 else if (m_op_index == 0 || end_sequence)
18516 {
18517 fe->included_p = 1;
18518 if (m_record_lines_p && m_is_stmt)
18519 {
18520 if (m_last_subfile != current_subfile || end_sequence)
18521 {
18522 dwarf_finish_line (m_gdbarch, m_last_subfile,
18523 m_address, m_record_line_callback);
18524 }
18525
18526 if (!end_sequence)
18527 {
18528 if (dwarf_record_line_p (m_line, m_last_line,
18529 m_line_has_non_zero_discriminator,
18530 m_last_subfile))
18531 {
18532 dwarf_record_line_1 (m_gdbarch, current_subfile,
18533 m_line, m_address,
18534 m_record_line_callback);
18535 }
18536 m_last_subfile = current_subfile;
18537 m_last_line = m_line;
18538 }
18539 }
18540 }
18541 }
18542
18543 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18544 bool record_lines_p)
18545 {
18546 m_gdbarch = arch;
18547 m_record_lines_p = record_lines_p;
18548 m_line_header = lh;
18549
18550 m_record_line_callback = ::record_line;
18551
18552 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18553 was a line entry for it so that the backend has a chance to adjust it
18554 and also record it in case it needs it. This is currently used by MIPS
18555 code, cf. `mips_adjust_dwarf2_line'. */
18556 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18557 m_is_stmt = lh->default_is_stmt;
18558 m_discriminator = 0;
18559 }
18560
18561 void
18562 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18563 const gdb_byte *line_ptr,
18564 CORE_ADDR lowpc, CORE_ADDR address)
18565 {
18566 /* If address < lowpc then it's not a usable value, it's outside the
18567 pc range of the CU. However, we restrict the test to only address
18568 values of zero to preserve GDB's previous behaviour which is to
18569 handle the specific case of a function being GC'd by the linker. */
18570
18571 if (address == 0 && address < lowpc)
18572 {
18573 /* This line table is for a function which has been
18574 GCd by the linker. Ignore it. PR gdb/12528 */
18575
18576 struct objfile *objfile = cu->objfile;
18577 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18578
18579 complaint (&symfile_complaints,
18580 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18581 line_offset, objfile_name (objfile));
18582 m_record_line_callback = noop_record_line;
18583 /* Note: record_line_callback is left as noop_record_line until
18584 we see DW_LNE_end_sequence. */
18585 }
18586 }
18587
18588 /* Subroutine of dwarf_decode_lines to simplify it.
18589 Process the line number information in LH.
18590 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18591 program in order to set included_p for every referenced header. */
18592
18593 static void
18594 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18595 const int decode_for_pst_p, CORE_ADDR lowpc)
18596 {
18597 const gdb_byte *line_ptr, *extended_end;
18598 const gdb_byte *line_end;
18599 unsigned int bytes_read, extended_len;
18600 unsigned char op_code, extended_op;
18601 CORE_ADDR baseaddr;
18602 struct objfile *objfile = cu->objfile;
18603 bfd *abfd = objfile->obfd;
18604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18605 /* True if we're recording line info (as opposed to building partial
18606 symtabs and just interested in finding include files mentioned by
18607 the line number program). */
18608 bool record_lines_p = !decode_for_pst_p;
18609
18610 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18611
18612 line_ptr = lh->statement_program_start;
18613 line_end = lh->statement_program_end;
18614
18615 /* Read the statement sequences until there's nothing left. */
18616 while (line_ptr < line_end)
18617 {
18618 /* The DWARF line number program state machine. Reset the state
18619 machine at the start of each sequence. */
18620 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18621 bool end_sequence = false;
18622
18623 if (record_lines_p)
18624 {
18625 /* Start a subfile for the current file of the state
18626 machine. */
18627 const file_entry *fe = state_machine.current_file ();
18628
18629 if (fe != NULL)
18630 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18631 }
18632
18633 /* Decode the table. */
18634 while (line_ptr < line_end && !end_sequence)
18635 {
18636 op_code = read_1_byte (abfd, line_ptr);
18637 line_ptr += 1;
18638
18639 if (op_code >= lh->opcode_base)
18640 {
18641 /* Special opcode. */
18642 state_machine.handle_special_opcode (op_code);
18643 }
18644 else switch (op_code)
18645 {
18646 case DW_LNS_extended_op:
18647 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18648 &bytes_read);
18649 line_ptr += bytes_read;
18650 extended_end = line_ptr + extended_len;
18651 extended_op = read_1_byte (abfd, line_ptr);
18652 line_ptr += 1;
18653 switch (extended_op)
18654 {
18655 case DW_LNE_end_sequence:
18656 state_machine.handle_end_sequence ();
18657 end_sequence = true;
18658 break;
18659 case DW_LNE_set_address:
18660 {
18661 CORE_ADDR address
18662 = read_address (abfd, line_ptr, cu, &bytes_read);
18663 line_ptr += bytes_read;
18664
18665 state_machine.check_line_address (cu, line_ptr,
18666 lowpc, address);
18667 state_machine.handle_set_address (baseaddr, address);
18668 }
18669 break;
18670 case DW_LNE_define_file:
18671 {
18672 const char *cur_file;
18673 unsigned int mod_time, length;
18674 dir_index dindex;
18675
18676 cur_file = read_direct_string (abfd, line_ptr,
18677 &bytes_read);
18678 line_ptr += bytes_read;
18679 dindex = (dir_index)
18680 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18681 line_ptr += bytes_read;
18682 mod_time =
18683 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18684 line_ptr += bytes_read;
18685 length =
18686 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18687 line_ptr += bytes_read;
18688 lh->add_file_name (cur_file, dindex, mod_time, length);
18689 }
18690 break;
18691 case DW_LNE_set_discriminator:
18692 {
18693 /* The discriminator is not interesting to the
18694 debugger; just ignore it. We still need to
18695 check its value though:
18696 if there are consecutive entries for the same
18697 (non-prologue) line we want to coalesce them.
18698 PR 17276. */
18699 unsigned int discr
18700 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18701 line_ptr += bytes_read;
18702
18703 state_machine.handle_set_discriminator (discr);
18704 }
18705 break;
18706 default:
18707 complaint (&symfile_complaints,
18708 _("mangled .debug_line section"));
18709 return;
18710 }
18711 /* Make sure that we parsed the extended op correctly. If e.g.
18712 we expected a different address size than the producer used,
18713 we may have read the wrong number of bytes. */
18714 if (line_ptr != extended_end)
18715 {
18716 complaint (&symfile_complaints,
18717 _("mangled .debug_line section"));
18718 return;
18719 }
18720 break;
18721 case DW_LNS_copy:
18722 state_machine.handle_copy ();
18723 break;
18724 case DW_LNS_advance_pc:
18725 {
18726 CORE_ADDR adjust
18727 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18728 line_ptr += bytes_read;
18729
18730 state_machine.handle_advance_pc (adjust);
18731 }
18732 break;
18733 case DW_LNS_advance_line:
18734 {
18735 int line_delta
18736 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18737 line_ptr += bytes_read;
18738
18739 state_machine.handle_advance_line (line_delta);
18740 }
18741 break;
18742 case DW_LNS_set_file:
18743 {
18744 file_name_index file
18745 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18746 &bytes_read);
18747 line_ptr += bytes_read;
18748
18749 state_machine.handle_set_file (file);
18750 }
18751 break;
18752 case DW_LNS_set_column:
18753 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18754 line_ptr += bytes_read;
18755 break;
18756 case DW_LNS_negate_stmt:
18757 state_machine.handle_negate_stmt ();
18758 break;
18759 case DW_LNS_set_basic_block:
18760 break;
18761 /* Add to the address register of the state machine the
18762 address increment value corresponding to special opcode
18763 255. I.e., this value is scaled by the minimum
18764 instruction length since special opcode 255 would have
18765 scaled the increment. */
18766 case DW_LNS_const_add_pc:
18767 state_machine.handle_const_add_pc ();
18768 break;
18769 case DW_LNS_fixed_advance_pc:
18770 {
18771 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18772 line_ptr += 2;
18773
18774 state_machine.handle_fixed_advance_pc (addr_adj);
18775 }
18776 break;
18777 default:
18778 {
18779 /* Unknown standard opcode, ignore it. */
18780 int i;
18781
18782 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18783 {
18784 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18785 line_ptr += bytes_read;
18786 }
18787 }
18788 }
18789 }
18790
18791 if (!end_sequence)
18792 dwarf2_debug_line_missing_end_sequence_complaint ();
18793
18794 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18795 in which case we still finish recording the last line). */
18796 state_machine.record_line (true);
18797 }
18798 }
18799
18800 /* Decode the Line Number Program (LNP) for the given line_header
18801 structure and CU. The actual information extracted and the type
18802 of structures created from the LNP depends on the value of PST.
18803
18804 1. If PST is NULL, then this procedure uses the data from the program
18805 to create all necessary symbol tables, and their linetables.
18806
18807 2. If PST is not NULL, this procedure reads the program to determine
18808 the list of files included by the unit represented by PST, and
18809 builds all the associated partial symbol tables.
18810
18811 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18812 It is used for relative paths in the line table.
18813 NOTE: When processing partial symtabs (pst != NULL),
18814 comp_dir == pst->dirname.
18815
18816 NOTE: It is important that psymtabs have the same file name (via strcmp)
18817 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18818 symtab we don't use it in the name of the psymtabs we create.
18819 E.g. expand_line_sal requires this when finding psymtabs to expand.
18820 A good testcase for this is mb-inline.exp.
18821
18822 LOWPC is the lowest address in CU (or 0 if not known).
18823
18824 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18825 for its PC<->lines mapping information. Otherwise only the filename
18826 table is read in. */
18827
18828 static void
18829 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18830 struct dwarf2_cu *cu, struct partial_symtab *pst,
18831 CORE_ADDR lowpc, int decode_mapping)
18832 {
18833 struct objfile *objfile = cu->objfile;
18834 const int decode_for_pst_p = (pst != NULL);
18835
18836 if (decode_mapping)
18837 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18838
18839 if (decode_for_pst_p)
18840 {
18841 int file_index;
18842
18843 /* Now that we're done scanning the Line Header Program, we can
18844 create the psymtab of each included file. */
18845 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18846 if (lh->file_names[file_index].included_p == 1)
18847 {
18848 const char *include_name =
18849 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18850 if (include_name != NULL)
18851 dwarf2_create_include_psymtab (include_name, pst, objfile);
18852 }
18853 }
18854 else
18855 {
18856 /* Make sure a symtab is created for every file, even files
18857 which contain only variables (i.e. no code with associated
18858 line numbers). */
18859 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18860 int i;
18861
18862 for (i = 0; i < lh->file_names.size (); i++)
18863 {
18864 file_entry &fe = lh->file_names[i];
18865
18866 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18867
18868 if (current_subfile->symtab == NULL)
18869 {
18870 current_subfile->symtab
18871 = allocate_symtab (cust, current_subfile->name);
18872 }
18873 fe.symtab = current_subfile->symtab;
18874 }
18875 }
18876 }
18877
18878 /* Start a subfile for DWARF. FILENAME is the name of the file and
18879 DIRNAME the name of the source directory which contains FILENAME
18880 or NULL if not known.
18881 This routine tries to keep line numbers from identical absolute and
18882 relative file names in a common subfile.
18883
18884 Using the `list' example from the GDB testsuite, which resides in
18885 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18886 of /srcdir/list0.c yields the following debugging information for list0.c:
18887
18888 DW_AT_name: /srcdir/list0.c
18889 DW_AT_comp_dir: /compdir
18890 files.files[0].name: list0.h
18891 files.files[0].dir: /srcdir
18892 files.files[1].name: list0.c
18893 files.files[1].dir: /srcdir
18894
18895 The line number information for list0.c has to end up in a single
18896 subfile, so that `break /srcdir/list0.c:1' works as expected.
18897 start_subfile will ensure that this happens provided that we pass the
18898 concatenation of files.files[1].dir and files.files[1].name as the
18899 subfile's name. */
18900
18901 static void
18902 dwarf2_start_subfile (const char *filename, const char *dirname)
18903 {
18904 char *copy = NULL;
18905
18906 /* In order not to lose the line information directory,
18907 we concatenate it to the filename when it makes sense.
18908 Note that the Dwarf3 standard says (speaking of filenames in line
18909 information): ``The directory index is ignored for file names
18910 that represent full path names''. Thus ignoring dirname in the
18911 `else' branch below isn't an issue. */
18912
18913 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18914 {
18915 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18916 filename = copy;
18917 }
18918
18919 start_subfile (filename);
18920
18921 if (copy != NULL)
18922 xfree (copy);
18923 }
18924
18925 /* Start a symtab for DWARF.
18926 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18927
18928 static struct compunit_symtab *
18929 dwarf2_start_symtab (struct dwarf2_cu *cu,
18930 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18931 {
18932 struct compunit_symtab *cust
18933 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18934
18935 record_debugformat ("DWARF 2");
18936 record_producer (cu->producer);
18937
18938 /* We assume that we're processing GCC output. */
18939 processing_gcc_compilation = 2;
18940
18941 cu->processing_has_namespace_info = 0;
18942
18943 return cust;
18944 }
18945
18946 static void
18947 var_decode_location (struct attribute *attr, struct symbol *sym,
18948 struct dwarf2_cu *cu)
18949 {
18950 struct objfile *objfile = cu->objfile;
18951 struct comp_unit_head *cu_header = &cu->header;
18952
18953 /* NOTE drow/2003-01-30: There used to be a comment and some special
18954 code here to turn a symbol with DW_AT_external and a
18955 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18956 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18957 with some versions of binutils) where shared libraries could have
18958 relocations against symbols in their debug information - the
18959 minimal symbol would have the right address, but the debug info
18960 would not. It's no longer necessary, because we will explicitly
18961 apply relocations when we read in the debug information now. */
18962
18963 /* A DW_AT_location attribute with no contents indicates that a
18964 variable has been optimized away. */
18965 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18966 {
18967 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18968 return;
18969 }
18970
18971 /* Handle one degenerate form of location expression specially, to
18972 preserve GDB's previous behavior when section offsets are
18973 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18974 then mark this symbol as LOC_STATIC. */
18975
18976 if (attr_form_is_block (attr)
18977 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18978 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18979 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18980 && (DW_BLOCK (attr)->size
18981 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18982 {
18983 unsigned int dummy;
18984
18985 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18986 SYMBOL_VALUE_ADDRESS (sym) =
18987 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18988 else
18989 SYMBOL_VALUE_ADDRESS (sym) =
18990 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18991 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18992 fixup_symbol_section (sym, objfile);
18993 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18994 SYMBOL_SECTION (sym));
18995 return;
18996 }
18997
18998 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18999 expression evaluator, and use LOC_COMPUTED only when necessary
19000 (i.e. when the value of a register or memory location is
19001 referenced, or a thread-local block, etc.). Then again, it might
19002 not be worthwhile. I'm assuming that it isn't unless performance
19003 or memory numbers show me otherwise. */
19004
19005 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19006
19007 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19008 cu->has_loclist = 1;
19009 }
19010
19011 /* Given a pointer to a DWARF information entry, figure out if we need
19012 to make a symbol table entry for it, and if so, create a new entry
19013 and return a pointer to it.
19014 If TYPE is NULL, determine symbol type from the die, otherwise
19015 used the passed type.
19016 If SPACE is not NULL, use it to hold the new symbol. If it is
19017 NULL, allocate a new symbol on the objfile's obstack. */
19018
19019 static struct symbol *
19020 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19021 struct symbol *space)
19022 {
19023 struct objfile *objfile = cu->objfile;
19024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19025 struct symbol *sym = NULL;
19026 const char *name;
19027 struct attribute *attr = NULL;
19028 struct attribute *attr2 = NULL;
19029 CORE_ADDR baseaddr;
19030 struct pending **list_to_add = NULL;
19031
19032 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19033
19034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19035
19036 name = dwarf2_name (die, cu);
19037 if (name)
19038 {
19039 const char *linkagename;
19040 int suppress_add = 0;
19041
19042 if (space)
19043 sym = space;
19044 else
19045 sym = allocate_symbol (objfile);
19046 OBJSTAT (objfile, n_syms++);
19047
19048 /* Cache this symbol's name and the name's demangled form (if any). */
19049 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19050 linkagename = dwarf2_physname (name, die, cu);
19051 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19052
19053 /* Fortran does not have mangling standard and the mangling does differ
19054 between gfortran, iFort etc. */
19055 if (cu->language == language_fortran
19056 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19057 symbol_set_demangled_name (&(sym->ginfo),
19058 dwarf2_full_name (name, die, cu),
19059 NULL);
19060
19061 /* Default assumptions.
19062 Use the passed type or decode it from the die. */
19063 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19064 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19065 if (type != NULL)
19066 SYMBOL_TYPE (sym) = type;
19067 else
19068 SYMBOL_TYPE (sym) = die_type (die, cu);
19069 attr = dwarf2_attr (die,
19070 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19071 cu);
19072 if (attr)
19073 {
19074 SYMBOL_LINE (sym) = DW_UNSND (attr);
19075 }
19076
19077 attr = dwarf2_attr (die,
19078 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19079 cu);
19080 if (attr)
19081 {
19082 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19083 struct file_entry *fe;
19084
19085 if (cu->line_header != NULL)
19086 fe = cu->line_header->file_name_at (file_index);
19087 else
19088 fe = NULL;
19089
19090 if (fe == NULL)
19091 complaint (&symfile_complaints,
19092 _("file index out of range"));
19093 else
19094 symbol_set_symtab (sym, fe->symtab);
19095 }
19096
19097 switch (die->tag)
19098 {
19099 case DW_TAG_label:
19100 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19101 if (attr)
19102 {
19103 CORE_ADDR addr;
19104
19105 addr = attr_value_as_address (attr);
19106 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19107 SYMBOL_VALUE_ADDRESS (sym) = addr;
19108 }
19109 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19110 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19111 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19112 add_symbol_to_list (sym, cu->list_in_scope);
19113 break;
19114 case DW_TAG_subprogram:
19115 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19116 finish_block. */
19117 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19118 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19119 if ((attr2 && (DW_UNSND (attr2) != 0))
19120 || cu->language == language_ada)
19121 {
19122 /* Subprograms marked external are stored as a global symbol.
19123 Ada subprograms, whether marked external or not, are always
19124 stored as a global symbol, because we want to be able to
19125 access them globally. For instance, we want to be able
19126 to break on a nested subprogram without having to
19127 specify the context. */
19128 list_to_add = &global_symbols;
19129 }
19130 else
19131 {
19132 list_to_add = cu->list_in_scope;
19133 }
19134 break;
19135 case DW_TAG_inlined_subroutine:
19136 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19137 finish_block. */
19138 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19139 SYMBOL_INLINED (sym) = 1;
19140 list_to_add = cu->list_in_scope;
19141 break;
19142 case DW_TAG_template_value_param:
19143 suppress_add = 1;
19144 /* Fall through. */
19145 case DW_TAG_constant:
19146 case DW_TAG_variable:
19147 case DW_TAG_member:
19148 /* Compilation with minimal debug info may result in
19149 variables with missing type entries. Change the
19150 misleading `void' type to something sensible. */
19151 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19152 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19153
19154 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19155 /* In the case of DW_TAG_member, we should only be called for
19156 static const members. */
19157 if (die->tag == DW_TAG_member)
19158 {
19159 /* dwarf2_add_field uses die_is_declaration,
19160 so we do the same. */
19161 gdb_assert (die_is_declaration (die, cu));
19162 gdb_assert (attr);
19163 }
19164 if (attr)
19165 {
19166 dwarf2_const_value (attr, sym, cu);
19167 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19168 if (!suppress_add)
19169 {
19170 if (attr2 && (DW_UNSND (attr2) != 0))
19171 list_to_add = &global_symbols;
19172 else
19173 list_to_add = cu->list_in_scope;
19174 }
19175 break;
19176 }
19177 attr = dwarf2_attr (die, DW_AT_location, cu);
19178 if (attr)
19179 {
19180 var_decode_location (attr, sym, cu);
19181 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19182
19183 /* Fortran explicitly imports any global symbols to the local
19184 scope by DW_TAG_common_block. */
19185 if (cu->language == language_fortran && die->parent
19186 && die->parent->tag == DW_TAG_common_block)
19187 attr2 = NULL;
19188
19189 if (SYMBOL_CLASS (sym) == LOC_STATIC
19190 && SYMBOL_VALUE_ADDRESS (sym) == 0
19191 && !dwarf2_per_objfile->has_section_at_zero)
19192 {
19193 /* When a static variable is eliminated by the linker,
19194 the corresponding debug information is not stripped
19195 out, but the variable address is set to null;
19196 do not add such variables into symbol table. */
19197 }
19198 else if (attr2 && (DW_UNSND (attr2) != 0))
19199 {
19200 /* Workaround gfortran PR debug/40040 - it uses
19201 DW_AT_location for variables in -fPIC libraries which may
19202 get overriden by other libraries/executable and get
19203 a different address. Resolve it by the minimal symbol
19204 which may come from inferior's executable using copy
19205 relocation. Make this workaround only for gfortran as for
19206 other compilers GDB cannot guess the minimal symbol
19207 Fortran mangling kind. */
19208 if (cu->language == language_fortran && die->parent
19209 && die->parent->tag == DW_TAG_module
19210 && cu->producer
19211 && startswith (cu->producer, "GNU Fortran"))
19212 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19213
19214 /* A variable with DW_AT_external is never static,
19215 but it may be block-scoped. */
19216 list_to_add = (cu->list_in_scope == &file_symbols
19217 ? &global_symbols : cu->list_in_scope);
19218 }
19219 else
19220 list_to_add = cu->list_in_scope;
19221 }
19222 else
19223 {
19224 /* We do not know the address of this symbol.
19225 If it is an external symbol and we have type information
19226 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19227 The address of the variable will then be determined from
19228 the minimal symbol table whenever the variable is
19229 referenced. */
19230 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19231
19232 /* Fortran explicitly imports any global symbols to the local
19233 scope by DW_TAG_common_block. */
19234 if (cu->language == language_fortran && die->parent
19235 && die->parent->tag == DW_TAG_common_block)
19236 {
19237 /* SYMBOL_CLASS doesn't matter here because
19238 read_common_block is going to reset it. */
19239 if (!suppress_add)
19240 list_to_add = cu->list_in_scope;
19241 }
19242 else if (attr2 && (DW_UNSND (attr2) != 0)
19243 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19244 {
19245 /* A variable with DW_AT_external is never static, but it
19246 may be block-scoped. */
19247 list_to_add = (cu->list_in_scope == &file_symbols
19248 ? &global_symbols : cu->list_in_scope);
19249
19250 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19251 }
19252 else if (!die_is_declaration (die, cu))
19253 {
19254 /* Use the default LOC_OPTIMIZED_OUT class. */
19255 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19256 if (!suppress_add)
19257 list_to_add = cu->list_in_scope;
19258 }
19259 }
19260 break;
19261 case DW_TAG_formal_parameter:
19262 /* If we are inside a function, mark this as an argument. If
19263 not, we might be looking at an argument to an inlined function
19264 when we do not have enough information to show inlined frames;
19265 pretend it's a local variable in that case so that the user can
19266 still see it. */
19267 if (context_stack_depth > 0
19268 && context_stack[context_stack_depth - 1].name != NULL)
19269 SYMBOL_IS_ARGUMENT (sym) = 1;
19270 attr = dwarf2_attr (die, DW_AT_location, cu);
19271 if (attr)
19272 {
19273 var_decode_location (attr, sym, cu);
19274 }
19275 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19276 if (attr)
19277 {
19278 dwarf2_const_value (attr, sym, cu);
19279 }
19280
19281 list_to_add = cu->list_in_scope;
19282 break;
19283 case DW_TAG_unspecified_parameters:
19284 /* From varargs functions; gdb doesn't seem to have any
19285 interest in this information, so just ignore it for now.
19286 (FIXME?) */
19287 break;
19288 case DW_TAG_template_type_param:
19289 suppress_add = 1;
19290 /* Fall through. */
19291 case DW_TAG_class_type:
19292 case DW_TAG_interface_type:
19293 case DW_TAG_structure_type:
19294 case DW_TAG_union_type:
19295 case DW_TAG_set_type:
19296 case DW_TAG_enumeration_type:
19297 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19298 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19299
19300 {
19301 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19302 really ever be static objects: otherwise, if you try
19303 to, say, break of a class's method and you're in a file
19304 which doesn't mention that class, it won't work unless
19305 the check for all static symbols in lookup_symbol_aux
19306 saves you. See the OtherFileClass tests in
19307 gdb.c++/namespace.exp. */
19308
19309 if (!suppress_add)
19310 {
19311 list_to_add = (cu->list_in_scope == &file_symbols
19312 && cu->language == language_cplus
19313 ? &global_symbols : cu->list_in_scope);
19314
19315 /* The semantics of C++ state that "struct foo {
19316 ... }" also defines a typedef for "foo". */
19317 if (cu->language == language_cplus
19318 || cu->language == language_ada
19319 || cu->language == language_d
19320 || cu->language == language_rust)
19321 {
19322 /* The symbol's name is already allocated along
19323 with this objfile, so we don't need to
19324 duplicate it for the type. */
19325 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19326 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19327 }
19328 }
19329 }
19330 break;
19331 case DW_TAG_typedef:
19332 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19333 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19334 list_to_add = cu->list_in_scope;
19335 break;
19336 case DW_TAG_base_type:
19337 case DW_TAG_subrange_type:
19338 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19339 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19340 list_to_add = cu->list_in_scope;
19341 break;
19342 case DW_TAG_enumerator:
19343 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19344 if (attr)
19345 {
19346 dwarf2_const_value (attr, sym, cu);
19347 }
19348 {
19349 /* NOTE: carlton/2003-11-10: See comment above in the
19350 DW_TAG_class_type, etc. block. */
19351
19352 list_to_add = (cu->list_in_scope == &file_symbols
19353 && cu->language == language_cplus
19354 ? &global_symbols : cu->list_in_scope);
19355 }
19356 break;
19357 case DW_TAG_imported_declaration:
19358 case DW_TAG_namespace:
19359 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19360 list_to_add = &global_symbols;
19361 break;
19362 case DW_TAG_module:
19363 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19364 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19365 list_to_add = &global_symbols;
19366 break;
19367 case DW_TAG_common_block:
19368 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19369 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19370 add_symbol_to_list (sym, cu->list_in_scope);
19371 break;
19372 default:
19373 /* Not a tag we recognize. Hopefully we aren't processing
19374 trash data, but since we must specifically ignore things
19375 we don't recognize, there is nothing else we should do at
19376 this point. */
19377 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19378 dwarf_tag_name (die->tag));
19379 break;
19380 }
19381
19382 if (suppress_add)
19383 {
19384 sym->hash_next = objfile->template_symbols;
19385 objfile->template_symbols = sym;
19386 list_to_add = NULL;
19387 }
19388
19389 if (list_to_add != NULL)
19390 add_symbol_to_list (sym, list_to_add);
19391
19392 /* For the benefit of old versions of GCC, check for anonymous
19393 namespaces based on the demangled name. */
19394 if (!cu->processing_has_namespace_info
19395 && cu->language == language_cplus)
19396 cp_scan_for_anonymous_namespaces (sym, objfile);
19397 }
19398 return (sym);
19399 }
19400
19401 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19402
19403 static struct symbol *
19404 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19405 {
19406 return new_symbol_full (die, type, cu, NULL);
19407 }
19408
19409 /* Given an attr with a DW_FORM_dataN value in host byte order,
19410 zero-extend it as appropriate for the symbol's type. The DWARF
19411 standard (v4) is not entirely clear about the meaning of using
19412 DW_FORM_dataN for a constant with a signed type, where the type is
19413 wider than the data. The conclusion of a discussion on the DWARF
19414 list was that this is unspecified. We choose to always zero-extend
19415 because that is the interpretation long in use by GCC. */
19416
19417 static gdb_byte *
19418 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19419 struct dwarf2_cu *cu, LONGEST *value, int bits)
19420 {
19421 struct objfile *objfile = cu->objfile;
19422 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19423 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19424 LONGEST l = DW_UNSND (attr);
19425
19426 if (bits < sizeof (*value) * 8)
19427 {
19428 l &= ((LONGEST) 1 << bits) - 1;
19429 *value = l;
19430 }
19431 else if (bits == sizeof (*value) * 8)
19432 *value = l;
19433 else
19434 {
19435 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19436 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19437 return bytes;
19438 }
19439
19440 return NULL;
19441 }
19442
19443 /* Read a constant value from an attribute. Either set *VALUE, or if
19444 the value does not fit in *VALUE, set *BYTES - either already
19445 allocated on the objfile obstack, or newly allocated on OBSTACK,
19446 or, set *BATON, if we translated the constant to a location
19447 expression. */
19448
19449 static void
19450 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19451 const char *name, struct obstack *obstack,
19452 struct dwarf2_cu *cu,
19453 LONGEST *value, const gdb_byte **bytes,
19454 struct dwarf2_locexpr_baton **baton)
19455 {
19456 struct objfile *objfile = cu->objfile;
19457 struct comp_unit_head *cu_header = &cu->header;
19458 struct dwarf_block *blk;
19459 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19460 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19461
19462 *value = 0;
19463 *bytes = NULL;
19464 *baton = NULL;
19465
19466 switch (attr->form)
19467 {
19468 case DW_FORM_addr:
19469 case DW_FORM_GNU_addr_index:
19470 {
19471 gdb_byte *data;
19472
19473 if (TYPE_LENGTH (type) != cu_header->addr_size)
19474 dwarf2_const_value_length_mismatch_complaint (name,
19475 cu_header->addr_size,
19476 TYPE_LENGTH (type));
19477 /* Symbols of this form are reasonably rare, so we just
19478 piggyback on the existing location code rather than writing
19479 a new implementation of symbol_computed_ops. */
19480 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19481 (*baton)->per_cu = cu->per_cu;
19482 gdb_assert ((*baton)->per_cu);
19483
19484 (*baton)->size = 2 + cu_header->addr_size;
19485 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19486 (*baton)->data = data;
19487
19488 data[0] = DW_OP_addr;
19489 store_unsigned_integer (&data[1], cu_header->addr_size,
19490 byte_order, DW_ADDR (attr));
19491 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19492 }
19493 break;
19494 case DW_FORM_string:
19495 case DW_FORM_strp:
19496 case DW_FORM_GNU_str_index:
19497 case DW_FORM_GNU_strp_alt:
19498 /* DW_STRING is already allocated on the objfile obstack, point
19499 directly to it. */
19500 *bytes = (const gdb_byte *) DW_STRING (attr);
19501 break;
19502 case DW_FORM_block1:
19503 case DW_FORM_block2:
19504 case DW_FORM_block4:
19505 case DW_FORM_block:
19506 case DW_FORM_exprloc:
19507 case DW_FORM_data16:
19508 blk = DW_BLOCK (attr);
19509 if (TYPE_LENGTH (type) != blk->size)
19510 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19511 TYPE_LENGTH (type));
19512 *bytes = blk->data;
19513 break;
19514
19515 /* The DW_AT_const_value attributes are supposed to carry the
19516 symbol's value "represented as it would be on the target
19517 architecture." By the time we get here, it's already been
19518 converted to host endianness, so we just need to sign- or
19519 zero-extend it as appropriate. */
19520 case DW_FORM_data1:
19521 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19522 break;
19523 case DW_FORM_data2:
19524 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19525 break;
19526 case DW_FORM_data4:
19527 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19528 break;
19529 case DW_FORM_data8:
19530 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19531 break;
19532
19533 case DW_FORM_sdata:
19534 case DW_FORM_implicit_const:
19535 *value = DW_SND (attr);
19536 break;
19537
19538 case DW_FORM_udata:
19539 *value = DW_UNSND (attr);
19540 break;
19541
19542 default:
19543 complaint (&symfile_complaints,
19544 _("unsupported const value attribute form: '%s'"),
19545 dwarf_form_name (attr->form));
19546 *value = 0;
19547 break;
19548 }
19549 }
19550
19551
19552 /* Copy constant value from an attribute to a symbol. */
19553
19554 static void
19555 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19556 struct dwarf2_cu *cu)
19557 {
19558 struct objfile *objfile = cu->objfile;
19559 LONGEST value;
19560 const gdb_byte *bytes;
19561 struct dwarf2_locexpr_baton *baton;
19562
19563 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19564 SYMBOL_PRINT_NAME (sym),
19565 &objfile->objfile_obstack, cu,
19566 &value, &bytes, &baton);
19567
19568 if (baton != NULL)
19569 {
19570 SYMBOL_LOCATION_BATON (sym) = baton;
19571 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19572 }
19573 else if (bytes != NULL)
19574 {
19575 SYMBOL_VALUE_BYTES (sym) = bytes;
19576 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19577 }
19578 else
19579 {
19580 SYMBOL_VALUE (sym) = value;
19581 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19582 }
19583 }
19584
19585 /* Return the type of the die in question using its DW_AT_type attribute. */
19586
19587 static struct type *
19588 die_type (struct die_info *die, struct dwarf2_cu *cu)
19589 {
19590 struct attribute *type_attr;
19591
19592 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19593 if (!type_attr)
19594 {
19595 /* A missing DW_AT_type represents a void type. */
19596 return objfile_type (cu->objfile)->builtin_void;
19597 }
19598
19599 return lookup_die_type (die, type_attr, cu);
19600 }
19601
19602 /* True iff CU's producer generates GNAT Ada auxiliary information
19603 that allows to find parallel types through that information instead
19604 of having to do expensive parallel lookups by type name. */
19605
19606 static int
19607 need_gnat_info (struct dwarf2_cu *cu)
19608 {
19609 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19610 of GNAT produces this auxiliary information, without any indication
19611 that it is produced. Part of enhancing the FSF version of GNAT
19612 to produce that information will be to put in place an indicator
19613 that we can use in order to determine whether the descriptive type
19614 info is available or not. One suggestion that has been made is
19615 to use a new attribute, attached to the CU die. For now, assume
19616 that the descriptive type info is not available. */
19617 return 0;
19618 }
19619
19620 /* Return the auxiliary type of the die in question using its
19621 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19622 attribute is not present. */
19623
19624 static struct type *
19625 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19626 {
19627 struct attribute *type_attr;
19628
19629 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19630 if (!type_attr)
19631 return NULL;
19632
19633 return lookup_die_type (die, type_attr, cu);
19634 }
19635
19636 /* If DIE has a descriptive_type attribute, then set the TYPE's
19637 descriptive type accordingly. */
19638
19639 static void
19640 set_descriptive_type (struct type *type, struct die_info *die,
19641 struct dwarf2_cu *cu)
19642 {
19643 struct type *descriptive_type = die_descriptive_type (die, cu);
19644
19645 if (descriptive_type)
19646 {
19647 ALLOCATE_GNAT_AUX_TYPE (type);
19648 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19649 }
19650 }
19651
19652 /* Return the containing type of the die in question using its
19653 DW_AT_containing_type attribute. */
19654
19655 static struct type *
19656 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19657 {
19658 struct attribute *type_attr;
19659
19660 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19661 if (!type_attr)
19662 error (_("Dwarf Error: Problem turning containing type into gdb type "
19663 "[in module %s]"), objfile_name (cu->objfile));
19664
19665 return lookup_die_type (die, type_attr, cu);
19666 }
19667
19668 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19669
19670 static struct type *
19671 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19672 {
19673 struct objfile *objfile = dwarf2_per_objfile->objfile;
19674 char *message, *saved;
19675
19676 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19677 objfile_name (objfile),
19678 to_underlying (cu->header.sect_off),
19679 to_underlying (die->sect_off));
19680 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19681 message, strlen (message));
19682 xfree (message);
19683
19684 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19685 }
19686
19687 /* Look up the type of DIE in CU using its type attribute ATTR.
19688 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19689 DW_AT_containing_type.
19690 If there is no type substitute an error marker. */
19691
19692 static struct type *
19693 lookup_die_type (struct die_info *die, const struct attribute *attr,
19694 struct dwarf2_cu *cu)
19695 {
19696 struct objfile *objfile = cu->objfile;
19697 struct type *this_type;
19698
19699 gdb_assert (attr->name == DW_AT_type
19700 || attr->name == DW_AT_GNAT_descriptive_type
19701 || attr->name == DW_AT_containing_type);
19702
19703 /* First see if we have it cached. */
19704
19705 if (attr->form == DW_FORM_GNU_ref_alt)
19706 {
19707 struct dwarf2_per_cu_data *per_cu;
19708 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19709
19710 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19711 this_type = get_die_type_at_offset (sect_off, per_cu);
19712 }
19713 else if (attr_form_is_ref (attr))
19714 {
19715 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19716
19717 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19718 }
19719 else if (attr->form == DW_FORM_ref_sig8)
19720 {
19721 ULONGEST signature = DW_SIGNATURE (attr);
19722
19723 return get_signatured_type (die, signature, cu);
19724 }
19725 else
19726 {
19727 complaint (&symfile_complaints,
19728 _("Dwarf Error: Bad type attribute %s in DIE"
19729 " at 0x%x [in module %s]"),
19730 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19731 objfile_name (objfile));
19732 return build_error_marker_type (cu, die);
19733 }
19734
19735 /* If not cached we need to read it in. */
19736
19737 if (this_type == NULL)
19738 {
19739 struct die_info *type_die = NULL;
19740 struct dwarf2_cu *type_cu = cu;
19741
19742 if (attr_form_is_ref (attr))
19743 type_die = follow_die_ref (die, attr, &type_cu);
19744 if (type_die == NULL)
19745 return build_error_marker_type (cu, die);
19746 /* If we find the type now, it's probably because the type came
19747 from an inter-CU reference and the type's CU got expanded before
19748 ours. */
19749 this_type = read_type_die (type_die, type_cu);
19750 }
19751
19752 /* If we still don't have a type use an error marker. */
19753
19754 if (this_type == NULL)
19755 return build_error_marker_type (cu, die);
19756
19757 return this_type;
19758 }
19759
19760 /* Return the type in DIE, CU.
19761 Returns NULL for invalid types.
19762
19763 This first does a lookup in die_type_hash,
19764 and only reads the die in if necessary.
19765
19766 NOTE: This can be called when reading in partial or full symbols. */
19767
19768 static struct type *
19769 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19770 {
19771 struct type *this_type;
19772
19773 this_type = get_die_type (die, cu);
19774 if (this_type)
19775 return this_type;
19776
19777 return read_type_die_1 (die, cu);
19778 }
19779
19780 /* Read the type in DIE, CU.
19781 Returns NULL for invalid types. */
19782
19783 static struct type *
19784 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19785 {
19786 struct type *this_type = NULL;
19787
19788 switch (die->tag)
19789 {
19790 case DW_TAG_class_type:
19791 case DW_TAG_interface_type:
19792 case DW_TAG_structure_type:
19793 case DW_TAG_union_type:
19794 this_type = read_structure_type (die, cu);
19795 break;
19796 case DW_TAG_enumeration_type:
19797 this_type = read_enumeration_type (die, cu);
19798 break;
19799 case DW_TAG_subprogram:
19800 case DW_TAG_subroutine_type:
19801 case DW_TAG_inlined_subroutine:
19802 this_type = read_subroutine_type (die, cu);
19803 break;
19804 case DW_TAG_array_type:
19805 this_type = read_array_type (die, cu);
19806 break;
19807 case DW_TAG_set_type:
19808 this_type = read_set_type (die, cu);
19809 break;
19810 case DW_TAG_pointer_type:
19811 this_type = read_tag_pointer_type (die, cu);
19812 break;
19813 case DW_TAG_ptr_to_member_type:
19814 this_type = read_tag_ptr_to_member_type (die, cu);
19815 break;
19816 case DW_TAG_reference_type:
19817 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19818 break;
19819 case DW_TAG_rvalue_reference_type:
19820 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19821 break;
19822 case DW_TAG_const_type:
19823 this_type = read_tag_const_type (die, cu);
19824 break;
19825 case DW_TAG_volatile_type:
19826 this_type = read_tag_volatile_type (die, cu);
19827 break;
19828 case DW_TAG_restrict_type:
19829 this_type = read_tag_restrict_type (die, cu);
19830 break;
19831 case DW_TAG_string_type:
19832 this_type = read_tag_string_type (die, cu);
19833 break;
19834 case DW_TAG_typedef:
19835 this_type = read_typedef (die, cu);
19836 break;
19837 case DW_TAG_subrange_type:
19838 this_type = read_subrange_type (die, cu);
19839 break;
19840 case DW_TAG_base_type:
19841 this_type = read_base_type (die, cu);
19842 break;
19843 case DW_TAG_unspecified_type:
19844 this_type = read_unspecified_type (die, cu);
19845 break;
19846 case DW_TAG_namespace:
19847 this_type = read_namespace_type (die, cu);
19848 break;
19849 case DW_TAG_module:
19850 this_type = read_module_type (die, cu);
19851 break;
19852 case DW_TAG_atomic_type:
19853 this_type = read_tag_atomic_type (die, cu);
19854 break;
19855 default:
19856 complaint (&symfile_complaints,
19857 _("unexpected tag in read_type_die: '%s'"),
19858 dwarf_tag_name (die->tag));
19859 break;
19860 }
19861
19862 return this_type;
19863 }
19864
19865 /* See if we can figure out if the class lives in a namespace. We do
19866 this by looking for a member function; its demangled name will
19867 contain namespace info, if there is any.
19868 Return the computed name or NULL.
19869 Space for the result is allocated on the objfile's obstack.
19870 This is the full-die version of guess_partial_die_structure_name.
19871 In this case we know DIE has no useful parent. */
19872
19873 static char *
19874 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19875 {
19876 struct die_info *spec_die;
19877 struct dwarf2_cu *spec_cu;
19878 struct die_info *child;
19879
19880 spec_cu = cu;
19881 spec_die = die_specification (die, &spec_cu);
19882 if (spec_die != NULL)
19883 {
19884 die = spec_die;
19885 cu = spec_cu;
19886 }
19887
19888 for (child = die->child;
19889 child != NULL;
19890 child = child->sibling)
19891 {
19892 if (child->tag == DW_TAG_subprogram)
19893 {
19894 const char *linkage_name = dw2_linkage_name (child, cu);
19895
19896 if (linkage_name != NULL)
19897 {
19898 char *actual_name
19899 = language_class_name_from_physname (cu->language_defn,
19900 linkage_name);
19901 char *name = NULL;
19902
19903 if (actual_name != NULL)
19904 {
19905 const char *die_name = dwarf2_name (die, cu);
19906
19907 if (die_name != NULL
19908 && strcmp (die_name, actual_name) != 0)
19909 {
19910 /* Strip off the class name from the full name.
19911 We want the prefix. */
19912 int die_name_len = strlen (die_name);
19913 int actual_name_len = strlen (actual_name);
19914
19915 /* Test for '::' as a sanity check. */
19916 if (actual_name_len > die_name_len + 2
19917 && actual_name[actual_name_len
19918 - die_name_len - 1] == ':')
19919 name = (char *) obstack_copy0 (
19920 &cu->objfile->per_bfd->storage_obstack,
19921 actual_name, actual_name_len - die_name_len - 2);
19922 }
19923 }
19924 xfree (actual_name);
19925 return name;
19926 }
19927 }
19928 }
19929
19930 return NULL;
19931 }
19932
19933 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19934 prefix part in such case. See
19935 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19936
19937 static const char *
19938 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19939 {
19940 struct attribute *attr;
19941 const char *base;
19942
19943 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19944 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19945 return NULL;
19946
19947 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19948 return NULL;
19949
19950 attr = dw2_linkage_name_attr (die, cu);
19951 if (attr == NULL || DW_STRING (attr) == NULL)
19952 return NULL;
19953
19954 /* dwarf2_name had to be already called. */
19955 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19956
19957 /* Strip the base name, keep any leading namespaces/classes. */
19958 base = strrchr (DW_STRING (attr), ':');
19959 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19960 return "";
19961
19962 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19963 DW_STRING (attr),
19964 &base[-1] - DW_STRING (attr));
19965 }
19966
19967 /* Return the name of the namespace/class that DIE is defined within,
19968 or "" if we can't tell. The caller should not xfree the result.
19969
19970 For example, if we're within the method foo() in the following
19971 code:
19972
19973 namespace N {
19974 class C {
19975 void foo () {
19976 }
19977 };
19978 }
19979
19980 then determine_prefix on foo's die will return "N::C". */
19981
19982 static const char *
19983 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19984 {
19985 struct die_info *parent, *spec_die;
19986 struct dwarf2_cu *spec_cu;
19987 struct type *parent_type;
19988 const char *retval;
19989
19990 if (cu->language != language_cplus
19991 && cu->language != language_fortran && cu->language != language_d
19992 && cu->language != language_rust)
19993 return "";
19994
19995 retval = anonymous_struct_prefix (die, cu);
19996 if (retval)
19997 return retval;
19998
19999 /* We have to be careful in the presence of DW_AT_specification.
20000 For example, with GCC 3.4, given the code
20001
20002 namespace N {
20003 void foo() {
20004 // Definition of N::foo.
20005 }
20006 }
20007
20008 then we'll have a tree of DIEs like this:
20009
20010 1: DW_TAG_compile_unit
20011 2: DW_TAG_namespace // N
20012 3: DW_TAG_subprogram // declaration of N::foo
20013 4: DW_TAG_subprogram // definition of N::foo
20014 DW_AT_specification // refers to die #3
20015
20016 Thus, when processing die #4, we have to pretend that we're in
20017 the context of its DW_AT_specification, namely the contex of die
20018 #3. */
20019 spec_cu = cu;
20020 spec_die = die_specification (die, &spec_cu);
20021 if (spec_die == NULL)
20022 parent = die->parent;
20023 else
20024 {
20025 parent = spec_die->parent;
20026 cu = spec_cu;
20027 }
20028
20029 if (parent == NULL)
20030 return "";
20031 else if (parent->building_fullname)
20032 {
20033 const char *name;
20034 const char *parent_name;
20035
20036 /* It has been seen on RealView 2.2 built binaries,
20037 DW_TAG_template_type_param types actually _defined_ as
20038 children of the parent class:
20039
20040 enum E {};
20041 template class <class Enum> Class{};
20042 Class<enum E> class_e;
20043
20044 1: DW_TAG_class_type (Class)
20045 2: DW_TAG_enumeration_type (E)
20046 3: DW_TAG_enumerator (enum1:0)
20047 3: DW_TAG_enumerator (enum2:1)
20048 ...
20049 2: DW_TAG_template_type_param
20050 DW_AT_type DW_FORM_ref_udata (E)
20051
20052 Besides being broken debug info, it can put GDB into an
20053 infinite loop. Consider:
20054
20055 When we're building the full name for Class<E>, we'll start
20056 at Class, and go look over its template type parameters,
20057 finding E. We'll then try to build the full name of E, and
20058 reach here. We're now trying to build the full name of E,
20059 and look over the parent DIE for containing scope. In the
20060 broken case, if we followed the parent DIE of E, we'd again
20061 find Class, and once again go look at its template type
20062 arguments, etc., etc. Simply don't consider such parent die
20063 as source-level parent of this die (it can't be, the language
20064 doesn't allow it), and break the loop here. */
20065 name = dwarf2_name (die, cu);
20066 parent_name = dwarf2_name (parent, cu);
20067 complaint (&symfile_complaints,
20068 _("template param type '%s' defined within parent '%s'"),
20069 name ? name : "<unknown>",
20070 parent_name ? parent_name : "<unknown>");
20071 return "";
20072 }
20073 else
20074 switch (parent->tag)
20075 {
20076 case DW_TAG_namespace:
20077 parent_type = read_type_die (parent, cu);
20078 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20079 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20080 Work around this problem here. */
20081 if (cu->language == language_cplus
20082 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20083 return "";
20084 /* We give a name to even anonymous namespaces. */
20085 return TYPE_TAG_NAME (parent_type);
20086 case DW_TAG_class_type:
20087 case DW_TAG_interface_type:
20088 case DW_TAG_structure_type:
20089 case DW_TAG_union_type:
20090 case DW_TAG_module:
20091 parent_type = read_type_die (parent, cu);
20092 if (TYPE_TAG_NAME (parent_type) != NULL)
20093 return TYPE_TAG_NAME (parent_type);
20094 else
20095 /* An anonymous structure is only allowed non-static data
20096 members; no typedefs, no member functions, et cetera.
20097 So it does not need a prefix. */
20098 return "";
20099 case DW_TAG_compile_unit:
20100 case DW_TAG_partial_unit:
20101 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20102 if (cu->language == language_cplus
20103 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20104 && die->child != NULL
20105 && (die->tag == DW_TAG_class_type
20106 || die->tag == DW_TAG_structure_type
20107 || die->tag == DW_TAG_union_type))
20108 {
20109 char *name = guess_full_die_structure_name (die, cu);
20110 if (name != NULL)
20111 return name;
20112 }
20113 return "";
20114 case DW_TAG_enumeration_type:
20115 parent_type = read_type_die (parent, cu);
20116 if (TYPE_DECLARED_CLASS (parent_type))
20117 {
20118 if (TYPE_TAG_NAME (parent_type) != NULL)
20119 return TYPE_TAG_NAME (parent_type);
20120 return "";
20121 }
20122 /* Fall through. */
20123 default:
20124 return determine_prefix (parent, cu);
20125 }
20126 }
20127
20128 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20129 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20130 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20131 an obconcat, otherwise allocate storage for the result. The CU argument is
20132 used to determine the language and hence, the appropriate separator. */
20133
20134 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20135
20136 static char *
20137 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20138 int physname, struct dwarf2_cu *cu)
20139 {
20140 const char *lead = "";
20141 const char *sep;
20142
20143 if (suffix == NULL || suffix[0] == '\0'
20144 || prefix == NULL || prefix[0] == '\0')
20145 sep = "";
20146 else if (cu->language == language_d)
20147 {
20148 /* For D, the 'main' function could be defined in any module, but it
20149 should never be prefixed. */
20150 if (strcmp (suffix, "D main") == 0)
20151 {
20152 prefix = "";
20153 sep = "";
20154 }
20155 else
20156 sep = ".";
20157 }
20158 else if (cu->language == language_fortran && physname)
20159 {
20160 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20161 DW_AT_MIPS_linkage_name is preferred and used instead. */
20162
20163 lead = "__";
20164 sep = "_MOD_";
20165 }
20166 else
20167 sep = "::";
20168
20169 if (prefix == NULL)
20170 prefix = "";
20171 if (suffix == NULL)
20172 suffix = "";
20173
20174 if (obs == NULL)
20175 {
20176 char *retval
20177 = ((char *)
20178 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20179
20180 strcpy (retval, lead);
20181 strcat (retval, prefix);
20182 strcat (retval, sep);
20183 strcat (retval, suffix);
20184 return retval;
20185 }
20186 else
20187 {
20188 /* We have an obstack. */
20189 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20190 }
20191 }
20192
20193 /* Return sibling of die, NULL if no sibling. */
20194
20195 static struct die_info *
20196 sibling_die (struct die_info *die)
20197 {
20198 return die->sibling;
20199 }
20200
20201 /* Get name of a die, return NULL if not found. */
20202
20203 static const char *
20204 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20205 struct obstack *obstack)
20206 {
20207 if (name && cu->language == language_cplus)
20208 {
20209 std::string canon_name = cp_canonicalize_string (name);
20210
20211 if (!canon_name.empty ())
20212 {
20213 if (canon_name != name)
20214 name = (const char *) obstack_copy0 (obstack,
20215 canon_name.c_str (),
20216 canon_name.length ());
20217 }
20218 }
20219
20220 return name;
20221 }
20222
20223 /* Get name of a die, return NULL if not found.
20224 Anonymous namespaces are converted to their magic string. */
20225
20226 static const char *
20227 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20228 {
20229 struct attribute *attr;
20230
20231 attr = dwarf2_attr (die, DW_AT_name, cu);
20232 if ((!attr || !DW_STRING (attr))
20233 && die->tag != DW_TAG_namespace
20234 && die->tag != DW_TAG_class_type
20235 && die->tag != DW_TAG_interface_type
20236 && die->tag != DW_TAG_structure_type
20237 && die->tag != DW_TAG_union_type)
20238 return NULL;
20239
20240 switch (die->tag)
20241 {
20242 case DW_TAG_compile_unit:
20243 case DW_TAG_partial_unit:
20244 /* Compilation units have a DW_AT_name that is a filename, not
20245 a source language identifier. */
20246 case DW_TAG_enumeration_type:
20247 case DW_TAG_enumerator:
20248 /* These tags always have simple identifiers already; no need
20249 to canonicalize them. */
20250 return DW_STRING (attr);
20251
20252 case DW_TAG_namespace:
20253 if (attr != NULL && DW_STRING (attr) != NULL)
20254 return DW_STRING (attr);
20255 return CP_ANONYMOUS_NAMESPACE_STR;
20256
20257 case DW_TAG_class_type:
20258 case DW_TAG_interface_type:
20259 case DW_TAG_structure_type:
20260 case DW_TAG_union_type:
20261 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20262 structures or unions. These were of the form "._%d" in GCC 4.1,
20263 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20264 and GCC 4.4. We work around this problem by ignoring these. */
20265 if (attr && DW_STRING (attr)
20266 && (startswith (DW_STRING (attr), "._")
20267 || startswith (DW_STRING (attr), "<anonymous")))
20268 return NULL;
20269
20270 /* GCC might emit a nameless typedef that has a linkage name. See
20271 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20272 if (!attr || DW_STRING (attr) == NULL)
20273 {
20274 char *demangled = NULL;
20275
20276 attr = dw2_linkage_name_attr (die, cu);
20277 if (attr == NULL || DW_STRING (attr) == NULL)
20278 return NULL;
20279
20280 /* Avoid demangling DW_STRING (attr) the second time on a second
20281 call for the same DIE. */
20282 if (!DW_STRING_IS_CANONICAL (attr))
20283 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20284
20285 if (demangled)
20286 {
20287 const char *base;
20288
20289 /* FIXME: we already did this for the partial symbol... */
20290 DW_STRING (attr)
20291 = ((const char *)
20292 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20293 demangled, strlen (demangled)));
20294 DW_STRING_IS_CANONICAL (attr) = 1;
20295 xfree (demangled);
20296
20297 /* Strip any leading namespaces/classes, keep only the base name.
20298 DW_AT_name for named DIEs does not contain the prefixes. */
20299 base = strrchr (DW_STRING (attr), ':');
20300 if (base && base > DW_STRING (attr) && base[-1] == ':')
20301 return &base[1];
20302 else
20303 return DW_STRING (attr);
20304 }
20305 }
20306 break;
20307
20308 default:
20309 break;
20310 }
20311
20312 if (!DW_STRING_IS_CANONICAL (attr))
20313 {
20314 DW_STRING (attr)
20315 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20316 &cu->objfile->per_bfd->storage_obstack);
20317 DW_STRING_IS_CANONICAL (attr) = 1;
20318 }
20319 return DW_STRING (attr);
20320 }
20321
20322 /* Return the die that this die in an extension of, or NULL if there
20323 is none. *EXT_CU is the CU containing DIE on input, and the CU
20324 containing the return value on output. */
20325
20326 static struct die_info *
20327 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20328 {
20329 struct attribute *attr;
20330
20331 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20332 if (attr == NULL)
20333 return NULL;
20334
20335 return follow_die_ref (die, attr, ext_cu);
20336 }
20337
20338 /* Convert a DIE tag into its string name. */
20339
20340 static const char *
20341 dwarf_tag_name (unsigned tag)
20342 {
20343 const char *name = get_DW_TAG_name (tag);
20344
20345 if (name == NULL)
20346 return "DW_TAG_<unknown>";
20347
20348 return name;
20349 }
20350
20351 /* Convert a DWARF attribute code into its string name. */
20352
20353 static const char *
20354 dwarf_attr_name (unsigned attr)
20355 {
20356 const char *name;
20357
20358 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20359 if (attr == DW_AT_MIPS_fde)
20360 return "DW_AT_MIPS_fde";
20361 #else
20362 if (attr == DW_AT_HP_block_index)
20363 return "DW_AT_HP_block_index";
20364 #endif
20365
20366 name = get_DW_AT_name (attr);
20367
20368 if (name == NULL)
20369 return "DW_AT_<unknown>";
20370
20371 return name;
20372 }
20373
20374 /* Convert a DWARF value form code into its string name. */
20375
20376 static const char *
20377 dwarf_form_name (unsigned form)
20378 {
20379 const char *name = get_DW_FORM_name (form);
20380
20381 if (name == NULL)
20382 return "DW_FORM_<unknown>";
20383
20384 return name;
20385 }
20386
20387 static const char *
20388 dwarf_bool_name (unsigned mybool)
20389 {
20390 if (mybool)
20391 return "TRUE";
20392 else
20393 return "FALSE";
20394 }
20395
20396 /* Convert a DWARF type code into its string name. */
20397
20398 static const char *
20399 dwarf_type_encoding_name (unsigned enc)
20400 {
20401 const char *name = get_DW_ATE_name (enc);
20402
20403 if (name == NULL)
20404 return "DW_ATE_<unknown>";
20405
20406 return name;
20407 }
20408
20409 static void
20410 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20411 {
20412 unsigned int i;
20413
20414 print_spaces (indent, f);
20415 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20416 dwarf_tag_name (die->tag), die->abbrev,
20417 to_underlying (die->sect_off));
20418
20419 if (die->parent != NULL)
20420 {
20421 print_spaces (indent, f);
20422 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20423 to_underlying (die->parent->sect_off));
20424 }
20425
20426 print_spaces (indent, f);
20427 fprintf_unfiltered (f, " has children: %s\n",
20428 dwarf_bool_name (die->child != NULL));
20429
20430 print_spaces (indent, f);
20431 fprintf_unfiltered (f, " attributes:\n");
20432
20433 for (i = 0; i < die->num_attrs; ++i)
20434 {
20435 print_spaces (indent, f);
20436 fprintf_unfiltered (f, " %s (%s) ",
20437 dwarf_attr_name (die->attrs[i].name),
20438 dwarf_form_name (die->attrs[i].form));
20439
20440 switch (die->attrs[i].form)
20441 {
20442 case DW_FORM_addr:
20443 case DW_FORM_GNU_addr_index:
20444 fprintf_unfiltered (f, "address: ");
20445 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20446 break;
20447 case DW_FORM_block2:
20448 case DW_FORM_block4:
20449 case DW_FORM_block:
20450 case DW_FORM_block1:
20451 fprintf_unfiltered (f, "block: size %s",
20452 pulongest (DW_BLOCK (&die->attrs[i])->size));
20453 break;
20454 case DW_FORM_exprloc:
20455 fprintf_unfiltered (f, "expression: size %s",
20456 pulongest (DW_BLOCK (&die->attrs[i])->size));
20457 break;
20458 case DW_FORM_data16:
20459 fprintf_unfiltered (f, "constant of 16 bytes");
20460 break;
20461 case DW_FORM_ref_addr:
20462 fprintf_unfiltered (f, "ref address: ");
20463 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20464 break;
20465 case DW_FORM_GNU_ref_alt:
20466 fprintf_unfiltered (f, "alt ref address: ");
20467 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20468 break;
20469 case DW_FORM_ref1:
20470 case DW_FORM_ref2:
20471 case DW_FORM_ref4:
20472 case DW_FORM_ref8:
20473 case DW_FORM_ref_udata:
20474 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20475 (long) (DW_UNSND (&die->attrs[i])));
20476 break;
20477 case DW_FORM_data1:
20478 case DW_FORM_data2:
20479 case DW_FORM_data4:
20480 case DW_FORM_data8:
20481 case DW_FORM_udata:
20482 case DW_FORM_sdata:
20483 fprintf_unfiltered (f, "constant: %s",
20484 pulongest (DW_UNSND (&die->attrs[i])));
20485 break;
20486 case DW_FORM_sec_offset:
20487 fprintf_unfiltered (f, "section offset: %s",
20488 pulongest (DW_UNSND (&die->attrs[i])));
20489 break;
20490 case DW_FORM_ref_sig8:
20491 fprintf_unfiltered (f, "signature: %s",
20492 hex_string (DW_SIGNATURE (&die->attrs[i])));
20493 break;
20494 case DW_FORM_string:
20495 case DW_FORM_strp:
20496 case DW_FORM_line_strp:
20497 case DW_FORM_GNU_str_index:
20498 case DW_FORM_GNU_strp_alt:
20499 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20500 DW_STRING (&die->attrs[i])
20501 ? DW_STRING (&die->attrs[i]) : "",
20502 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20503 break;
20504 case DW_FORM_flag:
20505 if (DW_UNSND (&die->attrs[i]))
20506 fprintf_unfiltered (f, "flag: TRUE");
20507 else
20508 fprintf_unfiltered (f, "flag: FALSE");
20509 break;
20510 case DW_FORM_flag_present:
20511 fprintf_unfiltered (f, "flag: TRUE");
20512 break;
20513 case DW_FORM_indirect:
20514 /* The reader will have reduced the indirect form to
20515 the "base form" so this form should not occur. */
20516 fprintf_unfiltered (f,
20517 "unexpected attribute form: DW_FORM_indirect");
20518 break;
20519 case DW_FORM_implicit_const:
20520 fprintf_unfiltered (f, "constant: %s",
20521 plongest (DW_SND (&die->attrs[i])));
20522 break;
20523 default:
20524 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20525 die->attrs[i].form);
20526 break;
20527 }
20528 fprintf_unfiltered (f, "\n");
20529 }
20530 }
20531
20532 static void
20533 dump_die_for_error (struct die_info *die)
20534 {
20535 dump_die_shallow (gdb_stderr, 0, die);
20536 }
20537
20538 static void
20539 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20540 {
20541 int indent = level * 4;
20542
20543 gdb_assert (die != NULL);
20544
20545 if (level >= max_level)
20546 return;
20547
20548 dump_die_shallow (f, indent, die);
20549
20550 if (die->child != NULL)
20551 {
20552 print_spaces (indent, f);
20553 fprintf_unfiltered (f, " Children:");
20554 if (level + 1 < max_level)
20555 {
20556 fprintf_unfiltered (f, "\n");
20557 dump_die_1 (f, level + 1, max_level, die->child);
20558 }
20559 else
20560 {
20561 fprintf_unfiltered (f,
20562 " [not printed, max nesting level reached]\n");
20563 }
20564 }
20565
20566 if (die->sibling != NULL && level > 0)
20567 {
20568 dump_die_1 (f, level, max_level, die->sibling);
20569 }
20570 }
20571
20572 /* This is called from the pdie macro in gdbinit.in.
20573 It's not static so gcc will keep a copy callable from gdb. */
20574
20575 void
20576 dump_die (struct die_info *die, int max_level)
20577 {
20578 dump_die_1 (gdb_stdlog, 0, max_level, die);
20579 }
20580
20581 static void
20582 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20583 {
20584 void **slot;
20585
20586 slot = htab_find_slot_with_hash (cu->die_hash, die,
20587 to_underlying (die->sect_off),
20588 INSERT);
20589
20590 *slot = die;
20591 }
20592
20593 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20594 required kind. */
20595
20596 static sect_offset
20597 dwarf2_get_ref_die_offset (const struct attribute *attr)
20598 {
20599 if (attr_form_is_ref (attr))
20600 return (sect_offset) DW_UNSND (attr);
20601
20602 complaint (&symfile_complaints,
20603 _("unsupported die ref attribute form: '%s'"),
20604 dwarf_form_name (attr->form));
20605 return {};
20606 }
20607
20608 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20609 * the value held by the attribute is not constant. */
20610
20611 static LONGEST
20612 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20613 {
20614 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20615 return DW_SND (attr);
20616 else if (attr->form == DW_FORM_udata
20617 || attr->form == DW_FORM_data1
20618 || attr->form == DW_FORM_data2
20619 || attr->form == DW_FORM_data4
20620 || attr->form == DW_FORM_data8)
20621 return DW_UNSND (attr);
20622 else
20623 {
20624 /* For DW_FORM_data16 see attr_form_is_constant. */
20625 complaint (&symfile_complaints,
20626 _("Attribute value is not a constant (%s)"),
20627 dwarf_form_name (attr->form));
20628 return default_value;
20629 }
20630 }
20631
20632 /* Follow reference or signature attribute ATTR of SRC_DIE.
20633 On entry *REF_CU is the CU of SRC_DIE.
20634 On exit *REF_CU is the CU of the result. */
20635
20636 static struct die_info *
20637 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20638 struct dwarf2_cu **ref_cu)
20639 {
20640 struct die_info *die;
20641
20642 if (attr_form_is_ref (attr))
20643 die = follow_die_ref (src_die, attr, ref_cu);
20644 else if (attr->form == DW_FORM_ref_sig8)
20645 die = follow_die_sig (src_die, attr, ref_cu);
20646 else
20647 {
20648 dump_die_for_error (src_die);
20649 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20650 objfile_name ((*ref_cu)->objfile));
20651 }
20652
20653 return die;
20654 }
20655
20656 /* Follow reference OFFSET.
20657 On entry *REF_CU is the CU of the source die referencing OFFSET.
20658 On exit *REF_CU is the CU of the result.
20659 Returns NULL if OFFSET is invalid. */
20660
20661 static struct die_info *
20662 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20663 struct dwarf2_cu **ref_cu)
20664 {
20665 struct die_info temp_die;
20666 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20667
20668 gdb_assert (cu->per_cu != NULL);
20669
20670 target_cu = cu;
20671
20672 if (cu->per_cu->is_debug_types)
20673 {
20674 /* .debug_types CUs cannot reference anything outside their CU.
20675 If they need to, they have to reference a signatured type via
20676 DW_FORM_ref_sig8. */
20677 if (!offset_in_cu_p (&cu->header, sect_off))
20678 return NULL;
20679 }
20680 else if (offset_in_dwz != cu->per_cu->is_dwz
20681 || !offset_in_cu_p (&cu->header, sect_off))
20682 {
20683 struct dwarf2_per_cu_data *per_cu;
20684
20685 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20686 cu->objfile);
20687
20688 /* If necessary, add it to the queue and load its DIEs. */
20689 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20690 load_full_comp_unit (per_cu, cu->language);
20691
20692 target_cu = per_cu->cu;
20693 }
20694 else if (cu->dies == NULL)
20695 {
20696 /* We're loading full DIEs during partial symbol reading. */
20697 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20698 load_full_comp_unit (cu->per_cu, language_minimal);
20699 }
20700
20701 *ref_cu = target_cu;
20702 temp_die.sect_off = sect_off;
20703 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20704 &temp_die,
20705 to_underlying (sect_off));
20706 }
20707
20708 /* Follow reference attribute ATTR of SRC_DIE.
20709 On entry *REF_CU is the CU of SRC_DIE.
20710 On exit *REF_CU is the CU of the result. */
20711
20712 static struct die_info *
20713 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20714 struct dwarf2_cu **ref_cu)
20715 {
20716 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20717 struct dwarf2_cu *cu = *ref_cu;
20718 struct die_info *die;
20719
20720 die = follow_die_offset (sect_off,
20721 (attr->form == DW_FORM_GNU_ref_alt
20722 || cu->per_cu->is_dwz),
20723 ref_cu);
20724 if (!die)
20725 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20726 "at 0x%x [in module %s]"),
20727 to_underlying (sect_off), to_underlying (src_die->sect_off),
20728 objfile_name (cu->objfile));
20729
20730 return die;
20731 }
20732
20733 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20734 Returned value is intended for DW_OP_call*. Returned
20735 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20736
20737 struct dwarf2_locexpr_baton
20738 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20739 struct dwarf2_per_cu_data *per_cu,
20740 CORE_ADDR (*get_frame_pc) (void *baton),
20741 void *baton)
20742 {
20743 struct dwarf2_cu *cu;
20744 struct die_info *die;
20745 struct attribute *attr;
20746 struct dwarf2_locexpr_baton retval;
20747
20748 dw2_setup (per_cu->objfile);
20749
20750 if (per_cu->cu == NULL)
20751 load_cu (per_cu);
20752 cu = per_cu->cu;
20753 if (cu == NULL)
20754 {
20755 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20756 Instead just throw an error, not much else we can do. */
20757 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20758 to_underlying (sect_off), objfile_name (per_cu->objfile));
20759 }
20760
20761 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20762 if (!die)
20763 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20764 to_underlying (sect_off), objfile_name (per_cu->objfile));
20765
20766 attr = dwarf2_attr (die, DW_AT_location, cu);
20767 if (!attr)
20768 {
20769 /* DWARF: "If there is no such attribute, then there is no effect.".
20770 DATA is ignored if SIZE is 0. */
20771
20772 retval.data = NULL;
20773 retval.size = 0;
20774 }
20775 else if (attr_form_is_section_offset (attr))
20776 {
20777 struct dwarf2_loclist_baton loclist_baton;
20778 CORE_ADDR pc = (*get_frame_pc) (baton);
20779 size_t size;
20780
20781 fill_in_loclist_baton (cu, &loclist_baton, attr);
20782
20783 retval.data = dwarf2_find_location_expression (&loclist_baton,
20784 &size, pc);
20785 retval.size = size;
20786 }
20787 else
20788 {
20789 if (!attr_form_is_block (attr))
20790 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20791 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20792 to_underlying (sect_off), objfile_name (per_cu->objfile));
20793
20794 retval.data = DW_BLOCK (attr)->data;
20795 retval.size = DW_BLOCK (attr)->size;
20796 }
20797 retval.per_cu = cu->per_cu;
20798
20799 age_cached_comp_units ();
20800
20801 return retval;
20802 }
20803
20804 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20805 offset. */
20806
20807 struct dwarf2_locexpr_baton
20808 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20809 struct dwarf2_per_cu_data *per_cu,
20810 CORE_ADDR (*get_frame_pc) (void *baton),
20811 void *baton)
20812 {
20813 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20814
20815 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20816 }
20817
20818 /* Write a constant of a given type as target-ordered bytes into
20819 OBSTACK. */
20820
20821 static const gdb_byte *
20822 write_constant_as_bytes (struct obstack *obstack,
20823 enum bfd_endian byte_order,
20824 struct type *type,
20825 ULONGEST value,
20826 LONGEST *len)
20827 {
20828 gdb_byte *result;
20829
20830 *len = TYPE_LENGTH (type);
20831 result = (gdb_byte *) obstack_alloc (obstack, *len);
20832 store_unsigned_integer (result, *len, byte_order, value);
20833
20834 return result;
20835 }
20836
20837 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20838 pointer to the constant bytes and set LEN to the length of the
20839 data. If memory is needed, allocate it on OBSTACK. If the DIE
20840 does not have a DW_AT_const_value, return NULL. */
20841
20842 const gdb_byte *
20843 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20844 struct dwarf2_per_cu_data *per_cu,
20845 struct obstack *obstack,
20846 LONGEST *len)
20847 {
20848 struct dwarf2_cu *cu;
20849 struct die_info *die;
20850 struct attribute *attr;
20851 const gdb_byte *result = NULL;
20852 struct type *type;
20853 LONGEST value;
20854 enum bfd_endian byte_order;
20855
20856 dw2_setup (per_cu->objfile);
20857
20858 if (per_cu->cu == NULL)
20859 load_cu (per_cu);
20860 cu = per_cu->cu;
20861 if (cu == NULL)
20862 {
20863 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20864 Instead just throw an error, not much else we can do. */
20865 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20866 to_underlying (sect_off), objfile_name (per_cu->objfile));
20867 }
20868
20869 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20870 if (!die)
20871 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20872 to_underlying (sect_off), objfile_name (per_cu->objfile));
20873
20874
20875 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20876 if (attr == NULL)
20877 return NULL;
20878
20879 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20880 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20881
20882 switch (attr->form)
20883 {
20884 case DW_FORM_addr:
20885 case DW_FORM_GNU_addr_index:
20886 {
20887 gdb_byte *tem;
20888
20889 *len = cu->header.addr_size;
20890 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20891 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20892 result = tem;
20893 }
20894 break;
20895 case DW_FORM_string:
20896 case DW_FORM_strp:
20897 case DW_FORM_GNU_str_index:
20898 case DW_FORM_GNU_strp_alt:
20899 /* DW_STRING is already allocated on the objfile obstack, point
20900 directly to it. */
20901 result = (const gdb_byte *) DW_STRING (attr);
20902 *len = strlen (DW_STRING (attr));
20903 break;
20904 case DW_FORM_block1:
20905 case DW_FORM_block2:
20906 case DW_FORM_block4:
20907 case DW_FORM_block:
20908 case DW_FORM_exprloc:
20909 case DW_FORM_data16:
20910 result = DW_BLOCK (attr)->data;
20911 *len = DW_BLOCK (attr)->size;
20912 break;
20913
20914 /* The DW_AT_const_value attributes are supposed to carry the
20915 symbol's value "represented as it would be on the target
20916 architecture." By the time we get here, it's already been
20917 converted to host endianness, so we just need to sign- or
20918 zero-extend it as appropriate. */
20919 case DW_FORM_data1:
20920 type = die_type (die, cu);
20921 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20922 if (result == NULL)
20923 result = write_constant_as_bytes (obstack, byte_order,
20924 type, value, len);
20925 break;
20926 case DW_FORM_data2:
20927 type = die_type (die, cu);
20928 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20929 if (result == NULL)
20930 result = write_constant_as_bytes (obstack, byte_order,
20931 type, value, len);
20932 break;
20933 case DW_FORM_data4:
20934 type = die_type (die, cu);
20935 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20936 if (result == NULL)
20937 result = write_constant_as_bytes (obstack, byte_order,
20938 type, value, len);
20939 break;
20940 case DW_FORM_data8:
20941 type = die_type (die, cu);
20942 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20943 if (result == NULL)
20944 result = write_constant_as_bytes (obstack, byte_order,
20945 type, value, len);
20946 break;
20947
20948 case DW_FORM_sdata:
20949 case DW_FORM_implicit_const:
20950 type = die_type (die, cu);
20951 result = write_constant_as_bytes (obstack, byte_order,
20952 type, DW_SND (attr), len);
20953 break;
20954
20955 case DW_FORM_udata:
20956 type = die_type (die, cu);
20957 result = write_constant_as_bytes (obstack, byte_order,
20958 type, DW_UNSND (attr), len);
20959 break;
20960
20961 default:
20962 complaint (&symfile_complaints,
20963 _("unsupported const value attribute form: '%s'"),
20964 dwarf_form_name (attr->form));
20965 break;
20966 }
20967
20968 return result;
20969 }
20970
20971 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20972 valid type for this die is found. */
20973
20974 struct type *
20975 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20976 struct dwarf2_per_cu_data *per_cu)
20977 {
20978 struct dwarf2_cu *cu;
20979 struct die_info *die;
20980
20981 dw2_setup (per_cu->objfile);
20982
20983 if (per_cu->cu == NULL)
20984 load_cu (per_cu);
20985 cu = per_cu->cu;
20986 if (!cu)
20987 return NULL;
20988
20989 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20990 if (!die)
20991 return NULL;
20992
20993 return die_type (die, cu);
20994 }
20995
20996 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20997 PER_CU. */
20998
20999 struct type *
21000 dwarf2_get_die_type (cu_offset die_offset,
21001 struct dwarf2_per_cu_data *per_cu)
21002 {
21003 dw2_setup (per_cu->objfile);
21004
21005 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21006 return get_die_type_at_offset (die_offset_sect, per_cu);
21007 }
21008
21009 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21010 On entry *REF_CU is the CU of SRC_DIE.
21011 On exit *REF_CU is the CU of the result.
21012 Returns NULL if the referenced DIE isn't found. */
21013
21014 static struct die_info *
21015 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21016 struct dwarf2_cu **ref_cu)
21017 {
21018 struct die_info temp_die;
21019 struct dwarf2_cu *sig_cu;
21020 struct die_info *die;
21021
21022 /* While it might be nice to assert sig_type->type == NULL here,
21023 we can get here for DW_AT_imported_declaration where we need
21024 the DIE not the type. */
21025
21026 /* If necessary, add it to the queue and load its DIEs. */
21027
21028 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21029 read_signatured_type (sig_type);
21030
21031 sig_cu = sig_type->per_cu.cu;
21032 gdb_assert (sig_cu != NULL);
21033 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21034 temp_die.sect_off = sig_type->type_offset_in_section;
21035 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21036 to_underlying (temp_die.sect_off));
21037 if (die)
21038 {
21039 /* For .gdb_index version 7 keep track of included TUs.
21040 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21041 if (dwarf2_per_objfile->index_table != NULL
21042 && dwarf2_per_objfile->index_table->version <= 7)
21043 {
21044 VEC_safe_push (dwarf2_per_cu_ptr,
21045 (*ref_cu)->per_cu->imported_symtabs,
21046 sig_cu->per_cu);
21047 }
21048
21049 *ref_cu = sig_cu;
21050 return die;
21051 }
21052
21053 return NULL;
21054 }
21055
21056 /* Follow signatured type referenced by ATTR in SRC_DIE.
21057 On entry *REF_CU is the CU of SRC_DIE.
21058 On exit *REF_CU is the CU of the result.
21059 The result is the DIE of the type.
21060 If the referenced type cannot be found an error is thrown. */
21061
21062 static struct die_info *
21063 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21064 struct dwarf2_cu **ref_cu)
21065 {
21066 ULONGEST signature = DW_SIGNATURE (attr);
21067 struct signatured_type *sig_type;
21068 struct die_info *die;
21069
21070 gdb_assert (attr->form == DW_FORM_ref_sig8);
21071
21072 sig_type = lookup_signatured_type (*ref_cu, signature);
21073 /* sig_type will be NULL if the signatured type is missing from
21074 the debug info. */
21075 if (sig_type == NULL)
21076 {
21077 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21078 " from DIE at 0x%x [in module %s]"),
21079 hex_string (signature), to_underlying (src_die->sect_off),
21080 objfile_name ((*ref_cu)->objfile));
21081 }
21082
21083 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21084 if (die == NULL)
21085 {
21086 dump_die_for_error (src_die);
21087 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21088 " from DIE at 0x%x [in module %s]"),
21089 hex_string (signature), to_underlying (src_die->sect_off),
21090 objfile_name ((*ref_cu)->objfile));
21091 }
21092
21093 return die;
21094 }
21095
21096 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21097 reading in and processing the type unit if necessary. */
21098
21099 static struct type *
21100 get_signatured_type (struct die_info *die, ULONGEST signature,
21101 struct dwarf2_cu *cu)
21102 {
21103 struct signatured_type *sig_type;
21104 struct dwarf2_cu *type_cu;
21105 struct die_info *type_die;
21106 struct type *type;
21107
21108 sig_type = lookup_signatured_type (cu, signature);
21109 /* sig_type will be NULL if the signatured type is missing from
21110 the debug info. */
21111 if (sig_type == NULL)
21112 {
21113 complaint (&symfile_complaints,
21114 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21115 " from DIE at 0x%x [in module %s]"),
21116 hex_string (signature), to_underlying (die->sect_off),
21117 objfile_name (dwarf2_per_objfile->objfile));
21118 return build_error_marker_type (cu, die);
21119 }
21120
21121 /* If we already know the type we're done. */
21122 if (sig_type->type != NULL)
21123 return sig_type->type;
21124
21125 type_cu = cu;
21126 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21127 if (type_die != NULL)
21128 {
21129 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21130 is created. This is important, for example, because for c++ classes
21131 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21132 type = read_type_die (type_die, type_cu);
21133 if (type == NULL)
21134 {
21135 complaint (&symfile_complaints,
21136 _("Dwarf Error: Cannot build signatured type %s"
21137 " referenced from DIE at 0x%x [in module %s]"),
21138 hex_string (signature), to_underlying (die->sect_off),
21139 objfile_name (dwarf2_per_objfile->objfile));
21140 type = build_error_marker_type (cu, die);
21141 }
21142 }
21143 else
21144 {
21145 complaint (&symfile_complaints,
21146 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21147 " from DIE at 0x%x [in module %s]"),
21148 hex_string (signature), to_underlying (die->sect_off),
21149 objfile_name (dwarf2_per_objfile->objfile));
21150 type = build_error_marker_type (cu, die);
21151 }
21152 sig_type->type = type;
21153
21154 return type;
21155 }
21156
21157 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21158 reading in and processing the type unit if necessary. */
21159
21160 static struct type *
21161 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21162 struct dwarf2_cu *cu) /* ARI: editCase function */
21163 {
21164 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21165 if (attr_form_is_ref (attr))
21166 {
21167 struct dwarf2_cu *type_cu = cu;
21168 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21169
21170 return read_type_die (type_die, type_cu);
21171 }
21172 else if (attr->form == DW_FORM_ref_sig8)
21173 {
21174 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21175 }
21176 else
21177 {
21178 complaint (&symfile_complaints,
21179 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21180 " at 0x%x [in module %s]"),
21181 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21182 objfile_name (dwarf2_per_objfile->objfile));
21183 return build_error_marker_type (cu, die);
21184 }
21185 }
21186
21187 /* Load the DIEs associated with type unit PER_CU into memory. */
21188
21189 static void
21190 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21191 {
21192 struct signatured_type *sig_type;
21193
21194 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21195 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21196
21197 /* We have the per_cu, but we need the signatured_type.
21198 Fortunately this is an easy translation. */
21199 gdb_assert (per_cu->is_debug_types);
21200 sig_type = (struct signatured_type *) per_cu;
21201
21202 gdb_assert (per_cu->cu == NULL);
21203
21204 read_signatured_type (sig_type);
21205
21206 gdb_assert (per_cu->cu != NULL);
21207 }
21208
21209 /* die_reader_func for read_signatured_type.
21210 This is identical to load_full_comp_unit_reader,
21211 but is kept separate for now. */
21212
21213 static void
21214 read_signatured_type_reader (const struct die_reader_specs *reader,
21215 const gdb_byte *info_ptr,
21216 struct die_info *comp_unit_die,
21217 int has_children,
21218 void *data)
21219 {
21220 struct dwarf2_cu *cu = reader->cu;
21221
21222 gdb_assert (cu->die_hash == NULL);
21223 cu->die_hash =
21224 htab_create_alloc_ex (cu->header.length / 12,
21225 die_hash,
21226 die_eq,
21227 NULL,
21228 &cu->comp_unit_obstack,
21229 hashtab_obstack_allocate,
21230 dummy_obstack_deallocate);
21231
21232 if (has_children)
21233 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21234 &info_ptr, comp_unit_die);
21235 cu->dies = comp_unit_die;
21236 /* comp_unit_die is not stored in die_hash, no need. */
21237
21238 /* We try not to read any attributes in this function, because not
21239 all CUs needed for references have been loaded yet, and symbol
21240 table processing isn't initialized. But we have to set the CU language,
21241 or we won't be able to build types correctly.
21242 Similarly, if we do not read the producer, we can not apply
21243 producer-specific interpretation. */
21244 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21245 }
21246
21247 /* Read in a signatured type and build its CU and DIEs.
21248 If the type is a stub for the real type in a DWO file,
21249 read in the real type from the DWO file as well. */
21250
21251 static void
21252 read_signatured_type (struct signatured_type *sig_type)
21253 {
21254 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21255
21256 gdb_assert (per_cu->is_debug_types);
21257 gdb_assert (per_cu->cu == NULL);
21258
21259 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21260 read_signatured_type_reader, NULL);
21261 sig_type->per_cu.tu_read = 1;
21262 }
21263
21264 /* Decode simple location descriptions.
21265 Given a pointer to a dwarf block that defines a location, compute
21266 the location and return the value.
21267
21268 NOTE drow/2003-11-18: This function is called in two situations
21269 now: for the address of static or global variables (partial symbols
21270 only) and for offsets into structures which are expected to be
21271 (more or less) constant. The partial symbol case should go away,
21272 and only the constant case should remain. That will let this
21273 function complain more accurately. A few special modes are allowed
21274 without complaint for global variables (for instance, global
21275 register values and thread-local values).
21276
21277 A location description containing no operations indicates that the
21278 object is optimized out. The return value is 0 for that case.
21279 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21280 callers will only want a very basic result and this can become a
21281 complaint.
21282
21283 Note that stack[0] is unused except as a default error return. */
21284
21285 static CORE_ADDR
21286 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21287 {
21288 struct objfile *objfile = cu->objfile;
21289 size_t i;
21290 size_t size = blk->size;
21291 const gdb_byte *data = blk->data;
21292 CORE_ADDR stack[64];
21293 int stacki;
21294 unsigned int bytes_read, unsnd;
21295 gdb_byte op;
21296
21297 i = 0;
21298 stacki = 0;
21299 stack[stacki] = 0;
21300 stack[++stacki] = 0;
21301
21302 while (i < size)
21303 {
21304 op = data[i++];
21305 switch (op)
21306 {
21307 case DW_OP_lit0:
21308 case DW_OP_lit1:
21309 case DW_OP_lit2:
21310 case DW_OP_lit3:
21311 case DW_OP_lit4:
21312 case DW_OP_lit5:
21313 case DW_OP_lit6:
21314 case DW_OP_lit7:
21315 case DW_OP_lit8:
21316 case DW_OP_lit9:
21317 case DW_OP_lit10:
21318 case DW_OP_lit11:
21319 case DW_OP_lit12:
21320 case DW_OP_lit13:
21321 case DW_OP_lit14:
21322 case DW_OP_lit15:
21323 case DW_OP_lit16:
21324 case DW_OP_lit17:
21325 case DW_OP_lit18:
21326 case DW_OP_lit19:
21327 case DW_OP_lit20:
21328 case DW_OP_lit21:
21329 case DW_OP_lit22:
21330 case DW_OP_lit23:
21331 case DW_OP_lit24:
21332 case DW_OP_lit25:
21333 case DW_OP_lit26:
21334 case DW_OP_lit27:
21335 case DW_OP_lit28:
21336 case DW_OP_lit29:
21337 case DW_OP_lit30:
21338 case DW_OP_lit31:
21339 stack[++stacki] = op - DW_OP_lit0;
21340 break;
21341
21342 case DW_OP_reg0:
21343 case DW_OP_reg1:
21344 case DW_OP_reg2:
21345 case DW_OP_reg3:
21346 case DW_OP_reg4:
21347 case DW_OP_reg5:
21348 case DW_OP_reg6:
21349 case DW_OP_reg7:
21350 case DW_OP_reg8:
21351 case DW_OP_reg9:
21352 case DW_OP_reg10:
21353 case DW_OP_reg11:
21354 case DW_OP_reg12:
21355 case DW_OP_reg13:
21356 case DW_OP_reg14:
21357 case DW_OP_reg15:
21358 case DW_OP_reg16:
21359 case DW_OP_reg17:
21360 case DW_OP_reg18:
21361 case DW_OP_reg19:
21362 case DW_OP_reg20:
21363 case DW_OP_reg21:
21364 case DW_OP_reg22:
21365 case DW_OP_reg23:
21366 case DW_OP_reg24:
21367 case DW_OP_reg25:
21368 case DW_OP_reg26:
21369 case DW_OP_reg27:
21370 case DW_OP_reg28:
21371 case DW_OP_reg29:
21372 case DW_OP_reg30:
21373 case DW_OP_reg31:
21374 stack[++stacki] = op - DW_OP_reg0;
21375 if (i < size)
21376 dwarf2_complex_location_expr_complaint ();
21377 break;
21378
21379 case DW_OP_regx:
21380 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21381 i += bytes_read;
21382 stack[++stacki] = unsnd;
21383 if (i < size)
21384 dwarf2_complex_location_expr_complaint ();
21385 break;
21386
21387 case DW_OP_addr:
21388 stack[++stacki] = read_address (objfile->obfd, &data[i],
21389 cu, &bytes_read);
21390 i += bytes_read;
21391 break;
21392
21393 case DW_OP_const1u:
21394 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21395 i += 1;
21396 break;
21397
21398 case DW_OP_const1s:
21399 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21400 i += 1;
21401 break;
21402
21403 case DW_OP_const2u:
21404 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21405 i += 2;
21406 break;
21407
21408 case DW_OP_const2s:
21409 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21410 i += 2;
21411 break;
21412
21413 case DW_OP_const4u:
21414 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21415 i += 4;
21416 break;
21417
21418 case DW_OP_const4s:
21419 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21420 i += 4;
21421 break;
21422
21423 case DW_OP_const8u:
21424 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21425 i += 8;
21426 break;
21427
21428 case DW_OP_constu:
21429 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21430 &bytes_read);
21431 i += bytes_read;
21432 break;
21433
21434 case DW_OP_consts:
21435 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21436 i += bytes_read;
21437 break;
21438
21439 case DW_OP_dup:
21440 stack[stacki + 1] = stack[stacki];
21441 stacki++;
21442 break;
21443
21444 case DW_OP_plus:
21445 stack[stacki - 1] += stack[stacki];
21446 stacki--;
21447 break;
21448
21449 case DW_OP_plus_uconst:
21450 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21451 &bytes_read);
21452 i += bytes_read;
21453 break;
21454
21455 case DW_OP_minus:
21456 stack[stacki - 1] -= stack[stacki];
21457 stacki--;
21458 break;
21459
21460 case DW_OP_deref:
21461 /* If we're not the last op, then we definitely can't encode
21462 this using GDB's address_class enum. This is valid for partial
21463 global symbols, although the variable's address will be bogus
21464 in the psymtab. */
21465 if (i < size)
21466 dwarf2_complex_location_expr_complaint ();
21467 break;
21468
21469 case DW_OP_GNU_push_tls_address:
21470 case DW_OP_form_tls_address:
21471 /* The top of the stack has the offset from the beginning
21472 of the thread control block at which the variable is located. */
21473 /* Nothing should follow this operator, so the top of stack would
21474 be returned. */
21475 /* This is valid for partial global symbols, but the variable's
21476 address will be bogus in the psymtab. Make it always at least
21477 non-zero to not look as a variable garbage collected by linker
21478 which have DW_OP_addr 0. */
21479 if (i < size)
21480 dwarf2_complex_location_expr_complaint ();
21481 stack[stacki]++;
21482 break;
21483
21484 case DW_OP_GNU_uninit:
21485 break;
21486
21487 case DW_OP_GNU_addr_index:
21488 case DW_OP_GNU_const_index:
21489 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21490 &bytes_read);
21491 i += bytes_read;
21492 break;
21493
21494 default:
21495 {
21496 const char *name = get_DW_OP_name (op);
21497
21498 if (name)
21499 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21500 name);
21501 else
21502 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21503 op);
21504 }
21505
21506 return (stack[stacki]);
21507 }
21508
21509 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21510 outside of the allocated space. Also enforce minimum>0. */
21511 if (stacki >= ARRAY_SIZE (stack) - 1)
21512 {
21513 complaint (&symfile_complaints,
21514 _("location description stack overflow"));
21515 return 0;
21516 }
21517
21518 if (stacki <= 0)
21519 {
21520 complaint (&symfile_complaints,
21521 _("location description stack underflow"));
21522 return 0;
21523 }
21524 }
21525 return (stack[stacki]);
21526 }
21527
21528 /* memory allocation interface */
21529
21530 static struct dwarf_block *
21531 dwarf_alloc_block (struct dwarf2_cu *cu)
21532 {
21533 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21534 }
21535
21536 static struct die_info *
21537 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21538 {
21539 struct die_info *die;
21540 size_t size = sizeof (struct die_info);
21541
21542 if (num_attrs > 1)
21543 size += (num_attrs - 1) * sizeof (struct attribute);
21544
21545 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21546 memset (die, 0, sizeof (struct die_info));
21547 return (die);
21548 }
21549
21550 \f
21551 /* Macro support. */
21552
21553 /* Return file name relative to the compilation directory of file number I in
21554 *LH's file name table. The result is allocated using xmalloc; the caller is
21555 responsible for freeing it. */
21556
21557 static char *
21558 file_file_name (int file, struct line_header *lh)
21559 {
21560 /* Is the file number a valid index into the line header's file name
21561 table? Remember that file numbers start with one, not zero. */
21562 if (1 <= file && file <= lh->file_names.size ())
21563 {
21564 const file_entry &fe = lh->file_names[file - 1];
21565
21566 if (!IS_ABSOLUTE_PATH (fe.name))
21567 {
21568 const char *dir = fe.include_dir (lh);
21569 if (dir != NULL)
21570 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21571 }
21572 return xstrdup (fe.name);
21573 }
21574 else
21575 {
21576 /* The compiler produced a bogus file number. We can at least
21577 record the macro definitions made in the file, even if we
21578 won't be able to find the file by name. */
21579 char fake_name[80];
21580
21581 xsnprintf (fake_name, sizeof (fake_name),
21582 "<bad macro file number %d>", file);
21583
21584 complaint (&symfile_complaints,
21585 _("bad file number in macro information (%d)"),
21586 file);
21587
21588 return xstrdup (fake_name);
21589 }
21590 }
21591
21592 /* Return the full name of file number I in *LH's file name table.
21593 Use COMP_DIR as the name of the current directory of the
21594 compilation. The result is allocated using xmalloc; the caller is
21595 responsible for freeing it. */
21596 static char *
21597 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21598 {
21599 /* Is the file number a valid index into the line header's file name
21600 table? Remember that file numbers start with one, not zero. */
21601 if (1 <= file && file <= lh->file_names.size ())
21602 {
21603 char *relative = file_file_name (file, lh);
21604
21605 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21606 return relative;
21607 return reconcat (relative, comp_dir, SLASH_STRING,
21608 relative, (char *) NULL);
21609 }
21610 else
21611 return file_file_name (file, lh);
21612 }
21613
21614
21615 static struct macro_source_file *
21616 macro_start_file (int file, int line,
21617 struct macro_source_file *current_file,
21618 struct line_header *lh)
21619 {
21620 /* File name relative to the compilation directory of this source file. */
21621 char *file_name = file_file_name (file, lh);
21622
21623 if (! current_file)
21624 {
21625 /* Note: We don't create a macro table for this compilation unit
21626 at all until we actually get a filename. */
21627 struct macro_table *macro_table = get_macro_table ();
21628
21629 /* If we have no current file, then this must be the start_file
21630 directive for the compilation unit's main source file. */
21631 current_file = macro_set_main (macro_table, file_name);
21632 macro_define_special (macro_table);
21633 }
21634 else
21635 current_file = macro_include (current_file, line, file_name);
21636
21637 xfree (file_name);
21638
21639 return current_file;
21640 }
21641
21642 static const char *
21643 consume_improper_spaces (const char *p, const char *body)
21644 {
21645 if (*p == ' ')
21646 {
21647 complaint (&symfile_complaints,
21648 _("macro definition contains spaces "
21649 "in formal argument list:\n`%s'"),
21650 body);
21651
21652 while (*p == ' ')
21653 p++;
21654 }
21655
21656 return p;
21657 }
21658
21659
21660 static void
21661 parse_macro_definition (struct macro_source_file *file, int line,
21662 const char *body)
21663 {
21664 const char *p;
21665
21666 /* The body string takes one of two forms. For object-like macro
21667 definitions, it should be:
21668
21669 <macro name> " " <definition>
21670
21671 For function-like macro definitions, it should be:
21672
21673 <macro name> "() " <definition>
21674 or
21675 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21676
21677 Spaces may appear only where explicitly indicated, and in the
21678 <definition>.
21679
21680 The Dwarf 2 spec says that an object-like macro's name is always
21681 followed by a space, but versions of GCC around March 2002 omit
21682 the space when the macro's definition is the empty string.
21683
21684 The Dwarf 2 spec says that there should be no spaces between the
21685 formal arguments in a function-like macro's formal argument list,
21686 but versions of GCC around March 2002 include spaces after the
21687 commas. */
21688
21689
21690 /* Find the extent of the macro name. The macro name is terminated
21691 by either a space or null character (for an object-like macro) or
21692 an opening paren (for a function-like macro). */
21693 for (p = body; *p; p++)
21694 if (*p == ' ' || *p == '(')
21695 break;
21696
21697 if (*p == ' ' || *p == '\0')
21698 {
21699 /* It's an object-like macro. */
21700 int name_len = p - body;
21701 char *name = savestring (body, name_len);
21702 const char *replacement;
21703
21704 if (*p == ' ')
21705 replacement = body + name_len + 1;
21706 else
21707 {
21708 dwarf2_macro_malformed_definition_complaint (body);
21709 replacement = body + name_len;
21710 }
21711
21712 macro_define_object (file, line, name, replacement);
21713
21714 xfree (name);
21715 }
21716 else if (*p == '(')
21717 {
21718 /* It's a function-like macro. */
21719 char *name = savestring (body, p - body);
21720 int argc = 0;
21721 int argv_size = 1;
21722 char **argv = XNEWVEC (char *, argv_size);
21723
21724 p++;
21725
21726 p = consume_improper_spaces (p, body);
21727
21728 /* Parse the formal argument list. */
21729 while (*p && *p != ')')
21730 {
21731 /* Find the extent of the current argument name. */
21732 const char *arg_start = p;
21733
21734 while (*p && *p != ',' && *p != ')' && *p != ' ')
21735 p++;
21736
21737 if (! *p || p == arg_start)
21738 dwarf2_macro_malformed_definition_complaint (body);
21739 else
21740 {
21741 /* Make sure argv has room for the new argument. */
21742 if (argc >= argv_size)
21743 {
21744 argv_size *= 2;
21745 argv = XRESIZEVEC (char *, argv, argv_size);
21746 }
21747
21748 argv[argc++] = savestring (arg_start, p - arg_start);
21749 }
21750
21751 p = consume_improper_spaces (p, body);
21752
21753 /* Consume the comma, if present. */
21754 if (*p == ',')
21755 {
21756 p++;
21757
21758 p = consume_improper_spaces (p, body);
21759 }
21760 }
21761
21762 if (*p == ')')
21763 {
21764 p++;
21765
21766 if (*p == ' ')
21767 /* Perfectly formed definition, no complaints. */
21768 macro_define_function (file, line, name,
21769 argc, (const char **) argv,
21770 p + 1);
21771 else if (*p == '\0')
21772 {
21773 /* Complain, but do define it. */
21774 dwarf2_macro_malformed_definition_complaint (body);
21775 macro_define_function (file, line, name,
21776 argc, (const char **) argv,
21777 p);
21778 }
21779 else
21780 /* Just complain. */
21781 dwarf2_macro_malformed_definition_complaint (body);
21782 }
21783 else
21784 /* Just complain. */
21785 dwarf2_macro_malformed_definition_complaint (body);
21786
21787 xfree (name);
21788 {
21789 int i;
21790
21791 for (i = 0; i < argc; i++)
21792 xfree (argv[i]);
21793 }
21794 xfree (argv);
21795 }
21796 else
21797 dwarf2_macro_malformed_definition_complaint (body);
21798 }
21799
21800 /* Skip some bytes from BYTES according to the form given in FORM.
21801 Returns the new pointer. */
21802
21803 static const gdb_byte *
21804 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21805 enum dwarf_form form,
21806 unsigned int offset_size,
21807 struct dwarf2_section_info *section)
21808 {
21809 unsigned int bytes_read;
21810
21811 switch (form)
21812 {
21813 case DW_FORM_data1:
21814 case DW_FORM_flag:
21815 ++bytes;
21816 break;
21817
21818 case DW_FORM_data2:
21819 bytes += 2;
21820 break;
21821
21822 case DW_FORM_data4:
21823 bytes += 4;
21824 break;
21825
21826 case DW_FORM_data8:
21827 bytes += 8;
21828 break;
21829
21830 case DW_FORM_data16:
21831 bytes += 16;
21832 break;
21833
21834 case DW_FORM_string:
21835 read_direct_string (abfd, bytes, &bytes_read);
21836 bytes += bytes_read;
21837 break;
21838
21839 case DW_FORM_sec_offset:
21840 case DW_FORM_strp:
21841 case DW_FORM_GNU_strp_alt:
21842 bytes += offset_size;
21843 break;
21844
21845 case DW_FORM_block:
21846 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21847 bytes += bytes_read;
21848 break;
21849
21850 case DW_FORM_block1:
21851 bytes += 1 + read_1_byte (abfd, bytes);
21852 break;
21853 case DW_FORM_block2:
21854 bytes += 2 + read_2_bytes (abfd, bytes);
21855 break;
21856 case DW_FORM_block4:
21857 bytes += 4 + read_4_bytes (abfd, bytes);
21858 break;
21859
21860 case DW_FORM_sdata:
21861 case DW_FORM_udata:
21862 case DW_FORM_GNU_addr_index:
21863 case DW_FORM_GNU_str_index:
21864 bytes = gdb_skip_leb128 (bytes, buffer_end);
21865 if (bytes == NULL)
21866 {
21867 dwarf2_section_buffer_overflow_complaint (section);
21868 return NULL;
21869 }
21870 break;
21871
21872 case DW_FORM_implicit_const:
21873 break;
21874
21875 default:
21876 {
21877 complain:
21878 complaint (&symfile_complaints,
21879 _("invalid form 0x%x in `%s'"),
21880 form, get_section_name (section));
21881 return NULL;
21882 }
21883 }
21884
21885 return bytes;
21886 }
21887
21888 /* A helper for dwarf_decode_macros that handles skipping an unknown
21889 opcode. Returns an updated pointer to the macro data buffer; or,
21890 on error, issues a complaint and returns NULL. */
21891
21892 static const gdb_byte *
21893 skip_unknown_opcode (unsigned int opcode,
21894 const gdb_byte **opcode_definitions,
21895 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21896 bfd *abfd,
21897 unsigned int offset_size,
21898 struct dwarf2_section_info *section)
21899 {
21900 unsigned int bytes_read, i;
21901 unsigned long arg;
21902 const gdb_byte *defn;
21903
21904 if (opcode_definitions[opcode] == NULL)
21905 {
21906 complaint (&symfile_complaints,
21907 _("unrecognized DW_MACFINO opcode 0x%x"),
21908 opcode);
21909 return NULL;
21910 }
21911
21912 defn = opcode_definitions[opcode];
21913 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21914 defn += bytes_read;
21915
21916 for (i = 0; i < arg; ++i)
21917 {
21918 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21919 (enum dwarf_form) defn[i], offset_size,
21920 section);
21921 if (mac_ptr == NULL)
21922 {
21923 /* skip_form_bytes already issued the complaint. */
21924 return NULL;
21925 }
21926 }
21927
21928 return mac_ptr;
21929 }
21930
21931 /* A helper function which parses the header of a macro section.
21932 If the macro section is the extended (for now called "GNU") type,
21933 then this updates *OFFSET_SIZE. Returns a pointer to just after
21934 the header, or issues a complaint and returns NULL on error. */
21935
21936 static const gdb_byte *
21937 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21938 bfd *abfd,
21939 const gdb_byte *mac_ptr,
21940 unsigned int *offset_size,
21941 int section_is_gnu)
21942 {
21943 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21944
21945 if (section_is_gnu)
21946 {
21947 unsigned int version, flags;
21948
21949 version = read_2_bytes (abfd, mac_ptr);
21950 if (version != 4 && version != 5)
21951 {
21952 complaint (&symfile_complaints,
21953 _("unrecognized version `%d' in .debug_macro section"),
21954 version);
21955 return NULL;
21956 }
21957 mac_ptr += 2;
21958
21959 flags = read_1_byte (abfd, mac_ptr);
21960 ++mac_ptr;
21961 *offset_size = (flags & 1) ? 8 : 4;
21962
21963 if ((flags & 2) != 0)
21964 /* We don't need the line table offset. */
21965 mac_ptr += *offset_size;
21966
21967 /* Vendor opcode descriptions. */
21968 if ((flags & 4) != 0)
21969 {
21970 unsigned int i, count;
21971
21972 count = read_1_byte (abfd, mac_ptr);
21973 ++mac_ptr;
21974 for (i = 0; i < count; ++i)
21975 {
21976 unsigned int opcode, bytes_read;
21977 unsigned long arg;
21978
21979 opcode = read_1_byte (abfd, mac_ptr);
21980 ++mac_ptr;
21981 opcode_definitions[opcode] = mac_ptr;
21982 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21983 mac_ptr += bytes_read;
21984 mac_ptr += arg;
21985 }
21986 }
21987 }
21988
21989 return mac_ptr;
21990 }
21991
21992 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21993 including DW_MACRO_import. */
21994
21995 static void
21996 dwarf_decode_macro_bytes (bfd *abfd,
21997 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21998 struct macro_source_file *current_file,
21999 struct line_header *lh,
22000 struct dwarf2_section_info *section,
22001 int section_is_gnu, int section_is_dwz,
22002 unsigned int offset_size,
22003 htab_t include_hash)
22004 {
22005 struct objfile *objfile = dwarf2_per_objfile->objfile;
22006 enum dwarf_macro_record_type macinfo_type;
22007 int at_commandline;
22008 const gdb_byte *opcode_definitions[256];
22009
22010 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22011 &offset_size, section_is_gnu);
22012 if (mac_ptr == NULL)
22013 {
22014 /* We already issued a complaint. */
22015 return;
22016 }
22017
22018 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22019 GDB is still reading the definitions from command line. First
22020 DW_MACINFO_start_file will need to be ignored as it was already executed
22021 to create CURRENT_FILE for the main source holding also the command line
22022 definitions. On first met DW_MACINFO_start_file this flag is reset to
22023 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22024
22025 at_commandline = 1;
22026
22027 do
22028 {
22029 /* Do we at least have room for a macinfo type byte? */
22030 if (mac_ptr >= mac_end)
22031 {
22032 dwarf2_section_buffer_overflow_complaint (section);
22033 break;
22034 }
22035
22036 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22037 mac_ptr++;
22038
22039 /* Note that we rely on the fact that the corresponding GNU and
22040 DWARF constants are the same. */
22041 switch (macinfo_type)
22042 {
22043 /* A zero macinfo type indicates the end of the macro
22044 information. */
22045 case 0:
22046 break;
22047
22048 case DW_MACRO_define:
22049 case DW_MACRO_undef:
22050 case DW_MACRO_define_strp:
22051 case DW_MACRO_undef_strp:
22052 case DW_MACRO_define_sup:
22053 case DW_MACRO_undef_sup:
22054 {
22055 unsigned int bytes_read;
22056 int line;
22057 const char *body;
22058 int is_define;
22059
22060 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22061 mac_ptr += bytes_read;
22062
22063 if (macinfo_type == DW_MACRO_define
22064 || macinfo_type == DW_MACRO_undef)
22065 {
22066 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22067 mac_ptr += bytes_read;
22068 }
22069 else
22070 {
22071 LONGEST str_offset;
22072
22073 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22074 mac_ptr += offset_size;
22075
22076 if (macinfo_type == DW_MACRO_define_sup
22077 || macinfo_type == DW_MACRO_undef_sup
22078 || section_is_dwz)
22079 {
22080 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22081
22082 body = read_indirect_string_from_dwz (dwz, str_offset);
22083 }
22084 else
22085 body = read_indirect_string_at_offset (abfd, str_offset);
22086 }
22087
22088 is_define = (macinfo_type == DW_MACRO_define
22089 || macinfo_type == DW_MACRO_define_strp
22090 || macinfo_type == DW_MACRO_define_sup);
22091 if (! current_file)
22092 {
22093 /* DWARF violation as no main source is present. */
22094 complaint (&symfile_complaints,
22095 _("debug info with no main source gives macro %s "
22096 "on line %d: %s"),
22097 is_define ? _("definition") : _("undefinition"),
22098 line, body);
22099 break;
22100 }
22101 if ((line == 0 && !at_commandline)
22102 || (line != 0 && at_commandline))
22103 complaint (&symfile_complaints,
22104 _("debug info gives %s macro %s with %s line %d: %s"),
22105 at_commandline ? _("command-line") : _("in-file"),
22106 is_define ? _("definition") : _("undefinition"),
22107 line == 0 ? _("zero") : _("non-zero"), line, body);
22108
22109 if (is_define)
22110 parse_macro_definition (current_file, line, body);
22111 else
22112 {
22113 gdb_assert (macinfo_type == DW_MACRO_undef
22114 || macinfo_type == DW_MACRO_undef_strp
22115 || macinfo_type == DW_MACRO_undef_sup);
22116 macro_undef (current_file, line, body);
22117 }
22118 }
22119 break;
22120
22121 case DW_MACRO_start_file:
22122 {
22123 unsigned int bytes_read;
22124 int line, file;
22125
22126 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22127 mac_ptr += bytes_read;
22128 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22129 mac_ptr += bytes_read;
22130
22131 if ((line == 0 && !at_commandline)
22132 || (line != 0 && at_commandline))
22133 complaint (&symfile_complaints,
22134 _("debug info gives source %d included "
22135 "from %s at %s line %d"),
22136 file, at_commandline ? _("command-line") : _("file"),
22137 line == 0 ? _("zero") : _("non-zero"), line);
22138
22139 if (at_commandline)
22140 {
22141 /* This DW_MACRO_start_file was executed in the
22142 pass one. */
22143 at_commandline = 0;
22144 }
22145 else
22146 current_file = macro_start_file (file, line, current_file, lh);
22147 }
22148 break;
22149
22150 case DW_MACRO_end_file:
22151 if (! current_file)
22152 complaint (&symfile_complaints,
22153 _("macro debug info has an unmatched "
22154 "`close_file' directive"));
22155 else
22156 {
22157 current_file = current_file->included_by;
22158 if (! current_file)
22159 {
22160 enum dwarf_macro_record_type next_type;
22161
22162 /* GCC circa March 2002 doesn't produce the zero
22163 type byte marking the end of the compilation
22164 unit. Complain if it's not there, but exit no
22165 matter what. */
22166
22167 /* Do we at least have room for a macinfo type byte? */
22168 if (mac_ptr >= mac_end)
22169 {
22170 dwarf2_section_buffer_overflow_complaint (section);
22171 return;
22172 }
22173
22174 /* We don't increment mac_ptr here, so this is just
22175 a look-ahead. */
22176 next_type
22177 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22178 mac_ptr);
22179 if (next_type != 0)
22180 complaint (&symfile_complaints,
22181 _("no terminating 0-type entry for "
22182 "macros in `.debug_macinfo' section"));
22183
22184 return;
22185 }
22186 }
22187 break;
22188
22189 case DW_MACRO_import:
22190 case DW_MACRO_import_sup:
22191 {
22192 LONGEST offset;
22193 void **slot;
22194 bfd *include_bfd = abfd;
22195 struct dwarf2_section_info *include_section = section;
22196 const gdb_byte *include_mac_end = mac_end;
22197 int is_dwz = section_is_dwz;
22198 const gdb_byte *new_mac_ptr;
22199
22200 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22201 mac_ptr += offset_size;
22202
22203 if (macinfo_type == DW_MACRO_import_sup)
22204 {
22205 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22206
22207 dwarf2_read_section (objfile, &dwz->macro);
22208
22209 include_section = &dwz->macro;
22210 include_bfd = get_section_bfd_owner (include_section);
22211 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22212 is_dwz = 1;
22213 }
22214
22215 new_mac_ptr = include_section->buffer + offset;
22216 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22217
22218 if (*slot != NULL)
22219 {
22220 /* This has actually happened; see
22221 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22222 complaint (&symfile_complaints,
22223 _("recursive DW_MACRO_import in "
22224 ".debug_macro section"));
22225 }
22226 else
22227 {
22228 *slot = (void *) new_mac_ptr;
22229
22230 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22231 include_mac_end, current_file, lh,
22232 section, section_is_gnu, is_dwz,
22233 offset_size, include_hash);
22234
22235 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22236 }
22237 }
22238 break;
22239
22240 case DW_MACINFO_vendor_ext:
22241 if (!section_is_gnu)
22242 {
22243 unsigned int bytes_read;
22244
22245 /* This reads the constant, but since we don't recognize
22246 any vendor extensions, we ignore it. */
22247 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22248 mac_ptr += bytes_read;
22249 read_direct_string (abfd, mac_ptr, &bytes_read);
22250 mac_ptr += bytes_read;
22251
22252 /* We don't recognize any vendor extensions. */
22253 break;
22254 }
22255 /* FALLTHROUGH */
22256
22257 default:
22258 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22259 mac_ptr, mac_end, abfd, offset_size,
22260 section);
22261 if (mac_ptr == NULL)
22262 return;
22263 break;
22264 }
22265 } while (macinfo_type != 0);
22266 }
22267
22268 static void
22269 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22270 int section_is_gnu)
22271 {
22272 struct objfile *objfile = dwarf2_per_objfile->objfile;
22273 struct line_header *lh = cu->line_header;
22274 bfd *abfd;
22275 const gdb_byte *mac_ptr, *mac_end;
22276 struct macro_source_file *current_file = 0;
22277 enum dwarf_macro_record_type macinfo_type;
22278 unsigned int offset_size = cu->header.offset_size;
22279 const gdb_byte *opcode_definitions[256];
22280 void **slot;
22281 struct dwarf2_section_info *section;
22282 const char *section_name;
22283
22284 if (cu->dwo_unit != NULL)
22285 {
22286 if (section_is_gnu)
22287 {
22288 section = &cu->dwo_unit->dwo_file->sections.macro;
22289 section_name = ".debug_macro.dwo";
22290 }
22291 else
22292 {
22293 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22294 section_name = ".debug_macinfo.dwo";
22295 }
22296 }
22297 else
22298 {
22299 if (section_is_gnu)
22300 {
22301 section = &dwarf2_per_objfile->macro;
22302 section_name = ".debug_macro";
22303 }
22304 else
22305 {
22306 section = &dwarf2_per_objfile->macinfo;
22307 section_name = ".debug_macinfo";
22308 }
22309 }
22310
22311 dwarf2_read_section (objfile, section);
22312 if (section->buffer == NULL)
22313 {
22314 complaint (&symfile_complaints, _("missing %s section"), section_name);
22315 return;
22316 }
22317 abfd = get_section_bfd_owner (section);
22318
22319 /* First pass: Find the name of the base filename.
22320 This filename is needed in order to process all macros whose definition
22321 (or undefinition) comes from the command line. These macros are defined
22322 before the first DW_MACINFO_start_file entry, and yet still need to be
22323 associated to the base file.
22324
22325 To determine the base file name, we scan the macro definitions until we
22326 reach the first DW_MACINFO_start_file entry. We then initialize
22327 CURRENT_FILE accordingly so that any macro definition found before the
22328 first DW_MACINFO_start_file can still be associated to the base file. */
22329
22330 mac_ptr = section->buffer + offset;
22331 mac_end = section->buffer + section->size;
22332
22333 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22334 &offset_size, section_is_gnu);
22335 if (mac_ptr == NULL)
22336 {
22337 /* We already issued a complaint. */
22338 return;
22339 }
22340
22341 do
22342 {
22343 /* Do we at least have room for a macinfo type byte? */
22344 if (mac_ptr >= mac_end)
22345 {
22346 /* Complaint is printed during the second pass as GDB will probably
22347 stop the first pass earlier upon finding
22348 DW_MACINFO_start_file. */
22349 break;
22350 }
22351
22352 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22353 mac_ptr++;
22354
22355 /* Note that we rely on the fact that the corresponding GNU and
22356 DWARF constants are the same. */
22357 switch (macinfo_type)
22358 {
22359 /* A zero macinfo type indicates the end of the macro
22360 information. */
22361 case 0:
22362 break;
22363
22364 case DW_MACRO_define:
22365 case DW_MACRO_undef:
22366 /* Only skip the data by MAC_PTR. */
22367 {
22368 unsigned int bytes_read;
22369
22370 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22371 mac_ptr += bytes_read;
22372 read_direct_string (abfd, mac_ptr, &bytes_read);
22373 mac_ptr += bytes_read;
22374 }
22375 break;
22376
22377 case DW_MACRO_start_file:
22378 {
22379 unsigned int bytes_read;
22380 int line, file;
22381
22382 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22383 mac_ptr += bytes_read;
22384 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22385 mac_ptr += bytes_read;
22386
22387 current_file = macro_start_file (file, line, current_file, lh);
22388 }
22389 break;
22390
22391 case DW_MACRO_end_file:
22392 /* No data to skip by MAC_PTR. */
22393 break;
22394
22395 case DW_MACRO_define_strp:
22396 case DW_MACRO_undef_strp:
22397 case DW_MACRO_define_sup:
22398 case DW_MACRO_undef_sup:
22399 {
22400 unsigned int bytes_read;
22401
22402 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22403 mac_ptr += bytes_read;
22404 mac_ptr += offset_size;
22405 }
22406 break;
22407
22408 case DW_MACRO_import:
22409 case DW_MACRO_import_sup:
22410 /* Note that, according to the spec, a transparent include
22411 chain cannot call DW_MACRO_start_file. So, we can just
22412 skip this opcode. */
22413 mac_ptr += offset_size;
22414 break;
22415
22416 case DW_MACINFO_vendor_ext:
22417 /* Only skip the data by MAC_PTR. */
22418 if (!section_is_gnu)
22419 {
22420 unsigned int bytes_read;
22421
22422 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22423 mac_ptr += bytes_read;
22424 read_direct_string (abfd, mac_ptr, &bytes_read);
22425 mac_ptr += bytes_read;
22426 }
22427 /* FALLTHROUGH */
22428
22429 default:
22430 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22431 mac_ptr, mac_end, abfd, offset_size,
22432 section);
22433 if (mac_ptr == NULL)
22434 return;
22435 break;
22436 }
22437 } while (macinfo_type != 0 && current_file == NULL);
22438
22439 /* Second pass: Process all entries.
22440
22441 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22442 command-line macro definitions/undefinitions. This flag is unset when we
22443 reach the first DW_MACINFO_start_file entry. */
22444
22445 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22446 htab_eq_pointer,
22447 NULL, xcalloc, xfree));
22448 mac_ptr = section->buffer + offset;
22449 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22450 *slot = (void *) mac_ptr;
22451 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22452 current_file, lh, section,
22453 section_is_gnu, 0, offset_size,
22454 include_hash.get ());
22455 }
22456
22457 /* Check if the attribute's form is a DW_FORM_block*
22458 if so return true else false. */
22459
22460 static int
22461 attr_form_is_block (const struct attribute *attr)
22462 {
22463 return (attr == NULL ? 0 :
22464 attr->form == DW_FORM_block1
22465 || attr->form == DW_FORM_block2
22466 || attr->form == DW_FORM_block4
22467 || attr->form == DW_FORM_block
22468 || attr->form == DW_FORM_exprloc);
22469 }
22470
22471 /* Return non-zero if ATTR's value is a section offset --- classes
22472 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22473 You may use DW_UNSND (attr) to retrieve such offsets.
22474
22475 Section 7.5.4, "Attribute Encodings", explains that no attribute
22476 may have a value that belongs to more than one of these classes; it
22477 would be ambiguous if we did, because we use the same forms for all
22478 of them. */
22479
22480 static int
22481 attr_form_is_section_offset (const struct attribute *attr)
22482 {
22483 return (attr->form == DW_FORM_data4
22484 || attr->form == DW_FORM_data8
22485 || attr->form == DW_FORM_sec_offset);
22486 }
22487
22488 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22489 zero otherwise. When this function returns true, you can apply
22490 dwarf2_get_attr_constant_value to it.
22491
22492 However, note that for some attributes you must check
22493 attr_form_is_section_offset before using this test. DW_FORM_data4
22494 and DW_FORM_data8 are members of both the constant class, and of
22495 the classes that contain offsets into other debug sections
22496 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22497 that, if an attribute's can be either a constant or one of the
22498 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22499 taken as section offsets, not constants.
22500
22501 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22502 cannot handle that. */
22503
22504 static int
22505 attr_form_is_constant (const struct attribute *attr)
22506 {
22507 switch (attr->form)
22508 {
22509 case DW_FORM_sdata:
22510 case DW_FORM_udata:
22511 case DW_FORM_data1:
22512 case DW_FORM_data2:
22513 case DW_FORM_data4:
22514 case DW_FORM_data8:
22515 case DW_FORM_implicit_const:
22516 return 1;
22517 default:
22518 return 0;
22519 }
22520 }
22521
22522
22523 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22524 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22525
22526 static int
22527 attr_form_is_ref (const struct attribute *attr)
22528 {
22529 switch (attr->form)
22530 {
22531 case DW_FORM_ref_addr:
22532 case DW_FORM_ref1:
22533 case DW_FORM_ref2:
22534 case DW_FORM_ref4:
22535 case DW_FORM_ref8:
22536 case DW_FORM_ref_udata:
22537 case DW_FORM_GNU_ref_alt:
22538 return 1;
22539 default:
22540 return 0;
22541 }
22542 }
22543
22544 /* Return the .debug_loc section to use for CU.
22545 For DWO files use .debug_loc.dwo. */
22546
22547 static struct dwarf2_section_info *
22548 cu_debug_loc_section (struct dwarf2_cu *cu)
22549 {
22550 if (cu->dwo_unit)
22551 {
22552 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22553
22554 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22555 }
22556 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22557 : &dwarf2_per_objfile->loc);
22558 }
22559
22560 /* A helper function that fills in a dwarf2_loclist_baton. */
22561
22562 static void
22563 fill_in_loclist_baton (struct dwarf2_cu *cu,
22564 struct dwarf2_loclist_baton *baton,
22565 const struct attribute *attr)
22566 {
22567 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22568
22569 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22570
22571 baton->per_cu = cu->per_cu;
22572 gdb_assert (baton->per_cu);
22573 /* We don't know how long the location list is, but make sure we
22574 don't run off the edge of the section. */
22575 baton->size = section->size - DW_UNSND (attr);
22576 baton->data = section->buffer + DW_UNSND (attr);
22577 baton->base_address = cu->base_address;
22578 baton->from_dwo = cu->dwo_unit != NULL;
22579 }
22580
22581 static void
22582 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22583 struct dwarf2_cu *cu, int is_block)
22584 {
22585 struct objfile *objfile = dwarf2_per_objfile->objfile;
22586 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22587
22588 if (attr_form_is_section_offset (attr)
22589 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22590 the section. If so, fall through to the complaint in the
22591 other branch. */
22592 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22593 {
22594 struct dwarf2_loclist_baton *baton;
22595
22596 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22597
22598 fill_in_loclist_baton (cu, baton, attr);
22599
22600 if (cu->base_known == 0)
22601 complaint (&symfile_complaints,
22602 _("Location list used without "
22603 "specifying the CU base address."));
22604
22605 SYMBOL_ACLASS_INDEX (sym) = (is_block
22606 ? dwarf2_loclist_block_index
22607 : dwarf2_loclist_index);
22608 SYMBOL_LOCATION_BATON (sym) = baton;
22609 }
22610 else
22611 {
22612 struct dwarf2_locexpr_baton *baton;
22613
22614 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22615 baton->per_cu = cu->per_cu;
22616 gdb_assert (baton->per_cu);
22617
22618 if (attr_form_is_block (attr))
22619 {
22620 /* Note that we're just copying the block's data pointer
22621 here, not the actual data. We're still pointing into the
22622 info_buffer for SYM's objfile; right now we never release
22623 that buffer, but when we do clean up properly this may
22624 need to change. */
22625 baton->size = DW_BLOCK (attr)->size;
22626 baton->data = DW_BLOCK (attr)->data;
22627 }
22628 else
22629 {
22630 dwarf2_invalid_attrib_class_complaint ("location description",
22631 SYMBOL_NATURAL_NAME (sym));
22632 baton->size = 0;
22633 }
22634
22635 SYMBOL_ACLASS_INDEX (sym) = (is_block
22636 ? dwarf2_locexpr_block_index
22637 : dwarf2_locexpr_index);
22638 SYMBOL_LOCATION_BATON (sym) = baton;
22639 }
22640 }
22641
22642 /* Return the OBJFILE associated with the compilation unit CU. If CU
22643 came from a separate debuginfo file, then the master objfile is
22644 returned. */
22645
22646 struct objfile *
22647 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22648 {
22649 struct objfile *objfile = per_cu->objfile;
22650
22651 /* Return the master objfile, so that we can report and look up the
22652 correct file containing this variable. */
22653 if (objfile->separate_debug_objfile_backlink)
22654 objfile = objfile->separate_debug_objfile_backlink;
22655
22656 return objfile;
22657 }
22658
22659 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22660 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22661 CU_HEADERP first. */
22662
22663 static const struct comp_unit_head *
22664 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22665 struct dwarf2_per_cu_data *per_cu)
22666 {
22667 const gdb_byte *info_ptr;
22668
22669 if (per_cu->cu)
22670 return &per_cu->cu->header;
22671
22672 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22673
22674 memset (cu_headerp, 0, sizeof (*cu_headerp));
22675 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22676 rcuh_kind::COMPILE);
22677
22678 return cu_headerp;
22679 }
22680
22681 /* Return the address size given in the compilation unit header for CU. */
22682
22683 int
22684 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22685 {
22686 struct comp_unit_head cu_header_local;
22687 const struct comp_unit_head *cu_headerp;
22688
22689 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22690
22691 return cu_headerp->addr_size;
22692 }
22693
22694 /* Return the offset size given in the compilation unit header for CU. */
22695
22696 int
22697 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22698 {
22699 struct comp_unit_head cu_header_local;
22700 const struct comp_unit_head *cu_headerp;
22701
22702 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22703
22704 return cu_headerp->offset_size;
22705 }
22706
22707 /* See its dwarf2loc.h declaration. */
22708
22709 int
22710 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22711 {
22712 struct comp_unit_head cu_header_local;
22713 const struct comp_unit_head *cu_headerp;
22714
22715 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22716
22717 if (cu_headerp->version == 2)
22718 return cu_headerp->addr_size;
22719 else
22720 return cu_headerp->offset_size;
22721 }
22722
22723 /* Return the text offset of the CU. The returned offset comes from
22724 this CU's objfile. If this objfile came from a separate debuginfo
22725 file, then the offset may be different from the corresponding
22726 offset in the parent objfile. */
22727
22728 CORE_ADDR
22729 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22730 {
22731 struct objfile *objfile = per_cu->objfile;
22732
22733 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22734 }
22735
22736 /* Return DWARF version number of PER_CU. */
22737
22738 short
22739 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22740 {
22741 return per_cu->dwarf_version;
22742 }
22743
22744 /* Locate the .debug_info compilation unit from CU's objfile which contains
22745 the DIE at OFFSET. Raises an error on failure. */
22746
22747 static struct dwarf2_per_cu_data *
22748 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22749 unsigned int offset_in_dwz,
22750 struct objfile *objfile)
22751 {
22752 struct dwarf2_per_cu_data *this_cu;
22753 int low, high;
22754 const sect_offset *cu_off;
22755
22756 low = 0;
22757 high = dwarf2_per_objfile->n_comp_units - 1;
22758 while (high > low)
22759 {
22760 struct dwarf2_per_cu_data *mid_cu;
22761 int mid = low + (high - low) / 2;
22762
22763 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22764 cu_off = &mid_cu->sect_off;
22765 if (mid_cu->is_dwz > offset_in_dwz
22766 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22767 high = mid;
22768 else
22769 low = mid + 1;
22770 }
22771 gdb_assert (low == high);
22772 this_cu = dwarf2_per_objfile->all_comp_units[low];
22773 cu_off = &this_cu->sect_off;
22774 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22775 {
22776 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22777 error (_("Dwarf Error: could not find partial DIE containing "
22778 "offset 0x%x [in module %s]"),
22779 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22780
22781 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22782 <= sect_off);
22783 return dwarf2_per_objfile->all_comp_units[low-1];
22784 }
22785 else
22786 {
22787 this_cu = dwarf2_per_objfile->all_comp_units[low];
22788 if (low == dwarf2_per_objfile->n_comp_units - 1
22789 && sect_off >= this_cu->sect_off + this_cu->length)
22790 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22791 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22792 return this_cu;
22793 }
22794 }
22795
22796 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22797
22798 static void
22799 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22800 {
22801 memset (cu, 0, sizeof (*cu));
22802 per_cu->cu = cu;
22803 cu->per_cu = per_cu;
22804 cu->objfile = per_cu->objfile;
22805 obstack_init (&cu->comp_unit_obstack);
22806 }
22807
22808 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22809
22810 static void
22811 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22812 enum language pretend_language)
22813 {
22814 struct attribute *attr;
22815
22816 /* Set the language we're debugging. */
22817 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22818 if (attr)
22819 set_cu_language (DW_UNSND (attr), cu);
22820 else
22821 {
22822 cu->language = pretend_language;
22823 cu->language_defn = language_def (cu->language);
22824 }
22825
22826 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22827 }
22828
22829 /* Release one cached compilation unit, CU. We unlink it from the tree
22830 of compilation units, but we don't remove it from the read_in_chain;
22831 the caller is responsible for that.
22832 NOTE: DATA is a void * because this function is also used as a
22833 cleanup routine. */
22834
22835 static void
22836 free_heap_comp_unit (void *data)
22837 {
22838 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22839
22840 gdb_assert (cu->per_cu != NULL);
22841 cu->per_cu->cu = NULL;
22842 cu->per_cu = NULL;
22843
22844 obstack_free (&cu->comp_unit_obstack, NULL);
22845
22846 xfree (cu);
22847 }
22848
22849 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22850 when we're finished with it. We can't free the pointer itself, but be
22851 sure to unlink it from the cache. Also release any associated storage. */
22852
22853 static void
22854 free_stack_comp_unit (void *data)
22855 {
22856 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22857
22858 gdb_assert (cu->per_cu != NULL);
22859 cu->per_cu->cu = NULL;
22860 cu->per_cu = NULL;
22861
22862 obstack_free (&cu->comp_unit_obstack, NULL);
22863 cu->partial_dies = NULL;
22864 }
22865
22866 /* Free all cached compilation units. */
22867
22868 static void
22869 free_cached_comp_units (void *data)
22870 {
22871 dwarf2_per_objfile->free_cached_comp_units ();
22872 }
22873
22874 /* Increase the age counter on each cached compilation unit, and free
22875 any that are too old. */
22876
22877 static void
22878 age_cached_comp_units (void)
22879 {
22880 struct dwarf2_per_cu_data *per_cu, **last_chain;
22881
22882 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22883 per_cu = dwarf2_per_objfile->read_in_chain;
22884 while (per_cu != NULL)
22885 {
22886 per_cu->cu->last_used ++;
22887 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22888 dwarf2_mark (per_cu->cu);
22889 per_cu = per_cu->cu->read_in_chain;
22890 }
22891
22892 per_cu = dwarf2_per_objfile->read_in_chain;
22893 last_chain = &dwarf2_per_objfile->read_in_chain;
22894 while (per_cu != NULL)
22895 {
22896 struct dwarf2_per_cu_data *next_cu;
22897
22898 next_cu = per_cu->cu->read_in_chain;
22899
22900 if (!per_cu->cu->mark)
22901 {
22902 free_heap_comp_unit (per_cu->cu);
22903 *last_chain = next_cu;
22904 }
22905 else
22906 last_chain = &per_cu->cu->read_in_chain;
22907
22908 per_cu = next_cu;
22909 }
22910 }
22911
22912 /* Remove a single compilation unit from the cache. */
22913
22914 static void
22915 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22916 {
22917 struct dwarf2_per_cu_data *per_cu, **last_chain;
22918
22919 per_cu = dwarf2_per_objfile->read_in_chain;
22920 last_chain = &dwarf2_per_objfile->read_in_chain;
22921 while (per_cu != NULL)
22922 {
22923 struct dwarf2_per_cu_data *next_cu;
22924
22925 next_cu = per_cu->cu->read_in_chain;
22926
22927 if (per_cu == target_per_cu)
22928 {
22929 free_heap_comp_unit (per_cu->cu);
22930 per_cu->cu = NULL;
22931 *last_chain = next_cu;
22932 break;
22933 }
22934 else
22935 last_chain = &per_cu->cu->read_in_chain;
22936
22937 per_cu = next_cu;
22938 }
22939 }
22940
22941 /* Release all extra memory associated with OBJFILE. */
22942
22943 void
22944 dwarf2_free_objfile (struct objfile *objfile)
22945 {
22946 dwarf2_per_objfile
22947 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22948 dwarf2_objfile_data_key);
22949
22950 if (dwarf2_per_objfile == NULL)
22951 return;
22952
22953 dwarf2_per_objfile->~dwarf2_per_objfile ();
22954 }
22955
22956 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22957 We store these in a hash table separate from the DIEs, and preserve them
22958 when the DIEs are flushed out of cache.
22959
22960 The CU "per_cu" pointer is needed because offset alone is not enough to
22961 uniquely identify the type. A file may have multiple .debug_types sections,
22962 or the type may come from a DWO file. Furthermore, while it's more logical
22963 to use per_cu->section+offset, with Fission the section with the data is in
22964 the DWO file but we don't know that section at the point we need it.
22965 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22966 because we can enter the lookup routine, get_die_type_at_offset, from
22967 outside this file, and thus won't necessarily have PER_CU->cu.
22968 Fortunately, PER_CU is stable for the life of the objfile. */
22969
22970 struct dwarf2_per_cu_offset_and_type
22971 {
22972 const struct dwarf2_per_cu_data *per_cu;
22973 sect_offset sect_off;
22974 struct type *type;
22975 };
22976
22977 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22978
22979 static hashval_t
22980 per_cu_offset_and_type_hash (const void *item)
22981 {
22982 const struct dwarf2_per_cu_offset_and_type *ofs
22983 = (const struct dwarf2_per_cu_offset_and_type *) item;
22984
22985 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22986 }
22987
22988 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22989
22990 static int
22991 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22992 {
22993 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22994 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22995 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22996 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22997
22998 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22999 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23000 }
23001
23002 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23003 table if necessary. For convenience, return TYPE.
23004
23005 The DIEs reading must have careful ordering to:
23006 * Not cause infite loops trying to read in DIEs as a prerequisite for
23007 reading current DIE.
23008 * Not trying to dereference contents of still incompletely read in types
23009 while reading in other DIEs.
23010 * Enable referencing still incompletely read in types just by a pointer to
23011 the type without accessing its fields.
23012
23013 Therefore caller should follow these rules:
23014 * Try to fetch any prerequisite types we may need to build this DIE type
23015 before building the type and calling set_die_type.
23016 * After building type call set_die_type for current DIE as soon as
23017 possible before fetching more types to complete the current type.
23018 * Make the type as complete as possible before fetching more types. */
23019
23020 static struct type *
23021 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23022 {
23023 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23024 struct objfile *objfile = cu->objfile;
23025 struct attribute *attr;
23026 struct dynamic_prop prop;
23027
23028 /* For Ada types, make sure that the gnat-specific data is always
23029 initialized (if not already set). There are a few types where
23030 we should not be doing so, because the type-specific area is
23031 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23032 where the type-specific area is used to store the floatformat).
23033 But this is not a problem, because the gnat-specific information
23034 is actually not needed for these types. */
23035 if (need_gnat_info (cu)
23036 && TYPE_CODE (type) != TYPE_CODE_FUNC
23037 && TYPE_CODE (type) != TYPE_CODE_FLT
23038 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23039 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23040 && TYPE_CODE (type) != TYPE_CODE_METHOD
23041 && !HAVE_GNAT_AUX_INFO (type))
23042 INIT_GNAT_SPECIFIC (type);
23043
23044 /* Read DW_AT_allocated and set in type. */
23045 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23046 if (attr_form_is_block (attr))
23047 {
23048 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23049 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23050 }
23051 else if (attr != NULL)
23052 {
23053 complaint (&symfile_complaints,
23054 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23055 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23056 to_underlying (die->sect_off));
23057 }
23058
23059 /* Read DW_AT_associated and set in type. */
23060 attr = dwarf2_attr (die, DW_AT_associated, cu);
23061 if (attr_form_is_block (attr))
23062 {
23063 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23064 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23065 }
23066 else if (attr != NULL)
23067 {
23068 complaint (&symfile_complaints,
23069 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23070 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23071 to_underlying (die->sect_off));
23072 }
23073
23074 /* Read DW_AT_data_location and set in type. */
23075 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23076 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23077 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23078
23079 if (dwarf2_per_objfile->die_type_hash == NULL)
23080 {
23081 dwarf2_per_objfile->die_type_hash =
23082 htab_create_alloc_ex (127,
23083 per_cu_offset_and_type_hash,
23084 per_cu_offset_and_type_eq,
23085 NULL,
23086 &objfile->objfile_obstack,
23087 hashtab_obstack_allocate,
23088 dummy_obstack_deallocate);
23089 }
23090
23091 ofs.per_cu = cu->per_cu;
23092 ofs.sect_off = die->sect_off;
23093 ofs.type = type;
23094 slot = (struct dwarf2_per_cu_offset_and_type **)
23095 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23096 if (*slot)
23097 complaint (&symfile_complaints,
23098 _("A problem internal to GDB: DIE 0x%x has type already set"),
23099 to_underlying (die->sect_off));
23100 *slot = XOBNEW (&objfile->objfile_obstack,
23101 struct dwarf2_per_cu_offset_and_type);
23102 **slot = ofs;
23103 return type;
23104 }
23105
23106 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23107 or return NULL if the die does not have a saved type. */
23108
23109 static struct type *
23110 get_die_type_at_offset (sect_offset sect_off,
23111 struct dwarf2_per_cu_data *per_cu)
23112 {
23113 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23114
23115 if (dwarf2_per_objfile->die_type_hash == NULL)
23116 return NULL;
23117
23118 ofs.per_cu = per_cu;
23119 ofs.sect_off = sect_off;
23120 slot = ((struct dwarf2_per_cu_offset_and_type *)
23121 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23122 if (slot)
23123 return slot->type;
23124 else
23125 return NULL;
23126 }
23127
23128 /* Look up the type for DIE in CU in die_type_hash,
23129 or return NULL if DIE does not have a saved type. */
23130
23131 static struct type *
23132 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23133 {
23134 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23135 }
23136
23137 /* Add a dependence relationship from CU to REF_PER_CU. */
23138
23139 static void
23140 dwarf2_add_dependence (struct dwarf2_cu *cu,
23141 struct dwarf2_per_cu_data *ref_per_cu)
23142 {
23143 void **slot;
23144
23145 if (cu->dependencies == NULL)
23146 cu->dependencies
23147 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23148 NULL, &cu->comp_unit_obstack,
23149 hashtab_obstack_allocate,
23150 dummy_obstack_deallocate);
23151
23152 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23153 if (*slot == NULL)
23154 *slot = ref_per_cu;
23155 }
23156
23157 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23158 Set the mark field in every compilation unit in the
23159 cache that we must keep because we are keeping CU. */
23160
23161 static int
23162 dwarf2_mark_helper (void **slot, void *data)
23163 {
23164 struct dwarf2_per_cu_data *per_cu;
23165
23166 per_cu = (struct dwarf2_per_cu_data *) *slot;
23167
23168 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23169 reading of the chain. As such dependencies remain valid it is not much
23170 useful to track and undo them during QUIT cleanups. */
23171 if (per_cu->cu == NULL)
23172 return 1;
23173
23174 if (per_cu->cu->mark)
23175 return 1;
23176 per_cu->cu->mark = 1;
23177
23178 if (per_cu->cu->dependencies != NULL)
23179 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23180
23181 return 1;
23182 }
23183
23184 /* Set the mark field in CU and in every other compilation unit in the
23185 cache that we must keep because we are keeping CU. */
23186
23187 static void
23188 dwarf2_mark (struct dwarf2_cu *cu)
23189 {
23190 if (cu->mark)
23191 return;
23192 cu->mark = 1;
23193 if (cu->dependencies != NULL)
23194 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23195 }
23196
23197 static void
23198 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23199 {
23200 while (per_cu)
23201 {
23202 per_cu->cu->mark = 0;
23203 per_cu = per_cu->cu->read_in_chain;
23204 }
23205 }
23206
23207 /* Trivial hash function for partial_die_info: the hash value of a DIE
23208 is its offset in .debug_info for this objfile. */
23209
23210 static hashval_t
23211 partial_die_hash (const void *item)
23212 {
23213 const struct partial_die_info *part_die
23214 = (const struct partial_die_info *) item;
23215
23216 return to_underlying (part_die->sect_off);
23217 }
23218
23219 /* Trivial comparison function for partial_die_info structures: two DIEs
23220 are equal if they have the same offset. */
23221
23222 static int
23223 partial_die_eq (const void *item_lhs, const void *item_rhs)
23224 {
23225 const struct partial_die_info *part_die_lhs
23226 = (const struct partial_die_info *) item_lhs;
23227 const struct partial_die_info *part_die_rhs
23228 = (const struct partial_die_info *) item_rhs;
23229
23230 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23231 }
23232
23233 static struct cmd_list_element *set_dwarf_cmdlist;
23234 static struct cmd_list_element *show_dwarf_cmdlist;
23235
23236 static void
23237 set_dwarf_cmd (const char *args, int from_tty)
23238 {
23239 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23240 gdb_stdout);
23241 }
23242
23243 static void
23244 show_dwarf_cmd (const char *args, int from_tty)
23245 {
23246 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23247 }
23248
23249 /* Free data associated with OBJFILE, if necessary. */
23250
23251 static void
23252 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23253 {
23254 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23255 int ix;
23256
23257 /* Make sure we don't accidentally use dwarf2_per_objfile while
23258 cleaning up. */
23259 dwarf2_per_objfile = NULL;
23260
23261 for (ix = 0; ix < data->n_comp_units; ++ix)
23262 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23263
23264 for (ix = 0; ix < data->n_type_units; ++ix)
23265 VEC_free (dwarf2_per_cu_ptr,
23266 data->all_type_units[ix]->per_cu.imported_symtabs);
23267 xfree (data->all_type_units);
23268
23269 VEC_free (dwarf2_section_info_def, data->types);
23270
23271 if (data->dwo_files)
23272 free_dwo_files (data->dwo_files, objfile);
23273 if (data->dwp_file)
23274 gdb_bfd_unref (data->dwp_file->dbfd);
23275
23276 if (data->dwz_file && data->dwz_file->dwz_bfd)
23277 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23278 }
23279
23280 \f
23281 /* The "save gdb-index" command. */
23282
23283 /* In-memory buffer to prepare data to be written later to a file. */
23284 class data_buf
23285 {
23286 public:
23287 /* Copy DATA to the end of the buffer. */
23288 template<typename T>
23289 void append_data (const T &data)
23290 {
23291 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23292 reinterpret_cast<const gdb_byte *> (&data + 1),
23293 grow (sizeof (data)));
23294 }
23295
23296 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23297 terminating zero is appended too. */
23298 void append_cstr0 (const char *cstr)
23299 {
23300 const size_t size = strlen (cstr) + 1;
23301 std::copy (cstr, cstr + size, grow (size));
23302 }
23303
23304 /* Accept a host-format integer in VAL and append it to the buffer
23305 as a target-format integer which is LEN bytes long. */
23306 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23307 {
23308 ::store_unsigned_integer (grow (len), len, byte_order, val);
23309 }
23310
23311 /* Return the size of the buffer. */
23312 size_t size () const
23313 {
23314 return m_vec.size ();
23315 }
23316
23317 /* Write the buffer to FILE. */
23318 void file_write (FILE *file) const
23319 {
23320 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23321 error (_("couldn't write data to file"));
23322 }
23323
23324 private:
23325 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23326 the start of the new block. */
23327 gdb_byte *grow (size_t size)
23328 {
23329 m_vec.resize (m_vec.size () + size);
23330 return &*m_vec.end () - size;
23331 }
23332
23333 gdb::byte_vector m_vec;
23334 };
23335
23336 /* An entry in the symbol table. */
23337 struct symtab_index_entry
23338 {
23339 /* The name of the symbol. */
23340 const char *name;
23341 /* The offset of the name in the constant pool. */
23342 offset_type index_offset;
23343 /* A sorted vector of the indices of all the CUs that hold an object
23344 of this name. */
23345 std::vector<offset_type> cu_indices;
23346 };
23347
23348 /* The symbol table. This is a power-of-2-sized hash table. */
23349 struct mapped_symtab
23350 {
23351 mapped_symtab ()
23352 {
23353 data.resize (1024);
23354 }
23355
23356 offset_type n_elements = 0;
23357 std::vector<symtab_index_entry> data;
23358 };
23359
23360 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23361 the slot.
23362
23363 Function is used only during write_hash_table so no index format backward
23364 compatibility is needed. */
23365
23366 static symtab_index_entry &
23367 find_slot (struct mapped_symtab *symtab, const char *name)
23368 {
23369 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23370
23371 index = hash & (symtab->data.size () - 1);
23372 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23373
23374 for (;;)
23375 {
23376 if (symtab->data[index].name == NULL
23377 || strcmp (name, symtab->data[index].name) == 0)
23378 return symtab->data[index];
23379 index = (index + step) & (symtab->data.size () - 1);
23380 }
23381 }
23382
23383 /* Expand SYMTAB's hash table. */
23384
23385 static void
23386 hash_expand (struct mapped_symtab *symtab)
23387 {
23388 auto old_entries = std::move (symtab->data);
23389
23390 symtab->data.clear ();
23391 symtab->data.resize (old_entries.size () * 2);
23392
23393 for (auto &it : old_entries)
23394 if (it.name != NULL)
23395 {
23396 auto &ref = find_slot (symtab, it.name);
23397 ref = std::move (it);
23398 }
23399 }
23400
23401 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23402 CU_INDEX is the index of the CU in which the symbol appears.
23403 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23404
23405 static void
23406 add_index_entry (struct mapped_symtab *symtab, const char *name,
23407 int is_static, gdb_index_symbol_kind kind,
23408 offset_type cu_index)
23409 {
23410 offset_type cu_index_and_attrs;
23411
23412 ++symtab->n_elements;
23413 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23414 hash_expand (symtab);
23415
23416 symtab_index_entry &slot = find_slot (symtab, name);
23417 if (slot.name == NULL)
23418 {
23419 slot.name = name;
23420 /* index_offset is set later. */
23421 }
23422
23423 cu_index_and_attrs = 0;
23424 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23425 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23426 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23427
23428 /* We don't want to record an index value twice as we want to avoid the
23429 duplication.
23430 We process all global symbols and then all static symbols
23431 (which would allow us to avoid the duplication by only having to check
23432 the last entry pushed), but a symbol could have multiple kinds in one CU.
23433 To keep things simple we don't worry about the duplication here and
23434 sort and uniqufy the list after we've processed all symbols. */
23435 slot.cu_indices.push_back (cu_index_and_attrs);
23436 }
23437
23438 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23439
23440 static void
23441 uniquify_cu_indices (struct mapped_symtab *symtab)
23442 {
23443 for (auto &entry : symtab->data)
23444 {
23445 if (entry.name != NULL && !entry.cu_indices.empty ())
23446 {
23447 auto &cu_indices = entry.cu_indices;
23448 std::sort (cu_indices.begin (), cu_indices.end ());
23449 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23450 cu_indices.erase (from, cu_indices.end ());
23451 }
23452 }
23453 }
23454
23455 /* A form of 'const char *' suitable for container keys. Only the
23456 pointer is stored. The strings themselves are compared, not the
23457 pointers. */
23458 class c_str_view
23459 {
23460 public:
23461 c_str_view (const char *cstr)
23462 : m_cstr (cstr)
23463 {}
23464
23465 bool operator== (const c_str_view &other) const
23466 {
23467 return strcmp (m_cstr, other.m_cstr) == 0;
23468 }
23469
23470 private:
23471 friend class c_str_view_hasher;
23472 const char *const m_cstr;
23473 };
23474
23475 /* A std::unordered_map::hasher for c_str_view that uses the right
23476 hash function for strings in a mapped index. */
23477 class c_str_view_hasher
23478 {
23479 public:
23480 size_t operator () (const c_str_view &x) const
23481 {
23482 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23483 }
23484 };
23485
23486 /* A std::unordered_map::hasher for std::vector<>. */
23487 template<typename T>
23488 class vector_hasher
23489 {
23490 public:
23491 size_t operator () (const std::vector<T> &key) const
23492 {
23493 return iterative_hash (key.data (),
23494 sizeof (key.front ()) * key.size (), 0);
23495 }
23496 };
23497
23498 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23499 constant pool entries going into the data buffer CPOOL. */
23500
23501 static void
23502 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23503 {
23504 {
23505 /* Elements are sorted vectors of the indices of all the CUs that
23506 hold an object of this name. */
23507 std::unordered_map<std::vector<offset_type>, offset_type,
23508 vector_hasher<offset_type>>
23509 symbol_hash_table;
23510
23511 /* We add all the index vectors to the constant pool first, to
23512 ensure alignment is ok. */
23513 for (symtab_index_entry &entry : symtab->data)
23514 {
23515 if (entry.name == NULL)
23516 continue;
23517 gdb_assert (entry.index_offset == 0);
23518
23519 /* Finding before inserting is faster than always trying to
23520 insert, because inserting always allocates a node, does the
23521 lookup, and then destroys the new node if another node
23522 already had the same key. C++17 try_emplace will avoid
23523 this. */
23524 const auto found
23525 = symbol_hash_table.find (entry.cu_indices);
23526 if (found != symbol_hash_table.end ())
23527 {
23528 entry.index_offset = found->second;
23529 continue;
23530 }
23531
23532 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23533 entry.index_offset = cpool.size ();
23534 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23535 for (const auto index : entry.cu_indices)
23536 cpool.append_data (MAYBE_SWAP (index));
23537 }
23538 }
23539
23540 /* Now write out the hash table. */
23541 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23542 for (const auto &entry : symtab->data)
23543 {
23544 offset_type str_off, vec_off;
23545
23546 if (entry.name != NULL)
23547 {
23548 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23549 if (insertpair.second)
23550 cpool.append_cstr0 (entry.name);
23551 str_off = insertpair.first->second;
23552 vec_off = entry.index_offset;
23553 }
23554 else
23555 {
23556 /* While 0 is a valid constant pool index, it is not valid
23557 to have 0 for both offsets. */
23558 str_off = 0;
23559 vec_off = 0;
23560 }
23561
23562 output.append_data (MAYBE_SWAP (str_off));
23563 output.append_data (MAYBE_SWAP (vec_off));
23564 }
23565 }
23566
23567 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23568
23569 /* Helper struct for building the address table. */
23570 struct addrmap_index_data
23571 {
23572 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23573 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23574 {}
23575
23576 struct objfile *objfile;
23577 data_buf &addr_vec;
23578 psym_index_map &cu_index_htab;
23579
23580 /* Non-zero if the previous_* fields are valid.
23581 We can't write an entry until we see the next entry (since it is only then
23582 that we know the end of the entry). */
23583 int previous_valid;
23584 /* Index of the CU in the table of all CUs in the index file. */
23585 unsigned int previous_cu_index;
23586 /* Start address of the CU. */
23587 CORE_ADDR previous_cu_start;
23588 };
23589
23590 /* Write an address entry to ADDR_VEC. */
23591
23592 static void
23593 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23594 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23595 {
23596 CORE_ADDR baseaddr;
23597
23598 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23599
23600 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23601 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23602 addr_vec.append_data (MAYBE_SWAP (cu_index));
23603 }
23604
23605 /* Worker function for traversing an addrmap to build the address table. */
23606
23607 static int
23608 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23609 {
23610 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23611 struct partial_symtab *pst = (struct partial_symtab *) obj;
23612
23613 if (data->previous_valid)
23614 add_address_entry (data->objfile, data->addr_vec,
23615 data->previous_cu_start, start_addr,
23616 data->previous_cu_index);
23617
23618 data->previous_cu_start = start_addr;
23619 if (pst != NULL)
23620 {
23621 const auto it = data->cu_index_htab.find (pst);
23622 gdb_assert (it != data->cu_index_htab.cend ());
23623 data->previous_cu_index = it->second;
23624 data->previous_valid = 1;
23625 }
23626 else
23627 data->previous_valid = 0;
23628
23629 return 0;
23630 }
23631
23632 /* Write OBJFILE's address map to ADDR_VEC.
23633 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23634 in the index file. */
23635
23636 static void
23637 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23638 psym_index_map &cu_index_htab)
23639 {
23640 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23641
23642 /* When writing the address table, we have to cope with the fact that
23643 the addrmap iterator only provides the start of a region; we have to
23644 wait until the next invocation to get the start of the next region. */
23645
23646 addrmap_index_data.objfile = objfile;
23647 addrmap_index_data.previous_valid = 0;
23648
23649 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23650 &addrmap_index_data);
23651
23652 /* It's highly unlikely the last entry (end address = 0xff...ff)
23653 is valid, but we should still handle it.
23654 The end address is recorded as the start of the next region, but that
23655 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23656 anyway. */
23657 if (addrmap_index_data.previous_valid)
23658 add_address_entry (objfile, addr_vec,
23659 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23660 addrmap_index_data.previous_cu_index);
23661 }
23662
23663 /* Return the symbol kind of PSYM. */
23664
23665 static gdb_index_symbol_kind
23666 symbol_kind (struct partial_symbol *psym)
23667 {
23668 domain_enum domain = PSYMBOL_DOMAIN (psym);
23669 enum address_class aclass = PSYMBOL_CLASS (psym);
23670
23671 switch (domain)
23672 {
23673 case VAR_DOMAIN:
23674 switch (aclass)
23675 {
23676 case LOC_BLOCK:
23677 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23678 case LOC_TYPEDEF:
23679 return GDB_INDEX_SYMBOL_KIND_TYPE;
23680 case LOC_COMPUTED:
23681 case LOC_CONST_BYTES:
23682 case LOC_OPTIMIZED_OUT:
23683 case LOC_STATIC:
23684 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23685 case LOC_CONST:
23686 /* Note: It's currently impossible to recognize psyms as enum values
23687 short of reading the type info. For now punt. */
23688 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23689 default:
23690 /* There are other LOC_FOO values that one might want to classify
23691 as variables, but dwarf2read.c doesn't currently use them. */
23692 return GDB_INDEX_SYMBOL_KIND_OTHER;
23693 }
23694 case STRUCT_DOMAIN:
23695 return GDB_INDEX_SYMBOL_KIND_TYPE;
23696 default:
23697 return GDB_INDEX_SYMBOL_KIND_OTHER;
23698 }
23699 }
23700
23701 /* Add a list of partial symbols to SYMTAB. */
23702
23703 static void
23704 write_psymbols (struct mapped_symtab *symtab,
23705 std::unordered_set<partial_symbol *> &psyms_seen,
23706 struct partial_symbol **psymp,
23707 int count,
23708 offset_type cu_index,
23709 int is_static)
23710 {
23711 for (; count-- > 0; ++psymp)
23712 {
23713 struct partial_symbol *psym = *psymp;
23714
23715 if (SYMBOL_LANGUAGE (psym) == language_ada)
23716 error (_("Ada is not currently supported by the index"));
23717
23718 /* Only add a given psymbol once. */
23719 if (psyms_seen.insert (psym).second)
23720 {
23721 gdb_index_symbol_kind kind = symbol_kind (psym);
23722
23723 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23724 is_static, kind, cu_index);
23725 }
23726 }
23727 }
23728
23729 /* A helper struct used when iterating over debug_types. */
23730 struct signatured_type_index_data
23731 {
23732 signatured_type_index_data (data_buf &types_list_,
23733 std::unordered_set<partial_symbol *> &psyms_seen_)
23734 : types_list (types_list_), psyms_seen (psyms_seen_)
23735 {}
23736
23737 struct objfile *objfile;
23738 struct mapped_symtab *symtab;
23739 data_buf &types_list;
23740 std::unordered_set<partial_symbol *> &psyms_seen;
23741 int cu_index;
23742 };
23743
23744 /* A helper function that writes a single signatured_type to an
23745 obstack. */
23746
23747 static int
23748 write_one_signatured_type (void **slot, void *d)
23749 {
23750 struct signatured_type_index_data *info
23751 = (struct signatured_type_index_data *) d;
23752 struct signatured_type *entry = (struct signatured_type *) *slot;
23753 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23754
23755 write_psymbols (info->symtab,
23756 info->psyms_seen,
23757 &info->objfile->global_psymbols[psymtab->globals_offset],
23758 psymtab->n_global_syms, info->cu_index,
23759 0);
23760 write_psymbols (info->symtab,
23761 info->psyms_seen,
23762 &info->objfile->static_psymbols[psymtab->statics_offset],
23763 psymtab->n_static_syms, info->cu_index,
23764 1);
23765
23766 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23767 to_underlying (entry->per_cu.sect_off));
23768 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23769 to_underlying (entry->type_offset_in_tu));
23770 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23771
23772 ++info->cu_index;
23773
23774 return 1;
23775 }
23776
23777 /* Recurse into all "included" dependencies and count their symbols as
23778 if they appeared in this psymtab. */
23779
23780 static void
23781 recursively_count_psymbols (struct partial_symtab *psymtab,
23782 size_t &psyms_seen)
23783 {
23784 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23785 if (psymtab->dependencies[i]->user != NULL)
23786 recursively_count_psymbols (psymtab->dependencies[i],
23787 psyms_seen);
23788
23789 psyms_seen += psymtab->n_global_syms;
23790 psyms_seen += psymtab->n_static_syms;
23791 }
23792
23793 /* Recurse into all "included" dependencies and write their symbols as
23794 if they appeared in this psymtab. */
23795
23796 static void
23797 recursively_write_psymbols (struct objfile *objfile,
23798 struct partial_symtab *psymtab,
23799 struct mapped_symtab *symtab,
23800 std::unordered_set<partial_symbol *> &psyms_seen,
23801 offset_type cu_index)
23802 {
23803 int i;
23804
23805 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23806 if (psymtab->dependencies[i]->user != NULL)
23807 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23808 symtab, psyms_seen, cu_index);
23809
23810 write_psymbols (symtab,
23811 psyms_seen,
23812 &objfile->global_psymbols[psymtab->globals_offset],
23813 psymtab->n_global_syms, cu_index,
23814 0);
23815 write_psymbols (symtab,
23816 psyms_seen,
23817 &objfile->static_psymbols[psymtab->statics_offset],
23818 psymtab->n_static_syms, cu_index,
23819 1);
23820 }
23821
23822 /* Create an index file for OBJFILE in the directory DIR. */
23823
23824 static void
23825 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23826 {
23827 if (dwarf2_per_objfile->using_index)
23828 error (_("Cannot use an index to create the index"));
23829
23830 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23831 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23832
23833 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23834 return;
23835
23836 struct stat st;
23837 if (stat (objfile_name (objfile), &st) < 0)
23838 perror_with_name (objfile_name (objfile));
23839
23840 std::string filename (std::string (dir) + SLASH_STRING
23841 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23842
23843 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23844 if (!out_file)
23845 error (_("Can't open `%s' for writing"), filename.c_str ());
23846
23847 /* Order matters here; we want FILE to be closed before FILENAME is
23848 unlinked, because on MS-Windows one cannot delete a file that is
23849 still open. (Don't call anything here that might throw until
23850 file_closer is created.) */
23851 gdb::unlinker unlink_file (filename.c_str ());
23852 gdb_file_up close_out_file (out_file);
23853
23854 mapped_symtab symtab;
23855 data_buf cu_list;
23856
23857 /* While we're scanning CU's create a table that maps a psymtab pointer
23858 (which is what addrmap records) to its index (which is what is recorded
23859 in the index file). This will later be needed to write the address
23860 table. */
23861 psym_index_map cu_index_htab;
23862 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23863
23864 /* The CU list is already sorted, so we don't need to do additional
23865 work here. Also, the debug_types entries do not appear in
23866 all_comp_units, but only in their own hash table. */
23867
23868 /* The psyms_seen set is potentially going to be largish (~40k
23869 elements when indexing a -g3 build of GDB itself). Estimate the
23870 number of elements in order to avoid too many rehashes, which
23871 require rebuilding buckets and thus many trips to
23872 malloc/free. */
23873 size_t psyms_count = 0;
23874 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23875 {
23876 struct dwarf2_per_cu_data *per_cu
23877 = dwarf2_per_objfile->all_comp_units[i];
23878 struct partial_symtab *psymtab = per_cu->v.psymtab;
23879
23880 if (psymtab != NULL && psymtab->user == NULL)
23881 recursively_count_psymbols (psymtab, psyms_count);
23882 }
23883 /* Generating an index for gdb itself shows a ratio of
23884 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23885 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23886 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23887 {
23888 struct dwarf2_per_cu_data *per_cu
23889 = dwarf2_per_objfile->all_comp_units[i];
23890 struct partial_symtab *psymtab = per_cu->v.psymtab;
23891
23892 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23893 It may be referenced from a local scope but in such case it does not
23894 need to be present in .gdb_index. */
23895 if (psymtab == NULL)
23896 continue;
23897
23898 if (psymtab->user == NULL)
23899 recursively_write_psymbols (objfile, psymtab, &symtab,
23900 psyms_seen, i);
23901
23902 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23903 gdb_assert (insertpair.second);
23904
23905 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23906 to_underlying (per_cu->sect_off));
23907 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23908 }
23909
23910 /* Dump the address map. */
23911 data_buf addr_vec;
23912 write_address_map (objfile, addr_vec, cu_index_htab);
23913
23914 /* Write out the .debug_type entries, if any. */
23915 data_buf types_cu_list;
23916 if (dwarf2_per_objfile->signatured_types)
23917 {
23918 signatured_type_index_data sig_data (types_cu_list,
23919 psyms_seen);
23920
23921 sig_data.objfile = objfile;
23922 sig_data.symtab = &symtab;
23923 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23924 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23925 write_one_signatured_type, &sig_data);
23926 }
23927
23928 /* Now that we've processed all symbols we can shrink their cu_indices
23929 lists. */
23930 uniquify_cu_indices (&symtab);
23931
23932 data_buf symtab_vec, constant_pool;
23933 write_hash_table (&symtab, symtab_vec, constant_pool);
23934
23935 data_buf contents;
23936 const offset_type size_of_contents = 6 * sizeof (offset_type);
23937 offset_type total_len = size_of_contents;
23938
23939 /* The version number. */
23940 contents.append_data (MAYBE_SWAP (8));
23941
23942 /* The offset of the CU list from the start of the file. */
23943 contents.append_data (MAYBE_SWAP (total_len));
23944 total_len += cu_list.size ();
23945
23946 /* The offset of the types CU list from the start of the file. */
23947 contents.append_data (MAYBE_SWAP (total_len));
23948 total_len += types_cu_list.size ();
23949
23950 /* The offset of the address table from the start of the file. */
23951 contents.append_data (MAYBE_SWAP (total_len));
23952 total_len += addr_vec.size ();
23953
23954 /* The offset of the symbol table from the start of the file. */
23955 contents.append_data (MAYBE_SWAP (total_len));
23956 total_len += symtab_vec.size ();
23957
23958 /* The offset of the constant pool from the start of the file. */
23959 contents.append_data (MAYBE_SWAP (total_len));
23960 total_len += constant_pool.size ();
23961
23962 gdb_assert (contents.size () == size_of_contents);
23963
23964 contents.file_write (out_file);
23965 cu_list.file_write (out_file);
23966 types_cu_list.file_write (out_file);
23967 addr_vec.file_write (out_file);
23968 symtab_vec.file_write (out_file);
23969 constant_pool.file_write (out_file);
23970
23971 /* We want to keep the file. */
23972 unlink_file.keep ();
23973 }
23974
23975 /* Implementation of the `save gdb-index' command.
23976
23977 Note that the file format used by this command is documented in the
23978 GDB manual. Any changes here must be documented there. */
23979
23980 static void
23981 save_gdb_index_command (const char *arg, int from_tty)
23982 {
23983 struct objfile *objfile;
23984
23985 if (!arg || !*arg)
23986 error (_("usage: save gdb-index DIRECTORY"));
23987
23988 ALL_OBJFILES (objfile)
23989 {
23990 struct stat st;
23991
23992 /* If the objfile does not correspond to an actual file, skip it. */
23993 if (stat (objfile_name (objfile), &st) < 0)
23994 continue;
23995
23996 dwarf2_per_objfile
23997 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23998 dwarf2_objfile_data_key);
23999 if (dwarf2_per_objfile)
24000 {
24001
24002 TRY
24003 {
24004 write_psymtabs_to_index (objfile, arg);
24005 }
24006 CATCH (except, RETURN_MASK_ERROR)
24007 {
24008 exception_fprintf (gdb_stderr, except,
24009 _("Error while writing index for `%s': "),
24010 objfile_name (objfile));
24011 }
24012 END_CATCH
24013 }
24014 }
24015 }
24016
24017 \f
24018
24019 int dwarf_always_disassemble;
24020
24021 static void
24022 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24023 struct cmd_list_element *c, const char *value)
24024 {
24025 fprintf_filtered (file,
24026 _("Whether to always disassemble "
24027 "DWARF expressions is %s.\n"),
24028 value);
24029 }
24030
24031 static void
24032 show_check_physname (struct ui_file *file, int from_tty,
24033 struct cmd_list_element *c, const char *value)
24034 {
24035 fprintf_filtered (file,
24036 _("Whether to check \"physname\" is %s.\n"),
24037 value);
24038 }
24039
24040 void
24041 _initialize_dwarf2_read (void)
24042 {
24043 struct cmd_list_element *c;
24044
24045 dwarf2_objfile_data_key
24046 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24047
24048 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24049 Set DWARF specific variables.\n\
24050 Configure DWARF variables such as the cache size"),
24051 &set_dwarf_cmdlist, "maintenance set dwarf ",
24052 0/*allow-unknown*/, &maintenance_set_cmdlist);
24053
24054 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24055 Show DWARF specific variables\n\
24056 Show DWARF variables such as the cache size"),
24057 &show_dwarf_cmdlist, "maintenance show dwarf ",
24058 0/*allow-unknown*/, &maintenance_show_cmdlist);
24059
24060 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24061 &dwarf_max_cache_age, _("\
24062 Set the upper bound on the age of cached DWARF compilation units."), _("\
24063 Show the upper bound on the age of cached DWARF compilation units."), _("\
24064 A higher limit means that cached compilation units will be stored\n\
24065 in memory longer, and more total memory will be used. Zero disables\n\
24066 caching, which can slow down startup."),
24067 NULL,
24068 show_dwarf_max_cache_age,
24069 &set_dwarf_cmdlist,
24070 &show_dwarf_cmdlist);
24071
24072 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24073 &dwarf_always_disassemble, _("\
24074 Set whether `info address' always disassembles DWARF expressions."), _("\
24075 Show whether `info address' always disassembles DWARF expressions."), _("\
24076 When enabled, DWARF expressions are always printed in an assembly-like\n\
24077 syntax. When disabled, expressions will be printed in a more\n\
24078 conversational style, when possible."),
24079 NULL,
24080 show_dwarf_always_disassemble,
24081 &set_dwarf_cmdlist,
24082 &show_dwarf_cmdlist);
24083
24084 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24085 Set debugging of the DWARF reader."), _("\
24086 Show debugging of the DWARF reader."), _("\
24087 When enabled (non-zero), debugging messages are printed during DWARF\n\
24088 reading and symtab expansion. A value of 1 (one) provides basic\n\
24089 information. A value greater than 1 provides more verbose information."),
24090 NULL,
24091 NULL,
24092 &setdebuglist, &showdebuglist);
24093
24094 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24095 Set debugging of the DWARF DIE reader."), _("\
24096 Show debugging of the DWARF DIE reader."), _("\
24097 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24098 The value is the maximum depth to print."),
24099 NULL,
24100 NULL,
24101 &setdebuglist, &showdebuglist);
24102
24103 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24104 Set debugging of the dwarf line reader."), _("\
24105 Show debugging of the dwarf line reader."), _("\
24106 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24107 A value of 1 (one) provides basic information.\n\
24108 A value greater than 1 provides more verbose information."),
24109 NULL,
24110 NULL,
24111 &setdebuglist, &showdebuglist);
24112
24113 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24114 Set cross-checking of \"physname\" code against demangler."), _("\
24115 Show cross-checking of \"physname\" code against demangler."), _("\
24116 When enabled, GDB's internal \"physname\" code is checked against\n\
24117 the demangler."),
24118 NULL, show_check_physname,
24119 &setdebuglist, &showdebuglist);
24120
24121 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24122 no_class, &use_deprecated_index_sections, _("\
24123 Set whether to use deprecated gdb_index sections."), _("\
24124 Show whether to use deprecated gdb_index sections."), _("\
24125 When enabled, deprecated .gdb_index sections are used anyway.\n\
24126 Normally they are ignored either because of a missing feature or\n\
24127 performance issue.\n\
24128 Warning: This option must be enabled before gdb reads the file."),
24129 NULL,
24130 NULL,
24131 &setlist, &showlist);
24132
24133 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24134 _("\
24135 Save a gdb-index file.\n\
24136 Usage: save gdb-index DIRECTORY"),
24137 &save_cmdlist);
24138 set_cmd_completer (c, filename_completer);
24139
24140 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24141 &dwarf2_locexpr_funcs);
24142 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24143 &dwarf2_loclist_funcs);
24144
24145 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24146 &dwarf2_block_frame_base_locexpr_funcs);
24147 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24148 &dwarf2_block_frame_base_loclist_funcs);
24149 }