dwarf2read.c (peek_die_abbrev): Improve error message text.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The compunit symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *);
1518
1519 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
1522
1523 static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
1529 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1531
1532 static void dwarf2_const_value_attr (const struct attribute *attr,
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1539
1540 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541
1542 static int need_gnat_info (struct dwarf2_cu *);
1543
1544 static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1546
1547 static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
1550 static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1555
1556 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
1560 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561
1562 static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1565
1566 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567
1568 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
1579 static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1582
1583 static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
1587 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
1590 static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1592
1593 static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1595
1596 static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1599
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609
1610 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
1645
1646 static void process_die (struct die_info *, struct dwarf2_cu *);
1647
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
1650
1651 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652
1653 static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
1660 static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1662
1663 static const char *dwarf_tag_name (unsigned int);
1664
1665 static const char *dwarf_attr_name (unsigned int);
1666
1667 static const char *dwarf_form_name (unsigned int);
1668
1669 static char *dwarf_bool_name (unsigned int);
1670
1671 static const char *dwarf_type_encoding_name (unsigned int);
1672
1673 static struct die_info *sibling_die (struct die_info *);
1674
1675 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677 static void dump_die_for_error (struct die_info *);
1678
1679 static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
1681
1682 /*static*/ void dump_die (struct die_info *, int max_level);
1683
1684 static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1686
1687 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688
1689 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690
1691 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1694
1695 static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706 static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1709
1710 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711
1712 static void read_signatured_type (struct signatured_type *);
1713
1714 /* memory allocation interface */
1715
1716 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717
1718 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719
1720 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct compunit_symtab *compunit_symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->compunit_symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct compunit_symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->compunit_symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663
2664 return per_cu->v.quick->compunit_symtab;
2665 }
2666
2667 /* Return the CU/TU given its index.
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2675
2676 ...;
2677 }
2678 */
2679
2680 static struct dwarf2_per_cu_data *
2681 dw2_get_cutu (int index)
2682 {
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691 }
2692
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
2696
2697 static struct dwarf2_per_cu_data *
2698 dw2_get_cu (int index)
2699 {
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701
2702 return dwarf2_per_objfile->all_comp_units[index];
2703 }
2704
2705 /* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2707
2708 static void
2709 create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
2714 {
2715 offset_type i;
2716
2717 for (i = 0; i < n_elements; i += 2)
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2737 }
2738 }
2739
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2742
2743 static void
2744 create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747 {
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2758
2759 if (dwz_elements == 0)
2760 return;
2761
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2765 }
2766
2767 /* Create the signatured type hash table from the index. */
2768
2769 static void
2770 create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2774 {
2775 offset_type i;
2776 htab_t sig_types_hash;
2777
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2784
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2791 void **slot;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
2814
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2816 }
2817
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2819 }
2820
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2823
2824 static void
2825 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826 {
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2831 CORE_ADDR baseaddr;
2832
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2836
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2839
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2841
2842 while (iter < end)
2843 {
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 iter += 8;
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2850 iter += 4;
2851
2852 if (lo > hi)
2853 {
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
2856 hex_string (lo), hex_string (hi));
2857 continue;
2858 }
2859
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2861 {
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
2865 continue;
2866 }
2867
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2869 dw2_get_cutu (cu_index));
2870 }
2871
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2875 }
2876
2877 /* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
2881 SYMBOL_HASH_NEXT.
2882
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2884
2885 static hashval_t
2886 mapped_index_string_hash (int index_version, const void *p)
2887 {
2888 const unsigned char *str = (const unsigned char *) p;
2889 hashval_t r = 0;
2890 unsigned char c;
2891
2892 while ((c = *str++) != 0)
2893 {
2894 if (index_version >= 5)
2895 c = tolower (c);
2896 r = r * 67 + c - 113;
2897 }
2898
2899 return r;
2900 }
2901
2902 /* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2905
2906 static int
2907 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2909 {
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type hash;
2912 offset_type slot, step;
2913 int (*cmp) (const char *, const char *);
2914
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2918 {
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 not contain any. */
2921 const char *paren = NULL;
2922
2923 /* Need to handle "(anonymous namespace)". */
2924 if (*name != '(')
2925 paren = strchr (name, '(');
2926
2927 if (paren)
2928 {
2929 char *dup;
2930
2931 dup = xmalloc (paren - name + 1);
2932 memcpy (dup, name, paren - name);
2933 dup[paren - name] = 0;
2934
2935 make_cleanup (xfree, dup);
2936 name = dup;
2937 }
2938 }
2939
2940 /* Index version 4 did not support case insensitive searches. But the
2941 indices for case insensitive languages are built in lowercase, therefore
2942 simulate our NAME being searched is also lowercased. */
2943 hash = mapped_index_string_hash ((index->version == 4
2944 && case_sensitivity == case_sensitive_off
2945 ? 5 : index->version),
2946 name);
2947
2948 slot = hash & (index->symbol_table_slots - 1);
2949 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2950 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2951
2952 for (;;)
2953 {
2954 /* Convert a slot number to an offset into the table. */
2955 offset_type i = 2 * slot;
2956 const char *str;
2957 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2958 {
2959 do_cleanups (back_to);
2960 return 0;
2961 }
2962
2963 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2964 if (!cmp (name, str))
2965 {
2966 *vec_out = (offset_type *) (index->constant_pool
2967 + MAYBE_SWAP (index->symbol_table[i + 1]));
2968 do_cleanups (back_to);
2969 return 1;
2970 }
2971
2972 slot = (slot + step) & (index->symbol_table_slots - 1);
2973 }
2974 }
2975
2976 /* A helper function that reads the .gdb_index from SECTION and fills
2977 in MAP. FILENAME is the name of the file containing the section;
2978 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2979 ok to use deprecated sections.
2980
2981 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2982 out parameters that are filled in with information about the CU and
2983 TU lists in the section.
2984
2985 Returns 1 if all went well, 0 otherwise. */
2986
2987 static int
2988 read_index_from_section (struct objfile *objfile,
2989 const char *filename,
2990 int deprecated_ok,
2991 struct dwarf2_section_info *section,
2992 struct mapped_index *map,
2993 const gdb_byte **cu_list,
2994 offset_type *cu_list_elements,
2995 const gdb_byte **types_list,
2996 offset_type *types_list_elements)
2997 {
2998 const gdb_byte *addr;
2999 offset_type version;
3000 offset_type *metadata;
3001 int i;
3002
3003 if (dwarf2_section_empty_p (section))
3004 return 0;
3005
3006 /* Older elfutils strip versions could keep the section in the main
3007 executable while splitting it for the separate debug info file. */
3008 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3009 return 0;
3010
3011 dwarf2_read_section (objfile, section);
3012
3013 addr = section->buffer;
3014 /* Version check. */
3015 version = MAYBE_SWAP (*(offset_type *) addr);
3016 /* Versions earlier than 3 emitted every copy of a psymbol. This
3017 causes the index to behave very poorly for certain requests. Version 3
3018 contained incomplete addrmap. So, it seems better to just ignore such
3019 indices. */
3020 if (version < 4)
3021 {
3022 static int warning_printed = 0;
3023 if (!warning_printed)
3024 {
3025 warning (_("Skipping obsolete .gdb_index section in %s."),
3026 filename);
3027 warning_printed = 1;
3028 }
3029 return 0;
3030 }
3031 /* Index version 4 uses a different hash function than index version
3032 5 and later.
3033
3034 Versions earlier than 6 did not emit psymbols for inlined
3035 functions. Using these files will cause GDB not to be able to
3036 set breakpoints on inlined functions by name, so we ignore these
3037 indices unless the user has done
3038 "set use-deprecated-index-sections on". */
3039 if (version < 6 && !deprecated_ok)
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("\
3045 Skipping deprecated .gdb_index section in %s.\n\
3046 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3047 to use the section anyway."),
3048 filename);
3049 warning_printed = 1;
3050 }
3051 return 0;
3052 }
3053 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3054 of the TU (for symbols coming from TUs),
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3056 Plus gold-generated indices can have duplicate entries for global symbols,
3057 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3058 These are just performance bugs, and we can't distinguish gdb-generated
3059 indices from gold-generated ones, so issue no warning here. */
3060
3061 /* Indexes with higher version than the one supported by GDB may be no
3062 longer backward compatible. */
3063 if (version > 8)
3064 return 0;
3065
3066 map->version = version;
3067 map->total_size = section->size;
3068
3069 metadata = (offset_type *) (addr + sizeof (offset_type));
3070
3071 i = 0;
3072 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3073 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3074 / 8);
3075 ++i;
3076
3077 *types_list = addr + MAYBE_SWAP (metadata[i]);
3078 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]))
3080 / 8);
3081 ++i;
3082
3083 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3084 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]));
3086 ++i;
3087
3088 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3089 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3090 - MAYBE_SWAP (metadata[i]))
3091 / (2 * sizeof (offset_type)));
3092 ++i;
3093
3094 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3095
3096 return 1;
3097 }
3098
3099
3100 /* Read the index file. If everything went ok, initialize the "quick"
3101 elements of all the CUs and return 1. Otherwise, return 0. */
3102
3103 static int
3104 dwarf2_read_index (struct objfile *objfile)
3105 {
3106 struct mapped_index local_map, *map;
3107 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3108 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3109 struct dwz_file *dwz;
3110
3111 if (!read_index_from_section (objfile, objfile_name (objfile),
3112 use_deprecated_index_sections,
3113 &dwarf2_per_objfile->gdb_index, &local_map,
3114 &cu_list, &cu_list_elements,
3115 &types_list, &types_list_elements))
3116 return 0;
3117
3118 /* Don't use the index if it's empty. */
3119 if (local_map.symbol_table_slots == 0)
3120 return 0;
3121
3122 /* If there is a .dwz file, read it so we can get its CU list as
3123 well. */
3124 dwz = dwarf2_get_dwz_file ();
3125 if (dwz != NULL)
3126 {
3127 struct mapped_index dwz_map;
3128 const gdb_byte *dwz_types_ignore;
3129 offset_type dwz_types_elements_ignore;
3130
3131 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3132 1,
3133 &dwz->gdb_index, &dwz_map,
3134 &dwz_list, &dwz_list_elements,
3135 &dwz_types_ignore,
3136 &dwz_types_elements_ignore))
3137 {
3138 warning (_("could not read '.gdb_index' section from %s; skipping"),
3139 bfd_get_filename (dwz->dwz_bfd));
3140 return 0;
3141 }
3142 }
3143
3144 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3145 dwz_list_elements);
3146
3147 if (types_list_elements)
3148 {
3149 struct dwarf2_section_info *section;
3150
3151 /* We can only handle a single .debug_types when we have an
3152 index. */
3153 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3154 return 0;
3155
3156 section = VEC_index (dwarf2_section_info_def,
3157 dwarf2_per_objfile->types, 0);
3158
3159 create_signatured_type_table_from_index (objfile, section, types_list,
3160 types_list_elements);
3161 }
3162
3163 create_addrmap_from_index (objfile, &local_map);
3164
3165 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3166 *map = local_map;
3167
3168 dwarf2_per_objfile->index_table = map;
3169 dwarf2_per_objfile->using_index = 1;
3170 dwarf2_per_objfile->quick_file_names_table =
3171 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3172
3173 return 1;
3174 }
3175
3176 /* A helper for the "quick" functions which sets the global
3177 dwarf2_per_objfile according to OBJFILE. */
3178
3179 static void
3180 dw2_setup (struct objfile *objfile)
3181 {
3182 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3183 gdb_assert (dwarf2_per_objfile);
3184 }
3185
3186 /* die_reader_func for dw2_get_file_names. */
3187
3188 static void
3189 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3190 const gdb_byte *info_ptr,
3191 struct die_info *comp_unit_die,
3192 int has_children,
3193 void *data)
3194 {
3195 struct dwarf2_cu *cu = reader->cu;
3196 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3197 struct objfile *objfile = dwarf2_per_objfile->objfile;
3198 struct dwarf2_per_cu_data *lh_cu;
3199 struct line_header *lh;
3200 struct attribute *attr;
3201 int i;
3202 const char *name, *comp_dir;
3203 void **slot;
3204 struct quick_file_names *qfn;
3205 unsigned int line_offset;
3206
3207 gdb_assert (! this_cu->is_debug_types);
3208
3209 /* Our callers never want to match partial units -- instead they
3210 will match the enclosing full CU. */
3211 if (comp_unit_die->tag == DW_TAG_partial_unit)
3212 {
3213 this_cu->v.quick->no_file_data = 1;
3214 return;
3215 }
3216
3217 lh_cu = this_cu;
3218 lh = NULL;
3219 slot = NULL;
3220 line_offset = 0;
3221
3222 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3223 if (attr)
3224 {
3225 struct quick_file_names find_entry;
3226
3227 line_offset = DW_UNSND (attr);
3228
3229 /* We may have already read in this line header (TU line header sharing).
3230 If we have we're done. */
3231 find_entry.hash.dwo_unit = cu->dwo_unit;
3232 find_entry.hash.line_offset.sect_off = line_offset;
3233 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3234 &find_entry, INSERT);
3235 if (*slot != NULL)
3236 {
3237 lh_cu->v.quick->file_names = *slot;
3238 return;
3239 }
3240
3241 lh = dwarf_decode_line_header (line_offset, cu);
3242 }
3243 if (lh == NULL)
3244 {
3245 lh_cu->v.quick->no_file_data = 1;
3246 return;
3247 }
3248
3249 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3250 qfn->hash.dwo_unit = cu->dwo_unit;
3251 qfn->hash.line_offset.sect_off = line_offset;
3252 gdb_assert (slot != NULL);
3253 *slot = qfn;
3254
3255 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3256
3257 qfn->num_file_names = lh->num_file_names;
3258 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3259 lh->num_file_names * sizeof (char *));
3260 for (i = 0; i < lh->num_file_names; ++i)
3261 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3262 qfn->real_names = NULL;
3263
3264 free_line_header (lh);
3265
3266 lh_cu->v.quick->file_names = qfn;
3267 }
3268
3269 /* A helper for the "quick" functions which attempts to read the line
3270 table for THIS_CU. */
3271
3272 static struct quick_file_names *
3273 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3274 {
3275 /* This should never be called for TUs. */
3276 gdb_assert (! this_cu->is_debug_types);
3277 /* Nor type unit groups. */
3278 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3279
3280 if (this_cu->v.quick->file_names != NULL)
3281 return this_cu->v.quick->file_names;
3282 /* If we know there is no line data, no point in looking again. */
3283 if (this_cu->v.quick->no_file_data)
3284 return NULL;
3285
3286 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3287
3288 if (this_cu->v.quick->no_file_data)
3289 return NULL;
3290 return this_cu->v.quick->file_names;
3291 }
3292
3293 /* A helper for the "quick" functions which computes and caches the
3294 real path for a given file name from the line table. */
3295
3296 static const char *
3297 dw2_get_real_path (struct objfile *objfile,
3298 struct quick_file_names *qfn, int index)
3299 {
3300 if (qfn->real_names == NULL)
3301 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3302 qfn->num_file_names, const char *);
3303
3304 if (qfn->real_names[index] == NULL)
3305 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3306
3307 return qfn->real_names[index];
3308 }
3309
3310 static struct symtab *
3311 dw2_find_last_source_symtab (struct objfile *objfile)
3312 {
3313 struct compunit_symtab *cust;
3314 int index;
3315
3316 dw2_setup (objfile);
3317 index = dwarf2_per_objfile->n_comp_units - 1;
3318 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3319 if (cust == NULL)
3320 return NULL;
3321 return compunit_primary_filetab (cust);
3322 }
3323
3324 /* Traversal function for dw2_forget_cached_source_info. */
3325
3326 static int
3327 dw2_free_cached_file_names (void **slot, void *info)
3328 {
3329 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3330
3331 if (file_data->real_names)
3332 {
3333 int i;
3334
3335 for (i = 0; i < file_data->num_file_names; ++i)
3336 {
3337 xfree ((void*) file_data->real_names[i]);
3338 file_data->real_names[i] = NULL;
3339 }
3340 }
3341
3342 return 1;
3343 }
3344
3345 static void
3346 dw2_forget_cached_source_info (struct objfile *objfile)
3347 {
3348 dw2_setup (objfile);
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3351 dw2_free_cached_file_names, NULL);
3352 }
3353
3354 /* Helper function for dw2_map_symtabs_matching_filename that expands
3355 the symtabs and calls the iterator. */
3356
3357 static int
3358 dw2_map_expand_apply (struct objfile *objfile,
3359 struct dwarf2_per_cu_data *per_cu,
3360 const char *name, const char *real_path,
3361 int (*callback) (struct symtab *, void *),
3362 void *data)
3363 {
3364 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3365
3366 /* Don't visit already-expanded CUs. */
3367 if (per_cu->v.quick->compunit_symtab)
3368 return 0;
3369
3370 /* This may expand more than one symtab, and we want to iterate over
3371 all of them. */
3372 dw2_instantiate_symtab (per_cu);
3373
3374 return iterate_over_some_symtabs (name, real_path, callback, data,
3375 objfile->compunit_symtabs, last_made);
3376 }
3377
3378 /* Implementation of the map_symtabs_matching_filename method. */
3379
3380 static int
3381 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3382 const char *real_path,
3383 int (*callback) (struct symtab *, void *),
3384 void *data)
3385 {
3386 int i;
3387 const char *name_basename = lbasename (name);
3388
3389 dw2_setup (objfile);
3390
3391 /* The rule is CUs specify all the files, including those used by
3392 any TU, so there's no need to scan TUs here. */
3393
3394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3395 {
3396 int j;
3397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3398 struct quick_file_names *file_data;
3399
3400 /* We only need to look at symtabs not already expanded. */
3401 if (per_cu->v.quick->compunit_symtab)
3402 continue;
3403
3404 file_data = dw2_get_file_names (per_cu);
3405 if (file_data == NULL)
3406 continue;
3407
3408 for (j = 0; j < file_data->num_file_names; ++j)
3409 {
3410 const char *this_name = file_data->file_names[j];
3411 const char *this_real_name;
3412
3413 if (compare_filenames_for_search (this_name, name))
3414 {
3415 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3416 callback, data))
3417 return 1;
3418 continue;
3419 }
3420
3421 /* Before we invoke realpath, which can get expensive when many
3422 files are involved, do a quick comparison of the basenames. */
3423 if (! basenames_may_differ
3424 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3425 continue;
3426
3427 this_real_name = dw2_get_real_path (objfile, file_data, j);
3428 if (compare_filenames_for_search (this_real_name, name))
3429 {
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
3433 continue;
3434 }
3435
3436 if (real_path != NULL)
3437 {
3438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3439 gdb_assert (IS_ABSOLUTE_PATH (name));
3440 if (this_real_name != NULL
3441 && FILENAME_CMP (real_path, this_real_name) == 0)
3442 {
3443 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3444 callback, data))
3445 return 1;
3446 continue;
3447 }
3448 }
3449 }
3450 }
3451
3452 return 0;
3453 }
3454
3455 /* Struct used to manage iterating over all CUs looking for a symbol. */
3456
3457 struct dw2_symtab_iterator
3458 {
3459 /* The internalized form of .gdb_index. */
3460 struct mapped_index *index;
3461 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3462 int want_specific_block;
3463 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3464 Unused if !WANT_SPECIFIC_BLOCK. */
3465 int block_index;
3466 /* The kind of symbol we're looking for. */
3467 domain_enum domain;
3468 /* The list of CUs from the index entry of the symbol,
3469 or NULL if not found. */
3470 offset_type *vec;
3471 /* The next element in VEC to look at. */
3472 int next;
3473 /* The number of elements in VEC, or zero if there is no match. */
3474 int length;
3475 /* Have we seen a global version of the symbol?
3476 If so we can ignore all further global instances.
3477 This is to work around gold/15646, inefficient gold-generated
3478 indices. */
3479 int global_seen;
3480 };
3481
3482 /* Initialize the index symtab iterator ITER.
3483 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3484 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3485
3486 static void
3487 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3488 struct mapped_index *index,
3489 int want_specific_block,
3490 int block_index,
3491 domain_enum domain,
3492 const char *name)
3493 {
3494 iter->index = index;
3495 iter->want_specific_block = want_specific_block;
3496 iter->block_index = block_index;
3497 iter->domain = domain;
3498 iter->next = 0;
3499 iter->global_seen = 0;
3500
3501 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3502 iter->length = MAYBE_SWAP (*iter->vec);
3503 else
3504 {
3505 iter->vec = NULL;
3506 iter->length = 0;
3507 }
3508 }
3509
3510 /* Return the next matching CU or NULL if there are no more. */
3511
3512 static struct dwarf2_per_cu_data *
3513 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3514 {
3515 for ( ; iter->next < iter->length; ++iter->next)
3516 {
3517 offset_type cu_index_and_attrs =
3518 MAYBE_SWAP (iter->vec[iter->next + 1]);
3519 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3520 struct dwarf2_per_cu_data *per_cu;
3521 int want_static = iter->block_index != GLOBAL_BLOCK;
3522 /* This value is only valid for index versions >= 7. */
3523 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3524 gdb_index_symbol_kind symbol_kind =
3525 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3526 /* Only check the symbol attributes if they're present.
3527 Indices prior to version 7 don't record them,
3528 and indices >= 7 may elide them for certain symbols
3529 (gold does this). */
3530 int attrs_valid =
3531 (iter->index->version >= 7
3532 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3533
3534 /* Don't crash on bad data. */
3535 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3536 + dwarf2_per_objfile->n_type_units))
3537 {
3538 complaint (&symfile_complaints,
3539 _(".gdb_index entry has bad CU index"
3540 " [in module %s]"),
3541 objfile_name (dwarf2_per_objfile->objfile));
3542 continue;
3543 }
3544
3545 per_cu = dw2_get_cutu (cu_index);
3546
3547 /* Skip if already read in. */
3548 if (per_cu->v.quick->compunit_symtab)
3549 continue;
3550
3551 /* Check static vs global. */
3552 if (attrs_valid)
3553 {
3554 if (iter->want_specific_block
3555 && want_static != is_static)
3556 continue;
3557 /* Work around gold/15646. */
3558 if (!is_static && iter->global_seen)
3559 continue;
3560 if (!is_static)
3561 iter->global_seen = 1;
3562 }
3563
3564 /* Only check the symbol's kind if it has one. */
3565 if (attrs_valid)
3566 {
3567 switch (iter->domain)
3568 {
3569 case VAR_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3571 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3572 /* Some types are also in VAR_DOMAIN. */
3573 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case STRUCT_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3578 continue;
3579 break;
3580 case LABEL_DOMAIN:
3581 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3582 continue;
3583 break;
3584 default:
3585 break;
3586 }
3587 }
3588
3589 ++iter->next;
3590 return per_cu;
3591 }
3592
3593 return NULL;
3594 }
3595
3596 static struct compunit_symtab *
3597 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3598 const char *name, domain_enum domain)
3599 {
3600 struct compunit_symtab *stab_best = NULL;
3601 struct mapped_index *index;
3602
3603 dw2_setup (objfile);
3604
3605 index = dwarf2_per_objfile->index_table;
3606
3607 /* index is NULL if OBJF_READNOW. */
3608 if (index)
3609 {
3610 struct dw2_symtab_iterator iter;
3611 struct dwarf2_per_cu_data *per_cu;
3612
3613 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3614
3615 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3616 {
3617 struct symbol *sym = NULL;
3618 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3619 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3621
3622 /* Some caution must be observed with overloaded functions
3623 and methods, since the index will not contain any overload
3624 information (but NAME might contain it). */
3625 sym = block_lookup_symbol (block, name, domain);
3626
3627 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3628 {
3629 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3630 return stab;
3631
3632 stab_best = stab;
3633 }
3634
3635 /* Keep looking through other CUs. */
3636 }
3637 }
3638
3639 return stab_best;
3640 }
3641
3642 static void
3643 dw2_print_stats (struct objfile *objfile)
3644 {
3645 int i, total, count;
3646
3647 dw2_setup (objfile);
3648 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3649 count = 0;
3650 for (i = 0; i < total; ++i)
3651 {
3652 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3653
3654 if (!per_cu->v.quick->compunit_symtab)
3655 ++count;
3656 }
3657 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3658 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3659 }
3660
3661 /* This dumps minimal information about the index.
3662 It is called via "mt print objfiles".
3663 One use is to verify .gdb_index has been loaded by the
3664 gdb.dwarf2/gdb-index.exp testcase. */
3665
3666 static void
3667 dw2_dump (struct objfile *objfile)
3668 {
3669 dw2_setup (objfile);
3670 gdb_assert (dwarf2_per_objfile->using_index);
3671 printf_filtered (".gdb_index:");
3672 if (dwarf2_per_objfile->index_table != NULL)
3673 {
3674 printf_filtered (" version %d\n",
3675 dwarf2_per_objfile->index_table->version);
3676 }
3677 else
3678 printf_filtered (" faked for \"readnow\"\n");
3679 printf_filtered ("\n");
3680 }
3681
3682 static void
3683 dw2_relocate (struct objfile *objfile,
3684 const struct section_offsets *new_offsets,
3685 const struct section_offsets *delta)
3686 {
3687 /* There's nothing to relocate here. */
3688 }
3689
3690 static void
3691 dw2_expand_symtabs_for_function (struct objfile *objfile,
3692 const char *func_name)
3693 {
3694 struct mapped_index *index;
3695
3696 dw2_setup (objfile);
3697
3698 index = dwarf2_per_objfile->index_table;
3699
3700 /* index is NULL if OBJF_READNOW. */
3701 if (index)
3702 {
3703 struct dw2_symtab_iterator iter;
3704 struct dwarf2_per_cu_data *per_cu;
3705
3706 /* Note: It doesn't matter what we pass for block_index here. */
3707 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3708 func_name);
3709
3710 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3711 dw2_instantiate_symtab (per_cu);
3712 }
3713 }
3714
3715 static void
3716 dw2_expand_all_symtabs (struct objfile *objfile)
3717 {
3718 int i;
3719
3720 dw2_setup (objfile);
3721
3722 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3723 + dwarf2_per_objfile->n_type_units); ++i)
3724 {
3725 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3726
3727 dw2_instantiate_symtab (per_cu);
3728 }
3729 }
3730
3731 static void
3732 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3733 const char *fullname)
3734 {
3735 int i;
3736
3737 dw2_setup (objfile);
3738
3739 /* We don't need to consider type units here.
3740 This is only called for examining code, e.g. expand_line_sal.
3741 There can be an order of magnitude (or more) more type units
3742 than comp units, and we avoid them if we can. */
3743
3744 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3745 {
3746 int j;
3747 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3748 struct quick_file_names *file_data;
3749
3750 /* We only need to look at symtabs not already expanded. */
3751 if (per_cu->v.quick->compunit_symtab)
3752 continue;
3753
3754 file_data = dw2_get_file_names (per_cu);
3755 if (file_data == NULL)
3756 continue;
3757
3758 for (j = 0; j < file_data->num_file_names; ++j)
3759 {
3760 const char *this_fullname = file_data->file_names[j];
3761
3762 if (filename_cmp (this_fullname, fullname) == 0)
3763 {
3764 dw2_instantiate_symtab (per_cu);
3765 break;
3766 }
3767 }
3768 }
3769 }
3770
3771 static void
3772 dw2_map_matching_symbols (struct objfile *objfile,
3773 const char * name, domain_enum namespace,
3774 int global,
3775 int (*callback) (struct block *,
3776 struct symbol *, void *),
3777 void *data, symbol_compare_ftype *match,
3778 symbol_compare_ftype *ordered_compare)
3779 {
3780 /* Currently unimplemented; used for Ada. The function can be called if the
3781 current language is Ada for a non-Ada objfile using GNU index. As Ada
3782 does not look for non-Ada symbols this function should just return. */
3783 }
3784
3785 static void
3786 dw2_expand_symtabs_matching
3787 (struct objfile *objfile,
3788 expand_symtabs_file_matcher_ftype *file_matcher,
3789 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3790 enum search_domain kind,
3791 void *data)
3792 {
3793 int i;
3794 offset_type iter;
3795 struct mapped_index *index;
3796
3797 dw2_setup (objfile);
3798
3799 /* index_table is NULL if OBJF_READNOW. */
3800 if (!dwarf2_per_objfile->index_table)
3801 return;
3802 index = dwarf2_per_objfile->index_table;
3803
3804 if (file_matcher != NULL)
3805 {
3806 struct cleanup *cleanup;
3807 htab_t visited_found, visited_not_found;
3808
3809 visited_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 cleanup = make_cleanup_htab_delete (visited_found);
3813 visited_not_found = htab_create_alloc (10,
3814 htab_hash_pointer, htab_eq_pointer,
3815 NULL, xcalloc, xfree);
3816 make_cleanup_htab_delete (visited_not_found);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3822 {
3823 int j;
3824 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3825 struct quick_file_names *file_data;
3826 void **slot;
3827
3828 per_cu->v.quick->mark = 0;
3829
3830 /* We only need to look at symtabs not already expanded. */
3831 if (per_cu->v.quick->compunit_symtab)
3832 continue;
3833
3834 file_data = dw2_get_file_names (per_cu);
3835 if (file_data == NULL)
3836 continue;
3837
3838 if (htab_find (visited_not_found, file_data) != NULL)
3839 continue;
3840 else if (htab_find (visited_found, file_data) != NULL)
3841 {
3842 per_cu->v.quick->mark = 1;
3843 continue;
3844 }
3845
3846 for (j = 0; j < file_data->num_file_names; ++j)
3847 {
3848 const char *this_real_name;
3849
3850 if (file_matcher (file_data->file_names[j], data, 0))
3851 {
3852 per_cu->v.quick->mark = 1;
3853 break;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (!basenames_may_differ
3859 && !file_matcher (lbasename (file_data->file_names[j]),
3860 data, 1))
3861 continue;
3862
3863 this_real_name = dw2_get_real_path (objfile, file_data, j);
3864 if (file_matcher (this_real_name, data, 0))
3865 {
3866 per_cu->v.quick->mark = 1;
3867 break;
3868 }
3869 }
3870
3871 slot = htab_find_slot (per_cu->v.quick->mark
3872 ? visited_found
3873 : visited_not_found,
3874 file_data, INSERT);
3875 *slot = file_data;
3876 }
3877
3878 do_cleanups (cleanup);
3879 }
3880
3881 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3882 {
3883 offset_type idx = 2 * iter;
3884 const char *name;
3885 offset_type *vec, vec_len, vec_idx;
3886 int global_seen = 0;
3887
3888 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3889 continue;
3890
3891 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3892
3893 if (! (*symbol_matcher) (name, data))
3894 continue;
3895
3896 /* The name was matched, now expand corresponding CUs that were
3897 marked. */
3898 vec = (offset_type *) (index->constant_pool
3899 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3900 vec_len = MAYBE_SWAP (vec[0]);
3901 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3902 {
3903 struct dwarf2_per_cu_data *per_cu;
3904 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3905 /* This value is only valid for index versions >= 7. */
3906 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3907 gdb_index_symbol_kind symbol_kind =
3908 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3909 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3910 /* Only check the symbol attributes if they're present.
3911 Indices prior to version 7 don't record them,
3912 and indices >= 7 may elide them for certain symbols
3913 (gold does this). */
3914 int attrs_valid =
3915 (index->version >= 7
3916 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3917
3918 /* Work around gold/15646. */
3919 if (attrs_valid)
3920 {
3921 if (!is_static && global_seen)
3922 continue;
3923 if (!is_static)
3924 global_seen = 1;
3925 }
3926
3927 /* Only check the symbol's kind if it has one. */
3928 if (attrs_valid)
3929 {
3930 switch (kind)
3931 {
3932 case VARIABLES_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3934 continue;
3935 break;
3936 case FUNCTIONS_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3938 continue;
3939 break;
3940 case TYPES_DOMAIN:
3941 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3942 continue;
3943 break;
3944 default:
3945 break;
3946 }
3947 }
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3951 + dwarf2_per_objfile->n_type_units))
3952 {
3953 complaint (&symfile_complaints,
3954 _(".gdb_index entry has bad CU index"
3955 " [in module %s]"), objfile_name (objfile));
3956 continue;
3957 }
3958
3959 per_cu = dw2_get_cutu (cu_index);
3960 if (file_matcher == NULL || per_cu->v.quick->mark)
3961 dw2_instantiate_symtab (per_cu);
3962 }
3963 }
3964 }
3965
3966 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
3967 symtab. */
3968
3969 static struct compunit_symtab *
3970 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3971 CORE_ADDR pc)
3972 {
3973 int i;
3974
3975 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3976 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3977 return cust;
3978
3979 if (cust->includes == NULL)
3980 return NULL;
3981
3982 for (i = 0; cust->includes[i]; ++i)
3983 {
3984 struct compunit_symtab *s = cust->includes[i];
3985
3986 s = recursively_find_pc_sect_compunit_symtab (s, pc);
3987 if (s != NULL)
3988 return s;
3989 }
3990
3991 return NULL;
3992 }
3993
3994 static struct compunit_symtab *
3995 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3996 struct bound_minimal_symbol msymbol,
3997 CORE_ADDR pc,
3998 struct obj_section *section,
3999 int warn_if_readin)
4000 {
4001 struct dwarf2_per_cu_data *data;
4002 struct compunit_symtab *result;
4003
4004 dw2_setup (objfile);
4005
4006 if (!objfile->psymtabs_addrmap)
4007 return NULL;
4008
4009 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4010 if (!data)
4011 return NULL;
4012
4013 if (warn_if_readin && data->v.quick->compunit_symtab)
4014 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4015 paddress (get_objfile_arch (objfile), pc));
4016
4017 result
4018 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4019 pc);
4020 gdb_assert (result != NULL);
4021 return result;
4022 }
4023
4024 static void
4025 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4026 void *data, int need_fullname)
4027 {
4028 int i;
4029 struct cleanup *cleanup;
4030 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4031 NULL, xcalloc, xfree);
4032
4033 cleanup = make_cleanup_htab_delete (visited);
4034 dw2_setup (objfile);
4035
4036 /* The rule is CUs specify all the files, including those used by
4037 any TU, so there's no need to scan TUs here.
4038 We can ignore file names coming from already-expanded CUs. */
4039
4040 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4041 {
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4043
4044 if (per_cu->v.quick->compunit_symtab)
4045 {
4046 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4047 INSERT);
4048
4049 *slot = per_cu->v.quick->file_names;
4050 }
4051 }
4052
4053 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4054 {
4055 int j;
4056 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4057 struct quick_file_names *file_data;
4058 void **slot;
4059
4060 /* We only need to look at symtabs not already expanded. */
4061 if (per_cu->v.quick->compunit_symtab)
4062 continue;
4063
4064 file_data = dw2_get_file_names (per_cu);
4065 if (file_data == NULL)
4066 continue;
4067
4068 slot = htab_find_slot (visited, file_data, INSERT);
4069 if (*slot)
4070 {
4071 /* Already visited. */
4072 continue;
4073 }
4074 *slot = file_data;
4075
4076 for (j = 0; j < file_data->num_file_names; ++j)
4077 {
4078 const char *this_real_name;
4079
4080 if (need_fullname)
4081 this_real_name = dw2_get_real_path (objfile, file_data, j);
4082 else
4083 this_real_name = NULL;
4084 (*fun) (file_data->file_names[j], this_real_name, data);
4085 }
4086 }
4087
4088 do_cleanups (cleanup);
4089 }
4090
4091 static int
4092 dw2_has_symbols (struct objfile *objfile)
4093 {
4094 return 1;
4095 }
4096
4097 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4098 {
4099 dw2_has_symbols,
4100 dw2_find_last_source_symtab,
4101 dw2_forget_cached_source_info,
4102 dw2_map_symtabs_matching_filename,
4103 dw2_lookup_symbol,
4104 dw2_print_stats,
4105 dw2_dump,
4106 dw2_relocate,
4107 dw2_expand_symtabs_for_function,
4108 dw2_expand_all_symtabs,
4109 dw2_expand_symtabs_with_fullname,
4110 dw2_map_matching_symbols,
4111 dw2_expand_symtabs_matching,
4112 dw2_find_pc_sect_compunit_symtab,
4113 dw2_map_symbol_filenames
4114 };
4115
4116 /* Initialize for reading DWARF for this objfile. Return 0 if this
4117 file will use psymtabs, or 1 if using the GNU index. */
4118
4119 int
4120 dwarf2_initialize_objfile (struct objfile *objfile)
4121 {
4122 /* If we're about to read full symbols, don't bother with the
4123 indices. In this case we also don't care if some other debug
4124 format is making psymtabs, because they are all about to be
4125 expanded anyway. */
4126 if ((objfile->flags & OBJF_READNOW))
4127 {
4128 int i;
4129
4130 dwarf2_per_objfile->using_index = 1;
4131 create_all_comp_units (objfile);
4132 create_all_type_units (objfile);
4133 dwarf2_per_objfile->quick_file_names_table =
4134 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4135
4136 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4137 + dwarf2_per_objfile->n_type_units); ++i)
4138 {
4139 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4140
4141 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4142 struct dwarf2_per_cu_quick_data);
4143 }
4144
4145 /* Return 1 so that gdb sees the "quick" functions. However,
4146 these functions will be no-ops because we will have expanded
4147 all symtabs. */
4148 return 1;
4149 }
4150
4151 if (dwarf2_read_index (objfile))
4152 return 1;
4153
4154 return 0;
4155 }
4156
4157 \f
4158
4159 /* Build a partial symbol table. */
4160
4161 void
4162 dwarf2_build_psymtabs (struct objfile *objfile)
4163 {
4164 volatile struct gdb_exception except;
4165
4166 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4167 {
4168 init_psymbol_list (objfile, 1024);
4169 }
4170
4171 TRY_CATCH (except, RETURN_MASK_ERROR)
4172 {
4173 /* This isn't really ideal: all the data we allocate on the
4174 objfile's obstack is still uselessly kept around. However,
4175 freeing it seems unsafe. */
4176 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4177
4178 dwarf2_build_psymtabs_hard (objfile);
4179 discard_cleanups (cleanups);
4180 }
4181 if (except.reason < 0)
4182 exception_print (gdb_stderr, except);
4183 }
4184
4185 /* Return the total length of the CU described by HEADER. */
4186
4187 static unsigned int
4188 get_cu_length (const struct comp_unit_head *header)
4189 {
4190 return header->initial_length_size + header->length;
4191 }
4192
4193 /* Return TRUE if OFFSET is within CU_HEADER. */
4194
4195 static inline int
4196 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4197 {
4198 sect_offset bottom = { cu_header->offset.sect_off };
4199 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4200
4201 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4202 }
4203
4204 /* Find the base address of the compilation unit for range lists and
4205 location lists. It will normally be specified by DW_AT_low_pc.
4206 In DWARF-3 draft 4, the base address could be overridden by
4207 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4208 compilation units with discontinuous ranges. */
4209
4210 static void
4211 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4212 {
4213 struct attribute *attr;
4214
4215 cu->base_known = 0;
4216 cu->base_address = 0;
4217
4218 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4219 if (attr)
4220 {
4221 cu->base_address = attr_value_as_address (attr);
4222 cu->base_known = 1;
4223 }
4224 else
4225 {
4226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4227 if (attr)
4228 {
4229 cu->base_address = attr_value_as_address (attr);
4230 cu->base_known = 1;
4231 }
4232 }
4233 }
4234
4235 /* Read in the comp unit header information from the debug_info at info_ptr.
4236 NOTE: This leaves members offset, first_die_offset to be filled in
4237 by the caller. */
4238
4239 static const gdb_byte *
4240 read_comp_unit_head (struct comp_unit_head *cu_header,
4241 const gdb_byte *info_ptr, bfd *abfd)
4242 {
4243 int signed_addr;
4244 unsigned int bytes_read;
4245
4246 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4247 cu_header->initial_length_size = bytes_read;
4248 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4249 info_ptr += bytes_read;
4250 cu_header->version = read_2_bytes (abfd, info_ptr);
4251 info_ptr += 2;
4252 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4253 &bytes_read);
4254 info_ptr += bytes_read;
4255 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4256 info_ptr += 1;
4257 signed_addr = bfd_get_sign_extend_vma (abfd);
4258 if (signed_addr < 0)
4259 internal_error (__FILE__, __LINE__,
4260 _("read_comp_unit_head: dwarf from non elf file"));
4261 cu_header->signed_addr_p = signed_addr;
4262
4263 return info_ptr;
4264 }
4265
4266 /* Helper function that returns the proper abbrev section for
4267 THIS_CU. */
4268
4269 static struct dwarf2_section_info *
4270 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4271 {
4272 struct dwarf2_section_info *abbrev;
4273
4274 if (this_cu->is_dwz)
4275 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4276 else
4277 abbrev = &dwarf2_per_objfile->abbrev;
4278
4279 return abbrev;
4280 }
4281
4282 /* Subroutine of read_and_check_comp_unit_head and
4283 read_and_check_type_unit_head to simplify them.
4284 Perform various error checking on the header. */
4285
4286 static void
4287 error_check_comp_unit_head (struct comp_unit_head *header,
4288 struct dwarf2_section_info *section,
4289 struct dwarf2_section_info *abbrev_section)
4290 {
4291 bfd *abfd = get_section_bfd_owner (section);
4292 const char *filename = get_section_file_name (section);
4293
4294 if (header->version != 2 && header->version != 3 && header->version != 4)
4295 error (_("Dwarf Error: wrong version in compilation unit header "
4296 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4297 filename);
4298
4299 if (header->abbrev_offset.sect_off
4300 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4301 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4302 "(offset 0x%lx + 6) [in module %s]"),
4303 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4304 filename);
4305
4306 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4307 avoid potential 32-bit overflow. */
4308 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4309 > section->size)
4310 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4311 "(offset 0x%lx + 0) [in module %s]"),
4312 (long) header->length, (long) header->offset.sect_off,
4313 filename);
4314 }
4315
4316 /* Read in a CU/TU header and perform some basic error checking.
4317 The contents of the header are stored in HEADER.
4318 The result is a pointer to the start of the first DIE. */
4319
4320 static const gdb_byte *
4321 read_and_check_comp_unit_head (struct comp_unit_head *header,
4322 struct dwarf2_section_info *section,
4323 struct dwarf2_section_info *abbrev_section,
4324 const gdb_byte *info_ptr,
4325 int is_debug_types_section)
4326 {
4327 const gdb_byte *beg_of_comp_unit = info_ptr;
4328 bfd *abfd = get_section_bfd_owner (section);
4329
4330 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4331
4332 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4333
4334 /* If we're reading a type unit, skip over the signature and
4335 type_offset fields. */
4336 if (is_debug_types_section)
4337 info_ptr += 8 /*signature*/ + header->offset_size;
4338
4339 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4340
4341 error_check_comp_unit_head (header, section, abbrev_section);
4342
4343 return info_ptr;
4344 }
4345
4346 /* Read in the types comp unit header information from .debug_types entry at
4347 types_ptr. The result is a pointer to one past the end of the header. */
4348
4349 static const gdb_byte *
4350 read_and_check_type_unit_head (struct comp_unit_head *header,
4351 struct dwarf2_section_info *section,
4352 struct dwarf2_section_info *abbrev_section,
4353 const gdb_byte *info_ptr,
4354 ULONGEST *signature,
4355 cu_offset *type_offset_in_tu)
4356 {
4357 const gdb_byte *beg_of_comp_unit = info_ptr;
4358 bfd *abfd = get_section_bfd_owner (section);
4359
4360 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4361
4362 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4363
4364 /* If we're reading a type unit, skip over the signature and
4365 type_offset fields. */
4366 if (signature != NULL)
4367 *signature = read_8_bytes (abfd, info_ptr);
4368 info_ptr += 8;
4369 if (type_offset_in_tu != NULL)
4370 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4371 header->offset_size);
4372 info_ptr += header->offset_size;
4373
4374 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4375
4376 error_check_comp_unit_head (header, section, abbrev_section);
4377
4378 return info_ptr;
4379 }
4380
4381 /* Fetch the abbreviation table offset from a comp or type unit header. */
4382
4383 static sect_offset
4384 read_abbrev_offset (struct dwarf2_section_info *section,
4385 sect_offset offset)
4386 {
4387 bfd *abfd = get_section_bfd_owner (section);
4388 const gdb_byte *info_ptr;
4389 unsigned int length, initial_length_size, offset_size;
4390 sect_offset abbrev_offset;
4391
4392 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4393 info_ptr = section->buffer + offset.sect_off;
4394 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4395 offset_size = initial_length_size == 4 ? 4 : 8;
4396 info_ptr += initial_length_size + 2 /*version*/;
4397 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4398 return abbrev_offset;
4399 }
4400
4401 /* Allocate a new partial symtab for file named NAME and mark this new
4402 partial symtab as being an include of PST. */
4403
4404 static void
4405 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4406 struct objfile *objfile)
4407 {
4408 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4409
4410 if (!IS_ABSOLUTE_PATH (subpst->filename))
4411 {
4412 /* It shares objfile->objfile_obstack. */
4413 subpst->dirname = pst->dirname;
4414 }
4415
4416 subpst->section_offsets = pst->section_offsets;
4417 subpst->textlow = 0;
4418 subpst->texthigh = 0;
4419
4420 subpst->dependencies = (struct partial_symtab **)
4421 obstack_alloc (&objfile->objfile_obstack,
4422 sizeof (struct partial_symtab *));
4423 subpst->dependencies[0] = pst;
4424 subpst->number_of_dependencies = 1;
4425
4426 subpst->globals_offset = 0;
4427 subpst->n_global_syms = 0;
4428 subpst->statics_offset = 0;
4429 subpst->n_static_syms = 0;
4430 subpst->compunit_symtab = NULL;
4431 subpst->read_symtab = pst->read_symtab;
4432 subpst->readin = 0;
4433
4434 /* No private part is necessary for include psymtabs. This property
4435 can be used to differentiate between such include psymtabs and
4436 the regular ones. */
4437 subpst->read_symtab_private = NULL;
4438 }
4439
4440 /* Read the Line Number Program data and extract the list of files
4441 included by the source file represented by PST. Build an include
4442 partial symtab for each of these included files. */
4443
4444 static void
4445 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4446 struct die_info *die,
4447 struct partial_symtab *pst)
4448 {
4449 struct line_header *lh = NULL;
4450 struct attribute *attr;
4451
4452 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4453 if (attr)
4454 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4455 if (lh == NULL)
4456 return; /* No linetable, so no includes. */
4457
4458 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4459 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4460
4461 free_line_header (lh);
4462 }
4463
4464 static hashval_t
4465 hash_signatured_type (const void *item)
4466 {
4467 const struct signatured_type *sig_type = item;
4468
4469 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4470 return sig_type->signature;
4471 }
4472
4473 static int
4474 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4475 {
4476 const struct signatured_type *lhs = item_lhs;
4477 const struct signatured_type *rhs = item_rhs;
4478
4479 return lhs->signature == rhs->signature;
4480 }
4481
4482 /* Allocate a hash table for signatured types. */
4483
4484 static htab_t
4485 allocate_signatured_type_table (struct objfile *objfile)
4486 {
4487 return htab_create_alloc_ex (41,
4488 hash_signatured_type,
4489 eq_signatured_type,
4490 NULL,
4491 &objfile->objfile_obstack,
4492 hashtab_obstack_allocate,
4493 dummy_obstack_deallocate);
4494 }
4495
4496 /* A helper function to add a signatured type CU to a table. */
4497
4498 static int
4499 add_signatured_type_cu_to_table (void **slot, void *datum)
4500 {
4501 struct signatured_type *sigt = *slot;
4502 struct signatured_type ***datap = datum;
4503
4504 **datap = sigt;
4505 ++*datap;
4506
4507 return 1;
4508 }
4509
4510 /* Create the hash table of all entries in the .debug_types
4511 (or .debug_types.dwo) section(s).
4512 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4513 otherwise it is NULL.
4514
4515 The result is a pointer to the hash table or NULL if there are no types.
4516
4517 Note: This function processes DWO files only, not DWP files. */
4518
4519 static htab_t
4520 create_debug_types_hash_table (struct dwo_file *dwo_file,
4521 VEC (dwarf2_section_info_def) *types)
4522 {
4523 struct objfile *objfile = dwarf2_per_objfile->objfile;
4524 htab_t types_htab = NULL;
4525 int ix;
4526 struct dwarf2_section_info *section;
4527 struct dwarf2_section_info *abbrev_section;
4528
4529 if (VEC_empty (dwarf2_section_info_def, types))
4530 return NULL;
4531
4532 abbrev_section = (dwo_file != NULL
4533 ? &dwo_file->sections.abbrev
4534 : &dwarf2_per_objfile->abbrev);
4535
4536 if (dwarf2_read_debug)
4537 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4538 dwo_file ? ".dwo" : "",
4539 get_section_file_name (abbrev_section));
4540
4541 for (ix = 0;
4542 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4543 ++ix)
4544 {
4545 bfd *abfd;
4546 const gdb_byte *info_ptr, *end_ptr;
4547
4548 dwarf2_read_section (objfile, section);
4549 info_ptr = section->buffer;
4550
4551 if (info_ptr == NULL)
4552 continue;
4553
4554 /* We can't set abfd until now because the section may be empty or
4555 not present, in which case the bfd is unknown. */
4556 abfd = get_section_bfd_owner (section);
4557
4558 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4559 because we don't need to read any dies: the signature is in the
4560 header. */
4561
4562 end_ptr = info_ptr + section->size;
4563 while (info_ptr < end_ptr)
4564 {
4565 sect_offset offset;
4566 cu_offset type_offset_in_tu;
4567 ULONGEST signature;
4568 struct signatured_type *sig_type;
4569 struct dwo_unit *dwo_tu;
4570 void **slot;
4571 const gdb_byte *ptr = info_ptr;
4572 struct comp_unit_head header;
4573 unsigned int length;
4574
4575 offset.sect_off = ptr - section->buffer;
4576
4577 /* We need to read the type's signature in order to build the hash
4578 table, but we don't need anything else just yet. */
4579
4580 ptr = read_and_check_type_unit_head (&header, section,
4581 abbrev_section, ptr,
4582 &signature, &type_offset_in_tu);
4583
4584 length = get_cu_length (&header);
4585
4586 /* Skip dummy type units. */
4587 if (ptr >= info_ptr + length
4588 || peek_abbrev_code (abfd, ptr) == 0)
4589 {
4590 info_ptr += length;
4591 continue;
4592 }
4593
4594 if (types_htab == NULL)
4595 {
4596 if (dwo_file)
4597 types_htab = allocate_dwo_unit_table (objfile);
4598 else
4599 types_htab = allocate_signatured_type_table (objfile);
4600 }
4601
4602 if (dwo_file)
4603 {
4604 sig_type = NULL;
4605 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4606 struct dwo_unit);
4607 dwo_tu->dwo_file = dwo_file;
4608 dwo_tu->signature = signature;
4609 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4610 dwo_tu->section = section;
4611 dwo_tu->offset = offset;
4612 dwo_tu->length = length;
4613 }
4614 else
4615 {
4616 /* N.B.: type_offset is not usable if this type uses a DWO file.
4617 The real type_offset is in the DWO file. */
4618 dwo_tu = NULL;
4619 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4620 struct signatured_type);
4621 sig_type->signature = signature;
4622 sig_type->type_offset_in_tu = type_offset_in_tu;
4623 sig_type->per_cu.objfile = objfile;
4624 sig_type->per_cu.is_debug_types = 1;
4625 sig_type->per_cu.section = section;
4626 sig_type->per_cu.offset = offset;
4627 sig_type->per_cu.length = length;
4628 }
4629
4630 slot = htab_find_slot (types_htab,
4631 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4632 INSERT);
4633 gdb_assert (slot != NULL);
4634 if (*slot != NULL)
4635 {
4636 sect_offset dup_offset;
4637
4638 if (dwo_file)
4639 {
4640 const struct dwo_unit *dup_tu = *slot;
4641
4642 dup_offset = dup_tu->offset;
4643 }
4644 else
4645 {
4646 const struct signatured_type *dup_tu = *slot;
4647
4648 dup_offset = dup_tu->per_cu.offset;
4649 }
4650
4651 complaint (&symfile_complaints,
4652 _("debug type entry at offset 0x%x is duplicate to"
4653 " the entry at offset 0x%x, signature %s"),
4654 offset.sect_off, dup_offset.sect_off,
4655 hex_string (signature));
4656 }
4657 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4658
4659 if (dwarf2_read_debug > 1)
4660 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4661 offset.sect_off,
4662 hex_string (signature));
4663
4664 info_ptr += length;
4665 }
4666 }
4667
4668 return types_htab;
4669 }
4670
4671 /* Create the hash table of all entries in the .debug_types section,
4672 and initialize all_type_units.
4673 The result is zero if there is an error (e.g. missing .debug_types section),
4674 otherwise non-zero. */
4675
4676 static int
4677 create_all_type_units (struct objfile *objfile)
4678 {
4679 htab_t types_htab;
4680 struct signatured_type **iter;
4681
4682 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4683 if (types_htab == NULL)
4684 {
4685 dwarf2_per_objfile->signatured_types = NULL;
4686 return 0;
4687 }
4688
4689 dwarf2_per_objfile->signatured_types = types_htab;
4690
4691 dwarf2_per_objfile->n_type_units
4692 = dwarf2_per_objfile->n_allocated_type_units
4693 = htab_elements (types_htab);
4694 dwarf2_per_objfile->all_type_units
4695 = xmalloc (dwarf2_per_objfile->n_type_units
4696 * sizeof (struct signatured_type *));
4697 iter = &dwarf2_per_objfile->all_type_units[0];
4698 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4699 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4700 == dwarf2_per_objfile->n_type_units);
4701
4702 return 1;
4703 }
4704
4705 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4706 If SLOT is non-NULL, it is the entry to use in the hash table.
4707 Otherwise we find one. */
4708
4709 static struct signatured_type *
4710 add_type_unit (ULONGEST sig, void **slot)
4711 {
4712 struct objfile *objfile = dwarf2_per_objfile->objfile;
4713 int n_type_units = dwarf2_per_objfile->n_type_units;
4714 struct signatured_type *sig_type;
4715
4716 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4717 ++n_type_units;
4718 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4719 {
4720 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4721 dwarf2_per_objfile->n_allocated_type_units = 1;
4722 dwarf2_per_objfile->n_allocated_type_units *= 2;
4723 dwarf2_per_objfile->all_type_units
4724 = xrealloc (dwarf2_per_objfile->all_type_units,
4725 dwarf2_per_objfile->n_allocated_type_units
4726 * sizeof (struct signatured_type *));
4727 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4728 }
4729 dwarf2_per_objfile->n_type_units = n_type_units;
4730
4731 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct signatured_type);
4733 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4734 sig_type->signature = sig;
4735 sig_type->per_cu.is_debug_types = 1;
4736 if (dwarf2_per_objfile->using_index)
4737 {
4738 sig_type->per_cu.v.quick =
4739 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4740 struct dwarf2_per_cu_quick_data);
4741 }
4742
4743 if (slot == NULL)
4744 {
4745 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4746 sig_type, INSERT);
4747 }
4748 gdb_assert (*slot == NULL);
4749 *slot = sig_type;
4750 /* The rest of sig_type must be filled in by the caller. */
4751 return sig_type;
4752 }
4753
4754 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4755 Fill in SIG_ENTRY with DWO_ENTRY. */
4756
4757 static void
4758 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4759 struct signatured_type *sig_entry,
4760 struct dwo_unit *dwo_entry)
4761 {
4762 /* Make sure we're not clobbering something we don't expect to. */
4763 gdb_assert (! sig_entry->per_cu.queued);
4764 gdb_assert (sig_entry->per_cu.cu == NULL);
4765 if (dwarf2_per_objfile->using_index)
4766 {
4767 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4768 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4769 }
4770 else
4771 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4772 gdb_assert (sig_entry->signature == dwo_entry->signature);
4773 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4774 gdb_assert (sig_entry->type_unit_group == NULL);
4775 gdb_assert (sig_entry->dwo_unit == NULL);
4776
4777 sig_entry->per_cu.section = dwo_entry->section;
4778 sig_entry->per_cu.offset = dwo_entry->offset;
4779 sig_entry->per_cu.length = dwo_entry->length;
4780 sig_entry->per_cu.reading_dwo_directly = 1;
4781 sig_entry->per_cu.objfile = objfile;
4782 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4783 sig_entry->dwo_unit = dwo_entry;
4784 }
4785
4786 /* Subroutine of lookup_signatured_type.
4787 If we haven't read the TU yet, create the signatured_type data structure
4788 for a TU to be read in directly from a DWO file, bypassing the stub.
4789 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4790 using .gdb_index, then when reading a CU we want to stay in the DWO file
4791 containing that CU. Otherwise we could end up reading several other DWO
4792 files (due to comdat folding) to process the transitive closure of all the
4793 mentioned TUs, and that can be slow. The current DWO file will have every
4794 type signature that it needs.
4795 We only do this for .gdb_index because in the psymtab case we already have
4796 to read all the DWOs to build the type unit groups. */
4797
4798 static struct signatured_type *
4799 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4800 {
4801 struct objfile *objfile = dwarf2_per_objfile->objfile;
4802 struct dwo_file *dwo_file;
4803 struct dwo_unit find_dwo_entry, *dwo_entry;
4804 struct signatured_type find_sig_entry, *sig_entry;
4805 void **slot;
4806
4807 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4808
4809 /* If TU skeletons have been removed then we may not have read in any
4810 TUs yet. */
4811 if (dwarf2_per_objfile->signatured_types == NULL)
4812 {
4813 dwarf2_per_objfile->signatured_types
4814 = allocate_signatured_type_table (objfile);
4815 }
4816
4817 /* We only ever need to read in one copy of a signatured type.
4818 Use the global signatured_types array to do our own comdat-folding
4819 of types. If this is the first time we're reading this TU, and
4820 the TU has an entry in .gdb_index, replace the recorded data from
4821 .gdb_index with this TU. */
4822
4823 find_sig_entry.signature = sig;
4824 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4825 &find_sig_entry, INSERT);
4826 sig_entry = *slot;
4827
4828 /* We can get here with the TU already read, *or* in the process of being
4829 read. Don't reassign the global entry to point to this DWO if that's
4830 the case. Also note that if the TU is already being read, it may not
4831 have come from a DWO, the program may be a mix of Fission-compiled
4832 code and non-Fission-compiled code. */
4833
4834 /* Have we already tried to read this TU?
4835 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4836 needn't exist in the global table yet). */
4837 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4838 return sig_entry;
4839
4840 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4841 dwo_unit of the TU itself. */
4842 dwo_file = cu->dwo_unit->dwo_file;
4843
4844 /* Ok, this is the first time we're reading this TU. */
4845 if (dwo_file->tus == NULL)
4846 return NULL;
4847 find_dwo_entry.signature = sig;
4848 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4849 if (dwo_entry == NULL)
4850 return NULL;
4851
4852 /* If the global table doesn't have an entry for this TU, add one. */
4853 if (sig_entry == NULL)
4854 sig_entry = add_type_unit (sig, slot);
4855
4856 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4857 sig_entry->per_cu.tu_read = 1;
4858 return sig_entry;
4859 }
4860
4861 /* Subroutine of lookup_signatured_type.
4862 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4863 then try the DWP file. If the TU stub (skeleton) has been removed then
4864 it won't be in .gdb_index. */
4865
4866 static struct signatured_type *
4867 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4868 {
4869 struct objfile *objfile = dwarf2_per_objfile->objfile;
4870 struct dwp_file *dwp_file = get_dwp_file ();
4871 struct dwo_unit *dwo_entry;
4872 struct signatured_type find_sig_entry, *sig_entry;
4873 void **slot;
4874
4875 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4876 gdb_assert (dwp_file != NULL);
4877
4878 /* If TU skeletons have been removed then we may not have read in any
4879 TUs yet. */
4880 if (dwarf2_per_objfile->signatured_types == NULL)
4881 {
4882 dwarf2_per_objfile->signatured_types
4883 = allocate_signatured_type_table (objfile);
4884 }
4885
4886 find_sig_entry.signature = sig;
4887 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4888 &find_sig_entry, INSERT);
4889 sig_entry = *slot;
4890
4891 /* Have we already tried to read this TU?
4892 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4893 needn't exist in the global table yet). */
4894 if (sig_entry != NULL)
4895 return sig_entry;
4896
4897 if (dwp_file->tus == NULL)
4898 return NULL;
4899 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4900 sig, 1 /* is_debug_types */);
4901 if (dwo_entry == NULL)
4902 return NULL;
4903
4904 sig_entry = add_type_unit (sig, slot);
4905 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4906
4907 return sig_entry;
4908 }
4909
4910 /* Lookup a signature based type for DW_FORM_ref_sig8.
4911 Returns NULL if signature SIG is not present in the table.
4912 It is up to the caller to complain about this. */
4913
4914 static struct signatured_type *
4915 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4916 {
4917 if (cu->dwo_unit
4918 && dwarf2_per_objfile->using_index)
4919 {
4920 /* We're in a DWO/DWP file, and we're using .gdb_index.
4921 These cases require special processing. */
4922 if (get_dwp_file () == NULL)
4923 return lookup_dwo_signatured_type (cu, sig);
4924 else
4925 return lookup_dwp_signatured_type (cu, sig);
4926 }
4927 else
4928 {
4929 struct signatured_type find_entry, *entry;
4930
4931 if (dwarf2_per_objfile->signatured_types == NULL)
4932 return NULL;
4933 find_entry.signature = sig;
4934 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4935 return entry;
4936 }
4937 }
4938 \f
4939 /* Low level DIE reading support. */
4940
4941 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4942
4943 static void
4944 init_cu_die_reader (struct die_reader_specs *reader,
4945 struct dwarf2_cu *cu,
4946 struct dwarf2_section_info *section,
4947 struct dwo_file *dwo_file)
4948 {
4949 gdb_assert (section->readin && section->buffer != NULL);
4950 reader->abfd = get_section_bfd_owner (section);
4951 reader->cu = cu;
4952 reader->dwo_file = dwo_file;
4953 reader->die_section = section;
4954 reader->buffer = section->buffer;
4955 reader->buffer_end = section->buffer + section->size;
4956 reader->comp_dir = NULL;
4957 }
4958
4959 /* Subroutine of init_cutu_and_read_dies to simplify it.
4960 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4961 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4962 already.
4963
4964 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4965 from it to the DIE in the DWO. If NULL we are skipping the stub.
4966 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4967 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4968 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4969 STUB_COMP_DIR may be non-NULL.
4970 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4971 are filled in with the info of the DIE from the DWO file.
4972 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4973 provided an abbrev table to use.
4974 The result is non-zero if a valid (non-dummy) DIE was found. */
4975
4976 static int
4977 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4978 struct dwo_unit *dwo_unit,
4979 int abbrev_table_provided,
4980 struct die_info *stub_comp_unit_die,
4981 const char *stub_comp_dir,
4982 struct die_reader_specs *result_reader,
4983 const gdb_byte **result_info_ptr,
4984 struct die_info **result_comp_unit_die,
4985 int *result_has_children)
4986 {
4987 struct objfile *objfile = dwarf2_per_objfile->objfile;
4988 struct dwarf2_cu *cu = this_cu->cu;
4989 struct dwarf2_section_info *section;
4990 bfd *abfd;
4991 const gdb_byte *begin_info_ptr, *info_ptr;
4992 ULONGEST signature; /* Or dwo_id. */
4993 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4994 int i,num_extra_attrs;
4995 struct dwarf2_section_info *dwo_abbrev_section;
4996 struct attribute *attr;
4997 struct die_info *comp_unit_die;
4998
4999 /* At most one of these may be provided. */
5000 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5001
5002 /* These attributes aren't processed until later:
5003 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5004 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5005 referenced later. However, these attributes are found in the stub
5006 which we won't have later. In order to not impose this complication
5007 on the rest of the code, we read them here and copy them to the
5008 DWO CU/TU die. */
5009
5010 stmt_list = NULL;
5011 low_pc = NULL;
5012 high_pc = NULL;
5013 ranges = NULL;
5014 comp_dir = NULL;
5015
5016 if (stub_comp_unit_die != NULL)
5017 {
5018 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5019 DWO file. */
5020 if (! this_cu->is_debug_types)
5021 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5022 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5023 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5024 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5025 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5026
5027 /* There should be a DW_AT_addr_base attribute here (if needed).
5028 We need the value before we can process DW_FORM_GNU_addr_index. */
5029 cu->addr_base = 0;
5030 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5031 if (attr)
5032 cu->addr_base = DW_UNSND (attr);
5033
5034 /* There should be a DW_AT_ranges_base attribute here (if needed).
5035 We need the value before we can process DW_AT_ranges. */
5036 cu->ranges_base = 0;
5037 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5038 if (attr)
5039 cu->ranges_base = DW_UNSND (attr);
5040 }
5041 else if (stub_comp_dir != NULL)
5042 {
5043 /* Reconstruct the comp_dir attribute to simplify the code below. */
5044 comp_dir = (struct attribute *)
5045 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5046 comp_dir->name = DW_AT_comp_dir;
5047 comp_dir->form = DW_FORM_string;
5048 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5049 DW_STRING (comp_dir) = stub_comp_dir;
5050 }
5051
5052 /* Set up for reading the DWO CU/TU. */
5053 cu->dwo_unit = dwo_unit;
5054 section = dwo_unit->section;
5055 dwarf2_read_section (objfile, section);
5056 abfd = get_section_bfd_owner (section);
5057 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5058 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5059 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5060
5061 if (this_cu->is_debug_types)
5062 {
5063 ULONGEST header_signature;
5064 cu_offset type_offset_in_tu;
5065 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5066
5067 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5068 dwo_abbrev_section,
5069 info_ptr,
5070 &header_signature,
5071 &type_offset_in_tu);
5072 /* This is not an assert because it can be caused by bad debug info. */
5073 if (sig_type->signature != header_signature)
5074 {
5075 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5076 " TU at offset 0x%x [in module %s]"),
5077 hex_string (sig_type->signature),
5078 hex_string (header_signature),
5079 dwo_unit->offset.sect_off,
5080 bfd_get_filename (abfd));
5081 }
5082 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5083 /* For DWOs coming from DWP files, we don't know the CU length
5084 nor the type's offset in the TU until now. */
5085 dwo_unit->length = get_cu_length (&cu->header);
5086 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5087
5088 /* Establish the type offset that can be used to lookup the type.
5089 For DWO files, we don't know it until now. */
5090 sig_type->type_offset_in_section.sect_off =
5091 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5092 }
5093 else
5094 {
5095 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5096 dwo_abbrev_section,
5097 info_ptr, 0);
5098 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5099 /* For DWOs coming from DWP files, we don't know the CU length
5100 until now. */
5101 dwo_unit->length = get_cu_length (&cu->header);
5102 }
5103
5104 /* Replace the CU's original abbrev table with the DWO's.
5105 Reminder: We can't read the abbrev table until we've read the header. */
5106 if (abbrev_table_provided)
5107 {
5108 /* Don't free the provided abbrev table, the caller of
5109 init_cutu_and_read_dies owns it. */
5110 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5111 /* Ensure the DWO abbrev table gets freed. */
5112 make_cleanup (dwarf2_free_abbrev_table, cu);
5113 }
5114 else
5115 {
5116 dwarf2_free_abbrev_table (cu);
5117 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5118 /* Leave any existing abbrev table cleanup as is. */
5119 }
5120
5121 /* Read in the die, but leave space to copy over the attributes
5122 from the stub. This has the benefit of simplifying the rest of
5123 the code - all the work to maintain the illusion of a single
5124 DW_TAG_{compile,type}_unit DIE is done here. */
5125 num_extra_attrs = ((stmt_list != NULL)
5126 + (low_pc != NULL)
5127 + (high_pc != NULL)
5128 + (ranges != NULL)
5129 + (comp_dir != NULL));
5130 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5131 result_has_children, num_extra_attrs);
5132
5133 /* Copy over the attributes from the stub to the DIE we just read in. */
5134 comp_unit_die = *result_comp_unit_die;
5135 i = comp_unit_die->num_attrs;
5136 if (stmt_list != NULL)
5137 comp_unit_die->attrs[i++] = *stmt_list;
5138 if (low_pc != NULL)
5139 comp_unit_die->attrs[i++] = *low_pc;
5140 if (high_pc != NULL)
5141 comp_unit_die->attrs[i++] = *high_pc;
5142 if (ranges != NULL)
5143 comp_unit_die->attrs[i++] = *ranges;
5144 if (comp_dir != NULL)
5145 comp_unit_die->attrs[i++] = *comp_dir;
5146 comp_unit_die->num_attrs += num_extra_attrs;
5147
5148 if (dwarf2_die_debug)
5149 {
5150 fprintf_unfiltered (gdb_stdlog,
5151 "Read die from %s@0x%x of %s:\n",
5152 get_section_name (section),
5153 (unsigned) (begin_info_ptr - section->buffer),
5154 bfd_get_filename (abfd));
5155 dump_die (comp_unit_die, dwarf2_die_debug);
5156 }
5157
5158 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5159 TUs by skipping the stub and going directly to the entry in the DWO file.
5160 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5161 to get it via circuitous means. Blech. */
5162 if (comp_dir != NULL)
5163 result_reader->comp_dir = DW_STRING (comp_dir);
5164
5165 /* Skip dummy compilation units. */
5166 if (info_ptr >= begin_info_ptr + dwo_unit->length
5167 || peek_abbrev_code (abfd, info_ptr) == 0)
5168 return 0;
5169
5170 *result_info_ptr = info_ptr;
5171 return 1;
5172 }
5173
5174 /* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5176 Returns NULL if the specified DWO unit cannot be found. */
5177
5178 static struct dwo_unit *
5179 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5180 struct die_info *comp_unit_die)
5181 {
5182 struct dwarf2_cu *cu = this_cu->cu;
5183 struct attribute *attr;
5184 ULONGEST signature;
5185 struct dwo_unit *dwo_unit;
5186 const char *comp_dir, *dwo_name;
5187
5188 gdb_assert (cu != NULL);
5189
5190 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5192 gdb_assert (attr != NULL);
5193 dwo_name = DW_STRING (attr);
5194 comp_dir = NULL;
5195 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5196 if (attr)
5197 comp_dir = DW_STRING (attr);
5198
5199 if (this_cu->is_debug_types)
5200 {
5201 struct signatured_type *sig_type;
5202
5203 /* Since this_cu is the first member of struct signatured_type,
5204 we can go from a pointer to one to a pointer to the other. */
5205 sig_type = (struct signatured_type *) this_cu;
5206 signature = sig_type->signature;
5207 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5208 }
5209 else
5210 {
5211 struct attribute *attr;
5212
5213 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5214 if (! attr)
5215 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5216 " [in module %s]"),
5217 dwo_name, objfile_name (this_cu->objfile));
5218 signature = DW_UNSND (attr);
5219 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5220 signature);
5221 }
5222
5223 return dwo_unit;
5224 }
5225
5226 /* Subroutine of init_cutu_and_read_dies to simplify it.
5227 See it for a description of the parameters.
5228 Read a TU directly from a DWO file, bypassing the stub.
5229
5230 Note: This function could be a little bit simpler if we shared cleanups
5231 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5232 to do, so we keep this function self-contained. Or we could move this
5233 into our caller, but it's complex enough already. */
5234
5235 static void
5236 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5237 int use_existing_cu, int keep,
5238 die_reader_func_ftype *die_reader_func,
5239 void *data)
5240 {
5241 struct dwarf2_cu *cu;
5242 struct signatured_type *sig_type;
5243 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5244 struct die_reader_specs reader;
5245 const gdb_byte *info_ptr;
5246 struct die_info *comp_unit_die;
5247 int has_children;
5248
5249 /* Verify we can do the following downcast, and that we have the
5250 data we need. */
5251 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5252 sig_type = (struct signatured_type *) this_cu;
5253 gdb_assert (sig_type->dwo_unit != NULL);
5254
5255 cleanups = make_cleanup (null_cleanup, NULL);
5256
5257 if (use_existing_cu && this_cu->cu != NULL)
5258 {
5259 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5260 cu = this_cu->cu;
5261 /* There's no need to do the rereading_dwo_cu handling that
5262 init_cutu_and_read_dies does since we don't read the stub. */
5263 }
5264 else
5265 {
5266 /* If !use_existing_cu, this_cu->cu must be NULL. */
5267 gdb_assert (this_cu->cu == NULL);
5268 cu = xmalloc (sizeof (*cu));
5269 init_one_comp_unit (cu, this_cu);
5270 /* If an error occurs while loading, release our storage. */
5271 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5272 }
5273
5274 /* A future optimization, if needed, would be to use an existing
5275 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5276 could share abbrev tables. */
5277
5278 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5279 0 /* abbrev_table_provided */,
5280 NULL /* stub_comp_unit_die */,
5281 sig_type->dwo_unit->dwo_file->comp_dir,
5282 &reader, &info_ptr,
5283 &comp_unit_die, &has_children) == 0)
5284 {
5285 /* Dummy die. */
5286 do_cleanups (cleanups);
5287 return;
5288 }
5289
5290 /* All the "real" work is done here. */
5291 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5292
5293 /* This duplicates the code in init_cutu_and_read_dies,
5294 but the alternative is making the latter more complex.
5295 This function is only for the special case of using DWO files directly:
5296 no point in overly complicating the general case just to handle this. */
5297 if (free_cu_cleanup != NULL)
5298 {
5299 if (keep)
5300 {
5301 /* We've successfully allocated this compilation unit. Let our
5302 caller clean it up when finished with it. */
5303 discard_cleanups (free_cu_cleanup);
5304
5305 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5306 So we have to manually free the abbrev table. */
5307 dwarf2_free_abbrev_table (cu);
5308
5309 /* Link this CU into read_in_chain. */
5310 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5311 dwarf2_per_objfile->read_in_chain = this_cu;
5312 }
5313 else
5314 do_cleanups (free_cu_cleanup);
5315 }
5316
5317 do_cleanups (cleanups);
5318 }
5319
5320 /* Initialize a CU (or TU) and read its DIEs.
5321 If the CU defers to a DWO file, read the DWO file as well.
5322
5323 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5324 Otherwise the table specified in the comp unit header is read in and used.
5325 This is an optimization for when we already have the abbrev table.
5326
5327 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5328 Otherwise, a new CU is allocated with xmalloc.
5329
5330 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5331 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5332
5333 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5334 linker) then DIE_READER_FUNC will not get called. */
5335
5336 static void
5337 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5338 struct abbrev_table *abbrev_table,
5339 int use_existing_cu, int keep,
5340 die_reader_func_ftype *die_reader_func,
5341 void *data)
5342 {
5343 struct objfile *objfile = dwarf2_per_objfile->objfile;
5344 struct dwarf2_section_info *section = this_cu->section;
5345 bfd *abfd = get_section_bfd_owner (section);
5346 struct dwarf2_cu *cu;
5347 const gdb_byte *begin_info_ptr, *info_ptr;
5348 struct die_reader_specs reader;
5349 struct die_info *comp_unit_die;
5350 int has_children;
5351 struct attribute *attr;
5352 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5353 struct signatured_type *sig_type = NULL;
5354 struct dwarf2_section_info *abbrev_section;
5355 /* Non-zero if CU currently points to a DWO file and we need to
5356 reread it. When this happens we need to reread the skeleton die
5357 before we can reread the DWO file (this only applies to CUs, not TUs). */
5358 int rereading_dwo_cu = 0;
5359
5360 if (dwarf2_die_debug)
5361 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5362 this_cu->is_debug_types ? "type" : "comp",
5363 this_cu->offset.sect_off);
5364
5365 if (use_existing_cu)
5366 gdb_assert (keep);
5367
5368 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5369 file (instead of going through the stub), short-circuit all of this. */
5370 if (this_cu->reading_dwo_directly)
5371 {
5372 /* Narrow down the scope of possibilities to have to understand. */
5373 gdb_assert (this_cu->is_debug_types);
5374 gdb_assert (abbrev_table == NULL);
5375 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5376 die_reader_func, data);
5377 return;
5378 }
5379
5380 cleanups = make_cleanup (null_cleanup, NULL);
5381
5382 /* This is cheap if the section is already read in. */
5383 dwarf2_read_section (objfile, section);
5384
5385 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5386
5387 abbrev_section = get_abbrev_section_for_cu (this_cu);
5388
5389 if (use_existing_cu && this_cu->cu != NULL)
5390 {
5391 cu = this_cu->cu;
5392 /* If this CU is from a DWO file we need to start over, we need to
5393 refetch the attributes from the skeleton CU.
5394 This could be optimized by retrieving those attributes from when we
5395 were here the first time: the previous comp_unit_die was stored in
5396 comp_unit_obstack. But there's no data yet that we need this
5397 optimization. */
5398 if (cu->dwo_unit != NULL)
5399 rereading_dwo_cu = 1;
5400 }
5401 else
5402 {
5403 /* If !use_existing_cu, this_cu->cu must be NULL. */
5404 gdb_assert (this_cu->cu == NULL);
5405 cu = xmalloc (sizeof (*cu));
5406 init_one_comp_unit (cu, this_cu);
5407 /* If an error occurs while loading, release our storage. */
5408 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5409 }
5410
5411 /* Get the header. */
5412 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5413 {
5414 /* We already have the header, there's no need to read it in again. */
5415 info_ptr += cu->header.first_die_offset.cu_off;
5416 }
5417 else
5418 {
5419 if (this_cu->is_debug_types)
5420 {
5421 ULONGEST signature;
5422 cu_offset type_offset_in_tu;
5423
5424 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5425 abbrev_section, info_ptr,
5426 &signature,
5427 &type_offset_in_tu);
5428
5429 /* Since per_cu is the first member of struct signatured_type,
5430 we can go from a pointer to one to a pointer to the other. */
5431 sig_type = (struct signatured_type *) this_cu;
5432 gdb_assert (sig_type->signature == signature);
5433 gdb_assert (sig_type->type_offset_in_tu.cu_off
5434 == type_offset_in_tu.cu_off);
5435 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5436
5437 /* LENGTH has not been set yet for type units if we're
5438 using .gdb_index. */
5439 this_cu->length = get_cu_length (&cu->header);
5440
5441 /* Establish the type offset that can be used to lookup the type. */
5442 sig_type->type_offset_in_section.sect_off =
5443 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5444 }
5445 else
5446 {
5447 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5448 abbrev_section,
5449 info_ptr, 0);
5450
5451 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5452 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5453 }
5454 }
5455
5456 /* Skip dummy compilation units. */
5457 if (info_ptr >= begin_info_ptr + this_cu->length
5458 || peek_abbrev_code (abfd, info_ptr) == 0)
5459 {
5460 do_cleanups (cleanups);
5461 return;
5462 }
5463
5464 /* If we don't have them yet, read the abbrevs for this compilation unit.
5465 And if we need to read them now, make sure they're freed when we're
5466 done. Note that it's important that if the CU had an abbrev table
5467 on entry we don't free it when we're done: Somewhere up the call stack
5468 it may be in use. */
5469 if (abbrev_table != NULL)
5470 {
5471 gdb_assert (cu->abbrev_table == NULL);
5472 gdb_assert (cu->header.abbrev_offset.sect_off
5473 == abbrev_table->offset.sect_off);
5474 cu->abbrev_table = abbrev_table;
5475 }
5476 else if (cu->abbrev_table == NULL)
5477 {
5478 dwarf2_read_abbrevs (cu, abbrev_section);
5479 make_cleanup (dwarf2_free_abbrev_table, cu);
5480 }
5481 else if (rereading_dwo_cu)
5482 {
5483 dwarf2_free_abbrev_table (cu);
5484 dwarf2_read_abbrevs (cu, abbrev_section);
5485 }
5486
5487 /* Read the top level CU/TU die. */
5488 init_cu_die_reader (&reader, cu, section, NULL);
5489 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5490
5491 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5492 from the DWO file.
5493 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5494 DWO CU, that this test will fail (the attribute will not be present). */
5495 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5496 if (attr)
5497 {
5498 struct dwo_unit *dwo_unit;
5499 struct die_info *dwo_comp_unit_die;
5500
5501 if (has_children)
5502 {
5503 complaint (&symfile_complaints,
5504 _("compilation unit with DW_AT_GNU_dwo_name"
5505 " has children (offset 0x%x) [in module %s]"),
5506 this_cu->offset.sect_off, bfd_get_filename (abfd));
5507 }
5508 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5509 if (dwo_unit != NULL)
5510 {
5511 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5512 abbrev_table != NULL,
5513 comp_unit_die, NULL,
5514 &reader, &info_ptr,
5515 &dwo_comp_unit_die, &has_children) == 0)
5516 {
5517 /* Dummy die. */
5518 do_cleanups (cleanups);
5519 return;
5520 }
5521 comp_unit_die = dwo_comp_unit_die;
5522 }
5523 else
5524 {
5525 /* Yikes, we couldn't find the rest of the DIE, we only have
5526 the stub. A complaint has already been logged. There's
5527 not much more we can do except pass on the stub DIE to
5528 die_reader_func. We don't want to throw an error on bad
5529 debug info. */
5530 }
5531 }
5532
5533 /* All of the above is setup for this call. Yikes. */
5534 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5535
5536 /* Done, clean up. */
5537 if (free_cu_cleanup != NULL)
5538 {
5539 if (keep)
5540 {
5541 /* We've successfully allocated this compilation unit. Let our
5542 caller clean it up when finished with it. */
5543 discard_cleanups (free_cu_cleanup);
5544
5545 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5546 So we have to manually free the abbrev table. */
5547 dwarf2_free_abbrev_table (cu);
5548
5549 /* Link this CU into read_in_chain. */
5550 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5551 dwarf2_per_objfile->read_in_chain = this_cu;
5552 }
5553 else
5554 do_cleanups (free_cu_cleanup);
5555 }
5556
5557 do_cleanups (cleanups);
5558 }
5559
5560 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5561 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5562 to have already done the lookup to find the DWO file).
5563
5564 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5565 THIS_CU->is_debug_types, but nothing else.
5566
5567 We fill in THIS_CU->length.
5568
5569 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5570 linker) then DIE_READER_FUNC will not get called.
5571
5572 THIS_CU->cu is always freed when done.
5573 This is done in order to not leave THIS_CU->cu in a state where we have
5574 to care whether it refers to the "main" CU or the DWO CU. */
5575
5576 static void
5577 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5578 struct dwo_file *dwo_file,
5579 die_reader_func_ftype *die_reader_func,
5580 void *data)
5581 {
5582 struct objfile *objfile = dwarf2_per_objfile->objfile;
5583 struct dwarf2_section_info *section = this_cu->section;
5584 bfd *abfd = get_section_bfd_owner (section);
5585 struct dwarf2_section_info *abbrev_section;
5586 struct dwarf2_cu cu;
5587 const gdb_byte *begin_info_ptr, *info_ptr;
5588 struct die_reader_specs reader;
5589 struct cleanup *cleanups;
5590 struct die_info *comp_unit_die;
5591 int has_children;
5592
5593 if (dwarf2_die_debug)
5594 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5595 this_cu->is_debug_types ? "type" : "comp",
5596 this_cu->offset.sect_off);
5597
5598 gdb_assert (this_cu->cu == NULL);
5599
5600 abbrev_section = (dwo_file != NULL
5601 ? &dwo_file->sections.abbrev
5602 : get_abbrev_section_for_cu (this_cu));
5603
5604 /* This is cheap if the section is already read in. */
5605 dwarf2_read_section (objfile, section);
5606
5607 init_one_comp_unit (&cu, this_cu);
5608
5609 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5610
5611 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5612 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5613 abbrev_section, info_ptr,
5614 this_cu->is_debug_types);
5615
5616 this_cu->length = get_cu_length (&cu.header);
5617
5618 /* Skip dummy compilation units. */
5619 if (info_ptr >= begin_info_ptr + this_cu->length
5620 || peek_abbrev_code (abfd, info_ptr) == 0)
5621 {
5622 do_cleanups (cleanups);
5623 return;
5624 }
5625
5626 dwarf2_read_abbrevs (&cu, abbrev_section);
5627 make_cleanup (dwarf2_free_abbrev_table, &cu);
5628
5629 init_cu_die_reader (&reader, &cu, section, dwo_file);
5630 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5631
5632 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5633
5634 do_cleanups (cleanups);
5635 }
5636
5637 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5638 does not lookup the specified DWO file.
5639 This cannot be used to read DWO files.
5640
5641 THIS_CU->cu is always freed when done.
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU.
5644 We can revisit this if the data shows there's a performance issue. */
5645
5646 static void
5647 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5648 die_reader_func_ftype *die_reader_func,
5649 void *data)
5650 {
5651 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5652 }
5653 \f
5654 /* Type Unit Groups.
5655
5656 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5657 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5658 so that all types coming from the same compilation (.o file) are grouped
5659 together. A future step could be to put the types in the same symtab as
5660 the CU the types ultimately came from. */
5661
5662 static hashval_t
5663 hash_type_unit_group (const void *item)
5664 {
5665 const struct type_unit_group *tu_group = item;
5666
5667 return hash_stmt_list_entry (&tu_group->hash);
5668 }
5669
5670 static int
5671 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5672 {
5673 const struct type_unit_group *lhs = item_lhs;
5674 const struct type_unit_group *rhs = item_rhs;
5675
5676 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5677 }
5678
5679 /* Allocate a hash table for type unit groups. */
5680
5681 static htab_t
5682 allocate_type_unit_groups_table (void)
5683 {
5684 return htab_create_alloc_ex (3,
5685 hash_type_unit_group,
5686 eq_type_unit_group,
5687 NULL,
5688 &dwarf2_per_objfile->objfile->objfile_obstack,
5689 hashtab_obstack_allocate,
5690 dummy_obstack_deallocate);
5691 }
5692
5693 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5694 partial symtabs. We combine several TUs per psymtab to not let the size
5695 of any one psymtab grow too big. */
5696 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5697 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5698
5699 /* Helper routine for get_type_unit_group.
5700 Create the type_unit_group object used to hold one or more TUs. */
5701
5702 static struct type_unit_group *
5703 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5704 {
5705 struct objfile *objfile = dwarf2_per_objfile->objfile;
5706 struct dwarf2_per_cu_data *per_cu;
5707 struct type_unit_group *tu_group;
5708
5709 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5710 struct type_unit_group);
5711 per_cu = &tu_group->per_cu;
5712 per_cu->objfile = objfile;
5713
5714 if (dwarf2_per_objfile->using_index)
5715 {
5716 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5717 struct dwarf2_per_cu_quick_data);
5718 }
5719 else
5720 {
5721 unsigned int line_offset = line_offset_struct.sect_off;
5722 struct partial_symtab *pst;
5723 char *name;
5724
5725 /* Give the symtab a useful name for debug purposes. */
5726 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5727 name = xstrprintf ("<type_units_%d>",
5728 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5729 else
5730 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5731
5732 pst = create_partial_symtab (per_cu, name);
5733 pst->anonymous = 1;
5734
5735 xfree (name);
5736 }
5737
5738 tu_group->hash.dwo_unit = cu->dwo_unit;
5739 tu_group->hash.line_offset = line_offset_struct;
5740
5741 return tu_group;
5742 }
5743
5744 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5745 STMT_LIST is a DW_AT_stmt_list attribute. */
5746
5747 static struct type_unit_group *
5748 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5749 {
5750 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5751 struct type_unit_group *tu_group;
5752 void **slot;
5753 unsigned int line_offset;
5754 struct type_unit_group type_unit_group_for_lookup;
5755
5756 if (dwarf2_per_objfile->type_unit_groups == NULL)
5757 {
5758 dwarf2_per_objfile->type_unit_groups =
5759 allocate_type_unit_groups_table ();
5760 }
5761
5762 /* Do we need to create a new group, or can we use an existing one? */
5763
5764 if (stmt_list)
5765 {
5766 line_offset = DW_UNSND (stmt_list);
5767 ++tu_stats->nr_symtab_sharers;
5768 }
5769 else
5770 {
5771 /* Ugh, no stmt_list. Rare, but we have to handle it.
5772 We can do various things here like create one group per TU or
5773 spread them over multiple groups to split up the expansion work.
5774 To avoid worst case scenarios (too many groups or too large groups)
5775 we, umm, group them in bunches. */
5776 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5777 | (tu_stats->nr_stmt_less_type_units
5778 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5779 ++tu_stats->nr_stmt_less_type_units;
5780 }
5781
5782 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5783 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5784 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5785 &type_unit_group_for_lookup, INSERT);
5786 if (*slot != NULL)
5787 {
5788 tu_group = *slot;
5789 gdb_assert (tu_group != NULL);
5790 }
5791 else
5792 {
5793 sect_offset line_offset_struct;
5794
5795 line_offset_struct.sect_off = line_offset;
5796 tu_group = create_type_unit_group (cu, line_offset_struct);
5797 *slot = tu_group;
5798 ++tu_stats->nr_symtabs;
5799 }
5800
5801 return tu_group;
5802 }
5803 \f
5804 /* Partial symbol tables. */
5805
5806 /* Create a psymtab named NAME and assign it to PER_CU.
5807
5808 The caller must fill in the following details:
5809 dirname, textlow, texthigh. */
5810
5811 static struct partial_symtab *
5812 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5813 {
5814 struct objfile *objfile = per_cu->objfile;
5815 struct partial_symtab *pst;
5816
5817 pst = start_psymtab_common (objfile, objfile->section_offsets,
5818 name, 0,
5819 objfile->global_psymbols.next,
5820 objfile->static_psymbols.next);
5821
5822 pst->psymtabs_addrmap_supported = 1;
5823
5824 /* This is the glue that links PST into GDB's symbol API. */
5825 pst->read_symtab_private = per_cu;
5826 pst->read_symtab = dwarf2_read_symtab;
5827 per_cu->v.psymtab = pst;
5828
5829 return pst;
5830 }
5831
5832 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5833 type. */
5834
5835 struct process_psymtab_comp_unit_data
5836 {
5837 /* True if we are reading a DW_TAG_partial_unit. */
5838
5839 int want_partial_unit;
5840
5841 /* The "pretend" language that is used if the CU doesn't declare a
5842 language. */
5843
5844 enum language pretend_language;
5845 };
5846
5847 /* die_reader_func for process_psymtab_comp_unit. */
5848
5849 static void
5850 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5851 const gdb_byte *info_ptr,
5852 struct die_info *comp_unit_die,
5853 int has_children,
5854 void *data)
5855 {
5856 struct dwarf2_cu *cu = reader->cu;
5857 struct objfile *objfile = cu->objfile;
5858 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5859 struct attribute *attr;
5860 CORE_ADDR baseaddr;
5861 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5862 struct partial_symtab *pst;
5863 int has_pc_info;
5864 const char *filename;
5865 struct process_psymtab_comp_unit_data *info = data;
5866
5867 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5868 return;
5869
5870 gdb_assert (! per_cu->is_debug_types);
5871
5872 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5873
5874 cu->list_in_scope = &file_symbols;
5875
5876 /* Allocate a new partial symbol table structure. */
5877 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5878 if (attr == NULL || !DW_STRING (attr))
5879 filename = "";
5880 else
5881 filename = DW_STRING (attr);
5882
5883 pst = create_partial_symtab (per_cu, filename);
5884
5885 /* This must be done before calling dwarf2_build_include_psymtabs. */
5886 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5887 if (attr != NULL)
5888 pst->dirname = DW_STRING (attr);
5889
5890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5891
5892 dwarf2_find_base_address (comp_unit_die, cu);
5893
5894 /* Possibly set the default values of LOWPC and HIGHPC from
5895 `DW_AT_ranges'. */
5896 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5897 &best_highpc, cu, pst);
5898 if (has_pc_info == 1 && best_lowpc < best_highpc)
5899 /* Store the contiguous range if it is not empty; it can be empty for
5900 CUs with no code. */
5901 addrmap_set_empty (objfile->psymtabs_addrmap,
5902 best_lowpc + baseaddr,
5903 best_highpc + baseaddr - 1, pst);
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
5934 pst->textlow = best_lowpc + baseaddr;
5935 pst->texthigh = best_highpc + baseaddr;
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980 }
5981
5982 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985 static void
5986 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5987 int want_partial_unit,
5988 enum language pretend_language)
5989 {
5990 struct process_psymtab_comp_unit_data info;
5991
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
6005 &info);
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009 }
6010
6011 /* Reader function for build_type_psymtabs. */
6012
6013 static void
6014 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6015 const gdb_byte *info_ptr,
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019 {
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6023 struct signatured_type *sig_type;
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6038 tu_group = get_type_unit_group (cu, attr);
6039
6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
6057 sort_pst_symbols (objfile, pst);
6058 }
6059
6060 /* Struct used to sort TUs by their abbreviation table offset. */
6061
6062 struct tu_abbrev_offset
6063 {
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066 };
6067
6068 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070 static int
6071 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072 {
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079 }
6080
6081 /* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099 static void
6100 build_type_psymtabs_1 (void)
6101 {
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
6186 do_cleanups (cleanups);
6187 }
6188
6189 /* Print collected type unit statistics. */
6190
6191 static void
6192 print_tu_stats (void)
6193 {
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
6209 }
6210
6211 /* Traversal function for build_type_psymtabs. */
6212
6213 static int
6214 build_type_psymtab_dependencies (void **slot, void *info)
6215 {
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6219 struct partial_symtab *pst = per_cu->v.psymtab;
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
6222 int i;
6223
6224 gdb_assert (len > 0);
6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6232 ++i)
6233 {
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
6236 iter->type_unit_group = tu_group;
6237 }
6238
6239 VEC_free (sig_type_ptr, tu_group->tus);
6240
6241 return 1;
6242 }
6243
6244 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247 static void
6248 build_type_psymtabs (struct objfile *objfile)
6249 {
6250 if (! create_all_type_units (objfile))
6251 return;
6252
6253 build_type_psymtabs_1 ();
6254 }
6255
6256 /* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259 static int
6260 process_skeletonless_type_unit (void **slot, void *info)
6261 {
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293 }
6294
6295 /* Traversal function for process_skeletonless_type_units. */
6296
6297 static int
6298 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299 {
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309 }
6310
6311 /* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315 static void
6316 process_skeletonless_type_units (struct objfile *objfile)
6317 {
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
6326 }
6327
6328 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330 static void
6331 psymtabs_addrmap_cleanup (void *o)
6332 {
6333 struct objfile *objfile = o;
6334
6335 objfile->psymtabs_addrmap = NULL;
6336 }
6337
6338 /* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340 static void
6341 set_partial_user (struct objfile *objfile)
6342 {
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
6351 if (pst == NULL)
6352 continue;
6353
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361 }
6362
6363 /* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
6365
6366 static void
6367 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6368 {
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
6371 int i;
6372
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6376 objfile_name (objfile));
6377 }
6378
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6382
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
6386
6387 build_type_psymtabs (objfile);
6388
6389 create_all_comp_units (objfile);
6390
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6397
6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6399 {
6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6401
6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6403 }
6404
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
6418 set_partial_user (objfile);
6419
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
6422 discard_cleanups (addrmap_cleanup);
6423
6424 do_cleanups (back_to);
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6428 objfile_name (objfile));
6429 }
6430
6431 /* die_reader_func for load_partial_comp_unit. */
6432
6433 static void
6434 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6435 const gdb_byte *info_ptr,
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
6439 {
6440 struct dwarf2_cu *cu = reader->cu;
6441
6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6443
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
6446 If not, there's no more debug_info for this comp unit. */
6447 if (has_children)
6448 load_partial_dies (reader, info_ptr, 0);
6449 }
6450
6451 /* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
6453
6454 static void
6455 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456 {
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
6459 }
6460
6461 static void
6462 read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
6468 {
6469 const gdb_byte *info_ptr;
6470 bfd *abfd = get_section_bfd_owner (section);
6471
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6474 get_section_name (section),
6475 get_section_file_name (section));
6476
6477 dwarf2_read_section (objfile, section);
6478
6479 info_ptr = section->buffer;
6480
6481 while (info_ptr < section->buffer + section->size)
6482 {
6483 unsigned int length, initial_length_size;
6484 struct dwarf2_per_cu_data *this_cu;
6485 sect_offset offset;
6486
6487 offset.sect_off = info_ptr - section->buffer;
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
6498 this_cu->length = length + initial_length_size;
6499 this_cu->is_dwz = is_dwz;
6500 this_cu->objfile = objfile;
6501 this_cu->section = section;
6502
6503 if (*n_comp_units == *n_allocated)
6504 {
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
6509 }
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
6515 }
6516
6517 /* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520 static void
6521 create_all_comp_units (struct objfile *objfile)
6522 {
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
6526 struct dwz_file *dwz;
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
6549 }
6550
6551 /* Process all loaded DIEs for compilation unit CU, starting at
6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6556
6557 static void
6558 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
6561 {
6562 struct partial_die_info *pdi;
6563
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
6567
6568 pdi = first_die;
6569
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
6573
6574 /* Anonymous namespaces or modules have no name but have interesting
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
6577
6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
6581 {
6582 switch (pdi->tag)
6583 {
6584 case DW_TAG_subprogram:
6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6586 break;
6587 case DW_TAG_constant:
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
6590 case DW_TAG_union_type:
6591 if (!pdi->is_declaration)
6592 {
6593 add_partial_symbol (pdi, cu);
6594 }
6595 break;
6596 case DW_TAG_class_type:
6597 case DW_TAG_interface_type:
6598 case DW_TAG_structure_type:
6599 if (!pdi->is_declaration)
6600 {
6601 add_partial_symbol (pdi, cu);
6602 }
6603 break;
6604 case DW_TAG_enumeration_type:
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
6607 break;
6608 case DW_TAG_base_type:
6609 case DW_TAG_subrange_type:
6610 /* File scope base type definitions are added to the partial
6611 symbol table. */
6612 add_partial_symbol (pdi, cu);
6613 break;
6614 case DW_TAG_namespace:
6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6616 break;
6617 case DW_TAG_module:
6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6619 break;
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
6629 objfile_name (cu->objfile));
6630 }
6631
6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6633 pdi->is_dwz,
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
6639
6640 VEC_safe_push (dwarf2_per_cu_ptr,
6641 cu->per_cu->imported_symtabs, per_cu);
6642 }
6643 break;
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
6647 default:
6648 break;
6649 }
6650 }
6651
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656 }
6657
6658 /* Functions used to compute the fully scoped name of a partial DIE.
6659
6660 Normally, this is simple. For C++, the parent DIE's fully scoped
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
6666
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678 /* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
6682 static const char *
6683 partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685 {
6686 const char *grandparent_scope;
6687 struct partial_die_info *parent, *real_pdi;
6688
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
6693 while (real_pdi->has_specification)
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
6706 grandparent_scope = partial_die_parent_scope (parent, cu);
6707
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6712 && parent->tag == DW_TAG_namespace
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
6725 || parent->tag == DW_TAG_module
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
6728 || parent->tag == DW_TAG_interface_type
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
6737 parent->name, 0, cu);
6738 }
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
6745 _("unhandled containing DIE tag %d for DIE at %d"),
6746 parent->tag, pdi->offset.sect_off);
6747 parent->scope = grandparent_scope;
6748 }
6749
6750 parent->scope_set = 1;
6751 return parent->scope;
6752 }
6753
6754 /* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
6756
6757 static char *
6758 partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760 {
6761 const char *parent_scope;
6762
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
6777 /* DW_FORM_ref_addr is using section offset. */
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
6780 attr.u.unsnd = pdi->offset.sect_off;
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6792 }
6793
6794 static void
6795 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6796 {
6797 struct objfile *objfile = cu->objfile;
6798 CORE_ADDR addr = 0;
6799 const char *actual_name = NULL;
6800 CORE_ADDR baseaddr;
6801 char *built_actual_name;
6802
6803 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6804
6805 built_actual_name = partial_die_full_name (pdi, cu);
6806 if (built_actual_name != NULL)
6807 actual_name = built_actual_name;
6808
6809 if (actual_name == NULL)
6810 actual_name = pdi->name;
6811
6812 switch (pdi->tag)
6813 {
6814 case DW_TAG_subprogram:
6815 if (pdi->is_external || cu->language == language_ada)
6816 {
6817 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6818 of the global scope. But in Ada, we want to be able to access
6819 nested procedures globally. So all Ada subprograms are stored
6820 in the global scope. */
6821 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6822 mst_text, objfile); */
6823 add_psymbol_to_list (actual_name, strlen (actual_name),
6824 built_actual_name != NULL,
6825 VAR_DOMAIN, LOC_BLOCK,
6826 &objfile->global_psymbols,
6827 0, pdi->lowpc + baseaddr,
6828 cu->language, objfile);
6829 }
6830 else
6831 {
6832 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6833 mst_file_text, objfile); */
6834 add_psymbol_to_list (actual_name, strlen (actual_name),
6835 built_actual_name != NULL,
6836 VAR_DOMAIN, LOC_BLOCK,
6837 &objfile->static_psymbols,
6838 0, pdi->lowpc + baseaddr,
6839 cu->language, objfile);
6840 }
6841 break;
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
6850 add_psymbol_to_list (actual_name, strlen (actual_name),
6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6852 list, 0, 0, cu->language, objfile);
6853 }
6854 break;
6855 case DW_TAG_variable:
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
6858
6859 if (pdi->d.locdesc
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
6883 if (pdi->d.locdesc || pdi->has_type)
6884 add_psymbol_to_list (actual_name, strlen (actual_name),
6885 built_actual_name != NULL,
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
6890 }
6891 else
6892 {
6893 /* Static Variable. Skip symbols without location descriptors. */
6894 if (pdi->d.locdesc == NULL)
6895 {
6896 xfree (built_actual_name);
6897 return;
6898 }
6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6900 mst_file_data, objfile); */
6901 add_psymbol_to_list (actual_name, strlen (actual_name),
6902 built_actual_name != NULL,
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
6911 case DW_TAG_subrange_type:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->static_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
6918 case DW_TAG_imported_declaration:
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
6933 case DW_TAG_class_type:
6934 case DW_TAG_interface_type:
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
6944 {
6945 xfree (built_actual_name);
6946 return;
6947 }
6948
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
6951 add_psymbol_to_list (actual_name, strlen (actual_name),
6952 built_actual_name != NULL,
6953 STRUCT_DOMAIN, LOC_TYPEDEF,
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
6958 0, (CORE_ADDR) 0, cu->language, objfile);
6959
6960 break;
6961 case DW_TAG_enumerator:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_CONST,
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
6969 0, (CORE_ADDR) 0, cu->language, objfile);
6970 break;
6971 default:
6972 break;
6973 }
6974
6975 xfree (built_actual_name);
6976 }
6977
6978 /* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
6981
6982 static void
6983 add_partial_namespace (struct partial_die_info *pdi,
6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6985 int set_addrmap, struct dwarf2_cu *cu)
6986 {
6987 /* Add a symbol for the namespace. */
6988
6989 add_partial_symbol (pdi, cu);
6990
6991 /* Now scan partial symbols in that namespace. */
6992
6993 if (pdi->has_children)
6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6995 }
6996
6997 /* Read a partial die corresponding to a Fortran module. */
6998
6999 static void
7000 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7002 {
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
7007 /* Now scan partial symbols in that module. */
7008
7009 if (pdi->has_children)
7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7011 }
7012
7013 /* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
7016 that this subprogram contains. If SET_ADDRMAP is true, record the
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
7019
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025 static void
7026 add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7028 int set_addrmap, struct dwarf2_cu *cu)
7029 {
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
7038 if (set_addrmap)
7039 {
7040 CORE_ADDR baseaddr;
7041 struct objfile *objfile = cu->objfile;
7042
7043 baseaddr = ANOFFSET (objfile->section_offsets,
7044 SECT_OFF_TEXT (objfile));
7045 addrmap_set_empty (objfile->psymtabs_addrmap,
7046 pdi->lowpc + baseaddr,
7047 pdi->highpc - 1 + baseaddr,
7048 cu->per_cu->v.psymtab);
7049 }
7050 }
7051
7052 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7053 {
7054 if (!pdi->is_declaration)
7055 /* Ignore subprogram DIEs that do not have a name, they are
7056 illegal. Do not emit a complaint at this point, we will
7057 do so when we convert this psymtab into a symtab. */
7058 if (pdi->name)
7059 add_partial_symbol (pdi, cu);
7060 }
7061 }
7062
7063 if (! pdi->has_children)
7064 return;
7065
7066 if (cu->language == language_ada)
7067 {
7068 pdi = pdi->die_child;
7069 while (pdi != NULL)
7070 {
7071 fixup_partial_die (pdi, cu);
7072 if (pdi->tag == DW_TAG_subprogram
7073 || pdi->tag == DW_TAG_lexical_block)
7074 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7075 pdi = pdi->die_sibling;
7076 }
7077 }
7078 }
7079
7080 /* Read a partial die corresponding to an enumeration type. */
7081
7082 static void
7083 add_partial_enumeration (struct partial_die_info *enum_pdi,
7084 struct dwarf2_cu *cu)
7085 {
7086 struct partial_die_info *pdi;
7087
7088 if (enum_pdi->name != NULL)
7089 add_partial_symbol (enum_pdi, cu);
7090
7091 pdi = enum_pdi->die_child;
7092 while (pdi)
7093 {
7094 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7095 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7096 else
7097 add_partial_symbol (pdi, cu);
7098 pdi = pdi->die_sibling;
7099 }
7100 }
7101
7102 /* Return the initial uleb128 in the die at INFO_PTR. */
7103
7104 static unsigned int
7105 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7106 {
7107 unsigned int bytes_read;
7108
7109 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7110 }
7111
7112 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7113 Return the corresponding abbrev, or NULL if the number is zero (indicating
7114 an empty DIE). In either case *BYTES_READ will be set to the length of
7115 the initial number. */
7116
7117 static struct abbrev_info *
7118 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7119 struct dwarf2_cu *cu)
7120 {
7121 bfd *abfd = cu->objfile->obfd;
7122 unsigned int abbrev_number;
7123 struct abbrev_info *abbrev;
7124
7125 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7126
7127 if (abbrev_number == 0)
7128 return NULL;
7129
7130 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7131 if (!abbrev)
7132 {
7133 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7134 " at offset 0x%x [in module %s]"),
7135 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7136 cu->header.offset.sect_off, bfd_get_filename (abfd));
7137 }
7138
7139 return abbrev;
7140 }
7141
7142 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7143 Returns a pointer to the end of a series of DIEs, terminated by an empty
7144 DIE. Any children of the skipped DIEs will also be skipped. */
7145
7146 static const gdb_byte *
7147 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7148 {
7149 struct dwarf2_cu *cu = reader->cu;
7150 struct abbrev_info *abbrev;
7151 unsigned int bytes_read;
7152
7153 while (1)
7154 {
7155 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7156 if (abbrev == NULL)
7157 return info_ptr + bytes_read;
7158 else
7159 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7160 }
7161 }
7162
7163 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7164 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7165 abbrev corresponding to that skipped uleb128 should be passed in
7166 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7167 children. */
7168
7169 static const gdb_byte *
7170 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7171 struct abbrev_info *abbrev)
7172 {
7173 unsigned int bytes_read;
7174 struct attribute attr;
7175 bfd *abfd = reader->abfd;
7176 struct dwarf2_cu *cu = reader->cu;
7177 const gdb_byte *buffer = reader->buffer;
7178 const gdb_byte *buffer_end = reader->buffer_end;
7179 const gdb_byte *start_info_ptr = info_ptr;
7180 unsigned int form, i;
7181
7182 for (i = 0; i < abbrev->num_attrs; i++)
7183 {
7184 /* The only abbrev we care about is DW_AT_sibling. */
7185 if (abbrev->attrs[i].name == DW_AT_sibling)
7186 {
7187 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7188 if (attr.form == DW_FORM_ref_addr)
7189 complaint (&symfile_complaints,
7190 _("ignoring absolute DW_AT_sibling"));
7191 else
7192 {
7193 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7194 const gdb_byte *sibling_ptr = buffer + off;
7195
7196 if (sibling_ptr < info_ptr)
7197 complaint (&symfile_complaints,
7198 _("DW_AT_sibling points backwards"));
7199 else if (sibling_ptr > reader->buffer_end)
7200 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7201 else
7202 return sibling_ptr;
7203 }
7204 }
7205
7206 /* If it isn't DW_AT_sibling, skip this attribute. */
7207 form = abbrev->attrs[i].form;
7208 skip_attribute:
7209 switch (form)
7210 {
7211 case DW_FORM_ref_addr:
7212 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7213 and later it is offset sized. */
7214 if (cu->header.version == 2)
7215 info_ptr += cu->header.addr_size;
7216 else
7217 info_ptr += cu->header.offset_size;
7218 break;
7219 case DW_FORM_GNU_ref_alt:
7220 info_ptr += cu->header.offset_size;
7221 break;
7222 case DW_FORM_addr:
7223 info_ptr += cu->header.addr_size;
7224 break;
7225 case DW_FORM_data1:
7226 case DW_FORM_ref1:
7227 case DW_FORM_flag:
7228 info_ptr += 1;
7229 break;
7230 case DW_FORM_flag_present:
7231 break;
7232 case DW_FORM_data2:
7233 case DW_FORM_ref2:
7234 info_ptr += 2;
7235 break;
7236 case DW_FORM_data4:
7237 case DW_FORM_ref4:
7238 info_ptr += 4;
7239 break;
7240 case DW_FORM_data8:
7241 case DW_FORM_ref8:
7242 case DW_FORM_ref_sig8:
7243 info_ptr += 8;
7244 break;
7245 case DW_FORM_string:
7246 read_direct_string (abfd, info_ptr, &bytes_read);
7247 info_ptr += bytes_read;
7248 break;
7249 case DW_FORM_sec_offset:
7250 case DW_FORM_strp:
7251 case DW_FORM_GNU_strp_alt:
7252 info_ptr += cu->header.offset_size;
7253 break;
7254 case DW_FORM_exprloc:
7255 case DW_FORM_block:
7256 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7257 info_ptr += bytes_read;
7258 break;
7259 case DW_FORM_block1:
7260 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7261 break;
7262 case DW_FORM_block2:
7263 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7264 break;
7265 case DW_FORM_block4:
7266 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7267 break;
7268 case DW_FORM_sdata:
7269 case DW_FORM_udata:
7270 case DW_FORM_ref_udata:
7271 case DW_FORM_GNU_addr_index:
7272 case DW_FORM_GNU_str_index:
7273 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7274 break;
7275 case DW_FORM_indirect:
7276 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7277 info_ptr += bytes_read;
7278 /* We need to continue parsing from here, so just go back to
7279 the top. */
7280 goto skip_attribute;
7281
7282 default:
7283 error (_("Dwarf Error: Cannot handle %s "
7284 "in DWARF reader [in module %s]"),
7285 dwarf_form_name (form),
7286 bfd_get_filename (abfd));
7287 }
7288 }
7289
7290 if (abbrev->has_children)
7291 return skip_children (reader, info_ptr);
7292 else
7293 return info_ptr;
7294 }
7295
7296 /* Locate ORIG_PDI's sibling.
7297 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7298
7299 static const gdb_byte *
7300 locate_pdi_sibling (const struct die_reader_specs *reader,
7301 struct partial_die_info *orig_pdi,
7302 const gdb_byte *info_ptr)
7303 {
7304 /* Do we know the sibling already? */
7305
7306 if (orig_pdi->sibling)
7307 return orig_pdi->sibling;
7308
7309 /* Are there any children to deal with? */
7310
7311 if (!orig_pdi->has_children)
7312 return info_ptr;
7313
7314 /* Skip the children the long way. */
7315
7316 return skip_children (reader, info_ptr);
7317 }
7318
7319 /* Expand this partial symbol table into a full symbol table. SELF is
7320 not NULL. */
7321
7322 static void
7323 dwarf2_read_symtab (struct partial_symtab *self,
7324 struct objfile *objfile)
7325 {
7326 if (self->readin)
7327 {
7328 warning (_("bug: psymtab for %s is already read in."),
7329 self->filename);
7330 }
7331 else
7332 {
7333 if (info_verbose)
7334 {
7335 printf_filtered (_("Reading in symbols for %s..."),
7336 self->filename);
7337 gdb_flush (gdb_stdout);
7338 }
7339
7340 /* Restore our global data. */
7341 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7342
7343 /* If this psymtab is constructed from a debug-only objfile, the
7344 has_section_at_zero flag will not necessarily be correct. We
7345 can get the correct value for this flag by looking at the data
7346 associated with the (presumably stripped) associated objfile. */
7347 if (objfile->separate_debug_objfile_backlink)
7348 {
7349 struct dwarf2_per_objfile *dpo_backlink
7350 = objfile_data (objfile->separate_debug_objfile_backlink,
7351 dwarf2_objfile_data_key);
7352
7353 dwarf2_per_objfile->has_section_at_zero
7354 = dpo_backlink->has_section_at_zero;
7355 }
7356
7357 dwarf2_per_objfile->reading_partial_symbols = 0;
7358
7359 psymtab_to_symtab_1 (self);
7360
7361 /* Finish up the debug error message. */
7362 if (info_verbose)
7363 printf_filtered (_("done.\n"));
7364 }
7365
7366 process_cu_includes ();
7367 }
7368 \f
7369 /* Reading in full CUs. */
7370
7371 /* Add PER_CU to the queue. */
7372
7373 static void
7374 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7375 enum language pretend_language)
7376 {
7377 struct dwarf2_queue_item *item;
7378
7379 per_cu->queued = 1;
7380 item = xmalloc (sizeof (*item));
7381 item->per_cu = per_cu;
7382 item->pretend_language = pretend_language;
7383 item->next = NULL;
7384
7385 if (dwarf2_queue == NULL)
7386 dwarf2_queue = item;
7387 else
7388 dwarf2_queue_tail->next = item;
7389
7390 dwarf2_queue_tail = item;
7391 }
7392
7393 /* If PER_CU is not yet queued, add it to the queue.
7394 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7395 dependency.
7396 The result is non-zero if PER_CU was queued, otherwise the result is zero
7397 meaning either PER_CU is already queued or it is already loaded.
7398
7399 N.B. There is an invariant here that if a CU is queued then it is loaded.
7400 The caller is required to load PER_CU if we return non-zero. */
7401
7402 static int
7403 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7404 struct dwarf2_per_cu_data *per_cu,
7405 enum language pretend_language)
7406 {
7407 /* We may arrive here during partial symbol reading, if we need full
7408 DIEs to process an unusual case (e.g. template arguments). Do
7409 not queue PER_CU, just tell our caller to load its DIEs. */
7410 if (dwarf2_per_objfile->reading_partial_symbols)
7411 {
7412 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7413 return 1;
7414 return 0;
7415 }
7416
7417 /* Mark the dependence relation so that we don't flush PER_CU
7418 too early. */
7419 if (dependent_cu != NULL)
7420 dwarf2_add_dependence (dependent_cu, per_cu);
7421
7422 /* If it's already on the queue, we have nothing to do. */
7423 if (per_cu->queued)
7424 return 0;
7425
7426 /* If the compilation unit is already loaded, just mark it as
7427 used. */
7428 if (per_cu->cu != NULL)
7429 {
7430 per_cu->cu->last_used = 0;
7431 return 0;
7432 }
7433
7434 /* Add it to the queue. */
7435 queue_comp_unit (per_cu, pretend_language);
7436
7437 return 1;
7438 }
7439
7440 /* Process the queue. */
7441
7442 static void
7443 process_queue (void)
7444 {
7445 struct dwarf2_queue_item *item, *next_item;
7446
7447 if (dwarf2_read_debug)
7448 {
7449 fprintf_unfiltered (gdb_stdlog,
7450 "Expanding one or more symtabs of objfile %s ...\n",
7451 objfile_name (dwarf2_per_objfile->objfile));
7452 }
7453
7454 /* The queue starts out with one item, but following a DIE reference
7455 may load a new CU, adding it to the end of the queue. */
7456 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7457 {
7458 if (dwarf2_per_objfile->using_index
7459 ? !item->per_cu->v.quick->compunit_symtab
7460 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7461 {
7462 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7463 unsigned int debug_print_threshold;
7464 char buf[100];
7465
7466 if (per_cu->is_debug_types)
7467 {
7468 struct signatured_type *sig_type =
7469 (struct signatured_type *) per_cu;
7470
7471 sprintf (buf, "TU %s at offset 0x%x",
7472 hex_string (sig_type->signature),
7473 per_cu->offset.sect_off);
7474 /* There can be 100s of TUs.
7475 Only print them in verbose mode. */
7476 debug_print_threshold = 2;
7477 }
7478 else
7479 {
7480 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7481 debug_print_threshold = 1;
7482 }
7483
7484 if (dwarf2_read_debug >= debug_print_threshold)
7485 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7486
7487 if (per_cu->is_debug_types)
7488 process_full_type_unit (per_cu, item->pretend_language);
7489 else
7490 process_full_comp_unit (per_cu, item->pretend_language);
7491
7492 if (dwarf2_read_debug >= debug_print_threshold)
7493 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7494 }
7495
7496 item->per_cu->queued = 0;
7497 next_item = item->next;
7498 xfree (item);
7499 }
7500
7501 dwarf2_queue_tail = NULL;
7502
7503 if (dwarf2_read_debug)
7504 {
7505 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7506 objfile_name (dwarf2_per_objfile->objfile));
7507 }
7508 }
7509
7510 /* Free all allocated queue entries. This function only releases anything if
7511 an error was thrown; if the queue was processed then it would have been
7512 freed as we went along. */
7513
7514 static void
7515 dwarf2_release_queue (void *dummy)
7516 {
7517 struct dwarf2_queue_item *item, *last;
7518
7519 item = dwarf2_queue;
7520 while (item)
7521 {
7522 /* Anything still marked queued is likely to be in an
7523 inconsistent state, so discard it. */
7524 if (item->per_cu->queued)
7525 {
7526 if (item->per_cu->cu != NULL)
7527 free_one_cached_comp_unit (item->per_cu);
7528 item->per_cu->queued = 0;
7529 }
7530
7531 last = item;
7532 item = item->next;
7533 xfree (last);
7534 }
7535
7536 dwarf2_queue = dwarf2_queue_tail = NULL;
7537 }
7538
7539 /* Read in full symbols for PST, and anything it depends on. */
7540
7541 static void
7542 psymtab_to_symtab_1 (struct partial_symtab *pst)
7543 {
7544 struct dwarf2_per_cu_data *per_cu;
7545 int i;
7546
7547 if (pst->readin)
7548 return;
7549
7550 for (i = 0; i < pst->number_of_dependencies; i++)
7551 if (!pst->dependencies[i]->readin
7552 && pst->dependencies[i]->user == NULL)
7553 {
7554 /* Inform about additional files that need to be read in. */
7555 if (info_verbose)
7556 {
7557 /* FIXME: i18n: Need to make this a single string. */
7558 fputs_filtered (" ", gdb_stdout);
7559 wrap_here ("");
7560 fputs_filtered ("and ", gdb_stdout);
7561 wrap_here ("");
7562 printf_filtered ("%s...", pst->dependencies[i]->filename);
7563 wrap_here (""); /* Flush output. */
7564 gdb_flush (gdb_stdout);
7565 }
7566 psymtab_to_symtab_1 (pst->dependencies[i]);
7567 }
7568
7569 per_cu = pst->read_symtab_private;
7570
7571 if (per_cu == NULL)
7572 {
7573 /* It's an include file, no symbols to read for it.
7574 Everything is in the parent symtab. */
7575 pst->readin = 1;
7576 return;
7577 }
7578
7579 dw2_do_instantiate_symtab (per_cu);
7580 }
7581
7582 /* Trivial hash function for die_info: the hash value of a DIE
7583 is its offset in .debug_info for this objfile. */
7584
7585 static hashval_t
7586 die_hash (const void *item)
7587 {
7588 const struct die_info *die = item;
7589
7590 return die->offset.sect_off;
7591 }
7592
7593 /* Trivial comparison function for die_info structures: two DIEs
7594 are equal if they have the same offset. */
7595
7596 static int
7597 die_eq (const void *item_lhs, const void *item_rhs)
7598 {
7599 const struct die_info *die_lhs = item_lhs;
7600 const struct die_info *die_rhs = item_rhs;
7601
7602 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7603 }
7604
7605 /* die_reader_func for load_full_comp_unit.
7606 This is identical to read_signatured_type_reader,
7607 but is kept separate for now. */
7608
7609 static void
7610 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7611 const gdb_byte *info_ptr,
7612 struct die_info *comp_unit_die,
7613 int has_children,
7614 void *data)
7615 {
7616 struct dwarf2_cu *cu = reader->cu;
7617 enum language *language_ptr = data;
7618
7619 gdb_assert (cu->die_hash == NULL);
7620 cu->die_hash =
7621 htab_create_alloc_ex (cu->header.length / 12,
7622 die_hash,
7623 die_eq,
7624 NULL,
7625 &cu->comp_unit_obstack,
7626 hashtab_obstack_allocate,
7627 dummy_obstack_deallocate);
7628
7629 if (has_children)
7630 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7631 &info_ptr, comp_unit_die);
7632 cu->dies = comp_unit_die;
7633 /* comp_unit_die is not stored in die_hash, no need. */
7634
7635 /* We try not to read any attributes in this function, because not
7636 all CUs needed for references have been loaded yet, and symbol
7637 table processing isn't initialized. But we have to set the CU language,
7638 or we won't be able to build types correctly.
7639 Similarly, if we do not read the producer, we can not apply
7640 producer-specific interpretation. */
7641 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7642 }
7643
7644 /* Load the DIEs associated with PER_CU into memory. */
7645
7646 static void
7647 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7648 enum language pretend_language)
7649 {
7650 gdb_assert (! this_cu->is_debug_types);
7651
7652 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7653 load_full_comp_unit_reader, &pretend_language);
7654 }
7655
7656 /* Add a DIE to the delayed physname list. */
7657
7658 static void
7659 add_to_method_list (struct type *type, int fnfield_index, int index,
7660 const char *name, struct die_info *die,
7661 struct dwarf2_cu *cu)
7662 {
7663 struct delayed_method_info mi;
7664 mi.type = type;
7665 mi.fnfield_index = fnfield_index;
7666 mi.index = index;
7667 mi.name = name;
7668 mi.die = die;
7669 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7670 }
7671
7672 /* A cleanup for freeing the delayed method list. */
7673
7674 static void
7675 free_delayed_list (void *ptr)
7676 {
7677 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7678 if (cu->method_list != NULL)
7679 {
7680 VEC_free (delayed_method_info, cu->method_list);
7681 cu->method_list = NULL;
7682 }
7683 }
7684
7685 /* Compute the physnames of any methods on the CU's method list.
7686
7687 The computation of method physnames is delayed in order to avoid the
7688 (bad) condition that one of the method's formal parameters is of an as yet
7689 incomplete type. */
7690
7691 static void
7692 compute_delayed_physnames (struct dwarf2_cu *cu)
7693 {
7694 int i;
7695 struct delayed_method_info *mi;
7696 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7697 {
7698 const char *physname;
7699 struct fn_fieldlist *fn_flp
7700 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7701 physname = dwarf2_physname (mi->name, mi->die, cu);
7702 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7703 }
7704 }
7705
7706 /* Go objects should be embedded in a DW_TAG_module DIE,
7707 and it's not clear if/how imported objects will appear.
7708 To keep Go support simple until that's worked out,
7709 go back through what we've read and create something usable.
7710 We could do this while processing each DIE, and feels kinda cleaner,
7711 but that way is more invasive.
7712 This is to, for example, allow the user to type "p var" or "b main"
7713 without having to specify the package name, and allow lookups
7714 of module.object to work in contexts that use the expression
7715 parser. */
7716
7717 static void
7718 fixup_go_packaging (struct dwarf2_cu *cu)
7719 {
7720 char *package_name = NULL;
7721 struct pending *list;
7722 int i;
7723
7724 for (list = global_symbols; list != NULL; list = list->next)
7725 {
7726 for (i = 0; i < list->nsyms; ++i)
7727 {
7728 struct symbol *sym = list->symbol[i];
7729
7730 if (SYMBOL_LANGUAGE (sym) == language_go
7731 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7732 {
7733 char *this_package_name = go_symbol_package_name (sym);
7734
7735 if (this_package_name == NULL)
7736 continue;
7737 if (package_name == NULL)
7738 package_name = this_package_name;
7739 else
7740 {
7741 if (strcmp (package_name, this_package_name) != 0)
7742 complaint (&symfile_complaints,
7743 _("Symtab %s has objects from two different Go packages: %s and %s"),
7744 (SYMBOL_SYMTAB (sym)
7745 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7746 : objfile_name (cu->objfile)),
7747 this_package_name, package_name);
7748 xfree (this_package_name);
7749 }
7750 }
7751 }
7752 }
7753
7754 if (package_name != NULL)
7755 {
7756 struct objfile *objfile = cu->objfile;
7757 const char *saved_package_name
7758 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7759 package_name,
7760 strlen (package_name));
7761 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7762 saved_package_name, objfile);
7763 struct symbol *sym;
7764
7765 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7766
7767 sym = allocate_symbol (objfile);
7768 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7769 SYMBOL_SET_NAMES (sym, saved_package_name,
7770 strlen (saved_package_name), 0, objfile);
7771 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7772 e.g., "main" finds the "main" module and not C's main(). */
7773 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7774 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7775 SYMBOL_TYPE (sym) = type;
7776
7777 add_symbol_to_list (sym, &global_symbols);
7778
7779 xfree (package_name);
7780 }
7781 }
7782
7783 /* Return the symtab for PER_CU. This works properly regardless of
7784 whether we're using the index or psymtabs. */
7785
7786 static struct compunit_symtab *
7787 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7788 {
7789 return (dwarf2_per_objfile->using_index
7790 ? per_cu->v.quick->compunit_symtab
7791 : per_cu->v.psymtab->compunit_symtab);
7792 }
7793
7794 /* A helper function for computing the list of all symbol tables
7795 included by PER_CU. */
7796
7797 static void
7798 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7799 htab_t all_children, htab_t all_type_symtabs,
7800 struct dwarf2_per_cu_data *per_cu,
7801 struct compunit_symtab *immediate_parent)
7802 {
7803 void **slot;
7804 int ix;
7805 struct compunit_symtab *cust;
7806 struct dwarf2_per_cu_data *iter;
7807
7808 slot = htab_find_slot (all_children, per_cu, INSERT);
7809 if (*slot != NULL)
7810 {
7811 /* This inclusion and its children have been processed. */
7812 return;
7813 }
7814
7815 *slot = per_cu;
7816 /* Only add a CU if it has a symbol table. */
7817 cust = get_compunit_symtab (per_cu);
7818 if (cust != NULL)
7819 {
7820 /* If this is a type unit only add its symbol table if we haven't
7821 seen it yet (type unit per_cu's can share symtabs). */
7822 if (per_cu->is_debug_types)
7823 {
7824 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7825 if (*slot == NULL)
7826 {
7827 *slot = cust;
7828 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7829 if (cust->user == NULL)
7830 cust->user = immediate_parent;
7831 }
7832 }
7833 else
7834 {
7835 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7836 if (cust->user == NULL)
7837 cust->user = immediate_parent;
7838 }
7839 }
7840
7841 for (ix = 0;
7842 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7843 ++ix)
7844 {
7845 recursively_compute_inclusions (result, all_children,
7846 all_type_symtabs, iter, cust);
7847 }
7848 }
7849
7850 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7851 PER_CU. */
7852
7853 static void
7854 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7855 {
7856 gdb_assert (! per_cu->is_debug_types);
7857
7858 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7859 {
7860 int ix, len;
7861 struct dwarf2_per_cu_data *per_cu_iter;
7862 struct compunit_symtab *compunit_symtab_iter;
7863 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7864 htab_t all_children, all_type_symtabs;
7865 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7866
7867 /* If we don't have a symtab, we can just skip this case. */
7868 if (cust == NULL)
7869 return;
7870
7871 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7872 NULL, xcalloc, xfree);
7873 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7874 NULL, xcalloc, xfree);
7875
7876 for (ix = 0;
7877 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7878 ix, per_cu_iter);
7879 ++ix)
7880 {
7881 recursively_compute_inclusions (&result_symtabs, all_children,
7882 all_type_symtabs, per_cu_iter,
7883 cust);
7884 }
7885
7886 /* Now we have a transitive closure of all the included symtabs. */
7887 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7888 cust->includes
7889 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7890 (len + 1) * sizeof (struct symtab *));
7891 for (ix = 0;
7892 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7893 compunit_symtab_iter);
7894 ++ix)
7895 cust->includes[ix] = compunit_symtab_iter;
7896 cust->includes[len] = NULL;
7897
7898 VEC_free (compunit_symtab_ptr, result_symtabs);
7899 htab_delete (all_children);
7900 htab_delete (all_type_symtabs);
7901 }
7902 }
7903
7904 /* Compute the 'includes' field for the symtabs of all the CUs we just
7905 read. */
7906
7907 static void
7908 process_cu_includes (void)
7909 {
7910 int ix;
7911 struct dwarf2_per_cu_data *iter;
7912
7913 for (ix = 0;
7914 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7915 ix, iter);
7916 ++ix)
7917 {
7918 if (! iter->is_debug_types)
7919 compute_compunit_symtab_includes (iter);
7920 }
7921
7922 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7923 }
7924
7925 /* Generate full symbol information for PER_CU, whose DIEs have
7926 already been loaded into memory. */
7927
7928 static void
7929 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7930 enum language pretend_language)
7931 {
7932 struct dwarf2_cu *cu = per_cu->cu;
7933 struct objfile *objfile = per_cu->objfile;
7934 CORE_ADDR lowpc, highpc;
7935 struct compunit_symtab *cust;
7936 struct cleanup *back_to, *delayed_list_cleanup;
7937 CORE_ADDR baseaddr;
7938 struct block *static_block;
7939
7940 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7941
7942 buildsym_init ();
7943 back_to = make_cleanup (really_free_pendings, NULL);
7944 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7945
7946 cu->list_in_scope = &file_symbols;
7947
7948 cu->language = pretend_language;
7949 cu->language_defn = language_def (cu->language);
7950
7951 /* Do line number decoding in read_file_scope () */
7952 process_die (cu->dies, cu);
7953
7954 /* For now fudge the Go package. */
7955 if (cu->language == language_go)
7956 fixup_go_packaging (cu);
7957
7958 /* Now that we have processed all the DIEs in the CU, all the types
7959 should be complete, and it should now be safe to compute all of the
7960 physnames. */
7961 compute_delayed_physnames (cu);
7962 do_cleanups (delayed_list_cleanup);
7963
7964 /* Some compilers don't define a DW_AT_high_pc attribute for the
7965 compilation unit. If the DW_AT_high_pc is missing, synthesize
7966 it, by scanning the DIE's below the compilation unit. */
7967 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7968
7969 static_block
7970 = end_symtab_get_static_block (highpc + baseaddr, 0, 1);
7971
7972 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7973 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7974 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7975 addrmap to help ensure it has an accurate map of pc values belonging to
7976 this comp unit. */
7977 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7978
7979 cust = end_symtab_from_static_block (static_block,
7980 SECT_OFF_TEXT (objfile), 0);
7981
7982 if (cust != NULL)
7983 {
7984 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7985
7986 /* Set symtab language to language from DW_AT_language. If the
7987 compilation is from a C file generated by language preprocessors, do
7988 not set the language if it was already deduced by start_subfile. */
7989 if (!(cu->language == language_c
7990 && COMPUNIT_FILETABS (cust)->language != language_c))
7991 COMPUNIT_FILETABS (cust)->language = cu->language;
7992
7993 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7994 produce DW_AT_location with location lists but it can be possibly
7995 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7996 there were bugs in prologue debug info, fixed later in GCC-4.5
7997 by "unwind info for epilogues" patch (which is not directly related).
7998
7999 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8000 needed, it would be wrong due to missing DW_AT_producer there.
8001
8002 Still one can confuse GDB by using non-standard GCC compilation
8003 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8004 */
8005 if (cu->has_loclist && gcc_4_minor >= 5)
8006 cust->locations_valid = 1;
8007
8008 if (gcc_4_minor >= 5)
8009 cust->epilogue_unwind_valid = 1;
8010
8011 cust->call_site_htab = cu->call_site_htab;
8012 }
8013
8014 if (dwarf2_per_objfile->using_index)
8015 per_cu->v.quick->compunit_symtab = cust;
8016 else
8017 {
8018 struct partial_symtab *pst = per_cu->v.psymtab;
8019 pst->compunit_symtab = cust;
8020 pst->readin = 1;
8021 }
8022
8023 /* Push it for inclusion processing later. */
8024 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8025
8026 do_cleanups (back_to);
8027 }
8028
8029 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8030 already been loaded into memory. */
8031
8032 static void
8033 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8034 enum language pretend_language)
8035 {
8036 struct dwarf2_cu *cu = per_cu->cu;
8037 struct objfile *objfile = per_cu->objfile;
8038 struct compunit_symtab *cust;
8039 struct cleanup *back_to, *delayed_list_cleanup;
8040 struct signatured_type *sig_type;
8041
8042 gdb_assert (per_cu->is_debug_types);
8043 sig_type = (struct signatured_type *) per_cu;
8044
8045 buildsym_init ();
8046 back_to = make_cleanup (really_free_pendings, NULL);
8047 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8048
8049 cu->list_in_scope = &file_symbols;
8050
8051 cu->language = pretend_language;
8052 cu->language_defn = language_def (cu->language);
8053
8054 /* The symbol tables are set up in read_type_unit_scope. */
8055 process_die (cu->dies, cu);
8056
8057 /* For now fudge the Go package. */
8058 if (cu->language == language_go)
8059 fixup_go_packaging (cu);
8060
8061 /* Now that we have processed all the DIEs in the CU, all the types
8062 should be complete, and it should now be safe to compute all of the
8063 physnames. */
8064 compute_delayed_physnames (cu);
8065 do_cleanups (delayed_list_cleanup);
8066
8067 /* TUs share symbol tables.
8068 If this is the first TU to use this symtab, complete the construction
8069 of it with end_expandable_symtab. Otherwise, complete the addition of
8070 this TU's symbols to the existing symtab. */
8071 if (sig_type->type_unit_group->compunit_symtab == NULL)
8072 {
8073 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8074 sig_type->type_unit_group->compunit_symtab = cust;
8075
8076 if (cust != NULL)
8077 {
8078 /* Set symtab language to language from DW_AT_language. If the
8079 compilation is from a C file generated by language preprocessors,
8080 do not set the language if it was already deduced by
8081 start_subfile. */
8082 if (!(cu->language == language_c
8083 && COMPUNIT_FILETABS (cust)->language != language_c))
8084 COMPUNIT_FILETABS (cust)->language = cu->language;
8085 }
8086 }
8087 else
8088 {
8089 augment_type_symtab (sig_type->type_unit_group->compunit_symtab);
8090 cust = sig_type->type_unit_group->compunit_symtab;
8091 }
8092
8093 if (dwarf2_per_objfile->using_index)
8094 per_cu->v.quick->compunit_symtab = cust;
8095 else
8096 {
8097 struct partial_symtab *pst = per_cu->v.psymtab;
8098 pst->compunit_symtab = cust;
8099 pst->readin = 1;
8100 }
8101
8102 do_cleanups (back_to);
8103 }
8104
8105 /* Process an imported unit DIE. */
8106
8107 static void
8108 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8109 {
8110 struct attribute *attr;
8111
8112 /* For now we don't handle imported units in type units. */
8113 if (cu->per_cu->is_debug_types)
8114 {
8115 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8116 " supported in type units [in module %s]"),
8117 objfile_name (cu->objfile));
8118 }
8119
8120 attr = dwarf2_attr (die, DW_AT_import, cu);
8121 if (attr != NULL)
8122 {
8123 struct dwarf2_per_cu_data *per_cu;
8124 struct symtab *imported_symtab;
8125 sect_offset offset;
8126 int is_dwz;
8127
8128 offset = dwarf2_get_ref_die_offset (attr);
8129 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8130 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8131
8132 /* If necessary, add it to the queue and load its DIEs. */
8133 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8134 load_full_comp_unit (per_cu, cu->language);
8135
8136 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8137 per_cu);
8138 }
8139 }
8140
8141 /* Reset the in_process bit of a die. */
8142
8143 static void
8144 reset_die_in_process (void *arg)
8145 {
8146 struct die_info *die = arg;
8147
8148 die->in_process = 0;
8149 }
8150
8151 /* Process a die and its children. */
8152
8153 static void
8154 process_die (struct die_info *die, struct dwarf2_cu *cu)
8155 {
8156 struct cleanup *in_process;
8157
8158 /* We should only be processing those not already in process. */
8159 gdb_assert (!die->in_process);
8160
8161 die->in_process = 1;
8162 in_process = make_cleanup (reset_die_in_process,die);
8163
8164 switch (die->tag)
8165 {
8166 case DW_TAG_padding:
8167 break;
8168 case DW_TAG_compile_unit:
8169 case DW_TAG_partial_unit:
8170 read_file_scope (die, cu);
8171 break;
8172 case DW_TAG_type_unit:
8173 read_type_unit_scope (die, cu);
8174 break;
8175 case DW_TAG_subprogram:
8176 case DW_TAG_inlined_subroutine:
8177 read_func_scope (die, cu);
8178 break;
8179 case DW_TAG_lexical_block:
8180 case DW_TAG_try_block:
8181 case DW_TAG_catch_block:
8182 read_lexical_block_scope (die, cu);
8183 break;
8184 case DW_TAG_GNU_call_site:
8185 read_call_site_scope (die, cu);
8186 break;
8187 case DW_TAG_class_type:
8188 case DW_TAG_interface_type:
8189 case DW_TAG_structure_type:
8190 case DW_TAG_union_type:
8191 process_structure_scope (die, cu);
8192 break;
8193 case DW_TAG_enumeration_type:
8194 process_enumeration_scope (die, cu);
8195 break;
8196
8197 /* These dies have a type, but processing them does not create
8198 a symbol or recurse to process the children. Therefore we can
8199 read them on-demand through read_type_die. */
8200 case DW_TAG_subroutine_type:
8201 case DW_TAG_set_type:
8202 case DW_TAG_array_type:
8203 case DW_TAG_pointer_type:
8204 case DW_TAG_ptr_to_member_type:
8205 case DW_TAG_reference_type:
8206 case DW_TAG_string_type:
8207 break;
8208
8209 case DW_TAG_base_type:
8210 case DW_TAG_subrange_type:
8211 case DW_TAG_typedef:
8212 /* Add a typedef symbol for the type definition, if it has a
8213 DW_AT_name. */
8214 new_symbol (die, read_type_die (die, cu), cu);
8215 break;
8216 case DW_TAG_common_block:
8217 read_common_block (die, cu);
8218 break;
8219 case DW_TAG_common_inclusion:
8220 break;
8221 case DW_TAG_namespace:
8222 cu->processing_has_namespace_info = 1;
8223 read_namespace (die, cu);
8224 break;
8225 case DW_TAG_module:
8226 cu->processing_has_namespace_info = 1;
8227 read_module (die, cu);
8228 break;
8229 case DW_TAG_imported_declaration:
8230 cu->processing_has_namespace_info = 1;
8231 if (read_namespace_alias (die, cu))
8232 break;
8233 /* The declaration is not a global namespace alias: fall through. */
8234 case DW_TAG_imported_module:
8235 cu->processing_has_namespace_info = 1;
8236 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8237 || cu->language != language_fortran))
8238 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8239 dwarf_tag_name (die->tag));
8240 read_import_statement (die, cu);
8241 break;
8242
8243 case DW_TAG_imported_unit:
8244 process_imported_unit_die (die, cu);
8245 break;
8246
8247 default:
8248 new_symbol (die, NULL, cu);
8249 break;
8250 }
8251
8252 do_cleanups (in_process);
8253 }
8254 \f
8255 /* DWARF name computation. */
8256
8257 /* A helper function for dwarf2_compute_name which determines whether DIE
8258 needs to have the name of the scope prepended to the name listed in the
8259 die. */
8260
8261 static int
8262 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8263 {
8264 struct attribute *attr;
8265
8266 switch (die->tag)
8267 {
8268 case DW_TAG_namespace:
8269 case DW_TAG_typedef:
8270 case DW_TAG_class_type:
8271 case DW_TAG_interface_type:
8272 case DW_TAG_structure_type:
8273 case DW_TAG_union_type:
8274 case DW_TAG_enumeration_type:
8275 case DW_TAG_enumerator:
8276 case DW_TAG_subprogram:
8277 case DW_TAG_member:
8278 case DW_TAG_imported_declaration:
8279 return 1;
8280
8281 case DW_TAG_variable:
8282 case DW_TAG_constant:
8283 /* We only need to prefix "globally" visible variables. These include
8284 any variable marked with DW_AT_external or any variable that
8285 lives in a namespace. [Variables in anonymous namespaces
8286 require prefixing, but they are not DW_AT_external.] */
8287
8288 if (dwarf2_attr (die, DW_AT_specification, cu))
8289 {
8290 struct dwarf2_cu *spec_cu = cu;
8291
8292 return die_needs_namespace (die_specification (die, &spec_cu),
8293 spec_cu);
8294 }
8295
8296 attr = dwarf2_attr (die, DW_AT_external, cu);
8297 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8298 && die->parent->tag != DW_TAG_module)
8299 return 0;
8300 /* A variable in a lexical block of some kind does not need a
8301 namespace, even though in C++ such variables may be external
8302 and have a mangled name. */
8303 if (die->parent->tag == DW_TAG_lexical_block
8304 || die->parent->tag == DW_TAG_try_block
8305 || die->parent->tag == DW_TAG_catch_block
8306 || die->parent->tag == DW_TAG_subprogram)
8307 return 0;
8308 return 1;
8309
8310 default:
8311 return 0;
8312 }
8313 }
8314
8315 /* Retrieve the last character from a mem_file. */
8316
8317 static void
8318 do_ui_file_peek_last (void *object, const char *buffer, long length)
8319 {
8320 char *last_char_p = (char *) object;
8321
8322 if (length > 0)
8323 *last_char_p = buffer[length - 1];
8324 }
8325
8326 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8327 compute the physname for the object, which include a method's:
8328 - formal parameters (C++/Java),
8329 - receiver type (Go),
8330 - return type (Java).
8331
8332 The term "physname" is a bit confusing.
8333 For C++, for example, it is the demangled name.
8334 For Go, for example, it's the mangled name.
8335
8336 For Ada, return the DIE's linkage name rather than the fully qualified
8337 name. PHYSNAME is ignored..
8338
8339 The result is allocated on the objfile_obstack and canonicalized. */
8340
8341 static const char *
8342 dwarf2_compute_name (const char *name,
8343 struct die_info *die, struct dwarf2_cu *cu,
8344 int physname)
8345 {
8346 struct objfile *objfile = cu->objfile;
8347
8348 if (name == NULL)
8349 name = dwarf2_name (die, cu);
8350
8351 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8352 compute it by typename_concat inside GDB. */
8353 if (cu->language == language_ada
8354 || (cu->language == language_fortran && physname))
8355 {
8356 /* For Ada unit, we prefer the linkage name over the name, as
8357 the former contains the exported name, which the user expects
8358 to be able to reference. Ideally, we want the user to be able
8359 to reference this entity using either natural or linkage name,
8360 but we haven't started looking at this enhancement yet. */
8361 struct attribute *attr;
8362
8363 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8364 if (attr == NULL)
8365 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8366 if (attr && DW_STRING (attr))
8367 return DW_STRING (attr);
8368 }
8369
8370 /* These are the only languages we know how to qualify names in. */
8371 if (name != NULL
8372 && (cu->language == language_cplus || cu->language == language_java
8373 || cu->language == language_fortran))
8374 {
8375 if (die_needs_namespace (die, cu))
8376 {
8377 long length;
8378 const char *prefix;
8379 struct ui_file *buf;
8380 char *intermediate_name;
8381 const char *canonical_name = NULL;
8382
8383 prefix = determine_prefix (die, cu);
8384 buf = mem_fileopen ();
8385 if (*prefix != '\0')
8386 {
8387 char *prefixed_name = typename_concat (NULL, prefix, name,
8388 physname, cu);
8389
8390 fputs_unfiltered (prefixed_name, buf);
8391 xfree (prefixed_name);
8392 }
8393 else
8394 fputs_unfiltered (name, buf);
8395
8396 /* Template parameters may be specified in the DIE's DW_AT_name, or
8397 as children with DW_TAG_template_type_param or
8398 DW_TAG_value_type_param. If the latter, add them to the name
8399 here. If the name already has template parameters, then
8400 skip this step; some versions of GCC emit both, and
8401 it is more efficient to use the pre-computed name.
8402
8403 Something to keep in mind about this process: it is very
8404 unlikely, or in some cases downright impossible, to produce
8405 something that will match the mangled name of a function.
8406 If the definition of the function has the same debug info,
8407 we should be able to match up with it anyway. But fallbacks
8408 using the minimal symbol, for instance to find a method
8409 implemented in a stripped copy of libstdc++, will not work.
8410 If we do not have debug info for the definition, we will have to
8411 match them up some other way.
8412
8413 When we do name matching there is a related problem with function
8414 templates; two instantiated function templates are allowed to
8415 differ only by their return types, which we do not add here. */
8416
8417 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8418 {
8419 struct attribute *attr;
8420 struct die_info *child;
8421 int first = 1;
8422
8423 die->building_fullname = 1;
8424
8425 for (child = die->child; child != NULL; child = child->sibling)
8426 {
8427 struct type *type;
8428 LONGEST value;
8429 const gdb_byte *bytes;
8430 struct dwarf2_locexpr_baton *baton;
8431 struct value *v;
8432
8433 if (child->tag != DW_TAG_template_type_param
8434 && child->tag != DW_TAG_template_value_param)
8435 continue;
8436
8437 if (first)
8438 {
8439 fputs_unfiltered ("<", buf);
8440 first = 0;
8441 }
8442 else
8443 fputs_unfiltered (", ", buf);
8444
8445 attr = dwarf2_attr (child, DW_AT_type, cu);
8446 if (attr == NULL)
8447 {
8448 complaint (&symfile_complaints,
8449 _("template parameter missing DW_AT_type"));
8450 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8451 continue;
8452 }
8453 type = die_type (child, cu);
8454
8455 if (child->tag == DW_TAG_template_type_param)
8456 {
8457 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8458 continue;
8459 }
8460
8461 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8462 if (attr == NULL)
8463 {
8464 complaint (&symfile_complaints,
8465 _("template parameter missing "
8466 "DW_AT_const_value"));
8467 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8468 continue;
8469 }
8470
8471 dwarf2_const_value_attr (attr, type, name,
8472 &cu->comp_unit_obstack, cu,
8473 &value, &bytes, &baton);
8474
8475 if (TYPE_NOSIGN (type))
8476 /* GDB prints characters as NUMBER 'CHAR'. If that's
8477 changed, this can use value_print instead. */
8478 c_printchar (value, type, buf);
8479 else
8480 {
8481 struct value_print_options opts;
8482
8483 if (baton != NULL)
8484 v = dwarf2_evaluate_loc_desc (type, NULL,
8485 baton->data,
8486 baton->size,
8487 baton->per_cu);
8488 else if (bytes != NULL)
8489 {
8490 v = allocate_value (type);
8491 memcpy (value_contents_writeable (v), bytes,
8492 TYPE_LENGTH (type));
8493 }
8494 else
8495 v = value_from_longest (type, value);
8496
8497 /* Specify decimal so that we do not depend on
8498 the radix. */
8499 get_formatted_print_options (&opts, 'd');
8500 opts.raw = 1;
8501 value_print (v, buf, &opts);
8502 release_value (v);
8503 value_free (v);
8504 }
8505 }
8506
8507 die->building_fullname = 0;
8508
8509 if (!first)
8510 {
8511 /* Close the argument list, with a space if necessary
8512 (nested templates). */
8513 char last_char = '\0';
8514 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8515 if (last_char == '>')
8516 fputs_unfiltered (" >", buf);
8517 else
8518 fputs_unfiltered (">", buf);
8519 }
8520 }
8521
8522 /* For Java and C++ methods, append formal parameter type
8523 information, if PHYSNAME. */
8524
8525 if (physname && die->tag == DW_TAG_subprogram
8526 && (cu->language == language_cplus
8527 || cu->language == language_java))
8528 {
8529 struct type *type = read_type_die (die, cu);
8530
8531 c_type_print_args (type, buf, 1, cu->language,
8532 &type_print_raw_options);
8533
8534 if (cu->language == language_java)
8535 {
8536 /* For java, we must append the return type to method
8537 names. */
8538 if (die->tag == DW_TAG_subprogram)
8539 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8540 0, 0, &type_print_raw_options);
8541 }
8542 else if (cu->language == language_cplus)
8543 {
8544 /* Assume that an artificial first parameter is
8545 "this", but do not crash if it is not. RealView
8546 marks unnamed (and thus unused) parameters as
8547 artificial; there is no way to differentiate
8548 the two cases. */
8549 if (TYPE_NFIELDS (type) > 0
8550 && TYPE_FIELD_ARTIFICIAL (type, 0)
8551 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8552 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8553 0))))
8554 fputs_unfiltered (" const", buf);
8555 }
8556 }
8557
8558 intermediate_name = ui_file_xstrdup (buf, &length);
8559 ui_file_delete (buf);
8560
8561 if (cu->language == language_cplus)
8562 canonical_name
8563 = dwarf2_canonicalize_name (intermediate_name, cu,
8564 &objfile->per_bfd->storage_obstack);
8565
8566 /* If we only computed INTERMEDIATE_NAME, or if
8567 INTERMEDIATE_NAME is already canonical, then we need to
8568 copy it to the appropriate obstack. */
8569 if (canonical_name == NULL || canonical_name == intermediate_name)
8570 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8571 intermediate_name,
8572 strlen (intermediate_name));
8573 else
8574 name = canonical_name;
8575
8576 xfree (intermediate_name);
8577 }
8578 }
8579
8580 return name;
8581 }
8582
8583 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8584 If scope qualifiers are appropriate they will be added. The result
8585 will be allocated on the storage_obstack, or NULL if the DIE does
8586 not have a name. NAME may either be from a previous call to
8587 dwarf2_name or NULL.
8588
8589 The output string will be canonicalized (if C++/Java). */
8590
8591 static const char *
8592 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8593 {
8594 return dwarf2_compute_name (name, die, cu, 0);
8595 }
8596
8597 /* Construct a physname for the given DIE in CU. NAME may either be
8598 from a previous call to dwarf2_name or NULL. The result will be
8599 allocated on the objfile_objstack or NULL if the DIE does not have a
8600 name.
8601
8602 The output string will be canonicalized (if C++/Java). */
8603
8604 static const char *
8605 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8606 {
8607 struct objfile *objfile = cu->objfile;
8608 struct attribute *attr;
8609 const char *retval, *mangled = NULL, *canon = NULL;
8610 struct cleanup *back_to;
8611 int need_copy = 1;
8612
8613 /* In this case dwarf2_compute_name is just a shortcut not building anything
8614 on its own. */
8615 if (!die_needs_namespace (die, cu))
8616 return dwarf2_compute_name (name, die, cu, 1);
8617
8618 back_to = make_cleanup (null_cleanup, NULL);
8619
8620 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8621 if (!attr)
8622 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8623
8624 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8625 has computed. */
8626 if (attr && DW_STRING (attr))
8627 {
8628 char *demangled;
8629
8630 mangled = DW_STRING (attr);
8631
8632 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8633 type. It is easier for GDB users to search for such functions as
8634 `name(params)' than `long name(params)'. In such case the minimal
8635 symbol names do not match the full symbol names but for template
8636 functions there is never a need to look up their definition from their
8637 declaration so the only disadvantage remains the minimal symbol
8638 variant `long name(params)' does not have the proper inferior type.
8639 */
8640
8641 if (cu->language == language_go)
8642 {
8643 /* This is a lie, but we already lie to the caller new_symbol_full.
8644 new_symbol_full assumes we return the mangled name.
8645 This just undoes that lie until things are cleaned up. */
8646 demangled = NULL;
8647 }
8648 else
8649 {
8650 demangled = gdb_demangle (mangled,
8651 (DMGL_PARAMS | DMGL_ANSI
8652 | (cu->language == language_java
8653 ? DMGL_JAVA | DMGL_RET_POSTFIX
8654 : DMGL_RET_DROP)));
8655 }
8656 if (demangled)
8657 {
8658 make_cleanup (xfree, demangled);
8659 canon = demangled;
8660 }
8661 else
8662 {
8663 canon = mangled;
8664 need_copy = 0;
8665 }
8666 }
8667
8668 if (canon == NULL || check_physname)
8669 {
8670 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8671
8672 if (canon != NULL && strcmp (physname, canon) != 0)
8673 {
8674 /* It may not mean a bug in GDB. The compiler could also
8675 compute DW_AT_linkage_name incorrectly. But in such case
8676 GDB would need to be bug-to-bug compatible. */
8677
8678 complaint (&symfile_complaints,
8679 _("Computed physname <%s> does not match demangled <%s> "
8680 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8681 physname, canon, mangled, die->offset.sect_off,
8682 objfile_name (objfile));
8683
8684 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8685 is available here - over computed PHYSNAME. It is safer
8686 against both buggy GDB and buggy compilers. */
8687
8688 retval = canon;
8689 }
8690 else
8691 {
8692 retval = physname;
8693 need_copy = 0;
8694 }
8695 }
8696 else
8697 retval = canon;
8698
8699 if (need_copy)
8700 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8701 retval, strlen (retval));
8702
8703 do_cleanups (back_to);
8704 return retval;
8705 }
8706
8707 /* Inspect DIE in CU for a namespace alias. If one exists, record
8708 a new symbol for it.
8709
8710 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8711
8712 static int
8713 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8714 {
8715 struct attribute *attr;
8716
8717 /* If the die does not have a name, this is not a namespace
8718 alias. */
8719 attr = dwarf2_attr (die, DW_AT_name, cu);
8720 if (attr != NULL)
8721 {
8722 int num;
8723 struct die_info *d = die;
8724 struct dwarf2_cu *imported_cu = cu;
8725
8726 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8727 keep inspecting DIEs until we hit the underlying import. */
8728 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8729 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8730 {
8731 attr = dwarf2_attr (d, DW_AT_import, cu);
8732 if (attr == NULL)
8733 break;
8734
8735 d = follow_die_ref (d, attr, &imported_cu);
8736 if (d->tag != DW_TAG_imported_declaration)
8737 break;
8738 }
8739
8740 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8741 {
8742 complaint (&symfile_complaints,
8743 _("DIE at 0x%x has too many recursively imported "
8744 "declarations"), d->offset.sect_off);
8745 return 0;
8746 }
8747
8748 if (attr != NULL)
8749 {
8750 struct type *type;
8751 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8752
8753 type = get_die_type_at_offset (offset, cu->per_cu);
8754 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8755 {
8756 /* This declaration is a global namespace alias. Add
8757 a symbol for it whose type is the aliased namespace. */
8758 new_symbol (die, type, cu);
8759 return 1;
8760 }
8761 }
8762 }
8763
8764 return 0;
8765 }
8766
8767 /* Read the import statement specified by the given die and record it. */
8768
8769 static void
8770 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8771 {
8772 struct objfile *objfile = cu->objfile;
8773 struct attribute *import_attr;
8774 struct die_info *imported_die, *child_die;
8775 struct dwarf2_cu *imported_cu;
8776 const char *imported_name;
8777 const char *imported_name_prefix;
8778 const char *canonical_name;
8779 const char *import_alias;
8780 const char *imported_declaration = NULL;
8781 const char *import_prefix;
8782 VEC (const_char_ptr) *excludes = NULL;
8783 struct cleanup *cleanups;
8784
8785 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8786 if (import_attr == NULL)
8787 {
8788 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8789 dwarf_tag_name (die->tag));
8790 return;
8791 }
8792
8793 imported_cu = cu;
8794 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8795 imported_name = dwarf2_name (imported_die, imported_cu);
8796 if (imported_name == NULL)
8797 {
8798 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8799
8800 The import in the following code:
8801 namespace A
8802 {
8803 typedef int B;
8804 }
8805
8806 int main ()
8807 {
8808 using A::B;
8809 B b;
8810 return b;
8811 }
8812
8813 ...
8814 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8815 <52> DW_AT_decl_file : 1
8816 <53> DW_AT_decl_line : 6
8817 <54> DW_AT_import : <0x75>
8818 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8819 <59> DW_AT_name : B
8820 <5b> DW_AT_decl_file : 1
8821 <5c> DW_AT_decl_line : 2
8822 <5d> DW_AT_type : <0x6e>
8823 ...
8824 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8825 <76> DW_AT_byte_size : 4
8826 <77> DW_AT_encoding : 5 (signed)
8827
8828 imports the wrong die ( 0x75 instead of 0x58 ).
8829 This case will be ignored until the gcc bug is fixed. */
8830 return;
8831 }
8832
8833 /* Figure out the local name after import. */
8834 import_alias = dwarf2_name (die, cu);
8835
8836 /* Figure out where the statement is being imported to. */
8837 import_prefix = determine_prefix (die, cu);
8838
8839 /* Figure out what the scope of the imported die is and prepend it
8840 to the name of the imported die. */
8841 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8842
8843 if (imported_die->tag != DW_TAG_namespace
8844 && imported_die->tag != DW_TAG_module)
8845 {
8846 imported_declaration = imported_name;
8847 canonical_name = imported_name_prefix;
8848 }
8849 else if (strlen (imported_name_prefix) > 0)
8850 canonical_name = obconcat (&objfile->objfile_obstack,
8851 imported_name_prefix, "::", imported_name,
8852 (char *) NULL);
8853 else
8854 canonical_name = imported_name;
8855
8856 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8857
8858 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8859 for (child_die = die->child; child_die && child_die->tag;
8860 child_die = sibling_die (child_die))
8861 {
8862 /* DWARF-4: A Fortran use statement with a “rename list” may be
8863 represented by an imported module entry with an import attribute
8864 referring to the module and owned entries corresponding to those
8865 entities that are renamed as part of being imported. */
8866
8867 if (child_die->tag != DW_TAG_imported_declaration)
8868 {
8869 complaint (&symfile_complaints,
8870 _("child DW_TAG_imported_declaration expected "
8871 "- DIE at 0x%x [in module %s]"),
8872 child_die->offset.sect_off, objfile_name (objfile));
8873 continue;
8874 }
8875
8876 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8877 if (import_attr == NULL)
8878 {
8879 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8880 dwarf_tag_name (child_die->tag));
8881 continue;
8882 }
8883
8884 imported_cu = cu;
8885 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8886 &imported_cu);
8887 imported_name = dwarf2_name (imported_die, imported_cu);
8888 if (imported_name == NULL)
8889 {
8890 complaint (&symfile_complaints,
8891 _("child DW_TAG_imported_declaration has unknown "
8892 "imported name - DIE at 0x%x [in module %s]"),
8893 child_die->offset.sect_off, objfile_name (objfile));
8894 continue;
8895 }
8896
8897 VEC_safe_push (const_char_ptr, excludes, imported_name);
8898
8899 process_die (child_die, cu);
8900 }
8901
8902 cp_add_using_directive (import_prefix,
8903 canonical_name,
8904 import_alias,
8905 imported_declaration,
8906 excludes,
8907 0,
8908 &objfile->objfile_obstack);
8909
8910 do_cleanups (cleanups);
8911 }
8912
8913 /* Cleanup function for handle_DW_AT_stmt_list. */
8914
8915 static void
8916 free_cu_line_header (void *arg)
8917 {
8918 struct dwarf2_cu *cu = arg;
8919
8920 free_line_header (cu->line_header);
8921 cu->line_header = NULL;
8922 }
8923
8924 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8925 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8926 this, it was first present in GCC release 4.3.0. */
8927
8928 static int
8929 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8930 {
8931 if (!cu->checked_producer)
8932 check_producer (cu);
8933
8934 return cu->producer_is_gcc_lt_4_3;
8935 }
8936
8937 static void
8938 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8939 const char **name, const char **comp_dir)
8940 {
8941 struct attribute *attr;
8942
8943 *name = NULL;
8944 *comp_dir = NULL;
8945
8946 /* Find the filename. Do not use dwarf2_name here, since the filename
8947 is not a source language identifier. */
8948 attr = dwarf2_attr (die, DW_AT_name, cu);
8949 if (attr)
8950 {
8951 *name = DW_STRING (attr);
8952 }
8953
8954 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8955 if (attr)
8956 *comp_dir = DW_STRING (attr);
8957 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8958 && IS_ABSOLUTE_PATH (*name))
8959 {
8960 char *d = ldirname (*name);
8961
8962 *comp_dir = d;
8963 if (d != NULL)
8964 make_cleanup (xfree, d);
8965 }
8966 if (*comp_dir != NULL)
8967 {
8968 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8969 directory, get rid of it. */
8970 char *cp = strchr (*comp_dir, ':');
8971
8972 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8973 *comp_dir = cp + 1;
8974 }
8975
8976 if (*name == NULL)
8977 *name = "<unknown>";
8978 }
8979
8980 /* Handle DW_AT_stmt_list for a compilation unit.
8981 DIE is the DW_TAG_compile_unit die for CU.
8982 COMP_DIR is the compilation directory. LOWPC is passed to
8983 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8984
8985 static void
8986 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8987 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8988 {
8989 struct attribute *attr;
8990
8991 gdb_assert (! cu->per_cu->is_debug_types);
8992
8993 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8994 if (attr)
8995 {
8996 unsigned int line_offset = DW_UNSND (attr);
8997 struct line_header *line_header
8998 = dwarf_decode_line_header (line_offset, cu);
8999
9000 if (line_header)
9001 {
9002 cu->line_header = line_header;
9003 make_cleanup (free_cu_line_header, cu);
9004 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
9005 }
9006 }
9007 }
9008
9009 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9010
9011 static void
9012 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9013 {
9014 struct objfile *objfile = dwarf2_per_objfile->objfile;
9015 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9016 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9017 CORE_ADDR highpc = ((CORE_ADDR) 0);
9018 struct attribute *attr;
9019 const char *name = NULL;
9020 const char *comp_dir = NULL;
9021 struct die_info *child_die;
9022 bfd *abfd = objfile->obfd;
9023 CORE_ADDR baseaddr;
9024
9025 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9026
9027 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9028
9029 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9030 from finish_block. */
9031 if (lowpc == ((CORE_ADDR) -1))
9032 lowpc = highpc;
9033 lowpc += baseaddr;
9034 highpc += baseaddr;
9035
9036 find_file_and_directory (die, cu, &name, &comp_dir);
9037
9038 prepare_one_comp_unit (cu, die, cu->language);
9039
9040 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9041 standardised yet. As a workaround for the language detection we fall
9042 back to the DW_AT_producer string. */
9043 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9044 cu->language = language_opencl;
9045
9046 /* Similar hack for Go. */
9047 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9048 set_cu_language (DW_LANG_Go, cu);
9049
9050 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9051
9052 /* Decode line number information if present. We do this before
9053 processing child DIEs, so that the line header table is available
9054 for DW_AT_decl_file. */
9055 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9056
9057 /* Process all dies in compilation unit. */
9058 if (die->child != NULL)
9059 {
9060 child_die = die->child;
9061 while (child_die && child_die->tag)
9062 {
9063 process_die (child_die, cu);
9064 child_die = sibling_die (child_die);
9065 }
9066 }
9067
9068 /* Decode macro information, if present. Dwarf 2 macro information
9069 refers to information in the line number info statement program
9070 header, so we can only read it if we've read the header
9071 successfully. */
9072 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9073 if (attr && cu->line_header)
9074 {
9075 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9076 complaint (&symfile_complaints,
9077 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9078
9079 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9080 }
9081 else
9082 {
9083 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9084 if (attr && cu->line_header)
9085 {
9086 unsigned int macro_offset = DW_UNSND (attr);
9087
9088 dwarf_decode_macros (cu, macro_offset, 0);
9089 }
9090 }
9091
9092 do_cleanups (back_to);
9093 }
9094
9095 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9096 Create the set of symtabs used by this TU, or if this TU is sharing
9097 symtabs with another TU and the symtabs have already been created
9098 then restore those symtabs in the line header.
9099 We don't need the pc/line-number mapping for type units. */
9100
9101 static void
9102 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9103 {
9104 struct objfile *objfile = dwarf2_per_objfile->objfile;
9105 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9106 struct type_unit_group *tu_group;
9107 int first_time;
9108 struct line_header *lh;
9109 struct attribute *attr;
9110 unsigned int i, line_offset;
9111 struct signatured_type *sig_type;
9112
9113 gdb_assert (per_cu->is_debug_types);
9114 sig_type = (struct signatured_type *) per_cu;
9115
9116 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9117
9118 /* If we're using .gdb_index (includes -readnow) then
9119 per_cu->type_unit_group may not have been set up yet. */
9120 if (sig_type->type_unit_group == NULL)
9121 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9122 tu_group = sig_type->type_unit_group;
9123
9124 /* If we've already processed this stmt_list there's no real need to
9125 do it again, we could fake it and just recreate the part we need
9126 (file name,index -> symtab mapping). If data shows this optimization
9127 is useful we can do it then. */
9128 first_time = tu_group->compunit_symtab == NULL;
9129
9130 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9131 debug info. */
9132 lh = NULL;
9133 if (attr != NULL)
9134 {
9135 line_offset = DW_UNSND (attr);
9136 lh = dwarf_decode_line_header (line_offset, cu);
9137 }
9138 if (lh == NULL)
9139 {
9140 if (first_time)
9141 dwarf2_start_symtab (cu, "", NULL, 0);
9142 else
9143 {
9144 gdb_assert (tu_group->symtabs == NULL);
9145 restart_symtab (0);
9146 }
9147 /* Note: The compunit symtab will get allocated at the end. */
9148 return;
9149 }
9150
9151 cu->line_header = lh;
9152 make_cleanup (free_cu_line_header, cu);
9153
9154 if (first_time)
9155 {
9156 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9157
9158 tu_group->num_symtabs = lh->num_file_names;
9159 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9160
9161 for (i = 0; i < lh->num_file_names; ++i)
9162 {
9163 const char *dir = NULL;
9164 struct file_entry *fe = &lh->file_names[i];
9165
9166 if (fe->dir_index)
9167 dir = lh->include_dirs[fe->dir_index - 1];
9168 dwarf2_start_subfile (fe->name, dir);
9169
9170 if (current_subfile->symtab == NULL)
9171 {
9172 /* NOTE: start_subfile will recognize when it's been passed
9173 a file it has already seen. So we can't assume there's a
9174 simple mapping from lh->file_names to subfiles, plus
9175 lh->file_names may contain dups. */
9176 current_subfile->symtab
9177 = allocate_symtab (cust, current_subfile->name);
9178 }
9179
9180 fe->symtab = current_subfile->symtab;
9181 tu_group->symtabs[i] = fe->symtab;
9182 }
9183 }
9184 else
9185 {
9186 restart_symtab (0);
9187
9188 for (i = 0; i < lh->num_file_names; ++i)
9189 {
9190 struct file_entry *fe = &lh->file_names[i];
9191
9192 fe->symtab = tu_group->symtabs[i];
9193 }
9194 }
9195
9196 /* The main symtab is allocated last. Type units don't have DW_AT_name
9197 so they don't have a "real" (so to speak) symtab anyway.
9198 There is later code that will assign the main symtab to all symbols
9199 that don't have one. We need to handle the case of a symbol with a
9200 missing symtab (DW_AT_decl_file) anyway. */
9201 }
9202
9203 /* Process DW_TAG_type_unit.
9204 For TUs we want to skip the first top level sibling if it's not the
9205 actual type being defined by this TU. In this case the first top
9206 level sibling is there to provide context only. */
9207
9208 static void
9209 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9210 {
9211 struct die_info *child_die;
9212
9213 prepare_one_comp_unit (cu, die, language_minimal);
9214
9215 /* Initialize (or reinitialize) the machinery for building symtabs.
9216 We do this before processing child DIEs, so that the line header table
9217 is available for DW_AT_decl_file. */
9218 setup_type_unit_groups (die, cu);
9219
9220 if (die->child != NULL)
9221 {
9222 child_die = die->child;
9223 while (child_die && child_die->tag)
9224 {
9225 process_die (child_die, cu);
9226 child_die = sibling_die (child_die);
9227 }
9228 }
9229 }
9230 \f
9231 /* DWO/DWP files.
9232
9233 http://gcc.gnu.org/wiki/DebugFission
9234 http://gcc.gnu.org/wiki/DebugFissionDWP
9235
9236 To simplify handling of both DWO files ("object" files with the DWARF info)
9237 and DWP files (a file with the DWOs packaged up into one file), we treat
9238 DWP files as having a collection of virtual DWO files. */
9239
9240 static hashval_t
9241 hash_dwo_file (const void *item)
9242 {
9243 const struct dwo_file *dwo_file = item;
9244 hashval_t hash;
9245
9246 hash = htab_hash_string (dwo_file->dwo_name);
9247 if (dwo_file->comp_dir != NULL)
9248 hash += htab_hash_string (dwo_file->comp_dir);
9249 return hash;
9250 }
9251
9252 static int
9253 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9254 {
9255 const struct dwo_file *lhs = item_lhs;
9256 const struct dwo_file *rhs = item_rhs;
9257
9258 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9259 return 0;
9260 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9261 return lhs->comp_dir == rhs->comp_dir;
9262 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9263 }
9264
9265 /* Allocate a hash table for DWO files. */
9266
9267 static htab_t
9268 allocate_dwo_file_hash_table (void)
9269 {
9270 struct objfile *objfile = dwarf2_per_objfile->objfile;
9271
9272 return htab_create_alloc_ex (41,
9273 hash_dwo_file,
9274 eq_dwo_file,
9275 NULL,
9276 &objfile->objfile_obstack,
9277 hashtab_obstack_allocate,
9278 dummy_obstack_deallocate);
9279 }
9280
9281 /* Lookup DWO file DWO_NAME. */
9282
9283 static void **
9284 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9285 {
9286 struct dwo_file find_entry;
9287 void **slot;
9288
9289 if (dwarf2_per_objfile->dwo_files == NULL)
9290 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9291
9292 memset (&find_entry, 0, sizeof (find_entry));
9293 find_entry.dwo_name = dwo_name;
9294 find_entry.comp_dir = comp_dir;
9295 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9296
9297 return slot;
9298 }
9299
9300 static hashval_t
9301 hash_dwo_unit (const void *item)
9302 {
9303 const struct dwo_unit *dwo_unit = item;
9304
9305 /* This drops the top 32 bits of the id, but is ok for a hash. */
9306 return dwo_unit->signature;
9307 }
9308
9309 static int
9310 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9311 {
9312 const struct dwo_unit *lhs = item_lhs;
9313 const struct dwo_unit *rhs = item_rhs;
9314
9315 /* The signature is assumed to be unique within the DWO file.
9316 So while object file CU dwo_id's always have the value zero,
9317 that's OK, assuming each object file DWO file has only one CU,
9318 and that's the rule for now. */
9319 return lhs->signature == rhs->signature;
9320 }
9321
9322 /* Allocate a hash table for DWO CUs,TUs.
9323 There is one of these tables for each of CUs,TUs for each DWO file. */
9324
9325 static htab_t
9326 allocate_dwo_unit_table (struct objfile *objfile)
9327 {
9328 /* Start out with a pretty small number.
9329 Generally DWO files contain only one CU and maybe some TUs. */
9330 return htab_create_alloc_ex (3,
9331 hash_dwo_unit,
9332 eq_dwo_unit,
9333 NULL,
9334 &objfile->objfile_obstack,
9335 hashtab_obstack_allocate,
9336 dummy_obstack_deallocate);
9337 }
9338
9339 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9340
9341 struct create_dwo_cu_data
9342 {
9343 struct dwo_file *dwo_file;
9344 struct dwo_unit dwo_unit;
9345 };
9346
9347 /* die_reader_func for create_dwo_cu. */
9348
9349 static void
9350 create_dwo_cu_reader (const struct die_reader_specs *reader,
9351 const gdb_byte *info_ptr,
9352 struct die_info *comp_unit_die,
9353 int has_children,
9354 void *datap)
9355 {
9356 struct dwarf2_cu *cu = reader->cu;
9357 struct objfile *objfile = dwarf2_per_objfile->objfile;
9358 sect_offset offset = cu->per_cu->offset;
9359 struct dwarf2_section_info *section = cu->per_cu->section;
9360 struct create_dwo_cu_data *data = datap;
9361 struct dwo_file *dwo_file = data->dwo_file;
9362 struct dwo_unit *dwo_unit = &data->dwo_unit;
9363 struct attribute *attr;
9364
9365 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9366 if (attr == NULL)
9367 {
9368 complaint (&symfile_complaints,
9369 _("Dwarf Error: debug entry at offset 0x%x is missing"
9370 " its dwo_id [in module %s]"),
9371 offset.sect_off, dwo_file->dwo_name);
9372 return;
9373 }
9374
9375 dwo_unit->dwo_file = dwo_file;
9376 dwo_unit->signature = DW_UNSND (attr);
9377 dwo_unit->section = section;
9378 dwo_unit->offset = offset;
9379 dwo_unit->length = cu->per_cu->length;
9380
9381 if (dwarf2_read_debug)
9382 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9383 offset.sect_off, hex_string (dwo_unit->signature));
9384 }
9385
9386 /* Create the dwo_unit for the lone CU in DWO_FILE.
9387 Note: This function processes DWO files only, not DWP files. */
9388
9389 static struct dwo_unit *
9390 create_dwo_cu (struct dwo_file *dwo_file)
9391 {
9392 struct objfile *objfile = dwarf2_per_objfile->objfile;
9393 struct dwarf2_section_info *section = &dwo_file->sections.info;
9394 bfd *abfd;
9395 htab_t cu_htab;
9396 const gdb_byte *info_ptr, *end_ptr;
9397 struct create_dwo_cu_data create_dwo_cu_data;
9398 struct dwo_unit *dwo_unit;
9399
9400 dwarf2_read_section (objfile, section);
9401 info_ptr = section->buffer;
9402
9403 if (info_ptr == NULL)
9404 return NULL;
9405
9406 /* We can't set abfd until now because the section may be empty or
9407 not present, in which case section->asection will be NULL. */
9408 abfd = get_section_bfd_owner (section);
9409
9410 if (dwarf2_read_debug)
9411 {
9412 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9413 get_section_name (section),
9414 get_section_file_name (section));
9415 }
9416
9417 create_dwo_cu_data.dwo_file = dwo_file;
9418 dwo_unit = NULL;
9419
9420 end_ptr = info_ptr + section->size;
9421 while (info_ptr < end_ptr)
9422 {
9423 struct dwarf2_per_cu_data per_cu;
9424
9425 memset (&create_dwo_cu_data.dwo_unit, 0,
9426 sizeof (create_dwo_cu_data.dwo_unit));
9427 memset (&per_cu, 0, sizeof (per_cu));
9428 per_cu.objfile = objfile;
9429 per_cu.is_debug_types = 0;
9430 per_cu.offset.sect_off = info_ptr - section->buffer;
9431 per_cu.section = section;
9432
9433 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9434 create_dwo_cu_reader,
9435 &create_dwo_cu_data);
9436
9437 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9438 {
9439 /* If we've already found one, complain. We only support one
9440 because having more than one requires hacking the dwo_name of
9441 each to match, which is highly unlikely to happen. */
9442 if (dwo_unit != NULL)
9443 {
9444 complaint (&symfile_complaints,
9445 _("Multiple CUs in DWO file %s [in module %s]"),
9446 dwo_file->dwo_name, objfile_name (objfile));
9447 break;
9448 }
9449
9450 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9451 *dwo_unit = create_dwo_cu_data.dwo_unit;
9452 }
9453
9454 info_ptr += per_cu.length;
9455 }
9456
9457 return dwo_unit;
9458 }
9459
9460 /* DWP file .debug_{cu,tu}_index section format:
9461 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9462
9463 DWP Version 1:
9464
9465 Both index sections have the same format, and serve to map a 64-bit
9466 signature to a set of section numbers. Each section begins with a header,
9467 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9468 indexes, and a pool of 32-bit section numbers. The index sections will be
9469 aligned at 8-byte boundaries in the file.
9470
9471 The index section header consists of:
9472
9473 V, 32 bit version number
9474 -, 32 bits unused
9475 N, 32 bit number of compilation units or type units in the index
9476 M, 32 bit number of slots in the hash table
9477
9478 Numbers are recorded using the byte order of the application binary.
9479
9480 The hash table begins at offset 16 in the section, and consists of an array
9481 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9482 order of the application binary). Unused slots in the hash table are 0.
9483 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9484
9485 The parallel table begins immediately after the hash table
9486 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9487 array of 32-bit indexes (using the byte order of the application binary),
9488 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9489 table contains a 32-bit index into the pool of section numbers. For unused
9490 hash table slots, the corresponding entry in the parallel table will be 0.
9491
9492 The pool of section numbers begins immediately following the hash table
9493 (at offset 16 + 12 * M from the beginning of the section). The pool of
9494 section numbers consists of an array of 32-bit words (using the byte order
9495 of the application binary). Each item in the array is indexed starting
9496 from 0. The hash table entry provides the index of the first section
9497 number in the set. Additional section numbers in the set follow, and the
9498 set is terminated by a 0 entry (section number 0 is not used in ELF).
9499
9500 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9501 section must be the first entry in the set, and the .debug_abbrev.dwo must
9502 be the second entry. Other members of the set may follow in any order.
9503
9504 ---
9505
9506 DWP Version 2:
9507
9508 DWP Version 2 combines all the .debug_info, etc. sections into one,
9509 and the entries in the index tables are now offsets into these sections.
9510 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9511 section.
9512
9513 Index Section Contents:
9514 Header
9515 Hash Table of Signatures dwp_hash_table.hash_table
9516 Parallel Table of Indices dwp_hash_table.unit_table
9517 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9518 Table of Section Sizes dwp_hash_table.v2.sizes
9519
9520 The index section header consists of:
9521
9522 V, 32 bit version number
9523 L, 32 bit number of columns in the table of section offsets
9524 N, 32 bit number of compilation units or type units in the index
9525 M, 32 bit number of slots in the hash table
9526
9527 Numbers are recorded using the byte order of the application binary.
9528
9529 The hash table has the same format as version 1.
9530 The parallel table of indices has the same format as version 1,
9531 except that the entries are origin-1 indices into the table of sections
9532 offsets and the table of section sizes.
9533
9534 The table of offsets begins immediately following the parallel table
9535 (at offset 16 + 12 * M from the beginning of the section). The table is
9536 a two-dimensional array of 32-bit words (using the byte order of the
9537 application binary), with L columns and N+1 rows, in row-major order.
9538 Each row in the array is indexed starting from 0. The first row provides
9539 a key to the remaining rows: each column in this row provides an identifier
9540 for a debug section, and the offsets in the same column of subsequent rows
9541 refer to that section. The section identifiers are:
9542
9543 DW_SECT_INFO 1 .debug_info.dwo
9544 DW_SECT_TYPES 2 .debug_types.dwo
9545 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9546 DW_SECT_LINE 4 .debug_line.dwo
9547 DW_SECT_LOC 5 .debug_loc.dwo
9548 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9549 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9550 DW_SECT_MACRO 8 .debug_macro.dwo
9551
9552 The offsets provided by the CU and TU index sections are the base offsets
9553 for the contributions made by each CU or TU to the corresponding section
9554 in the package file. Each CU and TU header contains an abbrev_offset
9555 field, used to find the abbreviations table for that CU or TU within the
9556 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9557 be interpreted as relative to the base offset given in the index section.
9558 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9559 should be interpreted as relative to the base offset for .debug_line.dwo,
9560 and offsets into other debug sections obtained from DWARF attributes should
9561 also be interpreted as relative to the corresponding base offset.
9562
9563 The table of sizes begins immediately following the table of offsets.
9564 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9565 with L columns and N rows, in row-major order. Each row in the array is
9566 indexed starting from 1 (row 0 is shared by the two tables).
9567
9568 ---
9569
9570 Hash table lookup is handled the same in version 1 and 2:
9571
9572 We assume that N and M will not exceed 2^32 - 1.
9573 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9574
9575 Given a 64-bit compilation unit signature or a type signature S, an entry
9576 in the hash table is located as follows:
9577
9578 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9579 the low-order k bits all set to 1.
9580
9581 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9582
9583 3) If the hash table entry at index H matches the signature, use that
9584 entry. If the hash table entry at index H is unused (all zeroes),
9585 terminate the search: the signature is not present in the table.
9586
9587 4) Let H = (H + H') modulo M. Repeat at Step 3.
9588
9589 Because M > N and H' and M are relatively prime, the search is guaranteed
9590 to stop at an unused slot or find the match. */
9591
9592 /* Create a hash table to map DWO IDs to their CU/TU entry in
9593 .debug_{info,types}.dwo in DWP_FILE.
9594 Returns NULL if there isn't one.
9595 Note: This function processes DWP files only, not DWO files. */
9596
9597 static struct dwp_hash_table *
9598 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9599 {
9600 struct objfile *objfile = dwarf2_per_objfile->objfile;
9601 bfd *dbfd = dwp_file->dbfd;
9602 const gdb_byte *index_ptr, *index_end;
9603 struct dwarf2_section_info *index;
9604 uint32_t version, nr_columns, nr_units, nr_slots;
9605 struct dwp_hash_table *htab;
9606
9607 if (is_debug_types)
9608 index = &dwp_file->sections.tu_index;
9609 else
9610 index = &dwp_file->sections.cu_index;
9611
9612 if (dwarf2_section_empty_p (index))
9613 return NULL;
9614 dwarf2_read_section (objfile, index);
9615
9616 index_ptr = index->buffer;
9617 index_end = index_ptr + index->size;
9618
9619 version = read_4_bytes (dbfd, index_ptr);
9620 index_ptr += 4;
9621 if (version == 2)
9622 nr_columns = read_4_bytes (dbfd, index_ptr);
9623 else
9624 nr_columns = 0;
9625 index_ptr += 4;
9626 nr_units = read_4_bytes (dbfd, index_ptr);
9627 index_ptr += 4;
9628 nr_slots = read_4_bytes (dbfd, index_ptr);
9629 index_ptr += 4;
9630
9631 if (version != 1 && version != 2)
9632 {
9633 error (_("Dwarf Error: unsupported DWP file version (%s)"
9634 " [in module %s]"),
9635 pulongest (version), dwp_file->name);
9636 }
9637 if (nr_slots != (nr_slots & -nr_slots))
9638 {
9639 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9640 " is not power of 2 [in module %s]"),
9641 pulongest (nr_slots), dwp_file->name);
9642 }
9643
9644 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9645 htab->version = version;
9646 htab->nr_columns = nr_columns;
9647 htab->nr_units = nr_units;
9648 htab->nr_slots = nr_slots;
9649 htab->hash_table = index_ptr;
9650 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9651
9652 /* Exit early if the table is empty. */
9653 if (nr_slots == 0 || nr_units == 0
9654 || (version == 2 && nr_columns == 0))
9655 {
9656 /* All must be zero. */
9657 if (nr_slots != 0 || nr_units != 0
9658 || (version == 2 && nr_columns != 0))
9659 {
9660 complaint (&symfile_complaints,
9661 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9662 " all zero [in modules %s]"),
9663 dwp_file->name);
9664 }
9665 return htab;
9666 }
9667
9668 if (version == 1)
9669 {
9670 htab->section_pool.v1.indices =
9671 htab->unit_table + sizeof (uint32_t) * nr_slots;
9672 /* It's harder to decide whether the section is too small in v1.
9673 V1 is deprecated anyway so we punt. */
9674 }
9675 else
9676 {
9677 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9678 int *ids = htab->section_pool.v2.section_ids;
9679 /* Reverse map for error checking. */
9680 int ids_seen[DW_SECT_MAX + 1];
9681 int i;
9682
9683 if (nr_columns < 2)
9684 {
9685 error (_("Dwarf Error: bad DWP hash table, too few columns"
9686 " in section table [in module %s]"),
9687 dwp_file->name);
9688 }
9689 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9690 {
9691 error (_("Dwarf Error: bad DWP hash table, too many columns"
9692 " in section table [in module %s]"),
9693 dwp_file->name);
9694 }
9695 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9696 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9697 for (i = 0; i < nr_columns; ++i)
9698 {
9699 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9700
9701 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9702 {
9703 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9704 " in section table [in module %s]"),
9705 id, dwp_file->name);
9706 }
9707 if (ids_seen[id] != -1)
9708 {
9709 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9710 " id %d in section table [in module %s]"),
9711 id, dwp_file->name);
9712 }
9713 ids_seen[id] = i;
9714 ids[i] = id;
9715 }
9716 /* Must have exactly one info or types section. */
9717 if (((ids_seen[DW_SECT_INFO] != -1)
9718 + (ids_seen[DW_SECT_TYPES] != -1))
9719 != 1)
9720 {
9721 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9722 " DWO info/types section [in module %s]"),
9723 dwp_file->name);
9724 }
9725 /* Must have an abbrev section. */
9726 if (ids_seen[DW_SECT_ABBREV] == -1)
9727 {
9728 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9729 " section [in module %s]"),
9730 dwp_file->name);
9731 }
9732 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9733 htab->section_pool.v2.sizes =
9734 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9735 * nr_units * nr_columns);
9736 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9737 * nr_units * nr_columns))
9738 > index_end)
9739 {
9740 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9741 " [in module %s]"),
9742 dwp_file->name);
9743 }
9744 }
9745
9746 return htab;
9747 }
9748
9749 /* Update SECTIONS with the data from SECTP.
9750
9751 This function is like the other "locate" section routines that are
9752 passed to bfd_map_over_sections, but in this context the sections to
9753 read comes from the DWP V1 hash table, not the full ELF section table.
9754
9755 The result is non-zero for success, or zero if an error was found. */
9756
9757 static int
9758 locate_v1_virtual_dwo_sections (asection *sectp,
9759 struct virtual_v1_dwo_sections *sections)
9760 {
9761 const struct dwop_section_names *names = &dwop_section_names;
9762
9763 if (section_is_p (sectp->name, &names->abbrev_dwo))
9764 {
9765 /* There can be only one. */
9766 if (sections->abbrev.s.asection != NULL)
9767 return 0;
9768 sections->abbrev.s.asection = sectp;
9769 sections->abbrev.size = bfd_get_section_size (sectp);
9770 }
9771 else if (section_is_p (sectp->name, &names->info_dwo)
9772 || section_is_p (sectp->name, &names->types_dwo))
9773 {
9774 /* There can be only one. */
9775 if (sections->info_or_types.s.asection != NULL)
9776 return 0;
9777 sections->info_or_types.s.asection = sectp;
9778 sections->info_or_types.size = bfd_get_section_size (sectp);
9779 }
9780 else if (section_is_p (sectp->name, &names->line_dwo))
9781 {
9782 /* There can be only one. */
9783 if (sections->line.s.asection != NULL)
9784 return 0;
9785 sections->line.s.asection = sectp;
9786 sections->line.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->loc_dwo))
9789 {
9790 /* There can be only one. */
9791 if (sections->loc.s.asection != NULL)
9792 return 0;
9793 sections->loc.s.asection = sectp;
9794 sections->loc.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9797 {
9798 /* There can be only one. */
9799 if (sections->macinfo.s.asection != NULL)
9800 return 0;
9801 sections->macinfo.s.asection = sectp;
9802 sections->macinfo.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->macro_dwo))
9805 {
9806 /* There can be only one. */
9807 if (sections->macro.s.asection != NULL)
9808 return 0;
9809 sections->macro.s.asection = sectp;
9810 sections->macro.size = bfd_get_section_size (sectp);
9811 }
9812 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9813 {
9814 /* There can be only one. */
9815 if (sections->str_offsets.s.asection != NULL)
9816 return 0;
9817 sections->str_offsets.s.asection = sectp;
9818 sections->str_offsets.size = bfd_get_section_size (sectp);
9819 }
9820 else
9821 {
9822 /* No other kind of section is valid. */
9823 return 0;
9824 }
9825
9826 return 1;
9827 }
9828
9829 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9830 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9831 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9832 This is for DWP version 1 files. */
9833
9834 static struct dwo_unit *
9835 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9836 uint32_t unit_index,
9837 const char *comp_dir,
9838 ULONGEST signature, int is_debug_types)
9839 {
9840 struct objfile *objfile = dwarf2_per_objfile->objfile;
9841 const struct dwp_hash_table *dwp_htab =
9842 is_debug_types ? dwp_file->tus : dwp_file->cus;
9843 bfd *dbfd = dwp_file->dbfd;
9844 const char *kind = is_debug_types ? "TU" : "CU";
9845 struct dwo_file *dwo_file;
9846 struct dwo_unit *dwo_unit;
9847 struct virtual_v1_dwo_sections sections;
9848 void **dwo_file_slot;
9849 char *virtual_dwo_name;
9850 struct dwarf2_section_info *cutu;
9851 struct cleanup *cleanups;
9852 int i;
9853
9854 gdb_assert (dwp_file->version == 1);
9855
9856 if (dwarf2_read_debug)
9857 {
9858 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9859 kind,
9860 pulongest (unit_index), hex_string (signature),
9861 dwp_file->name);
9862 }
9863
9864 /* Fetch the sections of this DWO unit.
9865 Put a limit on the number of sections we look for so that bad data
9866 doesn't cause us to loop forever. */
9867
9868 #define MAX_NR_V1_DWO_SECTIONS \
9869 (1 /* .debug_info or .debug_types */ \
9870 + 1 /* .debug_abbrev */ \
9871 + 1 /* .debug_line */ \
9872 + 1 /* .debug_loc */ \
9873 + 1 /* .debug_str_offsets */ \
9874 + 1 /* .debug_macro or .debug_macinfo */ \
9875 + 1 /* trailing zero */)
9876
9877 memset (&sections, 0, sizeof (sections));
9878 cleanups = make_cleanup (null_cleanup, 0);
9879
9880 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9881 {
9882 asection *sectp;
9883 uint32_t section_nr =
9884 read_4_bytes (dbfd,
9885 dwp_htab->section_pool.v1.indices
9886 + (unit_index + i) * sizeof (uint32_t));
9887
9888 if (section_nr == 0)
9889 break;
9890 if (section_nr >= dwp_file->num_sections)
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, section number too large"
9893 " [in module %s]"),
9894 dwp_file->name);
9895 }
9896
9897 sectp = dwp_file->elf_sections[section_nr];
9898 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
9905
9906 if (i < 2
9907 || dwarf2_section_empty_p (&sections.info_or_types)
9908 || dwarf2_section_empty_p (&sections.abbrev))
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9911 " [in module %s]"),
9912 dwp_file->name);
9913 }
9914 if (i == MAX_NR_V1_DWO_SECTIONS)
9915 {
9916 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9917 " [in module %s]"),
9918 dwp_file->name);
9919 }
9920
9921 /* It's easier for the rest of the code if we fake a struct dwo_file and
9922 have dwo_unit "live" in that. At least for now.
9923
9924 The DWP file can be made up of a random collection of CUs and TUs.
9925 However, for each CU + set of TUs that came from the same original DWO
9926 file, we can combine them back into a virtual DWO file to save space
9927 (fewer struct dwo_file objects to allocate). Remember that for really
9928 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9929
9930 virtual_dwo_name =
9931 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9932 get_section_id (&sections.abbrev),
9933 get_section_id (&sections.line),
9934 get_section_id (&sections.loc),
9935 get_section_id (&sections.str_offsets));
9936 make_cleanup (xfree, virtual_dwo_name);
9937 /* Can we use an existing virtual DWO file? */
9938 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9939 /* Create one if necessary. */
9940 if (*dwo_file_slot == NULL)
9941 {
9942 if (dwarf2_read_debug)
9943 {
9944 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9945 virtual_dwo_name);
9946 }
9947 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9948 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9949 virtual_dwo_name,
9950 strlen (virtual_dwo_name));
9951 dwo_file->comp_dir = comp_dir;
9952 dwo_file->sections.abbrev = sections.abbrev;
9953 dwo_file->sections.line = sections.line;
9954 dwo_file->sections.loc = sections.loc;
9955 dwo_file->sections.macinfo = sections.macinfo;
9956 dwo_file->sections.macro = sections.macro;
9957 dwo_file->sections.str_offsets = sections.str_offsets;
9958 /* The "str" section is global to the entire DWP file. */
9959 dwo_file->sections.str = dwp_file->sections.str;
9960 /* The info or types section is assigned below to dwo_unit,
9961 there's no need to record it in dwo_file.
9962 Also, we can't simply record type sections in dwo_file because
9963 we record a pointer into the vector in dwo_unit. As we collect more
9964 types we'll grow the vector and eventually have to reallocate space
9965 for it, invalidating all copies of pointers into the previous
9966 contents. */
9967 *dwo_file_slot = dwo_file;
9968 }
9969 else
9970 {
9971 if (dwarf2_read_debug)
9972 {
9973 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9974 virtual_dwo_name);
9975 }
9976 dwo_file = *dwo_file_slot;
9977 }
9978 do_cleanups (cleanups);
9979
9980 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9981 dwo_unit->dwo_file = dwo_file;
9982 dwo_unit->signature = signature;
9983 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9984 sizeof (struct dwarf2_section_info));
9985 *dwo_unit->section = sections.info_or_types;
9986 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9987
9988 return dwo_unit;
9989 }
9990
9991 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9992 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9993 piece within that section used by a TU/CU, return a virtual section
9994 of just that piece. */
9995
9996 static struct dwarf2_section_info
9997 create_dwp_v2_section (struct dwarf2_section_info *section,
9998 bfd_size_type offset, bfd_size_type size)
9999 {
10000 struct dwarf2_section_info result;
10001 asection *sectp;
10002
10003 gdb_assert (section != NULL);
10004 gdb_assert (!section->is_virtual);
10005
10006 memset (&result, 0, sizeof (result));
10007 result.s.containing_section = section;
10008 result.is_virtual = 1;
10009
10010 if (size == 0)
10011 return result;
10012
10013 sectp = get_section_bfd_section (section);
10014
10015 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10016 bounds of the real section. This is a pretty-rare event, so just
10017 flag an error (easier) instead of a warning and trying to cope. */
10018 if (sectp == NULL
10019 || offset + size > bfd_get_section_size (sectp))
10020 {
10021 bfd *abfd = sectp->owner;
10022
10023 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10024 " in section %s [in module %s]"),
10025 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10026 objfile_name (dwarf2_per_objfile->objfile));
10027 }
10028
10029 result.virtual_offset = offset;
10030 result.size = size;
10031 return result;
10032 }
10033
10034 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10035 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10036 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10037 This is for DWP version 2 files. */
10038
10039 static struct dwo_unit *
10040 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10041 uint32_t unit_index,
10042 const char *comp_dir,
10043 ULONGEST signature, int is_debug_types)
10044 {
10045 struct objfile *objfile = dwarf2_per_objfile->objfile;
10046 const struct dwp_hash_table *dwp_htab =
10047 is_debug_types ? dwp_file->tus : dwp_file->cus;
10048 bfd *dbfd = dwp_file->dbfd;
10049 const char *kind = is_debug_types ? "TU" : "CU";
10050 struct dwo_file *dwo_file;
10051 struct dwo_unit *dwo_unit;
10052 struct virtual_v2_dwo_sections sections;
10053 void **dwo_file_slot;
10054 char *virtual_dwo_name;
10055 struct dwarf2_section_info *cutu;
10056 struct cleanup *cleanups;
10057 int i;
10058
10059 gdb_assert (dwp_file->version == 2);
10060
10061 if (dwarf2_read_debug)
10062 {
10063 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10064 kind,
10065 pulongest (unit_index), hex_string (signature),
10066 dwp_file->name);
10067 }
10068
10069 /* Fetch the section offsets of this DWO unit. */
10070
10071 memset (&sections, 0, sizeof (sections));
10072 cleanups = make_cleanup (null_cleanup, 0);
10073
10074 for (i = 0; i < dwp_htab->nr_columns; ++i)
10075 {
10076 uint32_t offset = read_4_bytes (dbfd,
10077 dwp_htab->section_pool.v2.offsets
10078 + (((unit_index - 1) * dwp_htab->nr_columns
10079 + i)
10080 * sizeof (uint32_t)));
10081 uint32_t size = read_4_bytes (dbfd,
10082 dwp_htab->section_pool.v2.sizes
10083 + (((unit_index - 1) * dwp_htab->nr_columns
10084 + i)
10085 * sizeof (uint32_t)));
10086
10087 switch (dwp_htab->section_pool.v2.section_ids[i])
10088 {
10089 case DW_SECT_INFO:
10090 case DW_SECT_TYPES:
10091 sections.info_or_types_offset = offset;
10092 sections.info_or_types_size = size;
10093 break;
10094 case DW_SECT_ABBREV:
10095 sections.abbrev_offset = offset;
10096 sections.abbrev_size = size;
10097 break;
10098 case DW_SECT_LINE:
10099 sections.line_offset = offset;
10100 sections.line_size = size;
10101 break;
10102 case DW_SECT_LOC:
10103 sections.loc_offset = offset;
10104 sections.loc_size = size;
10105 break;
10106 case DW_SECT_STR_OFFSETS:
10107 sections.str_offsets_offset = offset;
10108 sections.str_offsets_size = size;
10109 break;
10110 case DW_SECT_MACINFO:
10111 sections.macinfo_offset = offset;
10112 sections.macinfo_size = size;
10113 break;
10114 case DW_SECT_MACRO:
10115 sections.macro_offset = offset;
10116 sections.macro_size = size;
10117 break;
10118 }
10119 }
10120
10121 /* It's easier for the rest of the code if we fake a struct dwo_file and
10122 have dwo_unit "live" in that. At least for now.
10123
10124 The DWP file can be made up of a random collection of CUs and TUs.
10125 However, for each CU + set of TUs that came from the same original DWO
10126 file, we can combine them back into a virtual DWO file to save space
10127 (fewer struct dwo_file objects to allocate). Remember that for really
10128 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10129
10130 virtual_dwo_name =
10131 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10132 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10133 (long) (sections.line_size ? sections.line_offset : 0),
10134 (long) (sections.loc_size ? sections.loc_offset : 0),
10135 (long) (sections.str_offsets_size
10136 ? sections.str_offsets_offset : 0));
10137 make_cleanup (xfree, virtual_dwo_name);
10138 /* Can we use an existing virtual DWO file? */
10139 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10140 /* Create one if necessary. */
10141 if (*dwo_file_slot == NULL)
10142 {
10143 if (dwarf2_read_debug)
10144 {
10145 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10146 virtual_dwo_name);
10147 }
10148 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10149 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10150 virtual_dwo_name,
10151 strlen (virtual_dwo_name));
10152 dwo_file->comp_dir = comp_dir;
10153 dwo_file->sections.abbrev =
10154 create_dwp_v2_section (&dwp_file->sections.abbrev,
10155 sections.abbrev_offset, sections.abbrev_size);
10156 dwo_file->sections.line =
10157 create_dwp_v2_section (&dwp_file->sections.line,
10158 sections.line_offset, sections.line_size);
10159 dwo_file->sections.loc =
10160 create_dwp_v2_section (&dwp_file->sections.loc,
10161 sections.loc_offset, sections.loc_size);
10162 dwo_file->sections.macinfo =
10163 create_dwp_v2_section (&dwp_file->sections.macinfo,
10164 sections.macinfo_offset, sections.macinfo_size);
10165 dwo_file->sections.macro =
10166 create_dwp_v2_section (&dwp_file->sections.macro,
10167 sections.macro_offset, sections.macro_size);
10168 dwo_file->sections.str_offsets =
10169 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10170 sections.str_offsets_offset,
10171 sections.str_offsets_size);
10172 /* The "str" section is global to the entire DWP file. */
10173 dwo_file->sections.str = dwp_file->sections.str;
10174 /* The info or types section is assigned below to dwo_unit,
10175 there's no need to record it in dwo_file.
10176 Also, we can't simply record type sections in dwo_file because
10177 we record a pointer into the vector in dwo_unit. As we collect more
10178 types we'll grow the vector and eventually have to reallocate space
10179 for it, invalidating all copies of pointers into the previous
10180 contents. */
10181 *dwo_file_slot = dwo_file;
10182 }
10183 else
10184 {
10185 if (dwarf2_read_debug)
10186 {
10187 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10188 virtual_dwo_name);
10189 }
10190 dwo_file = *dwo_file_slot;
10191 }
10192 do_cleanups (cleanups);
10193
10194 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10195 dwo_unit->dwo_file = dwo_file;
10196 dwo_unit->signature = signature;
10197 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10198 sizeof (struct dwarf2_section_info));
10199 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10200 ? &dwp_file->sections.types
10201 : &dwp_file->sections.info,
10202 sections.info_or_types_offset,
10203 sections.info_or_types_size);
10204 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10205
10206 return dwo_unit;
10207 }
10208
10209 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10210 Returns NULL if the signature isn't found. */
10211
10212 static struct dwo_unit *
10213 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10214 ULONGEST signature, int is_debug_types)
10215 {
10216 const struct dwp_hash_table *dwp_htab =
10217 is_debug_types ? dwp_file->tus : dwp_file->cus;
10218 bfd *dbfd = dwp_file->dbfd;
10219 uint32_t mask = dwp_htab->nr_slots - 1;
10220 uint32_t hash = signature & mask;
10221 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10222 unsigned int i;
10223 void **slot;
10224 struct dwo_unit find_dwo_cu, *dwo_cu;
10225
10226 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10227 find_dwo_cu.signature = signature;
10228 slot = htab_find_slot (is_debug_types
10229 ? dwp_file->loaded_tus
10230 : dwp_file->loaded_cus,
10231 &find_dwo_cu, INSERT);
10232
10233 if (*slot != NULL)
10234 return *slot;
10235
10236 /* Use a for loop so that we don't loop forever on bad debug info. */
10237 for (i = 0; i < dwp_htab->nr_slots; ++i)
10238 {
10239 ULONGEST signature_in_table;
10240
10241 signature_in_table =
10242 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10243 if (signature_in_table == signature)
10244 {
10245 uint32_t unit_index =
10246 read_4_bytes (dbfd,
10247 dwp_htab->unit_table + hash * sizeof (uint32_t));
10248
10249 if (dwp_file->version == 1)
10250 {
10251 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10252 comp_dir, signature,
10253 is_debug_types);
10254 }
10255 else
10256 {
10257 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10258 comp_dir, signature,
10259 is_debug_types);
10260 }
10261 return *slot;
10262 }
10263 if (signature_in_table == 0)
10264 return NULL;
10265 hash = (hash + hash2) & mask;
10266 }
10267
10268 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10269 " [in module %s]"),
10270 dwp_file->name);
10271 }
10272
10273 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10274 Open the file specified by FILE_NAME and hand it off to BFD for
10275 preliminary analysis. Return a newly initialized bfd *, which
10276 includes a canonicalized copy of FILE_NAME.
10277 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10278 SEARCH_CWD is true if the current directory is to be searched.
10279 It will be searched before debug-file-directory.
10280 If successful, the file is added to the bfd include table of the
10281 objfile's bfd (see gdb_bfd_record_inclusion).
10282 If unable to find/open the file, return NULL.
10283 NOTE: This function is derived from symfile_bfd_open. */
10284
10285 static bfd *
10286 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10287 {
10288 bfd *sym_bfd;
10289 int desc, flags;
10290 char *absolute_name;
10291 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10292 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10293 to debug_file_directory. */
10294 char *search_path;
10295 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10296
10297 if (search_cwd)
10298 {
10299 if (*debug_file_directory != '\0')
10300 search_path = concat (".", dirname_separator_string,
10301 debug_file_directory, NULL);
10302 else
10303 search_path = xstrdup (".");
10304 }
10305 else
10306 search_path = xstrdup (debug_file_directory);
10307
10308 flags = OPF_RETURN_REALPATH;
10309 if (is_dwp)
10310 flags |= OPF_SEARCH_IN_PATH;
10311 desc = openp (search_path, flags, file_name,
10312 O_RDONLY | O_BINARY, &absolute_name);
10313 xfree (search_path);
10314 if (desc < 0)
10315 return NULL;
10316
10317 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10318 xfree (absolute_name);
10319 if (sym_bfd == NULL)
10320 return NULL;
10321 bfd_set_cacheable (sym_bfd, 1);
10322
10323 if (!bfd_check_format (sym_bfd, bfd_object))
10324 {
10325 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10326 return NULL;
10327 }
10328
10329 /* Success. Record the bfd as having been included by the objfile's bfd.
10330 This is important because things like demangled_names_hash lives in the
10331 objfile's per_bfd space and may have references to things like symbol
10332 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10333 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10334
10335 return sym_bfd;
10336 }
10337
10338 /* Try to open DWO file FILE_NAME.
10339 COMP_DIR is the DW_AT_comp_dir attribute.
10340 The result is the bfd handle of the file.
10341 If there is a problem finding or opening the file, return NULL.
10342 Upon success, the canonicalized path of the file is stored in the bfd,
10343 same as symfile_bfd_open. */
10344
10345 static bfd *
10346 open_dwo_file (const char *file_name, const char *comp_dir)
10347 {
10348 bfd *abfd;
10349
10350 if (IS_ABSOLUTE_PATH (file_name))
10351 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10352
10353 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10354
10355 if (comp_dir != NULL)
10356 {
10357 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10358
10359 /* NOTE: If comp_dir is a relative path, this will also try the
10360 search path, which seems useful. */
10361 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10362 xfree (path_to_try);
10363 if (abfd != NULL)
10364 return abfd;
10365 }
10366
10367 /* That didn't work, try debug-file-directory, which, despite its name,
10368 is a list of paths. */
10369
10370 if (*debug_file_directory == '\0')
10371 return NULL;
10372
10373 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10374 }
10375
10376 /* This function is mapped across the sections and remembers the offset and
10377 size of each of the DWO debugging sections we are interested in. */
10378
10379 static void
10380 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10381 {
10382 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10383 const struct dwop_section_names *names = &dwop_section_names;
10384
10385 if (section_is_p (sectp->name, &names->abbrev_dwo))
10386 {
10387 dwo_sections->abbrev.s.asection = sectp;
10388 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10389 }
10390 else if (section_is_p (sectp->name, &names->info_dwo))
10391 {
10392 dwo_sections->info.s.asection = sectp;
10393 dwo_sections->info.size = bfd_get_section_size (sectp);
10394 }
10395 else if (section_is_p (sectp->name, &names->line_dwo))
10396 {
10397 dwo_sections->line.s.asection = sectp;
10398 dwo_sections->line.size = bfd_get_section_size (sectp);
10399 }
10400 else if (section_is_p (sectp->name, &names->loc_dwo))
10401 {
10402 dwo_sections->loc.s.asection = sectp;
10403 dwo_sections->loc.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10406 {
10407 dwo_sections->macinfo.s.asection = sectp;
10408 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10409 }
10410 else if (section_is_p (sectp->name, &names->macro_dwo))
10411 {
10412 dwo_sections->macro.s.asection = sectp;
10413 dwo_sections->macro.size = bfd_get_section_size (sectp);
10414 }
10415 else if (section_is_p (sectp->name, &names->str_dwo))
10416 {
10417 dwo_sections->str.s.asection = sectp;
10418 dwo_sections->str.size = bfd_get_section_size (sectp);
10419 }
10420 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10421 {
10422 dwo_sections->str_offsets.s.asection = sectp;
10423 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10424 }
10425 else if (section_is_p (sectp->name, &names->types_dwo))
10426 {
10427 struct dwarf2_section_info type_section;
10428
10429 memset (&type_section, 0, sizeof (type_section));
10430 type_section.s.asection = sectp;
10431 type_section.size = bfd_get_section_size (sectp);
10432 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10433 &type_section);
10434 }
10435 }
10436
10437 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10438 by PER_CU. This is for the non-DWP case.
10439 The result is NULL if DWO_NAME can't be found. */
10440
10441 static struct dwo_file *
10442 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10443 const char *dwo_name, const char *comp_dir)
10444 {
10445 struct objfile *objfile = dwarf2_per_objfile->objfile;
10446 struct dwo_file *dwo_file;
10447 bfd *dbfd;
10448 struct cleanup *cleanups;
10449
10450 dbfd = open_dwo_file (dwo_name, comp_dir);
10451 if (dbfd == NULL)
10452 {
10453 if (dwarf2_read_debug)
10454 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10455 return NULL;
10456 }
10457 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10458 dwo_file->dwo_name = dwo_name;
10459 dwo_file->comp_dir = comp_dir;
10460 dwo_file->dbfd = dbfd;
10461
10462 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10463
10464 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10465
10466 dwo_file->cu = create_dwo_cu (dwo_file);
10467
10468 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10469 dwo_file->sections.types);
10470
10471 discard_cleanups (cleanups);
10472
10473 if (dwarf2_read_debug)
10474 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10475
10476 return dwo_file;
10477 }
10478
10479 /* This function is mapped across the sections and remembers the offset and
10480 size of each of the DWP debugging sections common to version 1 and 2 that
10481 we are interested in. */
10482
10483 static void
10484 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10485 void *dwp_file_ptr)
10486 {
10487 struct dwp_file *dwp_file = dwp_file_ptr;
10488 const struct dwop_section_names *names = &dwop_section_names;
10489 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10490
10491 /* Record the ELF section number for later lookup: this is what the
10492 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10493 gdb_assert (elf_section_nr < dwp_file->num_sections);
10494 dwp_file->elf_sections[elf_section_nr] = sectp;
10495
10496 /* Look for specific sections that we need. */
10497 if (section_is_p (sectp->name, &names->str_dwo))
10498 {
10499 dwp_file->sections.str.s.asection = sectp;
10500 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10501 }
10502 else if (section_is_p (sectp->name, &names->cu_index))
10503 {
10504 dwp_file->sections.cu_index.s.asection = sectp;
10505 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10506 }
10507 else if (section_is_p (sectp->name, &names->tu_index))
10508 {
10509 dwp_file->sections.tu_index.s.asection = sectp;
10510 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10511 }
10512 }
10513
10514 /* This function is mapped across the sections and remembers the offset and
10515 size of each of the DWP version 2 debugging sections that we are interested
10516 in. This is split into a separate function because we don't know if we
10517 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10518
10519 static void
10520 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10521 {
10522 struct dwp_file *dwp_file = dwp_file_ptr;
10523 const struct dwop_section_names *names = &dwop_section_names;
10524 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10525
10526 /* Record the ELF section number for later lookup: this is what the
10527 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10528 gdb_assert (elf_section_nr < dwp_file->num_sections);
10529 dwp_file->elf_sections[elf_section_nr] = sectp;
10530
10531 /* Look for specific sections that we need. */
10532 if (section_is_p (sectp->name, &names->abbrev_dwo))
10533 {
10534 dwp_file->sections.abbrev.s.asection = sectp;
10535 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10536 }
10537 else if (section_is_p (sectp->name, &names->info_dwo))
10538 {
10539 dwp_file->sections.info.s.asection = sectp;
10540 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10541 }
10542 else if (section_is_p (sectp->name, &names->line_dwo))
10543 {
10544 dwp_file->sections.line.s.asection = sectp;
10545 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->loc_dwo))
10548 {
10549 dwp_file->sections.loc.s.asection = sectp;
10550 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10553 {
10554 dwp_file->sections.macinfo.s.asection = sectp;
10555 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->macro_dwo))
10558 {
10559 dwp_file->sections.macro.s.asection = sectp;
10560 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10561 }
10562 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10563 {
10564 dwp_file->sections.str_offsets.s.asection = sectp;
10565 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->types_dwo))
10568 {
10569 dwp_file->sections.types.s.asection = sectp;
10570 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10571 }
10572 }
10573
10574 /* Hash function for dwp_file loaded CUs/TUs. */
10575
10576 static hashval_t
10577 hash_dwp_loaded_cutus (const void *item)
10578 {
10579 const struct dwo_unit *dwo_unit = item;
10580
10581 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10582 return dwo_unit->signature;
10583 }
10584
10585 /* Equality function for dwp_file loaded CUs/TUs. */
10586
10587 static int
10588 eq_dwp_loaded_cutus (const void *a, const void *b)
10589 {
10590 const struct dwo_unit *dua = a;
10591 const struct dwo_unit *dub = b;
10592
10593 return dua->signature == dub->signature;
10594 }
10595
10596 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10597
10598 static htab_t
10599 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10600 {
10601 return htab_create_alloc_ex (3,
10602 hash_dwp_loaded_cutus,
10603 eq_dwp_loaded_cutus,
10604 NULL,
10605 &objfile->objfile_obstack,
10606 hashtab_obstack_allocate,
10607 dummy_obstack_deallocate);
10608 }
10609
10610 /* Try to open DWP file FILE_NAME.
10611 The result is the bfd handle of the file.
10612 If there is a problem finding or opening the file, return NULL.
10613 Upon success, the canonicalized path of the file is stored in the bfd,
10614 same as symfile_bfd_open. */
10615
10616 static bfd *
10617 open_dwp_file (const char *file_name)
10618 {
10619 bfd *abfd;
10620
10621 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10622 if (abfd != NULL)
10623 return abfd;
10624
10625 /* Work around upstream bug 15652.
10626 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10627 [Whether that's a "bug" is debatable, but it is getting in our way.]
10628 We have no real idea where the dwp file is, because gdb's realpath-ing
10629 of the executable's path may have discarded the needed info.
10630 [IWBN if the dwp file name was recorded in the executable, akin to
10631 .gnu_debuglink, but that doesn't exist yet.]
10632 Strip the directory from FILE_NAME and search again. */
10633 if (*debug_file_directory != '\0')
10634 {
10635 /* Don't implicitly search the current directory here.
10636 If the user wants to search "." to handle this case,
10637 it must be added to debug-file-directory. */
10638 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10639 0 /*search_cwd*/);
10640 }
10641
10642 return NULL;
10643 }
10644
10645 /* Initialize the use of the DWP file for the current objfile.
10646 By convention the name of the DWP file is ${objfile}.dwp.
10647 The result is NULL if it can't be found. */
10648
10649 static struct dwp_file *
10650 open_and_init_dwp_file (void)
10651 {
10652 struct objfile *objfile = dwarf2_per_objfile->objfile;
10653 struct dwp_file *dwp_file;
10654 char *dwp_name;
10655 bfd *dbfd;
10656 struct cleanup *cleanups;
10657
10658 /* Try to find first .dwp for the binary file before any symbolic links
10659 resolving. */
10660 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10661 cleanups = make_cleanup (xfree, dwp_name);
10662
10663 dbfd = open_dwp_file (dwp_name);
10664 if (dbfd == NULL
10665 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10666 {
10667 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10668 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10669 make_cleanup (xfree, dwp_name);
10670 dbfd = open_dwp_file (dwp_name);
10671 }
10672
10673 if (dbfd == NULL)
10674 {
10675 if (dwarf2_read_debug)
10676 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10677 do_cleanups (cleanups);
10678 return NULL;
10679 }
10680 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10681 dwp_file->name = bfd_get_filename (dbfd);
10682 dwp_file->dbfd = dbfd;
10683 do_cleanups (cleanups);
10684
10685 /* +1: section 0 is unused */
10686 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10687 dwp_file->elf_sections =
10688 OBSTACK_CALLOC (&objfile->objfile_obstack,
10689 dwp_file->num_sections, asection *);
10690
10691 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10692
10693 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10694
10695 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10696
10697 /* The DWP file version is stored in the hash table. Oh well. */
10698 if (dwp_file->cus->version != dwp_file->tus->version)
10699 {
10700 /* Technically speaking, we should try to limp along, but this is
10701 pretty bizarre. We use pulongest here because that's the established
10702 portability solution (e.g, we cannot use %u for uint32_t). */
10703 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10704 " TU version %s [in DWP file %s]"),
10705 pulongest (dwp_file->cus->version),
10706 pulongest (dwp_file->tus->version), dwp_name);
10707 }
10708 dwp_file->version = dwp_file->cus->version;
10709
10710 if (dwp_file->version == 2)
10711 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10712
10713 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10714 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10715
10716 if (dwarf2_read_debug)
10717 {
10718 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10719 fprintf_unfiltered (gdb_stdlog,
10720 " %s CUs, %s TUs\n",
10721 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10722 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10723 }
10724
10725 return dwp_file;
10726 }
10727
10728 /* Wrapper around open_and_init_dwp_file, only open it once. */
10729
10730 static struct dwp_file *
10731 get_dwp_file (void)
10732 {
10733 if (! dwarf2_per_objfile->dwp_checked)
10734 {
10735 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10736 dwarf2_per_objfile->dwp_checked = 1;
10737 }
10738 return dwarf2_per_objfile->dwp_file;
10739 }
10740
10741 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10742 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10743 or in the DWP file for the objfile, referenced by THIS_UNIT.
10744 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10745 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10746
10747 This is called, for example, when wanting to read a variable with a
10748 complex location. Therefore we don't want to do file i/o for every call.
10749 Therefore we don't want to look for a DWO file on every call.
10750 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10751 then we check if we've already seen DWO_NAME, and only THEN do we check
10752 for a DWO file.
10753
10754 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10755 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10756
10757 static struct dwo_unit *
10758 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10759 const char *dwo_name, const char *comp_dir,
10760 ULONGEST signature, int is_debug_types)
10761 {
10762 struct objfile *objfile = dwarf2_per_objfile->objfile;
10763 const char *kind = is_debug_types ? "TU" : "CU";
10764 void **dwo_file_slot;
10765 struct dwo_file *dwo_file;
10766 struct dwp_file *dwp_file;
10767
10768 /* First see if there's a DWP file.
10769 If we have a DWP file but didn't find the DWO inside it, don't
10770 look for the original DWO file. It makes gdb behave differently
10771 depending on whether one is debugging in the build tree. */
10772
10773 dwp_file = get_dwp_file ();
10774 if (dwp_file != NULL)
10775 {
10776 const struct dwp_hash_table *dwp_htab =
10777 is_debug_types ? dwp_file->tus : dwp_file->cus;
10778
10779 if (dwp_htab != NULL)
10780 {
10781 struct dwo_unit *dwo_cutu =
10782 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10783 signature, is_debug_types);
10784
10785 if (dwo_cutu != NULL)
10786 {
10787 if (dwarf2_read_debug)
10788 {
10789 fprintf_unfiltered (gdb_stdlog,
10790 "Virtual DWO %s %s found: @%s\n",
10791 kind, hex_string (signature),
10792 host_address_to_string (dwo_cutu));
10793 }
10794 return dwo_cutu;
10795 }
10796 }
10797 }
10798 else
10799 {
10800 /* No DWP file, look for the DWO file. */
10801
10802 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10803 if (*dwo_file_slot == NULL)
10804 {
10805 /* Read in the file and build a table of the CUs/TUs it contains. */
10806 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10807 }
10808 /* NOTE: This will be NULL if unable to open the file. */
10809 dwo_file = *dwo_file_slot;
10810
10811 if (dwo_file != NULL)
10812 {
10813 struct dwo_unit *dwo_cutu = NULL;
10814
10815 if (is_debug_types && dwo_file->tus)
10816 {
10817 struct dwo_unit find_dwo_cutu;
10818
10819 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10820 find_dwo_cutu.signature = signature;
10821 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10822 }
10823 else if (!is_debug_types && dwo_file->cu)
10824 {
10825 if (signature == dwo_file->cu->signature)
10826 dwo_cutu = dwo_file->cu;
10827 }
10828
10829 if (dwo_cutu != NULL)
10830 {
10831 if (dwarf2_read_debug)
10832 {
10833 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10834 kind, dwo_name, hex_string (signature),
10835 host_address_to_string (dwo_cutu));
10836 }
10837 return dwo_cutu;
10838 }
10839 }
10840 }
10841
10842 /* We didn't find it. This could mean a dwo_id mismatch, or
10843 someone deleted the DWO/DWP file, or the search path isn't set up
10844 correctly to find the file. */
10845
10846 if (dwarf2_read_debug)
10847 {
10848 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10849 kind, dwo_name, hex_string (signature));
10850 }
10851
10852 /* This is a warning and not a complaint because it can be caused by
10853 pilot error (e.g., user accidentally deleting the DWO). */
10854 {
10855 /* Print the name of the DWP file if we looked there, helps the user
10856 better diagnose the problem. */
10857 char *dwp_text = NULL;
10858 struct cleanup *cleanups;
10859
10860 if (dwp_file != NULL)
10861 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10862 cleanups = make_cleanup (xfree, dwp_text);
10863
10864 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10865 " [in module %s]"),
10866 kind, dwo_name, hex_string (signature),
10867 dwp_text != NULL ? dwp_text : "",
10868 this_unit->is_debug_types ? "TU" : "CU",
10869 this_unit->offset.sect_off, objfile_name (objfile));
10870
10871 do_cleanups (cleanups);
10872 }
10873 return NULL;
10874 }
10875
10876 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10877 See lookup_dwo_cutu_unit for details. */
10878
10879 static struct dwo_unit *
10880 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10881 const char *dwo_name, const char *comp_dir,
10882 ULONGEST signature)
10883 {
10884 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10885 }
10886
10887 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10888 See lookup_dwo_cutu_unit for details. */
10889
10890 static struct dwo_unit *
10891 lookup_dwo_type_unit (struct signatured_type *this_tu,
10892 const char *dwo_name, const char *comp_dir)
10893 {
10894 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10895 }
10896
10897 /* Traversal function for queue_and_load_all_dwo_tus. */
10898
10899 static int
10900 queue_and_load_dwo_tu (void **slot, void *info)
10901 {
10902 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10903 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10904 ULONGEST signature = dwo_unit->signature;
10905 struct signatured_type *sig_type =
10906 lookup_dwo_signatured_type (per_cu->cu, signature);
10907
10908 if (sig_type != NULL)
10909 {
10910 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10911
10912 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10913 a real dependency of PER_CU on SIG_TYPE. That is detected later
10914 while processing PER_CU. */
10915 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10916 load_full_type_unit (sig_cu);
10917 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10918 }
10919
10920 return 1;
10921 }
10922
10923 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10924 The DWO may have the only definition of the type, though it may not be
10925 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10926 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10927
10928 static void
10929 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10930 {
10931 struct dwo_unit *dwo_unit;
10932 struct dwo_file *dwo_file;
10933
10934 gdb_assert (!per_cu->is_debug_types);
10935 gdb_assert (get_dwp_file () == NULL);
10936 gdb_assert (per_cu->cu != NULL);
10937
10938 dwo_unit = per_cu->cu->dwo_unit;
10939 gdb_assert (dwo_unit != NULL);
10940
10941 dwo_file = dwo_unit->dwo_file;
10942 if (dwo_file->tus != NULL)
10943 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10944 }
10945
10946 /* Free all resources associated with DWO_FILE.
10947 Close the DWO file and munmap the sections.
10948 All memory should be on the objfile obstack. */
10949
10950 static void
10951 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10952 {
10953 int ix;
10954 struct dwarf2_section_info *section;
10955
10956 /* Note: dbfd is NULL for virtual DWO files. */
10957 gdb_bfd_unref (dwo_file->dbfd);
10958
10959 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10960 }
10961
10962 /* Wrapper for free_dwo_file for use in cleanups. */
10963
10964 static void
10965 free_dwo_file_cleanup (void *arg)
10966 {
10967 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10968 struct objfile *objfile = dwarf2_per_objfile->objfile;
10969
10970 free_dwo_file (dwo_file, objfile);
10971 }
10972
10973 /* Traversal function for free_dwo_files. */
10974
10975 static int
10976 free_dwo_file_from_slot (void **slot, void *info)
10977 {
10978 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10979 struct objfile *objfile = (struct objfile *) info;
10980
10981 free_dwo_file (dwo_file, objfile);
10982
10983 return 1;
10984 }
10985
10986 /* Free all resources associated with DWO_FILES. */
10987
10988 static void
10989 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10990 {
10991 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10992 }
10993 \f
10994 /* Read in various DIEs. */
10995
10996 /* qsort helper for inherit_abstract_dies. */
10997
10998 static int
10999 unsigned_int_compar (const void *ap, const void *bp)
11000 {
11001 unsigned int a = *(unsigned int *) ap;
11002 unsigned int b = *(unsigned int *) bp;
11003
11004 return (a > b) - (b > a);
11005 }
11006
11007 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11008 Inherit only the children of the DW_AT_abstract_origin DIE not being
11009 already referenced by DW_AT_abstract_origin from the children of the
11010 current DIE. */
11011
11012 static void
11013 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11014 {
11015 struct die_info *child_die;
11016 unsigned die_children_count;
11017 /* CU offsets which were referenced by children of the current DIE. */
11018 sect_offset *offsets;
11019 sect_offset *offsets_end, *offsetp;
11020 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11021 struct die_info *origin_die;
11022 /* Iterator of the ORIGIN_DIE children. */
11023 struct die_info *origin_child_die;
11024 struct cleanup *cleanups;
11025 struct attribute *attr;
11026 struct dwarf2_cu *origin_cu;
11027 struct pending **origin_previous_list_in_scope;
11028
11029 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11030 if (!attr)
11031 return;
11032
11033 /* Note that following die references may follow to a die in a
11034 different cu. */
11035
11036 origin_cu = cu;
11037 origin_die = follow_die_ref (die, attr, &origin_cu);
11038
11039 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11040 symbols in. */
11041 origin_previous_list_in_scope = origin_cu->list_in_scope;
11042 origin_cu->list_in_scope = cu->list_in_scope;
11043
11044 if (die->tag != origin_die->tag
11045 && !(die->tag == DW_TAG_inlined_subroutine
11046 && origin_die->tag == DW_TAG_subprogram))
11047 complaint (&symfile_complaints,
11048 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11049 die->offset.sect_off, origin_die->offset.sect_off);
11050
11051 child_die = die->child;
11052 die_children_count = 0;
11053 while (child_die && child_die->tag)
11054 {
11055 child_die = sibling_die (child_die);
11056 die_children_count++;
11057 }
11058 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11059 cleanups = make_cleanup (xfree, offsets);
11060
11061 offsets_end = offsets;
11062 child_die = die->child;
11063 while (child_die && child_die->tag)
11064 {
11065 /* For each CHILD_DIE, find the corresponding child of
11066 ORIGIN_DIE. If there is more than one layer of
11067 DW_AT_abstract_origin, follow them all; there shouldn't be,
11068 but GCC versions at least through 4.4 generate this (GCC PR
11069 40573). */
11070 struct die_info *child_origin_die = child_die;
11071 struct dwarf2_cu *child_origin_cu = cu;
11072
11073 while (1)
11074 {
11075 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11076 child_origin_cu);
11077 if (attr == NULL)
11078 break;
11079 child_origin_die = follow_die_ref (child_origin_die, attr,
11080 &child_origin_cu);
11081 }
11082
11083 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11084 counterpart may exist. */
11085 if (child_origin_die != child_die)
11086 {
11087 if (child_die->tag != child_origin_die->tag
11088 && !(child_die->tag == DW_TAG_inlined_subroutine
11089 && child_origin_die->tag == DW_TAG_subprogram))
11090 complaint (&symfile_complaints,
11091 _("Child DIE 0x%x and its abstract origin 0x%x have "
11092 "different tags"), child_die->offset.sect_off,
11093 child_origin_die->offset.sect_off);
11094 if (child_origin_die->parent != origin_die)
11095 complaint (&symfile_complaints,
11096 _("Child DIE 0x%x and its abstract origin 0x%x have "
11097 "different parents"), child_die->offset.sect_off,
11098 child_origin_die->offset.sect_off);
11099 else
11100 *offsets_end++ = child_origin_die->offset;
11101 }
11102 child_die = sibling_die (child_die);
11103 }
11104 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11105 unsigned_int_compar);
11106 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11107 if (offsetp[-1].sect_off == offsetp->sect_off)
11108 complaint (&symfile_complaints,
11109 _("Multiple children of DIE 0x%x refer "
11110 "to DIE 0x%x as their abstract origin"),
11111 die->offset.sect_off, offsetp->sect_off);
11112
11113 offsetp = offsets;
11114 origin_child_die = origin_die->child;
11115 while (origin_child_die && origin_child_die->tag)
11116 {
11117 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11118 while (offsetp < offsets_end
11119 && offsetp->sect_off < origin_child_die->offset.sect_off)
11120 offsetp++;
11121 if (offsetp >= offsets_end
11122 || offsetp->sect_off > origin_child_die->offset.sect_off)
11123 {
11124 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11125 Check whether we're already processing ORIGIN_CHILD_DIE.
11126 This can happen with mutually referenced abstract_origins.
11127 PR 16581. */
11128 if (!origin_child_die->in_process)
11129 process_die (origin_child_die, origin_cu);
11130 }
11131 origin_child_die = sibling_die (origin_child_die);
11132 }
11133 origin_cu->list_in_scope = origin_previous_list_in_scope;
11134
11135 do_cleanups (cleanups);
11136 }
11137
11138 static void
11139 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11140 {
11141 struct objfile *objfile = cu->objfile;
11142 struct context_stack *new;
11143 CORE_ADDR lowpc;
11144 CORE_ADDR highpc;
11145 struct die_info *child_die;
11146 struct attribute *attr, *call_line, *call_file;
11147 const char *name;
11148 CORE_ADDR baseaddr;
11149 struct block *block;
11150 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11151 VEC (symbolp) *template_args = NULL;
11152 struct template_symbol *templ_func = NULL;
11153
11154 if (inlined_func)
11155 {
11156 /* If we do not have call site information, we can't show the
11157 caller of this inlined function. That's too confusing, so
11158 only use the scope for local variables. */
11159 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11160 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11161 if (call_line == NULL || call_file == NULL)
11162 {
11163 read_lexical_block_scope (die, cu);
11164 return;
11165 }
11166 }
11167
11168 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11169
11170 name = dwarf2_name (die, cu);
11171
11172 /* Ignore functions with missing or empty names. These are actually
11173 illegal according to the DWARF standard. */
11174 if (name == NULL)
11175 {
11176 complaint (&symfile_complaints,
11177 _("missing name for subprogram DIE at %d"),
11178 die->offset.sect_off);
11179 return;
11180 }
11181
11182 /* Ignore functions with missing or invalid low and high pc attributes. */
11183 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11184 {
11185 attr = dwarf2_attr (die, DW_AT_external, cu);
11186 if (!attr || !DW_UNSND (attr))
11187 complaint (&symfile_complaints,
11188 _("cannot get low and high bounds "
11189 "for subprogram DIE at %d"),
11190 die->offset.sect_off);
11191 return;
11192 }
11193
11194 lowpc += baseaddr;
11195 highpc += baseaddr;
11196
11197 /* If we have any template arguments, then we must allocate a
11198 different sort of symbol. */
11199 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11200 {
11201 if (child_die->tag == DW_TAG_template_type_param
11202 || child_die->tag == DW_TAG_template_value_param)
11203 {
11204 templ_func = allocate_template_symbol (objfile);
11205 templ_func->base.is_cplus_template_function = 1;
11206 break;
11207 }
11208 }
11209
11210 new = push_context (0, lowpc);
11211 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11212 (struct symbol *) templ_func);
11213
11214 /* If there is a location expression for DW_AT_frame_base, record
11215 it. */
11216 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11217 if (attr)
11218 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11219
11220 cu->list_in_scope = &local_symbols;
11221
11222 if (die->child != NULL)
11223 {
11224 child_die = die->child;
11225 while (child_die && child_die->tag)
11226 {
11227 if (child_die->tag == DW_TAG_template_type_param
11228 || child_die->tag == DW_TAG_template_value_param)
11229 {
11230 struct symbol *arg = new_symbol (child_die, NULL, cu);
11231
11232 if (arg != NULL)
11233 VEC_safe_push (symbolp, template_args, arg);
11234 }
11235 else
11236 process_die (child_die, cu);
11237 child_die = sibling_die (child_die);
11238 }
11239 }
11240
11241 inherit_abstract_dies (die, cu);
11242
11243 /* If we have a DW_AT_specification, we might need to import using
11244 directives from the context of the specification DIE. See the
11245 comment in determine_prefix. */
11246 if (cu->language == language_cplus
11247 && dwarf2_attr (die, DW_AT_specification, cu))
11248 {
11249 struct dwarf2_cu *spec_cu = cu;
11250 struct die_info *spec_die = die_specification (die, &spec_cu);
11251
11252 while (spec_die)
11253 {
11254 child_die = spec_die->child;
11255 while (child_die && child_die->tag)
11256 {
11257 if (child_die->tag == DW_TAG_imported_module)
11258 process_die (child_die, spec_cu);
11259 child_die = sibling_die (child_die);
11260 }
11261
11262 /* In some cases, GCC generates specification DIEs that
11263 themselves contain DW_AT_specification attributes. */
11264 spec_die = die_specification (spec_die, &spec_cu);
11265 }
11266 }
11267
11268 new = pop_context ();
11269 /* Make a block for the local symbols within. */
11270 block = finish_block (new->name, &local_symbols, new->old_blocks,
11271 lowpc, highpc);
11272
11273 /* For C++, set the block's scope. */
11274 if ((cu->language == language_cplus || cu->language == language_fortran)
11275 && cu->processing_has_namespace_info)
11276 block_set_scope (block, determine_prefix (die, cu),
11277 &objfile->objfile_obstack);
11278
11279 /* If we have address ranges, record them. */
11280 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11281
11282 /* Attach template arguments to function. */
11283 if (! VEC_empty (symbolp, template_args))
11284 {
11285 gdb_assert (templ_func != NULL);
11286
11287 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11288 templ_func->template_arguments
11289 = obstack_alloc (&objfile->objfile_obstack,
11290 (templ_func->n_template_arguments
11291 * sizeof (struct symbol *)));
11292 memcpy (templ_func->template_arguments,
11293 VEC_address (symbolp, template_args),
11294 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11295 VEC_free (symbolp, template_args);
11296 }
11297
11298 /* In C++, we can have functions nested inside functions (e.g., when
11299 a function declares a class that has methods). This means that
11300 when we finish processing a function scope, we may need to go
11301 back to building a containing block's symbol lists. */
11302 local_symbols = new->locals;
11303 using_directives = new->using_directives;
11304
11305 /* If we've finished processing a top-level function, subsequent
11306 symbols go in the file symbol list. */
11307 if (outermost_context_p ())
11308 cu->list_in_scope = &file_symbols;
11309 }
11310
11311 /* Process all the DIES contained within a lexical block scope. Start
11312 a new scope, process the dies, and then close the scope. */
11313
11314 static void
11315 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11316 {
11317 struct objfile *objfile = cu->objfile;
11318 struct context_stack *new;
11319 CORE_ADDR lowpc, highpc;
11320 struct die_info *child_die;
11321 CORE_ADDR baseaddr;
11322
11323 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11324
11325 /* Ignore blocks with missing or invalid low and high pc attributes. */
11326 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11327 as multiple lexical blocks? Handling children in a sane way would
11328 be nasty. Might be easier to properly extend generic blocks to
11329 describe ranges. */
11330 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11331 return;
11332 lowpc += baseaddr;
11333 highpc += baseaddr;
11334
11335 push_context (0, lowpc);
11336 if (die->child != NULL)
11337 {
11338 child_die = die->child;
11339 while (child_die && child_die->tag)
11340 {
11341 process_die (child_die, cu);
11342 child_die = sibling_die (child_die);
11343 }
11344 }
11345 new = pop_context ();
11346
11347 if (local_symbols != NULL || using_directives != NULL)
11348 {
11349 struct block *block
11350 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11351 highpc);
11352
11353 /* Note that recording ranges after traversing children, as we
11354 do here, means that recording a parent's ranges entails
11355 walking across all its children's ranges as they appear in
11356 the address map, which is quadratic behavior.
11357
11358 It would be nicer to record the parent's ranges before
11359 traversing its children, simply overriding whatever you find
11360 there. But since we don't even decide whether to create a
11361 block until after we've traversed its children, that's hard
11362 to do. */
11363 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11364 }
11365 local_symbols = new->locals;
11366 using_directives = new->using_directives;
11367 }
11368
11369 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11370
11371 static void
11372 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11373 {
11374 struct objfile *objfile = cu->objfile;
11375 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11376 CORE_ADDR pc, baseaddr;
11377 struct attribute *attr;
11378 struct call_site *call_site, call_site_local;
11379 void **slot;
11380 int nparams;
11381 struct die_info *child_die;
11382
11383 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11384
11385 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11386 if (!attr)
11387 {
11388 complaint (&symfile_complaints,
11389 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11390 "DIE 0x%x [in module %s]"),
11391 die->offset.sect_off, objfile_name (objfile));
11392 return;
11393 }
11394 pc = attr_value_as_address (attr) + baseaddr;
11395
11396 if (cu->call_site_htab == NULL)
11397 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11398 NULL, &objfile->objfile_obstack,
11399 hashtab_obstack_allocate, NULL);
11400 call_site_local.pc = pc;
11401 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11402 if (*slot != NULL)
11403 {
11404 complaint (&symfile_complaints,
11405 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11406 "DIE 0x%x [in module %s]"),
11407 paddress (gdbarch, pc), die->offset.sect_off,
11408 objfile_name (objfile));
11409 return;
11410 }
11411
11412 /* Count parameters at the caller. */
11413
11414 nparams = 0;
11415 for (child_die = die->child; child_die && child_die->tag;
11416 child_die = sibling_die (child_die))
11417 {
11418 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11419 {
11420 complaint (&symfile_complaints,
11421 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11422 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11423 child_die->tag, child_die->offset.sect_off,
11424 objfile_name (objfile));
11425 continue;
11426 }
11427
11428 nparams++;
11429 }
11430
11431 call_site = obstack_alloc (&objfile->objfile_obstack,
11432 (sizeof (*call_site)
11433 + (sizeof (*call_site->parameter)
11434 * (nparams - 1))));
11435 *slot = call_site;
11436 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11437 call_site->pc = pc;
11438
11439 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11440 {
11441 struct die_info *func_die;
11442
11443 /* Skip also over DW_TAG_inlined_subroutine. */
11444 for (func_die = die->parent;
11445 func_die && func_die->tag != DW_TAG_subprogram
11446 && func_die->tag != DW_TAG_subroutine_type;
11447 func_die = func_die->parent);
11448
11449 /* DW_AT_GNU_all_call_sites is a superset
11450 of DW_AT_GNU_all_tail_call_sites. */
11451 if (func_die
11452 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11453 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11454 {
11455 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11456 not complete. But keep CALL_SITE for look ups via call_site_htab,
11457 both the initial caller containing the real return address PC and
11458 the final callee containing the current PC of a chain of tail
11459 calls do not need to have the tail call list complete. But any
11460 function candidate for a virtual tail call frame searched via
11461 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11462 determined unambiguously. */
11463 }
11464 else
11465 {
11466 struct type *func_type = NULL;
11467
11468 if (func_die)
11469 func_type = get_die_type (func_die, cu);
11470 if (func_type != NULL)
11471 {
11472 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11473
11474 /* Enlist this call site to the function. */
11475 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11476 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11477 }
11478 else
11479 complaint (&symfile_complaints,
11480 _("Cannot find function owning DW_TAG_GNU_call_site "
11481 "DIE 0x%x [in module %s]"),
11482 die->offset.sect_off, objfile_name (objfile));
11483 }
11484 }
11485
11486 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11487 if (attr == NULL)
11488 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11489 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11490 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11491 /* Keep NULL DWARF_BLOCK. */;
11492 else if (attr_form_is_block (attr))
11493 {
11494 struct dwarf2_locexpr_baton *dlbaton;
11495
11496 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11497 dlbaton->data = DW_BLOCK (attr)->data;
11498 dlbaton->size = DW_BLOCK (attr)->size;
11499 dlbaton->per_cu = cu->per_cu;
11500
11501 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11502 }
11503 else if (attr_form_is_ref (attr))
11504 {
11505 struct dwarf2_cu *target_cu = cu;
11506 struct die_info *target_die;
11507
11508 target_die = follow_die_ref (die, attr, &target_cu);
11509 gdb_assert (target_cu->objfile == objfile);
11510 if (die_is_declaration (target_die, target_cu))
11511 {
11512 const char *target_physname = NULL;
11513 struct attribute *target_attr;
11514
11515 /* Prefer the mangled name; otherwise compute the demangled one. */
11516 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11517 if (target_attr == NULL)
11518 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11519 target_cu);
11520 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11521 target_physname = DW_STRING (target_attr);
11522 else
11523 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11524 if (target_physname == NULL)
11525 complaint (&symfile_complaints,
11526 _("DW_AT_GNU_call_site_target target DIE has invalid "
11527 "physname, for referencing DIE 0x%x [in module %s]"),
11528 die->offset.sect_off, objfile_name (objfile));
11529 else
11530 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11531 }
11532 else
11533 {
11534 CORE_ADDR lowpc;
11535
11536 /* DW_AT_entry_pc should be preferred. */
11537 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11538 complaint (&symfile_complaints,
11539 _("DW_AT_GNU_call_site_target target DIE has invalid "
11540 "low pc, for referencing DIE 0x%x [in module %s]"),
11541 die->offset.sect_off, objfile_name (objfile));
11542 else
11543 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11544 }
11545 }
11546 else
11547 complaint (&symfile_complaints,
11548 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11549 "block nor reference, for DIE 0x%x [in module %s]"),
11550 die->offset.sect_off, objfile_name (objfile));
11551
11552 call_site->per_cu = cu->per_cu;
11553
11554 for (child_die = die->child;
11555 child_die && child_die->tag;
11556 child_die = sibling_die (child_die))
11557 {
11558 struct call_site_parameter *parameter;
11559 struct attribute *loc, *origin;
11560
11561 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11562 {
11563 /* Already printed the complaint above. */
11564 continue;
11565 }
11566
11567 gdb_assert (call_site->parameter_count < nparams);
11568 parameter = &call_site->parameter[call_site->parameter_count];
11569
11570 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11571 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11572 register is contained in DW_AT_GNU_call_site_value. */
11573
11574 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11575 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11576 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11577 {
11578 sect_offset offset;
11579
11580 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11581 offset = dwarf2_get_ref_die_offset (origin);
11582 if (!offset_in_cu_p (&cu->header, offset))
11583 {
11584 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11585 binding can be done only inside one CU. Such referenced DIE
11586 therefore cannot be even moved to DW_TAG_partial_unit. */
11587 complaint (&symfile_complaints,
11588 _("DW_AT_abstract_origin offset is not in CU for "
11589 "DW_TAG_GNU_call_site child DIE 0x%x "
11590 "[in module %s]"),
11591 child_die->offset.sect_off, objfile_name (objfile));
11592 continue;
11593 }
11594 parameter->u.param_offset.cu_off = (offset.sect_off
11595 - cu->header.offset.sect_off);
11596 }
11597 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11598 {
11599 complaint (&symfile_complaints,
11600 _("No DW_FORM_block* DW_AT_location for "
11601 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11602 child_die->offset.sect_off, objfile_name (objfile));
11603 continue;
11604 }
11605 else
11606 {
11607 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11608 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11609 if (parameter->u.dwarf_reg != -1)
11610 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11611 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11612 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11613 &parameter->u.fb_offset))
11614 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11615 else
11616 {
11617 complaint (&symfile_complaints,
11618 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11619 "for DW_FORM_block* DW_AT_location is supported for "
11620 "DW_TAG_GNU_call_site child DIE 0x%x "
11621 "[in module %s]"),
11622 child_die->offset.sect_off, objfile_name (objfile));
11623 continue;
11624 }
11625 }
11626
11627 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11628 if (!attr_form_is_block (attr))
11629 {
11630 complaint (&symfile_complaints,
11631 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11633 child_die->offset.sect_off, objfile_name (objfile));
11634 continue;
11635 }
11636 parameter->value = DW_BLOCK (attr)->data;
11637 parameter->value_size = DW_BLOCK (attr)->size;
11638
11639 /* Parameters are not pre-cleared by memset above. */
11640 parameter->data_value = NULL;
11641 parameter->data_value_size = 0;
11642 call_site->parameter_count++;
11643
11644 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11645 if (attr)
11646 {
11647 if (!attr_form_is_block (attr))
11648 complaint (&symfile_complaints,
11649 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11650 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11651 child_die->offset.sect_off, objfile_name (objfile));
11652 else
11653 {
11654 parameter->data_value = DW_BLOCK (attr)->data;
11655 parameter->data_value_size = DW_BLOCK (attr)->size;
11656 }
11657 }
11658 }
11659 }
11660
11661 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11662 Return 1 if the attributes are present and valid, otherwise, return 0.
11663 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11664
11665 static int
11666 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11667 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11668 struct partial_symtab *ranges_pst)
11669 {
11670 struct objfile *objfile = cu->objfile;
11671 struct comp_unit_head *cu_header = &cu->header;
11672 bfd *obfd = objfile->obfd;
11673 unsigned int addr_size = cu_header->addr_size;
11674 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11675 /* Base address selection entry. */
11676 CORE_ADDR base;
11677 int found_base;
11678 unsigned int dummy;
11679 const gdb_byte *buffer;
11680 CORE_ADDR marker;
11681 int low_set;
11682 CORE_ADDR low = 0;
11683 CORE_ADDR high = 0;
11684 CORE_ADDR baseaddr;
11685
11686 found_base = cu->base_known;
11687 base = cu->base_address;
11688
11689 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11690 if (offset >= dwarf2_per_objfile->ranges.size)
11691 {
11692 complaint (&symfile_complaints,
11693 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11694 offset);
11695 return 0;
11696 }
11697 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11698
11699 /* Read in the largest possible address. */
11700 marker = read_address (obfd, buffer, cu, &dummy);
11701 if ((marker & mask) == mask)
11702 {
11703 /* If we found the largest possible address, then
11704 read the base address. */
11705 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11706 buffer += 2 * addr_size;
11707 offset += 2 * addr_size;
11708 found_base = 1;
11709 }
11710
11711 low_set = 0;
11712
11713 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11714
11715 while (1)
11716 {
11717 CORE_ADDR range_beginning, range_end;
11718
11719 range_beginning = read_address (obfd, buffer, cu, &dummy);
11720 buffer += addr_size;
11721 range_end = read_address (obfd, buffer, cu, &dummy);
11722 buffer += addr_size;
11723 offset += 2 * addr_size;
11724
11725 /* An end of list marker is a pair of zero addresses. */
11726 if (range_beginning == 0 && range_end == 0)
11727 /* Found the end of list entry. */
11728 break;
11729
11730 /* Each base address selection entry is a pair of 2 values.
11731 The first is the largest possible address, the second is
11732 the base address. Check for a base address here. */
11733 if ((range_beginning & mask) == mask)
11734 {
11735 /* If we found the largest possible address, then
11736 read the base address. */
11737 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11738 found_base = 1;
11739 continue;
11740 }
11741
11742 if (!found_base)
11743 {
11744 /* We have no valid base address for the ranges
11745 data. */
11746 complaint (&symfile_complaints,
11747 _("Invalid .debug_ranges data (no base address)"));
11748 return 0;
11749 }
11750
11751 if (range_beginning > range_end)
11752 {
11753 /* Inverted range entries are invalid. */
11754 complaint (&symfile_complaints,
11755 _("Invalid .debug_ranges data (inverted range)"));
11756 return 0;
11757 }
11758
11759 /* Empty range entries have no effect. */
11760 if (range_beginning == range_end)
11761 continue;
11762
11763 range_beginning += base;
11764 range_end += base;
11765
11766 /* A not-uncommon case of bad debug info.
11767 Don't pollute the addrmap with bad data. */
11768 if (range_beginning + baseaddr == 0
11769 && !dwarf2_per_objfile->has_section_at_zero)
11770 {
11771 complaint (&symfile_complaints,
11772 _(".debug_ranges entry has start address of zero"
11773 " [in module %s]"), objfile_name (objfile));
11774 continue;
11775 }
11776
11777 if (ranges_pst != NULL)
11778 addrmap_set_empty (objfile->psymtabs_addrmap,
11779 range_beginning + baseaddr,
11780 range_end - 1 + baseaddr,
11781 ranges_pst);
11782
11783 /* FIXME: This is recording everything as a low-high
11784 segment of consecutive addresses. We should have a
11785 data structure for discontiguous block ranges
11786 instead. */
11787 if (! low_set)
11788 {
11789 low = range_beginning;
11790 high = range_end;
11791 low_set = 1;
11792 }
11793 else
11794 {
11795 if (range_beginning < low)
11796 low = range_beginning;
11797 if (range_end > high)
11798 high = range_end;
11799 }
11800 }
11801
11802 if (! low_set)
11803 /* If the first entry is an end-of-list marker, the range
11804 describes an empty scope, i.e. no instructions. */
11805 return 0;
11806
11807 if (low_return)
11808 *low_return = low;
11809 if (high_return)
11810 *high_return = high;
11811 return 1;
11812 }
11813
11814 /* Get low and high pc attributes from a die. Return 1 if the attributes
11815 are present and valid, otherwise, return 0. Return -1 if the range is
11816 discontinuous, i.e. derived from DW_AT_ranges information. */
11817
11818 static int
11819 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11820 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11821 struct partial_symtab *pst)
11822 {
11823 struct attribute *attr;
11824 struct attribute *attr_high;
11825 CORE_ADDR low = 0;
11826 CORE_ADDR high = 0;
11827 int ret = 0;
11828
11829 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11830 if (attr_high)
11831 {
11832 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11833 if (attr)
11834 {
11835 low = attr_value_as_address (attr);
11836 high = attr_value_as_address (attr_high);
11837 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11838 high += low;
11839 }
11840 else
11841 /* Found high w/o low attribute. */
11842 return 0;
11843
11844 /* Found consecutive range of addresses. */
11845 ret = 1;
11846 }
11847 else
11848 {
11849 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11850 if (attr != NULL)
11851 {
11852 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11853 We take advantage of the fact that DW_AT_ranges does not appear
11854 in DW_TAG_compile_unit of DWO files. */
11855 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11856 unsigned int ranges_offset = (DW_UNSND (attr)
11857 + (need_ranges_base
11858 ? cu->ranges_base
11859 : 0));
11860
11861 /* Value of the DW_AT_ranges attribute is the offset in the
11862 .debug_ranges section. */
11863 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11864 return 0;
11865 /* Found discontinuous range of addresses. */
11866 ret = -1;
11867 }
11868 }
11869
11870 /* read_partial_die has also the strict LOW < HIGH requirement. */
11871 if (high <= low)
11872 return 0;
11873
11874 /* When using the GNU linker, .gnu.linkonce. sections are used to
11875 eliminate duplicate copies of functions and vtables and such.
11876 The linker will arbitrarily choose one and discard the others.
11877 The AT_*_pc values for such functions refer to local labels in
11878 these sections. If the section from that file was discarded, the
11879 labels are not in the output, so the relocs get a value of 0.
11880 If this is a discarded function, mark the pc bounds as invalid,
11881 so that GDB will ignore it. */
11882 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11883 return 0;
11884
11885 *lowpc = low;
11886 if (highpc)
11887 *highpc = high;
11888 return ret;
11889 }
11890
11891 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11892 its low and high PC addresses. Do nothing if these addresses could not
11893 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11894 and HIGHPC to the high address if greater than HIGHPC. */
11895
11896 static void
11897 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11898 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11899 struct dwarf2_cu *cu)
11900 {
11901 CORE_ADDR low, high;
11902 struct die_info *child = die->child;
11903
11904 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11905 {
11906 *lowpc = min (*lowpc, low);
11907 *highpc = max (*highpc, high);
11908 }
11909
11910 /* If the language does not allow nested subprograms (either inside
11911 subprograms or lexical blocks), we're done. */
11912 if (cu->language != language_ada)
11913 return;
11914
11915 /* Check all the children of the given DIE. If it contains nested
11916 subprograms, then check their pc bounds. Likewise, we need to
11917 check lexical blocks as well, as they may also contain subprogram
11918 definitions. */
11919 while (child && child->tag)
11920 {
11921 if (child->tag == DW_TAG_subprogram
11922 || child->tag == DW_TAG_lexical_block)
11923 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11924 child = sibling_die (child);
11925 }
11926 }
11927
11928 /* Get the low and high pc's represented by the scope DIE, and store
11929 them in *LOWPC and *HIGHPC. If the correct values can't be
11930 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11931
11932 static void
11933 get_scope_pc_bounds (struct die_info *die,
11934 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11935 struct dwarf2_cu *cu)
11936 {
11937 CORE_ADDR best_low = (CORE_ADDR) -1;
11938 CORE_ADDR best_high = (CORE_ADDR) 0;
11939 CORE_ADDR current_low, current_high;
11940
11941 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11942 {
11943 best_low = current_low;
11944 best_high = current_high;
11945 }
11946 else
11947 {
11948 struct die_info *child = die->child;
11949
11950 while (child && child->tag)
11951 {
11952 switch (child->tag) {
11953 case DW_TAG_subprogram:
11954 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11955 break;
11956 case DW_TAG_namespace:
11957 case DW_TAG_module:
11958 /* FIXME: carlton/2004-01-16: Should we do this for
11959 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11960 that current GCC's always emit the DIEs corresponding
11961 to definitions of methods of classes as children of a
11962 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11963 the DIEs giving the declarations, which could be
11964 anywhere). But I don't see any reason why the
11965 standards says that they have to be there. */
11966 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11967
11968 if (current_low != ((CORE_ADDR) -1))
11969 {
11970 best_low = min (best_low, current_low);
11971 best_high = max (best_high, current_high);
11972 }
11973 break;
11974 default:
11975 /* Ignore. */
11976 break;
11977 }
11978
11979 child = sibling_die (child);
11980 }
11981 }
11982
11983 *lowpc = best_low;
11984 *highpc = best_high;
11985 }
11986
11987 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11988 in DIE. */
11989
11990 static void
11991 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11992 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11993 {
11994 struct objfile *objfile = cu->objfile;
11995 struct attribute *attr;
11996 struct attribute *attr_high;
11997
11998 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11999 if (attr_high)
12000 {
12001 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12002 if (attr)
12003 {
12004 CORE_ADDR low = attr_value_as_address (attr);
12005 CORE_ADDR high = attr_value_as_address (attr_high);
12006
12007 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12008 high += low;
12009
12010 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12011 }
12012 }
12013
12014 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12015 if (attr)
12016 {
12017 bfd *obfd = objfile->obfd;
12018 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12019 We take advantage of the fact that DW_AT_ranges does not appear
12020 in DW_TAG_compile_unit of DWO files. */
12021 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12022
12023 /* The value of the DW_AT_ranges attribute is the offset of the
12024 address range list in the .debug_ranges section. */
12025 unsigned long offset = (DW_UNSND (attr)
12026 + (need_ranges_base ? cu->ranges_base : 0));
12027 const gdb_byte *buffer;
12028
12029 /* For some target architectures, but not others, the
12030 read_address function sign-extends the addresses it returns.
12031 To recognize base address selection entries, we need a
12032 mask. */
12033 unsigned int addr_size = cu->header.addr_size;
12034 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12035
12036 /* The base address, to which the next pair is relative. Note
12037 that this 'base' is a DWARF concept: most entries in a range
12038 list are relative, to reduce the number of relocs against the
12039 debugging information. This is separate from this function's
12040 'baseaddr' argument, which GDB uses to relocate debugging
12041 information from a shared library based on the address at
12042 which the library was loaded. */
12043 CORE_ADDR base = cu->base_address;
12044 int base_known = cu->base_known;
12045
12046 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12047 if (offset >= dwarf2_per_objfile->ranges.size)
12048 {
12049 complaint (&symfile_complaints,
12050 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12051 offset);
12052 return;
12053 }
12054 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12055
12056 for (;;)
12057 {
12058 unsigned int bytes_read;
12059 CORE_ADDR start, end;
12060
12061 start = read_address (obfd, buffer, cu, &bytes_read);
12062 buffer += bytes_read;
12063 end = read_address (obfd, buffer, cu, &bytes_read);
12064 buffer += bytes_read;
12065
12066 /* Did we find the end of the range list? */
12067 if (start == 0 && end == 0)
12068 break;
12069
12070 /* Did we find a base address selection entry? */
12071 else if ((start & base_select_mask) == base_select_mask)
12072 {
12073 base = end;
12074 base_known = 1;
12075 }
12076
12077 /* We found an ordinary address range. */
12078 else
12079 {
12080 if (!base_known)
12081 {
12082 complaint (&symfile_complaints,
12083 _("Invalid .debug_ranges data "
12084 "(no base address)"));
12085 return;
12086 }
12087
12088 if (start > end)
12089 {
12090 /* Inverted range entries are invalid. */
12091 complaint (&symfile_complaints,
12092 _("Invalid .debug_ranges data "
12093 "(inverted range)"));
12094 return;
12095 }
12096
12097 /* Empty range entries have no effect. */
12098 if (start == end)
12099 continue;
12100
12101 start += base + baseaddr;
12102 end += base + baseaddr;
12103
12104 /* A not-uncommon case of bad debug info.
12105 Don't pollute the addrmap with bad data. */
12106 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12107 {
12108 complaint (&symfile_complaints,
12109 _(".debug_ranges entry has start address of zero"
12110 " [in module %s]"), objfile_name (objfile));
12111 continue;
12112 }
12113
12114 record_block_range (block, start, end - 1);
12115 }
12116 }
12117 }
12118 }
12119
12120 /* Check whether the producer field indicates either of GCC < 4.6, or the
12121 Intel C/C++ compiler, and cache the result in CU. */
12122
12123 static void
12124 check_producer (struct dwarf2_cu *cu)
12125 {
12126 const char *cs;
12127 int major, minor, release;
12128
12129 if (cu->producer == NULL)
12130 {
12131 /* For unknown compilers expect their behavior is DWARF version
12132 compliant.
12133
12134 GCC started to support .debug_types sections by -gdwarf-4 since
12135 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12136 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12137 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12138 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12139 }
12140 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12141 {
12142 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12143
12144 cs = &cu->producer[strlen ("GNU ")];
12145 while (*cs && !isdigit (*cs))
12146 cs++;
12147 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12148 {
12149 /* Not recognized as GCC. */
12150 }
12151 else
12152 {
12153 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12154 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12155 }
12156 }
12157 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12158 cu->producer_is_icc = 1;
12159 else
12160 {
12161 /* For other non-GCC compilers, expect their behavior is DWARF version
12162 compliant. */
12163 }
12164
12165 cu->checked_producer = 1;
12166 }
12167
12168 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12169 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12170 during 4.6.0 experimental. */
12171
12172 static int
12173 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12174 {
12175 if (!cu->checked_producer)
12176 check_producer (cu);
12177
12178 return cu->producer_is_gxx_lt_4_6;
12179 }
12180
12181 /* Return the default accessibility type if it is not overriden by
12182 DW_AT_accessibility. */
12183
12184 static enum dwarf_access_attribute
12185 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12186 {
12187 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12188 {
12189 /* The default DWARF 2 accessibility for members is public, the default
12190 accessibility for inheritance is private. */
12191
12192 if (die->tag != DW_TAG_inheritance)
12193 return DW_ACCESS_public;
12194 else
12195 return DW_ACCESS_private;
12196 }
12197 else
12198 {
12199 /* DWARF 3+ defines the default accessibility a different way. The same
12200 rules apply now for DW_TAG_inheritance as for the members and it only
12201 depends on the container kind. */
12202
12203 if (die->parent->tag == DW_TAG_class_type)
12204 return DW_ACCESS_private;
12205 else
12206 return DW_ACCESS_public;
12207 }
12208 }
12209
12210 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12211 offset. If the attribute was not found return 0, otherwise return
12212 1. If it was found but could not properly be handled, set *OFFSET
12213 to 0. */
12214
12215 static int
12216 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12217 LONGEST *offset)
12218 {
12219 struct attribute *attr;
12220
12221 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12222 if (attr != NULL)
12223 {
12224 *offset = 0;
12225
12226 /* Note that we do not check for a section offset first here.
12227 This is because DW_AT_data_member_location is new in DWARF 4,
12228 so if we see it, we can assume that a constant form is really
12229 a constant and not a section offset. */
12230 if (attr_form_is_constant (attr))
12231 *offset = dwarf2_get_attr_constant_value (attr, 0);
12232 else if (attr_form_is_section_offset (attr))
12233 dwarf2_complex_location_expr_complaint ();
12234 else if (attr_form_is_block (attr))
12235 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12236 else
12237 dwarf2_complex_location_expr_complaint ();
12238
12239 return 1;
12240 }
12241
12242 return 0;
12243 }
12244
12245 /* Add an aggregate field to the field list. */
12246
12247 static void
12248 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12249 struct dwarf2_cu *cu)
12250 {
12251 struct objfile *objfile = cu->objfile;
12252 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12253 struct nextfield *new_field;
12254 struct attribute *attr;
12255 struct field *fp;
12256 const char *fieldname = "";
12257
12258 /* Allocate a new field list entry and link it in. */
12259 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12260 make_cleanup (xfree, new_field);
12261 memset (new_field, 0, sizeof (struct nextfield));
12262
12263 if (die->tag == DW_TAG_inheritance)
12264 {
12265 new_field->next = fip->baseclasses;
12266 fip->baseclasses = new_field;
12267 }
12268 else
12269 {
12270 new_field->next = fip->fields;
12271 fip->fields = new_field;
12272 }
12273 fip->nfields++;
12274
12275 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12276 if (attr)
12277 new_field->accessibility = DW_UNSND (attr);
12278 else
12279 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12280 if (new_field->accessibility != DW_ACCESS_public)
12281 fip->non_public_fields = 1;
12282
12283 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12284 if (attr)
12285 new_field->virtuality = DW_UNSND (attr);
12286 else
12287 new_field->virtuality = DW_VIRTUALITY_none;
12288
12289 fp = &new_field->field;
12290
12291 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12292 {
12293 LONGEST offset;
12294
12295 /* Data member other than a C++ static data member. */
12296
12297 /* Get type of field. */
12298 fp->type = die_type (die, cu);
12299
12300 SET_FIELD_BITPOS (*fp, 0);
12301
12302 /* Get bit size of field (zero if none). */
12303 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12304 if (attr)
12305 {
12306 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12307 }
12308 else
12309 {
12310 FIELD_BITSIZE (*fp) = 0;
12311 }
12312
12313 /* Get bit offset of field. */
12314 if (handle_data_member_location (die, cu, &offset))
12315 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12316 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12317 if (attr)
12318 {
12319 if (gdbarch_bits_big_endian (gdbarch))
12320 {
12321 /* For big endian bits, the DW_AT_bit_offset gives the
12322 additional bit offset from the MSB of the containing
12323 anonymous object to the MSB of the field. We don't
12324 have to do anything special since we don't need to
12325 know the size of the anonymous object. */
12326 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12327 }
12328 else
12329 {
12330 /* For little endian bits, compute the bit offset to the
12331 MSB of the anonymous object, subtract off the number of
12332 bits from the MSB of the field to the MSB of the
12333 object, and then subtract off the number of bits of
12334 the field itself. The result is the bit offset of
12335 the LSB of the field. */
12336 int anonymous_size;
12337 int bit_offset = DW_UNSND (attr);
12338
12339 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12340 if (attr)
12341 {
12342 /* The size of the anonymous object containing
12343 the bit field is explicit, so use the
12344 indicated size (in bytes). */
12345 anonymous_size = DW_UNSND (attr);
12346 }
12347 else
12348 {
12349 /* The size of the anonymous object containing
12350 the bit field must be inferred from the type
12351 attribute of the data member containing the
12352 bit field. */
12353 anonymous_size = TYPE_LENGTH (fp->type);
12354 }
12355 SET_FIELD_BITPOS (*fp,
12356 (FIELD_BITPOS (*fp)
12357 + anonymous_size * bits_per_byte
12358 - bit_offset - FIELD_BITSIZE (*fp)));
12359 }
12360 }
12361
12362 /* Get name of field. */
12363 fieldname = dwarf2_name (die, cu);
12364 if (fieldname == NULL)
12365 fieldname = "";
12366
12367 /* The name is already allocated along with this objfile, so we don't
12368 need to duplicate it for the type. */
12369 fp->name = fieldname;
12370
12371 /* Change accessibility for artificial fields (e.g. virtual table
12372 pointer or virtual base class pointer) to private. */
12373 if (dwarf2_attr (die, DW_AT_artificial, cu))
12374 {
12375 FIELD_ARTIFICIAL (*fp) = 1;
12376 new_field->accessibility = DW_ACCESS_private;
12377 fip->non_public_fields = 1;
12378 }
12379 }
12380 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12381 {
12382 /* C++ static member. */
12383
12384 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12385 is a declaration, but all versions of G++ as of this writing
12386 (so through at least 3.2.1) incorrectly generate
12387 DW_TAG_variable tags. */
12388
12389 const char *physname;
12390
12391 /* Get name of field. */
12392 fieldname = dwarf2_name (die, cu);
12393 if (fieldname == NULL)
12394 return;
12395
12396 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12397 if (attr
12398 /* Only create a symbol if this is an external value.
12399 new_symbol checks this and puts the value in the global symbol
12400 table, which we want. If it is not external, new_symbol
12401 will try to put the value in cu->list_in_scope which is wrong. */
12402 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12403 {
12404 /* A static const member, not much different than an enum as far as
12405 we're concerned, except that we can support more types. */
12406 new_symbol (die, NULL, cu);
12407 }
12408
12409 /* Get physical name. */
12410 physname = dwarf2_physname (fieldname, die, cu);
12411
12412 /* The name is already allocated along with this objfile, so we don't
12413 need to duplicate it for the type. */
12414 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12415 FIELD_TYPE (*fp) = die_type (die, cu);
12416 FIELD_NAME (*fp) = fieldname;
12417 }
12418 else if (die->tag == DW_TAG_inheritance)
12419 {
12420 LONGEST offset;
12421
12422 /* C++ base class field. */
12423 if (handle_data_member_location (die, cu, &offset))
12424 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12425 FIELD_BITSIZE (*fp) = 0;
12426 FIELD_TYPE (*fp) = die_type (die, cu);
12427 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12428 fip->nbaseclasses++;
12429 }
12430 }
12431
12432 /* Add a typedef defined in the scope of the FIP's class. */
12433
12434 static void
12435 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12436 struct dwarf2_cu *cu)
12437 {
12438 struct objfile *objfile = cu->objfile;
12439 struct typedef_field_list *new_field;
12440 struct attribute *attr;
12441 struct typedef_field *fp;
12442 char *fieldname = "";
12443
12444 /* Allocate a new field list entry and link it in. */
12445 new_field = xzalloc (sizeof (*new_field));
12446 make_cleanup (xfree, new_field);
12447
12448 gdb_assert (die->tag == DW_TAG_typedef);
12449
12450 fp = &new_field->field;
12451
12452 /* Get name of field. */
12453 fp->name = dwarf2_name (die, cu);
12454 if (fp->name == NULL)
12455 return;
12456
12457 fp->type = read_type_die (die, cu);
12458
12459 new_field->next = fip->typedef_field_list;
12460 fip->typedef_field_list = new_field;
12461 fip->typedef_field_list_count++;
12462 }
12463
12464 /* Create the vector of fields, and attach it to the type. */
12465
12466 static void
12467 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12468 struct dwarf2_cu *cu)
12469 {
12470 int nfields = fip->nfields;
12471
12472 /* Record the field count, allocate space for the array of fields,
12473 and create blank accessibility bitfields if necessary. */
12474 TYPE_NFIELDS (type) = nfields;
12475 TYPE_FIELDS (type) = (struct field *)
12476 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12477 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12478
12479 if (fip->non_public_fields && cu->language != language_ada)
12480 {
12481 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12482
12483 TYPE_FIELD_PRIVATE_BITS (type) =
12484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12485 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12486
12487 TYPE_FIELD_PROTECTED_BITS (type) =
12488 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12489 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12490
12491 TYPE_FIELD_IGNORE_BITS (type) =
12492 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12493 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12494 }
12495
12496 /* If the type has baseclasses, allocate and clear a bit vector for
12497 TYPE_FIELD_VIRTUAL_BITS. */
12498 if (fip->nbaseclasses && cu->language != language_ada)
12499 {
12500 int num_bytes = B_BYTES (fip->nbaseclasses);
12501 unsigned char *pointer;
12502
12503 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12504 pointer = TYPE_ALLOC (type, num_bytes);
12505 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12506 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12507 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12508 }
12509
12510 /* Copy the saved-up fields into the field vector. Start from the head of
12511 the list, adding to the tail of the field array, so that they end up in
12512 the same order in the array in which they were added to the list. */
12513 while (nfields-- > 0)
12514 {
12515 struct nextfield *fieldp;
12516
12517 if (fip->fields)
12518 {
12519 fieldp = fip->fields;
12520 fip->fields = fieldp->next;
12521 }
12522 else
12523 {
12524 fieldp = fip->baseclasses;
12525 fip->baseclasses = fieldp->next;
12526 }
12527
12528 TYPE_FIELD (type, nfields) = fieldp->field;
12529 switch (fieldp->accessibility)
12530 {
12531 case DW_ACCESS_private:
12532 if (cu->language != language_ada)
12533 SET_TYPE_FIELD_PRIVATE (type, nfields);
12534 break;
12535
12536 case DW_ACCESS_protected:
12537 if (cu->language != language_ada)
12538 SET_TYPE_FIELD_PROTECTED (type, nfields);
12539 break;
12540
12541 case DW_ACCESS_public:
12542 break;
12543
12544 default:
12545 /* Unknown accessibility. Complain and treat it as public. */
12546 {
12547 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12548 fieldp->accessibility);
12549 }
12550 break;
12551 }
12552 if (nfields < fip->nbaseclasses)
12553 {
12554 switch (fieldp->virtuality)
12555 {
12556 case DW_VIRTUALITY_virtual:
12557 case DW_VIRTUALITY_pure_virtual:
12558 if (cu->language == language_ada)
12559 error (_("unexpected virtuality in component of Ada type"));
12560 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12561 break;
12562 }
12563 }
12564 }
12565 }
12566
12567 /* Return true if this member function is a constructor, false
12568 otherwise. */
12569
12570 static int
12571 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12572 {
12573 const char *fieldname;
12574 const char *typename;
12575 int len;
12576
12577 if (die->parent == NULL)
12578 return 0;
12579
12580 if (die->parent->tag != DW_TAG_structure_type
12581 && die->parent->tag != DW_TAG_union_type
12582 && die->parent->tag != DW_TAG_class_type)
12583 return 0;
12584
12585 fieldname = dwarf2_name (die, cu);
12586 typename = dwarf2_name (die->parent, cu);
12587 if (fieldname == NULL || typename == NULL)
12588 return 0;
12589
12590 len = strlen (fieldname);
12591 return (strncmp (fieldname, typename, len) == 0
12592 && (typename[len] == '\0' || typename[len] == '<'));
12593 }
12594
12595 /* Add a member function to the proper fieldlist. */
12596
12597 static void
12598 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12599 struct type *type, struct dwarf2_cu *cu)
12600 {
12601 struct objfile *objfile = cu->objfile;
12602 struct attribute *attr;
12603 struct fnfieldlist *flp;
12604 int i;
12605 struct fn_field *fnp;
12606 const char *fieldname;
12607 struct nextfnfield *new_fnfield;
12608 struct type *this_type;
12609 enum dwarf_access_attribute accessibility;
12610
12611 if (cu->language == language_ada)
12612 error (_("unexpected member function in Ada type"));
12613
12614 /* Get name of member function. */
12615 fieldname = dwarf2_name (die, cu);
12616 if (fieldname == NULL)
12617 return;
12618
12619 /* Look up member function name in fieldlist. */
12620 for (i = 0; i < fip->nfnfields; i++)
12621 {
12622 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12623 break;
12624 }
12625
12626 /* Create new list element if necessary. */
12627 if (i < fip->nfnfields)
12628 flp = &fip->fnfieldlists[i];
12629 else
12630 {
12631 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12632 {
12633 fip->fnfieldlists = (struct fnfieldlist *)
12634 xrealloc (fip->fnfieldlists,
12635 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12636 * sizeof (struct fnfieldlist));
12637 if (fip->nfnfields == 0)
12638 make_cleanup (free_current_contents, &fip->fnfieldlists);
12639 }
12640 flp = &fip->fnfieldlists[fip->nfnfields];
12641 flp->name = fieldname;
12642 flp->length = 0;
12643 flp->head = NULL;
12644 i = fip->nfnfields++;
12645 }
12646
12647 /* Create a new member function field and chain it to the field list
12648 entry. */
12649 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12650 make_cleanup (xfree, new_fnfield);
12651 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12652 new_fnfield->next = flp->head;
12653 flp->head = new_fnfield;
12654 flp->length++;
12655
12656 /* Fill in the member function field info. */
12657 fnp = &new_fnfield->fnfield;
12658
12659 /* Delay processing of the physname until later. */
12660 if (cu->language == language_cplus || cu->language == language_java)
12661 {
12662 add_to_method_list (type, i, flp->length - 1, fieldname,
12663 die, cu);
12664 }
12665 else
12666 {
12667 const char *physname = dwarf2_physname (fieldname, die, cu);
12668 fnp->physname = physname ? physname : "";
12669 }
12670
12671 fnp->type = alloc_type (objfile);
12672 this_type = read_type_die (die, cu);
12673 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12674 {
12675 int nparams = TYPE_NFIELDS (this_type);
12676
12677 /* TYPE is the domain of this method, and THIS_TYPE is the type
12678 of the method itself (TYPE_CODE_METHOD). */
12679 smash_to_method_type (fnp->type, type,
12680 TYPE_TARGET_TYPE (this_type),
12681 TYPE_FIELDS (this_type),
12682 TYPE_NFIELDS (this_type),
12683 TYPE_VARARGS (this_type));
12684
12685 /* Handle static member functions.
12686 Dwarf2 has no clean way to discern C++ static and non-static
12687 member functions. G++ helps GDB by marking the first
12688 parameter for non-static member functions (which is the this
12689 pointer) as artificial. We obtain this information from
12690 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12691 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12692 fnp->voffset = VOFFSET_STATIC;
12693 }
12694 else
12695 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12696 dwarf2_full_name (fieldname, die, cu));
12697
12698 /* Get fcontext from DW_AT_containing_type if present. */
12699 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12700 fnp->fcontext = die_containing_type (die, cu);
12701
12702 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12703 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12704
12705 /* Get accessibility. */
12706 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12707 if (attr)
12708 accessibility = DW_UNSND (attr);
12709 else
12710 accessibility = dwarf2_default_access_attribute (die, cu);
12711 switch (accessibility)
12712 {
12713 case DW_ACCESS_private:
12714 fnp->is_private = 1;
12715 break;
12716 case DW_ACCESS_protected:
12717 fnp->is_protected = 1;
12718 break;
12719 }
12720
12721 /* Check for artificial methods. */
12722 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12723 if (attr && DW_UNSND (attr) != 0)
12724 fnp->is_artificial = 1;
12725
12726 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12727
12728 /* Get index in virtual function table if it is a virtual member
12729 function. For older versions of GCC, this is an offset in the
12730 appropriate virtual table, as specified by DW_AT_containing_type.
12731 For everyone else, it is an expression to be evaluated relative
12732 to the object address. */
12733
12734 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12735 if (attr)
12736 {
12737 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12738 {
12739 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12740 {
12741 /* Old-style GCC. */
12742 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12743 }
12744 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12745 || (DW_BLOCK (attr)->size > 1
12746 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12747 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12748 {
12749 struct dwarf_block blk;
12750 int offset;
12751
12752 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12753 ? 1 : 2);
12754 blk.size = DW_BLOCK (attr)->size - offset;
12755 blk.data = DW_BLOCK (attr)->data + offset;
12756 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12757 if ((fnp->voffset % cu->header.addr_size) != 0)
12758 dwarf2_complex_location_expr_complaint ();
12759 else
12760 fnp->voffset /= cu->header.addr_size;
12761 fnp->voffset += 2;
12762 }
12763 else
12764 dwarf2_complex_location_expr_complaint ();
12765
12766 if (!fnp->fcontext)
12767 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12768 }
12769 else if (attr_form_is_section_offset (attr))
12770 {
12771 dwarf2_complex_location_expr_complaint ();
12772 }
12773 else
12774 {
12775 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12776 fieldname);
12777 }
12778 }
12779 else
12780 {
12781 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12782 if (attr && DW_UNSND (attr))
12783 {
12784 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12785 complaint (&symfile_complaints,
12786 _("Member function \"%s\" (offset %d) is virtual "
12787 "but the vtable offset is not specified"),
12788 fieldname, die->offset.sect_off);
12789 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12790 TYPE_CPLUS_DYNAMIC (type) = 1;
12791 }
12792 }
12793 }
12794
12795 /* Create the vector of member function fields, and attach it to the type. */
12796
12797 static void
12798 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12799 struct dwarf2_cu *cu)
12800 {
12801 struct fnfieldlist *flp;
12802 int i;
12803
12804 if (cu->language == language_ada)
12805 error (_("unexpected member functions in Ada type"));
12806
12807 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12808 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12809 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12810
12811 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12812 {
12813 struct nextfnfield *nfp = flp->head;
12814 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12815 int k;
12816
12817 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12818 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12819 fn_flp->fn_fields = (struct fn_field *)
12820 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12821 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12822 fn_flp->fn_fields[k] = nfp->fnfield;
12823 }
12824
12825 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12826 }
12827
12828 /* Returns non-zero if NAME is the name of a vtable member in CU's
12829 language, zero otherwise. */
12830 static int
12831 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12832 {
12833 static const char vptr[] = "_vptr";
12834 static const char vtable[] = "vtable";
12835
12836 /* Look for the C++ and Java forms of the vtable. */
12837 if ((cu->language == language_java
12838 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12839 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12840 && is_cplus_marker (name[sizeof (vptr) - 1])))
12841 return 1;
12842
12843 return 0;
12844 }
12845
12846 /* GCC outputs unnamed structures that are really pointers to member
12847 functions, with the ABI-specified layout. If TYPE describes
12848 such a structure, smash it into a member function type.
12849
12850 GCC shouldn't do this; it should just output pointer to member DIEs.
12851 This is GCC PR debug/28767. */
12852
12853 static void
12854 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12855 {
12856 struct type *pfn_type, *domain_type, *new_type;
12857
12858 /* Check for a structure with no name and two children. */
12859 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12860 return;
12861
12862 /* Check for __pfn and __delta members. */
12863 if (TYPE_FIELD_NAME (type, 0) == NULL
12864 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12865 || TYPE_FIELD_NAME (type, 1) == NULL
12866 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12867 return;
12868
12869 /* Find the type of the method. */
12870 pfn_type = TYPE_FIELD_TYPE (type, 0);
12871 if (pfn_type == NULL
12872 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12873 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12874 return;
12875
12876 /* Look for the "this" argument. */
12877 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12878 if (TYPE_NFIELDS (pfn_type) == 0
12879 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12880 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12881 return;
12882
12883 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12884 new_type = alloc_type (objfile);
12885 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12886 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12887 TYPE_VARARGS (pfn_type));
12888 smash_to_methodptr_type (type, new_type);
12889 }
12890
12891 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12892 (icc). */
12893
12894 static int
12895 producer_is_icc (struct dwarf2_cu *cu)
12896 {
12897 if (!cu->checked_producer)
12898 check_producer (cu);
12899
12900 return cu->producer_is_icc;
12901 }
12902
12903 /* Called when we find the DIE that starts a structure or union scope
12904 (definition) to create a type for the structure or union. Fill in
12905 the type's name and general properties; the members will not be
12906 processed until process_structure_scope. A symbol table entry for
12907 the type will also not be done until process_structure_scope (assuming
12908 the type has a name).
12909
12910 NOTE: we need to call these functions regardless of whether or not the
12911 DIE has a DW_AT_name attribute, since it might be an anonymous
12912 structure or union. This gets the type entered into our set of
12913 user defined types. */
12914
12915 static struct type *
12916 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12917 {
12918 struct objfile *objfile = cu->objfile;
12919 struct type *type;
12920 struct attribute *attr;
12921 const char *name;
12922
12923 /* If the definition of this type lives in .debug_types, read that type.
12924 Don't follow DW_AT_specification though, that will take us back up
12925 the chain and we want to go down. */
12926 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12927 if (attr)
12928 {
12929 type = get_DW_AT_signature_type (die, attr, cu);
12930
12931 /* The type's CU may not be the same as CU.
12932 Ensure TYPE is recorded with CU in die_type_hash. */
12933 return set_die_type (die, type, cu);
12934 }
12935
12936 type = alloc_type (objfile);
12937 INIT_CPLUS_SPECIFIC (type);
12938
12939 name = dwarf2_name (die, cu);
12940 if (name != NULL)
12941 {
12942 if (cu->language == language_cplus
12943 || cu->language == language_java)
12944 {
12945 const char *full_name = dwarf2_full_name (name, die, cu);
12946
12947 /* dwarf2_full_name might have already finished building the DIE's
12948 type. If so, there is no need to continue. */
12949 if (get_die_type (die, cu) != NULL)
12950 return get_die_type (die, cu);
12951
12952 TYPE_TAG_NAME (type) = full_name;
12953 if (die->tag == DW_TAG_structure_type
12954 || die->tag == DW_TAG_class_type)
12955 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12956 }
12957 else
12958 {
12959 /* The name is already allocated along with this objfile, so
12960 we don't need to duplicate it for the type. */
12961 TYPE_TAG_NAME (type) = name;
12962 if (die->tag == DW_TAG_class_type)
12963 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12964 }
12965 }
12966
12967 if (die->tag == DW_TAG_structure_type)
12968 {
12969 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12970 }
12971 else if (die->tag == DW_TAG_union_type)
12972 {
12973 TYPE_CODE (type) = TYPE_CODE_UNION;
12974 }
12975 else
12976 {
12977 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12978 }
12979
12980 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12981 TYPE_DECLARED_CLASS (type) = 1;
12982
12983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12984 if (attr)
12985 {
12986 TYPE_LENGTH (type) = DW_UNSND (attr);
12987 }
12988 else
12989 {
12990 TYPE_LENGTH (type) = 0;
12991 }
12992
12993 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12994 {
12995 /* ICC does not output the required DW_AT_declaration
12996 on incomplete types, but gives them a size of zero. */
12997 TYPE_STUB (type) = 1;
12998 }
12999 else
13000 TYPE_STUB_SUPPORTED (type) = 1;
13001
13002 if (die_is_declaration (die, cu))
13003 TYPE_STUB (type) = 1;
13004 else if (attr == NULL && die->child == NULL
13005 && producer_is_realview (cu->producer))
13006 /* RealView does not output the required DW_AT_declaration
13007 on incomplete types. */
13008 TYPE_STUB (type) = 1;
13009
13010 /* We need to add the type field to the die immediately so we don't
13011 infinitely recurse when dealing with pointers to the structure
13012 type within the structure itself. */
13013 set_die_type (die, type, cu);
13014
13015 /* set_die_type should be already done. */
13016 set_descriptive_type (type, die, cu);
13017
13018 return type;
13019 }
13020
13021 /* Finish creating a structure or union type, including filling in
13022 its members and creating a symbol for it. */
13023
13024 static void
13025 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13026 {
13027 struct objfile *objfile = cu->objfile;
13028 struct die_info *child_die;
13029 struct type *type;
13030
13031 type = get_die_type (die, cu);
13032 if (type == NULL)
13033 type = read_structure_type (die, cu);
13034
13035 if (die->child != NULL && ! die_is_declaration (die, cu))
13036 {
13037 struct field_info fi;
13038 VEC (symbolp) *template_args = NULL;
13039 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13040
13041 memset (&fi, 0, sizeof (struct field_info));
13042
13043 child_die = die->child;
13044
13045 while (child_die && child_die->tag)
13046 {
13047 if (child_die->tag == DW_TAG_member
13048 || child_die->tag == DW_TAG_variable)
13049 {
13050 /* NOTE: carlton/2002-11-05: A C++ static data member
13051 should be a DW_TAG_member that is a declaration, but
13052 all versions of G++ as of this writing (so through at
13053 least 3.2.1) incorrectly generate DW_TAG_variable
13054 tags for them instead. */
13055 dwarf2_add_field (&fi, child_die, cu);
13056 }
13057 else if (child_die->tag == DW_TAG_subprogram)
13058 {
13059 /* C++ member function. */
13060 dwarf2_add_member_fn (&fi, child_die, type, cu);
13061 }
13062 else if (child_die->tag == DW_TAG_inheritance)
13063 {
13064 /* C++ base class field. */
13065 dwarf2_add_field (&fi, child_die, cu);
13066 }
13067 else if (child_die->tag == DW_TAG_typedef)
13068 dwarf2_add_typedef (&fi, child_die, cu);
13069 else if (child_die->tag == DW_TAG_template_type_param
13070 || child_die->tag == DW_TAG_template_value_param)
13071 {
13072 struct symbol *arg = new_symbol (child_die, NULL, cu);
13073
13074 if (arg != NULL)
13075 VEC_safe_push (symbolp, template_args, arg);
13076 }
13077
13078 child_die = sibling_die (child_die);
13079 }
13080
13081 /* Attach template arguments to type. */
13082 if (! VEC_empty (symbolp, template_args))
13083 {
13084 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13085 TYPE_N_TEMPLATE_ARGUMENTS (type)
13086 = VEC_length (symbolp, template_args);
13087 TYPE_TEMPLATE_ARGUMENTS (type)
13088 = obstack_alloc (&objfile->objfile_obstack,
13089 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13090 * sizeof (struct symbol *)));
13091 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13092 VEC_address (symbolp, template_args),
13093 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13094 * sizeof (struct symbol *)));
13095 VEC_free (symbolp, template_args);
13096 }
13097
13098 /* Attach fields and member functions to the type. */
13099 if (fi.nfields)
13100 dwarf2_attach_fields_to_type (&fi, type, cu);
13101 if (fi.nfnfields)
13102 {
13103 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13104
13105 /* Get the type which refers to the base class (possibly this
13106 class itself) which contains the vtable pointer for the current
13107 class from the DW_AT_containing_type attribute. This use of
13108 DW_AT_containing_type is a GNU extension. */
13109
13110 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13111 {
13112 struct type *t = die_containing_type (die, cu);
13113
13114 TYPE_VPTR_BASETYPE (type) = t;
13115 if (type == t)
13116 {
13117 int i;
13118
13119 /* Our own class provides vtbl ptr. */
13120 for (i = TYPE_NFIELDS (t) - 1;
13121 i >= TYPE_N_BASECLASSES (t);
13122 --i)
13123 {
13124 const char *fieldname = TYPE_FIELD_NAME (t, i);
13125
13126 if (is_vtable_name (fieldname, cu))
13127 {
13128 TYPE_VPTR_FIELDNO (type) = i;
13129 break;
13130 }
13131 }
13132
13133 /* Complain if virtual function table field not found. */
13134 if (i < TYPE_N_BASECLASSES (t))
13135 complaint (&symfile_complaints,
13136 _("virtual function table pointer "
13137 "not found when defining class '%s'"),
13138 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13139 "");
13140 }
13141 else
13142 {
13143 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13144 }
13145 }
13146 else if (cu->producer
13147 && strncmp (cu->producer,
13148 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13149 {
13150 /* The IBM XLC compiler does not provide direct indication
13151 of the containing type, but the vtable pointer is
13152 always named __vfp. */
13153
13154 int i;
13155
13156 for (i = TYPE_NFIELDS (type) - 1;
13157 i >= TYPE_N_BASECLASSES (type);
13158 --i)
13159 {
13160 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13161 {
13162 TYPE_VPTR_FIELDNO (type) = i;
13163 TYPE_VPTR_BASETYPE (type) = type;
13164 break;
13165 }
13166 }
13167 }
13168 }
13169
13170 /* Copy fi.typedef_field_list linked list elements content into the
13171 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13172 if (fi.typedef_field_list)
13173 {
13174 int i = fi.typedef_field_list_count;
13175
13176 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13177 TYPE_TYPEDEF_FIELD_ARRAY (type)
13178 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13179 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13180
13181 /* Reverse the list order to keep the debug info elements order. */
13182 while (--i >= 0)
13183 {
13184 struct typedef_field *dest, *src;
13185
13186 dest = &TYPE_TYPEDEF_FIELD (type, i);
13187 src = &fi.typedef_field_list->field;
13188 fi.typedef_field_list = fi.typedef_field_list->next;
13189 *dest = *src;
13190 }
13191 }
13192
13193 do_cleanups (back_to);
13194
13195 if (HAVE_CPLUS_STRUCT (type))
13196 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13197 }
13198
13199 quirk_gcc_member_function_pointer (type, objfile);
13200
13201 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13202 snapshots) has been known to create a die giving a declaration
13203 for a class that has, as a child, a die giving a definition for a
13204 nested class. So we have to process our children even if the
13205 current die is a declaration. Normally, of course, a declaration
13206 won't have any children at all. */
13207
13208 child_die = die->child;
13209
13210 while (child_die != NULL && child_die->tag)
13211 {
13212 if (child_die->tag == DW_TAG_member
13213 || child_die->tag == DW_TAG_variable
13214 || child_die->tag == DW_TAG_inheritance
13215 || child_die->tag == DW_TAG_template_value_param
13216 || child_die->tag == DW_TAG_template_type_param)
13217 {
13218 /* Do nothing. */
13219 }
13220 else
13221 process_die (child_die, cu);
13222
13223 child_die = sibling_die (child_die);
13224 }
13225
13226 /* Do not consider external references. According to the DWARF standard,
13227 these DIEs are identified by the fact that they have no byte_size
13228 attribute, and a declaration attribute. */
13229 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13230 || !die_is_declaration (die, cu))
13231 new_symbol (die, type, cu);
13232 }
13233
13234 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13235 update TYPE using some information only available in DIE's children. */
13236
13237 static void
13238 update_enumeration_type_from_children (struct die_info *die,
13239 struct type *type,
13240 struct dwarf2_cu *cu)
13241 {
13242 struct obstack obstack;
13243 struct die_info *child_die;
13244 int unsigned_enum = 1;
13245 int flag_enum = 1;
13246 ULONGEST mask = 0;
13247 struct cleanup *old_chain;
13248
13249 obstack_init (&obstack);
13250 old_chain = make_cleanup_obstack_free (&obstack);
13251
13252 for (child_die = die->child;
13253 child_die != NULL && child_die->tag;
13254 child_die = sibling_die (child_die))
13255 {
13256 struct attribute *attr;
13257 LONGEST value;
13258 const gdb_byte *bytes;
13259 struct dwarf2_locexpr_baton *baton;
13260 const char *name;
13261
13262 if (child_die->tag != DW_TAG_enumerator)
13263 continue;
13264
13265 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13266 if (attr == NULL)
13267 continue;
13268
13269 name = dwarf2_name (child_die, cu);
13270 if (name == NULL)
13271 name = "<anonymous enumerator>";
13272
13273 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13274 &value, &bytes, &baton);
13275 if (value < 0)
13276 {
13277 unsigned_enum = 0;
13278 flag_enum = 0;
13279 }
13280 else if ((mask & value) != 0)
13281 flag_enum = 0;
13282 else
13283 mask |= value;
13284
13285 /* If we already know that the enum type is neither unsigned, nor
13286 a flag type, no need to look at the rest of the enumerates. */
13287 if (!unsigned_enum && !flag_enum)
13288 break;
13289 }
13290
13291 if (unsigned_enum)
13292 TYPE_UNSIGNED (type) = 1;
13293 if (flag_enum)
13294 TYPE_FLAG_ENUM (type) = 1;
13295
13296 do_cleanups (old_chain);
13297 }
13298
13299 /* Given a DW_AT_enumeration_type die, set its type. We do not
13300 complete the type's fields yet, or create any symbols. */
13301
13302 static struct type *
13303 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13304 {
13305 struct objfile *objfile = cu->objfile;
13306 struct type *type;
13307 struct attribute *attr;
13308 const char *name;
13309
13310 /* If the definition of this type lives in .debug_types, read that type.
13311 Don't follow DW_AT_specification though, that will take us back up
13312 the chain and we want to go down. */
13313 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13314 if (attr)
13315 {
13316 type = get_DW_AT_signature_type (die, attr, cu);
13317
13318 /* The type's CU may not be the same as CU.
13319 Ensure TYPE is recorded with CU in die_type_hash. */
13320 return set_die_type (die, type, cu);
13321 }
13322
13323 type = alloc_type (objfile);
13324
13325 TYPE_CODE (type) = TYPE_CODE_ENUM;
13326 name = dwarf2_full_name (NULL, die, cu);
13327 if (name != NULL)
13328 TYPE_TAG_NAME (type) = name;
13329
13330 attr = dwarf2_attr (die, DW_AT_type, cu);
13331 if (attr != NULL)
13332 {
13333 struct type *underlying_type = die_type (die, cu);
13334
13335 TYPE_TARGET_TYPE (type) = underlying_type;
13336 }
13337
13338 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13339 if (attr)
13340 {
13341 TYPE_LENGTH (type) = DW_UNSND (attr);
13342 }
13343 else
13344 {
13345 TYPE_LENGTH (type) = 0;
13346 }
13347
13348 /* The enumeration DIE can be incomplete. In Ada, any type can be
13349 declared as private in the package spec, and then defined only
13350 inside the package body. Such types are known as Taft Amendment
13351 Types. When another package uses such a type, an incomplete DIE
13352 may be generated by the compiler. */
13353 if (die_is_declaration (die, cu))
13354 TYPE_STUB (type) = 1;
13355
13356 /* Finish the creation of this type by using the enum's children.
13357 We must call this even when the underlying type has been provided
13358 so that we can determine if we're looking at a "flag" enum. */
13359 update_enumeration_type_from_children (die, type, cu);
13360
13361 /* If this type has an underlying type that is not a stub, then we
13362 may use its attributes. We always use the "unsigned" attribute
13363 in this situation, because ordinarily we guess whether the type
13364 is unsigned -- but the guess can be wrong and the underlying type
13365 can tell us the reality. However, we defer to a local size
13366 attribute if one exists, because this lets the compiler override
13367 the underlying type if needed. */
13368 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13369 {
13370 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13371 if (TYPE_LENGTH (type) == 0)
13372 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13373 }
13374
13375 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13376
13377 return set_die_type (die, type, cu);
13378 }
13379
13380 /* Given a pointer to a die which begins an enumeration, process all
13381 the dies that define the members of the enumeration, and create the
13382 symbol for the enumeration type.
13383
13384 NOTE: We reverse the order of the element list. */
13385
13386 static void
13387 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13388 {
13389 struct type *this_type;
13390
13391 this_type = get_die_type (die, cu);
13392 if (this_type == NULL)
13393 this_type = read_enumeration_type (die, cu);
13394
13395 if (die->child != NULL)
13396 {
13397 struct die_info *child_die;
13398 struct symbol *sym;
13399 struct field *fields = NULL;
13400 int num_fields = 0;
13401 const char *name;
13402
13403 child_die = die->child;
13404 while (child_die && child_die->tag)
13405 {
13406 if (child_die->tag != DW_TAG_enumerator)
13407 {
13408 process_die (child_die, cu);
13409 }
13410 else
13411 {
13412 name = dwarf2_name (child_die, cu);
13413 if (name)
13414 {
13415 sym = new_symbol (child_die, this_type, cu);
13416
13417 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13418 {
13419 fields = (struct field *)
13420 xrealloc (fields,
13421 (num_fields + DW_FIELD_ALLOC_CHUNK)
13422 * sizeof (struct field));
13423 }
13424
13425 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13426 FIELD_TYPE (fields[num_fields]) = NULL;
13427 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13428 FIELD_BITSIZE (fields[num_fields]) = 0;
13429
13430 num_fields++;
13431 }
13432 }
13433
13434 child_die = sibling_die (child_die);
13435 }
13436
13437 if (num_fields)
13438 {
13439 TYPE_NFIELDS (this_type) = num_fields;
13440 TYPE_FIELDS (this_type) = (struct field *)
13441 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13442 memcpy (TYPE_FIELDS (this_type), fields,
13443 sizeof (struct field) * num_fields);
13444 xfree (fields);
13445 }
13446 }
13447
13448 /* If we are reading an enum from a .debug_types unit, and the enum
13449 is a declaration, and the enum is not the signatured type in the
13450 unit, then we do not want to add a symbol for it. Adding a
13451 symbol would in some cases obscure the true definition of the
13452 enum, giving users an incomplete type when the definition is
13453 actually available. Note that we do not want to do this for all
13454 enums which are just declarations, because C++0x allows forward
13455 enum declarations. */
13456 if (cu->per_cu->is_debug_types
13457 && die_is_declaration (die, cu))
13458 {
13459 struct signatured_type *sig_type;
13460
13461 sig_type = (struct signatured_type *) cu->per_cu;
13462 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13463 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13464 return;
13465 }
13466
13467 new_symbol (die, this_type, cu);
13468 }
13469
13470 /* Extract all information from a DW_TAG_array_type DIE and put it in
13471 the DIE's type field. For now, this only handles one dimensional
13472 arrays. */
13473
13474 static struct type *
13475 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13476 {
13477 struct objfile *objfile = cu->objfile;
13478 struct die_info *child_die;
13479 struct type *type;
13480 struct type *element_type, *range_type, *index_type;
13481 struct type **range_types = NULL;
13482 struct attribute *attr;
13483 int ndim = 0;
13484 struct cleanup *back_to;
13485 const char *name;
13486 unsigned int bit_stride = 0;
13487
13488 element_type = die_type (die, cu);
13489
13490 /* The die_type call above may have already set the type for this DIE. */
13491 type = get_die_type (die, cu);
13492 if (type)
13493 return type;
13494
13495 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13496 if (attr != NULL)
13497 bit_stride = DW_UNSND (attr) * 8;
13498
13499 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13500 if (attr != NULL)
13501 bit_stride = DW_UNSND (attr);
13502
13503 /* Irix 6.2 native cc creates array types without children for
13504 arrays with unspecified length. */
13505 if (die->child == NULL)
13506 {
13507 index_type = objfile_type (objfile)->builtin_int;
13508 range_type = create_static_range_type (NULL, index_type, 0, -1);
13509 type = create_array_type_with_stride (NULL, element_type, range_type,
13510 bit_stride);
13511 return set_die_type (die, type, cu);
13512 }
13513
13514 back_to = make_cleanup (null_cleanup, NULL);
13515 child_die = die->child;
13516 while (child_die && child_die->tag)
13517 {
13518 if (child_die->tag == DW_TAG_subrange_type)
13519 {
13520 struct type *child_type = read_type_die (child_die, cu);
13521
13522 if (child_type != NULL)
13523 {
13524 /* The range type was succesfully read. Save it for the
13525 array type creation. */
13526 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13527 {
13528 range_types = (struct type **)
13529 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13530 * sizeof (struct type *));
13531 if (ndim == 0)
13532 make_cleanup (free_current_contents, &range_types);
13533 }
13534 range_types[ndim++] = child_type;
13535 }
13536 }
13537 child_die = sibling_die (child_die);
13538 }
13539
13540 /* Dwarf2 dimensions are output from left to right, create the
13541 necessary array types in backwards order. */
13542
13543 type = element_type;
13544
13545 if (read_array_order (die, cu) == DW_ORD_col_major)
13546 {
13547 int i = 0;
13548
13549 while (i < ndim)
13550 type = create_array_type_with_stride (NULL, type, range_types[i++],
13551 bit_stride);
13552 }
13553 else
13554 {
13555 while (ndim-- > 0)
13556 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13557 bit_stride);
13558 }
13559
13560 /* Understand Dwarf2 support for vector types (like they occur on
13561 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13562 array type. This is not part of the Dwarf2/3 standard yet, but a
13563 custom vendor extension. The main difference between a regular
13564 array and the vector variant is that vectors are passed by value
13565 to functions. */
13566 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13567 if (attr)
13568 make_vector_type (type);
13569
13570 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13571 implementation may choose to implement triple vectors using this
13572 attribute. */
13573 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13574 if (attr)
13575 {
13576 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13577 TYPE_LENGTH (type) = DW_UNSND (attr);
13578 else
13579 complaint (&symfile_complaints,
13580 _("DW_AT_byte_size for array type smaller "
13581 "than the total size of elements"));
13582 }
13583
13584 name = dwarf2_name (die, cu);
13585 if (name)
13586 TYPE_NAME (type) = name;
13587
13588 /* Install the type in the die. */
13589 set_die_type (die, type, cu);
13590
13591 /* set_die_type should be already done. */
13592 set_descriptive_type (type, die, cu);
13593
13594 do_cleanups (back_to);
13595
13596 return type;
13597 }
13598
13599 static enum dwarf_array_dim_ordering
13600 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13601 {
13602 struct attribute *attr;
13603
13604 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13605
13606 if (attr) return DW_SND (attr);
13607
13608 /* GNU F77 is a special case, as at 08/2004 array type info is the
13609 opposite order to the dwarf2 specification, but data is still
13610 laid out as per normal fortran.
13611
13612 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13613 version checking. */
13614
13615 if (cu->language == language_fortran
13616 && cu->producer && strstr (cu->producer, "GNU F77"))
13617 {
13618 return DW_ORD_row_major;
13619 }
13620
13621 switch (cu->language_defn->la_array_ordering)
13622 {
13623 case array_column_major:
13624 return DW_ORD_col_major;
13625 case array_row_major:
13626 default:
13627 return DW_ORD_row_major;
13628 };
13629 }
13630
13631 /* Extract all information from a DW_TAG_set_type DIE and put it in
13632 the DIE's type field. */
13633
13634 static struct type *
13635 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13636 {
13637 struct type *domain_type, *set_type;
13638 struct attribute *attr;
13639
13640 domain_type = die_type (die, cu);
13641
13642 /* The die_type call above may have already set the type for this DIE. */
13643 set_type = get_die_type (die, cu);
13644 if (set_type)
13645 return set_type;
13646
13647 set_type = create_set_type (NULL, domain_type);
13648
13649 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13650 if (attr)
13651 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13652
13653 return set_die_type (die, set_type, cu);
13654 }
13655
13656 /* A helper for read_common_block that creates a locexpr baton.
13657 SYM is the symbol which we are marking as computed.
13658 COMMON_DIE is the DIE for the common block.
13659 COMMON_LOC is the location expression attribute for the common
13660 block itself.
13661 MEMBER_LOC is the location expression attribute for the particular
13662 member of the common block that we are processing.
13663 CU is the CU from which the above come. */
13664
13665 static void
13666 mark_common_block_symbol_computed (struct symbol *sym,
13667 struct die_info *common_die,
13668 struct attribute *common_loc,
13669 struct attribute *member_loc,
13670 struct dwarf2_cu *cu)
13671 {
13672 struct objfile *objfile = dwarf2_per_objfile->objfile;
13673 struct dwarf2_locexpr_baton *baton;
13674 gdb_byte *ptr;
13675 unsigned int cu_off;
13676 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13677 LONGEST offset = 0;
13678
13679 gdb_assert (common_loc && member_loc);
13680 gdb_assert (attr_form_is_block (common_loc));
13681 gdb_assert (attr_form_is_block (member_loc)
13682 || attr_form_is_constant (member_loc));
13683
13684 baton = obstack_alloc (&objfile->objfile_obstack,
13685 sizeof (struct dwarf2_locexpr_baton));
13686 baton->per_cu = cu->per_cu;
13687 gdb_assert (baton->per_cu);
13688
13689 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13690
13691 if (attr_form_is_constant (member_loc))
13692 {
13693 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13694 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13695 }
13696 else
13697 baton->size += DW_BLOCK (member_loc)->size;
13698
13699 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13700 baton->data = ptr;
13701
13702 *ptr++ = DW_OP_call4;
13703 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13704 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13705 ptr += 4;
13706
13707 if (attr_form_is_constant (member_loc))
13708 {
13709 *ptr++ = DW_OP_addr;
13710 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13711 ptr += cu->header.addr_size;
13712 }
13713 else
13714 {
13715 /* We have to copy the data here, because DW_OP_call4 will only
13716 use a DW_AT_location attribute. */
13717 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13718 ptr += DW_BLOCK (member_loc)->size;
13719 }
13720
13721 *ptr++ = DW_OP_plus;
13722 gdb_assert (ptr - baton->data == baton->size);
13723
13724 SYMBOL_LOCATION_BATON (sym) = baton;
13725 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13726 }
13727
13728 /* Create appropriate locally-scoped variables for all the
13729 DW_TAG_common_block entries. Also create a struct common_block
13730 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13731 is used to sepate the common blocks name namespace from regular
13732 variable names. */
13733
13734 static void
13735 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13736 {
13737 struct attribute *attr;
13738
13739 attr = dwarf2_attr (die, DW_AT_location, cu);
13740 if (attr)
13741 {
13742 /* Support the .debug_loc offsets. */
13743 if (attr_form_is_block (attr))
13744 {
13745 /* Ok. */
13746 }
13747 else if (attr_form_is_section_offset (attr))
13748 {
13749 dwarf2_complex_location_expr_complaint ();
13750 attr = NULL;
13751 }
13752 else
13753 {
13754 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13755 "common block member");
13756 attr = NULL;
13757 }
13758 }
13759
13760 if (die->child != NULL)
13761 {
13762 struct objfile *objfile = cu->objfile;
13763 struct die_info *child_die;
13764 size_t n_entries = 0, size;
13765 struct common_block *common_block;
13766 struct symbol *sym;
13767
13768 for (child_die = die->child;
13769 child_die && child_die->tag;
13770 child_die = sibling_die (child_die))
13771 ++n_entries;
13772
13773 size = (sizeof (struct common_block)
13774 + (n_entries - 1) * sizeof (struct symbol *));
13775 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13776 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13777 common_block->n_entries = 0;
13778
13779 for (child_die = die->child;
13780 child_die && child_die->tag;
13781 child_die = sibling_die (child_die))
13782 {
13783 /* Create the symbol in the DW_TAG_common_block block in the current
13784 symbol scope. */
13785 sym = new_symbol (child_die, NULL, cu);
13786 if (sym != NULL)
13787 {
13788 struct attribute *member_loc;
13789
13790 common_block->contents[common_block->n_entries++] = sym;
13791
13792 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13793 cu);
13794 if (member_loc)
13795 {
13796 /* GDB has handled this for a long time, but it is
13797 not specified by DWARF. It seems to have been
13798 emitted by gfortran at least as recently as:
13799 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13800 complaint (&symfile_complaints,
13801 _("Variable in common block has "
13802 "DW_AT_data_member_location "
13803 "- DIE at 0x%x [in module %s]"),
13804 child_die->offset.sect_off,
13805 objfile_name (cu->objfile));
13806
13807 if (attr_form_is_section_offset (member_loc))
13808 dwarf2_complex_location_expr_complaint ();
13809 else if (attr_form_is_constant (member_loc)
13810 || attr_form_is_block (member_loc))
13811 {
13812 if (attr)
13813 mark_common_block_symbol_computed (sym, die, attr,
13814 member_loc, cu);
13815 }
13816 else
13817 dwarf2_complex_location_expr_complaint ();
13818 }
13819 }
13820 }
13821
13822 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13823 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13824 }
13825 }
13826
13827 /* Create a type for a C++ namespace. */
13828
13829 static struct type *
13830 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13831 {
13832 struct objfile *objfile = cu->objfile;
13833 const char *previous_prefix, *name;
13834 int is_anonymous;
13835 struct type *type;
13836
13837 /* For extensions, reuse the type of the original namespace. */
13838 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13839 {
13840 struct die_info *ext_die;
13841 struct dwarf2_cu *ext_cu = cu;
13842
13843 ext_die = dwarf2_extension (die, &ext_cu);
13844 type = read_type_die (ext_die, ext_cu);
13845
13846 /* EXT_CU may not be the same as CU.
13847 Ensure TYPE is recorded with CU in die_type_hash. */
13848 return set_die_type (die, type, cu);
13849 }
13850
13851 name = namespace_name (die, &is_anonymous, cu);
13852
13853 /* Now build the name of the current namespace. */
13854
13855 previous_prefix = determine_prefix (die, cu);
13856 if (previous_prefix[0] != '\0')
13857 name = typename_concat (&objfile->objfile_obstack,
13858 previous_prefix, name, 0, cu);
13859
13860 /* Create the type. */
13861 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13862 objfile);
13863 TYPE_NAME (type) = name;
13864 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13865
13866 return set_die_type (die, type, cu);
13867 }
13868
13869 /* Read a C++ namespace. */
13870
13871 static void
13872 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13873 {
13874 struct objfile *objfile = cu->objfile;
13875 int is_anonymous;
13876
13877 /* Add a symbol associated to this if we haven't seen the namespace
13878 before. Also, add a using directive if it's an anonymous
13879 namespace. */
13880
13881 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13882 {
13883 struct type *type;
13884
13885 type = read_type_die (die, cu);
13886 new_symbol (die, type, cu);
13887
13888 namespace_name (die, &is_anonymous, cu);
13889 if (is_anonymous)
13890 {
13891 const char *previous_prefix = determine_prefix (die, cu);
13892
13893 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13894 NULL, NULL, 0, &objfile->objfile_obstack);
13895 }
13896 }
13897
13898 if (die->child != NULL)
13899 {
13900 struct die_info *child_die = die->child;
13901
13902 while (child_die && child_die->tag)
13903 {
13904 process_die (child_die, cu);
13905 child_die = sibling_die (child_die);
13906 }
13907 }
13908 }
13909
13910 /* Read a Fortran module as type. This DIE can be only a declaration used for
13911 imported module. Still we need that type as local Fortran "use ... only"
13912 declaration imports depend on the created type in determine_prefix. */
13913
13914 static struct type *
13915 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13916 {
13917 struct objfile *objfile = cu->objfile;
13918 const char *module_name;
13919 struct type *type;
13920
13921 module_name = dwarf2_name (die, cu);
13922 if (!module_name)
13923 complaint (&symfile_complaints,
13924 _("DW_TAG_module has no name, offset 0x%x"),
13925 die->offset.sect_off);
13926 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13927
13928 /* determine_prefix uses TYPE_TAG_NAME. */
13929 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13930
13931 return set_die_type (die, type, cu);
13932 }
13933
13934 /* Read a Fortran module. */
13935
13936 static void
13937 read_module (struct die_info *die, struct dwarf2_cu *cu)
13938 {
13939 struct die_info *child_die = die->child;
13940 struct type *type;
13941
13942 type = read_type_die (die, cu);
13943 new_symbol (die, type, cu);
13944
13945 while (child_die && child_die->tag)
13946 {
13947 process_die (child_die, cu);
13948 child_die = sibling_die (child_die);
13949 }
13950 }
13951
13952 /* Return the name of the namespace represented by DIE. Set
13953 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13954 namespace. */
13955
13956 static const char *
13957 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13958 {
13959 struct die_info *current_die;
13960 const char *name = NULL;
13961
13962 /* Loop through the extensions until we find a name. */
13963
13964 for (current_die = die;
13965 current_die != NULL;
13966 current_die = dwarf2_extension (die, &cu))
13967 {
13968 name = dwarf2_name (current_die, cu);
13969 if (name != NULL)
13970 break;
13971 }
13972
13973 /* Is it an anonymous namespace? */
13974
13975 *is_anonymous = (name == NULL);
13976 if (*is_anonymous)
13977 name = CP_ANONYMOUS_NAMESPACE_STR;
13978
13979 return name;
13980 }
13981
13982 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13983 the user defined type vector. */
13984
13985 static struct type *
13986 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13987 {
13988 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13989 struct comp_unit_head *cu_header = &cu->header;
13990 struct type *type;
13991 struct attribute *attr_byte_size;
13992 struct attribute *attr_address_class;
13993 int byte_size, addr_class;
13994 struct type *target_type;
13995
13996 target_type = die_type (die, cu);
13997
13998 /* The die_type call above may have already set the type for this DIE. */
13999 type = get_die_type (die, cu);
14000 if (type)
14001 return type;
14002
14003 type = lookup_pointer_type (target_type);
14004
14005 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14006 if (attr_byte_size)
14007 byte_size = DW_UNSND (attr_byte_size);
14008 else
14009 byte_size = cu_header->addr_size;
14010
14011 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14012 if (attr_address_class)
14013 addr_class = DW_UNSND (attr_address_class);
14014 else
14015 addr_class = DW_ADDR_none;
14016
14017 /* If the pointer size or address class is different than the
14018 default, create a type variant marked as such and set the
14019 length accordingly. */
14020 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14021 {
14022 if (gdbarch_address_class_type_flags_p (gdbarch))
14023 {
14024 int type_flags;
14025
14026 type_flags = gdbarch_address_class_type_flags
14027 (gdbarch, byte_size, addr_class);
14028 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14029 == 0);
14030 type = make_type_with_address_space (type, type_flags);
14031 }
14032 else if (TYPE_LENGTH (type) != byte_size)
14033 {
14034 complaint (&symfile_complaints,
14035 _("invalid pointer size %d"), byte_size);
14036 }
14037 else
14038 {
14039 /* Should we also complain about unhandled address classes? */
14040 }
14041 }
14042
14043 TYPE_LENGTH (type) = byte_size;
14044 return set_die_type (die, type, cu);
14045 }
14046
14047 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14048 the user defined type vector. */
14049
14050 static struct type *
14051 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14052 {
14053 struct type *type;
14054 struct type *to_type;
14055 struct type *domain;
14056
14057 to_type = die_type (die, cu);
14058 domain = die_containing_type (die, cu);
14059
14060 /* The calls above may have already set the type for this DIE. */
14061 type = get_die_type (die, cu);
14062 if (type)
14063 return type;
14064
14065 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14066 type = lookup_methodptr_type (to_type);
14067 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14068 {
14069 struct type *new_type = alloc_type (cu->objfile);
14070
14071 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14072 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14073 TYPE_VARARGS (to_type));
14074 type = lookup_methodptr_type (new_type);
14075 }
14076 else
14077 type = lookup_memberptr_type (to_type, domain);
14078
14079 return set_die_type (die, type, cu);
14080 }
14081
14082 /* Extract all information from a DW_TAG_reference_type DIE and add to
14083 the user defined type vector. */
14084
14085 static struct type *
14086 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14087 {
14088 struct comp_unit_head *cu_header = &cu->header;
14089 struct type *type, *target_type;
14090 struct attribute *attr;
14091
14092 target_type = die_type (die, cu);
14093
14094 /* The die_type call above may have already set the type for this DIE. */
14095 type = get_die_type (die, cu);
14096 if (type)
14097 return type;
14098
14099 type = lookup_reference_type (target_type);
14100 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14101 if (attr)
14102 {
14103 TYPE_LENGTH (type) = DW_UNSND (attr);
14104 }
14105 else
14106 {
14107 TYPE_LENGTH (type) = cu_header->addr_size;
14108 }
14109 return set_die_type (die, type, cu);
14110 }
14111
14112 /* Add the given cv-qualifiers to the element type of the array. GCC
14113 outputs DWARF type qualifiers that apply to an array, not the
14114 element type. But GDB relies on the array element type to carry
14115 the cv-qualifiers. This mimics section 6.7.3 of the C99
14116 specification. */
14117
14118 static struct type *
14119 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14120 struct type *base_type, int cnst, int voltl)
14121 {
14122 struct type *el_type, *inner_array;
14123
14124 base_type = copy_type (base_type);
14125 inner_array = base_type;
14126
14127 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14128 {
14129 TYPE_TARGET_TYPE (inner_array) =
14130 copy_type (TYPE_TARGET_TYPE (inner_array));
14131 inner_array = TYPE_TARGET_TYPE (inner_array);
14132 }
14133
14134 el_type = TYPE_TARGET_TYPE (inner_array);
14135 cnst |= TYPE_CONST (el_type);
14136 voltl |= TYPE_VOLATILE (el_type);
14137 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14138
14139 return set_die_type (die, base_type, cu);
14140 }
14141
14142 static struct type *
14143 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14144 {
14145 struct type *base_type, *cv_type;
14146
14147 base_type = die_type (die, cu);
14148
14149 /* The die_type call above may have already set the type for this DIE. */
14150 cv_type = get_die_type (die, cu);
14151 if (cv_type)
14152 return cv_type;
14153
14154 /* In case the const qualifier is applied to an array type, the element type
14155 is so qualified, not the array type (section 6.7.3 of C99). */
14156 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14157 return add_array_cv_type (die, cu, base_type, 1, 0);
14158
14159 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14160 return set_die_type (die, cv_type, cu);
14161 }
14162
14163 static struct type *
14164 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14165 {
14166 struct type *base_type, *cv_type;
14167
14168 base_type = die_type (die, cu);
14169
14170 /* The die_type call above may have already set the type for this DIE. */
14171 cv_type = get_die_type (die, cu);
14172 if (cv_type)
14173 return cv_type;
14174
14175 /* In case the volatile qualifier is applied to an array type, the
14176 element type is so qualified, not the array type (section 6.7.3
14177 of C99). */
14178 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14179 return add_array_cv_type (die, cu, base_type, 0, 1);
14180
14181 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14182 return set_die_type (die, cv_type, cu);
14183 }
14184
14185 /* Handle DW_TAG_restrict_type. */
14186
14187 static struct type *
14188 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14189 {
14190 struct type *base_type, *cv_type;
14191
14192 base_type = die_type (die, cu);
14193
14194 /* The die_type call above may have already set the type for this DIE. */
14195 cv_type = get_die_type (die, cu);
14196 if (cv_type)
14197 return cv_type;
14198
14199 cv_type = make_restrict_type (base_type);
14200 return set_die_type (die, cv_type, cu);
14201 }
14202
14203 /* Extract all information from a DW_TAG_string_type DIE and add to
14204 the user defined type vector. It isn't really a user defined type,
14205 but it behaves like one, with other DIE's using an AT_user_def_type
14206 attribute to reference it. */
14207
14208 static struct type *
14209 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14210 {
14211 struct objfile *objfile = cu->objfile;
14212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14213 struct type *type, *range_type, *index_type, *char_type;
14214 struct attribute *attr;
14215 unsigned int length;
14216
14217 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14218 if (attr)
14219 {
14220 length = DW_UNSND (attr);
14221 }
14222 else
14223 {
14224 /* Check for the DW_AT_byte_size attribute. */
14225 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14226 if (attr)
14227 {
14228 length = DW_UNSND (attr);
14229 }
14230 else
14231 {
14232 length = 1;
14233 }
14234 }
14235
14236 index_type = objfile_type (objfile)->builtin_int;
14237 range_type = create_static_range_type (NULL, index_type, 1, length);
14238 char_type = language_string_char_type (cu->language_defn, gdbarch);
14239 type = create_string_type (NULL, char_type, range_type);
14240
14241 return set_die_type (die, type, cu);
14242 }
14243
14244 /* Assuming that DIE corresponds to a function, returns nonzero
14245 if the function is prototyped. */
14246
14247 static int
14248 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14249 {
14250 struct attribute *attr;
14251
14252 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14253 if (attr && (DW_UNSND (attr) != 0))
14254 return 1;
14255
14256 /* The DWARF standard implies that the DW_AT_prototyped attribute
14257 is only meaninful for C, but the concept also extends to other
14258 languages that allow unprototyped functions (Eg: Objective C).
14259 For all other languages, assume that functions are always
14260 prototyped. */
14261 if (cu->language != language_c
14262 && cu->language != language_objc
14263 && cu->language != language_opencl)
14264 return 1;
14265
14266 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14267 prototyped and unprototyped functions; default to prototyped,
14268 since that is more common in modern code (and RealView warns
14269 about unprototyped functions). */
14270 if (producer_is_realview (cu->producer))
14271 return 1;
14272
14273 return 0;
14274 }
14275
14276 /* Handle DIES due to C code like:
14277
14278 struct foo
14279 {
14280 int (*funcp)(int a, long l);
14281 int b;
14282 };
14283
14284 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14285
14286 static struct type *
14287 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14288 {
14289 struct objfile *objfile = cu->objfile;
14290 struct type *type; /* Type that this function returns. */
14291 struct type *ftype; /* Function that returns above type. */
14292 struct attribute *attr;
14293
14294 type = die_type (die, cu);
14295
14296 /* The die_type call above may have already set the type for this DIE. */
14297 ftype = get_die_type (die, cu);
14298 if (ftype)
14299 return ftype;
14300
14301 ftype = lookup_function_type (type);
14302
14303 if (prototyped_function_p (die, cu))
14304 TYPE_PROTOTYPED (ftype) = 1;
14305
14306 /* Store the calling convention in the type if it's available in
14307 the subroutine die. Otherwise set the calling convention to
14308 the default value DW_CC_normal. */
14309 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14310 if (attr)
14311 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14312 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14313 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14314 else
14315 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14316
14317 /* We need to add the subroutine type to the die immediately so
14318 we don't infinitely recurse when dealing with parameters
14319 declared as the same subroutine type. */
14320 set_die_type (die, ftype, cu);
14321
14322 if (die->child != NULL)
14323 {
14324 struct type *void_type = objfile_type (objfile)->builtin_void;
14325 struct die_info *child_die;
14326 int nparams, iparams;
14327
14328 /* Count the number of parameters.
14329 FIXME: GDB currently ignores vararg functions, but knows about
14330 vararg member functions. */
14331 nparams = 0;
14332 child_die = die->child;
14333 while (child_die && child_die->tag)
14334 {
14335 if (child_die->tag == DW_TAG_formal_parameter)
14336 nparams++;
14337 else if (child_die->tag == DW_TAG_unspecified_parameters)
14338 TYPE_VARARGS (ftype) = 1;
14339 child_die = sibling_die (child_die);
14340 }
14341
14342 /* Allocate storage for parameters and fill them in. */
14343 TYPE_NFIELDS (ftype) = nparams;
14344 TYPE_FIELDS (ftype) = (struct field *)
14345 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14346
14347 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14348 even if we error out during the parameters reading below. */
14349 for (iparams = 0; iparams < nparams; iparams++)
14350 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14351
14352 iparams = 0;
14353 child_die = die->child;
14354 while (child_die && child_die->tag)
14355 {
14356 if (child_die->tag == DW_TAG_formal_parameter)
14357 {
14358 struct type *arg_type;
14359
14360 /* DWARF version 2 has no clean way to discern C++
14361 static and non-static member functions. G++ helps
14362 GDB by marking the first parameter for non-static
14363 member functions (which is the this pointer) as
14364 artificial. We pass this information to
14365 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14366
14367 DWARF version 3 added DW_AT_object_pointer, which GCC
14368 4.5 does not yet generate. */
14369 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14370 if (attr)
14371 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14372 else
14373 {
14374 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14375
14376 /* GCC/43521: In java, the formal parameter
14377 "this" is sometimes not marked with DW_AT_artificial. */
14378 if (cu->language == language_java)
14379 {
14380 const char *name = dwarf2_name (child_die, cu);
14381
14382 if (name && !strcmp (name, "this"))
14383 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14384 }
14385 }
14386 arg_type = die_type (child_die, cu);
14387
14388 /* RealView does not mark THIS as const, which the testsuite
14389 expects. GCC marks THIS as const in method definitions,
14390 but not in the class specifications (GCC PR 43053). */
14391 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14392 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14393 {
14394 int is_this = 0;
14395 struct dwarf2_cu *arg_cu = cu;
14396 const char *name = dwarf2_name (child_die, cu);
14397
14398 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14399 if (attr)
14400 {
14401 /* If the compiler emits this, use it. */
14402 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14403 is_this = 1;
14404 }
14405 else if (name && strcmp (name, "this") == 0)
14406 /* Function definitions will have the argument names. */
14407 is_this = 1;
14408 else if (name == NULL && iparams == 0)
14409 /* Declarations may not have the names, so like
14410 elsewhere in GDB, assume an artificial first
14411 argument is "this". */
14412 is_this = 1;
14413
14414 if (is_this)
14415 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14416 arg_type, 0);
14417 }
14418
14419 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14420 iparams++;
14421 }
14422 child_die = sibling_die (child_die);
14423 }
14424 }
14425
14426 return ftype;
14427 }
14428
14429 static struct type *
14430 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14431 {
14432 struct objfile *objfile = cu->objfile;
14433 const char *name = NULL;
14434 struct type *this_type, *target_type;
14435
14436 name = dwarf2_full_name (NULL, die, cu);
14437 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14438 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14439 TYPE_NAME (this_type) = name;
14440 set_die_type (die, this_type, cu);
14441 target_type = die_type (die, cu);
14442 if (target_type != this_type)
14443 TYPE_TARGET_TYPE (this_type) = target_type;
14444 else
14445 {
14446 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14447 spec and cause infinite loops in GDB. */
14448 complaint (&symfile_complaints,
14449 _("Self-referential DW_TAG_typedef "
14450 "- DIE at 0x%x [in module %s]"),
14451 die->offset.sect_off, objfile_name (objfile));
14452 TYPE_TARGET_TYPE (this_type) = NULL;
14453 }
14454 return this_type;
14455 }
14456
14457 /* Find a representation of a given base type and install
14458 it in the TYPE field of the die. */
14459
14460 static struct type *
14461 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14462 {
14463 struct objfile *objfile = cu->objfile;
14464 struct type *type;
14465 struct attribute *attr;
14466 int encoding = 0, size = 0;
14467 const char *name;
14468 enum type_code code = TYPE_CODE_INT;
14469 int type_flags = 0;
14470 struct type *target_type = NULL;
14471
14472 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14473 if (attr)
14474 {
14475 encoding = DW_UNSND (attr);
14476 }
14477 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14478 if (attr)
14479 {
14480 size = DW_UNSND (attr);
14481 }
14482 name = dwarf2_name (die, cu);
14483 if (!name)
14484 {
14485 complaint (&symfile_complaints,
14486 _("DW_AT_name missing from DW_TAG_base_type"));
14487 }
14488
14489 switch (encoding)
14490 {
14491 case DW_ATE_address:
14492 /* Turn DW_ATE_address into a void * pointer. */
14493 code = TYPE_CODE_PTR;
14494 type_flags |= TYPE_FLAG_UNSIGNED;
14495 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14496 break;
14497 case DW_ATE_boolean:
14498 code = TYPE_CODE_BOOL;
14499 type_flags |= TYPE_FLAG_UNSIGNED;
14500 break;
14501 case DW_ATE_complex_float:
14502 code = TYPE_CODE_COMPLEX;
14503 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14504 break;
14505 case DW_ATE_decimal_float:
14506 code = TYPE_CODE_DECFLOAT;
14507 break;
14508 case DW_ATE_float:
14509 code = TYPE_CODE_FLT;
14510 break;
14511 case DW_ATE_signed:
14512 break;
14513 case DW_ATE_unsigned:
14514 type_flags |= TYPE_FLAG_UNSIGNED;
14515 if (cu->language == language_fortran
14516 && name
14517 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14518 code = TYPE_CODE_CHAR;
14519 break;
14520 case DW_ATE_signed_char:
14521 if (cu->language == language_ada || cu->language == language_m2
14522 || cu->language == language_pascal
14523 || cu->language == language_fortran)
14524 code = TYPE_CODE_CHAR;
14525 break;
14526 case DW_ATE_unsigned_char:
14527 if (cu->language == language_ada || cu->language == language_m2
14528 || cu->language == language_pascal
14529 || cu->language == language_fortran)
14530 code = TYPE_CODE_CHAR;
14531 type_flags |= TYPE_FLAG_UNSIGNED;
14532 break;
14533 case DW_ATE_UTF:
14534 /* We just treat this as an integer and then recognize the
14535 type by name elsewhere. */
14536 break;
14537
14538 default:
14539 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14540 dwarf_type_encoding_name (encoding));
14541 break;
14542 }
14543
14544 type = init_type (code, size, type_flags, NULL, objfile);
14545 TYPE_NAME (type) = name;
14546 TYPE_TARGET_TYPE (type) = target_type;
14547
14548 if (name && strcmp (name, "char") == 0)
14549 TYPE_NOSIGN (type) = 1;
14550
14551 return set_die_type (die, type, cu);
14552 }
14553
14554 /* Parse dwarf attribute if it's a block, reference or constant and put the
14555 resulting value of the attribute into struct bound_prop.
14556 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14557
14558 static int
14559 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14560 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14561 {
14562 struct dwarf2_property_baton *baton;
14563 struct obstack *obstack = &cu->objfile->objfile_obstack;
14564
14565 if (attr == NULL || prop == NULL)
14566 return 0;
14567
14568 if (attr_form_is_block (attr))
14569 {
14570 baton = obstack_alloc (obstack, sizeof (*baton));
14571 baton->referenced_type = NULL;
14572 baton->locexpr.per_cu = cu->per_cu;
14573 baton->locexpr.size = DW_BLOCK (attr)->size;
14574 baton->locexpr.data = DW_BLOCK (attr)->data;
14575 prop->data.baton = baton;
14576 prop->kind = PROP_LOCEXPR;
14577 gdb_assert (prop->data.baton != NULL);
14578 }
14579 else if (attr_form_is_ref (attr))
14580 {
14581 struct dwarf2_cu *target_cu = cu;
14582 struct die_info *target_die;
14583 struct attribute *target_attr;
14584
14585 target_die = follow_die_ref (die, attr, &target_cu);
14586 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14587 if (target_attr == NULL)
14588 return 0;
14589
14590 if (attr_form_is_section_offset (target_attr))
14591 {
14592 baton = obstack_alloc (obstack, sizeof (*baton));
14593 baton->referenced_type = die_type (target_die, target_cu);
14594 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14595 prop->data.baton = baton;
14596 prop->kind = PROP_LOCLIST;
14597 gdb_assert (prop->data.baton != NULL);
14598 }
14599 else if (attr_form_is_block (target_attr))
14600 {
14601 baton = obstack_alloc (obstack, sizeof (*baton));
14602 baton->referenced_type = die_type (target_die, target_cu);
14603 baton->locexpr.per_cu = cu->per_cu;
14604 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14605 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14606 prop->data.baton = baton;
14607 prop->kind = PROP_LOCEXPR;
14608 gdb_assert (prop->data.baton != NULL);
14609 }
14610 else
14611 {
14612 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14613 "dynamic property");
14614 return 0;
14615 }
14616 }
14617 else if (attr_form_is_constant (attr))
14618 {
14619 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14620 prop->kind = PROP_CONST;
14621 }
14622 else
14623 {
14624 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14625 dwarf2_name (die, cu));
14626 return 0;
14627 }
14628
14629 return 1;
14630 }
14631
14632 /* Read the given DW_AT_subrange DIE. */
14633
14634 static struct type *
14635 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14636 {
14637 struct type *base_type, *orig_base_type;
14638 struct type *range_type;
14639 struct attribute *attr;
14640 struct dynamic_prop low, high;
14641 int low_default_is_valid;
14642 int high_bound_is_count = 0;
14643 const char *name;
14644 LONGEST negative_mask;
14645
14646 orig_base_type = die_type (die, cu);
14647 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14648 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14649 creating the range type, but we use the result of check_typedef
14650 when examining properties of the type. */
14651 base_type = check_typedef (orig_base_type);
14652
14653 /* The die_type call above may have already set the type for this DIE. */
14654 range_type = get_die_type (die, cu);
14655 if (range_type)
14656 return range_type;
14657
14658 low.kind = PROP_CONST;
14659 high.kind = PROP_CONST;
14660 high.data.const_val = 0;
14661
14662 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14663 omitting DW_AT_lower_bound. */
14664 switch (cu->language)
14665 {
14666 case language_c:
14667 case language_cplus:
14668 low.data.const_val = 0;
14669 low_default_is_valid = 1;
14670 break;
14671 case language_fortran:
14672 low.data.const_val = 1;
14673 low_default_is_valid = 1;
14674 break;
14675 case language_d:
14676 case language_java:
14677 case language_objc:
14678 low.data.const_val = 0;
14679 low_default_is_valid = (cu->header.version >= 4);
14680 break;
14681 case language_ada:
14682 case language_m2:
14683 case language_pascal:
14684 low.data.const_val = 1;
14685 low_default_is_valid = (cu->header.version >= 4);
14686 break;
14687 default:
14688 low.data.const_val = 0;
14689 low_default_is_valid = 0;
14690 break;
14691 }
14692
14693 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14694 if (attr)
14695 attr_to_dynamic_prop (attr, die, cu, &low);
14696 else if (!low_default_is_valid)
14697 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14698 "- DIE at 0x%x [in module %s]"),
14699 die->offset.sect_off, objfile_name (cu->objfile));
14700
14701 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14702 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14703 {
14704 attr = dwarf2_attr (die, DW_AT_count, cu);
14705 if (attr_to_dynamic_prop (attr, die, cu, &high))
14706 {
14707 /* If bounds are constant do the final calculation here. */
14708 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14709 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14710 else
14711 high_bound_is_count = 1;
14712 }
14713 }
14714
14715 /* Dwarf-2 specifications explicitly allows to create subrange types
14716 without specifying a base type.
14717 In that case, the base type must be set to the type of
14718 the lower bound, upper bound or count, in that order, if any of these
14719 three attributes references an object that has a type.
14720 If no base type is found, the Dwarf-2 specifications say that
14721 a signed integer type of size equal to the size of an address should
14722 be used.
14723 For the following C code: `extern char gdb_int [];'
14724 GCC produces an empty range DIE.
14725 FIXME: muller/2010-05-28: Possible references to object for low bound,
14726 high bound or count are not yet handled by this code. */
14727 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14728 {
14729 struct objfile *objfile = cu->objfile;
14730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14731 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14732 struct type *int_type = objfile_type (objfile)->builtin_int;
14733
14734 /* Test "int", "long int", and "long long int" objfile types,
14735 and select the first one having a size above or equal to the
14736 architecture address size. */
14737 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14738 base_type = int_type;
14739 else
14740 {
14741 int_type = objfile_type (objfile)->builtin_long;
14742 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14743 base_type = int_type;
14744 else
14745 {
14746 int_type = objfile_type (objfile)->builtin_long_long;
14747 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14748 base_type = int_type;
14749 }
14750 }
14751 }
14752
14753 /* Normally, the DWARF producers are expected to use a signed
14754 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14755 But this is unfortunately not always the case, as witnessed
14756 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14757 is used instead. To work around that ambiguity, we treat
14758 the bounds as signed, and thus sign-extend their values, when
14759 the base type is signed. */
14760 negative_mask =
14761 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14762 if (low.kind == PROP_CONST
14763 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14764 low.data.const_val |= negative_mask;
14765 if (high.kind == PROP_CONST
14766 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14767 high.data.const_val |= negative_mask;
14768
14769 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14770
14771 if (high_bound_is_count)
14772 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14773
14774 /* Ada expects an empty array on no boundary attributes. */
14775 if (attr == NULL && cu->language != language_ada)
14776 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14777
14778 name = dwarf2_name (die, cu);
14779 if (name)
14780 TYPE_NAME (range_type) = name;
14781
14782 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14783 if (attr)
14784 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14785
14786 set_die_type (die, range_type, cu);
14787
14788 /* set_die_type should be already done. */
14789 set_descriptive_type (range_type, die, cu);
14790
14791 return range_type;
14792 }
14793
14794 static struct type *
14795 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14796 {
14797 struct type *type;
14798
14799 /* For now, we only support the C meaning of an unspecified type: void. */
14800
14801 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14802 TYPE_NAME (type) = dwarf2_name (die, cu);
14803
14804 return set_die_type (die, type, cu);
14805 }
14806
14807 /* Read a single die and all its descendents. Set the die's sibling
14808 field to NULL; set other fields in the die correctly, and set all
14809 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14810 location of the info_ptr after reading all of those dies. PARENT
14811 is the parent of the die in question. */
14812
14813 static struct die_info *
14814 read_die_and_children (const struct die_reader_specs *reader,
14815 const gdb_byte *info_ptr,
14816 const gdb_byte **new_info_ptr,
14817 struct die_info *parent)
14818 {
14819 struct die_info *die;
14820 const gdb_byte *cur_ptr;
14821 int has_children;
14822
14823 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14824 if (die == NULL)
14825 {
14826 *new_info_ptr = cur_ptr;
14827 return NULL;
14828 }
14829 store_in_ref_table (die, reader->cu);
14830
14831 if (has_children)
14832 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14833 else
14834 {
14835 die->child = NULL;
14836 *new_info_ptr = cur_ptr;
14837 }
14838
14839 die->sibling = NULL;
14840 die->parent = parent;
14841 return die;
14842 }
14843
14844 /* Read a die, all of its descendents, and all of its siblings; set
14845 all of the fields of all of the dies correctly. Arguments are as
14846 in read_die_and_children. */
14847
14848 static struct die_info *
14849 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14850 const gdb_byte *info_ptr,
14851 const gdb_byte **new_info_ptr,
14852 struct die_info *parent)
14853 {
14854 struct die_info *first_die, *last_sibling;
14855 const gdb_byte *cur_ptr;
14856
14857 cur_ptr = info_ptr;
14858 first_die = last_sibling = NULL;
14859
14860 while (1)
14861 {
14862 struct die_info *die
14863 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14864
14865 if (die == NULL)
14866 {
14867 *new_info_ptr = cur_ptr;
14868 return first_die;
14869 }
14870
14871 if (!first_die)
14872 first_die = die;
14873 else
14874 last_sibling->sibling = die;
14875
14876 last_sibling = die;
14877 }
14878 }
14879
14880 /* Read a die, all of its descendents, and all of its siblings; set
14881 all of the fields of all of the dies correctly. Arguments are as
14882 in read_die_and_children.
14883 This the main entry point for reading a DIE and all its children. */
14884
14885 static struct die_info *
14886 read_die_and_siblings (const struct die_reader_specs *reader,
14887 const gdb_byte *info_ptr,
14888 const gdb_byte **new_info_ptr,
14889 struct die_info *parent)
14890 {
14891 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14892 new_info_ptr, parent);
14893
14894 if (dwarf2_die_debug)
14895 {
14896 fprintf_unfiltered (gdb_stdlog,
14897 "Read die from %s@0x%x of %s:\n",
14898 get_section_name (reader->die_section),
14899 (unsigned) (info_ptr - reader->die_section->buffer),
14900 bfd_get_filename (reader->abfd));
14901 dump_die (die, dwarf2_die_debug);
14902 }
14903
14904 return die;
14905 }
14906
14907 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14908 attributes.
14909 The caller is responsible for filling in the extra attributes
14910 and updating (*DIEP)->num_attrs.
14911 Set DIEP to point to a newly allocated die with its information,
14912 except for its child, sibling, and parent fields.
14913 Set HAS_CHILDREN to tell whether the die has children or not. */
14914
14915 static const gdb_byte *
14916 read_full_die_1 (const struct die_reader_specs *reader,
14917 struct die_info **diep, const gdb_byte *info_ptr,
14918 int *has_children, int num_extra_attrs)
14919 {
14920 unsigned int abbrev_number, bytes_read, i;
14921 sect_offset offset;
14922 struct abbrev_info *abbrev;
14923 struct die_info *die;
14924 struct dwarf2_cu *cu = reader->cu;
14925 bfd *abfd = reader->abfd;
14926
14927 offset.sect_off = info_ptr - reader->buffer;
14928 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14929 info_ptr += bytes_read;
14930 if (!abbrev_number)
14931 {
14932 *diep = NULL;
14933 *has_children = 0;
14934 return info_ptr;
14935 }
14936
14937 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14938 if (!abbrev)
14939 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14940 abbrev_number,
14941 bfd_get_filename (abfd));
14942
14943 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14944 die->offset = offset;
14945 die->tag = abbrev->tag;
14946 die->abbrev = abbrev_number;
14947
14948 /* Make the result usable.
14949 The caller needs to update num_attrs after adding the extra
14950 attributes. */
14951 die->num_attrs = abbrev->num_attrs;
14952
14953 for (i = 0; i < abbrev->num_attrs; ++i)
14954 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14955 info_ptr);
14956
14957 *diep = die;
14958 *has_children = abbrev->has_children;
14959 return info_ptr;
14960 }
14961
14962 /* Read a die and all its attributes.
14963 Set DIEP to point to a newly allocated die with its information,
14964 except for its child, sibling, and parent fields.
14965 Set HAS_CHILDREN to tell whether the die has children or not. */
14966
14967 static const gdb_byte *
14968 read_full_die (const struct die_reader_specs *reader,
14969 struct die_info **diep, const gdb_byte *info_ptr,
14970 int *has_children)
14971 {
14972 const gdb_byte *result;
14973
14974 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14975
14976 if (dwarf2_die_debug)
14977 {
14978 fprintf_unfiltered (gdb_stdlog,
14979 "Read die from %s@0x%x of %s:\n",
14980 get_section_name (reader->die_section),
14981 (unsigned) (info_ptr - reader->die_section->buffer),
14982 bfd_get_filename (reader->abfd));
14983 dump_die (*diep, dwarf2_die_debug);
14984 }
14985
14986 return result;
14987 }
14988 \f
14989 /* Abbreviation tables.
14990
14991 In DWARF version 2, the description of the debugging information is
14992 stored in a separate .debug_abbrev section. Before we read any
14993 dies from a section we read in all abbreviations and install them
14994 in a hash table. */
14995
14996 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14997
14998 static struct abbrev_info *
14999 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15000 {
15001 struct abbrev_info *abbrev;
15002
15003 abbrev = (struct abbrev_info *)
15004 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15005 memset (abbrev, 0, sizeof (struct abbrev_info));
15006 return abbrev;
15007 }
15008
15009 /* Add an abbreviation to the table. */
15010
15011 static void
15012 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15013 unsigned int abbrev_number,
15014 struct abbrev_info *abbrev)
15015 {
15016 unsigned int hash_number;
15017
15018 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15019 abbrev->next = abbrev_table->abbrevs[hash_number];
15020 abbrev_table->abbrevs[hash_number] = abbrev;
15021 }
15022
15023 /* Look up an abbrev in the table.
15024 Returns NULL if the abbrev is not found. */
15025
15026 static struct abbrev_info *
15027 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15028 unsigned int abbrev_number)
15029 {
15030 unsigned int hash_number;
15031 struct abbrev_info *abbrev;
15032
15033 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15034 abbrev = abbrev_table->abbrevs[hash_number];
15035
15036 while (abbrev)
15037 {
15038 if (abbrev->number == abbrev_number)
15039 return abbrev;
15040 abbrev = abbrev->next;
15041 }
15042 return NULL;
15043 }
15044
15045 /* Read in an abbrev table. */
15046
15047 static struct abbrev_table *
15048 abbrev_table_read_table (struct dwarf2_section_info *section,
15049 sect_offset offset)
15050 {
15051 struct objfile *objfile = dwarf2_per_objfile->objfile;
15052 bfd *abfd = get_section_bfd_owner (section);
15053 struct abbrev_table *abbrev_table;
15054 const gdb_byte *abbrev_ptr;
15055 struct abbrev_info *cur_abbrev;
15056 unsigned int abbrev_number, bytes_read, abbrev_name;
15057 unsigned int abbrev_form;
15058 struct attr_abbrev *cur_attrs;
15059 unsigned int allocated_attrs;
15060
15061 abbrev_table = XNEW (struct abbrev_table);
15062 abbrev_table->offset = offset;
15063 obstack_init (&abbrev_table->abbrev_obstack);
15064 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15065 (ABBREV_HASH_SIZE
15066 * sizeof (struct abbrev_info *)));
15067 memset (abbrev_table->abbrevs, 0,
15068 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15069
15070 dwarf2_read_section (objfile, section);
15071 abbrev_ptr = section->buffer + offset.sect_off;
15072 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15073 abbrev_ptr += bytes_read;
15074
15075 allocated_attrs = ATTR_ALLOC_CHUNK;
15076 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15077
15078 /* Loop until we reach an abbrev number of 0. */
15079 while (abbrev_number)
15080 {
15081 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15082
15083 /* read in abbrev header */
15084 cur_abbrev->number = abbrev_number;
15085 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15086 abbrev_ptr += bytes_read;
15087 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15088 abbrev_ptr += 1;
15089
15090 /* now read in declarations */
15091 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15092 abbrev_ptr += bytes_read;
15093 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15094 abbrev_ptr += bytes_read;
15095 while (abbrev_name)
15096 {
15097 if (cur_abbrev->num_attrs == allocated_attrs)
15098 {
15099 allocated_attrs += ATTR_ALLOC_CHUNK;
15100 cur_attrs
15101 = xrealloc (cur_attrs, (allocated_attrs
15102 * sizeof (struct attr_abbrev)));
15103 }
15104
15105 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15106 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15107 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15108 abbrev_ptr += bytes_read;
15109 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15110 abbrev_ptr += bytes_read;
15111 }
15112
15113 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15114 (cur_abbrev->num_attrs
15115 * sizeof (struct attr_abbrev)));
15116 memcpy (cur_abbrev->attrs, cur_attrs,
15117 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15118
15119 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15120
15121 /* Get next abbreviation.
15122 Under Irix6 the abbreviations for a compilation unit are not
15123 always properly terminated with an abbrev number of 0.
15124 Exit loop if we encounter an abbreviation which we have
15125 already read (which means we are about to read the abbreviations
15126 for the next compile unit) or if the end of the abbreviation
15127 table is reached. */
15128 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15129 break;
15130 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15131 abbrev_ptr += bytes_read;
15132 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15133 break;
15134 }
15135
15136 xfree (cur_attrs);
15137 return abbrev_table;
15138 }
15139
15140 /* Free the resources held by ABBREV_TABLE. */
15141
15142 static void
15143 abbrev_table_free (struct abbrev_table *abbrev_table)
15144 {
15145 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15146 xfree (abbrev_table);
15147 }
15148
15149 /* Same as abbrev_table_free but as a cleanup.
15150 We pass in a pointer to the pointer to the table so that we can
15151 set the pointer to NULL when we're done. It also simplifies
15152 build_type_psymtabs_1. */
15153
15154 static void
15155 abbrev_table_free_cleanup (void *table_ptr)
15156 {
15157 struct abbrev_table **abbrev_table_ptr = table_ptr;
15158
15159 if (*abbrev_table_ptr != NULL)
15160 abbrev_table_free (*abbrev_table_ptr);
15161 *abbrev_table_ptr = NULL;
15162 }
15163
15164 /* Read the abbrev table for CU from ABBREV_SECTION. */
15165
15166 static void
15167 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15168 struct dwarf2_section_info *abbrev_section)
15169 {
15170 cu->abbrev_table =
15171 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15172 }
15173
15174 /* Release the memory used by the abbrev table for a compilation unit. */
15175
15176 static void
15177 dwarf2_free_abbrev_table (void *ptr_to_cu)
15178 {
15179 struct dwarf2_cu *cu = ptr_to_cu;
15180
15181 if (cu->abbrev_table != NULL)
15182 abbrev_table_free (cu->abbrev_table);
15183 /* Set this to NULL so that we SEGV if we try to read it later,
15184 and also because free_comp_unit verifies this is NULL. */
15185 cu->abbrev_table = NULL;
15186 }
15187 \f
15188 /* Returns nonzero if TAG represents a type that we might generate a partial
15189 symbol for. */
15190
15191 static int
15192 is_type_tag_for_partial (int tag)
15193 {
15194 switch (tag)
15195 {
15196 #if 0
15197 /* Some types that would be reasonable to generate partial symbols for,
15198 that we don't at present. */
15199 case DW_TAG_array_type:
15200 case DW_TAG_file_type:
15201 case DW_TAG_ptr_to_member_type:
15202 case DW_TAG_set_type:
15203 case DW_TAG_string_type:
15204 case DW_TAG_subroutine_type:
15205 #endif
15206 case DW_TAG_base_type:
15207 case DW_TAG_class_type:
15208 case DW_TAG_interface_type:
15209 case DW_TAG_enumeration_type:
15210 case DW_TAG_structure_type:
15211 case DW_TAG_subrange_type:
15212 case DW_TAG_typedef:
15213 case DW_TAG_union_type:
15214 return 1;
15215 default:
15216 return 0;
15217 }
15218 }
15219
15220 /* Load all DIEs that are interesting for partial symbols into memory. */
15221
15222 static struct partial_die_info *
15223 load_partial_dies (const struct die_reader_specs *reader,
15224 const gdb_byte *info_ptr, int building_psymtab)
15225 {
15226 struct dwarf2_cu *cu = reader->cu;
15227 struct objfile *objfile = cu->objfile;
15228 struct partial_die_info *part_die;
15229 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15230 struct abbrev_info *abbrev;
15231 unsigned int bytes_read;
15232 unsigned int load_all = 0;
15233 int nesting_level = 1;
15234
15235 parent_die = NULL;
15236 last_die = NULL;
15237
15238 gdb_assert (cu->per_cu != NULL);
15239 if (cu->per_cu->load_all_dies)
15240 load_all = 1;
15241
15242 cu->partial_dies
15243 = htab_create_alloc_ex (cu->header.length / 12,
15244 partial_die_hash,
15245 partial_die_eq,
15246 NULL,
15247 &cu->comp_unit_obstack,
15248 hashtab_obstack_allocate,
15249 dummy_obstack_deallocate);
15250
15251 part_die = obstack_alloc (&cu->comp_unit_obstack,
15252 sizeof (struct partial_die_info));
15253
15254 while (1)
15255 {
15256 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15257
15258 /* A NULL abbrev means the end of a series of children. */
15259 if (abbrev == NULL)
15260 {
15261 if (--nesting_level == 0)
15262 {
15263 /* PART_DIE was probably the last thing allocated on the
15264 comp_unit_obstack, so we could call obstack_free
15265 here. We don't do that because the waste is small,
15266 and will be cleaned up when we're done with this
15267 compilation unit. This way, we're also more robust
15268 against other users of the comp_unit_obstack. */
15269 return first_die;
15270 }
15271 info_ptr += bytes_read;
15272 last_die = parent_die;
15273 parent_die = parent_die->die_parent;
15274 continue;
15275 }
15276
15277 /* Check for template arguments. We never save these; if
15278 they're seen, we just mark the parent, and go on our way. */
15279 if (parent_die != NULL
15280 && cu->language == language_cplus
15281 && (abbrev->tag == DW_TAG_template_type_param
15282 || abbrev->tag == DW_TAG_template_value_param))
15283 {
15284 parent_die->has_template_arguments = 1;
15285
15286 if (!load_all)
15287 {
15288 /* We don't need a partial DIE for the template argument. */
15289 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15290 continue;
15291 }
15292 }
15293
15294 /* We only recurse into c++ subprograms looking for template arguments.
15295 Skip their other children. */
15296 if (!load_all
15297 && cu->language == language_cplus
15298 && parent_die != NULL
15299 && parent_die->tag == DW_TAG_subprogram)
15300 {
15301 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15302 continue;
15303 }
15304
15305 /* Check whether this DIE is interesting enough to save. Normally
15306 we would not be interested in members here, but there may be
15307 later variables referencing them via DW_AT_specification (for
15308 static members). */
15309 if (!load_all
15310 && !is_type_tag_for_partial (abbrev->tag)
15311 && abbrev->tag != DW_TAG_constant
15312 && abbrev->tag != DW_TAG_enumerator
15313 && abbrev->tag != DW_TAG_subprogram
15314 && abbrev->tag != DW_TAG_lexical_block
15315 && abbrev->tag != DW_TAG_variable
15316 && abbrev->tag != DW_TAG_namespace
15317 && abbrev->tag != DW_TAG_module
15318 && abbrev->tag != DW_TAG_member
15319 && abbrev->tag != DW_TAG_imported_unit
15320 && abbrev->tag != DW_TAG_imported_declaration)
15321 {
15322 /* Otherwise we skip to the next sibling, if any. */
15323 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15324 continue;
15325 }
15326
15327 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15328 info_ptr);
15329
15330 /* This two-pass algorithm for processing partial symbols has a
15331 high cost in cache pressure. Thus, handle some simple cases
15332 here which cover the majority of C partial symbols. DIEs
15333 which neither have specification tags in them, nor could have
15334 specification tags elsewhere pointing at them, can simply be
15335 processed and discarded.
15336
15337 This segment is also optional; scan_partial_symbols and
15338 add_partial_symbol will handle these DIEs if we chain
15339 them in normally. When compilers which do not emit large
15340 quantities of duplicate debug information are more common,
15341 this code can probably be removed. */
15342
15343 /* Any complete simple types at the top level (pretty much all
15344 of them, for a language without namespaces), can be processed
15345 directly. */
15346 if (parent_die == NULL
15347 && part_die->has_specification == 0
15348 && part_die->is_declaration == 0
15349 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15350 || part_die->tag == DW_TAG_base_type
15351 || part_die->tag == DW_TAG_subrange_type))
15352 {
15353 if (building_psymtab && part_die->name != NULL)
15354 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15355 VAR_DOMAIN, LOC_TYPEDEF,
15356 &objfile->static_psymbols,
15357 0, (CORE_ADDR) 0, cu->language, objfile);
15358 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15359 continue;
15360 }
15361
15362 /* The exception for DW_TAG_typedef with has_children above is
15363 a workaround of GCC PR debug/47510. In the case of this complaint
15364 type_name_no_tag_or_error will error on such types later.
15365
15366 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15367 it could not find the child DIEs referenced later, this is checked
15368 above. In correct DWARF DW_TAG_typedef should have no children. */
15369
15370 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15371 complaint (&symfile_complaints,
15372 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15373 "- DIE at 0x%x [in module %s]"),
15374 part_die->offset.sect_off, objfile_name (objfile));
15375
15376 /* If we're at the second level, and we're an enumerator, and
15377 our parent has no specification (meaning possibly lives in a
15378 namespace elsewhere), then we can add the partial symbol now
15379 instead of queueing it. */
15380 if (part_die->tag == DW_TAG_enumerator
15381 && parent_die != NULL
15382 && parent_die->die_parent == NULL
15383 && parent_die->tag == DW_TAG_enumeration_type
15384 && parent_die->has_specification == 0)
15385 {
15386 if (part_die->name == NULL)
15387 complaint (&symfile_complaints,
15388 _("malformed enumerator DIE ignored"));
15389 else if (building_psymtab)
15390 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15391 VAR_DOMAIN, LOC_CONST,
15392 (cu->language == language_cplus
15393 || cu->language == language_java)
15394 ? &objfile->global_psymbols
15395 : &objfile->static_psymbols,
15396 0, (CORE_ADDR) 0, cu->language, objfile);
15397
15398 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15399 continue;
15400 }
15401
15402 /* We'll save this DIE so link it in. */
15403 part_die->die_parent = parent_die;
15404 part_die->die_sibling = NULL;
15405 part_die->die_child = NULL;
15406
15407 if (last_die && last_die == parent_die)
15408 last_die->die_child = part_die;
15409 else if (last_die)
15410 last_die->die_sibling = part_die;
15411
15412 last_die = part_die;
15413
15414 if (first_die == NULL)
15415 first_die = part_die;
15416
15417 /* Maybe add the DIE to the hash table. Not all DIEs that we
15418 find interesting need to be in the hash table, because we
15419 also have the parent/sibling/child chains; only those that we
15420 might refer to by offset later during partial symbol reading.
15421
15422 For now this means things that might have be the target of a
15423 DW_AT_specification, DW_AT_abstract_origin, or
15424 DW_AT_extension. DW_AT_extension will refer only to
15425 namespaces; DW_AT_abstract_origin refers to functions (and
15426 many things under the function DIE, but we do not recurse
15427 into function DIEs during partial symbol reading) and
15428 possibly variables as well; DW_AT_specification refers to
15429 declarations. Declarations ought to have the DW_AT_declaration
15430 flag. It happens that GCC forgets to put it in sometimes, but
15431 only for functions, not for types.
15432
15433 Adding more things than necessary to the hash table is harmless
15434 except for the performance cost. Adding too few will result in
15435 wasted time in find_partial_die, when we reread the compilation
15436 unit with load_all_dies set. */
15437
15438 if (load_all
15439 || abbrev->tag == DW_TAG_constant
15440 || abbrev->tag == DW_TAG_subprogram
15441 || abbrev->tag == DW_TAG_variable
15442 || abbrev->tag == DW_TAG_namespace
15443 || part_die->is_declaration)
15444 {
15445 void **slot;
15446
15447 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15448 part_die->offset.sect_off, INSERT);
15449 *slot = part_die;
15450 }
15451
15452 part_die = obstack_alloc (&cu->comp_unit_obstack,
15453 sizeof (struct partial_die_info));
15454
15455 /* For some DIEs we want to follow their children (if any). For C
15456 we have no reason to follow the children of structures; for other
15457 languages we have to, so that we can get at method physnames
15458 to infer fully qualified class names, for DW_AT_specification,
15459 and for C++ template arguments. For C++, we also look one level
15460 inside functions to find template arguments (if the name of the
15461 function does not already contain the template arguments).
15462
15463 For Ada, we need to scan the children of subprograms and lexical
15464 blocks as well because Ada allows the definition of nested
15465 entities that could be interesting for the debugger, such as
15466 nested subprograms for instance. */
15467 if (last_die->has_children
15468 && (load_all
15469 || last_die->tag == DW_TAG_namespace
15470 || last_die->tag == DW_TAG_module
15471 || last_die->tag == DW_TAG_enumeration_type
15472 || (cu->language == language_cplus
15473 && last_die->tag == DW_TAG_subprogram
15474 && (last_die->name == NULL
15475 || strchr (last_die->name, '<') == NULL))
15476 || (cu->language != language_c
15477 && (last_die->tag == DW_TAG_class_type
15478 || last_die->tag == DW_TAG_interface_type
15479 || last_die->tag == DW_TAG_structure_type
15480 || last_die->tag == DW_TAG_union_type))
15481 || (cu->language == language_ada
15482 && (last_die->tag == DW_TAG_subprogram
15483 || last_die->tag == DW_TAG_lexical_block))))
15484 {
15485 nesting_level++;
15486 parent_die = last_die;
15487 continue;
15488 }
15489
15490 /* Otherwise we skip to the next sibling, if any. */
15491 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15492
15493 /* Back to the top, do it again. */
15494 }
15495 }
15496
15497 /* Read a minimal amount of information into the minimal die structure. */
15498
15499 static const gdb_byte *
15500 read_partial_die (const struct die_reader_specs *reader,
15501 struct partial_die_info *part_die,
15502 struct abbrev_info *abbrev, unsigned int abbrev_len,
15503 const gdb_byte *info_ptr)
15504 {
15505 struct dwarf2_cu *cu = reader->cu;
15506 struct objfile *objfile = cu->objfile;
15507 const gdb_byte *buffer = reader->buffer;
15508 unsigned int i;
15509 struct attribute attr;
15510 int has_low_pc_attr = 0;
15511 int has_high_pc_attr = 0;
15512 int high_pc_relative = 0;
15513
15514 memset (part_die, 0, sizeof (struct partial_die_info));
15515
15516 part_die->offset.sect_off = info_ptr - buffer;
15517
15518 info_ptr += abbrev_len;
15519
15520 if (abbrev == NULL)
15521 return info_ptr;
15522
15523 part_die->tag = abbrev->tag;
15524 part_die->has_children = abbrev->has_children;
15525
15526 for (i = 0; i < abbrev->num_attrs; ++i)
15527 {
15528 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15529
15530 /* Store the data if it is of an attribute we want to keep in a
15531 partial symbol table. */
15532 switch (attr.name)
15533 {
15534 case DW_AT_name:
15535 switch (part_die->tag)
15536 {
15537 case DW_TAG_compile_unit:
15538 case DW_TAG_partial_unit:
15539 case DW_TAG_type_unit:
15540 /* Compilation units have a DW_AT_name that is a filename, not
15541 a source language identifier. */
15542 case DW_TAG_enumeration_type:
15543 case DW_TAG_enumerator:
15544 /* These tags always have simple identifiers already; no need
15545 to canonicalize them. */
15546 part_die->name = DW_STRING (&attr);
15547 break;
15548 default:
15549 part_die->name
15550 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15551 &objfile->per_bfd->storage_obstack);
15552 break;
15553 }
15554 break;
15555 case DW_AT_linkage_name:
15556 case DW_AT_MIPS_linkage_name:
15557 /* Note that both forms of linkage name might appear. We
15558 assume they will be the same, and we only store the last
15559 one we see. */
15560 if (cu->language == language_ada)
15561 part_die->name = DW_STRING (&attr);
15562 part_die->linkage_name = DW_STRING (&attr);
15563 break;
15564 case DW_AT_low_pc:
15565 has_low_pc_attr = 1;
15566 part_die->lowpc = attr_value_as_address (&attr);
15567 break;
15568 case DW_AT_high_pc:
15569 has_high_pc_attr = 1;
15570 part_die->highpc = attr_value_as_address (&attr);
15571 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15572 high_pc_relative = 1;
15573 break;
15574 case DW_AT_location:
15575 /* Support the .debug_loc offsets. */
15576 if (attr_form_is_block (&attr))
15577 {
15578 part_die->d.locdesc = DW_BLOCK (&attr);
15579 }
15580 else if (attr_form_is_section_offset (&attr))
15581 {
15582 dwarf2_complex_location_expr_complaint ();
15583 }
15584 else
15585 {
15586 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15587 "partial symbol information");
15588 }
15589 break;
15590 case DW_AT_external:
15591 part_die->is_external = DW_UNSND (&attr);
15592 break;
15593 case DW_AT_declaration:
15594 part_die->is_declaration = DW_UNSND (&attr);
15595 break;
15596 case DW_AT_type:
15597 part_die->has_type = 1;
15598 break;
15599 case DW_AT_abstract_origin:
15600 case DW_AT_specification:
15601 case DW_AT_extension:
15602 part_die->has_specification = 1;
15603 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15604 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15605 || cu->per_cu->is_dwz);
15606 break;
15607 case DW_AT_sibling:
15608 /* Ignore absolute siblings, they might point outside of
15609 the current compile unit. */
15610 if (attr.form == DW_FORM_ref_addr)
15611 complaint (&symfile_complaints,
15612 _("ignoring absolute DW_AT_sibling"));
15613 else
15614 {
15615 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15616 const gdb_byte *sibling_ptr = buffer + off;
15617
15618 if (sibling_ptr < info_ptr)
15619 complaint (&symfile_complaints,
15620 _("DW_AT_sibling points backwards"));
15621 else if (sibling_ptr > reader->buffer_end)
15622 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15623 else
15624 part_die->sibling = sibling_ptr;
15625 }
15626 break;
15627 case DW_AT_byte_size:
15628 part_die->has_byte_size = 1;
15629 break;
15630 case DW_AT_calling_convention:
15631 /* DWARF doesn't provide a way to identify a program's source-level
15632 entry point. DW_AT_calling_convention attributes are only meant
15633 to describe functions' calling conventions.
15634
15635 However, because it's a necessary piece of information in
15636 Fortran, and because DW_CC_program is the only piece of debugging
15637 information whose definition refers to a 'main program' at all,
15638 several compilers have begun marking Fortran main programs with
15639 DW_CC_program --- even when those functions use the standard
15640 calling conventions.
15641
15642 So until DWARF specifies a way to provide this information and
15643 compilers pick up the new representation, we'll support this
15644 practice. */
15645 if (DW_UNSND (&attr) == DW_CC_program
15646 && cu->language == language_fortran)
15647 set_objfile_main_name (objfile, part_die->name, language_fortran);
15648 break;
15649 case DW_AT_inline:
15650 if (DW_UNSND (&attr) == DW_INL_inlined
15651 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15652 part_die->may_be_inlined = 1;
15653 break;
15654
15655 case DW_AT_import:
15656 if (part_die->tag == DW_TAG_imported_unit)
15657 {
15658 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15659 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15660 || cu->per_cu->is_dwz);
15661 }
15662 break;
15663
15664 default:
15665 break;
15666 }
15667 }
15668
15669 if (high_pc_relative)
15670 part_die->highpc += part_die->lowpc;
15671
15672 if (has_low_pc_attr && has_high_pc_attr)
15673 {
15674 /* When using the GNU linker, .gnu.linkonce. sections are used to
15675 eliminate duplicate copies of functions and vtables and such.
15676 The linker will arbitrarily choose one and discard the others.
15677 The AT_*_pc values for such functions refer to local labels in
15678 these sections. If the section from that file was discarded, the
15679 labels are not in the output, so the relocs get a value of 0.
15680 If this is a discarded function, mark the pc bounds as invalid,
15681 so that GDB will ignore it. */
15682 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15683 {
15684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15685
15686 complaint (&symfile_complaints,
15687 _("DW_AT_low_pc %s is zero "
15688 "for DIE at 0x%x [in module %s]"),
15689 paddress (gdbarch, part_die->lowpc),
15690 part_die->offset.sect_off, objfile_name (objfile));
15691 }
15692 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15693 else if (part_die->lowpc >= part_die->highpc)
15694 {
15695 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15696
15697 complaint (&symfile_complaints,
15698 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15699 "for DIE at 0x%x [in module %s]"),
15700 paddress (gdbarch, part_die->lowpc),
15701 paddress (gdbarch, part_die->highpc),
15702 part_die->offset.sect_off, objfile_name (objfile));
15703 }
15704 else
15705 part_die->has_pc_info = 1;
15706 }
15707
15708 return info_ptr;
15709 }
15710
15711 /* Find a cached partial DIE at OFFSET in CU. */
15712
15713 static struct partial_die_info *
15714 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15715 {
15716 struct partial_die_info *lookup_die = NULL;
15717 struct partial_die_info part_die;
15718
15719 part_die.offset = offset;
15720 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15721 offset.sect_off);
15722
15723 return lookup_die;
15724 }
15725
15726 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15727 except in the case of .debug_types DIEs which do not reference
15728 outside their CU (they do however referencing other types via
15729 DW_FORM_ref_sig8). */
15730
15731 static struct partial_die_info *
15732 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15733 {
15734 struct objfile *objfile = cu->objfile;
15735 struct dwarf2_per_cu_data *per_cu = NULL;
15736 struct partial_die_info *pd = NULL;
15737
15738 if (offset_in_dwz == cu->per_cu->is_dwz
15739 && offset_in_cu_p (&cu->header, offset))
15740 {
15741 pd = find_partial_die_in_comp_unit (offset, cu);
15742 if (pd != NULL)
15743 return pd;
15744 /* We missed recording what we needed.
15745 Load all dies and try again. */
15746 per_cu = cu->per_cu;
15747 }
15748 else
15749 {
15750 /* TUs don't reference other CUs/TUs (except via type signatures). */
15751 if (cu->per_cu->is_debug_types)
15752 {
15753 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15754 " external reference to offset 0x%lx [in module %s].\n"),
15755 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15756 bfd_get_filename (objfile->obfd));
15757 }
15758 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15759 objfile);
15760
15761 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15762 load_partial_comp_unit (per_cu);
15763
15764 per_cu->cu->last_used = 0;
15765 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15766 }
15767
15768 /* If we didn't find it, and not all dies have been loaded,
15769 load them all and try again. */
15770
15771 if (pd == NULL && per_cu->load_all_dies == 0)
15772 {
15773 per_cu->load_all_dies = 1;
15774
15775 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15776 THIS_CU->cu may already be in use. So we can't just free it and
15777 replace its DIEs with the ones we read in. Instead, we leave those
15778 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15779 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15780 set. */
15781 load_partial_comp_unit (per_cu);
15782
15783 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15784 }
15785
15786 if (pd == NULL)
15787 internal_error (__FILE__, __LINE__,
15788 _("could not find partial DIE 0x%x "
15789 "in cache [from module %s]\n"),
15790 offset.sect_off, bfd_get_filename (objfile->obfd));
15791 return pd;
15792 }
15793
15794 /* See if we can figure out if the class lives in a namespace. We do
15795 this by looking for a member function; its demangled name will
15796 contain namespace info, if there is any. */
15797
15798 static void
15799 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15800 struct dwarf2_cu *cu)
15801 {
15802 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15803 what template types look like, because the demangler
15804 frequently doesn't give the same name as the debug info. We
15805 could fix this by only using the demangled name to get the
15806 prefix (but see comment in read_structure_type). */
15807
15808 struct partial_die_info *real_pdi;
15809 struct partial_die_info *child_pdi;
15810
15811 /* If this DIE (this DIE's specification, if any) has a parent, then
15812 we should not do this. We'll prepend the parent's fully qualified
15813 name when we create the partial symbol. */
15814
15815 real_pdi = struct_pdi;
15816 while (real_pdi->has_specification)
15817 real_pdi = find_partial_die (real_pdi->spec_offset,
15818 real_pdi->spec_is_dwz, cu);
15819
15820 if (real_pdi->die_parent != NULL)
15821 return;
15822
15823 for (child_pdi = struct_pdi->die_child;
15824 child_pdi != NULL;
15825 child_pdi = child_pdi->die_sibling)
15826 {
15827 if (child_pdi->tag == DW_TAG_subprogram
15828 && child_pdi->linkage_name != NULL)
15829 {
15830 char *actual_class_name
15831 = language_class_name_from_physname (cu->language_defn,
15832 child_pdi->linkage_name);
15833 if (actual_class_name != NULL)
15834 {
15835 struct_pdi->name
15836 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15837 actual_class_name,
15838 strlen (actual_class_name));
15839 xfree (actual_class_name);
15840 }
15841 break;
15842 }
15843 }
15844 }
15845
15846 /* Adjust PART_DIE before generating a symbol for it. This function
15847 may set the is_external flag or change the DIE's name. */
15848
15849 static void
15850 fixup_partial_die (struct partial_die_info *part_die,
15851 struct dwarf2_cu *cu)
15852 {
15853 /* Once we've fixed up a die, there's no point in doing so again.
15854 This also avoids a memory leak if we were to call
15855 guess_partial_die_structure_name multiple times. */
15856 if (part_die->fixup_called)
15857 return;
15858
15859 /* If we found a reference attribute and the DIE has no name, try
15860 to find a name in the referred to DIE. */
15861
15862 if (part_die->name == NULL && part_die->has_specification)
15863 {
15864 struct partial_die_info *spec_die;
15865
15866 spec_die = find_partial_die (part_die->spec_offset,
15867 part_die->spec_is_dwz, cu);
15868
15869 fixup_partial_die (spec_die, cu);
15870
15871 if (spec_die->name)
15872 {
15873 part_die->name = spec_die->name;
15874
15875 /* Copy DW_AT_external attribute if it is set. */
15876 if (spec_die->is_external)
15877 part_die->is_external = spec_die->is_external;
15878 }
15879 }
15880
15881 /* Set default names for some unnamed DIEs. */
15882
15883 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15884 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15885
15886 /* If there is no parent die to provide a namespace, and there are
15887 children, see if we can determine the namespace from their linkage
15888 name. */
15889 if (cu->language == language_cplus
15890 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15891 && part_die->die_parent == NULL
15892 && part_die->has_children
15893 && (part_die->tag == DW_TAG_class_type
15894 || part_die->tag == DW_TAG_structure_type
15895 || part_die->tag == DW_TAG_union_type))
15896 guess_partial_die_structure_name (part_die, cu);
15897
15898 /* GCC might emit a nameless struct or union that has a linkage
15899 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15900 if (part_die->name == NULL
15901 && (part_die->tag == DW_TAG_class_type
15902 || part_die->tag == DW_TAG_interface_type
15903 || part_die->tag == DW_TAG_structure_type
15904 || part_die->tag == DW_TAG_union_type)
15905 && part_die->linkage_name != NULL)
15906 {
15907 char *demangled;
15908
15909 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15910 if (demangled)
15911 {
15912 const char *base;
15913
15914 /* Strip any leading namespaces/classes, keep only the base name.
15915 DW_AT_name for named DIEs does not contain the prefixes. */
15916 base = strrchr (demangled, ':');
15917 if (base && base > demangled && base[-1] == ':')
15918 base++;
15919 else
15920 base = demangled;
15921
15922 part_die->name
15923 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15924 base, strlen (base));
15925 xfree (demangled);
15926 }
15927 }
15928
15929 part_die->fixup_called = 1;
15930 }
15931
15932 /* Read an attribute value described by an attribute form. */
15933
15934 static const gdb_byte *
15935 read_attribute_value (const struct die_reader_specs *reader,
15936 struct attribute *attr, unsigned form,
15937 const gdb_byte *info_ptr)
15938 {
15939 struct dwarf2_cu *cu = reader->cu;
15940 bfd *abfd = reader->abfd;
15941 struct comp_unit_head *cu_header = &cu->header;
15942 unsigned int bytes_read;
15943 struct dwarf_block *blk;
15944
15945 attr->form = form;
15946 switch (form)
15947 {
15948 case DW_FORM_ref_addr:
15949 if (cu->header.version == 2)
15950 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15951 else
15952 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15953 &cu->header, &bytes_read);
15954 info_ptr += bytes_read;
15955 break;
15956 case DW_FORM_GNU_ref_alt:
15957 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15958 info_ptr += bytes_read;
15959 break;
15960 case DW_FORM_addr:
15961 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15962 info_ptr += bytes_read;
15963 break;
15964 case DW_FORM_block2:
15965 blk = dwarf_alloc_block (cu);
15966 blk->size = read_2_bytes (abfd, info_ptr);
15967 info_ptr += 2;
15968 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15969 info_ptr += blk->size;
15970 DW_BLOCK (attr) = blk;
15971 break;
15972 case DW_FORM_block4:
15973 blk = dwarf_alloc_block (cu);
15974 blk->size = read_4_bytes (abfd, info_ptr);
15975 info_ptr += 4;
15976 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15977 info_ptr += blk->size;
15978 DW_BLOCK (attr) = blk;
15979 break;
15980 case DW_FORM_data2:
15981 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15982 info_ptr += 2;
15983 break;
15984 case DW_FORM_data4:
15985 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15986 info_ptr += 4;
15987 break;
15988 case DW_FORM_data8:
15989 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15990 info_ptr += 8;
15991 break;
15992 case DW_FORM_sec_offset:
15993 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15994 info_ptr += bytes_read;
15995 break;
15996 case DW_FORM_string:
15997 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15998 DW_STRING_IS_CANONICAL (attr) = 0;
15999 info_ptr += bytes_read;
16000 break;
16001 case DW_FORM_strp:
16002 if (!cu->per_cu->is_dwz)
16003 {
16004 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16005 &bytes_read);
16006 DW_STRING_IS_CANONICAL (attr) = 0;
16007 info_ptr += bytes_read;
16008 break;
16009 }
16010 /* FALLTHROUGH */
16011 case DW_FORM_GNU_strp_alt:
16012 {
16013 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16014 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16015 &bytes_read);
16016
16017 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16018 DW_STRING_IS_CANONICAL (attr) = 0;
16019 info_ptr += bytes_read;
16020 }
16021 break;
16022 case DW_FORM_exprloc:
16023 case DW_FORM_block:
16024 blk = dwarf_alloc_block (cu);
16025 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16026 info_ptr += bytes_read;
16027 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16028 info_ptr += blk->size;
16029 DW_BLOCK (attr) = blk;
16030 break;
16031 case DW_FORM_block1:
16032 blk = dwarf_alloc_block (cu);
16033 blk->size = read_1_byte (abfd, info_ptr);
16034 info_ptr += 1;
16035 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16036 info_ptr += blk->size;
16037 DW_BLOCK (attr) = blk;
16038 break;
16039 case DW_FORM_data1:
16040 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16041 info_ptr += 1;
16042 break;
16043 case DW_FORM_flag:
16044 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16045 info_ptr += 1;
16046 break;
16047 case DW_FORM_flag_present:
16048 DW_UNSND (attr) = 1;
16049 break;
16050 case DW_FORM_sdata:
16051 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16052 info_ptr += bytes_read;
16053 break;
16054 case DW_FORM_udata:
16055 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16056 info_ptr += bytes_read;
16057 break;
16058 case DW_FORM_ref1:
16059 DW_UNSND (attr) = (cu->header.offset.sect_off
16060 + read_1_byte (abfd, info_ptr));
16061 info_ptr += 1;
16062 break;
16063 case DW_FORM_ref2:
16064 DW_UNSND (attr) = (cu->header.offset.sect_off
16065 + read_2_bytes (abfd, info_ptr));
16066 info_ptr += 2;
16067 break;
16068 case DW_FORM_ref4:
16069 DW_UNSND (attr) = (cu->header.offset.sect_off
16070 + read_4_bytes (abfd, info_ptr));
16071 info_ptr += 4;
16072 break;
16073 case DW_FORM_ref8:
16074 DW_UNSND (attr) = (cu->header.offset.sect_off
16075 + read_8_bytes (abfd, info_ptr));
16076 info_ptr += 8;
16077 break;
16078 case DW_FORM_ref_sig8:
16079 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16080 info_ptr += 8;
16081 break;
16082 case DW_FORM_ref_udata:
16083 DW_UNSND (attr) = (cu->header.offset.sect_off
16084 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16085 info_ptr += bytes_read;
16086 break;
16087 case DW_FORM_indirect:
16088 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16089 info_ptr += bytes_read;
16090 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16091 break;
16092 case DW_FORM_GNU_addr_index:
16093 if (reader->dwo_file == NULL)
16094 {
16095 /* For now flag a hard error.
16096 Later we can turn this into a complaint. */
16097 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16098 dwarf_form_name (form),
16099 bfd_get_filename (abfd));
16100 }
16101 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16102 info_ptr += bytes_read;
16103 break;
16104 case DW_FORM_GNU_str_index:
16105 if (reader->dwo_file == NULL)
16106 {
16107 /* For now flag a hard error.
16108 Later we can turn this into a complaint if warranted. */
16109 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16110 dwarf_form_name (form),
16111 bfd_get_filename (abfd));
16112 }
16113 {
16114 ULONGEST str_index =
16115 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16116
16117 DW_STRING (attr) = read_str_index (reader, str_index);
16118 DW_STRING_IS_CANONICAL (attr) = 0;
16119 info_ptr += bytes_read;
16120 }
16121 break;
16122 default:
16123 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16124 dwarf_form_name (form),
16125 bfd_get_filename (abfd));
16126 }
16127
16128 /* Super hack. */
16129 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16130 attr->form = DW_FORM_GNU_ref_alt;
16131
16132 /* We have seen instances where the compiler tried to emit a byte
16133 size attribute of -1 which ended up being encoded as an unsigned
16134 0xffffffff. Although 0xffffffff is technically a valid size value,
16135 an object of this size seems pretty unlikely so we can relatively
16136 safely treat these cases as if the size attribute was invalid and
16137 treat them as zero by default. */
16138 if (attr->name == DW_AT_byte_size
16139 && form == DW_FORM_data4
16140 && DW_UNSND (attr) >= 0xffffffff)
16141 {
16142 complaint
16143 (&symfile_complaints,
16144 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16145 hex_string (DW_UNSND (attr)));
16146 DW_UNSND (attr) = 0;
16147 }
16148
16149 return info_ptr;
16150 }
16151
16152 /* Read an attribute described by an abbreviated attribute. */
16153
16154 static const gdb_byte *
16155 read_attribute (const struct die_reader_specs *reader,
16156 struct attribute *attr, struct attr_abbrev *abbrev,
16157 const gdb_byte *info_ptr)
16158 {
16159 attr->name = abbrev->name;
16160 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16161 }
16162
16163 /* Read dwarf information from a buffer. */
16164
16165 static unsigned int
16166 read_1_byte (bfd *abfd, const gdb_byte *buf)
16167 {
16168 return bfd_get_8 (abfd, buf);
16169 }
16170
16171 static int
16172 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16173 {
16174 return bfd_get_signed_8 (abfd, buf);
16175 }
16176
16177 static unsigned int
16178 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16179 {
16180 return bfd_get_16 (abfd, buf);
16181 }
16182
16183 static int
16184 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16185 {
16186 return bfd_get_signed_16 (abfd, buf);
16187 }
16188
16189 static unsigned int
16190 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16191 {
16192 return bfd_get_32 (abfd, buf);
16193 }
16194
16195 static int
16196 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16197 {
16198 return bfd_get_signed_32 (abfd, buf);
16199 }
16200
16201 static ULONGEST
16202 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16203 {
16204 return bfd_get_64 (abfd, buf);
16205 }
16206
16207 static CORE_ADDR
16208 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16209 unsigned int *bytes_read)
16210 {
16211 struct comp_unit_head *cu_header = &cu->header;
16212 CORE_ADDR retval = 0;
16213
16214 if (cu_header->signed_addr_p)
16215 {
16216 switch (cu_header->addr_size)
16217 {
16218 case 2:
16219 retval = bfd_get_signed_16 (abfd, buf);
16220 break;
16221 case 4:
16222 retval = bfd_get_signed_32 (abfd, buf);
16223 break;
16224 case 8:
16225 retval = bfd_get_signed_64 (abfd, buf);
16226 break;
16227 default:
16228 internal_error (__FILE__, __LINE__,
16229 _("read_address: bad switch, signed [in module %s]"),
16230 bfd_get_filename (abfd));
16231 }
16232 }
16233 else
16234 {
16235 switch (cu_header->addr_size)
16236 {
16237 case 2:
16238 retval = bfd_get_16 (abfd, buf);
16239 break;
16240 case 4:
16241 retval = bfd_get_32 (abfd, buf);
16242 break;
16243 case 8:
16244 retval = bfd_get_64 (abfd, buf);
16245 break;
16246 default:
16247 internal_error (__FILE__, __LINE__,
16248 _("read_address: bad switch, "
16249 "unsigned [in module %s]"),
16250 bfd_get_filename (abfd));
16251 }
16252 }
16253
16254 *bytes_read = cu_header->addr_size;
16255 return retval;
16256 }
16257
16258 /* Read the initial length from a section. The (draft) DWARF 3
16259 specification allows the initial length to take up either 4 bytes
16260 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16261 bytes describe the length and all offsets will be 8 bytes in length
16262 instead of 4.
16263
16264 An older, non-standard 64-bit format is also handled by this
16265 function. The older format in question stores the initial length
16266 as an 8-byte quantity without an escape value. Lengths greater
16267 than 2^32 aren't very common which means that the initial 4 bytes
16268 is almost always zero. Since a length value of zero doesn't make
16269 sense for the 32-bit format, this initial zero can be considered to
16270 be an escape value which indicates the presence of the older 64-bit
16271 format. As written, the code can't detect (old format) lengths
16272 greater than 4GB. If it becomes necessary to handle lengths
16273 somewhat larger than 4GB, we could allow other small values (such
16274 as the non-sensical values of 1, 2, and 3) to also be used as
16275 escape values indicating the presence of the old format.
16276
16277 The value returned via bytes_read should be used to increment the
16278 relevant pointer after calling read_initial_length().
16279
16280 [ Note: read_initial_length() and read_offset() are based on the
16281 document entitled "DWARF Debugging Information Format", revision
16282 3, draft 8, dated November 19, 2001. This document was obtained
16283 from:
16284
16285 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16286
16287 This document is only a draft and is subject to change. (So beware.)
16288
16289 Details regarding the older, non-standard 64-bit format were
16290 determined empirically by examining 64-bit ELF files produced by
16291 the SGI toolchain on an IRIX 6.5 machine.
16292
16293 - Kevin, July 16, 2002
16294 ] */
16295
16296 static LONGEST
16297 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16298 {
16299 LONGEST length = bfd_get_32 (abfd, buf);
16300
16301 if (length == 0xffffffff)
16302 {
16303 length = bfd_get_64 (abfd, buf + 4);
16304 *bytes_read = 12;
16305 }
16306 else if (length == 0)
16307 {
16308 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16309 length = bfd_get_64 (abfd, buf);
16310 *bytes_read = 8;
16311 }
16312 else
16313 {
16314 *bytes_read = 4;
16315 }
16316
16317 return length;
16318 }
16319
16320 /* Cover function for read_initial_length.
16321 Returns the length of the object at BUF, and stores the size of the
16322 initial length in *BYTES_READ and stores the size that offsets will be in
16323 *OFFSET_SIZE.
16324 If the initial length size is not equivalent to that specified in
16325 CU_HEADER then issue a complaint.
16326 This is useful when reading non-comp-unit headers. */
16327
16328 static LONGEST
16329 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16330 const struct comp_unit_head *cu_header,
16331 unsigned int *bytes_read,
16332 unsigned int *offset_size)
16333 {
16334 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16335
16336 gdb_assert (cu_header->initial_length_size == 4
16337 || cu_header->initial_length_size == 8
16338 || cu_header->initial_length_size == 12);
16339
16340 if (cu_header->initial_length_size != *bytes_read)
16341 complaint (&symfile_complaints,
16342 _("intermixed 32-bit and 64-bit DWARF sections"));
16343
16344 *offset_size = (*bytes_read == 4) ? 4 : 8;
16345 return length;
16346 }
16347
16348 /* Read an offset from the data stream. The size of the offset is
16349 given by cu_header->offset_size. */
16350
16351 static LONGEST
16352 read_offset (bfd *abfd, const gdb_byte *buf,
16353 const struct comp_unit_head *cu_header,
16354 unsigned int *bytes_read)
16355 {
16356 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16357
16358 *bytes_read = cu_header->offset_size;
16359 return offset;
16360 }
16361
16362 /* Read an offset from the data stream. */
16363
16364 static LONGEST
16365 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16366 {
16367 LONGEST retval = 0;
16368
16369 switch (offset_size)
16370 {
16371 case 4:
16372 retval = bfd_get_32 (abfd, buf);
16373 break;
16374 case 8:
16375 retval = bfd_get_64 (abfd, buf);
16376 break;
16377 default:
16378 internal_error (__FILE__, __LINE__,
16379 _("read_offset_1: bad switch [in module %s]"),
16380 bfd_get_filename (abfd));
16381 }
16382
16383 return retval;
16384 }
16385
16386 static const gdb_byte *
16387 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16388 {
16389 /* If the size of a host char is 8 bits, we can return a pointer
16390 to the buffer, otherwise we have to copy the data to a buffer
16391 allocated on the temporary obstack. */
16392 gdb_assert (HOST_CHAR_BIT == 8);
16393 return buf;
16394 }
16395
16396 static const char *
16397 read_direct_string (bfd *abfd, const gdb_byte *buf,
16398 unsigned int *bytes_read_ptr)
16399 {
16400 /* If the size of a host char is 8 bits, we can return a pointer
16401 to the string, otherwise we have to copy the string to a buffer
16402 allocated on the temporary obstack. */
16403 gdb_assert (HOST_CHAR_BIT == 8);
16404 if (*buf == '\0')
16405 {
16406 *bytes_read_ptr = 1;
16407 return NULL;
16408 }
16409 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16410 return (const char *) buf;
16411 }
16412
16413 static const char *
16414 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16415 {
16416 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16417 if (dwarf2_per_objfile->str.buffer == NULL)
16418 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16419 bfd_get_filename (abfd));
16420 if (str_offset >= dwarf2_per_objfile->str.size)
16421 error (_("DW_FORM_strp pointing outside of "
16422 ".debug_str section [in module %s]"),
16423 bfd_get_filename (abfd));
16424 gdb_assert (HOST_CHAR_BIT == 8);
16425 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16426 return NULL;
16427 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16428 }
16429
16430 /* Read a string at offset STR_OFFSET in the .debug_str section from
16431 the .dwz file DWZ. Throw an error if the offset is too large. If
16432 the string consists of a single NUL byte, return NULL; otherwise
16433 return a pointer to the string. */
16434
16435 static const char *
16436 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16437 {
16438 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16439
16440 if (dwz->str.buffer == NULL)
16441 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16442 "section [in module %s]"),
16443 bfd_get_filename (dwz->dwz_bfd));
16444 if (str_offset >= dwz->str.size)
16445 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16446 ".debug_str section [in module %s]"),
16447 bfd_get_filename (dwz->dwz_bfd));
16448 gdb_assert (HOST_CHAR_BIT == 8);
16449 if (dwz->str.buffer[str_offset] == '\0')
16450 return NULL;
16451 return (const char *) (dwz->str.buffer + str_offset);
16452 }
16453
16454 static const char *
16455 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16456 const struct comp_unit_head *cu_header,
16457 unsigned int *bytes_read_ptr)
16458 {
16459 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16460
16461 return read_indirect_string_at_offset (abfd, str_offset);
16462 }
16463
16464 static ULONGEST
16465 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16466 unsigned int *bytes_read_ptr)
16467 {
16468 ULONGEST result;
16469 unsigned int num_read;
16470 int i, shift;
16471 unsigned char byte;
16472
16473 result = 0;
16474 shift = 0;
16475 num_read = 0;
16476 i = 0;
16477 while (1)
16478 {
16479 byte = bfd_get_8 (abfd, buf);
16480 buf++;
16481 num_read++;
16482 result |= ((ULONGEST) (byte & 127) << shift);
16483 if ((byte & 128) == 0)
16484 {
16485 break;
16486 }
16487 shift += 7;
16488 }
16489 *bytes_read_ptr = num_read;
16490 return result;
16491 }
16492
16493 static LONGEST
16494 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16495 unsigned int *bytes_read_ptr)
16496 {
16497 LONGEST result;
16498 int i, shift, num_read;
16499 unsigned char byte;
16500
16501 result = 0;
16502 shift = 0;
16503 num_read = 0;
16504 i = 0;
16505 while (1)
16506 {
16507 byte = bfd_get_8 (abfd, buf);
16508 buf++;
16509 num_read++;
16510 result |= ((LONGEST) (byte & 127) << shift);
16511 shift += 7;
16512 if ((byte & 128) == 0)
16513 {
16514 break;
16515 }
16516 }
16517 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16518 result |= -(((LONGEST) 1) << shift);
16519 *bytes_read_ptr = num_read;
16520 return result;
16521 }
16522
16523 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16524 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16525 ADDR_SIZE is the size of addresses from the CU header. */
16526
16527 static CORE_ADDR
16528 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16529 {
16530 struct objfile *objfile = dwarf2_per_objfile->objfile;
16531 bfd *abfd = objfile->obfd;
16532 const gdb_byte *info_ptr;
16533
16534 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16535 if (dwarf2_per_objfile->addr.buffer == NULL)
16536 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16537 objfile_name (objfile));
16538 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16539 error (_("DW_FORM_addr_index pointing outside of "
16540 ".debug_addr section [in module %s]"),
16541 objfile_name (objfile));
16542 info_ptr = (dwarf2_per_objfile->addr.buffer
16543 + addr_base + addr_index * addr_size);
16544 if (addr_size == 4)
16545 return bfd_get_32 (abfd, info_ptr);
16546 else
16547 return bfd_get_64 (abfd, info_ptr);
16548 }
16549
16550 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16551
16552 static CORE_ADDR
16553 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16554 {
16555 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16556 }
16557
16558 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16559
16560 static CORE_ADDR
16561 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16562 unsigned int *bytes_read)
16563 {
16564 bfd *abfd = cu->objfile->obfd;
16565 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16566
16567 return read_addr_index (cu, addr_index);
16568 }
16569
16570 /* Data structure to pass results from dwarf2_read_addr_index_reader
16571 back to dwarf2_read_addr_index. */
16572
16573 struct dwarf2_read_addr_index_data
16574 {
16575 ULONGEST addr_base;
16576 int addr_size;
16577 };
16578
16579 /* die_reader_func for dwarf2_read_addr_index. */
16580
16581 static void
16582 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16583 const gdb_byte *info_ptr,
16584 struct die_info *comp_unit_die,
16585 int has_children,
16586 void *data)
16587 {
16588 struct dwarf2_cu *cu = reader->cu;
16589 struct dwarf2_read_addr_index_data *aidata =
16590 (struct dwarf2_read_addr_index_data *) data;
16591
16592 aidata->addr_base = cu->addr_base;
16593 aidata->addr_size = cu->header.addr_size;
16594 }
16595
16596 /* Given an index in .debug_addr, fetch the value.
16597 NOTE: This can be called during dwarf expression evaluation,
16598 long after the debug information has been read, and thus per_cu->cu
16599 may no longer exist. */
16600
16601 CORE_ADDR
16602 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16603 unsigned int addr_index)
16604 {
16605 struct objfile *objfile = per_cu->objfile;
16606 struct dwarf2_cu *cu = per_cu->cu;
16607 ULONGEST addr_base;
16608 int addr_size;
16609
16610 /* This is intended to be called from outside this file. */
16611 dw2_setup (objfile);
16612
16613 /* We need addr_base and addr_size.
16614 If we don't have PER_CU->cu, we have to get it.
16615 Nasty, but the alternative is storing the needed info in PER_CU,
16616 which at this point doesn't seem justified: it's not clear how frequently
16617 it would get used and it would increase the size of every PER_CU.
16618 Entry points like dwarf2_per_cu_addr_size do a similar thing
16619 so we're not in uncharted territory here.
16620 Alas we need to be a bit more complicated as addr_base is contained
16621 in the DIE.
16622
16623 We don't need to read the entire CU(/TU).
16624 We just need the header and top level die.
16625
16626 IWBN to use the aging mechanism to let us lazily later discard the CU.
16627 For now we skip this optimization. */
16628
16629 if (cu != NULL)
16630 {
16631 addr_base = cu->addr_base;
16632 addr_size = cu->header.addr_size;
16633 }
16634 else
16635 {
16636 struct dwarf2_read_addr_index_data aidata;
16637
16638 /* Note: We can't use init_cutu_and_read_dies_simple here,
16639 we need addr_base. */
16640 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16641 dwarf2_read_addr_index_reader, &aidata);
16642 addr_base = aidata.addr_base;
16643 addr_size = aidata.addr_size;
16644 }
16645
16646 return read_addr_index_1 (addr_index, addr_base, addr_size);
16647 }
16648
16649 /* Given a DW_FORM_GNU_str_index, fetch the string.
16650 This is only used by the Fission support. */
16651
16652 static const char *
16653 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16654 {
16655 struct objfile *objfile = dwarf2_per_objfile->objfile;
16656 const char *objf_name = objfile_name (objfile);
16657 bfd *abfd = objfile->obfd;
16658 struct dwarf2_cu *cu = reader->cu;
16659 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16660 struct dwarf2_section_info *str_offsets_section =
16661 &reader->dwo_file->sections.str_offsets;
16662 const gdb_byte *info_ptr;
16663 ULONGEST str_offset;
16664 static const char form_name[] = "DW_FORM_GNU_str_index";
16665
16666 dwarf2_read_section (objfile, str_section);
16667 dwarf2_read_section (objfile, str_offsets_section);
16668 if (str_section->buffer == NULL)
16669 error (_("%s used without .debug_str.dwo section"
16670 " in CU at offset 0x%lx [in module %s]"),
16671 form_name, (long) cu->header.offset.sect_off, objf_name);
16672 if (str_offsets_section->buffer == NULL)
16673 error (_("%s used without .debug_str_offsets.dwo section"
16674 " in CU at offset 0x%lx [in module %s]"),
16675 form_name, (long) cu->header.offset.sect_off, objf_name);
16676 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16677 error (_("%s pointing outside of .debug_str_offsets.dwo"
16678 " section in CU at offset 0x%lx [in module %s]"),
16679 form_name, (long) cu->header.offset.sect_off, objf_name);
16680 info_ptr = (str_offsets_section->buffer
16681 + str_index * cu->header.offset_size);
16682 if (cu->header.offset_size == 4)
16683 str_offset = bfd_get_32 (abfd, info_ptr);
16684 else
16685 str_offset = bfd_get_64 (abfd, info_ptr);
16686 if (str_offset >= str_section->size)
16687 error (_("Offset from %s pointing outside of"
16688 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16689 form_name, (long) cu->header.offset.sect_off, objf_name);
16690 return (const char *) (str_section->buffer + str_offset);
16691 }
16692
16693 /* Return the length of an LEB128 number in BUF. */
16694
16695 static int
16696 leb128_size (const gdb_byte *buf)
16697 {
16698 const gdb_byte *begin = buf;
16699 gdb_byte byte;
16700
16701 while (1)
16702 {
16703 byte = *buf++;
16704 if ((byte & 128) == 0)
16705 return buf - begin;
16706 }
16707 }
16708
16709 static void
16710 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16711 {
16712 switch (lang)
16713 {
16714 case DW_LANG_C89:
16715 case DW_LANG_C99:
16716 case DW_LANG_C11:
16717 case DW_LANG_C:
16718 case DW_LANG_UPC:
16719 cu->language = language_c;
16720 break;
16721 case DW_LANG_C_plus_plus:
16722 case DW_LANG_C_plus_plus_11:
16723 case DW_LANG_C_plus_plus_14:
16724 cu->language = language_cplus;
16725 break;
16726 case DW_LANG_D:
16727 cu->language = language_d;
16728 break;
16729 case DW_LANG_Fortran77:
16730 case DW_LANG_Fortran90:
16731 case DW_LANG_Fortran95:
16732 cu->language = language_fortran;
16733 break;
16734 case DW_LANG_Go:
16735 cu->language = language_go;
16736 break;
16737 case DW_LANG_Mips_Assembler:
16738 cu->language = language_asm;
16739 break;
16740 case DW_LANG_Java:
16741 cu->language = language_java;
16742 break;
16743 case DW_LANG_Ada83:
16744 case DW_LANG_Ada95:
16745 cu->language = language_ada;
16746 break;
16747 case DW_LANG_Modula2:
16748 cu->language = language_m2;
16749 break;
16750 case DW_LANG_Pascal83:
16751 cu->language = language_pascal;
16752 break;
16753 case DW_LANG_ObjC:
16754 cu->language = language_objc;
16755 break;
16756 case DW_LANG_Cobol74:
16757 case DW_LANG_Cobol85:
16758 default:
16759 cu->language = language_minimal;
16760 break;
16761 }
16762 cu->language_defn = language_def (cu->language);
16763 }
16764
16765 /* Return the named attribute or NULL if not there. */
16766
16767 static struct attribute *
16768 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16769 {
16770 for (;;)
16771 {
16772 unsigned int i;
16773 struct attribute *spec = NULL;
16774
16775 for (i = 0; i < die->num_attrs; ++i)
16776 {
16777 if (die->attrs[i].name == name)
16778 return &die->attrs[i];
16779 if (die->attrs[i].name == DW_AT_specification
16780 || die->attrs[i].name == DW_AT_abstract_origin)
16781 spec = &die->attrs[i];
16782 }
16783
16784 if (!spec)
16785 break;
16786
16787 die = follow_die_ref (die, spec, &cu);
16788 }
16789
16790 return NULL;
16791 }
16792
16793 /* Return the named attribute or NULL if not there,
16794 but do not follow DW_AT_specification, etc.
16795 This is for use in contexts where we're reading .debug_types dies.
16796 Following DW_AT_specification, DW_AT_abstract_origin will take us
16797 back up the chain, and we want to go down. */
16798
16799 static struct attribute *
16800 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16801 {
16802 unsigned int i;
16803
16804 for (i = 0; i < die->num_attrs; ++i)
16805 if (die->attrs[i].name == name)
16806 return &die->attrs[i];
16807
16808 return NULL;
16809 }
16810
16811 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16812 and holds a non-zero value. This function should only be used for
16813 DW_FORM_flag or DW_FORM_flag_present attributes. */
16814
16815 static int
16816 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16817 {
16818 struct attribute *attr = dwarf2_attr (die, name, cu);
16819
16820 return (attr && DW_UNSND (attr));
16821 }
16822
16823 static int
16824 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16825 {
16826 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16827 which value is non-zero. However, we have to be careful with
16828 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16829 (via dwarf2_flag_true_p) follows this attribute. So we may
16830 end up accidently finding a declaration attribute that belongs
16831 to a different DIE referenced by the specification attribute,
16832 even though the given DIE does not have a declaration attribute. */
16833 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16834 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16835 }
16836
16837 /* Return the die giving the specification for DIE, if there is
16838 one. *SPEC_CU is the CU containing DIE on input, and the CU
16839 containing the return value on output. If there is no
16840 specification, but there is an abstract origin, that is
16841 returned. */
16842
16843 static struct die_info *
16844 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16845 {
16846 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16847 *spec_cu);
16848
16849 if (spec_attr == NULL)
16850 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16851
16852 if (spec_attr == NULL)
16853 return NULL;
16854 else
16855 return follow_die_ref (die, spec_attr, spec_cu);
16856 }
16857
16858 /* Free the line_header structure *LH, and any arrays and strings it
16859 refers to.
16860 NOTE: This is also used as a "cleanup" function. */
16861
16862 static void
16863 free_line_header (struct line_header *lh)
16864 {
16865 if (lh->standard_opcode_lengths)
16866 xfree (lh->standard_opcode_lengths);
16867
16868 /* Remember that all the lh->file_names[i].name pointers are
16869 pointers into debug_line_buffer, and don't need to be freed. */
16870 if (lh->file_names)
16871 xfree (lh->file_names);
16872
16873 /* Similarly for the include directory names. */
16874 if (lh->include_dirs)
16875 xfree (lh->include_dirs);
16876
16877 xfree (lh);
16878 }
16879
16880 /* Add an entry to LH's include directory table. */
16881
16882 static void
16883 add_include_dir (struct line_header *lh, const char *include_dir)
16884 {
16885 /* Grow the array if necessary. */
16886 if (lh->include_dirs_size == 0)
16887 {
16888 lh->include_dirs_size = 1; /* for testing */
16889 lh->include_dirs = xmalloc (lh->include_dirs_size
16890 * sizeof (*lh->include_dirs));
16891 }
16892 else if (lh->num_include_dirs >= lh->include_dirs_size)
16893 {
16894 lh->include_dirs_size *= 2;
16895 lh->include_dirs = xrealloc (lh->include_dirs,
16896 (lh->include_dirs_size
16897 * sizeof (*lh->include_dirs)));
16898 }
16899
16900 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16901 }
16902
16903 /* Add an entry to LH's file name table. */
16904
16905 static void
16906 add_file_name (struct line_header *lh,
16907 const char *name,
16908 unsigned int dir_index,
16909 unsigned int mod_time,
16910 unsigned int length)
16911 {
16912 struct file_entry *fe;
16913
16914 /* Grow the array if necessary. */
16915 if (lh->file_names_size == 0)
16916 {
16917 lh->file_names_size = 1; /* for testing */
16918 lh->file_names = xmalloc (lh->file_names_size
16919 * sizeof (*lh->file_names));
16920 }
16921 else if (lh->num_file_names >= lh->file_names_size)
16922 {
16923 lh->file_names_size *= 2;
16924 lh->file_names = xrealloc (lh->file_names,
16925 (lh->file_names_size
16926 * sizeof (*lh->file_names)));
16927 }
16928
16929 fe = &lh->file_names[lh->num_file_names++];
16930 fe->name = name;
16931 fe->dir_index = dir_index;
16932 fe->mod_time = mod_time;
16933 fe->length = length;
16934 fe->included_p = 0;
16935 fe->symtab = NULL;
16936 }
16937
16938 /* A convenience function to find the proper .debug_line section for a
16939 CU. */
16940
16941 static struct dwarf2_section_info *
16942 get_debug_line_section (struct dwarf2_cu *cu)
16943 {
16944 struct dwarf2_section_info *section;
16945
16946 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16947 DWO file. */
16948 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16949 section = &cu->dwo_unit->dwo_file->sections.line;
16950 else if (cu->per_cu->is_dwz)
16951 {
16952 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16953
16954 section = &dwz->line;
16955 }
16956 else
16957 section = &dwarf2_per_objfile->line;
16958
16959 return section;
16960 }
16961
16962 /* Read the statement program header starting at OFFSET in
16963 .debug_line, or .debug_line.dwo. Return a pointer
16964 to a struct line_header, allocated using xmalloc.
16965
16966 NOTE: the strings in the include directory and file name tables of
16967 the returned object point into the dwarf line section buffer,
16968 and must not be freed. */
16969
16970 static struct line_header *
16971 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16972 {
16973 struct cleanup *back_to;
16974 struct line_header *lh;
16975 const gdb_byte *line_ptr;
16976 unsigned int bytes_read, offset_size;
16977 int i;
16978 const char *cur_dir, *cur_file;
16979 struct dwarf2_section_info *section;
16980 bfd *abfd;
16981
16982 section = get_debug_line_section (cu);
16983 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16984 if (section->buffer == NULL)
16985 {
16986 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16987 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16988 else
16989 complaint (&symfile_complaints, _("missing .debug_line section"));
16990 return 0;
16991 }
16992
16993 /* We can't do this until we know the section is non-empty.
16994 Only then do we know we have such a section. */
16995 abfd = get_section_bfd_owner (section);
16996
16997 /* Make sure that at least there's room for the total_length field.
16998 That could be 12 bytes long, but we're just going to fudge that. */
16999 if (offset + 4 >= section->size)
17000 {
17001 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17002 return 0;
17003 }
17004
17005 lh = xmalloc (sizeof (*lh));
17006 memset (lh, 0, sizeof (*lh));
17007 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17008 (void *) lh);
17009
17010 line_ptr = section->buffer + offset;
17011
17012 /* Read in the header. */
17013 lh->total_length =
17014 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17015 &bytes_read, &offset_size);
17016 line_ptr += bytes_read;
17017 if (line_ptr + lh->total_length > (section->buffer + section->size))
17018 {
17019 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17020 do_cleanups (back_to);
17021 return 0;
17022 }
17023 lh->statement_program_end = line_ptr + lh->total_length;
17024 lh->version = read_2_bytes (abfd, line_ptr);
17025 line_ptr += 2;
17026 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17027 line_ptr += offset_size;
17028 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17029 line_ptr += 1;
17030 if (lh->version >= 4)
17031 {
17032 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 }
17035 else
17036 lh->maximum_ops_per_instruction = 1;
17037
17038 if (lh->maximum_ops_per_instruction == 0)
17039 {
17040 lh->maximum_ops_per_instruction = 1;
17041 complaint (&symfile_complaints,
17042 _("invalid maximum_ops_per_instruction "
17043 "in `.debug_line' section"));
17044 }
17045
17046 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
17048 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17049 line_ptr += 1;
17050 lh->line_range = read_1_byte (abfd, line_ptr);
17051 line_ptr += 1;
17052 lh->opcode_base = read_1_byte (abfd, line_ptr);
17053 line_ptr += 1;
17054 lh->standard_opcode_lengths
17055 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17056
17057 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17058 for (i = 1; i < lh->opcode_base; ++i)
17059 {
17060 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17061 line_ptr += 1;
17062 }
17063
17064 /* Read directory table. */
17065 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17066 {
17067 line_ptr += bytes_read;
17068 add_include_dir (lh, cur_dir);
17069 }
17070 line_ptr += bytes_read;
17071
17072 /* Read file name table. */
17073 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17074 {
17075 unsigned int dir_index, mod_time, length;
17076
17077 line_ptr += bytes_read;
17078 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17079 line_ptr += bytes_read;
17080 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17081 line_ptr += bytes_read;
17082 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17083 line_ptr += bytes_read;
17084
17085 add_file_name (lh, cur_file, dir_index, mod_time, length);
17086 }
17087 line_ptr += bytes_read;
17088 lh->statement_program_start = line_ptr;
17089
17090 if (line_ptr > (section->buffer + section->size))
17091 complaint (&symfile_complaints,
17092 _("line number info header doesn't "
17093 "fit in `.debug_line' section"));
17094
17095 discard_cleanups (back_to);
17096 return lh;
17097 }
17098
17099 /* Subroutine of dwarf_decode_lines to simplify it.
17100 Return the file name of the psymtab for included file FILE_INDEX
17101 in line header LH of PST.
17102 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17103 If space for the result is malloc'd, it will be freed by a cleanup.
17104 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17105
17106 The function creates dangling cleanup registration. */
17107
17108 static const char *
17109 psymtab_include_file_name (const struct line_header *lh, int file_index,
17110 const struct partial_symtab *pst,
17111 const char *comp_dir)
17112 {
17113 const struct file_entry fe = lh->file_names [file_index];
17114 const char *include_name = fe.name;
17115 const char *include_name_to_compare = include_name;
17116 const char *dir_name = NULL;
17117 const char *pst_filename;
17118 char *copied_name = NULL;
17119 int file_is_pst;
17120
17121 if (fe.dir_index)
17122 dir_name = lh->include_dirs[fe.dir_index - 1];
17123
17124 if (!IS_ABSOLUTE_PATH (include_name)
17125 && (dir_name != NULL || comp_dir != NULL))
17126 {
17127 /* Avoid creating a duplicate psymtab for PST.
17128 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17129 Before we do the comparison, however, we need to account
17130 for DIR_NAME and COMP_DIR.
17131 First prepend dir_name (if non-NULL). If we still don't
17132 have an absolute path prepend comp_dir (if non-NULL).
17133 However, the directory we record in the include-file's
17134 psymtab does not contain COMP_DIR (to match the
17135 corresponding symtab(s)).
17136
17137 Example:
17138
17139 bash$ cd /tmp
17140 bash$ gcc -g ./hello.c
17141 include_name = "hello.c"
17142 dir_name = "."
17143 DW_AT_comp_dir = comp_dir = "/tmp"
17144 DW_AT_name = "./hello.c"
17145
17146 */
17147
17148 if (dir_name != NULL)
17149 {
17150 char *tem = concat (dir_name, SLASH_STRING,
17151 include_name, (char *)NULL);
17152
17153 make_cleanup (xfree, tem);
17154 include_name = tem;
17155 include_name_to_compare = include_name;
17156 }
17157 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17158 {
17159 char *tem = concat (comp_dir, SLASH_STRING,
17160 include_name, (char *)NULL);
17161
17162 make_cleanup (xfree, tem);
17163 include_name_to_compare = tem;
17164 }
17165 }
17166
17167 pst_filename = pst->filename;
17168 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17169 {
17170 copied_name = concat (pst->dirname, SLASH_STRING,
17171 pst_filename, (char *)NULL);
17172 pst_filename = copied_name;
17173 }
17174
17175 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17176
17177 if (copied_name != NULL)
17178 xfree (copied_name);
17179
17180 if (file_is_pst)
17181 return NULL;
17182 return include_name;
17183 }
17184
17185 /* Ignore this record_line request. */
17186
17187 static void
17188 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17189 {
17190 return;
17191 }
17192
17193 /* Return non-zero if we should add LINE to the line number table.
17194 LINE is the line to add, LAST_LINE is the last line that was added,
17195 LAST_SUBFILE is the subfile for LAST_LINE.
17196 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17197 had a non-zero discriminator.
17198
17199 We have to be careful in the presence of discriminators.
17200 E.g., for this line:
17201
17202 for (i = 0; i < 100000; i++);
17203
17204 clang can emit four line number entries for that one line,
17205 each with a different discriminator.
17206 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17207
17208 However, we want gdb to coalesce all four entries into one.
17209 Otherwise the user could stepi into the middle of the line and
17210 gdb would get confused about whether the pc really was in the
17211 middle of the line.
17212
17213 Things are further complicated by the fact that two consecutive
17214 line number entries for the same line is a heuristic used by gcc
17215 to denote the end of the prologue. So we can't just discard duplicate
17216 entries, we have to be selective about it. The heuristic we use is
17217 that we only collapse consecutive entries for the same line if at least
17218 one of those entries has a non-zero discriminator. PR 17276.
17219
17220 Note: Addresses in the line number state machine can never go backwards
17221 within one sequence, thus this coalescing is ok. */
17222
17223 static int
17224 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17225 int line_has_non_zero_discriminator,
17226 struct subfile *last_subfile)
17227 {
17228 if (current_subfile != last_subfile)
17229 return 1;
17230 if (line != last_line)
17231 return 1;
17232 /* Same line for the same file that we've seen already.
17233 As a last check, for pr 17276, only record the line if the line
17234 has never had a non-zero discriminator. */
17235 if (!line_has_non_zero_discriminator)
17236 return 1;
17237 return 0;
17238 }
17239
17240 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17241 in the line table of subfile SUBFILE. */
17242
17243 static void
17244 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17245 unsigned int line, CORE_ADDR address,
17246 record_line_ftype p_record_line)
17247 {
17248 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17249
17250 (*p_record_line) (subfile, line, addr);
17251 }
17252
17253 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17254 Mark the end of a set of line number records.
17255 The arguments are the same as for dwarf_record_line.
17256 If SUBFILE is NULL the request is ignored. */
17257
17258 static void
17259 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17260 CORE_ADDR address, record_line_ftype p_record_line)
17261 {
17262 if (subfile != NULL)
17263 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17264 }
17265
17266 /* Subroutine of dwarf_decode_lines to simplify it.
17267 Process the line number information in LH. */
17268
17269 static void
17270 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17271 const int decode_for_pst_p, CORE_ADDR lowpc)
17272 {
17273 const gdb_byte *line_ptr, *extended_end;
17274 const gdb_byte *line_end;
17275 unsigned int bytes_read, extended_len;
17276 unsigned char op_code, extended_op;
17277 CORE_ADDR baseaddr;
17278 struct objfile *objfile = cu->objfile;
17279 bfd *abfd = objfile->obfd;
17280 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17281 struct subfile *last_subfile = NULL;
17282 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17283 = record_line;
17284
17285 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17286
17287 line_ptr = lh->statement_program_start;
17288 line_end = lh->statement_program_end;
17289
17290 /* Read the statement sequences until there's nothing left. */
17291 while (line_ptr < line_end)
17292 {
17293 /* state machine registers */
17294 CORE_ADDR address = 0;
17295 unsigned int file = 1;
17296 unsigned int line = 1;
17297 int is_stmt = lh->default_is_stmt;
17298 int end_sequence = 0;
17299 unsigned char op_index = 0;
17300 unsigned int discriminator = 0;
17301 /* The last line number that was recorded, used to coalesce
17302 consecutive entries for the same line. This can happen, for
17303 example, when discriminators are present. PR 17276. */
17304 unsigned int last_line = 0;
17305 int line_has_non_zero_discriminator = 0;
17306
17307 if (!decode_for_pst_p && lh->num_file_names >= file)
17308 {
17309 /* Start a subfile for the current file of the state machine. */
17310 /* lh->include_dirs and lh->file_names are 0-based, but the
17311 directory and file name numbers in the statement program
17312 are 1-based. */
17313 struct file_entry *fe = &lh->file_names[file - 1];
17314 const char *dir = NULL;
17315
17316 if (fe->dir_index)
17317 dir = lh->include_dirs[fe->dir_index - 1];
17318
17319 dwarf2_start_subfile (fe->name, dir);
17320 }
17321
17322 /* Decode the table. */
17323 while (!end_sequence)
17324 {
17325 op_code = read_1_byte (abfd, line_ptr);
17326 line_ptr += 1;
17327 if (line_ptr > line_end)
17328 {
17329 dwarf2_debug_line_missing_end_sequence_complaint ();
17330 break;
17331 }
17332
17333 if (op_code >= lh->opcode_base)
17334 {
17335 /* Special opcode. */
17336 unsigned char adj_opcode;
17337 int line_delta;
17338
17339 adj_opcode = op_code - lh->opcode_base;
17340 address += (((op_index + (adj_opcode / lh->line_range))
17341 / lh->maximum_ops_per_instruction)
17342 * lh->minimum_instruction_length);
17343 op_index = ((op_index + (adj_opcode / lh->line_range))
17344 % lh->maximum_ops_per_instruction);
17345 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17346 line += line_delta;
17347 if (line_delta != 0)
17348 line_has_non_zero_discriminator = discriminator != 0;
17349 if (lh->num_file_names < file || file == 0)
17350 dwarf2_debug_line_missing_file_complaint ();
17351 /* For now we ignore lines not starting on an
17352 instruction boundary. */
17353 else if (op_index == 0)
17354 {
17355 lh->file_names[file - 1].included_p = 1;
17356 if (!decode_for_pst_p && is_stmt)
17357 {
17358 if (last_subfile != current_subfile)
17359 {
17360 dwarf_finish_line (gdbarch, last_subfile,
17361 address, p_record_line);
17362 }
17363 if (dwarf_record_line_p (line, last_line,
17364 line_has_non_zero_discriminator,
17365 last_subfile))
17366 {
17367 dwarf_record_line (gdbarch, current_subfile,
17368 line, address, p_record_line);
17369 }
17370 last_subfile = current_subfile;
17371 last_line = line;
17372 }
17373 }
17374 discriminator = 0;
17375 }
17376 else switch (op_code)
17377 {
17378 case DW_LNS_extended_op:
17379 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17380 &bytes_read);
17381 line_ptr += bytes_read;
17382 extended_end = line_ptr + extended_len;
17383 extended_op = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
17385 switch (extended_op)
17386 {
17387 case DW_LNE_end_sequence:
17388 p_record_line = record_line;
17389 end_sequence = 1;
17390 break;
17391 case DW_LNE_set_address:
17392 address = read_address (abfd, line_ptr, cu, &bytes_read);
17393
17394 /* If address < lowpc then it's not a usable value, it's
17395 outside the pc range of the CU. However, we restrict
17396 the test to only address values of zero to preserve
17397 GDB's previous behaviour which is to handle the specific
17398 case of a function being GC'd by the linker. */
17399 if (address == 0 && address < lowpc)
17400 {
17401 /* This line table is for a function which has been
17402 GCd by the linker. Ignore it. PR gdb/12528 */
17403
17404 long line_offset
17405 = line_ptr - get_debug_line_section (cu)->buffer;
17406
17407 complaint (&symfile_complaints,
17408 _(".debug_line address at offset 0x%lx is 0 "
17409 "[in module %s]"),
17410 line_offset, objfile_name (objfile));
17411 p_record_line = noop_record_line;
17412 /* Note: p_record_line is left as noop_record_line
17413 until we see DW_LNE_end_sequence. */
17414 }
17415
17416 op_index = 0;
17417 line_ptr += bytes_read;
17418 address += baseaddr;
17419 break;
17420 case DW_LNE_define_file:
17421 {
17422 const char *cur_file;
17423 unsigned int dir_index, mod_time, length;
17424
17425 cur_file = read_direct_string (abfd, line_ptr,
17426 &bytes_read);
17427 line_ptr += bytes_read;
17428 dir_index =
17429 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17430 line_ptr += bytes_read;
17431 mod_time =
17432 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17433 line_ptr += bytes_read;
17434 length =
17435 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17436 line_ptr += bytes_read;
17437 add_file_name (lh, cur_file, dir_index, mod_time, length);
17438 }
17439 break;
17440 case DW_LNE_set_discriminator:
17441 /* The discriminator is not interesting to the debugger;
17442 just ignore it. We still need to check its value though:
17443 if there are consecutive entries for the same
17444 (non-prologue) line we want to coalesce them.
17445 PR 17276. */
17446 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17447 &bytes_read);
17448 line_has_non_zero_discriminator |= discriminator != 0;
17449 line_ptr += bytes_read;
17450 break;
17451 default:
17452 complaint (&symfile_complaints,
17453 _("mangled .debug_line section"));
17454 return;
17455 }
17456 /* Make sure that we parsed the extended op correctly. If e.g.
17457 we expected a different address size than the producer used,
17458 we may have read the wrong number of bytes. */
17459 if (line_ptr != extended_end)
17460 {
17461 complaint (&symfile_complaints,
17462 _("mangled .debug_line section"));
17463 return;
17464 }
17465 break;
17466 case DW_LNS_copy:
17467 if (lh->num_file_names < file || file == 0)
17468 dwarf2_debug_line_missing_file_complaint ();
17469 else
17470 {
17471 lh->file_names[file - 1].included_p = 1;
17472 if (!decode_for_pst_p && is_stmt)
17473 {
17474 if (last_subfile != current_subfile)
17475 {
17476 dwarf_finish_line (gdbarch, last_subfile,
17477 address, p_record_line);
17478 }
17479 if (dwarf_record_line_p (line, last_line,
17480 line_has_non_zero_discriminator,
17481 last_subfile))
17482 {
17483 dwarf_record_line (gdbarch, current_subfile,
17484 line, address, p_record_line);
17485 }
17486 last_subfile = current_subfile;
17487 last_line = line;
17488 }
17489 }
17490 discriminator = 0;
17491 break;
17492 case DW_LNS_advance_pc:
17493 {
17494 CORE_ADDR adjust
17495 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17496
17497 address += (((op_index + adjust)
17498 / lh->maximum_ops_per_instruction)
17499 * lh->minimum_instruction_length);
17500 op_index = ((op_index + adjust)
17501 % lh->maximum_ops_per_instruction);
17502 line_ptr += bytes_read;
17503 }
17504 break;
17505 case DW_LNS_advance_line:
17506 {
17507 int line_delta
17508 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17509
17510 line += line_delta;
17511 if (line_delta != 0)
17512 line_has_non_zero_discriminator = discriminator != 0;
17513 line_ptr += bytes_read;
17514 }
17515 break;
17516 case DW_LNS_set_file:
17517 {
17518 /* The arrays lh->include_dirs and lh->file_names are
17519 0-based, but the directory and file name numbers in
17520 the statement program are 1-based. */
17521 struct file_entry *fe;
17522 const char *dir = NULL;
17523
17524 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17525 line_ptr += bytes_read;
17526 if (lh->num_file_names < file || file == 0)
17527 dwarf2_debug_line_missing_file_complaint ();
17528 else
17529 {
17530 fe = &lh->file_names[file - 1];
17531 if (fe->dir_index)
17532 dir = lh->include_dirs[fe->dir_index - 1];
17533 if (!decode_for_pst_p)
17534 {
17535 last_subfile = current_subfile;
17536 line_has_non_zero_discriminator = discriminator != 0;
17537 dwarf2_start_subfile (fe->name, dir);
17538 }
17539 }
17540 }
17541 break;
17542 case DW_LNS_set_column:
17543 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17544 line_ptr += bytes_read;
17545 break;
17546 case DW_LNS_negate_stmt:
17547 is_stmt = (!is_stmt);
17548 break;
17549 case DW_LNS_set_basic_block:
17550 break;
17551 /* Add to the address register of the state machine the
17552 address increment value corresponding to special opcode
17553 255. I.e., this value is scaled by the minimum
17554 instruction length since special opcode 255 would have
17555 scaled the increment. */
17556 case DW_LNS_const_add_pc:
17557 {
17558 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17559
17560 address += (((op_index + adjust)
17561 / lh->maximum_ops_per_instruction)
17562 * lh->minimum_instruction_length);
17563 op_index = ((op_index + adjust)
17564 % lh->maximum_ops_per_instruction);
17565 }
17566 break;
17567 case DW_LNS_fixed_advance_pc:
17568 address += read_2_bytes (abfd, line_ptr);
17569 op_index = 0;
17570 line_ptr += 2;
17571 break;
17572 default:
17573 {
17574 /* Unknown standard opcode, ignore it. */
17575 int i;
17576
17577 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17578 {
17579 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17580 line_ptr += bytes_read;
17581 }
17582 }
17583 }
17584 }
17585 if (lh->num_file_names < file || file == 0)
17586 dwarf2_debug_line_missing_file_complaint ();
17587 else
17588 {
17589 lh->file_names[file - 1].included_p = 1;
17590 if (!decode_for_pst_p)
17591 {
17592 dwarf_finish_line (gdbarch, current_subfile, address,
17593 p_record_line);
17594 }
17595 }
17596 }
17597 }
17598
17599 /* Decode the Line Number Program (LNP) for the given line_header
17600 structure and CU. The actual information extracted and the type
17601 of structures created from the LNP depends on the value of PST.
17602
17603 1. If PST is NULL, then this procedure uses the data from the program
17604 to create all necessary symbol tables, and their linetables.
17605
17606 2. If PST is not NULL, this procedure reads the program to determine
17607 the list of files included by the unit represented by PST, and
17608 builds all the associated partial symbol tables.
17609
17610 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17611 It is used for relative paths in the line table.
17612 NOTE: When processing partial symtabs (pst != NULL),
17613 comp_dir == pst->dirname.
17614
17615 NOTE: It is important that psymtabs have the same file name (via strcmp)
17616 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17617 symtab we don't use it in the name of the psymtabs we create.
17618 E.g. expand_line_sal requires this when finding psymtabs to expand.
17619 A good testcase for this is mb-inline.exp.
17620
17621 LOWPC is the lowest address in CU (or 0 if not known). */
17622
17623 static void
17624 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17625 struct dwarf2_cu *cu, struct partial_symtab *pst,
17626 CORE_ADDR lowpc)
17627 {
17628 struct objfile *objfile = cu->objfile;
17629 const int decode_for_pst_p = (pst != NULL);
17630
17631 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17632
17633 if (decode_for_pst_p)
17634 {
17635 int file_index;
17636
17637 /* Now that we're done scanning the Line Header Program, we can
17638 create the psymtab of each included file. */
17639 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17640 if (lh->file_names[file_index].included_p == 1)
17641 {
17642 const char *include_name =
17643 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17644 if (include_name != NULL)
17645 dwarf2_create_include_psymtab (include_name, pst, objfile);
17646 }
17647 }
17648 else
17649 {
17650 /* Make sure a symtab is created for every file, even files
17651 which contain only variables (i.e. no code with associated
17652 line numbers). */
17653 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17654 int i;
17655
17656 for (i = 0; i < lh->num_file_names; i++)
17657 {
17658 const char *dir = NULL;
17659 struct file_entry *fe;
17660
17661 fe = &lh->file_names[i];
17662 if (fe->dir_index)
17663 dir = lh->include_dirs[fe->dir_index - 1];
17664 dwarf2_start_subfile (fe->name, dir);
17665
17666 if (current_subfile->symtab == NULL)
17667 {
17668 current_subfile->symtab
17669 = allocate_symtab (cust, current_subfile->name);
17670 }
17671 fe->symtab = current_subfile->symtab;
17672 }
17673 }
17674 }
17675
17676 /* Start a subfile for DWARF. FILENAME is the name of the file and
17677 DIRNAME the name of the source directory which contains FILENAME
17678 or NULL if not known.
17679 This routine tries to keep line numbers from identical absolute and
17680 relative file names in a common subfile.
17681
17682 Using the `list' example from the GDB testsuite, which resides in
17683 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17684 of /srcdir/list0.c yields the following debugging information for list0.c:
17685
17686 DW_AT_name: /srcdir/list0.c
17687 DW_AT_comp_dir: /compdir
17688 files.files[0].name: list0.h
17689 files.files[0].dir: /srcdir
17690 files.files[1].name: list0.c
17691 files.files[1].dir: /srcdir
17692
17693 The line number information for list0.c has to end up in a single
17694 subfile, so that `break /srcdir/list0.c:1' works as expected.
17695 start_subfile will ensure that this happens provided that we pass the
17696 concatenation of files.files[1].dir and files.files[1].name as the
17697 subfile's name. */
17698
17699 static void
17700 dwarf2_start_subfile (const char *filename, const char *dirname)
17701 {
17702 char *copy = NULL;
17703
17704 /* In order not to lose the line information directory,
17705 we concatenate it to the filename when it makes sense.
17706 Note that the Dwarf3 standard says (speaking of filenames in line
17707 information): ``The directory index is ignored for file names
17708 that represent full path names''. Thus ignoring dirname in the
17709 `else' branch below isn't an issue. */
17710
17711 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17712 {
17713 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17714 filename = copy;
17715 }
17716
17717 start_subfile (filename);
17718
17719 if (copy != NULL)
17720 xfree (copy);
17721 }
17722
17723 /* Start a symtab for DWARF.
17724 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17725
17726 static struct compunit_symtab *
17727 dwarf2_start_symtab (struct dwarf2_cu *cu,
17728 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17729 {
17730 struct compunit_symtab *cust
17731 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17732
17733 record_debugformat ("DWARF 2");
17734 record_producer (cu->producer);
17735
17736 /* We assume that we're processing GCC output. */
17737 processing_gcc_compilation = 2;
17738
17739 cu->processing_has_namespace_info = 0;
17740
17741 return cust;
17742 }
17743
17744 static void
17745 var_decode_location (struct attribute *attr, struct symbol *sym,
17746 struct dwarf2_cu *cu)
17747 {
17748 struct objfile *objfile = cu->objfile;
17749 struct comp_unit_head *cu_header = &cu->header;
17750
17751 /* NOTE drow/2003-01-30: There used to be a comment and some special
17752 code here to turn a symbol with DW_AT_external and a
17753 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17754 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17755 with some versions of binutils) where shared libraries could have
17756 relocations against symbols in their debug information - the
17757 minimal symbol would have the right address, but the debug info
17758 would not. It's no longer necessary, because we will explicitly
17759 apply relocations when we read in the debug information now. */
17760
17761 /* A DW_AT_location attribute with no contents indicates that a
17762 variable has been optimized away. */
17763 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17764 {
17765 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17766 return;
17767 }
17768
17769 /* Handle one degenerate form of location expression specially, to
17770 preserve GDB's previous behavior when section offsets are
17771 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17772 then mark this symbol as LOC_STATIC. */
17773
17774 if (attr_form_is_block (attr)
17775 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17776 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17777 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17778 && (DW_BLOCK (attr)->size
17779 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17780 {
17781 unsigned int dummy;
17782
17783 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17784 SYMBOL_VALUE_ADDRESS (sym) =
17785 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17786 else
17787 SYMBOL_VALUE_ADDRESS (sym) =
17788 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17789 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17790 fixup_symbol_section (sym, objfile);
17791 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17792 SYMBOL_SECTION (sym));
17793 return;
17794 }
17795
17796 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17797 expression evaluator, and use LOC_COMPUTED only when necessary
17798 (i.e. when the value of a register or memory location is
17799 referenced, or a thread-local block, etc.). Then again, it might
17800 not be worthwhile. I'm assuming that it isn't unless performance
17801 or memory numbers show me otherwise. */
17802
17803 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17804
17805 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17806 cu->has_loclist = 1;
17807 }
17808
17809 /* Given a pointer to a DWARF information entry, figure out if we need
17810 to make a symbol table entry for it, and if so, create a new entry
17811 and return a pointer to it.
17812 If TYPE is NULL, determine symbol type from the die, otherwise
17813 used the passed type.
17814 If SPACE is not NULL, use it to hold the new symbol. If it is
17815 NULL, allocate a new symbol on the objfile's obstack. */
17816
17817 static struct symbol *
17818 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17819 struct symbol *space)
17820 {
17821 struct objfile *objfile = cu->objfile;
17822 struct symbol *sym = NULL;
17823 const char *name;
17824 struct attribute *attr = NULL;
17825 struct attribute *attr2 = NULL;
17826 CORE_ADDR baseaddr;
17827 struct pending **list_to_add = NULL;
17828
17829 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17830
17831 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17832
17833 name = dwarf2_name (die, cu);
17834 if (name)
17835 {
17836 const char *linkagename;
17837 int suppress_add = 0;
17838
17839 if (space)
17840 sym = space;
17841 else
17842 sym = allocate_symbol (objfile);
17843 OBJSTAT (objfile, n_syms++);
17844
17845 /* Cache this symbol's name and the name's demangled form (if any). */
17846 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17847 linkagename = dwarf2_physname (name, die, cu);
17848 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17849
17850 /* Fortran does not have mangling standard and the mangling does differ
17851 between gfortran, iFort etc. */
17852 if (cu->language == language_fortran
17853 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17854 symbol_set_demangled_name (&(sym->ginfo),
17855 dwarf2_full_name (name, die, cu),
17856 NULL);
17857
17858 /* Default assumptions.
17859 Use the passed type or decode it from the die. */
17860 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17861 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17862 if (type != NULL)
17863 SYMBOL_TYPE (sym) = type;
17864 else
17865 SYMBOL_TYPE (sym) = die_type (die, cu);
17866 attr = dwarf2_attr (die,
17867 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17868 cu);
17869 if (attr)
17870 {
17871 SYMBOL_LINE (sym) = DW_UNSND (attr);
17872 }
17873
17874 attr = dwarf2_attr (die,
17875 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17876 cu);
17877 if (attr)
17878 {
17879 int file_index = DW_UNSND (attr);
17880
17881 if (cu->line_header == NULL
17882 || file_index > cu->line_header->num_file_names)
17883 complaint (&symfile_complaints,
17884 _("file index out of range"));
17885 else if (file_index > 0)
17886 {
17887 struct file_entry *fe;
17888
17889 fe = &cu->line_header->file_names[file_index - 1];
17890 SYMBOL_SYMTAB (sym) = fe->symtab;
17891 }
17892 }
17893
17894 switch (die->tag)
17895 {
17896 case DW_TAG_label:
17897 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17898 if (attr)
17899 SYMBOL_VALUE_ADDRESS (sym)
17900 = attr_value_as_address (attr) + baseaddr;
17901 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17902 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17903 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17904 add_symbol_to_list (sym, cu->list_in_scope);
17905 break;
17906 case DW_TAG_subprogram:
17907 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17908 finish_block. */
17909 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17910 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17911 if ((attr2 && (DW_UNSND (attr2) != 0))
17912 || cu->language == language_ada)
17913 {
17914 /* Subprograms marked external are stored as a global symbol.
17915 Ada subprograms, whether marked external or not, are always
17916 stored as a global symbol, because we want to be able to
17917 access them globally. For instance, we want to be able
17918 to break on a nested subprogram without having to
17919 specify the context. */
17920 list_to_add = &global_symbols;
17921 }
17922 else
17923 {
17924 list_to_add = cu->list_in_scope;
17925 }
17926 break;
17927 case DW_TAG_inlined_subroutine:
17928 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17929 finish_block. */
17930 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17931 SYMBOL_INLINED (sym) = 1;
17932 list_to_add = cu->list_in_scope;
17933 break;
17934 case DW_TAG_template_value_param:
17935 suppress_add = 1;
17936 /* Fall through. */
17937 case DW_TAG_constant:
17938 case DW_TAG_variable:
17939 case DW_TAG_member:
17940 /* Compilation with minimal debug info may result in
17941 variables with missing type entries. Change the
17942 misleading `void' type to something sensible. */
17943 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17944 SYMBOL_TYPE (sym)
17945 = objfile_type (objfile)->nodebug_data_symbol;
17946
17947 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17948 /* In the case of DW_TAG_member, we should only be called for
17949 static const members. */
17950 if (die->tag == DW_TAG_member)
17951 {
17952 /* dwarf2_add_field uses die_is_declaration,
17953 so we do the same. */
17954 gdb_assert (die_is_declaration (die, cu));
17955 gdb_assert (attr);
17956 }
17957 if (attr)
17958 {
17959 dwarf2_const_value (attr, sym, cu);
17960 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17961 if (!suppress_add)
17962 {
17963 if (attr2 && (DW_UNSND (attr2) != 0))
17964 list_to_add = &global_symbols;
17965 else
17966 list_to_add = cu->list_in_scope;
17967 }
17968 break;
17969 }
17970 attr = dwarf2_attr (die, DW_AT_location, cu);
17971 if (attr)
17972 {
17973 var_decode_location (attr, sym, cu);
17974 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17975
17976 /* Fortran explicitly imports any global symbols to the local
17977 scope by DW_TAG_common_block. */
17978 if (cu->language == language_fortran && die->parent
17979 && die->parent->tag == DW_TAG_common_block)
17980 attr2 = NULL;
17981
17982 if (SYMBOL_CLASS (sym) == LOC_STATIC
17983 && SYMBOL_VALUE_ADDRESS (sym) == 0
17984 && !dwarf2_per_objfile->has_section_at_zero)
17985 {
17986 /* When a static variable is eliminated by the linker,
17987 the corresponding debug information is not stripped
17988 out, but the variable address is set to null;
17989 do not add such variables into symbol table. */
17990 }
17991 else if (attr2 && (DW_UNSND (attr2) != 0))
17992 {
17993 /* Workaround gfortran PR debug/40040 - it uses
17994 DW_AT_location for variables in -fPIC libraries which may
17995 get overriden by other libraries/executable and get
17996 a different address. Resolve it by the minimal symbol
17997 which may come from inferior's executable using copy
17998 relocation. Make this workaround only for gfortran as for
17999 other compilers GDB cannot guess the minimal symbol
18000 Fortran mangling kind. */
18001 if (cu->language == language_fortran && die->parent
18002 && die->parent->tag == DW_TAG_module
18003 && cu->producer
18004 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18005 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18006
18007 /* A variable with DW_AT_external is never static,
18008 but it may be block-scoped. */
18009 list_to_add = (cu->list_in_scope == &file_symbols
18010 ? &global_symbols : cu->list_in_scope);
18011 }
18012 else
18013 list_to_add = cu->list_in_scope;
18014 }
18015 else
18016 {
18017 /* We do not know the address of this symbol.
18018 If it is an external symbol and we have type information
18019 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18020 The address of the variable will then be determined from
18021 the minimal symbol table whenever the variable is
18022 referenced. */
18023 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18024
18025 /* Fortran explicitly imports any global symbols to the local
18026 scope by DW_TAG_common_block. */
18027 if (cu->language == language_fortran && die->parent
18028 && die->parent->tag == DW_TAG_common_block)
18029 {
18030 /* SYMBOL_CLASS doesn't matter here because
18031 read_common_block is going to reset it. */
18032 if (!suppress_add)
18033 list_to_add = cu->list_in_scope;
18034 }
18035 else if (attr2 && (DW_UNSND (attr2) != 0)
18036 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18037 {
18038 /* A variable with DW_AT_external is never static, but it
18039 may be block-scoped. */
18040 list_to_add = (cu->list_in_scope == &file_symbols
18041 ? &global_symbols : cu->list_in_scope);
18042
18043 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18044 }
18045 else if (!die_is_declaration (die, cu))
18046 {
18047 /* Use the default LOC_OPTIMIZED_OUT class. */
18048 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18049 if (!suppress_add)
18050 list_to_add = cu->list_in_scope;
18051 }
18052 }
18053 break;
18054 case DW_TAG_formal_parameter:
18055 /* If we are inside a function, mark this as an argument. If
18056 not, we might be looking at an argument to an inlined function
18057 when we do not have enough information to show inlined frames;
18058 pretend it's a local variable in that case so that the user can
18059 still see it. */
18060 if (context_stack_depth > 0
18061 && context_stack[context_stack_depth - 1].name != NULL)
18062 SYMBOL_IS_ARGUMENT (sym) = 1;
18063 attr = dwarf2_attr (die, DW_AT_location, cu);
18064 if (attr)
18065 {
18066 var_decode_location (attr, sym, cu);
18067 }
18068 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18069 if (attr)
18070 {
18071 dwarf2_const_value (attr, sym, cu);
18072 }
18073
18074 list_to_add = cu->list_in_scope;
18075 break;
18076 case DW_TAG_unspecified_parameters:
18077 /* From varargs functions; gdb doesn't seem to have any
18078 interest in this information, so just ignore it for now.
18079 (FIXME?) */
18080 break;
18081 case DW_TAG_template_type_param:
18082 suppress_add = 1;
18083 /* Fall through. */
18084 case DW_TAG_class_type:
18085 case DW_TAG_interface_type:
18086 case DW_TAG_structure_type:
18087 case DW_TAG_union_type:
18088 case DW_TAG_set_type:
18089 case DW_TAG_enumeration_type:
18090 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18091 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18092
18093 {
18094 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18095 really ever be static objects: otherwise, if you try
18096 to, say, break of a class's method and you're in a file
18097 which doesn't mention that class, it won't work unless
18098 the check for all static symbols in lookup_symbol_aux
18099 saves you. See the OtherFileClass tests in
18100 gdb.c++/namespace.exp. */
18101
18102 if (!suppress_add)
18103 {
18104 list_to_add = (cu->list_in_scope == &file_symbols
18105 && (cu->language == language_cplus
18106 || cu->language == language_java)
18107 ? &global_symbols : cu->list_in_scope);
18108
18109 /* The semantics of C++ state that "struct foo {
18110 ... }" also defines a typedef for "foo". A Java
18111 class declaration also defines a typedef for the
18112 class. */
18113 if (cu->language == language_cplus
18114 || cu->language == language_java
18115 || cu->language == language_ada)
18116 {
18117 /* The symbol's name is already allocated along
18118 with this objfile, so we don't need to
18119 duplicate it for the type. */
18120 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18121 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18122 }
18123 }
18124 }
18125 break;
18126 case DW_TAG_typedef:
18127 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18128 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18129 list_to_add = cu->list_in_scope;
18130 break;
18131 case DW_TAG_base_type:
18132 case DW_TAG_subrange_type:
18133 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18134 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18135 list_to_add = cu->list_in_scope;
18136 break;
18137 case DW_TAG_enumerator:
18138 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18139 if (attr)
18140 {
18141 dwarf2_const_value (attr, sym, cu);
18142 }
18143 {
18144 /* NOTE: carlton/2003-11-10: See comment above in the
18145 DW_TAG_class_type, etc. block. */
18146
18147 list_to_add = (cu->list_in_scope == &file_symbols
18148 && (cu->language == language_cplus
18149 || cu->language == language_java)
18150 ? &global_symbols : cu->list_in_scope);
18151 }
18152 break;
18153 case DW_TAG_imported_declaration:
18154 case DW_TAG_namespace:
18155 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18156 list_to_add = &global_symbols;
18157 break;
18158 case DW_TAG_module:
18159 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18160 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18161 list_to_add = &global_symbols;
18162 break;
18163 case DW_TAG_common_block:
18164 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18165 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18166 add_symbol_to_list (sym, cu->list_in_scope);
18167 break;
18168 default:
18169 /* Not a tag we recognize. Hopefully we aren't processing
18170 trash data, but since we must specifically ignore things
18171 we don't recognize, there is nothing else we should do at
18172 this point. */
18173 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18174 dwarf_tag_name (die->tag));
18175 break;
18176 }
18177
18178 if (suppress_add)
18179 {
18180 sym->hash_next = objfile->template_symbols;
18181 objfile->template_symbols = sym;
18182 list_to_add = NULL;
18183 }
18184
18185 if (list_to_add != NULL)
18186 add_symbol_to_list (sym, list_to_add);
18187
18188 /* For the benefit of old versions of GCC, check for anonymous
18189 namespaces based on the demangled name. */
18190 if (!cu->processing_has_namespace_info
18191 && cu->language == language_cplus)
18192 cp_scan_for_anonymous_namespaces (sym, objfile);
18193 }
18194 return (sym);
18195 }
18196
18197 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18198
18199 static struct symbol *
18200 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18201 {
18202 return new_symbol_full (die, type, cu, NULL);
18203 }
18204
18205 /* Given an attr with a DW_FORM_dataN value in host byte order,
18206 zero-extend it as appropriate for the symbol's type. The DWARF
18207 standard (v4) is not entirely clear about the meaning of using
18208 DW_FORM_dataN for a constant with a signed type, where the type is
18209 wider than the data. The conclusion of a discussion on the DWARF
18210 list was that this is unspecified. We choose to always zero-extend
18211 because that is the interpretation long in use by GCC. */
18212
18213 static gdb_byte *
18214 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18215 struct dwarf2_cu *cu, LONGEST *value, int bits)
18216 {
18217 struct objfile *objfile = cu->objfile;
18218 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18219 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18220 LONGEST l = DW_UNSND (attr);
18221
18222 if (bits < sizeof (*value) * 8)
18223 {
18224 l &= ((LONGEST) 1 << bits) - 1;
18225 *value = l;
18226 }
18227 else if (bits == sizeof (*value) * 8)
18228 *value = l;
18229 else
18230 {
18231 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18232 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18233 return bytes;
18234 }
18235
18236 return NULL;
18237 }
18238
18239 /* Read a constant value from an attribute. Either set *VALUE, or if
18240 the value does not fit in *VALUE, set *BYTES - either already
18241 allocated on the objfile obstack, or newly allocated on OBSTACK,
18242 or, set *BATON, if we translated the constant to a location
18243 expression. */
18244
18245 static void
18246 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18247 const char *name, struct obstack *obstack,
18248 struct dwarf2_cu *cu,
18249 LONGEST *value, const gdb_byte **bytes,
18250 struct dwarf2_locexpr_baton **baton)
18251 {
18252 struct objfile *objfile = cu->objfile;
18253 struct comp_unit_head *cu_header = &cu->header;
18254 struct dwarf_block *blk;
18255 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18256 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18257
18258 *value = 0;
18259 *bytes = NULL;
18260 *baton = NULL;
18261
18262 switch (attr->form)
18263 {
18264 case DW_FORM_addr:
18265 case DW_FORM_GNU_addr_index:
18266 {
18267 gdb_byte *data;
18268
18269 if (TYPE_LENGTH (type) != cu_header->addr_size)
18270 dwarf2_const_value_length_mismatch_complaint (name,
18271 cu_header->addr_size,
18272 TYPE_LENGTH (type));
18273 /* Symbols of this form are reasonably rare, so we just
18274 piggyback on the existing location code rather than writing
18275 a new implementation of symbol_computed_ops. */
18276 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18277 (*baton)->per_cu = cu->per_cu;
18278 gdb_assert ((*baton)->per_cu);
18279
18280 (*baton)->size = 2 + cu_header->addr_size;
18281 data = obstack_alloc (obstack, (*baton)->size);
18282 (*baton)->data = data;
18283
18284 data[0] = DW_OP_addr;
18285 store_unsigned_integer (&data[1], cu_header->addr_size,
18286 byte_order, DW_ADDR (attr));
18287 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18288 }
18289 break;
18290 case DW_FORM_string:
18291 case DW_FORM_strp:
18292 case DW_FORM_GNU_str_index:
18293 case DW_FORM_GNU_strp_alt:
18294 /* DW_STRING is already allocated on the objfile obstack, point
18295 directly to it. */
18296 *bytes = (const gdb_byte *) DW_STRING (attr);
18297 break;
18298 case DW_FORM_block1:
18299 case DW_FORM_block2:
18300 case DW_FORM_block4:
18301 case DW_FORM_block:
18302 case DW_FORM_exprloc:
18303 blk = DW_BLOCK (attr);
18304 if (TYPE_LENGTH (type) != blk->size)
18305 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18306 TYPE_LENGTH (type));
18307 *bytes = blk->data;
18308 break;
18309
18310 /* The DW_AT_const_value attributes are supposed to carry the
18311 symbol's value "represented as it would be on the target
18312 architecture." By the time we get here, it's already been
18313 converted to host endianness, so we just need to sign- or
18314 zero-extend it as appropriate. */
18315 case DW_FORM_data1:
18316 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18317 break;
18318 case DW_FORM_data2:
18319 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18320 break;
18321 case DW_FORM_data4:
18322 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18323 break;
18324 case DW_FORM_data8:
18325 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18326 break;
18327
18328 case DW_FORM_sdata:
18329 *value = DW_SND (attr);
18330 break;
18331
18332 case DW_FORM_udata:
18333 *value = DW_UNSND (attr);
18334 break;
18335
18336 default:
18337 complaint (&symfile_complaints,
18338 _("unsupported const value attribute form: '%s'"),
18339 dwarf_form_name (attr->form));
18340 *value = 0;
18341 break;
18342 }
18343 }
18344
18345
18346 /* Copy constant value from an attribute to a symbol. */
18347
18348 static void
18349 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18350 struct dwarf2_cu *cu)
18351 {
18352 struct objfile *objfile = cu->objfile;
18353 struct comp_unit_head *cu_header = &cu->header;
18354 LONGEST value;
18355 const gdb_byte *bytes;
18356 struct dwarf2_locexpr_baton *baton;
18357
18358 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18359 SYMBOL_PRINT_NAME (sym),
18360 &objfile->objfile_obstack, cu,
18361 &value, &bytes, &baton);
18362
18363 if (baton != NULL)
18364 {
18365 SYMBOL_LOCATION_BATON (sym) = baton;
18366 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18367 }
18368 else if (bytes != NULL)
18369 {
18370 SYMBOL_VALUE_BYTES (sym) = bytes;
18371 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18372 }
18373 else
18374 {
18375 SYMBOL_VALUE (sym) = value;
18376 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18377 }
18378 }
18379
18380 /* Return the type of the die in question using its DW_AT_type attribute. */
18381
18382 static struct type *
18383 die_type (struct die_info *die, struct dwarf2_cu *cu)
18384 {
18385 struct attribute *type_attr;
18386
18387 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18388 if (!type_attr)
18389 {
18390 /* A missing DW_AT_type represents a void type. */
18391 return objfile_type (cu->objfile)->builtin_void;
18392 }
18393
18394 return lookup_die_type (die, type_attr, cu);
18395 }
18396
18397 /* True iff CU's producer generates GNAT Ada auxiliary information
18398 that allows to find parallel types through that information instead
18399 of having to do expensive parallel lookups by type name. */
18400
18401 static int
18402 need_gnat_info (struct dwarf2_cu *cu)
18403 {
18404 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18405 of GNAT produces this auxiliary information, without any indication
18406 that it is produced. Part of enhancing the FSF version of GNAT
18407 to produce that information will be to put in place an indicator
18408 that we can use in order to determine whether the descriptive type
18409 info is available or not. One suggestion that has been made is
18410 to use a new attribute, attached to the CU die. For now, assume
18411 that the descriptive type info is not available. */
18412 return 0;
18413 }
18414
18415 /* Return the auxiliary type of the die in question using its
18416 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18417 attribute is not present. */
18418
18419 static struct type *
18420 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18421 {
18422 struct attribute *type_attr;
18423
18424 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18425 if (!type_attr)
18426 return NULL;
18427
18428 return lookup_die_type (die, type_attr, cu);
18429 }
18430
18431 /* If DIE has a descriptive_type attribute, then set the TYPE's
18432 descriptive type accordingly. */
18433
18434 static void
18435 set_descriptive_type (struct type *type, struct die_info *die,
18436 struct dwarf2_cu *cu)
18437 {
18438 struct type *descriptive_type = die_descriptive_type (die, cu);
18439
18440 if (descriptive_type)
18441 {
18442 ALLOCATE_GNAT_AUX_TYPE (type);
18443 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18444 }
18445 }
18446
18447 /* Return the containing type of the die in question using its
18448 DW_AT_containing_type attribute. */
18449
18450 static struct type *
18451 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18452 {
18453 struct attribute *type_attr;
18454
18455 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18456 if (!type_attr)
18457 error (_("Dwarf Error: Problem turning containing type into gdb type "
18458 "[in module %s]"), objfile_name (cu->objfile));
18459
18460 return lookup_die_type (die, type_attr, cu);
18461 }
18462
18463 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18464
18465 static struct type *
18466 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18467 {
18468 struct objfile *objfile = dwarf2_per_objfile->objfile;
18469 char *message, *saved;
18470
18471 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18472 objfile_name (objfile),
18473 cu->header.offset.sect_off,
18474 die->offset.sect_off);
18475 saved = obstack_copy0 (&objfile->objfile_obstack,
18476 message, strlen (message));
18477 xfree (message);
18478
18479 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18480 }
18481
18482 /* Look up the type of DIE in CU using its type attribute ATTR.
18483 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18484 DW_AT_containing_type.
18485 If there is no type substitute an error marker. */
18486
18487 static struct type *
18488 lookup_die_type (struct die_info *die, const struct attribute *attr,
18489 struct dwarf2_cu *cu)
18490 {
18491 struct objfile *objfile = cu->objfile;
18492 struct type *this_type;
18493
18494 gdb_assert (attr->name == DW_AT_type
18495 || attr->name == DW_AT_GNAT_descriptive_type
18496 || attr->name == DW_AT_containing_type);
18497
18498 /* First see if we have it cached. */
18499
18500 if (attr->form == DW_FORM_GNU_ref_alt)
18501 {
18502 struct dwarf2_per_cu_data *per_cu;
18503 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18504
18505 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18506 this_type = get_die_type_at_offset (offset, per_cu);
18507 }
18508 else if (attr_form_is_ref (attr))
18509 {
18510 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18511
18512 this_type = get_die_type_at_offset (offset, cu->per_cu);
18513 }
18514 else if (attr->form == DW_FORM_ref_sig8)
18515 {
18516 ULONGEST signature = DW_SIGNATURE (attr);
18517
18518 return get_signatured_type (die, signature, cu);
18519 }
18520 else
18521 {
18522 complaint (&symfile_complaints,
18523 _("Dwarf Error: Bad type attribute %s in DIE"
18524 " at 0x%x [in module %s]"),
18525 dwarf_attr_name (attr->name), die->offset.sect_off,
18526 objfile_name (objfile));
18527 return build_error_marker_type (cu, die);
18528 }
18529
18530 /* If not cached we need to read it in. */
18531
18532 if (this_type == NULL)
18533 {
18534 struct die_info *type_die = NULL;
18535 struct dwarf2_cu *type_cu = cu;
18536
18537 if (attr_form_is_ref (attr))
18538 type_die = follow_die_ref (die, attr, &type_cu);
18539 if (type_die == NULL)
18540 return build_error_marker_type (cu, die);
18541 /* If we find the type now, it's probably because the type came
18542 from an inter-CU reference and the type's CU got expanded before
18543 ours. */
18544 this_type = read_type_die (type_die, type_cu);
18545 }
18546
18547 /* If we still don't have a type use an error marker. */
18548
18549 if (this_type == NULL)
18550 return build_error_marker_type (cu, die);
18551
18552 return this_type;
18553 }
18554
18555 /* Return the type in DIE, CU.
18556 Returns NULL for invalid types.
18557
18558 This first does a lookup in die_type_hash,
18559 and only reads the die in if necessary.
18560
18561 NOTE: This can be called when reading in partial or full symbols. */
18562
18563 static struct type *
18564 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18565 {
18566 struct type *this_type;
18567
18568 this_type = get_die_type (die, cu);
18569 if (this_type)
18570 return this_type;
18571
18572 return read_type_die_1 (die, cu);
18573 }
18574
18575 /* Read the type in DIE, CU.
18576 Returns NULL for invalid types. */
18577
18578 static struct type *
18579 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18580 {
18581 struct type *this_type = NULL;
18582
18583 switch (die->tag)
18584 {
18585 case DW_TAG_class_type:
18586 case DW_TAG_interface_type:
18587 case DW_TAG_structure_type:
18588 case DW_TAG_union_type:
18589 this_type = read_structure_type (die, cu);
18590 break;
18591 case DW_TAG_enumeration_type:
18592 this_type = read_enumeration_type (die, cu);
18593 break;
18594 case DW_TAG_subprogram:
18595 case DW_TAG_subroutine_type:
18596 case DW_TAG_inlined_subroutine:
18597 this_type = read_subroutine_type (die, cu);
18598 break;
18599 case DW_TAG_array_type:
18600 this_type = read_array_type (die, cu);
18601 break;
18602 case DW_TAG_set_type:
18603 this_type = read_set_type (die, cu);
18604 break;
18605 case DW_TAG_pointer_type:
18606 this_type = read_tag_pointer_type (die, cu);
18607 break;
18608 case DW_TAG_ptr_to_member_type:
18609 this_type = read_tag_ptr_to_member_type (die, cu);
18610 break;
18611 case DW_TAG_reference_type:
18612 this_type = read_tag_reference_type (die, cu);
18613 break;
18614 case DW_TAG_const_type:
18615 this_type = read_tag_const_type (die, cu);
18616 break;
18617 case DW_TAG_volatile_type:
18618 this_type = read_tag_volatile_type (die, cu);
18619 break;
18620 case DW_TAG_restrict_type:
18621 this_type = read_tag_restrict_type (die, cu);
18622 break;
18623 case DW_TAG_string_type:
18624 this_type = read_tag_string_type (die, cu);
18625 break;
18626 case DW_TAG_typedef:
18627 this_type = read_typedef (die, cu);
18628 break;
18629 case DW_TAG_subrange_type:
18630 this_type = read_subrange_type (die, cu);
18631 break;
18632 case DW_TAG_base_type:
18633 this_type = read_base_type (die, cu);
18634 break;
18635 case DW_TAG_unspecified_type:
18636 this_type = read_unspecified_type (die, cu);
18637 break;
18638 case DW_TAG_namespace:
18639 this_type = read_namespace_type (die, cu);
18640 break;
18641 case DW_TAG_module:
18642 this_type = read_module_type (die, cu);
18643 break;
18644 default:
18645 complaint (&symfile_complaints,
18646 _("unexpected tag in read_type_die: '%s'"),
18647 dwarf_tag_name (die->tag));
18648 break;
18649 }
18650
18651 return this_type;
18652 }
18653
18654 /* See if we can figure out if the class lives in a namespace. We do
18655 this by looking for a member function; its demangled name will
18656 contain namespace info, if there is any.
18657 Return the computed name or NULL.
18658 Space for the result is allocated on the objfile's obstack.
18659 This is the full-die version of guess_partial_die_structure_name.
18660 In this case we know DIE has no useful parent. */
18661
18662 static char *
18663 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18664 {
18665 struct die_info *spec_die;
18666 struct dwarf2_cu *spec_cu;
18667 struct die_info *child;
18668
18669 spec_cu = cu;
18670 spec_die = die_specification (die, &spec_cu);
18671 if (spec_die != NULL)
18672 {
18673 die = spec_die;
18674 cu = spec_cu;
18675 }
18676
18677 for (child = die->child;
18678 child != NULL;
18679 child = child->sibling)
18680 {
18681 if (child->tag == DW_TAG_subprogram)
18682 {
18683 struct attribute *attr;
18684
18685 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18686 if (attr == NULL)
18687 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18688 if (attr != NULL)
18689 {
18690 char *actual_name
18691 = language_class_name_from_physname (cu->language_defn,
18692 DW_STRING (attr));
18693 char *name = NULL;
18694
18695 if (actual_name != NULL)
18696 {
18697 const char *die_name = dwarf2_name (die, cu);
18698
18699 if (die_name != NULL
18700 && strcmp (die_name, actual_name) != 0)
18701 {
18702 /* Strip off the class name from the full name.
18703 We want the prefix. */
18704 int die_name_len = strlen (die_name);
18705 int actual_name_len = strlen (actual_name);
18706
18707 /* Test for '::' as a sanity check. */
18708 if (actual_name_len > die_name_len + 2
18709 && actual_name[actual_name_len
18710 - die_name_len - 1] == ':')
18711 name =
18712 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18713 actual_name,
18714 actual_name_len - die_name_len - 2);
18715 }
18716 }
18717 xfree (actual_name);
18718 return name;
18719 }
18720 }
18721 }
18722
18723 return NULL;
18724 }
18725
18726 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18727 prefix part in such case. See
18728 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18729
18730 static char *
18731 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18732 {
18733 struct attribute *attr;
18734 char *base;
18735
18736 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18737 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18738 return NULL;
18739
18740 attr = dwarf2_attr (die, DW_AT_name, cu);
18741 if (attr != NULL && DW_STRING (attr) != NULL)
18742 return NULL;
18743
18744 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18745 if (attr == NULL)
18746 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18747 if (attr == NULL || DW_STRING (attr) == NULL)
18748 return NULL;
18749
18750 /* dwarf2_name had to be already called. */
18751 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18752
18753 /* Strip the base name, keep any leading namespaces/classes. */
18754 base = strrchr (DW_STRING (attr), ':');
18755 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18756 return "";
18757
18758 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18759 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18760 }
18761
18762 /* Return the name of the namespace/class that DIE is defined within,
18763 or "" if we can't tell. The caller should not xfree the result.
18764
18765 For example, if we're within the method foo() in the following
18766 code:
18767
18768 namespace N {
18769 class C {
18770 void foo () {
18771 }
18772 };
18773 }
18774
18775 then determine_prefix on foo's die will return "N::C". */
18776
18777 static const char *
18778 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18779 {
18780 struct die_info *parent, *spec_die;
18781 struct dwarf2_cu *spec_cu;
18782 struct type *parent_type;
18783 char *retval;
18784
18785 if (cu->language != language_cplus && cu->language != language_java
18786 && cu->language != language_fortran)
18787 return "";
18788
18789 retval = anonymous_struct_prefix (die, cu);
18790 if (retval)
18791 return retval;
18792
18793 /* We have to be careful in the presence of DW_AT_specification.
18794 For example, with GCC 3.4, given the code
18795
18796 namespace N {
18797 void foo() {
18798 // Definition of N::foo.
18799 }
18800 }
18801
18802 then we'll have a tree of DIEs like this:
18803
18804 1: DW_TAG_compile_unit
18805 2: DW_TAG_namespace // N
18806 3: DW_TAG_subprogram // declaration of N::foo
18807 4: DW_TAG_subprogram // definition of N::foo
18808 DW_AT_specification // refers to die #3
18809
18810 Thus, when processing die #4, we have to pretend that we're in
18811 the context of its DW_AT_specification, namely the contex of die
18812 #3. */
18813 spec_cu = cu;
18814 spec_die = die_specification (die, &spec_cu);
18815 if (spec_die == NULL)
18816 parent = die->parent;
18817 else
18818 {
18819 parent = spec_die->parent;
18820 cu = spec_cu;
18821 }
18822
18823 if (parent == NULL)
18824 return "";
18825 else if (parent->building_fullname)
18826 {
18827 const char *name;
18828 const char *parent_name;
18829
18830 /* It has been seen on RealView 2.2 built binaries,
18831 DW_TAG_template_type_param types actually _defined_ as
18832 children of the parent class:
18833
18834 enum E {};
18835 template class <class Enum> Class{};
18836 Class<enum E> class_e;
18837
18838 1: DW_TAG_class_type (Class)
18839 2: DW_TAG_enumeration_type (E)
18840 3: DW_TAG_enumerator (enum1:0)
18841 3: DW_TAG_enumerator (enum2:1)
18842 ...
18843 2: DW_TAG_template_type_param
18844 DW_AT_type DW_FORM_ref_udata (E)
18845
18846 Besides being broken debug info, it can put GDB into an
18847 infinite loop. Consider:
18848
18849 When we're building the full name for Class<E>, we'll start
18850 at Class, and go look over its template type parameters,
18851 finding E. We'll then try to build the full name of E, and
18852 reach here. We're now trying to build the full name of E,
18853 and look over the parent DIE for containing scope. In the
18854 broken case, if we followed the parent DIE of E, we'd again
18855 find Class, and once again go look at its template type
18856 arguments, etc., etc. Simply don't consider such parent die
18857 as source-level parent of this die (it can't be, the language
18858 doesn't allow it), and break the loop here. */
18859 name = dwarf2_name (die, cu);
18860 parent_name = dwarf2_name (parent, cu);
18861 complaint (&symfile_complaints,
18862 _("template param type '%s' defined within parent '%s'"),
18863 name ? name : "<unknown>",
18864 parent_name ? parent_name : "<unknown>");
18865 return "";
18866 }
18867 else
18868 switch (parent->tag)
18869 {
18870 case DW_TAG_namespace:
18871 parent_type = read_type_die (parent, cu);
18872 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18873 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18874 Work around this problem here. */
18875 if (cu->language == language_cplus
18876 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18877 return "";
18878 /* We give a name to even anonymous namespaces. */
18879 return TYPE_TAG_NAME (parent_type);
18880 case DW_TAG_class_type:
18881 case DW_TAG_interface_type:
18882 case DW_TAG_structure_type:
18883 case DW_TAG_union_type:
18884 case DW_TAG_module:
18885 parent_type = read_type_die (parent, cu);
18886 if (TYPE_TAG_NAME (parent_type) != NULL)
18887 return TYPE_TAG_NAME (parent_type);
18888 else
18889 /* An anonymous structure is only allowed non-static data
18890 members; no typedefs, no member functions, et cetera.
18891 So it does not need a prefix. */
18892 return "";
18893 case DW_TAG_compile_unit:
18894 case DW_TAG_partial_unit:
18895 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18896 if (cu->language == language_cplus
18897 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18898 && die->child != NULL
18899 && (die->tag == DW_TAG_class_type
18900 || die->tag == DW_TAG_structure_type
18901 || die->tag == DW_TAG_union_type))
18902 {
18903 char *name = guess_full_die_structure_name (die, cu);
18904 if (name != NULL)
18905 return name;
18906 }
18907 return "";
18908 case DW_TAG_enumeration_type:
18909 parent_type = read_type_die (parent, cu);
18910 if (TYPE_DECLARED_CLASS (parent_type))
18911 {
18912 if (TYPE_TAG_NAME (parent_type) != NULL)
18913 return TYPE_TAG_NAME (parent_type);
18914 return "";
18915 }
18916 /* Fall through. */
18917 default:
18918 return determine_prefix (parent, cu);
18919 }
18920 }
18921
18922 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18923 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18924 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18925 an obconcat, otherwise allocate storage for the result. The CU argument is
18926 used to determine the language and hence, the appropriate separator. */
18927
18928 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18929
18930 static char *
18931 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18932 int physname, struct dwarf2_cu *cu)
18933 {
18934 const char *lead = "";
18935 const char *sep;
18936
18937 if (suffix == NULL || suffix[0] == '\0'
18938 || prefix == NULL || prefix[0] == '\0')
18939 sep = "";
18940 else if (cu->language == language_java)
18941 sep = ".";
18942 else if (cu->language == language_fortran && physname)
18943 {
18944 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18945 DW_AT_MIPS_linkage_name is preferred and used instead. */
18946
18947 lead = "__";
18948 sep = "_MOD_";
18949 }
18950 else
18951 sep = "::";
18952
18953 if (prefix == NULL)
18954 prefix = "";
18955 if (suffix == NULL)
18956 suffix = "";
18957
18958 if (obs == NULL)
18959 {
18960 char *retval
18961 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18962
18963 strcpy (retval, lead);
18964 strcat (retval, prefix);
18965 strcat (retval, sep);
18966 strcat (retval, suffix);
18967 return retval;
18968 }
18969 else
18970 {
18971 /* We have an obstack. */
18972 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18973 }
18974 }
18975
18976 /* Return sibling of die, NULL if no sibling. */
18977
18978 static struct die_info *
18979 sibling_die (struct die_info *die)
18980 {
18981 return die->sibling;
18982 }
18983
18984 /* Get name of a die, return NULL if not found. */
18985
18986 static const char *
18987 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18988 struct obstack *obstack)
18989 {
18990 if (name && cu->language == language_cplus)
18991 {
18992 char *canon_name = cp_canonicalize_string (name);
18993
18994 if (canon_name != NULL)
18995 {
18996 if (strcmp (canon_name, name) != 0)
18997 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18998 xfree (canon_name);
18999 }
19000 }
19001
19002 return name;
19003 }
19004
19005 /* Get name of a die, return NULL if not found. */
19006
19007 static const char *
19008 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19009 {
19010 struct attribute *attr;
19011
19012 attr = dwarf2_attr (die, DW_AT_name, cu);
19013 if ((!attr || !DW_STRING (attr))
19014 && die->tag != DW_TAG_class_type
19015 && die->tag != DW_TAG_interface_type
19016 && die->tag != DW_TAG_structure_type
19017 && die->tag != DW_TAG_union_type)
19018 return NULL;
19019
19020 switch (die->tag)
19021 {
19022 case DW_TAG_compile_unit:
19023 case DW_TAG_partial_unit:
19024 /* Compilation units have a DW_AT_name that is a filename, not
19025 a source language identifier. */
19026 case DW_TAG_enumeration_type:
19027 case DW_TAG_enumerator:
19028 /* These tags always have simple identifiers already; no need
19029 to canonicalize them. */
19030 return DW_STRING (attr);
19031
19032 case DW_TAG_subprogram:
19033 /* Java constructors will all be named "<init>", so return
19034 the class name when we see this special case. */
19035 if (cu->language == language_java
19036 && DW_STRING (attr) != NULL
19037 && strcmp (DW_STRING (attr), "<init>") == 0)
19038 {
19039 struct dwarf2_cu *spec_cu = cu;
19040 struct die_info *spec_die;
19041
19042 /* GCJ will output '<init>' for Java constructor names.
19043 For this special case, return the name of the parent class. */
19044
19045 /* GCJ may output subprogram DIEs with AT_specification set.
19046 If so, use the name of the specified DIE. */
19047 spec_die = die_specification (die, &spec_cu);
19048 if (spec_die != NULL)
19049 return dwarf2_name (spec_die, spec_cu);
19050
19051 do
19052 {
19053 die = die->parent;
19054 if (die->tag == DW_TAG_class_type)
19055 return dwarf2_name (die, cu);
19056 }
19057 while (die->tag != DW_TAG_compile_unit
19058 && die->tag != DW_TAG_partial_unit);
19059 }
19060 break;
19061
19062 case DW_TAG_class_type:
19063 case DW_TAG_interface_type:
19064 case DW_TAG_structure_type:
19065 case DW_TAG_union_type:
19066 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19067 structures or unions. These were of the form "._%d" in GCC 4.1,
19068 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19069 and GCC 4.4. We work around this problem by ignoring these. */
19070 if (attr && DW_STRING (attr)
19071 && (strncmp (DW_STRING (attr), "._", 2) == 0
19072 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19073 return NULL;
19074
19075 /* GCC might emit a nameless typedef that has a linkage name. See
19076 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19077 if (!attr || DW_STRING (attr) == NULL)
19078 {
19079 char *demangled = NULL;
19080
19081 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19082 if (attr == NULL)
19083 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19084
19085 if (attr == NULL || DW_STRING (attr) == NULL)
19086 return NULL;
19087
19088 /* Avoid demangling DW_STRING (attr) the second time on a second
19089 call for the same DIE. */
19090 if (!DW_STRING_IS_CANONICAL (attr))
19091 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19092
19093 if (demangled)
19094 {
19095 char *base;
19096
19097 /* FIXME: we already did this for the partial symbol... */
19098 DW_STRING (attr)
19099 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19100 demangled, strlen (demangled));
19101 DW_STRING_IS_CANONICAL (attr) = 1;
19102 xfree (demangled);
19103
19104 /* Strip any leading namespaces/classes, keep only the base name.
19105 DW_AT_name for named DIEs does not contain the prefixes. */
19106 base = strrchr (DW_STRING (attr), ':');
19107 if (base && base > DW_STRING (attr) && base[-1] == ':')
19108 return &base[1];
19109 else
19110 return DW_STRING (attr);
19111 }
19112 }
19113 break;
19114
19115 default:
19116 break;
19117 }
19118
19119 if (!DW_STRING_IS_CANONICAL (attr))
19120 {
19121 DW_STRING (attr)
19122 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19123 &cu->objfile->per_bfd->storage_obstack);
19124 DW_STRING_IS_CANONICAL (attr) = 1;
19125 }
19126 return DW_STRING (attr);
19127 }
19128
19129 /* Return the die that this die in an extension of, or NULL if there
19130 is none. *EXT_CU is the CU containing DIE on input, and the CU
19131 containing the return value on output. */
19132
19133 static struct die_info *
19134 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19135 {
19136 struct attribute *attr;
19137
19138 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19139 if (attr == NULL)
19140 return NULL;
19141
19142 return follow_die_ref (die, attr, ext_cu);
19143 }
19144
19145 /* Convert a DIE tag into its string name. */
19146
19147 static const char *
19148 dwarf_tag_name (unsigned tag)
19149 {
19150 const char *name = get_DW_TAG_name (tag);
19151
19152 if (name == NULL)
19153 return "DW_TAG_<unknown>";
19154
19155 return name;
19156 }
19157
19158 /* Convert a DWARF attribute code into its string name. */
19159
19160 static const char *
19161 dwarf_attr_name (unsigned attr)
19162 {
19163 const char *name;
19164
19165 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19166 if (attr == DW_AT_MIPS_fde)
19167 return "DW_AT_MIPS_fde";
19168 #else
19169 if (attr == DW_AT_HP_block_index)
19170 return "DW_AT_HP_block_index";
19171 #endif
19172
19173 name = get_DW_AT_name (attr);
19174
19175 if (name == NULL)
19176 return "DW_AT_<unknown>";
19177
19178 return name;
19179 }
19180
19181 /* Convert a DWARF value form code into its string name. */
19182
19183 static const char *
19184 dwarf_form_name (unsigned form)
19185 {
19186 const char *name = get_DW_FORM_name (form);
19187
19188 if (name == NULL)
19189 return "DW_FORM_<unknown>";
19190
19191 return name;
19192 }
19193
19194 static char *
19195 dwarf_bool_name (unsigned mybool)
19196 {
19197 if (mybool)
19198 return "TRUE";
19199 else
19200 return "FALSE";
19201 }
19202
19203 /* Convert a DWARF type code into its string name. */
19204
19205 static const char *
19206 dwarf_type_encoding_name (unsigned enc)
19207 {
19208 const char *name = get_DW_ATE_name (enc);
19209
19210 if (name == NULL)
19211 return "DW_ATE_<unknown>";
19212
19213 return name;
19214 }
19215
19216 static void
19217 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19218 {
19219 unsigned int i;
19220
19221 print_spaces (indent, f);
19222 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19223 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19224
19225 if (die->parent != NULL)
19226 {
19227 print_spaces (indent, f);
19228 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19229 die->parent->offset.sect_off);
19230 }
19231
19232 print_spaces (indent, f);
19233 fprintf_unfiltered (f, " has children: %s\n",
19234 dwarf_bool_name (die->child != NULL));
19235
19236 print_spaces (indent, f);
19237 fprintf_unfiltered (f, " attributes:\n");
19238
19239 for (i = 0; i < die->num_attrs; ++i)
19240 {
19241 print_spaces (indent, f);
19242 fprintf_unfiltered (f, " %s (%s) ",
19243 dwarf_attr_name (die->attrs[i].name),
19244 dwarf_form_name (die->attrs[i].form));
19245
19246 switch (die->attrs[i].form)
19247 {
19248 case DW_FORM_addr:
19249 case DW_FORM_GNU_addr_index:
19250 fprintf_unfiltered (f, "address: ");
19251 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19252 break;
19253 case DW_FORM_block2:
19254 case DW_FORM_block4:
19255 case DW_FORM_block:
19256 case DW_FORM_block1:
19257 fprintf_unfiltered (f, "block: size %s",
19258 pulongest (DW_BLOCK (&die->attrs[i])->size));
19259 break;
19260 case DW_FORM_exprloc:
19261 fprintf_unfiltered (f, "expression: size %s",
19262 pulongest (DW_BLOCK (&die->attrs[i])->size));
19263 break;
19264 case DW_FORM_ref_addr:
19265 fprintf_unfiltered (f, "ref address: ");
19266 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19267 break;
19268 case DW_FORM_GNU_ref_alt:
19269 fprintf_unfiltered (f, "alt ref address: ");
19270 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19271 break;
19272 case DW_FORM_ref1:
19273 case DW_FORM_ref2:
19274 case DW_FORM_ref4:
19275 case DW_FORM_ref8:
19276 case DW_FORM_ref_udata:
19277 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19278 (long) (DW_UNSND (&die->attrs[i])));
19279 break;
19280 case DW_FORM_data1:
19281 case DW_FORM_data2:
19282 case DW_FORM_data4:
19283 case DW_FORM_data8:
19284 case DW_FORM_udata:
19285 case DW_FORM_sdata:
19286 fprintf_unfiltered (f, "constant: %s",
19287 pulongest (DW_UNSND (&die->attrs[i])));
19288 break;
19289 case DW_FORM_sec_offset:
19290 fprintf_unfiltered (f, "section offset: %s",
19291 pulongest (DW_UNSND (&die->attrs[i])));
19292 break;
19293 case DW_FORM_ref_sig8:
19294 fprintf_unfiltered (f, "signature: %s",
19295 hex_string (DW_SIGNATURE (&die->attrs[i])));
19296 break;
19297 case DW_FORM_string:
19298 case DW_FORM_strp:
19299 case DW_FORM_GNU_str_index:
19300 case DW_FORM_GNU_strp_alt:
19301 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19302 DW_STRING (&die->attrs[i])
19303 ? DW_STRING (&die->attrs[i]) : "",
19304 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19305 break;
19306 case DW_FORM_flag:
19307 if (DW_UNSND (&die->attrs[i]))
19308 fprintf_unfiltered (f, "flag: TRUE");
19309 else
19310 fprintf_unfiltered (f, "flag: FALSE");
19311 break;
19312 case DW_FORM_flag_present:
19313 fprintf_unfiltered (f, "flag: TRUE");
19314 break;
19315 case DW_FORM_indirect:
19316 /* The reader will have reduced the indirect form to
19317 the "base form" so this form should not occur. */
19318 fprintf_unfiltered (f,
19319 "unexpected attribute form: DW_FORM_indirect");
19320 break;
19321 default:
19322 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19323 die->attrs[i].form);
19324 break;
19325 }
19326 fprintf_unfiltered (f, "\n");
19327 }
19328 }
19329
19330 static void
19331 dump_die_for_error (struct die_info *die)
19332 {
19333 dump_die_shallow (gdb_stderr, 0, die);
19334 }
19335
19336 static void
19337 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19338 {
19339 int indent = level * 4;
19340
19341 gdb_assert (die != NULL);
19342
19343 if (level >= max_level)
19344 return;
19345
19346 dump_die_shallow (f, indent, die);
19347
19348 if (die->child != NULL)
19349 {
19350 print_spaces (indent, f);
19351 fprintf_unfiltered (f, " Children:");
19352 if (level + 1 < max_level)
19353 {
19354 fprintf_unfiltered (f, "\n");
19355 dump_die_1 (f, level + 1, max_level, die->child);
19356 }
19357 else
19358 {
19359 fprintf_unfiltered (f,
19360 " [not printed, max nesting level reached]\n");
19361 }
19362 }
19363
19364 if (die->sibling != NULL && level > 0)
19365 {
19366 dump_die_1 (f, level, max_level, die->sibling);
19367 }
19368 }
19369
19370 /* This is called from the pdie macro in gdbinit.in.
19371 It's not static so gcc will keep a copy callable from gdb. */
19372
19373 void
19374 dump_die (struct die_info *die, int max_level)
19375 {
19376 dump_die_1 (gdb_stdlog, 0, max_level, die);
19377 }
19378
19379 static void
19380 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19381 {
19382 void **slot;
19383
19384 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19385 INSERT);
19386
19387 *slot = die;
19388 }
19389
19390 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19391 required kind. */
19392
19393 static sect_offset
19394 dwarf2_get_ref_die_offset (const struct attribute *attr)
19395 {
19396 sect_offset retval = { DW_UNSND (attr) };
19397
19398 if (attr_form_is_ref (attr))
19399 return retval;
19400
19401 retval.sect_off = 0;
19402 complaint (&symfile_complaints,
19403 _("unsupported die ref attribute form: '%s'"),
19404 dwarf_form_name (attr->form));
19405 return retval;
19406 }
19407
19408 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19409 * the value held by the attribute is not constant. */
19410
19411 static LONGEST
19412 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19413 {
19414 if (attr->form == DW_FORM_sdata)
19415 return DW_SND (attr);
19416 else if (attr->form == DW_FORM_udata
19417 || attr->form == DW_FORM_data1
19418 || attr->form == DW_FORM_data2
19419 || attr->form == DW_FORM_data4
19420 || attr->form == DW_FORM_data8)
19421 return DW_UNSND (attr);
19422 else
19423 {
19424 complaint (&symfile_complaints,
19425 _("Attribute value is not a constant (%s)"),
19426 dwarf_form_name (attr->form));
19427 return default_value;
19428 }
19429 }
19430
19431 /* Follow reference or signature attribute ATTR of SRC_DIE.
19432 On entry *REF_CU is the CU of SRC_DIE.
19433 On exit *REF_CU is the CU of the result. */
19434
19435 static struct die_info *
19436 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19437 struct dwarf2_cu **ref_cu)
19438 {
19439 struct die_info *die;
19440
19441 if (attr_form_is_ref (attr))
19442 die = follow_die_ref (src_die, attr, ref_cu);
19443 else if (attr->form == DW_FORM_ref_sig8)
19444 die = follow_die_sig (src_die, attr, ref_cu);
19445 else
19446 {
19447 dump_die_for_error (src_die);
19448 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19449 objfile_name ((*ref_cu)->objfile));
19450 }
19451
19452 return die;
19453 }
19454
19455 /* Follow reference OFFSET.
19456 On entry *REF_CU is the CU of the source die referencing OFFSET.
19457 On exit *REF_CU is the CU of the result.
19458 Returns NULL if OFFSET is invalid. */
19459
19460 static struct die_info *
19461 follow_die_offset (sect_offset offset, int offset_in_dwz,
19462 struct dwarf2_cu **ref_cu)
19463 {
19464 struct die_info temp_die;
19465 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19466
19467 gdb_assert (cu->per_cu != NULL);
19468
19469 target_cu = cu;
19470
19471 if (cu->per_cu->is_debug_types)
19472 {
19473 /* .debug_types CUs cannot reference anything outside their CU.
19474 If they need to, they have to reference a signatured type via
19475 DW_FORM_ref_sig8. */
19476 if (! offset_in_cu_p (&cu->header, offset))
19477 return NULL;
19478 }
19479 else if (offset_in_dwz != cu->per_cu->is_dwz
19480 || ! offset_in_cu_p (&cu->header, offset))
19481 {
19482 struct dwarf2_per_cu_data *per_cu;
19483
19484 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19485 cu->objfile);
19486
19487 /* If necessary, add it to the queue and load its DIEs. */
19488 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19489 load_full_comp_unit (per_cu, cu->language);
19490
19491 target_cu = per_cu->cu;
19492 }
19493 else if (cu->dies == NULL)
19494 {
19495 /* We're loading full DIEs during partial symbol reading. */
19496 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19497 load_full_comp_unit (cu->per_cu, language_minimal);
19498 }
19499
19500 *ref_cu = target_cu;
19501 temp_die.offset = offset;
19502 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19503 }
19504
19505 /* Follow reference attribute ATTR of SRC_DIE.
19506 On entry *REF_CU is the CU of SRC_DIE.
19507 On exit *REF_CU is the CU of the result. */
19508
19509 static struct die_info *
19510 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19511 struct dwarf2_cu **ref_cu)
19512 {
19513 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19514 struct dwarf2_cu *cu = *ref_cu;
19515 struct die_info *die;
19516
19517 die = follow_die_offset (offset,
19518 (attr->form == DW_FORM_GNU_ref_alt
19519 || cu->per_cu->is_dwz),
19520 ref_cu);
19521 if (!die)
19522 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19523 "at 0x%x [in module %s]"),
19524 offset.sect_off, src_die->offset.sect_off,
19525 objfile_name (cu->objfile));
19526
19527 return die;
19528 }
19529
19530 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19531 Returned value is intended for DW_OP_call*. Returned
19532 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19533
19534 struct dwarf2_locexpr_baton
19535 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19536 struct dwarf2_per_cu_data *per_cu,
19537 CORE_ADDR (*get_frame_pc) (void *baton),
19538 void *baton)
19539 {
19540 struct dwarf2_cu *cu;
19541 struct die_info *die;
19542 struct attribute *attr;
19543 struct dwarf2_locexpr_baton retval;
19544
19545 dw2_setup (per_cu->objfile);
19546
19547 if (per_cu->cu == NULL)
19548 load_cu (per_cu);
19549 cu = per_cu->cu;
19550
19551 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19552 if (!die)
19553 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19554 offset.sect_off, objfile_name (per_cu->objfile));
19555
19556 attr = dwarf2_attr (die, DW_AT_location, cu);
19557 if (!attr)
19558 {
19559 /* DWARF: "If there is no such attribute, then there is no effect.".
19560 DATA is ignored if SIZE is 0. */
19561
19562 retval.data = NULL;
19563 retval.size = 0;
19564 }
19565 else if (attr_form_is_section_offset (attr))
19566 {
19567 struct dwarf2_loclist_baton loclist_baton;
19568 CORE_ADDR pc = (*get_frame_pc) (baton);
19569 size_t size;
19570
19571 fill_in_loclist_baton (cu, &loclist_baton, attr);
19572
19573 retval.data = dwarf2_find_location_expression (&loclist_baton,
19574 &size, pc);
19575 retval.size = size;
19576 }
19577 else
19578 {
19579 if (!attr_form_is_block (attr))
19580 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19581 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19582 offset.sect_off, objfile_name (per_cu->objfile));
19583
19584 retval.data = DW_BLOCK (attr)->data;
19585 retval.size = DW_BLOCK (attr)->size;
19586 }
19587 retval.per_cu = cu->per_cu;
19588
19589 age_cached_comp_units ();
19590
19591 return retval;
19592 }
19593
19594 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19595 offset. */
19596
19597 struct dwarf2_locexpr_baton
19598 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19599 struct dwarf2_per_cu_data *per_cu,
19600 CORE_ADDR (*get_frame_pc) (void *baton),
19601 void *baton)
19602 {
19603 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19604
19605 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19606 }
19607
19608 /* Write a constant of a given type as target-ordered bytes into
19609 OBSTACK. */
19610
19611 static const gdb_byte *
19612 write_constant_as_bytes (struct obstack *obstack,
19613 enum bfd_endian byte_order,
19614 struct type *type,
19615 ULONGEST value,
19616 LONGEST *len)
19617 {
19618 gdb_byte *result;
19619
19620 *len = TYPE_LENGTH (type);
19621 result = obstack_alloc (obstack, *len);
19622 store_unsigned_integer (result, *len, byte_order, value);
19623
19624 return result;
19625 }
19626
19627 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19628 pointer to the constant bytes and set LEN to the length of the
19629 data. If memory is needed, allocate it on OBSTACK. If the DIE
19630 does not have a DW_AT_const_value, return NULL. */
19631
19632 const gdb_byte *
19633 dwarf2_fetch_constant_bytes (sect_offset offset,
19634 struct dwarf2_per_cu_data *per_cu,
19635 struct obstack *obstack,
19636 LONGEST *len)
19637 {
19638 struct dwarf2_cu *cu;
19639 struct die_info *die;
19640 struct attribute *attr;
19641 const gdb_byte *result = NULL;
19642 struct type *type;
19643 LONGEST value;
19644 enum bfd_endian byte_order;
19645
19646 dw2_setup (per_cu->objfile);
19647
19648 if (per_cu->cu == NULL)
19649 load_cu (per_cu);
19650 cu = per_cu->cu;
19651
19652 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19653 if (!die)
19654 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19655 offset.sect_off, objfile_name (per_cu->objfile));
19656
19657
19658 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19659 if (attr == NULL)
19660 return NULL;
19661
19662 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19663 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19664
19665 switch (attr->form)
19666 {
19667 case DW_FORM_addr:
19668 case DW_FORM_GNU_addr_index:
19669 {
19670 gdb_byte *tem;
19671
19672 *len = cu->header.addr_size;
19673 tem = obstack_alloc (obstack, *len);
19674 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19675 result = tem;
19676 }
19677 break;
19678 case DW_FORM_string:
19679 case DW_FORM_strp:
19680 case DW_FORM_GNU_str_index:
19681 case DW_FORM_GNU_strp_alt:
19682 /* DW_STRING is already allocated on the objfile obstack, point
19683 directly to it. */
19684 result = (const gdb_byte *) DW_STRING (attr);
19685 *len = strlen (DW_STRING (attr));
19686 break;
19687 case DW_FORM_block1:
19688 case DW_FORM_block2:
19689 case DW_FORM_block4:
19690 case DW_FORM_block:
19691 case DW_FORM_exprloc:
19692 result = DW_BLOCK (attr)->data;
19693 *len = DW_BLOCK (attr)->size;
19694 break;
19695
19696 /* The DW_AT_const_value attributes are supposed to carry the
19697 symbol's value "represented as it would be on the target
19698 architecture." By the time we get here, it's already been
19699 converted to host endianness, so we just need to sign- or
19700 zero-extend it as appropriate. */
19701 case DW_FORM_data1:
19702 type = die_type (die, cu);
19703 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19704 if (result == NULL)
19705 result = write_constant_as_bytes (obstack, byte_order,
19706 type, value, len);
19707 break;
19708 case DW_FORM_data2:
19709 type = die_type (die, cu);
19710 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19711 if (result == NULL)
19712 result = write_constant_as_bytes (obstack, byte_order,
19713 type, value, len);
19714 break;
19715 case DW_FORM_data4:
19716 type = die_type (die, cu);
19717 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19718 if (result == NULL)
19719 result = write_constant_as_bytes (obstack, byte_order,
19720 type, value, len);
19721 break;
19722 case DW_FORM_data8:
19723 type = die_type (die, cu);
19724 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19725 if (result == NULL)
19726 result = write_constant_as_bytes (obstack, byte_order,
19727 type, value, len);
19728 break;
19729
19730 case DW_FORM_sdata:
19731 type = die_type (die, cu);
19732 result = write_constant_as_bytes (obstack, byte_order,
19733 type, DW_SND (attr), len);
19734 break;
19735
19736 case DW_FORM_udata:
19737 type = die_type (die, cu);
19738 result = write_constant_as_bytes (obstack, byte_order,
19739 type, DW_UNSND (attr), len);
19740 break;
19741
19742 default:
19743 complaint (&symfile_complaints,
19744 _("unsupported const value attribute form: '%s'"),
19745 dwarf_form_name (attr->form));
19746 break;
19747 }
19748
19749 return result;
19750 }
19751
19752 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19753 PER_CU. */
19754
19755 struct type *
19756 dwarf2_get_die_type (cu_offset die_offset,
19757 struct dwarf2_per_cu_data *per_cu)
19758 {
19759 sect_offset die_offset_sect;
19760
19761 dw2_setup (per_cu->objfile);
19762
19763 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19764 return get_die_type_at_offset (die_offset_sect, per_cu);
19765 }
19766
19767 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19768 On entry *REF_CU is the CU of SRC_DIE.
19769 On exit *REF_CU is the CU of the result.
19770 Returns NULL if the referenced DIE isn't found. */
19771
19772 static struct die_info *
19773 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19774 struct dwarf2_cu **ref_cu)
19775 {
19776 struct objfile *objfile = (*ref_cu)->objfile;
19777 struct die_info temp_die;
19778 struct dwarf2_cu *sig_cu;
19779 struct die_info *die;
19780
19781 /* While it might be nice to assert sig_type->type == NULL here,
19782 we can get here for DW_AT_imported_declaration where we need
19783 the DIE not the type. */
19784
19785 /* If necessary, add it to the queue and load its DIEs. */
19786
19787 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19788 read_signatured_type (sig_type);
19789
19790 sig_cu = sig_type->per_cu.cu;
19791 gdb_assert (sig_cu != NULL);
19792 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19793 temp_die.offset = sig_type->type_offset_in_section;
19794 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19795 temp_die.offset.sect_off);
19796 if (die)
19797 {
19798 /* For .gdb_index version 7 keep track of included TUs.
19799 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19800 if (dwarf2_per_objfile->index_table != NULL
19801 && dwarf2_per_objfile->index_table->version <= 7)
19802 {
19803 VEC_safe_push (dwarf2_per_cu_ptr,
19804 (*ref_cu)->per_cu->imported_symtabs,
19805 sig_cu->per_cu);
19806 }
19807
19808 *ref_cu = sig_cu;
19809 return die;
19810 }
19811
19812 return NULL;
19813 }
19814
19815 /* Follow signatured type referenced by ATTR in SRC_DIE.
19816 On entry *REF_CU is the CU of SRC_DIE.
19817 On exit *REF_CU is the CU of the result.
19818 The result is the DIE of the type.
19819 If the referenced type cannot be found an error is thrown. */
19820
19821 static struct die_info *
19822 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19823 struct dwarf2_cu **ref_cu)
19824 {
19825 ULONGEST signature = DW_SIGNATURE (attr);
19826 struct signatured_type *sig_type;
19827 struct die_info *die;
19828
19829 gdb_assert (attr->form == DW_FORM_ref_sig8);
19830
19831 sig_type = lookup_signatured_type (*ref_cu, signature);
19832 /* sig_type will be NULL if the signatured type is missing from
19833 the debug info. */
19834 if (sig_type == NULL)
19835 {
19836 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19837 " from DIE at 0x%x [in module %s]"),
19838 hex_string (signature), src_die->offset.sect_off,
19839 objfile_name ((*ref_cu)->objfile));
19840 }
19841
19842 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19843 if (die == NULL)
19844 {
19845 dump_die_for_error (src_die);
19846 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19847 " from DIE at 0x%x [in module %s]"),
19848 hex_string (signature), src_die->offset.sect_off,
19849 objfile_name ((*ref_cu)->objfile));
19850 }
19851
19852 return die;
19853 }
19854
19855 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19856 reading in and processing the type unit if necessary. */
19857
19858 static struct type *
19859 get_signatured_type (struct die_info *die, ULONGEST signature,
19860 struct dwarf2_cu *cu)
19861 {
19862 struct signatured_type *sig_type;
19863 struct dwarf2_cu *type_cu;
19864 struct die_info *type_die;
19865 struct type *type;
19866
19867 sig_type = lookup_signatured_type (cu, signature);
19868 /* sig_type will be NULL if the signatured type is missing from
19869 the debug info. */
19870 if (sig_type == NULL)
19871 {
19872 complaint (&symfile_complaints,
19873 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19874 " from DIE at 0x%x [in module %s]"),
19875 hex_string (signature), die->offset.sect_off,
19876 objfile_name (dwarf2_per_objfile->objfile));
19877 return build_error_marker_type (cu, die);
19878 }
19879
19880 /* If we already know the type we're done. */
19881 if (sig_type->type != NULL)
19882 return sig_type->type;
19883
19884 type_cu = cu;
19885 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19886 if (type_die != NULL)
19887 {
19888 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19889 is created. This is important, for example, because for c++ classes
19890 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19891 type = read_type_die (type_die, type_cu);
19892 if (type == NULL)
19893 {
19894 complaint (&symfile_complaints,
19895 _("Dwarf Error: Cannot build signatured type %s"
19896 " referenced from DIE at 0x%x [in module %s]"),
19897 hex_string (signature), die->offset.sect_off,
19898 objfile_name (dwarf2_per_objfile->objfile));
19899 type = build_error_marker_type (cu, die);
19900 }
19901 }
19902 else
19903 {
19904 complaint (&symfile_complaints,
19905 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19906 " from DIE at 0x%x [in module %s]"),
19907 hex_string (signature), die->offset.sect_off,
19908 objfile_name (dwarf2_per_objfile->objfile));
19909 type = build_error_marker_type (cu, die);
19910 }
19911 sig_type->type = type;
19912
19913 return type;
19914 }
19915
19916 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19917 reading in and processing the type unit if necessary. */
19918
19919 static struct type *
19920 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19921 struct dwarf2_cu *cu) /* ARI: editCase function */
19922 {
19923 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19924 if (attr_form_is_ref (attr))
19925 {
19926 struct dwarf2_cu *type_cu = cu;
19927 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19928
19929 return read_type_die (type_die, type_cu);
19930 }
19931 else if (attr->form == DW_FORM_ref_sig8)
19932 {
19933 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19934 }
19935 else
19936 {
19937 complaint (&symfile_complaints,
19938 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19939 " at 0x%x [in module %s]"),
19940 dwarf_form_name (attr->form), die->offset.sect_off,
19941 objfile_name (dwarf2_per_objfile->objfile));
19942 return build_error_marker_type (cu, die);
19943 }
19944 }
19945
19946 /* Load the DIEs associated with type unit PER_CU into memory. */
19947
19948 static void
19949 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19950 {
19951 struct signatured_type *sig_type;
19952
19953 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19954 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19955
19956 /* We have the per_cu, but we need the signatured_type.
19957 Fortunately this is an easy translation. */
19958 gdb_assert (per_cu->is_debug_types);
19959 sig_type = (struct signatured_type *) per_cu;
19960
19961 gdb_assert (per_cu->cu == NULL);
19962
19963 read_signatured_type (sig_type);
19964
19965 gdb_assert (per_cu->cu != NULL);
19966 }
19967
19968 /* die_reader_func for read_signatured_type.
19969 This is identical to load_full_comp_unit_reader,
19970 but is kept separate for now. */
19971
19972 static void
19973 read_signatured_type_reader (const struct die_reader_specs *reader,
19974 const gdb_byte *info_ptr,
19975 struct die_info *comp_unit_die,
19976 int has_children,
19977 void *data)
19978 {
19979 struct dwarf2_cu *cu = reader->cu;
19980
19981 gdb_assert (cu->die_hash == NULL);
19982 cu->die_hash =
19983 htab_create_alloc_ex (cu->header.length / 12,
19984 die_hash,
19985 die_eq,
19986 NULL,
19987 &cu->comp_unit_obstack,
19988 hashtab_obstack_allocate,
19989 dummy_obstack_deallocate);
19990
19991 if (has_children)
19992 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19993 &info_ptr, comp_unit_die);
19994 cu->dies = comp_unit_die;
19995 /* comp_unit_die is not stored in die_hash, no need. */
19996
19997 /* We try not to read any attributes in this function, because not
19998 all CUs needed for references have been loaded yet, and symbol
19999 table processing isn't initialized. But we have to set the CU language,
20000 or we won't be able to build types correctly.
20001 Similarly, if we do not read the producer, we can not apply
20002 producer-specific interpretation. */
20003 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20004 }
20005
20006 /* Read in a signatured type and build its CU and DIEs.
20007 If the type is a stub for the real type in a DWO file,
20008 read in the real type from the DWO file as well. */
20009
20010 static void
20011 read_signatured_type (struct signatured_type *sig_type)
20012 {
20013 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20014
20015 gdb_assert (per_cu->is_debug_types);
20016 gdb_assert (per_cu->cu == NULL);
20017
20018 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20019 read_signatured_type_reader, NULL);
20020 sig_type->per_cu.tu_read = 1;
20021 }
20022
20023 /* Decode simple location descriptions.
20024 Given a pointer to a dwarf block that defines a location, compute
20025 the location and return the value.
20026
20027 NOTE drow/2003-11-18: This function is called in two situations
20028 now: for the address of static or global variables (partial symbols
20029 only) and for offsets into structures which are expected to be
20030 (more or less) constant. The partial symbol case should go away,
20031 and only the constant case should remain. That will let this
20032 function complain more accurately. A few special modes are allowed
20033 without complaint for global variables (for instance, global
20034 register values and thread-local values).
20035
20036 A location description containing no operations indicates that the
20037 object is optimized out. The return value is 0 for that case.
20038 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20039 callers will only want a very basic result and this can become a
20040 complaint.
20041
20042 Note that stack[0] is unused except as a default error return. */
20043
20044 static CORE_ADDR
20045 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20046 {
20047 struct objfile *objfile = cu->objfile;
20048 size_t i;
20049 size_t size = blk->size;
20050 const gdb_byte *data = blk->data;
20051 CORE_ADDR stack[64];
20052 int stacki;
20053 unsigned int bytes_read, unsnd;
20054 gdb_byte op;
20055
20056 i = 0;
20057 stacki = 0;
20058 stack[stacki] = 0;
20059 stack[++stacki] = 0;
20060
20061 while (i < size)
20062 {
20063 op = data[i++];
20064 switch (op)
20065 {
20066 case DW_OP_lit0:
20067 case DW_OP_lit1:
20068 case DW_OP_lit2:
20069 case DW_OP_lit3:
20070 case DW_OP_lit4:
20071 case DW_OP_lit5:
20072 case DW_OP_lit6:
20073 case DW_OP_lit7:
20074 case DW_OP_lit8:
20075 case DW_OP_lit9:
20076 case DW_OP_lit10:
20077 case DW_OP_lit11:
20078 case DW_OP_lit12:
20079 case DW_OP_lit13:
20080 case DW_OP_lit14:
20081 case DW_OP_lit15:
20082 case DW_OP_lit16:
20083 case DW_OP_lit17:
20084 case DW_OP_lit18:
20085 case DW_OP_lit19:
20086 case DW_OP_lit20:
20087 case DW_OP_lit21:
20088 case DW_OP_lit22:
20089 case DW_OP_lit23:
20090 case DW_OP_lit24:
20091 case DW_OP_lit25:
20092 case DW_OP_lit26:
20093 case DW_OP_lit27:
20094 case DW_OP_lit28:
20095 case DW_OP_lit29:
20096 case DW_OP_lit30:
20097 case DW_OP_lit31:
20098 stack[++stacki] = op - DW_OP_lit0;
20099 break;
20100
20101 case DW_OP_reg0:
20102 case DW_OP_reg1:
20103 case DW_OP_reg2:
20104 case DW_OP_reg3:
20105 case DW_OP_reg4:
20106 case DW_OP_reg5:
20107 case DW_OP_reg6:
20108 case DW_OP_reg7:
20109 case DW_OP_reg8:
20110 case DW_OP_reg9:
20111 case DW_OP_reg10:
20112 case DW_OP_reg11:
20113 case DW_OP_reg12:
20114 case DW_OP_reg13:
20115 case DW_OP_reg14:
20116 case DW_OP_reg15:
20117 case DW_OP_reg16:
20118 case DW_OP_reg17:
20119 case DW_OP_reg18:
20120 case DW_OP_reg19:
20121 case DW_OP_reg20:
20122 case DW_OP_reg21:
20123 case DW_OP_reg22:
20124 case DW_OP_reg23:
20125 case DW_OP_reg24:
20126 case DW_OP_reg25:
20127 case DW_OP_reg26:
20128 case DW_OP_reg27:
20129 case DW_OP_reg28:
20130 case DW_OP_reg29:
20131 case DW_OP_reg30:
20132 case DW_OP_reg31:
20133 stack[++stacki] = op - DW_OP_reg0;
20134 if (i < size)
20135 dwarf2_complex_location_expr_complaint ();
20136 break;
20137
20138 case DW_OP_regx:
20139 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20140 i += bytes_read;
20141 stack[++stacki] = unsnd;
20142 if (i < size)
20143 dwarf2_complex_location_expr_complaint ();
20144 break;
20145
20146 case DW_OP_addr:
20147 stack[++stacki] = read_address (objfile->obfd, &data[i],
20148 cu, &bytes_read);
20149 i += bytes_read;
20150 break;
20151
20152 case DW_OP_const1u:
20153 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20154 i += 1;
20155 break;
20156
20157 case DW_OP_const1s:
20158 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20159 i += 1;
20160 break;
20161
20162 case DW_OP_const2u:
20163 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20164 i += 2;
20165 break;
20166
20167 case DW_OP_const2s:
20168 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20169 i += 2;
20170 break;
20171
20172 case DW_OP_const4u:
20173 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20174 i += 4;
20175 break;
20176
20177 case DW_OP_const4s:
20178 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20179 i += 4;
20180 break;
20181
20182 case DW_OP_const8u:
20183 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20184 i += 8;
20185 break;
20186
20187 case DW_OP_constu:
20188 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20189 &bytes_read);
20190 i += bytes_read;
20191 break;
20192
20193 case DW_OP_consts:
20194 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20195 i += bytes_read;
20196 break;
20197
20198 case DW_OP_dup:
20199 stack[stacki + 1] = stack[stacki];
20200 stacki++;
20201 break;
20202
20203 case DW_OP_plus:
20204 stack[stacki - 1] += stack[stacki];
20205 stacki--;
20206 break;
20207
20208 case DW_OP_plus_uconst:
20209 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20210 &bytes_read);
20211 i += bytes_read;
20212 break;
20213
20214 case DW_OP_minus:
20215 stack[stacki - 1] -= stack[stacki];
20216 stacki--;
20217 break;
20218
20219 case DW_OP_deref:
20220 /* If we're not the last op, then we definitely can't encode
20221 this using GDB's address_class enum. This is valid for partial
20222 global symbols, although the variable's address will be bogus
20223 in the psymtab. */
20224 if (i < size)
20225 dwarf2_complex_location_expr_complaint ();
20226 break;
20227
20228 case DW_OP_GNU_push_tls_address:
20229 /* The top of the stack has the offset from the beginning
20230 of the thread control block at which the variable is located. */
20231 /* Nothing should follow this operator, so the top of stack would
20232 be returned. */
20233 /* This is valid for partial global symbols, but the variable's
20234 address will be bogus in the psymtab. Make it always at least
20235 non-zero to not look as a variable garbage collected by linker
20236 which have DW_OP_addr 0. */
20237 if (i < size)
20238 dwarf2_complex_location_expr_complaint ();
20239 stack[stacki]++;
20240 break;
20241
20242 case DW_OP_GNU_uninit:
20243 break;
20244
20245 case DW_OP_GNU_addr_index:
20246 case DW_OP_GNU_const_index:
20247 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20248 &bytes_read);
20249 i += bytes_read;
20250 break;
20251
20252 default:
20253 {
20254 const char *name = get_DW_OP_name (op);
20255
20256 if (name)
20257 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20258 name);
20259 else
20260 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20261 op);
20262 }
20263
20264 return (stack[stacki]);
20265 }
20266
20267 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20268 outside of the allocated space. Also enforce minimum>0. */
20269 if (stacki >= ARRAY_SIZE (stack) - 1)
20270 {
20271 complaint (&symfile_complaints,
20272 _("location description stack overflow"));
20273 return 0;
20274 }
20275
20276 if (stacki <= 0)
20277 {
20278 complaint (&symfile_complaints,
20279 _("location description stack underflow"));
20280 return 0;
20281 }
20282 }
20283 return (stack[stacki]);
20284 }
20285
20286 /* memory allocation interface */
20287
20288 static struct dwarf_block *
20289 dwarf_alloc_block (struct dwarf2_cu *cu)
20290 {
20291 struct dwarf_block *blk;
20292
20293 blk = (struct dwarf_block *)
20294 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20295 return (blk);
20296 }
20297
20298 static struct die_info *
20299 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20300 {
20301 struct die_info *die;
20302 size_t size = sizeof (struct die_info);
20303
20304 if (num_attrs > 1)
20305 size += (num_attrs - 1) * sizeof (struct attribute);
20306
20307 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20308 memset (die, 0, sizeof (struct die_info));
20309 return (die);
20310 }
20311
20312 \f
20313 /* Macro support. */
20314
20315 /* Return file name relative to the compilation directory of file number I in
20316 *LH's file name table. The result is allocated using xmalloc; the caller is
20317 responsible for freeing it. */
20318
20319 static char *
20320 file_file_name (int file, struct line_header *lh)
20321 {
20322 /* Is the file number a valid index into the line header's file name
20323 table? Remember that file numbers start with one, not zero. */
20324 if (1 <= file && file <= lh->num_file_names)
20325 {
20326 struct file_entry *fe = &lh->file_names[file - 1];
20327
20328 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20329 return xstrdup (fe->name);
20330 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20331 fe->name, NULL);
20332 }
20333 else
20334 {
20335 /* The compiler produced a bogus file number. We can at least
20336 record the macro definitions made in the file, even if we
20337 won't be able to find the file by name. */
20338 char fake_name[80];
20339
20340 xsnprintf (fake_name, sizeof (fake_name),
20341 "<bad macro file number %d>", file);
20342
20343 complaint (&symfile_complaints,
20344 _("bad file number in macro information (%d)"),
20345 file);
20346
20347 return xstrdup (fake_name);
20348 }
20349 }
20350
20351 /* Return the full name of file number I in *LH's file name table.
20352 Use COMP_DIR as the name of the current directory of the
20353 compilation. The result is allocated using xmalloc; the caller is
20354 responsible for freeing it. */
20355 static char *
20356 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20357 {
20358 /* Is the file number a valid index into the line header's file name
20359 table? Remember that file numbers start with one, not zero. */
20360 if (1 <= file && file <= lh->num_file_names)
20361 {
20362 char *relative = file_file_name (file, lh);
20363
20364 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20365 return relative;
20366 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20367 }
20368 else
20369 return file_file_name (file, lh);
20370 }
20371
20372
20373 static struct macro_source_file *
20374 macro_start_file (int file, int line,
20375 struct macro_source_file *current_file,
20376 struct line_header *lh)
20377 {
20378 /* File name relative to the compilation directory of this source file. */
20379 char *file_name = file_file_name (file, lh);
20380
20381 if (! current_file)
20382 {
20383 /* Note: We don't create a macro table for this compilation unit
20384 at all until we actually get a filename. */
20385 struct macro_table *macro_table = get_macro_table ();
20386
20387 /* If we have no current file, then this must be the start_file
20388 directive for the compilation unit's main source file. */
20389 current_file = macro_set_main (macro_table, file_name);
20390 macro_define_special (macro_table);
20391 }
20392 else
20393 current_file = macro_include (current_file, line, file_name);
20394
20395 xfree (file_name);
20396
20397 return current_file;
20398 }
20399
20400
20401 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20402 followed by a null byte. */
20403 static char *
20404 copy_string (const char *buf, int len)
20405 {
20406 char *s = xmalloc (len + 1);
20407
20408 memcpy (s, buf, len);
20409 s[len] = '\0';
20410 return s;
20411 }
20412
20413
20414 static const char *
20415 consume_improper_spaces (const char *p, const char *body)
20416 {
20417 if (*p == ' ')
20418 {
20419 complaint (&symfile_complaints,
20420 _("macro definition contains spaces "
20421 "in formal argument list:\n`%s'"),
20422 body);
20423
20424 while (*p == ' ')
20425 p++;
20426 }
20427
20428 return p;
20429 }
20430
20431
20432 static void
20433 parse_macro_definition (struct macro_source_file *file, int line,
20434 const char *body)
20435 {
20436 const char *p;
20437
20438 /* The body string takes one of two forms. For object-like macro
20439 definitions, it should be:
20440
20441 <macro name> " " <definition>
20442
20443 For function-like macro definitions, it should be:
20444
20445 <macro name> "() " <definition>
20446 or
20447 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20448
20449 Spaces may appear only where explicitly indicated, and in the
20450 <definition>.
20451
20452 The Dwarf 2 spec says that an object-like macro's name is always
20453 followed by a space, but versions of GCC around March 2002 omit
20454 the space when the macro's definition is the empty string.
20455
20456 The Dwarf 2 spec says that there should be no spaces between the
20457 formal arguments in a function-like macro's formal argument list,
20458 but versions of GCC around March 2002 include spaces after the
20459 commas. */
20460
20461
20462 /* Find the extent of the macro name. The macro name is terminated
20463 by either a space or null character (for an object-like macro) or
20464 an opening paren (for a function-like macro). */
20465 for (p = body; *p; p++)
20466 if (*p == ' ' || *p == '(')
20467 break;
20468
20469 if (*p == ' ' || *p == '\0')
20470 {
20471 /* It's an object-like macro. */
20472 int name_len = p - body;
20473 char *name = copy_string (body, name_len);
20474 const char *replacement;
20475
20476 if (*p == ' ')
20477 replacement = body + name_len + 1;
20478 else
20479 {
20480 dwarf2_macro_malformed_definition_complaint (body);
20481 replacement = body + name_len;
20482 }
20483
20484 macro_define_object (file, line, name, replacement);
20485
20486 xfree (name);
20487 }
20488 else if (*p == '(')
20489 {
20490 /* It's a function-like macro. */
20491 char *name = copy_string (body, p - body);
20492 int argc = 0;
20493 int argv_size = 1;
20494 char **argv = xmalloc (argv_size * sizeof (*argv));
20495
20496 p++;
20497
20498 p = consume_improper_spaces (p, body);
20499
20500 /* Parse the formal argument list. */
20501 while (*p && *p != ')')
20502 {
20503 /* Find the extent of the current argument name. */
20504 const char *arg_start = p;
20505
20506 while (*p && *p != ',' && *p != ')' && *p != ' ')
20507 p++;
20508
20509 if (! *p || p == arg_start)
20510 dwarf2_macro_malformed_definition_complaint (body);
20511 else
20512 {
20513 /* Make sure argv has room for the new argument. */
20514 if (argc >= argv_size)
20515 {
20516 argv_size *= 2;
20517 argv = xrealloc (argv, argv_size * sizeof (*argv));
20518 }
20519
20520 argv[argc++] = copy_string (arg_start, p - arg_start);
20521 }
20522
20523 p = consume_improper_spaces (p, body);
20524
20525 /* Consume the comma, if present. */
20526 if (*p == ',')
20527 {
20528 p++;
20529
20530 p = consume_improper_spaces (p, body);
20531 }
20532 }
20533
20534 if (*p == ')')
20535 {
20536 p++;
20537
20538 if (*p == ' ')
20539 /* Perfectly formed definition, no complaints. */
20540 macro_define_function (file, line, name,
20541 argc, (const char **) argv,
20542 p + 1);
20543 else if (*p == '\0')
20544 {
20545 /* Complain, but do define it. */
20546 dwarf2_macro_malformed_definition_complaint (body);
20547 macro_define_function (file, line, name,
20548 argc, (const char **) argv,
20549 p);
20550 }
20551 else
20552 /* Just complain. */
20553 dwarf2_macro_malformed_definition_complaint (body);
20554 }
20555 else
20556 /* Just complain. */
20557 dwarf2_macro_malformed_definition_complaint (body);
20558
20559 xfree (name);
20560 {
20561 int i;
20562
20563 for (i = 0; i < argc; i++)
20564 xfree (argv[i]);
20565 }
20566 xfree (argv);
20567 }
20568 else
20569 dwarf2_macro_malformed_definition_complaint (body);
20570 }
20571
20572 /* Skip some bytes from BYTES according to the form given in FORM.
20573 Returns the new pointer. */
20574
20575 static const gdb_byte *
20576 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20577 enum dwarf_form form,
20578 unsigned int offset_size,
20579 struct dwarf2_section_info *section)
20580 {
20581 unsigned int bytes_read;
20582
20583 switch (form)
20584 {
20585 case DW_FORM_data1:
20586 case DW_FORM_flag:
20587 ++bytes;
20588 break;
20589
20590 case DW_FORM_data2:
20591 bytes += 2;
20592 break;
20593
20594 case DW_FORM_data4:
20595 bytes += 4;
20596 break;
20597
20598 case DW_FORM_data8:
20599 bytes += 8;
20600 break;
20601
20602 case DW_FORM_string:
20603 read_direct_string (abfd, bytes, &bytes_read);
20604 bytes += bytes_read;
20605 break;
20606
20607 case DW_FORM_sec_offset:
20608 case DW_FORM_strp:
20609 case DW_FORM_GNU_strp_alt:
20610 bytes += offset_size;
20611 break;
20612
20613 case DW_FORM_block:
20614 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20615 bytes += bytes_read;
20616 break;
20617
20618 case DW_FORM_block1:
20619 bytes += 1 + read_1_byte (abfd, bytes);
20620 break;
20621 case DW_FORM_block2:
20622 bytes += 2 + read_2_bytes (abfd, bytes);
20623 break;
20624 case DW_FORM_block4:
20625 bytes += 4 + read_4_bytes (abfd, bytes);
20626 break;
20627
20628 case DW_FORM_sdata:
20629 case DW_FORM_udata:
20630 case DW_FORM_GNU_addr_index:
20631 case DW_FORM_GNU_str_index:
20632 bytes = gdb_skip_leb128 (bytes, buffer_end);
20633 if (bytes == NULL)
20634 {
20635 dwarf2_section_buffer_overflow_complaint (section);
20636 return NULL;
20637 }
20638 break;
20639
20640 default:
20641 {
20642 complain:
20643 complaint (&symfile_complaints,
20644 _("invalid form 0x%x in `%s'"),
20645 form, get_section_name (section));
20646 return NULL;
20647 }
20648 }
20649
20650 return bytes;
20651 }
20652
20653 /* A helper for dwarf_decode_macros that handles skipping an unknown
20654 opcode. Returns an updated pointer to the macro data buffer; or,
20655 on error, issues a complaint and returns NULL. */
20656
20657 static const gdb_byte *
20658 skip_unknown_opcode (unsigned int opcode,
20659 const gdb_byte **opcode_definitions,
20660 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20661 bfd *abfd,
20662 unsigned int offset_size,
20663 struct dwarf2_section_info *section)
20664 {
20665 unsigned int bytes_read, i;
20666 unsigned long arg;
20667 const gdb_byte *defn;
20668
20669 if (opcode_definitions[opcode] == NULL)
20670 {
20671 complaint (&symfile_complaints,
20672 _("unrecognized DW_MACFINO opcode 0x%x"),
20673 opcode);
20674 return NULL;
20675 }
20676
20677 defn = opcode_definitions[opcode];
20678 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20679 defn += bytes_read;
20680
20681 for (i = 0; i < arg; ++i)
20682 {
20683 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20684 section);
20685 if (mac_ptr == NULL)
20686 {
20687 /* skip_form_bytes already issued the complaint. */
20688 return NULL;
20689 }
20690 }
20691
20692 return mac_ptr;
20693 }
20694
20695 /* A helper function which parses the header of a macro section.
20696 If the macro section is the extended (for now called "GNU") type,
20697 then this updates *OFFSET_SIZE. Returns a pointer to just after
20698 the header, or issues a complaint and returns NULL on error. */
20699
20700 static const gdb_byte *
20701 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20702 bfd *abfd,
20703 const gdb_byte *mac_ptr,
20704 unsigned int *offset_size,
20705 int section_is_gnu)
20706 {
20707 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20708
20709 if (section_is_gnu)
20710 {
20711 unsigned int version, flags;
20712
20713 version = read_2_bytes (abfd, mac_ptr);
20714 if (version != 4)
20715 {
20716 complaint (&symfile_complaints,
20717 _("unrecognized version `%d' in .debug_macro section"),
20718 version);
20719 return NULL;
20720 }
20721 mac_ptr += 2;
20722
20723 flags = read_1_byte (abfd, mac_ptr);
20724 ++mac_ptr;
20725 *offset_size = (flags & 1) ? 8 : 4;
20726
20727 if ((flags & 2) != 0)
20728 /* We don't need the line table offset. */
20729 mac_ptr += *offset_size;
20730
20731 /* Vendor opcode descriptions. */
20732 if ((flags & 4) != 0)
20733 {
20734 unsigned int i, count;
20735
20736 count = read_1_byte (abfd, mac_ptr);
20737 ++mac_ptr;
20738 for (i = 0; i < count; ++i)
20739 {
20740 unsigned int opcode, bytes_read;
20741 unsigned long arg;
20742
20743 opcode = read_1_byte (abfd, mac_ptr);
20744 ++mac_ptr;
20745 opcode_definitions[opcode] = mac_ptr;
20746 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20747 mac_ptr += bytes_read;
20748 mac_ptr += arg;
20749 }
20750 }
20751 }
20752
20753 return mac_ptr;
20754 }
20755
20756 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20757 including DW_MACRO_GNU_transparent_include. */
20758
20759 static void
20760 dwarf_decode_macro_bytes (bfd *abfd,
20761 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20762 struct macro_source_file *current_file,
20763 struct line_header *lh,
20764 struct dwarf2_section_info *section,
20765 int section_is_gnu, int section_is_dwz,
20766 unsigned int offset_size,
20767 htab_t include_hash)
20768 {
20769 struct objfile *objfile = dwarf2_per_objfile->objfile;
20770 enum dwarf_macro_record_type macinfo_type;
20771 int at_commandline;
20772 const gdb_byte *opcode_definitions[256];
20773
20774 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20775 &offset_size, section_is_gnu);
20776 if (mac_ptr == NULL)
20777 {
20778 /* We already issued a complaint. */
20779 return;
20780 }
20781
20782 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20783 GDB is still reading the definitions from command line. First
20784 DW_MACINFO_start_file will need to be ignored as it was already executed
20785 to create CURRENT_FILE for the main source holding also the command line
20786 definitions. On first met DW_MACINFO_start_file this flag is reset to
20787 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20788
20789 at_commandline = 1;
20790
20791 do
20792 {
20793 /* Do we at least have room for a macinfo type byte? */
20794 if (mac_ptr >= mac_end)
20795 {
20796 dwarf2_section_buffer_overflow_complaint (section);
20797 break;
20798 }
20799
20800 macinfo_type = read_1_byte (abfd, mac_ptr);
20801 mac_ptr++;
20802
20803 /* Note that we rely on the fact that the corresponding GNU and
20804 DWARF constants are the same. */
20805 switch (macinfo_type)
20806 {
20807 /* A zero macinfo type indicates the end of the macro
20808 information. */
20809 case 0:
20810 break;
20811
20812 case DW_MACRO_GNU_define:
20813 case DW_MACRO_GNU_undef:
20814 case DW_MACRO_GNU_define_indirect:
20815 case DW_MACRO_GNU_undef_indirect:
20816 case DW_MACRO_GNU_define_indirect_alt:
20817 case DW_MACRO_GNU_undef_indirect_alt:
20818 {
20819 unsigned int bytes_read;
20820 int line;
20821 const char *body;
20822 int is_define;
20823
20824 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20825 mac_ptr += bytes_read;
20826
20827 if (macinfo_type == DW_MACRO_GNU_define
20828 || macinfo_type == DW_MACRO_GNU_undef)
20829 {
20830 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20831 mac_ptr += bytes_read;
20832 }
20833 else
20834 {
20835 LONGEST str_offset;
20836
20837 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20838 mac_ptr += offset_size;
20839
20840 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20841 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20842 || section_is_dwz)
20843 {
20844 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20845
20846 body = read_indirect_string_from_dwz (dwz, str_offset);
20847 }
20848 else
20849 body = read_indirect_string_at_offset (abfd, str_offset);
20850 }
20851
20852 is_define = (macinfo_type == DW_MACRO_GNU_define
20853 || macinfo_type == DW_MACRO_GNU_define_indirect
20854 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20855 if (! current_file)
20856 {
20857 /* DWARF violation as no main source is present. */
20858 complaint (&symfile_complaints,
20859 _("debug info with no main source gives macro %s "
20860 "on line %d: %s"),
20861 is_define ? _("definition") : _("undefinition"),
20862 line, body);
20863 break;
20864 }
20865 if ((line == 0 && !at_commandline)
20866 || (line != 0 && at_commandline))
20867 complaint (&symfile_complaints,
20868 _("debug info gives %s macro %s with %s line %d: %s"),
20869 at_commandline ? _("command-line") : _("in-file"),
20870 is_define ? _("definition") : _("undefinition"),
20871 line == 0 ? _("zero") : _("non-zero"), line, body);
20872
20873 if (is_define)
20874 parse_macro_definition (current_file, line, body);
20875 else
20876 {
20877 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20878 || macinfo_type == DW_MACRO_GNU_undef_indirect
20879 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20880 macro_undef (current_file, line, body);
20881 }
20882 }
20883 break;
20884
20885 case DW_MACRO_GNU_start_file:
20886 {
20887 unsigned int bytes_read;
20888 int line, file;
20889
20890 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20891 mac_ptr += bytes_read;
20892 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20893 mac_ptr += bytes_read;
20894
20895 if ((line == 0 && !at_commandline)
20896 || (line != 0 && at_commandline))
20897 complaint (&symfile_complaints,
20898 _("debug info gives source %d included "
20899 "from %s at %s line %d"),
20900 file, at_commandline ? _("command-line") : _("file"),
20901 line == 0 ? _("zero") : _("non-zero"), line);
20902
20903 if (at_commandline)
20904 {
20905 /* This DW_MACRO_GNU_start_file was executed in the
20906 pass one. */
20907 at_commandline = 0;
20908 }
20909 else
20910 current_file = macro_start_file (file, line, current_file, lh);
20911 }
20912 break;
20913
20914 case DW_MACRO_GNU_end_file:
20915 if (! current_file)
20916 complaint (&symfile_complaints,
20917 _("macro debug info has an unmatched "
20918 "`close_file' directive"));
20919 else
20920 {
20921 current_file = current_file->included_by;
20922 if (! current_file)
20923 {
20924 enum dwarf_macro_record_type next_type;
20925
20926 /* GCC circa March 2002 doesn't produce the zero
20927 type byte marking the end of the compilation
20928 unit. Complain if it's not there, but exit no
20929 matter what. */
20930
20931 /* Do we at least have room for a macinfo type byte? */
20932 if (mac_ptr >= mac_end)
20933 {
20934 dwarf2_section_buffer_overflow_complaint (section);
20935 return;
20936 }
20937
20938 /* We don't increment mac_ptr here, so this is just
20939 a look-ahead. */
20940 next_type = read_1_byte (abfd, mac_ptr);
20941 if (next_type != 0)
20942 complaint (&symfile_complaints,
20943 _("no terminating 0-type entry for "
20944 "macros in `.debug_macinfo' section"));
20945
20946 return;
20947 }
20948 }
20949 break;
20950
20951 case DW_MACRO_GNU_transparent_include:
20952 case DW_MACRO_GNU_transparent_include_alt:
20953 {
20954 LONGEST offset;
20955 void **slot;
20956 bfd *include_bfd = abfd;
20957 struct dwarf2_section_info *include_section = section;
20958 struct dwarf2_section_info alt_section;
20959 const gdb_byte *include_mac_end = mac_end;
20960 int is_dwz = section_is_dwz;
20961 const gdb_byte *new_mac_ptr;
20962
20963 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20964 mac_ptr += offset_size;
20965
20966 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20967 {
20968 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20969
20970 dwarf2_read_section (objfile, &dwz->macro);
20971
20972 include_section = &dwz->macro;
20973 include_bfd = get_section_bfd_owner (include_section);
20974 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20975 is_dwz = 1;
20976 }
20977
20978 new_mac_ptr = include_section->buffer + offset;
20979 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20980
20981 if (*slot != NULL)
20982 {
20983 /* This has actually happened; see
20984 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20985 complaint (&symfile_complaints,
20986 _("recursive DW_MACRO_GNU_transparent_include in "
20987 ".debug_macro section"));
20988 }
20989 else
20990 {
20991 *slot = (void *) new_mac_ptr;
20992
20993 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20994 include_mac_end, current_file, lh,
20995 section, section_is_gnu, is_dwz,
20996 offset_size, include_hash);
20997
20998 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20999 }
21000 }
21001 break;
21002
21003 case DW_MACINFO_vendor_ext:
21004 if (!section_is_gnu)
21005 {
21006 unsigned int bytes_read;
21007 int constant;
21008
21009 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21010 mac_ptr += bytes_read;
21011 read_direct_string (abfd, mac_ptr, &bytes_read);
21012 mac_ptr += bytes_read;
21013
21014 /* We don't recognize any vendor extensions. */
21015 break;
21016 }
21017 /* FALLTHROUGH */
21018
21019 default:
21020 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21021 mac_ptr, mac_end, abfd, offset_size,
21022 section);
21023 if (mac_ptr == NULL)
21024 return;
21025 break;
21026 }
21027 } while (macinfo_type != 0);
21028 }
21029
21030 static void
21031 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21032 int section_is_gnu)
21033 {
21034 struct objfile *objfile = dwarf2_per_objfile->objfile;
21035 struct line_header *lh = cu->line_header;
21036 bfd *abfd;
21037 const gdb_byte *mac_ptr, *mac_end;
21038 struct macro_source_file *current_file = 0;
21039 enum dwarf_macro_record_type macinfo_type;
21040 unsigned int offset_size = cu->header.offset_size;
21041 const gdb_byte *opcode_definitions[256];
21042 struct cleanup *cleanup;
21043 htab_t include_hash;
21044 void **slot;
21045 struct dwarf2_section_info *section;
21046 const char *section_name;
21047
21048 if (cu->dwo_unit != NULL)
21049 {
21050 if (section_is_gnu)
21051 {
21052 section = &cu->dwo_unit->dwo_file->sections.macro;
21053 section_name = ".debug_macro.dwo";
21054 }
21055 else
21056 {
21057 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21058 section_name = ".debug_macinfo.dwo";
21059 }
21060 }
21061 else
21062 {
21063 if (section_is_gnu)
21064 {
21065 section = &dwarf2_per_objfile->macro;
21066 section_name = ".debug_macro";
21067 }
21068 else
21069 {
21070 section = &dwarf2_per_objfile->macinfo;
21071 section_name = ".debug_macinfo";
21072 }
21073 }
21074
21075 dwarf2_read_section (objfile, section);
21076 if (section->buffer == NULL)
21077 {
21078 complaint (&symfile_complaints, _("missing %s section"), section_name);
21079 return;
21080 }
21081 abfd = get_section_bfd_owner (section);
21082
21083 /* First pass: Find the name of the base filename.
21084 This filename is needed in order to process all macros whose definition
21085 (or undefinition) comes from the command line. These macros are defined
21086 before the first DW_MACINFO_start_file entry, and yet still need to be
21087 associated to the base file.
21088
21089 To determine the base file name, we scan the macro definitions until we
21090 reach the first DW_MACINFO_start_file entry. We then initialize
21091 CURRENT_FILE accordingly so that any macro definition found before the
21092 first DW_MACINFO_start_file can still be associated to the base file. */
21093
21094 mac_ptr = section->buffer + offset;
21095 mac_end = section->buffer + section->size;
21096
21097 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21098 &offset_size, section_is_gnu);
21099 if (mac_ptr == NULL)
21100 {
21101 /* We already issued a complaint. */
21102 return;
21103 }
21104
21105 do
21106 {
21107 /* Do we at least have room for a macinfo type byte? */
21108 if (mac_ptr >= mac_end)
21109 {
21110 /* Complaint is printed during the second pass as GDB will probably
21111 stop the first pass earlier upon finding
21112 DW_MACINFO_start_file. */
21113 break;
21114 }
21115
21116 macinfo_type = read_1_byte (abfd, mac_ptr);
21117 mac_ptr++;
21118
21119 /* Note that we rely on the fact that the corresponding GNU and
21120 DWARF constants are the same. */
21121 switch (macinfo_type)
21122 {
21123 /* A zero macinfo type indicates the end of the macro
21124 information. */
21125 case 0:
21126 break;
21127
21128 case DW_MACRO_GNU_define:
21129 case DW_MACRO_GNU_undef:
21130 /* Only skip the data by MAC_PTR. */
21131 {
21132 unsigned int bytes_read;
21133
21134 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21135 mac_ptr += bytes_read;
21136 read_direct_string (abfd, mac_ptr, &bytes_read);
21137 mac_ptr += bytes_read;
21138 }
21139 break;
21140
21141 case DW_MACRO_GNU_start_file:
21142 {
21143 unsigned int bytes_read;
21144 int line, file;
21145
21146 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21147 mac_ptr += bytes_read;
21148 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21149 mac_ptr += bytes_read;
21150
21151 current_file = macro_start_file (file, line, current_file, lh);
21152 }
21153 break;
21154
21155 case DW_MACRO_GNU_end_file:
21156 /* No data to skip by MAC_PTR. */
21157 break;
21158
21159 case DW_MACRO_GNU_define_indirect:
21160 case DW_MACRO_GNU_undef_indirect:
21161 case DW_MACRO_GNU_define_indirect_alt:
21162 case DW_MACRO_GNU_undef_indirect_alt:
21163 {
21164 unsigned int bytes_read;
21165
21166 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21167 mac_ptr += bytes_read;
21168 mac_ptr += offset_size;
21169 }
21170 break;
21171
21172 case DW_MACRO_GNU_transparent_include:
21173 case DW_MACRO_GNU_transparent_include_alt:
21174 /* Note that, according to the spec, a transparent include
21175 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21176 skip this opcode. */
21177 mac_ptr += offset_size;
21178 break;
21179
21180 case DW_MACINFO_vendor_ext:
21181 /* Only skip the data by MAC_PTR. */
21182 if (!section_is_gnu)
21183 {
21184 unsigned int bytes_read;
21185
21186 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21187 mac_ptr += bytes_read;
21188 read_direct_string (abfd, mac_ptr, &bytes_read);
21189 mac_ptr += bytes_read;
21190 }
21191 /* FALLTHROUGH */
21192
21193 default:
21194 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21195 mac_ptr, mac_end, abfd, offset_size,
21196 section);
21197 if (mac_ptr == NULL)
21198 return;
21199 break;
21200 }
21201 } while (macinfo_type != 0 && current_file == NULL);
21202
21203 /* Second pass: Process all entries.
21204
21205 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21206 command-line macro definitions/undefinitions. This flag is unset when we
21207 reach the first DW_MACINFO_start_file entry. */
21208
21209 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21210 NULL, xcalloc, xfree);
21211 cleanup = make_cleanup_htab_delete (include_hash);
21212 mac_ptr = section->buffer + offset;
21213 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21214 *slot = (void *) mac_ptr;
21215 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21216 current_file, lh, section,
21217 section_is_gnu, 0, offset_size, include_hash);
21218 do_cleanups (cleanup);
21219 }
21220
21221 /* Check if the attribute's form is a DW_FORM_block*
21222 if so return true else false. */
21223
21224 static int
21225 attr_form_is_block (const struct attribute *attr)
21226 {
21227 return (attr == NULL ? 0 :
21228 attr->form == DW_FORM_block1
21229 || attr->form == DW_FORM_block2
21230 || attr->form == DW_FORM_block4
21231 || attr->form == DW_FORM_block
21232 || attr->form == DW_FORM_exprloc);
21233 }
21234
21235 /* Return non-zero if ATTR's value is a section offset --- classes
21236 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21237 You may use DW_UNSND (attr) to retrieve such offsets.
21238
21239 Section 7.5.4, "Attribute Encodings", explains that no attribute
21240 may have a value that belongs to more than one of these classes; it
21241 would be ambiguous if we did, because we use the same forms for all
21242 of them. */
21243
21244 static int
21245 attr_form_is_section_offset (const struct attribute *attr)
21246 {
21247 return (attr->form == DW_FORM_data4
21248 || attr->form == DW_FORM_data8
21249 || attr->form == DW_FORM_sec_offset);
21250 }
21251
21252 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21253 zero otherwise. When this function returns true, you can apply
21254 dwarf2_get_attr_constant_value to it.
21255
21256 However, note that for some attributes you must check
21257 attr_form_is_section_offset before using this test. DW_FORM_data4
21258 and DW_FORM_data8 are members of both the constant class, and of
21259 the classes that contain offsets into other debug sections
21260 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21261 that, if an attribute's can be either a constant or one of the
21262 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21263 taken as section offsets, not constants. */
21264
21265 static int
21266 attr_form_is_constant (const struct attribute *attr)
21267 {
21268 switch (attr->form)
21269 {
21270 case DW_FORM_sdata:
21271 case DW_FORM_udata:
21272 case DW_FORM_data1:
21273 case DW_FORM_data2:
21274 case DW_FORM_data4:
21275 case DW_FORM_data8:
21276 return 1;
21277 default:
21278 return 0;
21279 }
21280 }
21281
21282
21283 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21284 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21285
21286 static int
21287 attr_form_is_ref (const struct attribute *attr)
21288 {
21289 switch (attr->form)
21290 {
21291 case DW_FORM_ref_addr:
21292 case DW_FORM_ref1:
21293 case DW_FORM_ref2:
21294 case DW_FORM_ref4:
21295 case DW_FORM_ref8:
21296 case DW_FORM_ref_udata:
21297 case DW_FORM_GNU_ref_alt:
21298 return 1;
21299 default:
21300 return 0;
21301 }
21302 }
21303
21304 /* Return the .debug_loc section to use for CU.
21305 For DWO files use .debug_loc.dwo. */
21306
21307 static struct dwarf2_section_info *
21308 cu_debug_loc_section (struct dwarf2_cu *cu)
21309 {
21310 if (cu->dwo_unit)
21311 return &cu->dwo_unit->dwo_file->sections.loc;
21312 return &dwarf2_per_objfile->loc;
21313 }
21314
21315 /* A helper function that fills in a dwarf2_loclist_baton. */
21316
21317 static void
21318 fill_in_loclist_baton (struct dwarf2_cu *cu,
21319 struct dwarf2_loclist_baton *baton,
21320 const struct attribute *attr)
21321 {
21322 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21323
21324 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21325
21326 baton->per_cu = cu->per_cu;
21327 gdb_assert (baton->per_cu);
21328 /* We don't know how long the location list is, but make sure we
21329 don't run off the edge of the section. */
21330 baton->size = section->size - DW_UNSND (attr);
21331 baton->data = section->buffer + DW_UNSND (attr);
21332 baton->base_address = cu->base_address;
21333 baton->from_dwo = cu->dwo_unit != NULL;
21334 }
21335
21336 static void
21337 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21338 struct dwarf2_cu *cu, int is_block)
21339 {
21340 struct objfile *objfile = dwarf2_per_objfile->objfile;
21341 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21342
21343 if (attr_form_is_section_offset (attr)
21344 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21345 the section. If so, fall through to the complaint in the
21346 other branch. */
21347 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21348 {
21349 struct dwarf2_loclist_baton *baton;
21350
21351 baton = obstack_alloc (&objfile->objfile_obstack,
21352 sizeof (struct dwarf2_loclist_baton));
21353
21354 fill_in_loclist_baton (cu, baton, attr);
21355
21356 if (cu->base_known == 0)
21357 complaint (&symfile_complaints,
21358 _("Location list used without "
21359 "specifying the CU base address."));
21360
21361 SYMBOL_ACLASS_INDEX (sym) = (is_block
21362 ? dwarf2_loclist_block_index
21363 : dwarf2_loclist_index);
21364 SYMBOL_LOCATION_BATON (sym) = baton;
21365 }
21366 else
21367 {
21368 struct dwarf2_locexpr_baton *baton;
21369
21370 baton = obstack_alloc (&objfile->objfile_obstack,
21371 sizeof (struct dwarf2_locexpr_baton));
21372 baton->per_cu = cu->per_cu;
21373 gdb_assert (baton->per_cu);
21374
21375 if (attr_form_is_block (attr))
21376 {
21377 /* Note that we're just copying the block's data pointer
21378 here, not the actual data. We're still pointing into the
21379 info_buffer for SYM's objfile; right now we never release
21380 that buffer, but when we do clean up properly this may
21381 need to change. */
21382 baton->size = DW_BLOCK (attr)->size;
21383 baton->data = DW_BLOCK (attr)->data;
21384 }
21385 else
21386 {
21387 dwarf2_invalid_attrib_class_complaint ("location description",
21388 SYMBOL_NATURAL_NAME (sym));
21389 baton->size = 0;
21390 }
21391
21392 SYMBOL_ACLASS_INDEX (sym) = (is_block
21393 ? dwarf2_locexpr_block_index
21394 : dwarf2_locexpr_index);
21395 SYMBOL_LOCATION_BATON (sym) = baton;
21396 }
21397 }
21398
21399 /* Return the OBJFILE associated with the compilation unit CU. If CU
21400 came from a separate debuginfo file, then the master objfile is
21401 returned. */
21402
21403 struct objfile *
21404 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21405 {
21406 struct objfile *objfile = per_cu->objfile;
21407
21408 /* Return the master objfile, so that we can report and look up the
21409 correct file containing this variable. */
21410 if (objfile->separate_debug_objfile_backlink)
21411 objfile = objfile->separate_debug_objfile_backlink;
21412
21413 return objfile;
21414 }
21415
21416 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21417 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21418 CU_HEADERP first. */
21419
21420 static const struct comp_unit_head *
21421 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21422 struct dwarf2_per_cu_data *per_cu)
21423 {
21424 const gdb_byte *info_ptr;
21425
21426 if (per_cu->cu)
21427 return &per_cu->cu->header;
21428
21429 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21430
21431 memset (cu_headerp, 0, sizeof (*cu_headerp));
21432 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21433
21434 return cu_headerp;
21435 }
21436
21437 /* Return the address size given in the compilation unit header for CU. */
21438
21439 int
21440 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21441 {
21442 struct comp_unit_head cu_header_local;
21443 const struct comp_unit_head *cu_headerp;
21444
21445 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21446
21447 return cu_headerp->addr_size;
21448 }
21449
21450 /* Return the offset size given in the compilation unit header for CU. */
21451
21452 int
21453 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21454 {
21455 struct comp_unit_head cu_header_local;
21456 const struct comp_unit_head *cu_headerp;
21457
21458 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21459
21460 return cu_headerp->offset_size;
21461 }
21462
21463 /* See its dwarf2loc.h declaration. */
21464
21465 int
21466 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21467 {
21468 struct comp_unit_head cu_header_local;
21469 const struct comp_unit_head *cu_headerp;
21470
21471 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21472
21473 if (cu_headerp->version == 2)
21474 return cu_headerp->addr_size;
21475 else
21476 return cu_headerp->offset_size;
21477 }
21478
21479 /* Return the text offset of the CU. The returned offset comes from
21480 this CU's objfile. If this objfile came from a separate debuginfo
21481 file, then the offset may be different from the corresponding
21482 offset in the parent objfile. */
21483
21484 CORE_ADDR
21485 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21486 {
21487 struct objfile *objfile = per_cu->objfile;
21488
21489 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21490 }
21491
21492 /* Locate the .debug_info compilation unit from CU's objfile which contains
21493 the DIE at OFFSET. Raises an error on failure. */
21494
21495 static struct dwarf2_per_cu_data *
21496 dwarf2_find_containing_comp_unit (sect_offset offset,
21497 unsigned int offset_in_dwz,
21498 struct objfile *objfile)
21499 {
21500 struct dwarf2_per_cu_data *this_cu;
21501 int low, high;
21502 const sect_offset *cu_off;
21503
21504 low = 0;
21505 high = dwarf2_per_objfile->n_comp_units - 1;
21506 while (high > low)
21507 {
21508 struct dwarf2_per_cu_data *mid_cu;
21509 int mid = low + (high - low) / 2;
21510
21511 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21512 cu_off = &mid_cu->offset;
21513 if (mid_cu->is_dwz > offset_in_dwz
21514 || (mid_cu->is_dwz == offset_in_dwz
21515 && cu_off->sect_off >= offset.sect_off))
21516 high = mid;
21517 else
21518 low = mid + 1;
21519 }
21520 gdb_assert (low == high);
21521 this_cu = dwarf2_per_objfile->all_comp_units[low];
21522 cu_off = &this_cu->offset;
21523 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21524 {
21525 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21526 error (_("Dwarf Error: could not find partial DIE containing "
21527 "offset 0x%lx [in module %s]"),
21528 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21529
21530 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21531 <= offset.sect_off);
21532 return dwarf2_per_objfile->all_comp_units[low-1];
21533 }
21534 else
21535 {
21536 this_cu = dwarf2_per_objfile->all_comp_units[low];
21537 if (low == dwarf2_per_objfile->n_comp_units - 1
21538 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21539 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21540 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21541 return this_cu;
21542 }
21543 }
21544
21545 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21546
21547 static void
21548 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21549 {
21550 memset (cu, 0, sizeof (*cu));
21551 per_cu->cu = cu;
21552 cu->per_cu = per_cu;
21553 cu->objfile = per_cu->objfile;
21554 obstack_init (&cu->comp_unit_obstack);
21555 }
21556
21557 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21558
21559 static void
21560 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21561 enum language pretend_language)
21562 {
21563 struct attribute *attr;
21564
21565 /* Set the language we're debugging. */
21566 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21567 if (attr)
21568 set_cu_language (DW_UNSND (attr), cu);
21569 else
21570 {
21571 cu->language = pretend_language;
21572 cu->language_defn = language_def (cu->language);
21573 }
21574
21575 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21576 if (attr)
21577 cu->producer = DW_STRING (attr);
21578 }
21579
21580 /* Release one cached compilation unit, CU. We unlink it from the tree
21581 of compilation units, but we don't remove it from the read_in_chain;
21582 the caller is responsible for that.
21583 NOTE: DATA is a void * because this function is also used as a
21584 cleanup routine. */
21585
21586 static void
21587 free_heap_comp_unit (void *data)
21588 {
21589 struct dwarf2_cu *cu = data;
21590
21591 gdb_assert (cu->per_cu != NULL);
21592 cu->per_cu->cu = NULL;
21593 cu->per_cu = NULL;
21594
21595 obstack_free (&cu->comp_unit_obstack, NULL);
21596
21597 xfree (cu);
21598 }
21599
21600 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21601 when we're finished with it. We can't free the pointer itself, but be
21602 sure to unlink it from the cache. Also release any associated storage. */
21603
21604 static void
21605 free_stack_comp_unit (void *data)
21606 {
21607 struct dwarf2_cu *cu = data;
21608
21609 gdb_assert (cu->per_cu != NULL);
21610 cu->per_cu->cu = NULL;
21611 cu->per_cu = NULL;
21612
21613 obstack_free (&cu->comp_unit_obstack, NULL);
21614 cu->partial_dies = NULL;
21615 }
21616
21617 /* Free all cached compilation units. */
21618
21619 static void
21620 free_cached_comp_units (void *data)
21621 {
21622 struct dwarf2_per_cu_data *per_cu, **last_chain;
21623
21624 per_cu = dwarf2_per_objfile->read_in_chain;
21625 last_chain = &dwarf2_per_objfile->read_in_chain;
21626 while (per_cu != NULL)
21627 {
21628 struct dwarf2_per_cu_data *next_cu;
21629
21630 next_cu = per_cu->cu->read_in_chain;
21631
21632 free_heap_comp_unit (per_cu->cu);
21633 *last_chain = next_cu;
21634
21635 per_cu = next_cu;
21636 }
21637 }
21638
21639 /* Increase the age counter on each cached compilation unit, and free
21640 any that are too old. */
21641
21642 static void
21643 age_cached_comp_units (void)
21644 {
21645 struct dwarf2_per_cu_data *per_cu, **last_chain;
21646
21647 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21648 per_cu = dwarf2_per_objfile->read_in_chain;
21649 while (per_cu != NULL)
21650 {
21651 per_cu->cu->last_used ++;
21652 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21653 dwarf2_mark (per_cu->cu);
21654 per_cu = per_cu->cu->read_in_chain;
21655 }
21656
21657 per_cu = dwarf2_per_objfile->read_in_chain;
21658 last_chain = &dwarf2_per_objfile->read_in_chain;
21659 while (per_cu != NULL)
21660 {
21661 struct dwarf2_per_cu_data *next_cu;
21662
21663 next_cu = per_cu->cu->read_in_chain;
21664
21665 if (!per_cu->cu->mark)
21666 {
21667 free_heap_comp_unit (per_cu->cu);
21668 *last_chain = next_cu;
21669 }
21670 else
21671 last_chain = &per_cu->cu->read_in_chain;
21672
21673 per_cu = next_cu;
21674 }
21675 }
21676
21677 /* Remove a single compilation unit from the cache. */
21678
21679 static void
21680 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21681 {
21682 struct dwarf2_per_cu_data *per_cu, **last_chain;
21683
21684 per_cu = dwarf2_per_objfile->read_in_chain;
21685 last_chain = &dwarf2_per_objfile->read_in_chain;
21686 while (per_cu != NULL)
21687 {
21688 struct dwarf2_per_cu_data *next_cu;
21689
21690 next_cu = per_cu->cu->read_in_chain;
21691
21692 if (per_cu == target_per_cu)
21693 {
21694 free_heap_comp_unit (per_cu->cu);
21695 per_cu->cu = NULL;
21696 *last_chain = next_cu;
21697 break;
21698 }
21699 else
21700 last_chain = &per_cu->cu->read_in_chain;
21701
21702 per_cu = next_cu;
21703 }
21704 }
21705
21706 /* Release all extra memory associated with OBJFILE. */
21707
21708 void
21709 dwarf2_free_objfile (struct objfile *objfile)
21710 {
21711 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21712
21713 if (dwarf2_per_objfile == NULL)
21714 return;
21715
21716 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21717 free_cached_comp_units (NULL);
21718
21719 if (dwarf2_per_objfile->quick_file_names_table)
21720 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21721
21722 /* Everything else should be on the objfile obstack. */
21723 }
21724
21725 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21726 We store these in a hash table separate from the DIEs, and preserve them
21727 when the DIEs are flushed out of cache.
21728
21729 The CU "per_cu" pointer is needed because offset alone is not enough to
21730 uniquely identify the type. A file may have multiple .debug_types sections,
21731 or the type may come from a DWO file. Furthermore, while it's more logical
21732 to use per_cu->section+offset, with Fission the section with the data is in
21733 the DWO file but we don't know that section at the point we need it.
21734 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21735 because we can enter the lookup routine, get_die_type_at_offset, from
21736 outside this file, and thus won't necessarily have PER_CU->cu.
21737 Fortunately, PER_CU is stable for the life of the objfile. */
21738
21739 struct dwarf2_per_cu_offset_and_type
21740 {
21741 const struct dwarf2_per_cu_data *per_cu;
21742 sect_offset offset;
21743 struct type *type;
21744 };
21745
21746 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21747
21748 static hashval_t
21749 per_cu_offset_and_type_hash (const void *item)
21750 {
21751 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21752
21753 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21754 }
21755
21756 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21757
21758 static int
21759 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21760 {
21761 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21762 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21763
21764 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21765 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21766 }
21767
21768 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21769 table if necessary. For convenience, return TYPE.
21770
21771 The DIEs reading must have careful ordering to:
21772 * Not cause infite loops trying to read in DIEs as a prerequisite for
21773 reading current DIE.
21774 * Not trying to dereference contents of still incompletely read in types
21775 while reading in other DIEs.
21776 * Enable referencing still incompletely read in types just by a pointer to
21777 the type without accessing its fields.
21778
21779 Therefore caller should follow these rules:
21780 * Try to fetch any prerequisite types we may need to build this DIE type
21781 before building the type and calling set_die_type.
21782 * After building type call set_die_type for current DIE as soon as
21783 possible before fetching more types to complete the current type.
21784 * Make the type as complete as possible before fetching more types. */
21785
21786 static struct type *
21787 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21788 {
21789 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21790 struct objfile *objfile = cu->objfile;
21791 struct attribute *attr;
21792 struct dynamic_prop prop;
21793
21794 /* For Ada types, make sure that the gnat-specific data is always
21795 initialized (if not already set). There are a few types where
21796 we should not be doing so, because the type-specific area is
21797 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21798 where the type-specific area is used to store the floatformat).
21799 But this is not a problem, because the gnat-specific information
21800 is actually not needed for these types. */
21801 if (need_gnat_info (cu)
21802 && TYPE_CODE (type) != TYPE_CODE_FUNC
21803 && TYPE_CODE (type) != TYPE_CODE_FLT
21804 && !HAVE_GNAT_AUX_INFO (type))
21805 INIT_GNAT_SPECIFIC (type);
21806
21807 /* Read DW_AT_data_location and set in type. */
21808 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21809 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21810 {
21811 TYPE_DATA_LOCATION (type)
21812 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21813 *TYPE_DATA_LOCATION (type) = prop;
21814 }
21815
21816 if (dwarf2_per_objfile->die_type_hash == NULL)
21817 {
21818 dwarf2_per_objfile->die_type_hash =
21819 htab_create_alloc_ex (127,
21820 per_cu_offset_and_type_hash,
21821 per_cu_offset_and_type_eq,
21822 NULL,
21823 &objfile->objfile_obstack,
21824 hashtab_obstack_allocate,
21825 dummy_obstack_deallocate);
21826 }
21827
21828 ofs.per_cu = cu->per_cu;
21829 ofs.offset = die->offset;
21830 ofs.type = type;
21831 slot = (struct dwarf2_per_cu_offset_and_type **)
21832 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21833 if (*slot)
21834 complaint (&symfile_complaints,
21835 _("A problem internal to GDB: DIE 0x%x has type already set"),
21836 die->offset.sect_off);
21837 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21838 **slot = ofs;
21839 return type;
21840 }
21841
21842 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21843 or return NULL if the die does not have a saved type. */
21844
21845 static struct type *
21846 get_die_type_at_offset (sect_offset offset,
21847 struct dwarf2_per_cu_data *per_cu)
21848 {
21849 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21850
21851 if (dwarf2_per_objfile->die_type_hash == NULL)
21852 return NULL;
21853
21854 ofs.per_cu = per_cu;
21855 ofs.offset = offset;
21856 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21857 if (slot)
21858 return slot->type;
21859 else
21860 return NULL;
21861 }
21862
21863 /* Look up the type for DIE in CU in die_type_hash,
21864 or return NULL if DIE does not have a saved type. */
21865
21866 static struct type *
21867 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21868 {
21869 return get_die_type_at_offset (die->offset, cu->per_cu);
21870 }
21871
21872 /* Add a dependence relationship from CU to REF_PER_CU. */
21873
21874 static void
21875 dwarf2_add_dependence (struct dwarf2_cu *cu,
21876 struct dwarf2_per_cu_data *ref_per_cu)
21877 {
21878 void **slot;
21879
21880 if (cu->dependencies == NULL)
21881 cu->dependencies
21882 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21883 NULL, &cu->comp_unit_obstack,
21884 hashtab_obstack_allocate,
21885 dummy_obstack_deallocate);
21886
21887 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21888 if (*slot == NULL)
21889 *slot = ref_per_cu;
21890 }
21891
21892 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21893 Set the mark field in every compilation unit in the
21894 cache that we must keep because we are keeping CU. */
21895
21896 static int
21897 dwarf2_mark_helper (void **slot, void *data)
21898 {
21899 struct dwarf2_per_cu_data *per_cu;
21900
21901 per_cu = (struct dwarf2_per_cu_data *) *slot;
21902
21903 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21904 reading of the chain. As such dependencies remain valid it is not much
21905 useful to track and undo them during QUIT cleanups. */
21906 if (per_cu->cu == NULL)
21907 return 1;
21908
21909 if (per_cu->cu->mark)
21910 return 1;
21911 per_cu->cu->mark = 1;
21912
21913 if (per_cu->cu->dependencies != NULL)
21914 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21915
21916 return 1;
21917 }
21918
21919 /* Set the mark field in CU and in every other compilation unit in the
21920 cache that we must keep because we are keeping CU. */
21921
21922 static void
21923 dwarf2_mark (struct dwarf2_cu *cu)
21924 {
21925 if (cu->mark)
21926 return;
21927 cu->mark = 1;
21928 if (cu->dependencies != NULL)
21929 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21930 }
21931
21932 static void
21933 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21934 {
21935 while (per_cu)
21936 {
21937 per_cu->cu->mark = 0;
21938 per_cu = per_cu->cu->read_in_chain;
21939 }
21940 }
21941
21942 /* Trivial hash function for partial_die_info: the hash value of a DIE
21943 is its offset in .debug_info for this objfile. */
21944
21945 static hashval_t
21946 partial_die_hash (const void *item)
21947 {
21948 const struct partial_die_info *part_die = item;
21949
21950 return part_die->offset.sect_off;
21951 }
21952
21953 /* Trivial comparison function for partial_die_info structures: two DIEs
21954 are equal if they have the same offset. */
21955
21956 static int
21957 partial_die_eq (const void *item_lhs, const void *item_rhs)
21958 {
21959 const struct partial_die_info *part_die_lhs = item_lhs;
21960 const struct partial_die_info *part_die_rhs = item_rhs;
21961
21962 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21963 }
21964
21965 static struct cmd_list_element *set_dwarf2_cmdlist;
21966 static struct cmd_list_element *show_dwarf2_cmdlist;
21967
21968 static void
21969 set_dwarf2_cmd (char *args, int from_tty)
21970 {
21971 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21972 gdb_stdout);
21973 }
21974
21975 static void
21976 show_dwarf2_cmd (char *args, int from_tty)
21977 {
21978 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21979 }
21980
21981 /* Free data associated with OBJFILE, if necessary. */
21982
21983 static void
21984 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21985 {
21986 struct dwarf2_per_objfile *data = d;
21987 int ix;
21988
21989 /* Make sure we don't accidentally use dwarf2_per_objfile while
21990 cleaning up. */
21991 dwarf2_per_objfile = NULL;
21992
21993 for (ix = 0; ix < data->n_comp_units; ++ix)
21994 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21995
21996 for (ix = 0; ix < data->n_type_units; ++ix)
21997 VEC_free (dwarf2_per_cu_ptr,
21998 data->all_type_units[ix]->per_cu.imported_symtabs);
21999 xfree (data->all_type_units);
22000
22001 VEC_free (dwarf2_section_info_def, data->types);
22002
22003 if (data->dwo_files)
22004 free_dwo_files (data->dwo_files, objfile);
22005 if (data->dwp_file)
22006 gdb_bfd_unref (data->dwp_file->dbfd);
22007
22008 if (data->dwz_file && data->dwz_file->dwz_bfd)
22009 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22010 }
22011
22012 \f
22013 /* The "save gdb-index" command. */
22014
22015 /* The contents of the hash table we create when building the string
22016 table. */
22017 struct strtab_entry
22018 {
22019 offset_type offset;
22020 const char *str;
22021 };
22022
22023 /* Hash function for a strtab_entry.
22024
22025 Function is used only during write_hash_table so no index format backward
22026 compatibility is needed. */
22027
22028 static hashval_t
22029 hash_strtab_entry (const void *e)
22030 {
22031 const struct strtab_entry *entry = e;
22032 return mapped_index_string_hash (INT_MAX, entry->str);
22033 }
22034
22035 /* Equality function for a strtab_entry. */
22036
22037 static int
22038 eq_strtab_entry (const void *a, const void *b)
22039 {
22040 const struct strtab_entry *ea = a;
22041 const struct strtab_entry *eb = b;
22042 return !strcmp (ea->str, eb->str);
22043 }
22044
22045 /* Create a strtab_entry hash table. */
22046
22047 static htab_t
22048 create_strtab (void)
22049 {
22050 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22051 xfree, xcalloc, xfree);
22052 }
22053
22054 /* Add a string to the constant pool. Return the string's offset in
22055 host order. */
22056
22057 static offset_type
22058 add_string (htab_t table, struct obstack *cpool, const char *str)
22059 {
22060 void **slot;
22061 struct strtab_entry entry;
22062 struct strtab_entry *result;
22063
22064 entry.str = str;
22065 slot = htab_find_slot (table, &entry, INSERT);
22066 if (*slot)
22067 result = *slot;
22068 else
22069 {
22070 result = XNEW (struct strtab_entry);
22071 result->offset = obstack_object_size (cpool);
22072 result->str = str;
22073 obstack_grow_str0 (cpool, str);
22074 *slot = result;
22075 }
22076 return result->offset;
22077 }
22078
22079 /* An entry in the symbol table. */
22080 struct symtab_index_entry
22081 {
22082 /* The name of the symbol. */
22083 const char *name;
22084 /* The offset of the name in the constant pool. */
22085 offset_type index_offset;
22086 /* A sorted vector of the indices of all the CUs that hold an object
22087 of this name. */
22088 VEC (offset_type) *cu_indices;
22089 };
22090
22091 /* The symbol table. This is a power-of-2-sized hash table. */
22092 struct mapped_symtab
22093 {
22094 offset_type n_elements;
22095 offset_type size;
22096 struct symtab_index_entry **data;
22097 };
22098
22099 /* Hash function for a symtab_index_entry. */
22100
22101 static hashval_t
22102 hash_symtab_entry (const void *e)
22103 {
22104 const struct symtab_index_entry *entry = e;
22105 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22106 sizeof (offset_type) * VEC_length (offset_type,
22107 entry->cu_indices),
22108 0);
22109 }
22110
22111 /* Equality function for a symtab_index_entry. */
22112
22113 static int
22114 eq_symtab_entry (const void *a, const void *b)
22115 {
22116 const struct symtab_index_entry *ea = a;
22117 const struct symtab_index_entry *eb = b;
22118 int len = VEC_length (offset_type, ea->cu_indices);
22119 if (len != VEC_length (offset_type, eb->cu_indices))
22120 return 0;
22121 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22122 VEC_address (offset_type, eb->cu_indices),
22123 sizeof (offset_type) * len);
22124 }
22125
22126 /* Destroy a symtab_index_entry. */
22127
22128 static void
22129 delete_symtab_entry (void *p)
22130 {
22131 struct symtab_index_entry *entry = p;
22132 VEC_free (offset_type, entry->cu_indices);
22133 xfree (entry);
22134 }
22135
22136 /* Create a hash table holding symtab_index_entry objects. */
22137
22138 static htab_t
22139 create_symbol_hash_table (void)
22140 {
22141 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22142 delete_symtab_entry, xcalloc, xfree);
22143 }
22144
22145 /* Create a new mapped symtab object. */
22146
22147 static struct mapped_symtab *
22148 create_mapped_symtab (void)
22149 {
22150 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22151 symtab->n_elements = 0;
22152 symtab->size = 1024;
22153 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22154 return symtab;
22155 }
22156
22157 /* Destroy a mapped_symtab. */
22158
22159 static void
22160 cleanup_mapped_symtab (void *p)
22161 {
22162 struct mapped_symtab *symtab = p;
22163 /* The contents of the array are freed when the other hash table is
22164 destroyed. */
22165 xfree (symtab->data);
22166 xfree (symtab);
22167 }
22168
22169 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22170 the slot.
22171
22172 Function is used only during write_hash_table so no index format backward
22173 compatibility is needed. */
22174
22175 static struct symtab_index_entry **
22176 find_slot (struct mapped_symtab *symtab, const char *name)
22177 {
22178 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22179
22180 index = hash & (symtab->size - 1);
22181 step = ((hash * 17) & (symtab->size - 1)) | 1;
22182
22183 for (;;)
22184 {
22185 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22186 return &symtab->data[index];
22187 index = (index + step) & (symtab->size - 1);
22188 }
22189 }
22190
22191 /* Expand SYMTAB's hash table. */
22192
22193 static void
22194 hash_expand (struct mapped_symtab *symtab)
22195 {
22196 offset_type old_size = symtab->size;
22197 offset_type i;
22198 struct symtab_index_entry **old_entries = symtab->data;
22199
22200 symtab->size *= 2;
22201 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22202
22203 for (i = 0; i < old_size; ++i)
22204 {
22205 if (old_entries[i])
22206 {
22207 struct symtab_index_entry **slot = find_slot (symtab,
22208 old_entries[i]->name);
22209 *slot = old_entries[i];
22210 }
22211 }
22212
22213 xfree (old_entries);
22214 }
22215
22216 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22217 CU_INDEX is the index of the CU in which the symbol appears.
22218 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22219
22220 static void
22221 add_index_entry (struct mapped_symtab *symtab, const char *name,
22222 int is_static, gdb_index_symbol_kind kind,
22223 offset_type cu_index)
22224 {
22225 struct symtab_index_entry **slot;
22226 offset_type cu_index_and_attrs;
22227
22228 ++symtab->n_elements;
22229 if (4 * symtab->n_elements / 3 >= symtab->size)
22230 hash_expand (symtab);
22231
22232 slot = find_slot (symtab, name);
22233 if (!*slot)
22234 {
22235 *slot = XNEW (struct symtab_index_entry);
22236 (*slot)->name = name;
22237 /* index_offset is set later. */
22238 (*slot)->cu_indices = NULL;
22239 }
22240
22241 cu_index_and_attrs = 0;
22242 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22243 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22244 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22245
22246 /* We don't want to record an index value twice as we want to avoid the
22247 duplication.
22248 We process all global symbols and then all static symbols
22249 (which would allow us to avoid the duplication by only having to check
22250 the last entry pushed), but a symbol could have multiple kinds in one CU.
22251 To keep things simple we don't worry about the duplication here and
22252 sort and uniqufy the list after we've processed all symbols. */
22253 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22254 }
22255
22256 /* qsort helper routine for uniquify_cu_indices. */
22257
22258 static int
22259 offset_type_compare (const void *ap, const void *bp)
22260 {
22261 offset_type a = *(offset_type *) ap;
22262 offset_type b = *(offset_type *) bp;
22263
22264 return (a > b) - (b > a);
22265 }
22266
22267 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22268
22269 static void
22270 uniquify_cu_indices (struct mapped_symtab *symtab)
22271 {
22272 int i;
22273
22274 for (i = 0; i < symtab->size; ++i)
22275 {
22276 struct symtab_index_entry *entry = symtab->data[i];
22277
22278 if (entry
22279 && entry->cu_indices != NULL)
22280 {
22281 unsigned int next_to_insert, next_to_check;
22282 offset_type last_value;
22283
22284 qsort (VEC_address (offset_type, entry->cu_indices),
22285 VEC_length (offset_type, entry->cu_indices),
22286 sizeof (offset_type), offset_type_compare);
22287
22288 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22289 next_to_insert = 1;
22290 for (next_to_check = 1;
22291 next_to_check < VEC_length (offset_type, entry->cu_indices);
22292 ++next_to_check)
22293 {
22294 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22295 != last_value)
22296 {
22297 last_value = VEC_index (offset_type, entry->cu_indices,
22298 next_to_check);
22299 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22300 last_value);
22301 ++next_to_insert;
22302 }
22303 }
22304 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22305 }
22306 }
22307 }
22308
22309 /* Add a vector of indices to the constant pool. */
22310
22311 static offset_type
22312 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22313 struct symtab_index_entry *entry)
22314 {
22315 void **slot;
22316
22317 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22318 if (!*slot)
22319 {
22320 offset_type len = VEC_length (offset_type, entry->cu_indices);
22321 offset_type val = MAYBE_SWAP (len);
22322 offset_type iter;
22323 int i;
22324
22325 *slot = entry;
22326 entry->index_offset = obstack_object_size (cpool);
22327
22328 obstack_grow (cpool, &val, sizeof (val));
22329 for (i = 0;
22330 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22331 ++i)
22332 {
22333 val = MAYBE_SWAP (iter);
22334 obstack_grow (cpool, &val, sizeof (val));
22335 }
22336 }
22337 else
22338 {
22339 struct symtab_index_entry *old_entry = *slot;
22340 entry->index_offset = old_entry->index_offset;
22341 entry = old_entry;
22342 }
22343 return entry->index_offset;
22344 }
22345
22346 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22347 constant pool entries going into the obstack CPOOL. */
22348
22349 static void
22350 write_hash_table (struct mapped_symtab *symtab,
22351 struct obstack *output, struct obstack *cpool)
22352 {
22353 offset_type i;
22354 htab_t symbol_hash_table;
22355 htab_t str_table;
22356
22357 symbol_hash_table = create_symbol_hash_table ();
22358 str_table = create_strtab ();
22359
22360 /* We add all the index vectors to the constant pool first, to
22361 ensure alignment is ok. */
22362 for (i = 0; i < symtab->size; ++i)
22363 {
22364 if (symtab->data[i])
22365 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22366 }
22367
22368 /* Now write out the hash table. */
22369 for (i = 0; i < symtab->size; ++i)
22370 {
22371 offset_type str_off, vec_off;
22372
22373 if (symtab->data[i])
22374 {
22375 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22376 vec_off = symtab->data[i]->index_offset;
22377 }
22378 else
22379 {
22380 /* While 0 is a valid constant pool index, it is not valid
22381 to have 0 for both offsets. */
22382 str_off = 0;
22383 vec_off = 0;
22384 }
22385
22386 str_off = MAYBE_SWAP (str_off);
22387 vec_off = MAYBE_SWAP (vec_off);
22388
22389 obstack_grow (output, &str_off, sizeof (str_off));
22390 obstack_grow (output, &vec_off, sizeof (vec_off));
22391 }
22392
22393 htab_delete (str_table);
22394 htab_delete (symbol_hash_table);
22395 }
22396
22397 /* Struct to map psymtab to CU index in the index file. */
22398 struct psymtab_cu_index_map
22399 {
22400 struct partial_symtab *psymtab;
22401 unsigned int cu_index;
22402 };
22403
22404 static hashval_t
22405 hash_psymtab_cu_index (const void *item)
22406 {
22407 const struct psymtab_cu_index_map *map = item;
22408
22409 return htab_hash_pointer (map->psymtab);
22410 }
22411
22412 static int
22413 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22414 {
22415 const struct psymtab_cu_index_map *lhs = item_lhs;
22416 const struct psymtab_cu_index_map *rhs = item_rhs;
22417
22418 return lhs->psymtab == rhs->psymtab;
22419 }
22420
22421 /* Helper struct for building the address table. */
22422 struct addrmap_index_data
22423 {
22424 struct objfile *objfile;
22425 struct obstack *addr_obstack;
22426 htab_t cu_index_htab;
22427
22428 /* Non-zero if the previous_* fields are valid.
22429 We can't write an entry until we see the next entry (since it is only then
22430 that we know the end of the entry). */
22431 int previous_valid;
22432 /* Index of the CU in the table of all CUs in the index file. */
22433 unsigned int previous_cu_index;
22434 /* Start address of the CU. */
22435 CORE_ADDR previous_cu_start;
22436 };
22437
22438 /* Write an address entry to OBSTACK. */
22439
22440 static void
22441 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22442 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22443 {
22444 offset_type cu_index_to_write;
22445 gdb_byte addr[8];
22446 CORE_ADDR baseaddr;
22447
22448 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22449
22450 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22451 obstack_grow (obstack, addr, 8);
22452 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22453 obstack_grow (obstack, addr, 8);
22454 cu_index_to_write = MAYBE_SWAP (cu_index);
22455 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22456 }
22457
22458 /* Worker function for traversing an addrmap to build the address table. */
22459
22460 static int
22461 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22462 {
22463 struct addrmap_index_data *data = datap;
22464 struct partial_symtab *pst = obj;
22465
22466 if (data->previous_valid)
22467 add_address_entry (data->objfile, data->addr_obstack,
22468 data->previous_cu_start, start_addr,
22469 data->previous_cu_index);
22470
22471 data->previous_cu_start = start_addr;
22472 if (pst != NULL)
22473 {
22474 struct psymtab_cu_index_map find_map, *map;
22475 find_map.psymtab = pst;
22476 map = htab_find (data->cu_index_htab, &find_map);
22477 gdb_assert (map != NULL);
22478 data->previous_cu_index = map->cu_index;
22479 data->previous_valid = 1;
22480 }
22481 else
22482 data->previous_valid = 0;
22483
22484 return 0;
22485 }
22486
22487 /* Write OBJFILE's address map to OBSTACK.
22488 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22489 in the index file. */
22490
22491 static void
22492 write_address_map (struct objfile *objfile, struct obstack *obstack,
22493 htab_t cu_index_htab)
22494 {
22495 struct addrmap_index_data addrmap_index_data;
22496
22497 /* When writing the address table, we have to cope with the fact that
22498 the addrmap iterator only provides the start of a region; we have to
22499 wait until the next invocation to get the start of the next region. */
22500
22501 addrmap_index_data.objfile = objfile;
22502 addrmap_index_data.addr_obstack = obstack;
22503 addrmap_index_data.cu_index_htab = cu_index_htab;
22504 addrmap_index_data.previous_valid = 0;
22505
22506 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22507 &addrmap_index_data);
22508
22509 /* It's highly unlikely the last entry (end address = 0xff...ff)
22510 is valid, but we should still handle it.
22511 The end address is recorded as the start of the next region, but that
22512 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22513 anyway. */
22514 if (addrmap_index_data.previous_valid)
22515 add_address_entry (objfile, obstack,
22516 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22517 addrmap_index_data.previous_cu_index);
22518 }
22519
22520 /* Return the symbol kind of PSYM. */
22521
22522 static gdb_index_symbol_kind
22523 symbol_kind (struct partial_symbol *psym)
22524 {
22525 domain_enum domain = PSYMBOL_DOMAIN (psym);
22526 enum address_class aclass = PSYMBOL_CLASS (psym);
22527
22528 switch (domain)
22529 {
22530 case VAR_DOMAIN:
22531 switch (aclass)
22532 {
22533 case LOC_BLOCK:
22534 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22535 case LOC_TYPEDEF:
22536 return GDB_INDEX_SYMBOL_KIND_TYPE;
22537 case LOC_COMPUTED:
22538 case LOC_CONST_BYTES:
22539 case LOC_OPTIMIZED_OUT:
22540 case LOC_STATIC:
22541 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22542 case LOC_CONST:
22543 /* Note: It's currently impossible to recognize psyms as enum values
22544 short of reading the type info. For now punt. */
22545 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22546 default:
22547 /* There are other LOC_FOO values that one might want to classify
22548 as variables, but dwarf2read.c doesn't currently use them. */
22549 return GDB_INDEX_SYMBOL_KIND_OTHER;
22550 }
22551 case STRUCT_DOMAIN:
22552 return GDB_INDEX_SYMBOL_KIND_TYPE;
22553 default:
22554 return GDB_INDEX_SYMBOL_KIND_OTHER;
22555 }
22556 }
22557
22558 /* Add a list of partial symbols to SYMTAB. */
22559
22560 static void
22561 write_psymbols (struct mapped_symtab *symtab,
22562 htab_t psyms_seen,
22563 struct partial_symbol **psymp,
22564 int count,
22565 offset_type cu_index,
22566 int is_static)
22567 {
22568 for (; count-- > 0; ++psymp)
22569 {
22570 struct partial_symbol *psym = *psymp;
22571 void **slot;
22572
22573 if (SYMBOL_LANGUAGE (psym) == language_ada)
22574 error (_("Ada is not currently supported by the index"));
22575
22576 /* Only add a given psymbol once. */
22577 slot = htab_find_slot (psyms_seen, psym, INSERT);
22578 if (!*slot)
22579 {
22580 gdb_index_symbol_kind kind = symbol_kind (psym);
22581
22582 *slot = psym;
22583 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22584 is_static, kind, cu_index);
22585 }
22586 }
22587 }
22588
22589 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22590 exception if there is an error. */
22591
22592 static void
22593 write_obstack (FILE *file, struct obstack *obstack)
22594 {
22595 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22596 file)
22597 != obstack_object_size (obstack))
22598 error (_("couldn't data write to file"));
22599 }
22600
22601 /* Unlink a file if the argument is not NULL. */
22602
22603 static void
22604 unlink_if_set (void *p)
22605 {
22606 char **filename = p;
22607 if (*filename)
22608 unlink (*filename);
22609 }
22610
22611 /* A helper struct used when iterating over debug_types. */
22612 struct signatured_type_index_data
22613 {
22614 struct objfile *objfile;
22615 struct mapped_symtab *symtab;
22616 struct obstack *types_list;
22617 htab_t psyms_seen;
22618 int cu_index;
22619 };
22620
22621 /* A helper function that writes a single signatured_type to an
22622 obstack. */
22623
22624 static int
22625 write_one_signatured_type (void **slot, void *d)
22626 {
22627 struct signatured_type_index_data *info = d;
22628 struct signatured_type *entry = (struct signatured_type *) *slot;
22629 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22630 gdb_byte val[8];
22631
22632 write_psymbols (info->symtab,
22633 info->psyms_seen,
22634 info->objfile->global_psymbols.list
22635 + psymtab->globals_offset,
22636 psymtab->n_global_syms, info->cu_index,
22637 0);
22638 write_psymbols (info->symtab,
22639 info->psyms_seen,
22640 info->objfile->static_psymbols.list
22641 + psymtab->statics_offset,
22642 psymtab->n_static_syms, info->cu_index,
22643 1);
22644
22645 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22646 entry->per_cu.offset.sect_off);
22647 obstack_grow (info->types_list, val, 8);
22648 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22649 entry->type_offset_in_tu.cu_off);
22650 obstack_grow (info->types_list, val, 8);
22651 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22652 obstack_grow (info->types_list, val, 8);
22653
22654 ++info->cu_index;
22655
22656 return 1;
22657 }
22658
22659 /* Recurse into all "included" dependencies and write their symbols as
22660 if they appeared in this psymtab. */
22661
22662 static void
22663 recursively_write_psymbols (struct objfile *objfile,
22664 struct partial_symtab *psymtab,
22665 struct mapped_symtab *symtab,
22666 htab_t psyms_seen,
22667 offset_type cu_index)
22668 {
22669 int i;
22670
22671 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22672 if (psymtab->dependencies[i]->user != NULL)
22673 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22674 symtab, psyms_seen, cu_index);
22675
22676 write_psymbols (symtab,
22677 psyms_seen,
22678 objfile->global_psymbols.list + psymtab->globals_offset,
22679 psymtab->n_global_syms, cu_index,
22680 0);
22681 write_psymbols (symtab,
22682 psyms_seen,
22683 objfile->static_psymbols.list + psymtab->statics_offset,
22684 psymtab->n_static_syms, cu_index,
22685 1);
22686 }
22687
22688 /* Create an index file for OBJFILE in the directory DIR. */
22689
22690 static void
22691 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22692 {
22693 struct cleanup *cleanup;
22694 char *filename, *cleanup_filename;
22695 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22696 struct obstack cu_list, types_cu_list;
22697 int i;
22698 FILE *out_file;
22699 struct mapped_symtab *symtab;
22700 offset_type val, size_of_contents, total_len;
22701 struct stat st;
22702 htab_t psyms_seen;
22703 htab_t cu_index_htab;
22704 struct psymtab_cu_index_map *psymtab_cu_index_map;
22705
22706 if (dwarf2_per_objfile->using_index)
22707 error (_("Cannot use an index to create the index"));
22708
22709 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22710 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22711
22712 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22713 return;
22714
22715 if (stat (objfile_name (objfile), &st) < 0)
22716 perror_with_name (objfile_name (objfile));
22717
22718 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22719 INDEX_SUFFIX, (char *) NULL);
22720 cleanup = make_cleanup (xfree, filename);
22721
22722 out_file = gdb_fopen_cloexec (filename, "wb");
22723 if (!out_file)
22724 error (_("Can't open `%s' for writing"), filename);
22725
22726 cleanup_filename = filename;
22727 make_cleanup (unlink_if_set, &cleanup_filename);
22728
22729 symtab = create_mapped_symtab ();
22730 make_cleanup (cleanup_mapped_symtab, symtab);
22731
22732 obstack_init (&addr_obstack);
22733 make_cleanup_obstack_free (&addr_obstack);
22734
22735 obstack_init (&cu_list);
22736 make_cleanup_obstack_free (&cu_list);
22737
22738 obstack_init (&types_cu_list);
22739 make_cleanup_obstack_free (&types_cu_list);
22740
22741 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22742 NULL, xcalloc, xfree);
22743 make_cleanup_htab_delete (psyms_seen);
22744
22745 /* While we're scanning CU's create a table that maps a psymtab pointer
22746 (which is what addrmap records) to its index (which is what is recorded
22747 in the index file). This will later be needed to write the address
22748 table. */
22749 cu_index_htab = htab_create_alloc (100,
22750 hash_psymtab_cu_index,
22751 eq_psymtab_cu_index,
22752 NULL, xcalloc, xfree);
22753 make_cleanup_htab_delete (cu_index_htab);
22754 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22755 xmalloc (sizeof (struct psymtab_cu_index_map)
22756 * dwarf2_per_objfile->n_comp_units);
22757 make_cleanup (xfree, psymtab_cu_index_map);
22758
22759 /* The CU list is already sorted, so we don't need to do additional
22760 work here. Also, the debug_types entries do not appear in
22761 all_comp_units, but only in their own hash table. */
22762 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22763 {
22764 struct dwarf2_per_cu_data *per_cu
22765 = dwarf2_per_objfile->all_comp_units[i];
22766 struct partial_symtab *psymtab = per_cu->v.psymtab;
22767 gdb_byte val[8];
22768 struct psymtab_cu_index_map *map;
22769 void **slot;
22770
22771 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22772 It may be referenced from a local scope but in such case it does not
22773 need to be present in .gdb_index. */
22774 if (psymtab == NULL)
22775 continue;
22776
22777 if (psymtab->user == NULL)
22778 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22779
22780 map = &psymtab_cu_index_map[i];
22781 map->psymtab = psymtab;
22782 map->cu_index = i;
22783 slot = htab_find_slot (cu_index_htab, map, INSERT);
22784 gdb_assert (slot != NULL);
22785 gdb_assert (*slot == NULL);
22786 *slot = map;
22787
22788 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22789 per_cu->offset.sect_off);
22790 obstack_grow (&cu_list, val, 8);
22791 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22792 obstack_grow (&cu_list, val, 8);
22793 }
22794
22795 /* Dump the address map. */
22796 write_address_map (objfile, &addr_obstack, cu_index_htab);
22797
22798 /* Write out the .debug_type entries, if any. */
22799 if (dwarf2_per_objfile->signatured_types)
22800 {
22801 struct signatured_type_index_data sig_data;
22802
22803 sig_data.objfile = objfile;
22804 sig_data.symtab = symtab;
22805 sig_data.types_list = &types_cu_list;
22806 sig_data.psyms_seen = psyms_seen;
22807 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22808 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22809 write_one_signatured_type, &sig_data);
22810 }
22811
22812 /* Now that we've processed all symbols we can shrink their cu_indices
22813 lists. */
22814 uniquify_cu_indices (symtab);
22815
22816 obstack_init (&constant_pool);
22817 make_cleanup_obstack_free (&constant_pool);
22818 obstack_init (&symtab_obstack);
22819 make_cleanup_obstack_free (&symtab_obstack);
22820 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22821
22822 obstack_init (&contents);
22823 make_cleanup_obstack_free (&contents);
22824 size_of_contents = 6 * sizeof (offset_type);
22825 total_len = size_of_contents;
22826
22827 /* The version number. */
22828 val = MAYBE_SWAP (8);
22829 obstack_grow (&contents, &val, sizeof (val));
22830
22831 /* The offset of the CU list from the start of the file. */
22832 val = MAYBE_SWAP (total_len);
22833 obstack_grow (&contents, &val, sizeof (val));
22834 total_len += obstack_object_size (&cu_list);
22835
22836 /* The offset of the types CU list from the start of the file. */
22837 val = MAYBE_SWAP (total_len);
22838 obstack_grow (&contents, &val, sizeof (val));
22839 total_len += obstack_object_size (&types_cu_list);
22840
22841 /* The offset of the address table from the start of the file. */
22842 val = MAYBE_SWAP (total_len);
22843 obstack_grow (&contents, &val, sizeof (val));
22844 total_len += obstack_object_size (&addr_obstack);
22845
22846 /* The offset of the symbol table from the start of the file. */
22847 val = MAYBE_SWAP (total_len);
22848 obstack_grow (&contents, &val, sizeof (val));
22849 total_len += obstack_object_size (&symtab_obstack);
22850
22851 /* The offset of the constant pool from the start of the file. */
22852 val = MAYBE_SWAP (total_len);
22853 obstack_grow (&contents, &val, sizeof (val));
22854 total_len += obstack_object_size (&constant_pool);
22855
22856 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22857
22858 write_obstack (out_file, &contents);
22859 write_obstack (out_file, &cu_list);
22860 write_obstack (out_file, &types_cu_list);
22861 write_obstack (out_file, &addr_obstack);
22862 write_obstack (out_file, &symtab_obstack);
22863 write_obstack (out_file, &constant_pool);
22864
22865 fclose (out_file);
22866
22867 /* We want to keep the file, so we set cleanup_filename to NULL
22868 here. See unlink_if_set. */
22869 cleanup_filename = NULL;
22870
22871 do_cleanups (cleanup);
22872 }
22873
22874 /* Implementation of the `save gdb-index' command.
22875
22876 Note that the file format used by this command is documented in the
22877 GDB manual. Any changes here must be documented there. */
22878
22879 static void
22880 save_gdb_index_command (char *arg, int from_tty)
22881 {
22882 struct objfile *objfile;
22883
22884 if (!arg || !*arg)
22885 error (_("usage: save gdb-index DIRECTORY"));
22886
22887 ALL_OBJFILES (objfile)
22888 {
22889 struct stat st;
22890
22891 /* If the objfile does not correspond to an actual file, skip it. */
22892 if (stat (objfile_name (objfile), &st) < 0)
22893 continue;
22894
22895 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22896 if (dwarf2_per_objfile)
22897 {
22898 volatile struct gdb_exception except;
22899
22900 TRY_CATCH (except, RETURN_MASK_ERROR)
22901 {
22902 write_psymtabs_to_index (objfile, arg);
22903 }
22904 if (except.reason < 0)
22905 exception_fprintf (gdb_stderr, except,
22906 _("Error while writing index for `%s': "),
22907 objfile_name (objfile));
22908 }
22909 }
22910 }
22911
22912 \f
22913
22914 int dwarf2_always_disassemble;
22915
22916 static void
22917 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22918 struct cmd_list_element *c, const char *value)
22919 {
22920 fprintf_filtered (file,
22921 _("Whether to always disassemble "
22922 "DWARF expressions is %s.\n"),
22923 value);
22924 }
22925
22926 static void
22927 show_check_physname (struct ui_file *file, int from_tty,
22928 struct cmd_list_element *c, const char *value)
22929 {
22930 fprintf_filtered (file,
22931 _("Whether to check \"physname\" is %s.\n"),
22932 value);
22933 }
22934
22935 void _initialize_dwarf2_read (void);
22936
22937 void
22938 _initialize_dwarf2_read (void)
22939 {
22940 struct cmd_list_element *c;
22941
22942 dwarf2_objfile_data_key
22943 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22944
22945 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22946 Set DWARF 2 specific variables.\n\
22947 Configure DWARF 2 variables such as the cache size"),
22948 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22949 0/*allow-unknown*/, &maintenance_set_cmdlist);
22950
22951 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22952 Show DWARF 2 specific variables\n\
22953 Show DWARF 2 variables such as the cache size"),
22954 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22955 0/*allow-unknown*/, &maintenance_show_cmdlist);
22956
22957 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22958 &dwarf2_max_cache_age, _("\
22959 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22960 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22961 A higher limit means that cached compilation units will be stored\n\
22962 in memory longer, and more total memory will be used. Zero disables\n\
22963 caching, which can slow down startup."),
22964 NULL,
22965 show_dwarf2_max_cache_age,
22966 &set_dwarf2_cmdlist,
22967 &show_dwarf2_cmdlist);
22968
22969 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22970 &dwarf2_always_disassemble, _("\
22971 Set whether `info address' always disassembles DWARF expressions."), _("\
22972 Show whether `info address' always disassembles DWARF expressions."), _("\
22973 When enabled, DWARF expressions are always printed in an assembly-like\n\
22974 syntax. When disabled, expressions will be printed in a more\n\
22975 conversational style, when possible."),
22976 NULL,
22977 show_dwarf2_always_disassemble,
22978 &set_dwarf2_cmdlist,
22979 &show_dwarf2_cmdlist);
22980
22981 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22982 Set debugging of the dwarf2 reader."), _("\
22983 Show debugging of the dwarf2 reader."), _("\
22984 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22985 reading and symtab expansion. A value of 1 (one) provides basic\n\
22986 information. A value greater than 1 provides more verbose information."),
22987 NULL,
22988 NULL,
22989 &setdebuglist, &showdebuglist);
22990
22991 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22992 Set debugging of the dwarf2 DIE reader."), _("\
22993 Show debugging of the dwarf2 DIE reader."), _("\
22994 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22995 The value is the maximum depth to print."),
22996 NULL,
22997 NULL,
22998 &setdebuglist, &showdebuglist);
22999
23000 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23001 Set cross-checking of \"physname\" code against demangler."), _("\
23002 Show cross-checking of \"physname\" code against demangler."), _("\
23003 When enabled, GDB's internal \"physname\" code is checked against\n\
23004 the demangler."),
23005 NULL, show_check_physname,
23006 &setdebuglist, &showdebuglist);
23007
23008 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23009 no_class, &use_deprecated_index_sections, _("\
23010 Set whether to use deprecated gdb_index sections."), _("\
23011 Show whether to use deprecated gdb_index sections."), _("\
23012 When enabled, deprecated .gdb_index sections are used anyway.\n\
23013 Normally they are ignored either because of a missing feature or\n\
23014 performance issue.\n\
23015 Warning: This option must be enabled before gdb reads the file."),
23016 NULL,
23017 NULL,
23018 &setlist, &showlist);
23019
23020 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23021 _("\
23022 Save a gdb-index file.\n\
23023 Usage: save gdb-index DIRECTORY"),
23024 &save_cmdlist);
23025 set_cmd_completer (c, filename_completer);
23026
23027 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23028 &dwarf2_locexpr_funcs);
23029 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23030 &dwarf2_loclist_funcs);
23031
23032 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23033 &dwarf2_block_frame_base_locexpr_funcs);
23034 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23035 &dwarf2_block_frame_base_loclist_funcs);
23036 }