gdb/
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67
68 #include <fcntl.h>
69 #include "gdb_string.h"
70 #include "gdb_assert.h"
71 #include <sys/types.h>
72 #ifdef HAVE_ZLIB_H
73 #include <zlib.h>
74 #endif
75 #ifdef HAVE_MMAP
76 #include <sys/mman.h>
77 #ifndef MAP_FAILED
78 #define MAP_FAILED ((void *) -1)
79 #endif
80 #endif
81
82 typedef struct symbol *symbolp;
83 DEF_VEC_P (symbolp);
84
85 /* When non-zero, print basic high level tracing messages.
86 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
87 static int dwarf2_read_debug = 0;
88
89 /* When non-zero, dump DIEs after they are read in. */
90 static int dwarf2_die_debug = 0;
91
92 /* When non-zero, cross-check physname against demangler. */
93 static int check_physname = 0;
94
95 /* When non-zero, do not reject deprecated .gdb_index sections. */
96 int use_deprecated_index_sections = 0;
97
98 static int pagesize;
99
100 /* When set, the file that we're processing is known to have debugging
101 info for C++ namespaces. GCC 3.3.x did not produce this information,
102 but later versions do. */
103
104 static int processing_has_namespace_info;
105
106 static const struct objfile_data *dwarf2_objfile_data_key;
107
108 struct dwarf2_section_info
109 {
110 asection *asection;
111 gdb_byte *buffer;
112 bfd_size_type size;
113 /* Not NULL if the section was actually mmapped. */
114 void *map_addr;
115 /* Page aligned size of mmapped area. */
116 bfd_size_type map_len;
117 /* True if we have tried to read this section. */
118 int readin;
119 };
120
121 typedef struct dwarf2_section_info dwarf2_section_info_def;
122 DEF_VEC_O (dwarf2_section_info_def);
123
124 /* All offsets in the index are of this type. It must be
125 architecture-independent. */
126 typedef uint32_t offset_type;
127
128 DEF_VEC_I (offset_type);
129
130 /* Ensure only legit values are used. */
131 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
132 do { \
133 gdb_assert ((unsigned int) (value) <= 1); \
134 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
135 } while (0)
136
137 /* Ensure only legit values are used. */
138 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
139 do { \
140 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
141 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
142 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
143 } while (0)
144
145 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
146 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
147 do { \
148 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
149 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
150 } while (0)
151
152 /* A description of the mapped index. The file format is described in
153 a comment by the code that writes the index. */
154 struct mapped_index
155 {
156 /* Index data format version. */
157 int version;
158
159 /* The total length of the buffer. */
160 off_t total_size;
161
162 /* A pointer to the address table data. */
163 const gdb_byte *address_table;
164
165 /* Size of the address table data in bytes. */
166 offset_type address_table_size;
167
168 /* The symbol table, implemented as a hash table. */
169 const offset_type *symbol_table;
170
171 /* Size in slots, each slot is 2 offset_types. */
172 offset_type symbol_table_slots;
173
174 /* A pointer to the constant pool. */
175 const char *constant_pool;
176 };
177
178 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
179 DEF_VEC_P (dwarf2_per_cu_ptr);
180
181 /* Collection of data recorded per objfile.
182 This hangs off of dwarf2_objfile_data_key. */
183
184 struct dwarf2_per_objfile
185 {
186 struct dwarf2_section_info info;
187 struct dwarf2_section_info abbrev;
188 struct dwarf2_section_info line;
189 struct dwarf2_section_info loc;
190 struct dwarf2_section_info macinfo;
191 struct dwarf2_section_info macro;
192 struct dwarf2_section_info str;
193 struct dwarf2_section_info ranges;
194 struct dwarf2_section_info addr;
195 struct dwarf2_section_info frame;
196 struct dwarf2_section_info eh_frame;
197 struct dwarf2_section_info gdb_index;
198
199 VEC (dwarf2_section_info_def) *types;
200
201 /* Back link. */
202 struct objfile *objfile;
203
204 /* Table of all the compilation units. This is used to locate
205 the target compilation unit of a particular reference. */
206 struct dwarf2_per_cu_data **all_comp_units;
207
208 /* The number of compilation units in ALL_COMP_UNITS. */
209 int n_comp_units;
210
211 /* The number of .debug_types-related CUs. */
212 int n_type_units;
213
214 /* The .debug_types-related CUs (TUs). */
215 struct signatured_type **all_type_units;
216
217 /* The number of entries in all_type_unit_groups. */
218 int n_type_unit_groups;
219
220 /* Table of type unit groups.
221 This exists to make it easy to iterate over all CUs and TU groups. */
222 struct type_unit_group **all_type_unit_groups;
223
224 /* Table of struct type_unit_group objects.
225 The hash key is the DW_AT_stmt_list value. */
226 htab_t type_unit_groups;
227
228 /* A table mapping .debug_types signatures to its signatured_type entry.
229 This is NULL if the .debug_types section hasn't been read in yet. */
230 htab_t signatured_types;
231
232 /* Type unit statistics, to see how well the scaling improvements
233 are doing. */
234 struct tu_stats
235 {
236 int nr_uniq_abbrev_tables;
237 int nr_symtabs;
238 int nr_symtab_sharers;
239 int nr_stmt_less_type_units;
240 } tu_stats;
241
242 /* A chain of compilation units that are currently read in, so that
243 they can be freed later. */
244 struct dwarf2_per_cu_data *read_in_chain;
245
246 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
247 This is NULL if the table hasn't been allocated yet. */
248 htab_t dwo_files;
249
250 /* A flag indicating wether this objfile has a section loaded at a
251 VMA of 0. */
252 int has_section_at_zero;
253
254 /* True if we are using the mapped index,
255 or we are faking it for OBJF_READNOW's sake. */
256 unsigned char using_index;
257
258 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
259 struct mapped_index *index_table;
260
261 /* When using index_table, this keeps track of all quick_file_names entries.
262 TUs can share line table entries with CUs or other TUs, and there can be
263 a lot more TUs than unique line tables, so we maintain a separate table
264 of all line table entries to support the sharing. */
265 htab_t quick_file_names_table;
266
267 /* Set during partial symbol reading, to prevent queueing of full
268 symbols. */
269 int reading_partial_symbols;
270
271 /* Table mapping type DIEs to their struct type *.
272 This is NULL if not allocated yet.
273 The mapping is done via (CU/TU signature + DIE offset) -> type. */
274 htab_t die_type_hash;
275
276 /* The CUs we recently read. */
277 VEC (dwarf2_per_cu_ptr) *just_read_cus;
278 };
279
280 static struct dwarf2_per_objfile *dwarf2_per_objfile;
281
282 /* Default names of the debugging sections. */
283
284 /* Note that if the debugging section has been compressed, it might
285 have a name like .zdebug_info. */
286
287 static const struct dwarf2_debug_sections dwarf2_elf_names =
288 {
289 { ".debug_info", ".zdebug_info" },
290 { ".debug_abbrev", ".zdebug_abbrev" },
291 { ".debug_line", ".zdebug_line" },
292 { ".debug_loc", ".zdebug_loc" },
293 { ".debug_macinfo", ".zdebug_macinfo" },
294 { ".debug_macro", ".zdebug_macro" },
295 { ".debug_str", ".zdebug_str" },
296 { ".debug_ranges", ".zdebug_ranges" },
297 { ".debug_types", ".zdebug_types" },
298 { ".debug_addr", ".zdebug_addr" },
299 { ".debug_frame", ".zdebug_frame" },
300 { ".eh_frame", NULL },
301 { ".gdb_index", ".zgdb_index" },
302 23
303 };
304
305 /* List of DWO sections. */
306
307 static const struct dwo_section_names
308 {
309 struct dwarf2_section_names abbrev_dwo;
310 struct dwarf2_section_names info_dwo;
311 struct dwarf2_section_names line_dwo;
312 struct dwarf2_section_names loc_dwo;
313 struct dwarf2_section_names macinfo_dwo;
314 struct dwarf2_section_names macro_dwo;
315 struct dwarf2_section_names str_dwo;
316 struct dwarf2_section_names str_offsets_dwo;
317 struct dwarf2_section_names types_dwo;
318 }
319 dwo_section_names =
320 {
321 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
322 { ".debug_info.dwo", ".zdebug_info.dwo" },
323 { ".debug_line.dwo", ".zdebug_line.dwo" },
324 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
325 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
326 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
327 { ".debug_str.dwo", ".zdebug_str.dwo" },
328 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
329 { ".debug_types.dwo", ".zdebug_types.dwo" },
330 };
331
332 /* local data types */
333
334 /* The data in a compilation unit header, after target2host
335 translation, looks like this. */
336 struct comp_unit_head
337 {
338 unsigned int length;
339 short version;
340 unsigned char addr_size;
341 unsigned char signed_addr_p;
342 sect_offset abbrev_offset;
343
344 /* Size of file offsets; either 4 or 8. */
345 unsigned int offset_size;
346
347 /* Size of the length field; either 4 or 12. */
348 unsigned int initial_length_size;
349
350 /* Offset to the first byte of this compilation unit header in the
351 .debug_info section, for resolving relative reference dies. */
352 sect_offset offset;
353
354 /* Offset to first die in this cu from the start of the cu.
355 This will be the first byte following the compilation unit header. */
356 cu_offset first_die_offset;
357 };
358
359 /* Type used for delaying computation of method physnames.
360 See comments for compute_delayed_physnames. */
361 struct delayed_method_info
362 {
363 /* The type to which the method is attached, i.e., its parent class. */
364 struct type *type;
365
366 /* The index of the method in the type's function fieldlists. */
367 int fnfield_index;
368
369 /* The index of the method in the fieldlist. */
370 int index;
371
372 /* The name of the DIE. */
373 const char *name;
374
375 /* The DIE associated with this method. */
376 struct die_info *die;
377 };
378
379 typedef struct delayed_method_info delayed_method_info;
380 DEF_VEC_O (delayed_method_info);
381
382 /* Internal state when decoding a particular compilation unit. */
383 struct dwarf2_cu
384 {
385 /* The objfile containing this compilation unit. */
386 struct objfile *objfile;
387
388 /* The header of the compilation unit. */
389 struct comp_unit_head header;
390
391 /* Base address of this compilation unit. */
392 CORE_ADDR base_address;
393
394 /* Non-zero if base_address has been set. */
395 int base_known;
396
397 /* The language we are debugging. */
398 enum language language;
399 const struct language_defn *language_defn;
400
401 const char *producer;
402
403 /* The generic symbol table building routines have separate lists for
404 file scope symbols and all all other scopes (local scopes). So
405 we need to select the right one to pass to add_symbol_to_list().
406 We do it by keeping a pointer to the correct list in list_in_scope.
407
408 FIXME: The original dwarf code just treated the file scope as the
409 first local scope, and all other local scopes as nested local
410 scopes, and worked fine. Check to see if we really need to
411 distinguish these in buildsym.c. */
412 struct pending **list_in_scope;
413
414 /* The abbrev table for this CU.
415 Normally this points to the abbrev table in the objfile.
416 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
417 struct abbrev_table *abbrev_table;
418
419 /* Hash table holding all the loaded partial DIEs
420 with partial_die->offset.SECT_OFF as hash. */
421 htab_t partial_dies;
422
423 /* Storage for things with the same lifetime as this read-in compilation
424 unit, including partial DIEs. */
425 struct obstack comp_unit_obstack;
426
427 /* When multiple dwarf2_cu structures are living in memory, this field
428 chains them all together, so that they can be released efficiently.
429 We will probably also want a generation counter so that most-recently-used
430 compilation units are cached... */
431 struct dwarf2_per_cu_data *read_in_chain;
432
433 /* Backchain to our per_cu entry if the tree has been built. */
434 struct dwarf2_per_cu_data *per_cu;
435
436 /* How many compilation units ago was this CU last referenced? */
437 int last_used;
438
439 /* A hash table of DIE cu_offset for following references with
440 die_info->offset.sect_off as hash. */
441 htab_t die_hash;
442
443 /* Full DIEs if read in. */
444 struct die_info *dies;
445
446 /* A set of pointers to dwarf2_per_cu_data objects for compilation
447 units referenced by this one. Only set during full symbol processing;
448 partial symbol tables do not have dependencies. */
449 htab_t dependencies;
450
451 /* Header data from the line table, during full symbol processing. */
452 struct line_header *line_header;
453
454 /* A list of methods which need to have physnames computed
455 after all type information has been read. */
456 VEC (delayed_method_info) *method_list;
457
458 /* To be copied to symtab->call_site_htab. */
459 htab_t call_site_htab;
460
461 /* Non-NULL if this CU came from a DWO file.
462 There is an invariant here that is important to remember:
463 Except for attributes copied from the top level DIE in the "main"
464 (or "stub") file in preparation for reading the DWO file
465 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
466 Either there isn't a DWO file (in which case this is NULL and the point
467 is moot), or there is and either we're not going to read it (in which
468 case this is NULL) or there is and we are reading it (in which case this
469 is non-NULL). */
470 struct dwo_unit *dwo_unit;
471
472 /* The DW_AT_addr_base attribute if present, zero otherwise
473 (zero is a valid value though).
474 Note this value comes from the stub CU/TU's DIE. */
475 ULONGEST addr_base;
476
477 /* The DW_AT_ranges_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE.
480 Also note that the value is zero in the non-DWO case so this value can
481 be used without needing to know whether DWO files are in use or not. */
482 ULONGEST ranges_base;
483
484 /* Mark used when releasing cached dies. */
485 unsigned int mark : 1;
486
487 /* This CU references .debug_loc. See the symtab->locations_valid field.
488 This test is imperfect as there may exist optimized debug code not using
489 any location list and still facing inlining issues if handled as
490 unoptimized code. For a future better test see GCC PR other/32998. */
491 unsigned int has_loclist : 1;
492
493 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
494 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
495 are valid. This information is cached because profiling CU expansion
496 showed excessive time spent in producer_is_gxx_lt_4_6. */
497 unsigned int checked_producer : 1;
498 unsigned int producer_is_gxx_lt_4_6 : 1;
499 unsigned int producer_is_icc : 1;
500 };
501
502 /* Persistent data held for a compilation unit, even when not
503 processing it. We put a pointer to this structure in the
504 read_symtab_private field of the psymtab. */
505
506 struct dwarf2_per_cu_data
507 {
508 /* The start offset and length of this compilation unit. 2**29-1
509 bytes should suffice to store the length of any compilation unit
510 - if it doesn't, GDB will fall over anyway.
511 NOTE: Unlike comp_unit_head.length, this length includes
512 initial_length_size.
513 If the DIE refers to a DWO file, this is always of the original die,
514 not the DWO file. */
515 sect_offset offset;
516 unsigned int length : 29;
517
518 /* Flag indicating this compilation unit will be read in before
519 any of the current compilation units are processed. */
520 unsigned int queued : 1;
521
522 /* This flag will be set when reading partial DIEs if we need to load
523 absolutely all DIEs for this compilation unit, instead of just the ones
524 we think are interesting. It gets set if we look for a DIE in the
525 hash table and don't find it. */
526 unsigned int load_all_dies : 1;
527
528 /* Non-zero if this CU is from .debug_types. */
529 unsigned int is_debug_types : 1;
530
531 /* The section this CU/TU lives in.
532 If the DIE refers to a DWO file, this is always the original die,
533 not the DWO file. */
534 struct dwarf2_section_info *info_or_types_section;
535
536 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
537 of the CU cache it gets reset to NULL again. */
538 struct dwarf2_cu *cu;
539
540 /* The corresponding objfile.
541 Normally we can get the objfile from dwarf2_per_objfile.
542 However we can enter this file with just a "per_cu" handle. */
543 struct objfile *objfile;
544
545 /* When using partial symbol tables, the 'psymtab' field is active.
546 Otherwise the 'quick' field is active. */
547 union
548 {
549 /* The partial symbol table associated with this compilation unit,
550 or NULL for unread partial units. */
551 struct partial_symtab *psymtab;
552
553 /* Data needed by the "quick" functions. */
554 struct dwarf2_per_cu_quick_data *quick;
555 } v;
556
557 union
558 {
559 /* The CUs we import using DW_TAG_imported_unit. This is filled in
560 while reading psymtabs, used to compute the psymtab dependencies,
561 and then cleared. Then it is filled in again while reading full
562 symbols, and only deleted when the objfile is destroyed. */
563 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
564
565 /* Type units are grouped by their DW_AT_stmt_list entry so that they
566 can share them. If this is a TU, this points to the containing
567 symtab. */
568 struct type_unit_group *type_unit_group;
569 } s;
570 };
571
572 /* Entry in the signatured_types hash table. */
573
574 struct signatured_type
575 {
576 /* The "per_cu" object of this type.
577 N.B.: This is the first member so that it's easy to convert pointers
578 between them. */
579 struct dwarf2_per_cu_data per_cu;
580
581 /* The type's signature. */
582 ULONGEST signature;
583
584 /* Offset in the TU of the type's DIE, as read from the TU header.
585 If the definition lives in a DWO file, this value is unusable. */
586 cu_offset type_offset_in_tu;
587
588 /* Offset in the section of the type's DIE.
589 If the definition lives in a DWO file, this is the offset in the
590 .debug_types.dwo section.
591 The value is zero until the actual value is known.
592 Zero is otherwise not a valid section offset. */
593 sect_offset type_offset_in_section;
594 };
595
596 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
597 an object of this type. */
598
599 struct type_unit_group
600 {
601 /* dwarf2read.c's main "handle" on the symtab.
602 To simplify things we create an artificial CU that "includes" all the
603 type units using this stmt_list so that the rest of the code still has
604 a "per_cu" handle on the symtab.
605 This PER_CU is recognized by having no section. */
606 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
607 struct dwarf2_per_cu_data *per_cu;
608
609 /* The TUs that share this DW_AT_stmt_list entry.
610 This is added to while parsing type units to build partial symtabs,
611 and is deleted afterwards and not used again. */
612 VEC (dwarf2_per_cu_ptr) *tus;
613
614 /* The primary symtab.
615 Type units don't have DW_AT_name so we create an essentially
616 anonymous symtab as the primary symtab. */
617 struct symtab *primary_symtab;
618
619 /* Offset in .debug_line. This is the hash key. */
620 sect_offset line_offset;
621
622 /* The number of symtabs from the line header.
623 The value here must match line_header.num_file_names. */
624 unsigned int num_symtabs;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a "dwo" file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info info;
643 struct dwarf2_section_info line;
644 struct dwarf2_section_info loc;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 VEC (dwarf2_section_info_def) *types;
650 };
651
652 /* Common bits of DWO CUs/TUs. */
653
654 struct dwo_unit
655 {
656 /* Backlink to the containing struct dwo_file. */
657 struct dwo_file *dwo_file;
658
659 /* The "id" that distinguishes this CU/TU.
660 .debug_info calls this "dwo_id", .debug_types calls this "signature".
661 Since signatures came first, we stick with it for consistency. */
662 ULONGEST signature;
663
664 /* The section this CU/TU lives in, in the DWO file. */
665 struct dwarf2_section_info *info_or_types_section;
666
667 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
668 sect_offset offset;
669 unsigned int length;
670
671 /* For types, offset in the type's DIE of the type defined by this TU. */
672 cu_offset type_offset_in_tu;
673 };
674
675 /* Data for one DWO file. */
676
677 struct dwo_file
678 {
679 /* The DW_AT_GNU_dwo_name attribute.
680 We don't manage space for this, it's an attribute. */
681 const char *dwo_name;
682
683 /* The bfd, when the file is open. Otherwise this is NULL. */
684 bfd *dwo_bfd;
685
686 /* Section info for this file. */
687 struct dwo_sections sections;
688
689 /* Table of CUs in the file.
690 Each element is a struct dwo_unit. */
691 htab_t cus;
692
693 /* Table of TUs in the file.
694 Each element is a struct dwo_unit. */
695 htab_t tus;
696 };
697
698 /* Struct used to pass misc. parameters to read_die_and_children, et
699 al. which are used for both .debug_info and .debug_types dies.
700 All parameters here are unchanging for the life of the call. This
701 struct exists to abstract away the constant parameters of die reading. */
702
703 struct die_reader_specs
704 {
705 /* die_section->asection->owner. */
706 bfd* abfd;
707
708 /* The CU of the DIE we are parsing. */
709 struct dwarf2_cu *cu;
710
711 /* Non-NULL if reading a DWO file. */
712 struct dwo_file *dwo_file;
713
714 /* The section the die comes from.
715 This is either .debug_info or .debug_types, or the .dwo variants. */
716 struct dwarf2_section_info *die_section;
717
718 /* die_section->buffer. */
719 gdb_byte *buffer;
720
721 /* The end of the buffer. */
722 const gdb_byte *buffer_end;
723 };
724
725 /* Type of function passed to init_cutu_and_read_dies, et.al. */
726 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
727 gdb_byte *info_ptr,
728 struct die_info *comp_unit_die,
729 int has_children,
730 void *data);
731
732 /* The line number information for a compilation unit (found in the
733 .debug_line section) begins with a "statement program header",
734 which contains the following information. */
735 struct line_header
736 {
737 unsigned int total_length;
738 unsigned short version;
739 unsigned int header_length;
740 unsigned char minimum_instruction_length;
741 unsigned char maximum_ops_per_instruction;
742 unsigned char default_is_stmt;
743 int line_base;
744 unsigned char line_range;
745 unsigned char opcode_base;
746
747 /* standard_opcode_lengths[i] is the number of operands for the
748 standard opcode whose value is i. This means that
749 standard_opcode_lengths[0] is unused, and the last meaningful
750 element is standard_opcode_lengths[opcode_base - 1]. */
751 unsigned char *standard_opcode_lengths;
752
753 /* The include_directories table. NOTE! These strings are not
754 allocated with xmalloc; instead, they are pointers into
755 debug_line_buffer. If you try to free them, `free' will get
756 indigestion. */
757 unsigned int num_include_dirs, include_dirs_size;
758 char **include_dirs;
759
760 /* The file_names table. NOTE! These strings are not allocated
761 with xmalloc; instead, they are pointers into debug_line_buffer.
762 Don't try to free them directly. */
763 unsigned int num_file_names, file_names_size;
764 struct file_entry
765 {
766 char *name;
767 unsigned int dir_index;
768 unsigned int mod_time;
769 unsigned int length;
770 int included_p; /* Non-zero if referenced by the Line Number Program. */
771 struct symtab *symtab; /* The associated symbol table, if any. */
772 } *file_names;
773
774 /* The start and end of the statement program following this
775 header. These point into dwarf2_per_objfile->line_buffer. */
776 gdb_byte *statement_program_start, *statement_program_end;
777 };
778
779 /* When we construct a partial symbol table entry we only
780 need this much information. */
781 struct partial_die_info
782 {
783 /* Offset of this DIE. */
784 sect_offset offset;
785
786 /* DWARF-2 tag for this DIE. */
787 ENUM_BITFIELD(dwarf_tag) tag : 16;
788
789 /* Assorted flags describing the data found in this DIE. */
790 unsigned int has_children : 1;
791 unsigned int is_external : 1;
792 unsigned int is_declaration : 1;
793 unsigned int has_type : 1;
794 unsigned int has_specification : 1;
795 unsigned int has_pc_info : 1;
796 unsigned int may_be_inlined : 1;
797
798 /* Flag set if the SCOPE field of this structure has been
799 computed. */
800 unsigned int scope_set : 1;
801
802 /* Flag set if the DIE has a byte_size attribute. */
803 unsigned int has_byte_size : 1;
804
805 /* Flag set if any of the DIE's children are template arguments. */
806 unsigned int has_template_arguments : 1;
807
808 /* Flag set if fixup_partial_die has been called on this die. */
809 unsigned int fixup_called : 1;
810
811 /* The name of this DIE. Normally the value of DW_AT_name, but
812 sometimes a default name for unnamed DIEs. */
813 char *name;
814
815 /* The linkage name, if present. */
816 const char *linkage_name;
817
818 /* The scope to prepend to our children. This is generally
819 allocated on the comp_unit_obstack, so will disappear
820 when this compilation unit leaves the cache. */
821 char *scope;
822
823 /* Some data associated with the partial DIE. The tag determines
824 which field is live. */
825 union
826 {
827 /* The location description associated with this DIE, if any. */
828 struct dwarf_block *locdesc;
829 /* The offset of an import, for DW_TAG_imported_unit. */
830 sect_offset offset;
831 } d;
832
833 /* If HAS_PC_INFO, the PC range associated with this DIE. */
834 CORE_ADDR lowpc;
835 CORE_ADDR highpc;
836
837 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
838 DW_AT_sibling, if any. */
839 /* NOTE: This member isn't strictly necessary, read_partial_die could
840 return DW_AT_sibling values to its caller load_partial_dies. */
841 gdb_byte *sibling;
842
843 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
844 DW_AT_specification (or DW_AT_abstract_origin or
845 DW_AT_extension). */
846 sect_offset spec_offset;
847
848 /* Pointers to this DIE's parent, first child, and next sibling,
849 if any. */
850 struct partial_die_info *die_parent, *die_child, *die_sibling;
851 };
852
853 /* This data structure holds the information of an abbrev. */
854 struct abbrev_info
855 {
856 unsigned int number; /* number identifying abbrev */
857 enum dwarf_tag tag; /* dwarf tag */
858 unsigned short has_children; /* boolean */
859 unsigned short num_attrs; /* number of attributes */
860 struct attr_abbrev *attrs; /* an array of attribute descriptions */
861 struct abbrev_info *next; /* next in chain */
862 };
863
864 struct attr_abbrev
865 {
866 ENUM_BITFIELD(dwarf_attribute) name : 16;
867 ENUM_BITFIELD(dwarf_form) form : 16;
868 };
869
870 /* Size of abbrev_table.abbrev_hash_table. */
871 #define ABBREV_HASH_SIZE 121
872
873 /* Top level data structure to contain an abbreviation table. */
874
875 struct abbrev_table
876 {
877 /* Where the abbrev table came from.
878 This is used as a sanity check when the table is used. */
879 sect_offset offset;
880
881 /* Storage for the abbrev table. */
882 struct obstack abbrev_obstack;
883
884 /* Hash table of abbrevs.
885 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
886 It could be statically allocated, but the previous code didn't so we
887 don't either. */
888 struct abbrev_info **abbrevs;
889 };
890
891 /* Attributes have a name and a value. */
892 struct attribute
893 {
894 ENUM_BITFIELD(dwarf_attribute) name : 16;
895 ENUM_BITFIELD(dwarf_form) form : 15;
896
897 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
898 field should be in u.str (existing only for DW_STRING) but it is kept
899 here for better struct attribute alignment. */
900 unsigned int string_is_canonical : 1;
901
902 union
903 {
904 char *str;
905 struct dwarf_block *blk;
906 ULONGEST unsnd;
907 LONGEST snd;
908 CORE_ADDR addr;
909 struct signatured_type *signatured_type;
910 }
911 u;
912 };
913
914 /* This data structure holds a complete die structure. */
915 struct die_info
916 {
917 /* DWARF-2 tag for this DIE. */
918 ENUM_BITFIELD(dwarf_tag) tag : 16;
919
920 /* Number of attributes */
921 unsigned char num_attrs;
922
923 /* True if we're presently building the full type name for the
924 type derived from this DIE. */
925 unsigned char building_fullname : 1;
926
927 /* Abbrev number */
928 unsigned int abbrev;
929
930 /* Offset in .debug_info or .debug_types section. */
931 sect_offset offset;
932
933 /* The dies in a compilation unit form an n-ary tree. PARENT
934 points to this die's parent; CHILD points to the first child of
935 this node; and all the children of a given node are chained
936 together via their SIBLING fields. */
937 struct die_info *child; /* Its first child, if any. */
938 struct die_info *sibling; /* Its next sibling, if any. */
939 struct die_info *parent; /* Its parent, if any. */
940
941 /* An array of attributes, with NUM_ATTRS elements. There may be
942 zero, but it's not common and zero-sized arrays are not
943 sufficiently portable C. */
944 struct attribute attrs[1];
945 };
946
947 /* Get at parts of an attribute structure. */
948
949 #define DW_STRING(attr) ((attr)->u.str)
950 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
951 #define DW_UNSND(attr) ((attr)->u.unsnd)
952 #define DW_BLOCK(attr) ((attr)->u.blk)
953 #define DW_SND(attr) ((attr)->u.snd)
954 #define DW_ADDR(attr) ((attr)->u.addr)
955 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
956
957 /* Blocks are a bunch of untyped bytes. */
958 struct dwarf_block
959 {
960 unsigned int size;
961
962 /* Valid only if SIZE is not zero. */
963 gdb_byte *data;
964 };
965
966 #ifndef ATTR_ALLOC_CHUNK
967 #define ATTR_ALLOC_CHUNK 4
968 #endif
969
970 /* Allocate fields for structs, unions and enums in this size. */
971 #ifndef DW_FIELD_ALLOC_CHUNK
972 #define DW_FIELD_ALLOC_CHUNK 4
973 #endif
974
975 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
976 but this would require a corresponding change in unpack_field_as_long
977 and friends. */
978 static int bits_per_byte = 8;
979
980 /* The routines that read and process dies for a C struct or C++ class
981 pass lists of data member fields and lists of member function fields
982 in an instance of a field_info structure, as defined below. */
983 struct field_info
984 {
985 /* List of data member and baseclasses fields. */
986 struct nextfield
987 {
988 struct nextfield *next;
989 int accessibility;
990 int virtuality;
991 struct field field;
992 }
993 *fields, *baseclasses;
994
995 /* Number of fields (including baseclasses). */
996 int nfields;
997
998 /* Number of baseclasses. */
999 int nbaseclasses;
1000
1001 /* Set if the accesibility of one of the fields is not public. */
1002 int non_public_fields;
1003
1004 /* Member function fields array, entries are allocated in the order they
1005 are encountered in the object file. */
1006 struct nextfnfield
1007 {
1008 struct nextfnfield *next;
1009 struct fn_field fnfield;
1010 }
1011 *fnfields;
1012
1013 /* Member function fieldlist array, contains name of possibly overloaded
1014 member function, number of overloaded member functions and a pointer
1015 to the head of the member function field chain. */
1016 struct fnfieldlist
1017 {
1018 char *name;
1019 int length;
1020 struct nextfnfield *head;
1021 }
1022 *fnfieldlists;
1023
1024 /* Number of entries in the fnfieldlists array. */
1025 int nfnfields;
1026
1027 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1028 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1029 struct typedef_field_list
1030 {
1031 struct typedef_field field;
1032 struct typedef_field_list *next;
1033 }
1034 *typedef_field_list;
1035 unsigned typedef_field_list_count;
1036 };
1037
1038 /* One item on the queue of compilation units to read in full symbols
1039 for. */
1040 struct dwarf2_queue_item
1041 {
1042 struct dwarf2_per_cu_data *per_cu;
1043 enum language pretend_language;
1044 struct dwarf2_queue_item *next;
1045 };
1046
1047 /* The current queue. */
1048 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1049
1050 /* Loaded secondary compilation units are kept in memory until they
1051 have not been referenced for the processing of this many
1052 compilation units. Set this to zero to disable caching. Cache
1053 sizes of up to at least twenty will improve startup time for
1054 typical inter-CU-reference binaries, at an obvious memory cost. */
1055 static int dwarf2_max_cache_age = 5;
1056 static void
1057 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1058 struct cmd_list_element *c, const char *value)
1059 {
1060 fprintf_filtered (file, _("The upper bound on the age of cached "
1061 "dwarf2 compilation units is %s.\n"),
1062 value);
1063 }
1064
1065
1066 /* Various complaints about symbol reading that don't abort the process. */
1067
1068 static void
1069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1070 {
1071 complaint (&symfile_complaints,
1072 _("statement list doesn't fit in .debug_line section"));
1073 }
1074
1075 static void
1076 dwarf2_debug_line_missing_file_complaint (void)
1077 {
1078 complaint (&symfile_complaints,
1079 _(".debug_line section has line data without a file"));
1080 }
1081
1082 static void
1083 dwarf2_debug_line_missing_end_sequence_complaint (void)
1084 {
1085 complaint (&symfile_complaints,
1086 _(".debug_line section has line "
1087 "program sequence without an end"));
1088 }
1089
1090 static void
1091 dwarf2_complex_location_expr_complaint (void)
1092 {
1093 complaint (&symfile_complaints, _("location expression too complex"));
1094 }
1095
1096 static void
1097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1098 int arg3)
1099 {
1100 complaint (&symfile_complaints,
1101 _("const value length mismatch for '%s', got %d, expected %d"),
1102 arg1, arg2, arg3);
1103 }
1104
1105 static void
1106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1107 {
1108 complaint (&symfile_complaints,
1109 _("debug info runs off end of %s section"
1110 " [in module %s]"),
1111 section->asection->name,
1112 bfd_get_filename (section->asection->owner));
1113 }
1114
1115 static void
1116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1117 {
1118 complaint (&symfile_complaints,
1119 _("macro debug info contains a "
1120 "malformed macro definition:\n`%s'"),
1121 arg1);
1122 }
1123
1124 static void
1125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1126 {
1127 complaint (&symfile_complaints,
1128 _("invalid attribute class or form for '%s' in '%s'"),
1129 arg1, arg2);
1130 }
1131
1132 /* local function prototypes */
1133
1134 static void dwarf2_locate_sections (bfd *, asection *, void *);
1135
1136 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1137 struct objfile *);
1138
1139 static void dwarf2_find_base_address (struct die_info *die,
1140 struct dwarf2_cu *cu);
1141
1142 static void dwarf2_build_psymtabs_hard (struct objfile *);
1143
1144 static void scan_partial_symbols (struct partial_die_info *,
1145 CORE_ADDR *, CORE_ADDR *,
1146 int, struct dwarf2_cu *);
1147
1148 static void add_partial_symbol (struct partial_die_info *,
1149 struct dwarf2_cu *);
1150
1151 static void add_partial_namespace (struct partial_die_info *pdi,
1152 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1153 int need_pc, struct dwarf2_cu *cu);
1154
1155 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1156 CORE_ADDR *highpc, int need_pc,
1157 struct dwarf2_cu *cu);
1158
1159 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1160 struct dwarf2_cu *cu);
1161
1162 static void add_partial_subprogram (struct partial_die_info *pdi,
1163 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1164 int need_pc, struct dwarf2_cu *cu);
1165
1166 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1167
1168 static void psymtab_to_symtab_1 (struct partial_symtab *);
1169
1170 static struct abbrev_info *abbrev_table_lookup_abbrev
1171 (const struct abbrev_table *, unsigned int);
1172
1173 static struct abbrev_table *abbrev_table_read_table
1174 (struct dwarf2_section_info *, sect_offset);
1175
1176 static void abbrev_table_free (struct abbrev_table *);
1177
1178 static void abbrev_table_free_cleanup (void *);
1179
1180 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1181 struct dwarf2_section_info *);
1182
1183 static void dwarf2_free_abbrev_table (void *);
1184
1185 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1186
1187 static struct partial_die_info *load_partial_dies
1188 (const struct die_reader_specs *, gdb_byte *, int);
1189
1190 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1191 struct partial_die_info *,
1192 struct abbrev_info *,
1193 unsigned int,
1194 gdb_byte *);
1195
1196 static struct partial_die_info *find_partial_die (sect_offset,
1197 struct dwarf2_cu *);
1198
1199 static void fixup_partial_die (struct partial_die_info *,
1200 struct dwarf2_cu *);
1201
1202 static gdb_byte *read_attribute (const struct die_reader_specs *,
1203 struct attribute *, struct attr_abbrev *,
1204 gdb_byte *);
1205
1206 static unsigned int read_1_byte (bfd *, gdb_byte *);
1207
1208 static int read_1_signed_byte (bfd *, gdb_byte *);
1209
1210 static unsigned int read_2_bytes (bfd *, gdb_byte *);
1211
1212 static unsigned int read_4_bytes (bfd *, gdb_byte *);
1213
1214 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
1215
1216 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1217 unsigned int *);
1218
1219 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1220
1221 static LONGEST read_checked_initial_length_and_offset
1222 (bfd *, gdb_byte *, const struct comp_unit_head *,
1223 unsigned int *, unsigned int *);
1224
1225 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1226 unsigned int *);
1227
1228 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1229
1230 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1231 sect_offset);
1232
1233 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1234
1235 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1236
1237 static char *read_indirect_string (bfd *, gdb_byte *,
1238 const struct comp_unit_head *,
1239 unsigned int *);
1240
1241 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1242
1243 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1244
1245 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1246 unsigned int *);
1247
1248 static char *read_str_index (const struct die_reader_specs *reader,
1249 struct dwarf2_cu *cu, ULONGEST str_index);
1250
1251 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1252
1253 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1254 struct dwarf2_cu *);
1255
1256 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1257 unsigned int);
1258
1259 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1260 struct dwarf2_cu *cu);
1261
1262 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1263
1264 static struct die_info *die_specification (struct die_info *die,
1265 struct dwarf2_cu **);
1266
1267 static void free_line_header (struct line_header *lh);
1268
1269 static void add_file_name (struct line_header *, char *, unsigned int,
1270 unsigned int, unsigned int);
1271
1272 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1273 struct dwarf2_cu *cu);
1274
1275 static void dwarf_decode_lines (struct line_header *, const char *,
1276 struct dwarf2_cu *, struct partial_symtab *,
1277 int);
1278
1279 static void dwarf2_start_subfile (char *, const char *, const char *);
1280
1281 static void dwarf2_start_symtab (struct dwarf2_cu *,
1282 char *, char *, CORE_ADDR);
1283
1284 static struct symbol *new_symbol (struct die_info *, struct type *,
1285 struct dwarf2_cu *);
1286
1287 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1288 struct dwarf2_cu *, struct symbol *);
1289
1290 static void dwarf2_const_value (struct attribute *, struct symbol *,
1291 struct dwarf2_cu *);
1292
1293 static void dwarf2_const_value_attr (struct attribute *attr,
1294 struct type *type,
1295 const char *name,
1296 struct obstack *obstack,
1297 struct dwarf2_cu *cu, LONGEST *value,
1298 gdb_byte **bytes,
1299 struct dwarf2_locexpr_baton **baton);
1300
1301 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1302
1303 static int need_gnat_info (struct dwarf2_cu *);
1304
1305 static struct type *die_descriptive_type (struct die_info *,
1306 struct dwarf2_cu *);
1307
1308 static void set_descriptive_type (struct type *, struct die_info *,
1309 struct dwarf2_cu *);
1310
1311 static struct type *die_containing_type (struct die_info *,
1312 struct dwarf2_cu *);
1313
1314 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1315 struct dwarf2_cu *);
1316
1317 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1318
1319 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1320
1321 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1322
1323 static char *typename_concat (struct obstack *obs, const char *prefix,
1324 const char *suffix, int physname,
1325 struct dwarf2_cu *cu);
1326
1327 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1328
1329 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1330
1331 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1332
1333 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1334
1335 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1336
1337 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1338 struct dwarf2_cu *, struct partial_symtab *);
1339
1340 static int dwarf2_get_pc_bounds (struct die_info *,
1341 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1342 struct partial_symtab *);
1343
1344 static void get_scope_pc_bounds (struct die_info *,
1345 CORE_ADDR *, CORE_ADDR *,
1346 struct dwarf2_cu *);
1347
1348 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1349 CORE_ADDR, struct dwarf2_cu *);
1350
1351 static void dwarf2_add_field (struct field_info *, struct die_info *,
1352 struct dwarf2_cu *);
1353
1354 static void dwarf2_attach_fields_to_type (struct field_info *,
1355 struct type *, struct dwarf2_cu *);
1356
1357 static void dwarf2_add_member_fn (struct field_info *,
1358 struct die_info *, struct type *,
1359 struct dwarf2_cu *);
1360
1361 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1362 struct type *,
1363 struct dwarf2_cu *);
1364
1365 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1366
1367 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1368
1369 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1370
1371 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1372
1373 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1374
1375 static struct type *read_module_type (struct die_info *die,
1376 struct dwarf2_cu *cu);
1377
1378 static const char *namespace_name (struct die_info *die,
1379 int *is_anonymous, struct dwarf2_cu *);
1380
1381 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1382
1383 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1384
1385 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1386 struct dwarf2_cu *);
1387
1388 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1389 gdb_byte *info_ptr,
1390 gdb_byte **new_info_ptr,
1391 struct die_info *parent);
1392
1393 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1394 gdb_byte *info_ptr,
1395 gdb_byte **new_info_ptr,
1396 struct die_info *parent);
1397
1398 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1399 struct die_info **, gdb_byte *, int *, int);
1400
1401 static gdb_byte *read_full_die (const struct die_reader_specs *,
1402 struct die_info **, gdb_byte *, int *);
1403
1404 static void process_die (struct die_info *, struct dwarf2_cu *);
1405
1406 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1407 struct obstack *);
1408
1409 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1410
1411 static const char *dwarf2_full_name (char *name,
1412 struct die_info *die,
1413 struct dwarf2_cu *cu);
1414
1415 static struct die_info *dwarf2_extension (struct die_info *die,
1416 struct dwarf2_cu **);
1417
1418 static const char *dwarf_tag_name (unsigned int);
1419
1420 static const char *dwarf_attr_name (unsigned int);
1421
1422 static const char *dwarf_form_name (unsigned int);
1423
1424 static char *dwarf_bool_name (unsigned int);
1425
1426 static const char *dwarf_type_encoding_name (unsigned int);
1427
1428 static struct die_info *sibling_die (struct die_info *);
1429
1430 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1431
1432 static void dump_die_for_error (struct die_info *);
1433
1434 static void dump_die_1 (struct ui_file *, int level, int max_level,
1435 struct die_info *);
1436
1437 /*static*/ void dump_die (struct die_info *, int max_level);
1438
1439 static void store_in_ref_table (struct die_info *,
1440 struct dwarf2_cu *);
1441
1442 static int is_ref_attr (struct attribute *);
1443
1444 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1445
1446 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1447
1448 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1449 struct attribute *,
1450 struct dwarf2_cu **);
1451
1452 static struct die_info *follow_die_ref (struct die_info *,
1453 struct attribute *,
1454 struct dwarf2_cu **);
1455
1456 static struct die_info *follow_die_sig (struct die_info *,
1457 struct attribute *,
1458 struct dwarf2_cu **);
1459
1460 static struct signatured_type *lookup_signatured_type_at_offset
1461 (struct objfile *objfile,
1462 struct dwarf2_section_info *section, sect_offset offset);
1463
1464 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1465
1466 static void read_signatured_type (struct signatured_type *);
1467
1468 static struct type_unit_group *get_type_unit_group
1469 (struct dwarf2_per_cu_data *, struct attribute *);
1470
1471 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1472
1473 /* memory allocation interface */
1474
1475 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1476
1477 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1478
1479 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1480 char *, int);
1481
1482 static int attr_form_is_block (struct attribute *);
1483
1484 static int attr_form_is_section_offset (struct attribute *);
1485
1486 static int attr_form_is_constant (struct attribute *);
1487
1488 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1489 struct dwarf2_loclist_baton *baton,
1490 struct attribute *attr);
1491
1492 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1493 struct symbol *sym,
1494 struct dwarf2_cu *cu);
1495
1496 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1497 gdb_byte *info_ptr,
1498 struct abbrev_info *abbrev);
1499
1500 static void free_stack_comp_unit (void *);
1501
1502 static hashval_t partial_die_hash (const void *item);
1503
1504 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1505
1506 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1507 (sect_offset offset, struct objfile *objfile);
1508
1509 static void init_one_comp_unit (struct dwarf2_cu *cu,
1510 struct dwarf2_per_cu_data *per_cu);
1511
1512 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1513 struct die_info *comp_unit_die,
1514 enum language pretend_language);
1515
1516 static void free_heap_comp_unit (void *);
1517
1518 static void free_cached_comp_units (void *);
1519
1520 static void age_cached_comp_units (void);
1521
1522 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1523
1524 static struct type *set_die_type (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static void create_all_comp_units (struct objfile *);
1528
1529 static int create_all_type_units (struct objfile *);
1530
1531 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1532 enum language);
1533
1534 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1535 enum language);
1536
1537 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1538 enum language);
1539
1540 static void dwarf2_add_dependence (struct dwarf2_cu *,
1541 struct dwarf2_per_cu_data *);
1542
1543 static void dwarf2_mark (struct dwarf2_cu *);
1544
1545 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1546
1547 static struct type *get_die_type_at_offset (sect_offset,
1548 struct dwarf2_per_cu_data *per_cu);
1549
1550 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1551
1552 static void dwarf2_release_queue (void *dummy);
1553
1554 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1555 enum language pretend_language);
1556
1557 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1558 struct dwarf2_per_cu_data *per_cu,
1559 enum language pretend_language);
1560
1561 static void process_queue (void);
1562
1563 static void find_file_and_directory (struct die_info *die,
1564 struct dwarf2_cu *cu,
1565 char **name, char **comp_dir);
1566
1567 static char *file_full_name (int file, struct line_header *lh,
1568 const char *comp_dir);
1569
1570 static void init_cutu_and_read_dies
1571 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1572 int use_existing_cu, int keep,
1573 die_reader_func_ftype *die_reader_func, void *data);
1574
1575 static void init_cutu_and_read_dies_simple
1576 (struct dwarf2_per_cu_data *this_cu,
1577 die_reader_func_ftype *die_reader_func, void *data);
1578
1579 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1580
1581 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1582
1583 static struct dwo_unit *lookup_dwo_comp_unit
1584 (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST);
1585
1586 static struct dwo_unit *lookup_dwo_type_unit
1587 (struct signatured_type *, char *, const char *);
1588
1589 static void free_dwo_file_cleanup (void *);
1590
1591 static void munmap_section_buffer (struct dwarf2_section_info *);
1592
1593 static void process_cu_includes (void);
1594
1595 #if WORDS_BIGENDIAN
1596
1597 /* Convert VALUE between big- and little-endian. */
1598 static offset_type
1599 byte_swap (offset_type value)
1600 {
1601 offset_type result;
1602
1603 result = (value & 0xff) << 24;
1604 result |= (value & 0xff00) << 8;
1605 result |= (value & 0xff0000) >> 8;
1606 result |= (value & 0xff000000) >> 24;
1607 return result;
1608 }
1609
1610 #define MAYBE_SWAP(V) byte_swap (V)
1611
1612 #else
1613 #define MAYBE_SWAP(V) (V)
1614 #endif /* WORDS_BIGENDIAN */
1615
1616 /* The suffix for an index file. */
1617 #define INDEX_SUFFIX ".gdb-index"
1618
1619 static const char *dwarf2_physname (char *name, struct die_info *die,
1620 struct dwarf2_cu *cu);
1621
1622 /* Try to locate the sections we need for DWARF 2 debugging
1623 information and return true if we have enough to do something.
1624 NAMES points to the dwarf2 section names, or is NULL if the standard
1625 ELF names are used. */
1626
1627 int
1628 dwarf2_has_info (struct objfile *objfile,
1629 const struct dwarf2_debug_sections *names)
1630 {
1631 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1632 if (!dwarf2_per_objfile)
1633 {
1634 /* Initialize per-objfile state. */
1635 struct dwarf2_per_objfile *data
1636 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1637
1638 memset (data, 0, sizeof (*data));
1639 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1640 dwarf2_per_objfile = data;
1641
1642 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1643 (void *) names);
1644 dwarf2_per_objfile->objfile = objfile;
1645 }
1646 return (dwarf2_per_objfile->info.asection != NULL
1647 && dwarf2_per_objfile->abbrev.asection != NULL);
1648 }
1649
1650 /* When loading sections, we look either for uncompressed section or for
1651 compressed section names. */
1652
1653 static int
1654 section_is_p (const char *section_name,
1655 const struct dwarf2_section_names *names)
1656 {
1657 if (names->normal != NULL
1658 && strcmp (section_name, names->normal) == 0)
1659 return 1;
1660 if (names->compressed != NULL
1661 && strcmp (section_name, names->compressed) == 0)
1662 return 1;
1663 return 0;
1664 }
1665
1666 /* This function is mapped across the sections and remembers the
1667 offset and size of each of the debugging sections we are interested
1668 in. */
1669
1670 static void
1671 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1672 {
1673 const struct dwarf2_debug_sections *names;
1674
1675 if (vnames == NULL)
1676 names = &dwarf2_elf_names;
1677 else
1678 names = (const struct dwarf2_debug_sections *) vnames;
1679
1680 if (section_is_p (sectp->name, &names->info))
1681 {
1682 dwarf2_per_objfile->info.asection = sectp;
1683 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1684 }
1685 else if (section_is_p (sectp->name, &names->abbrev))
1686 {
1687 dwarf2_per_objfile->abbrev.asection = sectp;
1688 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1689 }
1690 else if (section_is_p (sectp->name, &names->line))
1691 {
1692 dwarf2_per_objfile->line.asection = sectp;
1693 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1694 }
1695 else if (section_is_p (sectp->name, &names->loc))
1696 {
1697 dwarf2_per_objfile->loc.asection = sectp;
1698 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1699 }
1700 else if (section_is_p (sectp->name, &names->macinfo))
1701 {
1702 dwarf2_per_objfile->macinfo.asection = sectp;
1703 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1704 }
1705 else if (section_is_p (sectp->name, &names->macro))
1706 {
1707 dwarf2_per_objfile->macro.asection = sectp;
1708 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1709 }
1710 else if (section_is_p (sectp->name, &names->str))
1711 {
1712 dwarf2_per_objfile->str.asection = sectp;
1713 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1714 }
1715 else if (section_is_p (sectp->name, &names->addr))
1716 {
1717 dwarf2_per_objfile->addr.asection = sectp;
1718 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1719 }
1720 else if (section_is_p (sectp->name, &names->frame))
1721 {
1722 dwarf2_per_objfile->frame.asection = sectp;
1723 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1724 }
1725 else if (section_is_p (sectp->name, &names->eh_frame))
1726 {
1727 flagword aflag = bfd_get_section_flags (abfd, sectp);
1728
1729 if (aflag & SEC_HAS_CONTENTS)
1730 {
1731 dwarf2_per_objfile->eh_frame.asection = sectp;
1732 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1733 }
1734 }
1735 else if (section_is_p (sectp->name, &names->ranges))
1736 {
1737 dwarf2_per_objfile->ranges.asection = sectp;
1738 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1739 }
1740 else if (section_is_p (sectp->name, &names->types))
1741 {
1742 struct dwarf2_section_info type_section;
1743
1744 memset (&type_section, 0, sizeof (type_section));
1745 type_section.asection = sectp;
1746 type_section.size = bfd_get_section_size (sectp);
1747
1748 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1749 &type_section);
1750 }
1751 else if (section_is_p (sectp->name, &names->gdb_index))
1752 {
1753 dwarf2_per_objfile->gdb_index.asection = sectp;
1754 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1755 }
1756
1757 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1758 && bfd_section_vma (abfd, sectp) == 0)
1759 dwarf2_per_objfile->has_section_at_zero = 1;
1760 }
1761
1762 /* Decompress a section that was compressed using zlib. Store the
1763 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1764
1765 static void
1766 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1767 gdb_byte **outbuf, bfd_size_type *outsize)
1768 {
1769 bfd *abfd = sectp->owner;
1770 #ifndef HAVE_ZLIB_H
1771 error (_("Support for zlib-compressed DWARF data (from '%s') "
1772 "is disabled in this copy of GDB"),
1773 bfd_get_filename (abfd));
1774 #else
1775 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1776 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1777 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1778 bfd_size_type uncompressed_size;
1779 gdb_byte *uncompressed_buffer;
1780 z_stream strm;
1781 int rc;
1782 int header_size = 12;
1783
1784 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1785 || bfd_bread (compressed_buffer,
1786 compressed_size, abfd) != compressed_size)
1787 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1788 bfd_get_filename (abfd));
1789
1790 /* Read the zlib header. In this case, it should be "ZLIB" followed
1791 by the uncompressed section size, 8 bytes in big-endian order. */
1792 if (compressed_size < header_size
1793 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1794 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1795 bfd_get_filename (abfd));
1796 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1797 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1798 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1799 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1800 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1801 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1802 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1803 uncompressed_size += compressed_buffer[11];
1804
1805 /* It is possible the section consists of several compressed
1806 buffers concatenated together, so we uncompress in a loop. */
1807 strm.zalloc = NULL;
1808 strm.zfree = NULL;
1809 strm.opaque = NULL;
1810 strm.avail_in = compressed_size - header_size;
1811 strm.next_in = (Bytef*) compressed_buffer + header_size;
1812 strm.avail_out = uncompressed_size;
1813 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1814 uncompressed_size);
1815 rc = inflateInit (&strm);
1816 while (strm.avail_in > 0)
1817 {
1818 if (rc != Z_OK)
1819 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1820 bfd_get_filename (abfd), rc);
1821 strm.next_out = ((Bytef*) uncompressed_buffer
1822 + (uncompressed_size - strm.avail_out));
1823 rc = inflate (&strm, Z_FINISH);
1824 if (rc != Z_STREAM_END)
1825 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1826 bfd_get_filename (abfd), rc);
1827 rc = inflateReset (&strm);
1828 }
1829 rc = inflateEnd (&strm);
1830 if (rc != Z_OK
1831 || strm.avail_out != 0)
1832 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1833 bfd_get_filename (abfd), rc);
1834
1835 do_cleanups (cleanup);
1836 *outbuf = uncompressed_buffer;
1837 *outsize = uncompressed_size;
1838 #endif
1839 }
1840
1841 /* A helper function that decides whether a section is empty,
1842 or not present. */
1843
1844 static int
1845 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1846 {
1847 return info->asection == NULL || info->size == 0;
1848 }
1849
1850 /* Read the contents of the section INFO.
1851 OBJFILE is the main object file, but not necessarily the file where
1852 the section comes from. E.g., for DWO files INFO->asection->owner
1853 is the bfd of the DWO file.
1854 If the section is compressed, uncompress it before returning. */
1855
1856 static void
1857 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1858 {
1859 asection *sectp = info->asection;
1860 bfd *abfd;
1861 gdb_byte *buf, *retbuf;
1862 unsigned char header[4];
1863
1864 if (info->readin)
1865 return;
1866 info->buffer = NULL;
1867 info->map_addr = NULL;
1868 info->readin = 1;
1869
1870 if (dwarf2_section_empty_p (info))
1871 return;
1872
1873 /* Note that ABFD may not be from OBJFILE, e.g. a DWO section. */
1874 abfd = sectp->owner;
1875
1876 /* Check if the file has a 4-byte header indicating compression. */
1877 if (info->size > sizeof (header)
1878 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1879 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1880 {
1881 /* Upon decompression, update the buffer and its size. */
1882 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1883 {
1884 zlib_decompress_section (objfile, sectp, &info->buffer,
1885 &info->size);
1886 return;
1887 }
1888 }
1889
1890 #ifdef HAVE_MMAP
1891 if (pagesize == 0)
1892 pagesize = getpagesize ();
1893
1894 /* Only try to mmap sections which are large enough: we don't want to
1895 waste space due to fragmentation. Also, only try mmap for sections
1896 without relocations. */
1897
1898 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1899 {
1900 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1901 MAP_PRIVATE, sectp->filepos,
1902 &info->map_addr, &info->map_len);
1903
1904 if ((caddr_t)info->buffer != MAP_FAILED)
1905 {
1906 #if HAVE_POSIX_MADVISE
1907 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1908 #endif
1909 return;
1910 }
1911 }
1912 #endif
1913
1914 /* If we get here, we are a normal, not-compressed section. */
1915 info->buffer = buf
1916 = obstack_alloc (&objfile->objfile_obstack, info->size);
1917
1918 /* When debugging .o files, we may need to apply relocations; see
1919 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1920 We never compress sections in .o files, so we only need to
1921 try this when the section is not compressed. */
1922 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1923 if (retbuf != NULL)
1924 {
1925 info->buffer = retbuf;
1926 return;
1927 }
1928
1929 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1930 || bfd_bread (buf, info->size, abfd) != info->size)
1931 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1932 bfd_get_filename (abfd));
1933 }
1934
1935 /* A helper function that returns the size of a section in a safe way.
1936 If you are positive that the section has been read before using the
1937 size, then it is safe to refer to the dwarf2_section_info object's
1938 "size" field directly. In other cases, you must call this
1939 function, because for compressed sections the size field is not set
1940 correctly until the section has been read. */
1941
1942 static bfd_size_type
1943 dwarf2_section_size (struct objfile *objfile,
1944 struct dwarf2_section_info *info)
1945 {
1946 if (!info->readin)
1947 dwarf2_read_section (objfile, info);
1948 return info->size;
1949 }
1950
1951 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1952 SECTION_NAME. */
1953
1954 void
1955 dwarf2_get_section_info (struct objfile *objfile,
1956 enum dwarf2_section_enum sect,
1957 asection **sectp, gdb_byte **bufp,
1958 bfd_size_type *sizep)
1959 {
1960 struct dwarf2_per_objfile *data
1961 = objfile_data (objfile, dwarf2_objfile_data_key);
1962 struct dwarf2_section_info *info;
1963
1964 /* We may see an objfile without any DWARF, in which case we just
1965 return nothing. */
1966 if (data == NULL)
1967 {
1968 *sectp = NULL;
1969 *bufp = NULL;
1970 *sizep = 0;
1971 return;
1972 }
1973 switch (sect)
1974 {
1975 case DWARF2_DEBUG_FRAME:
1976 info = &data->frame;
1977 break;
1978 case DWARF2_EH_FRAME:
1979 info = &data->eh_frame;
1980 break;
1981 default:
1982 gdb_assert_not_reached ("unexpected section");
1983 }
1984
1985 dwarf2_read_section (objfile, info);
1986
1987 *sectp = info->asection;
1988 *bufp = info->buffer;
1989 *sizep = info->size;
1990 }
1991
1992 \f
1993 /* DWARF quick_symbols_functions support. */
1994
1995 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1996 unique line tables, so we maintain a separate table of all .debug_line
1997 derived entries to support the sharing.
1998 All the quick functions need is the list of file names. We discard the
1999 line_header when we're done and don't need to record it here. */
2000 struct quick_file_names
2001 {
2002 /* The offset in .debug_line of the line table. We hash on this. */
2003 unsigned int offset;
2004
2005 /* The number of entries in file_names, real_names. */
2006 unsigned int num_file_names;
2007
2008 /* The file names from the line table, after being run through
2009 file_full_name. */
2010 const char **file_names;
2011
2012 /* The file names from the line table after being run through
2013 gdb_realpath. These are computed lazily. */
2014 const char **real_names;
2015 };
2016
2017 /* When using the index (and thus not using psymtabs), each CU has an
2018 object of this type. This is used to hold information needed by
2019 the various "quick" methods. */
2020 struct dwarf2_per_cu_quick_data
2021 {
2022 /* The file table. This can be NULL if there was no file table
2023 or it's currently not read in.
2024 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2025 struct quick_file_names *file_names;
2026
2027 /* The corresponding symbol table. This is NULL if symbols for this
2028 CU have not yet been read. */
2029 struct symtab *symtab;
2030
2031 /* A temporary mark bit used when iterating over all CUs in
2032 expand_symtabs_matching. */
2033 unsigned int mark : 1;
2034
2035 /* True if we've tried to read the file table and found there isn't one.
2036 There will be no point in trying to read it again next time. */
2037 unsigned int no_file_data : 1;
2038 };
2039
2040 /* Hash function for a quick_file_names. */
2041
2042 static hashval_t
2043 hash_file_name_entry (const void *e)
2044 {
2045 const struct quick_file_names *file_data = e;
2046
2047 return file_data->offset;
2048 }
2049
2050 /* Equality function for a quick_file_names. */
2051
2052 static int
2053 eq_file_name_entry (const void *a, const void *b)
2054 {
2055 const struct quick_file_names *ea = a;
2056 const struct quick_file_names *eb = b;
2057
2058 return ea->offset == eb->offset;
2059 }
2060
2061 /* Delete function for a quick_file_names. */
2062
2063 static void
2064 delete_file_name_entry (void *e)
2065 {
2066 struct quick_file_names *file_data = e;
2067 int i;
2068
2069 for (i = 0; i < file_data->num_file_names; ++i)
2070 {
2071 xfree ((void*) file_data->file_names[i]);
2072 if (file_data->real_names)
2073 xfree ((void*) file_data->real_names[i]);
2074 }
2075
2076 /* The space for the struct itself lives on objfile_obstack,
2077 so we don't free it here. */
2078 }
2079
2080 /* Create a quick_file_names hash table. */
2081
2082 static htab_t
2083 create_quick_file_names_table (unsigned int nr_initial_entries)
2084 {
2085 return htab_create_alloc (nr_initial_entries,
2086 hash_file_name_entry, eq_file_name_entry,
2087 delete_file_name_entry, xcalloc, xfree);
2088 }
2089
2090 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2091 have to be created afterwards. You should call age_cached_comp_units after
2092 processing PER_CU->CU. dw2_setup must have been already called. */
2093
2094 static void
2095 load_cu (struct dwarf2_per_cu_data *per_cu)
2096 {
2097 if (per_cu->is_debug_types)
2098 load_full_type_unit (per_cu);
2099 else
2100 load_full_comp_unit (per_cu, language_minimal);
2101
2102 gdb_assert (per_cu->cu != NULL);
2103
2104 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2105 }
2106
2107 /* Read in the symbols for PER_CU. */
2108
2109 static void
2110 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2111 {
2112 struct cleanup *back_to;
2113
2114 /* Skip type_unit_groups, reading the type units they contain
2115 is handled elsewhere. */
2116 if (IS_TYPE_UNIT_GROUP (per_cu))
2117 return;
2118
2119 back_to = make_cleanup (dwarf2_release_queue, NULL);
2120
2121 if (dwarf2_per_objfile->using_index
2122 ? per_cu->v.quick->symtab == NULL
2123 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2124 {
2125 queue_comp_unit (per_cu, language_minimal);
2126 load_cu (per_cu);
2127 }
2128
2129 process_queue ();
2130
2131 /* Age the cache, releasing compilation units that have not
2132 been used recently. */
2133 age_cached_comp_units ();
2134
2135 do_cleanups (back_to);
2136 }
2137
2138 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2139 the objfile from which this CU came. Returns the resulting symbol
2140 table. */
2141
2142 static struct symtab *
2143 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2144 {
2145 gdb_assert (dwarf2_per_objfile->using_index);
2146 if (!per_cu->v.quick->symtab)
2147 {
2148 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2149 increment_reading_symtab ();
2150 dw2_do_instantiate_symtab (per_cu);
2151 process_cu_includes ();
2152 do_cleanups (back_to);
2153 }
2154 return per_cu->v.quick->symtab;
2155 }
2156
2157 /* Return the CU given its index.
2158
2159 This is intended for loops like:
2160
2161 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2162 + dwarf2_per_objfile->n_type_units); ++i)
2163 {
2164 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2165
2166 ...;
2167 }
2168 */
2169
2170 static struct dwarf2_per_cu_data *
2171 dw2_get_cu (int index)
2172 {
2173 if (index >= dwarf2_per_objfile->n_comp_units)
2174 {
2175 struct dwarf2_per_cu_data *per_cu;
2176
2177 index -= dwarf2_per_objfile->n_comp_units;
2178 per_cu = &dwarf2_per_objfile->all_type_units[index]->per_cu;
2179 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
2180 return per_cu;
2181 }
2182
2183 return dwarf2_per_objfile->all_comp_units[index];
2184 }
2185
2186 /* Return the primary CU given its index.
2187 The difference between this function and dw2_get_cu is in the handling
2188 of type units (TUs). Here we return the type_unit_group object.
2189
2190 This is intended for loops like:
2191
2192 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2193 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2194 {
2195 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2196
2197 ...;
2198 }
2199 */
2200
2201 static struct dwarf2_per_cu_data *
2202 dw2_get_primary_cu (int index)
2203 {
2204 if (index >= dwarf2_per_objfile->n_comp_units)
2205 {
2206 struct dwarf2_per_cu_data *per_cu;
2207
2208 index -= dwarf2_per_objfile->n_comp_units;
2209 per_cu = dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2210 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
2211 return per_cu;
2212 }
2213
2214 return dwarf2_per_objfile->all_comp_units[index];
2215 }
2216
2217 /* A helper function that knows how to read a 64-bit value in a way
2218 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2219 otherwise. */
2220
2221 static int
2222 extract_cu_value (const char *bytes, ULONGEST *result)
2223 {
2224 if (sizeof (ULONGEST) < 8)
2225 {
2226 int i;
2227
2228 /* Ignore the upper 4 bytes if they are all zero. */
2229 for (i = 0; i < 4; ++i)
2230 if (bytes[i + 4] != 0)
2231 return 0;
2232
2233 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2234 }
2235 else
2236 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2237 return 1;
2238 }
2239
2240 /* Read the CU list from the mapped index, and use it to create all
2241 the CU objects for this objfile. Return 0 if something went wrong,
2242 1 if everything went ok. */
2243
2244 static int
2245 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
2246 offset_type cu_list_elements)
2247 {
2248 offset_type i;
2249
2250 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
2251 dwarf2_per_objfile->all_comp_units
2252 = obstack_alloc (&objfile->objfile_obstack,
2253 dwarf2_per_objfile->n_comp_units
2254 * sizeof (struct dwarf2_per_cu_data *));
2255
2256 for (i = 0; i < cu_list_elements; i += 2)
2257 {
2258 struct dwarf2_per_cu_data *the_cu;
2259 ULONGEST offset, length;
2260
2261 if (!extract_cu_value (cu_list, &offset)
2262 || !extract_cu_value (cu_list + 8, &length))
2263 return 0;
2264 cu_list += 2 * 8;
2265
2266 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2267 struct dwarf2_per_cu_data);
2268 the_cu->offset.sect_off = offset;
2269 the_cu->length = length;
2270 the_cu->objfile = objfile;
2271 the_cu->info_or_types_section = &dwarf2_per_objfile->info;
2272 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2273 struct dwarf2_per_cu_quick_data);
2274 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
2275 }
2276
2277 return 1;
2278 }
2279
2280 /* Create the signatured type hash table from the index. */
2281
2282 static int
2283 create_signatured_type_table_from_index (struct objfile *objfile,
2284 struct dwarf2_section_info *section,
2285 const gdb_byte *bytes,
2286 offset_type elements)
2287 {
2288 offset_type i;
2289 htab_t sig_types_hash;
2290
2291 dwarf2_per_objfile->n_type_units = elements / 3;
2292 dwarf2_per_objfile->all_type_units
2293 = obstack_alloc (&objfile->objfile_obstack,
2294 dwarf2_per_objfile->n_type_units
2295 * sizeof (struct signatured_type *));
2296
2297 sig_types_hash = allocate_signatured_type_table (objfile);
2298
2299 for (i = 0; i < elements; i += 3)
2300 {
2301 struct signatured_type *sig_type;
2302 ULONGEST offset, type_offset_in_tu, signature;
2303 void **slot;
2304
2305 if (!extract_cu_value (bytes, &offset)
2306 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
2307 return 0;
2308 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2309 bytes += 3 * 8;
2310
2311 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2312 struct signatured_type);
2313 sig_type->signature = signature;
2314 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2315 sig_type->per_cu.is_debug_types = 1;
2316 sig_type->per_cu.info_or_types_section = section;
2317 sig_type->per_cu.offset.sect_off = offset;
2318 sig_type->per_cu.objfile = objfile;
2319 sig_type->per_cu.v.quick
2320 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2321 struct dwarf2_per_cu_quick_data);
2322
2323 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2324 *slot = sig_type;
2325
2326 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2327 }
2328
2329 dwarf2_per_objfile->signatured_types = sig_types_hash;
2330
2331 return 1;
2332 }
2333
2334 /* Read the address map data from the mapped index, and use it to
2335 populate the objfile's psymtabs_addrmap. */
2336
2337 static void
2338 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2339 {
2340 const gdb_byte *iter, *end;
2341 struct obstack temp_obstack;
2342 struct addrmap *mutable_map;
2343 struct cleanup *cleanup;
2344 CORE_ADDR baseaddr;
2345
2346 obstack_init (&temp_obstack);
2347 cleanup = make_cleanup_obstack_free (&temp_obstack);
2348 mutable_map = addrmap_create_mutable (&temp_obstack);
2349
2350 iter = index->address_table;
2351 end = iter + index->address_table_size;
2352
2353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2354
2355 while (iter < end)
2356 {
2357 ULONGEST hi, lo, cu_index;
2358 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2359 iter += 8;
2360 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2361 iter += 8;
2362 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2363 iter += 4;
2364
2365 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2366 dw2_get_cu (cu_index));
2367 }
2368
2369 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2370 &objfile->objfile_obstack);
2371 do_cleanups (cleanup);
2372 }
2373
2374 /* The hash function for strings in the mapped index. This is the same as
2375 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2376 implementation. This is necessary because the hash function is tied to the
2377 format of the mapped index file. The hash values do not have to match with
2378 SYMBOL_HASH_NEXT.
2379
2380 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2381
2382 static hashval_t
2383 mapped_index_string_hash (int index_version, const void *p)
2384 {
2385 const unsigned char *str = (const unsigned char *) p;
2386 hashval_t r = 0;
2387 unsigned char c;
2388
2389 while ((c = *str++) != 0)
2390 {
2391 if (index_version >= 5)
2392 c = tolower (c);
2393 r = r * 67 + c - 113;
2394 }
2395
2396 return r;
2397 }
2398
2399 /* Find a slot in the mapped index INDEX for the object named NAME.
2400 If NAME is found, set *VEC_OUT to point to the CU vector in the
2401 constant pool and return 1. If NAME cannot be found, return 0. */
2402
2403 static int
2404 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2405 offset_type **vec_out)
2406 {
2407 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2408 offset_type hash;
2409 offset_type slot, step;
2410 int (*cmp) (const char *, const char *);
2411
2412 if (current_language->la_language == language_cplus
2413 || current_language->la_language == language_java
2414 || current_language->la_language == language_fortran)
2415 {
2416 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2417 not contain any. */
2418 const char *paren = strchr (name, '(');
2419
2420 if (paren)
2421 {
2422 char *dup;
2423
2424 dup = xmalloc (paren - name + 1);
2425 memcpy (dup, name, paren - name);
2426 dup[paren - name] = 0;
2427
2428 make_cleanup (xfree, dup);
2429 name = dup;
2430 }
2431 }
2432
2433 /* Index version 4 did not support case insensitive searches. But the
2434 indices for case insensitive languages are built in lowercase, therefore
2435 simulate our NAME being searched is also lowercased. */
2436 hash = mapped_index_string_hash ((index->version == 4
2437 && case_sensitivity == case_sensitive_off
2438 ? 5 : index->version),
2439 name);
2440
2441 slot = hash & (index->symbol_table_slots - 1);
2442 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2443 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2444
2445 for (;;)
2446 {
2447 /* Convert a slot number to an offset into the table. */
2448 offset_type i = 2 * slot;
2449 const char *str;
2450 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2451 {
2452 do_cleanups (back_to);
2453 return 0;
2454 }
2455
2456 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2457 if (!cmp (name, str))
2458 {
2459 *vec_out = (offset_type *) (index->constant_pool
2460 + MAYBE_SWAP (index->symbol_table[i + 1]));
2461 do_cleanups (back_to);
2462 return 1;
2463 }
2464
2465 slot = (slot + step) & (index->symbol_table_slots - 1);
2466 }
2467 }
2468
2469 /* Read the index file. If everything went ok, initialize the "quick"
2470 elements of all the CUs and return 1. Otherwise, return 0. */
2471
2472 static int
2473 dwarf2_read_index (struct objfile *objfile)
2474 {
2475 char *addr;
2476 struct mapped_index *map;
2477 offset_type *metadata;
2478 const gdb_byte *cu_list;
2479 const gdb_byte *types_list = NULL;
2480 offset_type version, cu_list_elements;
2481 offset_type types_list_elements = 0;
2482 int i;
2483
2484 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2485 return 0;
2486
2487 /* Older elfutils strip versions could keep the section in the main
2488 executable while splitting it for the separate debug info file. */
2489 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2490 & SEC_HAS_CONTENTS) == 0)
2491 return 0;
2492
2493 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2494
2495 addr = dwarf2_per_objfile->gdb_index.buffer;
2496 /* Version check. */
2497 version = MAYBE_SWAP (*(offset_type *) addr);
2498 /* Versions earlier than 3 emitted every copy of a psymbol. This
2499 causes the index to behave very poorly for certain requests. Version 3
2500 contained incomplete addrmap. So, it seems better to just ignore such
2501 indices. */
2502 if (version < 4)
2503 {
2504 static int warning_printed = 0;
2505 if (!warning_printed)
2506 {
2507 warning (_("Skipping obsolete .gdb_index section in %s."),
2508 objfile->name);
2509 warning_printed = 1;
2510 }
2511 return 0;
2512 }
2513 /* Index version 4 uses a different hash function than index version
2514 5 and later.
2515
2516 Versions earlier than 6 did not emit psymbols for inlined
2517 functions. Using these files will cause GDB not to be able to
2518 set breakpoints on inlined functions by name, so we ignore these
2519 indices unless the --use-deprecated-index-sections command line
2520 option was supplied. */
2521 if (version < 6 && !use_deprecated_index_sections)
2522 {
2523 static int warning_printed = 0;
2524 if (!warning_printed)
2525 {
2526 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2527 "--use-deprecated-index-sections to use them anyway"),
2528 objfile->name);
2529 warning_printed = 1;
2530 }
2531 return 0;
2532 }
2533 /* Indexes with higher version than the one supported by GDB may be no
2534 longer backward compatible. */
2535 if (version > 7)
2536 return 0;
2537
2538 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2539 map->version = version;
2540 map->total_size = dwarf2_per_objfile->gdb_index.size;
2541
2542 metadata = (offset_type *) (addr + sizeof (offset_type));
2543
2544 i = 0;
2545 cu_list = addr + MAYBE_SWAP (metadata[i]);
2546 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2547 / 8);
2548 ++i;
2549
2550 types_list = addr + MAYBE_SWAP (metadata[i]);
2551 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2552 - MAYBE_SWAP (metadata[i]))
2553 / 8);
2554 ++i;
2555
2556 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2557 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2558 - MAYBE_SWAP (metadata[i]));
2559 ++i;
2560
2561 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2562 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2563 - MAYBE_SWAP (metadata[i]))
2564 / (2 * sizeof (offset_type)));
2565 ++i;
2566
2567 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2568
2569 /* Don't use the index if it's empty. */
2570 if (map->symbol_table_slots == 0)
2571 return 0;
2572
2573 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2574 return 0;
2575
2576 if (types_list_elements)
2577 {
2578 struct dwarf2_section_info *section;
2579
2580 /* We can only handle a single .debug_types when we have an
2581 index. */
2582 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2583 return 0;
2584
2585 section = VEC_index (dwarf2_section_info_def,
2586 dwarf2_per_objfile->types, 0);
2587
2588 if (!create_signatured_type_table_from_index (objfile, section,
2589 types_list,
2590 types_list_elements))
2591 return 0;
2592 }
2593
2594 create_addrmap_from_index (objfile, map);
2595
2596 dwarf2_per_objfile->index_table = map;
2597 dwarf2_per_objfile->using_index = 1;
2598 dwarf2_per_objfile->quick_file_names_table =
2599 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2600
2601 return 1;
2602 }
2603
2604 /* A helper for the "quick" functions which sets the global
2605 dwarf2_per_objfile according to OBJFILE. */
2606
2607 static void
2608 dw2_setup (struct objfile *objfile)
2609 {
2610 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2611 gdb_assert (dwarf2_per_objfile);
2612 }
2613
2614 /* Reader function for dw2_build_type_unit_groups. */
2615
2616 static void
2617 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2618 gdb_byte *info_ptr,
2619 struct die_info *type_unit_die,
2620 int has_children,
2621 void *data)
2622 {
2623 struct dwarf2_cu *cu = reader->cu;
2624 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
2625 struct attribute *attr;
2626 struct type_unit_group *tu_group;
2627
2628 gdb_assert (data == NULL);
2629
2630 if (! has_children)
2631 return;
2632
2633 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2634 /* Call this for its side-effect of creating the associated
2635 struct type_unit_group if it doesn't already exist. */
2636 tu_group = get_type_unit_group (per_cu, attr);
2637 }
2638
2639 /* Build dwarf2_per_objfile->type_unit_groups.
2640 This function may be called multiple times. */
2641
2642 static void
2643 dw2_build_type_unit_groups (void)
2644 {
2645 if (dwarf2_per_objfile->type_unit_groups == NULL)
2646 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2647 }
2648
2649 /* die_reader_func for dw2_get_file_names. */
2650
2651 static void
2652 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2653 gdb_byte *info_ptr,
2654 struct die_info *comp_unit_die,
2655 int has_children,
2656 void *data)
2657 {
2658 struct dwarf2_cu *cu = reader->cu;
2659 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2660 struct objfile *objfile = dwarf2_per_objfile->objfile;
2661 struct line_header *lh;
2662 struct attribute *attr;
2663 int i;
2664 char *name, *comp_dir;
2665 void **slot;
2666 struct quick_file_names *qfn;
2667 unsigned int line_offset;
2668
2669 /* Our callers never want to match partial units -- instead they
2670 will match the enclosing full CU. */
2671 if (comp_unit_die->tag == DW_TAG_partial_unit)
2672 {
2673 this_cu->v.quick->no_file_data = 1;
2674 return;
2675 }
2676
2677 lh = NULL;
2678 slot = NULL;
2679 line_offset = 0;
2680
2681 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2682 if (attr)
2683 {
2684 struct quick_file_names find_entry;
2685
2686 line_offset = DW_UNSND (attr);
2687
2688 /* We may have already read in this line header (TU line header sharing).
2689 If we have we're done. */
2690 find_entry.offset = line_offset;
2691 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2692 &find_entry, INSERT);
2693 if (*slot != NULL)
2694 {
2695 this_cu->v.quick->file_names = *slot;
2696 return;
2697 }
2698
2699 lh = dwarf_decode_line_header (line_offset, cu);
2700 }
2701 if (lh == NULL)
2702 {
2703 this_cu->v.quick->no_file_data = 1;
2704 return;
2705 }
2706
2707 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2708 qfn->offset = line_offset;
2709 gdb_assert (slot != NULL);
2710 *slot = qfn;
2711
2712 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2713
2714 qfn->num_file_names = lh->num_file_names;
2715 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2716 lh->num_file_names * sizeof (char *));
2717 for (i = 0; i < lh->num_file_names; ++i)
2718 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2719 qfn->real_names = NULL;
2720
2721 free_line_header (lh);
2722
2723 this_cu->v.quick->file_names = qfn;
2724 }
2725
2726 /* A helper for the "quick" functions which attempts to read the line
2727 table for THIS_CU. */
2728
2729 static struct quick_file_names *
2730 dw2_get_file_names (struct objfile *objfile,
2731 struct dwarf2_per_cu_data *this_cu)
2732 {
2733 /* For TUs this should only be called on the parent group. */
2734 if (this_cu->is_debug_types)
2735 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2736
2737 if (this_cu->v.quick->file_names != NULL)
2738 return this_cu->v.quick->file_names;
2739 /* If we know there is no line data, no point in looking again. */
2740 if (this_cu->v.quick->no_file_data)
2741 return NULL;
2742
2743 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2744 in the stub for CUs, there's is no need to lookup the DWO file.
2745 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2746 DWO file. */
2747 if (this_cu->is_debug_types)
2748 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
2749 dw2_get_file_names_reader, NULL);
2750 else
2751 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2752
2753 if (this_cu->v.quick->no_file_data)
2754 return NULL;
2755 return this_cu->v.quick->file_names;
2756 }
2757
2758 /* A helper for the "quick" functions which computes and caches the
2759 real path for a given file name from the line table. */
2760
2761 static const char *
2762 dw2_get_real_path (struct objfile *objfile,
2763 struct quick_file_names *qfn, int index)
2764 {
2765 if (qfn->real_names == NULL)
2766 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2767 qfn->num_file_names, sizeof (char *));
2768
2769 if (qfn->real_names[index] == NULL)
2770 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2771
2772 return qfn->real_names[index];
2773 }
2774
2775 static struct symtab *
2776 dw2_find_last_source_symtab (struct objfile *objfile)
2777 {
2778 int index;
2779
2780 dw2_setup (objfile);
2781 index = dwarf2_per_objfile->n_comp_units - 1;
2782 return dw2_instantiate_symtab (dw2_get_cu (index));
2783 }
2784
2785 /* Traversal function for dw2_forget_cached_source_info. */
2786
2787 static int
2788 dw2_free_cached_file_names (void **slot, void *info)
2789 {
2790 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2791
2792 if (file_data->real_names)
2793 {
2794 int i;
2795
2796 for (i = 0; i < file_data->num_file_names; ++i)
2797 {
2798 xfree ((void*) file_data->real_names[i]);
2799 file_data->real_names[i] = NULL;
2800 }
2801 }
2802
2803 return 1;
2804 }
2805
2806 static void
2807 dw2_forget_cached_source_info (struct objfile *objfile)
2808 {
2809 dw2_setup (objfile);
2810
2811 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2812 dw2_free_cached_file_names, NULL);
2813 }
2814
2815 /* Helper function for dw2_map_symtabs_matching_filename that expands
2816 the symtabs and calls the iterator. */
2817
2818 static int
2819 dw2_map_expand_apply (struct objfile *objfile,
2820 struct dwarf2_per_cu_data *per_cu,
2821 const char *name,
2822 const char *full_path, const char *real_path,
2823 int (*callback) (struct symtab *, void *),
2824 void *data)
2825 {
2826 struct symtab *last_made = objfile->symtabs;
2827
2828 /* Don't visit already-expanded CUs. */
2829 if (per_cu->v.quick->symtab)
2830 return 0;
2831
2832 /* This may expand more than one symtab, and we want to iterate over
2833 all of them. */
2834 dw2_instantiate_symtab (per_cu);
2835
2836 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2837 objfile->symtabs, last_made);
2838 }
2839
2840 /* Implementation of the map_symtabs_matching_filename method. */
2841
2842 static int
2843 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2844 const char *full_path, const char *real_path,
2845 int (*callback) (struct symtab *, void *),
2846 void *data)
2847 {
2848 int i;
2849 const char *name_basename = lbasename (name);
2850 int name_len = strlen (name);
2851 int is_abs = IS_ABSOLUTE_PATH (name);
2852
2853 dw2_setup (objfile);
2854
2855 dw2_build_type_unit_groups ();
2856
2857 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2858 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2859 {
2860 int j;
2861 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2862 struct quick_file_names *file_data;
2863
2864 /* We only need to look at symtabs not already expanded. */
2865 if (per_cu->v.quick->symtab)
2866 continue;
2867
2868 file_data = dw2_get_file_names (objfile, per_cu);
2869 if (file_data == NULL)
2870 continue;
2871
2872 for (j = 0; j < file_data->num_file_names; ++j)
2873 {
2874 const char *this_name = file_data->file_names[j];
2875
2876 if (FILENAME_CMP (name, this_name) == 0
2877 || (!is_abs && compare_filenames_for_search (this_name,
2878 name, name_len)))
2879 {
2880 if (dw2_map_expand_apply (objfile, per_cu,
2881 name, full_path, real_path,
2882 callback, data))
2883 return 1;
2884 }
2885
2886 /* Before we invoke realpath, which can get expensive when many
2887 files are involved, do a quick comparison of the basenames. */
2888 if (! basenames_may_differ
2889 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2890 continue;
2891
2892 if (full_path != NULL)
2893 {
2894 const char *this_real_name = dw2_get_real_path (objfile,
2895 file_data, j);
2896
2897 if (this_real_name != NULL
2898 && (FILENAME_CMP (full_path, this_real_name) == 0
2899 || (!is_abs
2900 && compare_filenames_for_search (this_real_name,
2901 name, name_len))))
2902 {
2903 if (dw2_map_expand_apply (objfile, per_cu,
2904 name, full_path, real_path,
2905 callback, data))
2906 return 1;
2907 }
2908 }
2909
2910 if (real_path != NULL)
2911 {
2912 const char *this_real_name = dw2_get_real_path (objfile,
2913 file_data, j);
2914
2915 if (this_real_name != NULL
2916 && (FILENAME_CMP (real_path, this_real_name) == 0
2917 || (!is_abs
2918 && compare_filenames_for_search (this_real_name,
2919 name, name_len))))
2920 {
2921 if (dw2_map_expand_apply (objfile, per_cu,
2922 name, full_path, real_path,
2923 callback, data))
2924 return 1;
2925 }
2926 }
2927 }
2928 }
2929
2930 return 0;
2931 }
2932
2933 static struct symtab *
2934 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2935 const char *name, domain_enum domain)
2936 {
2937 /* We do all the work in the pre_expand_symtabs_matching hook
2938 instead. */
2939 return NULL;
2940 }
2941
2942 /* A helper function that expands all symtabs that hold an object
2943 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
2944 symbols in block BLOCK_KIND. */
2945
2946 static void
2947 dw2_do_expand_symtabs_matching (struct objfile *objfile,
2948 int want_specific_block,
2949 enum block_enum block_kind,
2950 const char *name, domain_enum domain)
2951 {
2952 struct mapped_index *index;
2953
2954 dw2_setup (objfile);
2955
2956 index = dwarf2_per_objfile->index_table;
2957
2958 /* index_table is NULL if OBJF_READNOW. */
2959 if (index)
2960 {
2961 offset_type *vec;
2962
2963 if (find_slot_in_mapped_hash (index, name, &vec))
2964 {
2965 offset_type i, len = MAYBE_SWAP (*vec);
2966 for (i = 0; i < len; ++i)
2967 {
2968 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
2969 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
2970 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2971 int want_static = block_kind != GLOBAL_BLOCK;
2972 /* This value is only valid for index versions >= 7. */
2973 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
2974 gdb_index_symbol_kind symbol_kind =
2975 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
2976
2977 if (want_specific_block
2978 && index->version >= 7
2979 && want_static != is_static)
2980 continue;
2981
2982 /* Only check the symbol's kind if it has one.
2983 Indices prior to version 7 don't record it. */
2984 if (index->version >= 7)
2985 {
2986 switch (domain)
2987 {
2988 case VAR_DOMAIN:
2989 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
2990 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
2991 /* Some types are also in VAR_DOMAIN. */
2992 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
2993 continue;
2994 break;
2995 case STRUCT_DOMAIN:
2996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
2997 continue;
2998 break;
2999 case LABEL_DOMAIN:
3000 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3001 continue;
3002 break;
3003 default:
3004 break;
3005 }
3006 }
3007
3008 dw2_instantiate_symtab (per_cu);
3009 }
3010 }
3011 }
3012 }
3013
3014 static void
3015 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3016 enum block_enum block_kind, const char *name,
3017 domain_enum domain)
3018 {
3019 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3020 }
3021
3022 static void
3023 dw2_print_stats (struct objfile *objfile)
3024 {
3025 int i, count;
3026
3027 dw2_setup (objfile);
3028 count = 0;
3029 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3030 + dwarf2_per_objfile->n_type_units); ++i)
3031 {
3032 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3033
3034 if (!per_cu->v.quick->symtab)
3035 ++count;
3036 }
3037 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3038 }
3039
3040 static void
3041 dw2_dump (struct objfile *objfile)
3042 {
3043 /* Nothing worth printing. */
3044 }
3045
3046 static void
3047 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3048 struct section_offsets *delta)
3049 {
3050 /* There's nothing to relocate here. */
3051 }
3052
3053 static void
3054 dw2_expand_symtabs_for_function (struct objfile *objfile,
3055 const char *func_name)
3056 {
3057 /* Note: It doesn't matter what we pass for block_kind here. */
3058 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3059 VAR_DOMAIN);
3060 }
3061
3062 static void
3063 dw2_expand_all_symtabs (struct objfile *objfile)
3064 {
3065 int i;
3066
3067 dw2_setup (objfile);
3068
3069 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3070 + dwarf2_per_objfile->n_type_units); ++i)
3071 {
3072 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3073
3074 dw2_instantiate_symtab (per_cu);
3075 }
3076 }
3077
3078 static void
3079 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3080 const char *filename)
3081 {
3082 int i;
3083
3084 dw2_setup (objfile);
3085
3086 /* We don't need to consider type units here.
3087 This is only called for examining code, e.g. expand_line_sal.
3088 There can be an order of magnitude (or more) more type units
3089 than comp units, and we avoid them if we can. */
3090
3091 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3092 {
3093 int j;
3094 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3095 struct quick_file_names *file_data;
3096
3097 /* We only need to look at symtabs not already expanded. */
3098 if (per_cu->v.quick->symtab)
3099 continue;
3100
3101 file_data = dw2_get_file_names (objfile, per_cu);
3102 if (file_data == NULL)
3103 continue;
3104
3105 for (j = 0; j < file_data->num_file_names; ++j)
3106 {
3107 const char *this_name = file_data->file_names[j];
3108 if (FILENAME_CMP (this_name, filename) == 0)
3109 {
3110 dw2_instantiate_symtab (per_cu);
3111 break;
3112 }
3113 }
3114 }
3115 }
3116
3117 /* A helper function for dw2_find_symbol_file that finds the primary
3118 file name for a given CU. This is a die_reader_func. */
3119
3120 static void
3121 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3122 gdb_byte *info_ptr,
3123 struct die_info *comp_unit_die,
3124 int has_children,
3125 void *data)
3126 {
3127 const char **result_ptr = data;
3128 struct dwarf2_cu *cu = reader->cu;
3129 struct attribute *attr;
3130
3131 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3132 if (attr == NULL)
3133 *result_ptr = NULL;
3134 else
3135 *result_ptr = DW_STRING (attr);
3136 }
3137
3138 static const char *
3139 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3140 {
3141 struct dwarf2_per_cu_data *per_cu;
3142 offset_type *vec;
3143 struct quick_file_names *file_data;
3144 const char *filename;
3145
3146 dw2_setup (objfile);
3147
3148 /* index_table is NULL if OBJF_READNOW. */
3149 if (!dwarf2_per_objfile->index_table)
3150 {
3151 struct symtab *s;
3152
3153 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3154 {
3155 struct blockvector *bv = BLOCKVECTOR (s);
3156 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3157 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3158
3159 if (sym)
3160 return sym->symtab->filename;
3161 }
3162 return NULL;
3163 }
3164
3165 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3166 name, &vec))
3167 return NULL;
3168
3169 /* Note that this just looks at the very first one named NAME -- but
3170 actually we are looking for a function. find_main_filename
3171 should be rewritten so that it doesn't require a custom hook. It
3172 could just use the ordinary symbol tables. */
3173 /* vec[0] is the length, which must always be >0. */
3174 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3175
3176 if (per_cu->v.quick->symtab != NULL)
3177 return per_cu->v.quick->symtab->filename;
3178
3179 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3180 dw2_get_primary_filename_reader, &filename);
3181
3182 return filename;
3183 }
3184
3185 static void
3186 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3187 struct objfile *objfile, int global,
3188 int (*callback) (struct block *,
3189 struct symbol *, void *),
3190 void *data, symbol_compare_ftype *match,
3191 symbol_compare_ftype *ordered_compare)
3192 {
3193 /* Currently unimplemented; used for Ada. The function can be called if the
3194 current language is Ada for a non-Ada objfile using GNU index. As Ada
3195 does not look for non-Ada symbols this function should just return. */
3196 }
3197
3198 static void
3199 dw2_expand_symtabs_matching
3200 (struct objfile *objfile,
3201 int (*file_matcher) (const char *, void *),
3202 int (*name_matcher) (const char *, void *),
3203 enum search_domain kind,
3204 void *data)
3205 {
3206 int i;
3207 offset_type iter;
3208 struct mapped_index *index;
3209
3210 dw2_setup (objfile);
3211
3212 /* index_table is NULL if OBJF_READNOW. */
3213 if (!dwarf2_per_objfile->index_table)
3214 return;
3215 index = dwarf2_per_objfile->index_table;
3216
3217 if (file_matcher != NULL)
3218 {
3219 struct cleanup *cleanup;
3220 htab_t visited_found, visited_not_found;
3221
3222 dw2_build_type_unit_groups ();
3223
3224 visited_found = htab_create_alloc (10,
3225 htab_hash_pointer, htab_eq_pointer,
3226 NULL, xcalloc, xfree);
3227 cleanup = make_cleanup_htab_delete (visited_found);
3228 visited_not_found = htab_create_alloc (10,
3229 htab_hash_pointer, htab_eq_pointer,
3230 NULL, xcalloc, xfree);
3231 make_cleanup_htab_delete (visited_not_found);
3232
3233 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3234 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3235 {
3236 int j;
3237 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3238 struct quick_file_names *file_data;
3239 void **slot;
3240
3241 per_cu->v.quick->mark = 0;
3242
3243 /* We only need to look at symtabs not already expanded. */
3244 if (per_cu->v.quick->symtab)
3245 continue;
3246
3247 file_data = dw2_get_file_names (objfile, per_cu);
3248 if (file_data == NULL)
3249 continue;
3250
3251 if (htab_find (visited_not_found, file_data) != NULL)
3252 continue;
3253 else if (htab_find (visited_found, file_data) != NULL)
3254 {
3255 per_cu->v.quick->mark = 1;
3256 continue;
3257 }
3258
3259 for (j = 0; j < file_data->num_file_names; ++j)
3260 {
3261 if (file_matcher (file_data->file_names[j], data))
3262 {
3263 per_cu->v.quick->mark = 1;
3264 break;
3265 }
3266 }
3267
3268 slot = htab_find_slot (per_cu->v.quick->mark
3269 ? visited_found
3270 : visited_not_found,
3271 file_data, INSERT);
3272 *slot = file_data;
3273 }
3274
3275 do_cleanups (cleanup);
3276 }
3277
3278 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3279 {
3280 offset_type idx = 2 * iter;
3281 const char *name;
3282 offset_type *vec, vec_len, vec_idx;
3283
3284 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3285 continue;
3286
3287 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3288
3289 if (! (*name_matcher) (name, data))
3290 continue;
3291
3292 /* The name was matched, now expand corresponding CUs that were
3293 marked. */
3294 vec = (offset_type *) (index->constant_pool
3295 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3296 vec_len = MAYBE_SWAP (vec[0]);
3297 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3298 {
3299 struct dwarf2_per_cu_data *per_cu;
3300 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3301 gdb_index_symbol_kind symbol_kind =
3302 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3303 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3304
3305 /* Don't crash on bad data. */
3306 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3307 + dwarf2_per_objfile->n_type_units))
3308 continue;
3309
3310 /* Only check the symbol's kind if it has one.
3311 Indices prior to version 7 don't record it. */
3312 if (index->version >= 7)
3313 {
3314 switch (kind)
3315 {
3316 case VARIABLES_DOMAIN:
3317 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3318 continue;
3319 break;
3320 case FUNCTIONS_DOMAIN:
3321 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3322 continue;
3323 break;
3324 case TYPES_DOMAIN:
3325 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3326 continue;
3327 break;
3328 default:
3329 break;
3330 }
3331 }
3332
3333 per_cu = dw2_get_cu (cu_index);
3334 if (file_matcher == NULL || per_cu->v.quick->mark)
3335 dw2_instantiate_symtab (per_cu);
3336 }
3337 }
3338 }
3339
3340 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3341 symtab. */
3342
3343 static struct symtab *
3344 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3345 {
3346 int i;
3347
3348 if (BLOCKVECTOR (symtab) != NULL
3349 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3350 return symtab;
3351
3352 if (symtab->includes == NULL)
3353 return NULL;
3354
3355 for (i = 0; symtab->includes[i]; ++i)
3356 {
3357 struct symtab *s = symtab->includes[i];
3358
3359 s = recursively_find_pc_sect_symtab (s, pc);
3360 if (s != NULL)
3361 return s;
3362 }
3363
3364 return NULL;
3365 }
3366
3367 static struct symtab *
3368 dw2_find_pc_sect_symtab (struct objfile *objfile,
3369 struct minimal_symbol *msymbol,
3370 CORE_ADDR pc,
3371 struct obj_section *section,
3372 int warn_if_readin)
3373 {
3374 struct dwarf2_per_cu_data *data;
3375 struct symtab *result;
3376
3377 dw2_setup (objfile);
3378
3379 if (!objfile->psymtabs_addrmap)
3380 return NULL;
3381
3382 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3383 if (!data)
3384 return NULL;
3385
3386 if (warn_if_readin && data->v.quick->symtab)
3387 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3388 paddress (get_objfile_arch (objfile), pc));
3389
3390 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3391 gdb_assert (result != NULL);
3392 return result;
3393 }
3394
3395 static void
3396 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3397 void *data, int need_fullname)
3398 {
3399 int i;
3400 struct cleanup *cleanup;
3401 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3402 NULL, xcalloc, xfree);
3403
3404 cleanup = make_cleanup_htab_delete (visited);
3405 dw2_setup (objfile);
3406
3407 dw2_build_type_unit_groups ();
3408
3409 /* We can ignore file names coming from already-expanded CUs. */
3410 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3411 + dwarf2_per_objfile->n_type_units); ++i)
3412 {
3413 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3414
3415 if (per_cu->v.quick->symtab)
3416 {
3417 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3418 INSERT);
3419
3420 *slot = per_cu->v.quick->file_names;
3421 }
3422 }
3423
3424 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3425 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3426 {
3427 int j;
3428 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3429 struct quick_file_names *file_data;
3430 void **slot;
3431
3432 /* We only need to look at symtabs not already expanded. */
3433 if (per_cu->v.quick->symtab)
3434 continue;
3435
3436 file_data = dw2_get_file_names (objfile, per_cu);
3437 if (file_data == NULL)
3438 continue;
3439
3440 slot = htab_find_slot (visited, file_data, INSERT);
3441 if (*slot)
3442 {
3443 /* Already visited. */
3444 continue;
3445 }
3446 *slot = file_data;
3447
3448 for (j = 0; j < file_data->num_file_names; ++j)
3449 {
3450 const char *this_real_name;
3451
3452 if (need_fullname)
3453 this_real_name = dw2_get_real_path (objfile, file_data, j);
3454 else
3455 this_real_name = NULL;
3456 (*fun) (file_data->file_names[j], this_real_name, data);
3457 }
3458 }
3459
3460 do_cleanups (cleanup);
3461 }
3462
3463 static int
3464 dw2_has_symbols (struct objfile *objfile)
3465 {
3466 return 1;
3467 }
3468
3469 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3470 {
3471 dw2_has_symbols,
3472 dw2_find_last_source_symtab,
3473 dw2_forget_cached_source_info,
3474 dw2_map_symtabs_matching_filename,
3475 dw2_lookup_symbol,
3476 dw2_pre_expand_symtabs_matching,
3477 dw2_print_stats,
3478 dw2_dump,
3479 dw2_relocate,
3480 dw2_expand_symtabs_for_function,
3481 dw2_expand_all_symtabs,
3482 dw2_expand_symtabs_with_filename,
3483 dw2_find_symbol_file,
3484 dw2_map_matching_symbols,
3485 dw2_expand_symtabs_matching,
3486 dw2_find_pc_sect_symtab,
3487 dw2_map_symbol_filenames
3488 };
3489
3490 /* Initialize for reading DWARF for this objfile. Return 0 if this
3491 file will use psymtabs, or 1 if using the GNU index. */
3492
3493 int
3494 dwarf2_initialize_objfile (struct objfile *objfile)
3495 {
3496 /* If we're about to read full symbols, don't bother with the
3497 indices. In this case we also don't care if some other debug
3498 format is making psymtabs, because they are all about to be
3499 expanded anyway. */
3500 if ((objfile->flags & OBJF_READNOW))
3501 {
3502 int i;
3503
3504 dwarf2_per_objfile->using_index = 1;
3505 create_all_comp_units (objfile);
3506 create_all_type_units (objfile);
3507 dwarf2_per_objfile->quick_file_names_table =
3508 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3509
3510 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3511 + dwarf2_per_objfile->n_type_units); ++i)
3512 {
3513 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3514
3515 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3516 struct dwarf2_per_cu_quick_data);
3517 }
3518
3519 /* Return 1 so that gdb sees the "quick" functions. However,
3520 these functions will be no-ops because we will have expanded
3521 all symtabs. */
3522 return 1;
3523 }
3524
3525 if (dwarf2_read_index (objfile))
3526 return 1;
3527
3528 return 0;
3529 }
3530
3531 \f
3532
3533 /* Build a partial symbol table. */
3534
3535 void
3536 dwarf2_build_psymtabs (struct objfile *objfile)
3537 {
3538 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3539 {
3540 init_psymbol_list (objfile, 1024);
3541 }
3542
3543 dwarf2_build_psymtabs_hard (objfile);
3544 }
3545
3546 /* Return the total length of the CU described by HEADER. */
3547
3548 static unsigned int
3549 get_cu_length (const struct comp_unit_head *header)
3550 {
3551 return header->initial_length_size + header->length;
3552 }
3553
3554 /* Return TRUE if OFFSET is within CU_HEADER. */
3555
3556 static inline int
3557 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3558 {
3559 sect_offset bottom = { cu_header->offset.sect_off };
3560 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3561
3562 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3563 }
3564
3565 /* Find the base address of the compilation unit for range lists and
3566 location lists. It will normally be specified by DW_AT_low_pc.
3567 In DWARF-3 draft 4, the base address could be overridden by
3568 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3569 compilation units with discontinuous ranges. */
3570
3571 static void
3572 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3573 {
3574 struct attribute *attr;
3575
3576 cu->base_known = 0;
3577 cu->base_address = 0;
3578
3579 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3580 if (attr)
3581 {
3582 cu->base_address = DW_ADDR (attr);
3583 cu->base_known = 1;
3584 }
3585 else
3586 {
3587 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3588 if (attr)
3589 {
3590 cu->base_address = DW_ADDR (attr);
3591 cu->base_known = 1;
3592 }
3593 }
3594 }
3595
3596 /* Read in the comp unit header information from the debug_info at info_ptr.
3597 NOTE: This leaves members offset, first_die_offset to be filled in
3598 by the caller. */
3599
3600 static gdb_byte *
3601 read_comp_unit_head (struct comp_unit_head *cu_header,
3602 gdb_byte *info_ptr, bfd *abfd)
3603 {
3604 int signed_addr;
3605 unsigned int bytes_read;
3606
3607 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3608 cu_header->initial_length_size = bytes_read;
3609 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3610 info_ptr += bytes_read;
3611 cu_header->version = read_2_bytes (abfd, info_ptr);
3612 info_ptr += 2;
3613 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3614 &bytes_read);
3615 info_ptr += bytes_read;
3616 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3617 info_ptr += 1;
3618 signed_addr = bfd_get_sign_extend_vma (abfd);
3619 if (signed_addr < 0)
3620 internal_error (__FILE__, __LINE__,
3621 _("read_comp_unit_head: dwarf from non elf file"));
3622 cu_header->signed_addr_p = signed_addr;
3623
3624 return info_ptr;
3625 }
3626
3627 /* Subroutine of read_and_check_comp_unit_head and
3628 read_and_check_type_unit_head to simplify them.
3629 Perform various error checking on the header. */
3630
3631 static void
3632 error_check_comp_unit_head (struct comp_unit_head *header,
3633 struct dwarf2_section_info *section,
3634 struct dwarf2_section_info *abbrev_section)
3635 {
3636 bfd *abfd = section->asection->owner;
3637 const char *filename = bfd_get_filename (abfd);
3638
3639 if (header->version != 2 && header->version != 3 && header->version != 4)
3640 error (_("Dwarf Error: wrong version in compilation unit header "
3641 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3642 filename);
3643
3644 if (header->abbrev_offset.sect_off
3645 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3646 &dwarf2_per_objfile->abbrev))
3647 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3648 "(offset 0x%lx + 6) [in module %s]"),
3649 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3650 filename);
3651
3652 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3653 avoid potential 32-bit overflow. */
3654 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3655 > section->size)
3656 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3657 "(offset 0x%lx + 0) [in module %s]"),
3658 (long) header->length, (long) header->offset.sect_off,
3659 filename);
3660 }
3661
3662 /* Read in a CU/TU header and perform some basic error checking.
3663 The contents of the header are stored in HEADER.
3664 The result is a pointer to the start of the first DIE. */
3665
3666 static gdb_byte *
3667 read_and_check_comp_unit_head (struct comp_unit_head *header,
3668 struct dwarf2_section_info *section,
3669 struct dwarf2_section_info *abbrev_section,
3670 gdb_byte *info_ptr,
3671 int is_debug_types_section)
3672 {
3673 gdb_byte *beg_of_comp_unit = info_ptr;
3674 bfd *abfd = section->asection->owner;
3675
3676 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3677
3678 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3679
3680 /* If we're reading a type unit, skip over the signature and
3681 type_offset fields. */
3682 if (is_debug_types_section)
3683 info_ptr += 8 /*signature*/ + header->offset_size;
3684
3685 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3686
3687 error_check_comp_unit_head (header, section, abbrev_section);
3688
3689 return info_ptr;
3690 }
3691
3692 /* Read in the types comp unit header information from .debug_types entry at
3693 types_ptr. The result is a pointer to one past the end of the header. */
3694
3695 static gdb_byte *
3696 read_and_check_type_unit_head (struct comp_unit_head *header,
3697 struct dwarf2_section_info *section,
3698 struct dwarf2_section_info *abbrev_section,
3699 gdb_byte *info_ptr,
3700 ULONGEST *signature,
3701 cu_offset *type_offset_in_tu)
3702 {
3703 gdb_byte *beg_of_comp_unit = info_ptr;
3704 bfd *abfd = section->asection->owner;
3705
3706 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3707
3708 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3709
3710 /* If we're reading a type unit, skip over the signature and
3711 type_offset fields. */
3712 if (signature != NULL)
3713 *signature = read_8_bytes (abfd, info_ptr);
3714 info_ptr += 8;
3715 if (type_offset_in_tu != NULL)
3716 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3717 header->offset_size);
3718 info_ptr += header->offset_size;
3719
3720 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3721
3722 error_check_comp_unit_head (header, section, abbrev_section);
3723
3724 return info_ptr;
3725 }
3726
3727 /* Fetch the abbreviation table offset from a comp or type unit header. */
3728
3729 static sect_offset
3730 read_abbrev_offset (struct dwarf2_section_info *section,
3731 sect_offset offset)
3732 {
3733 bfd *abfd = section->asection->owner;
3734 gdb_byte *info_ptr;
3735 unsigned int length, initial_length_size, offset_size;
3736 sect_offset abbrev_offset;
3737
3738 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3739 info_ptr = section->buffer + offset.sect_off;
3740 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3741 offset_size = initial_length_size == 4 ? 4 : 8;
3742 info_ptr += initial_length_size + 2 /*version*/;
3743 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3744 return abbrev_offset;
3745 }
3746
3747 /* Allocate a new partial symtab for file named NAME and mark this new
3748 partial symtab as being an include of PST. */
3749
3750 static void
3751 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3752 struct objfile *objfile)
3753 {
3754 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3755
3756 subpst->section_offsets = pst->section_offsets;
3757 subpst->textlow = 0;
3758 subpst->texthigh = 0;
3759
3760 subpst->dependencies = (struct partial_symtab **)
3761 obstack_alloc (&objfile->objfile_obstack,
3762 sizeof (struct partial_symtab *));
3763 subpst->dependencies[0] = pst;
3764 subpst->number_of_dependencies = 1;
3765
3766 subpst->globals_offset = 0;
3767 subpst->n_global_syms = 0;
3768 subpst->statics_offset = 0;
3769 subpst->n_static_syms = 0;
3770 subpst->symtab = NULL;
3771 subpst->read_symtab = pst->read_symtab;
3772 subpst->readin = 0;
3773
3774 /* No private part is necessary for include psymtabs. This property
3775 can be used to differentiate between such include psymtabs and
3776 the regular ones. */
3777 subpst->read_symtab_private = NULL;
3778 }
3779
3780 /* Read the Line Number Program data and extract the list of files
3781 included by the source file represented by PST. Build an include
3782 partial symtab for each of these included files. */
3783
3784 static void
3785 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3786 struct die_info *die,
3787 struct partial_symtab *pst)
3788 {
3789 struct line_header *lh = NULL;
3790 struct attribute *attr;
3791
3792 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3793 if (attr)
3794 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
3795 if (lh == NULL)
3796 return; /* No linetable, so no includes. */
3797
3798 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3799 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3800
3801 free_line_header (lh);
3802 }
3803
3804 static hashval_t
3805 hash_signatured_type (const void *item)
3806 {
3807 const struct signatured_type *sig_type = item;
3808
3809 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3810 return sig_type->signature;
3811 }
3812
3813 static int
3814 eq_signatured_type (const void *item_lhs, const void *item_rhs)
3815 {
3816 const struct signatured_type *lhs = item_lhs;
3817 const struct signatured_type *rhs = item_rhs;
3818
3819 return lhs->signature == rhs->signature;
3820 }
3821
3822 /* Allocate a hash table for signatured types. */
3823
3824 static htab_t
3825 allocate_signatured_type_table (struct objfile *objfile)
3826 {
3827 return htab_create_alloc_ex (41,
3828 hash_signatured_type,
3829 eq_signatured_type,
3830 NULL,
3831 &objfile->objfile_obstack,
3832 hashtab_obstack_allocate,
3833 dummy_obstack_deallocate);
3834 }
3835
3836 /* A helper function to add a signatured type CU to a table. */
3837
3838 static int
3839 add_signatured_type_cu_to_table (void **slot, void *datum)
3840 {
3841 struct signatured_type *sigt = *slot;
3842 struct signatured_type ***datap = datum;
3843
3844 **datap = sigt;
3845 ++*datap;
3846
3847 return 1;
3848 }
3849
3850 /* Create the hash table of all entries in the .debug_types section.
3851 DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise.
3852 The result is a pointer to the hash table or NULL if there are
3853 no types. */
3854
3855 static htab_t
3856 create_debug_types_hash_table (struct dwo_file *dwo_file,
3857 VEC (dwarf2_section_info_def) *types)
3858 {
3859 struct objfile *objfile = dwarf2_per_objfile->objfile;
3860 htab_t types_htab = NULL;
3861 int ix;
3862 struct dwarf2_section_info *section;
3863 struct dwarf2_section_info *abbrev_section;
3864
3865 if (VEC_empty (dwarf2_section_info_def, types))
3866 return NULL;
3867
3868 abbrev_section = (dwo_file != NULL
3869 ? &dwo_file->sections.abbrev
3870 : &dwarf2_per_objfile->abbrev);
3871
3872 if (dwarf2_read_debug)
3873 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
3874 dwo_file ? ".dwo" : "",
3875 bfd_get_filename (abbrev_section->asection->owner));
3876
3877 for (ix = 0;
3878 VEC_iterate (dwarf2_section_info_def, types, ix, section);
3879 ++ix)
3880 {
3881 bfd *abfd;
3882 gdb_byte *info_ptr, *end_ptr;
3883
3884 dwarf2_read_section (objfile, section);
3885 info_ptr = section->buffer;
3886
3887 if (info_ptr == NULL)
3888 continue;
3889
3890 /* We can't set abfd until now because the section may be empty or
3891 not present, in which case section->asection will be NULL. */
3892 abfd = section->asection->owner;
3893
3894 if (types_htab == NULL)
3895 {
3896 if (dwo_file)
3897 types_htab = allocate_dwo_unit_table (objfile);
3898 else
3899 types_htab = allocate_signatured_type_table (objfile);
3900 }
3901
3902 /* We don't use init_cutu_and_read_dies_simple, or some such, here
3903 because we don't need to read any dies: the signature is in the
3904 header. */
3905
3906 end_ptr = info_ptr + section->size;
3907 while (info_ptr < end_ptr)
3908 {
3909 sect_offset offset;
3910 cu_offset type_offset_in_tu;
3911 ULONGEST signature;
3912 struct signatured_type *sig_type;
3913 struct dwo_unit *dwo_tu;
3914 void **slot;
3915 gdb_byte *ptr = info_ptr;
3916 struct comp_unit_head header;
3917 unsigned int length;
3918
3919 offset.sect_off = ptr - section->buffer;
3920
3921 /* We need to read the type's signature in order to build the hash
3922 table, but we don't need anything else just yet. */
3923
3924 ptr = read_and_check_type_unit_head (&header, section,
3925 abbrev_section, ptr,
3926 &signature, &type_offset_in_tu);
3927
3928 length = get_cu_length (&header);
3929
3930 /* Skip dummy type units. */
3931 if (ptr >= info_ptr + length
3932 || peek_abbrev_code (abfd, ptr) == 0)
3933 {
3934 info_ptr += length;
3935 continue;
3936 }
3937
3938 if (dwo_file)
3939 {
3940 sig_type = NULL;
3941 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3942 struct dwo_unit);
3943 dwo_tu->dwo_file = dwo_file;
3944 dwo_tu->signature = signature;
3945 dwo_tu->type_offset_in_tu = type_offset_in_tu;
3946 dwo_tu->info_or_types_section = section;
3947 dwo_tu->offset = offset;
3948 dwo_tu->length = length;
3949 }
3950 else
3951 {
3952 /* N.B.: type_offset is not usable if this type uses a DWO file.
3953 The real type_offset is in the DWO file. */
3954 dwo_tu = NULL;
3955 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3956 struct signatured_type);
3957 sig_type->signature = signature;
3958 sig_type->type_offset_in_tu = type_offset_in_tu;
3959 sig_type->per_cu.objfile = objfile;
3960 sig_type->per_cu.is_debug_types = 1;
3961 sig_type->per_cu.info_or_types_section = section;
3962 sig_type->per_cu.offset = offset;
3963 sig_type->per_cu.length = length;
3964 }
3965
3966 slot = htab_find_slot (types_htab,
3967 dwo_file ? (void*) dwo_tu : (void *) sig_type,
3968 INSERT);
3969 gdb_assert (slot != NULL);
3970 if (*slot != NULL)
3971 {
3972 sect_offset dup_offset;
3973
3974 if (dwo_file)
3975 {
3976 const struct dwo_unit *dup_tu = *slot;
3977
3978 dup_offset = dup_tu->offset;
3979 }
3980 else
3981 {
3982 const struct signatured_type *dup_tu = *slot;
3983
3984 dup_offset = dup_tu->per_cu.offset;
3985 }
3986
3987 complaint (&symfile_complaints,
3988 _("debug type entry at offset 0x%x is duplicate to the "
3989 "entry at offset 0x%x, signature 0x%s"),
3990 offset.sect_off, dup_offset.sect_off,
3991 phex (signature, sizeof (signature)));
3992 }
3993 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3994
3995 if (dwarf2_read_debug)
3996 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3997 offset.sect_off,
3998 phex (signature, sizeof (signature)));
3999
4000 info_ptr += length;
4001 }
4002 }
4003
4004 return types_htab;
4005 }
4006
4007 /* Create the hash table of all entries in the .debug_types section,
4008 and initialize all_type_units.
4009 The result is zero if there is an error (e.g. missing .debug_types section),
4010 otherwise non-zero. */
4011
4012 static int
4013 create_all_type_units (struct objfile *objfile)
4014 {
4015 htab_t types_htab;
4016 struct signatured_type **iter;
4017
4018 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4019 if (types_htab == NULL)
4020 {
4021 dwarf2_per_objfile->signatured_types = NULL;
4022 return 0;
4023 }
4024
4025 dwarf2_per_objfile->signatured_types = types_htab;
4026
4027 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4028 dwarf2_per_objfile->all_type_units
4029 = obstack_alloc (&objfile->objfile_obstack,
4030 dwarf2_per_objfile->n_type_units
4031 * sizeof (struct signatured_type *));
4032 iter = &dwarf2_per_objfile->all_type_units[0];
4033 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4034 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4035 == dwarf2_per_objfile->n_type_units);
4036
4037 return 1;
4038 }
4039
4040 /* Lookup a signature based type for DW_FORM_ref_sig8.
4041 Returns NULL if signature SIG is not present in the table. */
4042
4043 static struct signatured_type *
4044 lookup_signatured_type (ULONGEST sig)
4045 {
4046 struct signatured_type find_entry, *entry;
4047
4048 if (dwarf2_per_objfile->signatured_types == NULL)
4049 {
4050 complaint (&symfile_complaints,
4051 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4052 return NULL;
4053 }
4054
4055 find_entry.signature = sig;
4056 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4057 return entry;
4058 }
4059 \f
4060 /* Low level DIE reading support. */
4061
4062 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4063
4064 static void
4065 init_cu_die_reader (struct die_reader_specs *reader,
4066 struct dwarf2_cu *cu,
4067 struct dwarf2_section_info *section,
4068 struct dwo_file *dwo_file)
4069 {
4070 gdb_assert (section->readin && section->buffer != NULL);
4071 reader->abfd = section->asection->owner;
4072 reader->cu = cu;
4073 reader->dwo_file = dwo_file;
4074 reader->die_section = section;
4075 reader->buffer = section->buffer;
4076 reader->buffer_end = section->buffer + section->size;
4077 }
4078
4079 /* Initialize a CU (or TU) and read its DIEs.
4080 If the CU defers to a DWO file, read the DWO file as well.
4081
4082 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4083 Otherwise the table specified in the comp unit header is read in and used.
4084 This is an optimization for when we already have the abbrev table.
4085
4086 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4087 Otherwise, a new CU is allocated with xmalloc.
4088
4089 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4090 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4091
4092 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4093 linker) then DIE_READER_FUNC will not get called. */
4094
4095 static void
4096 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4097 struct abbrev_table *abbrev_table,
4098 int use_existing_cu, int keep,
4099 die_reader_func_ftype *die_reader_func,
4100 void *data)
4101 {
4102 struct objfile *objfile = dwarf2_per_objfile->objfile;
4103 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4104 bfd *abfd = section->asection->owner;
4105 struct dwarf2_cu *cu;
4106 gdb_byte *begin_info_ptr, *info_ptr;
4107 struct die_reader_specs reader;
4108 struct die_info *comp_unit_die;
4109 int has_children;
4110 struct attribute *attr;
4111 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4112 struct signatured_type *sig_type = NULL;
4113 struct dwarf2_section_info *abbrev_section;
4114 /* Non-zero if CU currently points to a DWO file and we need to
4115 reread it. When this happens we need to reread the skeleton die
4116 before we can reread the DWO file. */
4117 int rereading_dwo_cu = 0;
4118
4119 if (dwarf2_die_debug)
4120 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4121 this_cu->is_debug_types ? "type" : "comp",
4122 this_cu->offset.sect_off);
4123
4124 if (use_existing_cu)
4125 gdb_assert (keep);
4126
4127 cleanups = make_cleanup (null_cleanup, NULL);
4128
4129 /* This is cheap if the section is already read in. */
4130 dwarf2_read_section (objfile, section);
4131
4132 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4133 abbrev_section = &dwarf2_per_objfile->abbrev;
4134
4135 if (use_existing_cu && this_cu->cu != NULL)
4136 {
4137 cu = this_cu->cu;
4138
4139 /* If this CU is from a DWO file we need to start over, we need to
4140 refetch the attributes from the skeleton CU.
4141 This could be optimized by retrieving those attributes from when we
4142 were here the first time: the previous comp_unit_die was stored in
4143 comp_unit_obstack. But there's no data yet that we need this
4144 optimization. */
4145 if (cu->dwo_unit != NULL)
4146 rereading_dwo_cu = 1;
4147 }
4148 else
4149 {
4150 /* If !use_existing_cu, this_cu->cu must be NULL. */
4151 gdb_assert (this_cu->cu == NULL);
4152
4153 cu = xmalloc (sizeof (*cu));
4154 init_one_comp_unit (cu, this_cu);
4155
4156 /* If an error occurs while loading, release our storage. */
4157 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4158 }
4159
4160 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4161 {
4162 /* We already have the header, there's no need to read it in again. */
4163 info_ptr += cu->header.first_die_offset.cu_off;
4164 }
4165 else
4166 {
4167 if (this_cu->is_debug_types)
4168 {
4169 ULONGEST signature;
4170 cu_offset type_offset_in_tu;
4171
4172 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4173 abbrev_section, info_ptr,
4174 &signature,
4175 &type_offset_in_tu);
4176
4177 /* Since per_cu is the first member of struct signatured_type,
4178 we can go from a pointer to one to a pointer to the other. */
4179 sig_type = (struct signatured_type *) this_cu;
4180 gdb_assert (sig_type->signature == signature);
4181 gdb_assert (sig_type->type_offset_in_tu.cu_off
4182 == type_offset_in_tu.cu_off);
4183 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4184
4185 /* LENGTH has not been set yet for type units if we're
4186 using .gdb_index. */
4187 this_cu->length = get_cu_length (&cu->header);
4188
4189 /* Establish the type offset that can be used to lookup the type. */
4190 sig_type->type_offset_in_section.sect_off =
4191 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4192 }
4193 else
4194 {
4195 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4196 abbrev_section,
4197 info_ptr, 0);
4198
4199 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4200 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4201 }
4202 }
4203
4204 /* Skip dummy compilation units. */
4205 if (info_ptr >= begin_info_ptr + this_cu->length
4206 || peek_abbrev_code (abfd, info_ptr) == 0)
4207 {
4208 do_cleanups (cleanups);
4209 return;
4210 }
4211
4212 /* If we don't have them yet, read the abbrevs for this compilation unit.
4213 And if we need to read them now, make sure they're freed when we're
4214 done. Note that it's important that if the CU had an abbrev table
4215 on entry we don't free it when we're done: Somewhere up the call stack
4216 it may be in use. */
4217 if (abbrev_table != NULL)
4218 {
4219 gdb_assert (cu->abbrev_table == NULL);
4220 gdb_assert (cu->header.abbrev_offset.sect_off
4221 == abbrev_table->offset.sect_off);
4222 cu->abbrev_table = abbrev_table;
4223 }
4224 else if (cu->abbrev_table == NULL)
4225 {
4226 dwarf2_read_abbrevs (cu, abbrev_section);
4227 make_cleanup (dwarf2_free_abbrev_table, cu);
4228 }
4229 else if (rereading_dwo_cu)
4230 {
4231 dwarf2_free_abbrev_table (cu);
4232 dwarf2_read_abbrevs (cu, abbrev_section);
4233 }
4234
4235 /* Read the top level CU/TU die. */
4236 init_cu_die_reader (&reader, cu, section, NULL);
4237 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4238
4239 /* If we have a DWO stub, process it and then read in the DWO file.
4240 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4241 a DWO CU, that this test will fail. */
4242 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4243 if (attr)
4244 {
4245 char *dwo_name = DW_STRING (attr);
4246 const char *comp_dir_string;
4247 struct dwo_unit *dwo_unit;
4248 ULONGEST signature; /* Or dwo_id. */
4249 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4250 int i,num_extra_attrs;
4251 struct dwarf2_section_info *dwo_abbrev_section;
4252
4253 if (has_children)
4254 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4255 " has children (offset 0x%x) [in module %s]"),
4256 this_cu->offset.sect_off, bfd_get_filename (abfd));
4257
4258 /* These attributes aren't processed until later:
4259 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4260 However, the attribute is found in the stub which we won't have later.
4261 In order to not impose this complication on the rest of the code,
4262 we read them here and copy them to the DWO CU/TU die. */
4263
4264 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4265 DWO file. */
4266 stmt_list = NULL;
4267 if (! this_cu->is_debug_types)
4268 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4269 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4270 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4271 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4272 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4273
4274 /* There should be a DW_AT_addr_base attribute here (if needed).
4275 We need the value before we can process DW_FORM_GNU_addr_index. */
4276 cu->addr_base = 0;
4277 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4278 if (attr)
4279 cu->addr_base = DW_UNSND (attr);
4280
4281 /* There should be a DW_AT_ranges_base attribute here (if needed).
4282 We need the value before we can process DW_AT_ranges. */
4283 cu->ranges_base = 0;
4284 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4285 if (attr)
4286 cu->ranges_base = DW_UNSND (attr);
4287
4288 if (this_cu->is_debug_types)
4289 {
4290 gdb_assert (sig_type != NULL);
4291 signature = sig_type->signature;
4292 }
4293 else
4294 {
4295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4296 if (! attr)
4297 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4298 dwo_name);
4299 signature = DW_UNSND (attr);
4300 }
4301
4302 /* We may need the comp_dir in order to find the DWO file. */
4303 comp_dir_string = NULL;
4304 if (comp_dir)
4305 comp_dir_string = DW_STRING (comp_dir);
4306
4307 if (this_cu->is_debug_types)
4308 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4309 else
4310 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4311 signature);
4312
4313 if (dwo_unit == NULL)
4314 {
4315 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4316 " with ID %s [in module %s]"),
4317 this_cu->offset.sect_off,
4318 phex (signature, sizeof (signature)),
4319 objfile->name);
4320 }
4321
4322 /* Set up for reading the DWO CU/TU. */
4323 cu->dwo_unit = dwo_unit;
4324 section = dwo_unit->info_or_types_section;
4325 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4326 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4327 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4328
4329 if (this_cu->is_debug_types)
4330 {
4331 ULONGEST signature;
4332
4333 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4334 dwo_abbrev_section,
4335 info_ptr,
4336 &signature, NULL);
4337 gdb_assert (sig_type->signature == signature);
4338 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4339 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4340
4341 /* Establish the type offset that can be used to lookup the type.
4342 For DWO files, we don't know it until now. */
4343 sig_type->type_offset_in_section.sect_off =
4344 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4345 }
4346 else
4347 {
4348 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4349 dwo_abbrev_section,
4350 info_ptr, 0);
4351 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4352 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4353 }
4354
4355 /* Discard the original CU's abbrev table, and read the DWO's. */
4356 if (abbrev_table == NULL)
4357 {
4358 dwarf2_free_abbrev_table (cu);
4359 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4360 }
4361 else
4362 {
4363 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4364 make_cleanup (dwarf2_free_abbrev_table, cu);
4365 }
4366
4367 /* Read in the die, but leave space to copy over the attributes
4368 from the stub. This has the benefit of simplifying the rest of
4369 the code - all the real work is done here. */
4370 num_extra_attrs = ((stmt_list != NULL)
4371 + (low_pc != NULL)
4372 + (high_pc != NULL)
4373 + (ranges != NULL)
4374 + (comp_dir != NULL));
4375 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4376 &has_children, num_extra_attrs);
4377
4378 /* Copy over the attributes from the stub to the DWO die. */
4379 i = comp_unit_die->num_attrs;
4380 if (stmt_list != NULL)
4381 comp_unit_die->attrs[i++] = *stmt_list;
4382 if (low_pc != NULL)
4383 comp_unit_die->attrs[i++] = *low_pc;
4384 if (high_pc != NULL)
4385 comp_unit_die->attrs[i++] = *high_pc;
4386 if (ranges != NULL)
4387 comp_unit_die->attrs[i++] = *ranges;
4388 if (comp_dir != NULL)
4389 comp_unit_die->attrs[i++] = *comp_dir;
4390 comp_unit_die->num_attrs += num_extra_attrs;
4391
4392 /* Skip dummy compilation units. */
4393 if (info_ptr >= begin_info_ptr + dwo_unit->length
4394 || peek_abbrev_code (abfd, info_ptr) == 0)
4395 {
4396 do_cleanups (cleanups);
4397 return;
4398 }
4399 }
4400
4401 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4402
4403 if (free_cu_cleanup != NULL)
4404 {
4405 if (keep)
4406 {
4407 /* We've successfully allocated this compilation unit. Let our
4408 caller clean it up when finished with it. */
4409 discard_cleanups (free_cu_cleanup);
4410
4411 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4412 So we have to manually free the abbrev table. */
4413 dwarf2_free_abbrev_table (cu);
4414
4415 /* Link this CU into read_in_chain. */
4416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4417 dwarf2_per_objfile->read_in_chain = this_cu;
4418 }
4419 else
4420 do_cleanups (free_cu_cleanup);
4421 }
4422
4423 do_cleanups (cleanups);
4424 }
4425
4426 /* Read CU/TU THIS_CU in section SECTION,
4427 but do not follow DW_AT_GNU_dwo_name if present.
4428 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to
4429 have already done the lookup to find the DWO file).
4430
4431 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4432 THIS_CU->is_debug_types, but nothing else.
4433
4434 We fill in THIS_CU->length.
4435
4436 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4437 linker) then DIE_READER_FUNC will not get called.
4438
4439 THIS_CU->cu is always freed when done.
4440 This is done in order to not leave THIS_CU->cu in a state where we have
4441 to care whether it refers to the "main" CU or the DWO CU. */
4442
4443 static void
4444 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4445 struct dwarf2_section_info *abbrev_section,
4446 struct dwo_file *dwo_file,
4447 die_reader_func_ftype *die_reader_func,
4448 void *data)
4449 {
4450 struct objfile *objfile = dwarf2_per_objfile->objfile;
4451 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4452 bfd *abfd = section->asection->owner;
4453 struct dwarf2_cu cu;
4454 gdb_byte *begin_info_ptr, *info_ptr;
4455 struct die_reader_specs reader;
4456 struct cleanup *cleanups;
4457 struct die_info *comp_unit_die;
4458 int has_children;
4459
4460 if (dwarf2_die_debug)
4461 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4462 this_cu->is_debug_types ? "type" : "comp",
4463 this_cu->offset.sect_off);
4464
4465 gdb_assert (this_cu->cu == NULL);
4466
4467 /* This is cheap if the section is already read in. */
4468 dwarf2_read_section (objfile, section);
4469
4470 init_one_comp_unit (&cu, this_cu);
4471
4472 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4473
4474 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4475 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4476 abbrev_section, info_ptr,
4477 this_cu->is_debug_types);
4478
4479 this_cu->length = get_cu_length (&cu.header);
4480
4481 /* Skip dummy compilation units. */
4482 if (info_ptr >= begin_info_ptr + this_cu->length
4483 || peek_abbrev_code (abfd, info_ptr) == 0)
4484 {
4485 do_cleanups (cleanups);
4486 return;
4487 }
4488
4489 dwarf2_read_abbrevs (&cu, abbrev_section);
4490 make_cleanup (dwarf2_free_abbrev_table, &cu);
4491
4492 init_cu_die_reader (&reader, &cu, section, dwo_file);
4493 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4494
4495 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4496
4497 do_cleanups (cleanups);
4498 }
4499
4500 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4501 does not lookup the specified DWO file.
4502 This cannot be used to read DWO files.
4503
4504 THIS_CU->cu is always freed when done.
4505 This is done in order to not leave THIS_CU->cu in a state where we have
4506 to care whether it refers to the "main" CU or the DWO CU.
4507 We can revisit this if the data shows there's a performance issue. */
4508
4509 static void
4510 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4511 die_reader_func_ftype *die_reader_func,
4512 void *data)
4513 {
4514 init_cutu_and_read_dies_no_follow (this_cu,
4515 &dwarf2_per_objfile->abbrev,
4516 NULL,
4517 die_reader_func, data);
4518 }
4519
4520 /* Create a psymtab named NAME and assign it to PER_CU.
4521
4522 The caller must fill in the following details:
4523 dirname, textlow, texthigh. */
4524
4525 static struct partial_symtab *
4526 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4527 {
4528 struct objfile *objfile = per_cu->objfile;
4529 struct partial_symtab *pst;
4530
4531 pst = start_psymtab_common (objfile, objfile->section_offsets,
4532 name, 0,
4533 objfile->global_psymbols.next,
4534 objfile->static_psymbols.next);
4535
4536 pst->psymtabs_addrmap_supported = 1;
4537
4538 /* This is the glue that links PST into GDB's symbol API. */
4539 pst->read_symtab_private = per_cu;
4540 pst->read_symtab = dwarf2_psymtab_to_symtab;
4541 per_cu->v.psymtab = pst;
4542
4543 return pst;
4544 }
4545
4546 /* die_reader_func for process_psymtab_comp_unit. */
4547
4548 static void
4549 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4550 gdb_byte *info_ptr,
4551 struct die_info *comp_unit_die,
4552 int has_children,
4553 void *data)
4554 {
4555 struct dwarf2_cu *cu = reader->cu;
4556 struct objfile *objfile = cu->objfile;
4557 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4558 struct attribute *attr;
4559 CORE_ADDR baseaddr;
4560 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4561 struct partial_symtab *pst;
4562 int has_pc_info;
4563 const char *filename;
4564 int *want_partial_unit_ptr = data;
4565
4566 if (comp_unit_die->tag == DW_TAG_partial_unit
4567 && (want_partial_unit_ptr == NULL
4568 || !*want_partial_unit_ptr))
4569 return;
4570
4571 gdb_assert (! per_cu->is_debug_types);
4572
4573 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4574
4575 cu->list_in_scope = &file_symbols;
4576
4577 /* Allocate a new partial symbol table structure. */
4578 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4579 if (attr == NULL || !DW_STRING (attr))
4580 filename = "";
4581 else
4582 filename = DW_STRING (attr);
4583
4584 pst = create_partial_symtab (per_cu, filename);
4585
4586 /* This must be done before calling dwarf2_build_include_psymtabs. */
4587 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4588 if (attr != NULL)
4589 pst->dirname = DW_STRING (attr);
4590
4591 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4592
4593 dwarf2_find_base_address (comp_unit_die, cu);
4594
4595 /* Possibly set the default values of LOWPC and HIGHPC from
4596 `DW_AT_ranges'. */
4597 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4598 &best_highpc, cu, pst);
4599 if (has_pc_info == 1 && best_lowpc < best_highpc)
4600 /* Store the contiguous range if it is not empty; it can be empty for
4601 CUs with no code. */
4602 addrmap_set_empty (objfile->psymtabs_addrmap,
4603 best_lowpc + baseaddr,
4604 best_highpc + baseaddr - 1, pst);
4605
4606 /* Check if comp unit has_children.
4607 If so, read the rest of the partial symbols from this comp unit.
4608 If not, there's no more debug_info for this comp unit. */
4609 if (has_children)
4610 {
4611 struct partial_die_info *first_die;
4612 CORE_ADDR lowpc, highpc;
4613
4614 lowpc = ((CORE_ADDR) -1);
4615 highpc = ((CORE_ADDR) 0);
4616
4617 first_die = load_partial_dies (reader, info_ptr, 1);
4618
4619 scan_partial_symbols (first_die, &lowpc, &highpc,
4620 ! has_pc_info, cu);
4621
4622 /* If we didn't find a lowpc, set it to highpc to avoid
4623 complaints from `maint check'. */
4624 if (lowpc == ((CORE_ADDR) -1))
4625 lowpc = highpc;
4626
4627 /* If the compilation unit didn't have an explicit address range,
4628 then use the information extracted from its child dies. */
4629 if (! has_pc_info)
4630 {
4631 best_lowpc = lowpc;
4632 best_highpc = highpc;
4633 }
4634 }
4635 pst->textlow = best_lowpc + baseaddr;
4636 pst->texthigh = best_highpc + baseaddr;
4637
4638 pst->n_global_syms = objfile->global_psymbols.next -
4639 (objfile->global_psymbols.list + pst->globals_offset);
4640 pst->n_static_syms = objfile->static_psymbols.next -
4641 (objfile->static_psymbols.list + pst->statics_offset);
4642 sort_pst_symbols (pst);
4643
4644 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4645 {
4646 int i;
4647 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4648 struct dwarf2_per_cu_data *iter;
4649
4650 /* Fill in 'dependencies' here; we fill in 'users' in a
4651 post-pass. */
4652 pst->number_of_dependencies = len;
4653 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4654 len * sizeof (struct symtab *));
4655 for (i = 0;
4656 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4657 i, iter);
4658 ++i)
4659 pst->dependencies[i] = iter->v.psymtab;
4660
4661 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4662 }
4663
4664 /* Get the list of files included in the current compilation unit,
4665 and build a psymtab for each of them. */
4666 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4667
4668 if (dwarf2_read_debug)
4669 {
4670 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4671
4672 fprintf_unfiltered (gdb_stdlog,
4673 "Psymtab for %s unit @0x%x: 0x%s - 0x%s"
4674 ", %d global, %d static syms\n",
4675 per_cu->is_debug_types ? "type" : "comp",
4676 per_cu->offset.sect_off,
4677 paddress (gdbarch, pst->textlow),
4678 paddress (gdbarch, pst->texthigh),
4679 pst->n_global_syms, pst->n_static_syms);
4680 }
4681 }
4682
4683 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4684 Process compilation unit THIS_CU for a psymtab. */
4685
4686 static void
4687 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4688 int want_partial_unit)
4689 {
4690 /* If this compilation unit was already read in, free the
4691 cached copy in order to read it in again. This is
4692 necessary because we skipped some symbols when we first
4693 read in the compilation unit (see load_partial_dies).
4694 This problem could be avoided, but the benefit is unclear. */
4695 if (this_cu->cu != NULL)
4696 free_one_cached_comp_unit (this_cu);
4697
4698 gdb_assert (! this_cu->is_debug_types);
4699 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4700 process_psymtab_comp_unit_reader,
4701 &want_partial_unit);
4702
4703 /* Age out any secondary CUs. */
4704 age_cached_comp_units ();
4705 }
4706
4707 static hashval_t
4708 hash_type_unit_group (const void *item)
4709 {
4710 const struct type_unit_group *symtab = item;
4711
4712 return symtab->line_offset.sect_off;
4713 }
4714
4715 static int
4716 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4717 {
4718 const struct type_unit_group *lhs = item_lhs;
4719 const struct type_unit_group *rhs = item_rhs;
4720
4721 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
4722 }
4723
4724 /* Allocate a hash table for type unit groups. */
4725
4726 static htab_t
4727 allocate_type_unit_groups_table (void)
4728 {
4729 return htab_create_alloc_ex (3,
4730 hash_type_unit_group,
4731 eq_type_unit_group,
4732 NULL,
4733 &dwarf2_per_objfile->objfile->objfile_obstack,
4734 hashtab_obstack_allocate,
4735 dummy_obstack_deallocate);
4736 }
4737
4738 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4739 partial symtabs. We combine several TUs per psymtab to not let the size
4740 of any one psymtab grow too big. */
4741 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4742 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4743
4744 /* Helper routine for build_type_psymtabs_reader.
4745 Create the type_unit_group object used to hold one or more TUs. */
4746
4747 static struct type_unit_group *
4748 create_type_unit_group (struct dwarf2_per_cu_data *per_cu,
4749 sect_offset line_offset_struct)
4750 {
4751 struct objfile *objfile = dwarf2_per_objfile->objfile;
4752 struct type_unit_group *tu_group;
4753 struct partial_symtab *pst;
4754 unsigned int line_offset;
4755 char *name;
4756
4757 line_offset = line_offset_struct.sect_off;
4758
4759 /* Give the symtab a useful name for debug purposes. */
4760 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
4761 name = xstrprintf ("<type_units_%d>",
4762 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
4763 else
4764 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
4765
4766 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4767 struct type_unit_group);
4768
4769 per_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4770 struct dwarf2_per_cu_data);
4771 per_cu->objfile = objfile;
4772 per_cu->is_debug_types = 1;
4773 per_cu->s.type_unit_group = tu_group;
4774
4775 pst = create_partial_symtab (per_cu, name);
4776 pst->anonymous = 1;
4777
4778 xfree (name);
4779
4780 tu_group->per_cu = per_cu;
4781 tu_group->line_offset.sect_off = line_offset;
4782
4783 return tu_group;
4784 }
4785
4786 /* Look up the type_unit_group for PER_CU, and create it if necessary.
4787 STMT_LIST is an DW_AT_stmt_list attribute. */
4788
4789 static struct type_unit_group *
4790 get_type_unit_group (struct dwarf2_per_cu_data *per_cu,
4791 struct attribute *stmt_list)
4792 {
4793 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
4794 struct type_unit_group *tu_group;
4795 void **slot;
4796 unsigned int line_offset;
4797 struct type_unit_group type_unit_group_for_lookup;
4798
4799 if (dwarf2_per_objfile->type_unit_groups == NULL)
4800 {
4801 dwarf2_per_objfile->type_unit_groups =
4802 allocate_type_unit_groups_table ();
4803 }
4804
4805 /* Do we need to create a new group, or can we use an existing one? */
4806
4807 if (stmt_list)
4808 {
4809 line_offset = DW_UNSND (stmt_list);
4810 ++tu_stats->nr_symtab_sharers;
4811 }
4812 else
4813 {
4814 /* Ugh, no stmt_list. Rare, but we have to handle it.
4815 We can do various things here like create one group per TU or
4816 spread them over multiple groups to split up the expansion work.
4817 To avoid worst case scenarios (too many groups or too large groups)
4818 we, umm, group them in bunches. */
4819 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
4820 | (tu_stats->nr_stmt_less_type_units
4821 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
4822 ++tu_stats->nr_stmt_less_type_units;
4823 }
4824
4825 type_unit_group_for_lookup.line_offset.sect_off = line_offset;
4826 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
4827 &type_unit_group_for_lookup, INSERT);
4828 if (*slot != NULL)
4829 {
4830 tu_group = *slot;
4831 gdb_assert (tu_group != NULL);
4832 }
4833 else
4834 {
4835 sect_offset line_offset_struct;
4836
4837 line_offset_struct.sect_off = line_offset;
4838 tu_group = create_type_unit_group (per_cu, line_offset_struct);
4839 *slot = tu_group;
4840 ++tu_stats->nr_symtabs;
4841 }
4842
4843 return tu_group;
4844 }
4845
4846 /* Struct used to sort TUs by their abbreviation table offset. */
4847
4848 struct tu_abbrev_offset
4849 {
4850 struct signatured_type *sig_type;
4851 sect_offset abbrev_offset;
4852 };
4853
4854 /* Helper routine for build_type_unit_groups, passed to qsort. */
4855
4856 static int
4857 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
4858 {
4859 const struct tu_abbrev_offset * const *a = ap;
4860 const struct tu_abbrev_offset * const *b = bp;
4861 unsigned int aoff = (*a)->abbrev_offset.sect_off;
4862 unsigned int boff = (*b)->abbrev_offset.sect_off;
4863
4864 return (aoff > boff) - (aoff < boff);
4865 }
4866
4867 /* A helper function to add a type_unit_group to a table. */
4868
4869 static int
4870 add_type_unit_group_to_table (void **slot, void *datum)
4871 {
4872 struct type_unit_group *tu_group = *slot;
4873 struct type_unit_group ***datap = datum;
4874
4875 **datap = tu_group;
4876 ++*datap;
4877
4878 return 1;
4879 }
4880
4881 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
4882 each one passing FUNC,DATA.
4883
4884 The efficiency is because we sort TUs by the abbrev table they use and
4885 only read each abbrev table once. In one program there are 200K TUs
4886 sharing 8K abbrev tables.
4887
4888 The main purpose of this function is to support building the
4889 dwarf2_per_objfile->type_unit_groups table.
4890 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
4891 can collapse the search space by grouping them by stmt_list.
4892 The savings can be significant, in the same program from above the 200K TUs
4893 share 8K stmt_list tables.
4894
4895 FUNC is expected to call get_type_unit_group, which will create the
4896 struct type_unit_group if necessary and add it to
4897 dwarf2_per_objfile->type_unit_groups. */
4898
4899 static void
4900 build_type_unit_groups (die_reader_func_ftype *func, void *data)
4901 {
4902 struct objfile *objfile = dwarf2_per_objfile->objfile;
4903 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
4904 struct cleanup *cleanups;
4905 struct abbrev_table *abbrev_table;
4906 sect_offset abbrev_offset;
4907 struct tu_abbrev_offset *sorted_by_abbrev;
4908 struct type_unit_group **iter;
4909 int i;
4910
4911 /* It's up to the caller to not call us multiple times. */
4912 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
4913
4914 if (dwarf2_per_objfile->n_type_units == 0)
4915 return;
4916
4917 /* TUs typically share abbrev tables, and there can be way more TUs than
4918 abbrev tables. Sort by abbrev table to reduce the number of times we
4919 read each abbrev table in.
4920 Alternatives are to punt or to maintain a cache of abbrev tables.
4921 This is simpler and efficient enough for now.
4922
4923 Later we group TUs by their DW_AT_stmt_list value (as this defines the
4924 symtab to use). Typically TUs with the same abbrev offset have the same
4925 stmt_list value too so in practice this should work well.
4926
4927 The basic algorithm here is:
4928
4929 sort TUs by abbrev table
4930 for each TU with same abbrev table:
4931 read abbrev table if first user
4932 read TU top level DIE
4933 [IWBN if DWO skeletons had DW_AT_stmt_list]
4934 call FUNC */
4935
4936 if (dwarf2_read_debug)
4937 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
4938
4939 /* Sort in a separate table to maintain the order of all_type_units
4940 for .gdb_index: TU indices directly index all_type_units. */
4941 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
4942 dwarf2_per_objfile->n_type_units);
4943 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
4944 {
4945 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
4946
4947 sorted_by_abbrev[i].sig_type = sig_type;
4948 sorted_by_abbrev[i].abbrev_offset =
4949 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
4950 sig_type->per_cu.offset);
4951 }
4952 cleanups = make_cleanup (xfree, sorted_by_abbrev);
4953 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
4954 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
4955
4956 memset (tu_stats, 0, sizeof (*tu_stats));
4957 abbrev_offset.sect_off = ~(unsigned) 0;
4958 abbrev_table = NULL;
4959 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
4960
4961 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
4962 {
4963 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
4964
4965 /* Switch to the next abbrev table if necessary. */
4966 if (abbrev_table == NULL
4967 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
4968 {
4969 if (abbrev_table != NULL)
4970 {
4971 abbrev_table_free (abbrev_table);
4972 /* Reset to NULL in case abbrev_table_read_table throws
4973 an error: abbrev_table_free_cleanup will get called. */
4974 abbrev_table = NULL;
4975 }
4976 abbrev_offset = tu->abbrev_offset;
4977 abbrev_table =
4978 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
4979 abbrev_offset);
4980 ++tu_stats->nr_uniq_abbrev_tables;
4981 }
4982
4983 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
4984 func, data);
4985 }
4986
4987 /* Create a vector of pointers to primary type units to make it easy to
4988 iterate over them and CUs. See dw2_get_primary_cu. */
4989 dwarf2_per_objfile->n_type_unit_groups =
4990 htab_elements (dwarf2_per_objfile->type_unit_groups);
4991 dwarf2_per_objfile->all_type_unit_groups =
4992 obstack_alloc (&objfile->objfile_obstack,
4993 dwarf2_per_objfile->n_type_unit_groups
4994 * sizeof (struct type_unit_group *));
4995 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
4996 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
4997 add_type_unit_group_to_table, &iter);
4998 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
4999 == dwarf2_per_objfile->n_type_unit_groups);
5000
5001 do_cleanups (cleanups);
5002
5003 if (dwarf2_read_debug)
5004 {
5005 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5006 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5007 dwarf2_per_objfile->n_type_units);
5008 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5009 tu_stats->nr_uniq_abbrev_tables);
5010 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5011 tu_stats->nr_symtabs);
5012 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5013 tu_stats->nr_symtab_sharers);
5014 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5015 tu_stats->nr_stmt_less_type_units);
5016 }
5017 }
5018
5019 /* Reader function for build_type_psymtabs. */
5020
5021 static void
5022 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5023 gdb_byte *info_ptr,
5024 struct die_info *type_unit_die,
5025 int has_children,
5026 void *data)
5027 {
5028 struct objfile *objfile = dwarf2_per_objfile->objfile;
5029 struct dwarf2_cu *cu = reader->cu;
5030 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5031 struct type_unit_group *tu_group;
5032 struct attribute *attr;
5033 struct partial_die_info *first_die;
5034 CORE_ADDR lowpc, highpc;
5035 struct partial_symtab *pst;
5036
5037 gdb_assert (data == NULL);
5038
5039 if (! has_children)
5040 return;
5041
5042 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5043 tu_group = get_type_unit_group (per_cu, attr);
5044
5045 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->tus, per_cu);
5046
5047 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5048 cu->list_in_scope = &file_symbols;
5049 pst = create_partial_symtab (per_cu, "");
5050 pst->anonymous = 1;
5051
5052 first_die = load_partial_dies (reader, info_ptr, 1);
5053
5054 lowpc = (CORE_ADDR) -1;
5055 highpc = (CORE_ADDR) 0;
5056 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5057
5058 pst->n_global_syms = objfile->global_psymbols.next -
5059 (objfile->global_psymbols.list + pst->globals_offset);
5060 pst->n_static_syms = objfile->static_psymbols.next -
5061 (objfile->static_psymbols.list + pst->statics_offset);
5062 sort_pst_symbols (pst);
5063 }
5064
5065 /* Traversal function for build_type_psymtabs. */
5066
5067 static int
5068 build_type_psymtab_dependencies (void **slot, void *info)
5069 {
5070 struct objfile *objfile = dwarf2_per_objfile->objfile;
5071 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5072 struct dwarf2_per_cu_data *per_cu = tu_group->per_cu;
5073 struct partial_symtab *pst = per_cu->v.psymtab;
5074 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->tus);
5075 struct dwarf2_per_cu_data *iter;
5076 int i;
5077
5078 gdb_assert (len > 0);
5079
5080 pst->number_of_dependencies = len;
5081 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5082 len * sizeof (struct psymtab *));
5083 for (i = 0;
5084 VEC_iterate (dwarf2_per_cu_ptr, tu_group->tus, i, iter);
5085 ++i)
5086 {
5087 pst->dependencies[i] = iter->v.psymtab;
5088 iter->s.type_unit_group = tu_group;
5089 }
5090
5091 VEC_free (dwarf2_per_cu_ptr, tu_group->tus);
5092
5093 return 1;
5094 }
5095
5096 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5097 Build partial symbol tables for the .debug_types comp-units. */
5098
5099 static void
5100 build_type_psymtabs (struct objfile *objfile)
5101 {
5102 if (! create_all_type_units (objfile))
5103 return;
5104
5105 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5106
5107 /* Now that all TUs have been processed we can fill in the dependencies. */
5108 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5109 build_type_psymtab_dependencies, NULL);
5110 }
5111
5112 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5113
5114 static void
5115 psymtabs_addrmap_cleanup (void *o)
5116 {
5117 struct objfile *objfile = o;
5118
5119 objfile->psymtabs_addrmap = NULL;
5120 }
5121
5122 /* Compute the 'user' field for each psymtab in OBJFILE. */
5123
5124 static void
5125 set_partial_user (struct objfile *objfile)
5126 {
5127 int i;
5128
5129 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5130 {
5131 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5132 struct partial_symtab *pst = per_cu->v.psymtab;
5133 int j;
5134
5135 for (j = 0; j < pst->number_of_dependencies; ++j)
5136 {
5137 /* Set the 'user' field only if it is not already set. */
5138 if (pst->dependencies[j]->user == NULL)
5139 pst->dependencies[j]->user = pst;
5140 }
5141 }
5142 }
5143
5144 /* Build the partial symbol table by doing a quick pass through the
5145 .debug_info and .debug_abbrev sections. */
5146
5147 static void
5148 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5149 {
5150 struct cleanup *back_to, *addrmap_cleanup;
5151 struct obstack temp_obstack;
5152 int i;
5153
5154 if (dwarf2_read_debug)
5155 {
5156 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5157 objfile->name);
5158 }
5159
5160 dwarf2_per_objfile->reading_partial_symbols = 1;
5161
5162 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5163
5164 /* Any cached compilation units will be linked by the per-objfile
5165 read_in_chain. Make sure to free them when we're done. */
5166 back_to = make_cleanup (free_cached_comp_units, NULL);
5167
5168 build_type_psymtabs (objfile);
5169
5170 create_all_comp_units (objfile);
5171
5172 /* Create a temporary address map on a temporary obstack. We later
5173 copy this to the final obstack. */
5174 obstack_init (&temp_obstack);
5175 make_cleanup_obstack_free (&temp_obstack);
5176 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5177 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5178
5179 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5180 {
5181 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5182
5183 process_psymtab_comp_unit (per_cu, 0);
5184 }
5185
5186 set_partial_user (objfile);
5187
5188 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5189 &objfile->objfile_obstack);
5190 discard_cleanups (addrmap_cleanup);
5191
5192 do_cleanups (back_to);
5193
5194 if (dwarf2_read_debug)
5195 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5196 objfile->name);
5197 }
5198
5199 /* die_reader_func for load_partial_comp_unit. */
5200
5201 static void
5202 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5203 gdb_byte *info_ptr,
5204 struct die_info *comp_unit_die,
5205 int has_children,
5206 void *data)
5207 {
5208 struct dwarf2_cu *cu = reader->cu;
5209
5210 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5211
5212 /* Check if comp unit has_children.
5213 If so, read the rest of the partial symbols from this comp unit.
5214 If not, there's no more debug_info for this comp unit. */
5215 if (has_children)
5216 load_partial_dies (reader, info_ptr, 0);
5217 }
5218
5219 /* Load the partial DIEs for a secondary CU into memory.
5220 This is also used when rereading a primary CU with load_all_dies. */
5221
5222 static void
5223 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5224 {
5225 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5226 load_partial_comp_unit_reader, NULL);
5227 }
5228
5229 /* Create a list of all compilation units in OBJFILE.
5230 This is only done for -readnow and building partial symtabs. */
5231
5232 static void
5233 create_all_comp_units (struct objfile *objfile)
5234 {
5235 int n_allocated;
5236 int n_comp_units;
5237 struct dwarf2_per_cu_data **all_comp_units;
5238 gdb_byte *info_ptr;
5239
5240 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5241 info_ptr = dwarf2_per_objfile->info.buffer;
5242
5243 n_comp_units = 0;
5244 n_allocated = 10;
5245 all_comp_units = xmalloc (n_allocated
5246 * sizeof (struct dwarf2_per_cu_data *));
5247
5248 while (info_ptr < dwarf2_per_objfile->info.buffer
5249 + dwarf2_per_objfile->info.size)
5250 {
5251 unsigned int length, initial_length_size;
5252 struct dwarf2_per_cu_data *this_cu;
5253 sect_offset offset;
5254
5255 offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer;
5256
5257 /* Read just enough information to find out where the next
5258 compilation unit is. */
5259 length = read_initial_length (objfile->obfd, info_ptr,
5260 &initial_length_size);
5261
5262 /* Save the compilation unit for later lookup. */
5263 this_cu = obstack_alloc (&objfile->objfile_obstack,
5264 sizeof (struct dwarf2_per_cu_data));
5265 memset (this_cu, 0, sizeof (*this_cu));
5266 this_cu->offset = offset;
5267 this_cu->length = length + initial_length_size;
5268 this_cu->objfile = objfile;
5269 this_cu->info_or_types_section = &dwarf2_per_objfile->info;
5270
5271 if (n_comp_units == n_allocated)
5272 {
5273 n_allocated *= 2;
5274 all_comp_units = xrealloc (all_comp_units,
5275 n_allocated
5276 * sizeof (struct dwarf2_per_cu_data *));
5277 }
5278 all_comp_units[n_comp_units++] = this_cu;
5279
5280 info_ptr = info_ptr + this_cu->length;
5281 }
5282
5283 dwarf2_per_objfile->all_comp_units
5284 = obstack_alloc (&objfile->objfile_obstack,
5285 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5286 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5287 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5288 xfree (all_comp_units);
5289 dwarf2_per_objfile->n_comp_units = n_comp_units;
5290 }
5291
5292 /* Process all loaded DIEs for compilation unit CU, starting at
5293 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5294 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5295 DW_AT_ranges). If NEED_PC is set, then this function will set
5296 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5297 and record the covered ranges in the addrmap. */
5298
5299 static void
5300 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5301 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5302 {
5303 struct partial_die_info *pdi;
5304
5305 /* Now, march along the PDI's, descending into ones which have
5306 interesting children but skipping the children of the other ones,
5307 until we reach the end of the compilation unit. */
5308
5309 pdi = first_die;
5310
5311 while (pdi != NULL)
5312 {
5313 fixup_partial_die (pdi, cu);
5314
5315 /* Anonymous namespaces or modules have no name but have interesting
5316 children, so we need to look at them. Ditto for anonymous
5317 enums. */
5318
5319 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5320 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5321 || pdi->tag == DW_TAG_imported_unit)
5322 {
5323 switch (pdi->tag)
5324 {
5325 case DW_TAG_subprogram:
5326 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5327 break;
5328 case DW_TAG_constant:
5329 case DW_TAG_variable:
5330 case DW_TAG_typedef:
5331 case DW_TAG_union_type:
5332 if (!pdi->is_declaration)
5333 {
5334 add_partial_symbol (pdi, cu);
5335 }
5336 break;
5337 case DW_TAG_class_type:
5338 case DW_TAG_interface_type:
5339 case DW_TAG_structure_type:
5340 if (!pdi->is_declaration)
5341 {
5342 add_partial_symbol (pdi, cu);
5343 }
5344 break;
5345 case DW_TAG_enumeration_type:
5346 if (!pdi->is_declaration)
5347 add_partial_enumeration (pdi, cu);
5348 break;
5349 case DW_TAG_base_type:
5350 case DW_TAG_subrange_type:
5351 /* File scope base type definitions are added to the partial
5352 symbol table. */
5353 add_partial_symbol (pdi, cu);
5354 break;
5355 case DW_TAG_namespace:
5356 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5357 break;
5358 case DW_TAG_module:
5359 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5360 break;
5361 case DW_TAG_imported_unit:
5362 {
5363 struct dwarf2_per_cu_data *per_cu;
5364
5365 /* For now we don't handle imported units in type units. */
5366 if (cu->per_cu->is_debug_types)
5367 {
5368 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5369 " supported in type units [in module %s]"),
5370 cu->objfile->name);
5371 }
5372
5373 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5374 cu->objfile);
5375
5376 /* Go read the partial unit, if needed. */
5377 if (per_cu->v.psymtab == NULL)
5378 process_psymtab_comp_unit (per_cu, 1);
5379
5380 VEC_safe_push (dwarf2_per_cu_ptr,
5381 cu->per_cu->s.imported_symtabs, per_cu);
5382 }
5383 break;
5384 default:
5385 break;
5386 }
5387 }
5388
5389 /* If the die has a sibling, skip to the sibling. */
5390
5391 pdi = pdi->die_sibling;
5392 }
5393 }
5394
5395 /* Functions used to compute the fully scoped name of a partial DIE.
5396
5397 Normally, this is simple. For C++, the parent DIE's fully scoped
5398 name is concatenated with "::" and the partial DIE's name. For
5399 Java, the same thing occurs except that "." is used instead of "::".
5400 Enumerators are an exception; they use the scope of their parent
5401 enumeration type, i.e. the name of the enumeration type is not
5402 prepended to the enumerator.
5403
5404 There are two complexities. One is DW_AT_specification; in this
5405 case "parent" means the parent of the target of the specification,
5406 instead of the direct parent of the DIE. The other is compilers
5407 which do not emit DW_TAG_namespace; in this case we try to guess
5408 the fully qualified name of structure types from their members'
5409 linkage names. This must be done using the DIE's children rather
5410 than the children of any DW_AT_specification target. We only need
5411 to do this for structures at the top level, i.e. if the target of
5412 any DW_AT_specification (if any; otherwise the DIE itself) does not
5413 have a parent. */
5414
5415 /* Compute the scope prefix associated with PDI's parent, in
5416 compilation unit CU. The result will be allocated on CU's
5417 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5418 field. NULL is returned if no prefix is necessary. */
5419 static char *
5420 partial_die_parent_scope (struct partial_die_info *pdi,
5421 struct dwarf2_cu *cu)
5422 {
5423 char *grandparent_scope;
5424 struct partial_die_info *parent, *real_pdi;
5425
5426 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5427 then this means the parent of the specification DIE. */
5428
5429 real_pdi = pdi;
5430 while (real_pdi->has_specification)
5431 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
5432
5433 parent = real_pdi->die_parent;
5434 if (parent == NULL)
5435 return NULL;
5436
5437 if (parent->scope_set)
5438 return parent->scope;
5439
5440 fixup_partial_die (parent, cu);
5441
5442 grandparent_scope = partial_die_parent_scope (parent, cu);
5443
5444 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5445 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5446 Work around this problem here. */
5447 if (cu->language == language_cplus
5448 && parent->tag == DW_TAG_namespace
5449 && strcmp (parent->name, "::") == 0
5450 && grandparent_scope == NULL)
5451 {
5452 parent->scope = NULL;
5453 parent->scope_set = 1;
5454 return NULL;
5455 }
5456
5457 if (pdi->tag == DW_TAG_enumerator)
5458 /* Enumerators should not get the name of the enumeration as a prefix. */
5459 parent->scope = grandparent_scope;
5460 else if (parent->tag == DW_TAG_namespace
5461 || parent->tag == DW_TAG_module
5462 || parent->tag == DW_TAG_structure_type
5463 || parent->tag == DW_TAG_class_type
5464 || parent->tag == DW_TAG_interface_type
5465 || parent->tag == DW_TAG_union_type
5466 || parent->tag == DW_TAG_enumeration_type)
5467 {
5468 if (grandparent_scope == NULL)
5469 parent->scope = parent->name;
5470 else
5471 parent->scope = typename_concat (&cu->comp_unit_obstack,
5472 grandparent_scope,
5473 parent->name, 0, cu);
5474 }
5475 else
5476 {
5477 /* FIXME drow/2004-04-01: What should we be doing with
5478 function-local names? For partial symbols, we should probably be
5479 ignoring them. */
5480 complaint (&symfile_complaints,
5481 _("unhandled containing DIE tag %d for DIE at %d"),
5482 parent->tag, pdi->offset.sect_off);
5483 parent->scope = grandparent_scope;
5484 }
5485
5486 parent->scope_set = 1;
5487 return parent->scope;
5488 }
5489
5490 /* Return the fully scoped name associated with PDI, from compilation unit
5491 CU. The result will be allocated with malloc. */
5492
5493 static char *
5494 partial_die_full_name (struct partial_die_info *pdi,
5495 struct dwarf2_cu *cu)
5496 {
5497 char *parent_scope;
5498
5499 /* If this is a template instantiation, we can not work out the
5500 template arguments from partial DIEs. So, unfortunately, we have
5501 to go through the full DIEs. At least any work we do building
5502 types here will be reused if full symbols are loaded later. */
5503 if (pdi->has_template_arguments)
5504 {
5505 fixup_partial_die (pdi, cu);
5506
5507 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5508 {
5509 struct die_info *die;
5510 struct attribute attr;
5511 struct dwarf2_cu *ref_cu = cu;
5512
5513 /* DW_FORM_ref_addr is using section offset. */
5514 attr.name = 0;
5515 attr.form = DW_FORM_ref_addr;
5516 attr.u.unsnd = pdi->offset.sect_off;
5517 die = follow_die_ref (NULL, &attr, &ref_cu);
5518
5519 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5520 }
5521 }
5522
5523 parent_scope = partial_die_parent_scope (pdi, cu);
5524 if (parent_scope == NULL)
5525 return NULL;
5526 else
5527 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5528 }
5529
5530 static void
5531 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5532 {
5533 struct objfile *objfile = cu->objfile;
5534 CORE_ADDR addr = 0;
5535 char *actual_name = NULL;
5536 CORE_ADDR baseaddr;
5537 int built_actual_name = 0;
5538
5539 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5540
5541 actual_name = partial_die_full_name (pdi, cu);
5542 if (actual_name)
5543 built_actual_name = 1;
5544
5545 if (actual_name == NULL)
5546 actual_name = pdi->name;
5547
5548 switch (pdi->tag)
5549 {
5550 case DW_TAG_subprogram:
5551 if (pdi->is_external || cu->language == language_ada)
5552 {
5553 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5554 of the global scope. But in Ada, we want to be able to access
5555 nested procedures globally. So all Ada subprograms are stored
5556 in the global scope. */
5557 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5558 mst_text, objfile); */
5559 add_psymbol_to_list (actual_name, strlen (actual_name),
5560 built_actual_name,
5561 VAR_DOMAIN, LOC_BLOCK,
5562 &objfile->global_psymbols,
5563 0, pdi->lowpc + baseaddr,
5564 cu->language, objfile);
5565 }
5566 else
5567 {
5568 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5569 mst_file_text, objfile); */
5570 add_psymbol_to_list (actual_name, strlen (actual_name),
5571 built_actual_name,
5572 VAR_DOMAIN, LOC_BLOCK,
5573 &objfile->static_psymbols,
5574 0, pdi->lowpc + baseaddr,
5575 cu->language, objfile);
5576 }
5577 break;
5578 case DW_TAG_constant:
5579 {
5580 struct psymbol_allocation_list *list;
5581
5582 if (pdi->is_external)
5583 list = &objfile->global_psymbols;
5584 else
5585 list = &objfile->static_psymbols;
5586 add_psymbol_to_list (actual_name, strlen (actual_name),
5587 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5588 list, 0, 0, cu->language, objfile);
5589 }
5590 break;
5591 case DW_TAG_variable:
5592 if (pdi->d.locdesc)
5593 addr = decode_locdesc (pdi->d.locdesc, cu);
5594
5595 if (pdi->d.locdesc
5596 && addr == 0
5597 && !dwarf2_per_objfile->has_section_at_zero)
5598 {
5599 /* A global or static variable may also have been stripped
5600 out by the linker if unused, in which case its address
5601 will be nullified; do not add such variables into partial
5602 symbol table then. */
5603 }
5604 else if (pdi->is_external)
5605 {
5606 /* Global Variable.
5607 Don't enter into the minimal symbol tables as there is
5608 a minimal symbol table entry from the ELF symbols already.
5609 Enter into partial symbol table if it has a location
5610 descriptor or a type.
5611 If the location descriptor is missing, new_symbol will create
5612 a LOC_UNRESOLVED symbol, the address of the variable will then
5613 be determined from the minimal symbol table whenever the variable
5614 is referenced.
5615 The address for the partial symbol table entry is not
5616 used by GDB, but it comes in handy for debugging partial symbol
5617 table building. */
5618
5619 if (pdi->d.locdesc || pdi->has_type)
5620 add_psymbol_to_list (actual_name, strlen (actual_name),
5621 built_actual_name,
5622 VAR_DOMAIN, LOC_STATIC,
5623 &objfile->global_psymbols,
5624 0, addr + baseaddr,
5625 cu->language, objfile);
5626 }
5627 else
5628 {
5629 /* Static Variable. Skip symbols without location descriptors. */
5630 if (pdi->d.locdesc == NULL)
5631 {
5632 if (built_actual_name)
5633 xfree (actual_name);
5634 return;
5635 }
5636 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5637 mst_file_data, objfile); */
5638 add_psymbol_to_list (actual_name, strlen (actual_name),
5639 built_actual_name,
5640 VAR_DOMAIN, LOC_STATIC,
5641 &objfile->static_psymbols,
5642 0, addr + baseaddr,
5643 cu->language, objfile);
5644 }
5645 break;
5646 case DW_TAG_typedef:
5647 case DW_TAG_base_type:
5648 case DW_TAG_subrange_type:
5649 add_psymbol_to_list (actual_name, strlen (actual_name),
5650 built_actual_name,
5651 VAR_DOMAIN, LOC_TYPEDEF,
5652 &objfile->static_psymbols,
5653 0, (CORE_ADDR) 0, cu->language, objfile);
5654 break;
5655 case DW_TAG_namespace:
5656 add_psymbol_to_list (actual_name, strlen (actual_name),
5657 built_actual_name,
5658 VAR_DOMAIN, LOC_TYPEDEF,
5659 &objfile->global_psymbols,
5660 0, (CORE_ADDR) 0, cu->language, objfile);
5661 break;
5662 case DW_TAG_class_type:
5663 case DW_TAG_interface_type:
5664 case DW_TAG_structure_type:
5665 case DW_TAG_union_type:
5666 case DW_TAG_enumeration_type:
5667 /* Skip external references. The DWARF standard says in the section
5668 about "Structure, Union, and Class Type Entries": "An incomplete
5669 structure, union or class type is represented by a structure,
5670 union or class entry that does not have a byte size attribute
5671 and that has a DW_AT_declaration attribute." */
5672 if (!pdi->has_byte_size && pdi->is_declaration)
5673 {
5674 if (built_actual_name)
5675 xfree (actual_name);
5676 return;
5677 }
5678
5679 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5680 static vs. global. */
5681 add_psymbol_to_list (actual_name, strlen (actual_name),
5682 built_actual_name,
5683 STRUCT_DOMAIN, LOC_TYPEDEF,
5684 (cu->language == language_cplus
5685 || cu->language == language_java)
5686 ? &objfile->global_psymbols
5687 : &objfile->static_psymbols,
5688 0, (CORE_ADDR) 0, cu->language, objfile);
5689
5690 break;
5691 case DW_TAG_enumerator:
5692 add_psymbol_to_list (actual_name, strlen (actual_name),
5693 built_actual_name,
5694 VAR_DOMAIN, LOC_CONST,
5695 (cu->language == language_cplus
5696 || cu->language == language_java)
5697 ? &objfile->global_psymbols
5698 : &objfile->static_psymbols,
5699 0, (CORE_ADDR) 0, cu->language, objfile);
5700 break;
5701 default:
5702 break;
5703 }
5704
5705 if (built_actual_name)
5706 xfree (actual_name);
5707 }
5708
5709 /* Read a partial die corresponding to a namespace; also, add a symbol
5710 corresponding to that namespace to the symbol table. NAMESPACE is
5711 the name of the enclosing namespace. */
5712
5713 static void
5714 add_partial_namespace (struct partial_die_info *pdi,
5715 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5716 int need_pc, struct dwarf2_cu *cu)
5717 {
5718 /* Add a symbol for the namespace. */
5719
5720 add_partial_symbol (pdi, cu);
5721
5722 /* Now scan partial symbols in that namespace. */
5723
5724 if (pdi->has_children)
5725 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5726 }
5727
5728 /* Read a partial die corresponding to a Fortran module. */
5729
5730 static void
5731 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
5732 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5733 {
5734 /* Now scan partial symbols in that module. */
5735
5736 if (pdi->has_children)
5737 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5738 }
5739
5740 /* Read a partial die corresponding to a subprogram and create a partial
5741 symbol for that subprogram. When the CU language allows it, this
5742 routine also defines a partial symbol for each nested subprogram
5743 that this subprogram contains.
5744
5745 DIE my also be a lexical block, in which case we simply search
5746 recursively for suprograms defined inside that lexical block.
5747 Again, this is only performed when the CU language allows this
5748 type of definitions. */
5749
5750 static void
5751 add_partial_subprogram (struct partial_die_info *pdi,
5752 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5753 int need_pc, struct dwarf2_cu *cu)
5754 {
5755 if (pdi->tag == DW_TAG_subprogram)
5756 {
5757 if (pdi->has_pc_info)
5758 {
5759 if (pdi->lowpc < *lowpc)
5760 *lowpc = pdi->lowpc;
5761 if (pdi->highpc > *highpc)
5762 *highpc = pdi->highpc;
5763 if (need_pc)
5764 {
5765 CORE_ADDR baseaddr;
5766 struct objfile *objfile = cu->objfile;
5767
5768 baseaddr = ANOFFSET (objfile->section_offsets,
5769 SECT_OFF_TEXT (objfile));
5770 addrmap_set_empty (objfile->psymtabs_addrmap,
5771 pdi->lowpc + baseaddr,
5772 pdi->highpc - 1 + baseaddr,
5773 cu->per_cu->v.psymtab);
5774 }
5775 }
5776
5777 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
5778 {
5779 if (!pdi->is_declaration)
5780 /* Ignore subprogram DIEs that do not have a name, they are
5781 illegal. Do not emit a complaint at this point, we will
5782 do so when we convert this psymtab into a symtab. */
5783 if (pdi->name)
5784 add_partial_symbol (pdi, cu);
5785 }
5786 }
5787
5788 if (! pdi->has_children)
5789 return;
5790
5791 if (cu->language == language_ada)
5792 {
5793 pdi = pdi->die_child;
5794 while (pdi != NULL)
5795 {
5796 fixup_partial_die (pdi, cu);
5797 if (pdi->tag == DW_TAG_subprogram
5798 || pdi->tag == DW_TAG_lexical_block)
5799 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5800 pdi = pdi->die_sibling;
5801 }
5802 }
5803 }
5804
5805 /* Read a partial die corresponding to an enumeration type. */
5806
5807 static void
5808 add_partial_enumeration (struct partial_die_info *enum_pdi,
5809 struct dwarf2_cu *cu)
5810 {
5811 struct partial_die_info *pdi;
5812
5813 if (enum_pdi->name != NULL)
5814 add_partial_symbol (enum_pdi, cu);
5815
5816 pdi = enum_pdi->die_child;
5817 while (pdi)
5818 {
5819 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
5820 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5821 else
5822 add_partial_symbol (pdi, cu);
5823 pdi = pdi->die_sibling;
5824 }
5825 }
5826
5827 /* Return the initial uleb128 in the die at INFO_PTR. */
5828
5829 static unsigned int
5830 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
5831 {
5832 unsigned int bytes_read;
5833
5834 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5835 }
5836
5837 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
5838 Return the corresponding abbrev, or NULL if the number is zero (indicating
5839 an empty DIE). In either case *BYTES_READ will be set to the length of
5840 the initial number. */
5841
5842 static struct abbrev_info *
5843 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
5844 struct dwarf2_cu *cu)
5845 {
5846 bfd *abfd = cu->objfile->obfd;
5847 unsigned int abbrev_number;
5848 struct abbrev_info *abbrev;
5849
5850 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
5851
5852 if (abbrev_number == 0)
5853 return NULL;
5854
5855 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
5856 if (!abbrev)
5857 {
5858 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
5859 abbrev_number, bfd_get_filename (abfd));
5860 }
5861
5862 return abbrev;
5863 }
5864
5865 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
5866 Returns a pointer to the end of a series of DIEs, terminated by an empty
5867 DIE. Any children of the skipped DIEs will also be skipped. */
5868
5869 static gdb_byte *
5870 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
5871 {
5872 struct dwarf2_cu *cu = reader->cu;
5873 struct abbrev_info *abbrev;
5874 unsigned int bytes_read;
5875
5876 while (1)
5877 {
5878 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5879 if (abbrev == NULL)
5880 return info_ptr + bytes_read;
5881 else
5882 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
5883 }
5884 }
5885
5886 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
5887 INFO_PTR should point just after the initial uleb128 of a DIE, and the
5888 abbrev corresponding to that skipped uleb128 should be passed in
5889 ABBREV. Returns a pointer to this DIE's sibling, skipping any
5890 children. */
5891
5892 static gdb_byte *
5893 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
5894 struct abbrev_info *abbrev)
5895 {
5896 unsigned int bytes_read;
5897 struct attribute attr;
5898 bfd *abfd = reader->abfd;
5899 struct dwarf2_cu *cu = reader->cu;
5900 gdb_byte *buffer = reader->buffer;
5901 const gdb_byte *buffer_end = reader->buffer_end;
5902 gdb_byte *start_info_ptr = info_ptr;
5903 unsigned int form, i;
5904
5905 for (i = 0; i < abbrev->num_attrs; i++)
5906 {
5907 /* The only abbrev we care about is DW_AT_sibling. */
5908 if (abbrev->attrs[i].name == DW_AT_sibling)
5909 {
5910 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
5911 if (attr.form == DW_FORM_ref_addr)
5912 complaint (&symfile_complaints,
5913 _("ignoring absolute DW_AT_sibling"));
5914 else
5915 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
5916 }
5917
5918 /* If it isn't DW_AT_sibling, skip this attribute. */
5919 form = abbrev->attrs[i].form;
5920 skip_attribute:
5921 switch (form)
5922 {
5923 case DW_FORM_ref_addr:
5924 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
5925 and later it is offset sized. */
5926 if (cu->header.version == 2)
5927 info_ptr += cu->header.addr_size;
5928 else
5929 info_ptr += cu->header.offset_size;
5930 break;
5931 case DW_FORM_addr:
5932 info_ptr += cu->header.addr_size;
5933 break;
5934 case DW_FORM_data1:
5935 case DW_FORM_ref1:
5936 case DW_FORM_flag:
5937 info_ptr += 1;
5938 break;
5939 case DW_FORM_flag_present:
5940 break;
5941 case DW_FORM_data2:
5942 case DW_FORM_ref2:
5943 info_ptr += 2;
5944 break;
5945 case DW_FORM_data4:
5946 case DW_FORM_ref4:
5947 info_ptr += 4;
5948 break;
5949 case DW_FORM_data8:
5950 case DW_FORM_ref8:
5951 case DW_FORM_ref_sig8:
5952 info_ptr += 8;
5953 break;
5954 case DW_FORM_string:
5955 read_direct_string (abfd, info_ptr, &bytes_read);
5956 info_ptr += bytes_read;
5957 break;
5958 case DW_FORM_sec_offset:
5959 case DW_FORM_strp:
5960 info_ptr += cu->header.offset_size;
5961 break;
5962 case DW_FORM_exprloc:
5963 case DW_FORM_block:
5964 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5965 info_ptr += bytes_read;
5966 break;
5967 case DW_FORM_block1:
5968 info_ptr += 1 + read_1_byte (abfd, info_ptr);
5969 break;
5970 case DW_FORM_block2:
5971 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
5972 break;
5973 case DW_FORM_block4:
5974 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
5975 break;
5976 case DW_FORM_sdata:
5977 case DW_FORM_udata:
5978 case DW_FORM_ref_udata:
5979 case DW_FORM_GNU_addr_index:
5980 case DW_FORM_GNU_str_index:
5981 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
5982 break;
5983 case DW_FORM_indirect:
5984 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5985 info_ptr += bytes_read;
5986 /* We need to continue parsing from here, so just go back to
5987 the top. */
5988 goto skip_attribute;
5989
5990 default:
5991 error (_("Dwarf Error: Cannot handle %s "
5992 "in DWARF reader [in module %s]"),
5993 dwarf_form_name (form),
5994 bfd_get_filename (abfd));
5995 }
5996 }
5997
5998 if (abbrev->has_children)
5999 return skip_children (reader, info_ptr);
6000 else
6001 return info_ptr;
6002 }
6003
6004 /* Locate ORIG_PDI's sibling.
6005 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6006
6007 static gdb_byte *
6008 locate_pdi_sibling (const struct die_reader_specs *reader,
6009 struct partial_die_info *orig_pdi,
6010 gdb_byte *info_ptr)
6011 {
6012 /* Do we know the sibling already? */
6013
6014 if (orig_pdi->sibling)
6015 return orig_pdi->sibling;
6016
6017 /* Are there any children to deal with? */
6018
6019 if (!orig_pdi->has_children)
6020 return info_ptr;
6021
6022 /* Skip the children the long way. */
6023
6024 return skip_children (reader, info_ptr);
6025 }
6026
6027 /* Expand this partial symbol table into a full symbol table. */
6028
6029 static void
6030 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6031 {
6032 if (pst != NULL)
6033 {
6034 if (pst->readin)
6035 {
6036 warning (_("bug: psymtab for %s is already read in."),
6037 pst->filename);
6038 }
6039 else
6040 {
6041 if (info_verbose)
6042 {
6043 printf_filtered (_("Reading in symbols for %s..."),
6044 pst->filename);
6045 gdb_flush (gdb_stdout);
6046 }
6047
6048 /* Restore our global data. */
6049 dwarf2_per_objfile = objfile_data (pst->objfile,
6050 dwarf2_objfile_data_key);
6051
6052 /* If this psymtab is constructed from a debug-only objfile, the
6053 has_section_at_zero flag will not necessarily be correct. We
6054 can get the correct value for this flag by looking at the data
6055 associated with the (presumably stripped) associated objfile. */
6056 if (pst->objfile->separate_debug_objfile_backlink)
6057 {
6058 struct dwarf2_per_objfile *dpo_backlink
6059 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6060 dwarf2_objfile_data_key);
6061
6062 dwarf2_per_objfile->has_section_at_zero
6063 = dpo_backlink->has_section_at_zero;
6064 }
6065
6066 dwarf2_per_objfile->reading_partial_symbols = 0;
6067
6068 psymtab_to_symtab_1 (pst);
6069
6070 /* Finish up the debug error message. */
6071 if (info_verbose)
6072 printf_filtered (_("done.\n"));
6073 }
6074 }
6075
6076 process_cu_includes ();
6077 }
6078 \f
6079 /* Reading in full CUs. */
6080
6081 /* Add PER_CU to the queue. */
6082
6083 static void
6084 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6085 enum language pretend_language)
6086 {
6087 struct dwarf2_queue_item *item;
6088
6089 per_cu->queued = 1;
6090 item = xmalloc (sizeof (*item));
6091 item->per_cu = per_cu;
6092 item->pretend_language = pretend_language;
6093 item->next = NULL;
6094
6095 if (dwarf2_queue == NULL)
6096 dwarf2_queue = item;
6097 else
6098 dwarf2_queue_tail->next = item;
6099
6100 dwarf2_queue_tail = item;
6101 }
6102
6103 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6104 unit and add it to our queue.
6105 The result is non-zero if PER_CU was queued, otherwise the result is zero
6106 meaning either PER_CU is already queued or it is already loaded. */
6107
6108 static int
6109 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6110 struct dwarf2_per_cu_data *per_cu,
6111 enum language pretend_language)
6112 {
6113 /* We may arrive here during partial symbol reading, if we need full
6114 DIEs to process an unusual case (e.g. template arguments). Do
6115 not queue PER_CU, just tell our caller to load its DIEs. */
6116 if (dwarf2_per_objfile->reading_partial_symbols)
6117 {
6118 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6119 return 1;
6120 return 0;
6121 }
6122
6123 /* Mark the dependence relation so that we don't flush PER_CU
6124 too early. */
6125 dwarf2_add_dependence (this_cu, per_cu);
6126
6127 /* If it's already on the queue, we have nothing to do. */
6128 if (per_cu->queued)
6129 return 0;
6130
6131 /* If the compilation unit is already loaded, just mark it as
6132 used. */
6133 if (per_cu->cu != NULL)
6134 {
6135 per_cu->cu->last_used = 0;
6136 return 0;
6137 }
6138
6139 /* Add it to the queue. */
6140 queue_comp_unit (per_cu, pretend_language);
6141
6142 return 1;
6143 }
6144
6145 /* Process the queue. */
6146
6147 static void
6148 process_queue (void)
6149 {
6150 struct dwarf2_queue_item *item, *next_item;
6151
6152 if (dwarf2_read_debug)
6153 {
6154 fprintf_unfiltered (gdb_stdlog,
6155 "Expanding one or more symtabs of objfile %s ...\n",
6156 dwarf2_per_objfile->objfile->name);
6157 }
6158
6159 /* The queue starts out with one item, but following a DIE reference
6160 may load a new CU, adding it to the end of the queue. */
6161 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6162 {
6163 if (dwarf2_per_objfile->using_index
6164 ? !item->per_cu->v.quick->symtab
6165 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6166 {
6167 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6168
6169 if (dwarf2_read_debug)
6170 {
6171 fprintf_unfiltered (gdb_stdlog,
6172 "Expanding symtab of %s at offset 0x%x\n",
6173 per_cu->is_debug_types ? "TU" : "CU",
6174 per_cu->offset.sect_off);
6175 }
6176
6177 if (per_cu->is_debug_types)
6178 process_full_type_unit (per_cu, item->pretend_language);
6179 else
6180 process_full_comp_unit (per_cu, item->pretend_language);
6181
6182 if (dwarf2_read_debug)
6183 {
6184 fprintf_unfiltered (gdb_stdlog,
6185 "Done expanding %s at offset 0x%x\n",
6186 per_cu->is_debug_types ? "TU" : "CU",
6187 per_cu->offset.sect_off);
6188 }
6189 }
6190
6191 item->per_cu->queued = 0;
6192 next_item = item->next;
6193 xfree (item);
6194 }
6195
6196 dwarf2_queue_tail = NULL;
6197
6198 if (dwarf2_read_debug)
6199 {
6200 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6201 dwarf2_per_objfile->objfile->name);
6202 }
6203 }
6204
6205 /* Free all allocated queue entries. This function only releases anything if
6206 an error was thrown; if the queue was processed then it would have been
6207 freed as we went along. */
6208
6209 static void
6210 dwarf2_release_queue (void *dummy)
6211 {
6212 struct dwarf2_queue_item *item, *last;
6213
6214 item = dwarf2_queue;
6215 while (item)
6216 {
6217 /* Anything still marked queued is likely to be in an
6218 inconsistent state, so discard it. */
6219 if (item->per_cu->queued)
6220 {
6221 if (item->per_cu->cu != NULL)
6222 free_one_cached_comp_unit (item->per_cu);
6223 item->per_cu->queued = 0;
6224 }
6225
6226 last = item;
6227 item = item->next;
6228 xfree (last);
6229 }
6230
6231 dwarf2_queue = dwarf2_queue_tail = NULL;
6232 }
6233
6234 /* Read in full symbols for PST, and anything it depends on. */
6235
6236 static void
6237 psymtab_to_symtab_1 (struct partial_symtab *pst)
6238 {
6239 struct dwarf2_per_cu_data *per_cu;
6240 int i;
6241
6242 if (pst->readin)
6243 return;
6244
6245 for (i = 0; i < pst->number_of_dependencies; i++)
6246 if (!pst->dependencies[i]->readin
6247 && pst->dependencies[i]->user == NULL)
6248 {
6249 /* Inform about additional files that need to be read in. */
6250 if (info_verbose)
6251 {
6252 /* FIXME: i18n: Need to make this a single string. */
6253 fputs_filtered (" ", gdb_stdout);
6254 wrap_here ("");
6255 fputs_filtered ("and ", gdb_stdout);
6256 wrap_here ("");
6257 printf_filtered ("%s...", pst->dependencies[i]->filename);
6258 wrap_here (""); /* Flush output. */
6259 gdb_flush (gdb_stdout);
6260 }
6261 psymtab_to_symtab_1 (pst->dependencies[i]);
6262 }
6263
6264 per_cu = pst->read_symtab_private;
6265
6266 if (per_cu == NULL)
6267 {
6268 /* It's an include file, no symbols to read for it.
6269 Everything is in the parent symtab. */
6270 pst->readin = 1;
6271 return;
6272 }
6273
6274 dw2_do_instantiate_symtab (per_cu);
6275 }
6276
6277 /* Trivial hash function for die_info: the hash value of a DIE
6278 is its offset in .debug_info for this objfile. */
6279
6280 static hashval_t
6281 die_hash (const void *item)
6282 {
6283 const struct die_info *die = item;
6284
6285 return die->offset.sect_off;
6286 }
6287
6288 /* Trivial comparison function for die_info structures: two DIEs
6289 are equal if they have the same offset. */
6290
6291 static int
6292 die_eq (const void *item_lhs, const void *item_rhs)
6293 {
6294 const struct die_info *die_lhs = item_lhs;
6295 const struct die_info *die_rhs = item_rhs;
6296
6297 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6298 }
6299
6300 /* die_reader_func for load_full_comp_unit.
6301 This is identical to read_signatured_type_reader,
6302 but is kept separate for now. */
6303
6304 static void
6305 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6306 gdb_byte *info_ptr,
6307 struct die_info *comp_unit_die,
6308 int has_children,
6309 void *data)
6310 {
6311 struct dwarf2_cu *cu = reader->cu;
6312 enum language *language_ptr = data;
6313
6314 gdb_assert (cu->die_hash == NULL);
6315 cu->die_hash =
6316 htab_create_alloc_ex (cu->header.length / 12,
6317 die_hash,
6318 die_eq,
6319 NULL,
6320 &cu->comp_unit_obstack,
6321 hashtab_obstack_allocate,
6322 dummy_obstack_deallocate);
6323
6324 if (has_children)
6325 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6326 &info_ptr, comp_unit_die);
6327 cu->dies = comp_unit_die;
6328 /* comp_unit_die is not stored in die_hash, no need. */
6329
6330 /* We try not to read any attributes in this function, because not
6331 all CUs needed for references have been loaded yet, and symbol
6332 table processing isn't initialized. But we have to set the CU language,
6333 or we won't be able to build types correctly.
6334 Similarly, if we do not read the producer, we can not apply
6335 producer-specific interpretation. */
6336 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6337 }
6338
6339 /* Load the DIEs associated with PER_CU into memory. */
6340
6341 static void
6342 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6343 enum language pretend_language)
6344 {
6345 gdb_assert (! this_cu->is_debug_types);
6346
6347 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6348 load_full_comp_unit_reader, &pretend_language);
6349 }
6350
6351 /* Add a DIE to the delayed physname list. */
6352
6353 static void
6354 add_to_method_list (struct type *type, int fnfield_index, int index,
6355 const char *name, struct die_info *die,
6356 struct dwarf2_cu *cu)
6357 {
6358 struct delayed_method_info mi;
6359 mi.type = type;
6360 mi.fnfield_index = fnfield_index;
6361 mi.index = index;
6362 mi.name = name;
6363 mi.die = die;
6364 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6365 }
6366
6367 /* A cleanup for freeing the delayed method list. */
6368
6369 static void
6370 free_delayed_list (void *ptr)
6371 {
6372 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6373 if (cu->method_list != NULL)
6374 {
6375 VEC_free (delayed_method_info, cu->method_list);
6376 cu->method_list = NULL;
6377 }
6378 }
6379
6380 /* Compute the physnames of any methods on the CU's method list.
6381
6382 The computation of method physnames is delayed in order to avoid the
6383 (bad) condition that one of the method's formal parameters is of an as yet
6384 incomplete type. */
6385
6386 static void
6387 compute_delayed_physnames (struct dwarf2_cu *cu)
6388 {
6389 int i;
6390 struct delayed_method_info *mi;
6391 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6392 {
6393 const char *physname;
6394 struct fn_fieldlist *fn_flp
6395 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6396 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6397 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6398 }
6399 }
6400
6401 /* Go objects should be embedded in a DW_TAG_module DIE,
6402 and it's not clear if/how imported objects will appear.
6403 To keep Go support simple until that's worked out,
6404 go back through what we've read and create something usable.
6405 We could do this while processing each DIE, and feels kinda cleaner,
6406 but that way is more invasive.
6407 This is to, for example, allow the user to type "p var" or "b main"
6408 without having to specify the package name, and allow lookups
6409 of module.object to work in contexts that use the expression
6410 parser. */
6411
6412 static void
6413 fixup_go_packaging (struct dwarf2_cu *cu)
6414 {
6415 char *package_name = NULL;
6416 struct pending *list;
6417 int i;
6418
6419 for (list = global_symbols; list != NULL; list = list->next)
6420 {
6421 for (i = 0; i < list->nsyms; ++i)
6422 {
6423 struct symbol *sym = list->symbol[i];
6424
6425 if (SYMBOL_LANGUAGE (sym) == language_go
6426 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6427 {
6428 char *this_package_name = go_symbol_package_name (sym);
6429
6430 if (this_package_name == NULL)
6431 continue;
6432 if (package_name == NULL)
6433 package_name = this_package_name;
6434 else
6435 {
6436 if (strcmp (package_name, this_package_name) != 0)
6437 complaint (&symfile_complaints,
6438 _("Symtab %s has objects from two different Go packages: %s and %s"),
6439 (sym->symtab && sym->symtab->filename
6440 ? sym->symtab->filename
6441 : cu->objfile->name),
6442 this_package_name, package_name);
6443 xfree (this_package_name);
6444 }
6445 }
6446 }
6447 }
6448
6449 if (package_name != NULL)
6450 {
6451 struct objfile *objfile = cu->objfile;
6452 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6453 package_name, objfile);
6454 struct symbol *sym;
6455
6456 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6457
6458 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6459 SYMBOL_SET_LANGUAGE (sym, language_go);
6460 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6461 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6462 e.g., "main" finds the "main" module and not C's main(). */
6463 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6464 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6465 SYMBOL_TYPE (sym) = type;
6466
6467 add_symbol_to_list (sym, &global_symbols);
6468
6469 xfree (package_name);
6470 }
6471 }
6472
6473 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6474
6475 /* Return the symtab for PER_CU. This works properly regardless of
6476 whether we're using the index or psymtabs. */
6477
6478 static struct symtab *
6479 get_symtab (struct dwarf2_per_cu_data *per_cu)
6480 {
6481 return (dwarf2_per_objfile->using_index
6482 ? per_cu->v.quick->symtab
6483 : per_cu->v.psymtab->symtab);
6484 }
6485
6486 /* A helper function for computing the list of all symbol tables
6487 included by PER_CU. */
6488
6489 static void
6490 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6491 htab_t all_children,
6492 struct dwarf2_per_cu_data *per_cu)
6493 {
6494 void **slot;
6495 int ix;
6496 struct dwarf2_per_cu_data *iter;
6497
6498 slot = htab_find_slot (all_children, per_cu, INSERT);
6499 if (*slot != NULL)
6500 {
6501 /* This inclusion and its children have been processed. */
6502 return;
6503 }
6504
6505 *slot = per_cu;
6506 /* Only add a CU if it has a symbol table. */
6507 if (get_symtab (per_cu) != NULL)
6508 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6509
6510 for (ix = 0;
6511 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6512 ++ix)
6513 recursively_compute_inclusions (result, all_children, iter);
6514 }
6515
6516 /* Compute the symtab 'includes' fields for the symtab related to
6517 PER_CU. */
6518
6519 static void
6520 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6521 {
6522 gdb_assert (! per_cu->is_debug_types);
6523
6524 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6525 {
6526 int ix, len;
6527 struct dwarf2_per_cu_data *iter;
6528 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6529 htab_t all_children;
6530 struct symtab *symtab = get_symtab (per_cu);
6531
6532 /* If we don't have a symtab, we can just skip this case. */
6533 if (symtab == NULL)
6534 return;
6535
6536 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6537 NULL, xcalloc, xfree);
6538
6539 for (ix = 0;
6540 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6541 ix, iter);
6542 ++ix)
6543 recursively_compute_inclusions (&result_children, all_children, iter);
6544
6545 /* Now we have a transitive closure of all the included CUs, so
6546 we can convert it to a list of symtabs. */
6547 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6548 symtab->includes
6549 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6550 (len + 1) * sizeof (struct symtab *));
6551 for (ix = 0;
6552 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6553 ++ix)
6554 symtab->includes[ix] = get_symtab (iter);
6555 symtab->includes[len] = NULL;
6556
6557 VEC_free (dwarf2_per_cu_ptr, result_children);
6558 htab_delete (all_children);
6559 }
6560 }
6561
6562 /* Compute the 'includes' field for the symtabs of all the CUs we just
6563 read. */
6564
6565 static void
6566 process_cu_includes (void)
6567 {
6568 int ix;
6569 struct dwarf2_per_cu_data *iter;
6570
6571 for (ix = 0;
6572 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6573 ix, iter);
6574 ++ix)
6575 {
6576 if (! iter->is_debug_types)
6577 compute_symtab_includes (iter);
6578 }
6579
6580 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6581 }
6582
6583 /* Generate full symbol information for PER_CU, whose DIEs have
6584 already been loaded into memory. */
6585
6586 static void
6587 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6588 enum language pretend_language)
6589 {
6590 struct dwarf2_cu *cu = per_cu->cu;
6591 struct objfile *objfile = per_cu->objfile;
6592 CORE_ADDR lowpc, highpc;
6593 struct symtab *symtab;
6594 struct cleanup *back_to, *delayed_list_cleanup;
6595 CORE_ADDR baseaddr;
6596 struct block *static_block;
6597
6598 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6599
6600 buildsym_init ();
6601 back_to = make_cleanup (really_free_pendings, NULL);
6602 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6603
6604 cu->list_in_scope = &file_symbols;
6605
6606 cu->language = pretend_language;
6607 cu->language_defn = language_def (cu->language);
6608
6609 /* Do line number decoding in read_file_scope () */
6610 process_die (cu->dies, cu);
6611
6612 /* For now fudge the Go package. */
6613 if (cu->language == language_go)
6614 fixup_go_packaging (cu);
6615
6616 /* Now that we have processed all the DIEs in the CU, all the types
6617 should be complete, and it should now be safe to compute all of the
6618 physnames. */
6619 compute_delayed_physnames (cu);
6620 do_cleanups (delayed_list_cleanup);
6621
6622 /* Some compilers don't define a DW_AT_high_pc attribute for the
6623 compilation unit. If the DW_AT_high_pc is missing, synthesize
6624 it, by scanning the DIE's below the compilation unit. */
6625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6626
6627 static_block = end_symtab_get_static_block (highpc + baseaddr, objfile, 0);
6628
6629 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6630 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6631 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6632 addrmap to help ensure it has an accurate map of pc values belonging to
6633 this comp unit. */
6634 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6635
6636 symtab = end_symtab_from_static_block (static_block, objfile,
6637 SECT_OFF_TEXT (objfile), 0);
6638
6639 if (symtab != NULL)
6640 {
6641 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6642
6643 /* Set symtab language to language from DW_AT_language. If the
6644 compilation is from a C file generated by language preprocessors, do
6645 not set the language if it was already deduced by start_subfile. */
6646 if (!(cu->language == language_c && symtab->language != language_c))
6647 symtab->language = cu->language;
6648
6649 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6650 produce DW_AT_location with location lists but it can be possibly
6651 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6652 there were bugs in prologue debug info, fixed later in GCC-4.5
6653 by "unwind info for epilogues" patch (which is not directly related).
6654
6655 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6656 needed, it would be wrong due to missing DW_AT_producer there.
6657
6658 Still one can confuse GDB by using non-standard GCC compilation
6659 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6660 */
6661 if (cu->has_loclist && gcc_4_minor >= 5)
6662 symtab->locations_valid = 1;
6663
6664 if (gcc_4_minor >= 5)
6665 symtab->epilogue_unwind_valid = 1;
6666
6667 symtab->call_site_htab = cu->call_site_htab;
6668 }
6669
6670 if (dwarf2_per_objfile->using_index)
6671 per_cu->v.quick->symtab = symtab;
6672 else
6673 {
6674 struct partial_symtab *pst = per_cu->v.psymtab;
6675 pst->symtab = symtab;
6676 pst->readin = 1;
6677 }
6678
6679 /* Push it for inclusion processing later. */
6680 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6681
6682 do_cleanups (back_to);
6683 }
6684
6685 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6686 already been loaded into memory. */
6687
6688 static void
6689 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6690 enum language pretend_language)
6691 {
6692 struct dwarf2_cu *cu = per_cu->cu;
6693 struct objfile *objfile = per_cu->objfile;
6694 struct symtab *symtab;
6695 struct cleanup *back_to, *delayed_list_cleanup;
6696
6697 buildsym_init ();
6698 back_to = make_cleanup (really_free_pendings, NULL);
6699 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6700
6701 cu->list_in_scope = &file_symbols;
6702
6703 cu->language = pretend_language;
6704 cu->language_defn = language_def (cu->language);
6705
6706 /* The symbol tables are set up in read_type_unit_scope. */
6707 process_die (cu->dies, cu);
6708
6709 /* For now fudge the Go package. */
6710 if (cu->language == language_go)
6711 fixup_go_packaging (cu);
6712
6713 /* Now that we have processed all the DIEs in the CU, all the types
6714 should be complete, and it should now be safe to compute all of the
6715 physnames. */
6716 compute_delayed_physnames (cu);
6717 do_cleanups (delayed_list_cleanup);
6718
6719 /* TUs share symbol tables.
6720 If this is the first TU to use this symtab, complete the construction
6721 of it with end_symtab. Otherwise, complete the addition of this TU's
6722 symbols to the existing symtab. */
6723 if (per_cu->s.type_unit_group->primary_symtab == NULL)
6724 {
6725 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
6726 per_cu->s.type_unit_group->primary_symtab = symtab;
6727
6728 if (symtab != NULL)
6729 {
6730 /* Set symtab language to language from DW_AT_language. If the
6731 compilation is from a C file generated by language preprocessors,
6732 do not set the language if it was already deduced by
6733 start_subfile. */
6734 if (!(cu->language == language_c && symtab->language != language_c))
6735 symtab->language = cu->language;
6736 }
6737 }
6738 else
6739 {
6740 augment_type_symtab (objfile,
6741 per_cu->s.type_unit_group->primary_symtab);
6742 symtab = per_cu->s.type_unit_group->primary_symtab;
6743 }
6744
6745 if (dwarf2_per_objfile->using_index)
6746 per_cu->v.quick->symtab = symtab;
6747 else
6748 {
6749 struct partial_symtab *pst = per_cu->v.psymtab;
6750 pst->symtab = symtab;
6751 pst->readin = 1;
6752 }
6753
6754 do_cleanups (back_to);
6755 }
6756
6757 /* Process an imported unit DIE. */
6758
6759 static void
6760 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
6761 {
6762 struct attribute *attr;
6763
6764 /* For now we don't handle imported units in type units. */
6765 if (cu->per_cu->is_debug_types)
6766 {
6767 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6768 " supported in type units [in module %s]"),
6769 cu->objfile->name);
6770 }
6771
6772 attr = dwarf2_attr (die, DW_AT_import, cu);
6773 if (attr != NULL)
6774 {
6775 struct dwarf2_per_cu_data *per_cu;
6776 struct symtab *imported_symtab;
6777 sect_offset offset;
6778
6779 offset = dwarf2_get_ref_die_offset (attr);
6780 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6781
6782 /* Queue the unit, if needed. */
6783 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
6784 load_full_comp_unit (per_cu, cu->language);
6785
6786 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
6787 per_cu);
6788 }
6789 }
6790
6791 /* Process a die and its children. */
6792
6793 static void
6794 process_die (struct die_info *die, struct dwarf2_cu *cu)
6795 {
6796 switch (die->tag)
6797 {
6798 case DW_TAG_padding:
6799 break;
6800 case DW_TAG_compile_unit:
6801 case DW_TAG_partial_unit:
6802 read_file_scope (die, cu);
6803 break;
6804 case DW_TAG_type_unit:
6805 read_type_unit_scope (die, cu);
6806 break;
6807 case DW_TAG_subprogram:
6808 case DW_TAG_inlined_subroutine:
6809 read_func_scope (die, cu);
6810 break;
6811 case DW_TAG_lexical_block:
6812 case DW_TAG_try_block:
6813 case DW_TAG_catch_block:
6814 read_lexical_block_scope (die, cu);
6815 break;
6816 case DW_TAG_GNU_call_site:
6817 read_call_site_scope (die, cu);
6818 break;
6819 case DW_TAG_class_type:
6820 case DW_TAG_interface_type:
6821 case DW_TAG_structure_type:
6822 case DW_TAG_union_type:
6823 process_structure_scope (die, cu);
6824 break;
6825 case DW_TAG_enumeration_type:
6826 process_enumeration_scope (die, cu);
6827 break;
6828
6829 /* These dies have a type, but processing them does not create
6830 a symbol or recurse to process the children. Therefore we can
6831 read them on-demand through read_type_die. */
6832 case DW_TAG_subroutine_type:
6833 case DW_TAG_set_type:
6834 case DW_TAG_array_type:
6835 case DW_TAG_pointer_type:
6836 case DW_TAG_ptr_to_member_type:
6837 case DW_TAG_reference_type:
6838 case DW_TAG_string_type:
6839 break;
6840
6841 case DW_TAG_base_type:
6842 case DW_TAG_subrange_type:
6843 case DW_TAG_typedef:
6844 /* Add a typedef symbol for the type definition, if it has a
6845 DW_AT_name. */
6846 new_symbol (die, read_type_die (die, cu), cu);
6847 break;
6848 case DW_TAG_common_block:
6849 read_common_block (die, cu);
6850 break;
6851 case DW_TAG_common_inclusion:
6852 break;
6853 case DW_TAG_namespace:
6854 processing_has_namespace_info = 1;
6855 read_namespace (die, cu);
6856 break;
6857 case DW_TAG_module:
6858 processing_has_namespace_info = 1;
6859 read_module (die, cu);
6860 break;
6861 case DW_TAG_imported_declaration:
6862 case DW_TAG_imported_module:
6863 processing_has_namespace_info = 1;
6864 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
6865 || cu->language != language_fortran))
6866 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
6867 dwarf_tag_name (die->tag));
6868 read_import_statement (die, cu);
6869 break;
6870
6871 case DW_TAG_imported_unit:
6872 process_imported_unit_die (die, cu);
6873 break;
6874
6875 default:
6876 new_symbol (die, NULL, cu);
6877 break;
6878 }
6879 }
6880
6881 /* A helper function for dwarf2_compute_name which determines whether DIE
6882 needs to have the name of the scope prepended to the name listed in the
6883 die. */
6884
6885 static int
6886 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
6887 {
6888 struct attribute *attr;
6889
6890 switch (die->tag)
6891 {
6892 case DW_TAG_namespace:
6893 case DW_TAG_typedef:
6894 case DW_TAG_class_type:
6895 case DW_TAG_interface_type:
6896 case DW_TAG_structure_type:
6897 case DW_TAG_union_type:
6898 case DW_TAG_enumeration_type:
6899 case DW_TAG_enumerator:
6900 case DW_TAG_subprogram:
6901 case DW_TAG_member:
6902 return 1;
6903
6904 case DW_TAG_variable:
6905 case DW_TAG_constant:
6906 /* We only need to prefix "globally" visible variables. These include
6907 any variable marked with DW_AT_external or any variable that
6908 lives in a namespace. [Variables in anonymous namespaces
6909 require prefixing, but they are not DW_AT_external.] */
6910
6911 if (dwarf2_attr (die, DW_AT_specification, cu))
6912 {
6913 struct dwarf2_cu *spec_cu = cu;
6914
6915 return die_needs_namespace (die_specification (die, &spec_cu),
6916 spec_cu);
6917 }
6918
6919 attr = dwarf2_attr (die, DW_AT_external, cu);
6920 if (attr == NULL && die->parent->tag != DW_TAG_namespace
6921 && die->parent->tag != DW_TAG_module)
6922 return 0;
6923 /* A variable in a lexical block of some kind does not need a
6924 namespace, even though in C++ such variables may be external
6925 and have a mangled name. */
6926 if (die->parent->tag == DW_TAG_lexical_block
6927 || die->parent->tag == DW_TAG_try_block
6928 || die->parent->tag == DW_TAG_catch_block
6929 || die->parent->tag == DW_TAG_subprogram)
6930 return 0;
6931 return 1;
6932
6933 default:
6934 return 0;
6935 }
6936 }
6937
6938 /* Retrieve the last character from a mem_file. */
6939
6940 static void
6941 do_ui_file_peek_last (void *object, const char *buffer, long length)
6942 {
6943 char *last_char_p = (char *) object;
6944
6945 if (length > 0)
6946 *last_char_p = buffer[length - 1];
6947 }
6948
6949 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
6950 compute the physname for the object, which include a method's:
6951 - formal parameters (C++/Java),
6952 - receiver type (Go),
6953 - return type (Java).
6954
6955 The term "physname" is a bit confusing.
6956 For C++, for example, it is the demangled name.
6957 For Go, for example, it's the mangled name.
6958
6959 For Ada, return the DIE's linkage name rather than the fully qualified
6960 name. PHYSNAME is ignored..
6961
6962 The result is allocated on the objfile_obstack and canonicalized. */
6963
6964 static const char *
6965 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
6966 int physname)
6967 {
6968 struct objfile *objfile = cu->objfile;
6969
6970 if (name == NULL)
6971 name = dwarf2_name (die, cu);
6972
6973 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
6974 compute it by typename_concat inside GDB. */
6975 if (cu->language == language_ada
6976 || (cu->language == language_fortran && physname))
6977 {
6978 /* For Ada unit, we prefer the linkage name over the name, as
6979 the former contains the exported name, which the user expects
6980 to be able to reference. Ideally, we want the user to be able
6981 to reference this entity using either natural or linkage name,
6982 but we haven't started looking at this enhancement yet. */
6983 struct attribute *attr;
6984
6985 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
6986 if (attr == NULL)
6987 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
6988 if (attr && DW_STRING (attr))
6989 return DW_STRING (attr);
6990 }
6991
6992 /* These are the only languages we know how to qualify names in. */
6993 if (name != NULL
6994 && (cu->language == language_cplus || cu->language == language_java
6995 || cu->language == language_fortran))
6996 {
6997 if (die_needs_namespace (die, cu))
6998 {
6999 long length;
7000 const char *prefix;
7001 struct ui_file *buf;
7002
7003 prefix = determine_prefix (die, cu);
7004 buf = mem_fileopen ();
7005 if (*prefix != '\0')
7006 {
7007 char *prefixed_name = typename_concat (NULL, prefix, name,
7008 physname, cu);
7009
7010 fputs_unfiltered (prefixed_name, buf);
7011 xfree (prefixed_name);
7012 }
7013 else
7014 fputs_unfiltered (name, buf);
7015
7016 /* Template parameters may be specified in the DIE's DW_AT_name, or
7017 as children with DW_TAG_template_type_param or
7018 DW_TAG_value_type_param. If the latter, add them to the name
7019 here. If the name already has template parameters, then
7020 skip this step; some versions of GCC emit both, and
7021 it is more efficient to use the pre-computed name.
7022
7023 Something to keep in mind about this process: it is very
7024 unlikely, or in some cases downright impossible, to produce
7025 something that will match the mangled name of a function.
7026 If the definition of the function has the same debug info,
7027 we should be able to match up with it anyway. But fallbacks
7028 using the minimal symbol, for instance to find a method
7029 implemented in a stripped copy of libstdc++, will not work.
7030 If we do not have debug info for the definition, we will have to
7031 match them up some other way.
7032
7033 When we do name matching there is a related problem with function
7034 templates; two instantiated function templates are allowed to
7035 differ only by their return types, which we do not add here. */
7036
7037 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7038 {
7039 struct attribute *attr;
7040 struct die_info *child;
7041 int first = 1;
7042
7043 die->building_fullname = 1;
7044
7045 for (child = die->child; child != NULL; child = child->sibling)
7046 {
7047 struct type *type;
7048 LONGEST value;
7049 gdb_byte *bytes;
7050 struct dwarf2_locexpr_baton *baton;
7051 struct value *v;
7052
7053 if (child->tag != DW_TAG_template_type_param
7054 && child->tag != DW_TAG_template_value_param)
7055 continue;
7056
7057 if (first)
7058 {
7059 fputs_unfiltered ("<", buf);
7060 first = 0;
7061 }
7062 else
7063 fputs_unfiltered (", ", buf);
7064
7065 attr = dwarf2_attr (child, DW_AT_type, cu);
7066 if (attr == NULL)
7067 {
7068 complaint (&symfile_complaints,
7069 _("template parameter missing DW_AT_type"));
7070 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7071 continue;
7072 }
7073 type = die_type (child, cu);
7074
7075 if (child->tag == DW_TAG_template_type_param)
7076 {
7077 c_print_type (type, "", buf, -1, 0);
7078 continue;
7079 }
7080
7081 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7082 if (attr == NULL)
7083 {
7084 complaint (&symfile_complaints,
7085 _("template parameter missing "
7086 "DW_AT_const_value"));
7087 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7088 continue;
7089 }
7090
7091 dwarf2_const_value_attr (attr, type, name,
7092 &cu->comp_unit_obstack, cu,
7093 &value, &bytes, &baton);
7094
7095 if (TYPE_NOSIGN (type))
7096 /* GDB prints characters as NUMBER 'CHAR'. If that's
7097 changed, this can use value_print instead. */
7098 c_printchar (value, type, buf);
7099 else
7100 {
7101 struct value_print_options opts;
7102
7103 if (baton != NULL)
7104 v = dwarf2_evaluate_loc_desc (type, NULL,
7105 baton->data,
7106 baton->size,
7107 baton->per_cu);
7108 else if (bytes != NULL)
7109 {
7110 v = allocate_value (type);
7111 memcpy (value_contents_writeable (v), bytes,
7112 TYPE_LENGTH (type));
7113 }
7114 else
7115 v = value_from_longest (type, value);
7116
7117 /* Specify decimal so that we do not depend on
7118 the radix. */
7119 get_formatted_print_options (&opts, 'd');
7120 opts.raw = 1;
7121 value_print (v, buf, &opts);
7122 release_value (v);
7123 value_free (v);
7124 }
7125 }
7126
7127 die->building_fullname = 0;
7128
7129 if (!first)
7130 {
7131 /* Close the argument list, with a space if necessary
7132 (nested templates). */
7133 char last_char = '\0';
7134 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7135 if (last_char == '>')
7136 fputs_unfiltered (" >", buf);
7137 else
7138 fputs_unfiltered (">", buf);
7139 }
7140 }
7141
7142 /* For Java and C++ methods, append formal parameter type
7143 information, if PHYSNAME. */
7144
7145 if (physname && die->tag == DW_TAG_subprogram
7146 && (cu->language == language_cplus
7147 || cu->language == language_java))
7148 {
7149 struct type *type = read_type_die (die, cu);
7150
7151 c_type_print_args (type, buf, 1, cu->language);
7152
7153 if (cu->language == language_java)
7154 {
7155 /* For java, we must append the return type to method
7156 names. */
7157 if (die->tag == DW_TAG_subprogram)
7158 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7159 0, 0);
7160 }
7161 else if (cu->language == language_cplus)
7162 {
7163 /* Assume that an artificial first parameter is
7164 "this", but do not crash if it is not. RealView
7165 marks unnamed (and thus unused) parameters as
7166 artificial; there is no way to differentiate
7167 the two cases. */
7168 if (TYPE_NFIELDS (type) > 0
7169 && TYPE_FIELD_ARTIFICIAL (type, 0)
7170 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7171 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7172 0))))
7173 fputs_unfiltered (" const", buf);
7174 }
7175 }
7176
7177 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7178 &length);
7179 ui_file_delete (buf);
7180
7181 if (cu->language == language_cplus)
7182 {
7183 char *cname
7184 = dwarf2_canonicalize_name (name, cu,
7185 &objfile->objfile_obstack);
7186
7187 if (cname != NULL)
7188 name = cname;
7189 }
7190 }
7191 }
7192
7193 return name;
7194 }
7195
7196 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7197 If scope qualifiers are appropriate they will be added. The result
7198 will be allocated on the objfile_obstack, or NULL if the DIE does
7199 not have a name. NAME may either be from a previous call to
7200 dwarf2_name or NULL.
7201
7202 The output string will be canonicalized (if C++/Java). */
7203
7204 static const char *
7205 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7206 {
7207 return dwarf2_compute_name (name, die, cu, 0);
7208 }
7209
7210 /* Construct a physname for the given DIE in CU. NAME may either be
7211 from a previous call to dwarf2_name or NULL. The result will be
7212 allocated on the objfile_objstack or NULL if the DIE does not have a
7213 name.
7214
7215 The output string will be canonicalized (if C++/Java). */
7216
7217 static const char *
7218 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7219 {
7220 struct objfile *objfile = cu->objfile;
7221 struct attribute *attr;
7222 const char *retval, *mangled = NULL, *canon = NULL;
7223 struct cleanup *back_to;
7224 int need_copy = 1;
7225
7226 /* In this case dwarf2_compute_name is just a shortcut not building anything
7227 on its own. */
7228 if (!die_needs_namespace (die, cu))
7229 return dwarf2_compute_name (name, die, cu, 1);
7230
7231 back_to = make_cleanup (null_cleanup, NULL);
7232
7233 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7234 if (!attr)
7235 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7236
7237 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7238 has computed. */
7239 if (attr && DW_STRING (attr))
7240 {
7241 char *demangled;
7242
7243 mangled = DW_STRING (attr);
7244
7245 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7246 type. It is easier for GDB users to search for such functions as
7247 `name(params)' than `long name(params)'. In such case the minimal
7248 symbol names do not match the full symbol names but for template
7249 functions there is never a need to look up their definition from their
7250 declaration so the only disadvantage remains the minimal symbol
7251 variant `long name(params)' does not have the proper inferior type.
7252 */
7253
7254 if (cu->language == language_go)
7255 {
7256 /* This is a lie, but we already lie to the caller new_symbol_full.
7257 new_symbol_full assumes we return the mangled name.
7258 This just undoes that lie until things are cleaned up. */
7259 demangled = NULL;
7260 }
7261 else
7262 {
7263 demangled = cplus_demangle (mangled,
7264 (DMGL_PARAMS | DMGL_ANSI
7265 | (cu->language == language_java
7266 ? DMGL_JAVA | DMGL_RET_POSTFIX
7267 : DMGL_RET_DROP)));
7268 }
7269 if (demangled)
7270 {
7271 make_cleanup (xfree, demangled);
7272 canon = demangled;
7273 }
7274 else
7275 {
7276 canon = mangled;
7277 need_copy = 0;
7278 }
7279 }
7280
7281 if (canon == NULL || check_physname)
7282 {
7283 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7284
7285 if (canon != NULL && strcmp (physname, canon) != 0)
7286 {
7287 /* It may not mean a bug in GDB. The compiler could also
7288 compute DW_AT_linkage_name incorrectly. But in such case
7289 GDB would need to be bug-to-bug compatible. */
7290
7291 complaint (&symfile_complaints,
7292 _("Computed physname <%s> does not match demangled <%s> "
7293 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7294 physname, canon, mangled, die->offset.sect_off, objfile->name);
7295
7296 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7297 is available here - over computed PHYSNAME. It is safer
7298 against both buggy GDB and buggy compilers. */
7299
7300 retval = canon;
7301 }
7302 else
7303 {
7304 retval = physname;
7305 need_copy = 0;
7306 }
7307 }
7308 else
7309 retval = canon;
7310
7311 if (need_copy)
7312 retval = obsavestring (retval, strlen (retval),
7313 &objfile->objfile_obstack);
7314
7315 do_cleanups (back_to);
7316 return retval;
7317 }
7318
7319 /* Read the import statement specified by the given die and record it. */
7320
7321 static void
7322 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7323 {
7324 struct objfile *objfile = cu->objfile;
7325 struct attribute *import_attr;
7326 struct die_info *imported_die, *child_die;
7327 struct dwarf2_cu *imported_cu;
7328 const char *imported_name;
7329 const char *imported_name_prefix;
7330 const char *canonical_name;
7331 const char *import_alias;
7332 const char *imported_declaration = NULL;
7333 const char *import_prefix;
7334 VEC (const_char_ptr) *excludes = NULL;
7335 struct cleanup *cleanups;
7336
7337 char *temp;
7338
7339 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7340 if (import_attr == NULL)
7341 {
7342 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7343 dwarf_tag_name (die->tag));
7344 return;
7345 }
7346
7347 imported_cu = cu;
7348 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7349 imported_name = dwarf2_name (imported_die, imported_cu);
7350 if (imported_name == NULL)
7351 {
7352 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7353
7354 The import in the following code:
7355 namespace A
7356 {
7357 typedef int B;
7358 }
7359
7360 int main ()
7361 {
7362 using A::B;
7363 B b;
7364 return b;
7365 }
7366
7367 ...
7368 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7369 <52> DW_AT_decl_file : 1
7370 <53> DW_AT_decl_line : 6
7371 <54> DW_AT_import : <0x75>
7372 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7373 <59> DW_AT_name : B
7374 <5b> DW_AT_decl_file : 1
7375 <5c> DW_AT_decl_line : 2
7376 <5d> DW_AT_type : <0x6e>
7377 ...
7378 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7379 <76> DW_AT_byte_size : 4
7380 <77> DW_AT_encoding : 5 (signed)
7381
7382 imports the wrong die ( 0x75 instead of 0x58 ).
7383 This case will be ignored until the gcc bug is fixed. */
7384 return;
7385 }
7386
7387 /* Figure out the local name after import. */
7388 import_alias = dwarf2_name (die, cu);
7389
7390 /* Figure out where the statement is being imported to. */
7391 import_prefix = determine_prefix (die, cu);
7392
7393 /* Figure out what the scope of the imported die is and prepend it
7394 to the name of the imported die. */
7395 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7396
7397 if (imported_die->tag != DW_TAG_namespace
7398 && imported_die->tag != DW_TAG_module)
7399 {
7400 imported_declaration = imported_name;
7401 canonical_name = imported_name_prefix;
7402 }
7403 else if (strlen (imported_name_prefix) > 0)
7404 {
7405 temp = alloca (strlen (imported_name_prefix)
7406 + 2 + strlen (imported_name) + 1);
7407 strcpy (temp, imported_name_prefix);
7408 strcat (temp, "::");
7409 strcat (temp, imported_name);
7410 canonical_name = temp;
7411 }
7412 else
7413 canonical_name = imported_name;
7414
7415 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7416
7417 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7418 for (child_die = die->child; child_die && child_die->tag;
7419 child_die = sibling_die (child_die))
7420 {
7421 /* DWARF-4: A Fortran use statement with a “rename list” may be
7422 represented by an imported module entry with an import attribute
7423 referring to the module and owned entries corresponding to those
7424 entities that are renamed as part of being imported. */
7425
7426 if (child_die->tag != DW_TAG_imported_declaration)
7427 {
7428 complaint (&symfile_complaints,
7429 _("child DW_TAG_imported_declaration expected "
7430 "- DIE at 0x%x [in module %s]"),
7431 child_die->offset.sect_off, objfile->name);
7432 continue;
7433 }
7434
7435 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7436 if (import_attr == NULL)
7437 {
7438 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7439 dwarf_tag_name (child_die->tag));
7440 continue;
7441 }
7442
7443 imported_cu = cu;
7444 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7445 &imported_cu);
7446 imported_name = dwarf2_name (imported_die, imported_cu);
7447 if (imported_name == NULL)
7448 {
7449 complaint (&symfile_complaints,
7450 _("child DW_TAG_imported_declaration has unknown "
7451 "imported name - DIE at 0x%x [in module %s]"),
7452 child_die->offset.sect_off, objfile->name);
7453 continue;
7454 }
7455
7456 VEC_safe_push (const_char_ptr, excludes, imported_name);
7457
7458 process_die (child_die, cu);
7459 }
7460
7461 cp_add_using_directive (import_prefix,
7462 canonical_name,
7463 import_alias,
7464 imported_declaration,
7465 excludes,
7466 &objfile->objfile_obstack);
7467
7468 do_cleanups (cleanups);
7469 }
7470
7471 /* Cleanup function for handle_DW_AT_stmt_list. */
7472
7473 static void
7474 free_cu_line_header (void *arg)
7475 {
7476 struct dwarf2_cu *cu = arg;
7477
7478 free_line_header (cu->line_header);
7479 cu->line_header = NULL;
7480 }
7481
7482 static void
7483 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7484 char **name, char **comp_dir)
7485 {
7486 struct attribute *attr;
7487
7488 *name = NULL;
7489 *comp_dir = NULL;
7490
7491 /* Find the filename. Do not use dwarf2_name here, since the filename
7492 is not a source language identifier. */
7493 attr = dwarf2_attr (die, DW_AT_name, cu);
7494 if (attr)
7495 {
7496 *name = DW_STRING (attr);
7497 }
7498
7499 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7500 if (attr)
7501 *comp_dir = DW_STRING (attr);
7502 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7503 {
7504 *comp_dir = ldirname (*name);
7505 if (*comp_dir != NULL)
7506 make_cleanup (xfree, *comp_dir);
7507 }
7508 if (*comp_dir != NULL)
7509 {
7510 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7511 directory, get rid of it. */
7512 char *cp = strchr (*comp_dir, ':');
7513
7514 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7515 *comp_dir = cp + 1;
7516 }
7517
7518 if (*name == NULL)
7519 *name = "<unknown>";
7520 }
7521
7522 /* Handle DW_AT_stmt_list for a compilation unit.
7523 DIE is the DW_TAG_compile_unit die for CU.
7524 COMP_DIR is the compilation directory.
7525 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7526
7527 static void
7528 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7529 const char *comp_dir)
7530 {
7531 struct attribute *attr;
7532
7533 gdb_assert (! cu->per_cu->is_debug_types);
7534
7535 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7536 if (attr)
7537 {
7538 unsigned int line_offset = DW_UNSND (attr);
7539 struct line_header *line_header
7540 = dwarf_decode_line_header (line_offset, cu);
7541
7542 if (line_header)
7543 {
7544 cu->line_header = line_header;
7545 make_cleanup (free_cu_line_header, cu);
7546 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7547 }
7548 }
7549 }
7550
7551 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7552
7553 static void
7554 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7555 {
7556 struct objfile *objfile = dwarf2_per_objfile->objfile;
7557 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7558 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7559 CORE_ADDR highpc = ((CORE_ADDR) 0);
7560 struct attribute *attr;
7561 char *name = NULL;
7562 char *comp_dir = NULL;
7563 struct die_info *child_die;
7564 bfd *abfd = objfile->obfd;
7565 CORE_ADDR baseaddr;
7566
7567 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7568
7569 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7570
7571 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7572 from finish_block. */
7573 if (lowpc == ((CORE_ADDR) -1))
7574 lowpc = highpc;
7575 lowpc += baseaddr;
7576 highpc += baseaddr;
7577
7578 find_file_and_directory (die, cu, &name, &comp_dir);
7579
7580 prepare_one_comp_unit (cu, die, cu->language);
7581
7582 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7583 standardised yet. As a workaround for the language detection we fall
7584 back to the DW_AT_producer string. */
7585 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7586 cu->language = language_opencl;
7587
7588 /* Similar hack for Go. */
7589 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7590 set_cu_language (DW_LANG_Go, cu);
7591
7592 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7593
7594 /* Decode line number information if present. We do this before
7595 processing child DIEs, so that the line header table is available
7596 for DW_AT_decl_file. */
7597 handle_DW_AT_stmt_list (die, cu, comp_dir);
7598
7599 /* Process all dies in compilation unit. */
7600 if (die->child != NULL)
7601 {
7602 child_die = die->child;
7603 while (child_die && child_die->tag)
7604 {
7605 process_die (child_die, cu);
7606 child_die = sibling_die (child_die);
7607 }
7608 }
7609
7610 /* Decode macro information, if present. Dwarf 2 macro information
7611 refers to information in the line number info statement program
7612 header, so we can only read it if we've read the header
7613 successfully. */
7614 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7615 if (attr && cu->line_header)
7616 {
7617 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7618 complaint (&symfile_complaints,
7619 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7620
7621 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7622 }
7623 else
7624 {
7625 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7626 if (attr && cu->line_header)
7627 {
7628 unsigned int macro_offset = DW_UNSND (attr);
7629
7630 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7631 }
7632 }
7633
7634 do_cleanups (back_to);
7635 }
7636
7637 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7638 Create the set of symtabs used by this TU, or if this TU is sharing
7639 symtabs with another TU and the symtabs have already been created
7640 then restore those symtabs in the line header.
7641 We don't need the pc/line-number mapping for type units. */
7642
7643 static void
7644 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7645 {
7646 struct objfile *objfile = dwarf2_per_objfile->objfile;
7647 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7648 struct type_unit_group *tu_group;
7649 int first_time;
7650 struct line_header *lh;
7651 struct attribute *attr;
7652 unsigned int i, line_offset;
7653
7654 gdb_assert (per_cu->is_debug_types);
7655
7656 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7657
7658 /* If we're using .gdb_index (includes -readnow) then
7659 per_cu->s.type_unit_group may not have been set up yet. */
7660 if (per_cu->s.type_unit_group == NULL)
7661 per_cu->s.type_unit_group = get_type_unit_group (per_cu, attr);
7662 tu_group = per_cu->s.type_unit_group;
7663
7664 /* If we've already processed this stmt_list there's no real need to
7665 do it again, we could fake it and just recreate the part we need
7666 (file name,index -> symtab mapping). If data shows this optimization
7667 is useful we can do it then. */
7668 first_time = tu_group->primary_symtab == NULL;
7669
7670 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7671 debug info. */
7672 lh = NULL;
7673 if (attr != NULL)
7674 {
7675 line_offset = DW_UNSND (attr);
7676 lh = dwarf_decode_line_header (line_offset, cu);
7677 }
7678 if (lh == NULL)
7679 {
7680 if (first_time)
7681 dwarf2_start_symtab (cu, "", NULL, 0);
7682 else
7683 {
7684 gdb_assert (tu_group->symtabs == NULL);
7685 restart_symtab (0);
7686 }
7687 /* Note: The primary symtab will get allocated at the end. */
7688 return;
7689 }
7690
7691 cu->line_header = lh;
7692 make_cleanup (free_cu_line_header, cu);
7693
7694 if (first_time)
7695 {
7696 dwarf2_start_symtab (cu, "", NULL, 0);
7697
7698 tu_group->num_symtabs = lh->num_file_names;
7699 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
7700
7701 for (i = 0; i < lh->num_file_names; ++i)
7702 {
7703 char *dir = NULL;
7704 struct file_entry *fe = &lh->file_names[i];
7705
7706 if (fe->dir_index)
7707 dir = lh->include_dirs[fe->dir_index - 1];
7708 dwarf2_start_subfile (fe->name, dir, NULL);
7709
7710 /* Note: We don't have to watch for the main subfile here, type units
7711 don't have DW_AT_name. */
7712
7713 if (current_subfile->symtab == NULL)
7714 {
7715 /* NOTE: start_subfile will recognize when it's been passed
7716 a file it has already seen. So we can't assume there's a
7717 simple mapping from lh->file_names to subfiles,
7718 lh->file_names may contain dups. */
7719 current_subfile->symtab = allocate_symtab (current_subfile->name,
7720 objfile);
7721 }
7722
7723 fe->symtab = current_subfile->symtab;
7724 tu_group->symtabs[i] = fe->symtab;
7725 }
7726 }
7727 else
7728 {
7729 restart_symtab (0);
7730
7731 for (i = 0; i < lh->num_file_names; ++i)
7732 {
7733 struct file_entry *fe = &lh->file_names[i];
7734
7735 fe->symtab = tu_group->symtabs[i];
7736 }
7737 }
7738
7739 /* The main symtab is allocated last. Type units don't have DW_AT_name
7740 so they don't have a "real" (so to speak) symtab anyway.
7741 There is later code that will assign the main symtab to all symbols
7742 that don't have one. We need to handle the case of a symbol with a
7743 missing symtab (DW_AT_decl_file) anyway. */
7744 }
7745
7746 /* Process DW_TAG_type_unit.
7747 For TUs we want to skip the first top level sibling if it's not the
7748 actual type being defined by this TU. In this case the first top
7749 level sibling is there to provide context only. */
7750
7751 static void
7752 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
7753 {
7754 struct die_info *child_die;
7755
7756 prepare_one_comp_unit (cu, die, language_minimal);
7757
7758 /* Initialize (or reinitialize) the machinery for building symtabs.
7759 We do this before processing child DIEs, so that the line header table
7760 is available for DW_AT_decl_file. */
7761 setup_type_unit_groups (die, cu);
7762
7763 if (die->child != NULL)
7764 {
7765 child_die = die->child;
7766 while (child_die && child_die->tag)
7767 {
7768 process_die (child_die, cu);
7769 child_die = sibling_die (child_die);
7770 }
7771 }
7772 }
7773 \f
7774 /* DWO files. */
7775
7776 static hashval_t
7777 hash_dwo_file (const void *item)
7778 {
7779 const struct dwo_file *dwo_file = item;
7780
7781 return htab_hash_string (dwo_file->dwo_name);
7782 }
7783
7784 static int
7785 eq_dwo_file (const void *item_lhs, const void *item_rhs)
7786 {
7787 const struct dwo_file *lhs = item_lhs;
7788 const struct dwo_file *rhs = item_rhs;
7789
7790 return strcmp (lhs->dwo_name, rhs->dwo_name) == 0;
7791 }
7792
7793 /* Allocate a hash table for DWO files. */
7794
7795 static htab_t
7796 allocate_dwo_file_hash_table (void)
7797 {
7798 struct objfile *objfile = dwarf2_per_objfile->objfile;
7799
7800 return htab_create_alloc_ex (41,
7801 hash_dwo_file,
7802 eq_dwo_file,
7803 NULL,
7804 &objfile->objfile_obstack,
7805 hashtab_obstack_allocate,
7806 dummy_obstack_deallocate);
7807 }
7808
7809 static hashval_t
7810 hash_dwo_unit (const void *item)
7811 {
7812 const struct dwo_unit *dwo_unit = item;
7813
7814 /* This drops the top 32 bits of the id, but is ok for a hash. */
7815 return dwo_unit->signature;
7816 }
7817
7818 static int
7819 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
7820 {
7821 const struct dwo_unit *lhs = item_lhs;
7822 const struct dwo_unit *rhs = item_rhs;
7823
7824 /* The signature is assumed to be unique within the DWO file.
7825 So while object file CU dwo_id's always have the value zero,
7826 that's OK, assuming each object file DWO file has only one CU,
7827 and that's the rule for now. */
7828 return lhs->signature == rhs->signature;
7829 }
7830
7831 /* Allocate a hash table for DWO CUs,TUs.
7832 There is one of these tables for each of CUs,TUs for each DWO file. */
7833
7834 static htab_t
7835 allocate_dwo_unit_table (struct objfile *objfile)
7836 {
7837 /* Start out with a pretty small number.
7838 Generally DWO files contain only one CU and maybe some TUs. */
7839 return htab_create_alloc_ex (3,
7840 hash_dwo_unit,
7841 eq_dwo_unit,
7842 NULL,
7843 &objfile->objfile_obstack,
7844 hashtab_obstack_allocate,
7845 dummy_obstack_deallocate);
7846 }
7847
7848 /* This function is mapped across the sections and remembers the offset and
7849 size of each of the DWO debugging sections we are interested in. */
7850
7851 static void
7852 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr)
7853 {
7854 struct dwo_file *dwo_file = dwo_file_ptr;
7855 const struct dwo_section_names *names = &dwo_section_names;
7856
7857 if (section_is_p (sectp->name, &names->abbrev_dwo))
7858 {
7859 dwo_file->sections.abbrev.asection = sectp;
7860 dwo_file->sections.abbrev.size = bfd_get_section_size (sectp);
7861 }
7862 else if (section_is_p (sectp->name, &names->info_dwo))
7863 {
7864 dwo_file->sections.info.asection = sectp;
7865 dwo_file->sections.info.size = bfd_get_section_size (sectp);
7866 }
7867 else if (section_is_p (sectp->name, &names->line_dwo))
7868 {
7869 dwo_file->sections.line.asection = sectp;
7870 dwo_file->sections.line.size = bfd_get_section_size (sectp);
7871 }
7872 else if (section_is_p (sectp->name, &names->loc_dwo))
7873 {
7874 dwo_file->sections.loc.asection = sectp;
7875 dwo_file->sections.loc.size = bfd_get_section_size (sectp);
7876 }
7877 else if (section_is_p (sectp->name, &names->macinfo_dwo))
7878 {
7879 dwo_file->sections.macinfo.asection = sectp;
7880 dwo_file->sections.macinfo.size = bfd_get_section_size (sectp);
7881 }
7882 else if (section_is_p (sectp->name, &names->macro_dwo))
7883 {
7884 dwo_file->sections.macro.asection = sectp;
7885 dwo_file->sections.macro.size = bfd_get_section_size (sectp);
7886 }
7887 else if (section_is_p (sectp->name, &names->str_dwo))
7888 {
7889 dwo_file->sections.str.asection = sectp;
7890 dwo_file->sections.str.size = bfd_get_section_size (sectp);
7891 }
7892 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
7893 {
7894 dwo_file->sections.str_offsets.asection = sectp;
7895 dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp);
7896 }
7897 else if (section_is_p (sectp->name, &names->types_dwo))
7898 {
7899 struct dwarf2_section_info type_section;
7900
7901 memset (&type_section, 0, sizeof (type_section));
7902 type_section.asection = sectp;
7903 type_section.size = bfd_get_section_size (sectp);
7904 VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types,
7905 &type_section);
7906 }
7907 }
7908
7909 /* Structure used to pass data to create_debug_info_hash_table_reader. */
7910
7911 struct create_dwo_info_table_data
7912 {
7913 struct dwo_file *dwo_file;
7914 htab_t cu_htab;
7915 };
7916
7917 /* die_reader_func for create_debug_info_hash_table. */
7918
7919 static void
7920 create_debug_info_hash_table_reader (const struct die_reader_specs *reader,
7921 gdb_byte *info_ptr,
7922 struct die_info *comp_unit_die,
7923 int has_children,
7924 void *datap)
7925 {
7926 struct dwarf2_cu *cu = reader->cu;
7927 struct objfile *objfile = dwarf2_per_objfile->objfile;
7928 sect_offset offset = cu->per_cu->offset;
7929 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
7930 struct create_dwo_info_table_data *data = datap;
7931 struct dwo_file *dwo_file = data->dwo_file;
7932 htab_t cu_htab = data->cu_htab;
7933 void **slot;
7934 struct attribute *attr;
7935 struct dwo_unit *dwo_unit;
7936
7937 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7938 if (attr == NULL)
7939 {
7940 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
7941 " its dwo_id [in module %s]"),
7942 offset.sect_off, dwo_file->dwo_name);
7943 return;
7944 }
7945
7946 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
7947 dwo_unit->dwo_file = dwo_file;
7948 dwo_unit->signature = DW_UNSND (attr);
7949 dwo_unit->info_or_types_section = section;
7950 dwo_unit->offset = offset;
7951 dwo_unit->length = cu->per_cu->length;
7952
7953 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
7954 gdb_assert (slot != NULL);
7955 if (*slot != NULL)
7956 {
7957 const struct dwo_unit *dup_dwo_unit = *slot;
7958
7959 complaint (&symfile_complaints,
7960 _("debug entry at offset 0x%x is duplicate to the entry at"
7961 " offset 0x%x, dwo_id 0x%s [in module %s]"),
7962 offset.sect_off, dup_dwo_unit->offset.sect_off,
7963 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
7964 dwo_file->dwo_name);
7965 }
7966 else
7967 *slot = dwo_unit;
7968
7969 if (dwarf2_read_debug)
7970 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
7971 offset.sect_off,
7972 phex (dwo_unit->signature,
7973 sizeof (dwo_unit->signature)));
7974 }
7975
7976 /* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */
7977
7978 static htab_t
7979 create_debug_info_hash_table (struct dwo_file *dwo_file)
7980 {
7981 struct objfile *objfile = dwarf2_per_objfile->objfile;
7982 struct dwarf2_section_info *section = &dwo_file->sections.info;
7983 bfd *abfd;
7984 htab_t cu_htab;
7985 gdb_byte *info_ptr, *end_ptr;
7986 struct create_dwo_info_table_data create_dwo_info_table_data;
7987
7988 dwarf2_read_section (objfile, section);
7989 info_ptr = section->buffer;
7990
7991 if (info_ptr == NULL)
7992 return NULL;
7993
7994 /* We can't set abfd until now because the section may be empty or
7995 not present, in which case section->asection will be NULL. */
7996 abfd = section->asection->owner;
7997
7998 if (dwarf2_read_debug)
7999 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8000 bfd_get_filename (abfd));
8001
8002 cu_htab = allocate_dwo_unit_table (objfile);
8003
8004 create_dwo_info_table_data.dwo_file = dwo_file;
8005 create_dwo_info_table_data.cu_htab = cu_htab;
8006
8007 end_ptr = info_ptr + section->size;
8008 while (info_ptr < end_ptr)
8009 {
8010 struct dwarf2_per_cu_data per_cu;
8011
8012 memset (&per_cu, 0, sizeof (per_cu));
8013 per_cu.objfile = objfile;
8014 per_cu.is_debug_types = 0;
8015 per_cu.offset.sect_off = info_ptr - section->buffer;
8016 per_cu.info_or_types_section = section;
8017
8018 init_cutu_and_read_dies_no_follow (&per_cu,
8019 &dwo_file->sections.abbrev,
8020 dwo_file,
8021 create_debug_info_hash_table_reader,
8022 &create_dwo_info_table_data);
8023
8024 info_ptr += per_cu.length;
8025 }
8026
8027 return cu_htab;
8028 }
8029
8030 /* Subroutine of open_dwo_file to simplify it.
8031 Open the file specified by FILE_NAME and hand it off to BFD for
8032 preliminary analysis. Return a newly initialized bfd *, which
8033 includes a canonicalized copy of FILE_NAME.
8034 In case of trouble, return NULL.
8035 NOTE: This function is derived from symfile_bfd_open. */
8036
8037 static bfd *
8038 try_open_dwo_file (const char *file_name)
8039 {
8040 bfd *sym_bfd;
8041 int desc;
8042 char *absolute_name;
8043
8044 desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name,
8045 O_RDONLY | O_BINARY, &absolute_name);
8046 if (desc < 0)
8047 return NULL;
8048
8049 sym_bfd = bfd_fopen (absolute_name, gnutarget, FOPEN_RB, desc);
8050 if (!sym_bfd)
8051 {
8052 xfree (absolute_name);
8053 return NULL;
8054 }
8055 bfd_set_cacheable (sym_bfd, 1);
8056
8057 if (!bfd_check_format (sym_bfd, bfd_object))
8058 {
8059 bfd_close (sym_bfd); /* This also closes desc. */
8060 xfree (absolute_name);
8061 return NULL;
8062 }
8063
8064 /* bfd_usrdata exists for applications and libbfd must not touch it. */
8065 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
8066
8067 return sym_bfd;
8068 }
8069
8070 /* Try to open DWO file DWO_NAME.
8071 COMP_DIR is the DW_AT_comp_dir attribute.
8072 The result is the bfd handle of the file.
8073 If there is a problem finding or opening the file, return NULL.
8074 Upon success, the canonicalized path of the file is stored in the bfd,
8075 same as symfile_bfd_open. */
8076
8077 static bfd *
8078 open_dwo_file (const char *dwo_name, const char *comp_dir)
8079 {
8080 bfd *abfd;
8081
8082 if (IS_ABSOLUTE_PATH (dwo_name))
8083 return try_open_dwo_file (dwo_name);
8084
8085 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8086
8087 if (comp_dir != NULL)
8088 {
8089 char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL);
8090
8091 /* NOTE: If comp_dir is a relative path, this will also try the
8092 search path, which seems useful. */
8093 abfd = try_open_dwo_file (path_to_try);
8094 xfree (path_to_try);
8095 if (abfd != NULL)
8096 return abfd;
8097 }
8098
8099 /* That didn't work, try debug-file-directory, which, despite its name,
8100 is a list of paths. */
8101
8102 if (*debug_file_directory == '\0')
8103 return NULL;
8104
8105 return try_open_dwo_file (dwo_name);
8106 }
8107
8108 /* Initialize the use of the DWO file specified by DWO_NAME. */
8109
8110 static struct dwo_file *
8111 init_dwo_file (const char *dwo_name, const char *comp_dir)
8112 {
8113 struct objfile *objfile = dwarf2_per_objfile->objfile;
8114 struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8115 struct dwo_file);
8116 bfd *abfd;
8117 struct cleanup *cleanups;
8118
8119 if (dwarf2_read_debug)
8120 fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name);
8121
8122 abfd = open_dwo_file (dwo_name, comp_dir);
8123 if (abfd == NULL)
8124 return NULL;
8125 dwo_file->dwo_name = dwo_name;
8126 dwo_file->dwo_bfd = abfd;
8127
8128 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8129
8130 bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file);
8131
8132 dwo_file->cus = create_debug_info_hash_table (dwo_file);
8133
8134 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8135 dwo_file->sections.types);
8136
8137 discard_cleanups (cleanups);
8138
8139 return dwo_file;
8140 }
8141
8142 /* Lookup DWO file DWO_NAME. */
8143
8144 static struct dwo_file *
8145 lookup_dwo_file (char *dwo_name, const char *comp_dir)
8146 {
8147 struct dwo_file *dwo_file;
8148 struct dwo_file find_entry;
8149 void **slot;
8150
8151 if (dwarf2_per_objfile->dwo_files == NULL)
8152 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8153
8154 /* Have we already seen this DWO file? */
8155 find_entry.dwo_name = dwo_name;
8156 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8157
8158 /* If not, read it in and build a table of the DWOs it contains. */
8159 if (*slot == NULL)
8160 *slot = init_dwo_file (dwo_name, comp_dir);
8161
8162 /* NOTE: This will be NULL if unable to open the file. */
8163 dwo_file = *slot;
8164
8165 return dwo_file;
8166 }
8167
8168 /* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME.
8169 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8170 SIGNATURE is the "dwo_id" of the CU (for consistency we use the same
8171 nomenclature as TUs).
8172 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8173 (dwo_id mismatch or couldn't find the DWO file). */
8174
8175 static struct dwo_unit *
8176 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
8177 char *dwo_name, const char *comp_dir,
8178 ULONGEST signature)
8179 {
8180 struct objfile *objfile = dwarf2_per_objfile->objfile;
8181 struct dwo_file *dwo_file;
8182
8183 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8184 if (dwo_file == NULL)
8185 return NULL;
8186
8187 /* Look up the DWO using its signature(dwo_id). */
8188
8189 if (dwo_file->cus != NULL)
8190 {
8191 struct dwo_unit find_dwo_cu, *dwo_cu;
8192
8193 find_dwo_cu.signature = signature;
8194 dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu);
8195
8196 if (dwo_cu != NULL)
8197 return dwo_cu;
8198 }
8199
8200 /* We didn't find it. This must mean a dwo_id mismatch. */
8201
8202 complaint (&symfile_complaints,
8203 _("Could not find DWO CU referenced by CU at offset 0x%x"
8204 " [in module %s]"),
8205 this_cu->offset.sect_off, objfile->name);
8206 return NULL;
8207 }
8208
8209 /* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME.
8210 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8211 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8212 (dwo_id mismatch or couldn't find the DWO file). */
8213
8214 static struct dwo_unit *
8215 lookup_dwo_type_unit (struct signatured_type *this_tu,
8216 char *dwo_name, const char *comp_dir)
8217 {
8218 struct objfile *objfile = dwarf2_per_objfile->objfile;
8219 struct dwo_file *dwo_file;
8220
8221 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8222 if (dwo_file == NULL)
8223 return NULL;
8224
8225 /* Look up the DWO using its signature(dwo_id). */
8226
8227 if (dwo_file->tus != NULL)
8228 {
8229 struct dwo_unit find_dwo_tu, *dwo_tu;
8230
8231 find_dwo_tu.signature = this_tu->signature;
8232 dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu);
8233
8234 if (dwo_tu != NULL)
8235 return dwo_tu;
8236 }
8237
8238 /* We didn't find it. This must mean a dwo_id mismatch. */
8239
8240 complaint (&symfile_complaints,
8241 _("Could not find DWO TU referenced by TU at offset 0x%x"
8242 " [in module %s]"),
8243 this_tu->per_cu.offset.sect_off, objfile->name);
8244 return NULL;
8245 }
8246
8247 /* Free all resources associated with DWO_FILE.
8248 Close the DWO file and munmap the sections.
8249 All memory should be on the objfile obstack. */
8250
8251 static void
8252 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
8253 {
8254 int ix;
8255 struct dwarf2_section_info *section;
8256
8257 gdb_assert (dwo_file->dwo_bfd != objfile->obfd);
8258 bfd_close (dwo_file->dwo_bfd);
8259
8260 munmap_section_buffer (&dwo_file->sections.abbrev);
8261 munmap_section_buffer (&dwo_file->sections.info);
8262 munmap_section_buffer (&dwo_file->sections.line);
8263 munmap_section_buffer (&dwo_file->sections.loc);
8264 munmap_section_buffer (&dwo_file->sections.str);
8265 munmap_section_buffer (&dwo_file->sections.str_offsets);
8266
8267 for (ix = 0;
8268 VEC_iterate (dwarf2_section_info_def, dwo_file->sections.types,
8269 ix, section);
8270 ++ix)
8271 munmap_section_buffer (section);
8272
8273 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
8274 }
8275
8276 /* Wrapper for free_dwo_file for use in cleanups. */
8277
8278 static void
8279 free_dwo_file_cleanup (void *arg)
8280 {
8281 struct dwo_file *dwo_file = (struct dwo_file *) arg;
8282 struct objfile *objfile = dwarf2_per_objfile->objfile;
8283
8284 free_dwo_file (dwo_file, objfile);
8285 }
8286
8287 /* Traversal function for free_dwo_files. */
8288
8289 static int
8290 free_dwo_file_from_slot (void **slot, void *info)
8291 {
8292 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8293 struct objfile *objfile = (struct objfile *) info;
8294
8295 free_dwo_file (dwo_file, objfile);
8296
8297 return 1;
8298 }
8299
8300 /* Free all resources associated with DWO_FILES. */
8301
8302 static void
8303 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
8304 {
8305 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
8306 }
8307 \f
8308 /* Read in various DIEs. */
8309
8310 /* qsort helper for inherit_abstract_dies. */
8311
8312 static int
8313 unsigned_int_compar (const void *ap, const void *bp)
8314 {
8315 unsigned int a = *(unsigned int *) ap;
8316 unsigned int b = *(unsigned int *) bp;
8317
8318 return (a > b) - (b > a);
8319 }
8320
8321 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
8322 Inherit only the children of the DW_AT_abstract_origin DIE not being
8323 already referenced by DW_AT_abstract_origin from the children of the
8324 current DIE. */
8325
8326 static void
8327 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
8328 {
8329 struct die_info *child_die;
8330 unsigned die_children_count;
8331 /* CU offsets which were referenced by children of the current DIE. */
8332 sect_offset *offsets;
8333 sect_offset *offsets_end, *offsetp;
8334 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
8335 struct die_info *origin_die;
8336 /* Iterator of the ORIGIN_DIE children. */
8337 struct die_info *origin_child_die;
8338 struct cleanup *cleanups;
8339 struct attribute *attr;
8340 struct dwarf2_cu *origin_cu;
8341 struct pending **origin_previous_list_in_scope;
8342
8343 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
8344 if (!attr)
8345 return;
8346
8347 /* Note that following die references may follow to a die in a
8348 different cu. */
8349
8350 origin_cu = cu;
8351 origin_die = follow_die_ref (die, attr, &origin_cu);
8352
8353 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
8354 symbols in. */
8355 origin_previous_list_in_scope = origin_cu->list_in_scope;
8356 origin_cu->list_in_scope = cu->list_in_scope;
8357
8358 if (die->tag != origin_die->tag
8359 && !(die->tag == DW_TAG_inlined_subroutine
8360 && origin_die->tag == DW_TAG_subprogram))
8361 complaint (&symfile_complaints,
8362 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
8363 die->offset.sect_off, origin_die->offset.sect_off);
8364
8365 child_die = die->child;
8366 die_children_count = 0;
8367 while (child_die && child_die->tag)
8368 {
8369 child_die = sibling_die (child_die);
8370 die_children_count++;
8371 }
8372 offsets = xmalloc (sizeof (*offsets) * die_children_count);
8373 cleanups = make_cleanup (xfree, offsets);
8374
8375 offsets_end = offsets;
8376 child_die = die->child;
8377 while (child_die && child_die->tag)
8378 {
8379 /* For each CHILD_DIE, find the corresponding child of
8380 ORIGIN_DIE. If there is more than one layer of
8381 DW_AT_abstract_origin, follow them all; there shouldn't be,
8382 but GCC versions at least through 4.4 generate this (GCC PR
8383 40573). */
8384 struct die_info *child_origin_die = child_die;
8385 struct dwarf2_cu *child_origin_cu = cu;
8386
8387 while (1)
8388 {
8389 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
8390 child_origin_cu);
8391 if (attr == NULL)
8392 break;
8393 child_origin_die = follow_die_ref (child_origin_die, attr,
8394 &child_origin_cu);
8395 }
8396
8397 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
8398 counterpart may exist. */
8399 if (child_origin_die != child_die)
8400 {
8401 if (child_die->tag != child_origin_die->tag
8402 && !(child_die->tag == DW_TAG_inlined_subroutine
8403 && child_origin_die->tag == DW_TAG_subprogram))
8404 complaint (&symfile_complaints,
8405 _("Child DIE 0x%x and its abstract origin 0x%x have "
8406 "different tags"), child_die->offset.sect_off,
8407 child_origin_die->offset.sect_off);
8408 if (child_origin_die->parent != origin_die)
8409 complaint (&symfile_complaints,
8410 _("Child DIE 0x%x and its abstract origin 0x%x have "
8411 "different parents"), child_die->offset.sect_off,
8412 child_origin_die->offset.sect_off);
8413 else
8414 *offsets_end++ = child_origin_die->offset;
8415 }
8416 child_die = sibling_die (child_die);
8417 }
8418 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
8419 unsigned_int_compar);
8420 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
8421 if (offsetp[-1].sect_off == offsetp->sect_off)
8422 complaint (&symfile_complaints,
8423 _("Multiple children of DIE 0x%x refer "
8424 "to DIE 0x%x as their abstract origin"),
8425 die->offset.sect_off, offsetp->sect_off);
8426
8427 offsetp = offsets;
8428 origin_child_die = origin_die->child;
8429 while (origin_child_die && origin_child_die->tag)
8430 {
8431 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
8432 while (offsetp < offsets_end
8433 && offsetp->sect_off < origin_child_die->offset.sect_off)
8434 offsetp++;
8435 if (offsetp >= offsets_end
8436 || offsetp->sect_off > origin_child_die->offset.sect_off)
8437 {
8438 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
8439 process_die (origin_child_die, origin_cu);
8440 }
8441 origin_child_die = sibling_die (origin_child_die);
8442 }
8443 origin_cu->list_in_scope = origin_previous_list_in_scope;
8444
8445 do_cleanups (cleanups);
8446 }
8447
8448 static void
8449 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
8450 {
8451 struct objfile *objfile = cu->objfile;
8452 struct context_stack *new;
8453 CORE_ADDR lowpc;
8454 CORE_ADDR highpc;
8455 struct die_info *child_die;
8456 struct attribute *attr, *call_line, *call_file;
8457 char *name;
8458 CORE_ADDR baseaddr;
8459 struct block *block;
8460 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8461 VEC (symbolp) *template_args = NULL;
8462 struct template_symbol *templ_func = NULL;
8463
8464 if (inlined_func)
8465 {
8466 /* If we do not have call site information, we can't show the
8467 caller of this inlined function. That's too confusing, so
8468 only use the scope for local variables. */
8469 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
8470 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
8471 if (call_line == NULL || call_file == NULL)
8472 {
8473 read_lexical_block_scope (die, cu);
8474 return;
8475 }
8476 }
8477
8478 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8479
8480 name = dwarf2_name (die, cu);
8481
8482 /* Ignore functions with missing or empty names. These are actually
8483 illegal according to the DWARF standard. */
8484 if (name == NULL)
8485 {
8486 complaint (&symfile_complaints,
8487 _("missing name for subprogram DIE at %d"),
8488 die->offset.sect_off);
8489 return;
8490 }
8491
8492 /* Ignore functions with missing or invalid low and high pc attributes. */
8493 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8494 {
8495 attr = dwarf2_attr (die, DW_AT_external, cu);
8496 if (!attr || !DW_UNSND (attr))
8497 complaint (&symfile_complaints,
8498 _("cannot get low and high bounds "
8499 "for subprogram DIE at %d"),
8500 die->offset.sect_off);
8501 return;
8502 }
8503
8504 lowpc += baseaddr;
8505 highpc += baseaddr;
8506
8507 /* If we have any template arguments, then we must allocate a
8508 different sort of symbol. */
8509 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
8510 {
8511 if (child_die->tag == DW_TAG_template_type_param
8512 || child_die->tag == DW_TAG_template_value_param)
8513 {
8514 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8515 struct template_symbol);
8516 templ_func->base.is_cplus_template_function = 1;
8517 break;
8518 }
8519 }
8520
8521 new = push_context (0, lowpc);
8522 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
8523 (struct symbol *) templ_func);
8524
8525 /* If there is a location expression for DW_AT_frame_base, record
8526 it. */
8527 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
8528 if (attr)
8529 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
8530 expression is being recorded directly in the function's symbol
8531 and not in a separate frame-base object. I guess this hack is
8532 to avoid adding some sort of frame-base adjunct/annex to the
8533 function's symbol :-(. The problem with doing this is that it
8534 results in a function symbol with a location expression that
8535 has nothing to do with the location of the function, ouch! The
8536 relationship should be: a function's symbol has-a frame base; a
8537 frame-base has-a location expression. */
8538 dwarf2_symbol_mark_computed (attr, new->name, cu);
8539
8540 cu->list_in_scope = &local_symbols;
8541
8542 if (die->child != NULL)
8543 {
8544 child_die = die->child;
8545 while (child_die && child_die->tag)
8546 {
8547 if (child_die->tag == DW_TAG_template_type_param
8548 || child_die->tag == DW_TAG_template_value_param)
8549 {
8550 struct symbol *arg = new_symbol (child_die, NULL, cu);
8551
8552 if (arg != NULL)
8553 VEC_safe_push (symbolp, template_args, arg);
8554 }
8555 else
8556 process_die (child_die, cu);
8557 child_die = sibling_die (child_die);
8558 }
8559 }
8560
8561 inherit_abstract_dies (die, cu);
8562
8563 /* If we have a DW_AT_specification, we might need to import using
8564 directives from the context of the specification DIE. See the
8565 comment in determine_prefix. */
8566 if (cu->language == language_cplus
8567 && dwarf2_attr (die, DW_AT_specification, cu))
8568 {
8569 struct dwarf2_cu *spec_cu = cu;
8570 struct die_info *spec_die = die_specification (die, &spec_cu);
8571
8572 while (spec_die)
8573 {
8574 child_die = spec_die->child;
8575 while (child_die && child_die->tag)
8576 {
8577 if (child_die->tag == DW_TAG_imported_module)
8578 process_die (child_die, spec_cu);
8579 child_die = sibling_die (child_die);
8580 }
8581
8582 /* In some cases, GCC generates specification DIEs that
8583 themselves contain DW_AT_specification attributes. */
8584 spec_die = die_specification (spec_die, &spec_cu);
8585 }
8586 }
8587
8588 new = pop_context ();
8589 /* Make a block for the local symbols within. */
8590 block = finish_block (new->name, &local_symbols, new->old_blocks,
8591 lowpc, highpc, objfile);
8592
8593 /* For C++, set the block's scope. */
8594 if (cu->language == language_cplus || cu->language == language_fortran)
8595 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
8596 determine_prefix (die, cu),
8597 processing_has_namespace_info);
8598
8599 /* If we have address ranges, record them. */
8600 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8601
8602 /* Attach template arguments to function. */
8603 if (! VEC_empty (symbolp, template_args))
8604 {
8605 gdb_assert (templ_func != NULL);
8606
8607 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
8608 templ_func->template_arguments
8609 = obstack_alloc (&objfile->objfile_obstack,
8610 (templ_func->n_template_arguments
8611 * sizeof (struct symbol *)));
8612 memcpy (templ_func->template_arguments,
8613 VEC_address (symbolp, template_args),
8614 (templ_func->n_template_arguments * sizeof (struct symbol *)));
8615 VEC_free (symbolp, template_args);
8616 }
8617
8618 /* In C++, we can have functions nested inside functions (e.g., when
8619 a function declares a class that has methods). This means that
8620 when we finish processing a function scope, we may need to go
8621 back to building a containing block's symbol lists. */
8622 local_symbols = new->locals;
8623 param_symbols = new->params;
8624 using_directives = new->using_directives;
8625
8626 /* If we've finished processing a top-level function, subsequent
8627 symbols go in the file symbol list. */
8628 if (outermost_context_p ())
8629 cu->list_in_scope = &file_symbols;
8630 }
8631
8632 /* Process all the DIES contained within a lexical block scope. Start
8633 a new scope, process the dies, and then close the scope. */
8634
8635 static void
8636 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
8637 {
8638 struct objfile *objfile = cu->objfile;
8639 struct context_stack *new;
8640 CORE_ADDR lowpc, highpc;
8641 struct die_info *child_die;
8642 CORE_ADDR baseaddr;
8643
8644 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8645
8646 /* Ignore blocks with missing or invalid low and high pc attributes. */
8647 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
8648 as multiple lexical blocks? Handling children in a sane way would
8649 be nasty. Might be easier to properly extend generic blocks to
8650 describe ranges. */
8651 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8652 return;
8653 lowpc += baseaddr;
8654 highpc += baseaddr;
8655
8656 push_context (0, lowpc);
8657 if (die->child != NULL)
8658 {
8659 child_die = die->child;
8660 while (child_die && child_die->tag)
8661 {
8662 process_die (child_die, cu);
8663 child_die = sibling_die (child_die);
8664 }
8665 }
8666 new = pop_context ();
8667
8668 if (local_symbols != NULL || using_directives != NULL)
8669 {
8670 struct block *block
8671 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
8672 highpc, objfile);
8673
8674 /* Note that recording ranges after traversing children, as we
8675 do here, means that recording a parent's ranges entails
8676 walking across all its children's ranges as they appear in
8677 the address map, which is quadratic behavior.
8678
8679 It would be nicer to record the parent's ranges before
8680 traversing its children, simply overriding whatever you find
8681 there. But since we don't even decide whether to create a
8682 block until after we've traversed its children, that's hard
8683 to do. */
8684 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8685 }
8686 local_symbols = new->locals;
8687 using_directives = new->using_directives;
8688 }
8689
8690 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
8691
8692 static void
8693 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
8694 {
8695 struct objfile *objfile = cu->objfile;
8696 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8697 CORE_ADDR pc, baseaddr;
8698 struct attribute *attr;
8699 struct call_site *call_site, call_site_local;
8700 void **slot;
8701 int nparams;
8702 struct die_info *child_die;
8703
8704 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8705
8706 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8707 if (!attr)
8708 {
8709 complaint (&symfile_complaints,
8710 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
8711 "DIE 0x%x [in module %s]"),
8712 die->offset.sect_off, objfile->name);
8713 return;
8714 }
8715 pc = DW_ADDR (attr) + baseaddr;
8716
8717 if (cu->call_site_htab == NULL)
8718 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
8719 NULL, &objfile->objfile_obstack,
8720 hashtab_obstack_allocate, NULL);
8721 call_site_local.pc = pc;
8722 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
8723 if (*slot != NULL)
8724 {
8725 complaint (&symfile_complaints,
8726 _("Duplicate PC %s for DW_TAG_GNU_call_site "
8727 "DIE 0x%x [in module %s]"),
8728 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
8729 return;
8730 }
8731
8732 /* Count parameters at the caller. */
8733
8734 nparams = 0;
8735 for (child_die = die->child; child_die && child_die->tag;
8736 child_die = sibling_die (child_die))
8737 {
8738 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
8739 {
8740 complaint (&symfile_complaints,
8741 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
8742 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8743 child_die->tag, child_die->offset.sect_off, objfile->name);
8744 continue;
8745 }
8746
8747 nparams++;
8748 }
8749
8750 call_site = obstack_alloc (&objfile->objfile_obstack,
8751 (sizeof (*call_site)
8752 + (sizeof (*call_site->parameter)
8753 * (nparams - 1))));
8754 *slot = call_site;
8755 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
8756 call_site->pc = pc;
8757
8758 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
8759 {
8760 struct die_info *func_die;
8761
8762 /* Skip also over DW_TAG_inlined_subroutine. */
8763 for (func_die = die->parent;
8764 func_die && func_die->tag != DW_TAG_subprogram
8765 && func_die->tag != DW_TAG_subroutine_type;
8766 func_die = func_die->parent);
8767
8768 /* DW_AT_GNU_all_call_sites is a superset
8769 of DW_AT_GNU_all_tail_call_sites. */
8770 if (func_die
8771 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
8772 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
8773 {
8774 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
8775 not complete. But keep CALL_SITE for look ups via call_site_htab,
8776 both the initial caller containing the real return address PC and
8777 the final callee containing the current PC of a chain of tail
8778 calls do not need to have the tail call list complete. But any
8779 function candidate for a virtual tail call frame searched via
8780 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
8781 determined unambiguously. */
8782 }
8783 else
8784 {
8785 struct type *func_type = NULL;
8786
8787 if (func_die)
8788 func_type = get_die_type (func_die, cu);
8789 if (func_type != NULL)
8790 {
8791 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
8792
8793 /* Enlist this call site to the function. */
8794 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
8795 TYPE_TAIL_CALL_LIST (func_type) = call_site;
8796 }
8797 else
8798 complaint (&symfile_complaints,
8799 _("Cannot find function owning DW_TAG_GNU_call_site "
8800 "DIE 0x%x [in module %s]"),
8801 die->offset.sect_off, objfile->name);
8802 }
8803 }
8804
8805 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
8806 if (attr == NULL)
8807 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
8808 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
8809 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
8810 /* Keep NULL DWARF_BLOCK. */;
8811 else if (attr_form_is_block (attr))
8812 {
8813 struct dwarf2_locexpr_baton *dlbaton;
8814
8815 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
8816 dlbaton->data = DW_BLOCK (attr)->data;
8817 dlbaton->size = DW_BLOCK (attr)->size;
8818 dlbaton->per_cu = cu->per_cu;
8819
8820 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
8821 }
8822 else if (is_ref_attr (attr))
8823 {
8824 struct dwarf2_cu *target_cu = cu;
8825 struct die_info *target_die;
8826
8827 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
8828 gdb_assert (target_cu->objfile == objfile);
8829 if (die_is_declaration (target_die, target_cu))
8830 {
8831 const char *target_physname;
8832
8833 target_physname = dwarf2_physname (NULL, target_die, target_cu);
8834 if (target_physname == NULL)
8835 complaint (&symfile_complaints,
8836 _("DW_AT_GNU_call_site_target target DIE has invalid "
8837 "physname, for referencing DIE 0x%x [in module %s]"),
8838 die->offset.sect_off, objfile->name);
8839 else
8840 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
8841 }
8842 else
8843 {
8844 CORE_ADDR lowpc;
8845
8846 /* DW_AT_entry_pc should be preferred. */
8847 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
8848 complaint (&symfile_complaints,
8849 _("DW_AT_GNU_call_site_target target DIE has invalid "
8850 "low pc, for referencing DIE 0x%x [in module %s]"),
8851 die->offset.sect_off, objfile->name);
8852 else
8853 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
8854 }
8855 }
8856 else
8857 complaint (&symfile_complaints,
8858 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
8859 "block nor reference, for DIE 0x%x [in module %s]"),
8860 die->offset.sect_off, objfile->name);
8861
8862 call_site->per_cu = cu->per_cu;
8863
8864 for (child_die = die->child;
8865 child_die && child_die->tag;
8866 child_die = sibling_die (child_die))
8867 {
8868 struct call_site_parameter *parameter;
8869 struct attribute *loc, *origin;
8870
8871 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
8872 {
8873 /* Already printed the complaint above. */
8874 continue;
8875 }
8876
8877 gdb_assert (call_site->parameter_count < nparams);
8878 parameter = &call_site->parameter[call_site->parameter_count];
8879
8880 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
8881 specifies DW_TAG_formal_parameter. Value of the data assumed for the
8882 register is contained in DW_AT_GNU_call_site_value. */
8883
8884 loc = dwarf2_attr (child_die, DW_AT_location, cu);
8885 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
8886 if (loc == NULL && origin != NULL && is_ref_attr (origin))
8887 {
8888 sect_offset offset;
8889
8890 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
8891 offset = dwarf2_get_ref_die_offset (origin);
8892 if (!offset_in_cu_p (&cu->header, offset))
8893 {
8894 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
8895 binding can be done only inside one CU. Such referenced DIE
8896 therefore cannot be even moved to DW_TAG_partial_unit. */
8897 complaint (&symfile_complaints,
8898 _("DW_AT_abstract_origin offset is not in CU for "
8899 "DW_TAG_GNU_call_site child DIE 0x%x "
8900 "[in module %s]"),
8901 child_die->offset.sect_off, objfile->name);
8902 continue;
8903 }
8904 parameter->u.param_offset.cu_off = (offset.sect_off
8905 - cu->header.offset.sect_off);
8906 }
8907 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
8908 {
8909 complaint (&symfile_complaints,
8910 _("No DW_FORM_block* DW_AT_location for "
8911 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8912 child_die->offset.sect_off, objfile->name);
8913 continue;
8914 }
8915 else
8916 {
8917 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
8918 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
8919 if (parameter->u.dwarf_reg != -1)
8920 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
8921 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
8922 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
8923 &parameter->u.fb_offset))
8924 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
8925 else
8926 {
8927 complaint (&symfile_complaints,
8928 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
8929 "for DW_FORM_block* DW_AT_location is supported for "
8930 "DW_TAG_GNU_call_site child DIE 0x%x "
8931 "[in module %s]"),
8932 child_die->offset.sect_off, objfile->name);
8933 continue;
8934 }
8935 }
8936
8937 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
8938 if (!attr_form_is_block (attr))
8939 {
8940 complaint (&symfile_complaints,
8941 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
8942 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8943 child_die->offset.sect_off, objfile->name);
8944 continue;
8945 }
8946 parameter->value = DW_BLOCK (attr)->data;
8947 parameter->value_size = DW_BLOCK (attr)->size;
8948
8949 /* Parameters are not pre-cleared by memset above. */
8950 parameter->data_value = NULL;
8951 parameter->data_value_size = 0;
8952 call_site->parameter_count++;
8953
8954 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
8955 if (attr)
8956 {
8957 if (!attr_form_is_block (attr))
8958 complaint (&symfile_complaints,
8959 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
8960 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8961 child_die->offset.sect_off, objfile->name);
8962 else
8963 {
8964 parameter->data_value = DW_BLOCK (attr)->data;
8965 parameter->data_value_size = DW_BLOCK (attr)->size;
8966 }
8967 }
8968 }
8969 }
8970
8971 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
8972 Return 1 if the attributes are present and valid, otherwise, return 0.
8973 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
8974
8975 static int
8976 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
8977 CORE_ADDR *high_return, struct dwarf2_cu *cu,
8978 struct partial_symtab *ranges_pst)
8979 {
8980 struct objfile *objfile = cu->objfile;
8981 struct comp_unit_head *cu_header = &cu->header;
8982 bfd *obfd = objfile->obfd;
8983 unsigned int addr_size = cu_header->addr_size;
8984 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
8985 /* Base address selection entry. */
8986 CORE_ADDR base;
8987 int found_base;
8988 unsigned int dummy;
8989 gdb_byte *buffer;
8990 CORE_ADDR marker;
8991 int low_set;
8992 CORE_ADDR low = 0;
8993 CORE_ADDR high = 0;
8994 CORE_ADDR baseaddr;
8995
8996 found_base = cu->base_known;
8997 base = cu->base_address;
8998
8999 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9000 if (offset >= dwarf2_per_objfile->ranges.size)
9001 {
9002 complaint (&symfile_complaints,
9003 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9004 offset);
9005 return 0;
9006 }
9007 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9008
9009 /* Read in the largest possible address. */
9010 marker = read_address (obfd, buffer, cu, &dummy);
9011 if ((marker & mask) == mask)
9012 {
9013 /* If we found the largest possible address, then
9014 read the base address. */
9015 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9016 buffer += 2 * addr_size;
9017 offset += 2 * addr_size;
9018 found_base = 1;
9019 }
9020
9021 low_set = 0;
9022
9023 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9024
9025 while (1)
9026 {
9027 CORE_ADDR range_beginning, range_end;
9028
9029 range_beginning = read_address (obfd, buffer, cu, &dummy);
9030 buffer += addr_size;
9031 range_end = read_address (obfd, buffer, cu, &dummy);
9032 buffer += addr_size;
9033 offset += 2 * addr_size;
9034
9035 /* An end of list marker is a pair of zero addresses. */
9036 if (range_beginning == 0 && range_end == 0)
9037 /* Found the end of list entry. */
9038 break;
9039
9040 /* Each base address selection entry is a pair of 2 values.
9041 The first is the largest possible address, the second is
9042 the base address. Check for a base address here. */
9043 if ((range_beginning & mask) == mask)
9044 {
9045 /* If we found the largest possible address, then
9046 read the base address. */
9047 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9048 found_base = 1;
9049 continue;
9050 }
9051
9052 if (!found_base)
9053 {
9054 /* We have no valid base address for the ranges
9055 data. */
9056 complaint (&symfile_complaints,
9057 _("Invalid .debug_ranges data (no base address)"));
9058 return 0;
9059 }
9060
9061 if (range_beginning > range_end)
9062 {
9063 /* Inverted range entries are invalid. */
9064 complaint (&symfile_complaints,
9065 _("Invalid .debug_ranges data (inverted range)"));
9066 return 0;
9067 }
9068
9069 /* Empty range entries have no effect. */
9070 if (range_beginning == range_end)
9071 continue;
9072
9073 range_beginning += base;
9074 range_end += base;
9075
9076 if (ranges_pst != NULL)
9077 addrmap_set_empty (objfile->psymtabs_addrmap,
9078 range_beginning + baseaddr,
9079 range_end - 1 + baseaddr,
9080 ranges_pst);
9081
9082 /* FIXME: This is recording everything as a low-high
9083 segment of consecutive addresses. We should have a
9084 data structure for discontiguous block ranges
9085 instead. */
9086 if (! low_set)
9087 {
9088 low = range_beginning;
9089 high = range_end;
9090 low_set = 1;
9091 }
9092 else
9093 {
9094 if (range_beginning < low)
9095 low = range_beginning;
9096 if (range_end > high)
9097 high = range_end;
9098 }
9099 }
9100
9101 if (! low_set)
9102 /* If the first entry is an end-of-list marker, the range
9103 describes an empty scope, i.e. no instructions. */
9104 return 0;
9105
9106 if (low_return)
9107 *low_return = low;
9108 if (high_return)
9109 *high_return = high;
9110 return 1;
9111 }
9112
9113 /* Get low and high pc attributes from a die. Return 1 if the attributes
9114 are present and valid, otherwise, return 0. Return -1 if the range is
9115 discontinuous, i.e. derived from DW_AT_ranges information. */
9116
9117 static int
9118 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
9119 CORE_ADDR *highpc, struct dwarf2_cu *cu,
9120 struct partial_symtab *pst)
9121 {
9122 struct attribute *attr;
9123 struct attribute *attr_high;
9124 CORE_ADDR low = 0;
9125 CORE_ADDR high = 0;
9126 int ret = 0;
9127
9128 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9129 if (attr_high)
9130 {
9131 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9132 if (attr)
9133 {
9134 low = DW_ADDR (attr);
9135 if (attr_high->form == DW_FORM_addr
9136 || attr_high->form == DW_FORM_GNU_addr_index)
9137 high = DW_ADDR (attr_high);
9138 else
9139 high = low + DW_UNSND (attr_high);
9140 }
9141 else
9142 /* Found high w/o low attribute. */
9143 return 0;
9144
9145 /* Found consecutive range of addresses. */
9146 ret = 1;
9147 }
9148 else
9149 {
9150 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9151 if (attr != NULL)
9152 {
9153 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
9154
9155 /* Value of the DW_AT_ranges attribute is the offset in the
9156 .debug_ranges section. */
9157 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
9158 return 0;
9159 /* Found discontinuous range of addresses. */
9160 ret = -1;
9161 }
9162 }
9163
9164 /* read_partial_die has also the strict LOW < HIGH requirement. */
9165 if (high <= low)
9166 return 0;
9167
9168 /* When using the GNU linker, .gnu.linkonce. sections are used to
9169 eliminate duplicate copies of functions and vtables and such.
9170 The linker will arbitrarily choose one and discard the others.
9171 The AT_*_pc values for such functions refer to local labels in
9172 these sections. If the section from that file was discarded, the
9173 labels are not in the output, so the relocs get a value of 0.
9174 If this is a discarded function, mark the pc bounds as invalid,
9175 so that GDB will ignore it. */
9176 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
9177 return 0;
9178
9179 *lowpc = low;
9180 if (highpc)
9181 *highpc = high;
9182 return ret;
9183 }
9184
9185 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
9186 its low and high PC addresses. Do nothing if these addresses could not
9187 be determined. Otherwise, set LOWPC to the low address if it is smaller,
9188 and HIGHPC to the high address if greater than HIGHPC. */
9189
9190 static void
9191 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
9192 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9193 struct dwarf2_cu *cu)
9194 {
9195 CORE_ADDR low, high;
9196 struct die_info *child = die->child;
9197
9198 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
9199 {
9200 *lowpc = min (*lowpc, low);
9201 *highpc = max (*highpc, high);
9202 }
9203
9204 /* If the language does not allow nested subprograms (either inside
9205 subprograms or lexical blocks), we're done. */
9206 if (cu->language != language_ada)
9207 return;
9208
9209 /* Check all the children of the given DIE. If it contains nested
9210 subprograms, then check their pc bounds. Likewise, we need to
9211 check lexical blocks as well, as they may also contain subprogram
9212 definitions. */
9213 while (child && child->tag)
9214 {
9215 if (child->tag == DW_TAG_subprogram
9216 || child->tag == DW_TAG_lexical_block)
9217 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
9218 child = sibling_die (child);
9219 }
9220 }
9221
9222 /* Get the low and high pc's represented by the scope DIE, and store
9223 them in *LOWPC and *HIGHPC. If the correct values can't be
9224 determined, set *LOWPC to -1 and *HIGHPC to 0. */
9225
9226 static void
9227 get_scope_pc_bounds (struct die_info *die,
9228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9229 struct dwarf2_cu *cu)
9230 {
9231 CORE_ADDR best_low = (CORE_ADDR) -1;
9232 CORE_ADDR best_high = (CORE_ADDR) 0;
9233 CORE_ADDR current_low, current_high;
9234
9235 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
9236 {
9237 best_low = current_low;
9238 best_high = current_high;
9239 }
9240 else
9241 {
9242 struct die_info *child = die->child;
9243
9244 while (child && child->tag)
9245 {
9246 switch (child->tag) {
9247 case DW_TAG_subprogram:
9248 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
9249 break;
9250 case DW_TAG_namespace:
9251 case DW_TAG_module:
9252 /* FIXME: carlton/2004-01-16: Should we do this for
9253 DW_TAG_class_type/DW_TAG_structure_type, too? I think
9254 that current GCC's always emit the DIEs corresponding
9255 to definitions of methods of classes as children of a
9256 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
9257 the DIEs giving the declarations, which could be
9258 anywhere). But I don't see any reason why the
9259 standards says that they have to be there. */
9260 get_scope_pc_bounds (child, &current_low, &current_high, cu);
9261
9262 if (current_low != ((CORE_ADDR) -1))
9263 {
9264 best_low = min (best_low, current_low);
9265 best_high = max (best_high, current_high);
9266 }
9267 break;
9268 default:
9269 /* Ignore. */
9270 break;
9271 }
9272
9273 child = sibling_die (child);
9274 }
9275 }
9276
9277 *lowpc = best_low;
9278 *highpc = best_high;
9279 }
9280
9281 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
9282 in DIE. */
9283
9284 static void
9285 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
9286 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
9287 {
9288 struct objfile *objfile = cu->objfile;
9289 struct attribute *attr;
9290 struct attribute *attr_high;
9291
9292 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9293 if (attr_high)
9294 {
9295 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9296 if (attr)
9297 {
9298 CORE_ADDR low = DW_ADDR (attr);
9299 CORE_ADDR high;
9300 if (attr_high->form == DW_FORM_addr
9301 || attr_high->form == DW_FORM_GNU_addr_index)
9302 high = DW_ADDR (attr_high);
9303 else
9304 high = low + DW_UNSND (attr_high);
9305
9306 record_block_range (block, baseaddr + low, baseaddr + high - 1);
9307 }
9308 }
9309
9310 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9311 if (attr)
9312 {
9313 bfd *obfd = objfile->obfd;
9314
9315 /* The value of the DW_AT_ranges attribute is the offset of the
9316 address range list in the .debug_ranges section. */
9317 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
9318 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
9319
9320 /* For some target architectures, but not others, the
9321 read_address function sign-extends the addresses it returns.
9322 To recognize base address selection entries, we need a
9323 mask. */
9324 unsigned int addr_size = cu->header.addr_size;
9325 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9326
9327 /* The base address, to which the next pair is relative. Note
9328 that this 'base' is a DWARF concept: most entries in a range
9329 list are relative, to reduce the number of relocs against the
9330 debugging information. This is separate from this function's
9331 'baseaddr' argument, which GDB uses to relocate debugging
9332 information from a shared library based on the address at
9333 which the library was loaded. */
9334 CORE_ADDR base = cu->base_address;
9335 int base_known = cu->base_known;
9336
9337 gdb_assert (dwarf2_per_objfile->ranges.readin);
9338 if (offset >= dwarf2_per_objfile->ranges.size)
9339 {
9340 complaint (&symfile_complaints,
9341 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
9342 offset);
9343 return;
9344 }
9345
9346 for (;;)
9347 {
9348 unsigned int bytes_read;
9349 CORE_ADDR start, end;
9350
9351 start = read_address (obfd, buffer, cu, &bytes_read);
9352 buffer += bytes_read;
9353 end = read_address (obfd, buffer, cu, &bytes_read);
9354 buffer += bytes_read;
9355
9356 /* Did we find the end of the range list? */
9357 if (start == 0 && end == 0)
9358 break;
9359
9360 /* Did we find a base address selection entry? */
9361 else if ((start & base_select_mask) == base_select_mask)
9362 {
9363 base = end;
9364 base_known = 1;
9365 }
9366
9367 /* We found an ordinary address range. */
9368 else
9369 {
9370 if (!base_known)
9371 {
9372 complaint (&symfile_complaints,
9373 _("Invalid .debug_ranges data "
9374 "(no base address)"));
9375 return;
9376 }
9377
9378 if (start > end)
9379 {
9380 /* Inverted range entries are invalid. */
9381 complaint (&symfile_complaints,
9382 _("Invalid .debug_ranges data "
9383 "(inverted range)"));
9384 return;
9385 }
9386
9387 /* Empty range entries have no effect. */
9388 if (start == end)
9389 continue;
9390
9391 record_block_range (block,
9392 baseaddr + base + start,
9393 baseaddr + base + end - 1);
9394 }
9395 }
9396 }
9397 }
9398
9399 /* Check whether the producer field indicates either of GCC < 4.6, or the
9400 Intel C/C++ compiler, and cache the result in CU. */
9401
9402 static void
9403 check_producer (struct dwarf2_cu *cu)
9404 {
9405 const char *cs;
9406 int major, minor, release;
9407
9408 if (cu->producer == NULL)
9409 {
9410 /* For unknown compilers expect their behavior is DWARF version
9411 compliant.
9412
9413 GCC started to support .debug_types sections by -gdwarf-4 since
9414 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
9415 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
9416 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
9417 interpreted incorrectly by GDB now - GCC PR debug/48229. */
9418 }
9419 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
9420 {
9421 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
9422
9423 cs = &cu->producer[strlen ("GNU ")];
9424 while (*cs && !isdigit (*cs))
9425 cs++;
9426 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
9427 {
9428 /* Not recognized as GCC. */
9429 }
9430 else
9431 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
9432 }
9433 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
9434 cu->producer_is_icc = 1;
9435 else
9436 {
9437 /* For other non-GCC compilers, expect their behavior is DWARF version
9438 compliant. */
9439 }
9440
9441 cu->checked_producer = 1;
9442 }
9443
9444 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
9445 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
9446 during 4.6.0 experimental. */
9447
9448 static int
9449 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
9450 {
9451 if (!cu->checked_producer)
9452 check_producer (cu);
9453
9454 return cu->producer_is_gxx_lt_4_6;
9455 }
9456
9457 /* Return the default accessibility type if it is not overriden by
9458 DW_AT_accessibility. */
9459
9460 static enum dwarf_access_attribute
9461 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
9462 {
9463 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
9464 {
9465 /* The default DWARF 2 accessibility for members is public, the default
9466 accessibility for inheritance is private. */
9467
9468 if (die->tag != DW_TAG_inheritance)
9469 return DW_ACCESS_public;
9470 else
9471 return DW_ACCESS_private;
9472 }
9473 else
9474 {
9475 /* DWARF 3+ defines the default accessibility a different way. The same
9476 rules apply now for DW_TAG_inheritance as for the members and it only
9477 depends on the container kind. */
9478
9479 if (die->parent->tag == DW_TAG_class_type)
9480 return DW_ACCESS_private;
9481 else
9482 return DW_ACCESS_public;
9483 }
9484 }
9485
9486 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
9487 offset. If the attribute was not found return 0, otherwise return
9488 1. If it was found but could not properly be handled, set *OFFSET
9489 to 0. */
9490
9491 static int
9492 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
9493 LONGEST *offset)
9494 {
9495 struct attribute *attr;
9496
9497 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
9498 if (attr != NULL)
9499 {
9500 *offset = 0;
9501
9502 /* Note that we do not check for a section offset first here.
9503 This is because DW_AT_data_member_location is new in DWARF 4,
9504 so if we see it, we can assume that a constant form is really
9505 a constant and not a section offset. */
9506 if (attr_form_is_constant (attr))
9507 *offset = dwarf2_get_attr_constant_value (attr, 0);
9508 else if (attr_form_is_section_offset (attr))
9509 dwarf2_complex_location_expr_complaint ();
9510 else if (attr_form_is_block (attr))
9511 *offset = decode_locdesc (DW_BLOCK (attr), cu);
9512 else
9513 dwarf2_complex_location_expr_complaint ();
9514
9515 return 1;
9516 }
9517
9518 return 0;
9519 }
9520
9521 /* Add an aggregate field to the field list. */
9522
9523 static void
9524 dwarf2_add_field (struct field_info *fip, struct die_info *die,
9525 struct dwarf2_cu *cu)
9526 {
9527 struct objfile *objfile = cu->objfile;
9528 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9529 struct nextfield *new_field;
9530 struct attribute *attr;
9531 struct field *fp;
9532 char *fieldname = "";
9533
9534 /* Allocate a new field list entry and link it in. */
9535 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
9536 make_cleanup (xfree, new_field);
9537 memset (new_field, 0, sizeof (struct nextfield));
9538
9539 if (die->tag == DW_TAG_inheritance)
9540 {
9541 new_field->next = fip->baseclasses;
9542 fip->baseclasses = new_field;
9543 }
9544 else
9545 {
9546 new_field->next = fip->fields;
9547 fip->fields = new_field;
9548 }
9549 fip->nfields++;
9550
9551 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
9552 if (attr)
9553 new_field->accessibility = DW_UNSND (attr);
9554 else
9555 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
9556 if (new_field->accessibility != DW_ACCESS_public)
9557 fip->non_public_fields = 1;
9558
9559 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
9560 if (attr)
9561 new_field->virtuality = DW_UNSND (attr);
9562 else
9563 new_field->virtuality = DW_VIRTUALITY_none;
9564
9565 fp = &new_field->field;
9566
9567 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
9568 {
9569 LONGEST offset;
9570
9571 /* Data member other than a C++ static data member. */
9572
9573 /* Get type of field. */
9574 fp->type = die_type (die, cu);
9575
9576 SET_FIELD_BITPOS (*fp, 0);
9577
9578 /* Get bit size of field (zero if none). */
9579 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
9580 if (attr)
9581 {
9582 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
9583 }
9584 else
9585 {
9586 FIELD_BITSIZE (*fp) = 0;
9587 }
9588
9589 /* Get bit offset of field. */
9590 if (handle_data_member_location (die, cu, &offset))
9591 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9592 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
9593 if (attr)
9594 {
9595 if (gdbarch_bits_big_endian (gdbarch))
9596 {
9597 /* For big endian bits, the DW_AT_bit_offset gives the
9598 additional bit offset from the MSB of the containing
9599 anonymous object to the MSB of the field. We don't
9600 have to do anything special since we don't need to
9601 know the size of the anonymous object. */
9602 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
9603 }
9604 else
9605 {
9606 /* For little endian bits, compute the bit offset to the
9607 MSB of the anonymous object, subtract off the number of
9608 bits from the MSB of the field to the MSB of the
9609 object, and then subtract off the number of bits of
9610 the field itself. The result is the bit offset of
9611 the LSB of the field. */
9612 int anonymous_size;
9613 int bit_offset = DW_UNSND (attr);
9614
9615 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9616 if (attr)
9617 {
9618 /* The size of the anonymous object containing
9619 the bit field is explicit, so use the
9620 indicated size (in bytes). */
9621 anonymous_size = DW_UNSND (attr);
9622 }
9623 else
9624 {
9625 /* The size of the anonymous object containing
9626 the bit field must be inferred from the type
9627 attribute of the data member containing the
9628 bit field. */
9629 anonymous_size = TYPE_LENGTH (fp->type);
9630 }
9631 SET_FIELD_BITPOS (*fp,
9632 (FIELD_BITPOS (*fp)
9633 + anonymous_size * bits_per_byte
9634 - bit_offset - FIELD_BITSIZE (*fp)));
9635 }
9636 }
9637
9638 /* Get name of field. */
9639 fieldname = dwarf2_name (die, cu);
9640 if (fieldname == NULL)
9641 fieldname = "";
9642
9643 /* The name is already allocated along with this objfile, so we don't
9644 need to duplicate it for the type. */
9645 fp->name = fieldname;
9646
9647 /* Change accessibility for artificial fields (e.g. virtual table
9648 pointer or virtual base class pointer) to private. */
9649 if (dwarf2_attr (die, DW_AT_artificial, cu))
9650 {
9651 FIELD_ARTIFICIAL (*fp) = 1;
9652 new_field->accessibility = DW_ACCESS_private;
9653 fip->non_public_fields = 1;
9654 }
9655 }
9656 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
9657 {
9658 /* C++ static member. */
9659
9660 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
9661 is a declaration, but all versions of G++ as of this writing
9662 (so through at least 3.2.1) incorrectly generate
9663 DW_TAG_variable tags. */
9664
9665 const char *physname;
9666
9667 /* Get name of field. */
9668 fieldname = dwarf2_name (die, cu);
9669 if (fieldname == NULL)
9670 return;
9671
9672 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9673 if (attr
9674 /* Only create a symbol if this is an external value.
9675 new_symbol checks this and puts the value in the global symbol
9676 table, which we want. If it is not external, new_symbol
9677 will try to put the value in cu->list_in_scope which is wrong. */
9678 && dwarf2_flag_true_p (die, DW_AT_external, cu))
9679 {
9680 /* A static const member, not much different than an enum as far as
9681 we're concerned, except that we can support more types. */
9682 new_symbol (die, NULL, cu);
9683 }
9684
9685 /* Get physical name. */
9686 physname = dwarf2_physname (fieldname, die, cu);
9687
9688 /* The name is already allocated along with this objfile, so we don't
9689 need to duplicate it for the type. */
9690 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
9691 FIELD_TYPE (*fp) = die_type (die, cu);
9692 FIELD_NAME (*fp) = fieldname;
9693 }
9694 else if (die->tag == DW_TAG_inheritance)
9695 {
9696 LONGEST offset;
9697
9698 /* C++ base class field. */
9699 if (handle_data_member_location (die, cu, &offset))
9700 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9701 FIELD_BITSIZE (*fp) = 0;
9702 FIELD_TYPE (*fp) = die_type (die, cu);
9703 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
9704 fip->nbaseclasses++;
9705 }
9706 }
9707
9708 /* Add a typedef defined in the scope of the FIP's class. */
9709
9710 static void
9711 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
9712 struct dwarf2_cu *cu)
9713 {
9714 struct objfile *objfile = cu->objfile;
9715 struct typedef_field_list *new_field;
9716 struct attribute *attr;
9717 struct typedef_field *fp;
9718 char *fieldname = "";
9719
9720 /* Allocate a new field list entry and link it in. */
9721 new_field = xzalloc (sizeof (*new_field));
9722 make_cleanup (xfree, new_field);
9723
9724 gdb_assert (die->tag == DW_TAG_typedef);
9725
9726 fp = &new_field->field;
9727
9728 /* Get name of field. */
9729 fp->name = dwarf2_name (die, cu);
9730 if (fp->name == NULL)
9731 return;
9732
9733 fp->type = read_type_die (die, cu);
9734
9735 new_field->next = fip->typedef_field_list;
9736 fip->typedef_field_list = new_field;
9737 fip->typedef_field_list_count++;
9738 }
9739
9740 /* Create the vector of fields, and attach it to the type. */
9741
9742 static void
9743 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
9744 struct dwarf2_cu *cu)
9745 {
9746 int nfields = fip->nfields;
9747
9748 /* Record the field count, allocate space for the array of fields,
9749 and create blank accessibility bitfields if necessary. */
9750 TYPE_NFIELDS (type) = nfields;
9751 TYPE_FIELDS (type) = (struct field *)
9752 TYPE_ALLOC (type, sizeof (struct field) * nfields);
9753 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
9754
9755 if (fip->non_public_fields && cu->language != language_ada)
9756 {
9757 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9758
9759 TYPE_FIELD_PRIVATE_BITS (type) =
9760 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9761 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
9762
9763 TYPE_FIELD_PROTECTED_BITS (type) =
9764 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9765 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
9766
9767 TYPE_FIELD_IGNORE_BITS (type) =
9768 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9769 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
9770 }
9771
9772 /* If the type has baseclasses, allocate and clear a bit vector for
9773 TYPE_FIELD_VIRTUAL_BITS. */
9774 if (fip->nbaseclasses && cu->language != language_ada)
9775 {
9776 int num_bytes = B_BYTES (fip->nbaseclasses);
9777 unsigned char *pointer;
9778
9779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9780 pointer = TYPE_ALLOC (type, num_bytes);
9781 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
9782 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
9783 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
9784 }
9785
9786 /* Copy the saved-up fields into the field vector. Start from the head of
9787 the list, adding to the tail of the field array, so that they end up in
9788 the same order in the array in which they were added to the list. */
9789 while (nfields-- > 0)
9790 {
9791 struct nextfield *fieldp;
9792
9793 if (fip->fields)
9794 {
9795 fieldp = fip->fields;
9796 fip->fields = fieldp->next;
9797 }
9798 else
9799 {
9800 fieldp = fip->baseclasses;
9801 fip->baseclasses = fieldp->next;
9802 }
9803
9804 TYPE_FIELD (type, nfields) = fieldp->field;
9805 switch (fieldp->accessibility)
9806 {
9807 case DW_ACCESS_private:
9808 if (cu->language != language_ada)
9809 SET_TYPE_FIELD_PRIVATE (type, nfields);
9810 break;
9811
9812 case DW_ACCESS_protected:
9813 if (cu->language != language_ada)
9814 SET_TYPE_FIELD_PROTECTED (type, nfields);
9815 break;
9816
9817 case DW_ACCESS_public:
9818 break;
9819
9820 default:
9821 /* Unknown accessibility. Complain and treat it as public. */
9822 {
9823 complaint (&symfile_complaints, _("unsupported accessibility %d"),
9824 fieldp->accessibility);
9825 }
9826 break;
9827 }
9828 if (nfields < fip->nbaseclasses)
9829 {
9830 switch (fieldp->virtuality)
9831 {
9832 case DW_VIRTUALITY_virtual:
9833 case DW_VIRTUALITY_pure_virtual:
9834 if (cu->language == language_ada)
9835 error (_("unexpected virtuality in component of Ada type"));
9836 SET_TYPE_FIELD_VIRTUAL (type, nfields);
9837 break;
9838 }
9839 }
9840 }
9841 }
9842
9843 /* Add a member function to the proper fieldlist. */
9844
9845 static void
9846 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
9847 struct type *type, struct dwarf2_cu *cu)
9848 {
9849 struct objfile *objfile = cu->objfile;
9850 struct attribute *attr;
9851 struct fnfieldlist *flp;
9852 int i;
9853 struct fn_field *fnp;
9854 char *fieldname;
9855 struct nextfnfield *new_fnfield;
9856 struct type *this_type;
9857 enum dwarf_access_attribute accessibility;
9858
9859 if (cu->language == language_ada)
9860 error (_("unexpected member function in Ada type"));
9861
9862 /* Get name of member function. */
9863 fieldname = dwarf2_name (die, cu);
9864 if (fieldname == NULL)
9865 return;
9866
9867 /* Look up member function name in fieldlist. */
9868 for (i = 0; i < fip->nfnfields; i++)
9869 {
9870 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
9871 break;
9872 }
9873
9874 /* Create new list element if necessary. */
9875 if (i < fip->nfnfields)
9876 flp = &fip->fnfieldlists[i];
9877 else
9878 {
9879 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
9880 {
9881 fip->fnfieldlists = (struct fnfieldlist *)
9882 xrealloc (fip->fnfieldlists,
9883 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
9884 * sizeof (struct fnfieldlist));
9885 if (fip->nfnfields == 0)
9886 make_cleanup (free_current_contents, &fip->fnfieldlists);
9887 }
9888 flp = &fip->fnfieldlists[fip->nfnfields];
9889 flp->name = fieldname;
9890 flp->length = 0;
9891 flp->head = NULL;
9892 i = fip->nfnfields++;
9893 }
9894
9895 /* Create a new member function field and chain it to the field list
9896 entry. */
9897 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
9898 make_cleanup (xfree, new_fnfield);
9899 memset (new_fnfield, 0, sizeof (struct nextfnfield));
9900 new_fnfield->next = flp->head;
9901 flp->head = new_fnfield;
9902 flp->length++;
9903
9904 /* Fill in the member function field info. */
9905 fnp = &new_fnfield->fnfield;
9906
9907 /* Delay processing of the physname until later. */
9908 if (cu->language == language_cplus || cu->language == language_java)
9909 {
9910 add_to_method_list (type, i, flp->length - 1, fieldname,
9911 die, cu);
9912 }
9913 else
9914 {
9915 const char *physname = dwarf2_physname (fieldname, die, cu);
9916 fnp->physname = physname ? physname : "";
9917 }
9918
9919 fnp->type = alloc_type (objfile);
9920 this_type = read_type_die (die, cu);
9921 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
9922 {
9923 int nparams = TYPE_NFIELDS (this_type);
9924
9925 /* TYPE is the domain of this method, and THIS_TYPE is the type
9926 of the method itself (TYPE_CODE_METHOD). */
9927 smash_to_method_type (fnp->type, type,
9928 TYPE_TARGET_TYPE (this_type),
9929 TYPE_FIELDS (this_type),
9930 TYPE_NFIELDS (this_type),
9931 TYPE_VARARGS (this_type));
9932
9933 /* Handle static member functions.
9934 Dwarf2 has no clean way to discern C++ static and non-static
9935 member functions. G++ helps GDB by marking the first
9936 parameter for non-static member functions (which is the this
9937 pointer) as artificial. We obtain this information from
9938 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
9939 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
9940 fnp->voffset = VOFFSET_STATIC;
9941 }
9942 else
9943 complaint (&symfile_complaints, _("member function type missing for '%s'"),
9944 dwarf2_full_name (fieldname, die, cu));
9945
9946 /* Get fcontext from DW_AT_containing_type if present. */
9947 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
9948 fnp->fcontext = die_containing_type (die, cu);
9949
9950 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
9951 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
9952
9953 /* Get accessibility. */
9954 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
9955 if (attr)
9956 accessibility = DW_UNSND (attr);
9957 else
9958 accessibility = dwarf2_default_access_attribute (die, cu);
9959 switch (accessibility)
9960 {
9961 case DW_ACCESS_private:
9962 fnp->is_private = 1;
9963 break;
9964 case DW_ACCESS_protected:
9965 fnp->is_protected = 1;
9966 break;
9967 }
9968
9969 /* Check for artificial methods. */
9970 attr = dwarf2_attr (die, DW_AT_artificial, cu);
9971 if (attr && DW_UNSND (attr) != 0)
9972 fnp->is_artificial = 1;
9973
9974 /* Get index in virtual function table if it is a virtual member
9975 function. For older versions of GCC, this is an offset in the
9976 appropriate virtual table, as specified by DW_AT_containing_type.
9977 For everyone else, it is an expression to be evaluated relative
9978 to the object address. */
9979
9980 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
9981 if (attr)
9982 {
9983 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
9984 {
9985 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
9986 {
9987 /* Old-style GCC. */
9988 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
9989 }
9990 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
9991 || (DW_BLOCK (attr)->size > 1
9992 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
9993 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
9994 {
9995 struct dwarf_block blk;
9996 int offset;
9997
9998 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
9999 ? 1 : 2);
10000 blk.size = DW_BLOCK (attr)->size - offset;
10001 blk.data = DW_BLOCK (attr)->data + offset;
10002 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10003 if ((fnp->voffset % cu->header.addr_size) != 0)
10004 dwarf2_complex_location_expr_complaint ();
10005 else
10006 fnp->voffset /= cu->header.addr_size;
10007 fnp->voffset += 2;
10008 }
10009 else
10010 dwarf2_complex_location_expr_complaint ();
10011
10012 if (!fnp->fcontext)
10013 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10014 }
10015 else if (attr_form_is_section_offset (attr))
10016 {
10017 dwarf2_complex_location_expr_complaint ();
10018 }
10019 else
10020 {
10021 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10022 fieldname);
10023 }
10024 }
10025 else
10026 {
10027 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10028 if (attr && DW_UNSND (attr))
10029 {
10030 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10031 complaint (&symfile_complaints,
10032 _("Member function \"%s\" (offset %d) is virtual "
10033 "but the vtable offset is not specified"),
10034 fieldname, die->offset.sect_off);
10035 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10036 TYPE_CPLUS_DYNAMIC (type) = 1;
10037 }
10038 }
10039 }
10040
10041 /* Create the vector of member function fields, and attach it to the type. */
10042
10043 static void
10044 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10045 struct dwarf2_cu *cu)
10046 {
10047 struct fnfieldlist *flp;
10048 int i;
10049
10050 if (cu->language == language_ada)
10051 error (_("unexpected member functions in Ada type"));
10052
10053 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10054 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10055 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10056
10057 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10058 {
10059 struct nextfnfield *nfp = flp->head;
10060 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10061 int k;
10062
10063 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10064 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10065 fn_flp->fn_fields = (struct fn_field *)
10066 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10067 for (k = flp->length; (k--, nfp); nfp = nfp->next)
10068 fn_flp->fn_fields[k] = nfp->fnfield;
10069 }
10070
10071 TYPE_NFN_FIELDS (type) = fip->nfnfields;
10072 }
10073
10074 /* Returns non-zero if NAME is the name of a vtable member in CU's
10075 language, zero otherwise. */
10076 static int
10077 is_vtable_name (const char *name, struct dwarf2_cu *cu)
10078 {
10079 static const char vptr[] = "_vptr";
10080 static const char vtable[] = "vtable";
10081
10082 /* Look for the C++ and Java forms of the vtable. */
10083 if ((cu->language == language_java
10084 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
10085 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
10086 && is_cplus_marker (name[sizeof (vptr) - 1])))
10087 return 1;
10088
10089 return 0;
10090 }
10091
10092 /* GCC outputs unnamed structures that are really pointers to member
10093 functions, with the ABI-specified layout. If TYPE describes
10094 such a structure, smash it into a member function type.
10095
10096 GCC shouldn't do this; it should just output pointer to member DIEs.
10097 This is GCC PR debug/28767. */
10098
10099 static void
10100 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
10101 {
10102 struct type *pfn_type, *domain_type, *new_type;
10103
10104 /* Check for a structure with no name and two children. */
10105 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
10106 return;
10107
10108 /* Check for __pfn and __delta members. */
10109 if (TYPE_FIELD_NAME (type, 0) == NULL
10110 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
10111 || TYPE_FIELD_NAME (type, 1) == NULL
10112 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
10113 return;
10114
10115 /* Find the type of the method. */
10116 pfn_type = TYPE_FIELD_TYPE (type, 0);
10117 if (pfn_type == NULL
10118 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
10119 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
10120 return;
10121
10122 /* Look for the "this" argument. */
10123 pfn_type = TYPE_TARGET_TYPE (pfn_type);
10124 if (TYPE_NFIELDS (pfn_type) == 0
10125 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
10126 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
10127 return;
10128
10129 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
10130 new_type = alloc_type (objfile);
10131 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
10132 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
10133 TYPE_VARARGS (pfn_type));
10134 smash_to_methodptr_type (type, new_type);
10135 }
10136
10137 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
10138 (icc). */
10139
10140 static int
10141 producer_is_icc (struct dwarf2_cu *cu)
10142 {
10143 if (!cu->checked_producer)
10144 check_producer (cu);
10145
10146 return cu->producer_is_icc;
10147 }
10148
10149 /* Called when we find the DIE that starts a structure or union scope
10150 (definition) to create a type for the structure or union. Fill in
10151 the type's name and general properties; the members will not be
10152 processed until process_structure_type.
10153
10154 NOTE: we need to call these functions regardless of whether or not the
10155 DIE has a DW_AT_name attribute, since it might be an anonymous
10156 structure or union. This gets the type entered into our set of
10157 user defined types.
10158
10159 However, if the structure is incomplete (an opaque struct/union)
10160 then suppress creating a symbol table entry for it since gdb only
10161 wants to find the one with the complete definition. Note that if
10162 it is complete, we just call new_symbol, which does it's own
10163 checking about whether the struct/union is anonymous or not (and
10164 suppresses creating a symbol table entry itself). */
10165
10166 static struct type *
10167 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
10168 {
10169 struct objfile *objfile = cu->objfile;
10170 struct type *type;
10171 struct attribute *attr;
10172 char *name;
10173
10174 /* If the definition of this type lives in .debug_types, read that type.
10175 Don't follow DW_AT_specification though, that will take us back up
10176 the chain and we want to go down. */
10177 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10178 if (attr)
10179 {
10180 struct dwarf2_cu *type_cu = cu;
10181 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10182
10183 /* We could just recurse on read_structure_type, but we need to call
10184 get_die_type to ensure only one type for this DIE is created.
10185 This is important, for example, because for c++ classes we need
10186 TYPE_NAME set which is only done by new_symbol. Blech. */
10187 type = read_type_die (type_die, type_cu);
10188
10189 /* TYPE_CU may not be the same as CU.
10190 Ensure TYPE is recorded in CU's type_hash table. */
10191 return set_die_type (die, type, cu);
10192 }
10193
10194 type = alloc_type (objfile);
10195 INIT_CPLUS_SPECIFIC (type);
10196
10197 name = dwarf2_name (die, cu);
10198 if (name != NULL)
10199 {
10200 if (cu->language == language_cplus
10201 || cu->language == language_java)
10202 {
10203 char *full_name = (char *) dwarf2_full_name (name, die, cu);
10204
10205 /* dwarf2_full_name might have already finished building the DIE's
10206 type. If so, there is no need to continue. */
10207 if (get_die_type (die, cu) != NULL)
10208 return get_die_type (die, cu);
10209
10210 TYPE_TAG_NAME (type) = full_name;
10211 if (die->tag == DW_TAG_structure_type
10212 || die->tag == DW_TAG_class_type)
10213 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10214 }
10215 else
10216 {
10217 /* The name is already allocated along with this objfile, so
10218 we don't need to duplicate it for the type. */
10219 TYPE_TAG_NAME (type) = (char *) name;
10220 if (die->tag == DW_TAG_class_type)
10221 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10222 }
10223 }
10224
10225 if (die->tag == DW_TAG_structure_type)
10226 {
10227 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10228 }
10229 else if (die->tag == DW_TAG_union_type)
10230 {
10231 TYPE_CODE (type) = TYPE_CODE_UNION;
10232 }
10233 else
10234 {
10235 TYPE_CODE (type) = TYPE_CODE_CLASS;
10236 }
10237
10238 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
10239 TYPE_DECLARED_CLASS (type) = 1;
10240
10241 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10242 if (attr)
10243 {
10244 TYPE_LENGTH (type) = DW_UNSND (attr);
10245 }
10246 else
10247 {
10248 TYPE_LENGTH (type) = 0;
10249 }
10250
10251 if (producer_is_icc (cu))
10252 {
10253 /* ICC does not output the required DW_AT_declaration
10254 on incomplete types, but gives them a size of zero. */
10255 }
10256 else
10257 TYPE_STUB_SUPPORTED (type) = 1;
10258
10259 if (die_is_declaration (die, cu))
10260 TYPE_STUB (type) = 1;
10261 else if (attr == NULL && die->child == NULL
10262 && producer_is_realview (cu->producer))
10263 /* RealView does not output the required DW_AT_declaration
10264 on incomplete types. */
10265 TYPE_STUB (type) = 1;
10266
10267 /* We need to add the type field to the die immediately so we don't
10268 infinitely recurse when dealing with pointers to the structure
10269 type within the structure itself. */
10270 set_die_type (die, type, cu);
10271
10272 /* set_die_type should be already done. */
10273 set_descriptive_type (type, die, cu);
10274
10275 return type;
10276 }
10277
10278 /* Finish creating a structure or union type, including filling in
10279 its members and creating a symbol for it. */
10280
10281 static void
10282 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
10283 {
10284 struct objfile *objfile = cu->objfile;
10285 struct die_info *child_die = die->child;
10286 struct type *type;
10287
10288 type = get_die_type (die, cu);
10289 if (type == NULL)
10290 type = read_structure_type (die, cu);
10291
10292 if (die->child != NULL && ! die_is_declaration (die, cu))
10293 {
10294 struct field_info fi;
10295 struct die_info *child_die;
10296 VEC (symbolp) *template_args = NULL;
10297 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
10298
10299 memset (&fi, 0, sizeof (struct field_info));
10300
10301 child_die = die->child;
10302
10303 while (child_die && child_die->tag)
10304 {
10305 if (child_die->tag == DW_TAG_member
10306 || child_die->tag == DW_TAG_variable)
10307 {
10308 /* NOTE: carlton/2002-11-05: A C++ static data member
10309 should be a DW_TAG_member that is a declaration, but
10310 all versions of G++ as of this writing (so through at
10311 least 3.2.1) incorrectly generate DW_TAG_variable
10312 tags for them instead. */
10313 dwarf2_add_field (&fi, child_die, cu);
10314 }
10315 else if (child_die->tag == DW_TAG_subprogram)
10316 {
10317 /* C++ member function. */
10318 dwarf2_add_member_fn (&fi, child_die, type, cu);
10319 }
10320 else if (child_die->tag == DW_TAG_inheritance)
10321 {
10322 /* C++ base class field. */
10323 dwarf2_add_field (&fi, child_die, cu);
10324 }
10325 else if (child_die->tag == DW_TAG_typedef)
10326 dwarf2_add_typedef (&fi, child_die, cu);
10327 else if (child_die->tag == DW_TAG_template_type_param
10328 || child_die->tag == DW_TAG_template_value_param)
10329 {
10330 struct symbol *arg = new_symbol (child_die, NULL, cu);
10331
10332 if (arg != NULL)
10333 VEC_safe_push (symbolp, template_args, arg);
10334 }
10335
10336 child_die = sibling_die (child_die);
10337 }
10338
10339 /* Attach template arguments to type. */
10340 if (! VEC_empty (symbolp, template_args))
10341 {
10342 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10343 TYPE_N_TEMPLATE_ARGUMENTS (type)
10344 = VEC_length (symbolp, template_args);
10345 TYPE_TEMPLATE_ARGUMENTS (type)
10346 = obstack_alloc (&objfile->objfile_obstack,
10347 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10348 * sizeof (struct symbol *)));
10349 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
10350 VEC_address (symbolp, template_args),
10351 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10352 * sizeof (struct symbol *)));
10353 VEC_free (symbolp, template_args);
10354 }
10355
10356 /* Attach fields and member functions to the type. */
10357 if (fi.nfields)
10358 dwarf2_attach_fields_to_type (&fi, type, cu);
10359 if (fi.nfnfields)
10360 {
10361 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
10362
10363 /* Get the type which refers to the base class (possibly this
10364 class itself) which contains the vtable pointer for the current
10365 class from the DW_AT_containing_type attribute. This use of
10366 DW_AT_containing_type is a GNU extension. */
10367
10368 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10369 {
10370 struct type *t = die_containing_type (die, cu);
10371
10372 TYPE_VPTR_BASETYPE (type) = t;
10373 if (type == t)
10374 {
10375 int i;
10376
10377 /* Our own class provides vtbl ptr. */
10378 for (i = TYPE_NFIELDS (t) - 1;
10379 i >= TYPE_N_BASECLASSES (t);
10380 --i)
10381 {
10382 const char *fieldname = TYPE_FIELD_NAME (t, i);
10383
10384 if (is_vtable_name (fieldname, cu))
10385 {
10386 TYPE_VPTR_FIELDNO (type) = i;
10387 break;
10388 }
10389 }
10390
10391 /* Complain if virtual function table field not found. */
10392 if (i < TYPE_N_BASECLASSES (t))
10393 complaint (&symfile_complaints,
10394 _("virtual function table pointer "
10395 "not found when defining class '%s'"),
10396 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
10397 "");
10398 }
10399 else
10400 {
10401 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
10402 }
10403 }
10404 else if (cu->producer
10405 && strncmp (cu->producer,
10406 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
10407 {
10408 /* The IBM XLC compiler does not provide direct indication
10409 of the containing type, but the vtable pointer is
10410 always named __vfp. */
10411
10412 int i;
10413
10414 for (i = TYPE_NFIELDS (type) - 1;
10415 i >= TYPE_N_BASECLASSES (type);
10416 --i)
10417 {
10418 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
10419 {
10420 TYPE_VPTR_FIELDNO (type) = i;
10421 TYPE_VPTR_BASETYPE (type) = type;
10422 break;
10423 }
10424 }
10425 }
10426 }
10427
10428 /* Copy fi.typedef_field_list linked list elements content into the
10429 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
10430 if (fi.typedef_field_list)
10431 {
10432 int i = fi.typedef_field_list_count;
10433
10434 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10435 TYPE_TYPEDEF_FIELD_ARRAY (type)
10436 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
10437 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
10438
10439 /* Reverse the list order to keep the debug info elements order. */
10440 while (--i >= 0)
10441 {
10442 struct typedef_field *dest, *src;
10443
10444 dest = &TYPE_TYPEDEF_FIELD (type, i);
10445 src = &fi.typedef_field_list->field;
10446 fi.typedef_field_list = fi.typedef_field_list->next;
10447 *dest = *src;
10448 }
10449 }
10450
10451 do_cleanups (back_to);
10452
10453 if (HAVE_CPLUS_STRUCT (type))
10454 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
10455 }
10456
10457 quirk_gcc_member_function_pointer (type, objfile);
10458
10459 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
10460 snapshots) has been known to create a die giving a declaration
10461 for a class that has, as a child, a die giving a definition for a
10462 nested class. So we have to process our children even if the
10463 current die is a declaration. Normally, of course, a declaration
10464 won't have any children at all. */
10465
10466 while (child_die != NULL && child_die->tag)
10467 {
10468 if (child_die->tag == DW_TAG_member
10469 || child_die->tag == DW_TAG_variable
10470 || child_die->tag == DW_TAG_inheritance
10471 || child_die->tag == DW_TAG_template_value_param
10472 || child_die->tag == DW_TAG_template_type_param)
10473 {
10474 /* Do nothing. */
10475 }
10476 else
10477 process_die (child_die, cu);
10478
10479 child_die = sibling_die (child_die);
10480 }
10481
10482 /* Do not consider external references. According to the DWARF standard,
10483 these DIEs are identified by the fact that they have no byte_size
10484 attribute, and a declaration attribute. */
10485 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
10486 || !die_is_declaration (die, cu))
10487 new_symbol (die, type, cu);
10488 }
10489
10490 /* Given a DW_AT_enumeration_type die, set its type. We do not
10491 complete the type's fields yet, or create any symbols. */
10492
10493 static struct type *
10494 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
10495 {
10496 struct objfile *objfile = cu->objfile;
10497 struct type *type;
10498 struct attribute *attr;
10499 const char *name;
10500
10501 /* If the definition of this type lives in .debug_types, read that type.
10502 Don't follow DW_AT_specification though, that will take us back up
10503 the chain and we want to go down. */
10504 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10505 if (attr)
10506 {
10507 struct dwarf2_cu *type_cu = cu;
10508 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10509
10510 type = read_type_die (type_die, type_cu);
10511
10512 /* TYPE_CU may not be the same as CU.
10513 Ensure TYPE is recorded in CU's type_hash table. */
10514 return set_die_type (die, type, cu);
10515 }
10516
10517 type = alloc_type (objfile);
10518
10519 TYPE_CODE (type) = TYPE_CODE_ENUM;
10520 name = dwarf2_full_name (NULL, die, cu);
10521 if (name != NULL)
10522 TYPE_TAG_NAME (type) = (char *) name;
10523
10524 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10525 if (attr)
10526 {
10527 TYPE_LENGTH (type) = DW_UNSND (attr);
10528 }
10529 else
10530 {
10531 TYPE_LENGTH (type) = 0;
10532 }
10533
10534 /* The enumeration DIE can be incomplete. In Ada, any type can be
10535 declared as private in the package spec, and then defined only
10536 inside the package body. Such types are known as Taft Amendment
10537 Types. When another package uses such a type, an incomplete DIE
10538 may be generated by the compiler. */
10539 if (die_is_declaration (die, cu))
10540 TYPE_STUB (type) = 1;
10541
10542 return set_die_type (die, type, cu);
10543 }
10544
10545 /* Given a pointer to a die which begins an enumeration, process all
10546 the dies that define the members of the enumeration, and create the
10547 symbol for the enumeration type.
10548
10549 NOTE: We reverse the order of the element list. */
10550
10551 static void
10552 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
10553 {
10554 struct type *this_type;
10555
10556 this_type = get_die_type (die, cu);
10557 if (this_type == NULL)
10558 this_type = read_enumeration_type (die, cu);
10559
10560 if (die->child != NULL)
10561 {
10562 struct die_info *child_die;
10563 struct symbol *sym;
10564 struct field *fields = NULL;
10565 int num_fields = 0;
10566 int unsigned_enum = 1;
10567 char *name;
10568 int flag_enum = 1;
10569 ULONGEST mask = 0;
10570
10571 child_die = die->child;
10572 while (child_die && child_die->tag)
10573 {
10574 if (child_die->tag != DW_TAG_enumerator)
10575 {
10576 process_die (child_die, cu);
10577 }
10578 else
10579 {
10580 name = dwarf2_name (child_die, cu);
10581 if (name)
10582 {
10583 sym = new_symbol (child_die, this_type, cu);
10584 if (SYMBOL_VALUE (sym) < 0)
10585 {
10586 unsigned_enum = 0;
10587 flag_enum = 0;
10588 }
10589 else if ((mask & SYMBOL_VALUE (sym)) != 0)
10590 flag_enum = 0;
10591 else
10592 mask |= SYMBOL_VALUE (sym);
10593
10594 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
10595 {
10596 fields = (struct field *)
10597 xrealloc (fields,
10598 (num_fields + DW_FIELD_ALLOC_CHUNK)
10599 * sizeof (struct field));
10600 }
10601
10602 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
10603 FIELD_TYPE (fields[num_fields]) = NULL;
10604 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
10605 FIELD_BITSIZE (fields[num_fields]) = 0;
10606
10607 num_fields++;
10608 }
10609 }
10610
10611 child_die = sibling_die (child_die);
10612 }
10613
10614 if (num_fields)
10615 {
10616 TYPE_NFIELDS (this_type) = num_fields;
10617 TYPE_FIELDS (this_type) = (struct field *)
10618 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
10619 memcpy (TYPE_FIELDS (this_type), fields,
10620 sizeof (struct field) * num_fields);
10621 xfree (fields);
10622 }
10623 if (unsigned_enum)
10624 TYPE_UNSIGNED (this_type) = 1;
10625 if (flag_enum)
10626 TYPE_FLAG_ENUM (this_type) = 1;
10627 }
10628
10629 /* If we are reading an enum from a .debug_types unit, and the enum
10630 is a declaration, and the enum is not the signatured type in the
10631 unit, then we do not want to add a symbol for it. Adding a
10632 symbol would in some cases obscure the true definition of the
10633 enum, giving users an incomplete type when the definition is
10634 actually available. Note that we do not want to do this for all
10635 enums which are just declarations, because C++0x allows forward
10636 enum declarations. */
10637 if (cu->per_cu->is_debug_types
10638 && die_is_declaration (die, cu))
10639 {
10640 struct signatured_type *sig_type;
10641
10642 sig_type
10643 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
10644 cu->per_cu->info_or_types_section,
10645 cu->per_cu->offset);
10646 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
10647 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
10648 return;
10649 }
10650
10651 new_symbol (die, this_type, cu);
10652 }
10653
10654 /* Extract all information from a DW_TAG_array_type DIE and put it in
10655 the DIE's type field. For now, this only handles one dimensional
10656 arrays. */
10657
10658 static struct type *
10659 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
10660 {
10661 struct objfile *objfile = cu->objfile;
10662 struct die_info *child_die;
10663 struct type *type;
10664 struct type *element_type, *range_type, *index_type;
10665 struct type **range_types = NULL;
10666 struct attribute *attr;
10667 int ndim = 0;
10668 struct cleanup *back_to;
10669 char *name;
10670
10671 element_type = die_type (die, cu);
10672
10673 /* The die_type call above may have already set the type for this DIE. */
10674 type = get_die_type (die, cu);
10675 if (type)
10676 return type;
10677
10678 /* Irix 6.2 native cc creates array types without children for
10679 arrays with unspecified length. */
10680 if (die->child == NULL)
10681 {
10682 index_type = objfile_type (objfile)->builtin_int;
10683 range_type = create_range_type (NULL, index_type, 0, -1);
10684 type = create_array_type (NULL, element_type, range_type);
10685 return set_die_type (die, type, cu);
10686 }
10687
10688 back_to = make_cleanup (null_cleanup, NULL);
10689 child_die = die->child;
10690 while (child_die && child_die->tag)
10691 {
10692 if (child_die->tag == DW_TAG_subrange_type)
10693 {
10694 struct type *child_type = read_type_die (child_die, cu);
10695
10696 if (child_type != NULL)
10697 {
10698 /* The range type was succesfully read. Save it for the
10699 array type creation. */
10700 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
10701 {
10702 range_types = (struct type **)
10703 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
10704 * sizeof (struct type *));
10705 if (ndim == 0)
10706 make_cleanup (free_current_contents, &range_types);
10707 }
10708 range_types[ndim++] = child_type;
10709 }
10710 }
10711 child_die = sibling_die (child_die);
10712 }
10713
10714 /* Dwarf2 dimensions are output from left to right, create the
10715 necessary array types in backwards order. */
10716
10717 type = element_type;
10718
10719 if (read_array_order (die, cu) == DW_ORD_col_major)
10720 {
10721 int i = 0;
10722
10723 while (i < ndim)
10724 type = create_array_type (NULL, type, range_types[i++]);
10725 }
10726 else
10727 {
10728 while (ndim-- > 0)
10729 type = create_array_type (NULL, type, range_types[ndim]);
10730 }
10731
10732 /* Understand Dwarf2 support for vector types (like they occur on
10733 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
10734 array type. This is not part of the Dwarf2/3 standard yet, but a
10735 custom vendor extension. The main difference between a regular
10736 array and the vector variant is that vectors are passed by value
10737 to functions. */
10738 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
10739 if (attr)
10740 make_vector_type (type);
10741
10742 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
10743 implementation may choose to implement triple vectors using this
10744 attribute. */
10745 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10746 if (attr)
10747 {
10748 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
10749 TYPE_LENGTH (type) = DW_UNSND (attr);
10750 else
10751 complaint (&symfile_complaints,
10752 _("DW_AT_byte_size for array type smaller "
10753 "than the total size of elements"));
10754 }
10755
10756 name = dwarf2_name (die, cu);
10757 if (name)
10758 TYPE_NAME (type) = name;
10759
10760 /* Install the type in the die. */
10761 set_die_type (die, type, cu);
10762
10763 /* set_die_type should be already done. */
10764 set_descriptive_type (type, die, cu);
10765
10766 do_cleanups (back_to);
10767
10768 return type;
10769 }
10770
10771 static enum dwarf_array_dim_ordering
10772 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
10773 {
10774 struct attribute *attr;
10775
10776 attr = dwarf2_attr (die, DW_AT_ordering, cu);
10777
10778 if (attr) return DW_SND (attr);
10779
10780 /* GNU F77 is a special case, as at 08/2004 array type info is the
10781 opposite order to the dwarf2 specification, but data is still
10782 laid out as per normal fortran.
10783
10784 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
10785 version checking. */
10786
10787 if (cu->language == language_fortran
10788 && cu->producer && strstr (cu->producer, "GNU F77"))
10789 {
10790 return DW_ORD_row_major;
10791 }
10792
10793 switch (cu->language_defn->la_array_ordering)
10794 {
10795 case array_column_major:
10796 return DW_ORD_col_major;
10797 case array_row_major:
10798 default:
10799 return DW_ORD_row_major;
10800 };
10801 }
10802
10803 /* Extract all information from a DW_TAG_set_type DIE and put it in
10804 the DIE's type field. */
10805
10806 static struct type *
10807 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
10808 {
10809 struct type *domain_type, *set_type;
10810 struct attribute *attr;
10811
10812 domain_type = die_type (die, cu);
10813
10814 /* The die_type call above may have already set the type for this DIE. */
10815 set_type = get_die_type (die, cu);
10816 if (set_type)
10817 return set_type;
10818
10819 set_type = create_set_type (NULL, domain_type);
10820
10821 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10822 if (attr)
10823 TYPE_LENGTH (set_type) = DW_UNSND (attr);
10824
10825 return set_die_type (die, set_type, cu);
10826 }
10827
10828 /* First cut: install each common block member as a global variable. */
10829
10830 static void
10831 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
10832 {
10833 struct die_info *child_die;
10834 struct attribute *attr;
10835 struct symbol *sym;
10836 CORE_ADDR base = (CORE_ADDR) 0;
10837
10838 attr = dwarf2_attr (die, DW_AT_location, cu);
10839 if (attr)
10840 {
10841 /* Support the .debug_loc offsets. */
10842 if (attr_form_is_block (attr))
10843 {
10844 base = decode_locdesc (DW_BLOCK (attr), cu);
10845 }
10846 else if (attr_form_is_section_offset (attr))
10847 {
10848 dwarf2_complex_location_expr_complaint ();
10849 }
10850 else
10851 {
10852 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
10853 "common block member");
10854 }
10855 }
10856 if (die->child != NULL)
10857 {
10858 child_die = die->child;
10859 while (child_die && child_die->tag)
10860 {
10861 LONGEST offset;
10862
10863 sym = new_symbol (child_die, NULL, cu);
10864 if (sym != NULL
10865 && handle_data_member_location (child_die, cu, &offset))
10866 {
10867 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
10868 add_symbol_to_list (sym, &global_symbols);
10869 }
10870 child_die = sibling_die (child_die);
10871 }
10872 }
10873 }
10874
10875 /* Create a type for a C++ namespace. */
10876
10877 static struct type *
10878 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
10879 {
10880 struct objfile *objfile = cu->objfile;
10881 const char *previous_prefix, *name;
10882 int is_anonymous;
10883 struct type *type;
10884
10885 /* For extensions, reuse the type of the original namespace. */
10886 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
10887 {
10888 struct die_info *ext_die;
10889 struct dwarf2_cu *ext_cu = cu;
10890
10891 ext_die = dwarf2_extension (die, &ext_cu);
10892 type = read_type_die (ext_die, ext_cu);
10893
10894 /* EXT_CU may not be the same as CU.
10895 Ensure TYPE is recorded in CU's type_hash table. */
10896 return set_die_type (die, type, cu);
10897 }
10898
10899 name = namespace_name (die, &is_anonymous, cu);
10900
10901 /* Now build the name of the current namespace. */
10902
10903 previous_prefix = determine_prefix (die, cu);
10904 if (previous_prefix[0] != '\0')
10905 name = typename_concat (&objfile->objfile_obstack,
10906 previous_prefix, name, 0, cu);
10907
10908 /* Create the type. */
10909 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
10910 objfile);
10911 TYPE_NAME (type) = (char *) name;
10912 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10913
10914 return set_die_type (die, type, cu);
10915 }
10916
10917 /* Read a C++ namespace. */
10918
10919 static void
10920 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
10921 {
10922 struct objfile *objfile = cu->objfile;
10923 int is_anonymous;
10924
10925 /* Add a symbol associated to this if we haven't seen the namespace
10926 before. Also, add a using directive if it's an anonymous
10927 namespace. */
10928
10929 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
10930 {
10931 struct type *type;
10932
10933 type = read_type_die (die, cu);
10934 new_symbol (die, type, cu);
10935
10936 namespace_name (die, &is_anonymous, cu);
10937 if (is_anonymous)
10938 {
10939 const char *previous_prefix = determine_prefix (die, cu);
10940
10941 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
10942 NULL, NULL, &objfile->objfile_obstack);
10943 }
10944 }
10945
10946 if (die->child != NULL)
10947 {
10948 struct die_info *child_die = die->child;
10949
10950 while (child_die && child_die->tag)
10951 {
10952 process_die (child_die, cu);
10953 child_die = sibling_die (child_die);
10954 }
10955 }
10956 }
10957
10958 /* Read a Fortran module as type. This DIE can be only a declaration used for
10959 imported module. Still we need that type as local Fortran "use ... only"
10960 declaration imports depend on the created type in determine_prefix. */
10961
10962 static struct type *
10963 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
10964 {
10965 struct objfile *objfile = cu->objfile;
10966 char *module_name;
10967 struct type *type;
10968
10969 module_name = dwarf2_name (die, cu);
10970 if (!module_name)
10971 complaint (&symfile_complaints,
10972 _("DW_TAG_module has no name, offset 0x%x"),
10973 die->offset.sect_off);
10974 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
10975
10976 /* determine_prefix uses TYPE_TAG_NAME. */
10977 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10978
10979 return set_die_type (die, type, cu);
10980 }
10981
10982 /* Read a Fortran module. */
10983
10984 static void
10985 read_module (struct die_info *die, struct dwarf2_cu *cu)
10986 {
10987 struct die_info *child_die = die->child;
10988
10989 while (child_die && child_die->tag)
10990 {
10991 process_die (child_die, cu);
10992 child_die = sibling_die (child_die);
10993 }
10994 }
10995
10996 /* Return the name of the namespace represented by DIE. Set
10997 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
10998 namespace. */
10999
11000 static const char *
11001 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
11002 {
11003 struct die_info *current_die;
11004 const char *name = NULL;
11005
11006 /* Loop through the extensions until we find a name. */
11007
11008 for (current_die = die;
11009 current_die != NULL;
11010 current_die = dwarf2_extension (die, &cu))
11011 {
11012 name = dwarf2_name (current_die, cu);
11013 if (name != NULL)
11014 break;
11015 }
11016
11017 /* Is it an anonymous namespace? */
11018
11019 *is_anonymous = (name == NULL);
11020 if (*is_anonymous)
11021 name = CP_ANONYMOUS_NAMESPACE_STR;
11022
11023 return name;
11024 }
11025
11026 /* Extract all information from a DW_TAG_pointer_type DIE and add to
11027 the user defined type vector. */
11028
11029 static struct type *
11030 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
11031 {
11032 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
11033 struct comp_unit_head *cu_header = &cu->header;
11034 struct type *type;
11035 struct attribute *attr_byte_size;
11036 struct attribute *attr_address_class;
11037 int byte_size, addr_class;
11038 struct type *target_type;
11039
11040 target_type = die_type (die, cu);
11041
11042 /* The die_type call above may have already set the type for this DIE. */
11043 type = get_die_type (die, cu);
11044 if (type)
11045 return type;
11046
11047 type = lookup_pointer_type (target_type);
11048
11049 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
11050 if (attr_byte_size)
11051 byte_size = DW_UNSND (attr_byte_size);
11052 else
11053 byte_size = cu_header->addr_size;
11054
11055 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
11056 if (attr_address_class)
11057 addr_class = DW_UNSND (attr_address_class);
11058 else
11059 addr_class = DW_ADDR_none;
11060
11061 /* If the pointer size or address class is different than the
11062 default, create a type variant marked as such and set the
11063 length accordingly. */
11064 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
11065 {
11066 if (gdbarch_address_class_type_flags_p (gdbarch))
11067 {
11068 int type_flags;
11069
11070 type_flags = gdbarch_address_class_type_flags
11071 (gdbarch, byte_size, addr_class);
11072 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
11073 == 0);
11074 type = make_type_with_address_space (type, type_flags);
11075 }
11076 else if (TYPE_LENGTH (type) != byte_size)
11077 {
11078 complaint (&symfile_complaints,
11079 _("invalid pointer size %d"), byte_size);
11080 }
11081 else
11082 {
11083 /* Should we also complain about unhandled address classes? */
11084 }
11085 }
11086
11087 TYPE_LENGTH (type) = byte_size;
11088 return set_die_type (die, type, cu);
11089 }
11090
11091 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
11092 the user defined type vector. */
11093
11094 static struct type *
11095 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
11096 {
11097 struct type *type;
11098 struct type *to_type;
11099 struct type *domain;
11100
11101 to_type = die_type (die, cu);
11102 domain = die_containing_type (die, cu);
11103
11104 /* The calls above may have already set the type for this DIE. */
11105 type = get_die_type (die, cu);
11106 if (type)
11107 return type;
11108
11109 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
11110 type = lookup_methodptr_type (to_type);
11111 else
11112 type = lookup_memberptr_type (to_type, domain);
11113
11114 return set_die_type (die, type, cu);
11115 }
11116
11117 /* Extract all information from a DW_TAG_reference_type DIE and add to
11118 the user defined type vector. */
11119
11120 static struct type *
11121 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
11122 {
11123 struct comp_unit_head *cu_header = &cu->header;
11124 struct type *type, *target_type;
11125 struct attribute *attr;
11126
11127 target_type = die_type (die, cu);
11128
11129 /* The die_type call above may have already set the type for this DIE. */
11130 type = get_die_type (die, cu);
11131 if (type)
11132 return type;
11133
11134 type = lookup_reference_type (target_type);
11135 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11136 if (attr)
11137 {
11138 TYPE_LENGTH (type) = DW_UNSND (attr);
11139 }
11140 else
11141 {
11142 TYPE_LENGTH (type) = cu_header->addr_size;
11143 }
11144 return set_die_type (die, type, cu);
11145 }
11146
11147 static struct type *
11148 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
11149 {
11150 struct type *base_type, *cv_type;
11151
11152 base_type = die_type (die, cu);
11153
11154 /* The die_type call above may have already set the type for this DIE. */
11155 cv_type = get_die_type (die, cu);
11156 if (cv_type)
11157 return cv_type;
11158
11159 /* In case the const qualifier is applied to an array type, the element type
11160 is so qualified, not the array type (section 6.7.3 of C99). */
11161 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
11162 {
11163 struct type *el_type, *inner_array;
11164
11165 base_type = copy_type (base_type);
11166 inner_array = base_type;
11167
11168 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
11169 {
11170 TYPE_TARGET_TYPE (inner_array) =
11171 copy_type (TYPE_TARGET_TYPE (inner_array));
11172 inner_array = TYPE_TARGET_TYPE (inner_array);
11173 }
11174
11175 el_type = TYPE_TARGET_TYPE (inner_array);
11176 TYPE_TARGET_TYPE (inner_array) =
11177 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
11178
11179 return set_die_type (die, base_type, cu);
11180 }
11181
11182 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
11183 return set_die_type (die, cv_type, cu);
11184 }
11185
11186 static struct type *
11187 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
11188 {
11189 struct type *base_type, *cv_type;
11190
11191 base_type = die_type (die, cu);
11192
11193 /* The die_type call above may have already set the type for this DIE. */
11194 cv_type = get_die_type (die, cu);
11195 if (cv_type)
11196 return cv_type;
11197
11198 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
11199 return set_die_type (die, cv_type, cu);
11200 }
11201
11202 /* Extract all information from a DW_TAG_string_type DIE and add to
11203 the user defined type vector. It isn't really a user defined type,
11204 but it behaves like one, with other DIE's using an AT_user_def_type
11205 attribute to reference it. */
11206
11207 static struct type *
11208 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
11209 {
11210 struct objfile *objfile = cu->objfile;
11211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11212 struct type *type, *range_type, *index_type, *char_type;
11213 struct attribute *attr;
11214 unsigned int length;
11215
11216 attr = dwarf2_attr (die, DW_AT_string_length, cu);
11217 if (attr)
11218 {
11219 length = DW_UNSND (attr);
11220 }
11221 else
11222 {
11223 /* Check for the DW_AT_byte_size attribute. */
11224 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11225 if (attr)
11226 {
11227 length = DW_UNSND (attr);
11228 }
11229 else
11230 {
11231 length = 1;
11232 }
11233 }
11234
11235 index_type = objfile_type (objfile)->builtin_int;
11236 range_type = create_range_type (NULL, index_type, 1, length);
11237 char_type = language_string_char_type (cu->language_defn, gdbarch);
11238 type = create_string_type (NULL, char_type, range_type);
11239
11240 return set_die_type (die, type, cu);
11241 }
11242
11243 /* Handle DIES due to C code like:
11244
11245 struct foo
11246 {
11247 int (*funcp)(int a, long l);
11248 int b;
11249 };
11250
11251 ('funcp' generates a DW_TAG_subroutine_type DIE). */
11252
11253 static struct type *
11254 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
11255 {
11256 struct objfile *objfile = cu->objfile;
11257 struct type *type; /* Type that this function returns. */
11258 struct type *ftype; /* Function that returns above type. */
11259 struct attribute *attr;
11260
11261 type = die_type (die, cu);
11262
11263 /* The die_type call above may have already set the type for this DIE. */
11264 ftype = get_die_type (die, cu);
11265 if (ftype)
11266 return ftype;
11267
11268 ftype = lookup_function_type (type);
11269
11270 /* All functions in C++, Pascal and Java have prototypes. */
11271 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
11272 if ((attr && (DW_UNSND (attr) != 0))
11273 || cu->language == language_cplus
11274 || cu->language == language_java
11275 || cu->language == language_pascal)
11276 TYPE_PROTOTYPED (ftype) = 1;
11277 else if (producer_is_realview (cu->producer))
11278 /* RealView does not emit DW_AT_prototyped. We can not
11279 distinguish prototyped and unprototyped functions; default to
11280 prototyped, since that is more common in modern code (and
11281 RealView warns about unprototyped functions). */
11282 TYPE_PROTOTYPED (ftype) = 1;
11283
11284 /* Store the calling convention in the type if it's available in
11285 the subroutine die. Otherwise set the calling convention to
11286 the default value DW_CC_normal. */
11287 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
11288 if (attr)
11289 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
11290 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
11291 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
11292 else
11293 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
11294
11295 /* We need to add the subroutine type to the die immediately so
11296 we don't infinitely recurse when dealing with parameters
11297 declared as the same subroutine type. */
11298 set_die_type (die, ftype, cu);
11299
11300 if (die->child != NULL)
11301 {
11302 struct type *void_type = objfile_type (objfile)->builtin_void;
11303 struct die_info *child_die;
11304 int nparams, iparams;
11305
11306 /* Count the number of parameters.
11307 FIXME: GDB currently ignores vararg functions, but knows about
11308 vararg member functions. */
11309 nparams = 0;
11310 child_die = die->child;
11311 while (child_die && child_die->tag)
11312 {
11313 if (child_die->tag == DW_TAG_formal_parameter)
11314 nparams++;
11315 else if (child_die->tag == DW_TAG_unspecified_parameters)
11316 TYPE_VARARGS (ftype) = 1;
11317 child_die = sibling_die (child_die);
11318 }
11319
11320 /* Allocate storage for parameters and fill them in. */
11321 TYPE_NFIELDS (ftype) = nparams;
11322 TYPE_FIELDS (ftype) = (struct field *)
11323 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
11324
11325 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
11326 even if we error out during the parameters reading below. */
11327 for (iparams = 0; iparams < nparams; iparams++)
11328 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
11329
11330 iparams = 0;
11331 child_die = die->child;
11332 while (child_die && child_die->tag)
11333 {
11334 if (child_die->tag == DW_TAG_formal_parameter)
11335 {
11336 struct type *arg_type;
11337
11338 /* DWARF version 2 has no clean way to discern C++
11339 static and non-static member functions. G++ helps
11340 GDB by marking the first parameter for non-static
11341 member functions (which is the this pointer) as
11342 artificial. We pass this information to
11343 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
11344
11345 DWARF version 3 added DW_AT_object_pointer, which GCC
11346 4.5 does not yet generate. */
11347 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
11348 if (attr)
11349 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
11350 else
11351 {
11352 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
11353
11354 /* GCC/43521: In java, the formal parameter
11355 "this" is sometimes not marked with DW_AT_artificial. */
11356 if (cu->language == language_java)
11357 {
11358 const char *name = dwarf2_name (child_die, cu);
11359
11360 if (name && !strcmp (name, "this"))
11361 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
11362 }
11363 }
11364 arg_type = die_type (child_die, cu);
11365
11366 /* RealView does not mark THIS as const, which the testsuite
11367 expects. GCC marks THIS as const in method definitions,
11368 but not in the class specifications (GCC PR 43053). */
11369 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
11370 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
11371 {
11372 int is_this = 0;
11373 struct dwarf2_cu *arg_cu = cu;
11374 const char *name = dwarf2_name (child_die, cu);
11375
11376 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
11377 if (attr)
11378 {
11379 /* If the compiler emits this, use it. */
11380 if (follow_die_ref (die, attr, &arg_cu) == child_die)
11381 is_this = 1;
11382 }
11383 else if (name && strcmp (name, "this") == 0)
11384 /* Function definitions will have the argument names. */
11385 is_this = 1;
11386 else if (name == NULL && iparams == 0)
11387 /* Declarations may not have the names, so like
11388 elsewhere in GDB, assume an artificial first
11389 argument is "this". */
11390 is_this = 1;
11391
11392 if (is_this)
11393 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
11394 arg_type, 0);
11395 }
11396
11397 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
11398 iparams++;
11399 }
11400 child_die = sibling_die (child_die);
11401 }
11402 }
11403
11404 return ftype;
11405 }
11406
11407 static struct type *
11408 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
11409 {
11410 struct objfile *objfile = cu->objfile;
11411 const char *name = NULL;
11412 struct type *this_type, *target_type;
11413
11414 name = dwarf2_full_name (NULL, die, cu);
11415 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
11416 TYPE_FLAG_TARGET_STUB, NULL, objfile);
11417 TYPE_NAME (this_type) = (char *) name;
11418 set_die_type (die, this_type, cu);
11419 target_type = die_type (die, cu);
11420 if (target_type != this_type)
11421 TYPE_TARGET_TYPE (this_type) = target_type;
11422 else
11423 {
11424 /* Self-referential typedefs are, it seems, not allowed by the DWARF
11425 spec and cause infinite loops in GDB. */
11426 complaint (&symfile_complaints,
11427 _("Self-referential DW_TAG_typedef "
11428 "- DIE at 0x%x [in module %s]"),
11429 die->offset.sect_off, objfile->name);
11430 TYPE_TARGET_TYPE (this_type) = NULL;
11431 }
11432 return this_type;
11433 }
11434
11435 /* Find a representation of a given base type and install
11436 it in the TYPE field of the die. */
11437
11438 static struct type *
11439 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
11440 {
11441 struct objfile *objfile = cu->objfile;
11442 struct type *type;
11443 struct attribute *attr;
11444 int encoding = 0, size = 0;
11445 char *name;
11446 enum type_code code = TYPE_CODE_INT;
11447 int type_flags = 0;
11448 struct type *target_type = NULL;
11449
11450 attr = dwarf2_attr (die, DW_AT_encoding, cu);
11451 if (attr)
11452 {
11453 encoding = DW_UNSND (attr);
11454 }
11455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11456 if (attr)
11457 {
11458 size = DW_UNSND (attr);
11459 }
11460 name = dwarf2_name (die, cu);
11461 if (!name)
11462 {
11463 complaint (&symfile_complaints,
11464 _("DW_AT_name missing from DW_TAG_base_type"));
11465 }
11466
11467 switch (encoding)
11468 {
11469 case DW_ATE_address:
11470 /* Turn DW_ATE_address into a void * pointer. */
11471 code = TYPE_CODE_PTR;
11472 type_flags |= TYPE_FLAG_UNSIGNED;
11473 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
11474 break;
11475 case DW_ATE_boolean:
11476 code = TYPE_CODE_BOOL;
11477 type_flags |= TYPE_FLAG_UNSIGNED;
11478 break;
11479 case DW_ATE_complex_float:
11480 code = TYPE_CODE_COMPLEX;
11481 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
11482 break;
11483 case DW_ATE_decimal_float:
11484 code = TYPE_CODE_DECFLOAT;
11485 break;
11486 case DW_ATE_float:
11487 code = TYPE_CODE_FLT;
11488 break;
11489 case DW_ATE_signed:
11490 break;
11491 case DW_ATE_unsigned:
11492 type_flags |= TYPE_FLAG_UNSIGNED;
11493 if (cu->language == language_fortran
11494 && name
11495 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
11496 code = TYPE_CODE_CHAR;
11497 break;
11498 case DW_ATE_signed_char:
11499 if (cu->language == language_ada || cu->language == language_m2
11500 || cu->language == language_pascal
11501 || cu->language == language_fortran)
11502 code = TYPE_CODE_CHAR;
11503 break;
11504 case DW_ATE_unsigned_char:
11505 if (cu->language == language_ada || cu->language == language_m2
11506 || cu->language == language_pascal
11507 || cu->language == language_fortran)
11508 code = TYPE_CODE_CHAR;
11509 type_flags |= TYPE_FLAG_UNSIGNED;
11510 break;
11511 case DW_ATE_UTF:
11512 /* We just treat this as an integer and then recognize the
11513 type by name elsewhere. */
11514 break;
11515
11516 default:
11517 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
11518 dwarf_type_encoding_name (encoding));
11519 break;
11520 }
11521
11522 type = init_type (code, size, type_flags, NULL, objfile);
11523 TYPE_NAME (type) = name;
11524 TYPE_TARGET_TYPE (type) = target_type;
11525
11526 if (name && strcmp (name, "char") == 0)
11527 TYPE_NOSIGN (type) = 1;
11528
11529 return set_die_type (die, type, cu);
11530 }
11531
11532 /* Read the given DW_AT_subrange DIE. */
11533
11534 static struct type *
11535 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
11536 {
11537 struct type *base_type;
11538 struct type *range_type;
11539 struct attribute *attr;
11540 LONGEST low, high;
11541 int low_default_is_valid;
11542 char *name;
11543 LONGEST negative_mask;
11544
11545 base_type = die_type (die, cu);
11546 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
11547 check_typedef (base_type);
11548
11549 /* The die_type call above may have already set the type for this DIE. */
11550 range_type = get_die_type (die, cu);
11551 if (range_type)
11552 return range_type;
11553
11554 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
11555 omitting DW_AT_lower_bound. */
11556 switch (cu->language)
11557 {
11558 case language_c:
11559 case language_cplus:
11560 low = 0;
11561 low_default_is_valid = 1;
11562 break;
11563 case language_fortran:
11564 low = 1;
11565 low_default_is_valid = 1;
11566 break;
11567 case language_d:
11568 case language_java:
11569 case language_objc:
11570 low = 0;
11571 low_default_is_valid = (cu->header.version >= 4);
11572 break;
11573 case language_ada:
11574 case language_m2:
11575 case language_pascal:
11576 low = 1;
11577 low_default_is_valid = (cu->header.version >= 4);
11578 break;
11579 default:
11580 low = 0;
11581 low_default_is_valid = 0;
11582 break;
11583 }
11584
11585 /* FIXME: For variable sized arrays either of these could be
11586 a variable rather than a constant value. We'll allow it,
11587 but we don't know how to handle it. */
11588 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
11589 if (attr)
11590 low = dwarf2_get_attr_constant_value (attr, low);
11591 else if (!low_default_is_valid)
11592 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
11593 "- DIE at 0x%x [in module %s]"),
11594 die->offset.sect_off, cu->objfile->name);
11595
11596 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
11597 if (attr)
11598 {
11599 if (attr_form_is_block (attr) || is_ref_attr (attr))
11600 {
11601 /* GCC encodes arrays with unspecified or dynamic length
11602 with a DW_FORM_block1 attribute or a reference attribute.
11603 FIXME: GDB does not yet know how to handle dynamic
11604 arrays properly, treat them as arrays with unspecified
11605 length for now.
11606
11607 FIXME: jimb/2003-09-22: GDB does not really know
11608 how to handle arrays of unspecified length
11609 either; we just represent them as zero-length
11610 arrays. Choose an appropriate upper bound given
11611 the lower bound we've computed above. */
11612 high = low - 1;
11613 }
11614 else
11615 high = dwarf2_get_attr_constant_value (attr, 1);
11616 }
11617 else
11618 {
11619 attr = dwarf2_attr (die, DW_AT_count, cu);
11620 if (attr)
11621 {
11622 int count = dwarf2_get_attr_constant_value (attr, 1);
11623 high = low + count - 1;
11624 }
11625 else
11626 {
11627 /* Unspecified array length. */
11628 high = low - 1;
11629 }
11630 }
11631
11632 /* Dwarf-2 specifications explicitly allows to create subrange types
11633 without specifying a base type.
11634 In that case, the base type must be set to the type of
11635 the lower bound, upper bound or count, in that order, if any of these
11636 three attributes references an object that has a type.
11637 If no base type is found, the Dwarf-2 specifications say that
11638 a signed integer type of size equal to the size of an address should
11639 be used.
11640 For the following C code: `extern char gdb_int [];'
11641 GCC produces an empty range DIE.
11642 FIXME: muller/2010-05-28: Possible references to object for low bound,
11643 high bound or count are not yet handled by this code. */
11644 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
11645 {
11646 struct objfile *objfile = cu->objfile;
11647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11648 int addr_size = gdbarch_addr_bit (gdbarch) /8;
11649 struct type *int_type = objfile_type (objfile)->builtin_int;
11650
11651 /* Test "int", "long int", and "long long int" objfile types,
11652 and select the first one having a size above or equal to the
11653 architecture address size. */
11654 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11655 base_type = int_type;
11656 else
11657 {
11658 int_type = objfile_type (objfile)->builtin_long;
11659 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11660 base_type = int_type;
11661 else
11662 {
11663 int_type = objfile_type (objfile)->builtin_long_long;
11664 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11665 base_type = int_type;
11666 }
11667 }
11668 }
11669
11670 negative_mask =
11671 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
11672 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
11673 low |= negative_mask;
11674 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
11675 high |= negative_mask;
11676
11677 range_type = create_range_type (NULL, base_type, low, high);
11678
11679 /* Mark arrays with dynamic length at least as an array of unspecified
11680 length. GDB could check the boundary but before it gets implemented at
11681 least allow accessing the array elements. */
11682 if (attr && attr_form_is_block (attr))
11683 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11684
11685 /* Ada expects an empty array on no boundary attributes. */
11686 if (attr == NULL && cu->language != language_ada)
11687 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11688
11689 name = dwarf2_name (die, cu);
11690 if (name)
11691 TYPE_NAME (range_type) = name;
11692
11693 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11694 if (attr)
11695 TYPE_LENGTH (range_type) = DW_UNSND (attr);
11696
11697 set_die_type (die, range_type, cu);
11698
11699 /* set_die_type should be already done. */
11700 set_descriptive_type (range_type, die, cu);
11701
11702 return range_type;
11703 }
11704
11705 static struct type *
11706 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
11707 {
11708 struct type *type;
11709
11710 /* For now, we only support the C meaning of an unspecified type: void. */
11711
11712 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
11713 TYPE_NAME (type) = dwarf2_name (die, cu);
11714
11715 return set_die_type (die, type, cu);
11716 }
11717
11718 /* Read a single die and all its descendents. Set the die's sibling
11719 field to NULL; set other fields in the die correctly, and set all
11720 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
11721 location of the info_ptr after reading all of those dies. PARENT
11722 is the parent of the die in question. */
11723
11724 static struct die_info *
11725 read_die_and_children (const struct die_reader_specs *reader,
11726 gdb_byte *info_ptr,
11727 gdb_byte **new_info_ptr,
11728 struct die_info *parent)
11729 {
11730 struct die_info *die;
11731 gdb_byte *cur_ptr;
11732 int has_children;
11733
11734 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
11735 if (die == NULL)
11736 {
11737 *new_info_ptr = cur_ptr;
11738 return NULL;
11739 }
11740 store_in_ref_table (die, reader->cu);
11741
11742 if (has_children)
11743 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
11744 else
11745 {
11746 die->child = NULL;
11747 *new_info_ptr = cur_ptr;
11748 }
11749
11750 die->sibling = NULL;
11751 die->parent = parent;
11752 return die;
11753 }
11754
11755 /* Read a die, all of its descendents, and all of its siblings; set
11756 all of the fields of all of the dies correctly. Arguments are as
11757 in read_die_and_children. */
11758
11759 static struct die_info *
11760 read_die_and_siblings (const struct die_reader_specs *reader,
11761 gdb_byte *info_ptr,
11762 gdb_byte **new_info_ptr,
11763 struct die_info *parent)
11764 {
11765 struct die_info *first_die, *last_sibling;
11766 gdb_byte *cur_ptr;
11767
11768 cur_ptr = info_ptr;
11769 first_die = last_sibling = NULL;
11770
11771 while (1)
11772 {
11773 struct die_info *die
11774 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
11775
11776 if (die == NULL)
11777 {
11778 *new_info_ptr = cur_ptr;
11779 return first_die;
11780 }
11781
11782 if (!first_die)
11783 first_die = die;
11784 else
11785 last_sibling->sibling = die;
11786
11787 last_sibling = die;
11788 }
11789 }
11790
11791 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
11792 attributes.
11793 The caller is responsible for filling in the extra attributes
11794 and updating (*DIEP)->num_attrs.
11795 Set DIEP to point to a newly allocated die with its information,
11796 except for its child, sibling, and parent fields.
11797 Set HAS_CHILDREN to tell whether the die has children or not. */
11798
11799 static gdb_byte *
11800 read_full_die_1 (const struct die_reader_specs *reader,
11801 struct die_info **diep, gdb_byte *info_ptr,
11802 int *has_children, int num_extra_attrs)
11803 {
11804 unsigned int abbrev_number, bytes_read, i;
11805 sect_offset offset;
11806 struct abbrev_info *abbrev;
11807 struct die_info *die;
11808 struct dwarf2_cu *cu = reader->cu;
11809 bfd *abfd = reader->abfd;
11810
11811 offset.sect_off = info_ptr - reader->buffer;
11812 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11813 info_ptr += bytes_read;
11814 if (!abbrev_number)
11815 {
11816 *diep = NULL;
11817 *has_children = 0;
11818 return info_ptr;
11819 }
11820
11821 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
11822 if (!abbrev)
11823 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
11824 abbrev_number,
11825 bfd_get_filename (abfd));
11826
11827 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
11828 die->offset = offset;
11829 die->tag = abbrev->tag;
11830 die->abbrev = abbrev_number;
11831
11832 /* Make the result usable.
11833 The caller needs to update num_attrs after adding the extra
11834 attributes. */
11835 die->num_attrs = abbrev->num_attrs;
11836
11837 for (i = 0; i < abbrev->num_attrs; ++i)
11838 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
11839 info_ptr);
11840
11841 *diep = die;
11842 *has_children = abbrev->has_children;
11843 return info_ptr;
11844 }
11845
11846 /* Read a die and all its attributes.
11847 Set DIEP to point to a newly allocated die with its information,
11848 except for its child, sibling, and parent fields.
11849 Set HAS_CHILDREN to tell whether the die has children or not. */
11850
11851 static gdb_byte *
11852 read_full_die (const struct die_reader_specs *reader,
11853 struct die_info **diep, gdb_byte *info_ptr,
11854 int *has_children)
11855 {
11856 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
11857 }
11858 \f
11859 /* Abbreviation tables.
11860
11861 In DWARF version 2, the description of the debugging information is
11862 stored in a separate .debug_abbrev section. Before we read any
11863 dies from a section we read in all abbreviations and install them
11864 in a hash table. */
11865
11866 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
11867
11868 static struct abbrev_info *
11869 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
11870 {
11871 struct abbrev_info *abbrev;
11872
11873 abbrev = (struct abbrev_info *)
11874 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
11875 memset (abbrev, 0, sizeof (struct abbrev_info));
11876 return abbrev;
11877 }
11878
11879 /* Add an abbreviation to the table. */
11880
11881 static void
11882 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
11883 unsigned int abbrev_number,
11884 struct abbrev_info *abbrev)
11885 {
11886 unsigned int hash_number;
11887
11888 hash_number = abbrev_number % ABBREV_HASH_SIZE;
11889 abbrev->next = abbrev_table->abbrevs[hash_number];
11890 abbrev_table->abbrevs[hash_number] = abbrev;
11891 }
11892
11893 /* Look up an abbrev in the table.
11894 Returns NULL if the abbrev is not found. */
11895
11896 static struct abbrev_info *
11897 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
11898 unsigned int abbrev_number)
11899 {
11900 unsigned int hash_number;
11901 struct abbrev_info *abbrev;
11902
11903 hash_number = abbrev_number % ABBREV_HASH_SIZE;
11904 abbrev = abbrev_table->abbrevs[hash_number];
11905
11906 while (abbrev)
11907 {
11908 if (abbrev->number == abbrev_number)
11909 return abbrev;
11910 abbrev = abbrev->next;
11911 }
11912 return NULL;
11913 }
11914
11915 /* Read in an abbrev table. */
11916
11917 static struct abbrev_table *
11918 abbrev_table_read_table (struct dwarf2_section_info *section,
11919 sect_offset offset)
11920 {
11921 struct objfile *objfile = dwarf2_per_objfile->objfile;
11922 bfd *abfd = section->asection->owner;
11923 struct abbrev_table *abbrev_table;
11924 gdb_byte *abbrev_ptr;
11925 struct abbrev_info *cur_abbrev;
11926 unsigned int abbrev_number, bytes_read, abbrev_name;
11927 unsigned int abbrev_form;
11928 struct attr_abbrev *cur_attrs;
11929 unsigned int allocated_attrs;
11930
11931 abbrev_table = XMALLOC (struct abbrev_table);
11932 abbrev_table->offset = offset;
11933 obstack_init (&abbrev_table->abbrev_obstack);
11934 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
11935 (ABBREV_HASH_SIZE
11936 * sizeof (struct abbrev_info *)));
11937 memset (abbrev_table->abbrevs, 0,
11938 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
11939
11940 dwarf2_read_section (objfile, section);
11941 abbrev_ptr = section->buffer + offset.sect_off;
11942 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
11943 abbrev_ptr += bytes_read;
11944
11945 allocated_attrs = ATTR_ALLOC_CHUNK;
11946 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
11947
11948 /* Loop until we reach an abbrev number of 0. */
11949 while (abbrev_number)
11950 {
11951 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
11952
11953 /* read in abbrev header */
11954 cur_abbrev->number = abbrev_number;
11955 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
11956 abbrev_ptr += bytes_read;
11957 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
11958 abbrev_ptr += 1;
11959
11960 /* now read in declarations */
11961 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
11962 abbrev_ptr += bytes_read;
11963 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
11964 abbrev_ptr += bytes_read;
11965 while (abbrev_name)
11966 {
11967 if (cur_abbrev->num_attrs == allocated_attrs)
11968 {
11969 allocated_attrs += ATTR_ALLOC_CHUNK;
11970 cur_attrs
11971 = xrealloc (cur_attrs, (allocated_attrs
11972 * sizeof (struct attr_abbrev)));
11973 }
11974
11975 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
11976 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
11977 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
11978 abbrev_ptr += bytes_read;
11979 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
11980 abbrev_ptr += bytes_read;
11981 }
11982
11983 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
11984 (cur_abbrev->num_attrs
11985 * sizeof (struct attr_abbrev)));
11986 memcpy (cur_abbrev->attrs, cur_attrs,
11987 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
11988
11989 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
11990
11991 /* Get next abbreviation.
11992 Under Irix6 the abbreviations for a compilation unit are not
11993 always properly terminated with an abbrev number of 0.
11994 Exit loop if we encounter an abbreviation which we have
11995 already read (which means we are about to read the abbreviations
11996 for the next compile unit) or if the end of the abbreviation
11997 table is reached. */
11998 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
11999 break;
12000 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12001 abbrev_ptr += bytes_read;
12002 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
12003 break;
12004 }
12005
12006 xfree (cur_attrs);
12007 return abbrev_table;
12008 }
12009
12010 /* Free the resources held by ABBREV_TABLE. */
12011
12012 static void
12013 abbrev_table_free (struct abbrev_table *abbrev_table)
12014 {
12015 obstack_free (&abbrev_table->abbrev_obstack, NULL);
12016 xfree (abbrev_table);
12017 }
12018
12019 /* Same as abbrev_table_free but as a cleanup.
12020 We pass in a pointer to the pointer to the table so that we can
12021 set the pointer to NULL when we're done. It also simplifies
12022 build_type_unit_groups. */
12023
12024 static void
12025 abbrev_table_free_cleanup (void *table_ptr)
12026 {
12027 struct abbrev_table **abbrev_table_ptr = table_ptr;
12028
12029 if (*abbrev_table_ptr != NULL)
12030 abbrev_table_free (*abbrev_table_ptr);
12031 *abbrev_table_ptr = NULL;
12032 }
12033
12034 /* Read the abbrev table for CU from ABBREV_SECTION. */
12035
12036 static void
12037 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
12038 struct dwarf2_section_info *abbrev_section)
12039 {
12040 cu->abbrev_table =
12041 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
12042 }
12043
12044 /* Release the memory used by the abbrev table for a compilation unit. */
12045
12046 static void
12047 dwarf2_free_abbrev_table (void *ptr_to_cu)
12048 {
12049 struct dwarf2_cu *cu = ptr_to_cu;
12050
12051 abbrev_table_free (cu->abbrev_table);
12052 /* Set this to NULL so that we SEGV if we try to read it later,
12053 and also because free_comp_unit verifies this is NULL. */
12054 cu->abbrev_table = NULL;
12055 }
12056 \f
12057 /* Returns nonzero if TAG represents a type that we might generate a partial
12058 symbol for. */
12059
12060 static int
12061 is_type_tag_for_partial (int tag)
12062 {
12063 switch (tag)
12064 {
12065 #if 0
12066 /* Some types that would be reasonable to generate partial symbols for,
12067 that we don't at present. */
12068 case DW_TAG_array_type:
12069 case DW_TAG_file_type:
12070 case DW_TAG_ptr_to_member_type:
12071 case DW_TAG_set_type:
12072 case DW_TAG_string_type:
12073 case DW_TAG_subroutine_type:
12074 #endif
12075 case DW_TAG_base_type:
12076 case DW_TAG_class_type:
12077 case DW_TAG_interface_type:
12078 case DW_TAG_enumeration_type:
12079 case DW_TAG_structure_type:
12080 case DW_TAG_subrange_type:
12081 case DW_TAG_typedef:
12082 case DW_TAG_union_type:
12083 return 1;
12084 default:
12085 return 0;
12086 }
12087 }
12088
12089 /* Load all DIEs that are interesting for partial symbols into memory. */
12090
12091 static struct partial_die_info *
12092 load_partial_dies (const struct die_reader_specs *reader,
12093 gdb_byte *info_ptr, int building_psymtab)
12094 {
12095 struct dwarf2_cu *cu = reader->cu;
12096 struct objfile *objfile = cu->objfile;
12097 struct partial_die_info *part_die;
12098 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
12099 struct abbrev_info *abbrev;
12100 unsigned int bytes_read;
12101 unsigned int load_all = 0;
12102 int nesting_level = 1;
12103
12104 parent_die = NULL;
12105 last_die = NULL;
12106
12107 gdb_assert (cu->per_cu != NULL);
12108 if (cu->per_cu->load_all_dies)
12109 load_all = 1;
12110
12111 cu->partial_dies
12112 = htab_create_alloc_ex (cu->header.length / 12,
12113 partial_die_hash,
12114 partial_die_eq,
12115 NULL,
12116 &cu->comp_unit_obstack,
12117 hashtab_obstack_allocate,
12118 dummy_obstack_deallocate);
12119
12120 part_die = obstack_alloc (&cu->comp_unit_obstack,
12121 sizeof (struct partial_die_info));
12122
12123 while (1)
12124 {
12125 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
12126
12127 /* A NULL abbrev means the end of a series of children. */
12128 if (abbrev == NULL)
12129 {
12130 if (--nesting_level == 0)
12131 {
12132 /* PART_DIE was probably the last thing allocated on the
12133 comp_unit_obstack, so we could call obstack_free
12134 here. We don't do that because the waste is small,
12135 and will be cleaned up when we're done with this
12136 compilation unit. This way, we're also more robust
12137 against other users of the comp_unit_obstack. */
12138 return first_die;
12139 }
12140 info_ptr += bytes_read;
12141 last_die = parent_die;
12142 parent_die = parent_die->die_parent;
12143 continue;
12144 }
12145
12146 /* Check for template arguments. We never save these; if
12147 they're seen, we just mark the parent, and go on our way. */
12148 if (parent_die != NULL
12149 && cu->language == language_cplus
12150 && (abbrev->tag == DW_TAG_template_type_param
12151 || abbrev->tag == DW_TAG_template_value_param))
12152 {
12153 parent_die->has_template_arguments = 1;
12154
12155 if (!load_all)
12156 {
12157 /* We don't need a partial DIE for the template argument. */
12158 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12159 continue;
12160 }
12161 }
12162
12163 /* We only recurse into c++ subprograms looking for template arguments.
12164 Skip their other children. */
12165 if (!load_all
12166 && cu->language == language_cplus
12167 && parent_die != NULL
12168 && parent_die->tag == DW_TAG_subprogram)
12169 {
12170 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12171 continue;
12172 }
12173
12174 /* Check whether this DIE is interesting enough to save. Normally
12175 we would not be interested in members here, but there may be
12176 later variables referencing them via DW_AT_specification (for
12177 static members). */
12178 if (!load_all
12179 && !is_type_tag_for_partial (abbrev->tag)
12180 && abbrev->tag != DW_TAG_constant
12181 && abbrev->tag != DW_TAG_enumerator
12182 && abbrev->tag != DW_TAG_subprogram
12183 && abbrev->tag != DW_TAG_lexical_block
12184 && abbrev->tag != DW_TAG_variable
12185 && abbrev->tag != DW_TAG_namespace
12186 && abbrev->tag != DW_TAG_module
12187 && abbrev->tag != DW_TAG_member
12188 && abbrev->tag != DW_TAG_imported_unit)
12189 {
12190 /* Otherwise we skip to the next sibling, if any. */
12191 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12192 continue;
12193 }
12194
12195 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
12196 info_ptr);
12197
12198 /* This two-pass algorithm for processing partial symbols has a
12199 high cost in cache pressure. Thus, handle some simple cases
12200 here which cover the majority of C partial symbols. DIEs
12201 which neither have specification tags in them, nor could have
12202 specification tags elsewhere pointing at them, can simply be
12203 processed and discarded.
12204
12205 This segment is also optional; scan_partial_symbols and
12206 add_partial_symbol will handle these DIEs if we chain
12207 them in normally. When compilers which do not emit large
12208 quantities of duplicate debug information are more common,
12209 this code can probably be removed. */
12210
12211 /* Any complete simple types at the top level (pretty much all
12212 of them, for a language without namespaces), can be processed
12213 directly. */
12214 if (parent_die == NULL
12215 && part_die->has_specification == 0
12216 && part_die->is_declaration == 0
12217 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
12218 || part_die->tag == DW_TAG_base_type
12219 || part_die->tag == DW_TAG_subrange_type))
12220 {
12221 if (building_psymtab && part_die->name != NULL)
12222 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12223 VAR_DOMAIN, LOC_TYPEDEF,
12224 &objfile->static_psymbols,
12225 0, (CORE_ADDR) 0, cu->language, objfile);
12226 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12227 continue;
12228 }
12229
12230 /* The exception for DW_TAG_typedef with has_children above is
12231 a workaround of GCC PR debug/47510. In the case of this complaint
12232 type_name_no_tag_or_error will error on such types later.
12233
12234 GDB skipped children of DW_TAG_typedef by the shortcut above and then
12235 it could not find the child DIEs referenced later, this is checked
12236 above. In correct DWARF DW_TAG_typedef should have no children. */
12237
12238 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
12239 complaint (&symfile_complaints,
12240 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
12241 "- DIE at 0x%x [in module %s]"),
12242 part_die->offset.sect_off, objfile->name);
12243
12244 /* If we're at the second level, and we're an enumerator, and
12245 our parent has no specification (meaning possibly lives in a
12246 namespace elsewhere), then we can add the partial symbol now
12247 instead of queueing it. */
12248 if (part_die->tag == DW_TAG_enumerator
12249 && parent_die != NULL
12250 && parent_die->die_parent == NULL
12251 && parent_die->tag == DW_TAG_enumeration_type
12252 && parent_die->has_specification == 0)
12253 {
12254 if (part_die->name == NULL)
12255 complaint (&symfile_complaints,
12256 _("malformed enumerator DIE ignored"));
12257 else if (building_psymtab)
12258 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12259 VAR_DOMAIN, LOC_CONST,
12260 (cu->language == language_cplus
12261 || cu->language == language_java)
12262 ? &objfile->global_psymbols
12263 : &objfile->static_psymbols,
12264 0, (CORE_ADDR) 0, cu->language, objfile);
12265
12266 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12267 continue;
12268 }
12269
12270 /* We'll save this DIE so link it in. */
12271 part_die->die_parent = parent_die;
12272 part_die->die_sibling = NULL;
12273 part_die->die_child = NULL;
12274
12275 if (last_die && last_die == parent_die)
12276 last_die->die_child = part_die;
12277 else if (last_die)
12278 last_die->die_sibling = part_die;
12279
12280 last_die = part_die;
12281
12282 if (first_die == NULL)
12283 first_die = part_die;
12284
12285 /* Maybe add the DIE to the hash table. Not all DIEs that we
12286 find interesting need to be in the hash table, because we
12287 also have the parent/sibling/child chains; only those that we
12288 might refer to by offset later during partial symbol reading.
12289
12290 For now this means things that might have be the target of a
12291 DW_AT_specification, DW_AT_abstract_origin, or
12292 DW_AT_extension. DW_AT_extension will refer only to
12293 namespaces; DW_AT_abstract_origin refers to functions (and
12294 many things under the function DIE, but we do not recurse
12295 into function DIEs during partial symbol reading) and
12296 possibly variables as well; DW_AT_specification refers to
12297 declarations. Declarations ought to have the DW_AT_declaration
12298 flag. It happens that GCC forgets to put it in sometimes, but
12299 only for functions, not for types.
12300
12301 Adding more things than necessary to the hash table is harmless
12302 except for the performance cost. Adding too few will result in
12303 wasted time in find_partial_die, when we reread the compilation
12304 unit with load_all_dies set. */
12305
12306 if (load_all
12307 || abbrev->tag == DW_TAG_constant
12308 || abbrev->tag == DW_TAG_subprogram
12309 || abbrev->tag == DW_TAG_variable
12310 || abbrev->tag == DW_TAG_namespace
12311 || part_die->is_declaration)
12312 {
12313 void **slot;
12314
12315 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
12316 part_die->offset.sect_off, INSERT);
12317 *slot = part_die;
12318 }
12319
12320 part_die = obstack_alloc (&cu->comp_unit_obstack,
12321 sizeof (struct partial_die_info));
12322
12323 /* For some DIEs we want to follow their children (if any). For C
12324 we have no reason to follow the children of structures; for other
12325 languages we have to, so that we can get at method physnames
12326 to infer fully qualified class names, for DW_AT_specification,
12327 and for C++ template arguments. For C++, we also look one level
12328 inside functions to find template arguments (if the name of the
12329 function does not already contain the template arguments).
12330
12331 For Ada, we need to scan the children of subprograms and lexical
12332 blocks as well because Ada allows the definition of nested
12333 entities that could be interesting for the debugger, such as
12334 nested subprograms for instance. */
12335 if (last_die->has_children
12336 && (load_all
12337 || last_die->tag == DW_TAG_namespace
12338 || last_die->tag == DW_TAG_module
12339 || last_die->tag == DW_TAG_enumeration_type
12340 || (cu->language == language_cplus
12341 && last_die->tag == DW_TAG_subprogram
12342 && (last_die->name == NULL
12343 || strchr (last_die->name, '<') == NULL))
12344 || (cu->language != language_c
12345 && (last_die->tag == DW_TAG_class_type
12346 || last_die->tag == DW_TAG_interface_type
12347 || last_die->tag == DW_TAG_structure_type
12348 || last_die->tag == DW_TAG_union_type))
12349 || (cu->language == language_ada
12350 && (last_die->tag == DW_TAG_subprogram
12351 || last_die->tag == DW_TAG_lexical_block))))
12352 {
12353 nesting_level++;
12354 parent_die = last_die;
12355 continue;
12356 }
12357
12358 /* Otherwise we skip to the next sibling, if any. */
12359 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
12360
12361 /* Back to the top, do it again. */
12362 }
12363 }
12364
12365 /* Read a minimal amount of information into the minimal die structure. */
12366
12367 static gdb_byte *
12368 read_partial_die (const struct die_reader_specs *reader,
12369 struct partial_die_info *part_die,
12370 struct abbrev_info *abbrev, unsigned int abbrev_len,
12371 gdb_byte *info_ptr)
12372 {
12373 struct dwarf2_cu *cu = reader->cu;
12374 struct objfile *objfile = cu->objfile;
12375 gdb_byte *buffer = reader->buffer;
12376 unsigned int i;
12377 struct attribute attr;
12378 int has_low_pc_attr = 0;
12379 int has_high_pc_attr = 0;
12380 int high_pc_relative = 0;
12381
12382 memset (part_die, 0, sizeof (struct partial_die_info));
12383
12384 part_die->offset.sect_off = info_ptr - buffer;
12385
12386 info_ptr += abbrev_len;
12387
12388 if (abbrev == NULL)
12389 return info_ptr;
12390
12391 part_die->tag = abbrev->tag;
12392 part_die->has_children = abbrev->has_children;
12393
12394 for (i = 0; i < abbrev->num_attrs; ++i)
12395 {
12396 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
12397
12398 /* Store the data if it is of an attribute we want to keep in a
12399 partial symbol table. */
12400 switch (attr.name)
12401 {
12402 case DW_AT_name:
12403 switch (part_die->tag)
12404 {
12405 case DW_TAG_compile_unit:
12406 case DW_TAG_partial_unit:
12407 case DW_TAG_type_unit:
12408 /* Compilation units have a DW_AT_name that is a filename, not
12409 a source language identifier. */
12410 case DW_TAG_enumeration_type:
12411 case DW_TAG_enumerator:
12412 /* These tags always have simple identifiers already; no need
12413 to canonicalize them. */
12414 part_die->name = DW_STRING (&attr);
12415 break;
12416 default:
12417 part_die->name
12418 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
12419 &objfile->objfile_obstack);
12420 break;
12421 }
12422 break;
12423 case DW_AT_linkage_name:
12424 case DW_AT_MIPS_linkage_name:
12425 /* Note that both forms of linkage name might appear. We
12426 assume they will be the same, and we only store the last
12427 one we see. */
12428 if (cu->language == language_ada)
12429 part_die->name = DW_STRING (&attr);
12430 part_die->linkage_name = DW_STRING (&attr);
12431 break;
12432 case DW_AT_low_pc:
12433 has_low_pc_attr = 1;
12434 part_die->lowpc = DW_ADDR (&attr);
12435 break;
12436 case DW_AT_high_pc:
12437 has_high_pc_attr = 1;
12438 if (attr.form == DW_FORM_addr
12439 || attr.form == DW_FORM_GNU_addr_index)
12440 part_die->highpc = DW_ADDR (&attr);
12441 else
12442 {
12443 high_pc_relative = 1;
12444 part_die->highpc = DW_UNSND (&attr);
12445 }
12446 break;
12447 case DW_AT_location:
12448 /* Support the .debug_loc offsets. */
12449 if (attr_form_is_block (&attr))
12450 {
12451 part_die->d.locdesc = DW_BLOCK (&attr);
12452 }
12453 else if (attr_form_is_section_offset (&attr))
12454 {
12455 dwarf2_complex_location_expr_complaint ();
12456 }
12457 else
12458 {
12459 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12460 "partial symbol information");
12461 }
12462 break;
12463 case DW_AT_external:
12464 part_die->is_external = DW_UNSND (&attr);
12465 break;
12466 case DW_AT_declaration:
12467 part_die->is_declaration = DW_UNSND (&attr);
12468 break;
12469 case DW_AT_type:
12470 part_die->has_type = 1;
12471 break;
12472 case DW_AT_abstract_origin:
12473 case DW_AT_specification:
12474 case DW_AT_extension:
12475 part_die->has_specification = 1;
12476 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
12477 break;
12478 case DW_AT_sibling:
12479 /* Ignore absolute siblings, they might point outside of
12480 the current compile unit. */
12481 if (attr.form == DW_FORM_ref_addr)
12482 complaint (&symfile_complaints,
12483 _("ignoring absolute DW_AT_sibling"));
12484 else
12485 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
12486 break;
12487 case DW_AT_byte_size:
12488 part_die->has_byte_size = 1;
12489 break;
12490 case DW_AT_calling_convention:
12491 /* DWARF doesn't provide a way to identify a program's source-level
12492 entry point. DW_AT_calling_convention attributes are only meant
12493 to describe functions' calling conventions.
12494
12495 However, because it's a necessary piece of information in
12496 Fortran, and because DW_CC_program is the only piece of debugging
12497 information whose definition refers to a 'main program' at all,
12498 several compilers have begun marking Fortran main programs with
12499 DW_CC_program --- even when those functions use the standard
12500 calling conventions.
12501
12502 So until DWARF specifies a way to provide this information and
12503 compilers pick up the new representation, we'll support this
12504 practice. */
12505 if (DW_UNSND (&attr) == DW_CC_program
12506 && cu->language == language_fortran)
12507 {
12508 set_main_name (part_die->name);
12509
12510 /* As this DIE has a static linkage the name would be difficult
12511 to look up later. */
12512 language_of_main = language_fortran;
12513 }
12514 break;
12515 case DW_AT_inline:
12516 if (DW_UNSND (&attr) == DW_INL_inlined
12517 || DW_UNSND (&attr) == DW_INL_declared_inlined)
12518 part_die->may_be_inlined = 1;
12519 break;
12520
12521 case DW_AT_import:
12522 if (part_die->tag == DW_TAG_imported_unit)
12523 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
12524 break;
12525
12526 default:
12527 break;
12528 }
12529 }
12530
12531 if (high_pc_relative)
12532 part_die->highpc += part_die->lowpc;
12533
12534 if (has_low_pc_attr && has_high_pc_attr)
12535 {
12536 /* When using the GNU linker, .gnu.linkonce. sections are used to
12537 eliminate duplicate copies of functions and vtables and such.
12538 The linker will arbitrarily choose one and discard the others.
12539 The AT_*_pc values for such functions refer to local labels in
12540 these sections. If the section from that file was discarded, the
12541 labels are not in the output, so the relocs get a value of 0.
12542 If this is a discarded function, mark the pc bounds as invalid,
12543 so that GDB will ignore it. */
12544 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
12545 {
12546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12547
12548 complaint (&symfile_complaints,
12549 _("DW_AT_low_pc %s is zero "
12550 "for DIE at 0x%x [in module %s]"),
12551 paddress (gdbarch, part_die->lowpc),
12552 part_die->offset.sect_off, objfile->name);
12553 }
12554 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
12555 else if (part_die->lowpc >= part_die->highpc)
12556 {
12557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12558
12559 complaint (&symfile_complaints,
12560 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
12561 "for DIE at 0x%x [in module %s]"),
12562 paddress (gdbarch, part_die->lowpc),
12563 paddress (gdbarch, part_die->highpc),
12564 part_die->offset.sect_off, objfile->name);
12565 }
12566 else
12567 part_die->has_pc_info = 1;
12568 }
12569
12570 return info_ptr;
12571 }
12572
12573 /* Find a cached partial DIE at OFFSET in CU. */
12574
12575 static struct partial_die_info *
12576 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
12577 {
12578 struct partial_die_info *lookup_die = NULL;
12579 struct partial_die_info part_die;
12580
12581 part_die.offset = offset;
12582 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
12583 offset.sect_off);
12584
12585 return lookup_die;
12586 }
12587
12588 /* Find a partial DIE at OFFSET, which may or may not be in CU,
12589 except in the case of .debug_types DIEs which do not reference
12590 outside their CU (they do however referencing other types via
12591 DW_FORM_ref_sig8). */
12592
12593 static struct partial_die_info *
12594 find_partial_die (sect_offset offset, struct dwarf2_cu *cu)
12595 {
12596 struct objfile *objfile = cu->objfile;
12597 struct dwarf2_per_cu_data *per_cu = NULL;
12598 struct partial_die_info *pd = NULL;
12599
12600 if (offset_in_cu_p (&cu->header, offset))
12601 {
12602 pd = find_partial_die_in_comp_unit (offset, cu);
12603 if (pd != NULL)
12604 return pd;
12605 /* We missed recording what we needed.
12606 Load all dies and try again. */
12607 per_cu = cu->per_cu;
12608 }
12609 else
12610 {
12611 /* TUs don't reference other CUs/TUs (except via type signatures). */
12612 if (cu->per_cu->is_debug_types)
12613 {
12614 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
12615 " external reference to offset 0x%lx [in module %s].\n"),
12616 (long) cu->header.offset.sect_off, (long) offset.sect_off,
12617 bfd_get_filename (objfile->obfd));
12618 }
12619 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
12620
12621 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
12622 load_partial_comp_unit (per_cu);
12623
12624 per_cu->cu->last_used = 0;
12625 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12626 }
12627
12628 /* If we didn't find it, and not all dies have been loaded,
12629 load them all and try again. */
12630
12631 if (pd == NULL && per_cu->load_all_dies == 0)
12632 {
12633 per_cu->load_all_dies = 1;
12634
12635 /* This is nasty. When we reread the DIEs, somewhere up the call chain
12636 THIS_CU->cu may already be in use. So we can't just free it and
12637 replace its DIEs with the ones we read in. Instead, we leave those
12638 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
12639 and clobber THIS_CU->cu->partial_dies with the hash table for the new
12640 set. */
12641 load_partial_comp_unit (per_cu);
12642
12643 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12644 }
12645
12646 if (pd == NULL)
12647 internal_error (__FILE__, __LINE__,
12648 _("could not find partial DIE 0x%x "
12649 "in cache [from module %s]\n"),
12650 offset.sect_off, bfd_get_filename (objfile->obfd));
12651 return pd;
12652 }
12653
12654 /* See if we can figure out if the class lives in a namespace. We do
12655 this by looking for a member function; its demangled name will
12656 contain namespace info, if there is any. */
12657
12658 static void
12659 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
12660 struct dwarf2_cu *cu)
12661 {
12662 /* NOTE: carlton/2003-10-07: Getting the info this way changes
12663 what template types look like, because the demangler
12664 frequently doesn't give the same name as the debug info. We
12665 could fix this by only using the demangled name to get the
12666 prefix (but see comment in read_structure_type). */
12667
12668 struct partial_die_info *real_pdi;
12669 struct partial_die_info *child_pdi;
12670
12671 /* If this DIE (this DIE's specification, if any) has a parent, then
12672 we should not do this. We'll prepend the parent's fully qualified
12673 name when we create the partial symbol. */
12674
12675 real_pdi = struct_pdi;
12676 while (real_pdi->has_specification)
12677 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
12678
12679 if (real_pdi->die_parent != NULL)
12680 return;
12681
12682 for (child_pdi = struct_pdi->die_child;
12683 child_pdi != NULL;
12684 child_pdi = child_pdi->die_sibling)
12685 {
12686 if (child_pdi->tag == DW_TAG_subprogram
12687 && child_pdi->linkage_name != NULL)
12688 {
12689 char *actual_class_name
12690 = language_class_name_from_physname (cu->language_defn,
12691 child_pdi->linkage_name);
12692 if (actual_class_name != NULL)
12693 {
12694 struct_pdi->name
12695 = obsavestring (actual_class_name,
12696 strlen (actual_class_name),
12697 &cu->objfile->objfile_obstack);
12698 xfree (actual_class_name);
12699 }
12700 break;
12701 }
12702 }
12703 }
12704
12705 /* Adjust PART_DIE before generating a symbol for it. This function
12706 may set the is_external flag or change the DIE's name. */
12707
12708 static void
12709 fixup_partial_die (struct partial_die_info *part_die,
12710 struct dwarf2_cu *cu)
12711 {
12712 /* Once we've fixed up a die, there's no point in doing so again.
12713 This also avoids a memory leak if we were to call
12714 guess_partial_die_structure_name multiple times. */
12715 if (part_die->fixup_called)
12716 return;
12717
12718 /* If we found a reference attribute and the DIE has no name, try
12719 to find a name in the referred to DIE. */
12720
12721 if (part_die->name == NULL && part_die->has_specification)
12722 {
12723 struct partial_die_info *spec_die;
12724
12725 spec_die = find_partial_die (part_die->spec_offset, cu);
12726
12727 fixup_partial_die (spec_die, cu);
12728
12729 if (spec_die->name)
12730 {
12731 part_die->name = spec_die->name;
12732
12733 /* Copy DW_AT_external attribute if it is set. */
12734 if (spec_die->is_external)
12735 part_die->is_external = spec_die->is_external;
12736 }
12737 }
12738
12739 /* Set default names for some unnamed DIEs. */
12740
12741 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
12742 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
12743
12744 /* If there is no parent die to provide a namespace, and there are
12745 children, see if we can determine the namespace from their linkage
12746 name. */
12747 if (cu->language == language_cplus
12748 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12749 && part_die->die_parent == NULL
12750 && part_die->has_children
12751 && (part_die->tag == DW_TAG_class_type
12752 || part_die->tag == DW_TAG_structure_type
12753 || part_die->tag == DW_TAG_union_type))
12754 guess_partial_die_structure_name (part_die, cu);
12755
12756 /* GCC might emit a nameless struct or union that has a linkage
12757 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12758 if (part_die->name == NULL
12759 && (part_die->tag == DW_TAG_class_type
12760 || part_die->tag == DW_TAG_interface_type
12761 || part_die->tag == DW_TAG_structure_type
12762 || part_die->tag == DW_TAG_union_type)
12763 && part_die->linkage_name != NULL)
12764 {
12765 char *demangled;
12766
12767 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
12768 if (demangled)
12769 {
12770 const char *base;
12771
12772 /* Strip any leading namespaces/classes, keep only the base name.
12773 DW_AT_name for named DIEs does not contain the prefixes. */
12774 base = strrchr (demangled, ':');
12775 if (base && base > demangled && base[-1] == ':')
12776 base++;
12777 else
12778 base = demangled;
12779
12780 part_die->name = obsavestring (base, strlen (base),
12781 &cu->objfile->objfile_obstack);
12782 xfree (demangled);
12783 }
12784 }
12785
12786 part_die->fixup_called = 1;
12787 }
12788
12789 /* Read an attribute value described by an attribute form. */
12790
12791 static gdb_byte *
12792 read_attribute_value (const struct die_reader_specs *reader,
12793 struct attribute *attr, unsigned form,
12794 gdb_byte *info_ptr)
12795 {
12796 struct dwarf2_cu *cu = reader->cu;
12797 bfd *abfd = reader->abfd;
12798 struct comp_unit_head *cu_header = &cu->header;
12799 unsigned int bytes_read;
12800 struct dwarf_block *blk;
12801
12802 attr->form = form;
12803 switch (form)
12804 {
12805 case DW_FORM_ref_addr:
12806 if (cu->header.version == 2)
12807 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
12808 else
12809 DW_UNSND (attr) = read_offset (abfd, info_ptr,
12810 &cu->header, &bytes_read);
12811 info_ptr += bytes_read;
12812 break;
12813 case DW_FORM_addr:
12814 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
12815 info_ptr += bytes_read;
12816 break;
12817 case DW_FORM_block2:
12818 blk = dwarf_alloc_block (cu);
12819 blk->size = read_2_bytes (abfd, info_ptr);
12820 info_ptr += 2;
12821 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
12822 info_ptr += blk->size;
12823 DW_BLOCK (attr) = blk;
12824 break;
12825 case DW_FORM_block4:
12826 blk = dwarf_alloc_block (cu);
12827 blk->size = read_4_bytes (abfd, info_ptr);
12828 info_ptr += 4;
12829 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
12830 info_ptr += blk->size;
12831 DW_BLOCK (attr) = blk;
12832 break;
12833 case DW_FORM_data2:
12834 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
12835 info_ptr += 2;
12836 break;
12837 case DW_FORM_data4:
12838 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
12839 info_ptr += 4;
12840 break;
12841 case DW_FORM_data8:
12842 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
12843 info_ptr += 8;
12844 break;
12845 case DW_FORM_sec_offset:
12846 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
12847 info_ptr += bytes_read;
12848 break;
12849 case DW_FORM_string:
12850 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
12851 DW_STRING_IS_CANONICAL (attr) = 0;
12852 info_ptr += bytes_read;
12853 break;
12854 case DW_FORM_strp:
12855 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
12856 &bytes_read);
12857 DW_STRING_IS_CANONICAL (attr) = 0;
12858 info_ptr += bytes_read;
12859 break;
12860 case DW_FORM_exprloc:
12861 case DW_FORM_block:
12862 blk = dwarf_alloc_block (cu);
12863 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12864 info_ptr += bytes_read;
12865 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
12866 info_ptr += blk->size;
12867 DW_BLOCK (attr) = blk;
12868 break;
12869 case DW_FORM_block1:
12870 blk = dwarf_alloc_block (cu);
12871 blk->size = read_1_byte (abfd, info_ptr);
12872 info_ptr += 1;
12873 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
12874 info_ptr += blk->size;
12875 DW_BLOCK (attr) = blk;
12876 break;
12877 case DW_FORM_data1:
12878 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
12879 info_ptr += 1;
12880 break;
12881 case DW_FORM_flag:
12882 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
12883 info_ptr += 1;
12884 break;
12885 case DW_FORM_flag_present:
12886 DW_UNSND (attr) = 1;
12887 break;
12888 case DW_FORM_sdata:
12889 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
12890 info_ptr += bytes_read;
12891 break;
12892 case DW_FORM_udata:
12893 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12894 info_ptr += bytes_read;
12895 break;
12896 case DW_FORM_ref1:
12897 DW_UNSND (attr) = (cu->header.offset.sect_off
12898 + read_1_byte (abfd, info_ptr));
12899 info_ptr += 1;
12900 break;
12901 case DW_FORM_ref2:
12902 DW_UNSND (attr) = (cu->header.offset.sect_off
12903 + read_2_bytes (abfd, info_ptr));
12904 info_ptr += 2;
12905 break;
12906 case DW_FORM_ref4:
12907 DW_UNSND (attr) = (cu->header.offset.sect_off
12908 + read_4_bytes (abfd, info_ptr));
12909 info_ptr += 4;
12910 break;
12911 case DW_FORM_ref8:
12912 DW_UNSND (attr) = (cu->header.offset.sect_off
12913 + read_8_bytes (abfd, info_ptr));
12914 info_ptr += 8;
12915 break;
12916 case DW_FORM_ref_sig8:
12917 /* Convert the signature to something we can record in DW_UNSND
12918 for later lookup.
12919 NOTE: This is NULL if the type wasn't found. */
12920 DW_SIGNATURED_TYPE (attr) =
12921 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
12922 info_ptr += 8;
12923 break;
12924 case DW_FORM_ref_udata:
12925 DW_UNSND (attr) = (cu->header.offset.sect_off
12926 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
12927 info_ptr += bytes_read;
12928 break;
12929 case DW_FORM_indirect:
12930 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12931 info_ptr += bytes_read;
12932 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
12933 break;
12934 case DW_FORM_GNU_addr_index:
12935 if (reader->dwo_file == NULL)
12936 {
12937 /* For now flag a hard error.
12938 Later we can turn this into a complaint. */
12939 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
12940 dwarf_form_name (form),
12941 bfd_get_filename (abfd));
12942 }
12943 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
12944 info_ptr += bytes_read;
12945 break;
12946 case DW_FORM_GNU_str_index:
12947 if (reader->dwo_file == NULL)
12948 {
12949 /* For now flag a hard error.
12950 Later we can turn this into a complaint if warranted. */
12951 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
12952 dwarf_form_name (form),
12953 bfd_get_filename (abfd));
12954 }
12955 {
12956 ULONGEST str_index =
12957 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12958
12959 DW_STRING (attr) = read_str_index (reader, cu, str_index);
12960 DW_STRING_IS_CANONICAL (attr) = 0;
12961 info_ptr += bytes_read;
12962 }
12963 break;
12964 default:
12965 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
12966 dwarf_form_name (form),
12967 bfd_get_filename (abfd));
12968 }
12969
12970 /* We have seen instances where the compiler tried to emit a byte
12971 size attribute of -1 which ended up being encoded as an unsigned
12972 0xffffffff. Although 0xffffffff is technically a valid size value,
12973 an object of this size seems pretty unlikely so we can relatively
12974 safely treat these cases as if the size attribute was invalid and
12975 treat them as zero by default. */
12976 if (attr->name == DW_AT_byte_size
12977 && form == DW_FORM_data4
12978 && DW_UNSND (attr) >= 0xffffffff)
12979 {
12980 complaint
12981 (&symfile_complaints,
12982 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
12983 hex_string (DW_UNSND (attr)));
12984 DW_UNSND (attr) = 0;
12985 }
12986
12987 return info_ptr;
12988 }
12989
12990 /* Read an attribute described by an abbreviated attribute. */
12991
12992 static gdb_byte *
12993 read_attribute (const struct die_reader_specs *reader,
12994 struct attribute *attr, struct attr_abbrev *abbrev,
12995 gdb_byte *info_ptr)
12996 {
12997 attr->name = abbrev->name;
12998 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
12999 }
13000
13001 /* Read dwarf information from a buffer. */
13002
13003 static unsigned int
13004 read_1_byte (bfd *abfd, gdb_byte *buf)
13005 {
13006 return bfd_get_8 (abfd, buf);
13007 }
13008
13009 static int
13010 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
13011 {
13012 return bfd_get_signed_8 (abfd, buf);
13013 }
13014
13015 static unsigned int
13016 read_2_bytes (bfd *abfd, gdb_byte *buf)
13017 {
13018 return bfd_get_16 (abfd, buf);
13019 }
13020
13021 static int
13022 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
13023 {
13024 return bfd_get_signed_16 (abfd, buf);
13025 }
13026
13027 static unsigned int
13028 read_4_bytes (bfd *abfd, gdb_byte *buf)
13029 {
13030 return bfd_get_32 (abfd, buf);
13031 }
13032
13033 static int
13034 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
13035 {
13036 return bfd_get_signed_32 (abfd, buf);
13037 }
13038
13039 static ULONGEST
13040 read_8_bytes (bfd *abfd, gdb_byte *buf)
13041 {
13042 return bfd_get_64 (abfd, buf);
13043 }
13044
13045 static CORE_ADDR
13046 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
13047 unsigned int *bytes_read)
13048 {
13049 struct comp_unit_head *cu_header = &cu->header;
13050 CORE_ADDR retval = 0;
13051
13052 if (cu_header->signed_addr_p)
13053 {
13054 switch (cu_header->addr_size)
13055 {
13056 case 2:
13057 retval = bfd_get_signed_16 (abfd, buf);
13058 break;
13059 case 4:
13060 retval = bfd_get_signed_32 (abfd, buf);
13061 break;
13062 case 8:
13063 retval = bfd_get_signed_64 (abfd, buf);
13064 break;
13065 default:
13066 internal_error (__FILE__, __LINE__,
13067 _("read_address: bad switch, signed [in module %s]"),
13068 bfd_get_filename (abfd));
13069 }
13070 }
13071 else
13072 {
13073 switch (cu_header->addr_size)
13074 {
13075 case 2:
13076 retval = bfd_get_16 (abfd, buf);
13077 break;
13078 case 4:
13079 retval = bfd_get_32 (abfd, buf);
13080 break;
13081 case 8:
13082 retval = bfd_get_64 (abfd, buf);
13083 break;
13084 default:
13085 internal_error (__FILE__, __LINE__,
13086 _("read_address: bad switch, "
13087 "unsigned [in module %s]"),
13088 bfd_get_filename (abfd));
13089 }
13090 }
13091
13092 *bytes_read = cu_header->addr_size;
13093 return retval;
13094 }
13095
13096 /* Read the initial length from a section. The (draft) DWARF 3
13097 specification allows the initial length to take up either 4 bytes
13098 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
13099 bytes describe the length and all offsets will be 8 bytes in length
13100 instead of 4.
13101
13102 An older, non-standard 64-bit format is also handled by this
13103 function. The older format in question stores the initial length
13104 as an 8-byte quantity without an escape value. Lengths greater
13105 than 2^32 aren't very common which means that the initial 4 bytes
13106 is almost always zero. Since a length value of zero doesn't make
13107 sense for the 32-bit format, this initial zero can be considered to
13108 be an escape value which indicates the presence of the older 64-bit
13109 format. As written, the code can't detect (old format) lengths
13110 greater than 4GB. If it becomes necessary to handle lengths
13111 somewhat larger than 4GB, we could allow other small values (such
13112 as the non-sensical values of 1, 2, and 3) to also be used as
13113 escape values indicating the presence of the old format.
13114
13115 The value returned via bytes_read should be used to increment the
13116 relevant pointer after calling read_initial_length().
13117
13118 [ Note: read_initial_length() and read_offset() are based on the
13119 document entitled "DWARF Debugging Information Format", revision
13120 3, draft 8, dated November 19, 2001. This document was obtained
13121 from:
13122
13123 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
13124
13125 This document is only a draft and is subject to change. (So beware.)
13126
13127 Details regarding the older, non-standard 64-bit format were
13128 determined empirically by examining 64-bit ELF files produced by
13129 the SGI toolchain on an IRIX 6.5 machine.
13130
13131 - Kevin, July 16, 2002
13132 ] */
13133
13134 static LONGEST
13135 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
13136 {
13137 LONGEST length = bfd_get_32 (abfd, buf);
13138
13139 if (length == 0xffffffff)
13140 {
13141 length = bfd_get_64 (abfd, buf + 4);
13142 *bytes_read = 12;
13143 }
13144 else if (length == 0)
13145 {
13146 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
13147 length = bfd_get_64 (abfd, buf);
13148 *bytes_read = 8;
13149 }
13150 else
13151 {
13152 *bytes_read = 4;
13153 }
13154
13155 return length;
13156 }
13157
13158 /* Cover function for read_initial_length.
13159 Returns the length of the object at BUF, and stores the size of the
13160 initial length in *BYTES_READ and stores the size that offsets will be in
13161 *OFFSET_SIZE.
13162 If the initial length size is not equivalent to that specified in
13163 CU_HEADER then issue a complaint.
13164 This is useful when reading non-comp-unit headers. */
13165
13166 static LONGEST
13167 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
13168 const struct comp_unit_head *cu_header,
13169 unsigned int *bytes_read,
13170 unsigned int *offset_size)
13171 {
13172 LONGEST length = read_initial_length (abfd, buf, bytes_read);
13173
13174 gdb_assert (cu_header->initial_length_size == 4
13175 || cu_header->initial_length_size == 8
13176 || cu_header->initial_length_size == 12);
13177
13178 if (cu_header->initial_length_size != *bytes_read)
13179 complaint (&symfile_complaints,
13180 _("intermixed 32-bit and 64-bit DWARF sections"));
13181
13182 *offset_size = (*bytes_read == 4) ? 4 : 8;
13183 return length;
13184 }
13185
13186 /* Read an offset from the data stream. The size of the offset is
13187 given by cu_header->offset_size. */
13188
13189 static LONGEST
13190 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
13191 unsigned int *bytes_read)
13192 {
13193 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
13194
13195 *bytes_read = cu_header->offset_size;
13196 return offset;
13197 }
13198
13199 /* Read an offset from the data stream. */
13200
13201 static LONGEST
13202 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
13203 {
13204 LONGEST retval = 0;
13205
13206 switch (offset_size)
13207 {
13208 case 4:
13209 retval = bfd_get_32 (abfd, buf);
13210 break;
13211 case 8:
13212 retval = bfd_get_64 (abfd, buf);
13213 break;
13214 default:
13215 internal_error (__FILE__, __LINE__,
13216 _("read_offset_1: bad switch [in module %s]"),
13217 bfd_get_filename (abfd));
13218 }
13219
13220 return retval;
13221 }
13222
13223 static gdb_byte *
13224 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
13225 {
13226 /* If the size of a host char is 8 bits, we can return a pointer
13227 to the buffer, otherwise we have to copy the data to a buffer
13228 allocated on the temporary obstack. */
13229 gdb_assert (HOST_CHAR_BIT == 8);
13230 return buf;
13231 }
13232
13233 static char *
13234 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13235 {
13236 /* If the size of a host char is 8 bits, we can return a pointer
13237 to the string, otherwise we have to copy the string to a buffer
13238 allocated on the temporary obstack. */
13239 gdb_assert (HOST_CHAR_BIT == 8);
13240 if (*buf == '\0')
13241 {
13242 *bytes_read_ptr = 1;
13243 return NULL;
13244 }
13245 *bytes_read_ptr = strlen ((char *) buf) + 1;
13246 return (char *) buf;
13247 }
13248
13249 static char *
13250 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
13251 {
13252 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
13253 if (dwarf2_per_objfile->str.buffer == NULL)
13254 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
13255 bfd_get_filename (abfd));
13256 if (str_offset >= dwarf2_per_objfile->str.size)
13257 error (_("DW_FORM_strp pointing outside of "
13258 ".debug_str section [in module %s]"),
13259 bfd_get_filename (abfd));
13260 gdb_assert (HOST_CHAR_BIT == 8);
13261 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
13262 return NULL;
13263 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
13264 }
13265
13266 static char *
13267 read_indirect_string (bfd *abfd, gdb_byte *buf,
13268 const struct comp_unit_head *cu_header,
13269 unsigned int *bytes_read_ptr)
13270 {
13271 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
13272
13273 return read_indirect_string_at_offset (abfd, str_offset);
13274 }
13275
13276 static ULONGEST
13277 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13278 {
13279 ULONGEST result;
13280 unsigned int num_read;
13281 int i, shift;
13282 unsigned char byte;
13283
13284 result = 0;
13285 shift = 0;
13286 num_read = 0;
13287 i = 0;
13288 while (1)
13289 {
13290 byte = bfd_get_8 (abfd, buf);
13291 buf++;
13292 num_read++;
13293 result |= ((ULONGEST) (byte & 127) << shift);
13294 if ((byte & 128) == 0)
13295 {
13296 break;
13297 }
13298 shift += 7;
13299 }
13300 *bytes_read_ptr = num_read;
13301 return result;
13302 }
13303
13304 static LONGEST
13305 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13306 {
13307 LONGEST result;
13308 int i, shift, num_read;
13309 unsigned char byte;
13310
13311 result = 0;
13312 shift = 0;
13313 num_read = 0;
13314 i = 0;
13315 while (1)
13316 {
13317 byte = bfd_get_8 (abfd, buf);
13318 buf++;
13319 num_read++;
13320 result |= ((LONGEST) (byte & 127) << shift);
13321 shift += 7;
13322 if ((byte & 128) == 0)
13323 {
13324 break;
13325 }
13326 }
13327 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
13328 result |= -(((LONGEST) 1) << shift);
13329 *bytes_read_ptr = num_read;
13330 return result;
13331 }
13332
13333 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
13334 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
13335 ADDR_SIZE is the size of addresses from the CU header. */
13336
13337 static CORE_ADDR
13338 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
13339 {
13340 struct objfile *objfile = dwarf2_per_objfile->objfile;
13341 bfd *abfd = objfile->obfd;
13342 const gdb_byte *info_ptr;
13343
13344 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
13345 if (dwarf2_per_objfile->addr.buffer == NULL)
13346 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
13347 objfile->name);
13348 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
13349 error (_("DW_FORM_addr_index pointing outside of "
13350 ".debug_addr section [in module %s]"),
13351 objfile->name);
13352 info_ptr = (dwarf2_per_objfile->addr.buffer
13353 + addr_base + addr_index * addr_size);
13354 if (addr_size == 4)
13355 return bfd_get_32 (abfd, info_ptr);
13356 else
13357 return bfd_get_64 (abfd, info_ptr);
13358 }
13359
13360 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
13361
13362 static CORE_ADDR
13363 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
13364 {
13365 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
13366 }
13367
13368 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
13369
13370 static CORE_ADDR
13371 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
13372 unsigned int *bytes_read)
13373 {
13374 bfd *abfd = cu->objfile->obfd;
13375 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
13376
13377 return read_addr_index (cu, addr_index);
13378 }
13379
13380 /* Data structure to pass results from dwarf2_read_addr_index_reader
13381 back to dwarf2_read_addr_index. */
13382
13383 struct dwarf2_read_addr_index_data
13384 {
13385 ULONGEST addr_base;
13386 int addr_size;
13387 };
13388
13389 /* die_reader_func for dwarf2_read_addr_index. */
13390
13391 static void
13392 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
13393 gdb_byte *info_ptr,
13394 struct die_info *comp_unit_die,
13395 int has_children,
13396 void *data)
13397 {
13398 struct dwarf2_cu *cu = reader->cu;
13399 struct dwarf2_read_addr_index_data *aidata =
13400 (struct dwarf2_read_addr_index_data *) data;
13401
13402 aidata->addr_base = cu->addr_base;
13403 aidata->addr_size = cu->header.addr_size;
13404 }
13405
13406 /* Given an index in .debug_addr, fetch the value.
13407 NOTE: This can be called during dwarf expression evaluation,
13408 long after the debug information has been read, and thus per_cu->cu
13409 may no longer exist. */
13410
13411 CORE_ADDR
13412 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
13413 unsigned int addr_index)
13414 {
13415 struct objfile *objfile = per_cu->objfile;
13416 struct dwarf2_cu *cu = per_cu->cu;
13417 ULONGEST addr_base;
13418 int addr_size;
13419
13420 /* This is intended to be called from outside this file. */
13421 dw2_setup (objfile);
13422
13423 /* We need addr_base and addr_size.
13424 If we don't have PER_CU->cu, we have to get it.
13425 Nasty, but the alternative is storing the needed info in PER_CU,
13426 which at this point doesn't seem justified: it's not clear how frequently
13427 it would get used and it would increase the size of every PER_CU.
13428 Entry points like dwarf2_per_cu_addr_size do a similar thing
13429 so we're not in uncharted territory here.
13430 Alas we need to be a bit more complicated as addr_base is contained
13431 in the DIE.
13432
13433 We don't need to read the entire CU(/TU).
13434 We just need the header and top level die.
13435 IWBN to use the aging mechanism to let us lazily later discard the CU.
13436 See however init_cutu_and_read_dies_simple. */
13437
13438 if (cu != NULL)
13439 {
13440 addr_base = cu->addr_base;
13441 addr_size = cu->header.addr_size;
13442 }
13443 else
13444 {
13445 struct dwarf2_read_addr_index_data aidata;
13446
13447 init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader,
13448 &aidata);
13449 addr_base = aidata.addr_base;
13450 addr_size = aidata.addr_size;
13451 }
13452
13453 return read_addr_index_1 (addr_index, addr_base, addr_size);
13454 }
13455
13456 /* Given a DW_AT_str_index, fetch the string. */
13457
13458 static char *
13459 read_str_index (const struct die_reader_specs *reader,
13460 struct dwarf2_cu *cu, ULONGEST str_index)
13461 {
13462 struct objfile *objfile = dwarf2_per_objfile->objfile;
13463 const char *dwo_name = objfile->name;
13464 bfd *abfd = objfile->obfd;
13465 struct dwo_sections *sections = &reader->dwo_file->sections;
13466 gdb_byte *info_ptr;
13467 ULONGEST str_offset;
13468
13469 dwarf2_read_section (objfile, &sections->str);
13470 dwarf2_read_section (objfile, &sections->str_offsets);
13471 if (sections->str.buffer == NULL)
13472 error (_("DW_FORM_str_index used without .debug_str.dwo section"
13473 " in CU at offset 0x%lx [in module %s]"),
13474 (long) cu->header.offset.sect_off, dwo_name);
13475 if (sections->str_offsets.buffer == NULL)
13476 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
13477 " in CU at offset 0x%lx [in module %s]"),
13478 (long) cu->header.offset.sect_off, dwo_name);
13479 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
13480 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
13481 " section in CU at offset 0x%lx [in module %s]"),
13482 (long) cu->header.offset.sect_off, dwo_name);
13483 info_ptr = (sections->str_offsets.buffer
13484 + str_index * cu->header.offset_size);
13485 if (cu->header.offset_size == 4)
13486 str_offset = bfd_get_32 (abfd, info_ptr);
13487 else
13488 str_offset = bfd_get_64 (abfd, info_ptr);
13489 if (str_offset >= sections->str.size)
13490 error (_("Offset from DW_FORM_str_index pointing outside of"
13491 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
13492 (long) cu->header.offset.sect_off, dwo_name);
13493 return (char *) (sections->str.buffer + str_offset);
13494 }
13495
13496 /* Return the length of an LEB128 number in BUF. */
13497
13498 static int
13499 leb128_size (const gdb_byte *buf)
13500 {
13501 const gdb_byte *begin = buf;
13502 gdb_byte byte;
13503
13504 while (1)
13505 {
13506 byte = *buf++;
13507 if ((byte & 128) == 0)
13508 return buf - begin;
13509 }
13510 }
13511
13512 static void
13513 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
13514 {
13515 switch (lang)
13516 {
13517 case DW_LANG_C89:
13518 case DW_LANG_C99:
13519 case DW_LANG_C:
13520 cu->language = language_c;
13521 break;
13522 case DW_LANG_C_plus_plus:
13523 cu->language = language_cplus;
13524 break;
13525 case DW_LANG_D:
13526 cu->language = language_d;
13527 break;
13528 case DW_LANG_Fortran77:
13529 case DW_LANG_Fortran90:
13530 case DW_LANG_Fortran95:
13531 cu->language = language_fortran;
13532 break;
13533 case DW_LANG_Go:
13534 cu->language = language_go;
13535 break;
13536 case DW_LANG_Mips_Assembler:
13537 cu->language = language_asm;
13538 break;
13539 case DW_LANG_Java:
13540 cu->language = language_java;
13541 break;
13542 case DW_LANG_Ada83:
13543 case DW_LANG_Ada95:
13544 cu->language = language_ada;
13545 break;
13546 case DW_LANG_Modula2:
13547 cu->language = language_m2;
13548 break;
13549 case DW_LANG_Pascal83:
13550 cu->language = language_pascal;
13551 break;
13552 case DW_LANG_ObjC:
13553 cu->language = language_objc;
13554 break;
13555 case DW_LANG_Cobol74:
13556 case DW_LANG_Cobol85:
13557 default:
13558 cu->language = language_minimal;
13559 break;
13560 }
13561 cu->language_defn = language_def (cu->language);
13562 }
13563
13564 /* Return the named attribute or NULL if not there. */
13565
13566 static struct attribute *
13567 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
13568 {
13569 for (;;)
13570 {
13571 unsigned int i;
13572 struct attribute *spec = NULL;
13573
13574 for (i = 0; i < die->num_attrs; ++i)
13575 {
13576 if (die->attrs[i].name == name)
13577 return &die->attrs[i];
13578 if (die->attrs[i].name == DW_AT_specification
13579 || die->attrs[i].name == DW_AT_abstract_origin)
13580 spec = &die->attrs[i];
13581 }
13582
13583 if (!spec)
13584 break;
13585
13586 die = follow_die_ref (die, spec, &cu);
13587 }
13588
13589 return NULL;
13590 }
13591
13592 /* Return the named attribute or NULL if not there,
13593 but do not follow DW_AT_specification, etc.
13594 This is for use in contexts where we're reading .debug_types dies.
13595 Following DW_AT_specification, DW_AT_abstract_origin will take us
13596 back up the chain, and we want to go down. */
13597
13598 static struct attribute *
13599 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
13600 {
13601 unsigned int i;
13602
13603 for (i = 0; i < die->num_attrs; ++i)
13604 if (die->attrs[i].name == name)
13605 return &die->attrs[i];
13606
13607 return NULL;
13608 }
13609
13610 /* Return non-zero iff the attribute NAME is defined for the given DIE,
13611 and holds a non-zero value. This function should only be used for
13612 DW_FORM_flag or DW_FORM_flag_present attributes. */
13613
13614 static int
13615 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
13616 {
13617 struct attribute *attr = dwarf2_attr (die, name, cu);
13618
13619 return (attr && DW_UNSND (attr));
13620 }
13621
13622 static int
13623 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
13624 {
13625 /* A DIE is a declaration if it has a DW_AT_declaration attribute
13626 which value is non-zero. However, we have to be careful with
13627 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
13628 (via dwarf2_flag_true_p) follows this attribute. So we may
13629 end up accidently finding a declaration attribute that belongs
13630 to a different DIE referenced by the specification attribute,
13631 even though the given DIE does not have a declaration attribute. */
13632 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
13633 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
13634 }
13635
13636 /* Return the die giving the specification for DIE, if there is
13637 one. *SPEC_CU is the CU containing DIE on input, and the CU
13638 containing the return value on output. If there is no
13639 specification, but there is an abstract origin, that is
13640 returned. */
13641
13642 static struct die_info *
13643 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
13644 {
13645 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
13646 *spec_cu);
13647
13648 if (spec_attr == NULL)
13649 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
13650
13651 if (spec_attr == NULL)
13652 return NULL;
13653 else
13654 return follow_die_ref (die, spec_attr, spec_cu);
13655 }
13656
13657 /* Free the line_header structure *LH, and any arrays and strings it
13658 refers to.
13659 NOTE: This is also used as a "cleanup" function. */
13660
13661 static void
13662 free_line_header (struct line_header *lh)
13663 {
13664 if (lh->standard_opcode_lengths)
13665 xfree (lh->standard_opcode_lengths);
13666
13667 /* Remember that all the lh->file_names[i].name pointers are
13668 pointers into debug_line_buffer, and don't need to be freed. */
13669 if (lh->file_names)
13670 xfree (lh->file_names);
13671
13672 /* Similarly for the include directory names. */
13673 if (lh->include_dirs)
13674 xfree (lh->include_dirs);
13675
13676 xfree (lh);
13677 }
13678
13679 /* Add an entry to LH's include directory table. */
13680
13681 static void
13682 add_include_dir (struct line_header *lh, char *include_dir)
13683 {
13684 /* Grow the array if necessary. */
13685 if (lh->include_dirs_size == 0)
13686 {
13687 lh->include_dirs_size = 1; /* for testing */
13688 lh->include_dirs = xmalloc (lh->include_dirs_size
13689 * sizeof (*lh->include_dirs));
13690 }
13691 else if (lh->num_include_dirs >= lh->include_dirs_size)
13692 {
13693 lh->include_dirs_size *= 2;
13694 lh->include_dirs = xrealloc (lh->include_dirs,
13695 (lh->include_dirs_size
13696 * sizeof (*lh->include_dirs)));
13697 }
13698
13699 lh->include_dirs[lh->num_include_dirs++] = include_dir;
13700 }
13701
13702 /* Add an entry to LH's file name table. */
13703
13704 static void
13705 add_file_name (struct line_header *lh,
13706 char *name,
13707 unsigned int dir_index,
13708 unsigned int mod_time,
13709 unsigned int length)
13710 {
13711 struct file_entry *fe;
13712
13713 /* Grow the array if necessary. */
13714 if (lh->file_names_size == 0)
13715 {
13716 lh->file_names_size = 1; /* for testing */
13717 lh->file_names = xmalloc (lh->file_names_size
13718 * sizeof (*lh->file_names));
13719 }
13720 else if (lh->num_file_names >= lh->file_names_size)
13721 {
13722 lh->file_names_size *= 2;
13723 lh->file_names = xrealloc (lh->file_names,
13724 (lh->file_names_size
13725 * sizeof (*lh->file_names)));
13726 }
13727
13728 fe = &lh->file_names[lh->num_file_names++];
13729 fe->name = name;
13730 fe->dir_index = dir_index;
13731 fe->mod_time = mod_time;
13732 fe->length = length;
13733 fe->included_p = 0;
13734 fe->symtab = NULL;
13735 }
13736
13737 /* Read the statement program header starting at OFFSET in
13738 .debug_line, or .debug_line.dwo. Return a pointer
13739 to a struct line_header, allocated using xmalloc.
13740
13741 NOTE: the strings in the include directory and file name tables of
13742 the returned object point into the dwarf line section buffer,
13743 and must not be freed. */
13744
13745 static struct line_header *
13746 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
13747 {
13748 struct cleanup *back_to;
13749 struct line_header *lh;
13750 gdb_byte *line_ptr;
13751 unsigned int bytes_read, offset_size;
13752 int i;
13753 char *cur_dir, *cur_file;
13754 struct dwarf2_section_info *section;
13755 bfd *abfd;
13756
13757 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
13758 DWO file. */
13759 if (cu->dwo_unit && cu->per_cu->is_debug_types)
13760 section = &cu->dwo_unit->dwo_file->sections.line;
13761 else
13762 section = &dwarf2_per_objfile->line;
13763
13764 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
13765 if (section->buffer == NULL)
13766 {
13767 if (cu->dwo_unit && cu->per_cu->is_debug_types)
13768 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
13769 else
13770 complaint (&symfile_complaints, _("missing .debug_line section"));
13771 return 0;
13772 }
13773
13774 /* We can't do this until we know the section is non-empty.
13775 Only then do we know we have such a section. */
13776 abfd = section->asection->owner;
13777
13778 /* Make sure that at least there's room for the total_length field.
13779 That could be 12 bytes long, but we're just going to fudge that. */
13780 if (offset + 4 >= section->size)
13781 {
13782 dwarf2_statement_list_fits_in_line_number_section_complaint ();
13783 return 0;
13784 }
13785
13786 lh = xmalloc (sizeof (*lh));
13787 memset (lh, 0, sizeof (*lh));
13788 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
13789 (void *) lh);
13790
13791 line_ptr = section->buffer + offset;
13792
13793 /* Read in the header. */
13794 lh->total_length =
13795 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
13796 &bytes_read, &offset_size);
13797 line_ptr += bytes_read;
13798 if (line_ptr + lh->total_length > (section->buffer + section->size))
13799 {
13800 dwarf2_statement_list_fits_in_line_number_section_complaint ();
13801 return 0;
13802 }
13803 lh->statement_program_end = line_ptr + lh->total_length;
13804 lh->version = read_2_bytes (abfd, line_ptr);
13805 line_ptr += 2;
13806 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
13807 line_ptr += offset_size;
13808 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
13809 line_ptr += 1;
13810 if (lh->version >= 4)
13811 {
13812 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
13813 line_ptr += 1;
13814 }
13815 else
13816 lh->maximum_ops_per_instruction = 1;
13817
13818 if (lh->maximum_ops_per_instruction == 0)
13819 {
13820 lh->maximum_ops_per_instruction = 1;
13821 complaint (&symfile_complaints,
13822 _("invalid maximum_ops_per_instruction "
13823 "in `.debug_line' section"));
13824 }
13825
13826 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
13827 line_ptr += 1;
13828 lh->line_base = read_1_signed_byte (abfd, line_ptr);
13829 line_ptr += 1;
13830 lh->line_range = read_1_byte (abfd, line_ptr);
13831 line_ptr += 1;
13832 lh->opcode_base = read_1_byte (abfd, line_ptr);
13833 line_ptr += 1;
13834 lh->standard_opcode_lengths
13835 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
13836
13837 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
13838 for (i = 1; i < lh->opcode_base; ++i)
13839 {
13840 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
13841 line_ptr += 1;
13842 }
13843
13844 /* Read directory table. */
13845 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
13846 {
13847 line_ptr += bytes_read;
13848 add_include_dir (lh, cur_dir);
13849 }
13850 line_ptr += bytes_read;
13851
13852 /* Read file name table. */
13853 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
13854 {
13855 unsigned int dir_index, mod_time, length;
13856
13857 line_ptr += bytes_read;
13858 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13859 line_ptr += bytes_read;
13860 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13861 line_ptr += bytes_read;
13862 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13863 line_ptr += bytes_read;
13864
13865 add_file_name (lh, cur_file, dir_index, mod_time, length);
13866 }
13867 line_ptr += bytes_read;
13868 lh->statement_program_start = line_ptr;
13869
13870 if (line_ptr > (section->buffer + section->size))
13871 complaint (&symfile_complaints,
13872 _("line number info header doesn't "
13873 "fit in `.debug_line' section"));
13874
13875 discard_cleanups (back_to);
13876 return lh;
13877 }
13878
13879 /* Subroutine of dwarf_decode_lines to simplify it.
13880 Return the file name of the psymtab for included file FILE_INDEX
13881 in line header LH of PST.
13882 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
13883 If space for the result is malloc'd, it will be freed by a cleanup.
13884 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
13885
13886 static char *
13887 psymtab_include_file_name (const struct line_header *lh, int file_index,
13888 const struct partial_symtab *pst,
13889 const char *comp_dir)
13890 {
13891 const struct file_entry fe = lh->file_names [file_index];
13892 char *include_name = fe.name;
13893 char *include_name_to_compare = include_name;
13894 char *dir_name = NULL;
13895 const char *pst_filename;
13896 char *copied_name = NULL;
13897 int file_is_pst;
13898
13899 if (fe.dir_index)
13900 dir_name = lh->include_dirs[fe.dir_index - 1];
13901
13902 if (!IS_ABSOLUTE_PATH (include_name)
13903 && (dir_name != NULL || comp_dir != NULL))
13904 {
13905 /* Avoid creating a duplicate psymtab for PST.
13906 We do this by comparing INCLUDE_NAME and PST_FILENAME.
13907 Before we do the comparison, however, we need to account
13908 for DIR_NAME and COMP_DIR.
13909 First prepend dir_name (if non-NULL). If we still don't
13910 have an absolute path prepend comp_dir (if non-NULL).
13911 However, the directory we record in the include-file's
13912 psymtab does not contain COMP_DIR (to match the
13913 corresponding symtab(s)).
13914
13915 Example:
13916
13917 bash$ cd /tmp
13918 bash$ gcc -g ./hello.c
13919 include_name = "hello.c"
13920 dir_name = "."
13921 DW_AT_comp_dir = comp_dir = "/tmp"
13922 DW_AT_name = "./hello.c" */
13923
13924 if (dir_name != NULL)
13925 {
13926 include_name = concat (dir_name, SLASH_STRING,
13927 include_name, (char *)NULL);
13928 include_name_to_compare = include_name;
13929 make_cleanup (xfree, include_name);
13930 }
13931 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
13932 {
13933 include_name_to_compare = concat (comp_dir, SLASH_STRING,
13934 include_name, (char *)NULL);
13935 }
13936 }
13937
13938 pst_filename = pst->filename;
13939 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
13940 {
13941 copied_name = concat (pst->dirname, SLASH_STRING,
13942 pst_filename, (char *)NULL);
13943 pst_filename = copied_name;
13944 }
13945
13946 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
13947
13948 if (include_name_to_compare != include_name)
13949 xfree (include_name_to_compare);
13950 if (copied_name != NULL)
13951 xfree (copied_name);
13952
13953 if (file_is_pst)
13954 return NULL;
13955 return include_name;
13956 }
13957
13958 /* Ignore this record_line request. */
13959
13960 static void
13961 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
13962 {
13963 return;
13964 }
13965
13966 /* Subroutine of dwarf_decode_lines to simplify it.
13967 Process the line number information in LH. */
13968
13969 static void
13970 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
13971 struct dwarf2_cu *cu, struct partial_symtab *pst)
13972 {
13973 gdb_byte *line_ptr, *extended_end;
13974 gdb_byte *line_end;
13975 unsigned int bytes_read, extended_len;
13976 unsigned char op_code, extended_op, adj_opcode;
13977 CORE_ADDR baseaddr;
13978 struct objfile *objfile = cu->objfile;
13979 bfd *abfd = objfile->obfd;
13980 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13981 const int decode_for_pst_p = (pst != NULL);
13982 struct subfile *last_subfile = NULL;
13983 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
13984 = record_line;
13985
13986 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13987
13988 line_ptr = lh->statement_program_start;
13989 line_end = lh->statement_program_end;
13990
13991 /* Read the statement sequences until there's nothing left. */
13992 while (line_ptr < line_end)
13993 {
13994 /* state machine registers */
13995 CORE_ADDR address = 0;
13996 unsigned int file = 1;
13997 unsigned int line = 1;
13998 unsigned int column = 0;
13999 int is_stmt = lh->default_is_stmt;
14000 int basic_block = 0;
14001 int end_sequence = 0;
14002 CORE_ADDR addr;
14003 unsigned char op_index = 0;
14004
14005 if (!decode_for_pst_p && lh->num_file_names >= file)
14006 {
14007 /* Start a subfile for the current file of the state machine. */
14008 /* lh->include_dirs and lh->file_names are 0-based, but the
14009 directory and file name numbers in the statement program
14010 are 1-based. */
14011 struct file_entry *fe = &lh->file_names[file - 1];
14012 char *dir = NULL;
14013
14014 if (fe->dir_index)
14015 dir = lh->include_dirs[fe->dir_index - 1];
14016
14017 dwarf2_start_subfile (fe->name, dir, comp_dir);
14018 }
14019
14020 /* Decode the table. */
14021 while (!end_sequence)
14022 {
14023 op_code = read_1_byte (abfd, line_ptr);
14024 line_ptr += 1;
14025 if (line_ptr > line_end)
14026 {
14027 dwarf2_debug_line_missing_end_sequence_complaint ();
14028 break;
14029 }
14030
14031 if (op_code >= lh->opcode_base)
14032 {
14033 /* Special operand. */
14034 adj_opcode = op_code - lh->opcode_base;
14035 address += (((op_index + (adj_opcode / lh->line_range))
14036 / lh->maximum_ops_per_instruction)
14037 * lh->minimum_instruction_length);
14038 op_index = ((op_index + (adj_opcode / lh->line_range))
14039 % lh->maximum_ops_per_instruction);
14040 line += lh->line_base + (adj_opcode % lh->line_range);
14041 if (lh->num_file_names < file || file == 0)
14042 dwarf2_debug_line_missing_file_complaint ();
14043 /* For now we ignore lines not starting on an
14044 instruction boundary. */
14045 else if (op_index == 0)
14046 {
14047 lh->file_names[file - 1].included_p = 1;
14048 if (!decode_for_pst_p && is_stmt)
14049 {
14050 if (last_subfile != current_subfile)
14051 {
14052 addr = gdbarch_addr_bits_remove (gdbarch, address);
14053 if (last_subfile)
14054 (*p_record_line) (last_subfile, 0, addr);
14055 last_subfile = current_subfile;
14056 }
14057 /* Append row to matrix using current values. */
14058 addr = gdbarch_addr_bits_remove (gdbarch, address);
14059 (*p_record_line) (current_subfile, line, addr);
14060 }
14061 }
14062 basic_block = 0;
14063 }
14064 else switch (op_code)
14065 {
14066 case DW_LNS_extended_op:
14067 extended_len = read_unsigned_leb128 (abfd, line_ptr,
14068 &bytes_read);
14069 line_ptr += bytes_read;
14070 extended_end = line_ptr + extended_len;
14071 extended_op = read_1_byte (abfd, line_ptr);
14072 line_ptr += 1;
14073 switch (extended_op)
14074 {
14075 case DW_LNE_end_sequence:
14076 p_record_line = record_line;
14077 end_sequence = 1;
14078 break;
14079 case DW_LNE_set_address:
14080 address = read_address (abfd, line_ptr, cu, &bytes_read);
14081
14082 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
14083 {
14084 /* This line table is for a function which has been
14085 GCd by the linker. Ignore it. PR gdb/12528 */
14086
14087 long line_offset
14088 = line_ptr - dwarf2_per_objfile->line.buffer;
14089
14090 complaint (&symfile_complaints,
14091 _(".debug_line address at offset 0x%lx is 0 "
14092 "[in module %s]"),
14093 line_offset, objfile->name);
14094 p_record_line = noop_record_line;
14095 }
14096
14097 op_index = 0;
14098 line_ptr += bytes_read;
14099 address += baseaddr;
14100 break;
14101 case DW_LNE_define_file:
14102 {
14103 char *cur_file;
14104 unsigned int dir_index, mod_time, length;
14105
14106 cur_file = read_direct_string (abfd, line_ptr,
14107 &bytes_read);
14108 line_ptr += bytes_read;
14109 dir_index =
14110 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14111 line_ptr += bytes_read;
14112 mod_time =
14113 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14114 line_ptr += bytes_read;
14115 length =
14116 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14117 line_ptr += bytes_read;
14118 add_file_name (lh, cur_file, dir_index, mod_time, length);
14119 }
14120 break;
14121 case DW_LNE_set_discriminator:
14122 /* The discriminator is not interesting to the debugger;
14123 just ignore it. */
14124 line_ptr = extended_end;
14125 break;
14126 default:
14127 complaint (&symfile_complaints,
14128 _("mangled .debug_line section"));
14129 return;
14130 }
14131 /* Make sure that we parsed the extended op correctly. If e.g.
14132 we expected a different address size than the producer used,
14133 we may have read the wrong number of bytes. */
14134 if (line_ptr != extended_end)
14135 {
14136 complaint (&symfile_complaints,
14137 _("mangled .debug_line section"));
14138 return;
14139 }
14140 break;
14141 case DW_LNS_copy:
14142 if (lh->num_file_names < file || file == 0)
14143 dwarf2_debug_line_missing_file_complaint ();
14144 else
14145 {
14146 lh->file_names[file - 1].included_p = 1;
14147 if (!decode_for_pst_p && is_stmt)
14148 {
14149 if (last_subfile != current_subfile)
14150 {
14151 addr = gdbarch_addr_bits_remove (gdbarch, address);
14152 if (last_subfile)
14153 (*p_record_line) (last_subfile, 0, addr);
14154 last_subfile = current_subfile;
14155 }
14156 addr = gdbarch_addr_bits_remove (gdbarch, address);
14157 (*p_record_line) (current_subfile, line, addr);
14158 }
14159 }
14160 basic_block = 0;
14161 break;
14162 case DW_LNS_advance_pc:
14163 {
14164 CORE_ADDR adjust
14165 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14166
14167 address += (((op_index + adjust)
14168 / lh->maximum_ops_per_instruction)
14169 * lh->minimum_instruction_length);
14170 op_index = ((op_index + adjust)
14171 % lh->maximum_ops_per_instruction);
14172 line_ptr += bytes_read;
14173 }
14174 break;
14175 case DW_LNS_advance_line:
14176 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
14177 line_ptr += bytes_read;
14178 break;
14179 case DW_LNS_set_file:
14180 {
14181 /* The arrays lh->include_dirs and lh->file_names are
14182 0-based, but the directory and file name numbers in
14183 the statement program are 1-based. */
14184 struct file_entry *fe;
14185 char *dir = NULL;
14186
14187 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14188 line_ptr += bytes_read;
14189 if (lh->num_file_names < file || file == 0)
14190 dwarf2_debug_line_missing_file_complaint ();
14191 else
14192 {
14193 fe = &lh->file_names[file - 1];
14194 if (fe->dir_index)
14195 dir = lh->include_dirs[fe->dir_index - 1];
14196 if (!decode_for_pst_p)
14197 {
14198 last_subfile = current_subfile;
14199 dwarf2_start_subfile (fe->name, dir, comp_dir);
14200 }
14201 }
14202 }
14203 break;
14204 case DW_LNS_set_column:
14205 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14206 line_ptr += bytes_read;
14207 break;
14208 case DW_LNS_negate_stmt:
14209 is_stmt = (!is_stmt);
14210 break;
14211 case DW_LNS_set_basic_block:
14212 basic_block = 1;
14213 break;
14214 /* Add to the address register of the state machine the
14215 address increment value corresponding to special opcode
14216 255. I.e., this value is scaled by the minimum
14217 instruction length since special opcode 255 would have
14218 scaled the increment. */
14219 case DW_LNS_const_add_pc:
14220 {
14221 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
14222
14223 address += (((op_index + adjust)
14224 / lh->maximum_ops_per_instruction)
14225 * lh->minimum_instruction_length);
14226 op_index = ((op_index + adjust)
14227 % lh->maximum_ops_per_instruction);
14228 }
14229 break;
14230 case DW_LNS_fixed_advance_pc:
14231 address += read_2_bytes (abfd, line_ptr);
14232 op_index = 0;
14233 line_ptr += 2;
14234 break;
14235 default:
14236 {
14237 /* Unknown standard opcode, ignore it. */
14238 int i;
14239
14240 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
14241 {
14242 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14243 line_ptr += bytes_read;
14244 }
14245 }
14246 }
14247 }
14248 if (lh->num_file_names < file || file == 0)
14249 dwarf2_debug_line_missing_file_complaint ();
14250 else
14251 {
14252 lh->file_names[file - 1].included_p = 1;
14253 if (!decode_for_pst_p)
14254 {
14255 addr = gdbarch_addr_bits_remove (gdbarch, address);
14256 (*p_record_line) (current_subfile, 0, addr);
14257 }
14258 }
14259 }
14260 }
14261
14262 /* Decode the Line Number Program (LNP) for the given line_header
14263 structure and CU. The actual information extracted and the type
14264 of structures created from the LNP depends on the value of PST.
14265
14266 1. If PST is NULL, then this procedure uses the data from the program
14267 to create all necessary symbol tables, and their linetables.
14268
14269 2. If PST is not NULL, this procedure reads the program to determine
14270 the list of files included by the unit represented by PST, and
14271 builds all the associated partial symbol tables.
14272
14273 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14274 It is used for relative paths in the line table.
14275 NOTE: When processing partial symtabs (pst != NULL),
14276 comp_dir == pst->dirname.
14277
14278 NOTE: It is important that psymtabs have the same file name (via strcmp)
14279 as the corresponding symtab. Since COMP_DIR is not used in the name of the
14280 symtab we don't use it in the name of the psymtabs we create.
14281 E.g. expand_line_sal requires this when finding psymtabs to expand.
14282 A good testcase for this is mb-inline.exp. */
14283
14284 static void
14285 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
14286 struct dwarf2_cu *cu, struct partial_symtab *pst,
14287 int want_line_info)
14288 {
14289 struct objfile *objfile = cu->objfile;
14290 const int decode_for_pst_p = (pst != NULL);
14291 struct subfile *first_subfile = current_subfile;
14292
14293 if (want_line_info)
14294 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
14295
14296 if (decode_for_pst_p)
14297 {
14298 int file_index;
14299
14300 /* Now that we're done scanning the Line Header Program, we can
14301 create the psymtab of each included file. */
14302 for (file_index = 0; file_index < lh->num_file_names; file_index++)
14303 if (lh->file_names[file_index].included_p == 1)
14304 {
14305 char *include_name =
14306 psymtab_include_file_name (lh, file_index, pst, comp_dir);
14307 if (include_name != NULL)
14308 dwarf2_create_include_psymtab (include_name, pst, objfile);
14309 }
14310 }
14311 else
14312 {
14313 /* Make sure a symtab is created for every file, even files
14314 which contain only variables (i.e. no code with associated
14315 line numbers). */
14316 int i;
14317
14318 for (i = 0; i < lh->num_file_names; i++)
14319 {
14320 char *dir = NULL;
14321 struct file_entry *fe;
14322
14323 fe = &lh->file_names[i];
14324 if (fe->dir_index)
14325 dir = lh->include_dirs[fe->dir_index - 1];
14326 dwarf2_start_subfile (fe->name, dir, comp_dir);
14327
14328 /* Skip the main file; we don't need it, and it must be
14329 allocated last, so that it will show up before the
14330 non-primary symtabs in the objfile's symtab list. */
14331 if (current_subfile == first_subfile)
14332 continue;
14333
14334 if (current_subfile->symtab == NULL)
14335 current_subfile->symtab = allocate_symtab (current_subfile->name,
14336 objfile);
14337 fe->symtab = current_subfile->symtab;
14338 }
14339 }
14340 }
14341
14342 /* Start a subfile for DWARF. FILENAME is the name of the file and
14343 DIRNAME the name of the source directory which contains FILENAME
14344 or NULL if not known. COMP_DIR is the compilation directory for the
14345 linetable's compilation unit or NULL if not known.
14346 This routine tries to keep line numbers from identical absolute and
14347 relative file names in a common subfile.
14348
14349 Using the `list' example from the GDB testsuite, which resides in
14350 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
14351 of /srcdir/list0.c yields the following debugging information for list0.c:
14352
14353 DW_AT_name: /srcdir/list0.c
14354 DW_AT_comp_dir: /compdir
14355 files.files[0].name: list0.h
14356 files.files[0].dir: /srcdir
14357 files.files[1].name: list0.c
14358 files.files[1].dir: /srcdir
14359
14360 The line number information for list0.c has to end up in a single
14361 subfile, so that `break /srcdir/list0.c:1' works as expected.
14362 start_subfile will ensure that this happens provided that we pass the
14363 concatenation of files.files[1].dir and files.files[1].name as the
14364 subfile's name. */
14365
14366 static void
14367 dwarf2_start_subfile (char *filename, const char *dirname,
14368 const char *comp_dir)
14369 {
14370 char *fullname;
14371
14372 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
14373 `start_symtab' will always pass the contents of DW_AT_comp_dir as
14374 second argument to start_subfile. To be consistent, we do the
14375 same here. In order not to lose the line information directory,
14376 we concatenate it to the filename when it makes sense.
14377 Note that the Dwarf3 standard says (speaking of filenames in line
14378 information): ``The directory index is ignored for file names
14379 that represent full path names''. Thus ignoring dirname in the
14380 `else' branch below isn't an issue. */
14381
14382 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
14383 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
14384 else
14385 fullname = filename;
14386
14387 start_subfile (fullname, comp_dir);
14388
14389 if (fullname != filename)
14390 xfree (fullname);
14391 }
14392
14393 /* Start a symtab for DWARF.
14394 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
14395
14396 static void
14397 dwarf2_start_symtab (struct dwarf2_cu *cu,
14398 char *name, char *comp_dir, CORE_ADDR low_pc)
14399 {
14400 start_symtab (name, comp_dir, low_pc);
14401 record_debugformat ("DWARF 2");
14402 record_producer (cu->producer);
14403
14404 /* We assume that we're processing GCC output. */
14405 processing_gcc_compilation = 2;
14406
14407 processing_has_namespace_info = 0;
14408 }
14409
14410 static void
14411 var_decode_location (struct attribute *attr, struct symbol *sym,
14412 struct dwarf2_cu *cu)
14413 {
14414 struct objfile *objfile = cu->objfile;
14415 struct comp_unit_head *cu_header = &cu->header;
14416
14417 /* NOTE drow/2003-01-30: There used to be a comment and some special
14418 code here to turn a symbol with DW_AT_external and a
14419 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
14420 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
14421 with some versions of binutils) where shared libraries could have
14422 relocations against symbols in their debug information - the
14423 minimal symbol would have the right address, but the debug info
14424 would not. It's no longer necessary, because we will explicitly
14425 apply relocations when we read in the debug information now. */
14426
14427 /* A DW_AT_location attribute with no contents indicates that a
14428 variable has been optimized away. */
14429 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
14430 {
14431 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14432 return;
14433 }
14434
14435 /* Handle one degenerate form of location expression specially, to
14436 preserve GDB's previous behavior when section offsets are
14437 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
14438 then mark this symbol as LOC_STATIC. */
14439
14440 if (attr_form_is_block (attr)
14441 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
14442 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
14443 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
14444 && (DW_BLOCK (attr)->size
14445 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
14446 {
14447 unsigned int dummy;
14448
14449 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
14450 SYMBOL_VALUE_ADDRESS (sym) =
14451 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
14452 else
14453 SYMBOL_VALUE_ADDRESS (sym) =
14454 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
14455 SYMBOL_CLASS (sym) = LOC_STATIC;
14456 fixup_symbol_section (sym, objfile);
14457 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
14458 SYMBOL_SECTION (sym));
14459 return;
14460 }
14461
14462 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
14463 expression evaluator, and use LOC_COMPUTED only when necessary
14464 (i.e. when the value of a register or memory location is
14465 referenced, or a thread-local block, etc.). Then again, it might
14466 not be worthwhile. I'm assuming that it isn't unless performance
14467 or memory numbers show me otherwise. */
14468
14469 dwarf2_symbol_mark_computed (attr, sym, cu);
14470 SYMBOL_CLASS (sym) = LOC_COMPUTED;
14471
14472 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
14473 cu->has_loclist = 1;
14474 }
14475
14476 /* Given a pointer to a DWARF information entry, figure out if we need
14477 to make a symbol table entry for it, and if so, create a new entry
14478 and return a pointer to it.
14479 If TYPE is NULL, determine symbol type from the die, otherwise
14480 used the passed type.
14481 If SPACE is not NULL, use it to hold the new symbol. If it is
14482 NULL, allocate a new symbol on the objfile's obstack. */
14483
14484 static struct symbol *
14485 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
14486 struct symbol *space)
14487 {
14488 struct objfile *objfile = cu->objfile;
14489 struct symbol *sym = NULL;
14490 char *name;
14491 struct attribute *attr = NULL;
14492 struct attribute *attr2 = NULL;
14493 CORE_ADDR baseaddr;
14494 struct pending **list_to_add = NULL;
14495
14496 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14497
14498 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14499
14500 name = dwarf2_name (die, cu);
14501 if (name)
14502 {
14503 const char *linkagename;
14504 int suppress_add = 0;
14505
14506 if (space)
14507 sym = space;
14508 else
14509 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
14510 OBJSTAT (objfile, n_syms++);
14511
14512 /* Cache this symbol's name and the name's demangled form (if any). */
14513 SYMBOL_SET_LANGUAGE (sym, cu->language);
14514 linkagename = dwarf2_physname (name, die, cu);
14515 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
14516
14517 /* Fortran does not have mangling standard and the mangling does differ
14518 between gfortran, iFort etc. */
14519 if (cu->language == language_fortran
14520 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
14521 symbol_set_demangled_name (&(sym->ginfo),
14522 (char *) dwarf2_full_name (name, die, cu),
14523 NULL);
14524
14525 /* Default assumptions.
14526 Use the passed type or decode it from the die. */
14527 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
14528 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14529 if (type != NULL)
14530 SYMBOL_TYPE (sym) = type;
14531 else
14532 SYMBOL_TYPE (sym) = die_type (die, cu);
14533 attr = dwarf2_attr (die,
14534 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
14535 cu);
14536 if (attr)
14537 {
14538 SYMBOL_LINE (sym) = DW_UNSND (attr);
14539 }
14540
14541 attr = dwarf2_attr (die,
14542 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
14543 cu);
14544 if (attr)
14545 {
14546 int file_index = DW_UNSND (attr);
14547
14548 if (cu->line_header == NULL
14549 || file_index > cu->line_header->num_file_names)
14550 complaint (&symfile_complaints,
14551 _("file index out of range"));
14552 else if (file_index > 0)
14553 {
14554 struct file_entry *fe;
14555
14556 fe = &cu->line_header->file_names[file_index - 1];
14557 SYMBOL_SYMTAB (sym) = fe->symtab;
14558 }
14559 }
14560
14561 switch (die->tag)
14562 {
14563 case DW_TAG_label:
14564 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14565 if (attr)
14566 {
14567 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
14568 }
14569 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
14570 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
14571 SYMBOL_CLASS (sym) = LOC_LABEL;
14572 add_symbol_to_list (sym, cu->list_in_scope);
14573 break;
14574 case DW_TAG_subprogram:
14575 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14576 finish_block. */
14577 SYMBOL_CLASS (sym) = LOC_BLOCK;
14578 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14579 if ((attr2 && (DW_UNSND (attr2) != 0))
14580 || cu->language == language_ada)
14581 {
14582 /* Subprograms marked external are stored as a global symbol.
14583 Ada subprograms, whether marked external or not, are always
14584 stored as a global symbol, because we want to be able to
14585 access them globally. For instance, we want to be able
14586 to break on a nested subprogram without having to
14587 specify the context. */
14588 list_to_add = &global_symbols;
14589 }
14590 else
14591 {
14592 list_to_add = cu->list_in_scope;
14593 }
14594 break;
14595 case DW_TAG_inlined_subroutine:
14596 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14597 finish_block. */
14598 SYMBOL_CLASS (sym) = LOC_BLOCK;
14599 SYMBOL_INLINED (sym) = 1;
14600 list_to_add = cu->list_in_scope;
14601 break;
14602 case DW_TAG_template_value_param:
14603 suppress_add = 1;
14604 /* Fall through. */
14605 case DW_TAG_constant:
14606 case DW_TAG_variable:
14607 case DW_TAG_member:
14608 /* Compilation with minimal debug info may result in
14609 variables with missing type entries. Change the
14610 misleading `void' type to something sensible. */
14611 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
14612 SYMBOL_TYPE (sym)
14613 = objfile_type (objfile)->nodebug_data_symbol;
14614
14615 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14616 /* In the case of DW_TAG_member, we should only be called for
14617 static const members. */
14618 if (die->tag == DW_TAG_member)
14619 {
14620 /* dwarf2_add_field uses die_is_declaration,
14621 so we do the same. */
14622 gdb_assert (die_is_declaration (die, cu));
14623 gdb_assert (attr);
14624 }
14625 if (attr)
14626 {
14627 dwarf2_const_value (attr, sym, cu);
14628 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14629 if (!suppress_add)
14630 {
14631 if (attr2 && (DW_UNSND (attr2) != 0))
14632 list_to_add = &global_symbols;
14633 else
14634 list_to_add = cu->list_in_scope;
14635 }
14636 break;
14637 }
14638 attr = dwarf2_attr (die, DW_AT_location, cu);
14639 if (attr)
14640 {
14641 var_decode_location (attr, sym, cu);
14642 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14643 if (SYMBOL_CLASS (sym) == LOC_STATIC
14644 && SYMBOL_VALUE_ADDRESS (sym) == 0
14645 && !dwarf2_per_objfile->has_section_at_zero)
14646 {
14647 /* When a static variable is eliminated by the linker,
14648 the corresponding debug information is not stripped
14649 out, but the variable address is set to null;
14650 do not add such variables into symbol table. */
14651 }
14652 else if (attr2 && (DW_UNSND (attr2) != 0))
14653 {
14654 /* Workaround gfortran PR debug/40040 - it uses
14655 DW_AT_location for variables in -fPIC libraries which may
14656 get overriden by other libraries/executable and get
14657 a different address. Resolve it by the minimal symbol
14658 which may come from inferior's executable using copy
14659 relocation. Make this workaround only for gfortran as for
14660 other compilers GDB cannot guess the minimal symbol
14661 Fortran mangling kind. */
14662 if (cu->language == language_fortran && die->parent
14663 && die->parent->tag == DW_TAG_module
14664 && cu->producer
14665 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
14666 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
14667
14668 /* A variable with DW_AT_external is never static,
14669 but it may be block-scoped. */
14670 list_to_add = (cu->list_in_scope == &file_symbols
14671 ? &global_symbols : cu->list_in_scope);
14672 }
14673 else
14674 list_to_add = cu->list_in_scope;
14675 }
14676 else
14677 {
14678 /* We do not know the address of this symbol.
14679 If it is an external symbol and we have type information
14680 for it, enter the symbol as a LOC_UNRESOLVED symbol.
14681 The address of the variable will then be determined from
14682 the minimal symbol table whenever the variable is
14683 referenced. */
14684 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14685 if (attr2 && (DW_UNSND (attr2) != 0)
14686 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
14687 {
14688 /* A variable with DW_AT_external is never static, but it
14689 may be block-scoped. */
14690 list_to_add = (cu->list_in_scope == &file_symbols
14691 ? &global_symbols : cu->list_in_scope);
14692
14693 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
14694 }
14695 else if (!die_is_declaration (die, cu))
14696 {
14697 /* Use the default LOC_OPTIMIZED_OUT class. */
14698 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
14699 if (!suppress_add)
14700 list_to_add = cu->list_in_scope;
14701 }
14702 }
14703 break;
14704 case DW_TAG_formal_parameter:
14705 /* If we are inside a function, mark this as an argument. If
14706 not, we might be looking at an argument to an inlined function
14707 when we do not have enough information to show inlined frames;
14708 pretend it's a local variable in that case so that the user can
14709 still see it. */
14710 if (context_stack_depth > 0
14711 && context_stack[context_stack_depth - 1].name != NULL)
14712 SYMBOL_IS_ARGUMENT (sym) = 1;
14713 attr = dwarf2_attr (die, DW_AT_location, cu);
14714 if (attr)
14715 {
14716 var_decode_location (attr, sym, cu);
14717 }
14718 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14719 if (attr)
14720 {
14721 dwarf2_const_value (attr, sym, cu);
14722 }
14723
14724 list_to_add = cu->list_in_scope;
14725 break;
14726 case DW_TAG_unspecified_parameters:
14727 /* From varargs functions; gdb doesn't seem to have any
14728 interest in this information, so just ignore it for now.
14729 (FIXME?) */
14730 break;
14731 case DW_TAG_template_type_param:
14732 suppress_add = 1;
14733 /* Fall through. */
14734 case DW_TAG_class_type:
14735 case DW_TAG_interface_type:
14736 case DW_TAG_structure_type:
14737 case DW_TAG_union_type:
14738 case DW_TAG_set_type:
14739 case DW_TAG_enumeration_type:
14740 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
14741 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
14742
14743 {
14744 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
14745 really ever be static objects: otherwise, if you try
14746 to, say, break of a class's method and you're in a file
14747 which doesn't mention that class, it won't work unless
14748 the check for all static symbols in lookup_symbol_aux
14749 saves you. See the OtherFileClass tests in
14750 gdb.c++/namespace.exp. */
14751
14752 if (!suppress_add)
14753 {
14754 list_to_add = (cu->list_in_scope == &file_symbols
14755 && (cu->language == language_cplus
14756 || cu->language == language_java)
14757 ? &global_symbols : cu->list_in_scope);
14758
14759 /* The semantics of C++ state that "struct foo {
14760 ... }" also defines a typedef for "foo". A Java
14761 class declaration also defines a typedef for the
14762 class. */
14763 if (cu->language == language_cplus
14764 || cu->language == language_java
14765 || cu->language == language_ada)
14766 {
14767 /* The symbol's name is already allocated along
14768 with this objfile, so we don't need to
14769 duplicate it for the type. */
14770 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
14771 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
14772 }
14773 }
14774 }
14775 break;
14776 case DW_TAG_typedef:
14777 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
14778 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
14779 list_to_add = cu->list_in_scope;
14780 break;
14781 case DW_TAG_base_type:
14782 case DW_TAG_subrange_type:
14783 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
14784 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
14785 list_to_add = cu->list_in_scope;
14786 break;
14787 case DW_TAG_enumerator:
14788 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14789 if (attr)
14790 {
14791 dwarf2_const_value (attr, sym, cu);
14792 }
14793 {
14794 /* NOTE: carlton/2003-11-10: See comment above in the
14795 DW_TAG_class_type, etc. block. */
14796
14797 list_to_add = (cu->list_in_scope == &file_symbols
14798 && (cu->language == language_cplus
14799 || cu->language == language_java)
14800 ? &global_symbols : cu->list_in_scope);
14801 }
14802 break;
14803 case DW_TAG_namespace:
14804 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
14805 list_to_add = &global_symbols;
14806 break;
14807 default:
14808 /* Not a tag we recognize. Hopefully we aren't processing
14809 trash data, but since we must specifically ignore things
14810 we don't recognize, there is nothing else we should do at
14811 this point. */
14812 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
14813 dwarf_tag_name (die->tag));
14814 break;
14815 }
14816
14817 if (suppress_add)
14818 {
14819 sym->hash_next = objfile->template_symbols;
14820 objfile->template_symbols = sym;
14821 list_to_add = NULL;
14822 }
14823
14824 if (list_to_add != NULL)
14825 add_symbol_to_list (sym, list_to_add);
14826
14827 /* For the benefit of old versions of GCC, check for anonymous
14828 namespaces based on the demangled name. */
14829 if (!processing_has_namespace_info
14830 && cu->language == language_cplus)
14831 cp_scan_for_anonymous_namespaces (sym, objfile);
14832 }
14833 return (sym);
14834 }
14835
14836 /* A wrapper for new_symbol_full that always allocates a new symbol. */
14837
14838 static struct symbol *
14839 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14840 {
14841 return new_symbol_full (die, type, cu, NULL);
14842 }
14843
14844 /* Given an attr with a DW_FORM_dataN value in host byte order,
14845 zero-extend it as appropriate for the symbol's type. The DWARF
14846 standard (v4) is not entirely clear about the meaning of using
14847 DW_FORM_dataN for a constant with a signed type, where the type is
14848 wider than the data. The conclusion of a discussion on the DWARF
14849 list was that this is unspecified. We choose to always zero-extend
14850 because that is the interpretation long in use by GCC. */
14851
14852 static gdb_byte *
14853 dwarf2_const_value_data (struct attribute *attr, struct type *type,
14854 const char *name, struct obstack *obstack,
14855 struct dwarf2_cu *cu, LONGEST *value, int bits)
14856 {
14857 struct objfile *objfile = cu->objfile;
14858 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
14859 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
14860 LONGEST l = DW_UNSND (attr);
14861
14862 if (bits < sizeof (*value) * 8)
14863 {
14864 l &= ((LONGEST) 1 << bits) - 1;
14865 *value = l;
14866 }
14867 else if (bits == sizeof (*value) * 8)
14868 *value = l;
14869 else
14870 {
14871 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
14872 store_unsigned_integer (bytes, bits / 8, byte_order, l);
14873 return bytes;
14874 }
14875
14876 return NULL;
14877 }
14878
14879 /* Read a constant value from an attribute. Either set *VALUE, or if
14880 the value does not fit in *VALUE, set *BYTES - either already
14881 allocated on the objfile obstack, or newly allocated on OBSTACK,
14882 or, set *BATON, if we translated the constant to a location
14883 expression. */
14884
14885 static void
14886 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
14887 const char *name, struct obstack *obstack,
14888 struct dwarf2_cu *cu,
14889 LONGEST *value, gdb_byte **bytes,
14890 struct dwarf2_locexpr_baton **baton)
14891 {
14892 struct objfile *objfile = cu->objfile;
14893 struct comp_unit_head *cu_header = &cu->header;
14894 struct dwarf_block *blk;
14895 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
14896 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
14897
14898 *value = 0;
14899 *bytes = NULL;
14900 *baton = NULL;
14901
14902 switch (attr->form)
14903 {
14904 case DW_FORM_addr:
14905 case DW_FORM_GNU_addr_index:
14906 {
14907 gdb_byte *data;
14908
14909 if (TYPE_LENGTH (type) != cu_header->addr_size)
14910 dwarf2_const_value_length_mismatch_complaint (name,
14911 cu_header->addr_size,
14912 TYPE_LENGTH (type));
14913 /* Symbols of this form are reasonably rare, so we just
14914 piggyback on the existing location code rather than writing
14915 a new implementation of symbol_computed_ops. */
14916 *baton = obstack_alloc (&objfile->objfile_obstack,
14917 sizeof (struct dwarf2_locexpr_baton));
14918 (*baton)->per_cu = cu->per_cu;
14919 gdb_assert ((*baton)->per_cu);
14920
14921 (*baton)->size = 2 + cu_header->addr_size;
14922 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
14923 (*baton)->data = data;
14924
14925 data[0] = DW_OP_addr;
14926 store_unsigned_integer (&data[1], cu_header->addr_size,
14927 byte_order, DW_ADDR (attr));
14928 data[cu_header->addr_size + 1] = DW_OP_stack_value;
14929 }
14930 break;
14931 case DW_FORM_string:
14932 case DW_FORM_strp:
14933 case DW_FORM_GNU_str_index:
14934 /* DW_STRING is already allocated on the objfile obstack, point
14935 directly to it. */
14936 *bytes = (gdb_byte *) DW_STRING (attr);
14937 break;
14938 case DW_FORM_block1:
14939 case DW_FORM_block2:
14940 case DW_FORM_block4:
14941 case DW_FORM_block:
14942 case DW_FORM_exprloc:
14943 blk = DW_BLOCK (attr);
14944 if (TYPE_LENGTH (type) != blk->size)
14945 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
14946 TYPE_LENGTH (type));
14947 *bytes = blk->data;
14948 break;
14949
14950 /* The DW_AT_const_value attributes are supposed to carry the
14951 symbol's value "represented as it would be on the target
14952 architecture." By the time we get here, it's already been
14953 converted to host endianness, so we just need to sign- or
14954 zero-extend it as appropriate. */
14955 case DW_FORM_data1:
14956 *bytes = dwarf2_const_value_data (attr, type, name,
14957 obstack, cu, value, 8);
14958 break;
14959 case DW_FORM_data2:
14960 *bytes = dwarf2_const_value_data (attr, type, name,
14961 obstack, cu, value, 16);
14962 break;
14963 case DW_FORM_data4:
14964 *bytes = dwarf2_const_value_data (attr, type, name,
14965 obstack, cu, value, 32);
14966 break;
14967 case DW_FORM_data8:
14968 *bytes = dwarf2_const_value_data (attr, type, name,
14969 obstack, cu, value, 64);
14970 break;
14971
14972 case DW_FORM_sdata:
14973 *value = DW_SND (attr);
14974 break;
14975
14976 case DW_FORM_udata:
14977 *value = DW_UNSND (attr);
14978 break;
14979
14980 default:
14981 complaint (&symfile_complaints,
14982 _("unsupported const value attribute form: '%s'"),
14983 dwarf_form_name (attr->form));
14984 *value = 0;
14985 break;
14986 }
14987 }
14988
14989
14990 /* Copy constant value from an attribute to a symbol. */
14991
14992 static void
14993 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
14994 struct dwarf2_cu *cu)
14995 {
14996 struct objfile *objfile = cu->objfile;
14997 struct comp_unit_head *cu_header = &cu->header;
14998 LONGEST value;
14999 gdb_byte *bytes;
15000 struct dwarf2_locexpr_baton *baton;
15001
15002 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
15003 SYMBOL_PRINT_NAME (sym),
15004 &objfile->objfile_obstack, cu,
15005 &value, &bytes, &baton);
15006
15007 if (baton != NULL)
15008 {
15009 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15010 SYMBOL_LOCATION_BATON (sym) = baton;
15011 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15012 }
15013 else if (bytes != NULL)
15014 {
15015 SYMBOL_VALUE_BYTES (sym) = bytes;
15016 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
15017 }
15018 else
15019 {
15020 SYMBOL_VALUE (sym) = value;
15021 SYMBOL_CLASS (sym) = LOC_CONST;
15022 }
15023 }
15024
15025 /* Return the type of the die in question using its DW_AT_type attribute. */
15026
15027 static struct type *
15028 die_type (struct die_info *die, struct dwarf2_cu *cu)
15029 {
15030 struct attribute *type_attr;
15031
15032 type_attr = dwarf2_attr (die, DW_AT_type, cu);
15033 if (!type_attr)
15034 {
15035 /* A missing DW_AT_type represents a void type. */
15036 return objfile_type (cu->objfile)->builtin_void;
15037 }
15038
15039 return lookup_die_type (die, type_attr, cu);
15040 }
15041
15042 /* True iff CU's producer generates GNAT Ada auxiliary information
15043 that allows to find parallel types through that information instead
15044 of having to do expensive parallel lookups by type name. */
15045
15046 static int
15047 need_gnat_info (struct dwarf2_cu *cu)
15048 {
15049 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
15050 of GNAT produces this auxiliary information, without any indication
15051 that it is produced. Part of enhancing the FSF version of GNAT
15052 to produce that information will be to put in place an indicator
15053 that we can use in order to determine whether the descriptive type
15054 info is available or not. One suggestion that has been made is
15055 to use a new attribute, attached to the CU die. For now, assume
15056 that the descriptive type info is not available. */
15057 return 0;
15058 }
15059
15060 /* Return the auxiliary type of the die in question using its
15061 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
15062 attribute is not present. */
15063
15064 static struct type *
15065 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
15066 {
15067 struct attribute *type_attr;
15068
15069 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
15070 if (!type_attr)
15071 return NULL;
15072
15073 return lookup_die_type (die, type_attr, cu);
15074 }
15075
15076 /* If DIE has a descriptive_type attribute, then set the TYPE's
15077 descriptive type accordingly. */
15078
15079 static void
15080 set_descriptive_type (struct type *type, struct die_info *die,
15081 struct dwarf2_cu *cu)
15082 {
15083 struct type *descriptive_type = die_descriptive_type (die, cu);
15084
15085 if (descriptive_type)
15086 {
15087 ALLOCATE_GNAT_AUX_TYPE (type);
15088 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
15089 }
15090 }
15091
15092 /* Return the containing type of the die in question using its
15093 DW_AT_containing_type attribute. */
15094
15095 static struct type *
15096 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
15097 {
15098 struct attribute *type_attr;
15099
15100 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
15101 if (!type_attr)
15102 error (_("Dwarf Error: Problem turning containing type into gdb type "
15103 "[in module %s]"), cu->objfile->name);
15104
15105 return lookup_die_type (die, type_attr, cu);
15106 }
15107
15108 /* Look up the type of DIE in CU using its type attribute ATTR.
15109 If there is no type substitute an error marker. */
15110
15111 static struct type *
15112 lookup_die_type (struct die_info *die, struct attribute *attr,
15113 struct dwarf2_cu *cu)
15114 {
15115 struct objfile *objfile = cu->objfile;
15116 struct type *this_type;
15117
15118 /* First see if we have it cached. */
15119
15120 if (is_ref_attr (attr))
15121 {
15122 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15123
15124 this_type = get_die_type_at_offset (offset, cu->per_cu);
15125 }
15126 else if (attr->form == DW_FORM_ref_sig8)
15127 {
15128 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
15129
15130 /* sig_type will be NULL if the signatured type is missing from
15131 the debug info. */
15132 if (sig_type == NULL)
15133 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
15134 "at 0x%x [in module %s]"),
15135 die->offset.sect_off, objfile->name);
15136
15137 gdb_assert (sig_type->per_cu.is_debug_types);
15138 /* If we haven't filled in type_offset_in_section yet, then we
15139 haven't read the type in yet. */
15140 this_type = NULL;
15141 if (sig_type->type_offset_in_section.sect_off != 0)
15142 {
15143 this_type =
15144 get_die_type_at_offset (sig_type->type_offset_in_section,
15145 &sig_type->per_cu);
15146 }
15147 }
15148 else
15149 {
15150 dump_die_for_error (die);
15151 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
15152 dwarf_attr_name (attr->name), objfile->name);
15153 }
15154
15155 /* If not cached we need to read it in. */
15156
15157 if (this_type == NULL)
15158 {
15159 struct die_info *type_die;
15160 struct dwarf2_cu *type_cu = cu;
15161
15162 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
15163 /* If we found the type now, it's probably because the type came
15164 from an inter-CU reference and the type's CU got expanded before
15165 ours. */
15166 this_type = get_die_type (type_die, type_cu);
15167 if (this_type == NULL)
15168 this_type = read_type_die_1 (type_die, type_cu);
15169 }
15170
15171 /* If we still don't have a type use an error marker. */
15172
15173 if (this_type == NULL)
15174 {
15175 char *message, *saved;
15176
15177 /* read_type_die already issued a complaint. */
15178 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
15179 objfile->name,
15180 cu->header.offset.sect_off,
15181 die->offset.sect_off);
15182 saved = obstack_copy0 (&objfile->objfile_obstack,
15183 message, strlen (message));
15184 xfree (message);
15185
15186 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
15187 }
15188
15189 return this_type;
15190 }
15191
15192 /* Return the type in DIE, CU.
15193 Returns NULL for invalid types.
15194
15195 This first does a lookup in the appropriate type_hash table,
15196 and only reads the die in if necessary.
15197
15198 NOTE: This can be called when reading in partial or full symbols. */
15199
15200 static struct type *
15201 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
15202 {
15203 struct type *this_type;
15204
15205 this_type = get_die_type (die, cu);
15206 if (this_type)
15207 return this_type;
15208
15209 return read_type_die_1 (die, cu);
15210 }
15211
15212 /* Read the type in DIE, CU.
15213 Returns NULL for invalid types. */
15214
15215 static struct type *
15216 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
15217 {
15218 struct type *this_type = NULL;
15219
15220 switch (die->tag)
15221 {
15222 case DW_TAG_class_type:
15223 case DW_TAG_interface_type:
15224 case DW_TAG_structure_type:
15225 case DW_TAG_union_type:
15226 this_type = read_structure_type (die, cu);
15227 break;
15228 case DW_TAG_enumeration_type:
15229 this_type = read_enumeration_type (die, cu);
15230 break;
15231 case DW_TAG_subprogram:
15232 case DW_TAG_subroutine_type:
15233 case DW_TAG_inlined_subroutine:
15234 this_type = read_subroutine_type (die, cu);
15235 break;
15236 case DW_TAG_array_type:
15237 this_type = read_array_type (die, cu);
15238 break;
15239 case DW_TAG_set_type:
15240 this_type = read_set_type (die, cu);
15241 break;
15242 case DW_TAG_pointer_type:
15243 this_type = read_tag_pointer_type (die, cu);
15244 break;
15245 case DW_TAG_ptr_to_member_type:
15246 this_type = read_tag_ptr_to_member_type (die, cu);
15247 break;
15248 case DW_TAG_reference_type:
15249 this_type = read_tag_reference_type (die, cu);
15250 break;
15251 case DW_TAG_const_type:
15252 this_type = read_tag_const_type (die, cu);
15253 break;
15254 case DW_TAG_volatile_type:
15255 this_type = read_tag_volatile_type (die, cu);
15256 break;
15257 case DW_TAG_string_type:
15258 this_type = read_tag_string_type (die, cu);
15259 break;
15260 case DW_TAG_typedef:
15261 this_type = read_typedef (die, cu);
15262 break;
15263 case DW_TAG_subrange_type:
15264 this_type = read_subrange_type (die, cu);
15265 break;
15266 case DW_TAG_base_type:
15267 this_type = read_base_type (die, cu);
15268 break;
15269 case DW_TAG_unspecified_type:
15270 this_type = read_unspecified_type (die, cu);
15271 break;
15272 case DW_TAG_namespace:
15273 this_type = read_namespace_type (die, cu);
15274 break;
15275 case DW_TAG_module:
15276 this_type = read_module_type (die, cu);
15277 break;
15278 default:
15279 complaint (&symfile_complaints,
15280 _("unexpected tag in read_type_die: '%s'"),
15281 dwarf_tag_name (die->tag));
15282 break;
15283 }
15284
15285 return this_type;
15286 }
15287
15288 /* See if we can figure out if the class lives in a namespace. We do
15289 this by looking for a member function; its demangled name will
15290 contain namespace info, if there is any.
15291 Return the computed name or NULL.
15292 Space for the result is allocated on the objfile's obstack.
15293 This is the full-die version of guess_partial_die_structure_name.
15294 In this case we know DIE has no useful parent. */
15295
15296 static char *
15297 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
15298 {
15299 struct die_info *spec_die;
15300 struct dwarf2_cu *spec_cu;
15301 struct die_info *child;
15302
15303 spec_cu = cu;
15304 spec_die = die_specification (die, &spec_cu);
15305 if (spec_die != NULL)
15306 {
15307 die = spec_die;
15308 cu = spec_cu;
15309 }
15310
15311 for (child = die->child;
15312 child != NULL;
15313 child = child->sibling)
15314 {
15315 if (child->tag == DW_TAG_subprogram)
15316 {
15317 struct attribute *attr;
15318
15319 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
15320 if (attr == NULL)
15321 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
15322 if (attr != NULL)
15323 {
15324 char *actual_name
15325 = language_class_name_from_physname (cu->language_defn,
15326 DW_STRING (attr));
15327 char *name = NULL;
15328
15329 if (actual_name != NULL)
15330 {
15331 char *die_name = dwarf2_name (die, cu);
15332
15333 if (die_name != NULL
15334 && strcmp (die_name, actual_name) != 0)
15335 {
15336 /* Strip off the class name from the full name.
15337 We want the prefix. */
15338 int die_name_len = strlen (die_name);
15339 int actual_name_len = strlen (actual_name);
15340
15341 /* Test for '::' as a sanity check. */
15342 if (actual_name_len > die_name_len + 2
15343 && actual_name[actual_name_len
15344 - die_name_len - 1] == ':')
15345 name =
15346 obsavestring (actual_name,
15347 actual_name_len - die_name_len - 2,
15348 &cu->objfile->objfile_obstack);
15349 }
15350 }
15351 xfree (actual_name);
15352 return name;
15353 }
15354 }
15355 }
15356
15357 return NULL;
15358 }
15359
15360 /* GCC might emit a nameless typedef that has a linkage name. Determine the
15361 prefix part in such case. See
15362 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15363
15364 static char *
15365 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
15366 {
15367 struct attribute *attr;
15368 char *base;
15369
15370 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
15371 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
15372 return NULL;
15373
15374 attr = dwarf2_attr (die, DW_AT_name, cu);
15375 if (attr != NULL && DW_STRING (attr) != NULL)
15376 return NULL;
15377
15378 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
15379 if (attr == NULL)
15380 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
15381 if (attr == NULL || DW_STRING (attr) == NULL)
15382 return NULL;
15383
15384 /* dwarf2_name had to be already called. */
15385 gdb_assert (DW_STRING_IS_CANONICAL (attr));
15386
15387 /* Strip the base name, keep any leading namespaces/classes. */
15388 base = strrchr (DW_STRING (attr), ':');
15389 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
15390 return "";
15391
15392 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
15393 &cu->objfile->objfile_obstack);
15394 }
15395
15396 /* Return the name of the namespace/class that DIE is defined within,
15397 or "" if we can't tell. The caller should not xfree the result.
15398
15399 For example, if we're within the method foo() in the following
15400 code:
15401
15402 namespace N {
15403 class C {
15404 void foo () {
15405 }
15406 };
15407 }
15408
15409 then determine_prefix on foo's die will return "N::C". */
15410
15411 static const char *
15412 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
15413 {
15414 struct die_info *parent, *spec_die;
15415 struct dwarf2_cu *spec_cu;
15416 struct type *parent_type;
15417 char *retval;
15418
15419 if (cu->language != language_cplus && cu->language != language_java
15420 && cu->language != language_fortran)
15421 return "";
15422
15423 retval = anonymous_struct_prefix (die, cu);
15424 if (retval)
15425 return retval;
15426
15427 /* We have to be careful in the presence of DW_AT_specification.
15428 For example, with GCC 3.4, given the code
15429
15430 namespace N {
15431 void foo() {
15432 // Definition of N::foo.
15433 }
15434 }
15435
15436 then we'll have a tree of DIEs like this:
15437
15438 1: DW_TAG_compile_unit
15439 2: DW_TAG_namespace // N
15440 3: DW_TAG_subprogram // declaration of N::foo
15441 4: DW_TAG_subprogram // definition of N::foo
15442 DW_AT_specification // refers to die #3
15443
15444 Thus, when processing die #4, we have to pretend that we're in
15445 the context of its DW_AT_specification, namely the contex of die
15446 #3. */
15447 spec_cu = cu;
15448 spec_die = die_specification (die, &spec_cu);
15449 if (spec_die == NULL)
15450 parent = die->parent;
15451 else
15452 {
15453 parent = spec_die->parent;
15454 cu = spec_cu;
15455 }
15456
15457 if (parent == NULL)
15458 return "";
15459 else if (parent->building_fullname)
15460 {
15461 const char *name;
15462 const char *parent_name;
15463
15464 /* It has been seen on RealView 2.2 built binaries,
15465 DW_TAG_template_type_param types actually _defined_ as
15466 children of the parent class:
15467
15468 enum E {};
15469 template class <class Enum> Class{};
15470 Class<enum E> class_e;
15471
15472 1: DW_TAG_class_type (Class)
15473 2: DW_TAG_enumeration_type (E)
15474 3: DW_TAG_enumerator (enum1:0)
15475 3: DW_TAG_enumerator (enum2:1)
15476 ...
15477 2: DW_TAG_template_type_param
15478 DW_AT_type DW_FORM_ref_udata (E)
15479
15480 Besides being broken debug info, it can put GDB into an
15481 infinite loop. Consider:
15482
15483 When we're building the full name for Class<E>, we'll start
15484 at Class, and go look over its template type parameters,
15485 finding E. We'll then try to build the full name of E, and
15486 reach here. We're now trying to build the full name of E,
15487 and look over the parent DIE for containing scope. In the
15488 broken case, if we followed the parent DIE of E, we'd again
15489 find Class, and once again go look at its template type
15490 arguments, etc., etc. Simply don't consider such parent die
15491 as source-level parent of this die (it can't be, the language
15492 doesn't allow it), and break the loop here. */
15493 name = dwarf2_name (die, cu);
15494 parent_name = dwarf2_name (parent, cu);
15495 complaint (&symfile_complaints,
15496 _("template param type '%s' defined within parent '%s'"),
15497 name ? name : "<unknown>",
15498 parent_name ? parent_name : "<unknown>");
15499 return "";
15500 }
15501 else
15502 switch (parent->tag)
15503 {
15504 case DW_TAG_namespace:
15505 parent_type = read_type_die (parent, cu);
15506 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
15507 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
15508 Work around this problem here. */
15509 if (cu->language == language_cplus
15510 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
15511 return "";
15512 /* We give a name to even anonymous namespaces. */
15513 return TYPE_TAG_NAME (parent_type);
15514 case DW_TAG_class_type:
15515 case DW_TAG_interface_type:
15516 case DW_TAG_structure_type:
15517 case DW_TAG_union_type:
15518 case DW_TAG_module:
15519 parent_type = read_type_die (parent, cu);
15520 if (TYPE_TAG_NAME (parent_type) != NULL)
15521 return TYPE_TAG_NAME (parent_type);
15522 else
15523 /* An anonymous structure is only allowed non-static data
15524 members; no typedefs, no member functions, et cetera.
15525 So it does not need a prefix. */
15526 return "";
15527 case DW_TAG_compile_unit:
15528 case DW_TAG_partial_unit:
15529 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
15530 if (cu->language == language_cplus
15531 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15532 && die->child != NULL
15533 && (die->tag == DW_TAG_class_type
15534 || die->tag == DW_TAG_structure_type
15535 || die->tag == DW_TAG_union_type))
15536 {
15537 char *name = guess_full_die_structure_name (die, cu);
15538 if (name != NULL)
15539 return name;
15540 }
15541 return "";
15542 default:
15543 return determine_prefix (parent, cu);
15544 }
15545 }
15546
15547 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
15548 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
15549 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
15550 an obconcat, otherwise allocate storage for the result. The CU argument is
15551 used to determine the language and hence, the appropriate separator. */
15552
15553 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
15554
15555 static char *
15556 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
15557 int physname, struct dwarf2_cu *cu)
15558 {
15559 const char *lead = "";
15560 const char *sep;
15561
15562 if (suffix == NULL || suffix[0] == '\0'
15563 || prefix == NULL || prefix[0] == '\0')
15564 sep = "";
15565 else if (cu->language == language_java)
15566 sep = ".";
15567 else if (cu->language == language_fortran && physname)
15568 {
15569 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
15570 DW_AT_MIPS_linkage_name is preferred and used instead. */
15571
15572 lead = "__";
15573 sep = "_MOD_";
15574 }
15575 else
15576 sep = "::";
15577
15578 if (prefix == NULL)
15579 prefix = "";
15580 if (suffix == NULL)
15581 suffix = "";
15582
15583 if (obs == NULL)
15584 {
15585 char *retval
15586 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
15587
15588 strcpy (retval, lead);
15589 strcat (retval, prefix);
15590 strcat (retval, sep);
15591 strcat (retval, suffix);
15592 return retval;
15593 }
15594 else
15595 {
15596 /* We have an obstack. */
15597 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
15598 }
15599 }
15600
15601 /* Return sibling of die, NULL if no sibling. */
15602
15603 static struct die_info *
15604 sibling_die (struct die_info *die)
15605 {
15606 return die->sibling;
15607 }
15608
15609 /* Get name of a die, return NULL if not found. */
15610
15611 static char *
15612 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
15613 struct obstack *obstack)
15614 {
15615 if (name && cu->language == language_cplus)
15616 {
15617 char *canon_name = cp_canonicalize_string (name);
15618
15619 if (canon_name != NULL)
15620 {
15621 if (strcmp (canon_name, name) != 0)
15622 name = obsavestring (canon_name, strlen (canon_name),
15623 obstack);
15624 xfree (canon_name);
15625 }
15626 }
15627
15628 return name;
15629 }
15630
15631 /* Get name of a die, return NULL if not found. */
15632
15633 static char *
15634 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
15635 {
15636 struct attribute *attr;
15637
15638 attr = dwarf2_attr (die, DW_AT_name, cu);
15639 if ((!attr || !DW_STRING (attr))
15640 && die->tag != DW_TAG_class_type
15641 && die->tag != DW_TAG_interface_type
15642 && die->tag != DW_TAG_structure_type
15643 && die->tag != DW_TAG_union_type)
15644 return NULL;
15645
15646 switch (die->tag)
15647 {
15648 case DW_TAG_compile_unit:
15649 case DW_TAG_partial_unit:
15650 /* Compilation units have a DW_AT_name that is a filename, not
15651 a source language identifier. */
15652 case DW_TAG_enumeration_type:
15653 case DW_TAG_enumerator:
15654 /* These tags always have simple identifiers already; no need
15655 to canonicalize them. */
15656 return DW_STRING (attr);
15657
15658 case DW_TAG_subprogram:
15659 /* Java constructors will all be named "<init>", so return
15660 the class name when we see this special case. */
15661 if (cu->language == language_java
15662 && DW_STRING (attr) != NULL
15663 && strcmp (DW_STRING (attr), "<init>") == 0)
15664 {
15665 struct dwarf2_cu *spec_cu = cu;
15666 struct die_info *spec_die;
15667
15668 /* GCJ will output '<init>' for Java constructor names.
15669 For this special case, return the name of the parent class. */
15670
15671 /* GCJ may output suprogram DIEs with AT_specification set.
15672 If so, use the name of the specified DIE. */
15673 spec_die = die_specification (die, &spec_cu);
15674 if (spec_die != NULL)
15675 return dwarf2_name (spec_die, spec_cu);
15676
15677 do
15678 {
15679 die = die->parent;
15680 if (die->tag == DW_TAG_class_type)
15681 return dwarf2_name (die, cu);
15682 }
15683 while (die->tag != DW_TAG_compile_unit
15684 && die->tag != DW_TAG_partial_unit);
15685 }
15686 break;
15687
15688 case DW_TAG_class_type:
15689 case DW_TAG_interface_type:
15690 case DW_TAG_structure_type:
15691 case DW_TAG_union_type:
15692 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
15693 structures or unions. These were of the form "._%d" in GCC 4.1,
15694 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
15695 and GCC 4.4. We work around this problem by ignoring these. */
15696 if (attr && DW_STRING (attr)
15697 && (strncmp (DW_STRING (attr), "._", 2) == 0
15698 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
15699 return NULL;
15700
15701 /* GCC might emit a nameless typedef that has a linkage name. See
15702 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15703 if (!attr || DW_STRING (attr) == NULL)
15704 {
15705 char *demangled = NULL;
15706
15707 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
15708 if (attr == NULL)
15709 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
15710
15711 if (attr == NULL || DW_STRING (attr) == NULL)
15712 return NULL;
15713
15714 /* Avoid demangling DW_STRING (attr) the second time on a second
15715 call for the same DIE. */
15716 if (!DW_STRING_IS_CANONICAL (attr))
15717 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
15718
15719 if (demangled)
15720 {
15721 char *base;
15722
15723 /* FIXME: we already did this for the partial symbol... */
15724 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
15725 &cu->objfile->objfile_obstack);
15726 DW_STRING_IS_CANONICAL (attr) = 1;
15727 xfree (demangled);
15728
15729 /* Strip any leading namespaces/classes, keep only the base name.
15730 DW_AT_name for named DIEs does not contain the prefixes. */
15731 base = strrchr (DW_STRING (attr), ':');
15732 if (base && base > DW_STRING (attr) && base[-1] == ':')
15733 return &base[1];
15734 else
15735 return DW_STRING (attr);
15736 }
15737 }
15738 break;
15739
15740 default:
15741 break;
15742 }
15743
15744 if (!DW_STRING_IS_CANONICAL (attr))
15745 {
15746 DW_STRING (attr)
15747 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
15748 &cu->objfile->objfile_obstack);
15749 DW_STRING_IS_CANONICAL (attr) = 1;
15750 }
15751 return DW_STRING (attr);
15752 }
15753
15754 /* Return the die that this die in an extension of, or NULL if there
15755 is none. *EXT_CU is the CU containing DIE on input, and the CU
15756 containing the return value on output. */
15757
15758 static struct die_info *
15759 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
15760 {
15761 struct attribute *attr;
15762
15763 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
15764 if (attr == NULL)
15765 return NULL;
15766
15767 return follow_die_ref (die, attr, ext_cu);
15768 }
15769
15770 /* Convert a DIE tag into its string name. */
15771
15772 static const char *
15773 dwarf_tag_name (unsigned tag)
15774 {
15775 const char *name = get_DW_TAG_name (tag);
15776
15777 if (name == NULL)
15778 return "DW_TAG_<unknown>";
15779
15780 return name;
15781 }
15782
15783 /* Convert a DWARF attribute code into its string name. */
15784
15785 static const char *
15786 dwarf_attr_name (unsigned attr)
15787 {
15788 const char *name;
15789
15790 #ifdef MIPS /* collides with DW_AT_HP_block_index */
15791 if (attr == DW_AT_MIPS_fde)
15792 return "DW_AT_MIPS_fde";
15793 #else
15794 if (attr == DW_AT_HP_block_index)
15795 return "DW_AT_HP_block_index";
15796 #endif
15797
15798 name = get_DW_AT_name (attr);
15799
15800 if (name == NULL)
15801 return "DW_AT_<unknown>";
15802
15803 return name;
15804 }
15805
15806 /* Convert a DWARF value form code into its string name. */
15807
15808 static const char *
15809 dwarf_form_name (unsigned form)
15810 {
15811 const char *name = get_DW_FORM_name (form);
15812
15813 if (name == NULL)
15814 return "DW_FORM_<unknown>";
15815
15816 return name;
15817 }
15818
15819 static char *
15820 dwarf_bool_name (unsigned mybool)
15821 {
15822 if (mybool)
15823 return "TRUE";
15824 else
15825 return "FALSE";
15826 }
15827
15828 /* Convert a DWARF type code into its string name. */
15829
15830 static const char *
15831 dwarf_type_encoding_name (unsigned enc)
15832 {
15833 const char *name = get_DW_ATE_name (enc);
15834
15835 if (name == NULL)
15836 return "DW_ATE_<unknown>";
15837
15838 return name;
15839 }
15840
15841 static void
15842 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
15843 {
15844 unsigned int i;
15845
15846 print_spaces (indent, f);
15847 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
15848 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
15849
15850 if (die->parent != NULL)
15851 {
15852 print_spaces (indent, f);
15853 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
15854 die->parent->offset.sect_off);
15855 }
15856
15857 print_spaces (indent, f);
15858 fprintf_unfiltered (f, " has children: %s\n",
15859 dwarf_bool_name (die->child != NULL));
15860
15861 print_spaces (indent, f);
15862 fprintf_unfiltered (f, " attributes:\n");
15863
15864 for (i = 0; i < die->num_attrs; ++i)
15865 {
15866 print_spaces (indent, f);
15867 fprintf_unfiltered (f, " %s (%s) ",
15868 dwarf_attr_name (die->attrs[i].name),
15869 dwarf_form_name (die->attrs[i].form));
15870
15871 switch (die->attrs[i].form)
15872 {
15873 case DW_FORM_addr:
15874 case DW_FORM_GNU_addr_index:
15875 fprintf_unfiltered (f, "address: ");
15876 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
15877 break;
15878 case DW_FORM_block2:
15879 case DW_FORM_block4:
15880 case DW_FORM_block:
15881 case DW_FORM_block1:
15882 fprintf_unfiltered (f, "block: size %d",
15883 DW_BLOCK (&die->attrs[i])->size);
15884 break;
15885 case DW_FORM_exprloc:
15886 fprintf_unfiltered (f, "expression: size %u",
15887 DW_BLOCK (&die->attrs[i])->size);
15888 break;
15889 case DW_FORM_ref_addr:
15890 fprintf_unfiltered (f, "ref address: ");
15891 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
15892 break;
15893 case DW_FORM_ref1:
15894 case DW_FORM_ref2:
15895 case DW_FORM_ref4:
15896 case DW_FORM_ref8:
15897 case DW_FORM_ref_udata:
15898 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
15899 (long) (DW_UNSND (&die->attrs[i])));
15900 break;
15901 case DW_FORM_data1:
15902 case DW_FORM_data2:
15903 case DW_FORM_data4:
15904 case DW_FORM_data8:
15905 case DW_FORM_udata:
15906 case DW_FORM_sdata:
15907 fprintf_unfiltered (f, "constant: %s",
15908 pulongest (DW_UNSND (&die->attrs[i])));
15909 break;
15910 case DW_FORM_sec_offset:
15911 fprintf_unfiltered (f, "section offset: %s",
15912 pulongest (DW_UNSND (&die->attrs[i])));
15913 break;
15914 case DW_FORM_ref_sig8:
15915 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
15916 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
15917 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
15918 else
15919 fprintf_unfiltered (f, "signatured type, offset: unknown");
15920 break;
15921 case DW_FORM_string:
15922 case DW_FORM_strp:
15923 case DW_FORM_GNU_str_index:
15924 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
15925 DW_STRING (&die->attrs[i])
15926 ? DW_STRING (&die->attrs[i]) : "",
15927 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
15928 break;
15929 case DW_FORM_flag:
15930 if (DW_UNSND (&die->attrs[i]))
15931 fprintf_unfiltered (f, "flag: TRUE");
15932 else
15933 fprintf_unfiltered (f, "flag: FALSE");
15934 break;
15935 case DW_FORM_flag_present:
15936 fprintf_unfiltered (f, "flag: TRUE");
15937 break;
15938 case DW_FORM_indirect:
15939 /* The reader will have reduced the indirect form to
15940 the "base form" so this form should not occur. */
15941 fprintf_unfiltered (f,
15942 "unexpected attribute form: DW_FORM_indirect");
15943 break;
15944 default:
15945 fprintf_unfiltered (f, "unsupported attribute form: %d.",
15946 die->attrs[i].form);
15947 break;
15948 }
15949 fprintf_unfiltered (f, "\n");
15950 }
15951 }
15952
15953 static void
15954 dump_die_for_error (struct die_info *die)
15955 {
15956 dump_die_shallow (gdb_stderr, 0, die);
15957 }
15958
15959 static void
15960 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
15961 {
15962 int indent = level * 4;
15963
15964 gdb_assert (die != NULL);
15965
15966 if (level >= max_level)
15967 return;
15968
15969 dump_die_shallow (f, indent, die);
15970
15971 if (die->child != NULL)
15972 {
15973 print_spaces (indent, f);
15974 fprintf_unfiltered (f, " Children:");
15975 if (level + 1 < max_level)
15976 {
15977 fprintf_unfiltered (f, "\n");
15978 dump_die_1 (f, level + 1, max_level, die->child);
15979 }
15980 else
15981 {
15982 fprintf_unfiltered (f,
15983 " [not printed, max nesting level reached]\n");
15984 }
15985 }
15986
15987 if (die->sibling != NULL && level > 0)
15988 {
15989 dump_die_1 (f, level, max_level, die->sibling);
15990 }
15991 }
15992
15993 /* This is called from the pdie macro in gdbinit.in.
15994 It's not static so gcc will keep a copy callable from gdb. */
15995
15996 void
15997 dump_die (struct die_info *die, int max_level)
15998 {
15999 dump_die_1 (gdb_stdlog, 0, max_level, die);
16000 }
16001
16002 static void
16003 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
16004 {
16005 void **slot;
16006
16007 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
16008 INSERT);
16009
16010 *slot = die;
16011 }
16012
16013 /* DW_ADDR is always stored already as sect_offset; despite for the forms
16014 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
16015
16016 static int
16017 is_ref_attr (struct attribute *attr)
16018 {
16019 switch (attr->form)
16020 {
16021 case DW_FORM_ref_addr:
16022 case DW_FORM_ref1:
16023 case DW_FORM_ref2:
16024 case DW_FORM_ref4:
16025 case DW_FORM_ref8:
16026 case DW_FORM_ref_udata:
16027 return 1;
16028 default:
16029 return 0;
16030 }
16031 }
16032
16033 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
16034 required kind. */
16035
16036 static sect_offset
16037 dwarf2_get_ref_die_offset (struct attribute *attr)
16038 {
16039 sect_offset retval = { DW_UNSND (attr) };
16040
16041 if (is_ref_attr (attr))
16042 return retval;
16043
16044 retval.sect_off = 0;
16045 complaint (&symfile_complaints,
16046 _("unsupported die ref attribute form: '%s'"),
16047 dwarf_form_name (attr->form));
16048 return retval;
16049 }
16050
16051 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
16052 * the value held by the attribute is not constant. */
16053
16054 static LONGEST
16055 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
16056 {
16057 if (attr->form == DW_FORM_sdata)
16058 return DW_SND (attr);
16059 else if (attr->form == DW_FORM_udata
16060 || attr->form == DW_FORM_data1
16061 || attr->form == DW_FORM_data2
16062 || attr->form == DW_FORM_data4
16063 || attr->form == DW_FORM_data8)
16064 return DW_UNSND (attr);
16065 else
16066 {
16067 complaint (&symfile_complaints,
16068 _("Attribute value is not a constant (%s)"),
16069 dwarf_form_name (attr->form));
16070 return default_value;
16071 }
16072 }
16073
16074 /* Follow reference or signature attribute ATTR of SRC_DIE.
16075 On entry *REF_CU is the CU of SRC_DIE.
16076 On exit *REF_CU is the CU of the result. */
16077
16078 static struct die_info *
16079 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
16080 struct dwarf2_cu **ref_cu)
16081 {
16082 struct die_info *die;
16083
16084 if (is_ref_attr (attr))
16085 die = follow_die_ref (src_die, attr, ref_cu);
16086 else if (attr->form == DW_FORM_ref_sig8)
16087 die = follow_die_sig (src_die, attr, ref_cu);
16088 else
16089 {
16090 dump_die_for_error (src_die);
16091 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
16092 (*ref_cu)->objfile->name);
16093 }
16094
16095 return die;
16096 }
16097
16098 /* Follow reference OFFSET.
16099 On entry *REF_CU is the CU of the source die referencing OFFSET.
16100 On exit *REF_CU is the CU of the result.
16101 Returns NULL if OFFSET is invalid. */
16102
16103 static struct die_info *
16104 follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu)
16105 {
16106 struct die_info temp_die;
16107 struct dwarf2_cu *target_cu, *cu = *ref_cu;
16108
16109 gdb_assert (cu->per_cu != NULL);
16110
16111 target_cu = cu;
16112
16113 if (cu->per_cu->is_debug_types)
16114 {
16115 /* .debug_types CUs cannot reference anything outside their CU.
16116 If they need to, they have to reference a signatured type via
16117 DW_FORM_ref_sig8. */
16118 if (! offset_in_cu_p (&cu->header, offset))
16119 return NULL;
16120 }
16121 else if (! offset_in_cu_p (&cu->header, offset))
16122 {
16123 struct dwarf2_per_cu_data *per_cu;
16124
16125 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
16126
16127 /* If necessary, add it to the queue and load its DIEs. */
16128 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
16129 load_full_comp_unit (per_cu, cu->language);
16130
16131 target_cu = per_cu->cu;
16132 }
16133 else if (cu->dies == NULL)
16134 {
16135 /* We're loading full DIEs during partial symbol reading. */
16136 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
16137 load_full_comp_unit (cu->per_cu, language_minimal);
16138 }
16139
16140 *ref_cu = target_cu;
16141 temp_die.offset = offset;
16142 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
16143 }
16144
16145 /* Follow reference attribute ATTR of SRC_DIE.
16146 On entry *REF_CU is the CU of SRC_DIE.
16147 On exit *REF_CU is the CU of the result. */
16148
16149 static struct die_info *
16150 follow_die_ref (struct die_info *src_die, struct attribute *attr,
16151 struct dwarf2_cu **ref_cu)
16152 {
16153 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16154 struct dwarf2_cu *cu = *ref_cu;
16155 struct die_info *die;
16156
16157 die = follow_die_offset (offset, ref_cu);
16158 if (!die)
16159 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
16160 "at 0x%x [in module %s]"),
16161 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
16162
16163 return die;
16164 }
16165
16166 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
16167 Returned value is intended for DW_OP_call*. Returned
16168 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
16169
16170 struct dwarf2_locexpr_baton
16171 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
16172 struct dwarf2_per_cu_data *per_cu,
16173 CORE_ADDR (*get_frame_pc) (void *baton),
16174 void *baton)
16175 {
16176 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
16177 struct dwarf2_cu *cu;
16178 struct die_info *die;
16179 struct attribute *attr;
16180 struct dwarf2_locexpr_baton retval;
16181
16182 dw2_setup (per_cu->objfile);
16183
16184 if (per_cu->cu == NULL)
16185 load_cu (per_cu);
16186 cu = per_cu->cu;
16187
16188 die = follow_die_offset (offset, &cu);
16189 if (!die)
16190 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
16191 offset.sect_off, per_cu->objfile->name);
16192
16193 attr = dwarf2_attr (die, DW_AT_location, cu);
16194 if (!attr)
16195 {
16196 /* DWARF: "If there is no such attribute, then there is no effect.".
16197 DATA is ignored if SIZE is 0. */
16198
16199 retval.data = NULL;
16200 retval.size = 0;
16201 }
16202 else if (attr_form_is_section_offset (attr))
16203 {
16204 struct dwarf2_loclist_baton loclist_baton;
16205 CORE_ADDR pc = (*get_frame_pc) (baton);
16206 size_t size;
16207
16208 fill_in_loclist_baton (cu, &loclist_baton, attr);
16209
16210 retval.data = dwarf2_find_location_expression (&loclist_baton,
16211 &size, pc);
16212 retval.size = size;
16213 }
16214 else
16215 {
16216 if (!attr_form_is_block (attr))
16217 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
16218 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
16219 offset.sect_off, per_cu->objfile->name);
16220
16221 retval.data = DW_BLOCK (attr)->data;
16222 retval.size = DW_BLOCK (attr)->size;
16223 }
16224 retval.per_cu = cu->per_cu;
16225
16226 age_cached_comp_units ();
16227
16228 return retval;
16229 }
16230
16231 /* Return the type of the DIE at DIE_OFFSET in the CU named by
16232 PER_CU. */
16233
16234 struct type *
16235 dwarf2_get_die_type (cu_offset die_offset,
16236 struct dwarf2_per_cu_data *per_cu)
16237 {
16238 sect_offset die_offset_sect;
16239
16240 dw2_setup (per_cu->objfile);
16241
16242 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
16243 return get_die_type_at_offset (die_offset_sect, per_cu);
16244 }
16245
16246 /* Follow the signature attribute ATTR in SRC_DIE.
16247 On entry *REF_CU is the CU of SRC_DIE.
16248 On exit *REF_CU is the CU of the result. */
16249
16250 static struct die_info *
16251 follow_die_sig (struct die_info *src_die, struct attribute *attr,
16252 struct dwarf2_cu **ref_cu)
16253 {
16254 struct objfile *objfile = (*ref_cu)->objfile;
16255 struct die_info temp_die;
16256 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16257 struct dwarf2_cu *sig_cu;
16258 struct die_info *die;
16259
16260 /* sig_type will be NULL if the signatured type is missing from
16261 the debug info. */
16262 if (sig_type == NULL)
16263 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16264 "at 0x%x [in module %s]"),
16265 src_die->offset.sect_off, objfile->name);
16266
16267 /* If necessary, add it to the queue and load its DIEs. */
16268
16269 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
16270 read_signatured_type (sig_type);
16271
16272 gdb_assert (sig_type->per_cu.cu != NULL);
16273
16274 sig_cu = sig_type->per_cu.cu;
16275 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
16276 temp_die.offset = sig_type->type_offset_in_section;
16277 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
16278 temp_die.offset.sect_off);
16279 if (die)
16280 {
16281 *ref_cu = sig_cu;
16282 return die;
16283 }
16284
16285 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
16286 "from DIE at 0x%x [in module %s]"),
16287 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
16288 }
16289
16290 /* Given an offset of a signatured type, return its signatured_type. */
16291
16292 static struct signatured_type *
16293 lookup_signatured_type_at_offset (struct objfile *objfile,
16294 struct dwarf2_section_info *section,
16295 sect_offset offset)
16296 {
16297 gdb_byte *info_ptr = section->buffer + offset.sect_off;
16298 unsigned int length, initial_length_size;
16299 unsigned int sig_offset;
16300 struct signatured_type find_entry, *sig_type;
16301
16302 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
16303 sig_offset = (initial_length_size
16304 + 2 /*version*/
16305 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
16306 + 1 /*address_size*/);
16307 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
16308 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
16309
16310 /* This is only used to lookup previously recorded types.
16311 If we didn't find it, it's our bug. */
16312 gdb_assert (sig_type != NULL);
16313 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
16314
16315 return sig_type;
16316 }
16317
16318 /* Load the DIEs associated with type unit PER_CU into memory. */
16319
16320 static void
16321 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
16322 {
16323 struct signatured_type *sig_type;
16324
16325 /* Caller is responsible for ensuring type_unit_groups don't get here. */
16326 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
16327
16328 /* We have the per_cu, but we need the signatured_type.
16329 Fortunately this is an easy translation. */
16330 gdb_assert (per_cu->is_debug_types);
16331 sig_type = (struct signatured_type *) per_cu;
16332
16333 gdb_assert (per_cu->cu == NULL);
16334
16335 read_signatured_type (sig_type);
16336
16337 gdb_assert (per_cu->cu != NULL);
16338 }
16339
16340 /* die_reader_func for read_signatured_type.
16341 This is identical to load_full_comp_unit_reader,
16342 but is kept separate for now. */
16343
16344 static void
16345 read_signatured_type_reader (const struct die_reader_specs *reader,
16346 gdb_byte *info_ptr,
16347 struct die_info *comp_unit_die,
16348 int has_children,
16349 void *data)
16350 {
16351 struct dwarf2_cu *cu = reader->cu;
16352
16353 gdb_assert (cu->die_hash == NULL);
16354 cu->die_hash =
16355 htab_create_alloc_ex (cu->header.length / 12,
16356 die_hash,
16357 die_eq,
16358 NULL,
16359 &cu->comp_unit_obstack,
16360 hashtab_obstack_allocate,
16361 dummy_obstack_deallocate);
16362
16363 if (has_children)
16364 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
16365 &info_ptr, comp_unit_die);
16366 cu->dies = comp_unit_die;
16367 /* comp_unit_die is not stored in die_hash, no need. */
16368
16369 /* We try not to read any attributes in this function, because not
16370 all CUs needed for references have been loaded yet, and symbol
16371 table processing isn't initialized. But we have to set the CU language,
16372 or we won't be able to build types correctly.
16373 Similarly, if we do not read the producer, we can not apply
16374 producer-specific interpretation. */
16375 prepare_one_comp_unit (cu, cu->dies, language_minimal);
16376 }
16377
16378 /* Read in a signatured type and build its CU and DIEs.
16379 If the type is a stub for the real type in a DWO file,
16380 read in the real type from the DWO file as well. */
16381
16382 static void
16383 read_signatured_type (struct signatured_type *sig_type)
16384 {
16385 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
16386
16387 gdb_assert (per_cu->is_debug_types);
16388 gdb_assert (per_cu->cu == NULL);
16389
16390 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
16391 read_signatured_type_reader, NULL);
16392 }
16393
16394 /* Decode simple location descriptions.
16395 Given a pointer to a dwarf block that defines a location, compute
16396 the location and return the value.
16397
16398 NOTE drow/2003-11-18: This function is called in two situations
16399 now: for the address of static or global variables (partial symbols
16400 only) and for offsets into structures which are expected to be
16401 (more or less) constant. The partial symbol case should go away,
16402 and only the constant case should remain. That will let this
16403 function complain more accurately. A few special modes are allowed
16404 without complaint for global variables (for instance, global
16405 register values and thread-local values).
16406
16407 A location description containing no operations indicates that the
16408 object is optimized out. The return value is 0 for that case.
16409 FIXME drow/2003-11-16: No callers check for this case any more; soon all
16410 callers will only want a very basic result and this can become a
16411 complaint.
16412
16413 Note that stack[0] is unused except as a default error return. */
16414
16415 static CORE_ADDR
16416 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
16417 {
16418 struct objfile *objfile = cu->objfile;
16419 int i;
16420 int size = blk->size;
16421 gdb_byte *data = blk->data;
16422 CORE_ADDR stack[64];
16423 int stacki;
16424 unsigned int bytes_read, unsnd;
16425 gdb_byte op;
16426
16427 i = 0;
16428 stacki = 0;
16429 stack[stacki] = 0;
16430 stack[++stacki] = 0;
16431
16432 while (i < size)
16433 {
16434 op = data[i++];
16435 switch (op)
16436 {
16437 case DW_OP_lit0:
16438 case DW_OP_lit1:
16439 case DW_OP_lit2:
16440 case DW_OP_lit3:
16441 case DW_OP_lit4:
16442 case DW_OP_lit5:
16443 case DW_OP_lit6:
16444 case DW_OP_lit7:
16445 case DW_OP_lit8:
16446 case DW_OP_lit9:
16447 case DW_OP_lit10:
16448 case DW_OP_lit11:
16449 case DW_OP_lit12:
16450 case DW_OP_lit13:
16451 case DW_OP_lit14:
16452 case DW_OP_lit15:
16453 case DW_OP_lit16:
16454 case DW_OP_lit17:
16455 case DW_OP_lit18:
16456 case DW_OP_lit19:
16457 case DW_OP_lit20:
16458 case DW_OP_lit21:
16459 case DW_OP_lit22:
16460 case DW_OP_lit23:
16461 case DW_OP_lit24:
16462 case DW_OP_lit25:
16463 case DW_OP_lit26:
16464 case DW_OP_lit27:
16465 case DW_OP_lit28:
16466 case DW_OP_lit29:
16467 case DW_OP_lit30:
16468 case DW_OP_lit31:
16469 stack[++stacki] = op - DW_OP_lit0;
16470 break;
16471
16472 case DW_OP_reg0:
16473 case DW_OP_reg1:
16474 case DW_OP_reg2:
16475 case DW_OP_reg3:
16476 case DW_OP_reg4:
16477 case DW_OP_reg5:
16478 case DW_OP_reg6:
16479 case DW_OP_reg7:
16480 case DW_OP_reg8:
16481 case DW_OP_reg9:
16482 case DW_OP_reg10:
16483 case DW_OP_reg11:
16484 case DW_OP_reg12:
16485 case DW_OP_reg13:
16486 case DW_OP_reg14:
16487 case DW_OP_reg15:
16488 case DW_OP_reg16:
16489 case DW_OP_reg17:
16490 case DW_OP_reg18:
16491 case DW_OP_reg19:
16492 case DW_OP_reg20:
16493 case DW_OP_reg21:
16494 case DW_OP_reg22:
16495 case DW_OP_reg23:
16496 case DW_OP_reg24:
16497 case DW_OP_reg25:
16498 case DW_OP_reg26:
16499 case DW_OP_reg27:
16500 case DW_OP_reg28:
16501 case DW_OP_reg29:
16502 case DW_OP_reg30:
16503 case DW_OP_reg31:
16504 stack[++stacki] = op - DW_OP_reg0;
16505 if (i < size)
16506 dwarf2_complex_location_expr_complaint ();
16507 break;
16508
16509 case DW_OP_regx:
16510 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
16511 i += bytes_read;
16512 stack[++stacki] = unsnd;
16513 if (i < size)
16514 dwarf2_complex_location_expr_complaint ();
16515 break;
16516
16517 case DW_OP_addr:
16518 stack[++stacki] = read_address (objfile->obfd, &data[i],
16519 cu, &bytes_read);
16520 i += bytes_read;
16521 break;
16522
16523 case DW_OP_const1u:
16524 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
16525 i += 1;
16526 break;
16527
16528 case DW_OP_const1s:
16529 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
16530 i += 1;
16531 break;
16532
16533 case DW_OP_const2u:
16534 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
16535 i += 2;
16536 break;
16537
16538 case DW_OP_const2s:
16539 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
16540 i += 2;
16541 break;
16542
16543 case DW_OP_const4u:
16544 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
16545 i += 4;
16546 break;
16547
16548 case DW_OP_const4s:
16549 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
16550 i += 4;
16551 break;
16552
16553 case DW_OP_const8u:
16554 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
16555 i += 8;
16556 break;
16557
16558 case DW_OP_constu:
16559 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
16560 &bytes_read);
16561 i += bytes_read;
16562 break;
16563
16564 case DW_OP_consts:
16565 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
16566 i += bytes_read;
16567 break;
16568
16569 case DW_OP_dup:
16570 stack[stacki + 1] = stack[stacki];
16571 stacki++;
16572 break;
16573
16574 case DW_OP_plus:
16575 stack[stacki - 1] += stack[stacki];
16576 stacki--;
16577 break;
16578
16579 case DW_OP_plus_uconst:
16580 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
16581 &bytes_read);
16582 i += bytes_read;
16583 break;
16584
16585 case DW_OP_minus:
16586 stack[stacki - 1] -= stack[stacki];
16587 stacki--;
16588 break;
16589
16590 case DW_OP_deref:
16591 /* If we're not the last op, then we definitely can't encode
16592 this using GDB's address_class enum. This is valid for partial
16593 global symbols, although the variable's address will be bogus
16594 in the psymtab. */
16595 if (i < size)
16596 dwarf2_complex_location_expr_complaint ();
16597 break;
16598
16599 case DW_OP_GNU_push_tls_address:
16600 /* The top of the stack has the offset from the beginning
16601 of the thread control block at which the variable is located. */
16602 /* Nothing should follow this operator, so the top of stack would
16603 be returned. */
16604 /* This is valid for partial global symbols, but the variable's
16605 address will be bogus in the psymtab. Make it always at least
16606 non-zero to not look as a variable garbage collected by linker
16607 which have DW_OP_addr 0. */
16608 if (i < size)
16609 dwarf2_complex_location_expr_complaint ();
16610 stack[stacki]++;
16611 break;
16612
16613 case DW_OP_GNU_uninit:
16614 break;
16615
16616 case DW_OP_GNU_addr_index:
16617 case DW_OP_GNU_const_index:
16618 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
16619 &bytes_read);
16620 i += bytes_read;
16621 break;
16622
16623 default:
16624 {
16625 const char *name = get_DW_OP_name (op);
16626
16627 if (name)
16628 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
16629 name);
16630 else
16631 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
16632 op);
16633 }
16634
16635 return (stack[stacki]);
16636 }
16637
16638 /* Enforce maximum stack depth of SIZE-1 to avoid writing
16639 outside of the allocated space. Also enforce minimum>0. */
16640 if (stacki >= ARRAY_SIZE (stack) - 1)
16641 {
16642 complaint (&symfile_complaints,
16643 _("location description stack overflow"));
16644 return 0;
16645 }
16646
16647 if (stacki <= 0)
16648 {
16649 complaint (&symfile_complaints,
16650 _("location description stack underflow"));
16651 return 0;
16652 }
16653 }
16654 return (stack[stacki]);
16655 }
16656
16657 /* memory allocation interface */
16658
16659 static struct dwarf_block *
16660 dwarf_alloc_block (struct dwarf2_cu *cu)
16661 {
16662 struct dwarf_block *blk;
16663
16664 blk = (struct dwarf_block *)
16665 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
16666 return (blk);
16667 }
16668
16669 static struct die_info *
16670 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
16671 {
16672 struct die_info *die;
16673 size_t size = sizeof (struct die_info);
16674
16675 if (num_attrs > 1)
16676 size += (num_attrs - 1) * sizeof (struct attribute);
16677
16678 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
16679 memset (die, 0, sizeof (struct die_info));
16680 return (die);
16681 }
16682
16683 \f
16684 /* Macro support. */
16685
16686 /* Return the full name of file number I in *LH's file name table.
16687 Use COMP_DIR as the name of the current directory of the
16688 compilation. The result is allocated using xmalloc; the caller is
16689 responsible for freeing it. */
16690 static char *
16691 file_full_name (int file, struct line_header *lh, const char *comp_dir)
16692 {
16693 /* Is the file number a valid index into the line header's file name
16694 table? Remember that file numbers start with one, not zero. */
16695 if (1 <= file && file <= lh->num_file_names)
16696 {
16697 struct file_entry *fe = &lh->file_names[file - 1];
16698
16699 if (IS_ABSOLUTE_PATH (fe->name))
16700 return xstrdup (fe->name);
16701 else
16702 {
16703 const char *dir;
16704 int dir_len;
16705 char *full_name;
16706
16707 if (fe->dir_index)
16708 dir = lh->include_dirs[fe->dir_index - 1];
16709 else
16710 dir = comp_dir;
16711
16712 if (dir)
16713 {
16714 dir_len = strlen (dir);
16715 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
16716 strcpy (full_name, dir);
16717 full_name[dir_len] = '/';
16718 strcpy (full_name + dir_len + 1, fe->name);
16719 return full_name;
16720 }
16721 else
16722 return xstrdup (fe->name);
16723 }
16724 }
16725 else
16726 {
16727 /* The compiler produced a bogus file number. We can at least
16728 record the macro definitions made in the file, even if we
16729 won't be able to find the file by name. */
16730 char fake_name[80];
16731
16732 sprintf (fake_name, "<bad macro file number %d>", file);
16733
16734 complaint (&symfile_complaints,
16735 _("bad file number in macro information (%d)"),
16736 file);
16737
16738 return xstrdup (fake_name);
16739 }
16740 }
16741
16742
16743 static struct macro_source_file *
16744 macro_start_file (int file, int line,
16745 struct macro_source_file *current_file,
16746 const char *comp_dir,
16747 struct line_header *lh, struct objfile *objfile)
16748 {
16749 /* The full name of this source file. */
16750 char *full_name = file_full_name (file, lh, comp_dir);
16751
16752 /* We don't create a macro table for this compilation unit
16753 at all until we actually get a filename. */
16754 if (! pending_macros)
16755 pending_macros = new_macro_table (&objfile->objfile_obstack,
16756 objfile->macro_cache);
16757
16758 if (! current_file)
16759 {
16760 /* If we have no current file, then this must be the start_file
16761 directive for the compilation unit's main source file. */
16762 current_file = macro_set_main (pending_macros, full_name);
16763 macro_define_special (pending_macros);
16764 }
16765 else
16766 current_file = macro_include (current_file, line, full_name);
16767
16768 xfree (full_name);
16769
16770 return current_file;
16771 }
16772
16773
16774 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
16775 followed by a null byte. */
16776 static char *
16777 copy_string (const char *buf, int len)
16778 {
16779 char *s = xmalloc (len + 1);
16780
16781 memcpy (s, buf, len);
16782 s[len] = '\0';
16783 return s;
16784 }
16785
16786
16787 static const char *
16788 consume_improper_spaces (const char *p, const char *body)
16789 {
16790 if (*p == ' ')
16791 {
16792 complaint (&symfile_complaints,
16793 _("macro definition contains spaces "
16794 "in formal argument list:\n`%s'"),
16795 body);
16796
16797 while (*p == ' ')
16798 p++;
16799 }
16800
16801 return p;
16802 }
16803
16804
16805 static void
16806 parse_macro_definition (struct macro_source_file *file, int line,
16807 const char *body)
16808 {
16809 const char *p;
16810
16811 /* The body string takes one of two forms. For object-like macro
16812 definitions, it should be:
16813
16814 <macro name> " " <definition>
16815
16816 For function-like macro definitions, it should be:
16817
16818 <macro name> "() " <definition>
16819 or
16820 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
16821
16822 Spaces may appear only where explicitly indicated, and in the
16823 <definition>.
16824
16825 The Dwarf 2 spec says that an object-like macro's name is always
16826 followed by a space, but versions of GCC around March 2002 omit
16827 the space when the macro's definition is the empty string.
16828
16829 The Dwarf 2 spec says that there should be no spaces between the
16830 formal arguments in a function-like macro's formal argument list,
16831 but versions of GCC around March 2002 include spaces after the
16832 commas. */
16833
16834
16835 /* Find the extent of the macro name. The macro name is terminated
16836 by either a space or null character (for an object-like macro) or
16837 an opening paren (for a function-like macro). */
16838 for (p = body; *p; p++)
16839 if (*p == ' ' || *p == '(')
16840 break;
16841
16842 if (*p == ' ' || *p == '\0')
16843 {
16844 /* It's an object-like macro. */
16845 int name_len = p - body;
16846 char *name = copy_string (body, name_len);
16847 const char *replacement;
16848
16849 if (*p == ' ')
16850 replacement = body + name_len + 1;
16851 else
16852 {
16853 dwarf2_macro_malformed_definition_complaint (body);
16854 replacement = body + name_len;
16855 }
16856
16857 macro_define_object (file, line, name, replacement);
16858
16859 xfree (name);
16860 }
16861 else if (*p == '(')
16862 {
16863 /* It's a function-like macro. */
16864 char *name = copy_string (body, p - body);
16865 int argc = 0;
16866 int argv_size = 1;
16867 char **argv = xmalloc (argv_size * sizeof (*argv));
16868
16869 p++;
16870
16871 p = consume_improper_spaces (p, body);
16872
16873 /* Parse the formal argument list. */
16874 while (*p && *p != ')')
16875 {
16876 /* Find the extent of the current argument name. */
16877 const char *arg_start = p;
16878
16879 while (*p && *p != ',' && *p != ')' && *p != ' ')
16880 p++;
16881
16882 if (! *p || p == arg_start)
16883 dwarf2_macro_malformed_definition_complaint (body);
16884 else
16885 {
16886 /* Make sure argv has room for the new argument. */
16887 if (argc >= argv_size)
16888 {
16889 argv_size *= 2;
16890 argv = xrealloc (argv, argv_size * sizeof (*argv));
16891 }
16892
16893 argv[argc++] = copy_string (arg_start, p - arg_start);
16894 }
16895
16896 p = consume_improper_spaces (p, body);
16897
16898 /* Consume the comma, if present. */
16899 if (*p == ',')
16900 {
16901 p++;
16902
16903 p = consume_improper_spaces (p, body);
16904 }
16905 }
16906
16907 if (*p == ')')
16908 {
16909 p++;
16910
16911 if (*p == ' ')
16912 /* Perfectly formed definition, no complaints. */
16913 macro_define_function (file, line, name,
16914 argc, (const char **) argv,
16915 p + 1);
16916 else if (*p == '\0')
16917 {
16918 /* Complain, but do define it. */
16919 dwarf2_macro_malformed_definition_complaint (body);
16920 macro_define_function (file, line, name,
16921 argc, (const char **) argv,
16922 p);
16923 }
16924 else
16925 /* Just complain. */
16926 dwarf2_macro_malformed_definition_complaint (body);
16927 }
16928 else
16929 /* Just complain. */
16930 dwarf2_macro_malformed_definition_complaint (body);
16931
16932 xfree (name);
16933 {
16934 int i;
16935
16936 for (i = 0; i < argc; i++)
16937 xfree (argv[i]);
16938 }
16939 xfree (argv);
16940 }
16941 else
16942 dwarf2_macro_malformed_definition_complaint (body);
16943 }
16944
16945 /* Skip some bytes from BYTES according to the form given in FORM.
16946 Returns the new pointer. */
16947
16948 static gdb_byte *
16949 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
16950 enum dwarf_form form,
16951 unsigned int offset_size,
16952 struct dwarf2_section_info *section)
16953 {
16954 unsigned int bytes_read;
16955
16956 switch (form)
16957 {
16958 case DW_FORM_data1:
16959 case DW_FORM_flag:
16960 ++bytes;
16961 break;
16962
16963 case DW_FORM_data2:
16964 bytes += 2;
16965 break;
16966
16967 case DW_FORM_data4:
16968 bytes += 4;
16969 break;
16970
16971 case DW_FORM_data8:
16972 bytes += 8;
16973 break;
16974
16975 case DW_FORM_string:
16976 read_direct_string (abfd, bytes, &bytes_read);
16977 bytes += bytes_read;
16978 break;
16979
16980 case DW_FORM_sec_offset:
16981 case DW_FORM_strp:
16982 bytes += offset_size;
16983 break;
16984
16985 case DW_FORM_block:
16986 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
16987 bytes += bytes_read;
16988 break;
16989
16990 case DW_FORM_block1:
16991 bytes += 1 + read_1_byte (abfd, bytes);
16992 break;
16993 case DW_FORM_block2:
16994 bytes += 2 + read_2_bytes (abfd, bytes);
16995 break;
16996 case DW_FORM_block4:
16997 bytes += 4 + read_4_bytes (abfd, bytes);
16998 break;
16999
17000 case DW_FORM_sdata:
17001 case DW_FORM_udata:
17002 case DW_FORM_GNU_addr_index:
17003 case DW_FORM_GNU_str_index:
17004 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
17005 if (bytes == NULL)
17006 {
17007 dwarf2_section_buffer_overflow_complaint (section);
17008 return NULL;
17009 }
17010 break;
17011
17012 default:
17013 {
17014 complain:
17015 complaint (&symfile_complaints,
17016 _("invalid form 0x%x in `%s'"),
17017 form,
17018 section->asection->name);
17019 return NULL;
17020 }
17021 }
17022
17023 return bytes;
17024 }
17025
17026 /* A helper for dwarf_decode_macros that handles skipping an unknown
17027 opcode. Returns an updated pointer to the macro data buffer; or,
17028 on error, issues a complaint and returns NULL. */
17029
17030 static gdb_byte *
17031 skip_unknown_opcode (unsigned int opcode,
17032 gdb_byte **opcode_definitions,
17033 gdb_byte *mac_ptr, gdb_byte *mac_end,
17034 bfd *abfd,
17035 unsigned int offset_size,
17036 struct dwarf2_section_info *section)
17037 {
17038 unsigned int bytes_read, i;
17039 unsigned long arg;
17040 gdb_byte *defn;
17041
17042 if (opcode_definitions[opcode] == NULL)
17043 {
17044 complaint (&symfile_complaints,
17045 _("unrecognized DW_MACFINO opcode 0x%x"),
17046 opcode);
17047 return NULL;
17048 }
17049
17050 defn = opcode_definitions[opcode];
17051 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
17052 defn += bytes_read;
17053
17054 for (i = 0; i < arg; ++i)
17055 {
17056 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
17057 section);
17058 if (mac_ptr == NULL)
17059 {
17060 /* skip_form_bytes already issued the complaint. */
17061 return NULL;
17062 }
17063 }
17064
17065 return mac_ptr;
17066 }
17067
17068 /* A helper function which parses the header of a macro section.
17069 If the macro section is the extended (for now called "GNU") type,
17070 then this updates *OFFSET_SIZE. Returns a pointer to just after
17071 the header, or issues a complaint and returns NULL on error. */
17072
17073 static gdb_byte *
17074 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
17075 bfd *abfd,
17076 gdb_byte *mac_ptr,
17077 unsigned int *offset_size,
17078 int section_is_gnu)
17079 {
17080 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
17081
17082 if (section_is_gnu)
17083 {
17084 unsigned int version, flags;
17085
17086 version = read_2_bytes (abfd, mac_ptr);
17087 if (version != 4)
17088 {
17089 complaint (&symfile_complaints,
17090 _("unrecognized version `%d' in .debug_macro section"),
17091 version);
17092 return NULL;
17093 }
17094 mac_ptr += 2;
17095
17096 flags = read_1_byte (abfd, mac_ptr);
17097 ++mac_ptr;
17098 *offset_size = (flags & 1) ? 8 : 4;
17099
17100 if ((flags & 2) != 0)
17101 /* We don't need the line table offset. */
17102 mac_ptr += *offset_size;
17103
17104 /* Vendor opcode descriptions. */
17105 if ((flags & 4) != 0)
17106 {
17107 unsigned int i, count;
17108
17109 count = read_1_byte (abfd, mac_ptr);
17110 ++mac_ptr;
17111 for (i = 0; i < count; ++i)
17112 {
17113 unsigned int opcode, bytes_read;
17114 unsigned long arg;
17115
17116 opcode = read_1_byte (abfd, mac_ptr);
17117 ++mac_ptr;
17118 opcode_definitions[opcode] = mac_ptr;
17119 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17120 mac_ptr += bytes_read;
17121 mac_ptr += arg;
17122 }
17123 }
17124 }
17125
17126 return mac_ptr;
17127 }
17128
17129 /* A helper for dwarf_decode_macros that handles the GNU extensions,
17130 including DW_MACRO_GNU_transparent_include. */
17131
17132 static void
17133 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
17134 struct macro_source_file *current_file,
17135 struct line_header *lh, char *comp_dir,
17136 struct dwarf2_section_info *section,
17137 int section_is_gnu,
17138 unsigned int offset_size,
17139 struct objfile *objfile,
17140 htab_t include_hash)
17141 {
17142 enum dwarf_macro_record_type macinfo_type;
17143 int at_commandline;
17144 gdb_byte *opcode_definitions[256];
17145
17146 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17147 &offset_size, section_is_gnu);
17148 if (mac_ptr == NULL)
17149 {
17150 /* We already issued a complaint. */
17151 return;
17152 }
17153
17154 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
17155 GDB is still reading the definitions from command line. First
17156 DW_MACINFO_start_file will need to be ignored as it was already executed
17157 to create CURRENT_FILE for the main source holding also the command line
17158 definitions. On first met DW_MACINFO_start_file this flag is reset to
17159 normally execute all the remaining DW_MACINFO_start_file macinfos. */
17160
17161 at_commandline = 1;
17162
17163 do
17164 {
17165 /* Do we at least have room for a macinfo type byte? */
17166 if (mac_ptr >= mac_end)
17167 {
17168 dwarf2_section_buffer_overflow_complaint (section);
17169 break;
17170 }
17171
17172 macinfo_type = read_1_byte (abfd, mac_ptr);
17173 mac_ptr++;
17174
17175 /* Note that we rely on the fact that the corresponding GNU and
17176 DWARF constants are the same. */
17177 switch (macinfo_type)
17178 {
17179 /* A zero macinfo type indicates the end of the macro
17180 information. */
17181 case 0:
17182 break;
17183
17184 case DW_MACRO_GNU_define:
17185 case DW_MACRO_GNU_undef:
17186 case DW_MACRO_GNU_define_indirect:
17187 case DW_MACRO_GNU_undef_indirect:
17188 {
17189 unsigned int bytes_read;
17190 int line;
17191 char *body;
17192 int is_define;
17193
17194 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17195 mac_ptr += bytes_read;
17196
17197 if (macinfo_type == DW_MACRO_GNU_define
17198 || macinfo_type == DW_MACRO_GNU_undef)
17199 {
17200 body = read_direct_string (abfd, mac_ptr, &bytes_read);
17201 mac_ptr += bytes_read;
17202 }
17203 else
17204 {
17205 LONGEST str_offset;
17206
17207 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
17208 mac_ptr += offset_size;
17209
17210 body = read_indirect_string_at_offset (abfd, str_offset);
17211 }
17212
17213 is_define = (macinfo_type == DW_MACRO_GNU_define
17214 || macinfo_type == DW_MACRO_GNU_define_indirect);
17215 if (! current_file)
17216 {
17217 /* DWARF violation as no main source is present. */
17218 complaint (&symfile_complaints,
17219 _("debug info with no main source gives macro %s "
17220 "on line %d: %s"),
17221 is_define ? _("definition") : _("undefinition"),
17222 line, body);
17223 break;
17224 }
17225 if ((line == 0 && !at_commandline)
17226 || (line != 0 && at_commandline))
17227 complaint (&symfile_complaints,
17228 _("debug info gives %s macro %s with %s line %d: %s"),
17229 at_commandline ? _("command-line") : _("in-file"),
17230 is_define ? _("definition") : _("undefinition"),
17231 line == 0 ? _("zero") : _("non-zero"), line, body);
17232
17233 if (is_define)
17234 parse_macro_definition (current_file, line, body);
17235 else
17236 {
17237 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
17238 || macinfo_type == DW_MACRO_GNU_undef_indirect);
17239 macro_undef (current_file, line, body);
17240 }
17241 }
17242 break;
17243
17244 case DW_MACRO_GNU_start_file:
17245 {
17246 unsigned int bytes_read;
17247 int line, file;
17248
17249 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17250 mac_ptr += bytes_read;
17251 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17252 mac_ptr += bytes_read;
17253
17254 if ((line == 0 && !at_commandline)
17255 || (line != 0 && at_commandline))
17256 complaint (&symfile_complaints,
17257 _("debug info gives source %d included "
17258 "from %s at %s line %d"),
17259 file, at_commandline ? _("command-line") : _("file"),
17260 line == 0 ? _("zero") : _("non-zero"), line);
17261
17262 if (at_commandline)
17263 {
17264 /* This DW_MACRO_GNU_start_file was executed in the
17265 pass one. */
17266 at_commandline = 0;
17267 }
17268 else
17269 current_file = macro_start_file (file, line,
17270 current_file, comp_dir,
17271 lh, objfile);
17272 }
17273 break;
17274
17275 case DW_MACRO_GNU_end_file:
17276 if (! current_file)
17277 complaint (&symfile_complaints,
17278 _("macro debug info has an unmatched "
17279 "`close_file' directive"));
17280 else
17281 {
17282 current_file = current_file->included_by;
17283 if (! current_file)
17284 {
17285 enum dwarf_macro_record_type next_type;
17286
17287 /* GCC circa March 2002 doesn't produce the zero
17288 type byte marking the end of the compilation
17289 unit. Complain if it's not there, but exit no
17290 matter what. */
17291
17292 /* Do we at least have room for a macinfo type byte? */
17293 if (mac_ptr >= mac_end)
17294 {
17295 dwarf2_section_buffer_overflow_complaint (section);
17296 return;
17297 }
17298
17299 /* We don't increment mac_ptr here, so this is just
17300 a look-ahead. */
17301 next_type = read_1_byte (abfd, mac_ptr);
17302 if (next_type != 0)
17303 complaint (&symfile_complaints,
17304 _("no terminating 0-type entry for "
17305 "macros in `.debug_macinfo' section"));
17306
17307 return;
17308 }
17309 }
17310 break;
17311
17312 case DW_MACRO_GNU_transparent_include:
17313 {
17314 LONGEST offset;
17315 void **slot;
17316
17317 offset = read_offset_1 (abfd, mac_ptr, offset_size);
17318 mac_ptr += offset_size;
17319
17320 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17321 if (*slot != NULL)
17322 {
17323 /* This has actually happened; see
17324 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
17325 complaint (&symfile_complaints,
17326 _("recursive DW_MACRO_GNU_transparent_include in "
17327 ".debug_macro section"));
17328 }
17329 else
17330 {
17331 *slot = mac_ptr;
17332
17333 dwarf_decode_macro_bytes (abfd,
17334 section->buffer + offset,
17335 mac_end, current_file,
17336 lh, comp_dir,
17337 section, section_is_gnu,
17338 offset_size, objfile, include_hash);
17339
17340 htab_remove_elt (include_hash, mac_ptr);
17341 }
17342 }
17343 break;
17344
17345 case DW_MACINFO_vendor_ext:
17346 if (!section_is_gnu)
17347 {
17348 unsigned int bytes_read;
17349 int constant;
17350
17351 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17352 mac_ptr += bytes_read;
17353 read_direct_string (abfd, mac_ptr, &bytes_read);
17354 mac_ptr += bytes_read;
17355
17356 /* We don't recognize any vendor extensions. */
17357 break;
17358 }
17359 /* FALLTHROUGH */
17360
17361 default:
17362 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17363 mac_ptr, mac_end, abfd, offset_size,
17364 section);
17365 if (mac_ptr == NULL)
17366 return;
17367 break;
17368 }
17369 } while (macinfo_type != 0);
17370 }
17371
17372 static void
17373 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
17374 char *comp_dir, int section_is_gnu)
17375 {
17376 struct objfile *objfile = dwarf2_per_objfile->objfile;
17377 struct line_header *lh = cu->line_header;
17378 bfd *abfd;
17379 gdb_byte *mac_ptr, *mac_end;
17380 struct macro_source_file *current_file = 0;
17381 enum dwarf_macro_record_type macinfo_type;
17382 unsigned int offset_size = cu->header.offset_size;
17383 gdb_byte *opcode_definitions[256];
17384 struct cleanup *cleanup;
17385 htab_t include_hash;
17386 void **slot;
17387 struct dwarf2_section_info *section;
17388 const char *section_name;
17389
17390 if (cu->dwo_unit != NULL)
17391 {
17392 if (section_is_gnu)
17393 {
17394 section = &cu->dwo_unit->dwo_file->sections.macro;
17395 section_name = ".debug_macro.dwo";
17396 }
17397 else
17398 {
17399 section = &cu->dwo_unit->dwo_file->sections.macinfo;
17400 section_name = ".debug_macinfo.dwo";
17401 }
17402 }
17403 else
17404 {
17405 if (section_is_gnu)
17406 {
17407 section = &dwarf2_per_objfile->macro;
17408 section_name = ".debug_macro";
17409 }
17410 else
17411 {
17412 section = &dwarf2_per_objfile->macinfo;
17413 section_name = ".debug_macinfo";
17414 }
17415 }
17416
17417 dwarf2_read_section (objfile, section);
17418 if (section->buffer == NULL)
17419 {
17420 complaint (&symfile_complaints, _("missing %s section"), section_name);
17421 return;
17422 }
17423 abfd = section->asection->owner;
17424
17425 /* First pass: Find the name of the base filename.
17426 This filename is needed in order to process all macros whose definition
17427 (or undefinition) comes from the command line. These macros are defined
17428 before the first DW_MACINFO_start_file entry, and yet still need to be
17429 associated to the base file.
17430
17431 To determine the base file name, we scan the macro definitions until we
17432 reach the first DW_MACINFO_start_file entry. We then initialize
17433 CURRENT_FILE accordingly so that any macro definition found before the
17434 first DW_MACINFO_start_file can still be associated to the base file. */
17435
17436 mac_ptr = section->buffer + offset;
17437 mac_end = section->buffer + section->size;
17438
17439 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17440 &offset_size, section_is_gnu);
17441 if (mac_ptr == NULL)
17442 {
17443 /* We already issued a complaint. */
17444 return;
17445 }
17446
17447 do
17448 {
17449 /* Do we at least have room for a macinfo type byte? */
17450 if (mac_ptr >= mac_end)
17451 {
17452 /* Complaint is printed during the second pass as GDB will probably
17453 stop the first pass earlier upon finding
17454 DW_MACINFO_start_file. */
17455 break;
17456 }
17457
17458 macinfo_type = read_1_byte (abfd, mac_ptr);
17459 mac_ptr++;
17460
17461 /* Note that we rely on the fact that the corresponding GNU and
17462 DWARF constants are the same. */
17463 switch (macinfo_type)
17464 {
17465 /* A zero macinfo type indicates the end of the macro
17466 information. */
17467 case 0:
17468 break;
17469
17470 case DW_MACRO_GNU_define:
17471 case DW_MACRO_GNU_undef:
17472 /* Only skip the data by MAC_PTR. */
17473 {
17474 unsigned int bytes_read;
17475
17476 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17477 mac_ptr += bytes_read;
17478 read_direct_string (abfd, mac_ptr, &bytes_read);
17479 mac_ptr += bytes_read;
17480 }
17481 break;
17482
17483 case DW_MACRO_GNU_start_file:
17484 {
17485 unsigned int bytes_read;
17486 int line, file;
17487
17488 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17489 mac_ptr += bytes_read;
17490 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17491 mac_ptr += bytes_read;
17492
17493 current_file = macro_start_file (file, line, current_file,
17494 comp_dir, lh, objfile);
17495 }
17496 break;
17497
17498 case DW_MACRO_GNU_end_file:
17499 /* No data to skip by MAC_PTR. */
17500 break;
17501
17502 case DW_MACRO_GNU_define_indirect:
17503 case DW_MACRO_GNU_undef_indirect:
17504 {
17505 unsigned int bytes_read;
17506
17507 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17508 mac_ptr += bytes_read;
17509 mac_ptr += offset_size;
17510 }
17511 break;
17512
17513 case DW_MACRO_GNU_transparent_include:
17514 /* Note that, according to the spec, a transparent include
17515 chain cannot call DW_MACRO_GNU_start_file. So, we can just
17516 skip this opcode. */
17517 mac_ptr += offset_size;
17518 break;
17519
17520 case DW_MACINFO_vendor_ext:
17521 /* Only skip the data by MAC_PTR. */
17522 if (!section_is_gnu)
17523 {
17524 unsigned int bytes_read;
17525
17526 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17527 mac_ptr += bytes_read;
17528 read_direct_string (abfd, mac_ptr, &bytes_read);
17529 mac_ptr += bytes_read;
17530 }
17531 /* FALLTHROUGH */
17532
17533 default:
17534 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17535 mac_ptr, mac_end, abfd, offset_size,
17536 section);
17537 if (mac_ptr == NULL)
17538 return;
17539 break;
17540 }
17541 } while (macinfo_type != 0 && current_file == NULL);
17542
17543 /* Second pass: Process all entries.
17544
17545 Use the AT_COMMAND_LINE flag to determine whether we are still processing
17546 command-line macro definitions/undefinitions. This flag is unset when we
17547 reach the first DW_MACINFO_start_file entry. */
17548
17549 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
17550 NULL, xcalloc, xfree);
17551 cleanup = make_cleanup_htab_delete (include_hash);
17552 mac_ptr = section->buffer + offset;
17553 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17554 *slot = mac_ptr;
17555 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
17556 current_file, lh, comp_dir, section, section_is_gnu,
17557 offset_size, objfile, include_hash);
17558 do_cleanups (cleanup);
17559 }
17560
17561 /* Check if the attribute's form is a DW_FORM_block*
17562 if so return true else false. */
17563
17564 static int
17565 attr_form_is_block (struct attribute *attr)
17566 {
17567 return (attr == NULL ? 0 :
17568 attr->form == DW_FORM_block1
17569 || attr->form == DW_FORM_block2
17570 || attr->form == DW_FORM_block4
17571 || attr->form == DW_FORM_block
17572 || attr->form == DW_FORM_exprloc);
17573 }
17574
17575 /* Return non-zero if ATTR's value is a section offset --- classes
17576 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
17577 You may use DW_UNSND (attr) to retrieve such offsets.
17578
17579 Section 7.5.4, "Attribute Encodings", explains that no attribute
17580 may have a value that belongs to more than one of these classes; it
17581 would be ambiguous if we did, because we use the same forms for all
17582 of them. */
17583
17584 static int
17585 attr_form_is_section_offset (struct attribute *attr)
17586 {
17587 return (attr->form == DW_FORM_data4
17588 || attr->form == DW_FORM_data8
17589 || attr->form == DW_FORM_sec_offset);
17590 }
17591
17592 /* Return non-zero if ATTR's value falls in the 'constant' class, or
17593 zero otherwise. When this function returns true, you can apply
17594 dwarf2_get_attr_constant_value to it.
17595
17596 However, note that for some attributes you must check
17597 attr_form_is_section_offset before using this test. DW_FORM_data4
17598 and DW_FORM_data8 are members of both the constant class, and of
17599 the classes that contain offsets into other debug sections
17600 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
17601 that, if an attribute's can be either a constant or one of the
17602 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
17603 taken as section offsets, not constants. */
17604
17605 static int
17606 attr_form_is_constant (struct attribute *attr)
17607 {
17608 switch (attr->form)
17609 {
17610 case DW_FORM_sdata:
17611 case DW_FORM_udata:
17612 case DW_FORM_data1:
17613 case DW_FORM_data2:
17614 case DW_FORM_data4:
17615 case DW_FORM_data8:
17616 return 1;
17617 default:
17618 return 0;
17619 }
17620 }
17621
17622 /* Return the .debug_loc section to use for CU.
17623 For DWO files use .debug_loc.dwo. */
17624
17625 static struct dwarf2_section_info *
17626 cu_debug_loc_section (struct dwarf2_cu *cu)
17627 {
17628 if (cu->dwo_unit)
17629 return &cu->dwo_unit->dwo_file->sections.loc;
17630 return &dwarf2_per_objfile->loc;
17631 }
17632
17633 /* A helper function that fills in a dwarf2_loclist_baton. */
17634
17635 static void
17636 fill_in_loclist_baton (struct dwarf2_cu *cu,
17637 struct dwarf2_loclist_baton *baton,
17638 struct attribute *attr)
17639 {
17640 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
17641
17642 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17643
17644 baton->per_cu = cu->per_cu;
17645 gdb_assert (baton->per_cu);
17646 /* We don't know how long the location list is, but make sure we
17647 don't run off the edge of the section. */
17648 baton->size = section->size - DW_UNSND (attr);
17649 baton->data = section->buffer + DW_UNSND (attr);
17650 baton->base_address = cu->base_address;
17651 baton->from_dwo = cu->dwo_unit != NULL;
17652 }
17653
17654 static void
17655 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
17656 struct dwarf2_cu *cu)
17657 {
17658 struct objfile *objfile = dwarf2_per_objfile->objfile;
17659 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
17660
17661 if (attr_form_is_section_offset (attr)
17662 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
17663 the section. If so, fall through to the complaint in the
17664 other branch. */
17665 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
17666 {
17667 struct dwarf2_loclist_baton *baton;
17668
17669 baton = obstack_alloc (&objfile->objfile_obstack,
17670 sizeof (struct dwarf2_loclist_baton));
17671
17672 fill_in_loclist_baton (cu, baton, attr);
17673
17674 if (cu->base_known == 0)
17675 complaint (&symfile_complaints,
17676 _("Location list used without "
17677 "specifying the CU base address."));
17678
17679 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
17680 SYMBOL_LOCATION_BATON (sym) = baton;
17681 }
17682 else
17683 {
17684 struct dwarf2_locexpr_baton *baton;
17685
17686 baton = obstack_alloc (&objfile->objfile_obstack,
17687 sizeof (struct dwarf2_locexpr_baton));
17688 baton->per_cu = cu->per_cu;
17689 gdb_assert (baton->per_cu);
17690
17691 if (attr_form_is_block (attr))
17692 {
17693 /* Note that we're just copying the block's data pointer
17694 here, not the actual data. We're still pointing into the
17695 info_buffer for SYM's objfile; right now we never release
17696 that buffer, but when we do clean up properly this may
17697 need to change. */
17698 baton->size = DW_BLOCK (attr)->size;
17699 baton->data = DW_BLOCK (attr)->data;
17700 }
17701 else
17702 {
17703 dwarf2_invalid_attrib_class_complaint ("location description",
17704 SYMBOL_NATURAL_NAME (sym));
17705 baton->size = 0;
17706 }
17707
17708 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
17709 SYMBOL_LOCATION_BATON (sym) = baton;
17710 }
17711 }
17712
17713 /* Return the OBJFILE associated with the compilation unit CU. If CU
17714 came from a separate debuginfo file, then the master objfile is
17715 returned. */
17716
17717 struct objfile *
17718 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
17719 {
17720 struct objfile *objfile = per_cu->objfile;
17721
17722 /* Return the master objfile, so that we can report and look up the
17723 correct file containing this variable. */
17724 if (objfile->separate_debug_objfile_backlink)
17725 objfile = objfile->separate_debug_objfile_backlink;
17726
17727 return objfile;
17728 }
17729
17730 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
17731 (CU_HEADERP is unused in such case) or prepare a temporary copy at
17732 CU_HEADERP first. */
17733
17734 static const struct comp_unit_head *
17735 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
17736 struct dwarf2_per_cu_data *per_cu)
17737 {
17738 gdb_byte *info_ptr;
17739
17740 if (per_cu->cu)
17741 return &per_cu->cu->header;
17742
17743 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
17744
17745 memset (cu_headerp, 0, sizeof (*cu_headerp));
17746 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
17747
17748 return cu_headerp;
17749 }
17750
17751 /* Return the address size given in the compilation unit header for CU. */
17752
17753 int
17754 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
17755 {
17756 struct comp_unit_head cu_header_local;
17757 const struct comp_unit_head *cu_headerp;
17758
17759 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
17760
17761 return cu_headerp->addr_size;
17762 }
17763
17764 /* Return the offset size given in the compilation unit header for CU. */
17765
17766 int
17767 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
17768 {
17769 struct comp_unit_head cu_header_local;
17770 const struct comp_unit_head *cu_headerp;
17771
17772 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
17773
17774 return cu_headerp->offset_size;
17775 }
17776
17777 /* See its dwarf2loc.h declaration. */
17778
17779 int
17780 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
17781 {
17782 struct comp_unit_head cu_header_local;
17783 const struct comp_unit_head *cu_headerp;
17784
17785 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
17786
17787 if (cu_headerp->version == 2)
17788 return cu_headerp->addr_size;
17789 else
17790 return cu_headerp->offset_size;
17791 }
17792
17793 /* Return the text offset of the CU. The returned offset comes from
17794 this CU's objfile. If this objfile came from a separate debuginfo
17795 file, then the offset may be different from the corresponding
17796 offset in the parent objfile. */
17797
17798 CORE_ADDR
17799 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
17800 {
17801 struct objfile *objfile = per_cu->objfile;
17802
17803 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17804 }
17805
17806 /* Locate the .debug_info compilation unit from CU's objfile which contains
17807 the DIE at OFFSET. Raises an error on failure. */
17808
17809 static struct dwarf2_per_cu_data *
17810 dwarf2_find_containing_comp_unit (sect_offset offset,
17811 struct objfile *objfile)
17812 {
17813 struct dwarf2_per_cu_data *this_cu;
17814 int low, high;
17815
17816 low = 0;
17817 high = dwarf2_per_objfile->n_comp_units - 1;
17818 while (high > low)
17819 {
17820 int mid = low + (high - low) / 2;
17821
17822 if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off
17823 >= offset.sect_off)
17824 high = mid;
17825 else
17826 low = mid + 1;
17827 }
17828 gdb_assert (low == high);
17829 if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off
17830 > offset.sect_off)
17831 {
17832 if (low == 0)
17833 error (_("Dwarf Error: could not find partial DIE containing "
17834 "offset 0x%lx [in module %s]"),
17835 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
17836
17837 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
17838 <= offset.sect_off);
17839 return dwarf2_per_objfile->all_comp_units[low-1];
17840 }
17841 else
17842 {
17843 this_cu = dwarf2_per_objfile->all_comp_units[low];
17844 if (low == dwarf2_per_objfile->n_comp_units - 1
17845 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
17846 error (_("invalid dwarf2 offset %u"), offset.sect_off);
17847 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
17848 return this_cu;
17849 }
17850 }
17851
17852 /* Initialize dwarf2_cu CU, owned by PER_CU. */
17853
17854 static void
17855 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
17856 {
17857 memset (cu, 0, sizeof (*cu));
17858 per_cu->cu = cu;
17859 cu->per_cu = per_cu;
17860 cu->objfile = per_cu->objfile;
17861 obstack_init (&cu->comp_unit_obstack);
17862 }
17863
17864 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
17865
17866 static void
17867 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
17868 enum language pretend_language)
17869 {
17870 struct attribute *attr;
17871
17872 /* Set the language we're debugging. */
17873 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
17874 if (attr)
17875 set_cu_language (DW_UNSND (attr), cu);
17876 else
17877 {
17878 cu->language = pretend_language;
17879 cu->language_defn = language_def (cu->language);
17880 }
17881
17882 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
17883 if (attr)
17884 cu->producer = DW_STRING (attr);
17885 }
17886
17887 /* Release one cached compilation unit, CU. We unlink it from the tree
17888 of compilation units, but we don't remove it from the read_in_chain;
17889 the caller is responsible for that.
17890 NOTE: DATA is a void * because this function is also used as a
17891 cleanup routine. */
17892
17893 static void
17894 free_heap_comp_unit (void *data)
17895 {
17896 struct dwarf2_cu *cu = data;
17897
17898 gdb_assert (cu->per_cu != NULL);
17899 cu->per_cu->cu = NULL;
17900 cu->per_cu = NULL;
17901
17902 obstack_free (&cu->comp_unit_obstack, NULL);
17903
17904 xfree (cu);
17905 }
17906
17907 /* This cleanup function is passed the address of a dwarf2_cu on the stack
17908 when we're finished with it. We can't free the pointer itself, but be
17909 sure to unlink it from the cache. Also release any associated storage. */
17910
17911 static void
17912 free_stack_comp_unit (void *data)
17913 {
17914 struct dwarf2_cu *cu = data;
17915
17916 gdb_assert (cu->per_cu != NULL);
17917 cu->per_cu->cu = NULL;
17918 cu->per_cu = NULL;
17919
17920 obstack_free (&cu->comp_unit_obstack, NULL);
17921 cu->partial_dies = NULL;
17922 }
17923
17924 /* Free all cached compilation units. */
17925
17926 static void
17927 free_cached_comp_units (void *data)
17928 {
17929 struct dwarf2_per_cu_data *per_cu, **last_chain;
17930
17931 per_cu = dwarf2_per_objfile->read_in_chain;
17932 last_chain = &dwarf2_per_objfile->read_in_chain;
17933 while (per_cu != NULL)
17934 {
17935 struct dwarf2_per_cu_data *next_cu;
17936
17937 next_cu = per_cu->cu->read_in_chain;
17938
17939 free_heap_comp_unit (per_cu->cu);
17940 *last_chain = next_cu;
17941
17942 per_cu = next_cu;
17943 }
17944 }
17945
17946 /* Increase the age counter on each cached compilation unit, and free
17947 any that are too old. */
17948
17949 static void
17950 age_cached_comp_units (void)
17951 {
17952 struct dwarf2_per_cu_data *per_cu, **last_chain;
17953
17954 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
17955 per_cu = dwarf2_per_objfile->read_in_chain;
17956 while (per_cu != NULL)
17957 {
17958 per_cu->cu->last_used ++;
17959 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
17960 dwarf2_mark (per_cu->cu);
17961 per_cu = per_cu->cu->read_in_chain;
17962 }
17963
17964 per_cu = dwarf2_per_objfile->read_in_chain;
17965 last_chain = &dwarf2_per_objfile->read_in_chain;
17966 while (per_cu != NULL)
17967 {
17968 struct dwarf2_per_cu_data *next_cu;
17969
17970 next_cu = per_cu->cu->read_in_chain;
17971
17972 if (!per_cu->cu->mark)
17973 {
17974 free_heap_comp_unit (per_cu->cu);
17975 *last_chain = next_cu;
17976 }
17977 else
17978 last_chain = &per_cu->cu->read_in_chain;
17979
17980 per_cu = next_cu;
17981 }
17982 }
17983
17984 /* Remove a single compilation unit from the cache. */
17985
17986 static void
17987 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
17988 {
17989 struct dwarf2_per_cu_data *per_cu, **last_chain;
17990
17991 per_cu = dwarf2_per_objfile->read_in_chain;
17992 last_chain = &dwarf2_per_objfile->read_in_chain;
17993 while (per_cu != NULL)
17994 {
17995 struct dwarf2_per_cu_data *next_cu;
17996
17997 next_cu = per_cu->cu->read_in_chain;
17998
17999 if (per_cu == target_per_cu)
18000 {
18001 free_heap_comp_unit (per_cu->cu);
18002 per_cu->cu = NULL;
18003 *last_chain = next_cu;
18004 break;
18005 }
18006 else
18007 last_chain = &per_cu->cu->read_in_chain;
18008
18009 per_cu = next_cu;
18010 }
18011 }
18012
18013 /* Release all extra memory associated with OBJFILE. */
18014
18015 void
18016 dwarf2_free_objfile (struct objfile *objfile)
18017 {
18018 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
18019
18020 if (dwarf2_per_objfile == NULL)
18021 return;
18022
18023 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
18024 free_cached_comp_units (NULL);
18025
18026 if (dwarf2_per_objfile->quick_file_names_table)
18027 htab_delete (dwarf2_per_objfile->quick_file_names_table);
18028
18029 /* Everything else should be on the objfile obstack. */
18030 }
18031
18032 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
18033 We store these in a hash table separate from the DIEs, and preserve them
18034 when the DIEs are flushed out of cache.
18035
18036 The CU "per_cu" pointer is needed because offset alone is not enough to
18037 uniquely identify the type. A file may have multiple .debug_types sections,
18038 or the type may come from a DWO file. We have to use something in
18039 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
18040 routine, get_die_type_at_offset, from outside this file, and thus won't
18041 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
18042 of the objfile. */
18043
18044 struct dwarf2_per_cu_offset_and_type
18045 {
18046 const struct dwarf2_per_cu_data *per_cu;
18047 sect_offset offset;
18048 struct type *type;
18049 };
18050
18051 /* Hash function for a dwarf2_per_cu_offset_and_type. */
18052
18053 static hashval_t
18054 per_cu_offset_and_type_hash (const void *item)
18055 {
18056 const struct dwarf2_per_cu_offset_and_type *ofs = item;
18057
18058 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
18059 }
18060
18061 /* Equality function for a dwarf2_per_cu_offset_and_type. */
18062
18063 static int
18064 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
18065 {
18066 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
18067 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
18068
18069 return (ofs_lhs->per_cu == ofs_rhs->per_cu
18070 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
18071 }
18072
18073 /* Set the type associated with DIE to TYPE. Save it in CU's hash
18074 table if necessary. For convenience, return TYPE.
18075
18076 The DIEs reading must have careful ordering to:
18077 * Not cause infite loops trying to read in DIEs as a prerequisite for
18078 reading current DIE.
18079 * Not trying to dereference contents of still incompletely read in types
18080 while reading in other DIEs.
18081 * Enable referencing still incompletely read in types just by a pointer to
18082 the type without accessing its fields.
18083
18084 Therefore caller should follow these rules:
18085 * Try to fetch any prerequisite types we may need to build this DIE type
18086 before building the type and calling set_die_type.
18087 * After building type call set_die_type for current DIE as soon as
18088 possible before fetching more types to complete the current type.
18089 * Make the type as complete as possible before fetching more types. */
18090
18091 static struct type *
18092 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18093 {
18094 struct dwarf2_per_cu_offset_and_type **slot, ofs;
18095 struct objfile *objfile = cu->objfile;
18096
18097 /* For Ada types, make sure that the gnat-specific data is always
18098 initialized (if not already set). There are a few types where
18099 we should not be doing so, because the type-specific area is
18100 already used to hold some other piece of info (eg: TYPE_CODE_FLT
18101 where the type-specific area is used to store the floatformat).
18102 But this is not a problem, because the gnat-specific information
18103 is actually not needed for these types. */
18104 if (need_gnat_info (cu)
18105 && TYPE_CODE (type) != TYPE_CODE_FUNC
18106 && TYPE_CODE (type) != TYPE_CODE_FLT
18107 && !HAVE_GNAT_AUX_INFO (type))
18108 INIT_GNAT_SPECIFIC (type);
18109
18110 if (dwarf2_per_objfile->die_type_hash == NULL)
18111 {
18112 dwarf2_per_objfile->die_type_hash =
18113 htab_create_alloc_ex (127,
18114 per_cu_offset_and_type_hash,
18115 per_cu_offset_and_type_eq,
18116 NULL,
18117 &objfile->objfile_obstack,
18118 hashtab_obstack_allocate,
18119 dummy_obstack_deallocate);
18120 }
18121
18122 ofs.per_cu = cu->per_cu;
18123 ofs.offset = die->offset;
18124 ofs.type = type;
18125 slot = (struct dwarf2_per_cu_offset_and_type **)
18126 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
18127 if (*slot)
18128 complaint (&symfile_complaints,
18129 _("A problem internal to GDB: DIE 0x%x has type already set"),
18130 die->offset.sect_off);
18131 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
18132 **slot = ofs;
18133 return type;
18134 }
18135
18136 /* Look up the type for the die at OFFSET in the appropriate type_hash
18137 table, or return NULL if the die does not have a saved type. */
18138
18139 static struct type *
18140 get_die_type_at_offset (sect_offset offset,
18141 struct dwarf2_per_cu_data *per_cu)
18142 {
18143 struct dwarf2_per_cu_offset_and_type *slot, ofs;
18144
18145 if (dwarf2_per_objfile->die_type_hash == NULL)
18146 return NULL;
18147
18148 ofs.per_cu = per_cu;
18149 ofs.offset = offset;
18150 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
18151 if (slot)
18152 return slot->type;
18153 else
18154 return NULL;
18155 }
18156
18157 /* Look up the type for DIE in the appropriate type_hash table,
18158 or return NULL if DIE does not have a saved type. */
18159
18160 static struct type *
18161 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
18162 {
18163 return get_die_type_at_offset (die->offset, cu->per_cu);
18164 }
18165
18166 /* Add a dependence relationship from CU to REF_PER_CU. */
18167
18168 static void
18169 dwarf2_add_dependence (struct dwarf2_cu *cu,
18170 struct dwarf2_per_cu_data *ref_per_cu)
18171 {
18172 void **slot;
18173
18174 if (cu->dependencies == NULL)
18175 cu->dependencies
18176 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
18177 NULL, &cu->comp_unit_obstack,
18178 hashtab_obstack_allocate,
18179 dummy_obstack_deallocate);
18180
18181 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
18182 if (*slot == NULL)
18183 *slot = ref_per_cu;
18184 }
18185
18186 /* Subroutine of dwarf2_mark to pass to htab_traverse.
18187 Set the mark field in every compilation unit in the
18188 cache that we must keep because we are keeping CU. */
18189
18190 static int
18191 dwarf2_mark_helper (void **slot, void *data)
18192 {
18193 struct dwarf2_per_cu_data *per_cu;
18194
18195 per_cu = (struct dwarf2_per_cu_data *) *slot;
18196
18197 /* cu->dependencies references may not yet have been ever read if QUIT aborts
18198 reading of the chain. As such dependencies remain valid it is not much
18199 useful to track and undo them during QUIT cleanups. */
18200 if (per_cu->cu == NULL)
18201 return 1;
18202
18203 if (per_cu->cu->mark)
18204 return 1;
18205 per_cu->cu->mark = 1;
18206
18207 if (per_cu->cu->dependencies != NULL)
18208 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
18209
18210 return 1;
18211 }
18212
18213 /* Set the mark field in CU and in every other compilation unit in the
18214 cache that we must keep because we are keeping CU. */
18215
18216 static void
18217 dwarf2_mark (struct dwarf2_cu *cu)
18218 {
18219 if (cu->mark)
18220 return;
18221 cu->mark = 1;
18222 if (cu->dependencies != NULL)
18223 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
18224 }
18225
18226 static void
18227 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
18228 {
18229 while (per_cu)
18230 {
18231 per_cu->cu->mark = 0;
18232 per_cu = per_cu->cu->read_in_chain;
18233 }
18234 }
18235
18236 /* Trivial hash function for partial_die_info: the hash value of a DIE
18237 is its offset in .debug_info for this objfile. */
18238
18239 static hashval_t
18240 partial_die_hash (const void *item)
18241 {
18242 const struct partial_die_info *part_die = item;
18243
18244 return part_die->offset.sect_off;
18245 }
18246
18247 /* Trivial comparison function for partial_die_info structures: two DIEs
18248 are equal if they have the same offset. */
18249
18250 static int
18251 partial_die_eq (const void *item_lhs, const void *item_rhs)
18252 {
18253 const struct partial_die_info *part_die_lhs = item_lhs;
18254 const struct partial_die_info *part_die_rhs = item_rhs;
18255
18256 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
18257 }
18258
18259 static struct cmd_list_element *set_dwarf2_cmdlist;
18260 static struct cmd_list_element *show_dwarf2_cmdlist;
18261
18262 static void
18263 set_dwarf2_cmd (char *args, int from_tty)
18264 {
18265 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
18266 }
18267
18268 static void
18269 show_dwarf2_cmd (char *args, int from_tty)
18270 {
18271 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
18272 }
18273
18274 /* If section described by INFO was mmapped, munmap it now. */
18275
18276 static void
18277 munmap_section_buffer (struct dwarf2_section_info *info)
18278 {
18279 if (info->map_addr != NULL)
18280 {
18281 #ifdef HAVE_MMAP
18282 int res;
18283
18284 res = munmap (info->map_addr, info->map_len);
18285 gdb_assert (res == 0);
18286 #else
18287 /* Without HAVE_MMAP, we should never be here to begin with. */
18288 gdb_assert_not_reached ("no mmap support");
18289 #endif
18290 }
18291 }
18292
18293 /* munmap debug sections for OBJFILE, if necessary. */
18294
18295 static void
18296 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
18297 {
18298 struct dwarf2_per_objfile *data = d;
18299 int ix;
18300 struct dwarf2_section_info *section;
18301
18302 /* This is sorted according to the order they're defined in to make it easier
18303 to keep in sync. */
18304 munmap_section_buffer (&data->info);
18305 munmap_section_buffer (&data->abbrev);
18306 munmap_section_buffer (&data->line);
18307 munmap_section_buffer (&data->loc);
18308 munmap_section_buffer (&data->macinfo);
18309 munmap_section_buffer (&data->macro);
18310 munmap_section_buffer (&data->str);
18311 munmap_section_buffer (&data->ranges);
18312 munmap_section_buffer (&data->addr);
18313 munmap_section_buffer (&data->frame);
18314 munmap_section_buffer (&data->eh_frame);
18315 munmap_section_buffer (&data->gdb_index);
18316
18317 for (ix = 0;
18318 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
18319 ++ix)
18320 munmap_section_buffer (section);
18321
18322 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
18323 VEC_free (dwarf2_per_cu_ptr,
18324 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
18325
18326 VEC_free (dwarf2_section_info_def, data->types);
18327
18328 if (data->dwo_files)
18329 free_dwo_files (data->dwo_files, objfile);
18330 }
18331
18332 \f
18333 /* The "save gdb-index" command. */
18334
18335 /* The contents of the hash table we create when building the string
18336 table. */
18337 struct strtab_entry
18338 {
18339 offset_type offset;
18340 const char *str;
18341 };
18342
18343 /* Hash function for a strtab_entry.
18344
18345 Function is used only during write_hash_table so no index format backward
18346 compatibility is needed. */
18347
18348 static hashval_t
18349 hash_strtab_entry (const void *e)
18350 {
18351 const struct strtab_entry *entry = e;
18352 return mapped_index_string_hash (INT_MAX, entry->str);
18353 }
18354
18355 /* Equality function for a strtab_entry. */
18356
18357 static int
18358 eq_strtab_entry (const void *a, const void *b)
18359 {
18360 const struct strtab_entry *ea = a;
18361 const struct strtab_entry *eb = b;
18362 return !strcmp (ea->str, eb->str);
18363 }
18364
18365 /* Create a strtab_entry hash table. */
18366
18367 static htab_t
18368 create_strtab (void)
18369 {
18370 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
18371 xfree, xcalloc, xfree);
18372 }
18373
18374 /* Add a string to the constant pool. Return the string's offset in
18375 host order. */
18376
18377 static offset_type
18378 add_string (htab_t table, struct obstack *cpool, const char *str)
18379 {
18380 void **slot;
18381 struct strtab_entry entry;
18382 struct strtab_entry *result;
18383
18384 entry.str = str;
18385 slot = htab_find_slot (table, &entry, INSERT);
18386 if (*slot)
18387 result = *slot;
18388 else
18389 {
18390 result = XNEW (struct strtab_entry);
18391 result->offset = obstack_object_size (cpool);
18392 result->str = str;
18393 obstack_grow_str0 (cpool, str);
18394 *slot = result;
18395 }
18396 return result->offset;
18397 }
18398
18399 /* An entry in the symbol table. */
18400 struct symtab_index_entry
18401 {
18402 /* The name of the symbol. */
18403 const char *name;
18404 /* The offset of the name in the constant pool. */
18405 offset_type index_offset;
18406 /* A sorted vector of the indices of all the CUs that hold an object
18407 of this name. */
18408 VEC (offset_type) *cu_indices;
18409 };
18410
18411 /* The symbol table. This is a power-of-2-sized hash table. */
18412 struct mapped_symtab
18413 {
18414 offset_type n_elements;
18415 offset_type size;
18416 struct symtab_index_entry **data;
18417 };
18418
18419 /* Hash function for a symtab_index_entry. */
18420
18421 static hashval_t
18422 hash_symtab_entry (const void *e)
18423 {
18424 const struct symtab_index_entry *entry = e;
18425 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
18426 sizeof (offset_type) * VEC_length (offset_type,
18427 entry->cu_indices),
18428 0);
18429 }
18430
18431 /* Equality function for a symtab_index_entry. */
18432
18433 static int
18434 eq_symtab_entry (const void *a, const void *b)
18435 {
18436 const struct symtab_index_entry *ea = a;
18437 const struct symtab_index_entry *eb = b;
18438 int len = VEC_length (offset_type, ea->cu_indices);
18439 if (len != VEC_length (offset_type, eb->cu_indices))
18440 return 0;
18441 return !memcmp (VEC_address (offset_type, ea->cu_indices),
18442 VEC_address (offset_type, eb->cu_indices),
18443 sizeof (offset_type) * len);
18444 }
18445
18446 /* Destroy a symtab_index_entry. */
18447
18448 static void
18449 delete_symtab_entry (void *p)
18450 {
18451 struct symtab_index_entry *entry = p;
18452 VEC_free (offset_type, entry->cu_indices);
18453 xfree (entry);
18454 }
18455
18456 /* Create a hash table holding symtab_index_entry objects. */
18457
18458 static htab_t
18459 create_symbol_hash_table (void)
18460 {
18461 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
18462 delete_symtab_entry, xcalloc, xfree);
18463 }
18464
18465 /* Create a new mapped symtab object. */
18466
18467 static struct mapped_symtab *
18468 create_mapped_symtab (void)
18469 {
18470 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
18471 symtab->n_elements = 0;
18472 symtab->size = 1024;
18473 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18474 return symtab;
18475 }
18476
18477 /* Destroy a mapped_symtab. */
18478
18479 static void
18480 cleanup_mapped_symtab (void *p)
18481 {
18482 struct mapped_symtab *symtab = p;
18483 /* The contents of the array are freed when the other hash table is
18484 destroyed. */
18485 xfree (symtab->data);
18486 xfree (symtab);
18487 }
18488
18489 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
18490 the slot.
18491
18492 Function is used only during write_hash_table so no index format backward
18493 compatibility is needed. */
18494
18495 static struct symtab_index_entry **
18496 find_slot (struct mapped_symtab *symtab, const char *name)
18497 {
18498 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
18499
18500 index = hash & (symtab->size - 1);
18501 step = ((hash * 17) & (symtab->size - 1)) | 1;
18502
18503 for (;;)
18504 {
18505 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
18506 return &symtab->data[index];
18507 index = (index + step) & (symtab->size - 1);
18508 }
18509 }
18510
18511 /* Expand SYMTAB's hash table. */
18512
18513 static void
18514 hash_expand (struct mapped_symtab *symtab)
18515 {
18516 offset_type old_size = symtab->size;
18517 offset_type i;
18518 struct symtab_index_entry **old_entries = symtab->data;
18519
18520 symtab->size *= 2;
18521 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18522
18523 for (i = 0; i < old_size; ++i)
18524 {
18525 if (old_entries[i])
18526 {
18527 struct symtab_index_entry **slot = find_slot (symtab,
18528 old_entries[i]->name);
18529 *slot = old_entries[i];
18530 }
18531 }
18532
18533 xfree (old_entries);
18534 }
18535
18536 /* Add an entry to SYMTAB. NAME is the name of the symbol.
18537 CU_INDEX is the index of the CU in which the symbol appears.
18538 IS_STATIC is one if the symbol is static, otherwise zero (global). */
18539
18540 static void
18541 add_index_entry (struct mapped_symtab *symtab, const char *name,
18542 int is_static, gdb_index_symbol_kind kind,
18543 offset_type cu_index)
18544 {
18545 struct symtab_index_entry **slot;
18546 offset_type cu_index_and_attrs;
18547
18548 ++symtab->n_elements;
18549 if (4 * symtab->n_elements / 3 >= symtab->size)
18550 hash_expand (symtab);
18551
18552 slot = find_slot (symtab, name);
18553 if (!*slot)
18554 {
18555 *slot = XNEW (struct symtab_index_entry);
18556 (*slot)->name = name;
18557 /* index_offset is set later. */
18558 (*slot)->cu_indices = NULL;
18559 }
18560
18561 cu_index_and_attrs = 0;
18562 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
18563 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
18564 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
18565
18566 /* We don't want to record an index value twice as we want to avoid the
18567 duplication.
18568 We process all global symbols and then all static symbols
18569 (which would allow us to avoid the duplication by only having to check
18570 the last entry pushed), but a symbol could have multiple kinds in one CU.
18571 To keep things simple we don't worry about the duplication here and
18572 sort and uniqufy the list after we've processed all symbols. */
18573 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
18574 }
18575
18576 /* qsort helper routine for uniquify_cu_indices. */
18577
18578 static int
18579 offset_type_compare (const void *ap, const void *bp)
18580 {
18581 offset_type a = *(offset_type *) ap;
18582 offset_type b = *(offset_type *) bp;
18583
18584 return (a > b) - (b > a);
18585 }
18586
18587 /* Sort and remove duplicates of all symbols' cu_indices lists. */
18588
18589 static void
18590 uniquify_cu_indices (struct mapped_symtab *symtab)
18591 {
18592 int i;
18593
18594 for (i = 0; i < symtab->size; ++i)
18595 {
18596 struct symtab_index_entry *entry = symtab->data[i];
18597
18598 if (entry
18599 && entry->cu_indices != NULL)
18600 {
18601 unsigned int next_to_insert, next_to_check;
18602 offset_type last_value;
18603
18604 qsort (VEC_address (offset_type, entry->cu_indices),
18605 VEC_length (offset_type, entry->cu_indices),
18606 sizeof (offset_type), offset_type_compare);
18607
18608 last_value = VEC_index (offset_type, entry->cu_indices, 0);
18609 next_to_insert = 1;
18610 for (next_to_check = 1;
18611 next_to_check < VEC_length (offset_type, entry->cu_indices);
18612 ++next_to_check)
18613 {
18614 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
18615 != last_value)
18616 {
18617 last_value = VEC_index (offset_type, entry->cu_indices,
18618 next_to_check);
18619 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
18620 last_value);
18621 ++next_to_insert;
18622 }
18623 }
18624 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
18625 }
18626 }
18627 }
18628
18629 /* Add a vector of indices to the constant pool. */
18630
18631 static offset_type
18632 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
18633 struct symtab_index_entry *entry)
18634 {
18635 void **slot;
18636
18637 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
18638 if (!*slot)
18639 {
18640 offset_type len = VEC_length (offset_type, entry->cu_indices);
18641 offset_type val = MAYBE_SWAP (len);
18642 offset_type iter;
18643 int i;
18644
18645 *slot = entry;
18646 entry->index_offset = obstack_object_size (cpool);
18647
18648 obstack_grow (cpool, &val, sizeof (val));
18649 for (i = 0;
18650 VEC_iterate (offset_type, entry->cu_indices, i, iter);
18651 ++i)
18652 {
18653 val = MAYBE_SWAP (iter);
18654 obstack_grow (cpool, &val, sizeof (val));
18655 }
18656 }
18657 else
18658 {
18659 struct symtab_index_entry *old_entry = *slot;
18660 entry->index_offset = old_entry->index_offset;
18661 entry = old_entry;
18662 }
18663 return entry->index_offset;
18664 }
18665
18666 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
18667 constant pool entries going into the obstack CPOOL. */
18668
18669 static void
18670 write_hash_table (struct mapped_symtab *symtab,
18671 struct obstack *output, struct obstack *cpool)
18672 {
18673 offset_type i;
18674 htab_t symbol_hash_table;
18675 htab_t str_table;
18676
18677 symbol_hash_table = create_symbol_hash_table ();
18678 str_table = create_strtab ();
18679
18680 /* We add all the index vectors to the constant pool first, to
18681 ensure alignment is ok. */
18682 for (i = 0; i < symtab->size; ++i)
18683 {
18684 if (symtab->data[i])
18685 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
18686 }
18687
18688 /* Now write out the hash table. */
18689 for (i = 0; i < symtab->size; ++i)
18690 {
18691 offset_type str_off, vec_off;
18692
18693 if (symtab->data[i])
18694 {
18695 str_off = add_string (str_table, cpool, symtab->data[i]->name);
18696 vec_off = symtab->data[i]->index_offset;
18697 }
18698 else
18699 {
18700 /* While 0 is a valid constant pool index, it is not valid
18701 to have 0 for both offsets. */
18702 str_off = 0;
18703 vec_off = 0;
18704 }
18705
18706 str_off = MAYBE_SWAP (str_off);
18707 vec_off = MAYBE_SWAP (vec_off);
18708
18709 obstack_grow (output, &str_off, sizeof (str_off));
18710 obstack_grow (output, &vec_off, sizeof (vec_off));
18711 }
18712
18713 htab_delete (str_table);
18714 htab_delete (symbol_hash_table);
18715 }
18716
18717 /* Struct to map psymtab to CU index in the index file. */
18718 struct psymtab_cu_index_map
18719 {
18720 struct partial_symtab *psymtab;
18721 unsigned int cu_index;
18722 };
18723
18724 static hashval_t
18725 hash_psymtab_cu_index (const void *item)
18726 {
18727 const struct psymtab_cu_index_map *map = item;
18728
18729 return htab_hash_pointer (map->psymtab);
18730 }
18731
18732 static int
18733 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
18734 {
18735 const struct psymtab_cu_index_map *lhs = item_lhs;
18736 const struct psymtab_cu_index_map *rhs = item_rhs;
18737
18738 return lhs->psymtab == rhs->psymtab;
18739 }
18740
18741 /* Helper struct for building the address table. */
18742 struct addrmap_index_data
18743 {
18744 struct objfile *objfile;
18745 struct obstack *addr_obstack;
18746 htab_t cu_index_htab;
18747
18748 /* Non-zero if the previous_* fields are valid.
18749 We can't write an entry until we see the next entry (since it is only then
18750 that we know the end of the entry). */
18751 int previous_valid;
18752 /* Index of the CU in the table of all CUs in the index file. */
18753 unsigned int previous_cu_index;
18754 /* Start address of the CU. */
18755 CORE_ADDR previous_cu_start;
18756 };
18757
18758 /* Write an address entry to OBSTACK. */
18759
18760 static void
18761 add_address_entry (struct objfile *objfile, struct obstack *obstack,
18762 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
18763 {
18764 offset_type cu_index_to_write;
18765 char addr[8];
18766 CORE_ADDR baseaddr;
18767
18768 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18769
18770 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
18771 obstack_grow (obstack, addr, 8);
18772 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
18773 obstack_grow (obstack, addr, 8);
18774 cu_index_to_write = MAYBE_SWAP (cu_index);
18775 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
18776 }
18777
18778 /* Worker function for traversing an addrmap to build the address table. */
18779
18780 static int
18781 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
18782 {
18783 struct addrmap_index_data *data = datap;
18784 struct partial_symtab *pst = obj;
18785
18786 if (data->previous_valid)
18787 add_address_entry (data->objfile, data->addr_obstack,
18788 data->previous_cu_start, start_addr,
18789 data->previous_cu_index);
18790
18791 data->previous_cu_start = start_addr;
18792 if (pst != NULL)
18793 {
18794 struct psymtab_cu_index_map find_map, *map;
18795 find_map.psymtab = pst;
18796 map = htab_find (data->cu_index_htab, &find_map);
18797 gdb_assert (map != NULL);
18798 data->previous_cu_index = map->cu_index;
18799 data->previous_valid = 1;
18800 }
18801 else
18802 data->previous_valid = 0;
18803
18804 return 0;
18805 }
18806
18807 /* Write OBJFILE's address map to OBSTACK.
18808 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
18809 in the index file. */
18810
18811 static void
18812 write_address_map (struct objfile *objfile, struct obstack *obstack,
18813 htab_t cu_index_htab)
18814 {
18815 struct addrmap_index_data addrmap_index_data;
18816
18817 /* When writing the address table, we have to cope with the fact that
18818 the addrmap iterator only provides the start of a region; we have to
18819 wait until the next invocation to get the start of the next region. */
18820
18821 addrmap_index_data.objfile = objfile;
18822 addrmap_index_data.addr_obstack = obstack;
18823 addrmap_index_data.cu_index_htab = cu_index_htab;
18824 addrmap_index_data.previous_valid = 0;
18825
18826 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
18827 &addrmap_index_data);
18828
18829 /* It's highly unlikely the last entry (end address = 0xff...ff)
18830 is valid, but we should still handle it.
18831 The end address is recorded as the start of the next region, but that
18832 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
18833 anyway. */
18834 if (addrmap_index_data.previous_valid)
18835 add_address_entry (objfile, obstack,
18836 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
18837 addrmap_index_data.previous_cu_index);
18838 }
18839
18840 /* Return the symbol kind of PSYM. */
18841
18842 static gdb_index_symbol_kind
18843 symbol_kind (struct partial_symbol *psym)
18844 {
18845 domain_enum domain = PSYMBOL_DOMAIN (psym);
18846 enum address_class aclass = PSYMBOL_CLASS (psym);
18847
18848 switch (domain)
18849 {
18850 case VAR_DOMAIN:
18851 switch (aclass)
18852 {
18853 case LOC_BLOCK:
18854 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
18855 case LOC_TYPEDEF:
18856 return GDB_INDEX_SYMBOL_KIND_TYPE;
18857 case LOC_COMPUTED:
18858 case LOC_CONST_BYTES:
18859 case LOC_OPTIMIZED_OUT:
18860 case LOC_STATIC:
18861 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
18862 case LOC_CONST:
18863 /* Note: It's currently impossible to recognize psyms as enum values
18864 short of reading the type info. For now punt. */
18865 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
18866 default:
18867 /* There are other LOC_FOO values that one might want to classify
18868 as variables, but dwarf2read.c doesn't currently use them. */
18869 return GDB_INDEX_SYMBOL_KIND_OTHER;
18870 }
18871 case STRUCT_DOMAIN:
18872 return GDB_INDEX_SYMBOL_KIND_TYPE;
18873 default:
18874 return GDB_INDEX_SYMBOL_KIND_OTHER;
18875 }
18876 }
18877
18878 /* Add a list of partial symbols to SYMTAB. */
18879
18880 static void
18881 write_psymbols (struct mapped_symtab *symtab,
18882 htab_t psyms_seen,
18883 struct partial_symbol **psymp,
18884 int count,
18885 offset_type cu_index,
18886 int is_static)
18887 {
18888 for (; count-- > 0; ++psymp)
18889 {
18890 struct partial_symbol *psym = *psymp;
18891 void **slot;
18892
18893 if (SYMBOL_LANGUAGE (psym) == language_ada)
18894 error (_("Ada is not currently supported by the index"));
18895
18896 /* Only add a given psymbol once. */
18897 slot = htab_find_slot (psyms_seen, psym, INSERT);
18898 if (!*slot)
18899 {
18900 gdb_index_symbol_kind kind = symbol_kind (psym);
18901
18902 *slot = psym;
18903 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
18904 is_static, kind, cu_index);
18905 }
18906 }
18907 }
18908
18909 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
18910 exception if there is an error. */
18911
18912 static void
18913 write_obstack (FILE *file, struct obstack *obstack)
18914 {
18915 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
18916 file)
18917 != obstack_object_size (obstack))
18918 error (_("couldn't data write to file"));
18919 }
18920
18921 /* Unlink a file if the argument is not NULL. */
18922
18923 static void
18924 unlink_if_set (void *p)
18925 {
18926 char **filename = p;
18927 if (*filename)
18928 unlink (*filename);
18929 }
18930
18931 /* A helper struct used when iterating over debug_types. */
18932 struct signatured_type_index_data
18933 {
18934 struct objfile *objfile;
18935 struct mapped_symtab *symtab;
18936 struct obstack *types_list;
18937 htab_t psyms_seen;
18938 int cu_index;
18939 };
18940
18941 /* A helper function that writes a single signatured_type to an
18942 obstack. */
18943
18944 static int
18945 write_one_signatured_type (void **slot, void *d)
18946 {
18947 struct signatured_type_index_data *info = d;
18948 struct signatured_type *entry = (struct signatured_type *) *slot;
18949 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
18950 struct partial_symtab *psymtab = per_cu->v.psymtab;
18951 gdb_byte val[8];
18952
18953 write_psymbols (info->symtab,
18954 info->psyms_seen,
18955 info->objfile->global_psymbols.list
18956 + psymtab->globals_offset,
18957 psymtab->n_global_syms, info->cu_index,
18958 0);
18959 write_psymbols (info->symtab,
18960 info->psyms_seen,
18961 info->objfile->static_psymbols.list
18962 + psymtab->statics_offset,
18963 psymtab->n_static_syms, info->cu_index,
18964 1);
18965
18966 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
18967 entry->per_cu.offset.sect_off);
18968 obstack_grow (info->types_list, val, 8);
18969 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
18970 entry->type_offset_in_tu.cu_off);
18971 obstack_grow (info->types_list, val, 8);
18972 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
18973 obstack_grow (info->types_list, val, 8);
18974
18975 ++info->cu_index;
18976
18977 return 1;
18978 }
18979
18980 /* Recurse into all "included" dependencies and write their symbols as
18981 if they appeared in this psymtab. */
18982
18983 static void
18984 recursively_write_psymbols (struct objfile *objfile,
18985 struct partial_symtab *psymtab,
18986 struct mapped_symtab *symtab,
18987 htab_t psyms_seen,
18988 offset_type cu_index)
18989 {
18990 int i;
18991
18992 for (i = 0; i < psymtab->number_of_dependencies; ++i)
18993 if (psymtab->dependencies[i]->user != NULL)
18994 recursively_write_psymbols (objfile, psymtab->dependencies[i],
18995 symtab, psyms_seen, cu_index);
18996
18997 write_psymbols (symtab,
18998 psyms_seen,
18999 objfile->global_psymbols.list + psymtab->globals_offset,
19000 psymtab->n_global_syms, cu_index,
19001 0);
19002 write_psymbols (symtab,
19003 psyms_seen,
19004 objfile->static_psymbols.list + psymtab->statics_offset,
19005 psymtab->n_static_syms, cu_index,
19006 1);
19007 }
19008
19009 /* Create an index file for OBJFILE in the directory DIR. */
19010
19011 static void
19012 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
19013 {
19014 struct cleanup *cleanup;
19015 char *filename, *cleanup_filename;
19016 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
19017 struct obstack cu_list, types_cu_list;
19018 int i;
19019 FILE *out_file;
19020 struct mapped_symtab *symtab;
19021 offset_type val, size_of_contents, total_len;
19022 struct stat st;
19023 htab_t psyms_seen;
19024 htab_t cu_index_htab;
19025 struct psymtab_cu_index_map *psymtab_cu_index_map;
19026
19027 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
19028 return;
19029
19030 if (dwarf2_per_objfile->using_index)
19031 error (_("Cannot use an index to create the index"));
19032
19033 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
19034 error (_("Cannot make an index when the file has multiple .debug_types sections"));
19035
19036 if (stat (objfile->name, &st) < 0)
19037 perror_with_name (objfile->name);
19038
19039 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
19040 INDEX_SUFFIX, (char *) NULL);
19041 cleanup = make_cleanup (xfree, filename);
19042
19043 out_file = fopen (filename, "wb");
19044 if (!out_file)
19045 error (_("Can't open `%s' for writing"), filename);
19046
19047 cleanup_filename = filename;
19048 make_cleanup (unlink_if_set, &cleanup_filename);
19049
19050 symtab = create_mapped_symtab ();
19051 make_cleanup (cleanup_mapped_symtab, symtab);
19052
19053 obstack_init (&addr_obstack);
19054 make_cleanup_obstack_free (&addr_obstack);
19055
19056 obstack_init (&cu_list);
19057 make_cleanup_obstack_free (&cu_list);
19058
19059 obstack_init (&types_cu_list);
19060 make_cleanup_obstack_free (&types_cu_list);
19061
19062 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
19063 NULL, xcalloc, xfree);
19064 make_cleanup_htab_delete (psyms_seen);
19065
19066 /* While we're scanning CU's create a table that maps a psymtab pointer
19067 (which is what addrmap records) to its index (which is what is recorded
19068 in the index file). This will later be needed to write the address
19069 table. */
19070 cu_index_htab = htab_create_alloc (100,
19071 hash_psymtab_cu_index,
19072 eq_psymtab_cu_index,
19073 NULL, xcalloc, xfree);
19074 make_cleanup_htab_delete (cu_index_htab);
19075 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
19076 xmalloc (sizeof (struct psymtab_cu_index_map)
19077 * dwarf2_per_objfile->n_comp_units);
19078 make_cleanup (xfree, psymtab_cu_index_map);
19079
19080 /* The CU list is already sorted, so we don't need to do additional
19081 work here. Also, the debug_types entries do not appear in
19082 all_comp_units, but only in their own hash table. */
19083 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
19084 {
19085 struct dwarf2_per_cu_data *per_cu
19086 = dwarf2_per_objfile->all_comp_units[i];
19087 struct partial_symtab *psymtab = per_cu->v.psymtab;
19088 gdb_byte val[8];
19089 struct psymtab_cu_index_map *map;
19090 void **slot;
19091
19092 if (psymtab->user == NULL)
19093 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
19094
19095 map = &psymtab_cu_index_map[i];
19096 map->psymtab = psymtab;
19097 map->cu_index = i;
19098 slot = htab_find_slot (cu_index_htab, map, INSERT);
19099 gdb_assert (slot != NULL);
19100 gdb_assert (*slot == NULL);
19101 *slot = map;
19102
19103 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19104 per_cu->offset.sect_off);
19105 obstack_grow (&cu_list, val, 8);
19106 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
19107 obstack_grow (&cu_list, val, 8);
19108 }
19109
19110 /* Dump the address map. */
19111 write_address_map (objfile, &addr_obstack, cu_index_htab);
19112
19113 /* Write out the .debug_type entries, if any. */
19114 if (dwarf2_per_objfile->signatured_types)
19115 {
19116 struct signatured_type_index_data sig_data;
19117
19118 sig_data.objfile = objfile;
19119 sig_data.symtab = symtab;
19120 sig_data.types_list = &types_cu_list;
19121 sig_data.psyms_seen = psyms_seen;
19122 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
19123 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
19124 write_one_signatured_type, &sig_data);
19125 }
19126
19127 /* Now that we've processed all symbols we can shrink their cu_indices
19128 lists. */
19129 uniquify_cu_indices (symtab);
19130
19131 obstack_init (&constant_pool);
19132 make_cleanup_obstack_free (&constant_pool);
19133 obstack_init (&symtab_obstack);
19134 make_cleanup_obstack_free (&symtab_obstack);
19135 write_hash_table (symtab, &symtab_obstack, &constant_pool);
19136
19137 obstack_init (&contents);
19138 make_cleanup_obstack_free (&contents);
19139 size_of_contents = 6 * sizeof (offset_type);
19140 total_len = size_of_contents;
19141
19142 /* The version number. */
19143 val = MAYBE_SWAP (7);
19144 obstack_grow (&contents, &val, sizeof (val));
19145
19146 /* The offset of the CU list from the start of the file. */
19147 val = MAYBE_SWAP (total_len);
19148 obstack_grow (&contents, &val, sizeof (val));
19149 total_len += obstack_object_size (&cu_list);
19150
19151 /* The offset of the types CU list from the start of the file. */
19152 val = MAYBE_SWAP (total_len);
19153 obstack_grow (&contents, &val, sizeof (val));
19154 total_len += obstack_object_size (&types_cu_list);
19155
19156 /* The offset of the address table from the start of the file. */
19157 val = MAYBE_SWAP (total_len);
19158 obstack_grow (&contents, &val, sizeof (val));
19159 total_len += obstack_object_size (&addr_obstack);
19160
19161 /* The offset of the symbol table from the start of the file. */
19162 val = MAYBE_SWAP (total_len);
19163 obstack_grow (&contents, &val, sizeof (val));
19164 total_len += obstack_object_size (&symtab_obstack);
19165
19166 /* The offset of the constant pool from the start of the file. */
19167 val = MAYBE_SWAP (total_len);
19168 obstack_grow (&contents, &val, sizeof (val));
19169 total_len += obstack_object_size (&constant_pool);
19170
19171 gdb_assert (obstack_object_size (&contents) == size_of_contents);
19172
19173 write_obstack (out_file, &contents);
19174 write_obstack (out_file, &cu_list);
19175 write_obstack (out_file, &types_cu_list);
19176 write_obstack (out_file, &addr_obstack);
19177 write_obstack (out_file, &symtab_obstack);
19178 write_obstack (out_file, &constant_pool);
19179
19180 fclose (out_file);
19181
19182 /* We want to keep the file, so we set cleanup_filename to NULL
19183 here. See unlink_if_set. */
19184 cleanup_filename = NULL;
19185
19186 do_cleanups (cleanup);
19187 }
19188
19189 /* Implementation of the `save gdb-index' command.
19190
19191 Note that the file format used by this command is documented in the
19192 GDB manual. Any changes here must be documented there. */
19193
19194 static void
19195 save_gdb_index_command (char *arg, int from_tty)
19196 {
19197 struct objfile *objfile;
19198
19199 if (!arg || !*arg)
19200 error (_("usage: save gdb-index DIRECTORY"));
19201
19202 ALL_OBJFILES (objfile)
19203 {
19204 struct stat st;
19205
19206 /* If the objfile does not correspond to an actual file, skip it. */
19207 if (stat (objfile->name, &st) < 0)
19208 continue;
19209
19210 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19211 if (dwarf2_per_objfile)
19212 {
19213 volatile struct gdb_exception except;
19214
19215 TRY_CATCH (except, RETURN_MASK_ERROR)
19216 {
19217 write_psymtabs_to_index (objfile, arg);
19218 }
19219 if (except.reason < 0)
19220 exception_fprintf (gdb_stderr, except,
19221 _("Error while writing index for `%s': "),
19222 objfile->name);
19223 }
19224 }
19225 }
19226
19227 \f
19228
19229 int dwarf2_always_disassemble;
19230
19231 static void
19232 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
19233 struct cmd_list_element *c, const char *value)
19234 {
19235 fprintf_filtered (file,
19236 _("Whether to always disassemble "
19237 "DWARF expressions is %s.\n"),
19238 value);
19239 }
19240
19241 static void
19242 show_check_physname (struct ui_file *file, int from_tty,
19243 struct cmd_list_element *c, const char *value)
19244 {
19245 fprintf_filtered (file,
19246 _("Whether to check \"physname\" is %s.\n"),
19247 value);
19248 }
19249
19250 void _initialize_dwarf2_read (void);
19251
19252 void
19253 _initialize_dwarf2_read (void)
19254 {
19255 struct cmd_list_element *c;
19256
19257 dwarf2_objfile_data_key
19258 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
19259
19260 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
19261 Set DWARF 2 specific variables.\n\
19262 Configure DWARF 2 variables such as the cache size"),
19263 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
19264 0/*allow-unknown*/, &maintenance_set_cmdlist);
19265
19266 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
19267 Show DWARF 2 specific variables\n\
19268 Show DWARF 2 variables such as the cache size"),
19269 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
19270 0/*allow-unknown*/, &maintenance_show_cmdlist);
19271
19272 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
19273 &dwarf2_max_cache_age, _("\
19274 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
19275 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
19276 A higher limit means that cached compilation units will be stored\n\
19277 in memory longer, and more total memory will be used. Zero disables\n\
19278 caching, which can slow down startup."),
19279 NULL,
19280 show_dwarf2_max_cache_age,
19281 &set_dwarf2_cmdlist,
19282 &show_dwarf2_cmdlist);
19283
19284 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
19285 &dwarf2_always_disassemble, _("\
19286 Set whether `info address' always disassembles DWARF expressions."), _("\
19287 Show whether `info address' always disassembles DWARF expressions."), _("\
19288 When enabled, DWARF expressions are always printed in an assembly-like\n\
19289 syntax. When disabled, expressions will be printed in a more\n\
19290 conversational style, when possible."),
19291 NULL,
19292 show_dwarf2_always_disassemble,
19293 &set_dwarf2_cmdlist,
19294 &show_dwarf2_cmdlist);
19295
19296 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
19297 Set debugging of the dwarf2 reader."), _("\
19298 Show debugging of the dwarf2 reader."), _("\
19299 When enabled, debugging messages are printed during dwarf2 reading\n\
19300 and symtab expansion."),
19301 NULL,
19302 NULL,
19303 &setdebuglist, &showdebuglist);
19304
19305 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
19306 Set debugging of the dwarf2 DIE reader."), _("\
19307 Show debugging of the dwarf2 DIE reader."), _("\
19308 When enabled (non-zero), DIEs are dumped after they are read in.\n\
19309 The value is the maximum depth to print."),
19310 NULL,
19311 NULL,
19312 &setdebuglist, &showdebuglist);
19313
19314 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
19315 Set cross-checking of \"physname\" code against demangler."), _("\
19316 Show cross-checking of \"physname\" code against demangler."), _("\
19317 When enabled, GDB's internal \"physname\" code is checked against\n\
19318 the demangler."),
19319 NULL, show_check_physname,
19320 &setdebuglist, &showdebuglist);
19321
19322 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
19323 _("\
19324 Save a gdb-index file.\n\
19325 Usage: save gdb-index DIRECTORY"),
19326 &save_cmdlist);
19327 set_cmd_completer (c, filename_completer);
19328 }