Replace "if (attr)" with "if (attr != nullptr)".
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "dwarf2expr.h"
49 #include "dwarf2loc.h"
50 #include "cp-support.h"
51 #include "hashtab.h"
52 #include "command.h"
53 #include "gdbcmd.h"
54 #include "block.h"
55 #include "addrmap.h"
56 #include "typeprint.h"
57 #include "psympriv.h"
58 #include "c-lang.h"
59 #include "go-lang.h"
60 #include "valprint.h"
61 #include "gdbcore.h" /* for gnutarget */
62 #include "gdb/gdb-index.h"
63 #include "gdb_bfd.h"
64 #include "f-lang.h"
65 #include "source.h"
66 #include "build-id.h"
67 #include "namespace.h"
68 #include "gdbsupport/function-view.h"
69 #include "gdbsupport/gdb_optional.h"
70 #include "gdbsupport/underlying.h"
71 #include "gdbsupport/hash_enum.h"
72 #include "filename-seen-cache.h"
73 #include "producer.h"
74 #include <fcntl.h>
75 #include <algorithm>
76 #include <unordered_map>
77 #include "gdbsupport/selftest.h"
78 #include "rust-lang.h"
79 #include "gdbsupport/pathstuff.h"
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When true, cross-check physname against demangler. */
93 static bool check_physname = false;
94
95 /* When true, do not reject deprecated .gdb_index sections. */
96 static bool use_deprecated_index_sections = false;
97
98 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* An index into a (C++) symbol name component in a symbol name as
108 recorded in the mapped_index's symbol table. For each C++ symbol
109 in the symbol table, we record one entry for the start of each
110 component in the symbol in a table of name components, and then
111 sort the table, in order to be able to binary search symbol names,
112 ignoring leading namespaces, both completion and regular look up.
113 For example, for symbol "A::B::C", we'll have an entry that points
114 to "A::B::C", another that points to "B::C", and another for "C".
115 Note that function symbols in GDB index have no parameter
116 information, just the function/method names. You can convert a
117 name_component to a "const char *" using the
118 'mapped_index::symbol_name_at(offset_type)' method. */
119
120 struct name_component
121 {
122 /* Offset in the symbol name where the component starts. Stored as
123 a (32-bit) offset instead of a pointer to save memory and improve
124 locality on 64-bit architectures. */
125 offset_type name_offset;
126
127 /* The symbol's index in the symbol and constant pool tables of a
128 mapped_index. */
129 offset_type idx;
130 };
131
132 /* Base class containing bits shared by both .gdb_index and
133 .debug_name indexes. */
134
135 struct mapped_index_base
136 {
137 mapped_index_base () = default;
138 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
139
140 /* The name_component table (a sorted vector). See name_component's
141 description above. */
142 std::vector<name_component> name_components;
143
144 /* How NAME_COMPONENTS is sorted. */
145 enum case_sensitivity name_components_casing;
146
147 /* Return the number of names in the symbol table. */
148 virtual size_t symbol_name_count () const = 0;
149
150 /* Get the name of the symbol at IDX in the symbol table. */
151 virtual const char *symbol_name_at (offset_type idx) const = 0;
152
153 /* Return whether the name at IDX in the symbol table should be
154 ignored. */
155 virtual bool symbol_name_slot_invalid (offset_type idx) const
156 {
157 return false;
158 }
159
160 /* Build the symbol name component sorted vector, if we haven't
161 yet. */
162 void build_name_components ();
163
164 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
165 possible matches for LN_NO_PARAMS in the name component
166 vector. */
167 std::pair<std::vector<name_component>::const_iterator,
168 std::vector<name_component>::const_iterator>
169 find_name_components_bounds (const lookup_name_info &ln_no_params,
170 enum language lang) const;
171
172 /* Prevent deleting/destroying via a base class pointer. */
173 protected:
174 ~mapped_index_base() = default;
175 };
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index final : public mapped_index_base
180 {
181 /* A slot/bucket in the symbol table hash. */
182 struct symbol_table_slot
183 {
184 const offset_type name;
185 const offset_type vec;
186 };
187
188 /* Index data format version. */
189 int version = 0;
190
191 /* The address table data. */
192 gdb::array_view<const gdb_byte> address_table;
193
194 /* The symbol table, implemented as a hash table. */
195 gdb::array_view<symbol_table_slot> symbol_table;
196
197 /* A pointer to the constant pool. */
198 const char *constant_pool = nullptr;
199
200 bool symbol_name_slot_invalid (offset_type idx) const override
201 {
202 const auto &bucket = this->symbol_table[idx];
203 return bucket.name == 0 && bucket.vec == 0;
204 }
205
206 /* Convenience method to get at the name of the symbol at IDX in the
207 symbol table. */
208 const char *symbol_name_at (offset_type idx) const override
209 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
210
211 size_t symbol_name_count () const override
212 { return this->symbol_table.size (); }
213 };
214
215 /* A description of the mapped .debug_names.
216 Uninitialized map has CU_COUNT 0. */
217 struct mapped_debug_names final : public mapped_index_base
218 {
219 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
220 : dwarf2_per_objfile (dwarf2_per_objfile_)
221 {}
222
223 struct dwarf2_per_objfile *dwarf2_per_objfile;
224 bfd_endian dwarf5_byte_order;
225 bool dwarf5_is_dwarf64;
226 bool augmentation_is_gdb;
227 uint8_t offset_size;
228 uint32_t cu_count = 0;
229 uint32_t tu_count, bucket_count, name_count;
230 const gdb_byte *cu_table_reordered, *tu_table_reordered;
231 const uint32_t *bucket_table_reordered, *hash_table_reordered;
232 const gdb_byte *name_table_string_offs_reordered;
233 const gdb_byte *name_table_entry_offs_reordered;
234 const gdb_byte *entry_pool;
235
236 struct index_val
237 {
238 ULONGEST dwarf_tag;
239 struct attr
240 {
241 /* Attribute name DW_IDX_*. */
242 ULONGEST dw_idx;
243
244 /* Attribute form DW_FORM_*. */
245 ULONGEST form;
246
247 /* Value if FORM is DW_FORM_implicit_const. */
248 LONGEST implicit_const;
249 };
250 std::vector<attr> attr_vec;
251 };
252
253 std::unordered_map<ULONGEST, index_val> abbrev_map;
254
255 const char *namei_to_name (uint32_t namei) const;
256
257 /* Implementation of the mapped_index_base virtual interface, for
258 the name_components cache. */
259
260 const char *symbol_name_at (offset_type idx) const override
261 { return namei_to_name (idx); }
262
263 size_t symbol_name_count () const override
264 { return this->name_count; }
265 };
266
267 /* See dwarf2read.h. */
268
269 dwarf2_per_objfile *
270 get_dwarf2_per_objfile (struct objfile *objfile)
271 {
272 return dwarf2_objfile_data_key.get (objfile);
273 }
274
275 /* Default names of the debugging sections. */
276
277 /* Note that if the debugging section has been compressed, it might
278 have a name like .zdebug_info. */
279
280 static const struct dwarf2_debug_sections dwarf2_elf_names =
281 {
282 { ".debug_info", ".zdebug_info" },
283 { ".debug_abbrev", ".zdebug_abbrev" },
284 { ".debug_line", ".zdebug_line" },
285 { ".debug_loc", ".zdebug_loc" },
286 { ".debug_loclists", ".zdebug_loclists" },
287 { ".debug_macinfo", ".zdebug_macinfo" },
288 { ".debug_macro", ".zdebug_macro" },
289 { ".debug_str", ".zdebug_str" },
290 { ".debug_line_str", ".zdebug_line_str" },
291 { ".debug_ranges", ".zdebug_ranges" },
292 { ".debug_rnglists", ".zdebug_rnglists" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 { ".debug_names", ".zdebug_names" },
299 { ".debug_aranges", ".zdebug_aranges" },
300 23
301 };
302
303 /* List of DWO/DWP sections. */
304
305 static const struct dwop_section_names
306 {
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
311 struct dwarf2_section_names loclists_dwo;
312 struct dwarf2_section_names macinfo_dwo;
313 struct dwarf2_section_names macro_dwo;
314 struct dwarf2_section_names str_dwo;
315 struct dwarf2_section_names str_offsets_dwo;
316 struct dwarf2_section_names types_dwo;
317 struct dwarf2_section_names cu_index;
318 struct dwarf2_section_names tu_index;
319 }
320 dwop_section_names =
321 {
322 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
323 { ".debug_info.dwo", ".zdebug_info.dwo" },
324 { ".debug_line.dwo", ".zdebug_line.dwo" },
325 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
326 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
327 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
328 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
329 { ".debug_str.dwo", ".zdebug_str.dwo" },
330 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
331 { ".debug_types.dwo", ".zdebug_types.dwo" },
332 { ".debug_cu_index", ".zdebug_cu_index" },
333 { ".debug_tu_index", ".zdebug_tu_index" },
334 };
335
336 /* local data types */
337
338 /* The data in a compilation unit header, after target2host
339 translation, looks like this. */
340 struct comp_unit_head
341 {
342 unsigned int length;
343 short version;
344 unsigned char addr_size;
345 unsigned char signed_addr_p;
346 sect_offset abbrev_sect_off;
347
348 /* Size of file offsets; either 4 or 8. */
349 unsigned int offset_size;
350
351 /* Size of the length field; either 4 or 12. */
352 unsigned int initial_length_size;
353
354 enum dwarf_unit_type unit_type;
355
356 /* Offset to the first byte of this compilation unit header in the
357 .debug_info section, for resolving relative reference dies. */
358 sect_offset sect_off;
359
360 /* Offset to first die in this cu from the start of the cu.
361 This will be the first byte following the compilation unit header. */
362 cu_offset first_die_cu_offset;
363
364
365 /* 64-bit signature of this unit. For type units, it denotes the signature of
366 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
367 Also used in DWARF 5, to denote the dwo id when the unit type is
368 DW_UT_skeleton or DW_UT_split_compile. */
369 ULONGEST signature;
370
371 /* For types, offset in the type's DIE of the type defined by this TU. */
372 cu_offset type_cu_offset_in_tu;
373 };
374
375 /* Type used for delaying computation of method physnames.
376 See comments for compute_delayed_physnames. */
377 struct delayed_method_info
378 {
379 /* The type to which the method is attached, i.e., its parent class. */
380 struct type *type;
381
382 /* The index of the method in the type's function fieldlists. */
383 int fnfield_index;
384
385 /* The index of the method in the fieldlist. */
386 int index;
387
388 /* The name of the DIE. */
389 const char *name;
390
391 /* The DIE associated with this method. */
392 struct die_info *die;
393 };
394
395 /* Internal state when decoding a particular compilation unit. */
396 struct dwarf2_cu
397 {
398 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
399 ~dwarf2_cu ();
400
401 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
402
403 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
404 Create the set of symtabs used by this TU, or if this TU is sharing
405 symtabs with another TU and the symtabs have already been created
406 then restore those symtabs in the line header.
407 We don't need the pc/line-number mapping for type units. */
408 void setup_type_unit_groups (struct die_info *die);
409
410 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
411 buildsym_compunit constructor. */
412 struct compunit_symtab *start_symtab (const char *name,
413 const char *comp_dir,
414 CORE_ADDR low_pc);
415
416 /* Reset the builder. */
417 void reset_builder () { m_builder.reset (); }
418
419 /* The header of the compilation unit. */
420 struct comp_unit_head header {};
421
422 /* Base address of this compilation unit. */
423 CORE_ADDR base_address = 0;
424
425 /* Non-zero if base_address has been set. */
426 int base_known = 0;
427
428 /* The language we are debugging. */
429 enum language language = language_unknown;
430 const struct language_defn *language_defn = nullptr;
431
432 const char *producer = nullptr;
433
434 private:
435 /* The symtab builder for this CU. This is only non-NULL when full
436 symbols are being read. */
437 std::unique_ptr<buildsym_compunit> m_builder;
438
439 public:
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope = nullptr;
450
451 /* Hash table holding all the loaded partial DIEs
452 with partial_die->offset.SECT_OFF as hash. */
453 htab_t partial_dies = nullptr;
454
455 /* Storage for things with the same lifetime as this read-in compilation
456 unit, including partial DIEs. */
457 auto_obstack comp_unit_obstack;
458
459 /* When multiple dwarf2_cu structures are living in memory, this field
460 chains them all together, so that they can be released efficiently.
461 We will probably also want a generation counter so that most-recently-used
462 compilation units are cached... */
463 struct dwarf2_per_cu_data *read_in_chain = nullptr;
464
465 /* Backlink to our per_cu entry. */
466 struct dwarf2_per_cu_data *per_cu;
467
468 /* How many compilation units ago was this CU last referenced? */
469 int last_used = 0;
470
471 /* A hash table of DIE cu_offset for following references with
472 die_info->offset.sect_off as hash. */
473 htab_t die_hash = nullptr;
474
475 /* Full DIEs if read in. */
476 struct die_info *dies = nullptr;
477
478 /* A set of pointers to dwarf2_per_cu_data objects for compilation
479 units referenced by this one. Only set during full symbol processing;
480 partial symbol tables do not have dependencies. */
481 htab_t dependencies = nullptr;
482
483 /* Header data from the line table, during full symbol processing. */
484 struct line_header *line_header = nullptr;
485 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
486 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
487 this is the DW_TAG_compile_unit die for this CU. We'll hold on
488 to the line header as long as this DIE is being processed. See
489 process_die_scope. */
490 die_info *line_header_die_owner = nullptr;
491
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 std::vector<delayed_method_info> method_list;
495
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab = nullptr;
498
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
508 struct dwo_unit *dwo_unit = nullptr;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 ULONGEST addr_base = 0;
514
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base = 0;
526
527 /* When reading debug info generated by older versions of rustc, we
528 have to rewrite some union types to be struct types with a
529 variant part. This rewriting must be done after the CU is fully
530 read in, because otherwise at the point of rewriting some struct
531 type might not have been fully processed. So, we keep a list of
532 all such types here and process them after expansion. */
533 std::vector<struct type *> rust_unions;
534
535 /* Mark used when releasing cached dies. */
536 bool mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 bool has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 bool checked_producer : 1;
549 bool producer_is_gxx_lt_4_6 : 1;
550 bool producer_is_gcc_lt_4_3 : 1;
551 bool producer_is_icc : 1;
552 bool producer_is_icc_lt_14 : 1;
553 bool producer_is_codewarrior : 1;
554
555 /* When true, the file that we're processing is known to have
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
559 bool processing_has_namespace_info : 1;
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
562
563 /* If this CU was inherited by another CU (via specification,
564 abstract_origin, etc), this is the ancestor CU. */
565 dwarf2_cu *ancestor;
566
567 /* Get the buildsym_compunit for this CU. */
568 buildsym_compunit *get_builder ()
569 {
570 /* If this CU has a builder associated with it, use that. */
571 if (m_builder != nullptr)
572 return m_builder.get ();
573
574 /* Otherwise, search ancestors for a valid builder. */
575 if (ancestor != nullptr)
576 return ancestor->get_builder ();
577
578 return nullptr;
579 }
580 };
581
582 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
583 This includes type_unit_group and quick_file_names. */
584
585 struct stmt_list_hash
586 {
587 /* The DWO unit this table is from or NULL if there is none. */
588 struct dwo_unit *dwo_unit;
589
590 /* Offset in .debug_line or .debug_line.dwo. */
591 sect_offset line_sect_off;
592 };
593
594 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
595 an object of this type. */
596
597 struct type_unit_group
598 {
599 /* dwarf2read.c's main "handle" on a TU symtab.
600 To simplify things we create an artificial CU that "includes" all the
601 type units using this stmt_list so that the rest of the code still has
602 a "per_cu" handle on the symtab.
603 This PER_CU is recognized by having no section. */
604 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
605 struct dwarf2_per_cu_data per_cu;
606
607 /* The TUs that share this DW_AT_stmt_list entry.
608 This is added to while parsing type units to build partial symtabs,
609 and is deleted afterwards and not used again. */
610 std::vector<signatured_type *> *tus;
611
612 /* The compunit symtab.
613 Type units in a group needn't all be defined in the same source file,
614 so we create an essentially anonymous symtab as the compunit symtab. */
615 struct compunit_symtab *compunit_symtab;
616
617 /* The data used to construct the hash key. */
618 struct stmt_list_hash hash;
619
620 /* The number of symtabs from the line header.
621 The value here must match line_header.num_file_names. */
622 unsigned int num_symtabs;
623
624 /* The symbol tables for this TU (obtained from the files listed in
625 DW_AT_stmt_list).
626 WARNING: The order of entries here must match the order of entries
627 in the line header. After the first TU using this type_unit_group, the
628 line header for the subsequent TUs is recreated from this. This is done
629 because we need to use the same symtabs for each TU using the same
630 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
631 there's no guarantee the line header doesn't have duplicate entries. */
632 struct symtab **symtabs;
633 };
634
635 /* These sections are what may appear in a (real or virtual) DWO file. */
636
637 struct dwo_sections
638 {
639 struct dwarf2_section_info abbrev;
640 struct dwarf2_section_info line;
641 struct dwarf2_section_info loc;
642 struct dwarf2_section_info loclists;
643 struct dwarf2_section_info macinfo;
644 struct dwarf2_section_info macro;
645 struct dwarf2_section_info str;
646 struct dwarf2_section_info str_offsets;
647 /* In the case of a virtual DWO file, these two are unused. */
648 struct dwarf2_section_info info;
649 std::vector<dwarf2_section_info> types;
650 };
651
652 /* CUs/TUs in DWP/DWO files. */
653
654 struct dwo_unit
655 {
656 /* Backlink to the containing struct dwo_file. */
657 struct dwo_file *dwo_file;
658
659 /* The "id" that distinguishes this CU/TU.
660 .debug_info calls this "dwo_id", .debug_types calls this "signature".
661 Since signatures came first, we stick with it for consistency. */
662 ULONGEST signature;
663
664 /* The section this CU/TU lives in, in the DWO file. */
665 struct dwarf2_section_info *section;
666
667 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
668 sect_offset sect_off;
669 unsigned int length;
670
671 /* For types, offset in the type's DIE of the type defined by this TU. */
672 cu_offset type_offset_in_tu;
673 };
674
675 /* include/dwarf2.h defines the DWP section codes.
676 It defines a max value but it doesn't define a min value, which we
677 use for error checking, so provide one. */
678
679 enum dwp_v2_section_ids
680 {
681 DW_SECT_MIN = 1
682 };
683
684 /* Data for one DWO file.
685
686 This includes virtual DWO files (a virtual DWO file is a DWO file as it
687 appears in a DWP file). DWP files don't really have DWO files per se -
688 comdat folding of types "loses" the DWO file they came from, and from
689 a high level view DWP files appear to contain a mass of random types.
690 However, to maintain consistency with the non-DWP case we pretend DWP
691 files contain virtual DWO files, and we assign each TU with one virtual
692 DWO file (generally based on the line and abbrev section offsets -
693 a heuristic that seems to work in practice). */
694
695 struct dwo_file
696 {
697 dwo_file () = default;
698 DISABLE_COPY_AND_ASSIGN (dwo_file);
699
700 /* The DW_AT_GNU_dwo_name attribute.
701 For virtual DWO files the name is constructed from the section offsets
702 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
703 from related CU+TUs. */
704 const char *dwo_name = nullptr;
705
706 /* The DW_AT_comp_dir attribute. */
707 const char *comp_dir = nullptr;
708
709 /* The bfd, when the file is open. Otherwise this is NULL.
710 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
711 gdb_bfd_ref_ptr dbfd;
712
713 /* The sections that make up this DWO file.
714 Remember that for virtual DWO files in DWP V2, these are virtual
715 sections (for lack of a better name). */
716 struct dwo_sections sections {};
717
718 /* The CUs in the file.
719 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
720 an extension to handle LLVM's Link Time Optimization output (where
721 multiple source files may be compiled into a single object/dwo pair). */
722 htab_t cus {};
723
724 /* Table of TUs in the file.
725 Each element is a struct dwo_unit. */
726 htab_t tus {};
727 };
728
729 /* These sections are what may appear in a DWP file. */
730
731 struct dwp_sections
732 {
733 /* These are used by both DWP version 1 and 2. */
734 struct dwarf2_section_info str;
735 struct dwarf2_section_info cu_index;
736 struct dwarf2_section_info tu_index;
737
738 /* These are only used by DWP version 2 files.
739 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
740 sections are referenced by section number, and are not recorded here.
741 In DWP version 2 there is at most one copy of all these sections, each
742 section being (effectively) comprised of the concatenation of all of the
743 individual sections that exist in the version 1 format.
744 To keep the code simple we treat each of these concatenated pieces as a
745 section itself (a virtual section?). */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info info;
748 struct dwarf2_section_info line;
749 struct dwarf2_section_info loc;
750 struct dwarf2_section_info macinfo;
751 struct dwarf2_section_info macro;
752 struct dwarf2_section_info str_offsets;
753 struct dwarf2_section_info types;
754 };
755
756 /* These sections are what may appear in a virtual DWO file in DWP version 1.
757 A virtual DWO file is a DWO file as it appears in a DWP file. */
758
759 struct virtual_v1_dwo_sections
760 {
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
768 That is recorded here, and copied to dwo_unit.section. */
769 struct dwarf2_section_info info_or_types;
770 };
771
772 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
773 In version 2, the sections of the DWO files are concatenated together
774 and stored in one section of that name. Thus each ELF section contains
775 several "virtual" sections. */
776
777 struct virtual_v2_dwo_sections
778 {
779 bfd_size_type abbrev_offset;
780 bfd_size_type abbrev_size;
781
782 bfd_size_type line_offset;
783 bfd_size_type line_size;
784
785 bfd_size_type loc_offset;
786 bfd_size_type loc_size;
787
788 bfd_size_type macinfo_offset;
789 bfd_size_type macinfo_size;
790
791 bfd_size_type macro_offset;
792 bfd_size_type macro_size;
793
794 bfd_size_type str_offsets_offset;
795 bfd_size_type str_offsets_size;
796
797 /* Each DWP hash table entry records one CU or one TU.
798 That is recorded here, and copied to dwo_unit.section. */
799 bfd_size_type info_or_types_offset;
800 bfd_size_type info_or_types_size;
801 };
802
803 /* Contents of DWP hash tables. */
804
805 struct dwp_hash_table
806 {
807 uint32_t version, nr_columns;
808 uint32_t nr_units, nr_slots;
809 const gdb_byte *hash_table, *unit_table;
810 union
811 {
812 struct
813 {
814 const gdb_byte *indices;
815 } v1;
816 struct
817 {
818 /* This is indexed by column number and gives the id of the section
819 in that column. */
820 #define MAX_NR_V2_DWO_SECTIONS \
821 (1 /* .debug_info or .debug_types */ \
822 + 1 /* .debug_abbrev */ \
823 + 1 /* .debug_line */ \
824 + 1 /* .debug_loc */ \
825 + 1 /* .debug_str_offsets */ \
826 + 1 /* .debug_macro or .debug_macinfo */)
827 int section_ids[MAX_NR_V2_DWO_SECTIONS];
828 const gdb_byte *offsets;
829 const gdb_byte *sizes;
830 } v2;
831 } section_pool;
832 };
833
834 /* Data for one DWP file. */
835
836 struct dwp_file
837 {
838 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
839 : name (name_),
840 dbfd (std::move (abfd))
841 {
842 }
843
844 /* Name of the file. */
845 const char *name;
846
847 /* File format version. */
848 int version = 0;
849
850 /* The bfd. */
851 gdb_bfd_ref_ptr dbfd;
852
853 /* Section info for this file. */
854 struct dwp_sections sections {};
855
856 /* Table of CUs in the file. */
857 const struct dwp_hash_table *cus = nullptr;
858
859 /* Table of TUs in the file. */
860 const struct dwp_hash_table *tus = nullptr;
861
862 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
863 htab_t loaded_cus {};
864 htab_t loaded_tus {};
865
866 /* Table to map ELF section numbers to their sections.
867 This is only needed for the DWP V1 file format. */
868 unsigned int num_sections = 0;
869 asection **elf_sections = nullptr;
870 };
871
872 /* Struct used to pass misc. parameters to read_die_and_children, et
873 al. which are used for both .debug_info and .debug_types dies.
874 All parameters here are unchanging for the life of the call. This
875 struct exists to abstract away the constant parameters of die reading. */
876
877 struct die_reader_specs
878 {
879 /* The bfd of die_section. */
880 bfd* abfd;
881
882 /* The CU of the DIE we are parsing. */
883 struct dwarf2_cu *cu;
884
885 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
886 struct dwo_file *dwo_file;
887
888 /* The section the die comes from.
889 This is either .debug_info or .debug_types, or the .dwo variants. */
890 struct dwarf2_section_info *die_section;
891
892 /* die_section->buffer. */
893 const gdb_byte *buffer;
894
895 /* The end of the buffer. */
896 const gdb_byte *buffer_end;
897
898 /* The value of the DW_AT_comp_dir attribute. */
899 const char *comp_dir;
900
901 /* The abbreviation table to use when reading the DIEs. */
902 struct abbrev_table *abbrev_table;
903 };
904
905 /* Type of function passed to init_cutu_and_read_dies, et.al. */
906 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
907 const gdb_byte *info_ptr,
908 struct die_info *comp_unit_die,
909 int has_children,
910 void *data);
911
912 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
913 later. */
914 typedef int dir_index;
915
916 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
917 and later. */
918 typedef int file_name_index;
919
920 struct file_entry
921 {
922 file_entry () = default;
923
924 file_entry (const char *name_, dir_index d_index_,
925 unsigned int mod_time_, unsigned int length_)
926 : name (name_),
927 d_index (d_index_),
928 mod_time (mod_time_),
929 length (length_)
930 {}
931
932 /* Return the include directory at D_INDEX stored in LH. Returns
933 NULL if D_INDEX is out of bounds. */
934 const char *include_dir (const line_header *lh) const;
935
936 /* The file name. Note this is an observing pointer. The memory is
937 owned by debug_line_buffer. */
938 const char *name {};
939
940 /* The directory index (1-based). */
941 dir_index d_index {};
942
943 unsigned int mod_time {};
944
945 unsigned int length {};
946
947 /* True if referenced by the Line Number Program. */
948 bool included_p {};
949
950 /* The associated symbol table, if any. */
951 struct symtab *symtab {};
952 };
953
954 /* The line number information for a compilation unit (found in the
955 .debug_line section) begins with a "statement program header",
956 which contains the following information. */
957 struct line_header
958 {
959 line_header ()
960 : offset_in_dwz {}
961 {}
962
963 /* Add an entry to the include directory table. */
964 void add_include_dir (const char *include_dir);
965
966 /* Add an entry to the file name table. */
967 void add_file_name (const char *name, dir_index d_index,
968 unsigned int mod_time, unsigned int length);
969
970 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
971 Returns NULL if INDEX is out of bounds. */
972 const char *include_dir_at (dir_index index) const
973 {
974 int vec_index;
975 if (version >= 5)
976 vec_index = index;
977 else
978 vec_index = index - 1;
979 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
980 return NULL;
981 return m_include_dirs[vec_index];
982 }
983
984 bool is_valid_file_index (int file_index)
985 {
986 if (version >= 5)
987 return 0 <= file_index && file_index < file_names_size ();
988 return 1 <= file_index && file_index <= file_names_size ();
989 }
990
991 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
992 Returns NULL if INDEX is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 int vec_index;
996 if (version >= 5)
997 vec_index = index;
998 else
999 vec_index = index - 1;
1000 if (vec_index < 0 || vec_index >= m_file_names.size ())
1001 return NULL;
1002 return &m_file_names[vec_index];
1003 }
1004
1005 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1006 this method should only be used to iterate through all file entries in an
1007 index-agnostic manner. */
1008 std::vector<file_entry> &file_names ()
1009 { return m_file_names; }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 int file_names_size ()
1034 { return m_file_names.size(); }
1035
1036 /* The start and end of the statement program following this
1037 header. These point into dwarf2_per_objfile->line_buffer. */
1038 const gdb_byte *statement_program_start {}, *statement_program_end {};
1039
1040 private:
1041 /* The include_directories table. Note these are observing
1042 pointers. The memory is owned by debug_line_buffer. */
1043 std::vector<const char *> m_include_dirs;
1044
1045 /* The file_names table. This is private because the meaning of indexes
1046 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1047 before, and is 0 in DWARF 5 and later). So the client should use
1048 file_name_at method for access. */
1049 std::vector<file_entry> m_file_names;
1050 };
1051
1052 typedef std::unique_ptr<line_header> line_header_up;
1053
1054 const char *
1055 file_entry::include_dir (const line_header *lh) const
1056 {
1057 return lh->include_dir_at (d_index);
1058 }
1059
1060 /* When we construct a partial symbol table entry we only
1061 need this much information. */
1062 struct partial_die_info : public allocate_on_obstack
1063 {
1064 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1065
1066 /* Disable assign but still keep copy ctor, which is needed
1067 load_partial_dies. */
1068 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1069
1070 /* Adjust the partial die before generating a symbol for it. This
1071 function may set the is_external flag or change the DIE's
1072 name. */
1073 void fixup (struct dwarf2_cu *cu);
1074
1075 /* Read a minimal amount of information into the minimal die
1076 structure. */
1077 const gdb_byte *read (const struct die_reader_specs *reader,
1078 const struct abbrev_info &abbrev,
1079 const gdb_byte *info_ptr);
1080
1081 /* Offset of this DIE. */
1082 const sect_offset sect_off;
1083
1084 /* DWARF-2 tag for this DIE. */
1085 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1086
1087 /* Assorted flags describing the data found in this DIE. */
1088 const unsigned int has_children : 1;
1089
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* This DIE has been marked DW_AT_main_subprogram. */
1098 unsigned int main_subprogram : 1;
1099
1100 /* Flag set if the SCOPE field of this structure has been
1101 computed. */
1102 unsigned int scope_set : 1;
1103
1104 /* Flag set if the DIE has a byte_size attribute. */
1105 unsigned int has_byte_size : 1;
1106
1107 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1108 unsigned int has_const_value : 1;
1109
1110 /* Flag set if any of the DIE's children are template arguments. */
1111 unsigned int has_template_arguments : 1;
1112
1113 /* Flag set if fixup has been called on this die. */
1114 unsigned int fixup_called : 1;
1115
1116 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1117 unsigned int is_dwz : 1;
1118
1119 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1120 unsigned int spec_is_dwz : 1;
1121
1122 /* The name of this DIE. Normally the value of DW_AT_name, but
1123 sometimes a default name for unnamed DIEs. */
1124 const char *name = nullptr;
1125
1126 /* The linkage name, if present. */
1127 const char *linkage_name = nullptr;
1128
1129 /* The scope to prepend to our children. This is generally
1130 allocated on the comp_unit_obstack, so will disappear
1131 when this compilation unit leaves the cache. */
1132 const char *scope = nullptr;
1133
1134 /* Some data associated with the partial DIE. The tag determines
1135 which field is live. */
1136 union
1137 {
1138 /* The location description associated with this DIE, if any. */
1139 struct dwarf_block *locdesc;
1140 /* The offset of an import, for DW_TAG_imported_unit. */
1141 sect_offset sect_off;
1142 } d {};
1143
1144 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1145 CORE_ADDR lowpc = 0;
1146 CORE_ADDR highpc = 0;
1147
1148 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1149 DW_AT_sibling, if any. */
1150 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1151 could return DW_AT_sibling values to its caller load_partial_dies. */
1152 const gdb_byte *sibling = nullptr;
1153
1154 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1155 DW_AT_specification (or DW_AT_abstract_origin or
1156 DW_AT_extension). */
1157 sect_offset spec_offset {};
1158
1159 /* Pointers to this DIE's parent, first child, and next sibling,
1160 if any. */
1161 struct partial_die_info *die_parent = nullptr;
1162 struct partial_die_info *die_child = nullptr;
1163 struct partial_die_info *die_sibling = nullptr;
1164
1165 friend struct partial_die_info *
1166 dwarf2_cu::find_partial_die (sect_offset sect_off);
1167
1168 private:
1169 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1170 partial_die_info (sect_offset sect_off)
1171 : partial_die_info (sect_off, DW_TAG_padding, 0)
1172 {
1173 }
1174
1175 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1176 int has_children_)
1177 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1178 {
1179 is_external = 0;
1180 is_declaration = 0;
1181 has_type = 0;
1182 has_specification = 0;
1183 has_pc_info = 0;
1184 may_be_inlined = 0;
1185 main_subprogram = 0;
1186 scope_set = 0;
1187 has_byte_size = 0;
1188 has_const_value = 0;
1189 has_template_arguments = 0;
1190 fixup_called = 0;
1191 is_dwz = 0;
1192 spec_is_dwz = 0;
1193 }
1194 };
1195
1196 /* This data structure holds the information of an abbrev. */
1197 struct abbrev_info
1198 {
1199 unsigned int number; /* number identifying abbrev */
1200 enum dwarf_tag tag; /* dwarf tag */
1201 unsigned short has_children; /* boolean */
1202 unsigned short num_attrs; /* number of attributes */
1203 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1204 struct abbrev_info *next; /* next in chain */
1205 };
1206
1207 struct attr_abbrev
1208 {
1209 ENUM_BITFIELD(dwarf_attribute) name : 16;
1210 ENUM_BITFIELD(dwarf_form) form : 16;
1211
1212 /* It is valid only if FORM is DW_FORM_implicit_const. */
1213 LONGEST implicit_const;
1214 };
1215
1216 /* Size of abbrev_table.abbrev_hash_table. */
1217 #define ABBREV_HASH_SIZE 121
1218
1219 /* Top level data structure to contain an abbreviation table. */
1220
1221 struct abbrev_table
1222 {
1223 explicit abbrev_table (sect_offset off)
1224 : sect_off (off)
1225 {
1226 m_abbrevs =
1227 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1228 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1229 }
1230
1231 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1232
1233 /* Allocate space for a struct abbrev_info object in
1234 ABBREV_TABLE. */
1235 struct abbrev_info *alloc_abbrev ();
1236
1237 /* Add an abbreviation to the table. */
1238 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1239
1240 /* Look up an abbrev in the table.
1241 Returns NULL if the abbrev is not found. */
1242
1243 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1244
1245
1246 /* Where the abbrev table came from.
1247 This is used as a sanity check when the table is used. */
1248 const sect_offset sect_off;
1249
1250 /* Storage for the abbrev table. */
1251 auto_obstack abbrev_obstack;
1252
1253 private:
1254
1255 /* Hash table of abbrevs.
1256 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1257 It could be statically allocated, but the previous code didn't so we
1258 don't either. */
1259 struct abbrev_info **m_abbrevs;
1260 };
1261
1262 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1263
1264 /* Attributes have a name and a value. */
1265 struct attribute
1266 {
1267 ENUM_BITFIELD(dwarf_attribute) name : 16;
1268 ENUM_BITFIELD(dwarf_form) form : 15;
1269
1270 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1271 field should be in u.str (existing only for DW_STRING) but it is kept
1272 here for better struct attribute alignment. */
1273 unsigned int string_is_canonical : 1;
1274
1275 union
1276 {
1277 const char *str;
1278 struct dwarf_block *blk;
1279 ULONGEST unsnd;
1280 LONGEST snd;
1281 CORE_ADDR addr;
1282 ULONGEST signature;
1283 }
1284 u;
1285 };
1286
1287 /* This data structure holds a complete die structure. */
1288 struct die_info
1289 {
1290 /* DWARF-2 tag for this DIE. */
1291 ENUM_BITFIELD(dwarf_tag) tag : 16;
1292
1293 /* Number of attributes */
1294 unsigned char num_attrs;
1295
1296 /* True if we're presently building the full type name for the
1297 type derived from this DIE. */
1298 unsigned char building_fullname : 1;
1299
1300 /* True if this die is in process. PR 16581. */
1301 unsigned char in_process : 1;
1302
1303 /* Abbrev number */
1304 unsigned int abbrev;
1305
1306 /* Offset in .debug_info or .debug_types section. */
1307 sect_offset sect_off;
1308
1309 /* The dies in a compilation unit form an n-ary tree. PARENT
1310 points to this die's parent; CHILD points to the first child of
1311 this node; and all the children of a given node are chained
1312 together via their SIBLING fields. */
1313 struct die_info *child; /* Its first child, if any. */
1314 struct die_info *sibling; /* Its next sibling, if any. */
1315 struct die_info *parent; /* Its parent, if any. */
1316
1317 /* An array of attributes, with NUM_ATTRS elements. There may be
1318 zero, but it's not common and zero-sized arrays are not
1319 sufficiently portable C. */
1320 struct attribute attrs[1];
1321 };
1322
1323 /* Get at parts of an attribute structure. */
1324
1325 #define DW_STRING(attr) ((attr)->u.str)
1326 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1327 #define DW_UNSND(attr) ((attr)->u.unsnd)
1328 #define DW_BLOCK(attr) ((attr)->u.blk)
1329 #define DW_SND(attr) ((attr)->u.snd)
1330 #define DW_ADDR(attr) ((attr)->u.addr)
1331 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1332
1333 /* Blocks are a bunch of untyped bytes. */
1334 struct dwarf_block
1335 {
1336 size_t size;
1337
1338 /* Valid only if SIZE is not zero. */
1339 const gdb_byte *data;
1340 };
1341
1342 #ifndef ATTR_ALLOC_CHUNK
1343 #define ATTR_ALLOC_CHUNK 4
1344 #endif
1345
1346 /* Allocate fields for structs, unions and enums in this size. */
1347 #ifndef DW_FIELD_ALLOC_CHUNK
1348 #define DW_FIELD_ALLOC_CHUNK 4
1349 #endif
1350
1351 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1352 but this would require a corresponding change in unpack_field_as_long
1353 and friends. */
1354 static int bits_per_byte = 8;
1355
1356 /* When reading a variant or variant part, we track a bit more
1357 information about the field, and store it in an object of this
1358 type. */
1359
1360 struct variant_field
1361 {
1362 /* If we see a DW_TAG_variant, then this will be the discriminant
1363 value. */
1364 ULONGEST discriminant_value;
1365 /* If we see a DW_TAG_variant, then this will be set if this is the
1366 default branch. */
1367 bool default_branch;
1368 /* While reading a DW_TAG_variant_part, this will be set if this
1369 field is the discriminant. */
1370 bool is_discriminant;
1371 };
1372
1373 struct nextfield
1374 {
1375 int accessibility = 0;
1376 int virtuality = 0;
1377 /* Extra information to describe a variant or variant part. */
1378 struct variant_field variant {};
1379 struct field field {};
1380 };
1381
1382 struct fnfieldlist
1383 {
1384 const char *name = nullptr;
1385 std::vector<struct fn_field> fnfields;
1386 };
1387
1388 /* The routines that read and process dies for a C struct or C++ class
1389 pass lists of data member fields and lists of member function fields
1390 in an instance of a field_info structure, as defined below. */
1391 struct field_info
1392 {
1393 /* List of data member and baseclasses fields. */
1394 std::vector<struct nextfield> fields;
1395 std::vector<struct nextfield> baseclasses;
1396
1397 /* Number of fields (including baseclasses). */
1398 int nfields = 0;
1399
1400 /* Set if the accessibility of one of the fields is not public. */
1401 int non_public_fields = 0;
1402
1403 /* Member function fieldlist array, contains name of possibly overloaded
1404 member function, number of overloaded member functions and a pointer
1405 to the head of the member function field chain. */
1406 std::vector<struct fnfieldlist> fnfieldlists;
1407
1408 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1409 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1410 std::vector<struct decl_field> typedef_field_list;
1411
1412 /* Nested types defined by this class and the number of elements in this
1413 list. */
1414 std::vector<struct decl_field> nested_types_list;
1415 };
1416
1417 /* One item on the queue of compilation units to read in full symbols
1418 for. */
1419 struct dwarf2_queue_item
1420 {
1421 struct dwarf2_per_cu_data *per_cu;
1422 enum language pretend_language;
1423 struct dwarf2_queue_item *next;
1424 };
1425
1426 /* The current queue. */
1427 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1428
1429 /* Loaded secondary compilation units are kept in memory until they
1430 have not been referenced for the processing of this many
1431 compilation units. Set this to zero to disable caching. Cache
1432 sizes of up to at least twenty will improve startup time for
1433 typical inter-CU-reference binaries, at an obvious memory cost. */
1434 static int dwarf_max_cache_age = 5;
1435 static void
1436 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file, _("The upper bound on the age of cached "
1440 "DWARF compilation units is %s.\n"),
1441 value);
1442 }
1443 \f
1444 /* local function prototypes */
1445
1446 static const char *get_section_name (const struct dwarf2_section_info *);
1447
1448 static const char *get_section_file_name (const struct dwarf2_section_info *);
1449
1450 static void dwarf2_find_base_address (struct die_info *die,
1451 struct dwarf2_cu *cu);
1452
1453 static struct partial_symtab *create_partial_symtab
1454 (struct dwarf2_per_cu_data *per_cu, const char *name);
1455
1456 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1457 const gdb_byte *info_ptr,
1458 struct die_info *type_unit_die,
1459 int has_children, void *data);
1460
1461 static void dwarf2_build_psymtabs_hard
1462 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1463
1464 static void scan_partial_symbols (struct partial_die_info *,
1465 CORE_ADDR *, CORE_ADDR *,
1466 int, struct dwarf2_cu *);
1467
1468 static void add_partial_symbol (struct partial_die_info *,
1469 struct dwarf2_cu *);
1470
1471 static void add_partial_namespace (struct partial_die_info *pdi,
1472 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1473 int set_addrmap, struct dwarf2_cu *cu);
1474
1475 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1476 CORE_ADDR *highpc, int set_addrmap,
1477 struct dwarf2_cu *cu);
1478
1479 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1480 struct dwarf2_cu *cu);
1481
1482 static void add_partial_subprogram (struct partial_die_info *pdi,
1483 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1484 int need_pc, struct dwarf2_cu *cu);
1485
1486 static void dwarf2_read_symtab (struct partial_symtab *,
1487 struct objfile *);
1488
1489 static void psymtab_to_symtab_1 (struct partial_symtab *);
1490
1491 static abbrev_table_up abbrev_table_read_table
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1493 sect_offset);
1494
1495 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1496
1497 static struct partial_die_info *load_partial_dies
1498 (const struct die_reader_specs *, const gdb_byte *, int);
1499
1500 /* A pair of partial_die_info and compilation unit. */
1501 struct cu_partial_die_info
1502 {
1503 /* The compilation unit of the partial_die_info. */
1504 struct dwarf2_cu *cu;
1505 /* A partial_die_info. */
1506 struct partial_die_info *pdi;
1507
1508 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1509 : cu (cu),
1510 pdi (pdi)
1511 { /* Nothing. */ }
1512
1513 private:
1514 cu_partial_die_info () = delete;
1515 };
1516
1517 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1518 struct dwarf2_cu *);
1519
1520 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1521 struct attribute *, struct attr_abbrev *,
1522 const gdb_byte *);
1523
1524 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1525
1526 static int read_1_signed_byte (bfd *, const gdb_byte *);
1527
1528 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1529
1530 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1531 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1532
1533 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1534
1535 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1536
1537 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1538 unsigned int *);
1539
1540 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1541
1542 static LONGEST read_checked_initial_length_and_offset
1543 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1544 unsigned int *, unsigned int *);
1545
1546 static LONGEST read_offset (bfd *, const gdb_byte *,
1547 const struct comp_unit_head *,
1548 unsigned int *);
1549
1550 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1551
1552 static sect_offset read_abbrev_offset
1553 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1554 struct dwarf2_section_info *, sect_offset);
1555
1556 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1557
1558 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1559
1560 static const char *read_indirect_string
1561 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1562 const struct comp_unit_head *, unsigned int *);
1563
1564 static const char *read_indirect_line_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
1567
1568 static const char *read_indirect_string_at_offset
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1570 LONGEST str_offset);
1571
1572 static const char *read_indirect_string_from_dwz
1573 (struct objfile *objfile, struct dwz_file *, LONGEST);
1574
1575 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1576
1577 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1578 const gdb_byte *,
1579 unsigned int *);
1580
1581 static const char *read_str_index (const struct die_reader_specs *reader,
1582 ULONGEST str_index);
1583
1584 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1585
1586 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1587 struct dwarf2_cu *);
1588
1589 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1590 unsigned int);
1591
1592 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1593 struct dwarf2_cu *cu);
1594
1595 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1596
1597 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1598 struct dwarf2_cu *cu);
1599
1600 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1601
1602 static struct die_info *die_specification (struct die_info *die,
1603 struct dwarf2_cu **);
1604
1605 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1606 struct dwarf2_cu *cu);
1607
1608 static void dwarf_decode_lines (struct line_header *, const char *,
1609 struct dwarf2_cu *, struct partial_symtab *,
1610 CORE_ADDR, int decode_mapping);
1611
1612 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1613 const char *);
1614
1615 static struct symbol *new_symbol (struct die_info *, struct type *,
1616 struct dwarf2_cu *, struct symbol * = NULL);
1617
1618 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1619 struct dwarf2_cu *);
1620
1621 static void dwarf2_const_value_attr (const struct attribute *attr,
1622 struct type *type,
1623 const char *name,
1624 struct obstack *obstack,
1625 struct dwarf2_cu *cu, LONGEST *value,
1626 const gdb_byte **bytes,
1627 struct dwarf2_locexpr_baton **baton);
1628
1629 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1630
1631 static int need_gnat_info (struct dwarf2_cu *);
1632
1633 static struct type *die_descriptive_type (struct die_info *,
1634 struct dwarf2_cu *);
1635
1636 static void set_descriptive_type (struct type *, struct die_info *,
1637 struct dwarf2_cu *);
1638
1639 static struct type *die_containing_type (struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1643 struct dwarf2_cu *);
1644
1645 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1650
1651 static char *typename_concat (struct obstack *obs, const char *prefix,
1652 const char *suffix, int physname,
1653 struct dwarf2_cu *cu);
1654
1655 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1658
1659 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1660
1661 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1662
1663 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1664
1665 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1668 struct dwarf2_cu *, struct partial_symtab *);
1669
1670 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1671 values. Keep the items ordered with increasing constraints compliance. */
1672 enum pc_bounds_kind
1673 {
1674 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1675 PC_BOUNDS_NOT_PRESENT,
1676
1677 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1678 were present but they do not form a valid range of PC addresses. */
1679 PC_BOUNDS_INVALID,
1680
1681 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1682 PC_BOUNDS_RANGES,
1683
1684 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1685 PC_BOUNDS_HIGH_LOW,
1686 };
1687
1688 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1689 CORE_ADDR *, CORE_ADDR *,
1690 struct dwarf2_cu *,
1691 struct partial_symtab *);
1692
1693 static void get_scope_pc_bounds (struct die_info *,
1694 CORE_ADDR *, CORE_ADDR *,
1695 struct dwarf2_cu *);
1696
1697 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1698 CORE_ADDR, struct dwarf2_cu *);
1699
1700 static void dwarf2_add_field (struct field_info *, struct die_info *,
1701 struct dwarf2_cu *);
1702
1703 static void dwarf2_attach_fields_to_type (struct field_info *,
1704 struct type *, struct dwarf2_cu *);
1705
1706 static void dwarf2_add_member_fn (struct field_info *,
1707 struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1711 struct type *,
1712 struct dwarf2_cu *);
1713
1714 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1715
1716 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1717
1718 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1719
1720 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1721
1722 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1723
1724 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1725
1726 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1727
1728 static struct type *read_module_type (struct die_info *die,
1729 struct dwarf2_cu *cu);
1730
1731 static const char *namespace_name (struct die_info *die,
1732 int *is_anonymous, struct dwarf2_cu *);
1733
1734 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1735
1736 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1737
1738 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1739 struct dwarf2_cu *);
1740
1741 static struct die_info *read_die_and_siblings_1
1742 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1743 struct die_info *);
1744
1745 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1746 const gdb_byte *info_ptr,
1747 const gdb_byte **new_info_ptr,
1748 struct die_info *parent);
1749
1750 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1751 struct die_info **, const gdb_byte *,
1752 int *, int);
1753
1754 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1755 struct die_info **, const gdb_byte *,
1756 int *);
1757
1758 static void process_die (struct die_info *, struct dwarf2_cu *);
1759
1760 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1761 struct obstack *);
1762
1763 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1764
1765 static const char *dwarf2_full_name (const char *name,
1766 struct die_info *die,
1767 struct dwarf2_cu *cu);
1768
1769 static const char *dwarf2_physname (const char *name, struct die_info *die,
1770 struct dwarf2_cu *cu);
1771
1772 static struct die_info *dwarf2_extension (struct die_info *die,
1773 struct dwarf2_cu **);
1774
1775 static const char *dwarf_tag_name (unsigned int);
1776
1777 static const char *dwarf_attr_name (unsigned int);
1778
1779 static const char *dwarf_unit_type_name (int unit_type);
1780
1781 static const char *dwarf_form_name (unsigned int);
1782
1783 static const char *dwarf_bool_name (unsigned int);
1784
1785 static const char *dwarf_type_encoding_name (unsigned int);
1786
1787 static struct die_info *sibling_die (struct die_info *);
1788
1789 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1790
1791 static void dump_die_for_error (struct die_info *);
1792
1793 static void dump_die_1 (struct ui_file *, int level, int max_level,
1794 struct die_info *);
1795
1796 /*static*/ void dump_die (struct die_info *, int max_level);
1797
1798 static void store_in_ref_table (struct die_info *,
1799 struct dwarf2_cu *);
1800
1801 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1802
1803 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1804
1805 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1806 const struct attribute *,
1807 struct dwarf2_cu **);
1808
1809 static struct die_info *follow_die_ref (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu **);
1812
1813 static struct die_info *follow_die_sig (struct die_info *,
1814 const struct attribute *,
1815 struct dwarf2_cu **);
1816
1817 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1819
1820 static struct type *get_DW_AT_signature_type (struct die_info *,
1821 const struct attribute *,
1822 struct dwarf2_cu *);
1823
1824 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1825
1826 static void read_signatured_type (struct signatured_type *);
1827
1828 static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
1830 struct dynamic_prop *prop, struct type *type);
1831
1832 /* memory allocation interface */
1833
1834 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1835
1836 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1837
1838 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1839
1840 static int attr_form_is_block (const struct attribute *);
1841
1842 static int attr_form_is_section_offset (const struct attribute *);
1843
1844 static int attr_form_is_constant (const struct attribute *);
1845
1846 static int attr_form_is_ref (const struct attribute *);
1847
1848 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
1850 const struct attribute *attr);
1851
1852 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1853 struct symbol *sym,
1854 struct dwarf2_cu *cu,
1855 int is_block);
1856
1857 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
1860
1861 static hashval_t partial_die_hash (const void *item);
1862
1863 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1864
1865 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
1868
1869 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
1872
1873 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1876
1877 static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1879
1880 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1885 enum language);
1886
1887 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1888 enum language);
1889
1890 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1891 enum language);
1892
1893 static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1895
1896 static void dwarf2_mark (struct dwarf2_cu *);
1897
1898 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1899
1900 static struct type *get_die_type_at_offset (sect_offset,
1901 struct dwarf2_per_cu_data *);
1902
1903 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1904
1905 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1907
1908 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1909
1910 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1911 static struct type *dwarf2_per_cu_addr_sized_int_type
1912 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1913
1914 /* Class, the destructor of which frees all allocated queue entries. This
1915 will only have work to do if an error was thrown while processing the
1916 dwarf. If no error was thrown then the queue entries should have all
1917 been processed, and freed, as we went along. */
1918
1919 class dwarf2_queue_guard
1920 {
1921 public:
1922 dwarf2_queue_guard () = default;
1923
1924 /* Free any entries remaining on the queue. There should only be
1925 entries left if we hit an error while processing the dwarf. */
1926 ~dwarf2_queue_guard ()
1927 {
1928 struct dwarf2_queue_item *item, *last;
1929
1930 item = dwarf2_queue;
1931 while (item)
1932 {
1933 /* Anything still marked queued is likely to be in an
1934 inconsistent state, so discard it. */
1935 if (item->per_cu->queued)
1936 {
1937 if (item->per_cu->cu != NULL)
1938 free_one_cached_comp_unit (item->per_cu);
1939 item->per_cu->queued = 0;
1940 }
1941
1942 last = item;
1943 item = item->next;
1944 xfree (last);
1945 }
1946
1947 dwarf2_queue = dwarf2_queue_tail = NULL;
1948 }
1949 };
1950
1951 /* The return type of find_file_and_directory. Note, the enclosed
1952 string pointers are only valid while this object is valid. */
1953
1954 struct file_and_directory
1955 {
1956 /* The filename. This is never NULL. */
1957 const char *name;
1958
1959 /* The compilation directory. NULL if not known. If we needed to
1960 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1961 points directly to the DW_AT_comp_dir string attribute owned by
1962 the obstack that owns the DIE. */
1963 const char *comp_dir;
1964
1965 /* If we needed to build a new string for comp_dir, this is what
1966 owns the storage. */
1967 std::string comp_dir_storage;
1968 };
1969
1970 static file_and_directory find_file_and_directory (struct die_info *die,
1971 struct dwarf2_cu *cu);
1972
1973 static char *file_full_name (int file, struct line_header *lh,
1974 const char *comp_dir);
1975
1976 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1977 enum class rcuh_kind { COMPILE, TYPE };
1978
1979 static const gdb_byte *read_and_check_comp_unit_head
1980 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1981 struct comp_unit_head *header,
1982 struct dwarf2_section_info *section,
1983 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1984 rcuh_kind section_kind);
1985
1986 static void init_cutu_and_read_dies
1987 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1988 int use_existing_cu, int keep, bool skip_partial,
1989 die_reader_func_ftype *die_reader_func, void *data);
1990
1991 static void init_cutu_and_read_dies_simple
1992 (struct dwarf2_per_cu_data *this_cu,
1993 die_reader_func_ftype *die_reader_func, void *data);
1994
1995 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1996
1997 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1998
1999 static struct dwo_unit *lookup_dwo_unit_in_dwp
2000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2001 struct dwp_file *dwp_file, const char *comp_dir,
2002 ULONGEST signature, int is_debug_types);
2003
2004 static struct dwp_file *get_dwp_file
2005 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2006
2007 static struct dwo_unit *lookup_dwo_comp_unit
2008 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2009
2010 static struct dwo_unit *lookup_dwo_type_unit
2011 (struct signatured_type *, const char *, const char *);
2012
2013 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2014
2015 /* A unique pointer to a dwo_file. */
2016
2017 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2018
2019 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2020
2021 static void check_producer (struct dwarf2_cu *cu);
2022
2023 static void free_line_header_voidp (void *arg);
2024 \f
2025 /* Various complaints about symbol reading that don't abort the process. */
2026
2027 static void
2028 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2029 {
2030 complaint (_("statement list doesn't fit in .debug_line section"));
2031 }
2032
2033 static void
2034 dwarf2_debug_line_missing_file_complaint (void)
2035 {
2036 complaint (_(".debug_line section has line data without a file"));
2037 }
2038
2039 static void
2040 dwarf2_debug_line_missing_end_sequence_complaint (void)
2041 {
2042 complaint (_(".debug_line section has line "
2043 "program sequence without an end"));
2044 }
2045
2046 static void
2047 dwarf2_complex_location_expr_complaint (void)
2048 {
2049 complaint (_("location expression too complex"));
2050 }
2051
2052 static void
2053 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2054 int arg3)
2055 {
2056 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2057 arg1, arg2, arg3);
2058 }
2059
2060 static void
2061 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2062 {
2063 complaint (_("debug info runs off end of %s section"
2064 " [in module %s]"),
2065 get_section_name (section),
2066 get_section_file_name (section));
2067 }
2068
2069 static void
2070 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2071 {
2072 complaint (_("macro debug info contains a "
2073 "malformed macro definition:\n`%s'"),
2074 arg1);
2075 }
2076
2077 static void
2078 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2079 {
2080 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2081 arg1, arg2);
2082 }
2083
2084 /* Hash function for line_header_hash. */
2085
2086 static hashval_t
2087 line_header_hash (const struct line_header *ofs)
2088 {
2089 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2090 }
2091
2092 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2093
2094 static hashval_t
2095 line_header_hash_voidp (const void *item)
2096 {
2097 const struct line_header *ofs = (const struct line_header *) item;
2098
2099 return line_header_hash (ofs);
2100 }
2101
2102 /* Equality function for line_header_hash. */
2103
2104 static int
2105 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2106 {
2107 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2108 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2109
2110 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2111 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2112 }
2113
2114 \f
2115
2116 /* Read the given attribute value as an address, taking the attribute's
2117 form into account. */
2118
2119 static CORE_ADDR
2120 attr_value_as_address (struct attribute *attr)
2121 {
2122 CORE_ADDR addr;
2123
2124 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2125 && attr->form != DW_FORM_GNU_addr_index)
2126 {
2127 /* Aside from a few clearly defined exceptions, attributes that
2128 contain an address must always be in DW_FORM_addr form.
2129 Unfortunately, some compilers happen to be violating this
2130 requirement by encoding addresses using other forms, such
2131 as DW_FORM_data4 for example. For those broken compilers,
2132 we try to do our best, without any guarantee of success,
2133 to interpret the address correctly. It would also be nice
2134 to generate a complaint, but that would require us to maintain
2135 a list of legitimate cases where a non-address form is allowed,
2136 as well as update callers to pass in at least the CU's DWARF
2137 version. This is more overhead than what we're willing to
2138 expand for a pretty rare case. */
2139 addr = DW_UNSND (attr);
2140 }
2141 else
2142 addr = DW_ADDR (attr);
2143
2144 return addr;
2145 }
2146
2147 /* See declaration. */
2148
2149 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2150 const dwarf2_debug_sections *names,
2151 bool can_copy_)
2152 : objfile (objfile_),
2153 can_copy (can_copy_)
2154 {
2155 if (names == NULL)
2156 names = &dwarf2_elf_names;
2157
2158 bfd *obfd = objfile->obfd;
2159
2160 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2161 locate_sections (obfd, sec, *names);
2162 }
2163
2164 dwarf2_per_objfile::~dwarf2_per_objfile ()
2165 {
2166 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2167 free_cached_comp_units ();
2168
2169 if (quick_file_names_table)
2170 htab_delete (quick_file_names_table);
2171
2172 if (line_header_hash)
2173 htab_delete (line_header_hash);
2174
2175 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2176 per_cu->imported_symtabs_free ();
2177
2178 for (signatured_type *sig_type : all_type_units)
2179 sig_type->per_cu.imported_symtabs_free ();
2180
2181 /* Everything else should be on the objfile obstack. */
2182 }
2183
2184 /* See declaration. */
2185
2186 void
2187 dwarf2_per_objfile::free_cached_comp_units ()
2188 {
2189 dwarf2_per_cu_data *per_cu = read_in_chain;
2190 dwarf2_per_cu_data **last_chain = &read_in_chain;
2191 while (per_cu != NULL)
2192 {
2193 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2194
2195 delete per_cu->cu;
2196 *last_chain = next_cu;
2197 per_cu = next_cu;
2198 }
2199 }
2200
2201 /* A helper class that calls free_cached_comp_units on
2202 destruction. */
2203
2204 class free_cached_comp_units
2205 {
2206 public:
2207
2208 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2209 : m_per_objfile (per_objfile)
2210 {
2211 }
2212
2213 ~free_cached_comp_units ()
2214 {
2215 m_per_objfile->free_cached_comp_units ();
2216 }
2217
2218 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2219
2220 private:
2221
2222 dwarf2_per_objfile *m_per_objfile;
2223 };
2224
2225 /* Try to locate the sections we need for DWARF 2 debugging
2226 information and return true if we have enough to do something.
2227 NAMES points to the dwarf2 section names, or is NULL if the standard
2228 ELF names are used. CAN_COPY is true for formats where symbol
2229 interposition is possible and so symbol values must follow copy
2230 relocation rules. */
2231
2232 int
2233 dwarf2_has_info (struct objfile *objfile,
2234 const struct dwarf2_debug_sections *names,
2235 bool can_copy)
2236 {
2237 if (objfile->flags & OBJF_READNEVER)
2238 return 0;
2239
2240 struct dwarf2_per_objfile *dwarf2_per_objfile
2241 = get_dwarf2_per_objfile (objfile);
2242
2243 if (dwarf2_per_objfile == NULL)
2244 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2245 names,
2246 can_copy);
2247
2248 return (!dwarf2_per_objfile->info.is_virtual
2249 && dwarf2_per_objfile->info.s.section != NULL
2250 && !dwarf2_per_objfile->abbrev.is_virtual
2251 && dwarf2_per_objfile->abbrev.s.section != NULL);
2252 }
2253
2254 /* Return the containing section of virtual section SECTION. */
2255
2256 static struct dwarf2_section_info *
2257 get_containing_section (const struct dwarf2_section_info *section)
2258 {
2259 gdb_assert (section->is_virtual);
2260 return section->s.containing_section;
2261 }
2262
2263 /* Return the bfd owner of SECTION. */
2264
2265 static struct bfd *
2266 get_section_bfd_owner (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section->owner;
2274 }
2275
2276 /* Return the bfd section of SECTION.
2277 Returns NULL if the section is not present. */
2278
2279 static asection *
2280 get_section_bfd_section (const struct dwarf2_section_info *section)
2281 {
2282 if (section->is_virtual)
2283 {
2284 section = get_containing_section (section);
2285 gdb_assert (!section->is_virtual);
2286 }
2287 return section->s.section;
2288 }
2289
2290 /* Return the name of SECTION. */
2291
2292 static const char *
2293 get_section_name (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 gdb_assert (sectp != NULL);
2298 return bfd_section_name (sectp);
2299 }
2300
2301 /* Return the name of the file SECTION is in. */
2302
2303 static const char *
2304 get_section_file_name (const struct dwarf2_section_info *section)
2305 {
2306 bfd *abfd = get_section_bfd_owner (section);
2307
2308 return bfd_get_filename (abfd);
2309 }
2310
2311 /* Return the id of SECTION.
2312 Returns 0 if SECTION doesn't exist. */
2313
2314 static int
2315 get_section_id (const struct dwarf2_section_info *section)
2316 {
2317 asection *sectp = get_section_bfd_section (section);
2318
2319 if (sectp == NULL)
2320 return 0;
2321 return sectp->id;
2322 }
2323
2324 /* Return the flags of SECTION.
2325 SECTION (or containing section if this is a virtual section) must exist. */
2326
2327 static int
2328 get_section_flags (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_flags (sectp);
2334 }
2335
2336 /* When loading sections, we look either for uncompressed section or for
2337 compressed section names. */
2338
2339 static int
2340 section_is_p (const char *section_name,
2341 const struct dwarf2_section_names *names)
2342 {
2343 if (names->normal != NULL
2344 && strcmp (section_name, names->normal) == 0)
2345 return 1;
2346 if (names->compressed != NULL
2347 && strcmp (section_name, names->compressed) == 0)
2348 return 1;
2349 return 0;
2350 }
2351
2352 /* See declaration. */
2353
2354 void
2355 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2356 const dwarf2_debug_sections &names)
2357 {
2358 flagword aflag = bfd_section_flags (sectp);
2359
2360 if ((aflag & SEC_HAS_CONTENTS) == 0)
2361 {
2362 }
2363 else if (elf_section_data (sectp)->this_hdr.sh_size
2364 > bfd_get_file_size (abfd))
2365 {
2366 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2367 warning (_("Discarding section %s which has a section size (%s"
2368 ") larger than the file size [in module %s]"),
2369 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2370 bfd_get_filename (abfd));
2371 }
2372 else if (section_is_p (sectp->name, &names.info))
2373 {
2374 this->info.s.section = sectp;
2375 this->info.size = bfd_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.abbrev))
2378 {
2379 this->abbrev.s.section = sectp;
2380 this->abbrev.size = bfd_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.line))
2383 {
2384 this->line.s.section = sectp;
2385 this->line.size = bfd_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.loc))
2388 {
2389 this->loc.s.section = sectp;
2390 this->loc.size = bfd_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.loclists))
2393 {
2394 this->loclists.s.section = sectp;
2395 this->loclists.size = bfd_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.macinfo))
2398 {
2399 this->macinfo.s.section = sectp;
2400 this->macinfo.size = bfd_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.macro))
2403 {
2404 this->macro.s.section = sectp;
2405 this->macro.size = bfd_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.str))
2408 {
2409 this->str.s.section = sectp;
2410 this->str.size = bfd_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.line_str))
2413 {
2414 this->line_str.s.section = sectp;
2415 this->line_str.size = bfd_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.addr))
2418 {
2419 this->addr.s.section = sectp;
2420 this->addr.size = bfd_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &names.frame))
2423 {
2424 this->frame.s.section = sectp;
2425 this->frame.size = bfd_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.eh_frame))
2428 {
2429 this->eh_frame.s.section = sectp;
2430 this->eh_frame.size = bfd_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.ranges))
2433 {
2434 this->ranges.s.section = sectp;
2435 this->ranges.size = bfd_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.rnglists))
2438 {
2439 this->rnglists.s.section = sectp;
2440 this->rnglists.size = bfd_section_size (sectp);
2441 }
2442 else if (section_is_p (sectp->name, &names.types))
2443 {
2444 struct dwarf2_section_info type_section;
2445
2446 memset (&type_section, 0, sizeof (type_section));
2447 type_section.s.section = sectp;
2448 type_section.size = bfd_section_size (sectp);
2449
2450 this->types.push_back (type_section);
2451 }
2452 else if (section_is_p (sectp->name, &names.gdb_index))
2453 {
2454 this->gdb_index.s.section = sectp;
2455 this->gdb_index.size = bfd_section_size (sectp);
2456 }
2457 else if (section_is_p (sectp->name, &names.debug_names))
2458 {
2459 this->debug_names.s.section = sectp;
2460 this->debug_names.size = bfd_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.debug_aranges))
2463 {
2464 this->debug_aranges.s.section = sectp;
2465 this->debug_aranges.size = bfd_section_size (sectp);
2466 }
2467
2468 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2469 && bfd_section_vma (sectp) == 0)
2470 this->has_section_at_zero = true;
2471 }
2472
2473 /* A helper function that decides whether a section is empty,
2474 or not present. */
2475
2476 static int
2477 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2478 {
2479 if (section->is_virtual)
2480 return section->size == 0;
2481 return section->s.section == NULL || section->size == 0;
2482 }
2483
2484 /* See dwarf2read.h. */
2485
2486 void
2487 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2488 {
2489 asection *sectp;
2490 bfd *abfd;
2491 gdb_byte *buf, *retbuf;
2492
2493 if (info->readin)
2494 return;
2495 info->buffer = NULL;
2496 info->readin = true;
2497
2498 if (dwarf2_section_empty_p (info))
2499 return;
2500
2501 sectp = get_section_bfd_section (info);
2502
2503 /* If this is a virtual section we need to read in the real one first. */
2504 if (info->is_virtual)
2505 {
2506 struct dwarf2_section_info *containing_section =
2507 get_containing_section (info);
2508
2509 gdb_assert (sectp != NULL);
2510 if ((sectp->flags & SEC_RELOC) != 0)
2511 {
2512 error (_("Dwarf Error: DWP format V2 with relocations is not"
2513 " supported in section %s [in module %s]"),
2514 get_section_name (info), get_section_file_name (info));
2515 }
2516 dwarf2_read_section (objfile, containing_section);
2517 /* Other code should have already caught virtual sections that don't
2518 fit. */
2519 gdb_assert (info->virtual_offset + info->size
2520 <= containing_section->size);
2521 /* If the real section is empty or there was a problem reading the
2522 section we shouldn't get here. */
2523 gdb_assert (containing_section->buffer != NULL);
2524 info->buffer = containing_section->buffer + info->virtual_offset;
2525 return;
2526 }
2527
2528 /* If the section has relocations, we must read it ourselves.
2529 Otherwise we attach it to the BFD. */
2530 if ((sectp->flags & SEC_RELOC) == 0)
2531 {
2532 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2533 return;
2534 }
2535
2536 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2537 info->buffer = buf;
2538
2539 /* When debugging .o files, we may need to apply relocations; see
2540 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2541 We never compress sections in .o files, so we only need to
2542 try this when the section is not compressed. */
2543 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2544 if (retbuf != NULL)
2545 {
2546 info->buffer = retbuf;
2547 return;
2548 }
2549
2550 abfd = get_section_bfd_owner (info);
2551 gdb_assert (abfd != NULL);
2552
2553 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2554 || bfd_bread (buf, info->size, abfd) != info->size)
2555 {
2556 error (_("Dwarf Error: Can't read DWARF data"
2557 " in section %s [in module %s]"),
2558 bfd_section_name (sectp), bfd_get_filename (abfd));
2559 }
2560 }
2561
2562 /* A helper function that returns the size of a section in a safe way.
2563 If you are positive that the section has been read before using the
2564 size, then it is safe to refer to the dwarf2_section_info object's
2565 "size" field directly. In other cases, you must call this
2566 function, because for compressed sections the size field is not set
2567 correctly until the section has been read. */
2568
2569 static bfd_size_type
2570 dwarf2_section_size (struct objfile *objfile,
2571 struct dwarf2_section_info *info)
2572 {
2573 if (!info->readin)
2574 dwarf2_read_section (objfile, info);
2575 return info->size;
2576 }
2577
2578 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2579 SECTION_NAME. */
2580
2581 void
2582 dwarf2_get_section_info (struct objfile *objfile,
2583 enum dwarf2_section_enum sect,
2584 asection **sectp, const gdb_byte **bufp,
2585 bfd_size_type *sizep)
2586 {
2587 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2588 struct dwarf2_section_info *info;
2589
2590 /* We may see an objfile without any DWARF, in which case we just
2591 return nothing. */
2592 if (data == NULL)
2593 {
2594 *sectp = NULL;
2595 *bufp = NULL;
2596 *sizep = 0;
2597 return;
2598 }
2599 switch (sect)
2600 {
2601 case DWARF2_DEBUG_FRAME:
2602 info = &data->frame;
2603 break;
2604 case DWARF2_EH_FRAME:
2605 info = &data->eh_frame;
2606 break;
2607 default:
2608 gdb_assert_not_reached ("unexpected section");
2609 }
2610
2611 dwarf2_read_section (objfile, info);
2612
2613 *sectp = get_section_bfd_section (info);
2614 *bufp = info->buffer;
2615 *sizep = info->size;
2616 }
2617
2618 /* A helper function to find the sections for a .dwz file. */
2619
2620 static void
2621 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2622 {
2623 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2624
2625 /* Note that we only support the standard ELF names, because .dwz
2626 is ELF-only (at the time of writing). */
2627 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2628 {
2629 dwz_file->abbrev.s.section = sectp;
2630 dwz_file->abbrev.size = bfd_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2633 {
2634 dwz_file->info.s.section = sectp;
2635 dwz_file->info.size = bfd_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2638 {
2639 dwz_file->str.s.section = sectp;
2640 dwz_file->str.size = bfd_section_size (sectp);
2641 }
2642 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2643 {
2644 dwz_file->line.s.section = sectp;
2645 dwz_file->line.size = bfd_section_size (sectp);
2646 }
2647 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2648 {
2649 dwz_file->macro.s.section = sectp;
2650 dwz_file->macro.size = bfd_section_size (sectp);
2651 }
2652 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2653 {
2654 dwz_file->gdb_index.s.section = sectp;
2655 dwz_file->gdb_index.size = bfd_section_size (sectp);
2656 }
2657 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2658 {
2659 dwz_file->debug_names.s.section = sectp;
2660 dwz_file->debug_names.size = bfd_section_size (sectp);
2661 }
2662 }
2663
2664 /* See dwarf2read.h. */
2665
2666 struct dwz_file *
2667 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2668 {
2669 const char *filename;
2670 bfd_size_type buildid_len_arg;
2671 size_t buildid_len;
2672 bfd_byte *buildid;
2673
2674 if (dwarf2_per_objfile->dwz_file != NULL)
2675 return dwarf2_per_objfile->dwz_file.get ();
2676
2677 bfd_set_error (bfd_error_no_error);
2678 gdb::unique_xmalloc_ptr<char> data
2679 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2680 &buildid_len_arg, &buildid));
2681 if (data == NULL)
2682 {
2683 if (bfd_get_error () == bfd_error_no_error)
2684 return NULL;
2685 error (_("could not read '.gnu_debugaltlink' section: %s"),
2686 bfd_errmsg (bfd_get_error ()));
2687 }
2688
2689 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2690
2691 buildid_len = (size_t) buildid_len_arg;
2692
2693 filename = data.get ();
2694
2695 std::string abs_storage;
2696 if (!IS_ABSOLUTE_PATH (filename))
2697 {
2698 gdb::unique_xmalloc_ptr<char> abs
2699 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2700
2701 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2702 filename = abs_storage.c_str ();
2703 }
2704
2705 /* First try the file name given in the section. If that doesn't
2706 work, try to use the build-id instead. */
2707 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2708 if (dwz_bfd != NULL)
2709 {
2710 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2711 dwz_bfd.reset (nullptr);
2712 }
2713
2714 if (dwz_bfd == NULL)
2715 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2716
2717 if (dwz_bfd == NULL)
2718 error (_("could not find '.gnu_debugaltlink' file for %s"),
2719 objfile_name (dwarf2_per_objfile->objfile));
2720
2721 std::unique_ptr<struct dwz_file> result
2722 (new struct dwz_file (std::move (dwz_bfd)));
2723
2724 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2725 result.get ());
2726
2727 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2728 result->dwz_bfd.get ());
2729 dwarf2_per_objfile->dwz_file = std::move (result);
2730 return dwarf2_per_objfile->dwz_file.get ();
2731 }
2732 \f
2733 /* DWARF quick_symbols_functions support. */
2734
2735 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2736 unique line tables, so we maintain a separate table of all .debug_line
2737 derived entries to support the sharing.
2738 All the quick functions need is the list of file names. We discard the
2739 line_header when we're done and don't need to record it here. */
2740 struct quick_file_names
2741 {
2742 /* The data used to construct the hash key. */
2743 struct stmt_list_hash hash;
2744
2745 /* The number of entries in file_names, real_names. */
2746 unsigned int num_file_names;
2747
2748 /* The file names from the line table, after being run through
2749 file_full_name. */
2750 const char **file_names;
2751
2752 /* The file names from the line table after being run through
2753 gdb_realpath. These are computed lazily. */
2754 const char **real_names;
2755 };
2756
2757 /* When using the index (and thus not using psymtabs), each CU has an
2758 object of this type. This is used to hold information needed by
2759 the various "quick" methods. */
2760 struct dwarf2_per_cu_quick_data
2761 {
2762 /* The file table. This can be NULL if there was no file table
2763 or it's currently not read in.
2764 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2765 struct quick_file_names *file_names;
2766
2767 /* The corresponding symbol table. This is NULL if symbols for this
2768 CU have not yet been read. */
2769 struct compunit_symtab *compunit_symtab;
2770
2771 /* A temporary mark bit used when iterating over all CUs in
2772 expand_symtabs_matching. */
2773 unsigned int mark : 1;
2774
2775 /* True if we've tried to read the file table and found there isn't one.
2776 There will be no point in trying to read it again next time. */
2777 unsigned int no_file_data : 1;
2778 };
2779
2780 /* Utility hash function for a stmt_list_hash. */
2781
2782 static hashval_t
2783 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2784 {
2785 hashval_t v = 0;
2786
2787 if (stmt_list_hash->dwo_unit != NULL)
2788 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2789 v += to_underlying (stmt_list_hash->line_sect_off);
2790 return v;
2791 }
2792
2793 /* Utility equality function for a stmt_list_hash. */
2794
2795 static int
2796 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2797 const struct stmt_list_hash *rhs)
2798 {
2799 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2800 return 0;
2801 if (lhs->dwo_unit != NULL
2802 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2803 return 0;
2804
2805 return lhs->line_sect_off == rhs->line_sect_off;
2806 }
2807
2808 /* Hash function for a quick_file_names. */
2809
2810 static hashval_t
2811 hash_file_name_entry (const void *e)
2812 {
2813 const struct quick_file_names *file_data
2814 = (const struct quick_file_names *) e;
2815
2816 return hash_stmt_list_entry (&file_data->hash);
2817 }
2818
2819 /* Equality function for a quick_file_names. */
2820
2821 static int
2822 eq_file_name_entry (const void *a, const void *b)
2823 {
2824 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2825 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2826
2827 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2828 }
2829
2830 /* Delete function for a quick_file_names. */
2831
2832 static void
2833 delete_file_name_entry (void *e)
2834 {
2835 struct quick_file_names *file_data = (struct quick_file_names *) e;
2836 int i;
2837
2838 for (i = 0; i < file_data->num_file_names; ++i)
2839 {
2840 xfree ((void*) file_data->file_names[i]);
2841 if (file_data->real_names)
2842 xfree ((void*) file_data->real_names[i]);
2843 }
2844
2845 /* The space for the struct itself lives on objfile_obstack,
2846 so we don't free it here. */
2847 }
2848
2849 /* Create a quick_file_names hash table. */
2850
2851 static htab_t
2852 create_quick_file_names_table (unsigned int nr_initial_entries)
2853 {
2854 return htab_create_alloc (nr_initial_entries,
2855 hash_file_name_entry, eq_file_name_entry,
2856 delete_file_name_entry, xcalloc, xfree);
2857 }
2858
2859 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2860 have to be created afterwards. You should call age_cached_comp_units after
2861 processing PER_CU->CU. dw2_setup must have been already called. */
2862
2863 static void
2864 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2865 {
2866 if (per_cu->is_debug_types)
2867 load_full_type_unit (per_cu);
2868 else
2869 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2870
2871 if (per_cu->cu == NULL)
2872 return; /* Dummy CU. */
2873
2874 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2875 }
2876
2877 /* Read in the symbols for PER_CU. */
2878
2879 static void
2880 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2881 {
2882 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2883
2884 /* Skip type_unit_groups, reading the type units they contain
2885 is handled elsewhere. */
2886 if (IS_TYPE_UNIT_GROUP (per_cu))
2887 return;
2888
2889 /* The destructor of dwarf2_queue_guard frees any entries left on
2890 the queue. After this point we're guaranteed to leave this function
2891 with the dwarf queue empty. */
2892 dwarf2_queue_guard q_guard;
2893
2894 if (dwarf2_per_objfile->using_index
2895 ? per_cu->v.quick->compunit_symtab == NULL
2896 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2897 {
2898 queue_comp_unit (per_cu, language_minimal);
2899 load_cu (per_cu, skip_partial);
2900
2901 /* If we just loaded a CU from a DWO, and we're working with an index
2902 that may badly handle TUs, load all the TUs in that DWO as well.
2903 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2904 if (!per_cu->is_debug_types
2905 && per_cu->cu != NULL
2906 && per_cu->cu->dwo_unit != NULL
2907 && dwarf2_per_objfile->index_table != NULL
2908 && dwarf2_per_objfile->index_table->version <= 7
2909 /* DWP files aren't supported yet. */
2910 && get_dwp_file (dwarf2_per_objfile) == NULL)
2911 queue_and_load_all_dwo_tus (per_cu);
2912 }
2913
2914 process_queue (dwarf2_per_objfile);
2915
2916 /* Age the cache, releasing compilation units that have not
2917 been used recently. */
2918 age_cached_comp_units (dwarf2_per_objfile);
2919 }
2920
2921 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2922 the objfile from which this CU came. Returns the resulting symbol
2923 table. */
2924
2925 static struct compunit_symtab *
2926 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2927 {
2928 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2929
2930 gdb_assert (dwarf2_per_objfile->using_index);
2931 if (!per_cu->v.quick->compunit_symtab)
2932 {
2933 free_cached_comp_units freer (dwarf2_per_objfile);
2934 scoped_restore decrementer = increment_reading_symtab ();
2935 dw2_do_instantiate_symtab (per_cu, skip_partial);
2936 process_cu_includes (dwarf2_per_objfile);
2937 }
2938
2939 return per_cu->v.quick->compunit_symtab;
2940 }
2941
2942 /* See declaration. */
2943
2944 dwarf2_per_cu_data *
2945 dwarf2_per_objfile::get_cutu (int index)
2946 {
2947 if (index >= this->all_comp_units.size ())
2948 {
2949 index -= this->all_comp_units.size ();
2950 gdb_assert (index < this->all_type_units.size ());
2951 return &this->all_type_units[index]->per_cu;
2952 }
2953
2954 return this->all_comp_units[index];
2955 }
2956
2957 /* See declaration. */
2958
2959 dwarf2_per_cu_data *
2960 dwarf2_per_objfile::get_cu (int index)
2961 {
2962 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2963
2964 return this->all_comp_units[index];
2965 }
2966
2967 /* See declaration. */
2968
2969 signatured_type *
2970 dwarf2_per_objfile::get_tu (int index)
2971 {
2972 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2973
2974 return this->all_type_units[index];
2975 }
2976
2977 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2978 objfile_obstack, and constructed with the specified field
2979 values. */
2980
2981 static dwarf2_per_cu_data *
2982 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2983 struct dwarf2_section_info *section,
2984 int is_dwz,
2985 sect_offset sect_off, ULONGEST length)
2986 {
2987 struct objfile *objfile = dwarf2_per_objfile->objfile;
2988 dwarf2_per_cu_data *the_cu
2989 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2990 struct dwarf2_per_cu_data);
2991 the_cu->sect_off = sect_off;
2992 the_cu->length = length;
2993 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2994 the_cu->section = section;
2995 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2996 struct dwarf2_per_cu_quick_data);
2997 the_cu->is_dwz = is_dwz;
2998 return the_cu;
2999 }
3000
3001 /* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
3003
3004 static void
3005 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz)
3009 {
3010 for (offset_type i = 0; i < n_elements; i += 2)
3011 {
3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3017 cu_list += 2 * 8;
3018
3019 dwarf2_per_cu_data *per_cu
3020 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3021 sect_off, length);
3022 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3023 }
3024 }
3025
3026 /* Read the CU list from the mapped index, and use it to create all
3027 the CU objects for this objfile. */
3028
3029 static void
3030 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3031 const gdb_byte *cu_list, offset_type cu_list_elements,
3032 const gdb_byte *dwz_list, offset_type dwz_elements)
3033 {
3034 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3035 dwarf2_per_objfile->all_comp_units.reserve
3036 ((cu_list_elements + dwz_elements) / 2);
3037
3038 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3039 &dwarf2_per_objfile->info, 0);
3040
3041 if (dwz_elements == 0)
3042 return;
3043
3044 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3045 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3046 &dwz->info, 1);
3047 }
3048
3049 /* Create the signatured type hash table from the index. */
3050
3051 static void
3052 create_signatured_type_table_from_index
3053 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3054 struct dwarf2_section_info *section,
3055 const gdb_byte *bytes,
3056 offset_type elements)
3057 {
3058 struct objfile *objfile = dwarf2_per_objfile->objfile;
3059
3060 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3061 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3062
3063 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3064
3065 for (offset_type i = 0; i < elements; i += 3)
3066 {
3067 struct signatured_type *sig_type;
3068 ULONGEST signature;
3069 void **slot;
3070 cu_offset type_offset_in_tu;
3071
3072 gdb_static_assert (sizeof (ULONGEST) >= 8);
3073 sect_offset sect_off
3074 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3075 type_offset_in_tu
3076 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3077 BFD_ENDIAN_LITTLE);
3078 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3079 bytes += 3 * 8;
3080
3081 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3082 struct signatured_type);
3083 sig_type->signature = signature;
3084 sig_type->type_offset_in_tu = type_offset_in_tu;
3085 sig_type->per_cu.is_debug_types = 1;
3086 sig_type->per_cu.section = section;
3087 sig_type->per_cu.sect_off = sect_off;
3088 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3089 sig_type->per_cu.v.quick
3090 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct dwarf2_per_cu_quick_data);
3092
3093 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3094 *slot = sig_type;
3095
3096 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3097 }
3098
3099 dwarf2_per_objfile->signatured_types = sig_types_hash;
3100 }
3101
3102 /* Create the signatured type hash table from .debug_names. */
3103
3104 static void
3105 create_signatured_type_table_from_debug_names
3106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3107 const mapped_debug_names &map,
3108 struct dwarf2_section_info *section,
3109 struct dwarf2_section_info *abbrev_section)
3110 {
3111 struct objfile *objfile = dwarf2_per_objfile->objfile;
3112
3113 dwarf2_read_section (objfile, section);
3114 dwarf2_read_section (objfile, abbrev_section);
3115
3116 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3117 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3118
3119 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3120
3121 for (uint32_t i = 0; i < map.tu_count; ++i)
3122 {
3123 struct signatured_type *sig_type;
3124 void **slot;
3125
3126 sect_offset sect_off
3127 = (sect_offset) (extract_unsigned_integer
3128 (map.tu_table_reordered + i * map.offset_size,
3129 map.offset_size,
3130 map.dwarf5_byte_order));
3131
3132 comp_unit_head cu_header;
3133 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3134 abbrev_section,
3135 section->buffer + to_underlying (sect_off),
3136 rcuh_kind::TYPE);
3137
3138 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3139 struct signatured_type);
3140 sig_type->signature = cu_header.signature;
3141 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3142 sig_type->per_cu.is_debug_types = 1;
3143 sig_type->per_cu.section = section;
3144 sig_type->per_cu.sect_off = sect_off;
3145 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3146 sig_type->per_cu.v.quick
3147 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct dwarf2_per_cu_quick_data);
3149
3150 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3151 *slot = sig_type;
3152
3153 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3154 }
3155
3156 dwarf2_per_objfile->signatured_types = sig_types_hash;
3157 }
3158
3159 /* Read the address map data from the mapped index, and use it to
3160 populate the objfile's psymtabs_addrmap. */
3161
3162 static void
3163 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3164 struct mapped_index *index)
3165 {
3166 struct objfile *objfile = dwarf2_per_objfile->objfile;
3167 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3168 const gdb_byte *iter, *end;
3169 struct addrmap *mutable_map;
3170 CORE_ADDR baseaddr;
3171
3172 auto_obstack temp_obstack;
3173
3174 mutable_map = addrmap_create_mutable (&temp_obstack);
3175
3176 iter = index->address_table.data ();
3177 end = iter + index->address_table.size ();
3178
3179 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3180
3181 while (iter < end)
3182 {
3183 ULONGEST hi, lo, cu_index;
3184 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3185 iter += 8;
3186 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3187 iter += 8;
3188 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3189 iter += 4;
3190
3191 if (lo > hi)
3192 {
3193 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3194 hex_string (lo), hex_string (hi));
3195 continue;
3196 }
3197
3198 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3199 {
3200 complaint (_(".gdb_index address table has invalid CU number %u"),
3201 (unsigned) cu_index);
3202 continue;
3203 }
3204
3205 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3206 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3207 addrmap_set_empty (mutable_map, lo, hi - 1,
3208 dwarf2_per_objfile->get_cu (cu_index));
3209 }
3210
3211 objfile->partial_symtabs->psymtabs_addrmap
3212 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3213 }
3214
3215 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3216 populate the objfile's psymtabs_addrmap. */
3217
3218 static void
3219 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3220 struct dwarf2_section_info *section)
3221 {
3222 struct objfile *objfile = dwarf2_per_objfile->objfile;
3223 bfd *abfd = objfile->obfd;
3224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3225 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3226 SECT_OFF_TEXT (objfile));
3227
3228 auto_obstack temp_obstack;
3229 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3230
3231 std::unordered_map<sect_offset,
3232 dwarf2_per_cu_data *,
3233 gdb::hash_enum<sect_offset>>
3234 debug_info_offset_to_per_cu;
3235 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3236 {
3237 const auto insertpair
3238 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3239 if (!insertpair.second)
3240 {
3241 warning (_("Section .debug_aranges in %s has duplicate "
3242 "debug_info_offset %s, ignoring .debug_aranges."),
3243 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3244 return;
3245 }
3246 }
3247
3248 dwarf2_read_section (objfile, section);
3249
3250 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3251
3252 const gdb_byte *addr = section->buffer;
3253
3254 while (addr < section->buffer + section->size)
3255 {
3256 const gdb_byte *const entry_addr = addr;
3257 unsigned int bytes_read;
3258
3259 const LONGEST entry_length = read_initial_length (abfd, addr,
3260 &bytes_read);
3261 addr += bytes_read;
3262
3263 const gdb_byte *const entry_end = addr + entry_length;
3264 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3265 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3266 if (addr + entry_length > section->buffer + section->size)
3267 {
3268 warning (_("Section .debug_aranges in %s entry at offset %s "
3269 "length %s exceeds section length %s, "
3270 "ignoring .debug_aranges."),
3271 objfile_name (objfile),
3272 plongest (entry_addr - section->buffer),
3273 plongest (bytes_read + entry_length),
3274 pulongest (section->size));
3275 return;
3276 }
3277
3278 /* The version number. */
3279 const uint16_t version = read_2_bytes (abfd, addr);
3280 addr += 2;
3281 if (version != 2)
3282 {
3283 warning (_("Section .debug_aranges in %s entry at offset %s "
3284 "has unsupported version %d, ignoring .debug_aranges."),
3285 objfile_name (objfile),
3286 plongest (entry_addr - section->buffer), version);
3287 return;
3288 }
3289
3290 const uint64_t debug_info_offset
3291 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3292 addr += offset_size;
3293 const auto per_cu_it
3294 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3295 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3296 {
3297 warning (_("Section .debug_aranges in %s entry at offset %s "
3298 "debug_info_offset %s does not exists, "
3299 "ignoring .debug_aranges."),
3300 objfile_name (objfile),
3301 plongest (entry_addr - section->buffer),
3302 pulongest (debug_info_offset));
3303 return;
3304 }
3305 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3306
3307 const uint8_t address_size = *addr++;
3308 if (address_size < 1 || address_size > 8)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %s "
3311 "address_size %u is invalid, ignoring .debug_aranges."),
3312 objfile_name (objfile),
3313 plongest (entry_addr - section->buffer), address_size);
3314 return;
3315 }
3316
3317 const uint8_t segment_selector_size = *addr++;
3318 if (segment_selector_size != 0)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %s "
3321 "segment_selector_size %u is not supported, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile),
3324 plongest (entry_addr - section->buffer),
3325 segment_selector_size);
3326 return;
3327 }
3328
3329 /* Must pad to an alignment boundary that is twice the address
3330 size. It is undocumented by the DWARF standard but GCC does
3331 use it. */
3332 for (size_t padding = ((-(addr - section->buffer))
3333 & (2 * address_size - 1));
3334 padding > 0; padding--)
3335 if (*addr++ != 0)
3336 {
3337 warning (_("Section .debug_aranges in %s entry at offset %s "
3338 "padding is not zero, ignoring .debug_aranges."),
3339 objfile_name (objfile),
3340 plongest (entry_addr - section->buffer));
3341 return;
3342 }
3343
3344 for (;;)
3345 {
3346 if (addr + 2 * address_size > entry_end)
3347 {
3348 warning (_("Section .debug_aranges in %s entry at offset %s "
3349 "address list is not properly terminated, "
3350 "ignoring .debug_aranges."),
3351 objfile_name (objfile),
3352 plongest (entry_addr - section->buffer));
3353 return;
3354 }
3355 ULONGEST start = extract_unsigned_integer (addr, address_size,
3356 dwarf5_byte_order);
3357 addr += address_size;
3358 ULONGEST length = extract_unsigned_integer (addr, address_size,
3359 dwarf5_byte_order);
3360 addr += address_size;
3361 if (start == 0 && length == 0)
3362 break;
3363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3364 {
3365 /* Symbol was eliminated due to a COMDAT group. */
3366 continue;
3367 }
3368 ULONGEST end = start + length;
3369 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3370 - baseaddr);
3371 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3372 - baseaddr);
3373 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3374 }
3375 }
3376
3377 objfile->partial_symtabs->psymtabs_addrmap
3378 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3379 }
3380
3381 /* Find a slot in the mapped index INDEX for the object named NAME.
3382 If NAME is found, set *VEC_OUT to point to the CU vector in the
3383 constant pool and return true. If NAME cannot be found, return
3384 false. */
3385
3386 static bool
3387 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3388 offset_type **vec_out)
3389 {
3390 offset_type hash;
3391 offset_type slot, step;
3392 int (*cmp) (const char *, const char *);
3393
3394 gdb::unique_xmalloc_ptr<char> without_params;
3395 if (current_language->la_language == language_cplus
3396 || current_language->la_language == language_fortran
3397 || current_language->la_language == language_d)
3398 {
3399 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3400 not contain any. */
3401
3402 if (strchr (name, '(') != NULL)
3403 {
3404 without_params = cp_remove_params (name);
3405
3406 if (without_params != NULL)
3407 name = without_params.get ();
3408 }
3409 }
3410
3411 /* Index version 4 did not support case insensitive searches. But the
3412 indices for case insensitive languages are built in lowercase, therefore
3413 simulate our NAME being searched is also lowercased. */
3414 hash = mapped_index_string_hash ((index->version == 4
3415 && case_sensitivity == case_sensitive_off
3416 ? 5 : index->version),
3417 name);
3418
3419 slot = hash & (index->symbol_table.size () - 1);
3420 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3421 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3422
3423 for (;;)
3424 {
3425 const char *str;
3426
3427 const auto &bucket = index->symbol_table[slot];
3428 if (bucket.name == 0 && bucket.vec == 0)
3429 return false;
3430
3431 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3432 if (!cmp (name, str))
3433 {
3434 *vec_out = (offset_type *) (index->constant_pool
3435 + MAYBE_SWAP (bucket.vec));
3436 return true;
3437 }
3438
3439 slot = (slot + step) & (index->symbol_table.size () - 1);
3440 }
3441 }
3442
3443 /* A helper function that reads the .gdb_index from BUFFER and fills
3444 in MAP. FILENAME is the name of the file containing the data;
3445 it is used for error reporting. DEPRECATED_OK is true if it is
3446 ok to use deprecated sections.
3447
3448 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3449 out parameters that are filled in with information about the CU and
3450 TU lists in the section.
3451
3452 Returns true if all went well, false otherwise. */
3453
3454 static bool
3455 read_gdb_index_from_buffer (struct objfile *objfile,
3456 const char *filename,
3457 bool deprecated_ok,
3458 gdb::array_view<const gdb_byte> buffer,
3459 struct mapped_index *map,
3460 const gdb_byte **cu_list,
3461 offset_type *cu_list_elements,
3462 const gdb_byte **types_list,
3463 offset_type *types_list_elements)
3464 {
3465 const gdb_byte *addr = &buffer[0];
3466
3467 /* Version check. */
3468 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3469 /* Versions earlier than 3 emitted every copy of a psymbol. This
3470 causes the index to behave very poorly for certain requests. Version 3
3471 contained incomplete addrmap. So, it seems better to just ignore such
3472 indices. */
3473 if (version < 4)
3474 {
3475 static int warning_printed = 0;
3476 if (!warning_printed)
3477 {
3478 warning (_("Skipping obsolete .gdb_index section in %s."),
3479 filename);
3480 warning_printed = 1;
3481 }
3482 return 0;
3483 }
3484 /* Index version 4 uses a different hash function than index version
3485 5 and later.
3486
3487 Versions earlier than 6 did not emit psymbols for inlined
3488 functions. Using these files will cause GDB not to be able to
3489 set breakpoints on inlined functions by name, so we ignore these
3490 indices unless the user has done
3491 "set use-deprecated-index-sections on". */
3492 if (version < 6 && !deprecated_ok)
3493 {
3494 static int warning_printed = 0;
3495 if (!warning_printed)
3496 {
3497 warning (_("\
3498 Skipping deprecated .gdb_index section in %s.\n\
3499 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3500 to use the section anyway."),
3501 filename);
3502 warning_printed = 1;
3503 }
3504 return 0;
3505 }
3506 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3507 of the TU (for symbols coming from TUs),
3508 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3509 Plus gold-generated indices can have duplicate entries for global symbols,
3510 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3511 These are just performance bugs, and we can't distinguish gdb-generated
3512 indices from gold-generated ones, so issue no warning here. */
3513
3514 /* Indexes with higher version than the one supported by GDB may be no
3515 longer backward compatible. */
3516 if (version > 8)
3517 return 0;
3518
3519 map->version = version;
3520
3521 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3522
3523 int i = 0;
3524 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3525 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3526 / 8);
3527 ++i;
3528
3529 *types_list = addr + MAYBE_SWAP (metadata[i]);
3530 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3531 - MAYBE_SWAP (metadata[i]))
3532 / 8);
3533 ++i;
3534
3535 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3536 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3537 map->address_table
3538 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3539 ++i;
3540
3541 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3542 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3543 map->symbol_table
3544 = gdb::array_view<mapped_index::symbol_table_slot>
3545 ((mapped_index::symbol_table_slot *) symbol_table,
3546 (mapped_index::symbol_table_slot *) symbol_table_end);
3547
3548 ++i;
3549 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3550
3551 return 1;
3552 }
3553
3554 /* Callback types for dwarf2_read_gdb_index. */
3555
3556 typedef gdb::function_view
3557 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3558 get_gdb_index_contents_ftype;
3559 typedef gdb::function_view
3560 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3561 get_gdb_index_contents_dwz_ftype;
3562
3563 /* Read .gdb_index. If everything went ok, initialize the "quick"
3564 elements of all the CUs and return 1. Otherwise, return 0. */
3565
3566 static int
3567 dwarf2_read_gdb_index
3568 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3569 get_gdb_index_contents_ftype get_gdb_index_contents,
3570 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3571 {
3572 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3573 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3574 struct dwz_file *dwz;
3575 struct objfile *objfile = dwarf2_per_objfile->objfile;
3576
3577 gdb::array_view<const gdb_byte> main_index_contents
3578 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3579
3580 if (main_index_contents.empty ())
3581 return 0;
3582
3583 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3584 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3585 use_deprecated_index_sections,
3586 main_index_contents, map.get (), &cu_list,
3587 &cu_list_elements, &types_list,
3588 &types_list_elements))
3589 return 0;
3590
3591 /* Don't use the index if it's empty. */
3592 if (map->symbol_table.empty ())
3593 return 0;
3594
3595 /* If there is a .dwz file, read it so we can get its CU list as
3596 well. */
3597 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3598 if (dwz != NULL)
3599 {
3600 struct mapped_index dwz_map;
3601 const gdb_byte *dwz_types_ignore;
3602 offset_type dwz_types_elements_ignore;
3603
3604 gdb::array_view<const gdb_byte> dwz_index_content
3605 = get_gdb_index_contents_dwz (objfile, dwz);
3606
3607 if (dwz_index_content.empty ())
3608 return 0;
3609
3610 if (!read_gdb_index_from_buffer (objfile,
3611 bfd_get_filename (dwz->dwz_bfd.get ()),
3612 1, dwz_index_content, &dwz_map,
3613 &dwz_list, &dwz_list_elements,
3614 &dwz_types_ignore,
3615 &dwz_types_elements_ignore))
3616 {
3617 warning (_("could not read '.gdb_index' section from %s; skipping"),
3618 bfd_get_filename (dwz->dwz_bfd.get ()));
3619 return 0;
3620 }
3621 }
3622
3623 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3624 dwz_list, dwz_list_elements);
3625
3626 if (types_list_elements)
3627 {
3628 /* We can only handle a single .debug_types when we have an
3629 index. */
3630 if (dwarf2_per_objfile->types.size () != 1)
3631 return 0;
3632
3633 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3634
3635 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3636 types_list, types_list_elements);
3637 }
3638
3639 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3640
3641 dwarf2_per_objfile->index_table = std::move (map);
3642 dwarf2_per_objfile->using_index = 1;
3643 dwarf2_per_objfile->quick_file_names_table =
3644 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3645
3646 return 1;
3647 }
3648
3649 /* die_reader_func for dw2_get_file_names. */
3650
3651 static void
3652 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3653 const gdb_byte *info_ptr,
3654 struct die_info *comp_unit_die,
3655 int has_children,
3656 void *data)
3657 {
3658 struct dwarf2_cu *cu = reader->cu;
3659 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3660 struct dwarf2_per_objfile *dwarf2_per_objfile
3661 = cu->per_cu->dwarf2_per_objfile;
3662 struct objfile *objfile = dwarf2_per_objfile->objfile;
3663 struct dwarf2_per_cu_data *lh_cu;
3664 struct attribute *attr;
3665 void **slot;
3666 struct quick_file_names *qfn;
3667
3668 gdb_assert (! this_cu->is_debug_types);
3669
3670 /* Our callers never want to match partial units -- instead they
3671 will match the enclosing full CU. */
3672 if (comp_unit_die->tag == DW_TAG_partial_unit)
3673 {
3674 this_cu->v.quick->no_file_data = 1;
3675 return;
3676 }
3677
3678 lh_cu = this_cu;
3679 slot = NULL;
3680
3681 line_header_up lh;
3682 sect_offset line_offset {};
3683
3684 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3685 if (attr != nullptr)
3686 {
3687 struct quick_file_names find_entry;
3688
3689 line_offset = (sect_offset) DW_UNSND (attr);
3690
3691 /* We may have already read in this line header (TU line header sharing).
3692 If we have we're done. */
3693 find_entry.hash.dwo_unit = cu->dwo_unit;
3694 find_entry.hash.line_sect_off = line_offset;
3695 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3696 &find_entry, INSERT);
3697 if (*slot != NULL)
3698 {
3699 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3700 return;
3701 }
3702
3703 lh = dwarf_decode_line_header (line_offset, cu);
3704 }
3705 if (lh == NULL)
3706 {
3707 lh_cu->v.quick->no_file_data = 1;
3708 return;
3709 }
3710
3711 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3712 qfn->hash.dwo_unit = cu->dwo_unit;
3713 qfn->hash.line_sect_off = line_offset;
3714 gdb_assert (slot != NULL);
3715 *slot = qfn;
3716
3717 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3718
3719 int offset = 0;
3720 if (strcmp (fnd.name, "<unknown>") != 0)
3721 ++offset;
3722
3723 qfn->num_file_names = offset + lh->file_names_size ();
3724 qfn->file_names =
3725 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3726 if (offset != 0)
3727 qfn->file_names[0] = xstrdup (fnd.name);
3728 for (int i = 0; i < lh->file_names_size (); ++i)
3729 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3730 qfn->real_names = NULL;
3731
3732 lh_cu->v.quick->file_names = qfn;
3733 }
3734
3735 /* A helper for the "quick" functions which attempts to read the line
3736 table for THIS_CU. */
3737
3738 static struct quick_file_names *
3739 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3740 {
3741 /* This should never be called for TUs. */
3742 gdb_assert (! this_cu->is_debug_types);
3743 /* Nor type unit groups. */
3744 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3745
3746 if (this_cu->v.quick->file_names != NULL)
3747 return this_cu->v.quick->file_names;
3748 /* If we know there is no line data, no point in looking again. */
3749 if (this_cu->v.quick->no_file_data)
3750 return NULL;
3751
3752 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3753
3754 if (this_cu->v.quick->no_file_data)
3755 return NULL;
3756 return this_cu->v.quick->file_names;
3757 }
3758
3759 /* A helper for the "quick" functions which computes and caches the
3760 real path for a given file name from the line table. */
3761
3762 static const char *
3763 dw2_get_real_path (struct objfile *objfile,
3764 struct quick_file_names *qfn, int index)
3765 {
3766 if (qfn->real_names == NULL)
3767 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3768 qfn->num_file_names, const char *);
3769
3770 if (qfn->real_names[index] == NULL)
3771 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3772
3773 return qfn->real_names[index];
3774 }
3775
3776 static struct symtab *
3777 dw2_find_last_source_symtab (struct objfile *objfile)
3778 {
3779 struct dwarf2_per_objfile *dwarf2_per_objfile
3780 = get_dwarf2_per_objfile (objfile);
3781 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3782 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3783
3784 if (cust == NULL)
3785 return NULL;
3786
3787 return compunit_primary_filetab (cust);
3788 }
3789
3790 /* Traversal function for dw2_forget_cached_source_info. */
3791
3792 static int
3793 dw2_free_cached_file_names (void **slot, void *info)
3794 {
3795 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3796
3797 if (file_data->real_names)
3798 {
3799 int i;
3800
3801 for (i = 0; i < file_data->num_file_names; ++i)
3802 {
3803 xfree ((void*) file_data->real_names[i]);
3804 file_data->real_names[i] = NULL;
3805 }
3806 }
3807
3808 return 1;
3809 }
3810
3811 static void
3812 dw2_forget_cached_source_info (struct objfile *objfile)
3813 {
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3818 dw2_free_cached_file_names, NULL);
3819 }
3820
3821 /* Helper function for dw2_map_symtabs_matching_filename that expands
3822 the symtabs and calls the iterator. */
3823
3824 static int
3825 dw2_map_expand_apply (struct objfile *objfile,
3826 struct dwarf2_per_cu_data *per_cu,
3827 const char *name, const char *real_path,
3828 gdb::function_view<bool (symtab *)> callback)
3829 {
3830 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3831
3832 /* Don't visit already-expanded CUs. */
3833 if (per_cu->v.quick->compunit_symtab)
3834 return 0;
3835
3836 /* This may expand more than one symtab, and we want to iterate over
3837 all of them. */
3838 dw2_instantiate_symtab (per_cu, false);
3839
3840 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3841 last_made, callback);
3842 }
3843
3844 /* Implementation of the map_symtabs_matching_filename method. */
3845
3846 static bool
3847 dw2_map_symtabs_matching_filename
3848 (struct objfile *objfile, const char *name, const char *real_path,
3849 gdb::function_view<bool (symtab *)> callback)
3850 {
3851 const char *name_basename = lbasename (name);
3852 struct dwarf2_per_objfile *dwarf2_per_objfile
3853 = get_dwarf2_per_objfile (objfile);
3854
3855 /* The rule is CUs specify all the files, including those used by
3856 any TU, so there's no need to scan TUs here. */
3857
3858 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3859 {
3860 /* We only need to look at symtabs not already expanded. */
3861 if (per_cu->v.quick->compunit_symtab)
3862 continue;
3863
3864 quick_file_names *file_data = dw2_get_file_names (per_cu);
3865 if (file_data == NULL)
3866 continue;
3867
3868 for (int j = 0; j < file_data->num_file_names; ++j)
3869 {
3870 const char *this_name = file_data->file_names[j];
3871 const char *this_real_name;
3872
3873 if (compare_filenames_for_search (this_name, name))
3874 {
3875 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3876 callback))
3877 return true;
3878 continue;
3879 }
3880
3881 /* Before we invoke realpath, which can get expensive when many
3882 files are involved, do a quick comparison of the basenames. */
3883 if (! basenames_may_differ
3884 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3885 continue;
3886
3887 this_real_name = dw2_get_real_path (objfile, file_data, j);
3888 if (compare_filenames_for_search (this_real_name, name))
3889 {
3890 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3891 callback))
3892 return true;
3893 continue;
3894 }
3895
3896 if (real_path != NULL)
3897 {
3898 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3899 gdb_assert (IS_ABSOLUTE_PATH (name));
3900 if (this_real_name != NULL
3901 && FILENAME_CMP (real_path, this_real_name) == 0)
3902 {
3903 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3904 callback))
3905 return true;
3906 continue;
3907 }
3908 }
3909 }
3910 }
3911
3912 return false;
3913 }
3914
3915 /* Struct used to manage iterating over all CUs looking for a symbol. */
3916
3917 struct dw2_symtab_iterator
3918 {
3919 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3920 struct dwarf2_per_objfile *dwarf2_per_objfile;
3921 /* If set, only look for symbols that match that block. Valid values are
3922 GLOBAL_BLOCK and STATIC_BLOCK. */
3923 gdb::optional<block_enum> block_index;
3924 /* The kind of symbol we're looking for. */
3925 domain_enum domain;
3926 /* The list of CUs from the index entry of the symbol,
3927 or NULL if not found. */
3928 offset_type *vec;
3929 /* The next element in VEC to look at. */
3930 int next;
3931 /* The number of elements in VEC, or zero if there is no match. */
3932 int length;
3933 /* Have we seen a global version of the symbol?
3934 If so we can ignore all further global instances.
3935 This is to work around gold/15646, inefficient gold-generated
3936 indices. */
3937 int global_seen;
3938 };
3939
3940 /* Initialize the index symtab iterator ITER. */
3941
3942 static void
3943 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3944 struct dwarf2_per_objfile *dwarf2_per_objfile,
3945 gdb::optional<block_enum> block_index,
3946 domain_enum domain,
3947 const char *name)
3948 {
3949 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3950 iter->block_index = block_index;
3951 iter->domain = domain;
3952 iter->next = 0;
3953 iter->global_seen = 0;
3954
3955 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3956
3957 /* index is NULL if OBJF_READNOW. */
3958 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3959 iter->length = MAYBE_SWAP (*iter->vec);
3960 else
3961 {
3962 iter->vec = NULL;
3963 iter->length = 0;
3964 }
3965 }
3966
3967 /* Return the next matching CU or NULL if there are no more. */
3968
3969 static struct dwarf2_per_cu_data *
3970 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3971 {
3972 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3973
3974 for ( ; iter->next < iter->length; ++iter->next)
3975 {
3976 offset_type cu_index_and_attrs =
3977 MAYBE_SWAP (iter->vec[iter->next + 1]);
3978 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3979 gdb_index_symbol_kind symbol_kind =
3980 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3981 /* Only check the symbol attributes if they're present.
3982 Indices prior to version 7 don't record them,
3983 and indices >= 7 may elide them for certain symbols
3984 (gold does this). */
3985 int attrs_valid =
3986 (dwarf2_per_objfile->index_table->version >= 7
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3988
3989 /* Don't crash on bad data. */
3990 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3991 + dwarf2_per_objfile->all_type_units.size ()))
3992 {
3993 complaint (_(".gdb_index entry has bad CU index"
3994 " [in module %s]"),
3995 objfile_name (dwarf2_per_objfile->objfile));
3996 continue;
3997 }
3998
3999 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4000
4001 /* Skip if already read in. */
4002 if (per_cu->v.quick->compunit_symtab)
4003 continue;
4004
4005 /* Check static vs global. */
4006 if (attrs_valid)
4007 {
4008 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4009
4010 if (iter->block_index.has_value ())
4011 {
4012 bool want_static = *iter->block_index == STATIC_BLOCK;
4013
4014 if (is_static != want_static)
4015 continue;
4016 }
4017
4018 /* Work around gold/15646. */
4019 if (!is_static && iter->global_seen)
4020 continue;
4021 if (!is_static)
4022 iter->global_seen = 1;
4023 }
4024
4025 /* Only check the symbol's kind if it has one. */
4026 if (attrs_valid)
4027 {
4028 switch (iter->domain)
4029 {
4030 case VAR_DOMAIN:
4031 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4032 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4033 /* Some types are also in VAR_DOMAIN. */
4034 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4035 continue;
4036 break;
4037 case STRUCT_DOMAIN:
4038 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case LABEL_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4043 continue;
4044 break;
4045 case MODULE_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4063 const char *name, domain_enum domain)
4064 {
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102 }
4103
4104 static void
4105 dw2_print_stats (struct objfile *objfile)
4106 {
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122 }
4123
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129 static void
4130 dw2_dump (struct objfile *objfile)
4131 {
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145 }
4146
4147 static void
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150 {
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4158
4159 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4160 dw2_instantiate_symtab (per_cu, false);
4161
4162 }
4163
4164 static void
4165 dw2_expand_all_symtabs (struct objfile *objfile)
4166 {
4167 struct dwarf2_per_objfile *dwarf2_per_objfile
4168 = get_dwarf2_per_objfile (objfile);
4169 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4170 + dwarf2_per_objfile->all_type_units.size ());
4171
4172 for (int i = 0; i < total_units; ++i)
4173 {
4174 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4175
4176 /* We don't want to directly expand a partial CU, because if we
4177 read it with the wrong language, then assertion failures can
4178 be triggered later on. See PR symtab/23010. So, tell
4179 dw2_instantiate_symtab to skip partial CUs -- any important
4180 partial CU will be read via DW_TAG_imported_unit anyway. */
4181 dw2_instantiate_symtab (per_cu, true);
4182 }
4183 }
4184
4185 static void
4186 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4187 const char *fullname)
4188 {
4189 struct dwarf2_per_objfile *dwarf2_per_objfile
4190 = get_dwarf2_per_objfile (objfile);
4191
4192 /* We don't need to consider type units here.
4193 This is only called for examining code, e.g. expand_line_sal.
4194 There can be an order of magnitude (or more) more type units
4195 than comp units, and we avoid them if we can. */
4196
4197 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4198 {
4199 /* We only need to look at symtabs not already expanded. */
4200 if (per_cu->v.quick->compunit_symtab)
4201 continue;
4202
4203 quick_file_names *file_data = dw2_get_file_names (per_cu);
4204 if (file_data == NULL)
4205 continue;
4206
4207 for (int j = 0; j < file_data->num_file_names; ++j)
4208 {
4209 const char *this_fullname = file_data->file_names[j];
4210
4211 if (filename_cmp (this_fullname, fullname) == 0)
4212 {
4213 dw2_instantiate_symtab (per_cu, false);
4214 break;
4215 }
4216 }
4217 }
4218 }
4219
4220 static void
4221 dw2_map_matching_symbols
4222 (struct objfile *objfile,
4223 const lookup_name_info &name, domain_enum domain,
4224 int global,
4225 gdb::function_view<symbol_found_callback_ftype> callback,
4226 symbol_compare_ftype *ordered_compare)
4227 {
4228 /* Currently unimplemented; used for Ada. The function can be called if the
4229 current language is Ada for a non-Ada objfile using GNU index. As Ada
4230 does not look for non-Ada symbols this function should just return. */
4231 }
4232
4233 /* Starting from a search name, return the string that finds the upper
4234 bound of all strings that start with SEARCH_NAME in a sorted name
4235 list. Returns the empty string to indicate that the upper bound is
4236 the end of the list. */
4237
4238 static std::string
4239 make_sort_after_prefix_name (const char *search_name)
4240 {
4241 /* When looking to complete "func", we find the upper bound of all
4242 symbols that start with "func" by looking for where we'd insert
4243 the closest string that would follow "func" in lexicographical
4244 order. Usually, that's "func"-with-last-character-incremented,
4245 i.e. "fund". Mind non-ASCII characters, though. Usually those
4246 will be UTF-8 multi-byte sequences, but we can't be certain.
4247 Especially mind the 0xff character, which is a valid character in
4248 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4249 rule out compilers allowing it in identifiers. Note that
4250 conveniently, strcmp/strcasecmp are specified to compare
4251 characters interpreted as unsigned char. So what we do is treat
4252 the whole string as a base 256 number composed of a sequence of
4253 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4254 to 0, and carries 1 to the following more-significant position.
4255 If the very first character in SEARCH_NAME ends up incremented
4256 and carries/overflows, then the upper bound is the end of the
4257 list. The string after the empty string is also the empty
4258 string.
4259
4260 Some examples of this operation:
4261
4262 SEARCH_NAME => "+1" RESULT
4263
4264 "abc" => "abd"
4265 "ab\xff" => "ac"
4266 "\xff" "a" "\xff" => "\xff" "b"
4267 "\xff" => ""
4268 "\xff\xff" => ""
4269 "" => ""
4270
4271 Then, with these symbols for example:
4272
4273 func
4274 func1
4275 fund
4276
4277 completing "func" looks for symbols between "func" and
4278 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4279 which finds "func" and "func1", but not "fund".
4280
4281 And with:
4282
4283 funcÿ (Latin1 'ÿ' [0xff])
4284 funcÿ1
4285 fund
4286
4287 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4288 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4289
4290 And with:
4291
4292 ÿÿ (Latin1 'ÿ' [0xff])
4293 ÿÿ1
4294
4295 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4296 the end of the list.
4297 */
4298 std::string after = search_name;
4299 while (!after.empty () && (unsigned char) after.back () == 0xff)
4300 after.pop_back ();
4301 if (!after.empty ())
4302 after.back () = (unsigned char) after.back () + 1;
4303 return after;
4304 }
4305
4306 /* See declaration. */
4307
4308 std::pair<std::vector<name_component>::const_iterator,
4309 std::vector<name_component>::const_iterator>
4310 mapped_index_base::find_name_components_bounds
4311 (const lookup_name_info &lookup_name_without_params, language lang) const
4312 {
4313 auto *name_cmp
4314 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4315
4316 const char *lang_name
4317 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4318
4319 /* Comparison function object for lower_bound that matches against a
4320 given symbol name. */
4321 auto lookup_compare_lower = [&] (const name_component &elem,
4322 const char *name)
4323 {
4324 const char *elem_qualified = this->symbol_name_at (elem.idx);
4325 const char *elem_name = elem_qualified + elem.name_offset;
4326 return name_cmp (elem_name, name) < 0;
4327 };
4328
4329 /* Comparison function object for upper_bound that matches against a
4330 given symbol name. */
4331 auto lookup_compare_upper = [&] (const char *name,
4332 const name_component &elem)
4333 {
4334 const char *elem_qualified = this->symbol_name_at (elem.idx);
4335 const char *elem_name = elem_qualified + elem.name_offset;
4336 return name_cmp (name, elem_name) < 0;
4337 };
4338
4339 auto begin = this->name_components.begin ();
4340 auto end = this->name_components.end ();
4341
4342 /* Find the lower bound. */
4343 auto lower = [&] ()
4344 {
4345 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4346 return begin;
4347 else
4348 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4349 } ();
4350
4351 /* Find the upper bound. */
4352 auto upper = [&] ()
4353 {
4354 if (lookup_name_without_params.completion_mode ())
4355 {
4356 /* In completion mode, we want UPPER to point past all
4357 symbols names that have the same prefix. I.e., with
4358 these symbols, and completing "func":
4359
4360 function << lower bound
4361 function1
4362 other_function << upper bound
4363
4364 We find the upper bound by looking for the insertion
4365 point of "func"-with-last-character-incremented,
4366 i.e. "fund". */
4367 std::string after = make_sort_after_prefix_name (lang_name);
4368 if (after.empty ())
4369 return end;
4370 return std::lower_bound (lower, end, after.c_str (),
4371 lookup_compare_lower);
4372 }
4373 else
4374 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4375 } ();
4376
4377 return {lower, upper};
4378 }
4379
4380 /* See declaration. */
4381
4382 void
4383 mapped_index_base::build_name_components ()
4384 {
4385 if (!this->name_components.empty ())
4386 return;
4387
4388 this->name_components_casing = case_sensitivity;
4389 auto *name_cmp
4390 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4391
4392 /* The code below only knows how to break apart components of C++
4393 symbol names (and other languages that use '::' as
4394 namespace/module separator) and Ada symbol names. */
4395 auto count = this->symbol_name_count ();
4396 for (offset_type idx = 0; idx < count; idx++)
4397 {
4398 if (this->symbol_name_slot_invalid (idx))
4399 continue;
4400
4401 const char *name = this->symbol_name_at (idx);
4402
4403 /* Add each name component to the name component table. */
4404 unsigned int previous_len = 0;
4405
4406 if (strstr (name, "::") != nullptr)
4407 {
4408 for (unsigned int current_len = cp_find_first_component (name);
4409 name[current_len] != '\0';
4410 current_len += cp_find_first_component (name + current_len))
4411 {
4412 gdb_assert (name[current_len] == ':');
4413 this->name_components.push_back ({previous_len, idx});
4414 /* Skip the '::'. */
4415 current_len += 2;
4416 previous_len = current_len;
4417 }
4418 }
4419 else
4420 {
4421 /* Handle the Ada encoded (aka mangled) form here. */
4422 for (const char *iter = strstr (name, "__");
4423 iter != nullptr;
4424 iter = strstr (iter, "__"))
4425 {
4426 this->name_components.push_back ({previous_len, idx});
4427 iter += 2;
4428 previous_len = iter - name;
4429 }
4430 }
4431
4432 this->name_components.push_back ({previous_len, idx});
4433 }
4434
4435 /* Sort name_components elements by name. */
4436 auto name_comp_compare = [&] (const name_component &left,
4437 const name_component &right)
4438 {
4439 const char *left_qualified = this->symbol_name_at (left.idx);
4440 const char *right_qualified = this->symbol_name_at (right.idx);
4441
4442 const char *left_name = left_qualified + left.name_offset;
4443 const char *right_name = right_qualified + right.name_offset;
4444
4445 return name_cmp (left_name, right_name) < 0;
4446 };
4447
4448 std::sort (this->name_components.begin (),
4449 this->name_components.end (),
4450 name_comp_compare);
4451 }
4452
4453 /* Helper for dw2_expand_symtabs_matching that works with a
4454 mapped_index_base instead of the containing objfile. This is split
4455 to a separate function in order to be able to unit test the
4456 name_components matching using a mock mapped_index_base. For each
4457 symbol name that matches, calls MATCH_CALLBACK, passing it the
4458 symbol's index in the mapped_index_base symbol table. */
4459
4460 static void
4461 dw2_expand_symtabs_matching_symbol
4462 (mapped_index_base &index,
4463 const lookup_name_info &lookup_name_in,
4464 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4465 enum search_domain kind,
4466 gdb::function_view<bool (offset_type)> match_callback)
4467 {
4468 lookup_name_info lookup_name_without_params
4469 = lookup_name_in.make_ignore_params ();
4470
4471 /* Build the symbol name component sorted vector, if we haven't
4472 yet. */
4473 index.build_name_components ();
4474
4475 /* The same symbol may appear more than once in the range though.
4476 E.g., if we're looking for symbols that complete "w", and we have
4477 a symbol named "w1::w2", we'll find the two name components for
4478 that same symbol in the range. To be sure we only call the
4479 callback once per symbol, we first collect the symbol name
4480 indexes that matched in a temporary vector and ignore
4481 duplicates. */
4482 std::vector<offset_type> matches;
4483
4484 struct name_and_matcher
4485 {
4486 symbol_name_matcher_ftype *matcher;
4487 const std::string &name;
4488
4489 bool operator== (const name_and_matcher &other) const
4490 {
4491 return matcher == other.matcher && name == other.name;
4492 }
4493 };
4494
4495 /* A vector holding all the different symbol name matchers, for all
4496 languages. */
4497 std::vector<name_and_matcher> matchers;
4498
4499 for (int i = 0; i < nr_languages; i++)
4500 {
4501 enum language lang_e = (enum language) i;
4502
4503 const language_defn *lang = language_def (lang_e);
4504 symbol_name_matcher_ftype *name_matcher
4505 = get_symbol_name_matcher (lang, lookup_name_without_params);
4506
4507 name_and_matcher key {
4508 name_matcher,
4509 lookup_name_without_params.language_lookup_name (lang_e)
4510 };
4511
4512 /* Don't insert the same comparison routine more than once.
4513 Note that we do this linear walk. This is not a problem in
4514 practice because the number of supported languages is
4515 low. */
4516 if (std::find (matchers.begin (), matchers.end (), key)
4517 != matchers.end ())
4518 continue;
4519 matchers.push_back (std::move (key));
4520
4521 auto bounds
4522 = index.find_name_components_bounds (lookup_name_without_params,
4523 lang_e);
4524
4525 /* Now for each symbol name in range, check to see if we have a name
4526 match, and if so, call the MATCH_CALLBACK callback. */
4527
4528 for (; bounds.first != bounds.second; ++bounds.first)
4529 {
4530 const char *qualified = index.symbol_name_at (bounds.first->idx);
4531
4532 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4533 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4534 continue;
4535
4536 matches.push_back (bounds.first->idx);
4537 }
4538 }
4539
4540 std::sort (matches.begin (), matches.end ());
4541
4542 /* Finally call the callback, once per match. */
4543 ULONGEST prev = -1;
4544 for (offset_type idx : matches)
4545 {
4546 if (prev != idx)
4547 {
4548 if (!match_callback (idx))
4549 break;
4550 prev = idx;
4551 }
4552 }
4553
4554 /* Above we use a type wider than idx's for 'prev', since 0 and
4555 (offset_type)-1 are both possible values. */
4556 static_assert (sizeof (prev) > sizeof (offset_type), "");
4557 }
4558
4559 #if GDB_SELF_TEST
4560
4561 namespace selftests { namespace dw2_expand_symtabs_matching {
4562
4563 /* A mock .gdb_index/.debug_names-like name index table, enough to
4564 exercise dw2_expand_symtabs_matching_symbol, which works with the
4565 mapped_index_base interface. Builds an index from the symbol list
4566 passed as parameter to the constructor. */
4567 class mock_mapped_index : public mapped_index_base
4568 {
4569 public:
4570 mock_mapped_index (gdb::array_view<const char *> symbols)
4571 : m_symbol_table (symbols)
4572 {}
4573
4574 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4575
4576 /* Return the number of names in the symbol table. */
4577 size_t symbol_name_count () const override
4578 {
4579 return m_symbol_table.size ();
4580 }
4581
4582 /* Get the name of the symbol at IDX in the symbol table. */
4583 const char *symbol_name_at (offset_type idx) const override
4584 {
4585 return m_symbol_table[idx];
4586 }
4587
4588 private:
4589 gdb::array_view<const char *> m_symbol_table;
4590 };
4591
4592 /* Convenience function that converts a NULL pointer to a "<null>"
4593 string, to pass to print routines. */
4594
4595 static const char *
4596 string_or_null (const char *str)
4597 {
4598 return str != NULL ? str : "<null>";
4599 }
4600
4601 /* Check if a lookup_name_info built from
4602 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4603 index. EXPECTED_LIST is the list of expected matches, in expected
4604 matching order. If no match expected, then an empty list is
4605 specified. Returns true on success. On failure prints a warning
4606 indicating the file:line that failed, and returns false. */
4607
4608 static bool
4609 check_match (const char *file, int line,
4610 mock_mapped_index &mock_index,
4611 const char *name, symbol_name_match_type match_type,
4612 bool completion_mode,
4613 std::initializer_list<const char *> expected_list)
4614 {
4615 lookup_name_info lookup_name (name, match_type, completion_mode);
4616
4617 bool matched = true;
4618
4619 auto mismatch = [&] (const char *expected_str,
4620 const char *got)
4621 {
4622 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4623 "expected=\"%s\", got=\"%s\"\n"),
4624 file, line,
4625 (match_type == symbol_name_match_type::FULL
4626 ? "FULL" : "WILD"),
4627 name, string_or_null (expected_str), string_or_null (got));
4628 matched = false;
4629 };
4630
4631 auto expected_it = expected_list.begin ();
4632 auto expected_end = expected_list.end ();
4633
4634 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4635 NULL, ALL_DOMAIN,
4636 [&] (offset_type idx)
4637 {
4638 const char *matched_name = mock_index.symbol_name_at (idx);
4639 const char *expected_str
4640 = expected_it == expected_end ? NULL : *expected_it++;
4641
4642 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4643 mismatch (expected_str, matched_name);
4644 return true;
4645 });
4646
4647 const char *expected_str
4648 = expected_it == expected_end ? NULL : *expected_it++;
4649 if (expected_str != NULL)
4650 mismatch (expected_str, NULL);
4651
4652 return matched;
4653 }
4654
4655 /* The symbols added to the mock mapped_index for testing (in
4656 canonical form). */
4657 static const char *test_symbols[] = {
4658 "function",
4659 "std::bar",
4660 "std::zfunction",
4661 "std::zfunction2",
4662 "w1::w2",
4663 "ns::foo<char*>",
4664 "ns::foo<int>",
4665 "ns::foo<long>",
4666 "ns2::tmpl<int>::foo2",
4667 "(anonymous namespace)::A::B::C",
4668
4669 /* These are used to check that the increment-last-char in the
4670 matching algorithm for completion doesn't match "t1_fund" when
4671 completing "t1_func". */
4672 "t1_func",
4673 "t1_func1",
4674 "t1_fund",
4675 "t1_fund1",
4676
4677 /* A UTF-8 name with multi-byte sequences to make sure that
4678 cp-name-parser understands this as a single identifier ("função"
4679 is "function" in PT). */
4680 u8"u8função",
4681
4682 /* \377 (0xff) is Latin1 'ÿ'. */
4683 "yfunc\377",
4684
4685 /* \377 (0xff) is Latin1 'ÿ'. */
4686 "\377",
4687 "\377\377123",
4688
4689 /* A name with all sorts of complications. Starts with "z" to make
4690 it easier for the completion tests below. */
4691 #define Z_SYM_NAME \
4692 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4693 "::tuple<(anonymous namespace)::ui*, " \
4694 "std::default_delete<(anonymous namespace)::ui>, void>"
4695
4696 Z_SYM_NAME
4697 };
4698
4699 /* Returns true if the mapped_index_base::find_name_component_bounds
4700 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4701 in completion mode. */
4702
4703 static bool
4704 check_find_bounds_finds (mapped_index_base &index,
4705 const char *search_name,
4706 gdb::array_view<const char *> expected_syms)
4707 {
4708 lookup_name_info lookup_name (search_name,
4709 symbol_name_match_type::FULL, true);
4710
4711 auto bounds = index.find_name_components_bounds (lookup_name,
4712 language_cplus);
4713
4714 size_t distance = std::distance (bounds.first, bounds.second);
4715 if (distance != expected_syms.size ())
4716 return false;
4717
4718 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4719 {
4720 auto nc_elem = bounds.first + exp_elem;
4721 const char *qualified = index.symbol_name_at (nc_elem->idx);
4722 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4723 return false;
4724 }
4725
4726 return true;
4727 }
4728
4729 /* Test the lower-level mapped_index::find_name_component_bounds
4730 method. */
4731
4732 static void
4733 test_mapped_index_find_name_component_bounds ()
4734 {
4735 mock_mapped_index mock_index (test_symbols);
4736
4737 mock_index.build_name_components ();
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method in completion mode. */
4741 {
4742 static const char *expected_syms[] = {
4743 "t1_func",
4744 "t1_func1",
4745 };
4746
4747 SELF_CHECK (check_find_bounds_finds (mock_index,
4748 "t1_func", expected_syms));
4749 }
4750
4751 /* Check that the increment-last-char in the name matching algorithm
4752 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4753 {
4754 static const char *expected_syms1[] = {
4755 "\377",
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377", expected_syms1));
4760
4761 static const char *expected_syms2[] = {
4762 "\377\377123",
4763 };
4764 SELF_CHECK (check_find_bounds_finds (mock_index,
4765 "\377\377", expected_syms2));
4766 }
4767 }
4768
4769 /* Test dw2_expand_symtabs_matching_symbol. */
4770
4771 static void
4772 test_dw2_expand_symtabs_matching_symbol ()
4773 {
4774 mock_mapped_index mock_index (test_symbols);
4775
4776 /* We let all tests run until the end even if some fails, for debug
4777 convenience. */
4778 bool any_mismatch = false;
4779
4780 /* Create the expected symbols list (an initializer_list). Needed
4781 because lists have commas, and we need to pass them to CHECK,
4782 which is a macro. */
4783 #define EXPECT(...) { __VA_ARGS__ }
4784
4785 /* Wrapper for check_match that passes down the current
4786 __FILE__/__LINE__. */
4787 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4788 any_mismatch |= !check_match (__FILE__, __LINE__, \
4789 mock_index, \
4790 NAME, MATCH_TYPE, COMPLETION_MODE, \
4791 EXPECTED_LIST)
4792
4793 /* Identity checks. */
4794 for (const char *sym : test_symbols)
4795 {
4796 /* Should be able to match all existing symbols. */
4797 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters. */
4802 std::string with_params = std::string (sym) + "(int)";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* Should be able to match all existing symbols with
4807 parameters and qualifiers. */
4808 with_params = std::string (sym) + " ( int ) const";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 EXPECT (sym));
4811
4812 /* This should really find sym, but cp-name-parser.y doesn't
4813 know about lvalue/rvalue qualifiers yet. */
4814 with_params = std::string (sym) + " ( int ) &&";
4815 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4816 {});
4817 }
4818
4819 /* Check that the name matching algorithm for completion doesn't get
4820 confused with Latin1 'ÿ' / 0xff. */
4821 {
4822 static const char str[] = "\377";
4823 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4824 EXPECT ("\377", "\377\377123"));
4825 }
4826
4827 /* Check that the increment-last-char in the matching algorithm for
4828 completion doesn't match "t1_fund" when completing "t1_func". */
4829 {
4830 static const char str[] = "t1_func";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("t1_func", "t1_func1"));
4833 }
4834
4835 /* Check that completion mode works at each prefix of the expected
4836 symbol name. */
4837 {
4838 static const char str[] = "function(int)";
4839 size_t len = strlen (str);
4840 std::string lookup;
4841
4842 for (size_t i = 1; i < len; i++)
4843 {
4844 lookup.assign (str, i);
4845 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4846 EXPECT ("function"));
4847 }
4848 }
4849
4850 /* While "w" is a prefix of both components, the match function
4851 should still only be called once. */
4852 {
4853 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4854 EXPECT ("w1::w2"));
4855 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4856 EXPECT ("w1::w2"));
4857 }
4858
4859 /* Same, with a "complicated" symbol. */
4860 {
4861 static const char str[] = Z_SYM_NAME;
4862 size_t len = strlen (str);
4863 std::string lookup;
4864
4865 for (size_t i = 1; i < len; i++)
4866 {
4867 lookup.assign (str, i);
4868 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4869 EXPECT (Z_SYM_NAME));
4870 }
4871 }
4872
4873 /* In FULL mode, an incomplete symbol doesn't match. */
4874 {
4875 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4876 {});
4877 }
4878
4879 /* A complete symbol with parameters matches any overload, since the
4880 index has no overload info. */
4881 {
4882 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4883 EXPECT ("std::zfunction", "std::zfunction2"));
4884 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4885 EXPECT ("std::zfunction", "std::zfunction2"));
4886 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4887 EXPECT ("std::zfunction", "std::zfunction2"));
4888 }
4889
4890 /* Check that whitespace is ignored appropriately. A symbol with a
4891 template argument list. */
4892 {
4893 static const char expected[] = "ns::foo<int>";
4894 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4895 EXPECT (expected));
4896 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4897 EXPECT (expected));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list that includes a pointer. */
4902 {
4903 static const char expected[] = "ns::foo<char*>";
4904 /* Try both completion and non-completion modes. */
4905 static const bool completion_mode[2] = {false, true};
4906 for (size_t i = 0; i < 2; i++)
4907 {
4908 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4909 completion_mode[i], EXPECT (expected));
4910 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4911 completion_mode[i], EXPECT (expected));
4912
4913 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4914 completion_mode[i], EXPECT (expected));
4915 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4916 completion_mode[i], EXPECT (expected));
4917 }
4918 }
4919
4920 {
4921 /* Check method qualifiers are ignored. */
4922 static const char expected[] = "ns::foo<char*>";
4923 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4924 symbol_name_match_type::FULL, true, EXPECT (expected));
4925 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4926 symbol_name_match_type::FULL, true, EXPECT (expected));
4927 CHECK_MATCH ("foo < char * > ( int ) const",
4928 symbol_name_match_type::WILD, true, EXPECT (expected));
4929 CHECK_MATCH ("foo < char * > ( int ) &&",
4930 symbol_name_match_type::WILD, true, EXPECT (expected));
4931 }
4932
4933 /* Test lookup names that don't match anything. */
4934 {
4935 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4936 {});
4937
4938 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4939 {});
4940 }
4941
4942 /* Some wild matching tests, exercising "(anonymous namespace)",
4943 which should not be confused with a parameter list. */
4944 {
4945 static const char *syms[] = {
4946 "A::B::C",
4947 "B::C",
4948 "C",
4949 "A :: B :: C ( int )",
4950 "B :: C ( int )",
4951 "C ( int )",
4952 };
4953
4954 for (const char *s : syms)
4955 {
4956 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4957 EXPECT ("(anonymous namespace)::A::B::C"));
4958 }
4959 }
4960
4961 {
4962 static const char expected[] = "ns2::tmpl<int>::foo2";
4963 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4964 EXPECT (expected));
4965 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4966 EXPECT (expected));
4967 }
4968
4969 SELF_CHECK (!any_mismatch);
4970
4971 #undef EXPECT
4972 #undef CHECK_MATCH
4973 }
4974
4975 static void
4976 run_test ()
4977 {
4978 test_mapped_index_find_name_component_bounds ();
4979 test_dw2_expand_symtabs_matching_symbol ();
4980 }
4981
4982 }} // namespace selftests::dw2_expand_symtabs_matching
4983
4984 #endif /* GDB_SELF_TEST */
4985
4986 /* If FILE_MATCHER is NULL or if PER_CU has
4987 dwarf2_per_cu_quick_data::MARK set (see
4988 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4989 EXPANSION_NOTIFY on it. */
4990
4991 static void
4992 dw2_expand_symtabs_matching_one
4993 (struct dwarf2_per_cu_data *per_cu,
4994 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4995 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4996 {
4997 if (file_matcher == NULL || per_cu->v.quick->mark)
4998 {
4999 bool symtab_was_null
5000 = (per_cu->v.quick->compunit_symtab == NULL);
5001
5002 dw2_instantiate_symtab (per_cu, false);
5003
5004 if (expansion_notify != NULL
5005 && symtab_was_null
5006 && per_cu->v.quick->compunit_symtab != NULL)
5007 expansion_notify (per_cu->v.quick->compunit_symtab);
5008 }
5009 }
5010
5011 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5012 matched, to expand corresponding CUs that were marked. IDX is the
5013 index of the symbol name that matched. */
5014
5015 static void
5016 dw2_expand_marked_cus
5017 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5018 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5019 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5020 search_domain kind)
5021 {
5022 offset_type *vec, vec_len, vec_idx;
5023 bool global_seen = false;
5024 mapped_index &index = *dwarf2_per_objfile->index_table;
5025
5026 vec = (offset_type *) (index.constant_pool
5027 + MAYBE_SWAP (index.symbol_table[idx].vec));
5028 vec_len = MAYBE_SWAP (vec[0]);
5029 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5030 {
5031 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5032 /* This value is only valid for index versions >= 7. */
5033 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5034 gdb_index_symbol_kind symbol_kind =
5035 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5036 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5037 /* Only check the symbol attributes if they're present.
5038 Indices prior to version 7 don't record them,
5039 and indices >= 7 may elide them for certain symbols
5040 (gold does this). */
5041 int attrs_valid =
5042 (index.version >= 7
5043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5044
5045 /* Work around gold/15646. */
5046 if (attrs_valid)
5047 {
5048 if (!is_static && global_seen)
5049 continue;
5050 if (!is_static)
5051 global_seen = true;
5052 }
5053
5054 /* Only check the symbol's kind if it has one. */
5055 if (attrs_valid)
5056 {
5057 switch (kind)
5058 {
5059 case VARIABLES_DOMAIN:
5060 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5061 continue;
5062 break;
5063 case FUNCTIONS_DOMAIN:
5064 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5065 continue;
5066 break;
5067 case TYPES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5069 continue;
5070 break;
5071 case MODULES_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
5073 continue;
5074 break;
5075 default:
5076 break;
5077 }
5078 }
5079
5080 /* Don't crash on bad data. */
5081 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5082 + dwarf2_per_objfile->all_type_units.size ()))
5083 {
5084 complaint (_(".gdb_index entry has bad CU index"
5085 " [in module %s]"),
5086 objfile_name (dwarf2_per_objfile->objfile));
5087 continue;
5088 }
5089
5090 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5091 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5092 expansion_notify);
5093 }
5094 }
5095
5096 /* If FILE_MATCHER is non-NULL, set all the
5097 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5098 that match FILE_MATCHER. */
5099
5100 static void
5101 dw_expand_symtabs_matching_file_matcher
5102 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5103 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5104 {
5105 if (file_matcher == NULL)
5106 return;
5107
5108 objfile *const objfile = dwarf2_per_objfile->objfile;
5109
5110 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5111 htab_eq_pointer,
5112 NULL, xcalloc, xfree));
5113 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5114 htab_eq_pointer,
5115 NULL, xcalloc, xfree));
5116
5117 /* The rule is CUs specify all the files, including those used by
5118 any TU, so there's no need to scan TUs here. */
5119
5120 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5121 {
5122 QUIT;
5123
5124 per_cu->v.quick->mark = 0;
5125
5126 /* We only need to look at symtabs not already expanded. */
5127 if (per_cu->v.quick->compunit_symtab)
5128 continue;
5129
5130 quick_file_names *file_data = dw2_get_file_names (per_cu);
5131 if (file_data == NULL)
5132 continue;
5133
5134 if (htab_find (visited_not_found.get (), file_data) != NULL)
5135 continue;
5136 else if (htab_find (visited_found.get (), file_data) != NULL)
5137 {
5138 per_cu->v.quick->mark = 1;
5139 continue;
5140 }
5141
5142 for (int j = 0; j < file_data->num_file_names; ++j)
5143 {
5144 const char *this_real_name;
5145
5146 if (file_matcher (file_data->file_names[j], false))
5147 {
5148 per_cu->v.quick->mark = 1;
5149 break;
5150 }
5151
5152 /* Before we invoke realpath, which can get expensive when many
5153 files are involved, do a quick comparison of the basenames. */
5154 if (!basenames_may_differ
5155 && !file_matcher (lbasename (file_data->file_names[j]),
5156 true))
5157 continue;
5158
5159 this_real_name = dw2_get_real_path (objfile, file_data, j);
5160 if (file_matcher (this_real_name, false))
5161 {
5162 per_cu->v.quick->mark = 1;
5163 break;
5164 }
5165 }
5166
5167 void **slot = htab_find_slot (per_cu->v.quick->mark
5168 ? visited_found.get ()
5169 : visited_not_found.get (),
5170 file_data, INSERT);
5171 *slot = file_data;
5172 }
5173 }
5174
5175 static void
5176 dw2_expand_symtabs_matching
5177 (struct objfile *objfile,
5178 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5179 const lookup_name_info &lookup_name,
5180 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5181 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5182 enum search_domain kind)
5183 {
5184 struct dwarf2_per_objfile *dwarf2_per_objfile
5185 = get_dwarf2_per_objfile (objfile);
5186
5187 /* index_table is NULL if OBJF_READNOW. */
5188 if (!dwarf2_per_objfile->index_table)
5189 return;
5190
5191 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5192
5193 mapped_index &index = *dwarf2_per_objfile->index_table;
5194
5195 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5196 symbol_matcher,
5197 kind, [&] (offset_type idx)
5198 {
5199 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5200 expansion_notify, kind);
5201 return true;
5202 });
5203 }
5204
5205 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5206 symtab. */
5207
5208 static struct compunit_symtab *
5209 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5210 CORE_ADDR pc)
5211 {
5212 int i;
5213
5214 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5215 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5216 return cust;
5217
5218 if (cust->includes == NULL)
5219 return NULL;
5220
5221 for (i = 0; cust->includes[i]; ++i)
5222 {
5223 struct compunit_symtab *s = cust->includes[i];
5224
5225 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5226 if (s != NULL)
5227 return s;
5228 }
5229
5230 return NULL;
5231 }
5232
5233 static struct compunit_symtab *
5234 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5235 struct bound_minimal_symbol msymbol,
5236 CORE_ADDR pc,
5237 struct obj_section *section,
5238 int warn_if_readin)
5239 {
5240 struct dwarf2_per_cu_data *data;
5241 struct compunit_symtab *result;
5242
5243 if (!objfile->partial_symtabs->psymtabs_addrmap)
5244 return NULL;
5245
5246 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5247 SECT_OFF_TEXT (objfile));
5248 data = (struct dwarf2_per_cu_data *) addrmap_find
5249 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5250 if (!data)
5251 return NULL;
5252
5253 if (warn_if_readin && data->v.quick->compunit_symtab)
5254 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5255 paddress (get_objfile_arch (objfile), pc));
5256
5257 result
5258 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5259 false),
5260 pc);
5261 gdb_assert (result != NULL);
5262 return result;
5263 }
5264
5265 static void
5266 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5267 void *data, int need_fullname)
5268 {
5269 struct dwarf2_per_objfile *dwarf2_per_objfile
5270 = get_dwarf2_per_objfile (objfile);
5271
5272 if (!dwarf2_per_objfile->filenames_cache)
5273 {
5274 dwarf2_per_objfile->filenames_cache.emplace ();
5275
5276 htab_up visited (htab_create_alloc (10,
5277 htab_hash_pointer, htab_eq_pointer,
5278 NULL, xcalloc, xfree));
5279
5280 /* The rule is CUs specify all the files, including those used
5281 by any TU, so there's no need to scan TUs here. We can
5282 ignore file names coming from already-expanded CUs. */
5283
5284 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5285 {
5286 if (per_cu->v.quick->compunit_symtab)
5287 {
5288 void **slot = htab_find_slot (visited.get (),
5289 per_cu->v.quick->file_names,
5290 INSERT);
5291
5292 *slot = per_cu->v.quick->file_names;
5293 }
5294 }
5295
5296 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5297 {
5298 /* We only need to look at symtabs not already expanded. */
5299 if (per_cu->v.quick->compunit_symtab)
5300 continue;
5301
5302 quick_file_names *file_data = dw2_get_file_names (per_cu);
5303 if (file_data == NULL)
5304 continue;
5305
5306 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5307 if (*slot)
5308 {
5309 /* Already visited. */
5310 continue;
5311 }
5312 *slot = file_data;
5313
5314 for (int j = 0; j < file_data->num_file_names; ++j)
5315 {
5316 const char *filename = file_data->file_names[j];
5317 dwarf2_per_objfile->filenames_cache->seen (filename);
5318 }
5319 }
5320 }
5321
5322 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5323 {
5324 gdb::unique_xmalloc_ptr<char> this_real_name;
5325
5326 if (need_fullname)
5327 this_real_name = gdb_realpath (filename);
5328 (*fun) (filename, this_real_name.get (), data);
5329 });
5330 }
5331
5332 static int
5333 dw2_has_symbols (struct objfile *objfile)
5334 {
5335 return 1;
5336 }
5337
5338 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5339 {
5340 dw2_has_symbols,
5341 dw2_find_last_source_symtab,
5342 dw2_forget_cached_source_info,
5343 dw2_map_symtabs_matching_filename,
5344 dw2_lookup_symbol,
5345 dw2_print_stats,
5346 dw2_dump,
5347 dw2_expand_symtabs_for_function,
5348 dw2_expand_all_symtabs,
5349 dw2_expand_symtabs_with_fullname,
5350 dw2_map_matching_symbols,
5351 dw2_expand_symtabs_matching,
5352 dw2_find_pc_sect_compunit_symtab,
5353 NULL,
5354 dw2_map_symbol_filenames
5355 };
5356
5357 /* DWARF-5 debug_names reader. */
5358
5359 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5360 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5361
5362 /* A helper function that reads the .debug_names section in SECTION
5363 and fills in MAP. FILENAME is the name of the file containing the
5364 section; it is used for error reporting.
5365
5366 Returns true if all went well, false otherwise. */
5367
5368 static bool
5369 read_debug_names_from_section (struct objfile *objfile,
5370 const char *filename,
5371 struct dwarf2_section_info *section,
5372 mapped_debug_names &map)
5373 {
5374 if (dwarf2_section_empty_p (section))
5375 return false;
5376
5377 /* Older elfutils strip versions could keep the section in the main
5378 executable while splitting it for the separate debug info file. */
5379 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5380 return false;
5381
5382 dwarf2_read_section (objfile, section);
5383
5384 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5385
5386 const gdb_byte *addr = section->buffer;
5387
5388 bfd *const abfd = get_section_bfd_owner (section);
5389
5390 unsigned int bytes_read;
5391 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5392 addr += bytes_read;
5393
5394 map.dwarf5_is_dwarf64 = bytes_read != 4;
5395 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5396 if (bytes_read + length != section->size)
5397 {
5398 /* There may be multiple per-CU indices. */
5399 warning (_("Section .debug_names in %s length %s does not match "
5400 "section length %s, ignoring .debug_names."),
5401 filename, plongest (bytes_read + length),
5402 pulongest (section->size));
5403 return false;
5404 }
5405
5406 /* The version number. */
5407 uint16_t version = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (version != 5)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported version %d, "
5412 "ignoring .debug_names."),
5413 filename, version);
5414 return false;
5415 }
5416
5417 /* Padding. */
5418 uint16_t padding = read_2_bytes (abfd, addr);
5419 addr += 2;
5420 if (padding != 0)
5421 {
5422 warning (_("Section .debug_names in %s has unsupported padding %d, "
5423 "ignoring .debug_names."),
5424 filename, padding);
5425 return false;
5426 }
5427
5428 /* comp_unit_count - The number of CUs in the CU list. */
5429 map.cu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* local_type_unit_count - The number of TUs in the local TU
5433 list. */
5434 map.tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* foreign_type_unit_count - The number of TUs in the foreign TU
5438 list. */
5439 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441 if (foreign_tu_count != 0)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5444 "ignoring .debug_names."),
5445 filename, static_cast<unsigned long> (foreign_tu_count));
5446 return false;
5447 }
5448
5449 /* bucket_count - The number of hash buckets in the hash lookup
5450 table. */
5451 map.bucket_count = read_4_bytes (abfd, addr);
5452 addr += 4;
5453
5454 /* name_count - The number of unique names in the index. */
5455 map.name_count = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* abbrev_table_size - The size in bytes of the abbreviations
5459 table. */
5460 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* augmentation_string_size - The size in bytes of the augmentation
5464 string. This value is rounded up to a multiple of 4. */
5465 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467 map.augmentation_is_gdb = ((augmentation_string_size
5468 == sizeof (dwarf5_augmentation))
5469 && memcmp (addr, dwarf5_augmentation,
5470 sizeof (dwarf5_augmentation)) == 0);
5471 augmentation_string_size += (-augmentation_string_size) & 3;
5472 addr += augmentation_string_size;
5473
5474 /* List of CUs */
5475 map.cu_table_reordered = addr;
5476 addr += map.cu_count * map.offset_size;
5477
5478 /* List of Local TUs */
5479 map.tu_table_reordered = addr;
5480 addr += map.tu_count * map.offset_size;
5481
5482 /* Hash Lookup Table */
5483 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5484 addr += map.bucket_count * 4;
5485 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5486 addr += map.name_count * 4;
5487
5488 /* Name Table */
5489 map.name_table_string_offs_reordered = addr;
5490 addr += map.name_count * map.offset_size;
5491 map.name_table_entry_offs_reordered = addr;
5492 addr += map.name_count * map.offset_size;
5493
5494 const gdb_byte *abbrev_table_start = addr;
5495 for (;;)
5496 {
5497 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5498 addr += bytes_read;
5499 if (index_num == 0)
5500 break;
5501
5502 const auto insertpair
5503 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5504 if (!insertpair.second)
5505 {
5506 warning (_("Section .debug_names in %s has duplicate index %s, "
5507 "ignoring .debug_names."),
5508 filename, pulongest (index_num));
5509 return false;
5510 }
5511 mapped_debug_names::index_val &indexval = insertpair.first->second;
5512 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5513 addr += bytes_read;
5514
5515 for (;;)
5516 {
5517 mapped_debug_names::index_val::attr attr;
5518 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5519 addr += bytes_read;
5520 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5521 addr += bytes_read;
5522 if (attr.form == DW_FORM_implicit_const)
5523 {
5524 attr.implicit_const = read_signed_leb128 (abfd, addr,
5525 &bytes_read);
5526 addr += bytes_read;
5527 }
5528 if (attr.dw_idx == 0 && attr.form == 0)
5529 break;
5530 indexval.attr_vec.push_back (std::move (attr));
5531 }
5532 }
5533 if (addr != abbrev_table_start + abbrev_table_size)
5534 {
5535 warning (_("Section .debug_names in %s has abbreviation_table "
5536 "of size %s vs. written as %u, ignoring .debug_names."),
5537 filename, plongest (addr - abbrev_table_start),
5538 abbrev_table_size);
5539 return false;
5540 }
5541 map.entry_pool = addr;
5542
5543 return true;
5544 }
5545
5546 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5547 list. */
5548
5549 static void
5550 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5551 const mapped_debug_names &map,
5552 dwarf2_section_info &section,
5553 bool is_dwz)
5554 {
5555 sect_offset sect_off_prev;
5556 for (uint32_t i = 0; i <= map.cu_count; ++i)
5557 {
5558 sect_offset sect_off_next;
5559 if (i < map.cu_count)
5560 {
5561 sect_off_next
5562 = (sect_offset) (extract_unsigned_integer
5563 (map.cu_table_reordered + i * map.offset_size,
5564 map.offset_size,
5565 map.dwarf5_byte_order));
5566 }
5567 else
5568 sect_off_next = (sect_offset) section.size;
5569 if (i >= 1)
5570 {
5571 const ULONGEST length = sect_off_next - sect_off_prev;
5572 dwarf2_per_cu_data *per_cu
5573 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5574 sect_off_prev, length);
5575 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5576 }
5577 sect_off_prev = sect_off_next;
5578 }
5579 }
5580
5581 /* Read the CU list from the mapped index, and use it to create all
5582 the CU objects for this dwarf2_per_objfile. */
5583
5584 static void
5585 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5586 const mapped_debug_names &map,
5587 const mapped_debug_names &dwz_map)
5588 {
5589 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5590 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5591
5592 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5593 dwarf2_per_objfile->info,
5594 false /* is_dwz */);
5595
5596 if (dwz_map.cu_count == 0)
5597 return;
5598
5599 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5600 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5601 true /* is_dwz */);
5602 }
5603
5604 /* Read .debug_names. If everything went ok, initialize the "quick"
5605 elements of all the CUs and return true. Otherwise, return false. */
5606
5607 static bool
5608 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5609 {
5610 std::unique_ptr<mapped_debug_names> map
5611 (new mapped_debug_names (dwarf2_per_objfile));
5612 mapped_debug_names dwz_map (dwarf2_per_objfile);
5613 struct objfile *objfile = dwarf2_per_objfile->objfile;
5614
5615 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5616 &dwarf2_per_objfile->debug_names,
5617 *map))
5618 return false;
5619
5620 /* Don't use the index if it's empty. */
5621 if (map->name_count == 0)
5622 return false;
5623
5624 /* If there is a .dwz file, read it so we can get its CU list as
5625 well. */
5626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5627 if (dwz != NULL)
5628 {
5629 if (!read_debug_names_from_section (objfile,
5630 bfd_get_filename (dwz->dwz_bfd.get ()),
5631 &dwz->debug_names, dwz_map))
5632 {
5633 warning (_("could not read '.debug_names' section from %s; skipping"),
5634 bfd_get_filename (dwz->dwz_bfd.get ()));
5635 return false;
5636 }
5637 }
5638
5639 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5640
5641 if (map->tu_count != 0)
5642 {
5643 /* We can only handle a single .debug_types when we have an
5644 index. */
5645 if (dwarf2_per_objfile->types.size () != 1)
5646 return false;
5647
5648 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5649
5650 create_signatured_type_table_from_debug_names
5651 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5652 }
5653
5654 create_addrmap_from_aranges (dwarf2_per_objfile,
5655 &dwarf2_per_objfile->debug_aranges);
5656
5657 dwarf2_per_objfile->debug_names_table = std::move (map);
5658 dwarf2_per_objfile->using_index = 1;
5659 dwarf2_per_objfile->quick_file_names_table =
5660 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5661
5662 return true;
5663 }
5664
5665 /* Type used to manage iterating over all CUs looking for a symbol for
5666 .debug_names. */
5667
5668 class dw2_debug_names_iterator
5669 {
5670 public:
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 gdb::optional<block_enum> block_index,
5673 domain_enum domain,
5674 const char *name)
5675 : m_map (map), m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 block_enum block_index, domain_enum domain,
5688 uint32_t namei)
5689 : m_map (map), m_block_index (block_index), m_domain (domain),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If set, only look for symbols that match that block. Valid values are
5706 GLOBAL_BLOCK and STATIC_BLOCK. */
5707 const gdb::optional<block_enum> m_block_index;
5708
5709 /* The kind of symbol we're looking for. */
5710 const domain_enum m_domain = UNDEF_DOMAIN;
5711 const search_domain m_search = ALL_DOMAIN;
5712
5713 /* The list of CUs from the index entry of the symbol, or NULL if
5714 not found. */
5715 const gdb_byte *m_addr;
5716 };
5717
5718 const char *
5719 mapped_debug_names::namei_to_name (uint32_t namei) const
5720 {
5721 const ULONGEST namei_string_offs
5722 = extract_unsigned_integer ((name_table_string_offs_reordered
5723 + namei * offset_size),
5724 offset_size,
5725 dwarf5_byte_order);
5726 return read_indirect_string_at_offset
5727 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5728 }
5729
5730 /* Find a slot in .debug_names for the object named NAME. If NAME is
5731 found, return pointer to its pool data. If NAME cannot be found,
5732 return NULL. */
5733
5734 const gdb_byte *
5735 dw2_debug_names_iterator::find_vec_in_debug_names
5736 (const mapped_debug_names &map, const char *name)
5737 {
5738 int (*cmp) (const char *, const char *);
5739
5740 gdb::unique_xmalloc_ptr<char> without_params;
5741 if (current_language->la_language == language_cplus
5742 || current_language->la_language == language_fortran
5743 || current_language->la_language == language_d)
5744 {
5745 /* NAME is already canonical. Drop any qualifiers as
5746 .debug_names does not contain any. */
5747
5748 if (strchr (name, '(') != NULL)
5749 {
5750 without_params = cp_remove_params (name);
5751 if (without_params != NULL)
5752 name = without_params.get ();
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5770 "[in module %s]"),
5771 namei, map.name_count,
5772 objfile_name (map.dwarf2_per_objfile->objfile));
5773 return NULL;
5774 }
5775
5776 for (;;)
5777 {
5778 const uint32_t namei_full_hash
5779 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5780 (map.hash_table_reordered + namei), 4,
5781 map.dwarf5_byte_order);
5782 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5783 return NULL;
5784
5785 if (full_hash == namei_full_hash)
5786 {
5787 const char *const namei_string = map.namei_to_name (namei);
5788
5789 #if 0 /* An expensive sanity check. */
5790 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5791 {
5792 complaint (_("Wrong .debug_names hash for string at index %u "
5793 "[in module %s]"),
5794 namei, objfile_name (dwarf2_per_objfile->objfile));
5795 return NULL;
5796 }
5797 #endif
5798
5799 if (cmp (namei_string, name) == 0)
5800 {
5801 const ULONGEST namei_entry_offs
5802 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5803 + namei * map.offset_size),
5804 map.offset_size, map.dwarf5_byte_order);
5805 return map.entry_pool + namei_entry_offs;
5806 }
5807 }
5808
5809 ++namei;
5810 if (namei >= map.name_count)
5811 return NULL;
5812 }
5813 }
5814
5815 const gdb_byte *
5816 dw2_debug_names_iterator::find_vec_in_debug_names
5817 (const mapped_debug_names &map, uint32_t namei)
5818 {
5819 if (namei >= map.name_count)
5820 {
5821 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5822 "[in module %s]"),
5823 namei, map.name_count,
5824 objfile_name (map.dwarf2_per_objfile->objfile));
5825 return NULL;
5826 }
5827
5828 const ULONGEST namei_entry_offs
5829 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5830 + namei * map.offset_size),
5831 map.offset_size, map.dwarf5_byte_order);
5832 return map.entry_pool + namei_entry_offs;
5833 }
5834
5835 /* See dw2_debug_names_iterator. */
5836
5837 dwarf2_per_cu_data *
5838 dw2_debug_names_iterator::next ()
5839 {
5840 if (m_addr == NULL)
5841 return NULL;
5842
5843 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5844 struct objfile *objfile = dwarf2_per_objfile->objfile;
5845 bfd *const abfd = objfile->obfd;
5846
5847 again:
5848
5849 unsigned int bytes_read;
5850 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5851 m_addr += bytes_read;
5852 if (abbrev == 0)
5853 return NULL;
5854
5855 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5856 if (indexval_it == m_map.abbrev_map.cend ())
5857 {
5858 complaint (_("Wrong .debug_names undefined abbrev code %s "
5859 "[in module %s]"),
5860 pulongest (abbrev), objfile_name (objfile));
5861 return NULL;
5862 }
5863 const mapped_debug_names::index_val &indexval = indexval_it->second;
5864 enum class symbol_linkage {
5865 unknown,
5866 static_,
5867 extern_,
5868 } symbol_linkage_ = symbol_linkage::unknown;
5869 dwarf2_per_cu_data *per_cu = NULL;
5870 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5871 {
5872 ULONGEST ull;
5873 switch (attr.form)
5874 {
5875 case DW_FORM_implicit_const:
5876 ull = attr.implicit_const;
5877 break;
5878 case DW_FORM_flag_present:
5879 ull = 1;
5880 break;
5881 case DW_FORM_udata:
5882 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5883 m_addr += bytes_read;
5884 break;
5885 default:
5886 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5887 dwarf_form_name (attr.form),
5888 objfile_name (objfile));
5889 return NULL;
5890 }
5891 switch (attr.dw_idx)
5892 {
5893 case DW_IDX_compile_unit:
5894 /* Don't crash on bad data. */
5895 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5896 {
5897 complaint (_(".debug_names entry has bad CU index %s"
5898 " [in module %s]"),
5899 pulongest (ull),
5900 objfile_name (dwarf2_per_objfile->objfile));
5901 continue;
5902 }
5903 per_cu = dwarf2_per_objfile->get_cutu (ull);
5904 break;
5905 case DW_IDX_type_unit:
5906 /* Don't crash on bad data. */
5907 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5908 {
5909 complaint (_(".debug_names entry has bad TU index %s"
5910 " [in module %s]"),
5911 pulongest (ull),
5912 objfile_name (dwarf2_per_objfile->objfile));
5913 continue;
5914 }
5915 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5916 break;
5917 case DW_IDX_GNU_internal:
5918 if (!m_map.augmentation_is_gdb)
5919 break;
5920 symbol_linkage_ = symbol_linkage::static_;
5921 break;
5922 case DW_IDX_GNU_external:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 symbol_linkage_ = symbol_linkage::extern_;
5926 break;
5927 }
5928 }
5929
5930 /* Skip if already read in. */
5931 if (per_cu->v.quick->compunit_symtab)
5932 goto again;
5933
5934 /* Check static vs global. */
5935 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5936 {
5937 const bool want_static = *m_block_index == STATIC_BLOCK;
5938 const bool symbol_is_static =
5939 symbol_linkage_ == symbol_linkage::static_;
5940 if (want_static != symbol_is_static)
5941 goto again;
5942 }
5943
5944 /* Match dw2_symtab_iter_next, symbol_kind
5945 and debug_names::psymbol_tag. */
5946 switch (m_domain)
5947 {
5948 case VAR_DOMAIN:
5949 switch (indexval.dwarf_tag)
5950 {
5951 case DW_TAG_variable:
5952 case DW_TAG_subprogram:
5953 /* Some types are also in VAR_DOMAIN. */
5954 case DW_TAG_typedef:
5955 case DW_TAG_structure_type:
5956 break;
5957 default:
5958 goto again;
5959 }
5960 break;
5961 case STRUCT_DOMAIN:
5962 switch (indexval.dwarf_tag)
5963 {
5964 case DW_TAG_typedef:
5965 case DW_TAG_structure_type:
5966 break;
5967 default:
5968 goto again;
5969 }
5970 break;
5971 case LABEL_DOMAIN:
5972 switch (indexval.dwarf_tag)
5973 {
5974 case 0:
5975 case DW_TAG_variable:
5976 break;
5977 default:
5978 goto again;
5979 }
5980 break;
5981 case MODULE_DOMAIN:
5982 switch (indexval.dwarf_tag)
5983 {
5984 case DW_TAG_module:
5985 break;
5986 default:
5987 goto again;
5988 }
5989 break;
5990 default:
5991 break;
5992 }
5993
5994 /* Match dw2_expand_symtabs_matching, symbol_kind and
5995 debug_names::psymbol_tag. */
5996 switch (m_search)
5997 {
5998 case VARIABLES_DOMAIN:
5999 switch (indexval.dwarf_tag)
6000 {
6001 case DW_TAG_variable:
6002 break;
6003 default:
6004 goto again;
6005 }
6006 break;
6007 case FUNCTIONS_DOMAIN:
6008 switch (indexval.dwarf_tag)
6009 {
6010 case DW_TAG_subprogram:
6011 break;
6012 default:
6013 goto again;
6014 }
6015 break;
6016 case TYPES_DOMAIN:
6017 switch (indexval.dwarf_tag)
6018 {
6019 case DW_TAG_typedef:
6020 case DW_TAG_structure_type:
6021 break;
6022 default:
6023 goto again;
6024 }
6025 break;
6026 case MODULES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6028 {
6029 case DW_TAG_module:
6030 break;
6031 default:
6032 goto again;
6033 }
6034 default:
6035 break;
6036 }
6037
6038 return per_cu;
6039 }
6040
6041 static struct compunit_symtab *
6042 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
6043 const char *name, domain_enum domain)
6044 {
6045 struct dwarf2_per_objfile *dwarf2_per_objfile
6046 = get_dwarf2_per_objfile (objfile);
6047
6048 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6049 if (!mapp)
6050 {
6051 /* index is NULL if OBJF_READNOW. */
6052 return NULL;
6053 }
6054 const auto &map = *mapp;
6055
6056 dw2_debug_names_iterator iter (map, block_index, domain, name);
6057
6058 struct compunit_symtab *stab_best = NULL;
6059 struct dwarf2_per_cu_data *per_cu;
6060 while ((per_cu = iter.next ()) != NULL)
6061 {
6062 struct symbol *sym, *with_opaque = NULL;
6063 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6064 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6065 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6066
6067 sym = block_find_symbol (block, name, domain,
6068 block_find_non_opaque_type_preferred,
6069 &with_opaque);
6070
6071 /* Some caution must be observed with overloaded functions and
6072 methods, since the index will not contain any overload
6073 information (but NAME might contain it). */
6074
6075 if (sym != NULL
6076 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6077 return stab;
6078 if (with_opaque != NULL
6079 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6080 stab_best = stab;
6081
6082 /* Keep looking through other CUs. */
6083 }
6084
6085 return stab_best;
6086 }
6087
6088 /* This dumps minimal information about .debug_names. It is called
6089 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6090 uses this to verify that .debug_names has been loaded. */
6091
6092 static void
6093 dw2_debug_names_dump (struct objfile *objfile)
6094 {
6095 struct dwarf2_per_objfile *dwarf2_per_objfile
6096 = get_dwarf2_per_objfile (objfile);
6097
6098 gdb_assert (dwarf2_per_objfile->using_index);
6099 printf_filtered (".debug_names:");
6100 if (dwarf2_per_objfile->debug_names_table)
6101 printf_filtered (" exists\n");
6102 else
6103 printf_filtered (" faked for \"readnow\"\n");
6104 printf_filtered ("\n");
6105 }
6106
6107 static void
6108 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6109 const char *func_name)
6110 {
6111 struct dwarf2_per_objfile *dwarf2_per_objfile
6112 = get_dwarf2_per_objfile (objfile);
6113
6114 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6115 if (dwarf2_per_objfile->debug_names_table)
6116 {
6117 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6118
6119 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6120
6121 struct dwarf2_per_cu_data *per_cu;
6122 while ((per_cu = iter.next ()) != NULL)
6123 dw2_instantiate_symtab (per_cu, false);
6124 }
6125 }
6126
6127 static void
6128 dw2_debug_names_map_matching_symbols
6129 (struct objfile *objfile,
6130 const lookup_name_info &name, domain_enum domain,
6131 int global,
6132 gdb::function_view<symbol_found_callback_ftype> callback,
6133 symbol_compare_ftype *ordered_compare)
6134 {
6135 struct dwarf2_per_objfile *dwarf2_per_objfile
6136 = get_dwarf2_per_objfile (objfile);
6137
6138 /* debug_names_table is NULL if OBJF_READNOW. */
6139 if (!dwarf2_per_objfile->debug_names_table)
6140 return;
6141
6142 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6143 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6144
6145 const char *match_name = name.ada ().lookup_name ().c_str ();
6146 auto matcher = [&] (const char *symname)
6147 {
6148 if (ordered_compare == nullptr)
6149 return true;
6150 return ordered_compare (symname, match_name) == 0;
6151 };
6152
6153 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6154 [&] (offset_type namei)
6155 {
6156 /* The name was matched, now expand corresponding CUs that were
6157 marked. */
6158 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6159
6160 struct dwarf2_per_cu_data *per_cu;
6161 while ((per_cu = iter.next ()) != NULL)
6162 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6163 return true;
6164 });
6165
6166 /* It's a shame we couldn't do this inside the
6167 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6168 that have already been expanded. Instead, this loop matches what
6169 the psymtab code does. */
6170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6171 {
6172 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6173 if (cust != nullptr)
6174 {
6175 const struct block *block
6176 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6177 if (!iterate_over_symbols_terminated (block, name,
6178 domain, callback))
6179 break;
6180 }
6181 }
6182 }
6183
6184 static void
6185 dw2_debug_names_expand_symtabs_matching
6186 (struct objfile *objfile,
6187 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6188 const lookup_name_info &lookup_name,
6189 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6190 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6191 enum search_domain kind)
6192 {
6193 struct dwarf2_per_objfile *dwarf2_per_objfile
6194 = get_dwarf2_per_objfile (objfile);
6195
6196 /* debug_names_table is NULL if OBJF_READNOW. */
6197 if (!dwarf2_per_objfile->debug_names_table)
6198 return;
6199
6200 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6201
6202 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6203
6204 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6205 symbol_matcher,
6206 kind, [&] (offset_type namei)
6207 {
6208 /* The name was matched, now expand corresponding CUs that were
6209 marked. */
6210 dw2_debug_names_iterator iter (map, kind, namei);
6211
6212 struct dwarf2_per_cu_data *per_cu;
6213 while ((per_cu = iter.next ()) != NULL)
6214 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6215 expansion_notify);
6216 return true;
6217 });
6218 }
6219
6220 const struct quick_symbol_functions dwarf2_debug_names_functions =
6221 {
6222 dw2_has_symbols,
6223 dw2_find_last_source_symtab,
6224 dw2_forget_cached_source_info,
6225 dw2_map_symtabs_matching_filename,
6226 dw2_debug_names_lookup_symbol,
6227 dw2_print_stats,
6228 dw2_debug_names_dump,
6229 dw2_debug_names_expand_symtabs_for_function,
6230 dw2_expand_all_symtabs,
6231 dw2_expand_symtabs_with_fullname,
6232 dw2_debug_names_map_matching_symbols,
6233 dw2_debug_names_expand_symtabs_matching,
6234 dw2_find_pc_sect_compunit_symtab,
6235 NULL,
6236 dw2_map_symbol_filenames
6237 };
6238
6239 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6240 to either a dwarf2_per_objfile or dwz_file object. */
6241
6242 template <typename T>
6243 static gdb::array_view<const gdb_byte>
6244 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6245 {
6246 dwarf2_section_info *section = &section_owner->gdb_index;
6247
6248 if (dwarf2_section_empty_p (section))
6249 return {};
6250
6251 /* Older elfutils strip versions could keep the section in the main
6252 executable while splitting it for the separate debug info file. */
6253 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6254 return {};
6255
6256 dwarf2_read_section (obj, section);
6257
6258 /* dwarf2_section_info::size is a bfd_size_type, while
6259 gdb::array_view works with size_t. On 32-bit hosts, with
6260 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6261 is 32-bit. So we need an explicit narrowing conversion here.
6262 This is fine, because it's impossible to allocate or mmap an
6263 array/buffer larger than what size_t can represent. */
6264 return gdb::make_array_view (section->buffer, section->size);
6265 }
6266
6267 /* Lookup the index cache for the contents of the index associated to
6268 DWARF2_OBJ. */
6269
6270 static gdb::array_view<const gdb_byte>
6271 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6272 {
6273 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6274 if (build_id == nullptr)
6275 return {};
6276
6277 return global_index_cache.lookup_gdb_index (build_id,
6278 &dwarf2_obj->index_cache_res);
6279 }
6280
6281 /* Same as the above, but for DWZ. */
6282
6283 static gdb::array_view<const gdb_byte>
6284 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6285 {
6286 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6287 if (build_id == nullptr)
6288 return {};
6289
6290 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6291 }
6292
6293 /* See symfile.h. */
6294
6295 bool
6296 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6297 {
6298 struct dwarf2_per_objfile *dwarf2_per_objfile
6299 = get_dwarf2_per_objfile (objfile);
6300
6301 /* If we're about to read full symbols, don't bother with the
6302 indices. In this case we also don't care if some other debug
6303 format is making psymtabs, because they are all about to be
6304 expanded anyway. */
6305 if ((objfile->flags & OBJF_READNOW))
6306 {
6307 dwarf2_per_objfile->using_index = 1;
6308 create_all_comp_units (dwarf2_per_objfile);
6309 create_all_type_units (dwarf2_per_objfile);
6310 dwarf2_per_objfile->quick_file_names_table
6311 = create_quick_file_names_table
6312 (dwarf2_per_objfile->all_comp_units.size ());
6313
6314 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6315 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6316 {
6317 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6318
6319 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6320 struct dwarf2_per_cu_quick_data);
6321 }
6322
6323 /* Return 1 so that gdb sees the "quick" functions. However,
6324 these functions will be no-ops because we will have expanded
6325 all symtabs. */
6326 *index_kind = dw_index_kind::GDB_INDEX;
6327 return true;
6328 }
6329
6330 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6331 {
6332 *index_kind = dw_index_kind::DEBUG_NAMES;
6333 return true;
6334 }
6335
6336 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6337 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6338 get_gdb_index_contents_from_section<dwz_file>))
6339 {
6340 *index_kind = dw_index_kind::GDB_INDEX;
6341 return true;
6342 }
6343
6344 /* ... otherwise, try to find the index in the index cache. */
6345 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6346 get_gdb_index_contents_from_cache,
6347 get_gdb_index_contents_from_cache_dwz))
6348 {
6349 global_index_cache.hit ();
6350 *index_kind = dw_index_kind::GDB_INDEX;
6351 return true;
6352 }
6353
6354 global_index_cache.miss ();
6355 return false;
6356 }
6357
6358 \f
6359
6360 /* Build a partial symbol table. */
6361
6362 void
6363 dwarf2_build_psymtabs (struct objfile *objfile)
6364 {
6365 struct dwarf2_per_objfile *dwarf2_per_objfile
6366 = get_dwarf2_per_objfile (objfile);
6367
6368 init_psymbol_list (objfile, 1024);
6369
6370 try
6371 {
6372 /* This isn't really ideal: all the data we allocate on the
6373 objfile's obstack is still uselessly kept around. However,
6374 freeing it seems unsafe. */
6375 psymtab_discarder psymtabs (objfile);
6376 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6377 psymtabs.keep ();
6378
6379 /* (maybe) store an index in the cache. */
6380 global_index_cache.store (dwarf2_per_objfile);
6381 }
6382 catch (const gdb_exception_error &except)
6383 {
6384 exception_print (gdb_stderr, except);
6385 }
6386 }
6387
6388 /* Return the total length of the CU described by HEADER. */
6389
6390 static unsigned int
6391 get_cu_length (const struct comp_unit_head *header)
6392 {
6393 return header->initial_length_size + header->length;
6394 }
6395
6396 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6397
6398 static inline bool
6399 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6400 {
6401 sect_offset bottom = cu_header->sect_off;
6402 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6403
6404 return sect_off >= bottom && sect_off < top;
6405 }
6406
6407 /* Find the base address of the compilation unit for range lists and
6408 location lists. It will normally be specified by DW_AT_low_pc.
6409 In DWARF-3 draft 4, the base address could be overridden by
6410 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6411 compilation units with discontinuous ranges. */
6412
6413 static void
6414 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6415 {
6416 struct attribute *attr;
6417
6418 cu->base_known = 0;
6419 cu->base_address = 0;
6420
6421 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6422 if (attr != nullptr)
6423 {
6424 cu->base_address = attr_value_as_address (attr);
6425 cu->base_known = 1;
6426 }
6427 else
6428 {
6429 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6430 if (attr != nullptr)
6431 {
6432 cu->base_address = attr_value_as_address (attr);
6433 cu->base_known = 1;
6434 }
6435 }
6436 }
6437
6438 /* Read in the comp unit header information from the debug_info at info_ptr.
6439 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6440 NOTE: This leaves members offset, first_die_offset to be filled in
6441 by the caller. */
6442
6443 static const gdb_byte *
6444 read_comp_unit_head (struct comp_unit_head *cu_header,
6445 const gdb_byte *info_ptr,
6446 struct dwarf2_section_info *section,
6447 rcuh_kind section_kind)
6448 {
6449 int signed_addr;
6450 unsigned int bytes_read;
6451 const char *filename = get_section_file_name (section);
6452 bfd *abfd = get_section_bfd_owner (section);
6453
6454 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6455 cu_header->initial_length_size = bytes_read;
6456 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6457 info_ptr += bytes_read;
6458 cu_header->version = read_2_bytes (abfd, info_ptr);
6459 if (cu_header->version < 2 || cu_header->version > 5)
6460 error (_("Dwarf Error: wrong version in compilation unit header "
6461 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6462 cu_header->version, filename);
6463 info_ptr += 2;
6464 if (cu_header->version < 5)
6465 switch (section_kind)
6466 {
6467 case rcuh_kind::COMPILE:
6468 cu_header->unit_type = DW_UT_compile;
6469 break;
6470 case rcuh_kind::TYPE:
6471 cu_header->unit_type = DW_UT_type;
6472 break;
6473 default:
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: invalid section_kind"));
6476 }
6477 else
6478 {
6479 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6480 (read_1_byte (abfd, info_ptr));
6481 info_ptr += 1;
6482 switch (cu_header->unit_type)
6483 {
6484 case DW_UT_compile:
6485 case DW_UT_partial:
6486 case DW_UT_skeleton:
6487 case DW_UT_split_compile:
6488 if (section_kind != rcuh_kind::COMPILE)
6489 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6490 "(is %s, should be %s) [in module %s]"),
6491 dwarf_unit_type_name (cu_header->unit_type),
6492 dwarf_unit_type_name (DW_UT_type), filename);
6493 break;
6494 case DW_UT_type:
6495 case DW_UT_split_type:
6496 section_kind = rcuh_kind::TYPE;
6497 break;
6498 default:
6499 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6500 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6501 "[in module %s]"), cu_header->unit_type,
6502 dwarf_unit_type_name (DW_UT_compile),
6503 dwarf_unit_type_name (DW_UT_skeleton),
6504 dwarf_unit_type_name (DW_UT_split_compile),
6505 dwarf_unit_type_name (DW_UT_type),
6506 dwarf_unit_type_name (DW_UT_split_type), filename);
6507 }
6508
6509 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6510 info_ptr += 1;
6511 }
6512 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6513 cu_header,
6514 &bytes_read);
6515 info_ptr += bytes_read;
6516 if (cu_header->version < 5)
6517 {
6518 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6519 info_ptr += 1;
6520 }
6521 signed_addr = bfd_get_sign_extend_vma (abfd);
6522 if (signed_addr < 0)
6523 internal_error (__FILE__, __LINE__,
6524 _("read_comp_unit_head: dwarf from non elf file"));
6525 cu_header->signed_addr_p = signed_addr;
6526
6527 bool header_has_signature = section_kind == rcuh_kind::TYPE
6528 || cu_header->unit_type == DW_UT_skeleton
6529 || cu_header->unit_type == DW_UT_split_compile;
6530
6531 if (header_has_signature)
6532 {
6533 cu_header->signature = read_8_bytes (abfd, info_ptr);
6534 info_ptr += 8;
6535 }
6536
6537 if (section_kind == rcuh_kind::TYPE)
6538 {
6539 LONGEST type_offset;
6540 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6541 info_ptr += bytes_read;
6542 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6543 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6544 error (_("Dwarf Error: Too big type_offset in compilation unit "
6545 "header (is %s) [in module %s]"), plongest (type_offset),
6546 filename);
6547 }
6548
6549 return info_ptr;
6550 }
6551
6552 /* Helper function that returns the proper abbrev section for
6553 THIS_CU. */
6554
6555 static struct dwarf2_section_info *
6556 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6557 {
6558 struct dwarf2_section_info *abbrev;
6559 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6560
6561 if (this_cu->is_dwz)
6562 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6563 else
6564 abbrev = &dwarf2_per_objfile->abbrev;
6565
6566 return abbrev;
6567 }
6568
6569 /* Subroutine of read_and_check_comp_unit_head and
6570 read_and_check_type_unit_head to simplify them.
6571 Perform various error checking on the header. */
6572
6573 static void
6574 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6575 struct comp_unit_head *header,
6576 struct dwarf2_section_info *section,
6577 struct dwarf2_section_info *abbrev_section)
6578 {
6579 const char *filename = get_section_file_name (section);
6580
6581 if (to_underlying (header->abbrev_sect_off)
6582 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6583 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6584 "(offset %s + 6) [in module %s]"),
6585 sect_offset_str (header->abbrev_sect_off),
6586 sect_offset_str (header->sect_off),
6587 filename);
6588
6589 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6590 avoid potential 32-bit overflow. */
6591 if (((ULONGEST) header->sect_off + get_cu_length (header))
6592 > section->size)
6593 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6594 "(offset %s + 0) [in module %s]"),
6595 header->length, sect_offset_str (header->sect_off),
6596 filename);
6597 }
6598
6599 /* Read in a CU/TU header and perform some basic error checking.
6600 The contents of the header are stored in HEADER.
6601 The result is a pointer to the start of the first DIE. */
6602
6603 static const gdb_byte *
6604 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6605 struct comp_unit_head *header,
6606 struct dwarf2_section_info *section,
6607 struct dwarf2_section_info *abbrev_section,
6608 const gdb_byte *info_ptr,
6609 rcuh_kind section_kind)
6610 {
6611 const gdb_byte *beg_of_comp_unit = info_ptr;
6612
6613 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6614
6615 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6616
6617 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6618
6619 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6620 abbrev_section);
6621
6622 return info_ptr;
6623 }
6624
6625 /* Fetch the abbreviation table offset from a comp or type unit header. */
6626
6627 static sect_offset
6628 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6629 struct dwarf2_section_info *section,
6630 sect_offset sect_off)
6631 {
6632 bfd *abfd = get_section_bfd_owner (section);
6633 const gdb_byte *info_ptr;
6634 unsigned int initial_length_size, offset_size;
6635 uint16_t version;
6636
6637 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6638 info_ptr = section->buffer + to_underlying (sect_off);
6639 read_initial_length (abfd, info_ptr, &initial_length_size);
6640 offset_size = initial_length_size == 4 ? 4 : 8;
6641 info_ptr += initial_length_size;
6642
6643 version = read_2_bytes (abfd, info_ptr);
6644 info_ptr += 2;
6645 if (version >= 5)
6646 {
6647 /* Skip unit type and address size. */
6648 info_ptr += 2;
6649 }
6650
6651 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6652 }
6653
6654 /* Allocate a new partial symtab for file named NAME and mark this new
6655 partial symtab as being an include of PST. */
6656
6657 static void
6658 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6659 struct objfile *objfile)
6660 {
6661 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6662
6663 if (!IS_ABSOLUTE_PATH (subpst->filename))
6664 {
6665 /* It shares objfile->objfile_obstack. */
6666 subpst->dirname = pst->dirname;
6667 }
6668
6669 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6670 subpst->dependencies[0] = pst;
6671 subpst->number_of_dependencies = 1;
6672
6673 subpst->read_symtab = pst->read_symtab;
6674
6675 /* No private part is necessary for include psymtabs. This property
6676 can be used to differentiate between such include psymtabs and
6677 the regular ones. */
6678 subpst->read_symtab_private = NULL;
6679 }
6680
6681 /* Read the Line Number Program data and extract the list of files
6682 included by the source file represented by PST. Build an include
6683 partial symtab for each of these included files. */
6684
6685 static void
6686 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6687 struct die_info *die,
6688 struct partial_symtab *pst)
6689 {
6690 line_header_up lh;
6691 struct attribute *attr;
6692
6693 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6694 if (attr != nullptr)
6695 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6696 if (lh == NULL)
6697 return; /* No linetable, so no includes. */
6698
6699 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6700 that we pass in the raw text_low here; that is ok because we're
6701 only decoding the line table to make include partial symtabs, and
6702 so the addresses aren't really used. */
6703 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6704 pst->raw_text_low (), 1);
6705 }
6706
6707 static hashval_t
6708 hash_signatured_type (const void *item)
6709 {
6710 const struct signatured_type *sig_type
6711 = (const struct signatured_type *) item;
6712
6713 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6714 return sig_type->signature;
6715 }
6716
6717 static int
6718 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6719 {
6720 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6721 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6722
6723 return lhs->signature == rhs->signature;
6724 }
6725
6726 /* Allocate a hash table for signatured types. */
6727
6728 static htab_t
6729 allocate_signatured_type_table (struct objfile *objfile)
6730 {
6731 return htab_create_alloc_ex (41,
6732 hash_signatured_type,
6733 eq_signatured_type,
6734 NULL,
6735 &objfile->objfile_obstack,
6736 hashtab_obstack_allocate,
6737 dummy_obstack_deallocate);
6738 }
6739
6740 /* A helper function to add a signatured type CU to a table. */
6741
6742 static int
6743 add_signatured_type_cu_to_table (void **slot, void *datum)
6744 {
6745 struct signatured_type *sigt = (struct signatured_type *) *slot;
6746 std::vector<signatured_type *> *all_type_units
6747 = (std::vector<signatured_type *> *) datum;
6748
6749 all_type_units->push_back (sigt);
6750
6751 return 1;
6752 }
6753
6754 /* A helper for create_debug_types_hash_table. Read types from SECTION
6755 and fill them into TYPES_HTAB. It will process only type units,
6756 therefore DW_UT_type. */
6757
6758 static void
6759 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6760 struct dwo_file *dwo_file,
6761 dwarf2_section_info *section, htab_t &types_htab,
6762 rcuh_kind section_kind)
6763 {
6764 struct objfile *objfile = dwarf2_per_objfile->objfile;
6765 struct dwarf2_section_info *abbrev_section;
6766 bfd *abfd;
6767 const gdb_byte *info_ptr, *end_ptr;
6768
6769 abbrev_section = (dwo_file != NULL
6770 ? &dwo_file->sections.abbrev
6771 : &dwarf2_per_objfile->abbrev);
6772
6773 if (dwarf_read_debug)
6774 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6775 get_section_name (section),
6776 get_section_file_name (abbrev_section));
6777
6778 dwarf2_read_section (objfile, section);
6779 info_ptr = section->buffer;
6780
6781 if (info_ptr == NULL)
6782 return;
6783
6784 /* We can't set abfd until now because the section may be empty or
6785 not present, in which case the bfd is unknown. */
6786 abfd = get_section_bfd_owner (section);
6787
6788 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6789 because we don't need to read any dies: the signature is in the
6790 header. */
6791
6792 end_ptr = info_ptr + section->size;
6793 while (info_ptr < end_ptr)
6794 {
6795 struct signatured_type *sig_type;
6796 struct dwo_unit *dwo_tu;
6797 void **slot;
6798 const gdb_byte *ptr = info_ptr;
6799 struct comp_unit_head header;
6800 unsigned int length;
6801
6802 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6803
6804 /* Initialize it due to a false compiler warning. */
6805 header.signature = -1;
6806 header.type_cu_offset_in_tu = (cu_offset) -1;
6807
6808 /* We need to read the type's signature in order to build the hash
6809 table, but we don't need anything else just yet. */
6810
6811 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6812 abbrev_section, ptr, section_kind);
6813
6814 length = get_cu_length (&header);
6815
6816 /* Skip dummy type units. */
6817 if (ptr >= info_ptr + length
6818 || peek_abbrev_code (abfd, ptr) == 0
6819 || header.unit_type != DW_UT_type)
6820 {
6821 info_ptr += length;
6822 continue;
6823 }
6824
6825 if (types_htab == NULL)
6826 {
6827 if (dwo_file)
6828 types_htab = allocate_dwo_unit_table (objfile);
6829 else
6830 types_htab = allocate_signatured_type_table (objfile);
6831 }
6832
6833 if (dwo_file)
6834 {
6835 sig_type = NULL;
6836 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6837 struct dwo_unit);
6838 dwo_tu->dwo_file = dwo_file;
6839 dwo_tu->signature = header.signature;
6840 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6841 dwo_tu->section = section;
6842 dwo_tu->sect_off = sect_off;
6843 dwo_tu->length = length;
6844 }
6845 else
6846 {
6847 /* N.B.: type_offset is not usable if this type uses a DWO file.
6848 The real type_offset is in the DWO file. */
6849 dwo_tu = NULL;
6850 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6851 struct signatured_type);
6852 sig_type->signature = header.signature;
6853 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6854 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6855 sig_type->per_cu.is_debug_types = 1;
6856 sig_type->per_cu.section = section;
6857 sig_type->per_cu.sect_off = sect_off;
6858 sig_type->per_cu.length = length;
6859 }
6860
6861 slot = htab_find_slot (types_htab,
6862 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6863 INSERT);
6864 gdb_assert (slot != NULL);
6865 if (*slot != NULL)
6866 {
6867 sect_offset dup_sect_off;
6868
6869 if (dwo_file)
6870 {
6871 const struct dwo_unit *dup_tu
6872 = (const struct dwo_unit *) *slot;
6873
6874 dup_sect_off = dup_tu->sect_off;
6875 }
6876 else
6877 {
6878 const struct signatured_type *dup_tu
6879 = (const struct signatured_type *) *slot;
6880
6881 dup_sect_off = dup_tu->per_cu.sect_off;
6882 }
6883
6884 complaint (_("debug type entry at offset %s is duplicate to"
6885 " the entry at offset %s, signature %s"),
6886 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6887 hex_string (header.signature));
6888 }
6889 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6890
6891 if (dwarf_read_debug > 1)
6892 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6893 sect_offset_str (sect_off),
6894 hex_string (header.signature));
6895
6896 info_ptr += length;
6897 }
6898 }
6899
6900 /* Create the hash table of all entries in the .debug_types
6901 (or .debug_types.dwo) section(s).
6902 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6903 otherwise it is NULL.
6904
6905 The result is a pointer to the hash table or NULL if there are no types.
6906
6907 Note: This function processes DWO files only, not DWP files. */
6908
6909 static void
6910 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6911 struct dwo_file *dwo_file,
6912 gdb::array_view<dwarf2_section_info> type_sections,
6913 htab_t &types_htab)
6914 {
6915 for (dwarf2_section_info &section : type_sections)
6916 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6917 types_htab, rcuh_kind::TYPE);
6918 }
6919
6920 /* Create the hash table of all entries in the .debug_types section,
6921 and initialize all_type_units.
6922 The result is zero if there is an error (e.g. missing .debug_types section),
6923 otherwise non-zero. */
6924
6925 static int
6926 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6927 {
6928 htab_t types_htab = NULL;
6929
6930 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6931 &dwarf2_per_objfile->info, types_htab,
6932 rcuh_kind::COMPILE);
6933 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6934 dwarf2_per_objfile->types, types_htab);
6935 if (types_htab == NULL)
6936 {
6937 dwarf2_per_objfile->signatured_types = NULL;
6938 return 0;
6939 }
6940
6941 dwarf2_per_objfile->signatured_types = types_htab;
6942
6943 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6944 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6945
6946 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6947 &dwarf2_per_objfile->all_type_units);
6948
6949 return 1;
6950 }
6951
6952 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6953 If SLOT is non-NULL, it is the entry to use in the hash table.
6954 Otherwise we find one. */
6955
6956 static struct signatured_type *
6957 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6958 void **slot)
6959 {
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961
6962 if (dwarf2_per_objfile->all_type_units.size ()
6963 == dwarf2_per_objfile->all_type_units.capacity ())
6964 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6965
6966 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6967 struct signatured_type);
6968
6969 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6970 sig_type->signature = sig;
6971 sig_type->per_cu.is_debug_types = 1;
6972 if (dwarf2_per_objfile->using_index)
6973 {
6974 sig_type->per_cu.v.quick =
6975 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6976 struct dwarf2_per_cu_quick_data);
6977 }
6978
6979 if (slot == NULL)
6980 {
6981 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6982 sig_type, INSERT);
6983 }
6984 gdb_assert (*slot == NULL);
6985 *slot = sig_type;
6986 /* The rest of sig_type must be filled in by the caller. */
6987 return sig_type;
6988 }
6989
6990 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6991 Fill in SIG_ENTRY with DWO_ENTRY. */
6992
6993 static void
6994 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6995 struct signatured_type *sig_entry,
6996 struct dwo_unit *dwo_entry)
6997 {
6998 /* Make sure we're not clobbering something we don't expect to. */
6999 gdb_assert (! sig_entry->per_cu.queued);
7000 gdb_assert (sig_entry->per_cu.cu == NULL);
7001 if (dwarf2_per_objfile->using_index)
7002 {
7003 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7004 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7005 }
7006 else
7007 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7008 gdb_assert (sig_entry->signature == dwo_entry->signature);
7009 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7010 gdb_assert (sig_entry->type_unit_group == NULL);
7011 gdb_assert (sig_entry->dwo_unit == NULL);
7012
7013 sig_entry->per_cu.section = dwo_entry->section;
7014 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7015 sig_entry->per_cu.length = dwo_entry->length;
7016 sig_entry->per_cu.reading_dwo_directly = 1;
7017 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7018 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7019 sig_entry->dwo_unit = dwo_entry;
7020 }
7021
7022 /* Subroutine of lookup_signatured_type.
7023 If we haven't read the TU yet, create the signatured_type data structure
7024 for a TU to be read in directly from a DWO file, bypassing the stub.
7025 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7026 using .gdb_index, then when reading a CU we want to stay in the DWO file
7027 containing that CU. Otherwise we could end up reading several other DWO
7028 files (due to comdat folding) to process the transitive closure of all the
7029 mentioned TUs, and that can be slow. The current DWO file will have every
7030 type signature that it needs.
7031 We only do this for .gdb_index because in the psymtab case we already have
7032 to read all the DWOs to build the type unit groups. */
7033
7034 static struct signatured_type *
7035 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7036 {
7037 struct dwarf2_per_objfile *dwarf2_per_objfile
7038 = cu->per_cu->dwarf2_per_objfile;
7039 struct objfile *objfile = dwarf2_per_objfile->objfile;
7040 struct dwo_file *dwo_file;
7041 struct dwo_unit find_dwo_entry, *dwo_entry;
7042 struct signatured_type find_sig_entry, *sig_entry;
7043 void **slot;
7044
7045 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 /* We only ever need to read in one copy of a signatured type.
7056 Use the global signatured_types array to do our own comdat-folding
7057 of types. If this is the first time we're reading this TU, and
7058 the TU has an entry in .gdb_index, replace the recorded data from
7059 .gdb_index with this TU. */
7060
7061 find_sig_entry.signature = sig;
7062 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7063 &find_sig_entry, INSERT);
7064 sig_entry = (struct signatured_type *) *slot;
7065
7066 /* We can get here with the TU already read, *or* in the process of being
7067 read. Don't reassign the global entry to point to this DWO if that's
7068 the case. Also note that if the TU is already being read, it may not
7069 have come from a DWO, the program may be a mix of Fission-compiled
7070 code and non-Fission-compiled code. */
7071
7072 /* Have we already tried to read this TU?
7073 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7074 needn't exist in the global table yet). */
7075 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7076 return sig_entry;
7077
7078 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7079 dwo_unit of the TU itself. */
7080 dwo_file = cu->dwo_unit->dwo_file;
7081
7082 /* Ok, this is the first time we're reading this TU. */
7083 if (dwo_file->tus == NULL)
7084 return NULL;
7085 find_dwo_entry.signature = sig;
7086 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7087 if (dwo_entry == NULL)
7088 return NULL;
7089
7090 /* If the global table doesn't have an entry for this TU, add one. */
7091 if (sig_entry == NULL)
7092 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7093
7094 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7095 sig_entry->per_cu.tu_read = 1;
7096 return sig_entry;
7097 }
7098
7099 /* Subroutine of lookup_signatured_type.
7100 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7101 then try the DWP file. If the TU stub (skeleton) has been removed then
7102 it won't be in .gdb_index. */
7103
7104 static struct signatured_type *
7105 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7106 {
7107 struct dwarf2_per_objfile *dwarf2_per_objfile
7108 = cu->per_cu->dwarf2_per_objfile;
7109 struct objfile *objfile = dwarf2_per_objfile->objfile;
7110 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7111 struct dwo_unit *dwo_entry;
7112 struct signatured_type find_sig_entry, *sig_entry;
7113 void **slot;
7114
7115 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7116 gdb_assert (dwp_file != NULL);
7117
7118 /* If TU skeletons have been removed then we may not have read in any
7119 TUs yet. */
7120 if (dwarf2_per_objfile->signatured_types == NULL)
7121 {
7122 dwarf2_per_objfile->signatured_types
7123 = allocate_signatured_type_table (objfile);
7124 }
7125
7126 find_sig_entry.signature = sig;
7127 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7128 &find_sig_entry, INSERT);
7129 sig_entry = (struct signatured_type *) *slot;
7130
7131 /* Have we already tried to read this TU?
7132 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7133 needn't exist in the global table yet). */
7134 if (sig_entry != NULL)
7135 return sig_entry;
7136
7137 if (dwp_file->tus == NULL)
7138 return NULL;
7139 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7140 sig, 1 /* is_debug_types */);
7141 if (dwo_entry == NULL)
7142 return NULL;
7143
7144 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7145 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7146
7147 return sig_entry;
7148 }
7149
7150 /* Lookup a signature based type for DW_FORM_ref_sig8.
7151 Returns NULL if signature SIG is not present in the table.
7152 It is up to the caller to complain about this. */
7153
7154 static struct signatured_type *
7155 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7156 {
7157 struct dwarf2_per_objfile *dwarf2_per_objfile
7158 = cu->per_cu->dwarf2_per_objfile;
7159
7160 if (cu->dwo_unit
7161 && dwarf2_per_objfile->using_index)
7162 {
7163 /* We're in a DWO/DWP file, and we're using .gdb_index.
7164 These cases require special processing. */
7165 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7166 return lookup_dwo_signatured_type (cu, sig);
7167 else
7168 return lookup_dwp_signatured_type (cu, sig);
7169 }
7170 else
7171 {
7172 struct signatured_type find_entry, *entry;
7173
7174 if (dwarf2_per_objfile->signatured_types == NULL)
7175 return NULL;
7176 find_entry.signature = sig;
7177 entry = ((struct signatured_type *)
7178 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7179 return entry;
7180 }
7181 }
7182 \f
7183 /* Low level DIE reading support. */
7184
7185 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7186
7187 static void
7188 init_cu_die_reader (struct die_reader_specs *reader,
7189 struct dwarf2_cu *cu,
7190 struct dwarf2_section_info *section,
7191 struct dwo_file *dwo_file,
7192 struct abbrev_table *abbrev_table)
7193 {
7194 gdb_assert (section->readin && section->buffer != NULL);
7195 reader->abfd = get_section_bfd_owner (section);
7196 reader->cu = cu;
7197 reader->dwo_file = dwo_file;
7198 reader->die_section = section;
7199 reader->buffer = section->buffer;
7200 reader->buffer_end = section->buffer + section->size;
7201 reader->comp_dir = NULL;
7202 reader->abbrev_table = abbrev_table;
7203 }
7204
7205 /* Subroutine of init_cutu_and_read_dies to simplify it.
7206 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7207 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7208 already.
7209
7210 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7211 from it to the DIE in the DWO. If NULL we are skipping the stub.
7212 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7213 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7214 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7215 STUB_COMP_DIR may be non-NULL.
7216 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7217 are filled in with the info of the DIE from the DWO file.
7218 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7219 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7220 kept around for at least as long as *RESULT_READER.
7221
7222 The result is non-zero if a valid (non-dummy) DIE was found. */
7223
7224 static int
7225 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7226 struct dwo_unit *dwo_unit,
7227 struct die_info *stub_comp_unit_die,
7228 const char *stub_comp_dir,
7229 struct die_reader_specs *result_reader,
7230 const gdb_byte **result_info_ptr,
7231 struct die_info **result_comp_unit_die,
7232 int *result_has_children,
7233 abbrev_table_up *result_dwo_abbrev_table)
7234 {
7235 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7236 struct objfile *objfile = dwarf2_per_objfile->objfile;
7237 struct dwarf2_cu *cu = this_cu->cu;
7238 bfd *abfd;
7239 const gdb_byte *begin_info_ptr, *info_ptr;
7240 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7241 int i,num_extra_attrs;
7242 struct dwarf2_section_info *dwo_abbrev_section;
7243 struct attribute *attr;
7244 struct die_info *comp_unit_die;
7245
7246 /* At most one of these may be provided. */
7247 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7248
7249 /* These attributes aren't processed until later:
7250 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7251 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7252 referenced later. However, these attributes are found in the stub
7253 which we won't have later. In order to not impose this complication
7254 on the rest of the code, we read them here and copy them to the
7255 DWO CU/TU die. */
7256
7257 stmt_list = NULL;
7258 low_pc = NULL;
7259 high_pc = NULL;
7260 ranges = NULL;
7261 comp_dir = NULL;
7262
7263 if (stub_comp_unit_die != NULL)
7264 {
7265 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7266 DWO file. */
7267 if (! this_cu->is_debug_types)
7268 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7269 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7270 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7271 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7272 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7273
7274 /* There should be a DW_AT_addr_base attribute here (if needed).
7275 We need the value before we can process DW_FORM_GNU_addr_index
7276 or DW_FORM_addrx. */
7277 cu->addr_base = 0;
7278 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7279 if (attr != nullptr)
7280 cu->addr_base = DW_UNSND (attr);
7281
7282 /* There should be a DW_AT_ranges_base attribute here (if needed).
7283 We need the value before we can process DW_AT_ranges. */
7284 cu->ranges_base = 0;
7285 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7286 if (attr != nullptr)
7287 cu->ranges_base = DW_UNSND (attr);
7288 }
7289 else if (stub_comp_dir != NULL)
7290 {
7291 /* Reconstruct the comp_dir attribute to simplify the code below. */
7292 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7293 comp_dir->name = DW_AT_comp_dir;
7294 comp_dir->form = DW_FORM_string;
7295 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7296 DW_STRING (comp_dir) = stub_comp_dir;
7297 }
7298
7299 /* Set up for reading the DWO CU/TU. */
7300 cu->dwo_unit = dwo_unit;
7301 dwarf2_section_info *section = dwo_unit->section;
7302 dwarf2_read_section (objfile, section);
7303 abfd = get_section_bfd_owner (section);
7304 begin_info_ptr = info_ptr = (section->buffer
7305 + to_underlying (dwo_unit->sect_off));
7306 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7307
7308 if (this_cu->is_debug_types)
7309 {
7310 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7311
7312 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7313 &cu->header, section,
7314 dwo_abbrev_section,
7315 info_ptr, rcuh_kind::TYPE);
7316 /* This is not an assert because it can be caused by bad debug info. */
7317 if (sig_type->signature != cu->header.signature)
7318 {
7319 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7320 " TU at offset %s [in module %s]"),
7321 hex_string (sig_type->signature),
7322 hex_string (cu->header.signature),
7323 sect_offset_str (dwo_unit->sect_off),
7324 bfd_get_filename (abfd));
7325 }
7326 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7327 /* For DWOs coming from DWP files, we don't know the CU length
7328 nor the type's offset in the TU until now. */
7329 dwo_unit->length = get_cu_length (&cu->header);
7330 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7331
7332 /* Establish the type offset that can be used to lookup the type.
7333 For DWO files, we don't know it until now. */
7334 sig_type->type_offset_in_section
7335 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7336 }
7337 else
7338 {
7339 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7340 &cu->header, section,
7341 dwo_abbrev_section,
7342 info_ptr, rcuh_kind::COMPILE);
7343 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7344 /* For DWOs coming from DWP files, we don't know the CU length
7345 until now. */
7346 dwo_unit->length = get_cu_length (&cu->header);
7347 }
7348
7349 *result_dwo_abbrev_table
7350 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7351 cu->header.abbrev_sect_off);
7352 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7353 result_dwo_abbrev_table->get ());
7354
7355 /* Read in the die, but leave space to copy over the attributes
7356 from the stub. This has the benefit of simplifying the rest of
7357 the code - all the work to maintain the illusion of a single
7358 DW_TAG_{compile,type}_unit DIE is done here. */
7359 num_extra_attrs = ((stmt_list != NULL)
7360 + (low_pc != NULL)
7361 + (high_pc != NULL)
7362 + (ranges != NULL)
7363 + (comp_dir != NULL));
7364 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7365 result_has_children, num_extra_attrs);
7366
7367 /* Copy over the attributes from the stub to the DIE we just read in. */
7368 comp_unit_die = *result_comp_unit_die;
7369 i = comp_unit_die->num_attrs;
7370 if (stmt_list != NULL)
7371 comp_unit_die->attrs[i++] = *stmt_list;
7372 if (low_pc != NULL)
7373 comp_unit_die->attrs[i++] = *low_pc;
7374 if (high_pc != NULL)
7375 comp_unit_die->attrs[i++] = *high_pc;
7376 if (ranges != NULL)
7377 comp_unit_die->attrs[i++] = *ranges;
7378 if (comp_dir != NULL)
7379 comp_unit_die->attrs[i++] = *comp_dir;
7380 comp_unit_die->num_attrs += num_extra_attrs;
7381
7382 if (dwarf_die_debug)
7383 {
7384 fprintf_unfiltered (gdb_stdlog,
7385 "Read die from %s@0x%x of %s:\n",
7386 get_section_name (section),
7387 (unsigned) (begin_info_ptr - section->buffer),
7388 bfd_get_filename (abfd));
7389 dump_die (comp_unit_die, dwarf_die_debug);
7390 }
7391
7392 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7393 TUs by skipping the stub and going directly to the entry in the DWO file.
7394 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7395 to get it via circuitous means. Blech. */
7396 if (comp_dir != NULL)
7397 result_reader->comp_dir = DW_STRING (comp_dir);
7398
7399 /* Skip dummy compilation units. */
7400 if (info_ptr >= begin_info_ptr + dwo_unit->length
7401 || peek_abbrev_code (abfd, info_ptr) == 0)
7402 return 0;
7403
7404 *result_info_ptr = info_ptr;
7405 return 1;
7406 }
7407
7408 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7409 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7410 signature is part of the header. */
7411 static gdb::optional<ULONGEST>
7412 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7413 {
7414 if (cu->header.version >= 5)
7415 return cu->header.signature;
7416 struct attribute *attr;
7417 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7418 if (attr == nullptr)
7419 return gdb::optional<ULONGEST> ();
7420 return DW_UNSND (attr);
7421 }
7422
7423 /* Subroutine of init_cutu_and_read_dies to simplify it.
7424 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7425 Returns NULL if the specified DWO unit cannot be found. */
7426
7427 static struct dwo_unit *
7428 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7429 struct die_info *comp_unit_die)
7430 {
7431 struct dwarf2_cu *cu = this_cu->cu;
7432 struct dwo_unit *dwo_unit;
7433 const char *comp_dir, *dwo_name;
7434
7435 gdb_assert (cu != NULL);
7436
7437 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7438 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7439 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7440
7441 if (this_cu->is_debug_types)
7442 {
7443 struct signatured_type *sig_type;
7444
7445 /* Since this_cu is the first member of struct signatured_type,
7446 we can go from a pointer to one to a pointer to the other. */
7447 sig_type = (struct signatured_type *) this_cu;
7448 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7449 }
7450 else
7451 {
7452 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7453 if (!signature.has_value ())
7454 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7455 " [in module %s]"),
7456 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7457 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7458 *signature);
7459 }
7460
7461 return dwo_unit;
7462 }
7463
7464 /* Subroutine of init_cutu_and_read_dies to simplify it.
7465 See it for a description of the parameters.
7466 Read a TU directly from a DWO file, bypassing the stub. */
7467
7468 static void
7469 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7470 int use_existing_cu, int keep,
7471 die_reader_func_ftype *die_reader_func,
7472 void *data)
7473 {
7474 std::unique_ptr<dwarf2_cu> new_cu;
7475 struct signatured_type *sig_type;
7476 struct die_reader_specs reader;
7477 const gdb_byte *info_ptr;
7478 struct die_info *comp_unit_die;
7479 int has_children;
7480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7481
7482 /* Verify we can do the following downcast, and that we have the
7483 data we need. */
7484 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7485 sig_type = (struct signatured_type *) this_cu;
7486 gdb_assert (sig_type->dwo_unit != NULL);
7487
7488 if (use_existing_cu && this_cu->cu != NULL)
7489 {
7490 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7491 /* There's no need to do the rereading_dwo_cu handling that
7492 init_cutu_and_read_dies does since we don't read the stub. */
7493 }
7494 else
7495 {
7496 /* If !use_existing_cu, this_cu->cu must be NULL. */
7497 gdb_assert (this_cu->cu == NULL);
7498 new_cu.reset (new dwarf2_cu (this_cu));
7499 }
7500
7501 /* A future optimization, if needed, would be to use an existing
7502 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7503 could share abbrev tables. */
7504
7505 /* The abbreviation table used by READER, this must live at least as long as
7506 READER. */
7507 abbrev_table_up dwo_abbrev_table;
7508
7509 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7510 NULL /* stub_comp_unit_die */,
7511 sig_type->dwo_unit->dwo_file->comp_dir,
7512 &reader, &info_ptr,
7513 &comp_unit_die, &has_children,
7514 &dwo_abbrev_table) == 0)
7515 {
7516 /* Dummy die. */
7517 return;
7518 }
7519
7520 /* All the "real" work is done here. */
7521 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7522
7523 /* This duplicates the code in init_cutu_and_read_dies,
7524 but the alternative is making the latter more complex.
7525 This function is only for the special case of using DWO files directly:
7526 no point in overly complicating the general case just to handle this. */
7527 if (new_cu != NULL && keep)
7528 {
7529 /* Link this CU into read_in_chain. */
7530 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7531 dwarf2_per_objfile->read_in_chain = this_cu;
7532 /* The chain owns it now. */
7533 new_cu.release ();
7534 }
7535 }
7536
7537 /* Initialize a CU (or TU) and read its DIEs.
7538 If the CU defers to a DWO file, read the DWO file as well.
7539
7540 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7541 Otherwise the table specified in the comp unit header is read in and used.
7542 This is an optimization for when we already have the abbrev table.
7543
7544 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7545 Otherwise, a new CU is allocated with xmalloc.
7546
7547 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7548 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7549
7550 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7551 linker) then DIE_READER_FUNC will not get called. */
7552
7553 static void
7554 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7555 struct abbrev_table *abbrev_table,
7556 int use_existing_cu, int keep,
7557 bool skip_partial,
7558 die_reader_func_ftype *die_reader_func,
7559 void *data)
7560 {
7561 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7562 struct objfile *objfile = dwarf2_per_objfile->objfile;
7563 struct dwarf2_section_info *section = this_cu->section;
7564 bfd *abfd = get_section_bfd_owner (section);
7565 struct dwarf2_cu *cu;
7566 const gdb_byte *begin_info_ptr, *info_ptr;
7567 struct die_reader_specs reader;
7568 struct die_info *comp_unit_die;
7569 int has_children;
7570 struct signatured_type *sig_type = NULL;
7571 struct dwarf2_section_info *abbrev_section;
7572 /* Non-zero if CU currently points to a DWO file and we need to
7573 reread it. When this happens we need to reread the skeleton die
7574 before we can reread the DWO file (this only applies to CUs, not TUs). */
7575 int rereading_dwo_cu = 0;
7576
7577 if (dwarf_die_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7579 this_cu->is_debug_types ? "type" : "comp",
7580 sect_offset_str (this_cu->sect_off));
7581
7582 if (use_existing_cu)
7583 gdb_assert (keep);
7584
7585 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7586 file (instead of going through the stub), short-circuit all of this. */
7587 if (this_cu->reading_dwo_directly)
7588 {
7589 /* Narrow down the scope of possibilities to have to understand. */
7590 gdb_assert (this_cu->is_debug_types);
7591 gdb_assert (abbrev_table == NULL);
7592 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7593 die_reader_func, data);
7594 return;
7595 }
7596
7597 /* This is cheap if the section is already read in. */
7598 dwarf2_read_section (objfile, section);
7599
7600 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7601
7602 abbrev_section = get_abbrev_section_for_cu (this_cu);
7603
7604 std::unique_ptr<dwarf2_cu> new_cu;
7605 if (use_existing_cu && this_cu->cu != NULL)
7606 {
7607 cu = this_cu->cu;
7608 /* If this CU is from a DWO file we need to start over, we need to
7609 refetch the attributes from the skeleton CU.
7610 This could be optimized by retrieving those attributes from when we
7611 were here the first time: the previous comp_unit_die was stored in
7612 comp_unit_obstack. But there's no data yet that we need this
7613 optimization. */
7614 if (cu->dwo_unit != NULL)
7615 rereading_dwo_cu = 1;
7616 }
7617 else
7618 {
7619 /* If !use_existing_cu, this_cu->cu must be NULL. */
7620 gdb_assert (this_cu->cu == NULL);
7621 new_cu.reset (new dwarf2_cu (this_cu));
7622 cu = new_cu.get ();
7623 }
7624
7625 /* Get the header. */
7626 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7627 {
7628 /* We already have the header, there's no need to read it in again. */
7629 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7630 }
7631 else
7632 {
7633 if (this_cu->is_debug_types)
7634 {
7635 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7636 &cu->header, section,
7637 abbrev_section, info_ptr,
7638 rcuh_kind::TYPE);
7639
7640 /* Since per_cu is the first member of struct signatured_type,
7641 we can go from a pointer to one to a pointer to the other. */
7642 sig_type = (struct signatured_type *) this_cu;
7643 gdb_assert (sig_type->signature == cu->header.signature);
7644 gdb_assert (sig_type->type_offset_in_tu
7645 == cu->header.type_cu_offset_in_tu);
7646 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7647
7648 /* LENGTH has not been set yet for type units if we're
7649 using .gdb_index. */
7650 this_cu->length = get_cu_length (&cu->header);
7651
7652 /* Establish the type offset that can be used to lookup the type. */
7653 sig_type->type_offset_in_section =
7654 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7655
7656 this_cu->dwarf_version = cu->header.version;
7657 }
7658 else
7659 {
7660 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7661 &cu->header, section,
7662 abbrev_section,
7663 info_ptr,
7664 rcuh_kind::COMPILE);
7665
7666 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7667 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7668 this_cu->dwarf_version = cu->header.version;
7669 }
7670 }
7671
7672 /* Skip dummy compilation units. */
7673 if (info_ptr >= begin_info_ptr + this_cu->length
7674 || peek_abbrev_code (abfd, info_ptr) == 0)
7675 return;
7676
7677 /* If we don't have them yet, read the abbrevs for this compilation unit.
7678 And if we need to read them now, make sure they're freed when we're
7679 done (own the table through ABBREV_TABLE_HOLDER). */
7680 abbrev_table_up abbrev_table_holder;
7681 if (abbrev_table != NULL)
7682 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7683 else
7684 {
7685 abbrev_table_holder
7686 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7687 cu->header.abbrev_sect_off);
7688 abbrev_table = abbrev_table_holder.get ();
7689 }
7690
7691 /* Read the top level CU/TU die. */
7692 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7693 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7694
7695 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7696 return;
7697
7698 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7699 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7700 table from the DWO file and pass the ownership over to us. It will be
7701 referenced from READER, so we must make sure to free it after we're done
7702 with READER.
7703
7704 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7705 DWO CU, that this test will fail (the attribute will not be present). */
7706 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7707 abbrev_table_up dwo_abbrev_table;
7708 if (dwo_name != nullptr)
7709 {
7710 struct dwo_unit *dwo_unit;
7711 struct die_info *dwo_comp_unit_die;
7712
7713 if (has_children)
7714 {
7715 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7716 " has children (offset %s) [in module %s]"),
7717 sect_offset_str (this_cu->sect_off),
7718 bfd_get_filename (abfd));
7719 }
7720 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7721 if (dwo_unit != NULL)
7722 {
7723 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7724 comp_unit_die, NULL,
7725 &reader, &info_ptr,
7726 &dwo_comp_unit_die, &has_children,
7727 &dwo_abbrev_table) == 0)
7728 {
7729 /* Dummy die. */
7730 return;
7731 }
7732 comp_unit_die = dwo_comp_unit_die;
7733 }
7734 else
7735 {
7736 /* Yikes, we couldn't find the rest of the DIE, we only have
7737 the stub. A complaint has already been logged. There's
7738 not much more we can do except pass on the stub DIE to
7739 die_reader_func. We don't want to throw an error on bad
7740 debug info. */
7741 }
7742 }
7743
7744 /* All of the above is setup for this call. Yikes. */
7745 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7746
7747 /* Done, clean up. */
7748 if (new_cu != NULL && keep)
7749 {
7750 /* Link this CU into read_in_chain. */
7751 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7752 dwarf2_per_objfile->read_in_chain = this_cu;
7753 /* The chain owns it now. */
7754 new_cu.release ();
7755 }
7756 }
7757
7758 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7759 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7760 to have already done the lookup to find the DWO file).
7761
7762 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7763 THIS_CU->is_debug_types, but nothing else.
7764
7765 We fill in THIS_CU->length.
7766
7767 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7768 linker) then DIE_READER_FUNC will not get called.
7769
7770 THIS_CU->cu is always freed when done.
7771 This is done in order to not leave THIS_CU->cu in a state where we have
7772 to care whether it refers to the "main" CU or the DWO CU. */
7773
7774 static void
7775 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7776 struct dwo_file *dwo_file,
7777 die_reader_func_ftype *die_reader_func,
7778 void *data)
7779 {
7780 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7781 struct objfile *objfile = dwarf2_per_objfile->objfile;
7782 struct dwarf2_section_info *section = this_cu->section;
7783 bfd *abfd = get_section_bfd_owner (section);
7784 struct dwarf2_section_info *abbrev_section;
7785 const gdb_byte *begin_info_ptr, *info_ptr;
7786 struct die_reader_specs reader;
7787 struct die_info *comp_unit_die;
7788 int has_children;
7789
7790 if (dwarf_die_debug)
7791 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7792 this_cu->is_debug_types ? "type" : "comp",
7793 sect_offset_str (this_cu->sect_off));
7794
7795 gdb_assert (this_cu->cu == NULL);
7796
7797 abbrev_section = (dwo_file != NULL
7798 ? &dwo_file->sections.abbrev
7799 : get_abbrev_section_for_cu (this_cu));
7800
7801 /* This is cheap if the section is already read in. */
7802 dwarf2_read_section (objfile, section);
7803
7804 struct dwarf2_cu cu (this_cu);
7805
7806 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7807 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7808 &cu.header, section,
7809 abbrev_section, info_ptr,
7810 (this_cu->is_debug_types
7811 ? rcuh_kind::TYPE
7812 : rcuh_kind::COMPILE));
7813
7814 this_cu->length = get_cu_length (&cu.header);
7815
7816 /* Skip dummy compilation units. */
7817 if (info_ptr >= begin_info_ptr + this_cu->length
7818 || peek_abbrev_code (abfd, info_ptr) == 0)
7819 return;
7820
7821 abbrev_table_up abbrev_table
7822 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7823 cu.header.abbrev_sect_off);
7824
7825 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7826 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7827
7828 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7829 }
7830
7831 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7832 does not lookup the specified DWO file.
7833 This cannot be used to read DWO files.
7834
7835 THIS_CU->cu is always freed when done.
7836 This is done in order to not leave THIS_CU->cu in a state where we have
7837 to care whether it refers to the "main" CU or the DWO CU.
7838 We can revisit this if the data shows there's a performance issue. */
7839
7840 static void
7841 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7842 die_reader_func_ftype *die_reader_func,
7843 void *data)
7844 {
7845 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7846 }
7847 \f
7848 /* Type Unit Groups.
7849
7850 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7851 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7852 so that all types coming from the same compilation (.o file) are grouped
7853 together. A future step could be to put the types in the same symtab as
7854 the CU the types ultimately came from. */
7855
7856 static hashval_t
7857 hash_type_unit_group (const void *item)
7858 {
7859 const struct type_unit_group *tu_group
7860 = (const struct type_unit_group *) item;
7861
7862 return hash_stmt_list_entry (&tu_group->hash);
7863 }
7864
7865 static int
7866 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7867 {
7868 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7869 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7870
7871 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7872 }
7873
7874 /* Allocate a hash table for type unit groups. */
7875
7876 static htab_t
7877 allocate_type_unit_groups_table (struct objfile *objfile)
7878 {
7879 return htab_create_alloc_ex (3,
7880 hash_type_unit_group,
7881 eq_type_unit_group,
7882 NULL,
7883 &objfile->objfile_obstack,
7884 hashtab_obstack_allocate,
7885 dummy_obstack_deallocate);
7886 }
7887
7888 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7889 partial symtabs. We combine several TUs per psymtab to not let the size
7890 of any one psymtab grow too big. */
7891 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7892 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7893
7894 /* Helper routine for get_type_unit_group.
7895 Create the type_unit_group object used to hold one or more TUs. */
7896
7897 static struct type_unit_group *
7898 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7899 {
7900 struct dwarf2_per_objfile *dwarf2_per_objfile
7901 = cu->per_cu->dwarf2_per_objfile;
7902 struct objfile *objfile = dwarf2_per_objfile->objfile;
7903 struct dwarf2_per_cu_data *per_cu;
7904 struct type_unit_group *tu_group;
7905
7906 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7907 struct type_unit_group);
7908 per_cu = &tu_group->per_cu;
7909 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7910
7911 if (dwarf2_per_objfile->using_index)
7912 {
7913 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7914 struct dwarf2_per_cu_quick_data);
7915 }
7916 else
7917 {
7918 unsigned int line_offset = to_underlying (line_offset_struct);
7919 struct partial_symtab *pst;
7920 std::string name;
7921
7922 /* Give the symtab a useful name for debug purposes. */
7923 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7924 name = string_printf ("<type_units_%d>",
7925 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7926 else
7927 name = string_printf ("<type_units_at_0x%x>", line_offset);
7928
7929 pst = create_partial_symtab (per_cu, name.c_str ());
7930 pst->anonymous = 1;
7931 }
7932
7933 tu_group->hash.dwo_unit = cu->dwo_unit;
7934 tu_group->hash.line_sect_off = line_offset_struct;
7935
7936 return tu_group;
7937 }
7938
7939 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7940 STMT_LIST is a DW_AT_stmt_list attribute. */
7941
7942 static struct type_unit_group *
7943 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7944 {
7945 struct dwarf2_per_objfile *dwarf2_per_objfile
7946 = cu->per_cu->dwarf2_per_objfile;
7947 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7948 struct type_unit_group *tu_group;
7949 void **slot;
7950 unsigned int line_offset;
7951 struct type_unit_group type_unit_group_for_lookup;
7952
7953 if (dwarf2_per_objfile->type_unit_groups == NULL)
7954 {
7955 dwarf2_per_objfile->type_unit_groups =
7956 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7957 }
7958
7959 /* Do we need to create a new group, or can we use an existing one? */
7960
7961 if (stmt_list)
7962 {
7963 line_offset = DW_UNSND (stmt_list);
7964 ++tu_stats->nr_symtab_sharers;
7965 }
7966 else
7967 {
7968 /* Ugh, no stmt_list. Rare, but we have to handle it.
7969 We can do various things here like create one group per TU or
7970 spread them over multiple groups to split up the expansion work.
7971 To avoid worst case scenarios (too many groups or too large groups)
7972 we, umm, group them in bunches. */
7973 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7974 | (tu_stats->nr_stmt_less_type_units
7975 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7976 ++tu_stats->nr_stmt_less_type_units;
7977 }
7978
7979 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7980 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7981 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7982 &type_unit_group_for_lookup, INSERT);
7983 if (*slot != NULL)
7984 {
7985 tu_group = (struct type_unit_group *) *slot;
7986 gdb_assert (tu_group != NULL);
7987 }
7988 else
7989 {
7990 sect_offset line_offset_struct = (sect_offset) line_offset;
7991 tu_group = create_type_unit_group (cu, line_offset_struct);
7992 *slot = tu_group;
7993 ++tu_stats->nr_symtabs;
7994 }
7995
7996 return tu_group;
7997 }
7998 \f
7999 /* Partial symbol tables. */
8000
8001 /* Create a psymtab named NAME and assign it to PER_CU.
8002
8003 The caller must fill in the following details:
8004 dirname, textlow, texthigh. */
8005
8006 static struct partial_symtab *
8007 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8008 {
8009 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8010 struct partial_symtab *pst;
8011
8012 pst = start_psymtab_common (objfile, name, 0);
8013
8014 pst->psymtabs_addrmap_supported = 1;
8015
8016 /* This is the glue that links PST into GDB's symbol API. */
8017 pst->read_symtab_private = per_cu;
8018 pst->read_symtab = dwarf2_read_symtab;
8019 per_cu->v.psymtab = pst;
8020
8021 return pst;
8022 }
8023
8024 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8025 type. */
8026
8027 struct process_psymtab_comp_unit_data
8028 {
8029 /* True if we are reading a DW_TAG_partial_unit. */
8030
8031 int want_partial_unit;
8032
8033 /* The "pretend" language that is used if the CU doesn't declare a
8034 language. */
8035
8036 enum language pretend_language;
8037 };
8038
8039 /* die_reader_func for process_psymtab_comp_unit. */
8040
8041 static void
8042 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8043 const gdb_byte *info_ptr,
8044 struct die_info *comp_unit_die,
8045 int has_children,
8046 void *data)
8047 {
8048 struct dwarf2_cu *cu = reader->cu;
8049 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8051 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8052 CORE_ADDR baseaddr;
8053 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8054 struct partial_symtab *pst;
8055 enum pc_bounds_kind cu_bounds_kind;
8056 const char *filename;
8057 struct process_psymtab_comp_unit_data *info
8058 = (struct process_psymtab_comp_unit_data *) data;
8059
8060 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8061 return;
8062
8063 gdb_assert (! per_cu->is_debug_types);
8064
8065 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8066
8067 /* Allocate a new partial symbol table structure. */
8068 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8069 if (filename == NULL)
8070 filename = "";
8071
8072 pst = create_partial_symtab (per_cu, filename);
8073
8074 /* This must be done before calling dwarf2_build_include_psymtabs. */
8075 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8076
8077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8078
8079 dwarf2_find_base_address (comp_unit_die, cu);
8080
8081 /* Possibly set the default values of LOWPC and HIGHPC from
8082 `DW_AT_ranges'. */
8083 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8084 &best_highpc, cu, pst);
8085 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8086 {
8087 CORE_ADDR low
8088 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8089 - baseaddr);
8090 CORE_ADDR high
8091 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8092 - baseaddr - 1);
8093 /* Store the contiguous range if it is not empty; it can be
8094 empty for CUs with no code. */
8095 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8096 low, high, pst);
8097 }
8098
8099 /* Check if comp unit has_children.
8100 If so, read the rest of the partial symbols from this comp unit.
8101 If not, there's no more debug_info for this comp unit. */
8102 if (has_children)
8103 {
8104 struct partial_die_info *first_die;
8105 CORE_ADDR lowpc, highpc;
8106
8107 lowpc = ((CORE_ADDR) -1);
8108 highpc = ((CORE_ADDR) 0);
8109
8110 first_die = load_partial_dies (reader, info_ptr, 1);
8111
8112 scan_partial_symbols (first_die, &lowpc, &highpc,
8113 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8114
8115 /* If we didn't find a lowpc, set it to highpc to avoid
8116 complaints from `maint check'. */
8117 if (lowpc == ((CORE_ADDR) -1))
8118 lowpc = highpc;
8119
8120 /* If the compilation unit didn't have an explicit address range,
8121 then use the information extracted from its child dies. */
8122 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8123 {
8124 best_lowpc = lowpc;
8125 best_highpc = highpc;
8126 }
8127 }
8128 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8129 best_lowpc + baseaddr)
8130 - baseaddr);
8131 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8132 best_highpc + baseaddr)
8133 - baseaddr);
8134
8135 end_psymtab_common (objfile, pst);
8136
8137 if (!cu->per_cu->imported_symtabs_empty ())
8138 {
8139 int i;
8140 int len = cu->per_cu->imported_symtabs_size ();
8141
8142 /* Fill in 'dependencies' here; we fill in 'users' in a
8143 post-pass. */
8144 pst->number_of_dependencies = len;
8145 pst->dependencies
8146 = objfile->partial_symtabs->allocate_dependencies (len);
8147 for (i = 0; i < len; ++i)
8148 {
8149 pst->dependencies[i]
8150 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
8151 }
8152
8153 cu->per_cu->imported_symtabs_free ();
8154 }
8155
8156 /* Get the list of files included in the current compilation unit,
8157 and build a psymtab for each of them. */
8158 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8159
8160 if (dwarf_read_debug)
8161 fprintf_unfiltered (gdb_stdlog,
8162 "Psymtab for %s unit @%s: %s - %s"
8163 ", %d global, %d static syms\n",
8164 per_cu->is_debug_types ? "type" : "comp",
8165 sect_offset_str (per_cu->sect_off),
8166 paddress (gdbarch, pst->text_low (objfile)),
8167 paddress (gdbarch, pst->text_high (objfile)),
8168 pst->n_global_syms, pst->n_static_syms);
8169 }
8170
8171 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8172 Process compilation unit THIS_CU for a psymtab. */
8173
8174 static void
8175 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8176 int want_partial_unit,
8177 enum language pretend_language)
8178 {
8179 /* If this compilation unit was already read in, free the
8180 cached copy in order to read it in again. This is
8181 necessary because we skipped some symbols when we first
8182 read in the compilation unit (see load_partial_dies).
8183 This problem could be avoided, but the benefit is unclear. */
8184 if (this_cu->cu != NULL)
8185 free_one_cached_comp_unit (this_cu);
8186
8187 if (this_cu->is_debug_types)
8188 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8189 build_type_psymtabs_reader, NULL);
8190 else
8191 {
8192 process_psymtab_comp_unit_data info;
8193 info.want_partial_unit = want_partial_unit;
8194 info.pretend_language = pretend_language;
8195 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8196 process_psymtab_comp_unit_reader, &info);
8197 }
8198
8199 /* Age out any secondary CUs. */
8200 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8201 }
8202
8203 /* Reader function for build_type_psymtabs. */
8204
8205 static void
8206 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8207 const gdb_byte *info_ptr,
8208 struct die_info *type_unit_die,
8209 int has_children,
8210 void *data)
8211 {
8212 struct dwarf2_per_objfile *dwarf2_per_objfile
8213 = reader->cu->per_cu->dwarf2_per_objfile;
8214 struct objfile *objfile = dwarf2_per_objfile->objfile;
8215 struct dwarf2_cu *cu = reader->cu;
8216 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8217 struct signatured_type *sig_type;
8218 struct type_unit_group *tu_group;
8219 struct attribute *attr;
8220 struct partial_die_info *first_die;
8221 CORE_ADDR lowpc, highpc;
8222 struct partial_symtab *pst;
8223
8224 gdb_assert (data == NULL);
8225 gdb_assert (per_cu->is_debug_types);
8226 sig_type = (struct signatured_type *) per_cu;
8227
8228 if (! has_children)
8229 return;
8230
8231 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8232 tu_group = get_type_unit_group (cu, attr);
8233
8234 if (tu_group->tus == nullptr)
8235 tu_group->tus = new std::vector<signatured_type *>;
8236 tu_group->tus->push_back (sig_type);
8237
8238 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8239 pst = create_partial_symtab (per_cu, "");
8240 pst->anonymous = 1;
8241
8242 first_die = load_partial_dies (reader, info_ptr, 1);
8243
8244 lowpc = (CORE_ADDR) -1;
8245 highpc = (CORE_ADDR) 0;
8246 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8247
8248 end_psymtab_common (objfile, pst);
8249 }
8250
8251 /* Struct used to sort TUs by their abbreviation table offset. */
8252
8253 struct tu_abbrev_offset
8254 {
8255 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8256 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8257 {}
8258
8259 signatured_type *sig_type;
8260 sect_offset abbrev_offset;
8261 };
8262
8263 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8264
8265 static bool
8266 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8267 const struct tu_abbrev_offset &b)
8268 {
8269 return a.abbrev_offset < b.abbrev_offset;
8270 }
8271
8272 /* Efficiently read all the type units.
8273 This does the bulk of the work for build_type_psymtabs.
8274
8275 The efficiency is because we sort TUs by the abbrev table they use and
8276 only read each abbrev table once. In one program there are 200K TUs
8277 sharing 8K abbrev tables.
8278
8279 The main purpose of this function is to support building the
8280 dwarf2_per_objfile->type_unit_groups table.
8281 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8282 can collapse the search space by grouping them by stmt_list.
8283 The savings can be significant, in the same program from above the 200K TUs
8284 share 8K stmt_list tables.
8285
8286 FUNC is expected to call get_type_unit_group, which will create the
8287 struct type_unit_group if necessary and add it to
8288 dwarf2_per_objfile->type_unit_groups. */
8289
8290 static void
8291 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8292 {
8293 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8294 abbrev_table_up abbrev_table;
8295 sect_offset abbrev_offset;
8296
8297 /* It's up to the caller to not call us multiple times. */
8298 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8299
8300 if (dwarf2_per_objfile->all_type_units.empty ())
8301 return;
8302
8303 /* TUs typically share abbrev tables, and there can be way more TUs than
8304 abbrev tables. Sort by abbrev table to reduce the number of times we
8305 read each abbrev table in.
8306 Alternatives are to punt or to maintain a cache of abbrev tables.
8307 This is simpler and efficient enough for now.
8308
8309 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8310 symtab to use). Typically TUs with the same abbrev offset have the same
8311 stmt_list value too so in practice this should work well.
8312
8313 The basic algorithm here is:
8314
8315 sort TUs by abbrev table
8316 for each TU with same abbrev table:
8317 read abbrev table if first user
8318 read TU top level DIE
8319 [IWBN if DWO skeletons had DW_AT_stmt_list]
8320 call FUNC */
8321
8322 if (dwarf_read_debug)
8323 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8324
8325 /* Sort in a separate table to maintain the order of all_type_units
8326 for .gdb_index: TU indices directly index all_type_units. */
8327 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8328 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8329
8330 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8331 sorted_by_abbrev.emplace_back
8332 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8333 sig_type->per_cu.section,
8334 sig_type->per_cu.sect_off));
8335
8336 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8337 sort_tu_by_abbrev_offset);
8338
8339 abbrev_offset = (sect_offset) ~(unsigned) 0;
8340
8341 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8342 {
8343 /* Switch to the next abbrev table if necessary. */
8344 if (abbrev_table == NULL
8345 || tu.abbrev_offset != abbrev_offset)
8346 {
8347 abbrev_offset = tu.abbrev_offset;
8348 abbrev_table =
8349 abbrev_table_read_table (dwarf2_per_objfile,
8350 &dwarf2_per_objfile->abbrev,
8351 abbrev_offset);
8352 ++tu_stats->nr_uniq_abbrev_tables;
8353 }
8354
8355 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8356 0, 0, false, build_type_psymtabs_reader, NULL);
8357 }
8358 }
8359
8360 /* Print collected type unit statistics. */
8361
8362 static void
8363 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364 {
8365 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8366
8367 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8368 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8369 dwarf2_per_objfile->all_type_units.size ());
8370 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8371 tu_stats->nr_uniq_abbrev_tables);
8372 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8373 tu_stats->nr_symtabs);
8374 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8375 tu_stats->nr_symtab_sharers);
8376 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8377 tu_stats->nr_stmt_less_type_units);
8378 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8379 tu_stats->nr_all_type_units_reallocs);
8380 }
8381
8382 /* Traversal function for build_type_psymtabs. */
8383
8384 static int
8385 build_type_psymtab_dependencies (void **slot, void *info)
8386 {
8387 struct dwarf2_per_objfile *dwarf2_per_objfile
8388 = (struct dwarf2_per_objfile *) info;
8389 struct objfile *objfile = dwarf2_per_objfile->objfile;
8390 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8391 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8392 struct partial_symtab *pst = per_cu->v.psymtab;
8393 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8394 int i;
8395
8396 gdb_assert (len > 0);
8397 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8398
8399 pst->number_of_dependencies = len;
8400 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8401 for (i = 0; i < len; ++i)
8402 {
8403 struct signatured_type *iter = tu_group->tus->at (i);
8404 gdb_assert (iter->per_cu.is_debug_types);
8405 pst->dependencies[i] = iter->per_cu.v.psymtab;
8406 iter->type_unit_group = tu_group;
8407 }
8408
8409 delete tu_group->tus;
8410 tu_group->tus = nullptr;
8411
8412 return 1;
8413 }
8414
8415 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8416 Build partial symbol tables for the .debug_types comp-units. */
8417
8418 static void
8419 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8420 {
8421 if (! create_all_type_units (dwarf2_per_objfile))
8422 return;
8423
8424 build_type_psymtabs_1 (dwarf2_per_objfile);
8425 }
8426
8427 /* Traversal function for process_skeletonless_type_unit.
8428 Read a TU in a DWO file and build partial symbols for it. */
8429
8430 static int
8431 process_skeletonless_type_unit (void **slot, void *info)
8432 {
8433 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8434 struct dwarf2_per_objfile *dwarf2_per_objfile
8435 = (struct dwarf2_per_objfile *) info;
8436 struct signatured_type find_entry, *entry;
8437
8438 /* If this TU doesn't exist in the global table, add it and read it in. */
8439
8440 if (dwarf2_per_objfile->signatured_types == NULL)
8441 {
8442 dwarf2_per_objfile->signatured_types
8443 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8444 }
8445
8446 find_entry.signature = dwo_unit->signature;
8447 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8448 INSERT);
8449 /* If we've already seen this type there's nothing to do. What's happening
8450 is we're doing our own version of comdat-folding here. */
8451 if (*slot != NULL)
8452 return 1;
8453
8454 /* This does the job that create_all_type_units would have done for
8455 this TU. */
8456 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8457 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8458 *slot = entry;
8459
8460 /* This does the job that build_type_psymtabs_1 would have done. */
8461 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8462 build_type_psymtabs_reader, NULL);
8463
8464 return 1;
8465 }
8466
8467 /* Traversal function for process_skeletonless_type_units. */
8468
8469 static int
8470 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8471 {
8472 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8473
8474 if (dwo_file->tus != NULL)
8475 {
8476 htab_traverse_noresize (dwo_file->tus,
8477 process_skeletonless_type_unit, info);
8478 }
8479
8480 return 1;
8481 }
8482
8483 /* Scan all TUs of DWO files, verifying we've processed them.
8484 This is needed in case a TU was emitted without its skeleton.
8485 Note: This can't be done until we know what all the DWO files are. */
8486
8487 static void
8488 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8489 {
8490 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8491 if (get_dwp_file (dwarf2_per_objfile) == NULL
8492 && dwarf2_per_objfile->dwo_files != NULL)
8493 {
8494 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8495 process_dwo_file_for_skeletonless_type_units,
8496 dwarf2_per_objfile);
8497 }
8498 }
8499
8500 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8501
8502 static void
8503 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8504 {
8505 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8506 {
8507 struct partial_symtab *pst = per_cu->v.psymtab;
8508
8509 if (pst == NULL)
8510 continue;
8511
8512 for (int j = 0; j < pst->number_of_dependencies; ++j)
8513 {
8514 /* Set the 'user' field only if it is not already set. */
8515 if (pst->dependencies[j]->user == NULL)
8516 pst->dependencies[j]->user = pst;
8517 }
8518 }
8519 }
8520
8521 /* Build the partial symbol table by doing a quick pass through the
8522 .debug_info and .debug_abbrev sections. */
8523
8524 static void
8525 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8526 {
8527 struct objfile *objfile = dwarf2_per_objfile->objfile;
8528
8529 if (dwarf_read_debug)
8530 {
8531 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8532 objfile_name (objfile));
8533 }
8534
8535 dwarf2_per_objfile->reading_partial_symbols = 1;
8536
8537 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8538
8539 /* Any cached compilation units will be linked by the per-objfile
8540 read_in_chain. Make sure to free them when we're done. */
8541 free_cached_comp_units freer (dwarf2_per_objfile);
8542
8543 build_type_psymtabs (dwarf2_per_objfile);
8544
8545 create_all_comp_units (dwarf2_per_objfile);
8546
8547 /* Create a temporary address map on a temporary obstack. We later
8548 copy this to the final obstack. */
8549 auto_obstack temp_obstack;
8550
8551 scoped_restore save_psymtabs_addrmap
8552 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8553 addrmap_create_mutable (&temp_obstack));
8554
8555 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8556 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8557
8558 /* This has to wait until we read the CUs, we need the list of DWOs. */
8559 process_skeletonless_type_units (dwarf2_per_objfile);
8560
8561 /* Now that all TUs have been processed we can fill in the dependencies. */
8562 if (dwarf2_per_objfile->type_unit_groups != NULL)
8563 {
8564 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8565 build_type_psymtab_dependencies, dwarf2_per_objfile);
8566 }
8567
8568 if (dwarf_read_debug)
8569 print_tu_stats (dwarf2_per_objfile);
8570
8571 set_partial_user (dwarf2_per_objfile);
8572
8573 objfile->partial_symtabs->psymtabs_addrmap
8574 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8575 objfile->partial_symtabs->obstack ());
8576 /* At this point we want to keep the address map. */
8577 save_psymtabs_addrmap.release ();
8578
8579 if (dwarf_read_debug)
8580 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8581 objfile_name (objfile));
8582 }
8583
8584 /* die_reader_func for load_partial_comp_unit. */
8585
8586 static void
8587 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8588 const gdb_byte *info_ptr,
8589 struct die_info *comp_unit_die,
8590 int has_children,
8591 void *data)
8592 {
8593 struct dwarf2_cu *cu = reader->cu;
8594
8595 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8596
8597 /* Check if comp unit has_children.
8598 If so, read the rest of the partial symbols from this comp unit.
8599 If not, there's no more debug_info for this comp unit. */
8600 if (has_children)
8601 load_partial_dies (reader, info_ptr, 0);
8602 }
8603
8604 /* Load the partial DIEs for a secondary CU into memory.
8605 This is also used when rereading a primary CU with load_all_dies. */
8606
8607 static void
8608 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8609 {
8610 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8611 load_partial_comp_unit_reader, NULL);
8612 }
8613
8614 static void
8615 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8616 struct dwarf2_section_info *section,
8617 struct dwarf2_section_info *abbrev_section,
8618 unsigned int is_dwz)
8619 {
8620 const gdb_byte *info_ptr;
8621 struct objfile *objfile = dwarf2_per_objfile->objfile;
8622
8623 if (dwarf_read_debug)
8624 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8625 get_section_name (section),
8626 get_section_file_name (section));
8627
8628 dwarf2_read_section (objfile, section);
8629
8630 info_ptr = section->buffer;
8631
8632 while (info_ptr < section->buffer + section->size)
8633 {
8634 struct dwarf2_per_cu_data *this_cu;
8635
8636 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8637
8638 comp_unit_head cu_header;
8639 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8640 abbrev_section, info_ptr,
8641 rcuh_kind::COMPILE);
8642
8643 /* Save the compilation unit for later lookup. */
8644 if (cu_header.unit_type != DW_UT_type)
8645 {
8646 this_cu = XOBNEW (&objfile->objfile_obstack,
8647 struct dwarf2_per_cu_data);
8648 memset (this_cu, 0, sizeof (*this_cu));
8649 }
8650 else
8651 {
8652 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8653 struct signatured_type);
8654 memset (sig_type, 0, sizeof (*sig_type));
8655 sig_type->signature = cu_header.signature;
8656 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8657 this_cu = &sig_type->per_cu;
8658 }
8659 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8660 this_cu->sect_off = sect_off;
8661 this_cu->length = cu_header.length + cu_header.initial_length_size;
8662 this_cu->is_dwz = is_dwz;
8663 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8664 this_cu->section = section;
8665
8666 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8667
8668 info_ptr = info_ptr + this_cu->length;
8669 }
8670 }
8671
8672 /* Create a list of all compilation units in OBJFILE.
8673 This is only done for -readnow and building partial symtabs. */
8674
8675 static void
8676 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8677 {
8678 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8679 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8680 &dwarf2_per_objfile->abbrev, 0);
8681
8682 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8683 if (dwz != NULL)
8684 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8685 1);
8686 }
8687
8688 /* Process all loaded DIEs for compilation unit CU, starting at
8689 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8690 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8691 DW_AT_ranges). See the comments of add_partial_subprogram on how
8692 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8693
8694 static void
8695 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8696 CORE_ADDR *highpc, int set_addrmap,
8697 struct dwarf2_cu *cu)
8698 {
8699 struct partial_die_info *pdi;
8700
8701 /* Now, march along the PDI's, descending into ones which have
8702 interesting children but skipping the children of the other ones,
8703 until we reach the end of the compilation unit. */
8704
8705 pdi = first_die;
8706
8707 while (pdi != NULL)
8708 {
8709 pdi->fixup (cu);
8710
8711 /* Anonymous namespaces or modules have no name but have interesting
8712 children, so we need to look at them. Ditto for anonymous
8713 enums. */
8714
8715 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8716 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8717 || pdi->tag == DW_TAG_imported_unit
8718 || pdi->tag == DW_TAG_inlined_subroutine)
8719 {
8720 switch (pdi->tag)
8721 {
8722 case DW_TAG_subprogram:
8723 case DW_TAG_inlined_subroutine:
8724 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8725 break;
8726 case DW_TAG_constant:
8727 case DW_TAG_variable:
8728 case DW_TAG_typedef:
8729 case DW_TAG_union_type:
8730 if (!pdi->is_declaration)
8731 {
8732 add_partial_symbol (pdi, cu);
8733 }
8734 break;
8735 case DW_TAG_class_type:
8736 case DW_TAG_interface_type:
8737 case DW_TAG_structure_type:
8738 if (!pdi->is_declaration)
8739 {
8740 add_partial_symbol (pdi, cu);
8741 }
8742 if ((cu->language == language_rust
8743 || cu->language == language_cplus) && pdi->has_children)
8744 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8745 set_addrmap, cu);
8746 break;
8747 case DW_TAG_enumeration_type:
8748 if (!pdi->is_declaration)
8749 add_partial_enumeration (pdi, cu);
8750 break;
8751 case DW_TAG_base_type:
8752 case DW_TAG_subrange_type:
8753 /* File scope base type definitions are added to the partial
8754 symbol table. */
8755 add_partial_symbol (pdi, cu);
8756 break;
8757 case DW_TAG_namespace:
8758 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8759 break;
8760 case DW_TAG_module:
8761 if (!pdi->is_declaration)
8762 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8763 break;
8764 case DW_TAG_imported_unit:
8765 {
8766 struct dwarf2_per_cu_data *per_cu;
8767
8768 /* For now we don't handle imported units in type units. */
8769 if (cu->per_cu->is_debug_types)
8770 {
8771 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8772 " supported in type units [in module %s]"),
8773 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8774 }
8775
8776 per_cu = dwarf2_find_containing_comp_unit
8777 (pdi->d.sect_off, pdi->is_dwz,
8778 cu->per_cu->dwarf2_per_objfile);
8779
8780 /* Go read the partial unit, if needed. */
8781 if (per_cu->v.psymtab == NULL)
8782 process_psymtab_comp_unit (per_cu, 1, cu->language);
8783
8784 cu->per_cu->imported_symtabs_push (per_cu);
8785 }
8786 break;
8787 case DW_TAG_imported_declaration:
8788 add_partial_symbol (pdi, cu);
8789 break;
8790 default:
8791 break;
8792 }
8793 }
8794
8795 /* If the die has a sibling, skip to the sibling. */
8796
8797 pdi = pdi->die_sibling;
8798 }
8799 }
8800
8801 /* Functions used to compute the fully scoped name of a partial DIE.
8802
8803 Normally, this is simple. For C++, the parent DIE's fully scoped
8804 name is concatenated with "::" and the partial DIE's name.
8805 Enumerators are an exception; they use the scope of their parent
8806 enumeration type, i.e. the name of the enumeration type is not
8807 prepended to the enumerator.
8808
8809 There are two complexities. One is DW_AT_specification; in this
8810 case "parent" means the parent of the target of the specification,
8811 instead of the direct parent of the DIE. The other is compilers
8812 which do not emit DW_TAG_namespace; in this case we try to guess
8813 the fully qualified name of structure types from their members'
8814 linkage names. This must be done using the DIE's children rather
8815 than the children of any DW_AT_specification target. We only need
8816 to do this for structures at the top level, i.e. if the target of
8817 any DW_AT_specification (if any; otherwise the DIE itself) does not
8818 have a parent. */
8819
8820 /* Compute the scope prefix associated with PDI's parent, in
8821 compilation unit CU. The result will be allocated on CU's
8822 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8823 field. NULL is returned if no prefix is necessary. */
8824 static const char *
8825 partial_die_parent_scope (struct partial_die_info *pdi,
8826 struct dwarf2_cu *cu)
8827 {
8828 const char *grandparent_scope;
8829 struct partial_die_info *parent, *real_pdi;
8830
8831 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8832 then this means the parent of the specification DIE. */
8833
8834 real_pdi = pdi;
8835 while (real_pdi->has_specification)
8836 {
8837 auto res = find_partial_die (real_pdi->spec_offset,
8838 real_pdi->spec_is_dwz, cu);
8839 real_pdi = res.pdi;
8840 cu = res.cu;
8841 }
8842
8843 parent = real_pdi->die_parent;
8844 if (parent == NULL)
8845 return NULL;
8846
8847 if (parent->scope_set)
8848 return parent->scope;
8849
8850 parent->fixup (cu);
8851
8852 grandparent_scope = partial_die_parent_scope (parent, cu);
8853
8854 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8855 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8856 Work around this problem here. */
8857 if (cu->language == language_cplus
8858 && parent->tag == DW_TAG_namespace
8859 && strcmp (parent->name, "::") == 0
8860 && grandparent_scope == NULL)
8861 {
8862 parent->scope = NULL;
8863 parent->scope_set = 1;
8864 return NULL;
8865 }
8866
8867 /* Nested subroutines in Fortran get a prefix. */
8868 if (pdi->tag == DW_TAG_enumerator)
8869 /* Enumerators should not get the name of the enumeration as a prefix. */
8870 parent->scope = grandparent_scope;
8871 else if (parent->tag == DW_TAG_namespace
8872 || parent->tag == DW_TAG_module
8873 || parent->tag == DW_TAG_structure_type
8874 || parent->tag == DW_TAG_class_type
8875 || parent->tag == DW_TAG_interface_type
8876 || parent->tag == DW_TAG_union_type
8877 || parent->tag == DW_TAG_enumeration_type
8878 || (cu->language == language_fortran
8879 && parent->tag == DW_TAG_subprogram
8880 && pdi->tag == DW_TAG_subprogram))
8881 {
8882 if (grandparent_scope == NULL)
8883 parent->scope = parent->name;
8884 else
8885 parent->scope = typename_concat (&cu->comp_unit_obstack,
8886 grandparent_scope,
8887 parent->name, 0, cu);
8888 }
8889 else
8890 {
8891 /* FIXME drow/2004-04-01: What should we be doing with
8892 function-local names? For partial symbols, we should probably be
8893 ignoring them. */
8894 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8895 dwarf_tag_name (parent->tag),
8896 sect_offset_str (pdi->sect_off));
8897 parent->scope = grandparent_scope;
8898 }
8899
8900 parent->scope_set = 1;
8901 return parent->scope;
8902 }
8903
8904 /* Return the fully scoped name associated with PDI, from compilation unit
8905 CU. The result will be allocated with malloc. */
8906
8907 static char *
8908 partial_die_full_name (struct partial_die_info *pdi,
8909 struct dwarf2_cu *cu)
8910 {
8911 const char *parent_scope;
8912
8913 /* If this is a template instantiation, we can not work out the
8914 template arguments from partial DIEs. So, unfortunately, we have
8915 to go through the full DIEs. At least any work we do building
8916 types here will be reused if full symbols are loaded later. */
8917 if (pdi->has_template_arguments)
8918 {
8919 pdi->fixup (cu);
8920
8921 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8922 {
8923 struct die_info *die;
8924 struct attribute attr;
8925 struct dwarf2_cu *ref_cu = cu;
8926
8927 /* DW_FORM_ref_addr is using section offset. */
8928 attr.name = (enum dwarf_attribute) 0;
8929 attr.form = DW_FORM_ref_addr;
8930 attr.u.unsnd = to_underlying (pdi->sect_off);
8931 die = follow_die_ref (NULL, &attr, &ref_cu);
8932
8933 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8934 }
8935 }
8936
8937 parent_scope = partial_die_parent_scope (pdi, cu);
8938 if (parent_scope == NULL)
8939 return NULL;
8940 else
8941 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8942 }
8943
8944 static void
8945 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8946 {
8947 struct dwarf2_per_objfile *dwarf2_per_objfile
8948 = cu->per_cu->dwarf2_per_objfile;
8949 struct objfile *objfile = dwarf2_per_objfile->objfile;
8950 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8951 CORE_ADDR addr = 0;
8952 const char *actual_name = NULL;
8953 CORE_ADDR baseaddr;
8954 char *built_actual_name;
8955
8956 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8957
8958 built_actual_name = partial_die_full_name (pdi, cu);
8959 if (built_actual_name != NULL)
8960 actual_name = built_actual_name;
8961
8962 if (actual_name == NULL)
8963 actual_name = pdi->name;
8964
8965 switch (pdi->tag)
8966 {
8967 case DW_TAG_inlined_subroutine:
8968 case DW_TAG_subprogram:
8969 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8970 - baseaddr);
8971 if (pdi->is_external
8972 || cu->language == language_ada
8973 || (cu->language == language_fortran
8974 && pdi->die_parent != NULL
8975 && pdi->die_parent->tag == DW_TAG_subprogram))
8976 {
8977 /* Normally, only "external" DIEs are part of the global scope.
8978 But in Ada and Fortran, we want to be able to access nested
8979 procedures globally. So all Ada and Fortran subprograms are
8980 stored in the global scope. */
8981 add_psymbol_to_list (actual_name,
8982 built_actual_name != NULL,
8983 VAR_DOMAIN, LOC_BLOCK,
8984 SECT_OFF_TEXT (objfile),
8985 psymbol_placement::GLOBAL,
8986 addr,
8987 cu->language, objfile);
8988 }
8989 else
8990 {
8991 add_psymbol_to_list (actual_name,
8992 built_actual_name != NULL,
8993 VAR_DOMAIN, LOC_BLOCK,
8994 SECT_OFF_TEXT (objfile),
8995 psymbol_placement::STATIC,
8996 addr, cu->language, objfile);
8997 }
8998
8999 if (pdi->main_subprogram && actual_name != NULL)
9000 set_objfile_main_name (objfile, actual_name, cu->language);
9001 break;
9002 case DW_TAG_constant:
9003 add_psymbol_to_list (actual_name,
9004 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9005 -1, (pdi->is_external
9006 ? psymbol_placement::GLOBAL
9007 : psymbol_placement::STATIC),
9008 0, cu->language, objfile);
9009 break;
9010 case DW_TAG_variable:
9011 if (pdi->d.locdesc)
9012 addr = decode_locdesc (pdi->d.locdesc, cu);
9013
9014 if (pdi->d.locdesc
9015 && addr == 0
9016 && !dwarf2_per_objfile->has_section_at_zero)
9017 {
9018 /* A global or static variable may also have been stripped
9019 out by the linker if unused, in which case its address
9020 will be nullified; do not add such variables into partial
9021 symbol table then. */
9022 }
9023 else if (pdi->is_external)
9024 {
9025 /* Global Variable.
9026 Don't enter into the minimal symbol tables as there is
9027 a minimal symbol table entry from the ELF symbols already.
9028 Enter into partial symbol table if it has a location
9029 descriptor or a type.
9030 If the location descriptor is missing, new_symbol will create
9031 a LOC_UNRESOLVED symbol, the address of the variable will then
9032 be determined from the minimal symbol table whenever the variable
9033 is referenced.
9034 The address for the partial symbol table entry is not
9035 used by GDB, but it comes in handy for debugging partial symbol
9036 table building. */
9037
9038 if (pdi->d.locdesc || pdi->has_type)
9039 add_psymbol_to_list (actual_name,
9040 built_actual_name != NULL,
9041 VAR_DOMAIN, LOC_STATIC,
9042 SECT_OFF_TEXT (objfile),
9043 psymbol_placement::GLOBAL,
9044 addr, cu->language, objfile);
9045 }
9046 else
9047 {
9048 int has_loc = pdi->d.locdesc != NULL;
9049
9050 /* Static Variable. Skip symbols whose value we cannot know (those
9051 without location descriptors or constant values). */
9052 if (!has_loc && !pdi->has_const_value)
9053 {
9054 xfree (built_actual_name);
9055 return;
9056 }
9057
9058 add_psymbol_to_list (actual_name,
9059 built_actual_name != NULL,
9060 VAR_DOMAIN, LOC_STATIC,
9061 SECT_OFF_TEXT (objfile),
9062 psymbol_placement::STATIC,
9063 has_loc ? addr : 0,
9064 cu->language, objfile);
9065 }
9066 break;
9067 case DW_TAG_typedef:
9068 case DW_TAG_base_type:
9069 case DW_TAG_subrange_type:
9070 add_psymbol_to_list (actual_name,
9071 built_actual_name != NULL,
9072 VAR_DOMAIN, LOC_TYPEDEF, -1,
9073 psymbol_placement::STATIC,
9074 0, cu->language, objfile);
9075 break;
9076 case DW_TAG_imported_declaration:
9077 case DW_TAG_namespace:
9078 add_psymbol_to_list (actual_name,
9079 built_actual_name != NULL,
9080 VAR_DOMAIN, LOC_TYPEDEF, -1,
9081 psymbol_placement::GLOBAL,
9082 0, cu->language, objfile);
9083 break;
9084 case DW_TAG_module:
9085 /* With Fortran 77 there might be a "BLOCK DATA" module
9086 available without any name. If so, we skip the module as it
9087 doesn't bring any value. */
9088 if (actual_name != nullptr)
9089 add_psymbol_to_list (actual_name,
9090 built_actual_name != NULL,
9091 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9092 psymbol_placement::GLOBAL,
9093 0, cu->language, objfile);
9094 break;
9095 case DW_TAG_class_type:
9096 case DW_TAG_interface_type:
9097 case DW_TAG_structure_type:
9098 case DW_TAG_union_type:
9099 case DW_TAG_enumeration_type:
9100 /* Skip external references. The DWARF standard says in the section
9101 about "Structure, Union, and Class Type Entries": "An incomplete
9102 structure, union or class type is represented by a structure,
9103 union or class entry that does not have a byte size attribute
9104 and that has a DW_AT_declaration attribute." */
9105 if (!pdi->has_byte_size && pdi->is_declaration)
9106 {
9107 xfree (built_actual_name);
9108 return;
9109 }
9110
9111 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9112 static vs. global. */
9113 add_psymbol_to_list (actual_name,
9114 built_actual_name != NULL,
9115 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9116 cu->language == language_cplus
9117 ? psymbol_placement::GLOBAL
9118 : psymbol_placement::STATIC,
9119 0, cu->language, objfile);
9120
9121 break;
9122 case DW_TAG_enumerator:
9123 add_psymbol_to_list (actual_name,
9124 built_actual_name != NULL,
9125 VAR_DOMAIN, LOC_CONST, -1,
9126 cu->language == language_cplus
9127 ? psymbol_placement::GLOBAL
9128 : psymbol_placement::STATIC,
9129 0, cu->language, objfile);
9130 break;
9131 default:
9132 break;
9133 }
9134
9135 xfree (built_actual_name);
9136 }
9137
9138 /* Read a partial die corresponding to a namespace; also, add a symbol
9139 corresponding to that namespace to the symbol table. NAMESPACE is
9140 the name of the enclosing namespace. */
9141
9142 static void
9143 add_partial_namespace (struct partial_die_info *pdi,
9144 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9145 int set_addrmap, struct dwarf2_cu *cu)
9146 {
9147 /* Add a symbol for the namespace. */
9148
9149 add_partial_symbol (pdi, cu);
9150
9151 /* Now scan partial symbols in that namespace. */
9152
9153 if (pdi->has_children)
9154 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9155 }
9156
9157 /* Read a partial die corresponding to a Fortran module. */
9158
9159 static void
9160 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9161 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9162 {
9163 /* Add a symbol for the namespace. */
9164
9165 add_partial_symbol (pdi, cu);
9166
9167 /* Now scan partial symbols in that module. */
9168
9169 if (pdi->has_children)
9170 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9171 }
9172
9173 /* Read a partial die corresponding to a subprogram or an inlined
9174 subprogram and create a partial symbol for that subprogram.
9175 When the CU language allows it, this routine also defines a partial
9176 symbol for each nested subprogram that this subprogram contains.
9177 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9178 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9179
9180 PDI may also be a lexical block, in which case we simply search
9181 recursively for subprograms defined inside that lexical block.
9182 Again, this is only performed when the CU language allows this
9183 type of definitions. */
9184
9185 static void
9186 add_partial_subprogram (struct partial_die_info *pdi,
9187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9188 int set_addrmap, struct dwarf2_cu *cu)
9189 {
9190 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9191 {
9192 if (pdi->has_pc_info)
9193 {
9194 if (pdi->lowpc < *lowpc)
9195 *lowpc = pdi->lowpc;
9196 if (pdi->highpc > *highpc)
9197 *highpc = pdi->highpc;
9198 if (set_addrmap)
9199 {
9200 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9202 CORE_ADDR baseaddr;
9203 CORE_ADDR this_highpc;
9204 CORE_ADDR this_lowpc;
9205
9206 baseaddr = ANOFFSET (objfile->section_offsets,
9207 SECT_OFF_TEXT (objfile));
9208 this_lowpc
9209 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9210 pdi->lowpc + baseaddr)
9211 - baseaddr);
9212 this_highpc
9213 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9214 pdi->highpc + baseaddr)
9215 - baseaddr);
9216 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9217 this_lowpc, this_highpc - 1,
9218 cu->per_cu->v.psymtab);
9219 }
9220 }
9221
9222 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9223 {
9224 if (!pdi->is_declaration)
9225 /* Ignore subprogram DIEs that do not have a name, they are
9226 illegal. Do not emit a complaint at this point, we will
9227 do so when we convert this psymtab into a symtab. */
9228 if (pdi->name)
9229 add_partial_symbol (pdi, cu);
9230 }
9231 }
9232
9233 if (! pdi->has_children)
9234 return;
9235
9236 if (cu->language == language_ada || cu->language == language_fortran)
9237 {
9238 pdi = pdi->die_child;
9239 while (pdi != NULL)
9240 {
9241 pdi->fixup (cu);
9242 if (pdi->tag == DW_TAG_subprogram
9243 || pdi->tag == DW_TAG_inlined_subroutine
9244 || pdi->tag == DW_TAG_lexical_block)
9245 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9246 pdi = pdi->die_sibling;
9247 }
9248 }
9249 }
9250
9251 /* Read a partial die corresponding to an enumeration type. */
9252
9253 static void
9254 add_partial_enumeration (struct partial_die_info *enum_pdi,
9255 struct dwarf2_cu *cu)
9256 {
9257 struct partial_die_info *pdi;
9258
9259 if (enum_pdi->name != NULL)
9260 add_partial_symbol (enum_pdi, cu);
9261
9262 pdi = enum_pdi->die_child;
9263 while (pdi)
9264 {
9265 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9266 complaint (_("malformed enumerator DIE ignored"));
9267 else
9268 add_partial_symbol (pdi, cu);
9269 pdi = pdi->die_sibling;
9270 }
9271 }
9272
9273 /* Return the initial uleb128 in the die at INFO_PTR. */
9274
9275 static unsigned int
9276 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9277 {
9278 unsigned int bytes_read;
9279
9280 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9281 }
9282
9283 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9284 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9285
9286 Return the corresponding abbrev, or NULL if the number is zero (indicating
9287 an empty DIE). In either case *BYTES_READ will be set to the length of
9288 the initial number. */
9289
9290 static struct abbrev_info *
9291 peek_die_abbrev (const die_reader_specs &reader,
9292 const gdb_byte *info_ptr, unsigned int *bytes_read)
9293 {
9294 dwarf2_cu *cu = reader.cu;
9295 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9296 unsigned int abbrev_number
9297 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9298
9299 if (abbrev_number == 0)
9300 return NULL;
9301
9302 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9303 if (!abbrev)
9304 {
9305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9306 " at offset %s [in module %s]"),
9307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9308 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9309 }
9310
9311 return abbrev;
9312 }
9313
9314 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9315 Returns a pointer to the end of a series of DIEs, terminated by an empty
9316 DIE. Any children of the skipped DIEs will also be skipped. */
9317
9318 static const gdb_byte *
9319 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9320 {
9321 while (1)
9322 {
9323 unsigned int bytes_read;
9324 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9325
9326 if (abbrev == NULL)
9327 return info_ptr + bytes_read;
9328 else
9329 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9330 }
9331 }
9332
9333 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9334 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9335 abbrev corresponding to that skipped uleb128 should be passed in
9336 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9337 children. */
9338
9339 static const gdb_byte *
9340 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9341 struct abbrev_info *abbrev)
9342 {
9343 unsigned int bytes_read;
9344 struct attribute attr;
9345 bfd *abfd = reader->abfd;
9346 struct dwarf2_cu *cu = reader->cu;
9347 const gdb_byte *buffer = reader->buffer;
9348 const gdb_byte *buffer_end = reader->buffer_end;
9349 unsigned int form, i;
9350
9351 for (i = 0; i < abbrev->num_attrs; i++)
9352 {
9353 /* The only abbrev we care about is DW_AT_sibling. */
9354 if (abbrev->attrs[i].name == DW_AT_sibling)
9355 {
9356 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9357 if (attr.form == DW_FORM_ref_addr)
9358 complaint (_("ignoring absolute DW_AT_sibling"));
9359 else
9360 {
9361 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9362 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9363
9364 if (sibling_ptr < info_ptr)
9365 complaint (_("DW_AT_sibling points backwards"));
9366 else if (sibling_ptr > reader->buffer_end)
9367 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9368 else
9369 return sibling_ptr;
9370 }
9371 }
9372
9373 /* If it isn't DW_AT_sibling, skip this attribute. */
9374 form = abbrev->attrs[i].form;
9375 skip_attribute:
9376 switch (form)
9377 {
9378 case DW_FORM_ref_addr:
9379 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9380 and later it is offset sized. */
9381 if (cu->header.version == 2)
9382 info_ptr += cu->header.addr_size;
9383 else
9384 info_ptr += cu->header.offset_size;
9385 break;
9386 case DW_FORM_GNU_ref_alt:
9387 info_ptr += cu->header.offset_size;
9388 break;
9389 case DW_FORM_addr:
9390 info_ptr += cu->header.addr_size;
9391 break;
9392 case DW_FORM_data1:
9393 case DW_FORM_ref1:
9394 case DW_FORM_flag:
9395 case DW_FORM_strx1:
9396 info_ptr += 1;
9397 break;
9398 case DW_FORM_flag_present:
9399 case DW_FORM_implicit_const:
9400 break;
9401 case DW_FORM_data2:
9402 case DW_FORM_ref2:
9403 case DW_FORM_strx2:
9404 info_ptr += 2;
9405 break;
9406 case DW_FORM_strx3:
9407 info_ptr += 3;
9408 break;
9409 case DW_FORM_data4:
9410 case DW_FORM_ref4:
9411 case DW_FORM_strx4:
9412 info_ptr += 4;
9413 break;
9414 case DW_FORM_data8:
9415 case DW_FORM_ref8:
9416 case DW_FORM_ref_sig8:
9417 info_ptr += 8;
9418 break;
9419 case DW_FORM_data16:
9420 info_ptr += 16;
9421 break;
9422 case DW_FORM_string:
9423 read_direct_string (abfd, info_ptr, &bytes_read);
9424 info_ptr += bytes_read;
9425 break;
9426 case DW_FORM_sec_offset:
9427 case DW_FORM_strp:
9428 case DW_FORM_GNU_strp_alt:
9429 info_ptr += cu->header.offset_size;
9430 break;
9431 case DW_FORM_exprloc:
9432 case DW_FORM_block:
9433 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9434 info_ptr += bytes_read;
9435 break;
9436 case DW_FORM_block1:
9437 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9438 break;
9439 case DW_FORM_block2:
9440 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9441 break;
9442 case DW_FORM_block4:
9443 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9444 break;
9445 case DW_FORM_addrx:
9446 case DW_FORM_strx:
9447 case DW_FORM_sdata:
9448 case DW_FORM_udata:
9449 case DW_FORM_ref_udata:
9450 case DW_FORM_GNU_addr_index:
9451 case DW_FORM_GNU_str_index:
9452 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9453 break;
9454 case DW_FORM_indirect:
9455 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9456 info_ptr += bytes_read;
9457 /* We need to continue parsing from here, so just go back to
9458 the top. */
9459 goto skip_attribute;
9460
9461 default:
9462 error (_("Dwarf Error: Cannot handle %s "
9463 "in DWARF reader [in module %s]"),
9464 dwarf_form_name (form),
9465 bfd_get_filename (abfd));
9466 }
9467 }
9468
9469 if (abbrev->has_children)
9470 return skip_children (reader, info_ptr);
9471 else
9472 return info_ptr;
9473 }
9474
9475 /* Locate ORIG_PDI's sibling.
9476 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9477
9478 static const gdb_byte *
9479 locate_pdi_sibling (const struct die_reader_specs *reader,
9480 struct partial_die_info *orig_pdi,
9481 const gdb_byte *info_ptr)
9482 {
9483 /* Do we know the sibling already? */
9484
9485 if (orig_pdi->sibling)
9486 return orig_pdi->sibling;
9487
9488 /* Are there any children to deal with? */
9489
9490 if (!orig_pdi->has_children)
9491 return info_ptr;
9492
9493 /* Skip the children the long way. */
9494
9495 return skip_children (reader, info_ptr);
9496 }
9497
9498 /* Expand this partial symbol table into a full symbol table. SELF is
9499 not NULL. */
9500
9501 static void
9502 dwarf2_read_symtab (struct partial_symtab *self,
9503 struct objfile *objfile)
9504 {
9505 struct dwarf2_per_objfile *dwarf2_per_objfile
9506 = get_dwarf2_per_objfile (objfile);
9507
9508 if (self->readin)
9509 {
9510 warning (_("bug: psymtab for %s is already read in."),
9511 self->filename);
9512 }
9513 else
9514 {
9515 if (info_verbose)
9516 {
9517 printf_filtered (_("Reading in symbols for %s..."),
9518 self->filename);
9519 gdb_flush (gdb_stdout);
9520 }
9521
9522 /* If this psymtab is constructed from a debug-only objfile, the
9523 has_section_at_zero flag will not necessarily be correct. We
9524 can get the correct value for this flag by looking at the data
9525 associated with the (presumably stripped) associated objfile. */
9526 if (objfile->separate_debug_objfile_backlink)
9527 {
9528 struct dwarf2_per_objfile *dpo_backlink
9529 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9530
9531 dwarf2_per_objfile->has_section_at_zero
9532 = dpo_backlink->has_section_at_zero;
9533 }
9534
9535 dwarf2_per_objfile->reading_partial_symbols = 0;
9536
9537 psymtab_to_symtab_1 (self);
9538
9539 /* Finish up the debug error message. */
9540 if (info_verbose)
9541 printf_filtered (_("done.\n"));
9542 }
9543
9544 process_cu_includes (dwarf2_per_objfile);
9545 }
9546 \f
9547 /* Reading in full CUs. */
9548
9549 /* Add PER_CU to the queue. */
9550
9551 static void
9552 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9553 enum language pretend_language)
9554 {
9555 struct dwarf2_queue_item *item;
9556
9557 per_cu->queued = 1;
9558 item = XNEW (struct dwarf2_queue_item);
9559 item->per_cu = per_cu;
9560 item->pretend_language = pretend_language;
9561 item->next = NULL;
9562
9563 if (dwarf2_queue == NULL)
9564 dwarf2_queue = item;
9565 else
9566 dwarf2_queue_tail->next = item;
9567
9568 dwarf2_queue_tail = item;
9569 }
9570
9571 /* If PER_CU is not yet queued, add it to the queue.
9572 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9573 dependency.
9574 The result is non-zero if PER_CU was queued, otherwise the result is zero
9575 meaning either PER_CU is already queued or it is already loaded.
9576
9577 N.B. There is an invariant here that if a CU is queued then it is loaded.
9578 The caller is required to load PER_CU if we return non-zero. */
9579
9580 static int
9581 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9582 struct dwarf2_per_cu_data *per_cu,
9583 enum language pretend_language)
9584 {
9585 /* We may arrive here during partial symbol reading, if we need full
9586 DIEs to process an unusual case (e.g. template arguments). Do
9587 not queue PER_CU, just tell our caller to load its DIEs. */
9588 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9589 {
9590 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9591 return 1;
9592 return 0;
9593 }
9594
9595 /* Mark the dependence relation so that we don't flush PER_CU
9596 too early. */
9597 if (dependent_cu != NULL)
9598 dwarf2_add_dependence (dependent_cu, per_cu);
9599
9600 /* If it's already on the queue, we have nothing to do. */
9601 if (per_cu->queued)
9602 return 0;
9603
9604 /* If the compilation unit is already loaded, just mark it as
9605 used. */
9606 if (per_cu->cu != NULL)
9607 {
9608 per_cu->cu->last_used = 0;
9609 return 0;
9610 }
9611
9612 /* Add it to the queue. */
9613 queue_comp_unit (per_cu, pretend_language);
9614
9615 return 1;
9616 }
9617
9618 /* Process the queue. */
9619
9620 static void
9621 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9622 {
9623 struct dwarf2_queue_item *item, *next_item;
9624
9625 if (dwarf_read_debug)
9626 {
9627 fprintf_unfiltered (gdb_stdlog,
9628 "Expanding one or more symtabs of objfile %s ...\n",
9629 objfile_name (dwarf2_per_objfile->objfile));
9630 }
9631
9632 /* The queue starts out with one item, but following a DIE reference
9633 may load a new CU, adding it to the end of the queue. */
9634 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9635 {
9636 if ((dwarf2_per_objfile->using_index
9637 ? !item->per_cu->v.quick->compunit_symtab
9638 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9639 /* Skip dummy CUs. */
9640 && item->per_cu->cu != NULL)
9641 {
9642 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9643 unsigned int debug_print_threshold;
9644 char buf[100];
9645
9646 if (per_cu->is_debug_types)
9647 {
9648 struct signatured_type *sig_type =
9649 (struct signatured_type *) per_cu;
9650
9651 sprintf (buf, "TU %s at offset %s",
9652 hex_string (sig_type->signature),
9653 sect_offset_str (per_cu->sect_off));
9654 /* There can be 100s of TUs.
9655 Only print them in verbose mode. */
9656 debug_print_threshold = 2;
9657 }
9658 else
9659 {
9660 sprintf (buf, "CU at offset %s",
9661 sect_offset_str (per_cu->sect_off));
9662 debug_print_threshold = 1;
9663 }
9664
9665 if (dwarf_read_debug >= debug_print_threshold)
9666 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9667
9668 if (per_cu->is_debug_types)
9669 process_full_type_unit (per_cu, item->pretend_language);
9670 else
9671 process_full_comp_unit (per_cu, item->pretend_language);
9672
9673 if (dwarf_read_debug >= debug_print_threshold)
9674 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9675 }
9676
9677 item->per_cu->queued = 0;
9678 next_item = item->next;
9679 xfree (item);
9680 }
9681
9682 dwarf2_queue_tail = NULL;
9683
9684 if (dwarf_read_debug)
9685 {
9686 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9687 objfile_name (dwarf2_per_objfile->objfile));
9688 }
9689 }
9690
9691 /* Read in full symbols for PST, and anything it depends on. */
9692
9693 static void
9694 psymtab_to_symtab_1 (struct partial_symtab *pst)
9695 {
9696 struct dwarf2_per_cu_data *per_cu;
9697 int i;
9698
9699 if (pst->readin)
9700 return;
9701
9702 for (i = 0; i < pst->number_of_dependencies; i++)
9703 if (!pst->dependencies[i]->readin
9704 && pst->dependencies[i]->user == NULL)
9705 {
9706 /* Inform about additional files that need to be read in. */
9707 if (info_verbose)
9708 {
9709 /* FIXME: i18n: Need to make this a single string. */
9710 fputs_filtered (" ", gdb_stdout);
9711 wrap_here ("");
9712 fputs_filtered ("and ", gdb_stdout);
9713 wrap_here ("");
9714 printf_filtered ("%s...", pst->dependencies[i]->filename);
9715 wrap_here (""); /* Flush output. */
9716 gdb_flush (gdb_stdout);
9717 }
9718 psymtab_to_symtab_1 (pst->dependencies[i]);
9719 }
9720
9721 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9722
9723 if (per_cu == NULL)
9724 {
9725 /* It's an include file, no symbols to read for it.
9726 Everything is in the parent symtab. */
9727 pst->readin = 1;
9728 return;
9729 }
9730
9731 dw2_do_instantiate_symtab (per_cu, false);
9732 }
9733
9734 /* Trivial hash function for die_info: the hash value of a DIE
9735 is its offset in .debug_info for this objfile. */
9736
9737 static hashval_t
9738 die_hash (const void *item)
9739 {
9740 const struct die_info *die = (const struct die_info *) item;
9741
9742 return to_underlying (die->sect_off);
9743 }
9744
9745 /* Trivial comparison function for die_info structures: two DIEs
9746 are equal if they have the same offset. */
9747
9748 static int
9749 die_eq (const void *item_lhs, const void *item_rhs)
9750 {
9751 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9752 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9753
9754 return die_lhs->sect_off == die_rhs->sect_off;
9755 }
9756
9757 /* die_reader_func for load_full_comp_unit.
9758 This is identical to read_signatured_type_reader,
9759 but is kept separate for now. */
9760
9761 static void
9762 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9763 const gdb_byte *info_ptr,
9764 struct die_info *comp_unit_die,
9765 int has_children,
9766 void *data)
9767 {
9768 struct dwarf2_cu *cu = reader->cu;
9769 enum language *language_ptr = (enum language *) data;
9770
9771 gdb_assert (cu->die_hash == NULL);
9772 cu->die_hash =
9773 htab_create_alloc_ex (cu->header.length / 12,
9774 die_hash,
9775 die_eq,
9776 NULL,
9777 &cu->comp_unit_obstack,
9778 hashtab_obstack_allocate,
9779 dummy_obstack_deallocate);
9780
9781 if (has_children)
9782 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9783 &info_ptr, comp_unit_die);
9784 cu->dies = comp_unit_die;
9785 /* comp_unit_die is not stored in die_hash, no need. */
9786
9787 /* We try not to read any attributes in this function, because not
9788 all CUs needed for references have been loaded yet, and symbol
9789 table processing isn't initialized. But we have to set the CU language,
9790 or we won't be able to build types correctly.
9791 Similarly, if we do not read the producer, we can not apply
9792 producer-specific interpretation. */
9793 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9794 }
9795
9796 /* Load the DIEs associated with PER_CU into memory. */
9797
9798 static void
9799 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9800 bool skip_partial,
9801 enum language pretend_language)
9802 {
9803 gdb_assert (! this_cu->is_debug_types);
9804
9805 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9806 load_full_comp_unit_reader, &pretend_language);
9807 }
9808
9809 /* Add a DIE to the delayed physname list. */
9810
9811 static void
9812 add_to_method_list (struct type *type, int fnfield_index, int index,
9813 const char *name, struct die_info *die,
9814 struct dwarf2_cu *cu)
9815 {
9816 struct delayed_method_info mi;
9817 mi.type = type;
9818 mi.fnfield_index = fnfield_index;
9819 mi.index = index;
9820 mi.name = name;
9821 mi.die = die;
9822 cu->method_list.push_back (mi);
9823 }
9824
9825 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9826 "const" / "volatile". If so, decrements LEN by the length of the
9827 modifier and return true. Otherwise return false. */
9828
9829 template<size_t N>
9830 static bool
9831 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9832 {
9833 size_t mod_len = sizeof (mod) - 1;
9834 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9835 {
9836 len -= mod_len;
9837 return true;
9838 }
9839 return false;
9840 }
9841
9842 /* Compute the physnames of any methods on the CU's method list.
9843
9844 The computation of method physnames is delayed in order to avoid the
9845 (bad) condition that one of the method's formal parameters is of an as yet
9846 incomplete type. */
9847
9848 static void
9849 compute_delayed_physnames (struct dwarf2_cu *cu)
9850 {
9851 /* Only C++ delays computing physnames. */
9852 if (cu->method_list.empty ())
9853 return;
9854 gdb_assert (cu->language == language_cplus);
9855
9856 for (const delayed_method_info &mi : cu->method_list)
9857 {
9858 const char *physname;
9859 struct fn_fieldlist *fn_flp
9860 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9861 physname = dwarf2_physname (mi.name, mi.die, cu);
9862 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9863 = physname ? physname : "";
9864
9865 /* Since there's no tag to indicate whether a method is a
9866 const/volatile overload, extract that information out of the
9867 demangled name. */
9868 if (physname != NULL)
9869 {
9870 size_t len = strlen (physname);
9871
9872 while (1)
9873 {
9874 if (physname[len] == ')') /* shortcut */
9875 break;
9876 else if (check_modifier (physname, len, " const"))
9877 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9878 else if (check_modifier (physname, len, " volatile"))
9879 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9880 else
9881 break;
9882 }
9883 }
9884 }
9885
9886 /* The list is no longer needed. */
9887 cu->method_list.clear ();
9888 }
9889
9890 /* Go objects should be embedded in a DW_TAG_module DIE,
9891 and it's not clear if/how imported objects will appear.
9892 To keep Go support simple until that's worked out,
9893 go back through what we've read and create something usable.
9894 We could do this while processing each DIE, and feels kinda cleaner,
9895 but that way is more invasive.
9896 This is to, for example, allow the user to type "p var" or "b main"
9897 without having to specify the package name, and allow lookups
9898 of module.object to work in contexts that use the expression
9899 parser. */
9900
9901 static void
9902 fixup_go_packaging (struct dwarf2_cu *cu)
9903 {
9904 char *package_name = NULL;
9905 struct pending *list;
9906 int i;
9907
9908 for (list = *cu->get_builder ()->get_global_symbols ();
9909 list != NULL;
9910 list = list->next)
9911 {
9912 for (i = 0; i < list->nsyms; ++i)
9913 {
9914 struct symbol *sym = list->symbol[i];
9915
9916 if (SYMBOL_LANGUAGE (sym) == language_go
9917 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9918 {
9919 char *this_package_name = go_symbol_package_name (sym);
9920
9921 if (this_package_name == NULL)
9922 continue;
9923 if (package_name == NULL)
9924 package_name = this_package_name;
9925 else
9926 {
9927 struct objfile *objfile
9928 = cu->per_cu->dwarf2_per_objfile->objfile;
9929 if (strcmp (package_name, this_package_name) != 0)
9930 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9931 (symbol_symtab (sym) != NULL
9932 ? symtab_to_filename_for_display
9933 (symbol_symtab (sym))
9934 : objfile_name (objfile)),
9935 this_package_name, package_name);
9936 xfree (this_package_name);
9937 }
9938 }
9939 }
9940 }
9941
9942 if (package_name != NULL)
9943 {
9944 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9945 const char *saved_package_name
9946 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9947 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9948 saved_package_name);
9949 struct symbol *sym;
9950
9951 sym = allocate_symbol (objfile);
9952 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9953 SYMBOL_SET_NAMES (sym, saved_package_name, false, objfile);
9954 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9955 e.g., "main" finds the "main" module and not C's main(). */
9956 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9957 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9958 SYMBOL_TYPE (sym) = type;
9959
9960 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9961
9962 xfree (package_name);
9963 }
9964 }
9965
9966 /* Allocate a fully-qualified name consisting of the two parts on the
9967 obstack. */
9968
9969 static const char *
9970 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9971 {
9972 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9973 }
9974
9975 /* A helper that allocates a struct discriminant_info to attach to a
9976 union type. */
9977
9978 static struct discriminant_info *
9979 alloc_discriminant_info (struct type *type, int discriminant_index,
9980 int default_index)
9981 {
9982 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9983 gdb_assert (discriminant_index == -1
9984 || (discriminant_index >= 0
9985 && discriminant_index < TYPE_NFIELDS (type)));
9986 gdb_assert (default_index == -1
9987 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9988
9989 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9990
9991 struct discriminant_info *disc
9992 = ((struct discriminant_info *)
9993 TYPE_ZALLOC (type,
9994 offsetof (struct discriminant_info, discriminants)
9995 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9996 disc->default_index = default_index;
9997 disc->discriminant_index = discriminant_index;
9998
9999 struct dynamic_prop prop;
10000 prop.kind = PROP_UNDEFINED;
10001 prop.data.baton = disc;
10002
10003 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10004
10005 return disc;
10006 }
10007
10008 /* Some versions of rustc emitted enums in an unusual way.
10009
10010 Ordinary enums were emitted as unions. The first element of each
10011 structure in the union was named "RUST$ENUM$DISR". This element
10012 held the discriminant.
10013
10014 These versions of Rust also implemented the "non-zero"
10015 optimization. When the enum had two values, and one is empty and
10016 the other holds a pointer that cannot be zero, the pointer is used
10017 as the discriminant, with a zero value meaning the empty variant.
10018 Here, the union's first member is of the form
10019 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10020 where the fieldnos are the indices of the fields that should be
10021 traversed in order to find the field (which may be several fields deep)
10022 and the variantname is the name of the variant of the case when the
10023 field is zero.
10024
10025 This function recognizes whether TYPE is of one of these forms,
10026 and, if so, smashes it to be a variant type. */
10027
10028 static void
10029 quirk_rust_enum (struct type *type, struct objfile *objfile)
10030 {
10031 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10032
10033 /* We don't need to deal with empty enums. */
10034 if (TYPE_NFIELDS (type) == 0)
10035 return;
10036
10037 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10038 if (TYPE_NFIELDS (type) == 1
10039 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10040 {
10041 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10042
10043 /* Decode the field name to find the offset of the
10044 discriminant. */
10045 ULONGEST bit_offset = 0;
10046 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10047 while (name[0] >= '0' && name[0] <= '9')
10048 {
10049 char *tail;
10050 unsigned long index = strtoul (name, &tail, 10);
10051 name = tail;
10052 if (*name != '$'
10053 || index >= TYPE_NFIELDS (field_type)
10054 || (TYPE_FIELD_LOC_KIND (field_type, index)
10055 != FIELD_LOC_KIND_BITPOS))
10056 {
10057 complaint (_("Could not parse Rust enum encoding string \"%s\""
10058 "[in module %s]"),
10059 TYPE_FIELD_NAME (type, 0),
10060 objfile_name (objfile));
10061 return;
10062 }
10063 ++name;
10064
10065 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10066 field_type = TYPE_FIELD_TYPE (field_type, index);
10067 }
10068
10069 /* Make a union to hold the variants. */
10070 struct type *union_type = alloc_type (objfile);
10071 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10072 TYPE_NFIELDS (union_type) = 3;
10073 TYPE_FIELDS (union_type)
10074 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10075 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10076 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10077
10078 /* Put the discriminant must at index 0. */
10079 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10080 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10081 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10082 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10083
10084 /* The order of fields doesn't really matter, so put the real
10085 field at index 1 and the data-less field at index 2. */
10086 struct discriminant_info *disc
10087 = alloc_discriminant_info (union_type, 0, 1);
10088 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10089 TYPE_FIELD_NAME (union_type, 1)
10090 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10091 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10092 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10093 TYPE_FIELD_NAME (union_type, 1));
10094
10095 const char *dataless_name
10096 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10097 name);
10098 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10099 dataless_name);
10100 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10101 /* NAME points into the original discriminant name, which
10102 already has the correct lifetime. */
10103 TYPE_FIELD_NAME (union_type, 2) = name;
10104 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10105 disc->discriminants[2] = 0;
10106
10107 /* Smash this type to be a structure type. We have to do this
10108 because the type has already been recorded. */
10109 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10110 TYPE_NFIELDS (type) = 1;
10111 TYPE_FIELDS (type)
10112 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10113
10114 /* Install the variant part. */
10115 TYPE_FIELD_TYPE (type, 0) = union_type;
10116 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10117 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10118 }
10119 /* A union with a single anonymous field is probably an old-style
10120 univariant enum. */
10121 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
10122 {
10123 /* Smash this type to be a structure type. We have to do this
10124 because the type has already been recorded. */
10125 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10126
10127 /* Make a union to hold the variants. */
10128 struct type *union_type = alloc_type (objfile);
10129 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10130 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10131 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10132 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10133 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10134
10135 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10136 const char *variant_name
10137 = rust_last_path_segment (TYPE_NAME (field_type));
10138 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10139 TYPE_NAME (field_type)
10140 = rust_fully_qualify (&objfile->objfile_obstack,
10141 TYPE_NAME (type), variant_name);
10142
10143 /* Install the union in the outer struct type. */
10144 TYPE_NFIELDS (type) = 1;
10145 TYPE_FIELDS (type)
10146 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10147 TYPE_FIELD_TYPE (type, 0) = union_type;
10148 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10149 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10150
10151 alloc_discriminant_info (union_type, -1, 0);
10152 }
10153 else
10154 {
10155 struct type *disr_type = nullptr;
10156 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10157 {
10158 disr_type = TYPE_FIELD_TYPE (type, i);
10159
10160 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10161 {
10162 /* All fields of a true enum will be structs. */
10163 return;
10164 }
10165 else if (TYPE_NFIELDS (disr_type) == 0)
10166 {
10167 /* Could be data-less variant, so keep going. */
10168 disr_type = nullptr;
10169 }
10170 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10171 "RUST$ENUM$DISR") != 0)
10172 {
10173 /* Not a Rust enum. */
10174 return;
10175 }
10176 else
10177 {
10178 /* Found one. */
10179 break;
10180 }
10181 }
10182
10183 /* If we got here without a discriminant, then it's probably
10184 just a union. */
10185 if (disr_type == nullptr)
10186 return;
10187
10188 /* Smash this type to be a structure type. We have to do this
10189 because the type has already been recorded. */
10190 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10191
10192 /* Make a union to hold the variants. */
10193 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10194 struct type *union_type = alloc_type (objfile);
10195 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10196 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10197 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10198 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10199 TYPE_FIELDS (union_type)
10200 = (struct field *) TYPE_ZALLOC (union_type,
10201 (TYPE_NFIELDS (union_type)
10202 * sizeof (struct field)));
10203
10204 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10205 TYPE_NFIELDS (type) * sizeof (struct field));
10206
10207 /* Install the discriminant at index 0 in the union. */
10208 TYPE_FIELD (union_type, 0) = *disr_field;
10209 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10210 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10211
10212 /* Install the union in the outer struct type. */
10213 TYPE_FIELD_TYPE (type, 0) = union_type;
10214 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10215 TYPE_NFIELDS (type) = 1;
10216
10217 /* Set the size and offset of the union type. */
10218 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10219
10220 /* We need a way to find the correct discriminant given a
10221 variant name. For convenience we build a map here. */
10222 struct type *enum_type = FIELD_TYPE (*disr_field);
10223 std::unordered_map<std::string, ULONGEST> discriminant_map;
10224 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10225 {
10226 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10227 {
10228 const char *name
10229 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10230 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10231 }
10232 }
10233
10234 int n_fields = TYPE_NFIELDS (union_type);
10235 struct discriminant_info *disc
10236 = alloc_discriminant_info (union_type, 0, -1);
10237 /* Skip the discriminant here. */
10238 for (int i = 1; i < n_fields; ++i)
10239 {
10240 /* Find the final word in the name of this variant's type.
10241 That name can be used to look up the correct
10242 discriminant. */
10243 const char *variant_name
10244 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10245 i)));
10246
10247 auto iter = discriminant_map.find (variant_name);
10248 if (iter != discriminant_map.end ())
10249 disc->discriminants[i] = iter->second;
10250
10251 /* Remove the discriminant field, if it exists. */
10252 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10253 if (TYPE_NFIELDS (sub_type) > 0)
10254 {
10255 --TYPE_NFIELDS (sub_type);
10256 ++TYPE_FIELDS (sub_type);
10257 }
10258 TYPE_FIELD_NAME (union_type, i) = variant_name;
10259 TYPE_NAME (sub_type)
10260 = rust_fully_qualify (&objfile->objfile_obstack,
10261 TYPE_NAME (type), variant_name);
10262 }
10263 }
10264 }
10265
10266 /* Rewrite some Rust unions to be structures with variants parts. */
10267
10268 static void
10269 rust_union_quirks (struct dwarf2_cu *cu)
10270 {
10271 gdb_assert (cu->language == language_rust);
10272 for (type *type_ : cu->rust_unions)
10273 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10274 /* We don't need this any more. */
10275 cu->rust_unions.clear ();
10276 }
10277
10278 /* Return the symtab for PER_CU. This works properly regardless of
10279 whether we're using the index or psymtabs. */
10280
10281 static struct compunit_symtab *
10282 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10283 {
10284 return (per_cu->dwarf2_per_objfile->using_index
10285 ? per_cu->v.quick->compunit_symtab
10286 : per_cu->v.psymtab->compunit_symtab);
10287 }
10288
10289 /* A helper function for computing the list of all symbol tables
10290 included by PER_CU. */
10291
10292 static void
10293 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10294 htab_t all_children, htab_t all_type_symtabs,
10295 struct dwarf2_per_cu_data *per_cu,
10296 struct compunit_symtab *immediate_parent)
10297 {
10298 void **slot;
10299 struct compunit_symtab *cust;
10300
10301 slot = htab_find_slot (all_children, per_cu, INSERT);
10302 if (*slot != NULL)
10303 {
10304 /* This inclusion and its children have been processed. */
10305 return;
10306 }
10307
10308 *slot = per_cu;
10309 /* Only add a CU if it has a symbol table. */
10310 cust = get_compunit_symtab (per_cu);
10311 if (cust != NULL)
10312 {
10313 /* If this is a type unit only add its symbol table if we haven't
10314 seen it yet (type unit per_cu's can share symtabs). */
10315 if (per_cu->is_debug_types)
10316 {
10317 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10318 if (*slot == NULL)
10319 {
10320 *slot = cust;
10321 result->push_back (cust);
10322 if (cust->user == NULL)
10323 cust->user = immediate_parent;
10324 }
10325 }
10326 else
10327 {
10328 result->push_back (cust);
10329 if (cust->user == NULL)
10330 cust->user = immediate_parent;
10331 }
10332 }
10333
10334 if (!per_cu->imported_symtabs_empty ())
10335 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10336 {
10337 recursively_compute_inclusions (result, all_children,
10338 all_type_symtabs, ptr, cust);
10339 }
10340 }
10341
10342 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10343 PER_CU. */
10344
10345 static void
10346 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10347 {
10348 gdb_assert (! per_cu->is_debug_types);
10349
10350 if (!per_cu->imported_symtabs_empty ())
10351 {
10352 int len;
10353 std::vector<compunit_symtab *> result_symtabs;
10354 htab_t all_children, all_type_symtabs;
10355 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10356
10357 /* If we don't have a symtab, we can just skip this case. */
10358 if (cust == NULL)
10359 return;
10360
10361 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10362 NULL, xcalloc, xfree);
10363 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10364 NULL, xcalloc, xfree);
10365
10366 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10367 {
10368 recursively_compute_inclusions (&result_symtabs, all_children,
10369 all_type_symtabs, ptr, cust);
10370 }
10371
10372 /* Now we have a transitive closure of all the included symtabs. */
10373 len = result_symtabs.size ();
10374 cust->includes
10375 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10376 struct compunit_symtab *, len + 1);
10377 memcpy (cust->includes, result_symtabs.data (),
10378 len * sizeof (compunit_symtab *));
10379 cust->includes[len] = NULL;
10380
10381 htab_delete (all_children);
10382 htab_delete (all_type_symtabs);
10383 }
10384 }
10385
10386 /* Compute the 'includes' field for the symtabs of all the CUs we just
10387 read. */
10388
10389 static void
10390 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10391 {
10392 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10393 {
10394 if (! iter->is_debug_types)
10395 compute_compunit_symtab_includes (iter);
10396 }
10397
10398 dwarf2_per_objfile->just_read_cus.clear ();
10399 }
10400
10401 /* Generate full symbol information for PER_CU, whose DIEs have
10402 already been loaded into memory. */
10403
10404 static void
10405 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10406 enum language pretend_language)
10407 {
10408 struct dwarf2_cu *cu = per_cu->cu;
10409 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10410 struct objfile *objfile = dwarf2_per_objfile->objfile;
10411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10412 CORE_ADDR lowpc, highpc;
10413 struct compunit_symtab *cust;
10414 CORE_ADDR baseaddr;
10415 struct block *static_block;
10416 CORE_ADDR addr;
10417
10418 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10419
10420 /* Clear the list here in case something was left over. */
10421 cu->method_list.clear ();
10422
10423 cu->language = pretend_language;
10424 cu->language_defn = language_def (cu->language);
10425
10426 /* Do line number decoding in read_file_scope () */
10427 process_die (cu->dies, cu);
10428
10429 /* For now fudge the Go package. */
10430 if (cu->language == language_go)
10431 fixup_go_packaging (cu);
10432
10433 /* Now that we have processed all the DIEs in the CU, all the types
10434 should be complete, and it should now be safe to compute all of the
10435 physnames. */
10436 compute_delayed_physnames (cu);
10437
10438 if (cu->language == language_rust)
10439 rust_union_quirks (cu);
10440
10441 /* Some compilers don't define a DW_AT_high_pc attribute for the
10442 compilation unit. If the DW_AT_high_pc is missing, synthesize
10443 it, by scanning the DIE's below the compilation unit. */
10444 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10445
10446 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10447 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10448
10449 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10450 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10451 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10452 addrmap to help ensure it has an accurate map of pc values belonging to
10453 this comp unit. */
10454 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10455
10456 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10457 SECT_OFF_TEXT (objfile),
10458 0);
10459
10460 if (cust != NULL)
10461 {
10462 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10463
10464 /* Set symtab language to language from DW_AT_language. If the
10465 compilation is from a C file generated by language preprocessors, do
10466 not set the language if it was already deduced by start_subfile. */
10467 if (!(cu->language == language_c
10468 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10469 COMPUNIT_FILETABS (cust)->language = cu->language;
10470
10471 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10472 produce DW_AT_location with location lists but it can be possibly
10473 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10474 there were bugs in prologue debug info, fixed later in GCC-4.5
10475 by "unwind info for epilogues" patch (which is not directly related).
10476
10477 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10478 needed, it would be wrong due to missing DW_AT_producer there.
10479
10480 Still one can confuse GDB by using non-standard GCC compilation
10481 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10482 */
10483 if (cu->has_loclist && gcc_4_minor >= 5)
10484 cust->locations_valid = 1;
10485
10486 if (gcc_4_minor >= 5)
10487 cust->epilogue_unwind_valid = 1;
10488
10489 cust->call_site_htab = cu->call_site_htab;
10490 }
10491
10492 if (dwarf2_per_objfile->using_index)
10493 per_cu->v.quick->compunit_symtab = cust;
10494 else
10495 {
10496 struct partial_symtab *pst = per_cu->v.psymtab;
10497 pst->compunit_symtab = cust;
10498 pst->readin = 1;
10499 }
10500
10501 /* Push it for inclusion processing later. */
10502 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10503
10504 /* Not needed any more. */
10505 cu->reset_builder ();
10506 }
10507
10508 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10509 already been loaded into memory. */
10510
10511 static void
10512 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10513 enum language pretend_language)
10514 {
10515 struct dwarf2_cu *cu = per_cu->cu;
10516 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10517 struct objfile *objfile = dwarf2_per_objfile->objfile;
10518 struct compunit_symtab *cust;
10519 struct signatured_type *sig_type;
10520
10521 gdb_assert (per_cu->is_debug_types);
10522 sig_type = (struct signatured_type *) per_cu;
10523
10524 /* Clear the list here in case something was left over. */
10525 cu->method_list.clear ();
10526
10527 cu->language = pretend_language;
10528 cu->language_defn = language_def (cu->language);
10529
10530 /* The symbol tables are set up in read_type_unit_scope. */
10531 process_die (cu->dies, cu);
10532
10533 /* For now fudge the Go package. */
10534 if (cu->language == language_go)
10535 fixup_go_packaging (cu);
10536
10537 /* Now that we have processed all the DIEs in the CU, all the types
10538 should be complete, and it should now be safe to compute all of the
10539 physnames. */
10540 compute_delayed_physnames (cu);
10541
10542 if (cu->language == language_rust)
10543 rust_union_quirks (cu);
10544
10545 /* TUs share symbol tables.
10546 If this is the first TU to use this symtab, complete the construction
10547 of it with end_expandable_symtab. Otherwise, complete the addition of
10548 this TU's symbols to the existing symtab. */
10549 if (sig_type->type_unit_group->compunit_symtab == NULL)
10550 {
10551 buildsym_compunit *builder = cu->get_builder ();
10552 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10553 sig_type->type_unit_group->compunit_symtab = cust;
10554
10555 if (cust != NULL)
10556 {
10557 /* Set symtab language to language from DW_AT_language. If the
10558 compilation is from a C file generated by language preprocessors,
10559 do not set the language if it was already deduced by
10560 start_subfile. */
10561 if (!(cu->language == language_c
10562 && COMPUNIT_FILETABS (cust)->language != language_c))
10563 COMPUNIT_FILETABS (cust)->language = cu->language;
10564 }
10565 }
10566 else
10567 {
10568 cu->get_builder ()->augment_type_symtab ();
10569 cust = sig_type->type_unit_group->compunit_symtab;
10570 }
10571
10572 if (dwarf2_per_objfile->using_index)
10573 per_cu->v.quick->compunit_symtab = cust;
10574 else
10575 {
10576 struct partial_symtab *pst = per_cu->v.psymtab;
10577 pst->compunit_symtab = cust;
10578 pst->readin = 1;
10579 }
10580
10581 /* Not needed any more. */
10582 cu->reset_builder ();
10583 }
10584
10585 /* Process an imported unit DIE. */
10586
10587 static void
10588 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10589 {
10590 struct attribute *attr;
10591
10592 /* For now we don't handle imported units in type units. */
10593 if (cu->per_cu->is_debug_types)
10594 {
10595 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10596 " supported in type units [in module %s]"),
10597 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10598 }
10599
10600 attr = dwarf2_attr (die, DW_AT_import, cu);
10601 if (attr != NULL)
10602 {
10603 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10604 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10605 dwarf2_per_cu_data *per_cu
10606 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10607 cu->per_cu->dwarf2_per_objfile);
10608
10609 /* If necessary, add it to the queue and load its DIEs. */
10610 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10611 load_full_comp_unit (per_cu, false, cu->language);
10612
10613 cu->per_cu->imported_symtabs_push (per_cu);
10614 }
10615 }
10616
10617 /* RAII object that represents a process_die scope: i.e.,
10618 starts/finishes processing a DIE. */
10619 class process_die_scope
10620 {
10621 public:
10622 process_die_scope (die_info *die, dwarf2_cu *cu)
10623 : m_die (die), m_cu (cu)
10624 {
10625 /* We should only be processing DIEs not already in process. */
10626 gdb_assert (!m_die->in_process);
10627 m_die->in_process = true;
10628 }
10629
10630 ~process_die_scope ()
10631 {
10632 m_die->in_process = false;
10633
10634 /* If we're done processing the DIE for the CU that owns the line
10635 header, we don't need the line header anymore. */
10636 if (m_cu->line_header_die_owner == m_die)
10637 {
10638 delete m_cu->line_header;
10639 m_cu->line_header = NULL;
10640 m_cu->line_header_die_owner = NULL;
10641 }
10642 }
10643
10644 private:
10645 die_info *m_die;
10646 dwarf2_cu *m_cu;
10647 };
10648
10649 /* Process a die and its children. */
10650
10651 static void
10652 process_die (struct die_info *die, struct dwarf2_cu *cu)
10653 {
10654 process_die_scope scope (die, cu);
10655
10656 switch (die->tag)
10657 {
10658 case DW_TAG_padding:
10659 break;
10660 case DW_TAG_compile_unit:
10661 case DW_TAG_partial_unit:
10662 read_file_scope (die, cu);
10663 break;
10664 case DW_TAG_type_unit:
10665 read_type_unit_scope (die, cu);
10666 break;
10667 case DW_TAG_subprogram:
10668 /* Nested subprograms in Fortran get a prefix. */
10669 if (cu->language == language_fortran
10670 && die->parent != NULL
10671 && die->parent->tag == DW_TAG_subprogram)
10672 cu->processing_has_namespace_info = true;
10673 /* Fall through. */
10674 case DW_TAG_inlined_subroutine:
10675 read_func_scope (die, cu);
10676 break;
10677 case DW_TAG_lexical_block:
10678 case DW_TAG_try_block:
10679 case DW_TAG_catch_block:
10680 read_lexical_block_scope (die, cu);
10681 break;
10682 case DW_TAG_call_site:
10683 case DW_TAG_GNU_call_site:
10684 read_call_site_scope (die, cu);
10685 break;
10686 case DW_TAG_class_type:
10687 case DW_TAG_interface_type:
10688 case DW_TAG_structure_type:
10689 case DW_TAG_union_type:
10690 process_structure_scope (die, cu);
10691 break;
10692 case DW_TAG_enumeration_type:
10693 process_enumeration_scope (die, cu);
10694 break;
10695
10696 /* These dies have a type, but processing them does not create
10697 a symbol or recurse to process the children. Therefore we can
10698 read them on-demand through read_type_die. */
10699 case DW_TAG_subroutine_type:
10700 case DW_TAG_set_type:
10701 case DW_TAG_array_type:
10702 case DW_TAG_pointer_type:
10703 case DW_TAG_ptr_to_member_type:
10704 case DW_TAG_reference_type:
10705 case DW_TAG_rvalue_reference_type:
10706 case DW_TAG_string_type:
10707 break;
10708
10709 case DW_TAG_base_type:
10710 case DW_TAG_subrange_type:
10711 case DW_TAG_typedef:
10712 /* Add a typedef symbol for the type definition, if it has a
10713 DW_AT_name. */
10714 new_symbol (die, read_type_die (die, cu), cu);
10715 break;
10716 case DW_TAG_common_block:
10717 read_common_block (die, cu);
10718 break;
10719 case DW_TAG_common_inclusion:
10720 break;
10721 case DW_TAG_namespace:
10722 cu->processing_has_namespace_info = true;
10723 read_namespace (die, cu);
10724 break;
10725 case DW_TAG_module:
10726 cu->processing_has_namespace_info = true;
10727 read_module (die, cu);
10728 break;
10729 case DW_TAG_imported_declaration:
10730 cu->processing_has_namespace_info = true;
10731 if (read_namespace_alias (die, cu))
10732 break;
10733 /* The declaration is not a global namespace alias. */
10734 /* Fall through. */
10735 case DW_TAG_imported_module:
10736 cu->processing_has_namespace_info = true;
10737 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10738 || cu->language != language_fortran))
10739 complaint (_("Tag '%s' has unexpected children"),
10740 dwarf_tag_name (die->tag));
10741 read_import_statement (die, cu);
10742 break;
10743
10744 case DW_TAG_imported_unit:
10745 process_imported_unit_die (die, cu);
10746 break;
10747
10748 case DW_TAG_variable:
10749 read_variable (die, cu);
10750 break;
10751
10752 default:
10753 new_symbol (die, NULL, cu);
10754 break;
10755 }
10756 }
10757 \f
10758 /* DWARF name computation. */
10759
10760 /* A helper function for dwarf2_compute_name which determines whether DIE
10761 needs to have the name of the scope prepended to the name listed in the
10762 die. */
10763
10764 static int
10765 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10766 {
10767 struct attribute *attr;
10768
10769 switch (die->tag)
10770 {
10771 case DW_TAG_namespace:
10772 case DW_TAG_typedef:
10773 case DW_TAG_class_type:
10774 case DW_TAG_interface_type:
10775 case DW_TAG_structure_type:
10776 case DW_TAG_union_type:
10777 case DW_TAG_enumeration_type:
10778 case DW_TAG_enumerator:
10779 case DW_TAG_subprogram:
10780 case DW_TAG_inlined_subroutine:
10781 case DW_TAG_member:
10782 case DW_TAG_imported_declaration:
10783 return 1;
10784
10785 case DW_TAG_variable:
10786 case DW_TAG_constant:
10787 /* We only need to prefix "globally" visible variables. These include
10788 any variable marked with DW_AT_external or any variable that
10789 lives in a namespace. [Variables in anonymous namespaces
10790 require prefixing, but they are not DW_AT_external.] */
10791
10792 if (dwarf2_attr (die, DW_AT_specification, cu))
10793 {
10794 struct dwarf2_cu *spec_cu = cu;
10795
10796 return die_needs_namespace (die_specification (die, &spec_cu),
10797 spec_cu);
10798 }
10799
10800 attr = dwarf2_attr (die, DW_AT_external, cu);
10801 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10802 && die->parent->tag != DW_TAG_module)
10803 return 0;
10804 /* A variable in a lexical block of some kind does not need a
10805 namespace, even though in C++ such variables may be external
10806 and have a mangled name. */
10807 if (die->parent->tag == DW_TAG_lexical_block
10808 || die->parent->tag == DW_TAG_try_block
10809 || die->parent->tag == DW_TAG_catch_block
10810 || die->parent->tag == DW_TAG_subprogram)
10811 return 0;
10812 return 1;
10813
10814 default:
10815 return 0;
10816 }
10817 }
10818
10819 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10820 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10821 defined for the given DIE. */
10822
10823 static struct attribute *
10824 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10825 {
10826 struct attribute *attr;
10827
10828 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10829 if (attr == NULL)
10830 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10831
10832 return attr;
10833 }
10834
10835 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10836 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10837 defined for the given DIE. */
10838
10839 static const char *
10840 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10841 {
10842 const char *linkage_name;
10843
10844 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10845 if (linkage_name == NULL)
10846 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10847
10848 return linkage_name;
10849 }
10850
10851 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10852 compute the physname for the object, which include a method's:
10853 - formal parameters (C++),
10854 - receiver type (Go),
10855
10856 The term "physname" is a bit confusing.
10857 For C++, for example, it is the demangled name.
10858 For Go, for example, it's the mangled name.
10859
10860 For Ada, return the DIE's linkage name rather than the fully qualified
10861 name. PHYSNAME is ignored..
10862
10863 The result is allocated on the objfile_obstack and canonicalized. */
10864
10865 static const char *
10866 dwarf2_compute_name (const char *name,
10867 struct die_info *die, struct dwarf2_cu *cu,
10868 int physname)
10869 {
10870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10871
10872 if (name == NULL)
10873 name = dwarf2_name (die, cu);
10874
10875 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10876 but otherwise compute it by typename_concat inside GDB.
10877 FIXME: Actually this is not really true, or at least not always true.
10878 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10879 Fortran names because there is no mangling standard. So new_symbol
10880 will set the demangled name to the result of dwarf2_full_name, and it is
10881 the demangled name that GDB uses if it exists. */
10882 if (cu->language == language_ada
10883 || (cu->language == language_fortran && physname))
10884 {
10885 /* For Ada unit, we prefer the linkage name over the name, as
10886 the former contains the exported name, which the user expects
10887 to be able to reference. Ideally, we want the user to be able
10888 to reference this entity using either natural or linkage name,
10889 but we haven't started looking at this enhancement yet. */
10890 const char *linkage_name = dw2_linkage_name (die, cu);
10891
10892 if (linkage_name != NULL)
10893 return linkage_name;
10894 }
10895
10896 /* These are the only languages we know how to qualify names in. */
10897 if (name != NULL
10898 && (cu->language == language_cplus
10899 || cu->language == language_fortran || cu->language == language_d
10900 || cu->language == language_rust))
10901 {
10902 if (die_needs_namespace (die, cu))
10903 {
10904 const char *prefix;
10905 const char *canonical_name = NULL;
10906
10907 string_file buf;
10908
10909 prefix = determine_prefix (die, cu);
10910 if (*prefix != '\0')
10911 {
10912 char *prefixed_name = typename_concat (NULL, prefix, name,
10913 physname, cu);
10914
10915 buf.puts (prefixed_name);
10916 xfree (prefixed_name);
10917 }
10918 else
10919 buf.puts (name);
10920
10921 /* Template parameters may be specified in the DIE's DW_AT_name, or
10922 as children with DW_TAG_template_type_param or
10923 DW_TAG_value_type_param. If the latter, add them to the name
10924 here. If the name already has template parameters, then
10925 skip this step; some versions of GCC emit both, and
10926 it is more efficient to use the pre-computed name.
10927
10928 Something to keep in mind about this process: it is very
10929 unlikely, or in some cases downright impossible, to produce
10930 something that will match the mangled name of a function.
10931 If the definition of the function has the same debug info,
10932 we should be able to match up with it anyway. But fallbacks
10933 using the minimal symbol, for instance to find a method
10934 implemented in a stripped copy of libstdc++, will not work.
10935 If we do not have debug info for the definition, we will have to
10936 match them up some other way.
10937
10938 When we do name matching there is a related problem with function
10939 templates; two instantiated function templates are allowed to
10940 differ only by their return types, which we do not add here. */
10941
10942 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10943 {
10944 struct attribute *attr;
10945 struct die_info *child;
10946 int first = 1;
10947
10948 die->building_fullname = 1;
10949
10950 for (child = die->child; child != NULL; child = child->sibling)
10951 {
10952 struct type *type;
10953 LONGEST value;
10954 const gdb_byte *bytes;
10955 struct dwarf2_locexpr_baton *baton;
10956 struct value *v;
10957
10958 if (child->tag != DW_TAG_template_type_param
10959 && child->tag != DW_TAG_template_value_param)
10960 continue;
10961
10962 if (first)
10963 {
10964 buf.puts ("<");
10965 first = 0;
10966 }
10967 else
10968 buf.puts (", ");
10969
10970 attr = dwarf2_attr (child, DW_AT_type, cu);
10971 if (attr == NULL)
10972 {
10973 complaint (_("template parameter missing DW_AT_type"));
10974 buf.puts ("UNKNOWN_TYPE");
10975 continue;
10976 }
10977 type = die_type (child, cu);
10978
10979 if (child->tag == DW_TAG_template_type_param)
10980 {
10981 c_print_type (type, "", &buf, -1, 0, cu->language,
10982 &type_print_raw_options);
10983 continue;
10984 }
10985
10986 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10987 if (attr == NULL)
10988 {
10989 complaint (_("template parameter missing "
10990 "DW_AT_const_value"));
10991 buf.puts ("UNKNOWN_VALUE");
10992 continue;
10993 }
10994
10995 dwarf2_const_value_attr (attr, type, name,
10996 &cu->comp_unit_obstack, cu,
10997 &value, &bytes, &baton);
10998
10999 if (TYPE_NOSIGN (type))
11000 /* GDB prints characters as NUMBER 'CHAR'. If that's
11001 changed, this can use value_print instead. */
11002 c_printchar (value, type, &buf);
11003 else
11004 {
11005 struct value_print_options opts;
11006
11007 if (baton != NULL)
11008 v = dwarf2_evaluate_loc_desc (type, NULL,
11009 baton->data,
11010 baton->size,
11011 baton->per_cu);
11012 else if (bytes != NULL)
11013 {
11014 v = allocate_value (type);
11015 memcpy (value_contents_writeable (v), bytes,
11016 TYPE_LENGTH (type));
11017 }
11018 else
11019 v = value_from_longest (type, value);
11020
11021 /* Specify decimal so that we do not depend on
11022 the radix. */
11023 get_formatted_print_options (&opts, 'd');
11024 opts.raw = 1;
11025 value_print (v, &buf, &opts);
11026 release_value (v);
11027 }
11028 }
11029
11030 die->building_fullname = 0;
11031
11032 if (!first)
11033 {
11034 /* Close the argument list, with a space if necessary
11035 (nested templates). */
11036 if (!buf.empty () && buf.string ().back () == '>')
11037 buf.puts (" >");
11038 else
11039 buf.puts (">");
11040 }
11041 }
11042
11043 /* For C++ methods, append formal parameter type
11044 information, if PHYSNAME. */
11045
11046 if (physname && die->tag == DW_TAG_subprogram
11047 && cu->language == language_cplus)
11048 {
11049 struct type *type = read_type_die (die, cu);
11050
11051 c_type_print_args (type, &buf, 1, cu->language,
11052 &type_print_raw_options);
11053
11054 if (cu->language == language_cplus)
11055 {
11056 /* Assume that an artificial first parameter is
11057 "this", but do not crash if it is not. RealView
11058 marks unnamed (and thus unused) parameters as
11059 artificial; there is no way to differentiate
11060 the two cases. */
11061 if (TYPE_NFIELDS (type) > 0
11062 && TYPE_FIELD_ARTIFICIAL (type, 0)
11063 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11064 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11065 0))))
11066 buf.puts (" const");
11067 }
11068 }
11069
11070 const std::string &intermediate_name = buf.string ();
11071
11072 if (cu->language == language_cplus)
11073 canonical_name
11074 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11075 &objfile->per_bfd->storage_obstack);
11076
11077 /* If we only computed INTERMEDIATE_NAME, or if
11078 INTERMEDIATE_NAME is already canonical, then we need to
11079 copy it to the appropriate obstack. */
11080 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11081 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11082 intermediate_name);
11083 else
11084 name = canonical_name;
11085 }
11086 }
11087
11088 return name;
11089 }
11090
11091 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11092 If scope qualifiers are appropriate they will be added. The result
11093 will be allocated on the storage_obstack, or NULL if the DIE does
11094 not have a name. NAME may either be from a previous call to
11095 dwarf2_name or NULL.
11096
11097 The output string will be canonicalized (if C++). */
11098
11099 static const char *
11100 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11101 {
11102 return dwarf2_compute_name (name, die, cu, 0);
11103 }
11104
11105 /* Construct a physname for the given DIE in CU. NAME may either be
11106 from a previous call to dwarf2_name or NULL. The result will be
11107 allocated on the objfile_objstack or NULL if the DIE does not have a
11108 name.
11109
11110 The output string will be canonicalized (if C++). */
11111
11112 static const char *
11113 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11114 {
11115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11116 const char *retval, *mangled = NULL, *canon = NULL;
11117 int need_copy = 1;
11118
11119 /* In this case dwarf2_compute_name is just a shortcut not building anything
11120 on its own. */
11121 if (!die_needs_namespace (die, cu))
11122 return dwarf2_compute_name (name, die, cu, 1);
11123
11124 mangled = dw2_linkage_name (die, cu);
11125
11126 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11127 See https://github.com/rust-lang/rust/issues/32925. */
11128 if (cu->language == language_rust && mangled != NULL
11129 && strchr (mangled, '{') != NULL)
11130 mangled = NULL;
11131
11132 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11133 has computed. */
11134 gdb::unique_xmalloc_ptr<char> demangled;
11135 if (mangled != NULL)
11136 {
11137
11138 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11139 {
11140 /* Do nothing (do not demangle the symbol name). */
11141 }
11142 else if (cu->language == language_go)
11143 {
11144 /* This is a lie, but we already lie to the caller new_symbol.
11145 new_symbol assumes we return the mangled name.
11146 This just undoes that lie until things are cleaned up. */
11147 }
11148 else
11149 {
11150 /* Use DMGL_RET_DROP for C++ template functions to suppress
11151 their return type. It is easier for GDB users to search
11152 for such functions as `name(params)' than `long name(params)'.
11153 In such case the minimal symbol names do not match the full
11154 symbol names but for template functions there is never a need
11155 to look up their definition from their declaration so
11156 the only disadvantage remains the minimal symbol variant
11157 `long name(params)' does not have the proper inferior type. */
11158 demangled.reset (gdb_demangle (mangled,
11159 (DMGL_PARAMS | DMGL_ANSI
11160 | DMGL_RET_DROP)));
11161 }
11162 if (demangled)
11163 canon = demangled.get ();
11164 else
11165 {
11166 canon = mangled;
11167 need_copy = 0;
11168 }
11169 }
11170
11171 if (canon == NULL || check_physname)
11172 {
11173 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11174
11175 if (canon != NULL && strcmp (physname, canon) != 0)
11176 {
11177 /* It may not mean a bug in GDB. The compiler could also
11178 compute DW_AT_linkage_name incorrectly. But in such case
11179 GDB would need to be bug-to-bug compatible. */
11180
11181 complaint (_("Computed physname <%s> does not match demangled <%s> "
11182 "(from linkage <%s>) - DIE at %s [in module %s]"),
11183 physname, canon, mangled, sect_offset_str (die->sect_off),
11184 objfile_name (objfile));
11185
11186 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11187 is available here - over computed PHYSNAME. It is safer
11188 against both buggy GDB and buggy compilers. */
11189
11190 retval = canon;
11191 }
11192 else
11193 {
11194 retval = physname;
11195 need_copy = 0;
11196 }
11197 }
11198 else
11199 retval = canon;
11200
11201 if (need_copy)
11202 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11203
11204 return retval;
11205 }
11206
11207 /* Inspect DIE in CU for a namespace alias. If one exists, record
11208 a new symbol for it.
11209
11210 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11211
11212 static int
11213 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11214 {
11215 struct attribute *attr;
11216
11217 /* If the die does not have a name, this is not a namespace
11218 alias. */
11219 attr = dwarf2_attr (die, DW_AT_name, cu);
11220 if (attr != NULL)
11221 {
11222 int num;
11223 struct die_info *d = die;
11224 struct dwarf2_cu *imported_cu = cu;
11225
11226 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11227 keep inspecting DIEs until we hit the underlying import. */
11228 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11229 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11230 {
11231 attr = dwarf2_attr (d, DW_AT_import, cu);
11232 if (attr == NULL)
11233 break;
11234
11235 d = follow_die_ref (d, attr, &imported_cu);
11236 if (d->tag != DW_TAG_imported_declaration)
11237 break;
11238 }
11239
11240 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11241 {
11242 complaint (_("DIE at %s has too many recursively imported "
11243 "declarations"), sect_offset_str (d->sect_off));
11244 return 0;
11245 }
11246
11247 if (attr != NULL)
11248 {
11249 struct type *type;
11250 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11251
11252 type = get_die_type_at_offset (sect_off, cu->per_cu);
11253 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11254 {
11255 /* This declaration is a global namespace alias. Add
11256 a symbol for it whose type is the aliased namespace. */
11257 new_symbol (die, type, cu);
11258 return 1;
11259 }
11260 }
11261 }
11262
11263 return 0;
11264 }
11265
11266 /* Return the using directives repository (global or local?) to use in the
11267 current context for CU.
11268
11269 For Ada, imported declarations can materialize renamings, which *may* be
11270 global. However it is impossible (for now?) in DWARF to distinguish
11271 "external" imported declarations and "static" ones. As all imported
11272 declarations seem to be static in all other languages, make them all CU-wide
11273 global only in Ada. */
11274
11275 static struct using_direct **
11276 using_directives (struct dwarf2_cu *cu)
11277 {
11278 if (cu->language == language_ada
11279 && cu->get_builder ()->outermost_context_p ())
11280 return cu->get_builder ()->get_global_using_directives ();
11281 else
11282 return cu->get_builder ()->get_local_using_directives ();
11283 }
11284
11285 /* Read the import statement specified by the given die and record it. */
11286
11287 static void
11288 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11289 {
11290 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11291 struct attribute *import_attr;
11292 struct die_info *imported_die, *child_die;
11293 struct dwarf2_cu *imported_cu;
11294 const char *imported_name;
11295 const char *imported_name_prefix;
11296 const char *canonical_name;
11297 const char *import_alias;
11298 const char *imported_declaration = NULL;
11299 const char *import_prefix;
11300 std::vector<const char *> excludes;
11301
11302 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11303 if (import_attr == NULL)
11304 {
11305 complaint (_("Tag '%s' has no DW_AT_import"),
11306 dwarf_tag_name (die->tag));
11307 return;
11308 }
11309
11310 imported_cu = cu;
11311 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11312 imported_name = dwarf2_name (imported_die, imported_cu);
11313 if (imported_name == NULL)
11314 {
11315 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11316
11317 The import in the following code:
11318 namespace A
11319 {
11320 typedef int B;
11321 }
11322
11323 int main ()
11324 {
11325 using A::B;
11326 B b;
11327 return b;
11328 }
11329
11330 ...
11331 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11332 <52> DW_AT_decl_file : 1
11333 <53> DW_AT_decl_line : 6
11334 <54> DW_AT_import : <0x75>
11335 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11336 <59> DW_AT_name : B
11337 <5b> DW_AT_decl_file : 1
11338 <5c> DW_AT_decl_line : 2
11339 <5d> DW_AT_type : <0x6e>
11340 ...
11341 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11342 <76> DW_AT_byte_size : 4
11343 <77> DW_AT_encoding : 5 (signed)
11344
11345 imports the wrong die ( 0x75 instead of 0x58 ).
11346 This case will be ignored until the gcc bug is fixed. */
11347 return;
11348 }
11349
11350 /* Figure out the local name after import. */
11351 import_alias = dwarf2_name (die, cu);
11352
11353 /* Figure out where the statement is being imported to. */
11354 import_prefix = determine_prefix (die, cu);
11355
11356 /* Figure out what the scope of the imported die is and prepend it
11357 to the name of the imported die. */
11358 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11359
11360 if (imported_die->tag != DW_TAG_namespace
11361 && imported_die->tag != DW_TAG_module)
11362 {
11363 imported_declaration = imported_name;
11364 canonical_name = imported_name_prefix;
11365 }
11366 else if (strlen (imported_name_prefix) > 0)
11367 canonical_name = obconcat (&objfile->objfile_obstack,
11368 imported_name_prefix,
11369 (cu->language == language_d ? "." : "::"),
11370 imported_name, (char *) NULL);
11371 else
11372 canonical_name = imported_name;
11373
11374 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11375 for (child_die = die->child; child_die && child_die->tag;
11376 child_die = sibling_die (child_die))
11377 {
11378 /* DWARF-4: A Fortran use statement with a “rename list” may be
11379 represented by an imported module entry with an import attribute
11380 referring to the module and owned entries corresponding to those
11381 entities that are renamed as part of being imported. */
11382
11383 if (child_die->tag != DW_TAG_imported_declaration)
11384 {
11385 complaint (_("child DW_TAG_imported_declaration expected "
11386 "- DIE at %s [in module %s]"),
11387 sect_offset_str (child_die->sect_off),
11388 objfile_name (objfile));
11389 continue;
11390 }
11391
11392 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11393 if (import_attr == NULL)
11394 {
11395 complaint (_("Tag '%s' has no DW_AT_import"),
11396 dwarf_tag_name (child_die->tag));
11397 continue;
11398 }
11399
11400 imported_cu = cu;
11401 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11402 &imported_cu);
11403 imported_name = dwarf2_name (imported_die, imported_cu);
11404 if (imported_name == NULL)
11405 {
11406 complaint (_("child DW_TAG_imported_declaration has unknown "
11407 "imported name - DIE at %s [in module %s]"),
11408 sect_offset_str (child_die->sect_off),
11409 objfile_name (objfile));
11410 continue;
11411 }
11412
11413 excludes.push_back (imported_name);
11414
11415 process_die (child_die, cu);
11416 }
11417
11418 add_using_directive (using_directives (cu),
11419 import_prefix,
11420 canonical_name,
11421 import_alias,
11422 imported_declaration,
11423 excludes,
11424 0,
11425 &objfile->objfile_obstack);
11426 }
11427
11428 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11429 types, but gives them a size of zero. Starting with version 14,
11430 ICC is compatible with GCC. */
11431
11432 static bool
11433 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11434 {
11435 if (!cu->checked_producer)
11436 check_producer (cu);
11437
11438 return cu->producer_is_icc_lt_14;
11439 }
11440
11441 /* ICC generates a DW_AT_type for C void functions. This was observed on
11442 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11443 which says that void functions should not have a DW_AT_type. */
11444
11445 static bool
11446 producer_is_icc (struct dwarf2_cu *cu)
11447 {
11448 if (!cu->checked_producer)
11449 check_producer (cu);
11450
11451 return cu->producer_is_icc;
11452 }
11453
11454 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11455 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11456 this, it was first present in GCC release 4.3.0. */
11457
11458 static bool
11459 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11460 {
11461 if (!cu->checked_producer)
11462 check_producer (cu);
11463
11464 return cu->producer_is_gcc_lt_4_3;
11465 }
11466
11467 static file_and_directory
11468 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11469 {
11470 file_and_directory res;
11471
11472 /* Find the filename. Do not use dwarf2_name here, since the filename
11473 is not a source language identifier. */
11474 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11475 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11476
11477 if (res.comp_dir == NULL
11478 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11479 && IS_ABSOLUTE_PATH (res.name))
11480 {
11481 res.comp_dir_storage = ldirname (res.name);
11482 if (!res.comp_dir_storage.empty ())
11483 res.comp_dir = res.comp_dir_storage.c_str ();
11484 }
11485 if (res.comp_dir != NULL)
11486 {
11487 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11488 directory, get rid of it. */
11489 const char *cp = strchr (res.comp_dir, ':');
11490
11491 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11492 res.comp_dir = cp + 1;
11493 }
11494
11495 if (res.name == NULL)
11496 res.name = "<unknown>";
11497
11498 return res;
11499 }
11500
11501 /* Handle DW_AT_stmt_list for a compilation unit.
11502 DIE is the DW_TAG_compile_unit die for CU.
11503 COMP_DIR is the compilation directory. LOWPC is passed to
11504 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11505
11506 static void
11507 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11508 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11509 {
11510 struct dwarf2_per_objfile *dwarf2_per_objfile
11511 = cu->per_cu->dwarf2_per_objfile;
11512 struct objfile *objfile = dwarf2_per_objfile->objfile;
11513 struct attribute *attr;
11514 struct line_header line_header_local;
11515 hashval_t line_header_local_hash;
11516 void **slot;
11517 int decode_mapping;
11518
11519 gdb_assert (! cu->per_cu->is_debug_types);
11520
11521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11522 if (attr == NULL)
11523 return;
11524
11525 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11526
11527 /* The line header hash table is only created if needed (it exists to
11528 prevent redundant reading of the line table for partial_units).
11529 If we're given a partial_unit, we'll need it. If we're given a
11530 compile_unit, then use the line header hash table if it's already
11531 created, but don't create one just yet. */
11532
11533 if (dwarf2_per_objfile->line_header_hash == NULL
11534 && die->tag == DW_TAG_partial_unit)
11535 {
11536 dwarf2_per_objfile->line_header_hash
11537 = htab_create_alloc_ex (127, line_header_hash_voidp,
11538 line_header_eq_voidp,
11539 free_line_header_voidp,
11540 &objfile->objfile_obstack,
11541 hashtab_obstack_allocate,
11542 dummy_obstack_deallocate);
11543 }
11544
11545 line_header_local.sect_off = line_offset;
11546 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11547 line_header_local_hash = line_header_hash (&line_header_local);
11548 if (dwarf2_per_objfile->line_header_hash != NULL)
11549 {
11550 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11551 &line_header_local,
11552 line_header_local_hash, NO_INSERT);
11553
11554 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11555 is not present in *SLOT (since if there is something in *SLOT then
11556 it will be for a partial_unit). */
11557 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11558 {
11559 gdb_assert (*slot != NULL);
11560 cu->line_header = (struct line_header *) *slot;
11561 return;
11562 }
11563 }
11564
11565 /* dwarf_decode_line_header does not yet provide sufficient information.
11566 We always have to call also dwarf_decode_lines for it. */
11567 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11568 if (lh == NULL)
11569 return;
11570
11571 cu->line_header = lh.release ();
11572 cu->line_header_die_owner = die;
11573
11574 if (dwarf2_per_objfile->line_header_hash == NULL)
11575 slot = NULL;
11576 else
11577 {
11578 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11579 &line_header_local,
11580 line_header_local_hash, INSERT);
11581 gdb_assert (slot != NULL);
11582 }
11583 if (slot != NULL && *slot == NULL)
11584 {
11585 /* This newly decoded line number information unit will be owned
11586 by line_header_hash hash table. */
11587 *slot = cu->line_header;
11588 cu->line_header_die_owner = NULL;
11589 }
11590 else
11591 {
11592 /* We cannot free any current entry in (*slot) as that struct line_header
11593 may be already used by multiple CUs. Create only temporary decoded
11594 line_header for this CU - it may happen at most once for each line
11595 number information unit. And if we're not using line_header_hash
11596 then this is what we want as well. */
11597 gdb_assert (die->tag != DW_TAG_partial_unit);
11598 }
11599 decode_mapping = (die->tag != DW_TAG_partial_unit);
11600 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11601 decode_mapping);
11602
11603 }
11604
11605 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11606
11607 static void
11608 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11609 {
11610 struct dwarf2_per_objfile *dwarf2_per_objfile
11611 = cu->per_cu->dwarf2_per_objfile;
11612 struct objfile *objfile = dwarf2_per_objfile->objfile;
11613 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11614 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11615 CORE_ADDR highpc = ((CORE_ADDR) 0);
11616 struct attribute *attr;
11617 struct die_info *child_die;
11618 CORE_ADDR baseaddr;
11619
11620 prepare_one_comp_unit (cu, die, cu->language);
11621 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11622
11623 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11624
11625 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11626 from finish_block. */
11627 if (lowpc == ((CORE_ADDR) -1))
11628 lowpc = highpc;
11629 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11630
11631 file_and_directory fnd = find_file_and_directory (die, cu);
11632
11633 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11634 standardised yet. As a workaround for the language detection we fall
11635 back to the DW_AT_producer string. */
11636 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11637 cu->language = language_opencl;
11638
11639 /* Similar hack for Go. */
11640 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11641 set_cu_language (DW_LANG_Go, cu);
11642
11643 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11644
11645 /* Decode line number information if present. We do this before
11646 processing child DIEs, so that the line header table is available
11647 for DW_AT_decl_file. */
11648 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11649
11650 /* Process all dies in compilation unit. */
11651 if (die->child != NULL)
11652 {
11653 child_die = die->child;
11654 while (child_die && child_die->tag)
11655 {
11656 process_die (child_die, cu);
11657 child_die = sibling_die (child_die);
11658 }
11659 }
11660
11661 /* Decode macro information, if present. Dwarf 2 macro information
11662 refers to information in the line number info statement program
11663 header, so we can only read it if we've read the header
11664 successfully. */
11665 attr = dwarf2_attr (die, DW_AT_macros, cu);
11666 if (attr == NULL)
11667 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11668 if (attr && cu->line_header)
11669 {
11670 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11671 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11672
11673 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11674 }
11675 else
11676 {
11677 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11678 if (attr && cu->line_header)
11679 {
11680 unsigned int macro_offset = DW_UNSND (attr);
11681
11682 dwarf_decode_macros (cu, macro_offset, 0);
11683 }
11684 }
11685 }
11686
11687 void
11688 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11689 {
11690 struct type_unit_group *tu_group;
11691 int first_time;
11692 struct attribute *attr;
11693 unsigned int i;
11694 struct signatured_type *sig_type;
11695
11696 gdb_assert (per_cu->is_debug_types);
11697 sig_type = (struct signatured_type *) per_cu;
11698
11699 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11700
11701 /* If we're using .gdb_index (includes -readnow) then
11702 per_cu->type_unit_group may not have been set up yet. */
11703 if (sig_type->type_unit_group == NULL)
11704 sig_type->type_unit_group = get_type_unit_group (this, attr);
11705 tu_group = sig_type->type_unit_group;
11706
11707 /* If we've already processed this stmt_list there's no real need to
11708 do it again, we could fake it and just recreate the part we need
11709 (file name,index -> symtab mapping). If data shows this optimization
11710 is useful we can do it then. */
11711 first_time = tu_group->compunit_symtab == NULL;
11712
11713 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11714 debug info. */
11715 line_header_up lh;
11716 if (attr != NULL)
11717 {
11718 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11719 lh = dwarf_decode_line_header (line_offset, this);
11720 }
11721 if (lh == NULL)
11722 {
11723 if (first_time)
11724 start_symtab ("", NULL, 0);
11725 else
11726 {
11727 gdb_assert (tu_group->symtabs == NULL);
11728 gdb_assert (m_builder == nullptr);
11729 struct compunit_symtab *cust = tu_group->compunit_symtab;
11730 m_builder.reset (new struct buildsym_compunit
11731 (COMPUNIT_OBJFILE (cust), "",
11732 COMPUNIT_DIRNAME (cust),
11733 compunit_language (cust),
11734 0, cust));
11735 }
11736 return;
11737 }
11738
11739 line_header = lh.release ();
11740 line_header_die_owner = die;
11741
11742 if (first_time)
11743 {
11744 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11745
11746 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11747 still initializing it, and our caller (a few levels up)
11748 process_full_type_unit still needs to know if this is the first
11749 time. */
11750
11751 tu_group->num_symtabs = line_header->file_names_size ();
11752 tu_group->symtabs = XNEWVEC (struct symtab *,
11753 line_header->file_names_size ());
11754
11755 auto &file_names = line_header->file_names ();
11756 for (i = 0; i < file_names.size (); ++i)
11757 {
11758 file_entry &fe = file_names[i];
11759 dwarf2_start_subfile (this, fe.name,
11760 fe.include_dir (line_header));
11761 buildsym_compunit *b = get_builder ();
11762 if (b->get_current_subfile ()->symtab == NULL)
11763 {
11764 /* NOTE: start_subfile will recognize when it's been
11765 passed a file it has already seen. So we can't
11766 assume there's a simple mapping from
11767 cu->line_header->file_names to subfiles, plus
11768 cu->line_header->file_names may contain dups. */
11769 b->get_current_subfile ()->symtab
11770 = allocate_symtab (cust, b->get_current_subfile ()->name);
11771 }
11772
11773 fe.symtab = b->get_current_subfile ()->symtab;
11774 tu_group->symtabs[i] = fe.symtab;
11775 }
11776 }
11777 else
11778 {
11779 gdb_assert (m_builder == nullptr);
11780 struct compunit_symtab *cust = tu_group->compunit_symtab;
11781 m_builder.reset (new struct buildsym_compunit
11782 (COMPUNIT_OBJFILE (cust), "",
11783 COMPUNIT_DIRNAME (cust),
11784 compunit_language (cust),
11785 0, cust));
11786
11787 auto &file_names = line_header->file_names ();
11788 for (i = 0; i < file_names.size (); ++i)
11789 {
11790 file_entry &fe = file_names[i];
11791 fe.symtab = tu_group->symtabs[i];
11792 }
11793 }
11794
11795 /* The main symtab is allocated last. Type units don't have DW_AT_name
11796 so they don't have a "real" (so to speak) symtab anyway.
11797 There is later code that will assign the main symtab to all symbols
11798 that don't have one. We need to handle the case of a symbol with a
11799 missing symtab (DW_AT_decl_file) anyway. */
11800 }
11801
11802 /* Process DW_TAG_type_unit.
11803 For TUs we want to skip the first top level sibling if it's not the
11804 actual type being defined by this TU. In this case the first top
11805 level sibling is there to provide context only. */
11806
11807 static void
11808 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11809 {
11810 struct die_info *child_die;
11811
11812 prepare_one_comp_unit (cu, die, language_minimal);
11813
11814 /* Initialize (or reinitialize) the machinery for building symtabs.
11815 We do this before processing child DIEs, so that the line header table
11816 is available for DW_AT_decl_file. */
11817 cu->setup_type_unit_groups (die);
11818
11819 if (die->child != NULL)
11820 {
11821 child_die = die->child;
11822 while (child_die && child_die->tag)
11823 {
11824 process_die (child_die, cu);
11825 child_die = sibling_die (child_die);
11826 }
11827 }
11828 }
11829 \f
11830 /* DWO/DWP files.
11831
11832 http://gcc.gnu.org/wiki/DebugFission
11833 http://gcc.gnu.org/wiki/DebugFissionDWP
11834
11835 To simplify handling of both DWO files ("object" files with the DWARF info)
11836 and DWP files (a file with the DWOs packaged up into one file), we treat
11837 DWP files as having a collection of virtual DWO files. */
11838
11839 static hashval_t
11840 hash_dwo_file (const void *item)
11841 {
11842 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11843 hashval_t hash;
11844
11845 hash = htab_hash_string (dwo_file->dwo_name);
11846 if (dwo_file->comp_dir != NULL)
11847 hash += htab_hash_string (dwo_file->comp_dir);
11848 return hash;
11849 }
11850
11851 static int
11852 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11853 {
11854 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11855 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11856
11857 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11858 return 0;
11859 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11860 return lhs->comp_dir == rhs->comp_dir;
11861 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11862 }
11863
11864 /* Allocate a hash table for DWO files. */
11865
11866 static htab_up
11867 allocate_dwo_file_hash_table (struct objfile *objfile)
11868 {
11869 auto delete_dwo_file = [] (void *item)
11870 {
11871 struct dwo_file *dwo_file = (struct dwo_file *) item;
11872
11873 delete dwo_file;
11874 };
11875
11876 return htab_up (htab_create_alloc_ex (41,
11877 hash_dwo_file,
11878 eq_dwo_file,
11879 delete_dwo_file,
11880 &objfile->objfile_obstack,
11881 hashtab_obstack_allocate,
11882 dummy_obstack_deallocate));
11883 }
11884
11885 /* Lookup DWO file DWO_NAME. */
11886
11887 static void **
11888 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11889 const char *dwo_name,
11890 const char *comp_dir)
11891 {
11892 struct dwo_file find_entry;
11893 void **slot;
11894
11895 if (dwarf2_per_objfile->dwo_files == NULL)
11896 dwarf2_per_objfile->dwo_files
11897 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11898
11899 find_entry.dwo_name = dwo_name;
11900 find_entry.comp_dir = comp_dir;
11901 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11902 INSERT);
11903
11904 return slot;
11905 }
11906
11907 static hashval_t
11908 hash_dwo_unit (const void *item)
11909 {
11910 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11911
11912 /* This drops the top 32 bits of the id, but is ok for a hash. */
11913 return dwo_unit->signature;
11914 }
11915
11916 static int
11917 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11918 {
11919 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11920 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11921
11922 /* The signature is assumed to be unique within the DWO file.
11923 So while object file CU dwo_id's always have the value zero,
11924 that's OK, assuming each object file DWO file has only one CU,
11925 and that's the rule for now. */
11926 return lhs->signature == rhs->signature;
11927 }
11928
11929 /* Allocate a hash table for DWO CUs,TUs.
11930 There is one of these tables for each of CUs,TUs for each DWO file. */
11931
11932 static htab_t
11933 allocate_dwo_unit_table (struct objfile *objfile)
11934 {
11935 /* Start out with a pretty small number.
11936 Generally DWO files contain only one CU and maybe some TUs. */
11937 return htab_create_alloc_ex (3,
11938 hash_dwo_unit,
11939 eq_dwo_unit,
11940 NULL,
11941 &objfile->objfile_obstack,
11942 hashtab_obstack_allocate,
11943 dummy_obstack_deallocate);
11944 }
11945
11946 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11947
11948 struct create_dwo_cu_data
11949 {
11950 struct dwo_file *dwo_file;
11951 struct dwo_unit dwo_unit;
11952 };
11953
11954 /* die_reader_func for create_dwo_cu. */
11955
11956 static void
11957 create_dwo_cu_reader (const struct die_reader_specs *reader,
11958 const gdb_byte *info_ptr,
11959 struct die_info *comp_unit_die,
11960 int has_children,
11961 void *datap)
11962 {
11963 struct dwarf2_cu *cu = reader->cu;
11964 sect_offset sect_off = cu->per_cu->sect_off;
11965 struct dwarf2_section_info *section = cu->per_cu->section;
11966 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11967 struct dwo_file *dwo_file = data->dwo_file;
11968 struct dwo_unit *dwo_unit = &data->dwo_unit;
11969
11970 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11971 if (!signature.has_value ())
11972 {
11973 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11974 " its dwo_id [in module %s]"),
11975 sect_offset_str (sect_off), dwo_file->dwo_name);
11976 return;
11977 }
11978
11979 dwo_unit->dwo_file = dwo_file;
11980 dwo_unit->signature = *signature;
11981 dwo_unit->section = section;
11982 dwo_unit->sect_off = sect_off;
11983 dwo_unit->length = cu->per_cu->length;
11984
11985 if (dwarf_read_debug)
11986 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11987 sect_offset_str (sect_off),
11988 hex_string (dwo_unit->signature));
11989 }
11990
11991 /* Create the dwo_units for the CUs in a DWO_FILE.
11992 Note: This function processes DWO files only, not DWP files. */
11993
11994 static void
11995 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11996 struct dwo_file &dwo_file, dwarf2_section_info &section,
11997 htab_t &cus_htab)
11998 {
11999 struct objfile *objfile = dwarf2_per_objfile->objfile;
12000 const gdb_byte *info_ptr, *end_ptr;
12001
12002 dwarf2_read_section (objfile, &section);
12003 info_ptr = section.buffer;
12004
12005 if (info_ptr == NULL)
12006 return;
12007
12008 if (dwarf_read_debug)
12009 {
12010 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12011 get_section_name (&section),
12012 get_section_file_name (&section));
12013 }
12014
12015 end_ptr = info_ptr + section.size;
12016 while (info_ptr < end_ptr)
12017 {
12018 struct dwarf2_per_cu_data per_cu;
12019 struct create_dwo_cu_data create_dwo_cu_data;
12020 struct dwo_unit *dwo_unit;
12021 void **slot;
12022 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12023
12024 memset (&create_dwo_cu_data.dwo_unit, 0,
12025 sizeof (create_dwo_cu_data.dwo_unit));
12026 memset (&per_cu, 0, sizeof (per_cu));
12027 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12028 per_cu.is_debug_types = 0;
12029 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12030 per_cu.section = &section;
12031 create_dwo_cu_data.dwo_file = &dwo_file;
12032
12033 init_cutu_and_read_dies_no_follow (
12034 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12035 info_ptr += per_cu.length;
12036
12037 // If the unit could not be parsed, skip it.
12038 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12039 continue;
12040
12041 if (cus_htab == NULL)
12042 cus_htab = allocate_dwo_unit_table (objfile);
12043
12044 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12045 *dwo_unit = create_dwo_cu_data.dwo_unit;
12046 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12047 gdb_assert (slot != NULL);
12048 if (*slot != NULL)
12049 {
12050 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12051 sect_offset dup_sect_off = dup_cu->sect_off;
12052
12053 complaint (_("debug cu entry at offset %s is duplicate to"
12054 " the entry at offset %s, signature %s"),
12055 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12056 hex_string (dwo_unit->signature));
12057 }
12058 *slot = (void *)dwo_unit;
12059 }
12060 }
12061
12062 /* DWP file .debug_{cu,tu}_index section format:
12063 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12064
12065 DWP Version 1:
12066
12067 Both index sections have the same format, and serve to map a 64-bit
12068 signature to a set of section numbers. Each section begins with a header,
12069 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12070 indexes, and a pool of 32-bit section numbers. The index sections will be
12071 aligned at 8-byte boundaries in the file.
12072
12073 The index section header consists of:
12074
12075 V, 32 bit version number
12076 -, 32 bits unused
12077 N, 32 bit number of compilation units or type units in the index
12078 M, 32 bit number of slots in the hash table
12079
12080 Numbers are recorded using the byte order of the application binary.
12081
12082 The hash table begins at offset 16 in the section, and consists of an array
12083 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12084 order of the application binary). Unused slots in the hash table are 0.
12085 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12086
12087 The parallel table begins immediately after the hash table
12088 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12089 array of 32-bit indexes (using the byte order of the application binary),
12090 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12091 table contains a 32-bit index into the pool of section numbers. For unused
12092 hash table slots, the corresponding entry in the parallel table will be 0.
12093
12094 The pool of section numbers begins immediately following the hash table
12095 (at offset 16 + 12 * M from the beginning of the section). The pool of
12096 section numbers consists of an array of 32-bit words (using the byte order
12097 of the application binary). Each item in the array is indexed starting
12098 from 0. The hash table entry provides the index of the first section
12099 number in the set. Additional section numbers in the set follow, and the
12100 set is terminated by a 0 entry (section number 0 is not used in ELF).
12101
12102 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12103 section must be the first entry in the set, and the .debug_abbrev.dwo must
12104 be the second entry. Other members of the set may follow in any order.
12105
12106 ---
12107
12108 DWP Version 2:
12109
12110 DWP Version 2 combines all the .debug_info, etc. sections into one,
12111 and the entries in the index tables are now offsets into these sections.
12112 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12113 section.
12114
12115 Index Section Contents:
12116 Header
12117 Hash Table of Signatures dwp_hash_table.hash_table
12118 Parallel Table of Indices dwp_hash_table.unit_table
12119 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12120 Table of Section Sizes dwp_hash_table.v2.sizes
12121
12122 The index section header consists of:
12123
12124 V, 32 bit version number
12125 L, 32 bit number of columns in the table of section offsets
12126 N, 32 bit number of compilation units or type units in the index
12127 M, 32 bit number of slots in the hash table
12128
12129 Numbers are recorded using the byte order of the application binary.
12130
12131 The hash table has the same format as version 1.
12132 The parallel table of indices has the same format as version 1,
12133 except that the entries are origin-1 indices into the table of sections
12134 offsets and the table of section sizes.
12135
12136 The table of offsets begins immediately following the parallel table
12137 (at offset 16 + 12 * M from the beginning of the section). The table is
12138 a two-dimensional array of 32-bit words (using the byte order of the
12139 application binary), with L columns and N+1 rows, in row-major order.
12140 Each row in the array is indexed starting from 0. The first row provides
12141 a key to the remaining rows: each column in this row provides an identifier
12142 for a debug section, and the offsets in the same column of subsequent rows
12143 refer to that section. The section identifiers are:
12144
12145 DW_SECT_INFO 1 .debug_info.dwo
12146 DW_SECT_TYPES 2 .debug_types.dwo
12147 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12148 DW_SECT_LINE 4 .debug_line.dwo
12149 DW_SECT_LOC 5 .debug_loc.dwo
12150 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12151 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12152 DW_SECT_MACRO 8 .debug_macro.dwo
12153
12154 The offsets provided by the CU and TU index sections are the base offsets
12155 for the contributions made by each CU or TU to the corresponding section
12156 in the package file. Each CU and TU header contains an abbrev_offset
12157 field, used to find the abbreviations table for that CU or TU within the
12158 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12159 be interpreted as relative to the base offset given in the index section.
12160 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12161 should be interpreted as relative to the base offset for .debug_line.dwo,
12162 and offsets into other debug sections obtained from DWARF attributes should
12163 also be interpreted as relative to the corresponding base offset.
12164
12165 The table of sizes begins immediately following the table of offsets.
12166 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12167 with L columns and N rows, in row-major order. Each row in the array is
12168 indexed starting from 1 (row 0 is shared by the two tables).
12169
12170 ---
12171
12172 Hash table lookup is handled the same in version 1 and 2:
12173
12174 We assume that N and M will not exceed 2^32 - 1.
12175 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12176
12177 Given a 64-bit compilation unit signature or a type signature S, an entry
12178 in the hash table is located as follows:
12179
12180 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12181 the low-order k bits all set to 1.
12182
12183 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12184
12185 3) If the hash table entry at index H matches the signature, use that
12186 entry. If the hash table entry at index H is unused (all zeroes),
12187 terminate the search: the signature is not present in the table.
12188
12189 4) Let H = (H + H') modulo M. Repeat at Step 3.
12190
12191 Because M > N and H' and M are relatively prime, the search is guaranteed
12192 to stop at an unused slot or find the match. */
12193
12194 /* Create a hash table to map DWO IDs to their CU/TU entry in
12195 .debug_{info,types}.dwo in DWP_FILE.
12196 Returns NULL if there isn't one.
12197 Note: This function processes DWP files only, not DWO files. */
12198
12199 static struct dwp_hash_table *
12200 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12201 struct dwp_file *dwp_file, int is_debug_types)
12202 {
12203 struct objfile *objfile = dwarf2_per_objfile->objfile;
12204 bfd *dbfd = dwp_file->dbfd.get ();
12205 const gdb_byte *index_ptr, *index_end;
12206 struct dwarf2_section_info *index;
12207 uint32_t version, nr_columns, nr_units, nr_slots;
12208 struct dwp_hash_table *htab;
12209
12210 if (is_debug_types)
12211 index = &dwp_file->sections.tu_index;
12212 else
12213 index = &dwp_file->sections.cu_index;
12214
12215 if (dwarf2_section_empty_p (index))
12216 return NULL;
12217 dwarf2_read_section (objfile, index);
12218
12219 index_ptr = index->buffer;
12220 index_end = index_ptr + index->size;
12221
12222 version = read_4_bytes (dbfd, index_ptr);
12223 index_ptr += 4;
12224 if (version == 2)
12225 nr_columns = read_4_bytes (dbfd, index_ptr);
12226 else
12227 nr_columns = 0;
12228 index_ptr += 4;
12229 nr_units = read_4_bytes (dbfd, index_ptr);
12230 index_ptr += 4;
12231 nr_slots = read_4_bytes (dbfd, index_ptr);
12232 index_ptr += 4;
12233
12234 if (version != 1 && version != 2)
12235 {
12236 error (_("Dwarf Error: unsupported DWP file version (%s)"
12237 " [in module %s]"),
12238 pulongest (version), dwp_file->name);
12239 }
12240 if (nr_slots != (nr_slots & -nr_slots))
12241 {
12242 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12243 " is not power of 2 [in module %s]"),
12244 pulongest (nr_slots), dwp_file->name);
12245 }
12246
12247 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12248 htab->version = version;
12249 htab->nr_columns = nr_columns;
12250 htab->nr_units = nr_units;
12251 htab->nr_slots = nr_slots;
12252 htab->hash_table = index_ptr;
12253 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12254
12255 /* Exit early if the table is empty. */
12256 if (nr_slots == 0 || nr_units == 0
12257 || (version == 2 && nr_columns == 0))
12258 {
12259 /* All must be zero. */
12260 if (nr_slots != 0 || nr_units != 0
12261 || (version == 2 && nr_columns != 0))
12262 {
12263 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12264 " all zero [in modules %s]"),
12265 dwp_file->name);
12266 }
12267 return htab;
12268 }
12269
12270 if (version == 1)
12271 {
12272 htab->section_pool.v1.indices =
12273 htab->unit_table + sizeof (uint32_t) * nr_slots;
12274 /* It's harder to decide whether the section is too small in v1.
12275 V1 is deprecated anyway so we punt. */
12276 }
12277 else
12278 {
12279 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12280 int *ids = htab->section_pool.v2.section_ids;
12281 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12282 /* Reverse map for error checking. */
12283 int ids_seen[DW_SECT_MAX + 1];
12284 int i;
12285
12286 if (nr_columns < 2)
12287 {
12288 error (_("Dwarf Error: bad DWP hash table, too few columns"
12289 " in section table [in module %s]"),
12290 dwp_file->name);
12291 }
12292 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12293 {
12294 error (_("Dwarf Error: bad DWP hash table, too many columns"
12295 " in section table [in module %s]"),
12296 dwp_file->name);
12297 }
12298 memset (ids, 255, sizeof_ids);
12299 memset (ids_seen, 255, sizeof (ids_seen));
12300 for (i = 0; i < nr_columns; ++i)
12301 {
12302 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12303
12304 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12305 {
12306 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12307 " in section table [in module %s]"),
12308 id, dwp_file->name);
12309 }
12310 if (ids_seen[id] != -1)
12311 {
12312 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12313 " id %d in section table [in module %s]"),
12314 id, dwp_file->name);
12315 }
12316 ids_seen[id] = i;
12317 ids[i] = id;
12318 }
12319 /* Must have exactly one info or types section. */
12320 if (((ids_seen[DW_SECT_INFO] != -1)
12321 + (ids_seen[DW_SECT_TYPES] != -1))
12322 != 1)
12323 {
12324 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12325 " DWO info/types section [in module %s]"),
12326 dwp_file->name);
12327 }
12328 /* Must have an abbrev section. */
12329 if (ids_seen[DW_SECT_ABBREV] == -1)
12330 {
12331 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12332 " section [in module %s]"),
12333 dwp_file->name);
12334 }
12335 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12336 htab->section_pool.v2.sizes =
12337 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12338 * nr_units * nr_columns);
12339 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12340 * nr_units * nr_columns))
12341 > index_end)
12342 {
12343 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12344 " [in module %s]"),
12345 dwp_file->name);
12346 }
12347 }
12348
12349 return htab;
12350 }
12351
12352 /* Update SECTIONS with the data from SECTP.
12353
12354 This function is like the other "locate" section routines that are
12355 passed to bfd_map_over_sections, but in this context the sections to
12356 read comes from the DWP V1 hash table, not the full ELF section table.
12357
12358 The result is non-zero for success, or zero if an error was found. */
12359
12360 static int
12361 locate_v1_virtual_dwo_sections (asection *sectp,
12362 struct virtual_v1_dwo_sections *sections)
12363 {
12364 const struct dwop_section_names *names = &dwop_section_names;
12365
12366 if (section_is_p (sectp->name, &names->abbrev_dwo))
12367 {
12368 /* There can be only one. */
12369 if (sections->abbrev.s.section != NULL)
12370 return 0;
12371 sections->abbrev.s.section = sectp;
12372 sections->abbrev.size = bfd_section_size (sectp);
12373 }
12374 else if (section_is_p (sectp->name, &names->info_dwo)
12375 || section_is_p (sectp->name, &names->types_dwo))
12376 {
12377 /* There can be only one. */
12378 if (sections->info_or_types.s.section != NULL)
12379 return 0;
12380 sections->info_or_types.s.section = sectp;
12381 sections->info_or_types.size = bfd_section_size (sectp);
12382 }
12383 else if (section_is_p (sectp->name, &names->line_dwo))
12384 {
12385 /* There can be only one. */
12386 if (sections->line.s.section != NULL)
12387 return 0;
12388 sections->line.s.section = sectp;
12389 sections->line.size = bfd_section_size (sectp);
12390 }
12391 else if (section_is_p (sectp->name, &names->loc_dwo))
12392 {
12393 /* There can be only one. */
12394 if (sections->loc.s.section != NULL)
12395 return 0;
12396 sections->loc.s.section = sectp;
12397 sections->loc.size = bfd_section_size (sectp);
12398 }
12399 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12400 {
12401 /* There can be only one. */
12402 if (sections->macinfo.s.section != NULL)
12403 return 0;
12404 sections->macinfo.s.section = sectp;
12405 sections->macinfo.size = bfd_section_size (sectp);
12406 }
12407 else if (section_is_p (sectp->name, &names->macro_dwo))
12408 {
12409 /* There can be only one. */
12410 if (sections->macro.s.section != NULL)
12411 return 0;
12412 sections->macro.s.section = sectp;
12413 sections->macro.size = bfd_section_size (sectp);
12414 }
12415 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12416 {
12417 /* There can be only one. */
12418 if (sections->str_offsets.s.section != NULL)
12419 return 0;
12420 sections->str_offsets.s.section = sectp;
12421 sections->str_offsets.size = bfd_section_size (sectp);
12422 }
12423 else
12424 {
12425 /* No other kind of section is valid. */
12426 return 0;
12427 }
12428
12429 return 1;
12430 }
12431
12432 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12433 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12434 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12435 This is for DWP version 1 files. */
12436
12437 static struct dwo_unit *
12438 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12439 struct dwp_file *dwp_file,
12440 uint32_t unit_index,
12441 const char *comp_dir,
12442 ULONGEST signature, int is_debug_types)
12443 {
12444 struct objfile *objfile = dwarf2_per_objfile->objfile;
12445 const struct dwp_hash_table *dwp_htab =
12446 is_debug_types ? dwp_file->tus : dwp_file->cus;
12447 bfd *dbfd = dwp_file->dbfd.get ();
12448 const char *kind = is_debug_types ? "TU" : "CU";
12449 struct dwo_file *dwo_file;
12450 struct dwo_unit *dwo_unit;
12451 struct virtual_v1_dwo_sections sections;
12452 void **dwo_file_slot;
12453 int i;
12454
12455 gdb_assert (dwp_file->version == 1);
12456
12457 if (dwarf_read_debug)
12458 {
12459 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12460 kind,
12461 pulongest (unit_index), hex_string (signature),
12462 dwp_file->name);
12463 }
12464
12465 /* Fetch the sections of this DWO unit.
12466 Put a limit on the number of sections we look for so that bad data
12467 doesn't cause us to loop forever. */
12468
12469 #define MAX_NR_V1_DWO_SECTIONS \
12470 (1 /* .debug_info or .debug_types */ \
12471 + 1 /* .debug_abbrev */ \
12472 + 1 /* .debug_line */ \
12473 + 1 /* .debug_loc */ \
12474 + 1 /* .debug_str_offsets */ \
12475 + 1 /* .debug_macro or .debug_macinfo */ \
12476 + 1 /* trailing zero */)
12477
12478 memset (&sections, 0, sizeof (sections));
12479
12480 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12481 {
12482 asection *sectp;
12483 uint32_t section_nr =
12484 read_4_bytes (dbfd,
12485 dwp_htab->section_pool.v1.indices
12486 + (unit_index + i) * sizeof (uint32_t));
12487
12488 if (section_nr == 0)
12489 break;
12490 if (section_nr >= dwp_file->num_sections)
12491 {
12492 error (_("Dwarf Error: bad DWP hash table, section number too large"
12493 " [in module %s]"),
12494 dwp_file->name);
12495 }
12496
12497 sectp = dwp_file->elf_sections[section_nr];
12498 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12499 {
12500 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12501 " [in module %s]"),
12502 dwp_file->name);
12503 }
12504 }
12505
12506 if (i < 2
12507 || dwarf2_section_empty_p (&sections.info_or_types)
12508 || dwarf2_section_empty_p (&sections.abbrev))
12509 {
12510 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12511 " [in module %s]"),
12512 dwp_file->name);
12513 }
12514 if (i == MAX_NR_V1_DWO_SECTIONS)
12515 {
12516 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12517 " [in module %s]"),
12518 dwp_file->name);
12519 }
12520
12521 /* It's easier for the rest of the code if we fake a struct dwo_file and
12522 have dwo_unit "live" in that. At least for now.
12523
12524 The DWP file can be made up of a random collection of CUs and TUs.
12525 However, for each CU + set of TUs that came from the same original DWO
12526 file, we can combine them back into a virtual DWO file to save space
12527 (fewer struct dwo_file objects to allocate). Remember that for really
12528 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12529
12530 std::string virtual_dwo_name =
12531 string_printf ("virtual-dwo/%d-%d-%d-%d",
12532 get_section_id (&sections.abbrev),
12533 get_section_id (&sections.line),
12534 get_section_id (&sections.loc),
12535 get_section_id (&sections.str_offsets));
12536 /* Can we use an existing virtual DWO file? */
12537 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12538 virtual_dwo_name.c_str (),
12539 comp_dir);
12540 /* Create one if necessary. */
12541 if (*dwo_file_slot == NULL)
12542 {
12543 if (dwarf_read_debug)
12544 {
12545 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12546 virtual_dwo_name.c_str ());
12547 }
12548 dwo_file = new struct dwo_file;
12549 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12550 virtual_dwo_name);
12551 dwo_file->comp_dir = comp_dir;
12552 dwo_file->sections.abbrev = sections.abbrev;
12553 dwo_file->sections.line = sections.line;
12554 dwo_file->sections.loc = sections.loc;
12555 dwo_file->sections.macinfo = sections.macinfo;
12556 dwo_file->sections.macro = sections.macro;
12557 dwo_file->sections.str_offsets = sections.str_offsets;
12558 /* The "str" section is global to the entire DWP file. */
12559 dwo_file->sections.str = dwp_file->sections.str;
12560 /* The info or types section is assigned below to dwo_unit,
12561 there's no need to record it in dwo_file.
12562 Also, we can't simply record type sections in dwo_file because
12563 we record a pointer into the vector in dwo_unit. As we collect more
12564 types we'll grow the vector and eventually have to reallocate space
12565 for it, invalidating all copies of pointers into the previous
12566 contents. */
12567 *dwo_file_slot = dwo_file;
12568 }
12569 else
12570 {
12571 if (dwarf_read_debug)
12572 {
12573 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12574 virtual_dwo_name.c_str ());
12575 }
12576 dwo_file = (struct dwo_file *) *dwo_file_slot;
12577 }
12578
12579 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12580 dwo_unit->dwo_file = dwo_file;
12581 dwo_unit->signature = signature;
12582 dwo_unit->section =
12583 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12584 *dwo_unit->section = sections.info_or_types;
12585 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12586
12587 return dwo_unit;
12588 }
12589
12590 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12591 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12592 piece within that section used by a TU/CU, return a virtual section
12593 of just that piece. */
12594
12595 static struct dwarf2_section_info
12596 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12597 struct dwarf2_section_info *section,
12598 bfd_size_type offset, bfd_size_type size)
12599 {
12600 struct dwarf2_section_info result;
12601 asection *sectp;
12602
12603 gdb_assert (section != NULL);
12604 gdb_assert (!section->is_virtual);
12605
12606 memset (&result, 0, sizeof (result));
12607 result.s.containing_section = section;
12608 result.is_virtual = true;
12609
12610 if (size == 0)
12611 return result;
12612
12613 sectp = get_section_bfd_section (section);
12614
12615 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12616 bounds of the real section. This is a pretty-rare event, so just
12617 flag an error (easier) instead of a warning and trying to cope. */
12618 if (sectp == NULL
12619 || offset + size > bfd_section_size (sectp))
12620 {
12621 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12622 " in section %s [in module %s]"),
12623 sectp ? bfd_section_name (sectp) : "<unknown>",
12624 objfile_name (dwarf2_per_objfile->objfile));
12625 }
12626
12627 result.virtual_offset = offset;
12628 result.size = size;
12629 return result;
12630 }
12631
12632 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12633 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12634 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12635 This is for DWP version 2 files. */
12636
12637 static struct dwo_unit *
12638 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12639 struct dwp_file *dwp_file,
12640 uint32_t unit_index,
12641 const char *comp_dir,
12642 ULONGEST signature, int is_debug_types)
12643 {
12644 struct objfile *objfile = dwarf2_per_objfile->objfile;
12645 const struct dwp_hash_table *dwp_htab =
12646 is_debug_types ? dwp_file->tus : dwp_file->cus;
12647 bfd *dbfd = dwp_file->dbfd.get ();
12648 const char *kind = is_debug_types ? "TU" : "CU";
12649 struct dwo_file *dwo_file;
12650 struct dwo_unit *dwo_unit;
12651 struct virtual_v2_dwo_sections sections;
12652 void **dwo_file_slot;
12653 int i;
12654
12655 gdb_assert (dwp_file->version == 2);
12656
12657 if (dwarf_read_debug)
12658 {
12659 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12660 kind,
12661 pulongest (unit_index), hex_string (signature),
12662 dwp_file->name);
12663 }
12664
12665 /* Fetch the section offsets of this DWO unit. */
12666
12667 memset (&sections, 0, sizeof (sections));
12668
12669 for (i = 0; i < dwp_htab->nr_columns; ++i)
12670 {
12671 uint32_t offset = read_4_bytes (dbfd,
12672 dwp_htab->section_pool.v2.offsets
12673 + (((unit_index - 1) * dwp_htab->nr_columns
12674 + i)
12675 * sizeof (uint32_t)));
12676 uint32_t size = read_4_bytes (dbfd,
12677 dwp_htab->section_pool.v2.sizes
12678 + (((unit_index - 1) * dwp_htab->nr_columns
12679 + i)
12680 * sizeof (uint32_t)));
12681
12682 switch (dwp_htab->section_pool.v2.section_ids[i])
12683 {
12684 case DW_SECT_INFO:
12685 case DW_SECT_TYPES:
12686 sections.info_or_types_offset = offset;
12687 sections.info_or_types_size = size;
12688 break;
12689 case DW_SECT_ABBREV:
12690 sections.abbrev_offset = offset;
12691 sections.abbrev_size = size;
12692 break;
12693 case DW_SECT_LINE:
12694 sections.line_offset = offset;
12695 sections.line_size = size;
12696 break;
12697 case DW_SECT_LOC:
12698 sections.loc_offset = offset;
12699 sections.loc_size = size;
12700 break;
12701 case DW_SECT_STR_OFFSETS:
12702 sections.str_offsets_offset = offset;
12703 sections.str_offsets_size = size;
12704 break;
12705 case DW_SECT_MACINFO:
12706 sections.macinfo_offset = offset;
12707 sections.macinfo_size = size;
12708 break;
12709 case DW_SECT_MACRO:
12710 sections.macro_offset = offset;
12711 sections.macro_size = size;
12712 break;
12713 }
12714 }
12715
12716 /* It's easier for the rest of the code if we fake a struct dwo_file and
12717 have dwo_unit "live" in that. At least for now.
12718
12719 The DWP file can be made up of a random collection of CUs and TUs.
12720 However, for each CU + set of TUs that came from the same original DWO
12721 file, we can combine them back into a virtual DWO file to save space
12722 (fewer struct dwo_file objects to allocate). Remember that for really
12723 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12724
12725 std::string virtual_dwo_name =
12726 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12727 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12728 (long) (sections.line_size ? sections.line_offset : 0),
12729 (long) (sections.loc_size ? sections.loc_offset : 0),
12730 (long) (sections.str_offsets_size
12731 ? sections.str_offsets_offset : 0));
12732 /* Can we use an existing virtual DWO file? */
12733 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12734 virtual_dwo_name.c_str (),
12735 comp_dir);
12736 /* Create one if necessary. */
12737 if (*dwo_file_slot == NULL)
12738 {
12739 if (dwarf_read_debug)
12740 {
12741 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12742 virtual_dwo_name.c_str ());
12743 }
12744 dwo_file = new struct dwo_file;
12745 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12746 virtual_dwo_name);
12747 dwo_file->comp_dir = comp_dir;
12748 dwo_file->sections.abbrev =
12749 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12750 sections.abbrev_offset, sections.abbrev_size);
12751 dwo_file->sections.line =
12752 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12753 sections.line_offset, sections.line_size);
12754 dwo_file->sections.loc =
12755 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12756 sections.loc_offset, sections.loc_size);
12757 dwo_file->sections.macinfo =
12758 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12759 sections.macinfo_offset, sections.macinfo_size);
12760 dwo_file->sections.macro =
12761 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12762 sections.macro_offset, sections.macro_size);
12763 dwo_file->sections.str_offsets =
12764 create_dwp_v2_section (dwarf2_per_objfile,
12765 &dwp_file->sections.str_offsets,
12766 sections.str_offsets_offset,
12767 sections.str_offsets_size);
12768 /* The "str" section is global to the entire DWP file. */
12769 dwo_file->sections.str = dwp_file->sections.str;
12770 /* The info or types section is assigned below to dwo_unit,
12771 there's no need to record it in dwo_file.
12772 Also, we can't simply record type sections in dwo_file because
12773 we record a pointer into the vector in dwo_unit. As we collect more
12774 types we'll grow the vector and eventually have to reallocate space
12775 for it, invalidating all copies of pointers into the previous
12776 contents. */
12777 *dwo_file_slot = dwo_file;
12778 }
12779 else
12780 {
12781 if (dwarf_read_debug)
12782 {
12783 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12784 virtual_dwo_name.c_str ());
12785 }
12786 dwo_file = (struct dwo_file *) *dwo_file_slot;
12787 }
12788
12789 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12790 dwo_unit->dwo_file = dwo_file;
12791 dwo_unit->signature = signature;
12792 dwo_unit->section =
12793 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12794 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12795 is_debug_types
12796 ? &dwp_file->sections.types
12797 : &dwp_file->sections.info,
12798 sections.info_or_types_offset,
12799 sections.info_or_types_size);
12800 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12801
12802 return dwo_unit;
12803 }
12804
12805 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12806 Returns NULL if the signature isn't found. */
12807
12808 static struct dwo_unit *
12809 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12810 struct dwp_file *dwp_file, const char *comp_dir,
12811 ULONGEST signature, int is_debug_types)
12812 {
12813 const struct dwp_hash_table *dwp_htab =
12814 is_debug_types ? dwp_file->tus : dwp_file->cus;
12815 bfd *dbfd = dwp_file->dbfd.get ();
12816 uint32_t mask = dwp_htab->nr_slots - 1;
12817 uint32_t hash = signature & mask;
12818 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12819 unsigned int i;
12820 void **slot;
12821 struct dwo_unit find_dwo_cu;
12822
12823 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12824 find_dwo_cu.signature = signature;
12825 slot = htab_find_slot (is_debug_types
12826 ? dwp_file->loaded_tus
12827 : dwp_file->loaded_cus,
12828 &find_dwo_cu, INSERT);
12829
12830 if (*slot != NULL)
12831 return (struct dwo_unit *) *slot;
12832
12833 /* Use a for loop so that we don't loop forever on bad debug info. */
12834 for (i = 0; i < dwp_htab->nr_slots; ++i)
12835 {
12836 ULONGEST signature_in_table;
12837
12838 signature_in_table =
12839 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12840 if (signature_in_table == signature)
12841 {
12842 uint32_t unit_index =
12843 read_4_bytes (dbfd,
12844 dwp_htab->unit_table + hash * sizeof (uint32_t));
12845
12846 if (dwp_file->version == 1)
12847 {
12848 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12849 dwp_file, unit_index,
12850 comp_dir, signature,
12851 is_debug_types);
12852 }
12853 else
12854 {
12855 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12856 dwp_file, unit_index,
12857 comp_dir, signature,
12858 is_debug_types);
12859 }
12860 return (struct dwo_unit *) *slot;
12861 }
12862 if (signature_in_table == 0)
12863 return NULL;
12864 hash = (hash + hash2) & mask;
12865 }
12866
12867 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12868 " [in module %s]"),
12869 dwp_file->name);
12870 }
12871
12872 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12873 Open the file specified by FILE_NAME and hand it off to BFD for
12874 preliminary analysis. Return a newly initialized bfd *, which
12875 includes a canonicalized copy of FILE_NAME.
12876 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12877 SEARCH_CWD is true if the current directory is to be searched.
12878 It will be searched before debug-file-directory.
12879 If successful, the file is added to the bfd include table of the
12880 objfile's bfd (see gdb_bfd_record_inclusion).
12881 If unable to find/open the file, return NULL.
12882 NOTE: This function is derived from symfile_bfd_open. */
12883
12884 static gdb_bfd_ref_ptr
12885 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12886 const char *file_name, int is_dwp, int search_cwd)
12887 {
12888 int desc;
12889 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12890 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12891 to debug_file_directory. */
12892 const char *search_path;
12893 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12894
12895 gdb::unique_xmalloc_ptr<char> search_path_holder;
12896 if (search_cwd)
12897 {
12898 if (*debug_file_directory != '\0')
12899 {
12900 search_path_holder.reset (concat (".", dirname_separator_string,
12901 debug_file_directory,
12902 (char *) NULL));
12903 search_path = search_path_holder.get ();
12904 }
12905 else
12906 search_path = ".";
12907 }
12908 else
12909 search_path = debug_file_directory;
12910
12911 openp_flags flags = OPF_RETURN_REALPATH;
12912 if (is_dwp)
12913 flags |= OPF_SEARCH_IN_PATH;
12914
12915 gdb::unique_xmalloc_ptr<char> absolute_name;
12916 desc = openp (search_path, flags, file_name,
12917 O_RDONLY | O_BINARY, &absolute_name);
12918 if (desc < 0)
12919 return NULL;
12920
12921 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12922 gnutarget, desc));
12923 if (sym_bfd == NULL)
12924 return NULL;
12925 bfd_set_cacheable (sym_bfd.get (), 1);
12926
12927 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12928 return NULL;
12929
12930 /* Success. Record the bfd as having been included by the objfile's bfd.
12931 This is important because things like demangled_names_hash lives in the
12932 objfile's per_bfd space and may have references to things like symbol
12933 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12934 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12935
12936 return sym_bfd;
12937 }
12938
12939 /* Try to open DWO file FILE_NAME.
12940 COMP_DIR is the DW_AT_comp_dir attribute.
12941 The result is the bfd handle of the file.
12942 If there is a problem finding or opening the file, return NULL.
12943 Upon success, the canonicalized path of the file is stored in the bfd,
12944 same as symfile_bfd_open. */
12945
12946 static gdb_bfd_ref_ptr
12947 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12948 const char *file_name, const char *comp_dir)
12949 {
12950 if (IS_ABSOLUTE_PATH (file_name))
12951 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12952 0 /*is_dwp*/, 0 /*search_cwd*/);
12953
12954 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12955
12956 if (comp_dir != NULL)
12957 {
12958 char *path_to_try = concat (comp_dir, SLASH_STRING,
12959 file_name, (char *) NULL);
12960
12961 /* NOTE: If comp_dir is a relative path, this will also try the
12962 search path, which seems useful. */
12963 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12964 path_to_try,
12965 0 /*is_dwp*/,
12966 1 /*search_cwd*/));
12967 xfree (path_to_try);
12968 if (abfd != NULL)
12969 return abfd;
12970 }
12971
12972 /* That didn't work, try debug-file-directory, which, despite its name,
12973 is a list of paths. */
12974
12975 if (*debug_file_directory == '\0')
12976 return NULL;
12977
12978 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12979 0 /*is_dwp*/, 1 /*search_cwd*/);
12980 }
12981
12982 /* This function is mapped across the sections and remembers the offset and
12983 size of each of the DWO debugging sections we are interested in. */
12984
12985 static void
12986 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12987 {
12988 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12989 const struct dwop_section_names *names = &dwop_section_names;
12990
12991 if (section_is_p (sectp->name, &names->abbrev_dwo))
12992 {
12993 dwo_sections->abbrev.s.section = sectp;
12994 dwo_sections->abbrev.size = bfd_section_size (sectp);
12995 }
12996 else if (section_is_p (sectp->name, &names->info_dwo))
12997 {
12998 dwo_sections->info.s.section = sectp;
12999 dwo_sections->info.size = bfd_section_size (sectp);
13000 }
13001 else if (section_is_p (sectp->name, &names->line_dwo))
13002 {
13003 dwo_sections->line.s.section = sectp;
13004 dwo_sections->line.size = bfd_section_size (sectp);
13005 }
13006 else if (section_is_p (sectp->name, &names->loc_dwo))
13007 {
13008 dwo_sections->loc.s.section = sectp;
13009 dwo_sections->loc.size = bfd_section_size (sectp);
13010 }
13011 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13012 {
13013 dwo_sections->macinfo.s.section = sectp;
13014 dwo_sections->macinfo.size = bfd_section_size (sectp);
13015 }
13016 else if (section_is_p (sectp->name, &names->macro_dwo))
13017 {
13018 dwo_sections->macro.s.section = sectp;
13019 dwo_sections->macro.size = bfd_section_size (sectp);
13020 }
13021 else if (section_is_p (sectp->name, &names->str_dwo))
13022 {
13023 dwo_sections->str.s.section = sectp;
13024 dwo_sections->str.size = bfd_section_size (sectp);
13025 }
13026 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13027 {
13028 dwo_sections->str_offsets.s.section = sectp;
13029 dwo_sections->str_offsets.size = bfd_section_size (sectp);
13030 }
13031 else if (section_is_p (sectp->name, &names->types_dwo))
13032 {
13033 struct dwarf2_section_info type_section;
13034
13035 memset (&type_section, 0, sizeof (type_section));
13036 type_section.s.section = sectp;
13037 type_section.size = bfd_section_size (sectp);
13038 dwo_sections->types.push_back (type_section);
13039 }
13040 }
13041
13042 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13043 by PER_CU. This is for the non-DWP case.
13044 The result is NULL if DWO_NAME can't be found. */
13045
13046 static struct dwo_file *
13047 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13048 const char *dwo_name, const char *comp_dir)
13049 {
13050 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13051
13052 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13053 if (dbfd == NULL)
13054 {
13055 if (dwarf_read_debug)
13056 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13057 return NULL;
13058 }
13059
13060 dwo_file_up dwo_file (new struct dwo_file);
13061 dwo_file->dwo_name = dwo_name;
13062 dwo_file->comp_dir = comp_dir;
13063 dwo_file->dbfd = std::move (dbfd);
13064
13065 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13066 &dwo_file->sections);
13067
13068 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13069 dwo_file->cus);
13070
13071 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13072 dwo_file->sections.types, dwo_file->tus);
13073
13074 if (dwarf_read_debug)
13075 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13076
13077 return dwo_file.release ();
13078 }
13079
13080 /* This function is mapped across the sections and remembers the offset and
13081 size of each of the DWP debugging sections common to version 1 and 2 that
13082 we are interested in. */
13083
13084 static void
13085 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13086 void *dwp_file_ptr)
13087 {
13088 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13089 const struct dwop_section_names *names = &dwop_section_names;
13090 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13091
13092 /* Record the ELF section number for later lookup: this is what the
13093 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13094 gdb_assert (elf_section_nr < dwp_file->num_sections);
13095 dwp_file->elf_sections[elf_section_nr] = sectp;
13096
13097 /* Look for specific sections that we need. */
13098 if (section_is_p (sectp->name, &names->str_dwo))
13099 {
13100 dwp_file->sections.str.s.section = sectp;
13101 dwp_file->sections.str.size = bfd_section_size (sectp);
13102 }
13103 else if (section_is_p (sectp->name, &names->cu_index))
13104 {
13105 dwp_file->sections.cu_index.s.section = sectp;
13106 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13107 }
13108 else if (section_is_p (sectp->name, &names->tu_index))
13109 {
13110 dwp_file->sections.tu_index.s.section = sectp;
13111 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13112 }
13113 }
13114
13115 /* This function is mapped across the sections and remembers the offset and
13116 size of each of the DWP version 2 debugging sections that we are interested
13117 in. This is split into a separate function because we don't know if we
13118 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13119
13120 static void
13121 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13122 {
13123 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13124 const struct dwop_section_names *names = &dwop_section_names;
13125 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13126
13127 /* Record the ELF section number for later lookup: this is what the
13128 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13129 gdb_assert (elf_section_nr < dwp_file->num_sections);
13130 dwp_file->elf_sections[elf_section_nr] = sectp;
13131
13132 /* Look for specific sections that we need. */
13133 if (section_is_p (sectp->name, &names->abbrev_dwo))
13134 {
13135 dwp_file->sections.abbrev.s.section = sectp;
13136 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13137 }
13138 else if (section_is_p (sectp->name, &names->info_dwo))
13139 {
13140 dwp_file->sections.info.s.section = sectp;
13141 dwp_file->sections.info.size = bfd_section_size (sectp);
13142 }
13143 else if (section_is_p (sectp->name, &names->line_dwo))
13144 {
13145 dwp_file->sections.line.s.section = sectp;
13146 dwp_file->sections.line.size = bfd_section_size (sectp);
13147 }
13148 else if (section_is_p (sectp->name, &names->loc_dwo))
13149 {
13150 dwp_file->sections.loc.s.section = sectp;
13151 dwp_file->sections.loc.size = bfd_section_size (sectp);
13152 }
13153 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13154 {
13155 dwp_file->sections.macinfo.s.section = sectp;
13156 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13157 }
13158 else if (section_is_p (sectp->name, &names->macro_dwo))
13159 {
13160 dwp_file->sections.macro.s.section = sectp;
13161 dwp_file->sections.macro.size = bfd_section_size (sectp);
13162 }
13163 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13164 {
13165 dwp_file->sections.str_offsets.s.section = sectp;
13166 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13167 }
13168 else if (section_is_p (sectp->name, &names->types_dwo))
13169 {
13170 dwp_file->sections.types.s.section = sectp;
13171 dwp_file->sections.types.size = bfd_section_size (sectp);
13172 }
13173 }
13174
13175 /* Hash function for dwp_file loaded CUs/TUs. */
13176
13177 static hashval_t
13178 hash_dwp_loaded_cutus (const void *item)
13179 {
13180 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13181
13182 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13183 return dwo_unit->signature;
13184 }
13185
13186 /* Equality function for dwp_file loaded CUs/TUs. */
13187
13188 static int
13189 eq_dwp_loaded_cutus (const void *a, const void *b)
13190 {
13191 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13192 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13193
13194 return dua->signature == dub->signature;
13195 }
13196
13197 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13198
13199 static htab_t
13200 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13201 {
13202 return htab_create_alloc_ex (3,
13203 hash_dwp_loaded_cutus,
13204 eq_dwp_loaded_cutus,
13205 NULL,
13206 &objfile->objfile_obstack,
13207 hashtab_obstack_allocate,
13208 dummy_obstack_deallocate);
13209 }
13210
13211 /* Try to open DWP file FILE_NAME.
13212 The result is the bfd handle of the file.
13213 If there is a problem finding or opening the file, return NULL.
13214 Upon success, the canonicalized path of the file is stored in the bfd,
13215 same as symfile_bfd_open. */
13216
13217 static gdb_bfd_ref_ptr
13218 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13219 const char *file_name)
13220 {
13221 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13222 1 /*is_dwp*/,
13223 1 /*search_cwd*/));
13224 if (abfd != NULL)
13225 return abfd;
13226
13227 /* Work around upstream bug 15652.
13228 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13229 [Whether that's a "bug" is debatable, but it is getting in our way.]
13230 We have no real idea where the dwp file is, because gdb's realpath-ing
13231 of the executable's path may have discarded the needed info.
13232 [IWBN if the dwp file name was recorded in the executable, akin to
13233 .gnu_debuglink, but that doesn't exist yet.]
13234 Strip the directory from FILE_NAME and search again. */
13235 if (*debug_file_directory != '\0')
13236 {
13237 /* Don't implicitly search the current directory here.
13238 If the user wants to search "." to handle this case,
13239 it must be added to debug-file-directory. */
13240 return try_open_dwop_file (dwarf2_per_objfile,
13241 lbasename (file_name), 1 /*is_dwp*/,
13242 0 /*search_cwd*/);
13243 }
13244
13245 return NULL;
13246 }
13247
13248 /* Initialize the use of the DWP file for the current objfile.
13249 By convention the name of the DWP file is ${objfile}.dwp.
13250 The result is NULL if it can't be found. */
13251
13252 static std::unique_ptr<struct dwp_file>
13253 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13254 {
13255 struct objfile *objfile = dwarf2_per_objfile->objfile;
13256
13257 /* Try to find first .dwp for the binary file before any symbolic links
13258 resolving. */
13259
13260 /* If the objfile is a debug file, find the name of the real binary
13261 file and get the name of dwp file from there. */
13262 std::string dwp_name;
13263 if (objfile->separate_debug_objfile_backlink != NULL)
13264 {
13265 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13266 const char *backlink_basename = lbasename (backlink->original_name);
13267
13268 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13269 }
13270 else
13271 dwp_name = objfile->original_name;
13272
13273 dwp_name += ".dwp";
13274
13275 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13276 if (dbfd == NULL
13277 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13278 {
13279 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13280 dwp_name = objfile_name (objfile);
13281 dwp_name += ".dwp";
13282 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13283 }
13284
13285 if (dbfd == NULL)
13286 {
13287 if (dwarf_read_debug)
13288 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13289 return std::unique_ptr<dwp_file> ();
13290 }
13291
13292 const char *name = bfd_get_filename (dbfd.get ());
13293 std::unique_ptr<struct dwp_file> dwp_file
13294 (new struct dwp_file (name, std::move (dbfd)));
13295
13296 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13297 dwp_file->elf_sections =
13298 OBSTACK_CALLOC (&objfile->objfile_obstack,
13299 dwp_file->num_sections, asection *);
13300
13301 bfd_map_over_sections (dwp_file->dbfd.get (),
13302 dwarf2_locate_common_dwp_sections,
13303 dwp_file.get ());
13304
13305 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13306 0);
13307
13308 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13309 1);
13310
13311 /* The DWP file version is stored in the hash table. Oh well. */
13312 if (dwp_file->cus && dwp_file->tus
13313 && dwp_file->cus->version != dwp_file->tus->version)
13314 {
13315 /* Technically speaking, we should try to limp along, but this is
13316 pretty bizarre. We use pulongest here because that's the established
13317 portability solution (e.g, we cannot use %u for uint32_t). */
13318 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13319 " TU version %s [in DWP file %s]"),
13320 pulongest (dwp_file->cus->version),
13321 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13322 }
13323
13324 if (dwp_file->cus)
13325 dwp_file->version = dwp_file->cus->version;
13326 else if (dwp_file->tus)
13327 dwp_file->version = dwp_file->tus->version;
13328 else
13329 dwp_file->version = 2;
13330
13331 if (dwp_file->version == 2)
13332 bfd_map_over_sections (dwp_file->dbfd.get (),
13333 dwarf2_locate_v2_dwp_sections,
13334 dwp_file.get ());
13335
13336 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13337 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13338
13339 if (dwarf_read_debug)
13340 {
13341 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13342 fprintf_unfiltered (gdb_stdlog,
13343 " %s CUs, %s TUs\n",
13344 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13345 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13346 }
13347
13348 return dwp_file;
13349 }
13350
13351 /* Wrapper around open_and_init_dwp_file, only open it once. */
13352
13353 static struct dwp_file *
13354 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13355 {
13356 if (! dwarf2_per_objfile->dwp_checked)
13357 {
13358 dwarf2_per_objfile->dwp_file
13359 = open_and_init_dwp_file (dwarf2_per_objfile);
13360 dwarf2_per_objfile->dwp_checked = 1;
13361 }
13362 return dwarf2_per_objfile->dwp_file.get ();
13363 }
13364
13365 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13366 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13367 or in the DWP file for the objfile, referenced by THIS_UNIT.
13368 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13369 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13370
13371 This is called, for example, when wanting to read a variable with a
13372 complex location. Therefore we don't want to do file i/o for every call.
13373 Therefore we don't want to look for a DWO file on every call.
13374 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13375 then we check if we've already seen DWO_NAME, and only THEN do we check
13376 for a DWO file.
13377
13378 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13379 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13380
13381 static struct dwo_unit *
13382 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13383 const char *dwo_name, const char *comp_dir,
13384 ULONGEST signature, int is_debug_types)
13385 {
13386 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13387 struct objfile *objfile = dwarf2_per_objfile->objfile;
13388 const char *kind = is_debug_types ? "TU" : "CU";
13389 void **dwo_file_slot;
13390 struct dwo_file *dwo_file;
13391 struct dwp_file *dwp_file;
13392
13393 /* First see if there's a DWP file.
13394 If we have a DWP file but didn't find the DWO inside it, don't
13395 look for the original DWO file. It makes gdb behave differently
13396 depending on whether one is debugging in the build tree. */
13397
13398 dwp_file = get_dwp_file (dwarf2_per_objfile);
13399 if (dwp_file != NULL)
13400 {
13401 const struct dwp_hash_table *dwp_htab =
13402 is_debug_types ? dwp_file->tus : dwp_file->cus;
13403
13404 if (dwp_htab != NULL)
13405 {
13406 struct dwo_unit *dwo_cutu =
13407 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13408 signature, is_debug_types);
13409
13410 if (dwo_cutu != NULL)
13411 {
13412 if (dwarf_read_debug)
13413 {
13414 fprintf_unfiltered (gdb_stdlog,
13415 "Virtual DWO %s %s found: @%s\n",
13416 kind, hex_string (signature),
13417 host_address_to_string (dwo_cutu));
13418 }
13419 return dwo_cutu;
13420 }
13421 }
13422 }
13423 else
13424 {
13425 /* No DWP file, look for the DWO file. */
13426
13427 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13428 dwo_name, comp_dir);
13429 if (*dwo_file_slot == NULL)
13430 {
13431 /* Read in the file and build a table of the CUs/TUs it contains. */
13432 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13433 }
13434 /* NOTE: This will be NULL if unable to open the file. */
13435 dwo_file = (struct dwo_file *) *dwo_file_slot;
13436
13437 if (dwo_file != NULL)
13438 {
13439 struct dwo_unit *dwo_cutu = NULL;
13440
13441 if (is_debug_types && dwo_file->tus)
13442 {
13443 struct dwo_unit find_dwo_cutu;
13444
13445 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13446 find_dwo_cutu.signature = signature;
13447 dwo_cutu
13448 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13449 }
13450 else if (!is_debug_types && dwo_file->cus)
13451 {
13452 struct dwo_unit find_dwo_cutu;
13453
13454 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13455 find_dwo_cutu.signature = signature;
13456 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13457 &find_dwo_cutu);
13458 }
13459
13460 if (dwo_cutu != NULL)
13461 {
13462 if (dwarf_read_debug)
13463 {
13464 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13465 kind, dwo_name, hex_string (signature),
13466 host_address_to_string (dwo_cutu));
13467 }
13468 return dwo_cutu;
13469 }
13470 }
13471 }
13472
13473 /* We didn't find it. This could mean a dwo_id mismatch, or
13474 someone deleted the DWO/DWP file, or the search path isn't set up
13475 correctly to find the file. */
13476
13477 if (dwarf_read_debug)
13478 {
13479 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13480 kind, dwo_name, hex_string (signature));
13481 }
13482
13483 /* This is a warning and not a complaint because it can be caused by
13484 pilot error (e.g., user accidentally deleting the DWO). */
13485 {
13486 /* Print the name of the DWP file if we looked there, helps the user
13487 better diagnose the problem. */
13488 std::string dwp_text;
13489
13490 if (dwp_file != NULL)
13491 dwp_text = string_printf (" [in DWP file %s]",
13492 lbasename (dwp_file->name));
13493
13494 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13495 " [in module %s]"),
13496 kind, dwo_name, hex_string (signature),
13497 dwp_text.c_str (),
13498 this_unit->is_debug_types ? "TU" : "CU",
13499 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13500 }
13501 return NULL;
13502 }
13503
13504 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13505 See lookup_dwo_cutu_unit for details. */
13506
13507 static struct dwo_unit *
13508 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13509 const char *dwo_name, const char *comp_dir,
13510 ULONGEST signature)
13511 {
13512 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13513 }
13514
13515 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13516 See lookup_dwo_cutu_unit for details. */
13517
13518 static struct dwo_unit *
13519 lookup_dwo_type_unit (struct signatured_type *this_tu,
13520 const char *dwo_name, const char *comp_dir)
13521 {
13522 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13523 }
13524
13525 /* Traversal function for queue_and_load_all_dwo_tus. */
13526
13527 static int
13528 queue_and_load_dwo_tu (void **slot, void *info)
13529 {
13530 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13531 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13532 ULONGEST signature = dwo_unit->signature;
13533 struct signatured_type *sig_type =
13534 lookup_dwo_signatured_type (per_cu->cu, signature);
13535
13536 if (sig_type != NULL)
13537 {
13538 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13539
13540 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13541 a real dependency of PER_CU on SIG_TYPE. That is detected later
13542 while processing PER_CU. */
13543 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13544 load_full_type_unit (sig_cu);
13545 per_cu->imported_symtabs_push (sig_cu);
13546 }
13547
13548 return 1;
13549 }
13550
13551 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13552 The DWO may have the only definition of the type, though it may not be
13553 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13554 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13555
13556 static void
13557 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13558 {
13559 struct dwo_unit *dwo_unit;
13560 struct dwo_file *dwo_file;
13561
13562 gdb_assert (!per_cu->is_debug_types);
13563 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13564 gdb_assert (per_cu->cu != NULL);
13565
13566 dwo_unit = per_cu->cu->dwo_unit;
13567 gdb_assert (dwo_unit != NULL);
13568
13569 dwo_file = dwo_unit->dwo_file;
13570 if (dwo_file->tus != NULL)
13571 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13572 }
13573
13574 /* Read in various DIEs. */
13575
13576 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13577 Inherit only the children of the DW_AT_abstract_origin DIE not being
13578 already referenced by DW_AT_abstract_origin from the children of the
13579 current DIE. */
13580
13581 static void
13582 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13583 {
13584 struct die_info *child_die;
13585 sect_offset *offsetp;
13586 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13587 struct die_info *origin_die;
13588 /* Iterator of the ORIGIN_DIE children. */
13589 struct die_info *origin_child_die;
13590 struct attribute *attr;
13591 struct dwarf2_cu *origin_cu;
13592 struct pending **origin_previous_list_in_scope;
13593
13594 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13595 if (!attr)
13596 return;
13597
13598 /* Note that following die references may follow to a die in a
13599 different cu. */
13600
13601 origin_cu = cu;
13602 origin_die = follow_die_ref (die, attr, &origin_cu);
13603
13604 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13605 symbols in. */
13606 origin_previous_list_in_scope = origin_cu->list_in_scope;
13607 origin_cu->list_in_scope = cu->list_in_scope;
13608
13609 if (die->tag != origin_die->tag
13610 && !(die->tag == DW_TAG_inlined_subroutine
13611 && origin_die->tag == DW_TAG_subprogram))
13612 complaint (_("DIE %s and its abstract origin %s have different tags"),
13613 sect_offset_str (die->sect_off),
13614 sect_offset_str (origin_die->sect_off));
13615
13616 std::vector<sect_offset> offsets;
13617
13618 for (child_die = die->child;
13619 child_die && child_die->tag;
13620 child_die = sibling_die (child_die))
13621 {
13622 struct die_info *child_origin_die;
13623 struct dwarf2_cu *child_origin_cu;
13624
13625 /* We are trying to process concrete instance entries:
13626 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13627 it's not relevant to our analysis here. i.e. detecting DIEs that are
13628 present in the abstract instance but not referenced in the concrete
13629 one. */
13630 if (child_die->tag == DW_TAG_call_site
13631 || child_die->tag == DW_TAG_GNU_call_site)
13632 continue;
13633
13634 /* For each CHILD_DIE, find the corresponding child of
13635 ORIGIN_DIE. If there is more than one layer of
13636 DW_AT_abstract_origin, follow them all; there shouldn't be,
13637 but GCC versions at least through 4.4 generate this (GCC PR
13638 40573). */
13639 child_origin_die = child_die;
13640 child_origin_cu = cu;
13641 while (1)
13642 {
13643 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13644 child_origin_cu);
13645 if (attr == NULL)
13646 break;
13647 child_origin_die = follow_die_ref (child_origin_die, attr,
13648 &child_origin_cu);
13649 }
13650
13651 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13652 counterpart may exist. */
13653 if (child_origin_die != child_die)
13654 {
13655 if (child_die->tag != child_origin_die->tag
13656 && !(child_die->tag == DW_TAG_inlined_subroutine
13657 && child_origin_die->tag == DW_TAG_subprogram))
13658 complaint (_("Child DIE %s and its abstract origin %s have "
13659 "different tags"),
13660 sect_offset_str (child_die->sect_off),
13661 sect_offset_str (child_origin_die->sect_off));
13662 if (child_origin_die->parent != origin_die)
13663 complaint (_("Child DIE %s and its abstract origin %s have "
13664 "different parents"),
13665 sect_offset_str (child_die->sect_off),
13666 sect_offset_str (child_origin_die->sect_off));
13667 else
13668 offsets.push_back (child_origin_die->sect_off);
13669 }
13670 }
13671 std::sort (offsets.begin (), offsets.end ());
13672 sect_offset *offsets_end = offsets.data () + offsets.size ();
13673 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13674 if (offsetp[-1] == *offsetp)
13675 complaint (_("Multiple children of DIE %s refer "
13676 "to DIE %s as their abstract origin"),
13677 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13678
13679 offsetp = offsets.data ();
13680 origin_child_die = origin_die->child;
13681 while (origin_child_die && origin_child_die->tag)
13682 {
13683 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13684 while (offsetp < offsets_end
13685 && *offsetp < origin_child_die->sect_off)
13686 offsetp++;
13687 if (offsetp >= offsets_end
13688 || *offsetp > origin_child_die->sect_off)
13689 {
13690 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13691 Check whether we're already processing ORIGIN_CHILD_DIE.
13692 This can happen with mutually referenced abstract_origins.
13693 PR 16581. */
13694 if (!origin_child_die->in_process)
13695 process_die (origin_child_die, origin_cu);
13696 }
13697 origin_child_die = sibling_die (origin_child_die);
13698 }
13699 origin_cu->list_in_scope = origin_previous_list_in_scope;
13700 }
13701
13702 static void
13703 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13704 {
13705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13706 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13707 struct context_stack *newobj;
13708 CORE_ADDR lowpc;
13709 CORE_ADDR highpc;
13710 struct die_info *child_die;
13711 struct attribute *attr, *call_line, *call_file;
13712 const char *name;
13713 CORE_ADDR baseaddr;
13714 struct block *block;
13715 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13716 std::vector<struct symbol *> template_args;
13717 struct template_symbol *templ_func = NULL;
13718
13719 if (inlined_func)
13720 {
13721 /* If we do not have call site information, we can't show the
13722 caller of this inlined function. That's too confusing, so
13723 only use the scope for local variables. */
13724 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13725 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13726 if (call_line == NULL || call_file == NULL)
13727 {
13728 read_lexical_block_scope (die, cu);
13729 return;
13730 }
13731 }
13732
13733 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13734
13735 name = dwarf2_name (die, cu);
13736
13737 /* Ignore functions with missing or empty names. These are actually
13738 illegal according to the DWARF standard. */
13739 if (name == NULL)
13740 {
13741 complaint (_("missing name for subprogram DIE at %s"),
13742 sect_offset_str (die->sect_off));
13743 return;
13744 }
13745
13746 /* Ignore functions with missing or invalid low and high pc attributes. */
13747 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13748 <= PC_BOUNDS_INVALID)
13749 {
13750 attr = dwarf2_attr (die, DW_AT_external, cu);
13751 if (!attr || !DW_UNSND (attr))
13752 complaint (_("cannot get low and high bounds "
13753 "for subprogram DIE at %s"),
13754 sect_offset_str (die->sect_off));
13755 return;
13756 }
13757
13758 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13759 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13760
13761 /* If we have any template arguments, then we must allocate a
13762 different sort of symbol. */
13763 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13764 {
13765 if (child_die->tag == DW_TAG_template_type_param
13766 || child_die->tag == DW_TAG_template_value_param)
13767 {
13768 templ_func = allocate_template_symbol (objfile);
13769 templ_func->subclass = SYMBOL_TEMPLATE;
13770 break;
13771 }
13772 }
13773
13774 newobj = cu->get_builder ()->push_context (0, lowpc);
13775 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13776 (struct symbol *) templ_func);
13777
13778 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13779 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13780 cu->language);
13781
13782 /* If there is a location expression for DW_AT_frame_base, record
13783 it. */
13784 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13785 if (attr != nullptr)
13786 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13787
13788 /* If there is a location for the static link, record it. */
13789 newobj->static_link = NULL;
13790 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13791 if (attr != nullptr)
13792 {
13793 newobj->static_link
13794 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13795 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13796 dwarf2_per_cu_addr_type (cu->per_cu));
13797 }
13798
13799 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13800
13801 if (die->child != NULL)
13802 {
13803 child_die = die->child;
13804 while (child_die && child_die->tag)
13805 {
13806 if (child_die->tag == DW_TAG_template_type_param
13807 || child_die->tag == DW_TAG_template_value_param)
13808 {
13809 struct symbol *arg = new_symbol (child_die, NULL, cu);
13810
13811 if (arg != NULL)
13812 template_args.push_back (arg);
13813 }
13814 else
13815 process_die (child_die, cu);
13816 child_die = sibling_die (child_die);
13817 }
13818 }
13819
13820 inherit_abstract_dies (die, cu);
13821
13822 /* If we have a DW_AT_specification, we might need to import using
13823 directives from the context of the specification DIE. See the
13824 comment in determine_prefix. */
13825 if (cu->language == language_cplus
13826 && dwarf2_attr (die, DW_AT_specification, cu))
13827 {
13828 struct dwarf2_cu *spec_cu = cu;
13829 struct die_info *spec_die = die_specification (die, &spec_cu);
13830
13831 while (spec_die)
13832 {
13833 child_die = spec_die->child;
13834 while (child_die && child_die->tag)
13835 {
13836 if (child_die->tag == DW_TAG_imported_module)
13837 process_die (child_die, spec_cu);
13838 child_die = sibling_die (child_die);
13839 }
13840
13841 /* In some cases, GCC generates specification DIEs that
13842 themselves contain DW_AT_specification attributes. */
13843 spec_die = die_specification (spec_die, &spec_cu);
13844 }
13845 }
13846
13847 struct context_stack cstk = cu->get_builder ()->pop_context ();
13848 /* Make a block for the local symbols within. */
13849 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13850 cstk.static_link, lowpc, highpc);
13851
13852 /* For C++, set the block's scope. */
13853 if ((cu->language == language_cplus
13854 || cu->language == language_fortran
13855 || cu->language == language_d
13856 || cu->language == language_rust)
13857 && cu->processing_has_namespace_info)
13858 block_set_scope (block, determine_prefix (die, cu),
13859 &objfile->objfile_obstack);
13860
13861 /* If we have address ranges, record them. */
13862 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13863
13864 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13865
13866 /* Attach template arguments to function. */
13867 if (!template_args.empty ())
13868 {
13869 gdb_assert (templ_func != NULL);
13870
13871 templ_func->n_template_arguments = template_args.size ();
13872 templ_func->template_arguments
13873 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13874 templ_func->n_template_arguments);
13875 memcpy (templ_func->template_arguments,
13876 template_args.data (),
13877 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13878
13879 /* Make sure that the symtab is set on the new symbols. Even
13880 though they don't appear in this symtab directly, other parts
13881 of gdb assume that symbols do, and this is reasonably
13882 true. */
13883 for (symbol *sym : template_args)
13884 symbol_set_symtab (sym, symbol_symtab (templ_func));
13885 }
13886
13887 /* In C++, we can have functions nested inside functions (e.g., when
13888 a function declares a class that has methods). This means that
13889 when we finish processing a function scope, we may need to go
13890 back to building a containing block's symbol lists. */
13891 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13892 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13893
13894 /* If we've finished processing a top-level function, subsequent
13895 symbols go in the file symbol list. */
13896 if (cu->get_builder ()->outermost_context_p ())
13897 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13898 }
13899
13900 /* Process all the DIES contained within a lexical block scope. Start
13901 a new scope, process the dies, and then close the scope. */
13902
13903 static void
13904 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13905 {
13906 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13908 CORE_ADDR lowpc, highpc;
13909 struct die_info *child_die;
13910 CORE_ADDR baseaddr;
13911
13912 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13913
13914 /* Ignore blocks with missing or invalid low and high pc attributes. */
13915 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13916 as multiple lexical blocks? Handling children in a sane way would
13917 be nasty. Might be easier to properly extend generic blocks to
13918 describe ranges. */
13919 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13920 {
13921 case PC_BOUNDS_NOT_PRESENT:
13922 /* DW_TAG_lexical_block has no attributes, process its children as if
13923 there was no wrapping by that DW_TAG_lexical_block.
13924 GCC does no longer produces such DWARF since GCC r224161. */
13925 for (child_die = die->child;
13926 child_die != NULL && child_die->tag;
13927 child_die = sibling_die (child_die))
13928 process_die (child_die, cu);
13929 return;
13930 case PC_BOUNDS_INVALID:
13931 return;
13932 }
13933 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13934 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13935
13936 cu->get_builder ()->push_context (0, lowpc);
13937 if (die->child != NULL)
13938 {
13939 child_die = die->child;
13940 while (child_die && child_die->tag)
13941 {
13942 process_die (child_die, cu);
13943 child_die = sibling_die (child_die);
13944 }
13945 }
13946 inherit_abstract_dies (die, cu);
13947 struct context_stack cstk = cu->get_builder ()->pop_context ();
13948
13949 if (*cu->get_builder ()->get_local_symbols () != NULL
13950 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13951 {
13952 struct block *block
13953 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13954 cstk.start_addr, highpc);
13955
13956 /* Note that recording ranges after traversing children, as we
13957 do here, means that recording a parent's ranges entails
13958 walking across all its children's ranges as they appear in
13959 the address map, which is quadratic behavior.
13960
13961 It would be nicer to record the parent's ranges before
13962 traversing its children, simply overriding whatever you find
13963 there. But since we don't even decide whether to create a
13964 block until after we've traversed its children, that's hard
13965 to do. */
13966 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13967 }
13968 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13969 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13970 }
13971
13972 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13973
13974 static void
13975 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13976 {
13977 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13978 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13979 CORE_ADDR pc, baseaddr;
13980 struct attribute *attr;
13981 struct call_site *call_site, call_site_local;
13982 void **slot;
13983 int nparams;
13984 struct die_info *child_die;
13985
13986 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13987
13988 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13989 if (attr == NULL)
13990 {
13991 /* This was a pre-DWARF-5 GNU extension alias
13992 for DW_AT_call_return_pc. */
13993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13994 }
13995 if (!attr)
13996 {
13997 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13998 "DIE %s [in module %s]"),
13999 sect_offset_str (die->sect_off), objfile_name (objfile));
14000 return;
14001 }
14002 pc = attr_value_as_address (attr) + baseaddr;
14003 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14004
14005 if (cu->call_site_htab == NULL)
14006 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14007 NULL, &objfile->objfile_obstack,
14008 hashtab_obstack_allocate, NULL);
14009 call_site_local.pc = pc;
14010 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14011 if (*slot != NULL)
14012 {
14013 complaint (_("Duplicate PC %s for DW_TAG_call_site "
14014 "DIE %s [in module %s]"),
14015 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14016 objfile_name (objfile));
14017 return;
14018 }
14019
14020 /* Count parameters at the caller. */
14021
14022 nparams = 0;
14023 for (child_die = die->child; child_die && child_die->tag;
14024 child_die = sibling_die (child_die))
14025 {
14026 if (child_die->tag != DW_TAG_call_site_parameter
14027 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14028 {
14029 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14030 "DW_TAG_call_site child DIE %s [in module %s]"),
14031 child_die->tag, sect_offset_str (child_die->sect_off),
14032 objfile_name (objfile));
14033 continue;
14034 }
14035
14036 nparams++;
14037 }
14038
14039 call_site
14040 = ((struct call_site *)
14041 obstack_alloc (&objfile->objfile_obstack,
14042 sizeof (*call_site)
14043 + (sizeof (*call_site->parameter) * (nparams - 1))));
14044 *slot = call_site;
14045 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14046 call_site->pc = pc;
14047
14048 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14049 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14050 {
14051 struct die_info *func_die;
14052
14053 /* Skip also over DW_TAG_inlined_subroutine. */
14054 for (func_die = die->parent;
14055 func_die && func_die->tag != DW_TAG_subprogram
14056 && func_die->tag != DW_TAG_subroutine_type;
14057 func_die = func_die->parent);
14058
14059 /* DW_AT_call_all_calls is a superset
14060 of DW_AT_call_all_tail_calls. */
14061 if (func_die
14062 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14063 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14064 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14065 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14066 {
14067 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14068 not complete. But keep CALL_SITE for look ups via call_site_htab,
14069 both the initial caller containing the real return address PC and
14070 the final callee containing the current PC of a chain of tail
14071 calls do not need to have the tail call list complete. But any
14072 function candidate for a virtual tail call frame searched via
14073 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14074 determined unambiguously. */
14075 }
14076 else
14077 {
14078 struct type *func_type = NULL;
14079
14080 if (func_die)
14081 func_type = get_die_type (func_die, cu);
14082 if (func_type != NULL)
14083 {
14084 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14085
14086 /* Enlist this call site to the function. */
14087 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14088 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14089 }
14090 else
14091 complaint (_("Cannot find function owning DW_TAG_call_site "
14092 "DIE %s [in module %s]"),
14093 sect_offset_str (die->sect_off), objfile_name (objfile));
14094 }
14095 }
14096
14097 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14098 if (attr == NULL)
14099 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14100 if (attr == NULL)
14101 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14102 if (attr == NULL)
14103 {
14104 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14105 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14106 }
14107 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14108 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14109 /* Keep NULL DWARF_BLOCK. */;
14110 else if (attr_form_is_block (attr))
14111 {
14112 struct dwarf2_locexpr_baton *dlbaton;
14113
14114 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14115 dlbaton->data = DW_BLOCK (attr)->data;
14116 dlbaton->size = DW_BLOCK (attr)->size;
14117 dlbaton->per_cu = cu->per_cu;
14118
14119 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14120 }
14121 else if (attr_form_is_ref (attr))
14122 {
14123 struct dwarf2_cu *target_cu = cu;
14124 struct die_info *target_die;
14125
14126 target_die = follow_die_ref (die, attr, &target_cu);
14127 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14128 if (die_is_declaration (target_die, target_cu))
14129 {
14130 const char *target_physname;
14131
14132 /* Prefer the mangled name; otherwise compute the demangled one. */
14133 target_physname = dw2_linkage_name (target_die, target_cu);
14134 if (target_physname == NULL)
14135 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14136 if (target_physname == NULL)
14137 complaint (_("DW_AT_call_target target DIE has invalid "
14138 "physname, for referencing DIE %s [in module %s]"),
14139 sect_offset_str (die->sect_off), objfile_name (objfile));
14140 else
14141 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14142 }
14143 else
14144 {
14145 CORE_ADDR lowpc;
14146
14147 /* DW_AT_entry_pc should be preferred. */
14148 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14149 <= PC_BOUNDS_INVALID)
14150 complaint (_("DW_AT_call_target target DIE has invalid "
14151 "low pc, for referencing DIE %s [in module %s]"),
14152 sect_offset_str (die->sect_off), objfile_name (objfile));
14153 else
14154 {
14155 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14156 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14157 }
14158 }
14159 }
14160 else
14161 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14162 "block nor reference, for DIE %s [in module %s]"),
14163 sect_offset_str (die->sect_off), objfile_name (objfile));
14164
14165 call_site->per_cu = cu->per_cu;
14166
14167 for (child_die = die->child;
14168 child_die && child_die->tag;
14169 child_die = sibling_die (child_die))
14170 {
14171 struct call_site_parameter *parameter;
14172 struct attribute *loc, *origin;
14173
14174 if (child_die->tag != DW_TAG_call_site_parameter
14175 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14176 {
14177 /* Already printed the complaint above. */
14178 continue;
14179 }
14180
14181 gdb_assert (call_site->parameter_count < nparams);
14182 parameter = &call_site->parameter[call_site->parameter_count];
14183
14184 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14185 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14186 register is contained in DW_AT_call_value. */
14187
14188 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14189 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14190 if (origin == NULL)
14191 {
14192 /* This was a pre-DWARF-5 GNU extension alias
14193 for DW_AT_call_parameter. */
14194 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14195 }
14196 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14197 {
14198 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14199
14200 sect_offset sect_off
14201 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14202 if (!offset_in_cu_p (&cu->header, sect_off))
14203 {
14204 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14205 binding can be done only inside one CU. Such referenced DIE
14206 therefore cannot be even moved to DW_TAG_partial_unit. */
14207 complaint (_("DW_AT_call_parameter offset is not in CU for "
14208 "DW_TAG_call_site child DIE %s [in module %s]"),
14209 sect_offset_str (child_die->sect_off),
14210 objfile_name (objfile));
14211 continue;
14212 }
14213 parameter->u.param_cu_off
14214 = (cu_offset) (sect_off - cu->header.sect_off);
14215 }
14216 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14217 {
14218 complaint (_("No DW_FORM_block* DW_AT_location for "
14219 "DW_TAG_call_site child DIE %s [in module %s]"),
14220 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14221 continue;
14222 }
14223 else
14224 {
14225 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14226 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14227 if (parameter->u.dwarf_reg != -1)
14228 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14229 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14230 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14231 &parameter->u.fb_offset))
14232 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14233 else
14234 {
14235 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14236 "for DW_FORM_block* DW_AT_location is supported for "
14237 "DW_TAG_call_site child DIE %s "
14238 "[in module %s]"),
14239 sect_offset_str (child_die->sect_off),
14240 objfile_name (objfile));
14241 continue;
14242 }
14243 }
14244
14245 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14246 if (attr == NULL)
14247 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14248 if (!attr_form_is_block (attr))
14249 {
14250 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14251 "DW_TAG_call_site child DIE %s [in module %s]"),
14252 sect_offset_str (child_die->sect_off),
14253 objfile_name (objfile));
14254 continue;
14255 }
14256 parameter->value = DW_BLOCK (attr)->data;
14257 parameter->value_size = DW_BLOCK (attr)->size;
14258
14259 /* Parameters are not pre-cleared by memset above. */
14260 parameter->data_value = NULL;
14261 parameter->data_value_size = 0;
14262 call_site->parameter_count++;
14263
14264 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14265 if (attr == NULL)
14266 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14267 if (attr != nullptr)
14268 {
14269 if (!attr_form_is_block (attr))
14270 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14271 "DW_TAG_call_site child DIE %s [in module %s]"),
14272 sect_offset_str (child_die->sect_off),
14273 objfile_name (objfile));
14274 else
14275 {
14276 parameter->data_value = DW_BLOCK (attr)->data;
14277 parameter->data_value_size = DW_BLOCK (attr)->size;
14278 }
14279 }
14280 }
14281 }
14282
14283 /* Helper function for read_variable. If DIE represents a virtual
14284 table, then return the type of the concrete object that is
14285 associated with the virtual table. Otherwise, return NULL. */
14286
14287 static struct type *
14288 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14289 {
14290 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14291 if (attr == NULL)
14292 return NULL;
14293
14294 /* Find the type DIE. */
14295 struct die_info *type_die = NULL;
14296 struct dwarf2_cu *type_cu = cu;
14297
14298 if (attr_form_is_ref (attr))
14299 type_die = follow_die_ref (die, attr, &type_cu);
14300 if (type_die == NULL)
14301 return NULL;
14302
14303 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14304 return NULL;
14305 return die_containing_type (type_die, type_cu);
14306 }
14307
14308 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14309
14310 static void
14311 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14312 {
14313 struct rust_vtable_symbol *storage = NULL;
14314
14315 if (cu->language == language_rust)
14316 {
14317 struct type *containing_type = rust_containing_type (die, cu);
14318
14319 if (containing_type != NULL)
14320 {
14321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14322
14323 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
14324 initialize_objfile_symbol (storage);
14325 storage->concrete_type = containing_type;
14326 storage->subclass = SYMBOL_RUST_VTABLE;
14327 }
14328 }
14329
14330 struct symbol *res = new_symbol (die, NULL, cu, storage);
14331 struct attribute *abstract_origin
14332 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14333 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14334 if (res == NULL && loc && abstract_origin)
14335 {
14336 /* We have a variable without a name, but with a location and an abstract
14337 origin. This may be a concrete instance of an abstract variable
14338 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14339 later. */
14340 struct dwarf2_cu *origin_cu = cu;
14341 struct die_info *origin_die
14342 = follow_die_ref (die, abstract_origin, &origin_cu);
14343 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14344 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14345 }
14346 }
14347
14348 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14349 reading .debug_rnglists.
14350 Callback's type should be:
14351 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14352 Return true if the attributes are present and valid, otherwise,
14353 return false. */
14354
14355 template <typename Callback>
14356 static bool
14357 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14358 Callback &&callback)
14359 {
14360 struct dwarf2_per_objfile *dwarf2_per_objfile
14361 = cu->per_cu->dwarf2_per_objfile;
14362 struct objfile *objfile = dwarf2_per_objfile->objfile;
14363 bfd *obfd = objfile->obfd;
14364 /* Base address selection entry. */
14365 CORE_ADDR base;
14366 int found_base;
14367 const gdb_byte *buffer;
14368 CORE_ADDR baseaddr;
14369 bool overflow = false;
14370
14371 found_base = cu->base_known;
14372 base = cu->base_address;
14373
14374 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14375 if (offset >= dwarf2_per_objfile->rnglists.size)
14376 {
14377 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14378 offset);
14379 return false;
14380 }
14381 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14382
14383 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14384
14385 while (1)
14386 {
14387 /* Initialize it due to a false compiler warning. */
14388 CORE_ADDR range_beginning = 0, range_end = 0;
14389 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14390 + dwarf2_per_objfile->rnglists.size);
14391 unsigned int bytes_read;
14392
14393 if (buffer == buf_end)
14394 {
14395 overflow = true;
14396 break;
14397 }
14398 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14399 switch (rlet)
14400 {
14401 case DW_RLE_end_of_list:
14402 break;
14403 case DW_RLE_base_address:
14404 if (buffer + cu->header.addr_size > buf_end)
14405 {
14406 overflow = true;
14407 break;
14408 }
14409 base = read_address (obfd, buffer, cu, &bytes_read);
14410 found_base = 1;
14411 buffer += bytes_read;
14412 break;
14413 case DW_RLE_start_length:
14414 if (buffer + cu->header.addr_size > buf_end)
14415 {
14416 overflow = true;
14417 break;
14418 }
14419 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14421 range_end = (range_beginning
14422 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14423 buffer += bytes_read;
14424 if (buffer > buf_end)
14425 {
14426 overflow = true;
14427 break;
14428 }
14429 break;
14430 case DW_RLE_offset_pair:
14431 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14432 buffer += bytes_read;
14433 if (buffer > buf_end)
14434 {
14435 overflow = true;
14436 break;
14437 }
14438 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14439 buffer += bytes_read;
14440 if (buffer > buf_end)
14441 {
14442 overflow = true;
14443 break;
14444 }
14445 break;
14446 case DW_RLE_start_end:
14447 if (buffer + 2 * cu->header.addr_size > buf_end)
14448 {
14449 overflow = true;
14450 break;
14451 }
14452 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14453 buffer += bytes_read;
14454 range_end = read_address (obfd, buffer, cu, &bytes_read);
14455 buffer += bytes_read;
14456 break;
14457 default:
14458 complaint (_("Invalid .debug_rnglists data (no base address)"));
14459 return false;
14460 }
14461 if (rlet == DW_RLE_end_of_list || overflow)
14462 break;
14463 if (rlet == DW_RLE_base_address)
14464 continue;
14465
14466 if (!found_base)
14467 {
14468 /* We have no valid base address for the ranges
14469 data. */
14470 complaint (_("Invalid .debug_rnglists data (no base address)"));
14471 return false;
14472 }
14473
14474 if (range_beginning > range_end)
14475 {
14476 /* Inverted range entries are invalid. */
14477 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14478 return false;
14479 }
14480
14481 /* Empty range entries have no effect. */
14482 if (range_beginning == range_end)
14483 continue;
14484
14485 range_beginning += base;
14486 range_end += base;
14487
14488 /* A not-uncommon case of bad debug info.
14489 Don't pollute the addrmap with bad data. */
14490 if (range_beginning + baseaddr == 0
14491 && !dwarf2_per_objfile->has_section_at_zero)
14492 {
14493 complaint (_(".debug_rnglists entry has start address of zero"
14494 " [in module %s]"), objfile_name (objfile));
14495 continue;
14496 }
14497
14498 callback (range_beginning, range_end);
14499 }
14500
14501 if (overflow)
14502 {
14503 complaint (_("Offset %d is not terminated "
14504 "for DW_AT_ranges attribute"),
14505 offset);
14506 return false;
14507 }
14508
14509 return true;
14510 }
14511
14512 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14513 Callback's type should be:
14514 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14515 Return 1 if the attributes are present and valid, otherwise, return 0. */
14516
14517 template <typename Callback>
14518 static int
14519 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14520 Callback &&callback)
14521 {
14522 struct dwarf2_per_objfile *dwarf2_per_objfile
14523 = cu->per_cu->dwarf2_per_objfile;
14524 struct objfile *objfile = dwarf2_per_objfile->objfile;
14525 struct comp_unit_head *cu_header = &cu->header;
14526 bfd *obfd = objfile->obfd;
14527 unsigned int addr_size = cu_header->addr_size;
14528 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14529 /* Base address selection entry. */
14530 CORE_ADDR base;
14531 int found_base;
14532 unsigned int dummy;
14533 const gdb_byte *buffer;
14534 CORE_ADDR baseaddr;
14535
14536 if (cu_header->version >= 5)
14537 return dwarf2_rnglists_process (offset, cu, callback);
14538
14539 found_base = cu->base_known;
14540 base = cu->base_address;
14541
14542 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14543 if (offset >= dwarf2_per_objfile->ranges.size)
14544 {
14545 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14546 offset);
14547 return 0;
14548 }
14549 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14550
14551 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14552
14553 while (1)
14554 {
14555 CORE_ADDR range_beginning, range_end;
14556
14557 range_beginning = read_address (obfd, buffer, cu, &dummy);
14558 buffer += addr_size;
14559 range_end = read_address (obfd, buffer, cu, &dummy);
14560 buffer += addr_size;
14561 offset += 2 * addr_size;
14562
14563 /* An end of list marker is a pair of zero addresses. */
14564 if (range_beginning == 0 && range_end == 0)
14565 /* Found the end of list entry. */
14566 break;
14567
14568 /* Each base address selection entry is a pair of 2 values.
14569 The first is the largest possible address, the second is
14570 the base address. Check for a base address here. */
14571 if ((range_beginning & mask) == mask)
14572 {
14573 /* If we found the largest possible address, then we already
14574 have the base address in range_end. */
14575 base = range_end;
14576 found_base = 1;
14577 continue;
14578 }
14579
14580 if (!found_base)
14581 {
14582 /* We have no valid base address for the ranges
14583 data. */
14584 complaint (_("Invalid .debug_ranges data (no base address)"));
14585 return 0;
14586 }
14587
14588 if (range_beginning > range_end)
14589 {
14590 /* Inverted range entries are invalid. */
14591 complaint (_("Invalid .debug_ranges data (inverted range)"));
14592 return 0;
14593 }
14594
14595 /* Empty range entries have no effect. */
14596 if (range_beginning == range_end)
14597 continue;
14598
14599 range_beginning += base;
14600 range_end += base;
14601
14602 /* A not-uncommon case of bad debug info.
14603 Don't pollute the addrmap with bad data. */
14604 if (range_beginning + baseaddr == 0
14605 && !dwarf2_per_objfile->has_section_at_zero)
14606 {
14607 complaint (_(".debug_ranges entry has start address of zero"
14608 " [in module %s]"), objfile_name (objfile));
14609 continue;
14610 }
14611
14612 callback (range_beginning, range_end);
14613 }
14614
14615 return 1;
14616 }
14617
14618 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14619 Return 1 if the attributes are present and valid, otherwise, return 0.
14620 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14621
14622 static int
14623 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14624 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14625 struct partial_symtab *ranges_pst)
14626 {
14627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14629 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14630 SECT_OFF_TEXT (objfile));
14631 int low_set = 0;
14632 CORE_ADDR low = 0;
14633 CORE_ADDR high = 0;
14634 int retval;
14635
14636 retval = dwarf2_ranges_process (offset, cu,
14637 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14638 {
14639 if (ranges_pst != NULL)
14640 {
14641 CORE_ADDR lowpc;
14642 CORE_ADDR highpc;
14643
14644 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14645 range_beginning + baseaddr)
14646 - baseaddr);
14647 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14648 range_end + baseaddr)
14649 - baseaddr);
14650 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14651 lowpc, highpc - 1, ranges_pst);
14652 }
14653
14654 /* FIXME: This is recording everything as a low-high
14655 segment of consecutive addresses. We should have a
14656 data structure for discontiguous block ranges
14657 instead. */
14658 if (! low_set)
14659 {
14660 low = range_beginning;
14661 high = range_end;
14662 low_set = 1;
14663 }
14664 else
14665 {
14666 if (range_beginning < low)
14667 low = range_beginning;
14668 if (range_end > high)
14669 high = range_end;
14670 }
14671 });
14672 if (!retval)
14673 return 0;
14674
14675 if (! low_set)
14676 /* If the first entry is an end-of-list marker, the range
14677 describes an empty scope, i.e. no instructions. */
14678 return 0;
14679
14680 if (low_return)
14681 *low_return = low;
14682 if (high_return)
14683 *high_return = high;
14684 return 1;
14685 }
14686
14687 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14688 definition for the return value. *LOWPC and *HIGHPC are set iff
14689 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14690
14691 static enum pc_bounds_kind
14692 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14693 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14694 struct partial_symtab *pst)
14695 {
14696 struct dwarf2_per_objfile *dwarf2_per_objfile
14697 = cu->per_cu->dwarf2_per_objfile;
14698 struct attribute *attr;
14699 struct attribute *attr_high;
14700 CORE_ADDR low = 0;
14701 CORE_ADDR high = 0;
14702 enum pc_bounds_kind ret;
14703
14704 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14705 if (attr_high)
14706 {
14707 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14708 if (attr != nullptr)
14709 {
14710 low = attr_value_as_address (attr);
14711 high = attr_value_as_address (attr_high);
14712 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14713 high += low;
14714 }
14715 else
14716 /* Found high w/o low attribute. */
14717 return PC_BOUNDS_INVALID;
14718
14719 /* Found consecutive range of addresses. */
14720 ret = PC_BOUNDS_HIGH_LOW;
14721 }
14722 else
14723 {
14724 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14725 if (attr != NULL)
14726 {
14727 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14728 We take advantage of the fact that DW_AT_ranges does not appear
14729 in DW_TAG_compile_unit of DWO files. */
14730 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14731 unsigned int ranges_offset = (DW_UNSND (attr)
14732 + (need_ranges_base
14733 ? cu->ranges_base
14734 : 0));
14735
14736 /* Value of the DW_AT_ranges attribute is the offset in the
14737 .debug_ranges section. */
14738 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14739 return PC_BOUNDS_INVALID;
14740 /* Found discontinuous range of addresses. */
14741 ret = PC_BOUNDS_RANGES;
14742 }
14743 else
14744 return PC_BOUNDS_NOT_PRESENT;
14745 }
14746
14747 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14748 if (high <= low)
14749 return PC_BOUNDS_INVALID;
14750
14751 /* When using the GNU linker, .gnu.linkonce. sections are used to
14752 eliminate duplicate copies of functions and vtables and such.
14753 The linker will arbitrarily choose one and discard the others.
14754 The AT_*_pc values for such functions refer to local labels in
14755 these sections. If the section from that file was discarded, the
14756 labels are not in the output, so the relocs get a value of 0.
14757 If this is a discarded function, mark the pc bounds as invalid,
14758 so that GDB will ignore it. */
14759 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14760 return PC_BOUNDS_INVALID;
14761
14762 *lowpc = low;
14763 if (highpc)
14764 *highpc = high;
14765 return ret;
14766 }
14767
14768 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14769 its low and high PC addresses. Do nothing if these addresses could not
14770 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14771 and HIGHPC to the high address if greater than HIGHPC. */
14772
14773 static void
14774 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14775 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14776 struct dwarf2_cu *cu)
14777 {
14778 CORE_ADDR low, high;
14779 struct die_info *child = die->child;
14780
14781 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14782 {
14783 *lowpc = std::min (*lowpc, low);
14784 *highpc = std::max (*highpc, high);
14785 }
14786
14787 /* If the language does not allow nested subprograms (either inside
14788 subprograms or lexical blocks), we're done. */
14789 if (cu->language != language_ada)
14790 return;
14791
14792 /* Check all the children of the given DIE. If it contains nested
14793 subprograms, then check their pc bounds. Likewise, we need to
14794 check lexical blocks as well, as they may also contain subprogram
14795 definitions. */
14796 while (child && child->tag)
14797 {
14798 if (child->tag == DW_TAG_subprogram
14799 || child->tag == DW_TAG_lexical_block)
14800 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14801 child = sibling_die (child);
14802 }
14803 }
14804
14805 /* Get the low and high pc's represented by the scope DIE, and store
14806 them in *LOWPC and *HIGHPC. If the correct values can't be
14807 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14808
14809 static void
14810 get_scope_pc_bounds (struct die_info *die,
14811 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14812 struct dwarf2_cu *cu)
14813 {
14814 CORE_ADDR best_low = (CORE_ADDR) -1;
14815 CORE_ADDR best_high = (CORE_ADDR) 0;
14816 CORE_ADDR current_low, current_high;
14817
14818 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14819 >= PC_BOUNDS_RANGES)
14820 {
14821 best_low = current_low;
14822 best_high = current_high;
14823 }
14824 else
14825 {
14826 struct die_info *child = die->child;
14827
14828 while (child && child->tag)
14829 {
14830 switch (child->tag) {
14831 case DW_TAG_subprogram:
14832 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14833 break;
14834 case DW_TAG_namespace:
14835 case DW_TAG_module:
14836 /* FIXME: carlton/2004-01-16: Should we do this for
14837 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14838 that current GCC's always emit the DIEs corresponding
14839 to definitions of methods of classes as children of a
14840 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14841 the DIEs giving the declarations, which could be
14842 anywhere). But I don't see any reason why the
14843 standards says that they have to be there. */
14844 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14845
14846 if (current_low != ((CORE_ADDR) -1))
14847 {
14848 best_low = std::min (best_low, current_low);
14849 best_high = std::max (best_high, current_high);
14850 }
14851 break;
14852 default:
14853 /* Ignore. */
14854 break;
14855 }
14856
14857 child = sibling_die (child);
14858 }
14859 }
14860
14861 *lowpc = best_low;
14862 *highpc = best_high;
14863 }
14864
14865 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14866 in DIE. */
14867
14868 static void
14869 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14870 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14871 {
14872 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14874 struct attribute *attr;
14875 struct attribute *attr_high;
14876
14877 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14878 if (attr_high)
14879 {
14880 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14881 if (attr != nullptr)
14882 {
14883 CORE_ADDR low = attr_value_as_address (attr);
14884 CORE_ADDR high = attr_value_as_address (attr_high);
14885
14886 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14887 high += low;
14888
14889 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14890 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14891 cu->get_builder ()->record_block_range (block, low, high - 1);
14892 }
14893 }
14894
14895 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14896 if (attr != nullptr)
14897 {
14898 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14899 We take advantage of the fact that DW_AT_ranges does not appear
14900 in DW_TAG_compile_unit of DWO files. */
14901 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14902
14903 /* The value of the DW_AT_ranges attribute is the offset of the
14904 address range list in the .debug_ranges section. */
14905 unsigned long offset = (DW_UNSND (attr)
14906 + (need_ranges_base ? cu->ranges_base : 0));
14907
14908 std::vector<blockrange> blockvec;
14909 dwarf2_ranges_process (offset, cu,
14910 [&] (CORE_ADDR start, CORE_ADDR end)
14911 {
14912 start += baseaddr;
14913 end += baseaddr;
14914 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14915 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14916 cu->get_builder ()->record_block_range (block, start, end - 1);
14917 blockvec.emplace_back (start, end);
14918 });
14919
14920 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14921 }
14922 }
14923
14924 /* Check whether the producer field indicates either of GCC < 4.6, or the
14925 Intel C/C++ compiler, and cache the result in CU. */
14926
14927 static void
14928 check_producer (struct dwarf2_cu *cu)
14929 {
14930 int major, minor;
14931
14932 if (cu->producer == NULL)
14933 {
14934 /* For unknown compilers expect their behavior is DWARF version
14935 compliant.
14936
14937 GCC started to support .debug_types sections by -gdwarf-4 since
14938 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14939 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14940 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14941 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14942 }
14943 else if (producer_is_gcc (cu->producer, &major, &minor))
14944 {
14945 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14946 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14947 }
14948 else if (producer_is_icc (cu->producer, &major, &minor))
14949 {
14950 cu->producer_is_icc = true;
14951 cu->producer_is_icc_lt_14 = major < 14;
14952 }
14953 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14954 cu->producer_is_codewarrior = true;
14955 else
14956 {
14957 /* For other non-GCC compilers, expect their behavior is DWARF version
14958 compliant. */
14959 }
14960
14961 cu->checked_producer = true;
14962 }
14963
14964 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14965 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14966 during 4.6.0 experimental. */
14967
14968 static bool
14969 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14970 {
14971 if (!cu->checked_producer)
14972 check_producer (cu);
14973
14974 return cu->producer_is_gxx_lt_4_6;
14975 }
14976
14977
14978 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14979 with incorrect is_stmt attributes. */
14980
14981 static bool
14982 producer_is_codewarrior (struct dwarf2_cu *cu)
14983 {
14984 if (!cu->checked_producer)
14985 check_producer (cu);
14986
14987 return cu->producer_is_codewarrior;
14988 }
14989
14990 /* Return the default accessibility type if it is not overridden by
14991 DW_AT_accessibility. */
14992
14993 static enum dwarf_access_attribute
14994 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14995 {
14996 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14997 {
14998 /* The default DWARF 2 accessibility for members is public, the default
14999 accessibility for inheritance is private. */
15000
15001 if (die->tag != DW_TAG_inheritance)
15002 return DW_ACCESS_public;
15003 else
15004 return DW_ACCESS_private;
15005 }
15006 else
15007 {
15008 /* DWARF 3+ defines the default accessibility a different way. The same
15009 rules apply now for DW_TAG_inheritance as for the members and it only
15010 depends on the container kind. */
15011
15012 if (die->parent->tag == DW_TAG_class_type)
15013 return DW_ACCESS_private;
15014 else
15015 return DW_ACCESS_public;
15016 }
15017 }
15018
15019 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15020 offset. If the attribute was not found return 0, otherwise return
15021 1. If it was found but could not properly be handled, set *OFFSET
15022 to 0. */
15023
15024 static int
15025 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15026 LONGEST *offset)
15027 {
15028 struct attribute *attr;
15029
15030 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15031 if (attr != NULL)
15032 {
15033 *offset = 0;
15034
15035 /* Note that we do not check for a section offset first here.
15036 This is because DW_AT_data_member_location is new in DWARF 4,
15037 so if we see it, we can assume that a constant form is really
15038 a constant and not a section offset. */
15039 if (attr_form_is_constant (attr))
15040 *offset = dwarf2_get_attr_constant_value (attr, 0);
15041 else if (attr_form_is_section_offset (attr))
15042 dwarf2_complex_location_expr_complaint ();
15043 else if (attr_form_is_block (attr))
15044 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15045 else
15046 dwarf2_complex_location_expr_complaint ();
15047
15048 return 1;
15049 }
15050
15051 return 0;
15052 }
15053
15054 /* Add an aggregate field to the field list. */
15055
15056 static void
15057 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15058 struct dwarf2_cu *cu)
15059 {
15060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15062 struct nextfield *new_field;
15063 struct attribute *attr;
15064 struct field *fp;
15065 const char *fieldname = "";
15066
15067 if (die->tag == DW_TAG_inheritance)
15068 {
15069 fip->baseclasses.emplace_back ();
15070 new_field = &fip->baseclasses.back ();
15071 }
15072 else
15073 {
15074 fip->fields.emplace_back ();
15075 new_field = &fip->fields.back ();
15076 }
15077
15078 fip->nfields++;
15079
15080 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15081 if (attr != nullptr)
15082 new_field->accessibility = DW_UNSND (attr);
15083 else
15084 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15085 if (new_field->accessibility != DW_ACCESS_public)
15086 fip->non_public_fields = 1;
15087
15088 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15089 if (attr != nullptr)
15090 new_field->virtuality = DW_UNSND (attr);
15091 else
15092 new_field->virtuality = DW_VIRTUALITY_none;
15093
15094 fp = &new_field->field;
15095
15096 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15097 {
15098 LONGEST offset;
15099
15100 /* Data member other than a C++ static data member. */
15101
15102 /* Get type of field. */
15103 fp->type = die_type (die, cu);
15104
15105 SET_FIELD_BITPOS (*fp, 0);
15106
15107 /* Get bit size of field (zero if none). */
15108 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15109 if (attr != nullptr)
15110 {
15111 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15112 }
15113 else
15114 {
15115 FIELD_BITSIZE (*fp) = 0;
15116 }
15117
15118 /* Get bit offset of field. */
15119 if (handle_data_member_location (die, cu, &offset))
15120 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15121 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15122 if (attr != nullptr)
15123 {
15124 if (gdbarch_bits_big_endian (gdbarch))
15125 {
15126 /* For big endian bits, the DW_AT_bit_offset gives the
15127 additional bit offset from the MSB of the containing
15128 anonymous object to the MSB of the field. We don't
15129 have to do anything special since we don't need to
15130 know the size of the anonymous object. */
15131 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15132 }
15133 else
15134 {
15135 /* For little endian bits, compute the bit offset to the
15136 MSB of the anonymous object, subtract off the number of
15137 bits from the MSB of the field to the MSB of the
15138 object, and then subtract off the number of bits of
15139 the field itself. The result is the bit offset of
15140 the LSB of the field. */
15141 int anonymous_size;
15142 int bit_offset = DW_UNSND (attr);
15143
15144 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15145 if (attr != nullptr)
15146 {
15147 /* The size of the anonymous object containing
15148 the bit field is explicit, so use the
15149 indicated size (in bytes). */
15150 anonymous_size = DW_UNSND (attr);
15151 }
15152 else
15153 {
15154 /* The size of the anonymous object containing
15155 the bit field must be inferred from the type
15156 attribute of the data member containing the
15157 bit field. */
15158 anonymous_size = TYPE_LENGTH (fp->type);
15159 }
15160 SET_FIELD_BITPOS (*fp,
15161 (FIELD_BITPOS (*fp)
15162 + anonymous_size * bits_per_byte
15163 - bit_offset - FIELD_BITSIZE (*fp)));
15164 }
15165 }
15166 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15167 if (attr != NULL)
15168 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15169 + dwarf2_get_attr_constant_value (attr, 0)));
15170
15171 /* Get name of field. */
15172 fieldname = dwarf2_name (die, cu);
15173 if (fieldname == NULL)
15174 fieldname = "";
15175
15176 /* The name is already allocated along with this objfile, so we don't
15177 need to duplicate it for the type. */
15178 fp->name = fieldname;
15179
15180 /* Change accessibility for artificial fields (e.g. virtual table
15181 pointer or virtual base class pointer) to private. */
15182 if (dwarf2_attr (die, DW_AT_artificial, cu))
15183 {
15184 FIELD_ARTIFICIAL (*fp) = 1;
15185 new_field->accessibility = DW_ACCESS_private;
15186 fip->non_public_fields = 1;
15187 }
15188 }
15189 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15190 {
15191 /* C++ static member. */
15192
15193 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15194 is a declaration, but all versions of G++ as of this writing
15195 (so through at least 3.2.1) incorrectly generate
15196 DW_TAG_variable tags. */
15197
15198 const char *physname;
15199
15200 /* Get name of field. */
15201 fieldname = dwarf2_name (die, cu);
15202 if (fieldname == NULL)
15203 return;
15204
15205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15206 if (attr
15207 /* Only create a symbol if this is an external value.
15208 new_symbol checks this and puts the value in the global symbol
15209 table, which we want. If it is not external, new_symbol
15210 will try to put the value in cu->list_in_scope which is wrong. */
15211 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15212 {
15213 /* A static const member, not much different than an enum as far as
15214 we're concerned, except that we can support more types. */
15215 new_symbol (die, NULL, cu);
15216 }
15217
15218 /* Get physical name. */
15219 physname = dwarf2_physname (fieldname, die, cu);
15220
15221 /* The name is already allocated along with this objfile, so we don't
15222 need to duplicate it for the type. */
15223 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15224 FIELD_TYPE (*fp) = die_type (die, cu);
15225 FIELD_NAME (*fp) = fieldname;
15226 }
15227 else if (die->tag == DW_TAG_inheritance)
15228 {
15229 LONGEST offset;
15230
15231 /* C++ base class field. */
15232 if (handle_data_member_location (die, cu, &offset))
15233 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15234 FIELD_BITSIZE (*fp) = 0;
15235 FIELD_TYPE (*fp) = die_type (die, cu);
15236 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15237 }
15238 else if (die->tag == DW_TAG_variant_part)
15239 {
15240 /* process_structure_scope will treat this DIE as a union. */
15241 process_structure_scope (die, cu);
15242
15243 /* The variant part is relative to the start of the enclosing
15244 structure. */
15245 SET_FIELD_BITPOS (*fp, 0);
15246 fp->type = get_die_type (die, cu);
15247 fp->artificial = 1;
15248 fp->name = "<<variant>>";
15249
15250 /* Normally a DW_TAG_variant_part won't have a size, but our
15251 representation requires one, so set it to the maximum of the
15252 child sizes. */
15253 if (TYPE_LENGTH (fp->type) == 0)
15254 {
15255 unsigned max = 0;
15256 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15257 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15258 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15259 TYPE_LENGTH (fp->type) = max;
15260 }
15261 }
15262 else
15263 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15264 }
15265
15266 /* Can the type given by DIE define another type? */
15267
15268 static bool
15269 type_can_define_types (const struct die_info *die)
15270 {
15271 switch (die->tag)
15272 {
15273 case DW_TAG_typedef:
15274 case DW_TAG_class_type:
15275 case DW_TAG_structure_type:
15276 case DW_TAG_union_type:
15277 case DW_TAG_enumeration_type:
15278 return true;
15279
15280 default:
15281 return false;
15282 }
15283 }
15284
15285 /* Add a type definition defined in the scope of the FIP's class. */
15286
15287 static void
15288 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15289 struct dwarf2_cu *cu)
15290 {
15291 struct decl_field fp;
15292 memset (&fp, 0, sizeof (fp));
15293
15294 gdb_assert (type_can_define_types (die));
15295
15296 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15297 fp.name = dwarf2_name (die, cu);
15298 fp.type = read_type_die (die, cu);
15299
15300 /* Save accessibility. */
15301 enum dwarf_access_attribute accessibility;
15302 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15303 if (attr != NULL)
15304 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15305 else
15306 accessibility = dwarf2_default_access_attribute (die, cu);
15307 switch (accessibility)
15308 {
15309 case DW_ACCESS_public:
15310 /* The assumed value if neither private nor protected. */
15311 break;
15312 case DW_ACCESS_private:
15313 fp.is_private = 1;
15314 break;
15315 case DW_ACCESS_protected:
15316 fp.is_protected = 1;
15317 break;
15318 default:
15319 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15320 }
15321
15322 if (die->tag == DW_TAG_typedef)
15323 fip->typedef_field_list.push_back (fp);
15324 else
15325 fip->nested_types_list.push_back (fp);
15326 }
15327
15328 /* Create the vector of fields, and attach it to the type. */
15329
15330 static void
15331 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15332 struct dwarf2_cu *cu)
15333 {
15334 int nfields = fip->nfields;
15335
15336 /* Record the field count, allocate space for the array of fields,
15337 and create blank accessibility bitfields if necessary. */
15338 TYPE_NFIELDS (type) = nfields;
15339 TYPE_FIELDS (type) = (struct field *)
15340 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15341
15342 if (fip->non_public_fields && cu->language != language_ada)
15343 {
15344 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15345
15346 TYPE_FIELD_PRIVATE_BITS (type) =
15347 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15348 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15349
15350 TYPE_FIELD_PROTECTED_BITS (type) =
15351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15352 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15353
15354 TYPE_FIELD_IGNORE_BITS (type) =
15355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15356 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15357 }
15358
15359 /* If the type has baseclasses, allocate and clear a bit vector for
15360 TYPE_FIELD_VIRTUAL_BITS. */
15361 if (!fip->baseclasses.empty () && cu->language != language_ada)
15362 {
15363 int num_bytes = B_BYTES (fip->baseclasses.size ());
15364 unsigned char *pointer;
15365
15366 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15367 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15368 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15369 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15370 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15371 }
15372
15373 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15374 {
15375 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15376
15377 for (int index = 0; index < nfields; ++index)
15378 {
15379 struct nextfield &field = fip->fields[index];
15380
15381 if (field.variant.is_discriminant)
15382 di->discriminant_index = index;
15383 else if (field.variant.default_branch)
15384 di->default_index = index;
15385 else
15386 di->discriminants[index] = field.variant.discriminant_value;
15387 }
15388 }
15389
15390 /* Copy the saved-up fields into the field vector. */
15391 for (int i = 0; i < nfields; ++i)
15392 {
15393 struct nextfield &field
15394 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15395 : fip->fields[i - fip->baseclasses.size ()]);
15396
15397 TYPE_FIELD (type, i) = field.field;
15398 switch (field.accessibility)
15399 {
15400 case DW_ACCESS_private:
15401 if (cu->language != language_ada)
15402 SET_TYPE_FIELD_PRIVATE (type, i);
15403 break;
15404
15405 case DW_ACCESS_protected:
15406 if (cu->language != language_ada)
15407 SET_TYPE_FIELD_PROTECTED (type, i);
15408 break;
15409
15410 case DW_ACCESS_public:
15411 break;
15412
15413 default:
15414 /* Unknown accessibility. Complain and treat it as public. */
15415 {
15416 complaint (_("unsupported accessibility %d"),
15417 field.accessibility);
15418 }
15419 break;
15420 }
15421 if (i < fip->baseclasses.size ())
15422 {
15423 switch (field.virtuality)
15424 {
15425 case DW_VIRTUALITY_virtual:
15426 case DW_VIRTUALITY_pure_virtual:
15427 if (cu->language == language_ada)
15428 error (_("unexpected virtuality in component of Ada type"));
15429 SET_TYPE_FIELD_VIRTUAL (type, i);
15430 break;
15431 }
15432 }
15433 }
15434 }
15435
15436 /* Return true if this member function is a constructor, false
15437 otherwise. */
15438
15439 static int
15440 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15441 {
15442 const char *fieldname;
15443 const char *type_name;
15444 int len;
15445
15446 if (die->parent == NULL)
15447 return 0;
15448
15449 if (die->parent->tag != DW_TAG_structure_type
15450 && die->parent->tag != DW_TAG_union_type
15451 && die->parent->tag != DW_TAG_class_type)
15452 return 0;
15453
15454 fieldname = dwarf2_name (die, cu);
15455 type_name = dwarf2_name (die->parent, cu);
15456 if (fieldname == NULL || type_name == NULL)
15457 return 0;
15458
15459 len = strlen (fieldname);
15460 return (strncmp (fieldname, type_name, len) == 0
15461 && (type_name[len] == '\0' || type_name[len] == '<'));
15462 }
15463
15464 /* Add a member function to the proper fieldlist. */
15465
15466 static void
15467 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15468 struct type *type, struct dwarf2_cu *cu)
15469 {
15470 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15471 struct attribute *attr;
15472 int i;
15473 struct fnfieldlist *flp = nullptr;
15474 struct fn_field *fnp;
15475 const char *fieldname;
15476 struct type *this_type;
15477 enum dwarf_access_attribute accessibility;
15478
15479 if (cu->language == language_ada)
15480 error (_("unexpected member function in Ada type"));
15481
15482 /* Get name of member function. */
15483 fieldname = dwarf2_name (die, cu);
15484 if (fieldname == NULL)
15485 return;
15486
15487 /* Look up member function name in fieldlist. */
15488 for (i = 0; i < fip->fnfieldlists.size (); i++)
15489 {
15490 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15491 {
15492 flp = &fip->fnfieldlists[i];
15493 break;
15494 }
15495 }
15496
15497 /* Create a new fnfieldlist if necessary. */
15498 if (flp == nullptr)
15499 {
15500 fip->fnfieldlists.emplace_back ();
15501 flp = &fip->fnfieldlists.back ();
15502 flp->name = fieldname;
15503 i = fip->fnfieldlists.size () - 1;
15504 }
15505
15506 /* Create a new member function field and add it to the vector of
15507 fnfieldlists. */
15508 flp->fnfields.emplace_back ();
15509 fnp = &flp->fnfields.back ();
15510
15511 /* Delay processing of the physname until later. */
15512 if (cu->language == language_cplus)
15513 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15514 die, cu);
15515 else
15516 {
15517 const char *physname = dwarf2_physname (fieldname, die, cu);
15518 fnp->physname = physname ? physname : "";
15519 }
15520
15521 fnp->type = alloc_type (objfile);
15522 this_type = read_type_die (die, cu);
15523 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15524 {
15525 int nparams = TYPE_NFIELDS (this_type);
15526
15527 /* TYPE is the domain of this method, and THIS_TYPE is the type
15528 of the method itself (TYPE_CODE_METHOD). */
15529 smash_to_method_type (fnp->type, type,
15530 TYPE_TARGET_TYPE (this_type),
15531 TYPE_FIELDS (this_type),
15532 TYPE_NFIELDS (this_type),
15533 TYPE_VARARGS (this_type));
15534
15535 /* Handle static member functions.
15536 Dwarf2 has no clean way to discern C++ static and non-static
15537 member functions. G++ helps GDB by marking the first
15538 parameter for non-static member functions (which is the this
15539 pointer) as artificial. We obtain this information from
15540 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15541 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15542 fnp->voffset = VOFFSET_STATIC;
15543 }
15544 else
15545 complaint (_("member function type missing for '%s'"),
15546 dwarf2_full_name (fieldname, die, cu));
15547
15548 /* Get fcontext from DW_AT_containing_type if present. */
15549 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15550 fnp->fcontext = die_containing_type (die, cu);
15551
15552 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15553 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15554
15555 /* Get accessibility. */
15556 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15557 if (attr != nullptr)
15558 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15559 else
15560 accessibility = dwarf2_default_access_attribute (die, cu);
15561 switch (accessibility)
15562 {
15563 case DW_ACCESS_private:
15564 fnp->is_private = 1;
15565 break;
15566 case DW_ACCESS_protected:
15567 fnp->is_protected = 1;
15568 break;
15569 }
15570
15571 /* Check for artificial methods. */
15572 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15573 if (attr && DW_UNSND (attr) != 0)
15574 fnp->is_artificial = 1;
15575
15576 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15577
15578 /* Get index in virtual function table if it is a virtual member
15579 function. For older versions of GCC, this is an offset in the
15580 appropriate virtual table, as specified by DW_AT_containing_type.
15581 For everyone else, it is an expression to be evaluated relative
15582 to the object address. */
15583
15584 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15585 if (attr != nullptr)
15586 {
15587 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15588 {
15589 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15590 {
15591 /* Old-style GCC. */
15592 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15593 }
15594 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15595 || (DW_BLOCK (attr)->size > 1
15596 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15597 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15598 {
15599 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15600 if ((fnp->voffset % cu->header.addr_size) != 0)
15601 dwarf2_complex_location_expr_complaint ();
15602 else
15603 fnp->voffset /= cu->header.addr_size;
15604 fnp->voffset += 2;
15605 }
15606 else
15607 dwarf2_complex_location_expr_complaint ();
15608
15609 if (!fnp->fcontext)
15610 {
15611 /* If there is no `this' field and no DW_AT_containing_type,
15612 we cannot actually find a base class context for the
15613 vtable! */
15614 if (TYPE_NFIELDS (this_type) == 0
15615 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15616 {
15617 complaint (_("cannot determine context for virtual member "
15618 "function \"%s\" (offset %s)"),
15619 fieldname, sect_offset_str (die->sect_off));
15620 }
15621 else
15622 {
15623 fnp->fcontext
15624 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15625 }
15626 }
15627 }
15628 else if (attr_form_is_section_offset (attr))
15629 {
15630 dwarf2_complex_location_expr_complaint ();
15631 }
15632 else
15633 {
15634 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15635 fieldname);
15636 }
15637 }
15638 else
15639 {
15640 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15641 if (attr && DW_UNSND (attr))
15642 {
15643 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15644 complaint (_("Member function \"%s\" (offset %s) is virtual "
15645 "but the vtable offset is not specified"),
15646 fieldname, sect_offset_str (die->sect_off));
15647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15648 TYPE_CPLUS_DYNAMIC (type) = 1;
15649 }
15650 }
15651 }
15652
15653 /* Create the vector of member function fields, and attach it to the type. */
15654
15655 static void
15656 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15657 struct dwarf2_cu *cu)
15658 {
15659 if (cu->language == language_ada)
15660 error (_("unexpected member functions in Ada type"));
15661
15662 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15663 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15664 TYPE_ALLOC (type,
15665 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15666
15667 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15668 {
15669 struct fnfieldlist &nf = fip->fnfieldlists[i];
15670 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15671
15672 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15673 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15674 fn_flp->fn_fields = (struct fn_field *)
15675 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15676
15677 for (int k = 0; k < nf.fnfields.size (); ++k)
15678 fn_flp->fn_fields[k] = nf.fnfields[k];
15679 }
15680
15681 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15682 }
15683
15684 /* Returns non-zero if NAME is the name of a vtable member in CU's
15685 language, zero otherwise. */
15686 static int
15687 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15688 {
15689 static const char vptr[] = "_vptr";
15690
15691 /* Look for the C++ form of the vtable. */
15692 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15693 return 1;
15694
15695 return 0;
15696 }
15697
15698 /* GCC outputs unnamed structures that are really pointers to member
15699 functions, with the ABI-specified layout. If TYPE describes
15700 such a structure, smash it into a member function type.
15701
15702 GCC shouldn't do this; it should just output pointer to member DIEs.
15703 This is GCC PR debug/28767. */
15704
15705 static void
15706 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15707 {
15708 struct type *pfn_type, *self_type, *new_type;
15709
15710 /* Check for a structure with no name and two children. */
15711 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15712 return;
15713
15714 /* Check for __pfn and __delta members. */
15715 if (TYPE_FIELD_NAME (type, 0) == NULL
15716 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15717 || TYPE_FIELD_NAME (type, 1) == NULL
15718 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15719 return;
15720
15721 /* Find the type of the method. */
15722 pfn_type = TYPE_FIELD_TYPE (type, 0);
15723 if (pfn_type == NULL
15724 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15725 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15726 return;
15727
15728 /* Look for the "this" argument. */
15729 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15730 if (TYPE_NFIELDS (pfn_type) == 0
15731 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15732 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15733 return;
15734
15735 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15736 new_type = alloc_type (objfile);
15737 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15738 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15739 TYPE_VARARGS (pfn_type));
15740 smash_to_methodptr_type (type, new_type);
15741 }
15742
15743 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15744 appropriate error checking and issuing complaints if there is a
15745 problem. */
15746
15747 static ULONGEST
15748 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15749 {
15750 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15751
15752 if (attr == nullptr)
15753 return 0;
15754
15755 if (!attr_form_is_constant (attr))
15756 {
15757 complaint (_("DW_AT_alignment must have constant form"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15761 return 0;
15762 }
15763
15764 ULONGEST align;
15765 if (attr->form == DW_FORM_sdata)
15766 {
15767 LONGEST val = DW_SND (attr);
15768 if (val < 0)
15769 {
15770 complaint (_("DW_AT_alignment value must not be negative"
15771 " - DIE at %s [in module %s]"),
15772 sect_offset_str (die->sect_off),
15773 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15774 return 0;
15775 }
15776 align = val;
15777 }
15778 else
15779 align = DW_UNSND (attr);
15780
15781 if (align == 0)
15782 {
15783 complaint (_("DW_AT_alignment value must not be zero"
15784 " - DIE at %s [in module %s]"),
15785 sect_offset_str (die->sect_off),
15786 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15787 return 0;
15788 }
15789 if ((align & (align - 1)) != 0)
15790 {
15791 complaint (_("DW_AT_alignment value must be a power of 2"
15792 " - DIE at %s [in module %s]"),
15793 sect_offset_str (die->sect_off),
15794 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15795 return 0;
15796 }
15797
15798 return align;
15799 }
15800
15801 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15802 the alignment for TYPE. */
15803
15804 static void
15805 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15806 struct type *type)
15807 {
15808 if (!set_type_align (type, get_alignment (cu, die)))
15809 complaint (_("DW_AT_alignment value too large"
15810 " - DIE at %s [in module %s]"),
15811 sect_offset_str (die->sect_off),
15812 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15813 }
15814
15815 /* Called when we find the DIE that starts a structure or union scope
15816 (definition) to create a type for the structure or union. Fill in
15817 the type's name and general properties; the members will not be
15818 processed until process_structure_scope. A symbol table entry for
15819 the type will also not be done until process_structure_scope (assuming
15820 the type has a name).
15821
15822 NOTE: we need to call these functions regardless of whether or not the
15823 DIE has a DW_AT_name attribute, since it might be an anonymous
15824 structure or union. This gets the type entered into our set of
15825 user defined types. */
15826
15827 static struct type *
15828 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15829 {
15830 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15831 struct type *type;
15832 struct attribute *attr;
15833 const char *name;
15834
15835 /* If the definition of this type lives in .debug_types, read that type.
15836 Don't follow DW_AT_specification though, that will take us back up
15837 the chain and we want to go down. */
15838 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15839 if (attr != nullptr)
15840 {
15841 type = get_DW_AT_signature_type (die, attr, cu);
15842
15843 /* The type's CU may not be the same as CU.
15844 Ensure TYPE is recorded with CU in die_type_hash. */
15845 return set_die_type (die, type, cu);
15846 }
15847
15848 type = alloc_type (objfile);
15849 INIT_CPLUS_SPECIFIC (type);
15850
15851 name = dwarf2_name (die, cu);
15852 if (name != NULL)
15853 {
15854 if (cu->language == language_cplus
15855 || cu->language == language_d
15856 || cu->language == language_rust)
15857 {
15858 const char *full_name = dwarf2_full_name (name, die, cu);
15859
15860 /* dwarf2_full_name might have already finished building the DIE's
15861 type. If so, there is no need to continue. */
15862 if (get_die_type (die, cu) != NULL)
15863 return get_die_type (die, cu);
15864
15865 TYPE_NAME (type) = full_name;
15866 }
15867 else
15868 {
15869 /* The name is already allocated along with this objfile, so
15870 we don't need to duplicate it for the type. */
15871 TYPE_NAME (type) = name;
15872 }
15873 }
15874
15875 if (die->tag == DW_TAG_structure_type)
15876 {
15877 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15878 }
15879 else if (die->tag == DW_TAG_union_type)
15880 {
15881 TYPE_CODE (type) = TYPE_CODE_UNION;
15882 }
15883 else if (die->tag == DW_TAG_variant_part)
15884 {
15885 TYPE_CODE (type) = TYPE_CODE_UNION;
15886 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15887 }
15888 else
15889 {
15890 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15891 }
15892
15893 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15894 TYPE_DECLARED_CLASS (type) = 1;
15895
15896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15897 if (attr != nullptr)
15898 {
15899 if (attr_form_is_constant (attr))
15900 TYPE_LENGTH (type) = DW_UNSND (attr);
15901 else
15902 {
15903 /* For the moment, dynamic type sizes are not supported
15904 by GDB's struct type. The actual size is determined
15905 on-demand when resolving the type of a given object,
15906 so set the type's length to zero for now. Otherwise,
15907 we record an expression as the length, and that expression
15908 could lead to a very large value, which could eventually
15909 lead to us trying to allocate that much memory when creating
15910 a value of that type. */
15911 TYPE_LENGTH (type) = 0;
15912 }
15913 }
15914 else
15915 {
15916 TYPE_LENGTH (type) = 0;
15917 }
15918
15919 maybe_set_alignment (cu, die, type);
15920
15921 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15922 {
15923 /* ICC<14 does not output the required DW_AT_declaration on
15924 incomplete types, but gives them a size of zero. */
15925 TYPE_STUB (type) = 1;
15926 }
15927 else
15928 TYPE_STUB_SUPPORTED (type) = 1;
15929
15930 if (die_is_declaration (die, cu))
15931 TYPE_STUB (type) = 1;
15932 else if (attr == NULL && die->child == NULL
15933 && producer_is_realview (cu->producer))
15934 /* RealView does not output the required DW_AT_declaration
15935 on incomplete types. */
15936 TYPE_STUB (type) = 1;
15937
15938 /* We need to add the type field to the die immediately so we don't
15939 infinitely recurse when dealing with pointers to the structure
15940 type within the structure itself. */
15941 set_die_type (die, type, cu);
15942
15943 /* set_die_type should be already done. */
15944 set_descriptive_type (type, die, cu);
15945
15946 return type;
15947 }
15948
15949 /* A helper for process_structure_scope that handles a single member
15950 DIE. */
15951
15952 static void
15953 handle_struct_member_die (struct die_info *child_die, struct type *type,
15954 struct field_info *fi,
15955 std::vector<struct symbol *> *template_args,
15956 struct dwarf2_cu *cu)
15957 {
15958 if (child_die->tag == DW_TAG_member
15959 || child_die->tag == DW_TAG_variable
15960 || child_die->tag == DW_TAG_variant_part)
15961 {
15962 /* NOTE: carlton/2002-11-05: A C++ static data member
15963 should be a DW_TAG_member that is a declaration, but
15964 all versions of G++ as of this writing (so through at
15965 least 3.2.1) incorrectly generate DW_TAG_variable
15966 tags for them instead. */
15967 dwarf2_add_field (fi, child_die, cu);
15968 }
15969 else if (child_die->tag == DW_TAG_subprogram)
15970 {
15971 /* Rust doesn't have member functions in the C++ sense.
15972 However, it does emit ordinary functions as children
15973 of a struct DIE. */
15974 if (cu->language == language_rust)
15975 read_func_scope (child_die, cu);
15976 else
15977 {
15978 /* C++ member function. */
15979 dwarf2_add_member_fn (fi, child_die, type, cu);
15980 }
15981 }
15982 else if (child_die->tag == DW_TAG_inheritance)
15983 {
15984 /* C++ base class field. */
15985 dwarf2_add_field (fi, child_die, cu);
15986 }
15987 else if (type_can_define_types (child_die))
15988 dwarf2_add_type_defn (fi, child_die, cu);
15989 else if (child_die->tag == DW_TAG_template_type_param
15990 || child_die->tag == DW_TAG_template_value_param)
15991 {
15992 struct symbol *arg = new_symbol (child_die, NULL, cu);
15993
15994 if (arg != NULL)
15995 template_args->push_back (arg);
15996 }
15997 else if (child_die->tag == DW_TAG_variant)
15998 {
15999 /* In a variant we want to get the discriminant and also add a
16000 field for our sole member child. */
16001 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
16002
16003 for (die_info *variant_child = child_die->child;
16004 variant_child != NULL;
16005 variant_child = sibling_die (variant_child))
16006 {
16007 if (variant_child->tag == DW_TAG_member)
16008 {
16009 handle_struct_member_die (variant_child, type, fi,
16010 template_args, cu);
16011 /* Only handle the one. */
16012 break;
16013 }
16014 }
16015
16016 /* We don't handle this but we might as well report it if we see
16017 it. */
16018 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
16019 complaint (_("DW_AT_discr_list is not supported yet"
16020 " - DIE at %s [in module %s]"),
16021 sect_offset_str (child_die->sect_off),
16022 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16023
16024 /* The first field was just added, so we can stash the
16025 discriminant there. */
16026 gdb_assert (!fi->fields.empty ());
16027 if (discr == NULL)
16028 fi->fields.back ().variant.default_branch = true;
16029 else
16030 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16031 }
16032 }
16033
16034 /* Finish creating a structure or union type, including filling in
16035 its members and creating a symbol for it. */
16036
16037 static void
16038 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16039 {
16040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16041 struct die_info *child_die;
16042 struct type *type;
16043
16044 type = get_die_type (die, cu);
16045 if (type == NULL)
16046 type = read_structure_type (die, cu);
16047
16048 /* When reading a DW_TAG_variant_part, we need to notice when we
16049 read the discriminant member, so we can record it later in the
16050 discriminant_info. */
16051 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16052 sect_offset discr_offset;
16053 bool has_template_parameters = false;
16054
16055 if (is_variant_part)
16056 {
16057 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16058 if (discr == NULL)
16059 {
16060 /* Maybe it's a univariant form, an extension we support.
16061 In this case arrange not to check the offset. */
16062 is_variant_part = false;
16063 }
16064 else if (attr_form_is_ref (discr))
16065 {
16066 struct dwarf2_cu *target_cu = cu;
16067 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16068
16069 discr_offset = target_die->sect_off;
16070 }
16071 else
16072 {
16073 complaint (_("DW_AT_discr does not have DIE reference form"
16074 " - DIE at %s [in module %s]"),
16075 sect_offset_str (die->sect_off),
16076 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16077 is_variant_part = false;
16078 }
16079 }
16080
16081 if (die->child != NULL && ! die_is_declaration (die, cu))
16082 {
16083 struct field_info fi;
16084 std::vector<struct symbol *> template_args;
16085
16086 child_die = die->child;
16087
16088 while (child_die && child_die->tag)
16089 {
16090 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16091
16092 if (is_variant_part && discr_offset == child_die->sect_off)
16093 fi.fields.back ().variant.is_discriminant = true;
16094
16095 child_die = sibling_die (child_die);
16096 }
16097
16098 /* Attach template arguments to type. */
16099 if (!template_args.empty ())
16100 {
16101 has_template_parameters = true;
16102 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16103 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16104 TYPE_TEMPLATE_ARGUMENTS (type)
16105 = XOBNEWVEC (&objfile->objfile_obstack,
16106 struct symbol *,
16107 TYPE_N_TEMPLATE_ARGUMENTS (type));
16108 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16109 template_args.data (),
16110 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16111 * sizeof (struct symbol *)));
16112 }
16113
16114 /* Attach fields and member functions to the type. */
16115 if (fi.nfields)
16116 dwarf2_attach_fields_to_type (&fi, type, cu);
16117 if (!fi.fnfieldlists.empty ())
16118 {
16119 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16120
16121 /* Get the type which refers to the base class (possibly this
16122 class itself) which contains the vtable pointer for the current
16123 class from the DW_AT_containing_type attribute. This use of
16124 DW_AT_containing_type is a GNU extension. */
16125
16126 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16127 {
16128 struct type *t = die_containing_type (die, cu);
16129
16130 set_type_vptr_basetype (type, t);
16131 if (type == t)
16132 {
16133 int i;
16134
16135 /* Our own class provides vtbl ptr. */
16136 for (i = TYPE_NFIELDS (t) - 1;
16137 i >= TYPE_N_BASECLASSES (t);
16138 --i)
16139 {
16140 const char *fieldname = TYPE_FIELD_NAME (t, i);
16141
16142 if (is_vtable_name (fieldname, cu))
16143 {
16144 set_type_vptr_fieldno (type, i);
16145 break;
16146 }
16147 }
16148
16149 /* Complain if virtual function table field not found. */
16150 if (i < TYPE_N_BASECLASSES (t))
16151 complaint (_("virtual function table pointer "
16152 "not found when defining class '%s'"),
16153 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16154 }
16155 else
16156 {
16157 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16158 }
16159 }
16160 else if (cu->producer
16161 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16162 {
16163 /* The IBM XLC compiler does not provide direct indication
16164 of the containing type, but the vtable pointer is
16165 always named __vfp. */
16166
16167 int i;
16168
16169 for (i = TYPE_NFIELDS (type) - 1;
16170 i >= TYPE_N_BASECLASSES (type);
16171 --i)
16172 {
16173 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16174 {
16175 set_type_vptr_fieldno (type, i);
16176 set_type_vptr_basetype (type, type);
16177 break;
16178 }
16179 }
16180 }
16181 }
16182
16183 /* Copy fi.typedef_field_list linked list elements content into the
16184 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16185 if (!fi.typedef_field_list.empty ())
16186 {
16187 int count = fi.typedef_field_list.size ();
16188
16189 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16190 TYPE_TYPEDEF_FIELD_ARRAY (type)
16191 = ((struct decl_field *)
16192 TYPE_ALLOC (type,
16193 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16194 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16195
16196 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16197 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16198 }
16199
16200 /* Copy fi.nested_types_list linked list elements content into the
16201 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16202 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16203 {
16204 int count = fi.nested_types_list.size ();
16205
16206 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16207 TYPE_NESTED_TYPES_ARRAY (type)
16208 = ((struct decl_field *)
16209 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16210 TYPE_NESTED_TYPES_COUNT (type) = count;
16211
16212 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16213 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16214 }
16215 }
16216
16217 quirk_gcc_member_function_pointer (type, objfile);
16218 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16219 cu->rust_unions.push_back (type);
16220
16221 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16222 snapshots) has been known to create a die giving a declaration
16223 for a class that has, as a child, a die giving a definition for a
16224 nested class. So we have to process our children even if the
16225 current die is a declaration. Normally, of course, a declaration
16226 won't have any children at all. */
16227
16228 child_die = die->child;
16229
16230 while (child_die != NULL && child_die->tag)
16231 {
16232 if (child_die->tag == DW_TAG_member
16233 || child_die->tag == DW_TAG_variable
16234 || child_die->tag == DW_TAG_inheritance
16235 || child_die->tag == DW_TAG_template_value_param
16236 || child_die->tag == DW_TAG_template_type_param)
16237 {
16238 /* Do nothing. */
16239 }
16240 else
16241 process_die (child_die, cu);
16242
16243 child_die = sibling_die (child_die);
16244 }
16245
16246 /* Do not consider external references. According to the DWARF standard,
16247 these DIEs are identified by the fact that they have no byte_size
16248 attribute, and a declaration attribute. */
16249 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16250 || !die_is_declaration (die, cu))
16251 {
16252 struct symbol *sym = new_symbol (die, type, cu);
16253
16254 if (has_template_parameters)
16255 {
16256 struct symtab *symtab;
16257 if (sym != nullptr)
16258 symtab = symbol_symtab (sym);
16259 else if (cu->line_header != nullptr)
16260 {
16261 /* Any related symtab will do. */
16262 symtab
16263 = cu->line_header->file_names ()[0].symtab;
16264 }
16265 else
16266 {
16267 symtab = nullptr;
16268 complaint (_("could not find suitable "
16269 "symtab for template parameter"
16270 " - DIE at %s [in module %s]"),
16271 sect_offset_str (die->sect_off),
16272 objfile_name (objfile));
16273 }
16274
16275 if (symtab != nullptr)
16276 {
16277 /* Make sure that the symtab is set on the new symbols.
16278 Even though they don't appear in this symtab directly,
16279 other parts of gdb assume that symbols do, and this is
16280 reasonably true. */
16281 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16282 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16283 }
16284 }
16285 }
16286 }
16287
16288 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16289 update TYPE using some information only available in DIE's children. */
16290
16291 static void
16292 update_enumeration_type_from_children (struct die_info *die,
16293 struct type *type,
16294 struct dwarf2_cu *cu)
16295 {
16296 struct die_info *child_die;
16297 int unsigned_enum = 1;
16298 int flag_enum = 1;
16299 ULONGEST mask = 0;
16300
16301 auto_obstack obstack;
16302
16303 for (child_die = die->child;
16304 child_die != NULL && child_die->tag;
16305 child_die = sibling_die (child_die))
16306 {
16307 struct attribute *attr;
16308 LONGEST value;
16309 const gdb_byte *bytes;
16310 struct dwarf2_locexpr_baton *baton;
16311 const char *name;
16312
16313 if (child_die->tag != DW_TAG_enumerator)
16314 continue;
16315
16316 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16317 if (attr == NULL)
16318 continue;
16319
16320 name = dwarf2_name (child_die, cu);
16321 if (name == NULL)
16322 name = "<anonymous enumerator>";
16323
16324 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16325 &value, &bytes, &baton);
16326 if (value < 0)
16327 {
16328 unsigned_enum = 0;
16329 flag_enum = 0;
16330 }
16331 else if ((mask & value) != 0)
16332 flag_enum = 0;
16333 else
16334 mask |= value;
16335
16336 /* If we already know that the enum type is neither unsigned, nor
16337 a flag type, no need to look at the rest of the enumerates. */
16338 if (!unsigned_enum && !flag_enum)
16339 break;
16340 }
16341
16342 if (unsigned_enum)
16343 TYPE_UNSIGNED (type) = 1;
16344 if (flag_enum)
16345 TYPE_FLAG_ENUM (type) = 1;
16346 }
16347
16348 /* Given a DW_AT_enumeration_type die, set its type. We do not
16349 complete the type's fields yet, or create any symbols. */
16350
16351 static struct type *
16352 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16353 {
16354 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16355 struct type *type;
16356 struct attribute *attr;
16357 const char *name;
16358
16359 /* If the definition of this type lives in .debug_types, read that type.
16360 Don't follow DW_AT_specification though, that will take us back up
16361 the chain and we want to go down. */
16362 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16363 if (attr != nullptr)
16364 {
16365 type = get_DW_AT_signature_type (die, attr, cu);
16366
16367 /* The type's CU may not be the same as CU.
16368 Ensure TYPE is recorded with CU in die_type_hash. */
16369 return set_die_type (die, type, cu);
16370 }
16371
16372 type = alloc_type (objfile);
16373
16374 TYPE_CODE (type) = TYPE_CODE_ENUM;
16375 name = dwarf2_full_name (NULL, die, cu);
16376 if (name != NULL)
16377 TYPE_NAME (type) = name;
16378
16379 attr = dwarf2_attr (die, DW_AT_type, cu);
16380 if (attr != NULL)
16381 {
16382 struct type *underlying_type = die_type (die, cu);
16383
16384 TYPE_TARGET_TYPE (type) = underlying_type;
16385 }
16386
16387 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16388 if (attr != nullptr)
16389 {
16390 TYPE_LENGTH (type) = DW_UNSND (attr);
16391 }
16392 else
16393 {
16394 TYPE_LENGTH (type) = 0;
16395 }
16396
16397 maybe_set_alignment (cu, die, type);
16398
16399 /* The enumeration DIE can be incomplete. In Ada, any type can be
16400 declared as private in the package spec, and then defined only
16401 inside the package body. Such types are known as Taft Amendment
16402 Types. When another package uses such a type, an incomplete DIE
16403 may be generated by the compiler. */
16404 if (die_is_declaration (die, cu))
16405 TYPE_STUB (type) = 1;
16406
16407 /* Finish the creation of this type by using the enum's children.
16408 We must call this even when the underlying type has been provided
16409 so that we can determine if we're looking at a "flag" enum. */
16410 update_enumeration_type_from_children (die, type, cu);
16411
16412 /* If this type has an underlying type that is not a stub, then we
16413 may use its attributes. We always use the "unsigned" attribute
16414 in this situation, because ordinarily we guess whether the type
16415 is unsigned -- but the guess can be wrong and the underlying type
16416 can tell us the reality. However, we defer to a local size
16417 attribute if one exists, because this lets the compiler override
16418 the underlying type if needed. */
16419 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16420 {
16421 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16422 if (TYPE_LENGTH (type) == 0)
16423 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16424 if (TYPE_RAW_ALIGN (type) == 0
16425 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16426 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16427 }
16428
16429 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16430
16431 return set_die_type (die, type, cu);
16432 }
16433
16434 /* Given a pointer to a die which begins an enumeration, process all
16435 the dies that define the members of the enumeration, and create the
16436 symbol for the enumeration type.
16437
16438 NOTE: We reverse the order of the element list. */
16439
16440 static void
16441 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16442 {
16443 struct type *this_type;
16444
16445 this_type = get_die_type (die, cu);
16446 if (this_type == NULL)
16447 this_type = read_enumeration_type (die, cu);
16448
16449 if (die->child != NULL)
16450 {
16451 struct die_info *child_die;
16452 struct symbol *sym;
16453 struct field *fields = NULL;
16454 int num_fields = 0;
16455 const char *name;
16456
16457 child_die = die->child;
16458 while (child_die && child_die->tag)
16459 {
16460 if (child_die->tag != DW_TAG_enumerator)
16461 {
16462 process_die (child_die, cu);
16463 }
16464 else
16465 {
16466 name = dwarf2_name (child_die, cu);
16467 if (name)
16468 {
16469 sym = new_symbol (child_die, this_type, cu);
16470
16471 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16472 {
16473 fields = (struct field *)
16474 xrealloc (fields,
16475 (num_fields + DW_FIELD_ALLOC_CHUNK)
16476 * sizeof (struct field));
16477 }
16478
16479 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16480 FIELD_TYPE (fields[num_fields]) = NULL;
16481 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16482 FIELD_BITSIZE (fields[num_fields]) = 0;
16483
16484 num_fields++;
16485 }
16486 }
16487
16488 child_die = sibling_die (child_die);
16489 }
16490
16491 if (num_fields)
16492 {
16493 TYPE_NFIELDS (this_type) = num_fields;
16494 TYPE_FIELDS (this_type) = (struct field *)
16495 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16496 memcpy (TYPE_FIELDS (this_type), fields,
16497 sizeof (struct field) * num_fields);
16498 xfree (fields);
16499 }
16500 }
16501
16502 /* If we are reading an enum from a .debug_types unit, and the enum
16503 is a declaration, and the enum is not the signatured type in the
16504 unit, then we do not want to add a symbol for it. Adding a
16505 symbol would in some cases obscure the true definition of the
16506 enum, giving users an incomplete type when the definition is
16507 actually available. Note that we do not want to do this for all
16508 enums which are just declarations, because C++0x allows forward
16509 enum declarations. */
16510 if (cu->per_cu->is_debug_types
16511 && die_is_declaration (die, cu))
16512 {
16513 struct signatured_type *sig_type;
16514
16515 sig_type = (struct signatured_type *) cu->per_cu;
16516 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16517 if (sig_type->type_offset_in_section != die->sect_off)
16518 return;
16519 }
16520
16521 new_symbol (die, this_type, cu);
16522 }
16523
16524 /* Extract all information from a DW_TAG_array_type DIE and put it in
16525 the DIE's type field. For now, this only handles one dimensional
16526 arrays. */
16527
16528 static struct type *
16529 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16530 {
16531 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16532 struct die_info *child_die;
16533 struct type *type;
16534 struct type *element_type, *range_type, *index_type;
16535 struct attribute *attr;
16536 const char *name;
16537 struct dynamic_prop *byte_stride_prop = NULL;
16538 unsigned int bit_stride = 0;
16539
16540 element_type = die_type (die, cu);
16541
16542 /* The die_type call above may have already set the type for this DIE. */
16543 type = get_die_type (die, cu);
16544 if (type)
16545 return type;
16546
16547 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16548 if (attr != NULL)
16549 {
16550 int stride_ok;
16551 struct type *prop_type
16552 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16553
16554 byte_stride_prop
16555 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16556 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16557 prop_type);
16558 if (!stride_ok)
16559 {
16560 complaint (_("unable to read array DW_AT_byte_stride "
16561 " - DIE at %s [in module %s]"),
16562 sect_offset_str (die->sect_off),
16563 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16564 /* Ignore this attribute. We will likely not be able to print
16565 arrays of this type correctly, but there is little we can do
16566 to help if we cannot read the attribute's value. */
16567 byte_stride_prop = NULL;
16568 }
16569 }
16570
16571 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16572 if (attr != NULL)
16573 bit_stride = DW_UNSND (attr);
16574
16575 /* Irix 6.2 native cc creates array types without children for
16576 arrays with unspecified length. */
16577 if (die->child == NULL)
16578 {
16579 index_type = objfile_type (objfile)->builtin_int;
16580 range_type = create_static_range_type (NULL, index_type, 0, -1);
16581 type = create_array_type_with_stride (NULL, element_type, range_type,
16582 byte_stride_prop, bit_stride);
16583 return set_die_type (die, type, cu);
16584 }
16585
16586 std::vector<struct type *> range_types;
16587 child_die = die->child;
16588 while (child_die && child_die->tag)
16589 {
16590 if (child_die->tag == DW_TAG_subrange_type)
16591 {
16592 struct type *child_type = read_type_die (child_die, cu);
16593
16594 if (child_type != NULL)
16595 {
16596 /* The range type was succesfully read. Save it for the
16597 array type creation. */
16598 range_types.push_back (child_type);
16599 }
16600 }
16601 child_die = sibling_die (child_die);
16602 }
16603
16604 /* Dwarf2 dimensions are output from left to right, create the
16605 necessary array types in backwards order. */
16606
16607 type = element_type;
16608
16609 if (read_array_order (die, cu) == DW_ORD_col_major)
16610 {
16611 int i = 0;
16612
16613 while (i < range_types.size ())
16614 type = create_array_type_with_stride (NULL, type, range_types[i++],
16615 byte_stride_prop, bit_stride);
16616 }
16617 else
16618 {
16619 size_t ndim = range_types.size ();
16620 while (ndim-- > 0)
16621 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16622 byte_stride_prop, bit_stride);
16623 }
16624
16625 /* Understand Dwarf2 support for vector types (like they occur on
16626 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16627 array type. This is not part of the Dwarf2/3 standard yet, but a
16628 custom vendor extension. The main difference between a regular
16629 array and the vector variant is that vectors are passed by value
16630 to functions. */
16631 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16632 if (attr != nullptr)
16633 make_vector_type (type);
16634
16635 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16636 implementation may choose to implement triple vectors using this
16637 attribute. */
16638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16639 if (attr != nullptr)
16640 {
16641 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16642 TYPE_LENGTH (type) = DW_UNSND (attr);
16643 else
16644 complaint (_("DW_AT_byte_size for array type smaller "
16645 "than the total size of elements"));
16646 }
16647
16648 name = dwarf2_name (die, cu);
16649 if (name)
16650 TYPE_NAME (type) = name;
16651
16652 maybe_set_alignment (cu, die, type);
16653
16654 /* Install the type in the die. */
16655 set_die_type (die, type, cu);
16656
16657 /* set_die_type should be already done. */
16658 set_descriptive_type (type, die, cu);
16659
16660 return type;
16661 }
16662
16663 static enum dwarf_array_dim_ordering
16664 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16665 {
16666 struct attribute *attr;
16667
16668 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16669
16670 if (attr != nullptr)
16671 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16672
16673 /* GNU F77 is a special case, as at 08/2004 array type info is the
16674 opposite order to the dwarf2 specification, but data is still
16675 laid out as per normal fortran.
16676
16677 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16678 version checking. */
16679
16680 if (cu->language == language_fortran
16681 && cu->producer && strstr (cu->producer, "GNU F77"))
16682 {
16683 return DW_ORD_row_major;
16684 }
16685
16686 switch (cu->language_defn->la_array_ordering)
16687 {
16688 case array_column_major:
16689 return DW_ORD_col_major;
16690 case array_row_major:
16691 default:
16692 return DW_ORD_row_major;
16693 };
16694 }
16695
16696 /* Extract all information from a DW_TAG_set_type DIE and put it in
16697 the DIE's type field. */
16698
16699 static struct type *
16700 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16701 {
16702 struct type *domain_type, *set_type;
16703 struct attribute *attr;
16704
16705 domain_type = die_type (die, cu);
16706
16707 /* The die_type call above may have already set the type for this DIE. */
16708 set_type = get_die_type (die, cu);
16709 if (set_type)
16710 return set_type;
16711
16712 set_type = create_set_type (NULL, domain_type);
16713
16714 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16715 if (attr != nullptr)
16716 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16717
16718 maybe_set_alignment (cu, die, set_type);
16719
16720 return set_die_type (die, set_type, cu);
16721 }
16722
16723 /* A helper for read_common_block that creates a locexpr baton.
16724 SYM is the symbol which we are marking as computed.
16725 COMMON_DIE is the DIE for the common block.
16726 COMMON_LOC is the location expression attribute for the common
16727 block itself.
16728 MEMBER_LOC is the location expression attribute for the particular
16729 member of the common block that we are processing.
16730 CU is the CU from which the above come. */
16731
16732 static void
16733 mark_common_block_symbol_computed (struct symbol *sym,
16734 struct die_info *common_die,
16735 struct attribute *common_loc,
16736 struct attribute *member_loc,
16737 struct dwarf2_cu *cu)
16738 {
16739 struct dwarf2_per_objfile *dwarf2_per_objfile
16740 = cu->per_cu->dwarf2_per_objfile;
16741 struct objfile *objfile = dwarf2_per_objfile->objfile;
16742 struct dwarf2_locexpr_baton *baton;
16743 gdb_byte *ptr;
16744 unsigned int cu_off;
16745 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16746 LONGEST offset = 0;
16747
16748 gdb_assert (common_loc && member_loc);
16749 gdb_assert (attr_form_is_block (common_loc));
16750 gdb_assert (attr_form_is_block (member_loc)
16751 || attr_form_is_constant (member_loc));
16752
16753 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16754 baton->per_cu = cu->per_cu;
16755 gdb_assert (baton->per_cu);
16756
16757 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16758
16759 if (attr_form_is_constant (member_loc))
16760 {
16761 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16762 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16763 }
16764 else
16765 baton->size += DW_BLOCK (member_loc)->size;
16766
16767 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16768 baton->data = ptr;
16769
16770 *ptr++ = DW_OP_call4;
16771 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16772 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16773 ptr += 4;
16774
16775 if (attr_form_is_constant (member_loc))
16776 {
16777 *ptr++ = DW_OP_addr;
16778 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16779 ptr += cu->header.addr_size;
16780 }
16781 else
16782 {
16783 /* We have to copy the data here, because DW_OP_call4 will only
16784 use a DW_AT_location attribute. */
16785 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16786 ptr += DW_BLOCK (member_loc)->size;
16787 }
16788
16789 *ptr++ = DW_OP_plus;
16790 gdb_assert (ptr - baton->data == baton->size);
16791
16792 SYMBOL_LOCATION_BATON (sym) = baton;
16793 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16794 }
16795
16796 /* Create appropriate locally-scoped variables for all the
16797 DW_TAG_common_block entries. Also create a struct common_block
16798 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16799 is used to separate the common blocks name namespace from regular
16800 variable names. */
16801
16802 static void
16803 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16804 {
16805 struct attribute *attr;
16806
16807 attr = dwarf2_attr (die, DW_AT_location, cu);
16808 if (attr != nullptr)
16809 {
16810 /* Support the .debug_loc offsets. */
16811 if (attr_form_is_block (attr))
16812 {
16813 /* Ok. */
16814 }
16815 else if (attr_form_is_section_offset (attr))
16816 {
16817 dwarf2_complex_location_expr_complaint ();
16818 attr = NULL;
16819 }
16820 else
16821 {
16822 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16823 "common block member");
16824 attr = NULL;
16825 }
16826 }
16827
16828 if (die->child != NULL)
16829 {
16830 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16831 struct die_info *child_die;
16832 size_t n_entries = 0, size;
16833 struct common_block *common_block;
16834 struct symbol *sym;
16835
16836 for (child_die = die->child;
16837 child_die && child_die->tag;
16838 child_die = sibling_die (child_die))
16839 ++n_entries;
16840
16841 size = (sizeof (struct common_block)
16842 + (n_entries - 1) * sizeof (struct symbol *));
16843 common_block
16844 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16845 size);
16846 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16847 common_block->n_entries = 0;
16848
16849 for (child_die = die->child;
16850 child_die && child_die->tag;
16851 child_die = sibling_die (child_die))
16852 {
16853 /* Create the symbol in the DW_TAG_common_block block in the current
16854 symbol scope. */
16855 sym = new_symbol (child_die, NULL, cu);
16856 if (sym != NULL)
16857 {
16858 struct attribute *member_loc;
16859
16860 common_block->contents[common_block->n_entries++] = sym;
16861
16862 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16863 cu);
16864 if (member_loc)
16865 {
16866 /* GDB has handled this for a long time, but it is
16867 not specified by DWARF. It seems to have been
16868 emitted by gfortran at least as recently as:
16869 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16870 complaint (_("Variable in common block has "
16871 "DW_AT_data_member_location "
16872 "- DIE at %s [in module %s]"),
16873 sect_offset_str (child_die->sect_off),
16874 objfile_name (objfile));
16875
16876 if (attr_form_is_section_offset (member_loc))
16877 dwarf2_complex_location_expr_complaint ();
16878 else if (attr_form_is_constant (member_loc)
16879 || attr_form_is_block (member_loc))
16880 {
16881 if (attr != nullptr)
16882 mark_common_block_symbol_computed (sym, die, attr,
16883 member_loc, cu);
16884 }
16885 else
16886 dwarf2_complex_location_expr_complaint ();
16887 }
16888 }
16889 }
16890
16891 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16892 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16893 }
16894 }
16895
16896 /* Create a type for a C++ namespace. */
16897
16898 static struct type *
16899 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16900 {
16901 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16902 const char *previous_prefix, *name;
16903 int is_anonymous;
16904 struct type *type;
16905
16906 /* For extensions, reuse the type of the original namespace. */
16907 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16908 {
16909 struct die_info *ext_die;
16910 struct dwarf2_cu *ext_cu = cu;
16911
16912 ext_die = dwarf2_extension (die, &ext_cu);
16913 type = read_type_die (ext_die, ext_cu);
16914
16915 /* EXT_CU may not be the same as CU.
16916 Ensure TYPE is recorded with CU in die_type_hash. */
16917 return set_die_type (die, type, cu);
16918 }
16919
16920 name = namespace_name (die, &is_anonymous, cu);
16921
16922 /* Now build the name of the current namespace. */
16923
16924 previous_prefix = determine_prefix (die, cu);
16925 if (previous_prefix[0] != '\0')
16926 name = typename_concat (&objfile->objfile_obstack,
16927 previous_prefix, name, 0, cu);
16928
16929 /* Create the type. */
16930 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16931
16932 return set_die_type (die, type, cu);
16933 }
16934
16935 /* Read a namespace scope. */
16936
16937 static void
16938 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16939 {
16940 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16941 int is_anonymous;
16942
16943 /* Add a symbol associated to this if we haven't seen the namespace
16944 before. Also, add a using directive if it's an anonymous
16945 namespace. */
16946
16947 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16948 {
16949 struct type *type;
16950
16951 type = read_type_die (die, cu);
16952 new_symbol (die, type, cu);
16953
16954 namespace_name (die, &is_anonymous, cu);
16955 if (is_anonymous)
16956 {
16957 const char *previous_prefix = determine_prefix (die, cu);
16958
16959 std::vector<const char *> excludes;
16960 add_using_directive (using_directives (cu),
16961 previous_prefix, TYPE_NAME (type), NULL,
16962 NULL, excludes, 0, &objfile->objfile_obstack);
16963 }
16964 }
16965
16966 if (die->child != NULL)
16967 {
16968 struct die_info *child_die = die->child;
16969
16970 while (child_die && child_die->tag)
16971 {
16972 process_die (child_die, cu);
16973 child_die = sibling_die (child_die);
16974 }
16975 }
16976 }
16977
16978 /* Read a Fortran module as type. This DIE can be only a declaration used for
16979 imported module. Still we need that type as local Fortran "use ... only"
16980 declaration imports depend on the created type in determine_prefix. */
16981
16982 static struct type *
16983 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16984 {
16985 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16986 const char *module_name;
16987 struct type *type;
16988
16989 module_name = dwarf2_name (die, cu);
16990 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16991
16992 return set_die_type (die, type, cu);
16993 }
16994
16995 /* Read a Fortran module. */
16996
16997 static void
16998 read_module (struct die_info *die, struct dwarf2_cu *cu)
16999 {
17000 struct die_info *child_die = die->child;
17001 struct type *type;
17002
17003 type = read_type_die (die, cu);
17004 new_symbol (die, type, cu);
17005
17006 while (child_die && child_die->tag)
17007 {
17008 process_die (child_die, cu);
17009 child_die = sibling_die (child_die);
17010 }
17011 }
17012
17013 /* Return the name of the namespace represented by DIE. Set
17014 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17015 namespace. */
17016
17017 static const char *
17018 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17019 {
17020 struct die_info *current_die;
17021 const char *name = NULL;
17022
17023 /* Loop through the extensions until we find a name. */
17024
17025 for (current_die = die;
17026 current_die != NULL;
17027 current_die = dwarf2_extension (die, &cu))
17028 {
17029 /* We don't use dwarf2_name here so that we can detect the absence
17030 of a name -> anonymous namespace. */
17031 name = dwarf2_string_attr (die, DW_AT_name, cu);
17032
17033 if (name != NULL)
17034 break;
17035 }
17036
17037 /* Is it an anonymous namespace? */
17038
17039 *is_anonymous = (name == NULL);
17040 if (*is_anonymous)
17041 name = CP_ANONYMOUS_NAMESPACE_STR;
17042
17043 return name;
17044 }
17045
17046 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17047 the user defined type vector. */
17048
17049 static struct type *
17050 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17051 {
17052 struct gdbarch *gdbarch
17053 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17054 struct comp_unit_head *cu_header = &cu->header;
17055 struct type *type;
17056 struct attribute *attr_byte_size;
17057 struct attribute *attr_address_class;
17058 int byte_size, addr_class;
17059 struct type *target_type;
17060
17061 target_type = die_type (die, cu);
17062
17063 /* The die_type call above may have already set the type for this DIE. */
17064 type = get_die_type (die, cu);
17065 if (type)
17066 return type;
17067
17068 type = lookup_pointer_type (target_type);
17069
17070 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17071 if (attr_byte_size)
17072 byte_size = DW_UNSND (attr_byte_size);
17073 else
17074 byte_size = cu_header->addr_size;
17075
17076 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17077 if (attr_address_class)
17078 addr_class = DW_UNSND (attr_address_class);
17079 else
17080 addr_class = DW_ADDR_none;
17081
17082 ULONGEST alignment = get_alignment (cu, die);
17083
17084 /* If the pointer size, alignment, or address class is different
17085 than the default, create a type variant marked as such and set
17086 the length accordingly. */
17087 if (TYPE_LENGTH (type) != byte_size
17088 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17089 && alignment != TYPE_RAW_ALIGN (type))
17090 || addr_class != DW_ADDR_none)
17091 {
17092 if (gdbarch_address_class_type_flags_p (gdbarch))
17093 {
17094 int type_flags;
17095
17096 type_flags = gdbarch_address_class_type_flags
17097 (gdbarch, byte_size, addr_class);
17098 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17099 == 0);
17100 type = make_type_with_address_space (type, type_flags);
17101 }
17102 else if (TYPE_LENGTH (type) != byte_size)
17103 {
17104 complaint (_("invalid pointer size %d"), byte_size);
17105 }
17106 else if (TYPE_RAW_ALIGN (type) != alignment)
17107 {
17108 complaint (_("Invalid DW_AT_alignment"
17109 " - DIE at %s [in module %s]"),
17110 sect_offset_str (die->sect_off),
17111 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17112 }
17113 else
17114 {
17115 /* Should we also complain about unhandled address classes? */
17116 }
17117 }
17118
17119 TYPE_LENGTH (type) = byte_size;
17120 set_type_align (type, alignment);
17121 return set_die_type (die, type, cu);
17122 }
17123
17124 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17125 the user defined type vector. */
17126
17127 static struct type *
17128 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17129 {
17130 struct type *type;
17131 struct type *to_type;
17132 struct type *domain;
17133
17134 to_type = die_type (die, cu);
17135 domain = die_containing_type (die, cu);
17136
17137 /* The calls above may have already set the type for this DIE. */
17138 type = get_die_type (die, cu);
17139 if (type)
17140 return type;
17141
17142 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17143 type = lookup_methodptr_type (to_type);
17144 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17145 {
17146 struct type *new_type
17147 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17148
17149 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17150 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17151 TYPE_VARARGS (to_type));
17152 type = lookup_methodptr_type (new_type);
17153 }
17154 else
17155 type = lookup_memberptr_type (to_type, domain);
17156
17157 return set_die_type (die, type, cu);
17158 }
17159
17160 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17161 the user defined type vector. */
17162
17163 static struct type *
17164 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17165 enum type_code refcode)
17166 {
17167 struct comp_unit_head *cu_header = &cu->header;
17168 struct type *type, *target_type;
17169 struct attribute *attr;
17170
17171 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17172
17173 target_type = die_type (die, cu);
17174
17175 /* The die_type call above may have already set the type for this DIE. */
17176 type = get_die_type (die, cu);
17177 if (type)
17178 return type;
17179
17180 type = lookup_reference_type (target_type, refcode);
17181 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17182 if (attr != nullptr)
17183 {
17184 TYPE_LENGTH (type) = DW_UNSND (attr);
17185 }
17186 else
17187 {
17188 TYPE_LENGTH (type) = cu_header->addr_size;
17189 }
17190 maybe_set_alignment (cu, die, type);
17191 return set_die_type (die, type, cu);
17192 }
17193
17194 /* Add the given cv-qualifiers to the element type of the array. GCC
17195 outputs DWARF type qualifiers that apply to an array, not the
17196 element type. But GDB relies on the array element type to carry
17197 the cv-qualifiers. This mimics section 6.7.3 of the C99
17198 specification. */
17199
17200 static struct type *
17201 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17202 struct type *base_type, int cnst, int voltl)
17203 {
17204 struct type *el_type, *inner_array;
17205
17206 base_type = copy_type (base_type);
17207 inner_array = base_type;
17208
17209 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17210 {
17211 TYPE_TARGET_TYPE (inner_array) =
17212 copy_type (TYPE_TARGET_TYPE (inner_array));
17213 inner_array = TYPE_TARGET_TYPE (inner_array);
17214 }
17215
17216 el_type = TYPE_TARGET_TYPE (inner_array);
17217 cnst |= TYPE_CONST (el_type);
17218 voltl |= TYPE_VOLATILE (el_type);
17219 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17220
17221 return set_die_type (die, base_type, cu);
17222 }
17223
17224 static struct type *
17225 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17226 {
17227 struct type *base_type, *cv_type;
17228
17229 base_type = die_type (die, cu);
17230
17231 /* The die_type call above may have already set the type for this DIE. */
17232 cv_type = get_die_type (die, cu);
17233 if (cv_type)
17234 return cv_type;
17235
17236 /* In case the const qualifier is applied to an array type, the element type
17237 is so qualified, not the array type (section 6.7.3 of C99). */
17238 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17239 return add_array_cv_type (die, cu, base_type, 1, 0);
17240
17241 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17242 return set_die_type (die, cv_type, cu);
17243 }
17244
17245 static struct type *
17246 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17247 {
17248 struct type *base_type, *cv_type;
17249
17250 base_type = die_type (die, cu);
17251
17252 /* The die_type call above may have already set the type for this DIE. */
17253 cv_type = get_die_type (die, cu);
17254 if (cv_type)
17255 return cv_type;
17256
17257 /* In case the volatile qualifier is applied to an array type, the
17258 element type is so qualified, not the array type (section 6.7.3
17259 of C99). */
17260 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17261 return add_array_cv_type (die, cu, base_type, 0, 1);
17262
17263 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17264 return set_die_type (die, cv_type, cu);
17265 }
17266
17267 /* Handle DW_TAG_restrict_type. */
17268
17269 static struct type *
17270 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17271 {
17272 struct type *base_type, *cv_type;
17273
17274 base_type = die_type (die, cu);
17275
17276 /* The die_type call above may have already set the type for this DIE. */
17277 cv_type = get_die_type (die, cu);
17278 if (cv_type)
17279 return cv_type;
17280
17281 cv_type = make_restrict_type (base_type);
17282 return set_die_type (die, cv_type, cu);
17283 }
17284
17285 /* Handle DW_TAG_atomic_type. */
17286
17287 static struct type *
17288 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17289 {
17290 struct type *base_type, *cv_type;
17291
17292 base_type = die_type (die, cu);
17293
17294 /* The die_type call above may have already set the type for this DIE. */
17295 cv_type = get_die_type (die, cu);
17296 if (cv_type)
17297 return cv_type;
17298
17299 cv_type = make_atomic_type (base_type);
17300 return set_die_type (die, cv_type, cu);
17301 }
17302
17303 /* Extract all information from a DW_TAG_string_type DIE and add to
17304 the user defined type vector. It isn't really a user defined type,
17305 but it behaves like one, with other DIE's using an AT_user_def_type
17306 attribute to reference it. */
17307
17308 static struct type *
17309 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17310 {
17311 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17313 struct type *type, *range_type, *index_type, *char_type;
17314 struct attribute *attr;
17315 unsigned int length;
17316
17317 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17318 if (attr != nullptr)
17319 {
17320 length = DW_UNSND (attr);
17321 }
17322 else
17323 {
17324 /* Check for the DW_AT_byte_size attribute. */
17325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17326 if (attr != nullptr)
17327 {
17328 length = DW_UNSND (attr);
17329 }
17330 else
17331 {
17332 length = 1;
17333 }
17334 }
17335
17336 index_type = objfile_type (objfile)->builtin_int;
17337 range_type = create_static_range_type (NULL, index_type, 1, length);
17338 char_type = language_string_char_type (cu->language_defn, gdbarch);
17339 type = create_string_type (NULL, char_type, range_type);
17340
17341 return set_die_type (die, type, cu);
17342 }
17343
17344 /* Assuming that DIE corresponds to a function, returns nonzero
17345 if the function is prototyped. */
17346
17347 static int
17348 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17349 {
17350 struct attribute *attr;
17351
17352 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17353 if (attr && (DW_UNSND (attr) != 0))
17354 return 1;
17355
17356 /* The DWARF standard implies that the DW_AT_prototyped attribute
17357 is only meaningful for C, but the concept also extends to other
17358 languages that allow unprototyped functions (Eg: Objective C).
17359 For all other languages, assume that functions are always
17360 prototyped. */
17361 if (cu->language != language_c
17362 && cu->language != language_objc
17363 && cu->language != language_opencl)
17364 return 1;
17365
17366 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17367 prototyped and unprototyped functions; default to prototyped,
17368 since that is more common in modern code (and RealView warns
17369 about unprototyped functions). */
17370 if (producer_is_realview (cu->producer))
17371 return 1;
17372
17373 return 0;
17374 }
17375
17376 /* Handle DIES due to C code like:
17377
17378 struct foo
17379 {
17380 int (*funcp)(int a, long l);
17381 int b;
17382 };
17383
17384 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17385
17386 static struct type *
17387 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17388 {
17389 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17390 struct type *type; /* Type that this function returns. */
17391 struct type *ftype; /* Function that returns above type. */
17392 struct attribute *attr;
17393
17394 type = die_type (die, cu);
17395
17396 /* The die_type call above may have already set the type for this DIE. */
17397 ftype = get_die_type (die, cu);
17398 if (ftype)
17399 return ftype;
17400
17401 ftype = lookup_function_type (type);
17402
17403 if (prototyped_function_p (die, cu))
17404 TYPE_PROTOTYPED (ftype) = 1;
17405
17406 /* Store the calling convention in the type if it's available in
17407 the subroutine die. Otherwise set the calling convention to
17408 the default value DW_CC_normal. */
17409 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17410 if (attr != nullptr)
17411 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17412 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17413 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17414 else
17415 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17416
17417 /* Record whether the function returns normally to its caller or not
17418 if the DWARF producer set that information. */
17419 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17420 if (attr && (DW_UNSND (attr) != 0))
17421 TYPE_NO_RETURN (ftype) = 1;
17422
17423 /* We need to add the subroutine type to the die immediately so
17424 we don't infinitely recurse when dealing with parameters
17425 declared as the same subroutine type. */
17426 set_die_type (die, ftype, cu);
17427
17428 if (die->child != NULL)
17429 {
17430 struct type *void_type = objfile_type (objfile)->builtin_void;
17431 struct die_info *child_die;
17432 int nparams, iparams;
17433
17434 /* Count the number of parameters.
17435 FIXME: GDB currently ignores vararg functions, but knows about
17436 vararg member functions. */
17437 nparams = 0;
17438 child_die = die->child;
17439 while (child_die && child_die->tag)
17440 {
17441 if (child_die->tag == DW_TAG_formal_parameter)
17442 nparams++;
17443 else if (child_die->tag == DW_TAG_unspecified_parameters)
17444 TYPE_VARARGS (ftype) = 1;
17445 child_die = sibling_die (child_die);
17446 }
17447
17448 /* Allocate storage for parameters and fill them in. */
17449 TYPE_NFIELDS (ftype) = nparams;
17450 TYPE_FIELDS (ftype) = (struct field *)
17451 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17452
17453 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17454 even if we error out during the parameters reading below. */
17455 for (iparams = 0; iparams < nparams; iparams++)
17456 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17457
17458 iparams = 0;
17459 child_die = die->child;
17460 while (child_die && child_die->tag)
17461 {
17462 if (child_die->tag == DW_TAG_formal_parameter)
17463 {
17464 struct type *arg_type;
17465
17466 /* DWARF version 2 has no clean way to discern C++
17467 static and non-static member functions. G++ helps
17468 GDB by marking the first parameter for non-static
17469 member functions (which is the this pointer) as
17470 artificial. We pass this information to
17471 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17472
17473 DWARF version 3 added DW_AT_object_pointer, which GCC
17474 4.5 does not yet generate. */
17475 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17476 if (attr != nullptr)
17477 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17478 else
17479 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17480 arg_type = die_type (child_die, cu);
17481
17482 /* RealView does not mark THIS as const, which the testsuite
17483 expects. GCC marks THIS as const in method definitions,
17484 but not in the class specifications (GCC PR 43053). */
17485 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17486 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17487 {
17488 int is_this = 0;
17489 struct dwarf2_cu *arg_cu = cu;
17490 const char *name = dwarf2_name (child_die, cu);
17491
17492 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17493 if (attr != nullptr)
17494 {
17495 /* If the compiler emits this, use it. */
17496 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17497 is_this = 1;
17498 }
17499 else if (name && strcmp (name, "this") == 0)
17500 /* Function definitions will have the argument names. */
17501 is_this = 1;
17502 else if (name == NULL && iparams == 0)
17503 /* Declarations may not have the names, so like
17504 elsewhere in GDB, assume an artificial first
17505 argument is "this". */
17506 is_this = 1;
17507
17508 if (is_this)
17509 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17510 arg_type, 0);
17511 }
17512
17513 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17514 iparams++;
17515 }
17516 child_die = sibling_die (child_die);
17517 }
17518 }
17519
17520 return ftype;
17521 }
17522
17523 static struct type *
17524 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17525 {
17526 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17527 const char *name = NULL;
17528 struct type *this_type, *target_type;
17529
17530 name = dwarf2_full_name (NULL, die, cu);
17531 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17532 TYPE_TARGET_STUB (this_type) = 1;
17533 set_die_type (die, this_type, cu);
17534 target_type = die_type (die, cu);
17535 if (target_type != this_type)
17536 TYPE_TARGET_TYPE (this_type) = target_type;
17537 else
17538 {
17539 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17540 spec and cause infinite loops in GDB. */
17541 complaint (_("Self-referential DW_TAG_typedef "
17542 "- DIE at %s [in module %s]"),
17543 sect_offset_str (die->sect_off), objfile_name (objfile));
17544 TYPE_TARGET_TYPE (this_type) = NULL;
17545 }
17546 return this_type;
17547 }
17548
17549 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17550 (which may be different from NAME) to the architecture back-end to allow
17551 it to guess the correct format if necessary. */
17552
17553 static struct type *
17554 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17555 const char *name_hint)
17556 {
17557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17558 const struct floatformat **format;
17559 struct type *type;
17560
17561 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17562 if (format)
17563 type = init_float_type (objfile, bits, name, format);
17564 else
17565 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17566
17567 return type;
17568 }
17569
17570 /* Allocate an integer type of size BITS and name NAME. */
17571
17572 static struct type *
17573 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17574 int bits, int unsigned_p, const char *name)
17575 {
17576 struct type *type;
17577
17578 /* Versions of Intel's C Compiler generate an integer type called "void"
17579 instead of using DW_TAG_unspecified_type. This has been seen on
17580 at least versions 14, 17, and 18. */
17581 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17582 && strcmp (name, "void") == 0)
17583 type = objfile_type (objfile)->builtin_void;
17584 else
17585 type = init_integer_type (objfile, bits, unsigned_p, name);
17586
17587 return type;
17588 }
17589
17590 /* Initialise and return a floating point type of size BITS suitable for
17591 use as a component of a complex number. The NAME_HINT is passed through
17592 when initialising the floating point type and is the name of the complex
17593 type.
17594
17595 As DWARF doesn't currently provide an explicit name for the components
17596 of a complex number, but it can be helpful to have these components
17597 named, we try to select a suitable name based on the size of the
17598 component. */
17599 static struct type *
17600 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17601 struct objfile *objfile,
17602 int bits, const char *name_hint)
17603 {
17604 gdbarch *gdbarch = get_objfile_arch (objfile);
17605 struct type *tt = nullptr;
17606
17607 /* Try to find a suitable floating point builtin type of size BITS.
17608 We're going to use the name of this type as the name for the complex
17609 target type that we are about to create. */
17610 switch (cu->language)
17611 {
17612 case language_fortran:
17613 switch (bits)
17614 {
17615 case 32:
17616 tt = builtin_f_type (gdbarch)->builtin_real;
17617 break;
17618 case 64:
17619 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17620 break;
17621 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17622 case 128:
17623 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17624 break;
17625 }
17626 break;
17627 default:
17628 switch (bits)
17629 {
17630 case 32:
17631 tt = builtin_type (gdbarch)->builtin_float;
17632 break;
17633 case 64:
17634 tt = builtin_type (gdbarch)->builtin_double;
17635 break;
17636 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17637 case 128:
17638 tt = builtin_type (gdbarch)->builtin_long_double;
17639 break;
17640 }
17641 break;
17642 }
17643
17644 /* If the type we found doesn't match the size we were looking for, then
17645 pretend we didn't find a type at all, the complex target type we
17646 create will then be nameless. */
17647 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17648 tt = nullptr;
17649
17650 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17651 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17652 }
17653
17654 /* Find a representation of a given base type and install
17655 it in the TYPE field of the die. */
17656
17657 static struct type *
17658 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17659 {
17660 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17661 struct type *type;
17662 struct attribute *attr;
17663 int encoding = 0, bits = 0;
17664 const char *name;
17665
17666 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17667 if (attr != nullptr)
17668 {
17669 encoding = DW_UNSND (attr);
17670 }
17671 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17672 if (attr != nullptr)
17673 {
17674 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17675 }
17676 name = dwarf2_name (die, cu);
17677 if (!name)
17678 {
17679 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17680 }
17681
17682 switch (encoding)
17683 {
17684 case DW_ATE_address:
17685 /* Turn DW_ATE_address into a void * pointer. */
17686 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17687 type = init_pointer_type (objfile, bits, name, type);
17688 break;
17689 case DW_ATE_boolean:
17690 type = init_boolean_type (objfile, bits, 1, name);
17691 break;
17692 case DW_ATE_complex_float:
17693 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17694 type = init_complex_type (objfile, name, type);
17695 break;
17696 case DW_ATE_decimal_float:
17697 type = init_decfloat_type (objfile, bits, name);
17698 break;
17699 case DW_ATE_float:
17700 type = dwarf2_init_float_type (objfile, bits, name, name);
17701 break;
17702 case DW_ATE_signed:
17703 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17704 break;
17705 case DW_ATE_unsigned:
17706 if (cu->language == language_fortran
17707 && name
17708 && startswith (name, "character("))
17709 type = init_character_type (objfile, bits, 1, name);
17710 else
17711 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17712 break;
17713 case DW_ATE_signed_char:
17714 if (cu->language == language_ada || cu->language == language_m2
17715 || cu->language == language_pascal
17716 || cu->language == language_fortran)
17717 type = init_character_type (objfile, bits, 0, name);
17718 else
17719 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17720 break;
17721 case DW_ATE_unsigned_char:
17722 if (cu->language == language_ada || cu->language == language_m2
17723 || cu->language == language_pascal
17724 || cu->language == language_fortran
17725 || cu->language == language_rust)
17726 type = init_character_type (objfile, bits, 1, name);
17727 else
17728 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17729 break;
17730 case DW_ATE_UTF:
17731 {
17732 gdbarch *arch = get_objfile_arch (objfile);
17733
17734 if (bits == 16)
17735 type = builtin_type (arch)->builtin_char16;
17736 else if (bits == 32)
17737 type = builtin_type (arch)->builtin_char32;
17738 else
17739 {
17740 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17741 bits);
17742 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17743 }
17744 return set_die_type (die, type, cu);
17745 }
17746 break;
17747
17748 default:
17749 complaint (_("unsupported DW_AT_encoding: '%s'"),
17750 dwarf_type_encoding_name (encoding));
17751 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17752 break;
17753 }
17754
17755 if (name && strcmp (name, "char") == 0)
17756 TYPE_NOSIGN (type) = 1;
17757
17758 maybe_set_alignment (cu, die, type);
17759
17760 return set_die_type (die, type, cu);
17761 }
17762
17763 /* Parse dwarf attribute if it's a block, reference or constant and put the
17764 resulting value of the attribute into struct bound_prop.
17765 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17766
17767 static int
17768 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17769 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17770 struct type *default_type)
17771 {
17772 struct dwarf2_property_baton *baton;
17773 struct obstack *obstack
17774 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17775
17776 gdb_assert (default_type != NULL);
17777
17778 if (attr == NULL || prop == NULL)
17779 return 0;
17780
17781 if (attr_form_is_block (attr))
17782 {
17783 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17784 baton->property_type = default_type;
17785 baton->locexpr.per_cu = cu->per_cu;
17786 baton->locexpr.size = DW_BLOCK (attr)->size;
17787 baton->locexpr.data = DW_BLOCK (attr)->data;
17788 baton->locexpr.is_reference = false;
17789 prop->data.baton = baton;
17790 prop->kind = PROP_LOCEXPR;
17791 gdb_assert (prop->data.baton != NULL);
17792 }
17793 else if (attr_form_is_ref (attr))
17794 {
17795 struct dwarf2_cu *target_cu = cu;
17796 struct die_info *target_die;
17797 struct attribute *target_attr;
17798
17799 target_die = follow_die_ref (die, attr, &target_cu);
17800 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17801 if (target_attr == NULL)
17802 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17803 target_cu);
17804 if (target_attr == NULL)
17805 return 0;
17806
17807 switch (target_attr->name)
17808 {
17809 case DW_AT_location:
17810 if (attr_form_is_section_offset (target_attr))
17811 {
17812 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17813 baton->property_type = die_type (target_die, target_cu);
17814 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17815 prop->data.baton = baton;
17816 prop->kind = PROP_LOCLIST;
17817 gdb_assert (prop->data.baton != NULL);
17818 }
17819 else if (attr_form_is_block (target_attr))
17820 {
17821 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17822 baton->property_type = die_type (target_die, target_cu);
17823 baton->locexpr.per_cu = cu->per_cu;
17824 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17825 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17826 baton->locexpr.is_reference = true;
17827 prop->data.baton = baton;
17828 prop->kind = PROP_LOCEXPR;
17829 gdb_assert (prop->data.baton != NULL);
17830 }
17831 else
17832 {
17833 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17834 "dynamic property");
17835 return 0;
17836 }
17837 break;
17838 case DW_AT_data_member_location:
17839 {
17840 LONGEST offset;
17841
17842 if (!handle_data_member_location (target_die, target_cu,
17843 &offset))
17844 return 0;
17845
17846 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17847 baton->property_type = read_type_die (target_die->parent,
17848 target_cu);
17849 baton->offset_info.offset = offset;
17850 baton->offset_info.type = die_type (target_die, target_cu);
17851 prop->data.baton = baton;
17852 prop->kind = PROP_ADDR_OFFSET;
17853 break;
17854 }
17855 }
17856 }
17857 else if (attr_form_is_constant (attr))
17858 {
17859 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17860 prop->kind = PROP_CONST;
17861 }
17862 else
17863 {
17864 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17865 dwarf2_name (die, cu));
17866 return 0;
17867 }
17868
17869 return 1;
17870 }
17871
17872 /* Find an integer type the same size as the address size given in the
17873 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17874 is unsigned or not. */
17875
17876 static struct type *
17877 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17878 bool unsigned_p)
17879 {
17880 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17881 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17882 struct type *int_type;
17883
17884 /* Helper macro to examine the various builtin types. */
17885 #define TRY_TYPE(F) \
17886 int_type = (unsigned_p \
17887 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17888 : objfile_type (objfile)->builtin_ ## F); \
17889 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17890 return int_type
17891
17892 TRY_TYPE (char);
17893 TRY_TYPE (short);
17894 TRY_TYPE (int);
17895 TRY_TYPE (long);
17896 TRY_TYPE (long_long);
17897
17898 #undef TRY_TYPE
17899
17900 gdb_assert_not_reached ("unable to find suitable integer type");
17901 }
17902
17903 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17904 present (which is valid) then compute the default type based on the
17905 compilation units address size. */
17906
17907 static struct type *
17908 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17909 {
17910 struct type *index_type = die_type (die, cu);
17911
17912 /* Dwarf-2 specifications explicitly allows to create subrange types
17913 without specifying a base type.
17914 In that case, the base type must be set to the type of
17915 the lower bound, upper bound or count, in that order, if any of these
17916 three attributes references an object that has a type.
17917 If no base type is found, the Dwarf-2 specifications say that
17918 a signed integer type of size equal to the size of an address should
17919 be used.
17920 For the following C code: `extern char gdb_int [];'
17921 GCC produces an empty range DIE.
17922 FIXME: muller/2010-05-28: Possible references to object for low bound,
17923 high bound or count are not yet handled by this code. */
17924 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17925 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17926
17927 return index_type;
17928 }
17929
17930 /* Read the given DW_AT_subrange DIE. */
17931
17932 static struct type *
17933 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17934 {
17935 struct type *base_type, *orig_base_type;
17936 struct type *range_type;
17937 struct attribute *attr;
17938 struct dynamic_prop low, high;
17939 int low_default_is_valid;
17940 int high_bound_is_count = 0;
17941 const char *name;
17942 ULONGEST negative_mask;
17943
17944 orig_base_type = read_subrange_index_type (die, cu);
17945
17946 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17947 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17948 creating the range type, but we use the result of check_typedef
17949 when examining properties of the type. */
17950 base_type = check_typedef (orig_base_type);
17951
17952 /* The die_type call above may have already set the type for this DIE. */
17953 range_type = get_die_type (die, cu);
17954 if (range_type)
17955 return range_type;
17956
17957 low.kind = PROP_CONST;
17958 high.kind = PROP_CONST;
17959 high.data.const_val = 0;
17960
17961 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17962 omitting DW_AT_lower_bound. */
17963 switch (cu->language)
17964 {
17965 case language_c:
17966 case language_cplus:
17967 low.data.const_val = 0;
17968 low_default_is_valid = 1;
17969 break;
17970 case language_fortran:
17971 low.data.const_val = 1;
17972 low_default_is_valid = 1;
17973 break;
17974 case language_d:
17975 case language_objc:
17976 case language_rust:
17977 low.data.const_val = 0;
17978 low_default_is_valid = (cu->header.version >= 4);
17979 break;
17980 case language_ada:
17981 case language_m2:
17982 case language_pascal:
17983 low.data.const_val = 1;
17984 low_default_is_valid = (cu->header.version >= 4);
17985 break;
17986 default:
17987 low.data.const_val = 0;
17988 low_default_is_valid = 0;
17989 break;
17990 }
17991
17992 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17993 if (attr != nullptr)
17994 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17995 else if (!low_default_is_valid)
17996 complaint (_("Missing DW_AT_lower_bound "
17997 "- DIE at %s [in module %s]"),
17998 sect_offset_str (die->sect_off),
17999 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18000
18001 struct attribute *attr_ub, *attr_count;
18002 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18003 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18004 {
18005 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18006 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18007 {
18008 /* If bounds are constant do the final calculation here. */
18009 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18010 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18011 else
18012 high_bound_is_count = 1;
18013 }
18014 else
18015 {
18016 if (attr_ub != NULL)
18017 complaint (_("Unresolved DW_AT_upper_bound "
18018 "- DIE at %s [in module %s]"),
18019 sect_offset_str (die->sect_off),
18020 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18021 if (attr_count != NULL)
18022 complaint (_("Unresolved DW_AT_count "
18023 "- DIE at %s [in module %s]"),
18024 sect_offset_str (die->sect_off),
18025 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18026 }
18027 }
18028
18029 LONGEST bias = 0;
18030 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18031 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
18032 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
18033
18034 /* Normally, the DWARF producers are expected to use a signed
18035 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18036 But this is unfortunately not always the case, as witnessed
18037 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18038 is used instead. To work around that ambiguity, we treat
18039 the bounds as signed, and thus sign-extend their values, when
18040 the base type is signed. */
18041 negative_mask =
18042 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18043 if (low.kind == PROP_CONST
18044 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18045 low.data.const_val |= negative_mask;
18046 if (high.kind == PROP_CONST
18047 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18048 high.data.const_val |= negative_mask;
18049
18050 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18051
18052 if (high_bound_is_count)
18053 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18054
18055 /* Ada expects an empty array on no boundary attributes. */
18056 if (attr == NULL && cu->language != language_ada)
18057 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18058
18059 name = dwarf2_name (die, cu);
18060 if (name)
18061 TYPE_NAME (range_type) = name;
18062
18063 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18064 if (attr != nullptr)
18065 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18066
18067 maybe_set_alignment (cu, die, range_type);
18068
18069 set_die_type (die, range_type, cu);
18070
18071 /* set_die_type should be already done. */
18072 set_descriptive_type (range_type, die, cu);
18073
18074 return range_type;
18075 }
18076
18077 static struct type *
18078 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18079 {
18080 struct type *type;
18081
18082 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18083 NULL);
18084 TYPE_NAME (type) = dwarf2_name (die, cu);
18085
18086 /* In Ada, an unspecified type is typically used when the description
18087 of the type is deferred to a different unit. When encountering
18088 such a type, we treat it as a stub, and try to resolve it later on,
18089 when needed. */
18090 if (cu->language == language_ada)
18091 TYPE_STUB (type) = 1;
18092
18093 return set_die_type (die, type, cu);
18094 }
18095
18096 /* Read a single die and all its descendents. Set the die's sibling
18097 field to NULL; set other fields in the die correctly, and set all
18098 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18099 location of the info_ptr after reading all of those dies. PARENT
18100 is the parent of the die in question. */
18101
18102 static struct die_info *
18103 read_die_and_children (const struct die_reader_specs *reader,
18104 const gdb_byte *info_ptr,
18105 const gdb_byte **new_info_ptr,
18106 struct die_info *parent)
18107 {
18108 struct die_info *die;
18109 const gdb_byte *cur_ptr;
18110 int has_children;
18111
18112 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18113 if (die == NULL)
18114 {
18115 *new_info_ptr = cur_ptr;
18116 return NULL;
18117 }
18118 store_in_ref_table (die, reader->cu);
18119
18120 if (has_children)
18121 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18122 else
18123 {
18124 die->child = NULL;
18125 *new_info_ptr = cur_ptr;
18126 }
18127
18128 die->sibling = NULL;
18129 die->parent = parent;
18130 return die;
18131 }
18132
18133 /* Read a die, all of its descendents, and all of its siblings; set
18134 all of the fields of all of the dies correctly. Arguments are as
18135 in read_die_and_children. */
18136
18137 static struct die_info *
18138 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18139 const gdb_byte *info_ptr,
18140 const gdb_byte **new_info_ptr,
18141 struct die_info *parent)
18142 {
18143 struct die_info *first_die, *last_sibling;
18144 const gdb_byte *cur_ptr;
18145
18146 cur_ptr = info_ptr;
18147 first_die = last_sibling = NULL;
18148
18149 while (1)
18150 {
18151 struct die_info *die
18152 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18153
18154 if (die == NULL)
18155 {
18156 *new_info_ptr = cur_ptr;
18157 return first_die;
18158 }
18159
18160 if (!first_die)
18161 first_die = die;
18162 else
18163 last_sibling->sibling = die;
18164
18165 last_sibling = die;
18166 }
18167 }
18168
18169 /* Read a die, all of its descendents, and all of its siblings; set
18170 all of the fields of all of the dies correctly. Arguments are as
18171 in read_die_and_children.
18172 This the main entry point for reading a DIE and all its children. */
18173
18174 static struct die_info *
18175 read_die_and_siblings (const struct die_reader_specs *reader,
18176 const gdb_byte *info_ptr,
18177 const gdb_byte **new_info_ptr,
18178 struct die_info *parent)
18179 {
18180 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18181 new_info_ptr, parent);
18182
18183 if (dwarf_die_debug)
18184 {
18185 fprintf_unfiltered (gdb_stdlog,
18186 "Read die from %s@0x%x of %s:\n",
18187 get_section_name (reader->die_section),
18188 (unsigned) (info_ptr - reader->die_section->buffer),
18189 bfd_get_filename (reader->abfd));
18190 dump_die (die, dwarf_die_debug);
18191 }
18192
18193 return die;
18194 }
18195
18196 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18197 attributes.
18198 The caller is responsible for filling in the extra attributes
18199 and updating (*DIEP)->num_attrs.
18200 Set DIEP to point to a newly allocated die with its information,
18201 except for its child, sibling, and parent fields.
18202 Set HAS_CHILDREN to tell whether the die has children or not. */
18203
18204 static const gdb_byte *
18205 read_full_die_1 (const struct die_reader_specs *reader,
18206 struct die_info **diep, const gdb_byte *info_ptr,
18207 int *has_children, int num_extra_attrs)
18208 {
18209 unsigned int abbrev_number, bytes_read, i;
18210 struct abbrev_info *abbrev;
18211 struct die_info *die;
18212 struct dwarf2_cu *cu = reader->cu;
18213 bfd *abfd = reader->abfd;
18214
18215 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18216 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18217 info_ptr += bytes_read;
18218 if (!abbrev_number)
18219 {
18220 *diep = NULL;
18221 *has_children = 0;
18222 return info_ptr;
18223 }
18224
18225 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18226 if (!abbrev)
18227 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18228 abbrev_number,
18229 bfd_get_filename (abfd));
18230
18231 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18232 die->sect_off = sect_off;
18233 die->tag = abbrev->tag;
18234 die->abbrev = abbrev_number;
18235
18236 /* Make the result usable.
18237 The caller needs to update num_attrs after adding the extra
18238 attributes. */
18239 die->num_attrs = abbrev->num_attrs;
18240
18241 for (i = 0; i < abbrev->num_attrs; ++i)
18242 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18243 info_ptr);
18244
18245 *diep = die;
18246 *has_children = abbrev->has_children;
18247 return info_ptr;
18248 }
18249
18250 /* Read a die and all its attributes.
18251 Set DIEP to point to a newly allocated die with its information,
18252 except for its child, sibling, and parent fields.
18253 Set HAS_CHILDREN to tell whether the die has children or not. */
18254
18255 static const gdb_byte *
18256 read_full_die (const struct die_reader_specs *reader,
18257 struct die_info **diep, const gdb_byte *info_ptr,
18258 int *has_children)
18259 {
18260 const gdb_byte *result;
18261
18262 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18263
18264 if (dwarf_die_debug)
18265 {
18266 fprintf_unfiltered (gdb_stdlog,
18267 "Read die from %s@0x%x of %s:\n",
18268 get_section_name (reader->die_section),
18269 (unsigned) (info_ptr - reader->die_section->buffer),
18270 bfd_get_filename (reader->abfd));
18271 dump_die (*diep, dwarf_die_debug);
18272 }
18273
18274 return result;
18275 }
18276 \f
18277 /* Abbreviation tables.
18278
18279 In DWARF version 2, the description of the debugging information is
18280 stored in a separate .debug_abbrev section. Before we read any
18281 dies from a section we read in all abbreviations and install them
18282 in a hash table. */
18283
18284 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18285
18286 struct abbrev_info *
18287 abbrev_table::alloc_abbrev ()
18288 {
18289 struct abbrev_info *abbrev;
18290
18291 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18292 memset (abbrev, 0, sizeof (struct abbrev_info));
18293
18294 return abbrev;
18295 }
18296
18297 /* Add an abbreviation to the table. */
18298
18299 void
18300 abbrev_table::add_abbrev (unsigned int abbrev_number,
18301 struct abbrev_info *abbrev)
18302 {
18303 unsigned int hash_number;
18304
18305 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18306 abbrev->next = m_abbrevs[hash_number];
18307 m_abbrevs[hash_number] = abbrev;
18308 }
18309
18310 /* Look up an abbrev in the table.
18311 Returns NULL if the abbrev is not found. */
18312
18313 struct abbrev_info *
18314 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18315 {
18316 unsigned int hash_number;
18317 struct abbrev_info *abbrev;
18318
18319 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18320 abbrev = m_abbrevs[hash_number];
18321
18322 while (abbrev)
18323 {
18324 if (abbrev->number == abbrev_number)
18325 return abbrev;
18326 abbrev = abbrev->next;
18327 }
18328 return NULL;
18329 }
18330
18331 /* Read in an abbrev table. */
18332
18333 static abbrev_table_up
18334 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18335 struct dwarf2_section_info *section,
18336 sect_offset sect_off)
18337 {
18338 struct objfile *objfile = dwarf2_per_objfile->objfile;
18339 bfd *abfd = get_section_bfd_owner (section);
18340 const gdb_byte *abbrev_ptr;
18341 struct abbrev_info *cur_abbrev;
18342 unsigned int abbrev_number, bytes_read, abbrev_name;
18343 unsigned int abbrev_form;
18344 struct attr_abbrev *cur_attrs;
18345 unsigned int allocated_attrs;
18346
18347 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18348
18349 dwarf2_read_section (objfile, section);
18350 abbrev_ptr = section->buffer + to_underlying (sect_off);
18351 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18352 abbrev_ptr += bytes_read;
18353
18354 allocated_attrs = ATTR_ALLOC_CHUNK;
18355 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18356
18357 /* Loop until we reach an abbrev number of 0. */
18358 while (abbrev_number)
18359 {
18360 cur_abbrev = abbrev_table->alloc_abbrev ();
18361
18362 /* read in abbrev header */
18363 cur_abbrev->number = abbrev_number;
18364 cur_abbrev->tag
18365 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18366 abbrev_ptr += bytes_read;
18367 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18368 abbrev_ptr += 1;
18369
18370 /* now read in declarations */
18371 for (;;)
18372 {
18373 LONGEST implicit_const;
18374
18375 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18376 abbrev_ptr += bytes_read;
18377 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18378 abbrev_ptr += bytes_read;
18379 if (abbrev_form == DW_FORM_implicit_const)
18380 {
18381 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18382 &bytes_read);
18383 abbrev_ptr += bytes_read;
18384 }
18385 else
18386 {
18387 /* Initialize it due to a false compiler warning. */
18388 implicit_const = -1;
18389 }
18390
18391 if (abbrev_name == 0)
18392 break;
18393
18394 if (cur_abbrev->num_attrs == allocated_attrs)
18395 {
18396 allocated_attrs += ATTR_ALLOC_CHUNK;
18397 cur_attrs
18398 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18399 }
18400
18401 cur_attrs[cur_abbrev->num_attrs].name
18402 = (enum dwarf_attribute) abbrev_name;
18403 cur_attrs[cur_abbrev->num_attrs].form
18404 = (enum dwarf_form) abbrev_form;
18405 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18406 ++cur_abbrev->num_attrs;
18407 }
18408
18409 cur_abbrev->attrs =
18410 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18411 cur_abbrev->num_attrs);
18412 memcpy (cur_abbrev->attrs, cur_attrs,
18413 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18414
18415 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18416
18417 /* Get next abbreviation.
18418 Under Irix6 the abbreviations for a compilation unit are not
18419 always properly terminated with an abbrev number of 0.
18420 Exit loop if we encounter an abbreviation which we have
18421 already read (which means we are about to read the abbreviations
18422 for the next compile unit) or if the end of the abbreviation
18423 table is reached. */
18424 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18425 break;
18426 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18427 abbrev_ptr += bytes_read;
18428 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18429 break;
18430 }
18431
18432 xfree (cur_attrs);
18433 return abbrev_table;
18434 }
18435
18436 /* Returns nonzero if TAG represents a type that we might generate a partial
18437 symbol for. */
18438
18439 static int
18440 is_type_tag_for_partial (int tag)
18441 {
18442 switch (tag)
18443 {
18444 #if 0
18445 /* Some types that would be reasonable to generate partial symbols for,
18446 that we don't at present. */
18447 case DW_TAG_array_type:
18448 case DW_TAG_file_type:
18449 case DW_TAG_ptr_to_member_type:
18450 case DW_TAG_set_type:
18451 case DW_TAG_string_type:
18452 case DW_TAG_subroutine_type:
18453 #endif
18454 case DW_TAG_base_type:
18455 case DW_TAG_class_type:
18456 case DW_TAG_interface_type:
18457 case DW_TAG_enumeration_type:
18458 case DW_TAG_structure_type:
18459 case DW_TAG_subrange_type:
18460 case DW_TAG_typedef:
18461 case DW_TAG_union_type:
18462 return 1;
18463 default:
18464 return 0;
18465 }
18466 }
18467
18468 /* Load all DIEs that are interesting for partial symbols into memory. */
18469
18470 static struct partial_die_info *
18471 load_partial_dies (const struct die_reader_specs *reader,
18472 const gdb_byte *info_ptr, int building_psymtab)
18473 {
18474 struct dwarf2_cu *cu = reader->cu;
18475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18476 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18477 unsigned int bytes_read;
18478 unsigned int load_all = 0;
18479 int nesting_level = 1;
18480
18481 parent_die = NULL;
18482 last_die = NULL;
18483
18484 gdb_assert (cu->per_cu != NULL);
18485 if (cu->per_cu->load_all_dies)
18486 load_all = 1;
18487
18488 cu->partial_dies
18489 = htab_create_alloc_ex (cu->header.length / 12,
18490 partial_die_hash,
18491 partial_die_eq,
18492 NULL,
18493 &cu->comp_unit_obstack,
18494 hashtab_obstack_allocate,
18495 dummy_obstack_deallocate);
18496
18497 while (1)
18498 {
18499 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18500
18501 /* A NULL abbrev means the end of a series of children. */
18502 if (abbrev == NULL)
18503 {
18504 if (--nesting_level == 0)
18505 return first_die;
18506
18507 info_ptr += bytes_read;
18508 last_die = parent_die;
18509 parent_die = parent_die->die_parent;
18510 continue;
18511 }
18512
18513 /* Check for template arguments. We never save these; if
18514 they're seen, we just mark the parent, and go on our way. */
18515 if (parent_die != NULL
18516 && cu->language == language_cplus
18517 && (abbrev->tag == DW_TAG_template_type_param
18518 || abbrev->tag == DW_TAG_template_value_param))
18519 {
18520 parent_die->has_template_arguments = 1;
18521
18522 if (!load_all)
18523 {
18524 /* We don't need a partial DIE for the template argument. */
18525 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18526 continue;
18527 }
18528 }
18529
18530 /* We only recurse into c++ subprograms looking for template arguments.
18531 Skip their other children. */
18532 if (!load_all
18533 && cu->language == language_cplus
18534 && parent_die != NULL
18535 && parent_die->tag == DW_TAG_subprogram)
18536 {
18537 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18538 continue;
18539 }
18540
18541 /* Check whether this DIE is interesting enough to save. Normally
18542 we would not be interested in members here, but there may be
18543 later variables referencing them via DW_AT_specification (for
18544 static members). */
18545 if (!load_all
18546 && !is_type_tag_for_partial (abbrev->tag)
18547 && abbrev->tag != DW_TAG_constant
18548 && abbrev->tag != DW_TAG_enumerator
18549 && abbrev->tag != DW_TAG_subprogram
18550 && abbrev->tag != DW_TAG_inlined_subroutine
18551 && abbrev->tag != DW_TAG_lexical_block
18552 && abbrev->tag != DW_TAG_variable
18553 && abbrev->tag != DW_TAG_namespace
18554 && abbrev->tag != DW_TAG_module
18555 && abbrev->tag != DW_TAG_member
18556 && abbrev->tag != DW_TAG_imported_unit
18557 && abbrev->tag != DW_TAG_imported_declaration)
18558 {
18559 /* Otherwise we skip to the next sibling, if any. */
18560 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18561 continue;
18562 }
18563
18564 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18565 abbrev);
18566
18567 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18568
18569 /* This two-pass algorithm for processing partial symbols has a
18570 high cost in cache pressure. Thus, handle some simple cases
18571 here which cover the majority of C partial symbols. DIEs
18572 which neither have specification tags in them, nor could have
18573 specification tags elsewhere pointing at them, can simply be
18574 processed and discarded.
18575
18576 This segment is also optional; scan_partial_symbols and
18577 add_partial_symbol will handle these DIEs if we chain
18578 them in normally. When compilers which do not emit large
18579 quantities of duplicate debug information are more common,
18580 this code can probably be removed. */
18581
18582 /* Any complete simple types at the top level (pretty much all
18583 of them, for a language without namespaces), can be processed
18584 directly. */
18585 if (parent_die == NULL
18586 && pdi.has_specification == 0
18587 && pdi.is_declaration == 0
18588 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18589 || pdi.tag == DW_TAG_base_type
18590 || pdi.tag == DW_TAG_subrange_type))
18591 {
18592 if (building_psymtab && pdi.name != NULL)
18593 add_psymbol_to_list (pdi.name, false,
18594 VAR_DOMAIN, LOC_TYPEDEF, -1,
18595 psymbol_placement::STATIC,
18596 0, cu->language, objfile);
18597 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18598 continue;
18599 }
18600
18601 /* The exception for DW_TAG_typedef with has_children above is
18602 a workaround of GCC PR debug/47510. In the case of this complaint
18603 type_name_or_error will error on such types later.
18604
18605 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18606 it could not find the child DIEs referenced later, this is checked
18607 above. In correct DWARF DW_TAG_typedef should have no children. */
18608
18609 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18610 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18611 "- DIE at %s [in module %s]"),
18612 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18613
18614 /* If we're at the second level, and we're an enumerator, and
18615 our parent has no specification (meaning possibly lives in a
18616 namespace elsewhere), then we can add the partial symbol now
18617 instead of queueing it. */
18618 if (pdi.tag == DW_TAG_enumerator
18619 && parent_die != NULL
18620 && parent_die->die_parent == NULL
18621 && parent_die->tag == DW_TAG_enumeration_type
18622 && parent_die->has_specification == 0)
18623 {
18624 if (pdi.name == NULL)
18625 complaint (_("malformed enumerator DIE ignored"));
18626 else if (building_psymtab)
18627 add_psymbol_to_list (pdi.name, false,
18628 VAR_DOMAIN, LOC_CONST, -1,
18629 cu->language == language_cplus
18630 ? psymbol_placement::GLOBAL
18631 : psymbol_placement::STATIC,
18632 0, cu->language, objfile);
18633
18634 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18635 continue;
18636 }
18637
18638 struct partial_die_info *part_die
18639 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18640
18641 /* We'll save this DIE so link it in. */
18642 part_die->die_parent = parent_die;
18643 part_die->die_sibling = NULL;
18644 part_die->die_child = NULL;
18645
18646 if (last_die && last_die == parent_die)
18647 last_die->die_child = part_die;
18648 else if (last_die)
18649 last_die->die_sibling = part_die;
18650
18651 last_die = part_die;
18652
18653 if (first_die == NULL)
18654 first_die = part_die;
18655
18656 /* Maybe add the DIE to the hash table. Not all DIEs that we
18657 find interesting need to be in the hash table, because we
18658 also have the parent/sibling/child chains; only those that we
18659 might refer to by offset later during partial symbol reading.
18660
18661 For now this means things that might have be the target of a
18662 DW_AT_specification, DW_AT_abstract_origin, or
18663 DW_AT_extension. DW_AT_extension will refer only to
18664 namespaces; DW_AT_abstract_origin refers to functions (and
18665 many things under the function DIE, but we do not recurse
18666 into function DIEs during partial symbol reading) and
18667 possibly variables as well; DW_AT_specification refers to
18668 declarations. Declarations ought to have the DW_AT_declaration
18669 flag. It happens that GCC forgets to put it in sometimes, but
18670 only for functions, not for types.
18671
18672 Adding more things than necessary to the hash table is harmless
18673 except for the performance cost. Adding too few will result in
18674 wasted time in find_partial_die, when we reread the compilation
18675 unit with load_all_dies set. */
18676
18677 if (load_all
18678 || abbrev->tag == DW_TAG_constant
18679 || abbrev->tag == DW_TAG_subprogram
18680 || abbrev->tag == DW_TAG_variable
18681 || abbrev->tag == DW_TAG_namespace
18682 || part_die->is_declaration)
18683 {
18684 void **slot;
18685
18686 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18687 to_underlying (part_die->sect_off),
18688 INSERT);
18689 *slot = part_die;
18690 }
18691
18692 /* For some DIEs we want to follow their children (if any). For C
18693 we have no reason to follow the children of structures; for other
18694 languages we have to, so that we can get at method physnames
18695 to infer fully qualified class names, for DW_AT_specification,
18696 and for C++ template arguments. For C++, we also look one level
18697 inside functions to find template arguments (if the name of the
18698 function does not already contain the template arguments).
18699
18700 For Ada and Fortran, we need to scan the children of subprograms
18701 and lexical blocks as well because these languages allow the
18702 definition of nested entities that could be interesting for the
18703 debugger, such as nested subprograms for instance. */
18704 if (last_die->has_children
18705 && (load_all
18706 || last_die->tag == DW_TAG_namespace
18707 || last_die->tag == DW_TAG_module
18708 || last_die->tag == DW_TAG_enumeration_type
18709 || (cu->language == language_cplus
18710 && last_die->tag == DW_TAG_subprogram
18711 && (last_die->name == NULL
18712 || strchr (last_die->name, '<') == NULL))
18713 || (cu->language != language_c
18714 && (last_die->tag == DW_TAG_class_type
18715 || last_die->tag == DW_TAG_interface_type
18716 || last_die->tag == DW_TAG_structure_type
18717 || last_die->tag == DW_TAG_union_type))
18718 || ((cu->language == language_ada
18719 || cu->language == language_fortran)
18720 && (last_die->tag == DW_TAG_subprogram
18721 || last_die->tag == DW_TAG_lexical_block))))
18722 {
18723 nesting_level++;
18724 parent_die = last_die;
18725 continue;
18726 }
18727
18728 /* Otherwise we skip to the next sibling, if any. */
18729 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18730
18731 /* Back to the top, do it again. */
18732 }
18733 }
18734
18735 partial_die_info::partial_die_info (sect_offset sect_off_,
18736 struct abbrev_info *abbrev)
18737 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18738 {
18739 }
18740
18741 /* Read a minimal amount of information into the minimal die structure.
18742 INFO_PTR should point just after the initial uleb128 of a DIE. */
18743
18744 const gdb_byte *
18745 partial_die_info::read (const struct die_reader_specs *reader,
18746 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18747 {
18748 struct dwarf2_cu *cu = reader->cu;
18749 struct dwarf2_per_objfile *dwarf2_per_objfile
18750 = cu->per_cu->dwarf2_per_objfile;
18751 unsigned int i;
18752 int has_low_pc_attr = 0;
18753 int has_high_pc_attr = 0;
18754 int high_pc_relative = 0;
18755
18756 for (i = 0; i < abbrev.num_attrs; ++i)
18757 {
18758 struct attribute attr;
18759
18760 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18761
18762 /* Store the data if it is of an attribute we want to keep in a
18763 partial symbol table. */
18764 switch (attr.name)
18765 {
18766 case DW_AT_name:
18767 switch (tag)
18768 {
18769 case DW_TAG_compile_unit:
18770 case DW_TAG_partial_unit:
18771 case DW_TAG_type_unit:
18772 /* Compilation units have a DW_AT_name that is a filename, not
18773 a source language identifier. */
18774 case DW_TAG_enumeration_type:
18775 case DW_TAG_enumerator:
18776 /* These tags always have simple identifiers already; no need
18777 to canonicalize them. */
18778 name = DW_STRING (&attr);
18779 break;
18780 default:
18781 {
18782 struct objfile *objfile = dwarf2_per_objfile->objfile;
18783
18784 name
18785 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18786 &objfile->per_bfd->storage_obstack);
18787 }
18788 break;
18789 }
18790 break;
18791 case DW_AT_linkage_name:
18792 case DW_AT_MIPS_linkage_name:
18793 /* Note that both forms of linkage name might appear. We
18794 assume they will be the same, and we only store the last
18795 one we see. */
18796 linkage_name = DW_STRING (&attr);
18797 break;
18798 case DW_AT_low_pc:
18799 has_low_pc_attr = 1;
18800 lowpc = attr_value_as_address (&attr);
18801 break;
18802 case DW_AT_high_pc:
18803 has_high_pc_attr = 1;
18804 highpc = attr_value_as_address (&attr);
18805 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18806 high_pc_relative = 1;
18807 break;
18808 case DW_AT_location:
18809 /* Support the .debug_loc offsets. */
18810 if (attr_form_is_block (&attr))
18811 {
18812 d.locdesc = DW_BLOCK (&attr);
18813 }
18814 else if (attr_form_is_section_offset (&attr))
18815 {
18816 dwarf2_complex_location_expr_complaint ();
18817 }
18818 else
18819 {
18820 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18821 "partial symbol information");
18822 }
18823 break;
18824 case DW_AT_external:
18825 is_external = DW_UNSND (&attr);
18826 break;
18827 case DW_AT_declaration:
18828 is_declaration = DW_UNSND (&attr);
18829 break;
18830 case DW_AT_type:
18831 has_type = 1;
18832 break;
18833 case DW_AT_abstract_origin:
18834 case DW_AT_specification:
18835 case DW_AT_extension:
18836 has_specification = 1;
18837 spec_offset = dwarf2_get_ref_die_offset (&attr);
18838 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18839 || cu->per_cu->is_dwz);
18840 break;
18841 case DW_AT_sibling:
18842 /* Ignore absolute siblings, they might point outside of
18843 the current compile unit. */
18844 if (attr.form == DW_FORM_ref_addr)
18845 complaint (_("ignoring absolute DW_AT_sibling"));
18846 else
18847 {
18848 const gdb_byte *buffer = reader->buffer;
18849 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18850 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18851
18852 if (sibling_ptr < info_ptr)
18853 complaint (_("DW_AT_sibling points backwards"));
18854 else if (sibling_ptr > reader->buffer_end)
18855 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18856 else
18857 sibling = sibling_ptr;
18858 }
18859 break;
18860 case DW_AT_byte_size:
18861 has_byte_size = 1;
18862 break;
18863 case DW_AT_const_value:
18864 has_const_value = 1;
18865 break;
18866 case DW_AT_calling_convention:
18867 /* DWARF doesn't provide a way to identify a program's source-level
18868 entry point. DW_AT_calling_convention attributes are only meant
18869 to describe functions' calling conventions.
18870
18871 However, because it's a necessary piece of information in
18872 Fortran, and before DWARF 4 DW_CC_program was the only
18873 piece of debugging information whose definition refers to
18874 a 'main program' at all, several compilers marked Fortran
18875 main programs with DW_CC_program --- even when those
18876 functions use the standard calling conventions.
18877
18878 Although DWARF now specifies a way to provide this
18879 information, we support this practice for backward
18880 compatibility. */
18881 if (DW_UNSND (&attr) == DW_CC_program
18882 && cu->language == language_fortran)
18883 main_subprogram = 1;
18884 break;
18885 case DW_AT_inline:
18886 if (DW_UNSND (&attr) == DW_INL_inlined
18887 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18888 may_be_inlined = 1;
18889 break;
18890
18891 case DW_AT_import:
18892 if (tag == DW_TAG_imported_unit)
18893 {
18894 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18895 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18896 || cu->per_cu->is_dwz);
18897 }
18898 break;
18899
18900 case DW_AT_main_subprogram:
18901 main_subprogram = DW_UNSND (&attr);
18902 break;
18903
18904 case DW_AT_ranges:
18905 {
18906 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18907 but that requires a full DIE, so instead we just
18908 reimplement it. */
18909 int need_ranges_base = tag != DW_TAG_compile_unit;
18910 unsigned int ranges_offset = (DW_UNSND (&attr)
18911 + (need_ranges_base
18912 ? cu->ranges_base
18913 : 0));
18914
18915 /* Value of the DW_AT_ranges attribute is the offset in the
18916 .debug_ranges section. */
18917 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18918 nullptr))
18919 has_pc_info = 1;
18920 }
18921 break;
18922
18923 default:
18924 break;
18925 }
18926 }
18927
18928 /* For Ada, if both the name and the linkage name appear, we prefer
18929 the latter. This lets "catch exception" work better, regardless
18930 of the order in which the name and linkage name were emitted.
18931 Really, though, this is just a workaround for the fact that gdb
18932 doesn't store both the name and the linkage name. */
18933 if (cu->language == language_ada && linkage_name != nullptr)
18934 name = linkage_name;
18935
18936 if (high_pc_relative)
18937 highpc += lowpc;
18938
18939 if (has_low_pc_attr && has_high_pc_attr)
18940 {
18941 /* When using the GNU linker, .gnu.linkonce. sections are used to
18942 eliminate duplicate copies of functions and vtables and such.
18943 The linker will arbitrarily choose one and discard the others.
18944 The AT_*_pc values for such functions refer to local labels in
18945 these sections. If the section from that file was discarded, the
18946 labels are not in the output, so the relocs get a value of 0.
18947 If this is a discarded function, mark the pc bounds as invalid,
18948 so that GDB will ignore it. */
18949 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18950 {
18951 struct objfile *objfile = dwarf2_per_objfile->objfile;
18952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18953
18954 complaint (_("DW_AT_low_pc %s is zero "
18955 "for DIE at %s [in module %s]"),
18956 paddress (gdbarch, lowpc),
18957 sect_offset_str (sect_off),
18958 objfile_name (objfile));
18959 }
18960 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18961 else if (lowpc >= highpc)
18962 {
18963 struct objfile *objfile = dwarf2_per_objfile->objfile;
18964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18965
18966 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18967 "for DIE at %s [in module %s]"),
18968 paddress (gdbarch, lowpc),
18969 paddress (gdbarch, highpc),
18970 sect_offset_str (sect_off),
18971 objfile_name (objfile));
18972 }
18973 else
18974 has_pc_info = 1;
18975 }
18976
18977 return info_ptr;
18978 }
18979
18980 /* Find a cached partial DIE at OFFSET in CU. */
18981
18982 struct partial_die_info *
18983 dwarf2_cu::find_partial_die (sect_offset sect_off)
18984 {
18985 struct partial_die_info *lookup_die = NULL;
18986 struct partial_die_info part_die (sect_off);
18987
18988 lookup_die = ((struct partial_die_info *)
18989 htab_find_with_hash (partial_dies, &part_die,
18990 to_underlying (sect_off)));
18991
18992 return lookup_die;
18993 }
18994
18995 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18996 except in the case of .debug_types DIEs which do not reference
18997 outside their CU (they do however referencing other types via
18998 DW_FORM_ref_sig8). */
18999
19000 static const struct cu_partial_die_info
19001 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19002 {
19003 struct dwarf2_per_objfile *dwarf2_per_objfile
19004 = cu->per_cu->dwarf2_per_objfile;
19005 struct objfile *objfile = dwarf2_per_objfile->objfile;
19006 struct dwarf2_per_cu_data *per_cu = NULL;
19007 struct partial_die_info *pd = NULL;
19008
19009 if (offset_in_dwz == cu->per_cu->is_dwz
19010 && offset_in_cu_p (&cu->header, sect_off))
19011 {
19012 pd = cu->find_partial_die (sect_off);
19013 if (pd != NULL)
19014 return { cu, pd };
19015 /* We missed recording what we needed.
19016 Load all dies and try again. */
19017 per_cu = cu->per_cu;
19018 }
19019 else
19020 {
19021 /* TUs don't reference other CUs/TUs (except via type signatures). */
19022 if (cu->per_cu->is_debug_types)
19023 {
19024 error (_("Dwarf Error: Type Unit at offset %s contains"
19025 " external reference to offset %s [in module %s].\n"),
19026 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19027 bfd_get_filename (objfile->obfd));
19028 }
19029 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19030 dwarf2_per_objfile);
19031
19032 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19033 load_partial_comp_unit (per_cu);
19034
19035 per_cu->cu->last_used = 0;
19036 pd = per_cu->cu->find_partial_die (sect_off);
19037 }
19038
19039 /* If we didn't find it, and not all dies have been loaded,
19040 load them all and try again. */
19041
19042 if (pd == NULL && per_cu->load_all_dies == 0)
19043 {
19044 per_cu->load_all_dies = 1;
19045
19046 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19047 THIS_CU->cu may already be in use. So we can't just free it and
19048 replace its DIEs with the ones we read in. Instead, we leave those
19049 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19050 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19051 set. */
19052 load_partial_comp_unit (per_cu);
19053
19054 pd = per_cu->cu->find_partial_die (sect_off);
19055 }
19056
19057 if (pd == NULL)
19058 internal_error (__FILE__, __LINE__,
19059 _("could not find partial DIE %s "
19060 "in cache [from module %s]\n"),
19061 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19062 return { per_cu->cu, pd };
19063 }
19064
19065 /* See if we can figure out if the class lives in a namespace. We do
19066 this by looking for a member function; its demangled name will
19067 contain namespace info, if there is any. */
19068
19069 static void
19070 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19071 struct dwarf2_cu *cu)
19072 {
19073 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19074 what template types look like, because the demangler
19075 frequently doesn't give the same name as the debug info. We
19076 could fix this by only using the demangled name to get the
19077 prefix (but see comment in read_structure_type). */
19078
19079 struct partial_die_info *real_pdi;
19080 struct partial_die_info *child_pdi;
19081
19082 /* If this DIE (this DIE's specification, if any) has a parent, then
19083 we should not do this. We'll prepend the parent's fully qualified
19084 name when we create the partial symbol. */
19085
19086 real_pdi = struct_pdi;
19087 while (real_pdi->has_specification)
19088 {
19089 auto res = find_partial_die (real_pdi->spec_offset,
19090 real_pdi->spec_is_dwz, cu);
19091 real_pdi = res.pdi;
19092 cu = res.cu;
19093 }
19094
19095 if (real_pdi->die_parent != NULL)
19096 return;
19097
19098 for (child_pdi = struct_pdi->die_child;
19099 child_pdi != NULL;
19100 child_pdi = child_pdi->die_sibling)
19101 {
19102 if (child_pdi->tag == DW_TAG_subprogram
19103 && child_pdi->linkage_name != NULL)
19104 {
19105 char *actual_class_name
19106 = language_class_name_from_physname (cu->language_defn,
19107 child_pdi->linkage_name);
19108 if (actual_class_name != NULL)
19109 {
19110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19111 struct_pdi->name
19112 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19113 actual_class_name);
19114 xfree (actual_class_name);
19115 }
19116 break;
19117 }
19118 }
19119 }
19120
19121 void
19122 partial_die_info::fixup (struct dwarf2_cu *cu)
19123 {
19124 /* Once we've fixed up a die, there's no point in doing so again.
19125 This also avoids a memory leak if we were to call
19126 guess_partial_die_structure_name multiple times. */
19127 if (fixup_called)
19128 return;
19129
19130 /* If we found a reference attribute and the DIE has no name, try
19131 to find a name in the referred to DIE. */
19132
19133 if (name == NULL && has_specification)
19134 {
19135 struct partial_die_info *spec_die;
19136
19137 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19138 spec_die = res.pdi;
19139 cu = res.cu;
19140
19141 spec_die->fixup (cu);
19142
19143 if (spec_die->name)
19144 {
19145 name = spec_die->name;
19146
19147 /* Copy DW_AT_external attribute if it is set. */
19148 if (spec_die->is_external)
19149 is_external = spec_die->is_external;
19150 }
19151 }
19152
19153 /* Set default names for some unnamed DIEs. */
19154
19155 if (name == NULL && tag == DW_TAG_namespace)
19156 name = CP_ANONYMOUS_NAMESPACE_STR;
19157
19158 /* If there is no parent die to provide a namespace, and there are
19159 children, see if we can determine the namespace from their linkage
19160 name. */
19161 if (cu->language == language_cplus
19162 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19163 && die_parent == NULL
19164 && has_children
19165 && (tag == DW_TAG_class_type
19166 || tag == DW_TAG_structure_type
19167 || tag == DW_TAG_union_type))
19168 guess_partial_die_structure_name (this, cu);
19169
19170 /* GCC might emit a nameless struct or union that has a linkage
19171 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19172 if (name == NULL
19173 && (tag == DW_TAG_class_type
19174 || tag == DW_TAG_interface_type
19175 || tag == DW_TAG_structure_type
19176 || tag == DW_TAG_union_type)
19177 && linkage_name != NULL)
19178 {
19179 char *demangled;
19180
19181 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19182 if (demangled)
19183 {
19184 const char *base;
19185
19186 /* Strip any leading namespaces/classes, keep only the base name.
19187 DW_AT_name for named DIEs does not contain the prefixes. */
19188 base = strrchr (demangled, ':');
19189 if (base && base > demangled && base[-1] == ':')
19190 base++;
19191 else
19192 base = demangled;
19193
19194 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19195 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19196 xfree (demangled);
19197 }
19198 }
19199
19200 fixup_called = 1;
19201 }
19202
19203 /* Read an attribute value described by an attribute form. */
19204
19205 static const gdb_byte *
19206 read_attribute_value (const struct die_reader_specs *reader,
19207 struct attribute *attr, unsigned form,
19208 LONGEST implicit_const, const gdb_byte *info_ptr)
19209 {
19210 struct dwarf2_cu *cu = reader->cu;
19211 struct dwarf2_per_objfile *dwarf2_per_objfile
19212 = cu->per_cu->dwarf2_per_objfile;
19213 struct objfile *objfile = dwarf2_per_objfile->objfile;
19214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19215 bfd *abfd = reader->abfd;
19216 struct comp_unit_head *cu_header = &cu->header;
19217 unsigned int bytes_read;
19218 struct dwarf_block *blk;
19219
19220 attr->form = (enum dwarf_form) form;
19221 switch (form)
19222 {
19223 case DW_FORM_ref_addr:
19224 if (cu->header.version == 2)
19225 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19226 else
19227 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19228 &cu->header, &bytes_read);
19229 info_ptr += bytes_read;
19230 break;
19231 case DW_FORM_GNU_ref_alt:
19232 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19233 info_ptr += bytes_read;
19234 break;
19235 case DW_FORM_addr:
19236 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19237 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19238 info_ptr += bytes_read;
19239 break;
19240 case DW_FORM_block2:
19241 blk = dwarf_alloc_block (cu);
19242 blk->size = read_2_bytes (abfd, info_ptr);
19243 info_ptr += 2;
19244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19245 info_ptr += blk->size;
19246 DW_BLOCK (attr) = blk;
19247 break;
19248 case DW_FORM_block4:
19249 blk = dwarf_alloc_block (cu);
19250 blk->size = read_4_bytes (abfd, info_ptr);
19251 info_ptr += 4;
19252 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19253 info_ptr += blk->size;
19254 DW_BLOCK (attr) = blk;
19255 break;
19256 case DW_FORM_data2:
19257 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19258 info_ptr += 2;
19259 break;
19260 case DW_FORM_data4:
19261 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19262 info_ptr += 4;
19263 break;
19264 case DW_FORM_data8:
19265 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19266 info_ptr += 8;
19267 break;
19268 case DW_FORM_data16:
19269 blk = dwarf_alloc_block (cu);
19270 blk->size = 16;
19271 blk->data = read_n_bytes (abfd, info_ptr, 16);
19272 info_ptr += 16;
19273 DW_BLOCK (attr) = blk;
19274 break;
19275 case DW_FORM_sec_offset:
19276 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19277 info_ptr += bytes_read;
19278 break;
19279 case DW_FORM_string:
19280 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19281 DW_STRING_IS_CANONICAL (attr) = 0;
19282 info_ptr += bytes_read;
19283 break;
19284 case DW_FORM_strp:
19285 if (!cu->per_cu->is_dwz)
19286 {
19287 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19288 abfd, info_ptr, cu_header,
19289 &bytes_read);
19290 DW_STRING_IS_CANONICAL (attr) = 0;
19291 info_ptr += bytes_read;
19292 break;
19293 }
19294 /* FALLTHROUGH */
19295 case DW_FORM_line_strp:
19296 if (!cu->per_cu->is_dwz)
19297 {
19298 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19299 abfd, info_ptr,
19300 cu_header, &bytes_read);
19301 DW_STRING_IS_CANONICAL (attr) = 0;
19302 info_ptr += bytes_read;
19303 break;
19304 }
19305 /* FALLTHROUGH */
19306 case DW_FORM_GNU_strp_alt:
19307 {
19308 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19309 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19310 &bytes_read);
19311
19312 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19313 dwz, str_offset);
19314 DW_STRING_IS_CANONICAL (attr) = 0;
19315 info_ptr += bytes_read;
19316 }
19317 break;
19318 case DW_FORM_exprloc:
19319 case DW_FORM_block:
19320 blk = dwarf_alloc_block (cu);
19321 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19322 info_ptr += bytes_read;
19323 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19324 info_ptr += blk->size;
19325 DW_BLOCK (attr) = blk;
19326 break;
19327 case DW_FORM_block1:
19328 blk = dwarf_alloc_block (cu);
19329 blk->size = read_1_byte (abfd, info_ptr);
19330 info_ptr += 1;
19331 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19332 info_ptr += blk->size;
19333 DW_BLOCK (attr) = blk;
19334 break;
19335 case DW_FORM_data1:
19336 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19337 info_ptr += 1;
19338 break;
19339 case DW_FORM_flag:
19340 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19341 info_ptr += 1;
19342 break;
19343 case DW_FORM_flag_present:
19344 DW_UNSND (attr) = 1;
19345 break;
19346 case DW_FORM_sdata:
19347 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19348 info_ptr += bytes_read;
19349 break;
19350 case DW_FORM_udata:
19351 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19352 info_ptr += bytes_read;
19353 break;
19354 case DW_FORM_ref1:
19355 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19356 + read_1_byte (abfd, info_ptr));
19357 info_ptr += 1;
19358 break;
19359 case DW_FORM_ref2:
19360 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19361 + read_2_bytes (abfd, info_ptr));
19362 info_ptr += 2;
19363 break;
19364 case DW_FORM_ref4:
19365 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19366 + read_4_bytes (abfd, info_ptr));
19367 info_ptr += 4;
19368 break;
19369 case DW_FORM_ref8:
19370 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19371 + read_8_bytes (abfd, info_ptr));
19372 info_ptr += 8;
19373 break;
19374 case DW_FORM_ref_sig8:
19375 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19376 info_ptr += 8;
19377 break;
19378 case DW_FORM_ref_udata:
19379 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19380 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19381 info_ptr += bytes_read;
19382 break;
19383 case DW_FORM_indirect:
19384 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19385 info_ptr += bytes_read;
19386 if (form == DW_FORM_implicit_const)
19387 {
19388 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19389 info_ptr += bytes_read;
19390 }
19391 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19392 info_ptr);
19393 break;
19394 case DW_FORM_implicit_const:
19395 DW_SND (attr) = implicit_const;
19396 break;
19397 case DW_FORM_addrx:
19398 case DW_FORM_GNU_addr_index:
19399 if (reader->dwo_file == NULL)
19400 {
19401 /* For now flag a hard error.
19402 Later we can turn this into a complaint. */
19403 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19404 dwarf_form_name (form),
19405 bfd_get_filename (abfd));
19406 }
19407 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19408 info_ptr += bytes_read;
19409 break;
19410 case DW_FORM_strx:
19411 case DW_FORM_strx1:
19412 case DW_FORM_strx2:
19413 case DW_FORM_strx3:
19414 case DW_FORM_strx4:
19415 case DW_FORM_GNU_str_index:
19416 if (reader->dwo_file == NULL)
19417 {
19418 /* For now flag a hard error.
19419 Later we can turn this into a complaint if warranted. */
19420 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19421 dwarf_form_name (form),
19422 bfd_get_filename (abfd));
19423 }
19424 {
19425 ULONGEST str_index;
19426 if (form == DW_FORM_strx1)
19427 {
19428 str_index = read_1_byte (abfd, info_ptr);
19429 info_ptr += 1;
19430 }
19431 else if (form == DW_FORM_strx2)
19432 {
19433 str_index = read_2_bytes (abfd, info_ptr);
19434 info_ptr += 2;
19435 }
19436 else if (form == DW_FORM_strx3)
19437 {
19438 str_index = read_3_bytes (abfd, info_ptr);
19439 info_ptr += 3;
19440 }
19441 else if (form == DW_FORM_strx4)
19442 {
19443 str_index = read_4_bytes (abfd, info_ptr);
19444 info_ptr += 4;
19445 }
19446 else
19447 {
19448 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19449 info_ptr += bytes_read;
19450 }
19451 DW_STRING (attr) = read_str_index (reader, str_index);
19452 DW_STRING_IS_CANONICAL (attr) = 0;
19453 }
19454 break;
19455 default:
19456 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19457 dwarf_form_name (form),
19458 bfd_get_filename (abfd));
19459 }
19460
19461 /* Super hack. */
19462 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19463 attr->form = DW_FORM_GNU_ref_alt;
19464
19465 /* We have seen instances where the compiler tried to emit a byte
19466 size attribute of -1 which ended up being encoded as an unsigned
19467 0xffffffff. Although 0xffffffff is technically a valid size value,
19468 an object of this size seems pretty unlikely so we can relatively
19469 safely treat these cases as if the size attribute was invalid and
19470 treat them as zero by default. */
19471 if (attr->name == DW_AT_byte_size
19472 && form == DW_FORM_data4
19473 && DW_UNSND (attr) >= 0xffffffff)
19474 {
19475 complaint
19476 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19477 hex_string (DW_UNSND (attr)));
19478 DW_UNSND (attr) = 0;
19479 }
19480
19481 return info_ptr;
19482 }
19483
19484 /* Read an attribute described by an abbreviated attribute. */
19485
19486 static const gdb_byte *
19487 read_attribute (const struct die_reader_specs *reader,
19488 struct attribute *attr, struct attr_abbrev *abbrev,
19489 const gdb_byte *info_ptr)
19490 {
19491 attr->name = abbrev->name;
19492 return read_attribute_value (reader, attr, abbrev->form,
19493 abbrev->implicit_const, info_ptr);
19494 }
19495
19496 /* Read dwarf information from a buffer. */
19497
19498 static unsigned int
19499 read_1_byte (bfd *abfd, const gdb_byte *buf)
19500 {
19501 return bfd_get_8 (abfd, buf);
19502 }
19503
19504 static int
19505 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19506 {
19507 return bfd_get_signed_8 (abfd, buf);
19508 }
19509
19510 static unsigned int
19511 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19512 {
19513 return bfd_get_16 (abfd, buf);
19514 }
19515
19516 static int
19517 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19518 {
19519 return bfd_get_signed_16 (abfd, buf);
19520 }
19521
19522 static unsigned int
19523 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19524 {
19525 unsigned int result = 0;
19526 for (int i = 0; i < 3; ++i)
19527 {
19528 unsigned char byte = bfd_get_8 (abfd, buf);
19529 buf++;
19530 result |= ((unsigned int) byte << (i * 8));
19531 }
19532 return result;
19533 }
19534
19535 static unsigned int
19536 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19537 {
19538 return bfd_get_32 (abfd, buf);
19539 }
19540
19541 static int
19542 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19543 {
19544 return bfd_get_signed_32 (abfd, buf);
19545 }
19546
19547 static ULONGEST
19548 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19549 {
19550 return bfd_get_64 (abfd, buf);
19551 }
19552
19553 static CORE_ADDR
19554 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19555 unsigned int *bytes_read)
19556 {
19557 struct comp_unit_head *cu_header = &cu->header;
19558 CORE_ADDR retval = 0;
19559
19560 if (cu_header->signed_addr_p)
19561 {
19562 switch (cu_header->addr_size)
19563 {
19564 case 2:
19565 retval = bfd_get_signed_16 (abfd, buf);
19566 break;
19567 case 4:
19568 retval = bfd_get_signed_32 (abfd, buf);
19569 break;
19570 case 8:
19571 retval = bfd_get_signed_64 (abfd, buf);
19572 break;
19573 default:
19574 internal_error (__FILE__, __LINE__,
19575 _("read_address: bad switch, signed [in module %s]"),
19576 bfd_get_filename (abfd));
19577 }
19578 }
19579 else
19580 {
19581 switch (cu_header->addr_size)
19582 {
19583 case 2:
19584 retval = bfd_get_16 (abfd, buf);
19585 break;
19586 case 4:
19587 retval = bfd_get_32 (abfd, buf);
19588 break;
19589 case 8:
19590 retval = bfd_get_64 (abfd, buf);
19591 break;
19592 default:
19593 internal_error (__FILE__, __LINE__,
19594 _("read_address: bad switch, "
19595 "unsigned [in module %s]"),
19596 bfd_get_filename (abfd));
19597 }
19598 }
19599
19600 *bytes_read = cu_header->addr_size;
19601 return retval;
19602 }
19603
19604 /* Read the initial length from a section. The (draft) DWARF 3
19605 specification allows the initial length to take up either 4 bytes
19606 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19607 bytes describe the length and all offsets will be 8 bytes in length
19608 instead of 4.
19609
19610 An older, non-standard 64-bit format is also handled by this
19611 function. The older format in question stores the initial length
19612 as an 8-byte quantity without an escape value. Lengths greater
19613 than 2^32 aren't very common which means that the initial 4 bytes
19614 is almost always zero. Since a length value of zero doesn't make
19615 sense for the 32-bit format, this initial zero can be considered to
19616 be an escape value which indicates the presence of the older 64-bit
19617 format. As written, the code can't detect (old format) lengths
19618 greater than 4GB. If it becomes necessary to handle lengths
19619 somewhat larger than 4GB, we could allow other small values (such
19620 as the non-sensical values of 1, 2, and 3) to also be used as
19621 escape values indicating the presence of the old format.
19622
19623 The value returned via bytes_read should be used to increment the
19624 relevant pointer after calling read_initial_length().
19625
19626 [ Note: read_initial_length() and read_offset() are based on the
19627 document entitled "DWARF Debugging Information Format", revision
19628 3, draft 8, dated November 19, 2001. This document was obtained
19629 from:
19630
19631 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19632
19633 This document is only a draft and is subject to change. (So beware.)
19634
19635 Details regarding the older, non-standard 64-bit format were
19636 determined empirically by examining 64-bit ELF files produced by
19637 the SGI toolchain on an IRIX 6.5 machine.
19638
19639 - Kevin, July 16, 2002
19640 ] */
19641
19642 static LONGEST
19643 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19644 {
19645 LONGEST length = bfd_get_32 (abfd, buf);
19646
19647 if (length == 0xffffffff)
19648 {
19649 length = bfd_get_64 (abfd, buf + 4);
19650 *bytes_read = 12;
19651 }
19652 else if (length == 0)
19653 {
19654 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19655 length = bfd_get_64 (abfd, buf);
19656 *bytes_read = 8;
19657 }
19658 else
19659 {
19660 *bytes_read = 4;
19661 }
19662
19663 return length;
19664 }
19665
19666 /* Cover function for read_initial_length.
19667 Returns the length of the object at BUF, and stores the size of the
19668 initial length in *BYTES_READ and stores the size that offsets will be in
19669 *OFFSET_SIZE.
19670 If the initial length size is not equivalent to that specified in
19671 CU_HEADER then issue a complaint.
19672 This is useful when reading non-comp-unit headers. */
19673
19674 static LONGEST
19675 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19676 const struct comp_unit_head *cu_header,
19677 unsigned int *bytes_read,
19678 unsigned int *offset_size)
19679 {
19680 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19681
19682 gdb_assert (cu_header->initial_length_size == 4
19683 || cu_header->initial_length_size == 8
19684 || cu_header->initial_length_size == 12);
19685
19686 if (cu_header->initial_length_size != *bytes_read)
19687 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19688
19689 *offset_size = (*bytes_read == 4) ? 4 : 8;
19690 return length;
19691 }
19692
19693 /* Read an offset from the data stream. The size of the offset is
19694 given by cu_header->offset_size. */
19695
19696 static LONGEST
19697 read_offset (bfd *abfd, const gdb_byte *buf,
19698 const struct comp_unit_head *cu_header,
19699 unsigned int *bytes_read)
19700 {
19701 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19702
19703 *bytes_read = cu_header->offset_size;
19704 return offset;
19705 }
19706
19707 /* Read an offset from the data stream. */
19708
19709 static LONGEST
19710 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19711 {
19712 LONGEST retval = 0;
19713
19714 switch (offset_size)
19715 {
19716 case 4:
19717 retval = bfd_get_32 (abfd, buf);
19718 break;
19719 case 8:
19720 retval = bfd_get_64 (abfd, buf);
19721 break;
19722 default:
19723 internal_error (__FILE__, __LINE__,
19724 _("read_offset_1: bad switch [in module %s]"),
19725 bfd_get_filename (abfd));
19726 }
19727
19728 return retval;
19729 }
19730
19731 static const gdb_byte *
19732 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19733 {
19734 /* If the size of a host char is 8 bits, we can return a pointer
19735 to the buffer, otherwise we have to copy the data to a buffer
19736 allocated on the temporary obstack. */
19737 gdb_assert (HOST_CHAR_BIT == 8);
19738 return buf;
19739 }
19740
19741 static const char *
19742 read_direct_string (bfd *abfd, const gdb_byte *buf,
19743 unsigned int *bytes_read_ptr)
19744 {
19745 /* If the size of a host char is 8 bits, we can return a pointer
19746 to the string, otherwise we have to copy the string to a buffer
19747 allocated on the temporary obstack. */
19748 gdb_assert (HOST_CHAR_BIT == 8);
19749 if (*buf == '\0')
19750 {
19751 *bytes_read_ptr = 1;
19752 return NULL;
19753 }
19754 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19755 return (const char *) buf;
19756 }
19757
19758 /* Return pointer to string at section SECT offset STR_OFFSET with error
19759 reporting strings FORM_NAME and SECT_NAME. */
19760
19761 static const char *
19762 read_indirect_string_at_offset_from (struct objfile *objfile,
19763 bfd *abfd, LONGEST str_offset,
19764 struct dwarf2_section_info *sect,
19765 const char *form_name,
19766 const char *sect_name)
19767 {
19768 dwarf2_read_section (objfile, sect);
19769 if (sect->buffer == NULL)
19770 error (_("%s used without %s section [in module %s]"),
19771 form_name, sect_name, bfd_get_filename (abfd));
19772 if (str_offset >= sect->size)
19773 error (_("%s pointing outside of %s section [in module %s]"),
19774 form_name, sect_name, bfd_get_filename (abfd));
19775 gdb_assert (HOST_CHAR_BIT == 8);
19776 if (sect->buffer[str_offset] == '\0')
19777 return NULL;
19778 return (const char *) (sect->buffer + str_offset);
19779 }
19780
19781 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19782
19783 static const char *
19784 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19785 bfd *abfd, LONGEST str_offset)
19786 {
19787 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19788 abfd, str_offset,
19789 &dwarf2_per_objfile->str,
19790 "DW_FORM_strp", ".debug_str");
19791 }
19792
19793 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19794
19795 static const char *
19796 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19797 bfd *abfd, LONGEST str_offset)
19798 {
19799 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19800 abfd, str_offset,
19801 &dwarf2_per_objfile->line_str,
19802 "DW_FORM_line_strp",
19803 ".debug_line_str");
19804 }
19805
19806 /* Read a string at offset STR_OFFSET in the .debug_str section from
19807 the .dwz file DWZ. Throw an error if the offset is too large. If
19808 the string consists of a single NUL byte, return NULL; otherwise
19809 return a pointer to the string. */
19810
19811 static const char *
19812 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19813 LONGEST str_offset)
19814 {
19815 dwarf2_read_section (objfile, &dwz->str);
19816
19817 if (dwz->str.buffer == NULL)
19818 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19819 "section [in module %s]"),
19820 bfd_get_filename (dwz->dwz_bfd.get ()));
19821 if (str_offset >= dwz->str.size)
19822 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19823 ".debug_str section [in module %s]"),
19824 bfd_get_filename (dwz->dwz_bfd.get ()));
19825 gdb_assert (HOST_CHAR_BIT == 8);
19826 if (dwz->str.buffer[str_offset] == '\0')
19827 return NULL;
19828 return (const char *) (dwz->str.buffer + str_offset);
19829 }
19830
19831 /* Return pointer to string at .debug_str offset as read from BUF.
19832 BUF is assumed to be in a compilation unit described by CU_HEADER.
19833 Return *BYTES_READ_PTR count of bytes read from BUF. */
19834
19835 static const char *
19836 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19837 const gdb_byte *buf,
19838 const struct comp_unit_head *cu_header,
19839 unsigned int *bytes_read_ptr)
19840 {
19841 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19842
19843 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19844 }
19845
19846 /* Return pointer to string at .debug_line_str offset as read from BUF.
19847 BUF is assumed to be in a compilation unit described by CU_HEADER.
19848 Return *BYTES_READ_PTR count of bytes read from BUF. */
19849
19850 static const char *
19851 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19852 bfd *abfd, const gdb_byte *buf,
19853 const struct comp_unit_head *cu_header,
19854 unsigned int *bytes_read_ptr)
19855 {
19856 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19857
19858 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19859 str_offset);
19860 }
19861
19862 ULONGEST
19863 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19864 unsigned int *bytes_read_ptr)
19865 {
19866 ULONGEST result;
19867 unsigned int num_read;
19868 int shift;
19869 unsigned char byte;
19870
19871 result = 0;
19872 shift = 0;
19873 num_read = 0;
19874 while (1)
19875 {
19876 byte = bfd_get_8 (abfd, buf);
19877 buf++;
19878 num_read++;
19879 result |= ((ULONGEST) (byte & 127) << shift);
19880 if ((byte & 128) == 0)
19881 {
19882 break;
19883 }
19884 shift += 7;
19885 }
19886 *bytes_read_ptr = num_read;
19887 return result;
19888 }
19889
19890 static LONGEST
19891 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19892 unsigned int *bytes_read_ptr)
19893 {
19894 ULONGEST result;
19895 int shift, num_read;
19896 unsigned char byte;
19897
19898 result = 0;
19899 shift = 0;
19900 num_read = 0;
19901 while (1)
19902 {
19903 byte = bfd_get_8 (abfd, buf);
19904 buf++;
19905 num_read++;
19906 result |= ((ULONGEST) (byte & 127) << shift);
19907 shift += 7;
19908 if ((byte & 128) == 0)
19909 {
19910 break;
19911 }
19912 }
19913 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19914 result |= -(((ULONGEST) 1) << shift);
19915 *bytes_read_ptr = num_read;
19916 return result;
19917 }
19918
19919 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19920 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19921 ADDR_SIZE is the size of addresses from the CU header. */
19922
19923 static CORE_ADDR
19924 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19925 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19926 {
19927 struct objfile *objfile = dwarf2_per_objfile->objfile;
19928 bfd *abfd = objfile->obfd;
19929 const gdb_byte *info_ptr;
19930
19931 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19932 if (dwarf2_per_objfile->addr.buffer == NULL)
19933 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19934 objfile_name (objfile));
19935 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19936 error (_("DW_FORM_addr_index pointing outside of "
19937 ".debug_addr section [in module %s]"),
19938 objfile_name (objfile));
19939 info_ptr = (dwarf2_per_objfile->addr.buffer
19940 + addr_base + addr_index * addr_size);
19941 if (addr_size == 4)
19942 return bfd_get_32 (abfd, info_ptr);
19943 else
19944 return bfd_get_64 (abfd, info_ptr);
19945 }
19946
19947 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19948
19949 static CORE_ADDR
19950 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19951 {
19952 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19953 cu->addr_base, cu->header.addr_size);
19954 }
19955
19956 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19957
19958 static CORE_ADDR
19959 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19960 unsigned int *bytes_read)
19961 {
19962 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19963 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19964
19965 return read_addr_index (cu, addr_index);
19966 }
19967
19968 /* Data structure to pass results from dwarf2_read_addr_index_reader
19969 back to dwarf2_read_addr_index. */
19970
19971 struct dwarf2_read_addr_index_data
19972 {
19973 ULONGEST addr_base;
19974 int addr_size;
19975 };
19976
19977 /* die_reader_func for dwarf2_read_addr_index. */
19978
19979 static void
19980 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19981 const gdb_byte *info_ptr,
19982 struct die_info *comp_unit_die,
19983 int has_children,
19984 void *data)
19985 {
19986 struct dwarf2_cu *cu = reader->cu;
19987 struct dwarf2_read_addr_index_data *aidata =
19988 (struct dwarf2_read_addr_index_data *) data;
19989
19990 aidata->addr_base = cu->addr_base;
19991 aidata->addr_size = cu->header.addr_size;
19992 }
19993
19994 /* Given an index in .debug_addr, fetch the value.
19995 NOTE: This can be called during dwarf expression evaluation,
19996 long after the debug information has been read, and thus per_cu->cu
19997 may no longer exist. */
19998
19999 CORE_ADDR
20000 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20001 unsigned int addr_index)
20002 {
20003 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
20004 struct dwarf2_cu *cu = per_cu->cu;
20005 ULONGEST addr_base;
20006 int addr_size;
20007
20008 /* We need addr_base and addr_size.
20009 If we don't have PER_CU->cu, we have to get it.
20010 Nasty, but the alternative is storing the needed info in PER_CU,
20011 which at this point doesn't seem justified: it's not clear how frequently
20012 it would get used and it would increase the size of every PER_CU.
20013 Entry points like dwarf2_per_cu_addr_size do a similar thing
20014 so we're not in uncharted territory here.
20015 Alas we need to be a bit more complicated as addr_base is contained
20016 in the DIE.
20017
20018 We don't need to read the entire CU(/TU).
20019 We just need the header and top level die.
20020
20021 IWBN to use the aging mechanism to let us lazily later discard the CU.
20022 For now we skip this optimization. */
20023
20024 if (cu != NULL)
20025 {
20026 addr_base = cu->addr_base;
20027 addr_size = cu->header.addr_size;
20028 }
20029 else
20030 {
20031 struct dwarf2_read_addr_index_data aidata;
20032
20033 /* Note: We can't use init_cutu_and_read_dies_simple here,
20034 we need addr_base. */
20035 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
20036 dwarf2_read_addr_index_reader, &aidata);
20037 addr_base = aidata.addr_base;
20038 addr_size = aidata.addr_size;
20039 }
20040
20041 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20042 addr_size);
20043 }
20044
20045 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
20046 This is only used by the Fission support. */
20047
20048 static const char *
20049 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20050 {
20051 struct dwarf2_cu *cu = reader->cu;
20052 struct dwarf2_per_objfile *dwarf2_per_objfile
20053 = cu->per_cu->dwarf2_per_objfile;
20054 struct objfile *objfile = dwarf2_per_objfile->objfile;
20055 const char *objf_name = objfile_name (objfile);
20056 bfd *abfd = objfile->obfd;
20057 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20058 struct dwarf2_section_info *str_offsets_section =
20059 &reader->dwo_file->sections.str_offsets;
20060 const gdb_byte *info_ptr;
20061 ULONGEST str_offset;
20062 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20063
20064 dwarf2_read_section (objfile, str_section);
20065 dwarf2_read_section (objfile, str_offsets_section);
20066 if (str_section->buffer == NULL)
20067 error (_("%s used without .debug_str.dwo section"
20068 " in CU at offset %s [in module %s]"),
20069 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20070 if (str_offsets_section->buffer == NULL)
20071 error (_("%s used without .debug_str_offsets.dwo section"
20072 " in CU at offset %s [in module %s]"),
20073 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20074 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20075 error (_("%s pointing outside of .debug_str_offsets.dwo"
20076 " section in CU at offset %s [in module %s]"),
20077 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20078 info_ptr = (str_offsets_section->buffer
20079 + str_index * cu->header.offset_size);
20080 if (cu->header.offset_size == 4)
20081 str_offset = bfd_get_32 (abfd, info_ptr);
20082 else
20083 str_offset = bfd_get_64 (abfd, info_ptr);
20084 if (str_offset >= str_section->size)
20085 error (_("Offset from %s pointing outside of"
20086 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20087 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20088 return (const char *) (str_section->buffer + str_offset);
20089 }
20090
20091 /* Return the length of an LEB128 number in BUF. */
20092
20093 static int
20094 leb128_size (const gdb_byte *buf)
20095 {
20096 const gdb_byte *begin = buf;
20097 gdb_byte byte;
20098
20099 while (1)
20100 {
20101 byte = *buf++;
20102 if ((byte & 128) == 0)
20103 return buf - begin;
20104 }
20105 }
20106
20107 static void
20108 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20109 {
20110 switch (lang)
20111 {
20112 case DW_LANG_C89:
20113 case DW_LANG_C99:
20114 case DW_LANG_C11:
20115 case DW_LANG_C:
20116 case DW_LANG_UPC:
20117 cu->language = language_c;
20118 break;
20119 case DW_LANG_Java:
20120 case DW_LANG_C_plus_plus:
20121 case DW_LANG_C_plus_plus_11:
20122 case DW_LANG_C_plus_plus_14:
20123 cu->language = language_cplus;
20124 break;
20125 case DW_LANG_D:
20126 cu->language = language_d;
20127 break;
20128 case DW_LANG_Fortran77:
20129 case DW_LANG_Fortran90:
20130 case DW_LANG_Fortran95:
20131 case DW_LANG_Fortran03:
20132 case DW_LANG_Fortran08:
20133 cu->language = language_fortran;
20134 break;
20135 case DW_LANG_Go:
20136 cu->language = language_go;
20137 break;
20138 case DW_LANG_Mips_Assembler:
20139 cu->language = language_asm;
20140 break;
20141 case DW_LANG_Ada83:
20142 case DW_LANG_Ada95:
20143 cu->language = language_ada;
20144 break;
20145 case DW_LANG_Modula2:
20146 cu->language = language_m2;
20147 break;
20148 case DW_LANG_Pascal83:
20149 cu->language = language_pascal;
20150 break;
20151 case DW_LANG_ObjC:
20152 cu->language = language_objc;
20153 break;
20154 case DW_LANG_Rust:
20155 case DW_LANG_Rust_old:
20156 cu->language = language_rust;
20157 break;
20158 case DW_LANG_Cobol74:
20159 case DW_LANG_Cobol85:
20160 default:
20161 cu->language = language_minimal;
20162 break;
20163 }
20164 cu->language_defn = language_def (cu->language);
20165 }
20166
20167 /* Return the named attribute or NULL if not there. */
20168
20169 static struct attribute *
20170 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20171 {
20172 for (;;)
20173 {
20174 unsigned int i;
20175 struct attribute *spec = NULL;
20176
20177 for (i = 0; i < die->num_attrs; ++i)
20178 {
20179 if (die->attrs[i].name == name)
20180 return &die->attrs[i];
20181 if (die->attrs[i].name == DW_AT_specification
20182 || die->attrs[i].name == DW_AT_abstract_origin)
20183 spec = &die->attrs[i];
20184 }
20185
20186 if (!spec)
20187 break;
20188
20189 die = follow_die_ref (die, spec, &cu);
20190 }
20191
20192 return NULL;
20193 }
20194
20195 /* Return the named attribute or NULL if not there,
20196 but do not follow DW_AT_specification, etc.
20197 This is for use in contexts where we're reading .debug_types dies.
20198 Following DW_AT_specification, DW_AT_abstract_origin will take us
20199 back up the chain, and we want to go down. */
20200
20201 static struct attribute *
20202 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20203 {
20204 unsigned int i;
20205
20206 for (i = 0; i < die->num_attrs; ++i)
20207 if (die->attrs[i].name == name)
20208 return &die->attrs[i];
20209
20210 return NULL;
20211 }
20212
20213 /* Return the string associated with a string-typed attribute, or NULL if it
20214 is either not found or is of an incorrect type. */
20215
20216 static const char *
20217 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20218 {
20219 struct attribute *attr;
20220 const char *str = NULL;
20221
20222 attr = dwarf2_attr (die, name, cu);
20223
20224 if (attr != NULL)
20225 {
20226 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20227 || attr->form == DW_FORM_string
20228 || attr->form == DW_FORM_strx
20229 || attr->form == DW_FORM_strx1
20230 || attr->form == DW_FORM_strx2
20231 || attr->form == DW_FORM_strx3
20232 || attr->form == DW_FORM_strx4
20233 || attr->form == DW_FORM_GNU_str_index
20234 || attr->form == DW_FORM_GNU_strp_alt)
20235 str = DW_STRING (attr);
20236 else
20237 complaint (_("string type expected for attribute %s for "
20238 "DIE at %s in module %s"),
20239 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20240 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20241 }
20242
20243 return str;
20244 }
20245
20246 /* Return the dwo name or NULL if not present. If present, it is in either
20247 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20248 static const char *
20249 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20250 {
20251 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20252 if (dwo_name == nullptr)
20253 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20254 return dwo_name;
20255 }
20256
20257 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20258 and holds a non-zero value. This function should only be used for
20259 DW_FORM_flag or DW_FORM_flag_present attributes. */
20260
20261 static int
20262 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20263 {
20264 struct attribute *attr = dwarf2_attr (die, name, cu);
20265
20266 return (attr && DW_UNSND (attr));
20267 }
20268
20269 static int
20270 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20271 {
20272 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20273 which value is non-zero. However, we have to be careful with
20274 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20275 (via dwarf2_flag_true_p) follows this attribute. So we may
20276 end up accidently finding a declaration attribute that belongs
20277 to a different DIE referenced by the specification attribute,
20278 even though the given DIE does not have a declaration attribute. */
20279 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20280 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20281 }
20282
20283 /* Return the die giving the specification for DIE, if there is
20284 one. *SPEC_CU is the CU containing DIE on input, and the CU
20285 containing the return value on output. If there is no
20286 specification, but there is an abstract origin, that is
20287 returned. */
20288
20289 static struct die_info *
20290 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20291 {
20292 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20293 *spec_cu);
20294
20295 if (spec_attr == NULL)
20296 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20297
20298 if (spec_attr == NULL)
20299 return NULL;
20300 else
20301 return follow_die_ref (die, spec_attr, spec_cu);
20302 }
20303
20304 /* Stub for free_line_header to match void * callback types. */
20305
20306 static void
20307 free_line_header_voidp (void *arg)
20308 {
20309 struct line_header *lh = (struct line_header *) arg;
20310
20311 delete lh;
20312 }
20313
20314 void
20315 line_header::add_include_dir (const char *include_dir)
20316 {
20317 if (dwarf_line_debug >= 2)
20318 {
20319 size_t new_size;
20320 if (version >= 5)
20321 new_size = m_include_dirs.size ();
20322 else
20323 new_size = m_include_dirs.size () + 1;
20324 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20325 new_size, include_dir);
20326 }
20327 m_include_dirs.push_back (include_dir);
20328 }
20329
20330 void
20331 line_header::add_file_name (const char *name,
20332 dir_index d_index,
20333 unsigned int mod_time,
20334 unsigned int length)
20335 {
20336 if (dwarf_line_debug >= 2)
20337 {
20338 size_t new_size;
20339 if (version >= 5)
20340 new_size = file_names_size ();
20341 else
20342 new_size = file_names_size () + 1;
20343 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
20344 new_size, name);
20345 }
20346 m_file_names.emplace_back (name, d_index, mod_time, length);
20347 }
20348
20349 /* A convenience function to find the proper .debug_line section for a CU. */
20350
20351 static struct dwarf2_section_info *
20352 get_debug_line_section (struct dwarf2_cu *cu)
20353 {
20354 struct dwarf2_section_info *section;
20355 struct dwarf2_per_objfile *dwarf2_per_objfile
20356 = cu->per_cu->dwarf2_per_objfile;
20357
20358 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20359 DWO file. */
20360 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20361 section = &cu->dwo_unit->dwo_file->sections.line;
20362 else if (cu->per_cu->is_dwz)
20363 {
20364 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20365
20366 section = &dwz->line;
20367 }
20368 else
20369 section = &dwarf2_per_objfile->line;
20370
20371 return section;
20372 }
20373
20374 /* Read directory or file name entry format, starting with byte of
20375 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20376 entries count and the entries themselves in the described entry
20377 format. */
20378
20379 static void
20380 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20381 bfd *abfd, const gdb_byte **bufp,
20382 struct line_header *lh,
20383 const struct comp_unit_head *cu_header,
20384 void (*callback) (struct line_header *lh,
20385 const char *name,
20386 dir_index d_index,
20387 unsigned int mod_time,
20388 unsigned int length))
20389 {
20390 gdb_byte format_count, formati;
20391 ULONGEST data_count, datai;
20392 const gdb_byte *buf = *bufp;
20393 const gdb_byte *format_header_data;
20394 unsigned int bytes_read;
20395
20396 format_count = read_1_byte (abfd, buf);
20397 buf += 1;
20398 format_header_data = buf;
20399 for (formati = 0; formati < format_count; formati++)
20400 {
20401 read_unsigned_leb128 (abfd, buf, &bytes_read);
20402 buf += bytes_read;
20403 read_unsigned_leb128 (abfd, buf, &bytes_read);
20404 buf += bytes_read;
20405 }
20406
20407 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20408 buf += bytes_read;
20409 for (datai = 0; datai < data_count; datai++)
20410 {
20411 const gdb_byte *format = format_header_data;
20412 struct file_entry fe;
20413
20414 for (formati = 0; formati < format_count; formati++)
20415 {
20416 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20417 format += bytes_read;
20418
20419 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20420 format += bytes_read;
20421
20422 gdb::optional<const char *> string;
20423 gdb::optional<unsigned int> uint;
20424
20425 switch (form)
20426 {
20427 case DW_FORM_string:
20428 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20429 buf += bytes_read;
20430 break;
20431
20432 case DW_FORM_line_strp:
20433 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20434 abfd, buf,
20435 cu_header,
20436 &bytes_read));
20437 buf += bytes_read;
20438 break;
20439
20440 case DW_FORM_data1:
20441 uint.emplace (read_1_byte (abfd, buf));
20442 buf += 1;
20443 break;
20444
20445 case DW_FORM_data2:
20446 uint.emplace (read_2_bytes (abfd, buf));
20447 buf += 2;
20448 break;
20449
20450 case DW_FORM_data4:
20451 uint.emplace (read_4_bytes (abfd, buf));
20452 buf += 4;
20453 break;
20454
20455 case DW_FORM_data8:
20456 uint.emplace (read_8_bytes (abfd, buf));
20457 buf += 8;
20458 break;
20459
20460 case DW_FORM_data16:
20461 /* This is used for MD5, but file_entry does not record MD5s. */
20462 buf += 16;
20463 break;
20464
20465 case DW_FORM_udata:
20466 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20467 buf += bytes_read;
20468 break;
20469
20470 case DW_FORM_block:
20471 /* It is valid only for DW_LNCT_timestamp which is ignored by
20472 current GDB. */
20473 break;
20474 }
20475
20476 switch (content_type)
20477 {
20478 case DW_LNCT_path:
20479 if (string.has_value ())
20480 fe.name = *string;
20481 break;
20482 case DW_LNCT_directory_index:
20483 if (uint.has_value ())
20484 fe.d_index = (dir_index) *uint;
20485 break;
20486 case DW_LNCT_timestamp:
20487 if (uint.has_value ())
20488 fe.mod_time = *uint;
20489 break;
20490 case DW_LNCT_size:
20491 if (uint.has_value ())
20492 fe.length = *uint;
20493 break;
20494 case DW_LNCT_MD5:
20495 break;
20496 default:
20497 complaint (_("Unknown format content type %s"),
20498 pulongest (content_type));
20499 }
20500 }
20501
20502 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20503 }
20504
20505 *bufp = buf;
20506 }
20507
20508 /* Read the statement program header starting at OFFSET in
20509 .debug_line, or .debug_line.dwo. Return a pointer
20510 to a struct line_header, allocated using xmalloc.
20511 Returns NULL if there is a problem reading the header, e.g., if it
20512 has a version we don't understand.
20513
20514 NOTE: the strings in the include directory and file name tables of
20515 the returned object point into the dwarf line section buffer,
20516 and must not be freed. */
20517
20518 static line_header_up
20519 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20520 {
20521 const gdb_byte *line_ptr;
20522 unsigned int bytes_read, offset_size;
20523 int i;
20524 const char *cur_dir, *cur_file;
20525 struct dwarf2_section_info *section;
20526 bfd *abfd;
20527 struct dwarf2_per_objfile *dwarf2_per_objfile
20528 = cu->per_cu->dwarf2_per_objfile;
20529
20530 section = get_debug_line_section (cu);
20531 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20532 if (section->buffer == NULL)
20533 {
20534 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20535 complaint (_("missing .debug_line.dwo section"));
20536 else
20537 complaint (_("missing .debug_line section"));
20538 return 0;
20539 }
20540
20541 /* We can't do this until we know the section is non-empty.
20542 Only then do we know we have such a section. */
20543 abfd = get_section_bfd_owner (section);
20544
20545 /* Make sure that at least there's room for the total_length field.
20546 That could be 12 bytes long, but we're just going to fudge that. */
20547 if (to_underlying (sect_off) + 4 >= section->size)
20548 {
20549 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20550 return 0;
20551 }
20552
20553 line_header_up lh (new line_header ());
20554
20555 lh->sect_off = sect_off;
20556 lh->offset_in_dwz = cu->per_cu->is_dwz;
20557
20558 line_ptr = section->buffer + to_underlying (sect_off);
20559
20560 /* Read in the header. */
20561 lh->total_length =
20562 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20563 &bytes_read, &offset_size);
20564 line_ptr += bytes_read;
20565
20566 const gdb_byte *start_here = line_ptr;
20567
20568 if (line_ptr + lh->total_length > (section->buffer + section->size))
20569 {
20570 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20571 return 0;
20572 }
20573 lh->statement_program_end = start_here + lh->total_length;
20574 lh->version = read_2_bytes (abfd, line_ptr);
20575 line_ptr += 2;
20576 if (lh->version > 5)
20577 {
20578 /* This is a version we don't understand. The format could have
20579 changed in ways we don't handle properly so just punt. */
20580 complaint (_("unsupported version in .debug_line section"));
20581 return NULL;
20582 }
20583 if (lh->version >= 5)
20584 {
20585 gdb_byte segment_selector_size;
20586
20587 /* Skip address size. */
20588 read_1_byte (abfd, line_ptr);
20589 line_ptr += 1;
20590
20591 segment_selector_size = read_1_byte (abfd, line_ptr);
20592 line_ptr += 1;
20593 if (segment_selector_size != 0)
20594 {
20595 complaint (_("unsupported segment selector size %u "
20596 "in .debug_line section"),
20597 segment_selector_size);
20598 return NULL;
20599 }
20600 }
20601 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20602 line_ptr += offset_size;
20603 lh->statement_program_start = line_ptr + lh->header_length;
20604 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20605 line_ptr += 1;
20606 if (lh->version >= 4)
20607 {
20608 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20609 line_ptr += 1;
20610 }
20611 else
20612 lh->maximum_ops_per_instruction = 1;
20613
20614 if (lh->maximum_ops_per_instruction == 0)
20615 {
20616 lh->maximum_ops_per_instruction = 1;
20617 complaint (_("invalid maximum_ops_per_instruction "
20618 "in `.debug_line' section"));
20619 }
20620
20621 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20622 line_ptr += 1;
20623 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20624 line_ptr += 1;
20625 lh->line_range = read_1_byte (abfd, line_ptr);
20626 line_ptr += 1;
20627 lh->opcode_base = read_1_byte (abfd, line_ptr);
20628 line_ptr += 1;
20629 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20630
20631 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20632 for (i = 1; i < lh->opcode_base; ++i)
20633 {
20634 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20635 line_ptr += 1;
20636 }
20637
20638 if (lh->version >= 5)
20639 {
20640 /* Read directory table. */
20641 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20642 &cu->header,
20643 [] (struct line_header *header, const char *name,
20644 dir_index d_index, unsigned int mod_time,
20645 unsigned int length)
20646 {
20647 header->add_include_dir (name);
20648 });
20649
20650 /* Read file name table. */
20651 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20652 &cu->header,
20653 [] (struct line_header *header, const char *name,
20654 dir_index d_index, unsigned int mod_time,
20655 unsigned int length)
20656 {
20657 header->add_file_name (name, d_index, mod_time, length);
20658 });
20659 }
20660 else
20661 {
20662 /* Read directory table. */
20663 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20664 {
20665 line_ptr += bytes_read;
20666 lh->add_include_dir (cur_dir);
20667 }
20668 line_ptr += bytes_read;
20669
20670 /* Read file name table. */
20671 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20672 {
20673 unsigned int mod_time, length;
20674 dir_index d_index;
20675
20676 line_ptr += bytes_read;
20677 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20678 line_ptr += bytes_read;
20679 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20680 line_ptr += bytes_read;
20681 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20682 line_ptr += bytes_read;
20683
20684 lh->add_file_name (cur_file, d_index, mod_time, length);
20685 }
20686 line_ptr += bytes_read;
20687 }
20688
20689 if (line_ptr > (section->buffer + section->size))
20690 complaint (_("line number info header doesn't "
20691 "fit in `.debug_line' section"));
20692
20693 return lh;
20694 }
20695
20696 /* Subroutine of dwarf_decode_lines to simplify it.
20697 Return the file name of the psymtab for the given file_entry.
20698 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20699 If space for the result is malloc'd, *NAME_HOLDER will be set.
20700 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20701
20702 static const char *
20703 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20704 const struct partial_symtab *pst,
20705 const char *comp_dir,
20706 gdb::unique_xmalloc_ptr<char> *name_holder)
20707 {
20708 const char *include_name = fe.name;
20709 const char *include_name_to_compare = include_name;
20710 const char *pst_filename;
20711 int file_is_pst;
20712
20713 const char *dir_name = fe.include_dir (lh);
20714
20715 gdb::unique_xmalloc_ptr<char> hold_compare;
20716 if (!IS_ABSOLUTE_PATH (include_name)
20717 && (dir_name != NULL || comp_dir != NULL))
20718 {
20719 /* Avoid creating a duplicate psymtab for PST.
20720 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20721 Before we do the comparison, however, we need to account
20722 for DIR_NAME and COMP_DIR.
20723 First prepend dir_name (if non-NULL). If we still don't
20724 have an absolute path prepend comp_dir (if non-NULL).
20725 However, the directory we record in the include-file's
20726 psymtab does not contain COMP_DIR (to match the
20727 corresponding symtab(s)).
20728
20729 Example:
20730
20731 bash$ cd /tmp
20732 bash$ gcc -g ./hello.c
20733 include_name = "hello.c"
20734 dir_name = "."
20735 DW_AT_comp_dir = comp_dir = "/tmp"
20736 DW_AT_name = "./hello.c"
20737
20738 */
20739
20740 if (dir_name != NULL)
20741 {
20742 name_holder->reset (concat (dir_name, SLASH_STRING,
20743 include_name, (char *) NULL));
20744 include_name = name_holder->get ();
20745 include_name_to_compare = include_name;
20746 }
20747 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20748 {
20749 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20750 include_name, (char *) NULL));
20751 include_name_to_compare = hold_compare.get ();
20752 }
20753 }
20754
20755 pst_filename = pst->filename;
20756 gdb::unique_xmalloc_ptr<char> copied_name;
20757 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20758 {
20759 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20760 pst_filename, (char *) NULL));
20761 pst_filename = copied_name.get ();
20762 }
20763
20764 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20765
20766 if (file_is_pst)
20767 return NULL;
20768 return include_name;
20769 }
20770
20771 /* State machine to track the state of the line number program. */
20772
20773 class lnp_state_machine
20774 {
20775 public:
20776 /* Initialize a machine state for the start of a line number
20777 program. */
20778 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20779 bool record_lines_p);
20780
20781 file_entry *current_file ()
20782 {
20783 /* lh->file_names is 0-based, but the file name numbers in the
20784 statement program are 1-based. */
20785 return m_line_header->file_name_at (m_file);
20786 }
20787
20788 /* Record the line in the state machine. END_SEQUENCE is true if
20789 we're processing the end of a sequence. */
20790 void record_line (bool end_sequence);
20791
20792 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20793 nop-out rest of the lines in this sequence. */
20794 void check_line_address (struct dwarf2_cu *cu,
20795 const gdb_byte *line_ptr,
20796 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20797
20798 void handle_set_discriminator (unsigned int discriminator)
20799 {
20800 m_discriminator = discriminator;
20801 m_line_has_non_zero_discriminator |= discriminator != 0;
20802 }
20803
20804 /* Handle DW_LNE_set_address. */
20805 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20806 {
20807 m_op_index = 0;
20808 address += baseaddr;
20809 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20810 }
20811
20812 /* Handle DW_LNS_advance_pc. */
20813 void handle_advance_pc (CORE_ADDR adjust);
20814
20815 /* Handle a special opcode. */
20816 void handle_special_opcode (unsigned char op_code);
20817
20818 /* Handle DW_LNS_advance_line. */
20819 void handle_advance_line (int line_delta)
20820 {
20821 advance_line (line_delta);
20822 }
20823
20824 /* Handle DW_LNS_set_file. */
20825 void handle_set_file (file_name_index file);
20826
20827 /* Handle DW_LNS_negate_stmt. */
20828 void handle_negate_stmt ()
20829 {
20830 m_is_stmt = !m_is_stmt;
20831 }
20832
20833 /* Handle DW_LNS_const_add_pc. */
20834 void handle_const_add_pc ();
20835
20836 /* Handle DW_LNS_fixed_advance_pc. */
20837 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20838 {
20839 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20840 m_op_index = 0;
20841 }
20842
20843 /* Handle DW_LNS_copy. */
20844 void handle_copy ()
20845 {
20846 record_line (false);
20847 m_discriminator = 0;
20848 }
20849
20850 /* Handle DW_LNE_end_sequence. */
20851 void handle_end_sequence ()
20852 {
20853 m_currently_recording_lines = true;
20854 }
20855
20856 private:
20857 /* Advance the line by LINE_DELTA. */
20858 void advance_line (int line_delta)
20859 {
20860 m_line += line_delta;
20861
20862 if (line_delta != 0)
20863 m_line_has_non_zero_discriminator = m_discriminator != 0;
20864 }
20865
20866 struct dwarf2_cu *m_cu;
20867
20868 gdbarch *m_gdbarch;
20869
20870 /* True if we're recording lines.
20871 Otherwise we're building partial symtabs and are just interested in
20872 finding include files mentioned by the line number program. */
20873 bool m_record_lines_p;
20874
20875 /* The line number header. */
20876 line_header *m_line_header;
20877
20878 /* These are part of the standard DWARF line number state machine,
20879 and initialized according to the DWARF spec. */
20880
20881 unsigned char m_op_index = 0;
20882 /* The line table index of the current file. */
20883 file_name_index m_file = 1;
20884 unsigned int m_line = 1;
20885
20886 /* These are initialized in the constructor. */
20887
20888 CORE_ADDR m_address;
20889 bool m_is_stmt;
20890 unsigned int m_discriminator;
20891
20892 /* Additional bits of state we need to track. */
20893
20894 /* The last file that we called dwarf2_start_subfile for.
20895 This is only used for TLLs. */
20896 unsigned int m_last_file = 0;
20897 /* The last file a line number was recorded for. */
20898 struct subfile *m_last_subfile = NULL;
20899
20900 /* When true, record the lines we decode. */
20901 bool m_currently_recording_lines = false;
20902
20903 /* The last line number that was recorded, used to coalesce
20904 consecutive entries for the same line. This can happen, for
20905 example, when discriminators are present. PR 17276. */
20906 unsigned int m_last_line = 0;
20907 bool m_line_has_non_zero_discriminator = false;
20908 };
20909
20910 void
20911 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20912 {
20913 CORE_ADDR addr_adj = (((m_op_index + adjust)
20914 / m_line_header->maximum_ops_per_instruction)
20915 * m_line_header->minimum_instruction_length);
20916 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20917 m_op_index = ((m_op_index + adjust)
20918 % m_line_header->maximum_ops_per_instruction);
20919 }
20920
20921 void
20922 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20923 {
20924 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20925 CORE_ADDR addr_adj = (((m_op_index
20926 + (adj_opcode / m_line_header->line_range))
20927 / m_line_header->maximum_ops_per_instruction)
20928 * m_line_header->minimum_instruction_length);
20929 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20930 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20931 % m_line_header->maximum_ops_per_instruction);
20932
20933 int line_delta = (m_line_header->line_base
20934 + (adj_opcode % m_line_header->line_range));
20935 advance_line (line_delta);
20936 record_line (false);
20937 m_discriminator = 0;
20938 }
20939
20940 void
20941 lnp_state_machine::handle_set_file (file_name_index file)
20942 {
20943 m_file = file;
20944
20945 const file_entry *fe = current_file ();
20946 if (fe == NULL)
20947 dwarf2_debug_line_missing_file_complaint ();
20948 else if (m_record_lines_p)
20949 {
20950 const char *dir = fe->include_dir (m_line_header);
20951
20952 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20953 m_line_has_non_zero_discriminator = m_discriminator != 0;
20954 dwarf2_start_subfile (m_cu, fe->name, dir);
20955 }
20956 }
20957
20958 void
20959 lnp_state_machine::handle_const_add_pc ()
20960 {
20961 CORE_ADDR adjust
20962 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20963
20964 CORE_ADDR addr_adj
20965 = (((m_op_index + adjust)
20966 / m_line_header->maximum_ops_per_instruction)
20967 * m_line_header->minimum_instruction_length);
20968
20969 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20970 m_op_index = ((m_op_index + adjust)
20971 % m_line_header->maximum_ops_per_instruction);
20972 }
20973
20974 /* Return non-zero if we should add LINE to the line number table.
20975 LINE is the line to add, LAST_LINE is the last line that was added,
20976 LAST_SUBFILE is the subfile for LAST_LINE.
20977 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20978 had a non-zero discriminator.
20979
20980 We have to be careful in the presence of discriminators.
20981 E.g., for this line:
20982
20983 for (i = 0; i < 100000; i++);
20984
20985 clang can emit four line number entries for that one line,
20986 each with a different discriminator.
20987 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20988
20989 However, we want gdb to coalesce all four entries into one.
20990 Otherwise the user could stepi into the middle of the line and
20991 gdb would get confused about whether the pc really was in the
20992 middle of the line.
20993
20994 Things are further complicated by the fact that two consecutive
20995 line number entries for the same line is a heuristic used by gcc
20996 to denote the end of the prologue. So we can't just discard duplicate
20997 entries, we have to be selective about it. The heuristic we use is
20998 that we only collapse consecutive entries for the same line if at least
20999 one of those entries has a non-zero discriminator. PR 17276.
21000
21001 Note: Addresses in the line number state machine can never go backwards
21002 within one sequence, thus this coalescing is ok. */
21003
21004 static int
21005 dwarf_record_line_p (struct dwarf2_cu *cu,
21006 unsigned int line, unsigned int last_line,
21007 int line_has_non_zero_discriminator,
21008 struct subfile *last_subfile)
21009 {
21010 if (cu->get_builder ()->get_current_subfile () != last_subfile)
21011 return 1;
21012 if (line != last_line)
21013 return 1;
21014 /* Same line for the same file that we've seen already.
21015 As a last check, for pr 17276, only record the line if the line
21016 has never had a non-zero discriminator. */
21017 if (!line_has_non_zero_discriminator)
21018 return 1;
21019 return 0;
21020 }
21021
21022 /* Use the CU's builder to record line number LINE beginning at
21023 address ADDRESS in the line table of subfile SUBFILE. */
21024
21025 static void
21026 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21027 unsigned int line, CORE_ADDR address,
21028 struct dwarf2_cu *cu)
21029 {
21030 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21031
21032 if (dwarf_line_debug)
21033 {
21034 fprintf_unfiltered (gdb_stdlog,
21035 "Recording line %u, file %s, address %s\n",
21036 line, lbasename (subfile->name),
21037 paddress (gdbarch, address));
21038 }
21039
21040 if (cu != nullptr)
21041 cu->get_builder ()->record_line (subfile, line, addr);
21042 }
21043
21044 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21045 Mark the end of a set of line number records.
21046 The arguments are the same as for dwarf_record_line_1.
21047 If SUBFILE is NULL the request is ignored. */
21048
21049 static void
21050 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21051 CORE_ADDR address, struct dwarf2_cu *cu)
21052 {
21053 if (subfile == NULL)
21054 return;
21055
21056 if (dwarf_line_debug)
21057 {
21058 fprintf_unfiltered (gdb_stdlog,
21059 "Finishing current line, file %s, address %s\n",
21060 lbasename (subfile->name),
21061 paddress (gdbarch, address));
21062 }
21063
21064 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
21065 }
21066
21067 void
21068 lnp_state_machine::record_line (bool end_sequence)
21069 {
21070 if (dwarf_line_debug)
21071 {
21072 fprintf_unfiltered (gdb_stdlog,
21073 "Processing actual line %u: file %u,"
21074 " address %s, is_stmt %u, discrim %u\n",
21075 m_line, m_file,
21076 paddress (m_gdbarch, m_address),
21077 m_is_stmt, m_discriminator);
21078 }
21079
21080 file_entry *fe = current_file ();
21081
21082 if (fe == NULL)
21083 dwarf2_debug_line_missing_file_complaint ();
21084 /* For now we ignore lines not starting on an instruction boundary.
21085 But not when processing end_sequence for compatibility with the
21086 previous version of the code. */
21087 else if (m_op_index == 0 || end_sequence)
21088 {
21089 fe->included_p = 1;
21090 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21091 {
21092 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21093 || end_sequence)
21094 {
21095 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21096 m_currently_recording_lines ? m_cu : nullptr);
21097 }
21098
21099 if (!end_sequence)
21100 {
21101 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21102 m_line_has_non_zero_discriminator,
21103 m_last_subfile))
21104 {
21105 buildsym_compunit *builder = m_cu->get_builder ();
21106 dwarf_record_line_1 (m_gdbarch,
21107 builder->get_current_subfile (),
21108 m_line, m_address,
21109 m_currently_recording_lines ? m_cu : nullptr);
21110 }
21111 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21112 m_last_line = m_line;
21113 }
21114 }
21115 }
21116 }
21117
21118 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21119 line_header *lh, bool record_lines_p)
21120 {
21121 m_cu = cu;
21122 m_gdbarch = arch;
21123 m_record_lines_p = record_lines_p;
21124 m_line_header = lh;
21125
21126 m_currently_recording_lines = true;
21127
21128 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21129 was a line entry for it so that the backend has a chance to adjust it
21130 and also record it in case it needs it. This is currently used by MIPS
21131 code, cf. `mips_adjust_dwarf2_line'. */
21132 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21133 m_is_stmt = lh->default_is_stmt;
21134 m_discriminator = 0;
21135 }
21136
21137 void
21138 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21139 const gdb_byte *line_ptr,
21140 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21141 {
21142 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21143 the pc range of the CU. However, we restrict the test to only ADDRESS
21144 values of zero to preserve GDB's previous behaviour which is to handle
21145 the specific case of a function being GC'd by the linker. */
21146
21147 if (address == 0 && address < unrelocated_lowpc)
21148 {
21149 /* This line table is for a function which has been
21150 GCd by the linker. Ignore it. PR gdb/12528 */
21151
21152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21153 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21154
21155 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21156 line_offset, objfile_name (objfile));
21157 m_currently_recording_lines = false;
21158 /* Note: m_currently_recording_lines is left as false until we see
21159 DW_LNE_end_sequence. */
21160 }
21161 }
21162
21163 /* Subroutine of dwarf_decode_lines to simplify it.
21164 Process the line number information in LH.
21165 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21166 program in order to set included_p for every referenced header. */
21167
21168 static void
21169 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21170 const int decode_for_pst_p, CORE_ADDR lowpc)
21171 {
21172 const gdb_byte *line_ptr, *extended_end;
21173 const gdb_byte *line_end;
21174 unsigned int bytes_read, extended_len;
21175 unsigned char op_code, extended_op;
21176 CORE_ADDR baseaddr;
21177 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21178 bfd *abfd = objfile->obfd;
21179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21180 /* True if we're recording line info (as opposed to building partial
21181 symtabs and just interested in finding include files mentioned by
21182 the line number program). */
21183 bool record_lines_p = !decode_for_pst_p;
21184
21185 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21186
21187 line_ptr = lh->statement_program_start;
21188 line_end = lh->statement_program_end;
21189
21190 /* Read the statement sequences until there's nothing left. */
21191 while (line_ptr < line_end)
21192 {
21193 /* The DWARF line number program state machine. Reset the state
21194 machine at the start of each sequence. */
21195 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21196 bool end_sequence = false;
21197
21198 if (record_lines_p)
21199 {
21200 /* Start a subfile for the current file of the state
21201 machine. */
21202 const file_entry *fe = state_machine.current_file ();
21203
21204 if (fe != NULL)
21205 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21206 }
21207
21208 /* Decode the table. */
21209 while (line_ptr < line_end && !end_sequence)
21210 {
21211 op_code = read_1_byte (abfd, line_ptr);
21212 line_ptr += 1;
21213
21214 if (op_code >= lh->opcode_base)
21215 {
21216 /* Special opcode. */
21217 state_machine.handle_special_opcode (op_code);
21218 }
21219 else switch (op_code)
21220 {
21221 case DW_LNS_extended_op:
21222 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21223 &bytes_read);
21224 line_ptr += bytes_read;
21225 extended_end = line_ptr + extended_len;
21226 extended_op = read_1_byte (abfd, line_ptr);
21227 line_ptr += 1;
21228 switch (extended_op)
21229 {
21230 case DW_LNE_end_sequence:
21231 state_machine.handle_end_sequence ();
21232 end_sequence = true;
21233 break;
21234 case DW_LNE_set_address:
21235 {
21236 CORE_ADDR address
21237 = read_address (abfd, line_ptr, cu, &bytes_read);
21238 line_ptr += bytes_read;
21239
21240 state_machine.check_line_address (cu, line_ptr,
21241 lowpc - baseaddr, address);
21242 state_machine.handle_set_address (baseaddr, address);
21243 }
21244 break;
21245 case DW_LNE_define_file:
21246 {
21247 const char *cur_file;
21248 unsigned int mod_time, length;
21249 dir_index dindex;
21250
21251 cur_file = read_direct_string (abfd, line_ptr,
21252 &bytes_read);
21253 line_ptr += bytes_read;
21254 dindex = (dir_index)
21255 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21256 line_ptr += bytes_read;
21257 mod_time =
21258 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21259 line_ptr += bytes_read;
21260 length =
21261 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21262 line_ptr += bytes_read;
21263 lh->add_file_name (cur_file, dindex, mod_time, length);
21264 }
21265 break;
21266 case DW_LNE_set_discriminator:
21267 {
21268 /* The discriminator is not interesting to the
21269 debugger; just ignore it. We still need to
21270 check its value though:
21271 if there are consecutive entries for the same
21272 (non-prologue) line we want to coalesce them.
21273 PR 17276. */
21274 unsigned int discr
21275 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21276 line_ptr += bytes_read;
21277
21278 state_machine.handle_set_discriminator (discr);
21279 }
21280 break;
21281 default:
21282 complaint (_("mangled .debug_line section"));
21283 return;
21284 }
21285 /* Make sure that we parsed the extended op correctly. If e.g.
21286 we expected a different address size than the producer used,
21287 we may have read the wrong number of bytes. */
21288 if (line_ptr != extended_end)
21289 {
21290 complaint (_("mangled .debug_line section"));
21291 return;
21292 }
21293 break;
21294 case DW_LNS_copy:
21295 state_machine.handle_copy ();
21296 break;
21297 case DW_LNS_advance_pc:
21298 {
21299 CORE_ADDR adjust
21300 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21301 line_ptr += bytes_read;
21302
21303 state_machine.handle_advance_pc (adjust);
21304 }
21305 break;
21306 case DW_LNS_advance_line:
21307 {
21308 int line_delta
21309 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21310 line_ptr += bytes_read;
21311
21312 state_machine.handle_advance_line (line_delta);
21313 }
21314 break;
21315 case DW_LNS_set_file:
21316 {
21317 file_name_index file
21318 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21319 &bytes_read);
21320 line_ptr += bytes_read;
21321
21322 state_machine.handle_set_file (file);
21323 }
21324 break;
21325 case DW_LNS_set_column:
21326 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21327 line_ptr += bytes_read;
21328 break;
21329 case DW_LNS_negate_stmt:
21330 state_machine.handle_negate_stmt ();
21331 break;
21332 case DW_LNS_set_basic_block:
21333 break;
21334 /* Add to the address register of the state machine the
21335 address increment value corresponding to special opcode
21336 255. I.e., this value is scaled by the minimum
21337 instruction length since special opcode 255 would have
21338 scaled the increment. */
21339 case DW_LNS_const_add_pc:
21340 state_machine.handle_const_add_pc ();
21341 break;
21342 case DW_LNS_fixed_advance_pc:
21343 {
21344 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21345 line_ptr += 2;
21346
21347 state_machine.handle_fixed_advance_pc (addr_adj);
21348 }
21349 break;
21350 default:
21351 {
21352 /* Unknown standard opcode, ignore it. */
21353 int i;
21354
21355 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21356 {
21357 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21358 line_ptr += bytes_read;
21359 }
21360 }
21361 }
21362 }
21363
21364 if (!end_sequence)
21365 dwarf2_debug_line_missing_end_sequence_complaint ();
21366
21367 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21368 in which case we still finish recording the last line). */
21369 state_machine.record_line (true);
21370 }
21371 }
21372
21373 /* Decode the Line Number Program (LNP) for the given line_header
21374 structure and CU. The actual information extracted and the type
21375 of structures created from the LNP depends on the value of PST.
21376
21377 1. If PST is NULL, then this procedure uses the data from the program
21378 to create all necessary symbol tables, and their linetables.
21379
21380 2. If PST is not NULL, this procedure reads the program to determine
21381 the list of files included by the unit represented by PST, and
21382 builds all the associated partial symbol tables.
21383
21384 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21385 It is used for relative paths in the line table.
21386 NOTE: When processing partial symtabs (pst != NULL),
21387 comp_dir == pst->dirname.
21388
21389 NOTE: It is important that psymtabs have the same file name (via strcmp)
21390 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21391 symtab we don't use it in the name of the psymtabs we create.
21392 E.g. expand_line_sal requires this when finding psymtabs to expand.
21393 A good testcase for this is mb-inline.exp.
21394
21395 LOWPC is the lowest address in CU (or 0 if not known).
21396
21397 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21398 for its PC<->lines mapping information. Otherwise only the filename
21399 table is read in. */
21400
21401 static void
21402 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21403 struct dwarf2_cu *cu, struct partial_symtab *pst,
21404 CORE_ADDR lowpc, int decode_mapping)
21405 {
21406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21407 const int decode_for_pst_p = (pst != NULL);
21408
21409 if (decode_mapping)
21410 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21411
21412 if (decode_for_pst_p)
21413 {
21414 /* Now that we're done scanning the Line Header Program, we can
21415 create the psymtab of each included file. */
21416 for (auto &file_entry : lh->file_names ())
21417 if (file_entry.included_p == 1)
21418 {
21419 gdb::unique_xmalloc_ptr<char> name_holder;
21420 const char *include_name =
21421 psymtab_include_file_name (lh, file_entry, pst,
21422 comp_dir, &name_holder);
21423 if (include_name != NULL)
21424 dwarf2_create_include_psymtab (include_name, pst, objfile);
21425 }
21426 }
21427 else
21428 {
21429 /* Make sure a symtab is created for every file, even files
21430 which contain only variables (i.e. no code with associated
21431 line numbers). */
21432 buildsym_compunit *builder = cu->get_builder ();
21433 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21434
21435 for (auto &fe : lh->file_names ())
21436 {
21437 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21438 if (builder->get_current_subfile ()->symtab == NULL)
21439 {
21440 builder->get_current_subfile ()->symtab
21441 = allocate_symtab (cust,
21442 builder->get_current_subfile ()->name);
21443 }
21444 fe.symtab = builder->get_current_subfile ()->symtab;
21445 }
21446 }
21447 }
21448
21449 /* Start a subfile for DWARF. FILENAME is the name of the file and
21450 DIRNAME the name of the source directory which contains FILENAME
21451 or NULL if not known.
21452 This routine tries to keep line numbers from identical absolute and
21453 relative file names in a common subfile.
21454
21455 Using the `list' example from the GDB testsuite, which resides in
21456 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21457 of /srcdir/list0.c yields the following debugging information for list0.c:
21458
21459 DW_AT_name: /srcdir/list0.c
21460 DW_AT_comp_dir: /compdir
21461 files.files[0].name: list0.h
21462 files.files[0].dir: /srcdir
21463 files.files[1].name: list0.c
21464 files.files[1].dir: /srcdir
21465
21466 The line number information for list0.c has to end up in a single
21467 subfile, so that `break /srcdir/list0.c:1' works as expected.
21468 start_subfile will ensure that this happens provided that we pass the
21469 concatenation of files.files[1].dir and files.files[1].name as the
21470 subfile's name. */
21471
21472 static void
21473 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21474 const char *dirname)
21475 {
21476 char *copy = NULL;
21477
21478 /* In order not to lose the line information directory,
21479 we concatenate it to the filename when it makes sense.
21480 Note that the Dwarf3 standard says (speaking of filenames in line
21481 information): ``The directory index is ignored for file names
21482 that represent full path names''. Thus ignoring dirname in the
21483 `else' branch below isn't an issue. */
21484
21485 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21486 {
21487 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21488 filename = copy;
21489 }
21490
21491 cu->get_builder ()->start_subfile (filename);
21492
21493 if (copy != NULL)
21494 xfree (copy);
21495 }
21496
21497 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21498 buildsym_compunit constructor. */
21499
21500 struct compunit_symtab *
21501 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21502 CORE_ADDR low_pc)
21503 {
21504 gdb_assert (m_builder == nullptr);
21505
21506 m_builder.reset (new struct buildsym_compunit
21507 (per_cu->dwarf2_per_objfile->objfile,
21508 name, comp_dir, language, low_pc));
21509
21510 list_in_scope = get_builder ()->get_file_symbols ();
21511
21512 get_builder ()->record_debugformat ("DWARF 2");
21513 get_builder ()->record_producer (producer);
21514
21515 processing_has_namespace_info = false;
21516
21517 return get_builder ()->get_compunit_symtab ();
21518 }
21519
21520 static void
21521 var_decode_location (struct attribute *attr, struct symbol *sym,
21522 struct dwarf2_cu *cu)
21523 {
21524 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21525 struct comp_unit_head *cu_header = &cu->header;
21526
21527 /* NOTE drow/2003-01-30: There used to be a comment and some special
21528 code here to turn a symbol with DW_AT_external and a
21529 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21530 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21531 with some versions of binutils) where shared libraries could have
21532 relocations against symbols in their debug information - the
21533 minimal symbol would have the right address, but the debug info
21534 would not. It's no longer necessary, because we will explicitly
21535 apply relocations when we read in the debug information now. */
21536
21537 /* A DW_AT_location attribute with no contents indicates that a
21538 variable has been optimized away. */
21539 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21540 {
21541 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21542 return;
21543 }
21544
21545 /* Handle one degenerate form of location expression specially, to
21546 preserve GDB's previous behavior when section offsets are
21547 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21548 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21549
21550 if (attr_form_is_block (attr)
21551 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21552 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21553 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21554 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21555 && (DW_BLOCK (attr)->size
21556 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21557 {
21558 unsigned int dummy;
21559
21560 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21561 SET_SYMBOL_VALUE_ADDRESS (sym,
21562 read_address (objfile->obfd,
21563 DW_BLOCK (attr)->data + 1,
21564 cu, &dummy));
21565 else
21566 SET_SYMBOL_VALUE_ADDRESS
21567 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21568 &dummy));
21569 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21570 fixup_symbol_section (sym, objfile);
21571 SET_SYMBOL_VALUE_ADDRESS (sym,
21572 SYMBOL_VALUE_ADDRESS (sym)
21573 + ANOFFSET (objfile->section_offsets,
21574 SYMBOL_SECTION (sym)));
21575 return;
21576 }
21577
21578 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21579 expression evaluator, and use LOC_COMPUTED only when necessary
21580 (i.e. when the value of a register or memory location is
21581 referenced, or a thread-local block, etc.). Then again, it might
21582 not be worthwhile. I'm assuming that it isn't unless performance
21583 or memory numbers show me otherwise. */
21584
21585 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21586
21587 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21588 cu->has_loclist = true;
21589 }
21590
21591 /* Given a pointer to a DWARF information entry, figure out if we need
21592 to make a symbol table entry for it, and if so, create a new entry
21593 and return a pointer to it.
21594 If TYPE is NULL, determine symbol type from the die, otherwise
21595 used the passed type.
21596 If SPACE is not NULL, use it to hold the new symbol. If it is
21597 NULL, allocate a new symbol on the objfile's obstack. */
21598
21599 static struct symbol *
21600 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21601 struct symbol *space)
21602 {
21603 struct dwarf2_per_objfile *dwarf2_per_objfile
21604 = cu->per_cu->dwarf2_per_objfile;
21605 struct objfile *objfile = dwarf2_per_objfile->objfile;
21606 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21607 struct symbol *sym = NULL;
21608 const char *name;
21609 struct attribute *attr = NULL;
21610 struct attribute *attr2 = NULL;
21611 CORE_ADDR baseaddr;
21612 struct pending **list_to_add = NULL;
21613
21614 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21615
21616 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21617
21618 name = dwarf2_name (die, cu);
21619 if (name)
21620 {
21621 const char *linkagename;
21622 int suppress_add = 0;
21623
21624 if (space)
21625 sym = space;
21626 else
21627 sym = allocate_symbol (objfile);
21628 OBJSTAT (objfile, n_syms++);
21629
21630 /* Cache this symbol's name and the name's demangled form (if any). */
21631 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21632 linkagename = dwarf2_physname (name, die, cu);
21633 SYMBOL_SET_NAMES (sym, linkagename, false, objfile);
21634
21635 /* Fortran does not have mangling standard and the mangling does differ
21636 between gfortran, iFort etc. */
21637 if (cu->language == language_fortran
21638 && symbol_get_demangled_name (sym) == NULL)
21639 symbol_set_demangled_name (sym,
21640 dwarf2_full_name (name, die, cu),
21641 NULL);
21642
21643 /* Default assumptions.
21644 Use the passed type or decode it from the die. */
21645 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21646 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21647 if (type != NULL)
21648 SYMBOL_TYPE (sym) = type;
21649 else
21650 SYMBOL_TYPE (sym) = die_type (die, cu);
21651 attr = dwarf2_attr (die,
21652 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21653 cu);
21654 if (attr != nullptr)
21655 {
21656 SYMBOL_LINE (sym) = DW_UNSND (attr);
21657 }
21658
21659 attr = dwarf2_attr (die,
21660 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21661 cu);
21662 if (attr != nullptr)
21663 {
21664 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21665 struct file_entry *fe;
21666
21667 if (cu->line_header != NULL)
21668 fe = cu->line_header->file_name_at (file_index);
21669 else
21670 fe = NULL;
21671
21672 if (fe == NULL)
21673 complaint (_("file index out of range"));
21674 else
21675 symbol_set_symtab (sym, fe->symtab);
21676 }
21677
21678 switch (die->tag)
21679 {
21680 case DW_TAG_label:
21681 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21682 if (attr != nullptr)
21683 {
21684 CORE_ADDR addr;
21685
21686 addr = attr_value_as_address (attr);
21687 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21688 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21689 }
21690 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21691 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21692 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21693 add_symbol_to_list (sym, cu->list_in_scope);
21694 break;
21695 case DW_TAG_subprogram:
21696 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21697 finish_block. */
21698 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21699 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21700 if ((attr2 && (DW_UNSND (attr2) != 0))
21701 || cu->language == language_ada
21702 || cu->language == language_fortran)
21703 {
21704 /* Subprograms marked external are stored as a global symbol.
21705 Ada and Fortran subprograms, whether marked external or
21706 not, are always stored as a global symbol, because we want
21707 to be able to access them globally. For instance, we want
21708 to be able to break on a nested subprogram without having
21709 to specify the context. */
21710 list_to_add = cu->get_builder ()->get_global_symbols ();
21711 }
21712 else
21713 {
21714 list_to_add = cu->list_in_scope;
21715 }
21716 break;
21717 case DW_TAG_inlined_subroutine:
21718 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21719 finish_block. */
21720 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21721 SYMBOL_INLINED (sym) = 1;
21722 list_to_add = cu->list_in_scope;
21723 break;
21724 case DW_TAG_template_value_param:
21725 suppress_add = 1;
21726 /* Fall through. */
21727 case DW_TAG_constant:
21728 case DW_TAG_variable:
21729 case DW_TAG_member:
21730 /* Compilation with minimal debug info may result in
21731 variables with missing type entries. Change the
21732 misleading `void' type to something sensible. */
21733 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21734 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21735
21736 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21737 /* In the case of DW_TAG_member, we should only be called for
21738 static const members. */
21739 if (die->tag == DW_TAG_member)
21740 {
21741 /* dwarf2_add_field uses die_is_declaration,
21742 so we do the same. */
21743 gdb_assert (die_is_declaration (die, cu));
21744 gdb_assert (attr);
21745 }
21746 if (attr != nullptr)
21747 {
21748 dwarf2_const_value (attr, sym, cu);
21749 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21750 if (!suppress_add)
21751 {
21752 if (attr2 && (DW_UNSND (attr2) != 0))
21753 list_to_add = cu->get_builder ()->get_global_symbols ();
21754 else
21755 list_to_add = cu->list_in_scope;
21756 }
21757 break;
21758 }
21759 attr = dwarf2_attr (die, DW_AT_location, cu);
21760 if (attr != nullptr)
21761 {
21762 var_decode_location (attr, sym, cu);
21763 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21764
21765 /* Fortran explicitly imports any global symbols to the local
21766 scope by DW_TAG_common_block. */
21767 if (cu->language == language_fortran && die->parent
21768 && die->parent->tag == DW_TAG_common_block)
21769 attr2 = NULL;
21770
21771 if (SYMBOL_CLASS (sym) == LOC_STATIC
21772 && SYMBOL_VALUE_ADDRESS (sym) == 0
21773 && !dwarf2_per_objfile->has_section_at_zero)
21774 {
21775 /* When a static variable is eliminated by the linker,
21776 the corresponding debug information is not stripped
21777 out, but the variable address is set to null;
21778 do not add such variables into symbol table. */
21779 }
21780 else if (attr2 && (DW_UNSND (attr2) != 0))
21781 {
21782 if (SYMBOL_CLASS (sym) == LOC_STATIC
21783 && (objfile->flags & OBJF_MAINLINE) == 0
21784 && dwarf2_per_objfile->can_copy)
21785 {
21786 /* A global static variable might be subject to
21787 copy relocation. We first check for a local
21788 minsym, though, because maybe the symbol was
21789 marked hidden, in which case this would not
21790 apply. */
21791 bound_minimal_symbol found
21792 = (lookup_minimal_symbol_linkage
21793 (SYMBOL_LINKAGE_NAME (sym), objfile));
21794 if (found.minsym != nullptr)
21795 sym->maybe_copied = 1;
21796 }
21797
21798 /* A variable with DW_AT_external is never static,
21799 but it may be block-scoped. */
21800 list_to_add
21801 = ((cu->list_in_scope
21802 == cu->get_builder ()->get_file_symbols ())
21803 ? cu->get_builder ()->get_global_symbols ()
21804 : cu->list_in_scope);
21805 }
21806 else
21807 list_to_add = cu->list_in_scope;
21808 }
21809 else
21810 {
21811 /* We do not know the address of this symbol.
21812 If it is an external symbol and we have type information
21813 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21814 The address of the variable will then be determined from
21815 the minimal symbol table whenever the variable is
21816 referenced. */
21817 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21818
21819 /* Fortran explicitly imports any global symbols to the local
21820 scope by DW_TAG_common_block. */
21821 if (cu->language == language_fortran && die->parent
21822 && die->parent->tag == DW_TAG_common_block)
21823 {
21824 /* SYMBOL_CLASS doesn't matter here because
21825 read_common_block is going to reset it. */
21826 if (!suppress_add)
21827 list_to_add = cu->list_in_scope;
21828 }
21829 else if (attr2 && (DW_UNSND (attr2) != 0)
21830 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21831 {
21832 /* A variable with DW_AT_external is never static, but it
21833 may be block-scoped. */
21834 list_to_add
21835 = ((cu->list_in_scope
21836 == cu->get_builder ()->get_file_symbols ())
21837 ? cu->get_builder ()->get_global_symbols ()
21838 : cu->list_in_scope);
21839
21840 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21841 }
21842 else if (!die_is_declaration (die, cu))
21843 {
21844 /* Use the default LOC_OPTIMIZED_OUT class. */
21845 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21846 if (!suppress_add)
21847 list_to_add = cu->list_in_scope;
21848 }
21849 }
21850 break;
21851 case DW_TAG_formal_parameter:
21852 {
21853 /* If we are inside a function, mark this as an argument. If
21854 not, we might be looking at an argument to an inlined function
21855 when we do not have enough information to show inlined frames;
21856 pretend it's a local variable in that case so that the user can
21857 still see it. */
21858 struct context_stack *curr
21859 = cu->get_builder ()->get_current_context_stack ();
21860 if (curr != nullptr && curr->name != nullptr)
21861 SYMBOL_IS_ARGUMENT (sym) = 1;
21862 attr = dwarf2_attr (die, DW_AT_location, cu);
21863 if (attr != nullptr)
21864 {
21865 var_decode_location (attr, sym, cu);
21866 }
21867 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21868 if (attr != nullptr)
21869 {
21870 dwarf2_const_value (attr, sym, cu);
21871 }
21872
21873 list_to_add = cu->list_in_scope;
21874 }
21875 break;
21876 case DW_TAG_unspecified_parameters:
21877 /* From varargs functions; gdb doesn't seem to have any
21878 interest in this information, so just ignore it for now.
21879 (FIXME?) */
21880 break;
21881 case DW_TAG_template_type_param:
21882 suppress_add = 1;
21883 /* Fall through. */
21884 case DW_TAG_class_type:
21885 case DW_TAG_interface_type:
21886 case DW_TAG_structure_type:
21887 case DW_TAG_union_type:
21888 case DW_TAG_set_type:
21889 case DW_TAG_enumeration_type:
21890 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21891 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21892
21893 {
21894 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21895 really ever be static objects: otherwise, if you try
21896 to, say, break of a class's method and you're in a file
21897 which doesn't mention that class, it won't work unless
21898 the check for all static symbols in lookup_symbol_aux
21899 saves you. See the OtherFileClass tests in
21900 gdb.c++/namespace.exp. */
21901
21902 if (!suppress_add)
21903 {
21904 buildsym_compunit *builder = cu->get_builder ();
21905 list_to_add
21906 = (cu->list_in_scope == builder->get_file_symbols ()
21907 && cu->language == language_cplus
21908 ? builder->get_global_symbols ()
21909 : cu->list_in_scope);
21910
21911 /* The semantics of C++ state that "struct foo {
21912 ... }" also defines a typedef for "foo". */
21913 if (cu->language == language_cplus
21914 || cu->language == language_ada
21915 || cu->language == language_d
21916 || cu->language == language_rust)
21917 {
21918 /* The symbol's name is already allocated along
21919 with this objfile, so we don't need to
21920 duplicate it for the type. */
21921 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21922 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21923 }
21924 }
21925 }
21926 break;
21927 case DW_TAG_typedef:
21928 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21930 list_to_add = cu->list_in_scope;
21931 break;
21932 case DW_TAG_base_type:
21933 case DW_TAG_subrange_type:
21934 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21936 list_to_add = cu->list_in_scope;
21937 break;
21938 case DW_TAG_enumerator:
21939 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21940 if (attr != nullptr)
21941 {
21942 dwarf2_const_value (attr, sym, cu);
21943 }
21944 {
21945 /* NOTE: carlton/2003-11-10: See comment above in the
21946 DW_TAG_class_type, etc. block. */
21947
21948 list_to_add
21949 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21950 && cu->language == language_cplus
21951 ? cu->get_builder ()->get_global_symbols ()
21952 : cu->list_in_scope);
21953 }
21954 break;
21955 case DW_TAG_imported_declaration:
21956 case DW_TAG_namespace:
21957 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21958 list_to_add = cu->get_builder ()->get_global_symbols ();
21959 break;
21960 case DW_TAG_module:
21961 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21962 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21963 list_to_add = cu->get_builder ()->get_global_symbols ();
21964 break;
21965 case DW_TAG_common_block:
21966 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21967 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21968 add_symbol_to_list (sym, cu->list_in_scope);
21969 break;
21970 default:
21971 /* Not a tag we recognize. Hopefully we aren't processing
21972 trash data, but since we must specifically ignore things
21973 we don't recognize, there is nothing else we should do at
21974 this point. */
21975 complaint (_("unsupported tag: '%s'"),
21976 dwarf_tag_name (die->tag));
21977 break;
21978 }
21979
21980 if (suppress_add)
21981 {
21982 sym->hash_next = objfile->template_symbols;
21983 objfile->template_symbols = sym;
21984 list_to_add = NULL;
21985 }
21986
21987 if (list_to_add != NULL)
21988 add_symbol_to_list (sym, list_to_add);
21989
21990 /* For the benefit of old versions of GCC, check for anonymous
21991 namespaces based on the demangled name. */
21992 if (!cu->processing_has_namespace_info
21993 && cu->language == language_cplus)
21994 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21995 }
21996 return (sym);
21997 }
21998
21999 /* Given an attr with a DW_FORM_dataN value in host byte order,
22000 zero-extend it as appropriate for the symbol's type. The DWARF
22001 standard (v4) is not entirely clear about the meaning of using
22002 DW_FORM_dataN for a constant with a signed type, where the type is
22003 wider than the data. The conclusion of a discussion on the DWARF
22004 list was that this is unspecified. We choose to always zero-extend
22005 because that is the interpretation long in use by GCC. */
22006
22007 static gdb_byte *
22008 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22009 struct dwarf2_cu *cu, LONGEST *value, int bits)
22010 {
22011 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22012 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22013 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22014 LONGEST l = DW_UNSND (attr);
22015
22016 if (bits < sizeof (*value) * 8)
22017 {
22018 l &= ((LONGEST) 1 << bits) - 1;
22019 *value = l;
22020 }
22021 else if (bits == sizeof (*value) * 8)
22022 *value = l;
22023 else
22024 {
22025 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22026 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22027 return bytes;
22028 }
22029
22030 return NULL;
22031 }
22032
22033 /* Read a constant value from an attribute. Either set *VALUE, or if
22034 the value does not fit in *VALUE, set *BYTES - either already
22035 allocated on the objfile obstack, or newly allocated on OBSTACK,
22036 or, set *BATON, if we translated the constant to a location
22037 expression. */
22038
22039 static void
22040 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22041 const char *name, struct obstack *obstack,
22042 struct dwarf2_cu *cu,
22043 LONGEST *value, const gdb_byte **bytes,
22044 struct dwarf2_locexpr_baton **baton)
22045 {
22046 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22047 struct comp_unit_head *cu_header = &cu->header;
22048 struct dwarf_block *blk;
22049 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22050 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22051
22052 *value = 0;
22053 *bytes = NULL;
22054 *baton = NULL;
22055
22056 switch (attr->form)
22057 {
22058 case DW_FORM_addr:
22059 case DW_FORM_addrx:
22060 case DW_FORM_GNU_addr_index:
22061 {
22062 gdb_byte *data;
22063
22064 if (TYPE_LENGTH (type) != cu_header->addr_size)
22065 dwarf2_const_value_length_mismatch_complaint (name,
22066 cu_header->addr_size,
22067 TYPE_LENGTH (type));
22068 /* Symbols of this form are reasonably rare, so we just
22069 piggyback on the existing location code rather than writing
22070 a new implementation of symbol_computed_ops. */
22071 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22072 (*baton)->per_cu = cu->per_cu;
22073 gdb_assert ((*baton)->per_cu);
22074
22075 (*baton)->size = 2 + cu_header->addr_size;
22076 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22077 (*baton)->data = data;
22078
22079 data[0] = DW_OP_addr;
22080 store_unsigned_integer (&data[1], cu_header->addr_size,
22081 byte_order, DW_ADDR (attr));
22082 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22083 }
22084 break;
22085 case DW_FORM_string:
22086 case DW_FORM_strp:
22087 case DW_FORM_strx:
22088 case DW_FORM_GNU_str_index:
22089 case DW_FORM_GNU_strp_alt:
22090 /* DW_STRING is already allocated on the objfile obstack, point
22091 directly to it. */
22092 *bytes = (const gdb_byte *) DW_STRING (attr);
22093 break;
22094 case DW_FORM_block1:
22095 case DW_FORM_block2:
22096 case DW_FORM_block4:
22097 case DW_FORM_block:
22098 case DW_FORM_exprloc:
22099 case DW_FORM_data16:
22100 blk = DW_BLOCK (attr);
22101 if (TYPE_LENGTH (type) != blk->size)
22102 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22103 TYPE_LENGTH (type));
22104 *bytes = blk->data;
22105 break;
22106
22107 /* The DW_AT_const_value attributes are supposed to carry the
22108 symbol's value "represented as it would be on the target
22109 architecture." By the time we get here, it's already been
22110 converted to host endianness, so we just need to sign- or
22111 zero-extend it as appropriate. */
22112 case DW_FORM_data1:
22113 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22114 break;
22115 case DW_FORM_data2:
22116 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22117 break;
22118 case DW_FORM_data4:
22119 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22120 break;
22121 case DW_FORM_data8:
22122 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22123 break;
22124
22125 case DW_FORM_sdata:
22126 case DW_FORM_implicit_const:
22127 *value = DW_SND (attr);
22128 break;
22129
22130 case DW_FORM_udata:
22131 *value = DW_UNSND (attr);
22132 break;
22133
22134 default:
22135 complaint (_("unsupported const value attribute form: '%s'"),
22136 dwarf_form_name (attr->form));
22137 *value = 0;
22138 break;
22139 }
22140 }
22141
22142
22143 /* Copy constant value from an attribute to a symbol. */
22144
22145 static void
22146 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22147 struct dwarf2_cu *cu)
22148 {
22149 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22150 LONGEST value;
22151 const gdb_byte *bytes;
22152 struct dwarf2_locexpr_baton *baton;
22153
22154 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22155 SYMBOL_PRINT_NAME (sym),
22156 &objfile->objfile_obstack, cu,
22157 &value, &bytes, &baton);
22158
22159 if (baton != NULL)
22160 {
22161 SYMBOL_LOCATION_BATON (sym) = baton;
22162 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22163 }
22164 else if (bytes != NULL)
22165 {
22166 SYMBOL_VALUE_BYTES (sym) = bytes;
22167 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22168 }
22169 else
22170 {
22171 SYMBOL_VALUE (sym) = value;
22172 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22173 }
22174 }
22175
22176 /* Return the type of the die in question using its DW_AT_type attribute. */
22177
22178 static struct type *
22179 die_type (struct die_info *die, struct dwarf2_cu *cu)
22180 {
22181 struct attribute *type_attr;
22182
22183 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22184 if (!type_attr)
22185 {
22186 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22187 /* A missing DW_AT_type represents a void type. */
22188 return objfile_type (objfile)->builtin_void;
22189 }
22190
22191 return lookup_die_type (die, type_attr, cu);
22192 }
22193
22194 /* True iff CU's producer generates GNAT Ada auxiliary information
22195 that allows to find parallel types through that information instead
22196 of having to do expensive parallel lookups by type name. */
22197
22198 static int
22199 need_gnat_info (struct dwarf2_cu *cu)
22200 {
22201 /* Assume that the Ada compiler was GNAT, which always produces
22202 the auxiliary information. */
22203 return (cu->language == language_ada);
22204 }
22205
22206 /* Return the auxiliary type of the die in question using its
22207 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22208 attribute is not present. */
22209
22210 static struct type *
22211 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22212 {
22213 struct attribute *type_attr;
22214
22215 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22216 if (!type_attr)
22217 return NULL;
22218
22219 return lookup_die_type (die, type_attr, cu);
22220 }
22221
22222 /* If DIE has a descriptive_type attribute, then set the TYPE's
22223 descriptive type accordingly. */
22224
22225 static void
22226 set_descriptive_type (struct type *type, struct die_info *die,
22227 struct dwarf2_cu *cu)
22228 {
22229 struct type *descriptive_type = die_descriptive_type (die, cu);
22230
22231 if (descriptive_type)
22232 {
22233 ALLOCATE_GNAT_AUX_TYPE (type);
22234 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22235 }
22236 }
22237
22238 /* Return the containing type of the die in question using its
22239 DW_AT_containing_type attribute. */
22240
22241 static struct type *
22242 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22243 {
22244 struct attribute *type_attr;
22245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22246
22247 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22248 if (!type_attr)
22249 error (_("Dwarf Error: Problem turning containing type into gdb type "
22250 "[in module %s]"), objfile_name (objfile));
22251
22252 return lookup_die_type (die, type_attr, cu);
22253 }
22254
22255 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22256
22257 static struct type *
22258 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22259 {
22260 struct dwarf2_per_objfile *dwarf2_per_objfile
22261 = cu->per_cu->dwarf2_per_objfile;
22262 struct objfile *objfile = dwarf2_per_objfile->objfile;
22263 char *saved;
22264
22265 std::string message
22266 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22267 objfile_name (objfile),
22268 sect_offset_str (cu->header.sect_off),
22269 sect_offset_str (die->sect_off));
22270 saved = obstack_strdup (&objfile->objfile_obstack, message);
22271
22272 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22273 }
22274
22275 /* Look up the type of DIE in CU using its type attribute ATTR.
22276 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22277 DW_AT_containing_type.
22278 If there is no type substitute an error marker. */
22279
22280 static struct type *
22281 lookup_die_type (struct die_info *die, const struct attribute *attr,
22282 struct dwarf2_cu *cu)
22283 {
22284 struct dwarf2_per_objfile *dwarf2_per_objfile
22285 = cu->per_cu->dwarf2_per_objfile;
22286 struct objfile *objfile = dwarf2_per_objfile->objfile;
22287 struct type *this_type;
22288
22289 gdb_assert (attr->name == DW_AT_type
22290 || attr->name == DW_AT_GNAT_descriptive_type
22291 || attr->name == DW_AT_containing_type);
22292
22293 /* First see if we have it cached. */
22294
22295 if (attr->form == DW_FORM_GNU_ref_alt)
22296 {
22297 struct dwarf2_per_cu_data *per_cu;
22298 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22299
22300 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22301 dwarf2_per_objfile);
22302 this_type = get_die_type_at_offset (sect_off, per_cu);
22303 }
22304 else if (attr_form_is_ref (attr))
22305 {
22306 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22307
22308 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22309 }
22310 else if (attr->form == DW_FORM_ref_sig8)
22311 {
22312 ULONGEST signature = DW_SIGNATURE (attr);
22313
22314 return get_signatured_type (die, signature, cu);
22315 }
22316 else
22317 {
22318 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22319 " at %s [in module %s]"),
22320 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22321 objfile_name (objfile));
22322 return build_error_marker_type (cu, die);
22323 }
22324
22325 /* If not cached we need to read it in. */
22326
22327 if (this_type == NULL)
22328 {
22329 struct die_info *type_die = NULL;
22330 struct dwarf2_cu *type_cu = cu;
22331
22332 if (attr_form_is_ref (attr))
22333 type_die = follow_die_ref (die, attr, &type_cu);
22334 if (type_die == NULL)
22335 return build_error_marker_type (cu, die);
22336 /* If we find the type now, it's probably because the type came
22337 from an inter-CU reference and the type's CU got expanded before
22338 ours. */
22339 this_type = read_type_die (type_die, type_cu);
22340 }
22341
22342 /* If we still don't have a type use an error marker. */
22343
22344 if (this_type == NULL)
22345 return build_error_marker_type (cu, die);
22346
22347 return this_type;
22348 }
22349
22350 /* Return the type in DIE, CU.
22351 Returns NULL for invalid types.
22352
22353 This first does a lookup in die_type_hash,
22354 and only reads the die in if necessary.
22355
22356 NOTE: This can be called when reading in partial or full symbols. */
22357
22358 static struct type *
22359 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22360 {
22361 struct type *this_type;
22362
22363 this_type = get_die_type (die, cu);
22364 if (this_type)
22365 return this_type;
22366
22367 return read_type_die_1 (die, cu);
22368 }
22369
22370 /* Read the type in DIE, CU.
22371 Returns NULL for invalid types. */
22372
22373 static struct type *
22374 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22375 {
22376 struct type *this_type = NULL;
22377
22378 switch (die->tag)
22379 {
22380 case DW_TAG_class_type:
22381 case DW_TAG_interface_type:
22382 case DW_TAG_structure_type:
22383 case DW_TAG_union_type:
22384 this_type = read_structure_type (die, cu);
22385 break;
22386 case DW_TAG_enumeration_type:
22387 this_type = read_enumeration_type (die, cu);
22388 break;
22389 case DW_TAG_subprogram:
22390 case DW_TAG_subroutine_type:
22391 case DW_TAG_inlined_subroutine:
22392 this_type = read_subroutine_type (die, cu);
22393 break;
22394 case DW_TAG_array_type:
22395 this_type = read_array_type (die, cu);
22396 break;
22397 case DW_TAG_set_type:
22398 this_type = read_set_type (die, cu);
22399 break;
22400 case DW_TAG_pointer_type:
22401 this_type = read_tag_pointer_type (die, cu);
22402 break;
22403 case DW_TAG_ptr_to_member_type:
22404 this_type = read_tag_ptr_to_member_type (die, cu);
22405 break;
22406 case DW_TAG_reference_type:
22407 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22408 break;
22409 case DW_TAG_rvalue_reference_type:
22410 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22411 break;
22412 case DW_TAG_const_type:
22413 this_type = read_tag_const_type (die, cu);
22414 break;
22415 case DW_TAG_volatile_type:
22416 this_type = read_tag_volatile_type (die, cu);
22417 break;
22418 case DW_TAG_restrict_type:
22419 this_type = read_tag_restrict_type (die, cu);
22420 break;
22421 case DW_TAG_string_type:
22422 this_type = read_tag_string_type (die, cu);
22423 break;
22424 case DW_TAG_typedef:
22425 this_type = read_typedef (die, cu);
22426 break;
22427 case DW_TAG_subrange_type:
22428 this_type = read_subrange_type (die, cu);
22429 break;
22430 case DW_TAG_base_type:
22431 this_type = read_base_type (die, cu);
22432 break;
22433 case DW_TAG_unspecified_type:
22434 this_type = read_unspecified_type (die, cu);
22435 break;
22436 case DW_TAG_namespace:
22437 this_type = read_namespace_type (die, cu);
22438 break;
22439 case DW_TAG_module:
22440 this_type = read_module_type (die, cu);
22441 break;
22442 case DW_TAG_atomic_type:
22443 this_type = read_tag_atomic_type (die, cu);
22444 break;
22445 default:
22446 complaint (_("unexpected tag in read_type_die: '%s'"),
22447 dwarf_tag_name (die->tag));
22448 break;
22449 }
22450
22451 return this_type;
22452 }
22453
22454 /* See if we can figure out if the class lives in a namespace. We do
22455 this by looking for a member function; its demangled name will
22456 contain namespace info, if there is any.
22457 Return the computed name or NULL.
22458 Space for the result is allocated on the objfile's obstack.
22459 This is the full-die version of guess_partial_die_structure_name.
22460 In this case we know DIE has no useful parent. */
22461
22462 static char *
22463 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22464 {
22465 struct die_info *spec_die;
22466 struct dwarf2_cu *spec_cu;
22467 struct die_info *child;
22468 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22469
22470 spec_cu = cu;
22471 spec_die = die_specification (die, &spec_cu);
22472 if (spec_die != NULL)
22473 {
22474 die = spec_die;
22475 cu = spec_cu;
22476 }
22477
22478 for (child = die->child;
22479 child != NULL;
22480 child = child->sibling)
22481 {
22482 if (child->tag == DW_TAG_subprogram)
22483 {
22484 const char *linkage_name = dw2_linkage_name (child, cu);
22485
22486 if (linkage_name != NULL)
22487 {
22488 char *actual_name
22489 = language_class_name_from_physname (cu->language_defn,
22490 linkage_name);
22491 char *name = NULL;
22492
22493 if (actual_name != NULL)
22494 {
22495 const char *die_name = dwarf2_name (die, cu);
22496
22497 if (die_name != NULL
22498 && strcmp (die_name, actual_name) != 0)
22499 {
22500 /* Strip off the class name from the full name.
22501 We want the prefix. */
22502 int die_name_len = strlen (die_name);
22503 int actual_name_len = strlen (actual_name);
22504
22505 /* Test for '::' as a sanity check. */
22506 if (actual_name_len > die_name_len + 2
22507 && actual_name[actual_name_len
22508 - die_name_len - 1] == ':')
22509 name = obstack_strndup (
22510 &objfile->per_bfd->storage_obstack,
22511 actual_name, actual_name_len - die_name_len - 2);
22512 }
22513 }
22514 xfree (actual_name);
22515 return name;
22516 }
22517 }
22518 }
22519
22520 return NULL;
22521 }
22522
22523 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22524 prefix part in such case. See
22525 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22526
22527 static const char *
22528 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22529 {
22530 struct attribute *attr;
22531 const char *base;
22532
22533 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22534 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22535 return NULL;
22536
22537 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22538 return NULL;
22539
22540 attr = dw2_linkage_name_attr (die, cu);
22541 if (attr == NULL || DW_STRING (attr) == NULL)
22542 return NULL;
22543
22544 /* dwarf2_name had to be already called. */
22545 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22546
22547 /* Strip the base name, keep any leading namespaces/classes. */
22548 base = strrchr (DW_STRING (attr), ':');
22549 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22550 return "";
22551
22552 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22553 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22554 DW_STRING (attr),
22555 &base[-1] - DW_STRING (attr));
22556 }
22557
22558 /* Return the name of the namespace/class that DIE is defined within,
22559 or "" if we can't tell. The caller should not xfree the result.
22560
22561 For example, if we're within the method foo() in the following
22562 code:
22563
22564 namespace N {
22565 class C {
22566 void foo () {
22567 }
22568 };
22569 }
22570
22571 then determine_prefix on foo's die will return "N::C". */
22572
22573 static const char *
22574 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22575 {
22576 struct dwarf2_per_objfile *dwarf2_per_objfile
22577 = cu->per_cu->dwarf2_per_objfile;
22578 struct die_info *parent, *spec_die;
22579 struct dwarf2_cu *spec_cu;
22580 struct type *parent_type;
22581 const char *retval;
22582
22583 if (cu->language != language_cplus
22584 && cu->language != language_fortran && cu->language != language_d
22585 && cu->language != language_rust)
22586 return "";
22587
22588 retval = anonymous_struct_prefix (die, cu);
22589 if (retval)
22590 return retval;
22591
22592 /* We have to be careful in the presence of DW_AT_specification.
22593 For example, with GCC 3.4, given the code
22594
22595 namespace N {
22596 void foo() {
22597 // Definition of N::foo.
22598 }
22599 }
22600
22601 then we'll have a tree of DIEs like this:
22602
22603 1: DW_TAG_compile_unit
22604 2: DW_TAG_namespace // N
22605 3: DW_TAG_subprogram // declaration of N::foo
22606 4: DW_TAG_subprogram // definition of N::foo
22607 DW_AT_specification // refers to die #3
22608
22609 Thus, when processing die #4, we have to pretend that we're in
22610 the context of its DW_AT_specification, namely the contex of die
22611 #3. */
22612 spec_cu = cu;
22613 spec_die = die_specification (die, &spec_cu);
22614 if (spec_die == NULL)
22615 parent = die->parent;
22616 else
22617 {
22618 parent = spec_die->parent;
22619 cu = spec_cu;
22620 }
22621
22622 if (parent == NULL)
22623 return "";
22624 else if (parent->building_fullname)
22625 {
22626 const char *name;
22627 const char *parent_name;
22628
22629 /* It has been seen on RealView 2.2 built binaries,
22630 DW_TAG_template_type_param types actually _defined_ as
22631 children of the parent class:
22632
22633 enum E {};
22634 template class <class Enum> Class{};
22635 Class<enum E> class_e;
22636
22637 1: DW_TAG_class_type (Class)
22638 2: DW_TAG_enumeration_type (E)
22639 3: DW_TAG_enumerator (enum1:0)
22640 3: DW_TAG_enumerator (enum2:1)
22641 ...
22642 2: DW_TAG_template_type_param
22643 DW_AT_type DW_FORM_ref_udata (E)
22644
22645 Besides being broken debug info, it can put GDB into an
22646 infinite loop. Consider:
22647
22648 When we're building the full name for Class<E>, we'll start
22649 at Class, and go look over its template type parameters,
22650 finding E. We'll then try to build the full name of E, and
22651 reach here. We're now trying to build the full name of E,
22652 and look over the parent DIE for containing scope. In the
22653 broken case, if we followed the parent DIE of E, we'd again
22654 find Class, and once again go look at its template type
22655 arguments, etc., etc. Simply don't consider such parent die
22656 as source-level parent of this die (it can't be, the language
22657 doesn't allow it), and break the loop here. */
22658 name = dwarf2_name (die, cu);
22659 parent_name = dwarf2_name (parent, cu);
22660 complaint (_("template param type '%s' defined within parent '%s'"),
22661 name ? name : "<unknown>",
22662 parent_name ? parent_name : "<unknown>");
22663 return "";
22664 }
22665 else
22666 switch (parent->tag)
22667 {
22668 case DW_TAG_namespace:
22669 parent_type = read_type_die (parent, cu);
22670 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22671 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22672 Work around this problem here. */
22673 if (cu->language == language_cplus
22674 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22675 return "";
22676 /* We give a name to even anonymous namespaces. */
22677 return TYPE_NAME (parent_type);
22678 case DW_TAG_class_type:
22679 case DW_TAG_interface_type:
22680 case DW_TAG_structure_type:
22681 case DW_TAG_union_type:
22682 case DW_TAG_module:
22683 parent_type = read_type_die (parent, cu);
22684 if (TYPE_NAME (parent_type) != NULL)
22685 return TYPE_NAME (parent_type);
22686 else
22687 /* An anonymous structure is only allowed non-static data
22688 members; no typedefs, no member functions, et cetera.
22689 So it does not need a prefix. */
22690 return "";
22691 case DW_TAG_compile_unit:
22692 case DW_TAG_partial_unit:
22693 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22694 if (cu->language == language_cplus
22695 && !dwarf2_per_objfile->types.empty ()
22696 && die->child != NULL
22697 && (die->tag == DW_TAG_class_type
22698 || die->tag == DW_TAG_structure_type
22699 || die->tag == DW_TAG_union_type))
22700 {
22701 char *name = guess_full_die_structure_name (die, cu);
22702 if (name != NULL)
22703 return name;
22704 }
22705 return "";
22706 case DW_TAG_subprogram:
22707 /* Nested subroutines in Fortran get a prefix with the name
22708 of the parent's subroutine. */
22709 if (cu->language == language_fortran)
22710 {
22711 if ((die->tag == DW_TAG_subprogram)
22712 && (dwarf2_name (parent, cu) != NULL))
22713 return dwarf2_name (parent, cu);
22714 }
22715 return determine_prefix (parent, cu);
22716 case DW_TAG_enumeration_type:
22717 parent_type = read_type_die (parent, cu);
22718 if (TYPE_DECLARED_CLASS (parent_type))
22719 {
22720 if (TYPE_NAME (parent_type) != NULL)
22721 return TYPE_NAME (parent_type);
22722 return "";
22723 }
22724 /* Fall through. */
22725 default:
22726 return determine_prefix (parent, cu);
22727 }
22728 }
22729
22730 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22731 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22732 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22733 an obconcat, otherwise allocate storage for the result. The CU argument is
22734 used to determine the language and hence, the appropriate separator. */
22735
22736 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22737
22738 static char *
22739 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22740 int physname, struct dwarf2_cu *cu)
22741 {
22742 const char *lead = "";
22743 const char *sep;
22744
22745 if (suffix == NULL || suffix[0] == '\0'
22746 || prefix == NULL || prefix[0] == '\0')
22747 sep = "";
22748 else if (cu->language == language_d)
22749 {
22750 /* For D, the 'main' function could be defined in any module, but it
22751 should never be prefixed. */
22752 if (strcmp (suffix, "D main") == 0)
22753 {
22754 prefix = "";
22755 sep = "";
22756 }
22757 else
22758 sep = ".";
22759 }
22760 else if (cu->language == language_fortran && physname)
22761 {
22762 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22763 DW_AT_MIPS_linkage_name is preferred and used instead. */
22764
22765 lead = "__";
22766 sep = "_MOD_";
22767 }
22768 else
22769 sep = "::";
22770
22771 if (prefix == NULL)
22772 prefix = "";
22773 if (suffix == NULL)
22774 suffix = "";
22775
22776 if (obs == NULL)
22777 {
22778 char *retval
22779 = ((char *)
22780 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22781
22782 strcpy (retval, lead);
22783 strcat (retval, prefix);
22784 strcat (retval, sep);
22785 strcat (retval, suffix);
22786 return retval;
22787 }
22788 else
22789 {
22790 /* We have an obstack. */
22791 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22792 }
22793 }
22794
22795 /* Return sibling of die, NULL if no sibling. */
22796
22797 static struct die_info *
22798 sibling_die (struct die_info *die)
22799 {
22800 return die->sibling;
22801 }
22802
22803 /* Get name of a die, return NULL if not found. */
22804
22805 static const char *
22806 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22807 struct obstack *obstack)
22808 {
22809 if (name && cu->language == language_cplus)
22810 {
22811 std::string canon_name = cp_canonicalize_string (name);
22812
22813 if (!canon_name.empty ())
22814 {
22815 if (canon_name != name)
22816 name = obstack_strdup (obstack, canon_name);
22817 }
22818 }
22819
22820 return name;
22821 }
22822
22823 /* Get name of a die, return NULL if not found.
22824 Anonymous namespaces are converted to their magic string. */
22825
22826 static const char *
22827 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22828 {
22829 struct attribute *attr;
22830 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22831
22832 attr = dwarf2_attr (die, DW_AT_name, cu);
22833 if ((!attr || !DW_STRING (attr))
22834 && die->tag != DW_TAG_namespace
22835 && die->tag != DW_TAG_class_type
22836 && die->tag != DW_TAG_interface_type
22837 && die->tag != DW_TAG_structure_type
22838 && die->tag != DW_TAG_union_type)
22839 return NULL;
22840
22841 switch (die->tag)
22842 {
22843 case DW_TAG_compile_unit:
22844 case DW_TAG_partial_unit:
22845 /* Compilation units have a DW_AT_name that is a filename, not
22846 a source language identifier. */
22847 case DW_TAG_enumeration_type:
22848 case DW_TAG_enumerator:
22849 /* These tags always have simple identifiers already; no need
22850 to canonicalize them. */
22851 return DW_STRING (attr);
22852
22853 case DW_TAG_namespace:
22854 if (attr != NULL && DW_STRING (attr) != NULL)
22855 return DW_STRING (attr);
22856 return CP_ANONYMOUS_NAMESPACE_STR;
22857
22858 case DW_TAG_class_type:
22859 case DW_TAG_interface_type:
22860 case DW_TAG_structure_type:
22861 case DW_TAG_union_type:
22862 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22863 structures or unions. These were of the form "._%d" in GCC 4.1,
22864 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22865 and GCC 4.4. We work around this problem by ignoring these. */
22866 if (attr && DW_STRING (attr)
22867 && (startswith (DW_STRING (attr), "._")
22868 || startswith (DW_STRING (attr), "<anonymous")))
22869 return NULL;
22870
22871 /* GCC might emit a nameless typedef that has a linkage name. See
22872 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22873 if (!attr || DW_STRING (attr) == NULL)
22874 {
22875 char *demangled = NULL;
22876
22877 attr = dw2_linkage_name_attr (die, cu);
22878 if (attr == NULL || DW_STRING (attr) == NULL)
22879 return NULL;
22880
22881 /* Avoid demangling DW_STRING (attr) the second time on a second
22882 call for the same DIE. */
22883 if (!DW_STRING_IS_CANONICAL (attr))
22884 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22885
22886 if (demangled)
22887 {
22888 const char *base;
22889
22890 /* FIXME: we already did this for the partial symbol... */
22891 DW_STRING (attr)
22892 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22893 demangled);
22894 DW_STRING_IS_CANONICAL (attr) = 1;
22895 xfree (demangled);
22896
22897 /* Strip any leading namespaces/classes, keep only the base name.
22898 DW_AT_name for named DIEs does not contain the prefixes. */
22899 base = strrchr (DW_STRING (attr), ':');
22900 if (base && base > DW_STRING (attr) && base[-1] == ':')
22901 return &base[1];
22902 else
22903 return DW_STRING (attr);
22904 }
22905 }
22906 break;
22907
22908 default:
22909 break;
22910 }
22911
22912 if (!DW_STRING_IS_CANONICAL (attr))
22913 {
22914 DW_STRING (attr)
22915 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22916 &objfile->per_bfd->storage_obstack);
22917 DW_STRING_IS_CANONICAL (attr) = 1;
22918 }
22919 return DW_STRING (attr);
22920 }
22921
22922 /* Return the die that this die in an extension of, or NULL if there
22923 is none. *EXT_CU is the CU containing DIE on input, and the CU
22924 containing the return value on output. */
22925
22926 static struct die_info *
22927 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22928 {
22929 struct attribute *attr;
22930
22931 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22932 if (attr == NULL)
22933 return NULL;
22934
22935 return follow_die_ref (die, attr, ext_cu);
22936 }
22937
22938 /* A convenience function that returns an "unknown" DWARF name,
22939 including the value of V. STR is the name of the entity being
22940 printed, e.g., "TAG". */
22941
22942 static const char *
22943 dwarf_unknown (const char *str, unsigned v)
22944 {
22945 char *cell = get_print_cell ();
22946 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22947 return cell;
22948 }
22949
22950 /* Convert a DIE tag into its string name. */
22951
22952 static const char *
22953 dwarf_tag_name (unsigned tag)
22954 {
22955 const char *name = get_DW_TAG_name (tag);
22956
22957 if (name == NULL)
22958 return dwarf_unknown ("TAG", tag);
22959
22960 return name;
22961 }
22962
22963 /* Convert a DWARF attribute code into its string name. */
22964
22965 static const char *
22966 dwarf_attr_name (unsigned attr)
22967 {
22968 const char *name;
22969
22970 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22971 if (attr == DW_AT_MIPS_fde)
22972 return "DW_AT_MIPS_fde";
22973 #else
22974 if (attr == DW_AT_HP_block_index)
22975 return "DW_AT_HP_block_index";
22976 #endif
22977
22978 name = get_DW_AT_name (attr);
22979
22980 if (name == NULL)
22981 return dwarf_unknown ("AT", attr);
22982
22983 return name;
22984 }
22985
22986 /* Convert a unit type to corresponding DW_UT name. */
22987
22988 static const char *
22989 dwarf_unit_type_name (int unit_type) {
22990 switch (unit_type)
22991 {
22992 case 0x01:
22993 return "DW_UT_compile (0x01)";
22994 case 0x02:
22995 return "DW_UT_type (0x02)";
22996 case 0x03:
22997 return "DW_UT_partial (0x03)";
22998 case 0x04:
22999 return "DW_UT_skeleton (0x04)";
23000 case 0x05:
23001 return "DW_UT_split_compile (0x05)";
23002 case 0x06:
23003 return "DW_UT_split_type (0x06)";
23004 case 0x80:
23005 return "DW_UT_lo_user (0x80)";
23006 case 0xff:
23007 return "DW_UT_hi_user (0xff)";
23008 default:
23009 return nullptr;
23010 }
23011 }
23012
23013 /* Convert a DWARF value form code into its string name. */
23014
23015 static const char *
23016 dwarf_form_name (unsigned form)
23017 {
23018 const char *name = get_DW_FORM_name (form);
23019
23020 if (name == NULL)
23021 return dwarf_unknown ("FORM", form);
23022
23023 return name;
23024 }
23025
23026 static const char *
23027 dwarf_bool_name (unsigned mybool)
23028 {
23029 if (mybool)
23030 return "TRUE";
23031 else
23032 return "FALSE";
23033 }
23034
23035 /* Convert a DWARF type code into its string name. */
23036
23037 static const char *
23038 dwarf_type_encoding_name (unsigned enc)
23039 {
23040 const char *name = get_DW_ATE_name (enc);
23041
23042 if (name == NULL)
23043 return dwarf_unknown ("ATE", enc);
23044
23045 return name;
23046 }
23047
23048 static void
23049 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23050 {
23051 unsigned int i;
23052
23053 print_spaces (indent, f);
23054 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23055 dwarf_tag_name (die->tag), die->abbrev,
23056 sect_offset_str (die->sect_off));
23057
23058 if (die->parent != NULL)
23059 {
23060 print_spaces (indent, f);
23061 fprintf_unfiltered (f, " parent at offset: %s\n",
23062 sect_offset_str (die->parent->sect_off));
23063 }
23064
23065 print_spaces (indent, f);
23066 fprintf_unfiltered (f, " has children: %s\n",
23067 dwarf_bool_name (die->child != NULL));
23068
23069 print_spaces (indent, f);
23070 fprintf_unfiltered (f, " attributes:\n");
23071
23072 for (i = 0; i < die->num_attrs; ++i)
23073 {
23074 print_spaces (indent, f);
23075 fprintf_unfiltered (f, " %s (%s) ",
23076 dwarf_attr_name (die->attrs[i].name),
23077 dwarf_form_name (die->attrs[i].form));
23078
23079 switch (die->attrs[i].form)
23080 {
23081 case DW_FORM_addr:
23082 case DW_FORM_addrx:
23083 case DW_FORM_GNU_addr_index:
23084 fprintf_unfiltered (f, "address: ");
23085 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23086 break;
23087 case DW_FORM_block2:
23088 case DW_FORM_block4:
23089 case DW_FORM_block:
23090 case DW_FORM_block1:
23091 fprintf_unfiltered (f, "block: size %s",
23092 pulongest (DW_BLOCK (&die->attrs[i])->size));
23093 break;
23094 case DW_FORM_exprloc:
23095 fprintf_unfiltered (f, "expression: size %s",
23096 pulongest (DW_BLOCK (&die->attrs[i])->size));
23097 break;
23098 case DW_FORM_data16:
23099 fprintf_unfiltered (f, "constant of 16 bytes");
23100 break;
23101 case DW_FORM_ref_addr:
23102 fprintf_unfiltered (f, "ref address: ");
23103 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23104 break;
23105 case DW_FORM_GNU_ref_alt:
23106 fprintf_unfiltered (f, "alt ref address: ");
23107 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23108 break;
23109 case DW_FORM_ref1:
23110 case DW_FORM_ref2:
23111 case DW_FORM_ref4:
23112 case DW_FORM_ref8:
23113 case DW_FORM_ref_udata:
23114 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23115 (long) (DW_UNSND (&die->attrs[i])));
23116 break;
23117 case DW_FORM_data1:
23118 case DW_FORM_data2:
23119 case DW_FORM_data4:
23120 case DW_FORM_data8:
23121 case DW_FORM_udata:
23122 case DW_FORM_sdata:
23123 fprintf_unfiltered (f, "constant: %s",
23124 pulongest (DW_UNSND (&die->attrs[i])));
23125 break;
23126 case DW_FORM_sec_offset:
23127 fprintf_unfiltered (f, "section offset: %s",
23128 pulongest (DW_UNSND (&die->attrs[i])));
23129 break;
23130 case DW_FORM_ref_sig8:
23131 fprintf_unfiltered (f, "signature: %s",
23132 hex_string (DW_SIGNATURE (&die->attrs[i])));
23133 break;
23134 case DW_FORM_string:
23135 case DW_FORM_strp:
23136 case DW_FORM_line_strp:
23137 case DW_FORM_strx:
23138 case DW_FORM_GNU_str_index:
23139 case DW_FORM_GNU_strp_alt:
23140 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23141 DW_STRING (&die->attrs[i])
23142 ? DW_STRING (&die->attrs[i]) : "",
23143 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23144 break;
23145 case DW_FORM_flag:
23146 if (DW_UNSND (&die->attrs[i]))
23147 fprintf_unfiltered (f, "flag: TRUE");
23148 else
23149 fprintf_unfiltered (f, "flag: FALSE");
23150 break;
23151 case DW_FORM_flag_present:
23152 fprintf_unfiltered (f, "flag: TRUE");
23153 break;
23154 case DW_FORM_indirect:
23155 /* The reader will have reduced the indirect form to
23156 the "base form" so this form should not occur. */
23157 fprintf_unfiltered (f,
23158 "unexpected attribute form: DW_FORM_indirect");
23159 break;
23160 case DW_FORM_implicit_const:
23161 fprintf_unfiltered (f, "constant: %s",
23162 plongest (DW_SND (&die->attrs[i])));
23163 break;
23164 default:
23165 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23166 die->attrs[i].form);
23167 break;
23168 }
23169 fprintf_unfiltered (f, "\n");
23170 }
23171 }
23172
23173 static void
23174 dump_die_for_error (struct die_info *die)
23175 {
23176 dump_die_shallow (gdb_stderr, 0, die);
23177 }
23178
23179 static void
23180 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23181 {
23182 int indent = level * 4;
23183
23184 gdb_assert (die != NULL);
23185
23186 if (level >= max_level)
23187 return;
23188
23189 dump_die_shallow (f, indent, die);
23190
23191 if (die->child != NULL)
23192 {
23193 print_spaces (indent, f);
23194 fprintf_unfiltered (f, " Children:");
23195 if (level + 1 < max_level)
23196 {
23197 fprintf_unfiltered (f, "\n");
23198 dump_die_1 (f, level + 1, max_level, die->child);
23199 }
23200 else
23201 {
23202 fprintf_unfiltered (f,
23203 " [not printed, max nesting level reached]\n");
23204 }
23205 }
23206
23207 if (die->sibling != NULL && level > 0)
23208 {
23209 dump_die_1 (f, level, max_level, die->sibling);
23210 }
23211 }
23212
23213 /* This is called from the pdie macro in gdbinit.in.
23214 It's not static so gcc will keep a copy callable from gdb. */
23215
23216 void
23217 dump_die (struct die_info *die, int max_level)
23218 {
23219 dump_die_1 (gdb_stdlog, 0, max_level, die);
23220 }
23221
23222 static void
23223 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23224 {
23225 void **slot;
23226
23227 slot = htab_find_slot_with_hash (cu->die_hash, die,
23228 to_underlying (die->sect_off),
23229 INSERT);
23230
23231 *slot = die;
23232 }
23233
23234 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23235 required kind. */
23236
23237 static sect_offset
23238 dwarf2_get_ref_die_offset (const struct attribute *attr)
23239 {
23240 if (attr_form_is_ref (attr))
23241 return (sect_offset) DW_UNSND (attr);
23242
23243 complaint (_("unsupported die ref attribute form: '%s'"),
23244 dwarf_form_name (attr->form));
23245 return {};
23246 }
23247
23248 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23249 * the value held by the attribute is not constant. */
23250
23251 static LONGEST
23252 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23253 {
23254 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23255 return DW_SND (attr);
23256 else if (attr->form == DW_FORM_udata
23257 || attr->form == DW_FORM_data1
23258 || attr->form == DW_FORM_data2
23259 || attr->form == DW_FORM_data4
23260 || attr->form == DW_FORM_data8)
23261 return DW_UNSND (attr);
23262 else
23263 {
23264 /* For DW_FORM_data16 see attr_form_is_constant. */
23265 complaint (_("Attribute value is not a constant (%s)"),
23266 dwarf_form_name (attr->form));
23267 return default_value;
23268 }
23269 }
23270
23271 /* Follow reference or signature attribute ATTR of SRC_DIE.
23272 On entry *REF_CU is the CU of SRC_DIE.
23273 On exit *REF_CU is the CU of the result. */
23274
23275 static struct die_info *
23276 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23277 struct dwarf2_cu **ref_cu)
23278 {
23279 struct die_info *die;
23280
23281 if (attr_form_is_ref (attr))
23282 die = follow_die_ref (src_die, attr, ref_cu);
23283 else if (attr->form == DW_FORM_ref_sig8)
23284 die = follow_die_sig (src_die, attr, ref_cu);
23285 else
23286 {
23287 dump_die_for_error (src_die);
23288 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23289 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23290 }
23291
23292 return die;
23293 }
23294
23295 /* Follow reference OFFSET.
23296 On entry *REF_CU is the CU of the source die referencing OFFSET.
23297 On exit *REF_CU is the CU of the result.
23298 Returns NULL if OFFSET is invalid. */
23299
23300 static struct die_info *
23301 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23302 struct dwarf2_cu **ref_cu)
23303 {
23304 struct die_info temp_die;
23305 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23306 struct dwarf2_per_objfile *dwarf2_per_objfile
23307 = cu->per_cu->dwarf2_per_objfile;
23308
23309 gdb_assert (cu->per_cu != NULL);
23310
23311 target_cu = cu;
23312
23313 if (cu->per_cu->is_debug_types)
23314 {
23315 /* .debug_types CUs cannot reference anything outside their CU.
23316 If they need to, they have to reference a signatured type via
23317 DW_FORM_ref_sig8. */
23318 if (!offset_in_cu_p (&cu->header, sect_off))
23319 return NULL;
23320 }
23321 else if (offset_in_dwz != cu->per_cu->is_dwz
23322 || !offset_in_cu_p (&cu->header, sect_off))
23323 {
23324 struct dwarf2_per_cu_data *per_cu;
23325
23326 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23327 dwarf2_per_objfile);
23328
23329 /* If necessary, add it to the queue and load its DIEs. */
23330 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23331 load_full_comp_unit (per_cu, false, cu->language);
23332
23333 target_cu = per_cu->cu;
23334 }
23335 else if (cu->dies == NULL)
23336 {
23337 /* We're loading full DIEs during partial symbol reading. */
23338 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23339 load_full_comp_unit (cu->per_cu, false, language_minimal);
23340 }
23341
23342 *ref_cu = target_cu;
23343 temp_die.sect_off = sect_off;
23344
23345 if (target_cu != cu)
23346 target_cu->ancestor = cu;
23347
23348 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23349 &temp_die,
23350 to_underlying (sect_off));
23351 }
23352
23353 /* Follow reference attribute ATTR of SRC_DIE.
23354 On entry *REF_CU is the CU of SRC_DIE.
23355 On exit *REF_CU is the CU of the result. */
23356
23357 static struct die_info *
23358 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23359 struct dwarf2_cu **ref_cu)
23360 {
23361 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23362 struct dwarf2_cu *cu = *ref_cu;
23363 struct die_info *die;
23364
23365 die = follow_die_offset (sect_off,
23366 (attr->form == DW_FORM_GNU_ref_alt
23367 || cu->per_cu->is_dwz),
23368 ref_cu);
23369 if (!die)
23370 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23371 "at %s [in module %s]"),
23372 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23373 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23374
23375 return die;
23376 }
23377
23378 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23379 Returned value is intended for DW_OP_call*. Returned
23380 dwarf2_locexpr_baton->data has lifetime of
23381 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23382
23383 struct dwarf2_locexpr_baton
23384 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23385 struct dwarf2_per_cu_data *per_cu,
23386 CORE_ADDR (*get_frame_pc) (void *baton),
23387 void *baton, bool resolve_abstract_p)
23388 {
23389 struct dwarf2_cu *cu;
23390 struct die_info *die;
23391 struct attribute *attr;
23392 struct dwarf2_locexpr_baton retval;
23393 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23394 struct objfile *objfile = dwarf2_per_objfile->objfile;
23395
23396 if (per_cu->cu == NULL)
23397 load_cu (per_cu, false);
23398 cu = per_cu->cu;
23399 if (cu == NULL)
23400 {
23401 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23402 Instead just throw an error, not much else we can do. */
23403 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23404 sect_offset_str (sect_off), objfile_name (objfile));
23405 }
23406
23407 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23408 if (!die)
23409 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23410 sect_offset_str (sect_off), objfile_name (objfile));
23411
23412 attr = dwarf2_attr (die, DW_AT_location, cu);
23413 if (!attr && resolve_abstract_p
23414 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23415 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23416 {
23417 CORE_ADDR pc = (*get_frame_pc) (baton);
23418 CORE_ADDR baseaddr
23419 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23420 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23421
23422 for (const auto &cand_off
23423 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23424 {
23425 struct dwarf2_cu *cand_cu = cu;
23426 struct die_info *cand
23427 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23428 if (!cand
23429 || !cand->parent
23430 || cand->parent->tag != DW_TAG_subprogram)
23431 continue;
23432
23433 CORE_ADDR pc_low, pc_high;
23434 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23435 if (pc_low == ((CORE_ADDR) -1))
23436 continue;
23437 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23438 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23439 if (!(pc_low <= pc && pc < pc_high))
23440 continue;
23441
23442 die = cand;
23443 attr = dwarf2_attr (die, DW_AT_location, cu);
23444 break;
23445 }
23446 }
23447
23448 if (!attr)
23449 {
23450 /* DWARF: "If there is no such attribute, then there is no effect.".
23451 DATA is ignored if SIZE is 0. */
23452
23453 retval.data = NULL;
23454 retval.size = 0;
23455 }
23456 else if (attr_form_is_section_offset (attr))
23457 {
23458 struct dwarf2_loclist_baton loclist_baton;
23459 CORE_ADDR pc = (*get_frame_pc) (baton);
23460 size_t size;
23461
23462 fill_in_loclist_baton (cu, &loclist_baton, attr);
23463
23464 retval.data = dwarf2_find_location_expression (&loclist_baton,
23465 &size, pc);
23466 retval.size = size;
23467 }
23468 else
23469 {
23470 if (!attr_form_is_block (attr))
23471 error (_("Dwarf Error: DIE at %s referenced in module %s "
23472 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23473 sect_offset_str (sect_off), objfile_name (objfile));
23474
23475 retval.data = DW_BLOCK (attr)->data;
23476 retval.size = DW_BLOCK (attr)->size;
23477 }
23478 retval.per_cu = cu->per_cu;
23479
23480 age_cached_comp_units (dwarf2_per_objfile);
23481
23482 return retval;
23483 }
23484
23485 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23486 offset. */
23487
23488 struct dwarf2_locexpr_baton
23489 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23490 struct dwarf2_per_cu_data *per_cu,
23491 CORE_ADDR (*get_frame_pc) (void *baton),
23492 void *baton)
23493 {
23494 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23495
23496 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23497 }
23498
23499 /* Write a constant of a given type as target-ordered bytes into
23500 OBSTACK. */
23501
23502 static const gdb_byte *
23503 write_constant_as_bytes (struct obstack *obstack,
23504 enum bfd_endian byte_order,
23505 struct type *type,
23506 ULONGEST value,
23507 LONGEST *len)
23508 {
23509 gdb_byte *result;
23510
23511 *len = TYPE_LENGTH (type);
23512 result = (gdb_byte *) obstack_alloc (obstack, *len);
23513 store_unsigned_integer (result, *len, byte_order, value);
23514
23515 return result;
23516 }
23517
23518 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23519 pointer to the constant bytes and set LEN to the length of the
23520 data. If memory is needed, allocate it on OBSTACK. If the DIE
23521 does not have a DW_AT_const_value, return NULL. */
23522
23523 const gdb_byte *
23524 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23525 struct dwarf2_per_cu_data *per_cu,
23526 struct obstack *obstack,
23527 LONGEST *len)
23528 {
23529 struct dwarf2_cu *cu;
23530 struct die_info *die;
23531 struct attribute *attr;
23532 const gdb_byte *result = NULL;
23533 struct type *type;
23534 LONGEST value;
23535 enum bfd_endian byte_order;
23536 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23537
23538 if (per_cu->cu == NULL)
23539 load_cu (per_cu, false);
23540 cu = per_cu->cu;
23541 if (cu == NULL)
23542 {
23543 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23544 Instead just throw an error, not much else we can do. */
23545 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23546 sect_offset_str (sect_off), objfile_name (objfile));
23547 }
23548
23549 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23550 if (!die)
23551 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23552 sect_offset_str (sect_off), objfile_name (objfile));
23553
23554 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23555 if (attr == NULL)
23556 return NULL;
23557
23558 byte_order = (bfd_big_endian (objfile->obfd)
23559 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23560
23561 switch (attr->form)
23562 {
23563 case DW_FORM_addr:
23564 case DW_FORM_addrx:
23565 case DW_FORM_GNU_addr_index:
23566 {
23567 gdb_byte *tem;
23568
23569 *len = cu->header.addr_size;
23570 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23571 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23572 result = tem;
23573 }
23574 break;
23575 case DW_FORM_string:
23576 case DW_FORM_strp:
23577 case DW_FORM_strx:
23578 case DW_FORM_GNU_str_index:
23579 case DW_FORM_GNU_strp_alt:
23580 /* DW_STRING is already allocated on the objfile obstack, point
23581 directly to it. */
23582 result = (const gdb_byte *) DW_STRING (attr);
23583 *len = strlen (DW_STRING (attr));
23584 break;
23585 case DW_FORM_block1:
23586 case DW_FORM_block2:
23587 case DW_FORM_block4:
23588 case DW_FORM_block:
23589 case DW_FORM_exprloc:
23590 case DW_FORM_data16:
23591 result = DW_BLOCK (attr)->data;
23592 *len = DW_BLOCK (attr)->size;
23593 break;
23594
23595 /* The DW_AT_const_value attributes are supposed to carry the
23596 symbol's value "represented as it would be on the target
23597 architecture." By the time we get here, it's already been
23598 converted to host endianness, so we just need to sign- or
23599 zero-extend it as appropriate. */
23600 case DW_FORM_data1:
23601 type = die_type (die, cu);
23602 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23603 if (result == NULL)
23604 result = write_constant_as_bytes (obstack, byte_order,
23605 type, value, len);
23606 break;
23607 case DW_FORM_data2:
23608 type = die_type (die, cu);
23609 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23610 if (result == NULL)
23611 result = write_constant_as_bytes (obstack, byte_order,
23612 type, value, len);
23613 break;
23614 case DW_FORM_data4:
23615 type = die_type (die, cu);
23616 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23617 if (result == NULL)
23618 result = write_constant_as_bytes (obstack, byte_order,
23619 type, value, len);
23620 break;
23621 case DW_FORM_data8:
23622 type = die_type (die, cu);
23623 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23624 if (result == NULL)
23625 result = write_constant_as_bytes (obstack, byte_order,
23626 type, value, len);
23627 break;
23628
23629 case DW_FORM_sdata:
23630 case DW_FORM_implicit_const:
23631 type = die_type (die, cu);
23632 result = write_constant_as_bytes (obstack, byte_order,
23633 type, DW_SND (attr), len);
23634 break;
23635
23636 case DW_FORM_udata:
23637 type = die_type (die, cu);
23638 result = write_constant_as_bytes (obstack, byte_order,
23639 type, DW_UNSND (attr), len);
23640 break;
23641
23642 default:
23643 complaint (_("unsupported const value attribute form: '%s'"),
23644 dwarf_form_name (attr->form));
23645 break;
23646 }
23647
23648 return result;
23649 }
23650
23651 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23652 valid type for this die is found. */
23653
23654 struct type *
23655 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23656 struct dwarf2_per_cu_data *per_cu)
23657 {
23658 struct dwarf2_cu *cu;
23659 struct die_info *die;
23660
23661 if (per_cu->cu == NULL)
23662 load_cu (per_cu, false);
23663 cu = per_cu->cu;
23664 if (!cu)
23665 return NULL;
23666
23667 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23668 if (!die)
23669 return NULL;
23670
23671 return die_type (die, cu);
23672 }
23673
23674 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23675 PER_CU. */
23676
23677 struct type *
23678 dwarf2_get_die_type (cu_offset die_offset,
23679 struct dwarf2_per_cu_data *per_cu)
23680 {
23681 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23682 return get_die_type_at_offset (die_offset_sect, per_cu);
23683 }
23684
23685 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23686 On entry *REF_CU is the CU of SRC_DIE.
23687 On exit *REF_CU is the CU of the result.
23688 Returns NULL if the referenced DIE isn't found. */
23689
23690 static struct die_info *
23691 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23692 struct dwarf2_cu **ref_cu)
23693 {
23694 struct die_info temp_die;
23695 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23696 struct die_info *die;
23697
23698 /* While it might be nice to assert sig_type->type == NULL here,
23699 we can get here for DW_AT_imported_declaration where we need
23700 the DIE not the type. */
23701
23702 /* If necessary, add it to the queue and load its DIEs. */
23703
23704 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23705 read_signatured_type (sig_type);
23706
23707 sig_cu = sig_type->per_cu.cu;
23708 gdb_assert (sig_cu != NULL);
23709 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23710 temp_die.sect_off = sig_type->type_offset_in_section;
23711 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23712 to_underlying (temp_die.sect_off));
23713 if (die)
23714 {
23715 struct dwarf2_per_objfile *dwarf2_per_objfile
23716 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23717
23718 /* For .gdb_index version 7 keep track of included TUs.
23719 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23720 if (dwarf2_per_objfile->index_table != NULL
23721 && dwarf2_per_objfile->index_table->version <= 7)
23722 {
23723 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23724 }
23725
23726 *ref_cu = sig_cu;
23727 if (sig_cu != cu)
23728 sig_cu->ancestor = cu;
23729
23730 return die;
23731 }
23732
23733 return NULL;
23734 }
23735
23736 /* Follow signatured type referenced by ATTR in SRC_DIE.
23737 On entry *REF_CU is the CU of SRC_DIE.
23738 On exit *REF_CU is the CU of the result.
23739 The result is the DIE of the type.
23740 If the referenced type cannot be found an error is thrown. */
23741
23742 static struct die_info *
23743 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23744 struct dwarf2_cu **ref_cu)
23745 {
23746 ULONGEST signature = DW_SIGNATURE (attr);
23747 struct signatured_type *sig_type;
23748 struct die_info *die;
23749
23750 gdb_assert (attr->form == DW_FORM_ref_sig8);
23751
23752 sig_type = lookup_signatured_type (*ref_cu, signature);
23753 /* sig_type will be NULL if the signatured type is missing from
23754 the debug info. */
23755 if (sig_type == NULL)
23756 {
23757 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23758 " from DIE at %s [in module %s]"),
23759 hex_string (signature), sect_offset_str (src_die->sect_off),
23760 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23761 }
23762
23763 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23764 if (die == NULL)
23765 {
23766 dump_die_for_error (src_die);
23767 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23768 " from DIE at %s [in module %s]"),
23769 hex_string (signature), sect_offset_str (src_die->sect_off),
23770 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23771 }
23772
23773 return die;
23774 }
23775
23776 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23777 reading in and processing the type unit if necessary. */
23778
23779 static struct type *
23780 get_signatured_type (struct die_info *die, ULONGEST signature,
23781 struct dwarf2_cu *cu)
23782 {
23783 struct dwarf2_per_objfile *dwarf2_per_objfile
23784 = cu->per_cu->dwarf2_per_objfile;
23785 struct signatured_type *sig_type;
23786 struct dwarf2_cu *type_cu;
23787 struct die_info *type_die;
23788 struct type *type;
23789
23790 sig_type = lookup_signatured_type (cu, signature);
23791 /* sig_type will be NULL if the signatured type is missing from
23792 the debug info. */
23793 if (sig_type == NULL)
23794 {
23795 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23796 " from DIE at %s [in module %s]"),
23797 hex_string (signature), sect_offset_str (die->sect_off),
23798 objfile_name (dwarf2_per_objfile->objfile));
23799 return build_error_marker_type (cu, die);
23800 }
23801
23802 /* If we already know the type we're done. */
23803 if (sig_type->type != NULL)
23804 return sig_type->type;
23805
23806 type_cu = cu;
23807 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23808 if (type_die != NULL)
23809 {
23810 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23811 is created. This is important, for example, because for c++ classes
23812 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23813 type = read_type_die (type_die, type_cu);
23814 if (type == NULL)
23815 {
23816 complaint (_("Dwarf Error: Cannot build signatured type %s"
23817 " referenced from DIE at %s [in module %s]"),
23818 hex_string (signature), sect_offset_str (die->sect_off),
23819 objfile_name (dwarf2_per_objfile->objfile));
23820 type = build_error_marker_type (cu, die);
23821 }
23822 }
23823 else
23824 {
23825 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23826 " from DIE at %s [in module %s]"),
23827 hex_string (signature), sect_offset_str (die->sect_off),
23828 objfile_name (dwarf2_per_objfile->objfile));
23829 type = build_error_marker_type (cu, die);
23830 }
23831 sig_type->type = type;
23832
23833 return type;
23834 }
23835
23836 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23837 reading in and processing the type unit if necessary. */
23838
23839 static struct type *
23840 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23841 struct dwarf2_cu *cu) /* ARI: editCase function */
23842 {
23843 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23844 if (attr_form_is_ref (attr))
23845 {
23846 struct dwarf2_cu *type_cu = cu;
23847 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23848
23849 return read_type_die (type_die, type_cu);
23850 }
23851 else if (attr->form == DW_FORM_ref_sig8)
23852 {
23853 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23854 }
23855 else
23856 {
23857 struct dwarf2_per_objfile *dwarf2_per_objfile
23858 = cu->per_cu->dwarf2_per_objfile;
23859
23860 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23861 " at %s [in module %s]"),
23862 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23863 objfile_name (dwarf2_per_objfile->objfile));
23864 return build_error_marker_type (cu, die);
23865 }
23866 }
23867
23868 /* Load the DIEs associated with type unit PER_CU into memory. */
23869
23870 static void
23871 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23872 {
23873 struct signatured_type *sig_type;
23874
23875 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23876 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23877
23878 /* We have the per_cu, but we need the signatured_type.
23879 Fortunately this is an easy translation. */
23880 gdb_assert (per_cu->is_debug_types);
23881 sig_type = (struct signatured_type *) per_cu;
23882
23883 gdb_assert (per_cu->cu == NULL);
23884
23885 read_signatured_type (sig_type);
23886
23887 gdb_assert (per_cu->cu != NULL);
23888 }
23889
23890 /* die_reader_func for read_signatured_type.
23891 This is identical to load_full_comp_unit_reader,
23892 but is kept separate for now. */
23893
23894 static void
23895 read_signatured_type_reader (const struct die_reader_specs *reader,
23896 const gdb_byte *info_ptr,
23897 struct die_info *comp_unit_die,
23898 int has_children,
23899 void *data)
23900 {
23901 struct dwarf2_cu *cu = reader->cu;
23902
23903 gdb_assert (cu->die_hash == NULL);
23904 cu->die_hash =
23905 htab_create_alloc_ex (cu->header.length / 12,
23906 die_hash,
23907 die_eq,
23908 NULL,
23909 &cu->comp_unit_obstack,
23910 hashtab_obstack_allocate,
23911 dummy_obstack_deallocate);
23912
23913 if (has_children)
23914 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23915 &info_ptr, comp_unit_die);
23916 cu->dies = comp_unit_die;
23917 /* comp_unit_die is not stored in die_hash, no need. */
23918
23919 /* We try not to read any attributes in this function, because not
23920 all CUs needed for references have been loaded yet, and symbol
23921 table processing isn't initialized. But we have to set the CU language,
23922 or we won't be able to build types correctly.
23923 Similarly, if we do not read the producer, we can not apply
23924 producer-specific interpretation. */
23925 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23926 }
23927
23928 /* Read in a signatured type and build its CU and DIEs.
23929 If the type is a stub for the real type in a DWO file,
23930 read in the real type from the DWO file as well. */
23931
23932 static void
23933 read_signatured_type (struct signatured_type *sig_type)
23934 {
23935 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23936
23937 gdb_assert (per_cu->is_debug_types);
23938 gdb_assert (per_cu->cu == NULL);
23939
23940 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23941 read_signatured_type_reader, NULL);
23942 sig_type->per_cu.tu_read = 1;
23943 }
23944
23945 /* Decode simple location descriptions.
23946 Given a pointer to a dwarf block that defines a location, compute
23947 the location and return the value.
23948
23949 NOTE drow/2003-11-18: This function is called in two situations
23950 now: for the address of static or global variables (partial symbols
23951 only) and for offsets into structures which are expected to be
23952 (more or less) constant. The partial symbol case should go away,
23953 and only the constant case should remain. That will let this
23954 function complain more accurately. A few special modes are allowed
23955 without complaint for global variables (for instance, global
23956 register values and thread-local values).
23957
23958 A location description containing no operations indicates that the
23959 object is optimized out. The return value is 0 for that case.
23960 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23961 callers will only want a very basic result and this can become a
23962 complaint.
23963
23964 Note that stack[0] is unused except as a default error return. */
23965
23966 static CORE_ADDR
23967 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23968 {
23969 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23970 size_t i;
23971 size_t size = blk->size;
23972 const gdb_byte *data = blk->data;
23973 CORE_ADDR stack[64];
23974 int stacki;
23975 unsigned int bytes_read, unsnd;
23976 gdb_byte op;
23977
23978 i = 0;
23979 stacki = 0;
23980 stack[stacki] = 0;
23981 stack[++stacki] = 0;
23982
23983 while (i < size)
23984 {
23985 op = data[i++];
23986 switch (op)
23987 {
23988 case DW_OP_lit0:
23989 case DW_OP_lit1:
23990 case DW_OP_lit2:
23991 case DW_OP_lit3:
23992 case DW_OP_lit4:
23993 case DW_OP_lit5:
23994 case DW_OP_lit6:
23995 case DW_OP_lit7:
23996 case DW_OP_lit8:
23997 case DW_OP_lit9:
23998 case DW_OP_lit10:
23999 case DW_OP_lit11:
24000 case DW_OP_lit12:
24001 case DW_OP_lit13:
24002 case DW_OP_lit14:
24003 case DW_OP_lit15:
24004 case DW_OP_lit16:
24005 case DW_OP_lit17:
24006 case DW_OP_lit18:
24007 case DW_OP_lit19:
24008 case DW_OP_lit20:
24009 case DW_OP_lit21:
24010 case DW_OP_lit22:
24011 case DW_OP_lit23:
24012 case DW_OP_lit24:
24013 case DW_OP_lit25:
24014 case DW_OP_lit26:
24015 case DW_OP_lit27:
24016 case DW_OP_lit28:
24017 case DW_OP_lit29:
24018 case DW_OP_lit30:
24019 case DW_OP_lit31:
24020 stack[++stacki] = op - DW_OP_lit0;
24021 break;
24022
24023 case DW_OP_reg0:
24024 case DW_OP_reg1:
24025 case DW_OP_reg2:
24026 case DW_OP_reg3:
24027 case DW_OP_reg4:
24028 case DW_OP_reg5:
24029 case DW_OP_reg6:
24030 case DW_OP_reg7:
24031 case DW_OP_reg8:
24032 case DW_OP_reg9:
24033 case DW_OP_reg10:
24034 case DW_OP_reg11:
24035 case DW_OP_reg12:
24036 case DW_OP_reg13:
24037 case DW_OP_reg14:
24038 case DW_OP_reg15:
24039 case DW_OP_reg16:
24040 case DW_OP_reg17:
24041 case DW_OP_reg18:
24042 case DW_OP_reg19:
24043 case DW_OP_reg20:
24044 case DW_OP_reg21:
24045 case DW_OP_reg22:
24046 case DW_OP_reg23:
24047 case DW_OP_reg24:
24048 case DW_OP_reg25:
24049 case DW_OP_reg26:
24050 case DW_OP_reg27:
24051 case DW_OP_reg28:
24052 case DW_OP_reg29:
24053 case DW_OP_reg30:
24054 case DW_OP_reg31:
24055 stack[++stacki] = op - DW_OP_reg0;
24056 if (i < size)
24057 dwarf2_complex_location_expr_complaint ();
24058 break;
24059
24060 case DW_OP_regx:
24061 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24062 i += bytes_read;
24063 stack[++stacki] = unsnd;
24064 if (i < size)
24065 dwarf2_complex_location_expr_complaint ();
24066 break;
24067
24068 case DW_OP_addr:
24069 stack[++stacki] = read_address (objfile->obfd, &data[i],
24070 cu, &bytes_read);
24071 i += bytes_read;
24072 break;
24073
24074 case DW_OP_const1u:
24075 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24076 i += 1;
24077 break;
24078
24079 case DW_OP_const1s:
24080 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24081 i += 1;
24082 break;
24083
24084 case DW_OP_const2u:
24085 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24086 i += 2;
24087 break;
24088
24089 case DW_OP_const2s:
24090 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24091 i += 2;
24092 break;
24093
24094 case DW_OP_const4u:
24095 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24096 i += 4;
24097 break;
24098
24099 case DW_OP_const4s:
24100 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24101 i += 4;
24102 break;
24103
24104 case DW_OP_const8u:
24105 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24106 i += 8;
24107 break;
24108
24109 case DW_OP_constu:
24110 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24111 &bytes_read);
24112 i += bytes_read;
24113 break;
24114
24115 case DW_OP_consts:
24116 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24117 i += bytes_read;
24118 break;
24119
24120 case DW_OP_dup:
24121 stack[stacki + 1] = stack[stacki];
24122 stacki++;
24123 break;
24124
24125 case DW_OP_plus:
24126 stack[stacki - 1] += stack[stacki];
24127 stacki--;
24128 break;
24129
24130 case DW_OP_plus_uconst:
24131 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24132 &bytes_read);
24133 i += bytes_read;
24134 break;
24135
24136 case DW_OP_minus:
24137 stack[stacki - 1] -= stack[stacki];
24138 stacki--;
24139 break;
24140
24141 case DW_OP_deref:
24142 /* If we're not the last op, then we definitely can't encode
24143 this using GDB's address_class enum. This is valid for partial
24144 global symbols, although the variable's address will be bogus
24145 in the psymtab. */
24146 if (i < size)
24147 dwarf2_complex_location_expr_complaint ();
24148 break;
24149
24150 case DW_OP_GNU_push_tls_address:
24151 case DW_OP_form_tls_address:
24152 /* The top of the stack has the offset from the beginning
24153 of the thread control block at which the variable is located. */
24154 /* Nothing should follow this operator, so the top of stack would
24155 be returned. */
24156 /* This is valid for partial global symbols, but the variable's
24157 address will be bogus in the psymtab. Make it always at least
24158 non-zero to not look as a variable garbage collected by linker
24159 which have DW_OP_addr 0. */
24160 if (i < size)
24161 dwarf2_complex_location_expr_complaint ();
24162 stack[stacki]++;
24163 break;
24164
24165 case DW_OP_GNU_uninit:
24166 break;
24167
24168 case DW_OP_addrx:
24169 case DW_OP_GNU_addr_index:
24170 case DW_OP_GNU_const_index:
24171 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24172 &bytes_read);
24173 i += bytes_read;
24174 break;
24175
24176 default:
24177 {
24178 const char *name = get_DW_OP_name (op);
24179
24180 if (name)
24181 complaint (_("unsupported stack op: '%s'"),
24182 name);
24183 else
24184 complaint (_("unsupported stack op: '%02x'"),
24185 op);
24186 }
24187
24188 return (stack[stacki]);
24189 }
24190
24191 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24192 outside of the allocated space. Also enforce minimum>0. */
24193 if (stacki >= ARRAY_SIZE (stack) - 1)
24194 {
24195 complaint (_("location description stack overflow"));
24196 return 0;
24197 }
24198
24199 if (stacki <= 0)
24200 {
24201 complaint (_("location description stack underflow"));
24202 return 0;
24203 }
24204 }
24205 return (stack[stacki]);
24206 }
24207
24208 /* memory allocation interface */
24209
24210 static struct dwarf_block *
24211 dwarf_alloc_block (struct dwarf2_cu *cu)
24212 {
24213 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24214 }
24215
24216 static struct die_info *
24217 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24218 {
24219 struct die_info *die;
24220 size_t size = sizeof (struct die_info);
24221
24222 if (num_attrs > 1)
24223 size += (num_attrs - 1) * sizeof (struct attribute);
24224
24225 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24226 memset (die, 0, sizeof (struct die_info));
24227 return (die);
24228 }
24229
24230 \f
24231 /* Macro support. */
24232
24233 /* Return file name relative to the compilation directory of file number I in
24234 *LH's file name table. The result is allocated using xmalloc; the caller is
24235 responsible for freeing it. */
24236
24237 static char *
24238 file_file_name (int file, struct line_header *lh)
24239 {
24240 /* Is the file number a valid index into the line header's file name
24241 table? Remember that file numbers start with one, not zero. */
24242 if (lh->is_valid_file_index (file))
24243 {
24244 const file_entry *fe = lh->file_name_at (file);
24245
24246 if (!IS_ABSOLUTE_PATH (fe->name))
24247 {
24248 const char *dir = fe->include_dir (lh);
24249 if (dir != NULL)
24250 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
24251 }
24252 return xstrdup (fe->name);
24253 }
24254 else
24255 {
24256 /* The compiler produced a bogus file number. We can at least
24257 record the macro definitions made in the file, even if we
24258 won't be able to find the file by name. */
24259 char fake_name[80];
24260
24261 xsnprintf (fake_name, sizeof (fake_name),
24262 "<bad macro file number %d>", file);
24263
24264 complaint (_("bad file number in macro information (%d)"),
24265 file);
24266
24267 return xstrdup (fake_name);
24268 }
24269 }
24270
24271 /* Return the full name of file number I in *LH's file name table.
24272 Use COMP_DIR as the name of the current directory of the
24273 compilation. The result is allocated using xmalloc; the caller is
24274 responsible for freeing it. */
24275 static char *
24276 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24277 {
24278 /* Is the file number a valid index into the line header's file name
24279 table? Remember that file numbers start with one, not zero. */
24280 if (lh->is_valid_file_index (file))
24281 {
24282 char *relative = file_file_name (file, lh);
24283
24284 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24285 return relative;
24286 return reconcat (relative, comp_dir, SLASH_STRING,
24287 relative, (char *) NULL);
24288 }
24289 else
24290 return file_file_name (file, lh);
24291 }
24292
24293
24294 static struct macro_source_file *
24295 macro_start_file (struct dwarf2_cu *cu,
24296 int file, int line,
24297 struct macro_source_file *current_file,
24298 struct line_header *lh)
24299 {
24300 /* File name relative to the compilation directory of this source file. */
24301 char *file_name = file_file_name (file, lh);
24302
24303 if (! current_file)
24304 {
24305 /* Note: We don't create a macro table for this compilation unit
24306 at all until we actually get a filename. */
24307 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24308
24309 /* If we have no current file, then this must be the start_file
24310 directive for the compilation unit's main source file. */
24311 current_file = macro_set_main (macro_table, file_name);
24312 macro_define_special (macro_table);
24313 }
24314 else
24315 current_file = macro_include (current_file, line, file_name);
24316
24317 xfree (file_name);
24318
24319 return current_file;
24320 }
24321
24322 static const char *
24323 consume_improper_spaces (const char *p, const char *body)
24324 {
24325 if (*p == ' ')
24326 {
24327 complaint (_("macro definition contains spaces "
24328 "in formal argument list:\n`%s'"),
24329 body);
24330
24331 while (*p == ' ')
24332 p++;
24333 }
24334
24335 return p;
24336 }
24337
24338
24339 static void
24340 parse_macro_definition (struct macro_source_file *file, int line,
24341 const char *body)
24342 {
24343 const char *p;
24344
24345 /* The body string takes one of two forms. For object-like macro
24346 definitions, it should be:
24347
24348 <macro name> " " <definition>
24349
24350 For function-like macro definitions, it should be:
24351
24352 <macro name> "() " <definition>
24353 or
24354 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24355
24356 Spaces may appear only where explicitly indicated, and in the
24357 <definition>.
24358
24359 The Dwarf 2 spec says that an object-like macro's name is always
24360 followed by a space, but versions of GCC around March 2002 omit
24361 the space when the macro's definition is the empty string.
24362
24363 The Dwarf 2 spec says that there should be no spaces between the
24364 formal arguments in a function-like macro's formal argument list,
24365 but versions of GCC around March 2002 include spaces after the
24366 commas. */
24367
24368
24369 /* Find the extent of the macro name. The macro name is terminated
24370 by either a space or null character (for an object-like macro) or
24371 an opening paren (for a function-like macro). */
24372 for (p = body; *p; p++)
24373 if (*p == ' ' || *p == '(')
24374 break;
24375
24376 if (*p == ' ' || *p == '\0')
24377 {
24378 /* It's an object-like macro. */
24379 int name_len = p - body;
24380 char *name = savestring (body, name_len);
24381 const char *replacement;
24382
24383 if (*p == ' ')
24384 replacement = body + name_len + 1;
24385 else
24386 {
24387 dwarf2_macro_malformed_definition_complaint (body);
24388 replacement = body + name_len;
24389 }
24390
24391 macro_define_object (file, line, name, replacement);
24392
24393 xfree (name);
24394 }
24395 else if (*p == '(')
24396 {
24397 /* It's a function-like macro. */
24398 char *name = savestring (body, p - body);
24399 int argc = 0;
24400 int argv_size = 1;
24401 char **argv = XNEWVEC (char *, argv_size);
24402
24403 p++;
24404
24405 p = consume_improper_spaces (p, body);
24406
24407 /* Parse the formal argument list. */
24408 while (*p && *p != ')')
24409 {
24410 /* Find the extent of the current argument name. */
24411 const char *arg_start = p;
24412
24413 while (*p && *p != ',' && *p != ')' && *p != ' ')
24414 p++;
24415
24416 if (! *p || p == arg_start)
24417 dwarf2_macro_malformed_definition_complaint (body);
24418 else
24419 {
24420 /* Make sure argv has room for the new argument. */
24421 if (argc >= argv_size)
24422 {
24423 argv_size *= 2;
24424 argv = XRESIZEVEC (char *, argv, argv_size);
24425 }
24426
24427 argv[argc++] = savestring (arg_start, p - arg_start);
24428 }
24429
24430 p = consume_improper_spaces (p, body);
24431
24432 /* Consume the comma, if present. */
24433 if (*p == ',')
24434 {
24435 p++;
24436
24437 p = consume_improper_spaces (p, body);
24438 }
24439 }
24440
24441 if (*p == ')')
24442 {
24443 p++;
24444
24445 if (*p == ' ')
24446 /* Perfectly formed definition, no complaints. */
24447 macro_define_function (file, line, name,
24448 argc, (const char **) argv,
24449 p + 1);
24450 else if (*p == '\0')
24451 {
24452 /* Complain, but do define it. */
24453 dwarf2_macro_malformed_definition_complaint (body);
24454 macro_define_function (file, line, name,
24455 argc, (const char **) argv,
24456 p);
24457 }
24458 else
24459 /* Just complain. */
24460 dwarf2_macro_malformed_definition_complaint (body);
24461 }
24462 else
24463 /* Just complain. */
24464 dwarf2_macro_malformed_definition_complaint (body);
24465
24466 xfree (name);
24467 {
24468 int i;
24469
24470 for (i = 0; i < argc; i++)
24471 xfree (argv[i]);
24472 }
24473 xfree (argv);
24474 }
24475 else
24476 dwarf2_macro_malformed_definition_complaint (body);
24477 }
24478
24479 /* Skip some bytes from BYTES according to the form given in FORM.
24480 Returns the new pointer. */
24481
24482 static const gdb_byte *
24483 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24484 enum dwarf_form form,
24485 unsigned int offset_size,
24486 struct dwarf2_section_info *section)
24487 {
24488 unsigned int bytes_read;
24489
24490 switch (form)
24491 {
24492 case DW_FORM_data1:
24493 case DW_FORM_flag:
24494 ++bytes;
24495 break;
24496
24497 case DW_FORM_data2:
24498 bytes += 2;
24499 break;
24500
24501 case DW_FORM_data4:
24502 bytes += 4;
24503 break;
24504
24505 case DW_FORM_data8:
24506 bytes += 8;
24507 break;
24508
24509 case DW_FORM_data16:
24510 bytes += 16;
24511 break;
24512
24513 case DW_FORM_string:
24514 read_direct_string (abfd, bytes, &bytes_read);
24515 bytes += bytes_read;
24516 break;
24517
24518 case DW_FORM_sec_offset:
24519 case DW_FORM_strp:
24520 case DW_FORM_GNU_strp_alt:
24521 bytes += offset_size;
24522 break;
24523
24524 case DW_FORM_block:
24525 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24526 bytes += bytes_read;
24527 break;
24528
24529 case DW_FORM_block1:
24530 bytes += 1 + read_1_byte (abfd, bytes);
24531 break;
24532 case DW_FORM_block2:
24533 bytes += 2 + read_2_bytes (abfd, bytes);
24534 break;
24535 case DW_FORM_block4:
24536 bytes += 4 + read_4_bytes (abfd, bytes);
24537 break;
24538
24539 case DW_FORM_addrx:
24540 case DW_FORM_sdata:
24541 case DW_FORM_strx:
24542 case DW_FORM_udata:
24543 case DW_FORM_GNU_addr_index:
24544 case DW_FORM_GNU_str_index:
24545 bytes = gdb_skip_leb128 (bytes, buffer_end);
24546 if (bytes == NULL)
24547 {
24548 dwarf2_section_buffer_overflow_complaint (section);
24549 return NULL;
24550 }
24551 break;
24552
24553 case DW_FORM_implicit_const:
24554 break;
24555
24556 default:
24557 {
24558 complaint (_("invalid form 0x%x in `%s'"),
24559 form, get_section_name (section));
24560 return NULL;
24561 }
24562 }
24563
24564 return bytes;
24565 }
24566
24567 /* A helper for dwarf_decode_macros that handles skipping an unknown
24568 opcode. Returns an updated pointer to the macro data buffer; or,
24569 on error, issues a complaint and returns NULL. */
24570
24571 static const gdb_byte *
24572 skip_unknown_opcode (unsigned int opcode,
24573 const gdb_byte **opcode_definitions,
24574 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24575 bfd *abfd,
24576 unsigned int offset_size,
24577 struct dwarf2_section_info *section)
24578 {
24579 unsigned int bytes_read, i;
24580 unsigned long arg;
24581 const gdb_byte *defn;
24582
24583 if (opcode_definitions[opcode] == NULL)
24584 {
24585 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24586 opcode);
24587 return NULL;
24588 }
24589
24590 defn = opcode_definitions[opcode];
24591 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24592 defn += bytes_read;
24593
24594 for (i = 0; i < arg; ++i)
24595 {
24596 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24597 (enum dwarf_form) defn[i], offset_size,
24598 section);
24599 if (mac_ptr == NULL)
24600 {
24601 /* skip_form_bytes already issued the complaint. */
24602 return NULL;
24603 }
24604 }
24605
24606 return mac_ptr;
24607 }
24608
24609 /* A helper function which parses the header of a macro section.
24610 If the macro section is the extended (for now called "GNU") type,
24611 then this updates *OFFSET_SIZE. Returns a pointer to just after
24612 the header, or issues a complaint and returns NULL on error. */
24613
24614 static const gdb_byte *
24615 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24616 bfd *abfd,
24617 const gdb_byte *mac_ptr,
24618 unsigned int *offset_size,
24619 int section_is_gnu)
24620 {
24621 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24622
24623 if (section_is_gnu)
24624 {
24625 unsigned int version, flags;
24626
24627 version = read_2_bytes (abfd, mac_ptr);
24628 if (version != 4 && version != 5)
24629 {
24630 complaint (_("unrecognized version `%d' in .debug_macro section"),
24631 version);
24632 return NULL;
24633 }
24634 mac_ptr += 2;
24635
24636 flags = read_1_byte (abfd, mac_ptr);
24637 ++mac_ptr;
24638 *offset_size = (flags & 1) ? 8 : 4;
24639
24640 if ((flags & 2) != 0)
24641 /* We don't need the line table offset. */
24642 mac_ptr += *offset_size;
24643
24644 /* Vendor opcode descriptions. */
24645 if ((flags & 4) != 0)
24646 {
24647 unsigned int i, count;
24648
24649 count = read_1_byte (abfd, mac_ptr);
24650 ++mac_ptr;
24651 for (i = 0; i < count; ++i)
24652 {
24653 unsigned int opcode, bytes_read;
24654 unsigned long arg;
24655
24656 opcode = read_1_byte (abfd, mac_ptr);
24657 ++mac_ptr;
24658 opcode_definitions[opcode] = mac_ptr;
24659 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24660 mac_ptr += bytes_read;
24661 mac_ptr += arg;
24662 }
24663 }
24664 }
24665
24666 return mac_ptr;
24667 }
24668
24669 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24670 including DW_MACRO_import. */
24671
24672 static void
24673 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24674 bfd *abfd,
24675 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24676 struct macro_source_file *current_file,
24677 struct line_header *lh,
24678 struct dwarf2_section_info *section,
24679 int section_is_gnu, int section_is_dwz,
24680 unsigned int offset_size,
24681 htab_t include_hash)
24682 {
24683 struct dwarf2_per_objfile *dwarf2_per_objfile
24684 = cu->per_cu->dwarf2_per_objfile;
24685 struct objfile *objfile = dwarf2_per_objfile->objfile;
24686 enum dwarf_macro_record_type macinfo_type;
24687 int at_commandline;
24688 const gdb_byte *opcode_definitions[256];
24689
24690 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24691 &offset_size, section_is_gnu);
24692 if (mac_ptr == NULL)
24693 {
24694 /* We already issued a complaint. */
24695 return;
24696 }
24697
24698 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24699 GDB is still reading the definitions from command line. First
24700 DW_MACINFO_start_file will need to be ignored as it was already executed
24701 to create CURRENT_FILE for the main source holding also the command line
24702 definitions. On first met DW_MACINFO_start_file this flag is reset to
24703 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24704
24705 at_commandline = 1;
24706
24707 do
24708 {
24709 /* Do we at least have room for a macinfo type byte? */
24710 if (mac_ptr >= mac_end)
24711 {
24712 dwarf2_section_buffer_overflow_complaint (section);
24713 break;
24714 }
24715
24716 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24717 mac_ptr++;
24718
24719 /* Note that we rely on the fact that the corresponding GNU and
24720 DWARF constants are the same. */
24721 DIAGNOSTIC_PUSH
24722 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24723 switch (macinfo_type)
24724 {
24725 /* A zero macinfo type indicates the end of the macro
24726 information. */
24727 case 0:
24728 break;
24729
24730 case DW_MACRO_define:
24731 case DW_MACRO_undef:
24732 case DW_MACRO_define_strp:
24733 case DW_MACRO_undef_strp:
24734 case DW_MACRO_define_sup:
24735 case DW_MACRO_undef_sup:
24736 {
24737 unsigned int bytes_read;
24738 int line;
24739 const char *body;
24740 int is_define;
24741
24742 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24743 mac_ptr += bytes_read;
24744
24745 if (macinfo_type == DW_MACRO_define
24746 || macinfo_type == DW_MACRO_undef)
24747 {
24748 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24749 mac_ptr += bytes_read;
24750 }
24751 else
24752 {
24753 LONGEST str_offset;
24754
24755 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24756 mac_ptr += offset_size;
24757
24758 if (macinfo_type == DW_MACRO_define_sup
24759 || macinfo_type == DW_MACRO_undef_sup
24760 || section_is_dwz)
24761 {
24762 struct dwz_file *dwz
24763 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24764
24765 body = read_indirect_string_from_dwz (objfile,
24766 dwz, str_offset);
24767 }
24768 else
24769 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24770 abfd, str_offset);
24771 }
24772
24773 is_define = (macinfo_type == DW_MACRO_define
24774 || macinfo_type == DW_MACRO_define_strp
24775 || macinfo_type == DW_MACRO_define_sup);
24776 if (! current_file)
24777 {
24778 /* DWARF violation as no main source is present. */
24779 complaint (_("debug info with no main source gives macro %s "
24780 "on line %d: %s"),
24781 is_define ? _("definition") : _("undefinition"),
24782 line, body);
24783 break;
24784 }
24785 if ((line == 0 && !at_commandline)
24786 || (line != 0 && at_commandline))
24787 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24788 at_commandline ? _("command-line") : _("in-file"),
24789 is_define ? _("definition") : _("undefinition"),
24790 line == 0 ? _("zero") : _("non-zero"), line, body);
24791
24792 if (body == NULL)
24793 {
24794 /* Fedora's rpm-build's "debugedit" binary
24795 corrupted .debug_macro sections.
24796
24797 For more info, see
24798 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24799 complaint (_("debug info gives %s invalid macro %s "
24800 "without body (corrupted?) at line %d "
24801 "on file %s"),
24802 at_commandline ? _("command-line") : _("in-file"),
24803 is_define ? _("definition") : _("undefinition"),
24804 line, current_file->filename);
24805 }
24806 else if (is_define)
24807 parse_macro_definition (current_file, line, body);
24808 else
24809 {
24810 gdb_assert (macinfo_type == DW_MACRO_undef
24811 || macinfo_type == DW_MACRO_undef_strp
24812 || macinfo_type == DW_MACRO_undef_sup);
24813 macro_undef (current_file, line, body);
24814 }
24815 }
24816 break;
24817
24818 case DW_MACRO_start_file:
24819 {
24820 unsigned int bytes_read;
24821 int line, file;
24822
24823 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24824 mac_ptr += bytes_read;
24825 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24826 mac_ptr += bytes_read;
24827
24828 if ((line == 0 && !at_commandline)
24829 || (line != 0 && at_commandline))
24830 complaint (_("debug info gives source %d included "
24831 "from %s at %s line %d"),
24832 file, at_commandline ? _("command-line") : _("file"),
24833 line == 0 ? _("zero") : _("non-zero"), line);
24834
24835 if (at_commandline)
24836 {
24837 /* This DW_MACRO_start_file was executed in the
24838 pass one. */
24839 at_commandline = 0;
24840 }
24841 else
24842 current_file = macro_start_file (cu, file, line, current_file,
24843 lh);
24844 }
24845 break;
24846
24847 case DW_MACRO_end_file:
24848 if (! current_file)
24849 complaint (_("macro debug info has an unmatched "
24850 "`close_file' directive"));
24851 else
24852 {
24853 current_file = current_file->included_by;
24854 if (! current_file)
24855 {
24856 enum dwarf_macro_record_type next_type;
24857
24858 /* GCC circa March 2002 doesn't produce the zero
24859 type byte marking the end of the compilation
24860 unit. Complain if it's not there, but exit no
24861 matter what. */
24862
24863 /* Do we at least have room for a macinfo type byte? */
24864 if (mac_ptr >= mac_end)
24865 {
24866 dwarf2_section_buffer_overflow_complaint (section);
24867 return;
24868 }
24869
24870 /* We don't increment mac_ptr here, so this is just
24871 a look-ahead. */
24872 next_type
24873 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24874 mac_ptr);
24875 if (next_type != 0)
24876 complaint (_("no terminating 0-type entry for "
24877 "macros in `.debug_macinfo' section"));
24878
24879 return;
24880 }
24881 }
24882 break;
24883
24884 case DW_MACRO_import:
24885 case DW_MACRO_import_sup:
24886 {
24887 LONGEST offset;
24888 void **slot;
24889 bfd *include_bfd = abfd;
24890 struct dwarf2_section_info *include_section = section;
24891 const gdb_byte *include_mac_end = mac_end;
24892 int is_dwz = section_is_dwz;
24893 const gdb_byte *new_mac_ptr;
24894
24895 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24896 mac_ptr += offset_size;
24897
24898 if (macinfo_type == DW_MACRO_import_sup)
24899 {
24900 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24901
24902 dwarf2_read_section (objfile, &dwz->macro);
24903
24904 include_section = &dwz->macro;
24905 include_bfd = get_section_bfd_owner (include_section);
24906 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24907 is_dwz = 1;
24908 }
24909
24910 new_mac_ptr = include_section->buffer + offset;
24911 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24912
24913 if (*slot != NULL)
24914 {
24915 /* This has actually happened; see
24916 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24917 complaint (_("recursive DW_MACRO_import in "
24918 ".debug_macro section"));
24919 }
24920 else
24921 {
24922 *slot = (void *) new_mac_ptr;
24923
24924 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24925 include_mac_end, current_file, lh,
24926 section, section_is_gnu, is_dwz,
24927 offset_size, include_hash);
24928
24929 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24930 }
24931 }
24932 break;
24933
24934 case DW_MACINFO_vendor_ext:
24935 if (!section_is_gnu)
24936 {
24937 unsigned int bytes_read;
24938
24939 /* This reads the constant, but since we don't recognize
24940 any vendor extensions, we ignore it. */
24941 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24942 mac_ptr += bytes_read;
24943 read_direct_string (abfd, mac_ptr, &bytes_read);
24944 mac_ptr += bytes_read;
24945
24946 /* We don't recognize any vendor extensions. */
24947 break;
24948 }
24949 /* FALLTHROUGH */
24950
24951 default:
24952 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24953 mac_ptr, mac_end, abfd, offset_size,
24954 section);
24955 if (mac_ptr == NULL)
24956 return;
24957 break;
24958 }
24959 DIAGNOSTIC_POP
24960 } while (macinfo_type != 0);
24961 }
24962
24963 static void
24964 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24965 int section_is_gnu)
24966 {
24967 struct dwarf2_per_objfile *dwarf2_per_objfile
24968 = cu->per_cu->dwarf2_per_objfile;
24969 struct objfile *objfile = dwarf2_per_objfile->objfile;
24970 struct line_header *lh = cu->line_header;
24971 bfd *abfd;
24972 const gdb_byte *mac_ptr, *mac_end;
24973 struct macro_source_file *current_file = 0;
24974 enum dwarf_macro_record_type macinfo_type;
24975 unsigned int offset_size = cu->header.offset_size;
24976 const gdb_byte *opcode_definitions[256];
24977 void **slot;
24978 struct dwarf2_section_info *section;
24979 const char *section_name;
24980
24981 if (cu->dwo_unit != NULL)
24982 {
24983 if (section_is_gnu)
24984 {
24985 section = &cu->dwo_unit->dwo_file->sections.macro;
24986 section_name = ".debug_macro.dwo";
24987 }
24988 else
24989 {
24990 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24991 section_name = ".debug_macinfo.dwo";
24992 }
24993 }
24994 else
24995 {
24996 if (section_is_gnu)
24997 {
24998 section = &dwarf2_per_objfile->macro;
24999 section_name = ".debug_macro";
25000 }
25001 else
25002 {
25003 section = &dwarf2_per_objfile->macinfo;
25004 section_name = ".debug_macinfo";
25005 }
25006 }
25007
25008 dwarf2_read_section (objfile, section);
25009 if (section->buffer == NULL)
25010 {
25011 complaint (_("missing %s section"), section_name);
25012 return;
25013 }
25014 abfd = get_section_bfd_owner (section);
25015
25016 /* First pass: Find the name of the base filename.
25017 This filename is needed in order to process all macros whose definition
25018 (or undefinition) comes from the command line. These macros are defined
25019 before the first DW_MACINFO_start_file entry, and yet still need to be
25020 associated to the base file.
25021
25022 To determine the base file name, we scan the macro definitions until we
25023 reach the first DW_MACINFO_start_file entry. We then initialize
25024 CURRENT_FILE accordingly so that any macro definition found before the
25025 first DW_MACINFO_start_file can still be associated to the base file. */
25026
25027 mac_ptr = section->buffer + offset;
25028 mac_end = section->buffer + section->size;
25029
25030 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25031 &offset_size, section_is_gnu);
25032 if (mac_ptr == NULL)
25033 {
25034 /* We already issued a complaint. */
25035 return;
25036 }
25037
25038 do
25039 {
25040 /* Do we at least have room for a macinfo type byte? */
25041 if (mac_ptr >= mac_end)
25042 {
25043 /* Complaint is printed during the second pass as GDB will probably
25044 stop the first pass earlier upon finding
25045 DW_MACINFO_start_file. */
25046 break;
25047 }
25048
25049 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
25050 mac_ptr++;
25051
25052 /* Note that we rely on the fact that the corresponding GNU and
25053 DWARF constants are the same. */
25054 DIAGNOSTIC_PUSH
25055 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25056 switch (macinfo_type)
25057 {
25058 /* A zero macinfo type indicates the end of the macro
25059 information. */
25060 case 0:
25061 break;
25062
25063 case DW_MACRO_define:
25064 case DW_MACRO_undef:
25065 /* Only skip the data by MAC_PTR. */
25066 {
25067 unsigned int bytes_read;
25068
25069 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25070 mac_ptr += bytes_read;
25071 read_direct_string (abfd, mac_ptr, &bytes_read);
25072 mac_ptr += bytes_read;
25073 }
25074 break;
25075
25076 case DW_MACRO_start_file:
25077 {
25078 unsigned int bytes_read;
25079 int line, file;
25080
25081 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25082 mac_ptr += bytes_read;
25083 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25084 mac_ptr += bytes_read;
25085
25086 current_file = macro_start_file (cu, file, line, current_file, lh);
25087 }
25088 break;
25089
25090 case DW_MACRO_end_file:
25091 /* No data to skip by MAC_PTR. */
25092 break;
25093
25094 case DW_MACRO_define_strp:
25095 case DW_MACRO_undef_strp:
25096 case DW_MACRO_define_sup:
25097 case DW_MACRO_undef_sup:
25098 {
25099 unsigned int bytes_read;
25100
25101 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25102 mac_ptr += bytes_read;
25103 mac_ptr += offset_size;
25104 }
25105 break;
25106
25107 case DW_MACRO_import:
25108 case DW_MACRO_import_sup:
25109 /* Note that, according to the spec, a transparent include
25110 chain cannot call DW_MACRO_start_file. So, we can just
25111 skip this opcode. */
25112 mac_ptr += offset_size;
25113 break;
25114
25115 case DW_MACINFO_vendor_ext:
25116 /* Only skip the data by MAC_PTR. */
25117 if (!section_is_gnu)
25118 {
25119 unsigned int bytes_read;
25120
25121 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25122 mac_ptr += bytes_read;
25123 read_direct_string (abfd, mac_ptr, &bytes_read);
25124 mac_ptr += bytes_read;
25125 }
25126 /* FALLTHROUGH */
25127
25128 default:
25129 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25130 mac_ptr, mac_end, abfd, offset_size,
25131 section);
25132 if (mac_ptr == NULL)
25133 return;
25134 break;
25135 }
25136 DIAGNOSTIC_POP
25137 } while (macinfo_type != 0 && current_file == NULL);
25138
25139 /* Second pass: Process all entries.
25140
25141 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25142 command-line macro definitions/undefinitions. This flag is unset when we
25143 reach the first DW_MACINFO_start_file entry. */
25144
25145 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25146 htab_eq_pointer,
25147 NULL, xcalloc, xfree));
25148 mac_ptr = section->buffer + offset;
25149 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25150 *slot = (void *) mac_ptr;
25151 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25152 current_file, lh, section,
25153 section_is_gnu, 0, offset_size,
25154 include_hash.get ());
25155 }
25156
25157 /* Check if the attribute's form is a DW_FORM_block*
25158 if so return true else false. */
25159
25160 static int
25161 attr_form_is_block (const struct attribute *attr)
25162 {
25163 return (attr == NULL ? 0 :
25164 attr->form == DW_FORM_block1
25165 || attr->form == DW_FORM_block2
25166 || attr->form == DW_FORM_block4
25167 || attr->form == DW_FORM_block
25168 || attr->form == DW_FORM_exprloc);
25169 }
25170
25171 /* Return non-zero if ATTR's value is a section offset --- classes
25172 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25173 You may use DW_UNSND (attr) to retrieve such offsets.
25174
25175 Section 7.5.4, "Attribute Encodings", explains that no attribute
25176 may have a value that belongs to more than one of these classes; it
25177 would be ambiguous if we did, because we use the same forms for all
25178 of them. */
25179
25180 static int
25181 attr_form_is_section_offset (const struct attribute *attr)
25182 {
25183 return (attr->form == DW_FORM_data4
25184 || attr->form == DW_FORM_data8
25185 || attr->form == DW_FORM_sec_offset);
25186 }
25187
25188 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25189 zero otherwise. When this function returns true, you can apply
25190 dwarf2_get_attr_constant_value to it.
25191
25192 However, note that for some attributes you must check
25193 attr_form_is_section_offset before using this test. DW_FORM_data4
25194 and DW_FORM_data8 are members of both the constant class, and of
25195 the classes that contain offsets into other debug sections
25196 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25197 that, if an attribute's can be either a constant or one of the
25198 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25199 taken as section offsets, not constants.
25200
25201 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25202 cannot handle that. */
25203
25204 static int
25205 attr_form_is_constant (const struct attribute *attr)
25206 {
25207 switch (attr->form)
25208 {
25209 case DW_FORM_sdata:
25210 case DW_FORM_udata:
25211 case DW_FORM_data1:
25212 case DW_FORM_data2:
25213 case DW_FORM_data4:
25214 case DW_FORM_data8:
25215 case DW_FORM_implicit_const:
25216 return 1;
25217 default:
25218 return 0;
25219 }
25220 }
25221
25222
25223 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25224 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25225
25226 static int
25227 attr_form_is_ref (const struct attribute *attr)
25228 {
25229 switch (attr->form)
25230 {
25231 case DW_FORM_ref_addr:
25232 case DW_FORM_ref1:
25233 case DW_FORM_ref2:
25234 case DW_FORM_ref4:
25235 case DW_FORM_ref8:
25236 case DW_FORM_ref_udata:
25237 case DW_FORM_GNU_ref_alt:
25238 return 1;
25239 default:
25240 return 0;
25241 }
25242 }
25243
25244 /* Return the .debug_loc section to use for CU.
25245 For DWO files use .debug_loc.dwo. */
25246
25247 static struct dwarf2_section_info *
25248 cu_debug_loc_section (struct dwarf2_cu *cu)
25249 {
25250 struct dwarf2_per_objfile *dwarf2_per_objfile
25251 = cu->per_cu->dwarf2_per_objfile;
25252
25253 if (cu->dwo_unit)
25254 {
25255 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25256
25257 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25258 }
25259 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25260 : &dwarf2_per_objfile->loc);
25261 }
25262
25263 /* A helper function that fills in a dwarf2_loclist_baton. */
25264
25265 static void
25266 fill_in_loclist_baton (struct dwarf2_cu *cu,
25267 struct dwarf2_loclist_baton *baton,
25268 const struct attribute *attr)
25269 {
25270 struct dwarf2_per_objfile *dwarf2_per_objfile
25271 = cu->per_cu->dwarf2_per_objfile;
25272 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25273
25274 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25275
25276 baton->per_cu = cu->per_cu;
25277 gdb_assert (baton->per_cu);
25278 /* We don't know how long the location list is, but make sure we
25279 don't run off the edge of the section. */
25280 baton->size = section->size - DW_UNSND (attr);
25281 baton->data = section->buffer + DW_UNSND (attr);
25282 baton->base_address = cu->base_address;
25283 baton->from_dwo = cu->dwo_unit != NULL;
25284 }
25285
25286 static void
25287 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25288 struct dwarf2_cu *cu, int is_block)
25289 {
25290 struct dwarf2_per_objfile *dwarf2_per_objfile
25291 = cu->per_cu->dwarf2_per_objfile;
25292 struct objfile *objfile = dwarf2_per_objfile->objfile;
25293 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25294
25295 if (attr_form_is_section_offset (attr)
25296 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25297 the section. If so, fall through to the complaint in the
25298 other branch. */
25299 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25300 {
25301 struct dwarf2_loclist_baton *baton;
25302
25303 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25304
25305 fill_in_loclist_baton (cu, baton, attr);
25306
25307 if (cu->base_known == 0)
25308 complaint (_("Location list used without "
25309 "specifying the CU base address."));
25310
25311 SYMBOL_ACLASS_INDEX (sym) = (is_block
25312 ? dwarf2_loclist_block_index
25313 : dwarf2_loclist_index);
25314 SYMBOL_LOCATION_BATON (sym) = baton;
25315 }
25316 else
25317 {
25318 struct dwarf2_locexpr_baton *baton;
25319
25320 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25321 baton->per_cu = cu->per_cu;
25322 gdb_assert (baton->per_cu);
25323
25324 if (attr_form_is_block (attr))
25325 {
25326 /* Note that we're just copying the block's data pointer
25327 here, not the actual data. We're still pointing into the
25328 info_buffer for SYM's objfile; right now we never release
25329 that buffer, but when we do clean up properly this may
25330 need to change. */
25331 baton->size = DW_BLOCK (attr)->size;
25332 baton->data = DW_BLOCK (attr)->data;
25333 }
25334 else
25335 {
25336 dwarf2_invalid_attrib_class_complaint ("location description",
25337 SYMBOL_NATURAL_NAME (sym));
25338 baton->size = 0;
25339 }
25340
25341 SYMBOL_ACLASS_INDEX (sym) = (is_block
25342 ? dwarf2_locexpr_block_index
25343 : dwarf2_locexpr_index);
25344 SYMBOL_LOCATION_BATON (sym) = baton;
25345 }
25346 }
25347
25348 /* Return the OBJFILE associated with the compilation unit CU. If CU
25349 came from a separate debuginfo file, then the master objfile is
25350 returned. */
25351
25352 struct objfile *
25353 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25354 {
25355 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25356
25357 /* Return the master objfile, so that we can report and look up the
25358 correct file containing this variable. */
25359 if (objfile->separate_debug_objfile_backlink)
25360 objfile = objfile->separate_debug_objfile_backlink;
25361
25362 return objfile;
25363 }
25364
25365 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25366 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25367 CU_HEADERP first. */
25368
25369 static const struct comp_unit_head *
25370 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25371 struct dwarf2_per_cu_data *per_cu)
25372 {
25373 const gdb_byte *info_ptr;
25374
25375 if (per_cu->cu)
25376 return &per_cu->cu->header;
25377
25378 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25379
25380 memset (cu_headerp, 0, sizeof (*cu_headerp));
25381 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25382 rcuh_kind::COMPILE);
25383
25384 return cu_headerp;
25385 }
25386
25387 /* Return the address size given in the compilation unit header for CU. */
25388
25389 int
25390 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25391 {
25392 struct comp_unit_head cu_header_local;
25393 const struct comp_unit_head *cu_headerp;
25394
25395 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25396
25397 return cu_headerp->addr_size;
25398 }
25399
25400 /* Return the offset size given in the compilation unit header for CU. */
25401
25402 int
25403 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25404 {
25405 struct comp_unit_head cu_header_local;
25406 const struct comp_unit_head *cu_headerp;
25407
25408 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25409
25410 return cu_headerp->offset_size;
25411 }
25412
25413 /* See its dwarf2loc.h declaration. */
25414
25415 int
25416 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25417 {
25418 struct comp_unit_head cu_header_local;
25419 const struct comp_unit_head *cu_headerp;
25420
25421 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25422
25423 if (cu_headerp->version == 2)
25424 return cu_headerp->addr_size;
25425 else
25426 return cu_headerp->offset_size;
25427 }
25428
25429 /* Return the text offset of the CU. The returned offset comes from
25430 this CU's objfile. If this objfile came from a separate debuginfo
25431 file, then the offset may be different from the corresponding
25432 offset in the parent objfile. */
25433
25434 CORE_ADDR
25435 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25436 {
25437 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25438
25439 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25440 }
25441
25442 /* Return a type that is a generic pointer type, the size of which matches
25443 the address size given in the compilation unit header for PER_CU. */
25444 static struct type *
25445 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25446 {
25447 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25448 struct type *void_type = objfile_type (objfile)->builtin_void;
25449 struct type *addr_type = lookup_pointer_type (void_type);
25450 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25451
25452 if (TYPE_LENGTH (addr_type) == addr_size)
25453 return addr_type;
25454
25455 addr_type
25456 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25457 return addr_type;
25458 }
25459
25460 /* Return DWARF version number of PER_CU. */
25461
25462 short
25463 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25464 {
25465 return per_cu->dwarf_version;
25466 }
25467
25468 /* Locate the .debug_info compilation unit from CU's objfile which contains
25469 the DIE at OFFSET. Raises an error on failure. */
25470
25471 static struct dwarf2_per_cu_data *
25472 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25473 unsigned int offset_in_dwz,
25474 struct dwarf2_per_objfile *dwarf2_per_objfile)
25475 {
25476 struct dwarf2_per_cu_data *this_cu;
25477 int low, high;
25478
25479 low = 0;
25480 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25481 while (high > low)
25482 {
25483 struct dwarf2_per_cu_data *mid_cu;
25484 int mid = low + (high - low) / 2;
25485
25486 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25487 if (mid_cu->is_dwz > offset_in_dwz
25488 || (mid_cu->is_dwz == offset_in_dwz
25489 && mid_cu->sect_off + mid_cu->length >= sect_off))
25490 high = mid;
25491 else
25492 low = mid + 1;
25493 }
25494 gdb_assert (low == high);
25495 this_cu = dwarf2_per_objfile->all_comp_units[low];
25496 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25497 {
25498 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25499 error (_("Dwarf Error: could not find partial DIE containing "
25500 "offset %s [in module %s]"),
25501 sect_offset_str (sect_off),
25502 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25503
25504 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25505 <= sect_off);
25506 return dwarf2_per_objfile->all_comp_units[low-1];
25507 }
25508 else
25509 {
25510 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25511 && sect_off >= this_cu->sect_off + this_cu->length)
25512 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25513 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25514 return this_cu;
25515 }
25516 }
25517
25518 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25519
25520 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25521 : per_cu (per_cu_),
25522 mark (false),
25523 has_loclist (false),
25524 checked_producer (false),
25525 producer_is_gxx_lt_4_6 (false),
25526 producer_is_gcc_lt_4_3 (false),
25527 producer_is_icc (false),
25528 producer_is_icc_lt_14 (false),
25529 producer_is_codewarrior (false),
25530 processing_has_namespace_info (false)
25531 {
25532 per_cu->cu = this;
25533 }
25534
25535 /* Destroy a dwarf2_cu. */
25536
25537 dwarf2_cu::~dwarf2_cu ()
25538 {
25539 per_cu->cu = NULL;
25540 }
25541
25542 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25543
25544 static void
25545 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25546 enum language pretend_language)
25547 {
25548 struct attribute *attr;
25549
25550 /* Set the language we're debugging. */
25551 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25552 if (attr != nullptr)
25553 set_cu_language (DW_UNSND (attr), cu);
25554 else
25555 {
25556 cu->language = pretend_language;
25557 cu->language_defn = language_def (cu->language);
25558 }
25559
25560 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25561 }
25562
25563 /* Increase the age counter on each cached compilation unit, and free
25564 any that are too old. */
25565
25566 static void
25567 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25568 {
25569 struct dwarf2_per_cu_data *per_cu, **last_chain;
25570
25571 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25572 per_cu = dwarf2_per_objfile->read_in_chain;
25573 while (per_cu != NULL)
25574 {
25575 per_cu->cu->last_used ++;
25576 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25577 dwarf2_mark (per_cu->cu);
25578 per_cu = per_cu->cu->read_in_chain;
25579 }
25580
25581 per_cu = dwarf2_per_objfile->read_in_chain;
25582 last_chain = &dwarf2_per_objfile->read_in_chain;
25583 while (per_cu != NULL)
25584 {
25585 struct dwarf2_per_cu_data *next_cu;
25586
25587 next_cu = per_cu->cu->read_in_chain;
25588
25589 if (!per_cu->cu->mark)
25590 {
25591 delete per_cu->cu;
25592 *last_chain = next_cu;
25593 }
25594 else
25595 last_chain = &per_cu->cu->read_in_chain;
25596
25597 per_cu = next_cu;
25598 }
25599 }
25600
25601 /* Remove a single compilation unit from the cache. */
25602
25603 static void
25604 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25605 {
25606 struct dwarf2_per_cu_data *per_cu, **last_chain;
25607 struct dwarf2_per_objfile *dwarf2_per_objfile
25608 = target_per_cu->dwarf2_per_objfile;
25609
25610 per_cu = dwarf2_per_objfile->read_in_chain;
25611 last_chain = &dwarf2_per_objfile->read_in_chain;
25612 while (per_cu != NULL)
25613 {
25614 struct dwarf2_per_cu_data *next_cu;
25615
25616 next_cu = per_cu->cu->read_in_chain;
25617
25618 if (per_cu == target_per_cu)
25619 {
25620 delete per_cu->cu;
25621 per_cu->cu = NULL;
25622 *last_chain = next_cu;
25623 break;
25624 }
25625 else
25626 last_chain = &per_cu->cu->read_in_chain;
25627
25628 per_cu = next_cu;
25629 }
25630 }
25631
25632 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25633 We store these in a hash table separate from the DIEs, and preserve them
25634 when the DIEs are flushed out of cache.
25635
25636 The CU "per_cu" pointer is needed because offset alone is not enough to
25637 uniquely identify the type. A file may have multiple .debug_types sections,
25638 or the type may come from a DWO file. Furthermore, while it's more logical
25639 to use per_cu->section+offset, with Fission the section with the data is in
25640 the DWO file but we don't know that section at the point we need it.
25641 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25642 because we can enter the lookup routine, get_die_type_at_offset, from
25643 outside this file, and thus won't necessarily have PER_CU->cu.
25644 Fortunately, PER_CU is stable for the life of the objfile. */
25645
25646 struct dwarf2_per_cu_offset_and_type
25647 {
25648 const struct dwarf2_per_cu_data *per_cu;
25649 sect_offset sect_off;
25650 struct type *type;
25651 };
25652
25653 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25654
25655 static hashval_t
25656 per_cu_offset_and_type_hash (const void *item)
25657 {
25658 const struct dwarf2_per_cu_offset_and_type *ofs
25659 = (const struct dwarf2_per_cu_offset_and_type *) item;
25660
25661 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25662 }
25663
25664 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25665
25666 static int
25667 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25668 {
25669 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25670 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25671 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25672 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25673
25674 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25675 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25676 }
25677
25678 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25679 table if necessary. For convenience, return TYPE.
25680
25681 The DIEs reading must have careful ordering to:
25682 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25683 reading current DIE.
25684 * Not trying to dereference contents of still incompletely read in types
25685 while reading in other DIEs.
25686 * Enable referencing still incompletely read in types just by a pointer to
25687 the type without accessing its fields.
25688
25689 Therefore caller should follow these rules:
25690 * Try to fetch any prerequisite types we may need to build this DIE type
25691 before building the type and calling set_die_type.
25692 * After building type call set_die_type for current DIE as soon as
25693 possible before fetching more types to complete the current type.
25694 * Make the type as complete as possible before fetching more types. */
25695
25696 static struct type *
25697 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25698 {
25699 struct dwarf2_per_objfile *dwarf2_per_objfile
25700 = cu->per_cu->dwarf2_per_objfile;
25701 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25702 struct objfile *objfile = dwarf2_per_objfile->objfile;
25703 struct attribute *attr;
25704 struct dynamic_prop prop;
25705
25706 /* For Ada types, make sure that the gnat-specific data is always
25707 initialized (if not already set). There are a few types where
25708 we should not be doing so, because the type-specific area is
25709 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25710 where the type-specific area is used to store the floatformat).
25711 But this is not a problem, because the gnat-specific information
25712 is actually not needed for these types. */
25713 if (need_gnat_info (cu)
25714 && TYPE_CODE (type) != TYPE_CODE_FUNC
25715 && TYPE_CODE (type) != TYPE_CODE_FLT
25716 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25717 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25718 && TYPE_CODE (type) != TYPE_CODE_METHOD
25719 && !HAVE_GNAT_AUX_INFO (type))
25720 INIT_GNAT_SPECIFIC (type);
25721
25722 /* Read DW_AT_allocated and set in type. */
25723 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25724 if (attr_form_is_block (attr))
25725 {
25726 struct type *prop_type
25727 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25728 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25729 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25730 }
25731 else if (attr != NULL)
25732 {
25733 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25734 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25735 sect_offset_str (die->sect_off));
25736 }
25737
25738 /* Read DW_AT_associated and set in type. */
25739 attr = dwarf2_attr (die, DW_AT_associated, cu);
25740 if (attr_form_is_block (attr))
25741 {
25742 struct type *prop_type
25743 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25744 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25745 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25746 }
25747 else if (attr != NULL)
25748 {
25749 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25750 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25751 sect_offset_str (die->sect_off));
25752 }
25753
25754 /* Read DW_AT_data_location and set in type. */
25755 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25756 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25757 dwarf2_per_cu_addr_type (cu->per_cu)))
25758 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25759
25760 if (dwarf2_per_objfile->die_type_hash == NULL)
25761 {
25762 dwarf2_per_objfile->die_type_hash =
25763 htab_create_alloc_ex (127,
25764 per_cu_offset_and_type_hash,
25765 per_cu_offset_and_type_eq,
25766 NULL,
25767 &objfile->objfile_obstack,
25768 hashtab_obstack_allocate,
25769 dummy_obstack_deallocate);
25770 }
25771
25772 ofs.per_cu = cu->per_cu;
25773 ofs.sect_off = die->sect_off;
25774 ofs.type = type;
25775 slot = (struct dwarf2_per_cu_offset_and_type **)
25776 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25777 if (*slot)
25778 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25779 sect_offset_str (die->sect_off));
25780 *slot = XOBNEW (&objfile->objfile_obstack,
25781 struct dwarf2_per_cu_offset_and_type);
25782 **slot = ofs;
25783 return type;
25784 }
25785
25786 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25787 or return NULL if the die does not have a saved type. */
25788
25789 static struct type *
25790 get_die_type_at_offset (sect_offset sect_off,
25791 struct dwarf2_per_cu_data *per_cu)
25792 {
25793 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25794 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25795
25796 if (dwarf2_per_objfile->die_type_hash == NULL)
25797 return NULL;
25798
25799 ofs.per_cu = per_cu;
25800 ofs.sect_off = sect_off;
25801 slot = ((struct dwarf2_per_cu_offset_and_type *)
25802 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25803 if (slot)
25804 return slot->type;
25805 else
25806 return NULL;
25807 }
25808
25809 /* Look up the type for DIE in CU in die_type_hash,
25810 or return NULL if DIE does not have a saved type. */
25811
25812 static struct type *
25813 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25814 {
25815 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25816 }
25817
25818 /* Add a dependence relationship from CU to REF_PER_CU. */
25819
25820 static void
25821 dwarf2_add_dependence (struct dwarf2_cu *cu,
25822 struct dwarf2_per_cu_data *ref_per_cu)
25823 {
25824 void **slot;
25825
25826 if (cu->dependencies == NULL)
25827 cu->dependencies
25828 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25829 NULL, &cu->comp_unit_obstack,
25830 hashtab_obstack_allocate,
25831 dummy_obstack_deallocate);
25832
25833 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25834 if (*slot == NULL)
25835 *slot = ref_per_cu;
25836 }
25837
25838 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25839 Set the mark field in every compilation unit in the
25840 cache that we must keep because we are keeping CU. */
25841
25842 static int
25843 dwarf2_mark_helper (void **slot, void *data)
25844 {
25845 struct dwarf2_per_cu_data *per_cu;
25846
25847 per_cu = (struct dwarf2_per_cu_data *) *slot;
25848
25849 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25850 reading of the chain. As such dependencies remain valid it is not much
25851 useful to track and undo them during QUIT cleanups. */
25852 if (per_cu->cu == NULL)
25853 return 1;
25854
25855 if (per_cu->cu->mark)
25856 return 1;
25857 per_cu->cu->mark = true;
25858
25859 if (per_cu->cu->dependencies != NULL)
25860 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25861
25862 return 1;
25863 }
25864
25865 /* Set the mark field in CU and in every other compilation unit in the
25866 cache that we must keep because we are keeping CU. */
25867
25868 static void
25869 dwarf2_mark (struct dwarf2_cu *cu)
25870 {
25871 if (cu->mark)
25872 return;
25873 cu->mark = true;
25874 if (cu->dependencies != NULL)
25875 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25876 }
25877
25878 static void
25879 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25880 {
25881 while (per_cu)
25882 {
25883 per_cu->cu->mark = false;
25884 per_cu = per_cu->cu->read_in_chain;
25885 }
25886 }
25887
25888 /* Trivial hash function for partial_die_info: the hash value of a DIE
25889 is its offset in .debug_info for this objfile. */
25890
25891 static hashval_t
25892 partial_die_hash (const void *item)
25893 {
25894 const struct partial_die_info *part_die
25895 = (const struct partial_die_info *) item;
25896
25897 return to_underlying (part_die->sect_off);
25898 }
25899
25900 /* Trivial comparison function for partial_die_info structures: two DIEs
25901 are equal if they have the same offset. */
25902
25903 static int
25904 partial_die_eq (const void *item_lhs, const void *item_rhs)
25905 {
25906 const struct partial_die_info *part_die_lhs
25907 = (const struct partial_die_info *) item_lhs;
25908 const struct partial_die_info *part_die_rhs
25909 = (const struct partial_die_info *) item_rhs;
25910
25911 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25912 }
25913
25914 struct cmd_list_element *set_dwarf_cmdlist;
25915 struct cmd_list_element *show_dwarf_cmdlist;
25916
25917 static void
25918 set_dwarf_cmd (const char *args, int from_tty)
25919 {
25920 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25921 gdb_stdout);
25922 }
25923
25924 static void
25925 show_dwarf_cmd (const char *args, int from_tty)
25926 {
25927 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25928 }
25929
25930 bool dwarf_always_disassemble;
25931
25932 static void
25933 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25934 struct cmd_list_element *c, const char *value)
25935 {
25936 fprintf_filtered (file,
25937 _("Whether to always disassemble "
25938 "DWARF expressions is %s.\n"),
25939 value);
25940 }
25941
25942 static void
25943 show_check_physname (struct ui_file *file, int from_tty,
25944 struct cmd_list_element *c, const char *value)
25945 {
25946 fprintf_filtered (file,
25947 _("Whether to check \"physname\" is %s.\n"),
25948 value);
25949 }
25950
25951 void
25952 _initialize_dwarf2_read (void)
25953 {
25954 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25955 Set DWARF specific variables.\n\
25956 Configure DWARF variables such as the cache size."),
25957 &set_dwarf_cmdlist, "maintenance set dwarf ",
25958 0/*allow-unknown*/, &maintenance_set_cmdlist);
25959
25960 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25961 Show DWARF specific variables.\n\
25962 Show DWARF variables such as the cache size."),
25963 &show_dwarf_cmdlist, "maintenance show dwarf ",
25964 0/*allow-unknown*/, &maintenance_show_cmdlist);
25965
25966 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25967 &dwarf_max_cache_age, _("\
25968 Set the upper bound on the age of cached DWARF compilation units."), _("\
25969 Show the upper bound on the age of cached DWARF compilation units."), _("\
25970 A higher limit means that cached compilation units will be stored\n\
25971 in memory longer, and more total memory will be used. Zero disables\n\
25972 caching, which can slow down startup."),
25973 NULL,
25974 show_dwarf_max_cache_age,
25975 &set_dwarf_cmdlist,
25976 &show_dwarf_cmdlist);
25977
25978 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25979 &dwarf_always_disassemble, _("\
25980 Set whether `info address' always disassembles DWARF expressions."), _("\
25981 Show whether `info address' always disassembles DWARF expressions."), _("\
25982 When enabled, DWARF expressions are always printed in an assembly-like\n\
25983 syntax. When disabled, expressions will be printed in a more\n\
25984 conversational style, when possible."),
25985 NULL,
25986 show_dwarf_always_disassemble,
25987 &set_dwarf_cmdlist,
25988 &show_dwarf_cmdlist);
25989
25990 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25991 Set debugging of the DWARF reader."), _("\
25992 Show debugging of the DWARF reader."), _("\
25993 When enabled (non-zero), debugging messages are printed during DWARF\n\
25994 reading and symtab expansion. A value of 1 (one) provides basic\n\
25995 information. A value greater than 1 provides more verbose information."),
25996 NULL,
25997 NULL,
25998 &setdebuglist, &showdebuglist);
25999
26000 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
26001 Set debugging of the DWARF DIE reader."), _("\
26002 Show debugging of the DWARF DIE reader."), _("\
26003 When enabled (non-zero), DIEs are dumped after they are read in.\n\
26004 The value is the maximum depth to print."),
26005 NULL,
26006 NULL,
26007 &setdebuglist, &showdebuglist);
26008
26009 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
26010 Set debugging of the dwarf line reader."), _("\
26011 Show debugging of the dwarf line reader."), _("\
26012 When enabled (non-zero), line number entries are dumped as they are read in.\n\
26013 A value of 1 (one) provides basic information.\n\
26014 A value greater than 1 provides more verbose information."),
26015 NULL,
26016 NULL,
26017 &setdebuglist, &showdebuglist);
26018
26019 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
26020 Set cross-checking of \"physname\" code against demangler."), _("\
26021 Show cross-checking of \"physname\" code against demangler."), _("\
26022 When enabled, GDB's internal \"physname\" code is checked against\n\
26023 the demangler."),
26024 NULL, show_check_physname,
26025 &setdebuglist, &showdebuglist);
26026
26027 add_setshow_boolean_cmd ("use-deprecated-index-sections",
26028 no_class, &use_deprecated_index_sections, _("\
26029 Set whether to use deprecated gdb_index sections."), _("\
26030 Show whether to use deprecated gdb_index sections."), _("\
26031 When enabled, deprecated .gdb_index sections are used anyway.\n\
26032 Normally they are ignored either because of a missing feature or\n\
26033 performance issue.\n\
26034 Warning: This option must be enabled before gdb reads the file."),
26035 NULL,
26036 NULL,
26037 &setlist, &showlist);
26038
26039 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
26040 &dwarf2_locexpr_funcs);
26041 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
26042 &dwarf2_loclist_funcs);
26043
26044 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
26045 &dwarf2_block_frame_base_locexpr_funcs);
26046 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
26047 &dwarf2_block_frame_base_loclist_funcs);
26048
26049 #if GDB_SELF_TEST
26050 selftests::register_test ("dw2_expand_symtabs_matching",
26051 selftests::dw2_expand_symtabs_matching::run_test);
26052 #endif
26053 }