* dwarf2read.c (dw2_map_symtabs_matching_filename): Remove
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "valprint.h"
63 #include <ctype.h>
64
65 #include <fcntl.h>
66 #include "gdb_string.h"
67 #include "gdb_assert.h"
68 #include <sys/types.h>
69 #ifdef HAVE_ZLIB_H
70 #include <zlib.h>
71 #endif
72 #ifdef HAVE_MMAP
73 #include <sys/mman.h>
74 #ifndef MAP_FAILED
75 #define MAP_FAILED ((void *) -1)
76 #endif
77 #endif
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When non-zero, dump DIEs after they are read in. */
83 static int dwarf2_die_debug = 0;
84
85 /* When non-zero, cross-check physname against demangler. */
86 static int check_physname = 0;
87
88 static int pagesize;
89
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94 static int processing_has_namespace_info;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 struct dwarf2_section_info
99 {
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
103 /* Not NULL if the section was actually mmapped. */
104 void *map_addr;
105 /* Page aligned size of mmapped area. */
106 bfd_size_type map_len;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* A description of the mapped index. The file format is described in
121 a comment by the code that writes the index. */
122 struct mapped_index
123 {
124 /* Index data format version. */
125 int version;
126
127 /* The total length of the buffer. */
128 off_t total_size;
129
130 /* A pointer to the address table data. */
131 const gdb_byte *address_table;
132
133 /* Size of the address table data in bytes. */
134 offset_type address_table_size;
135
136 /* The symbol table, implemented as a hash table. */
137 const offset_type *symbol_table;
138
139 /* Size in slots, each slot is 2 offset_types. */
140 offset_type symbol_table_slots;
141
142 /* A pointer to the constant pool. */
143 const char *constant_pool;
144 };
145
146 /* Collection of data recorded per objfile.
147 This hangs off of dwarf2_objfile_data_key. */
148
149 struct dwarf2_per_objfile
150 {
151 struct dwarf2_section_info info;
152 struct dwarf2_section_info abbrev;
153 struct dwarf2_section_info line;
154 struct dwarf2_section_info loc;
155 struct dwarf2_section_info macinfo;
156 struct dwarf2_section_info macro;
157 struct dwarf2_section_info str;
158 struct dwarf2_section_info ranges;
159 struct dwarf2_section_info frame;
160 struct dwarf2_section_info eh_frame;
161 struct dwarf2_section_info gdb_index;
162
163 VEC (dwarf2_section_info_def) *types;
164
165 /* Back link. */
166 struct objfile *objfile;
167
168 /* Table of all the compilation units. This is used to locate
169 the target compilation unit of a particular reference. */
170 struct dwarf2_per_cu_data **all_comp_units;
171
172 /* The number of compilation units in ALL_COMP_UNITS. */
173 int n_comp_units;
174
175 /* The number of .debug_types-related CUs. */
176 int n_type_units;
177
178 /* The .debug_types-related CUs (TUs). */
179 struct dwarf2_per_cu_data **all_type_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
184
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
192
193 /* True if we are using the mapped index,
194 or we are faking it for OBJF_READNOW's sake. */
195 unsigned char using_index;
196
197 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
198 struct mapped_index *index_table;
199
200 /* When using index_table, this keeps track of all quick_file_names entries.
201 TUs can share line table entries with CUs or other TUs, and there can be
202 a lot more TUs than unique line tables, so we maintain a separate table
203 of all line table entries to support the sharing. */
204 htab_t quick_file_names_table;
205
206 /* Set during partial symbol reading, to prevent queueing of full
207 symbols. */
208 int reading_partial_symbols;
209
210 /* Table mapping type .debug_info DIE offsets to types.
211 This is NULL if not allocated yet.
212 It (currently) makes sense to allocate debug_types_type_hash lazily.
213 To keep things simple we allocate both lazily. */
214 htab_t debug_info_type_hash;
215
216 /* Table mapping type .debug_types DIE offsets to types.
217 This is NULL if not allocated yet. */
218 htab_t debug_types_type_hash;
219 };
220
221 static struct dwarf2_per_objfile *dwarf2_per_objfile;
222
223 /* Default names of the debugging sections. */
224
225 /* Note that if the debugging section has been compressed, it might
226 have a name like .zdebug_info. */
227
228 static const struct dwarf2_debug_sections dwarf2_elf_names =
229 {
230 { ".debug_info", ".zdebug_info" },
231 { ".debug_abbrev", ".zdebug_abbrev" },
232 { ".debug_line", ".zdebug_line" },
233 { ".debug_loc", ".zdebug_loc" },
234 { ".debug_macinfo", ".zdebug_macinfo" },
235 { ".debug_macro", ".zdebug_macro" },
236 { ".debug_str", ".zdebug_str" },
237 { ".debug_ranges", ".zdebug_ranges" },
238 { ".debug_types", ".zdebug_types" },
239 { ".debug_frame", ".zdebug_frame" },
240 { ".eh_frame", NULL },
241 { ".gdb_index", ".zgdb_index" },
242 23
243 };
244
245 /* local data types */
246
247 /* We hold several abbreviation tables in memory at the same time. */
248 #ifndef ABBREV_HASH_SIZE
249 #define ABBREV_HASH_SIZE 121
250 #endif
251
252 /* The data in a compilation unit header, after target2host
253 translation, looks like this. */
254 struct comp_unit_head
255 {
256 unsigned int length;
257 short version;
258 unsigned char addr_size;
259 unsigned char signed_addr_p;
260 unsigned int abbrev_offset;
261
262 /* Size of file offsets; either 4 or 8. */
263 unsigned int offset_size;
264
265 /* Size of the length field; either 4 or 12. */
266 unsigned int initial_length_size;
267
268 /* Offset to the first byte of this compilation unit header in the
269 .debug_info section, for resolving relative reference dies. */
270 unsigned int offset;
271
272 /* Offset to first die in this cu from the start of the cu.
273 This will be the first byte following the compilation unit header. */
274 unsigned int first_die_offset;
275 };
276
277 /* Type used for delaying computation of method physnames.
278 See comments for compute_delayed_physnames. */
279 struct delayed_method_info
280 {
281 /* The type to which the method is attached, i.e., its parent class. */
282 struct type *type;
283
284 /* The index of the method in the type's function fieldlists. */
285 int fnfield_index;
286
287 /* The index of the method in the fieldlist. */
288 int index;
289
290 /* The name of the DIE. */
291 const char *name;
292
293 /* The DIE associated with this method. */
294 struct die_info *die;
295 };
296
297 typedef struct delayed_method_info delayed_method_info;
298 DEF_VEC_O (delayed_method_info);
299
300 /* Internal state when decoding a particular compilation unit. */
301 struct dwarf2_cu
302 {
303 /* The objfile containing this compilation unit. */
304 struct objfile *objfile;
305
306 /* The header of the compilation unit. */
307 struct comp_unit_head header;
308
309 /* Base address of this compilation unit. */
310 CORE_ADDR base_address;
311
312 /* Non-zero if base_address has been set. */
313 int base_known;
314
315 /* The language we are debugging. */
316 enum language language;
317 const struct language_defn *language_defn;
318
319 const char *producer;
320
321 /* The generic symbol table building routines have separate lists for
322 file scope symbols and all all other scopes (local scopes). So
323 we need to select the right one to pass to add_symbol_to_list().
324 We do it by keeping a pointer to the correct list in list_in_scope.
325
326 FIXME: The original dwarf code just treated the file scope as the
327 first local scope, and all other local scopes as nested local
328 scopes, and worked fine. Check to see if we really need to
329 distinguish these in buildsym.c. */
330 struct pending **list_in_scope;
331
332 /* DWARF abbreviation table associated with this compilation unit. */
333 struct abbrev_info **dwarf2_abbrevs;
334
335 /* Storage for the abbrev table. */
336 struct obstack abbrev_obstack;
337
338 /* Hash table holding all the loaded partial DIEs. */
339 htab_t partial_dies;
340
341 /* Storage for things with the same lifetime as this read-in compilation
342 unit, including partial DIEs. */
343 struct obstack comp_unit_obstack;
344
345 /* When multiple dwarf2_cu structures are living in memory, this field
346 chains them all together, so that they can be released efficiently.
347 We will probably also want a generation counter so that most-recently-used
348 compilation units are cached... */
349 struct dwarf2_per_cu_data *read_in_chain;
350
351 /* Backchain to our per_cu entry if the tree has been built. */
352 struct dwarf2_per_cu_data *per_cu;
353
354 /* How many compilation units ago was this CU last referenced? */
355 int last_used;
356
357 /* A hash table of die offsets for following references. */
358 htab_t die_hash;
359
360 /* Full DIEs if read in. */
361 struct die_info *dies;
362
363 /* A set of pointers to dwarf2_per_cu_data objects for compilation
364 units referenced by this one. Only set during full symbol processing;
365 partial symbol tables do not have dependencies. */
366 htab_t dependencies;
367
368 /* Header data from the line table, during full symbol processing. */
369 struct line_header *line_header;
370
371 /* A list of methods which need to have physnames computed
372 after all type information has been read. */
373 VEC (delayed_method_info) *method_list;
374
375 /* To be copied to symtab->call_site_htab. */
376 htab_t call_site_htab;
377
378 /* Mark used when releasing cached dies. */
379 unsigned int mark : 1;
380
381 /* This flag will be set if this compilation unit might include
382 inter-compilation-unit references. */
383 unsigned int has_form_ref_addr : 1;
384
385 /* This flag will be set if this compilation unit includes any
386 DW_TAG_namespace DIEs. If we know that there are explicit
387 DIEs for namespaces, we don't need to try to infer them
388 from mangled names. */
389 unsigned int has_namespace_info : 1;
390
391 /* This CU references .debug_loc. See the symtab->locations_valid field.
392 This test is imperfect as there may exist optimized debug code not using
393 any location list and still facing inlining issues if handled as
394 unoptimized code. For a future better test see GCC PR other/32998. */
395 unsigned int has_loclist : 1;
396 };
397
398 /* Persistent data held for a compilation unit, even when not
399 processing it. We put a pointer to this structure in the
400 read_symtab_private field of the psymtab. */
401
402 struct dwarf2_per_cu_data
403 {
404 /* The start offset and length of this compilation unit. 2**29-1
405 bytes should suffice to store the length of any compilation unit
406 - if it doesn't, GDB will fall over anyway.
407 NOTE: Unlike comp_unit_head.length, this length includes
408 initial_length_size. */
409 unsigned int offset;
410 unsigned int length : 29;
411
412 /* Flag indicating this compilation unit will be read in before
413 any of the current compilation units are processed. */
414 unsigned int queued : 1;
415
416 /* This flag will be set if we need to load absolutely all DIEs
417 for this compilation unit, instead of just the ones we think
418 are interesting. It gets set if we look for a DIE in the
419 hash table and don't find it. */
420 unsigned int load_all_dies : 1;
421
422 /* Non-null if this CU is from .debug_types; in which case it points
423 to the section. Otherwise it's from .debug_info. */
424 struct dwarf2_section_info *debug_types_section;
425
426 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
427 of the CU cache it gets reset to NULL again. */
428 struct dwarf2_cu *cu;
429
430 /* The corresponding objfile.
431 Normally we can get the objfile from dwarf2_per_objfile.
432 However we can enter this file with just a "per_cu" handle. */
433 struct objfile *objfile;
434
435 /* When using partial symbol tables, the 'psymtab' field is active.
436 Otherwise the 'quick' field is active. */
437 union
438 {
439 /* The partial symbol table associated with this compilation unit,
440 or NULL for partial units (which do not have an associated
441 symtab). */
442 struct partial_symtab *psymtab;
443
444 /* Data needed by the "quick" functions. */
445 struct dwarf2_per_cu_quick_data *quick;
446 } v;
447 };
448
449 /* Entry in the signatured_types hash table. */
450
451 struct signatured_type
452 {
453 ULONGEST signature;
454
455 /* Offset in .debug_types of the type defined by this TU. */
456 unsigned int type_offset;
457
458 /* The CU(/TU) of this type. */
459 struct dwarf2_per_cu_data per_cu;
460 };
461
462 /* Struct used to pass misc. parameters to read_die_and_children, et
463 al. which are used for both .debug_info and .debug_types dies.
464 All parameters here are unchanging for the life of the call. This
465 struct exists to abstract away the constant parameters of die
466 reading. */
467
468 struct die_reader_specs
469 {
470 /* The bfd of this objfile. */
471 bfd* abfd;
472
473 /* The CU of the DIE we are parsing. */
474 struct dwarf2_cu *cu;
475
476 /* Pointer to start of section buffer.
477 This is either the start of .debug_info or .debug_types. */
478 const gdb_byte *buffer;
479 };
480
481 /* The line number information for a compilation unit (found in the
482 .debug_line section) begins with a "statement program header",
483 which contains the following information. */
484 struct line_header
485 {
486 unsigned int total_length;
487 unsigned short version;
488 unsigned int header_length;
489 unsigned char minimum_instruction_length;
490 unsigned char maximum_ops_per_instruction;
491 unsigned char default_is_stmt;
492 int line_base;
493 unsigned char line_range;
494 unsigned char opcode_base;
495
496 /* standard_opcode_lengths[i] is the number of operands for the
497 standard opcode whose value is i. This means that
498 standard_opcode_lengths[0] is unused, and the last meaningful
499 element is standard_opcode_lengths[opcode_base - 1]. */
500 unsigned char *standard_opcode_lengths;
501
502 /* The include_directories table. NOTE! These strings are not
503 allocated with xmalloc; instead, they are pointers into
504 debug_line_buffer. If you try to free them, `free' will get
505 indigestion. */
506 unsigned int num_include_dirs, include_dirs_size;
507 char **include_dirs;
508
509 /* The file_names table. NOTE! These strings are not allocated
510 with xmalloc; instead, they are pointers into debug_line_buffer.
511 Don't try to free them directly. */
512 unsigned int num_file_names, file_names_size;
513 struct file_entry
514 {
515 char *name;
516 unsigned int dir_index;
517 unsigned int mod_time;
518 unsigned int length;
519 int included_p; /* Non-zero if referenced by the Line Number Program. */
520 struct symtab *symtab; /* The associated symbol table, if any. */
521 } *file_names;
522
523 /* The start and end of the statement program following this
524 header. These point into dwarf2_per_objfile->line_buffer. */
525 gdb_byte *statement_program_start, *statement_program_end;
526 };
527
528 /* When we construct a partial symbol table entry we only
529 need this much information. */
530 struct partial_die_info
531 {
532 /* Offset of this DIE. */
533 unsigned int offset;
534
535 /* DWARF-2 tag for this DIE. */
536 ENUM_BITFIELD(dwarf_tag) tag : 16;
537
538 /* Assorted flags describing the data found in this DIE. */
539 unsigned int has_children : 1;
540 unsigned int is_external : 1;
541 unsigned int is_declaration : 1;
542 unsigned int has_type : 1;
543 unsigned int has_specification : 1;
544 unsigned int has_pc_info : 1;
545
546 /* Flag set if the SCOPE field of this structure has been
547 computed. */
548 unsigned int scope_set : 1;
549
550 /* Flag set if the DIE has a byte_size attribute. */
551 unsigned int has_byte_size : 1;
552
553 /* Flag set if any of the DIE's children are template arguments. */
554 unsigned int has_template_arguments : 1;
555
556 /* Flag set if fixup_partial_die has been called on this die. */
557 unsigned int fixup_called : 1;
558
559 /* The name of this DIE. Normally the value of DW_AT_name, but
560 sometimes a default name for unnamed DIEs. */
561 char *name;
562
563 /* The linkage name, if present. */
564 const char *linkage_name;
565
566 /* The scope to prepend to our children. This is generally
567 allocated on the comp_unit_obstack, so will disappear
568 when this compilation unit leaves the cache. */
569 char *scope;
570
571 /* The location description associated with this DIE, if any. */
572 struct dwarf_block *locdesc;
573
574 /* If HAS_PC_INFO, the PC range associated with this DIE. */
575 CORE_ADDR lowpc;
576 CORE_ADDR highpc;
577
578 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
579 DW_AT_sibling, if any. */
580 /* NOTE: This member isn't strictly necessary, read_partial_die could
581 return DW_AT_sibling values to its caller load_partial_dies. */
582 gdb_byte *sibling;
583
584 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
585 DW_AT_specification (or DW_AT_abstract_origin or
586 DW_AT_extension). */
587 unsigned int spec_offset;
588
589 /* Pointers to this DIE's parent, first child, and next sibling,
590 if any. */
591 struct partial_die_info *die_parent, *die_child, *die_sibling;
592 };
593
594 /* This data structure holds the information of an abbrev. */
595 struct abbrev_info
596 {
597 unsigned int number; /* number identifying abbrev */
598 enum dwarf_tag tag; /* dwarf tag */
599 unsigned short has_children; /* boolean */
600 unsigned short num_attrs; /* number of attributes */
601 struct attr_abbrev *attrs; /* an array of attribute descriptions */
602 struct abbrev_info *next; /* next in chain */
603 };
604
605 struct attr_abbrev
606 {
607 ENUM_BITFIELD(dwarf_attribute) name : 16;
608 ENUM_BITFIELD(dwarf_form) form : 16;
609 };
610
611 /* Attributes have a name and a value. */
612 struct attribute
613 {
614 ENUM_BITFIELD(dwarf_attribute) name : 16;
615 ENUM_BITFIELD(dwarf_form) form : 15;
616
617 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
618 field should be in u.str (existing only for DW_STRING) but it is kept
619 here for better struct attribute alignment. */
620 unsigned int string_is_canonical : 1;
621
622 union
623 {
624 char *str;
625 struct dwarf_block *blk;
626 ULONGEST unsnd;
627 LONGEST snd;
628 CORE_ADDR addr;
629 struct signatured_type *signatured_type;
630 }
631 u;
632 };
633
634 /* This data structure holds a complete die structure. */
635 struct die_info
636 {
637 /* DWARF-2 tag for this DIE. */
638 ENUM_BITFIELD(dwarf_tag) tag : 16;
639
640 /* Number of attributes */
641 unsigned char num_attrs;
642
643 /* True if we're presently building the full type name for the
644 type derived from this DIE. */
645 unsigned char building_fullname : 1;
646
647 /* Abbrev number */
648 unsigned int abbrev;
649
650 /* Offset in .debug_info or .debug_types section. */
651 unsigned int offset;
652
653 /* The dies in a compilation unit form an n-ary tree. PARENT
654 points to this die's parent; CHILD points to the first child of
655 this node; and all the children of a given node are chained
656 together via their SIBLING fields. */
657 struct die_info *child; /* Its first child, if any. */
658 struct die_info *sibling; /* Its next sibling, if any. */
659 struct die_info *parent; /* Its parent, if any. */
660
661 /* An array of attributes, with NUM_ATTRS elements. There may be
662 zero, but it's not common and zero-sized arrays are not
663 sufficiently portable C. */
664 struct attribute attrs[1];
665 };
666
667 /* Get at parts of an attribute structure. */
668
669 #define DW_STRING(attr) ((attr)->u.str)
670 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
671 #define DW_UNSND(attr) ((attr)->u.unsnd)
672 #define DW_BLOCK(attr) ((attr)->u.blk)
673 #define DW_SND(attr) ((attr)->u.snd)
674 #define DW_ADDR(attr) ((attr)->u.addr)
675 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
676
677 /* Blocks are a bunch of untyped bytes. */
678 struct dwarf_block
679 {
680 unsigned int size;
681
682 /* Valid only if SIZE is not zero. */
683 gdb_byte *data;
684 };
685
686 #ifndef ATTR_ALLOC_CHUNK
687 #define ATTR_ALLOC_CHUNK 4
688 #endif
689
690 /* Allocate fields for structs, unions and enums in this size. */
691 #ifndef DW_FIELD_ALLOC_CHUNK
692 #define DW_FIELD_ALLOC_CHUNK 4
693 #endif
694
695 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
696 but this would require a corresponding change in unpack_field_as_long
697 and friends. */
698 static int bits_per_byte = 8;
699
700 /* The routines that read and process dies for a C struct or C++ class
701 pass lists of data member fields and lists of member function fields
702 in an instance of a field_info structure, as defined below. */
703 struct field_info
704 {
705 /* List of data member and baseclasses fields. */
706 struct nextfield
707 {
708 struct nextfield *next;
709 int accessibility;
710 int virtuality;
711 struct field field;
712 }
713 *fields, *baseclasses;
714
715 /* Number of fields (including baseclasses). */
716 int nfields;
717
718 /* Number of baseclasses. */
719 int nbaseclasses;
720
721 /* Set if the accesibility of one of the fields is not public. */
722 int non_public_fields;
723
724 /* Member function fields array, entries are allocated in the order they
725 are encountered in the object file. */
726 struct nextfnfield
727 {
728 struct nextfnfield *next;
729 struct fn_field fnfield;
730 }
731 *fnfields;
732
733 /* Member function fieldlist array, contains name of possibly overloaded
734 member function, number of overloaded member functions and a pointer
735 to the head of the member function field chain. */
736 struct fnfieldlist
737 {
738 char *name;
739 int length;
740 struct nextfnfield *head;
741 }
742 *fnfieldlists;
743
744 /* Number of entries in the fnfieldlists array. */
745 int nfnfields;
746
747 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
748 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
749 struct typedef_field_list
750 {
751 struct typedef_field field;
752 struct typedef_field_list *next;
753 }
754 *typedef_field_list;
755 unsigned typedef_field_list_count;
756 };
757
758 /* One item on the queue of compilation units to read in full symbols
759 for. */
760 struct dwarf2_queue_item
761 {
762 struct dwarf2_per_cu_data *per_cu;
763 struct dwarf2_queue_item *next;
764 };
765
766 /* The current queue. */
767 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
768
769 /* Loaded secondary compilation units are kept in memory until they
770 have not been referenced for the processing of this many
771 compilation units. Set this to zero to disable caching. Cache
772 sizes of up to at least twenty will improve startup time for
773 typical inter-CU-reference binaries, at an obvious memory cost. */
774 static int dwarf2_max_cache_age = 5;
775 static void
776 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
777 struct cmd_list_element *c, const char *value)
778 {
779 fprintf_filtered (file, _("The upper bound on the age of cached "
780 "dwarf2 compilation units is %s.\n"),
781 value);
782 }
783
784
785 /* Various complaints about symbol reading that don't abort the process. */
786
787 static void
788 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
789 {
790 complaint (&symfile_complaints,
791 _("statement list doesn't fit in .debug_line section"));
792 }
793
794 static void
795 dwarf2_debug_line_missing_file_complaint (void)
796 {
797 complaint (&symfile_complaints,
798 _(".debug_line section has line data without a file"));
799 }
800
801 static void
802 dwarf2_debug_line_missing_end_sequence_complaint (void)
803 {
804 complaint (&symfile_complaints,
805 _(".debug_line section has line "
806 "program sequence without an end"));
807 }
808
809 static void
810 dwarf2_complex_location_expr_complaint (void)
811 {
812 complaint (&symfile_complaints, _("location expression too complex"));
813 }
814
815 static void
816 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
817 int arg3)
818 {
819 complaint (&symfile_complaints,
820 _("const value length mismatch for '%s', got %d, expected %d"),
821 arg1, arg2, arg3);
822 }
823
824 static void
825 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
826 {
827 complaint (&symfile_complaints,
828 _("macro info runs off end of `%s' section"),
829 section->asection->name);
830 }
831
832 static void
833 dwarf2_macro_malformed_definition_complaint (const char *arg1)
834 {
835 complaint (&symfile_complaints,
836 _("macro debug info contains a "
837 "malformed macro definition:\n`%s'"),
838 arg1);
839 }
840
841 static void
842 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
843 {
844 complaint (&symfile_complaints,
845 _("invalid attribute class or form for '%s' in '%s'"),
846 arg1, arg2);
847 }
848
849 /* local function prototypes */
850
851 static void dwarf2_locate_sections (bfd *, asection *, void *);
852
853 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
854 struct objfile *);
855
856 static void dwarf2_find_base_address (struct die_info *die,
857 struct dwarf2_cu *cu);
858
859 static void dwarf2_build_psymtabs_hard (struct objfile *);
860
861 static void scan_partial_symbols (struct partial_die_info *,
862 CORE_ADDR *, CORE_ADDR *,
863 int, struct dwarf2_cu *);
864
865 static void add_partial_symbol (struct partial_die_info *,
866 struct dwarf2_cu *);
867
868 static void add_partial_namespace (struct partial_die_info *pdi,
869 CORE_ADDR *lowpc, CORE_ADDR *highpc,
870 int need_pc, struct dwarf2_cu *cu);
871
872 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
873 CORE_ADDR *highpc, int need_pc,
874 struct dwarf2_cu *cu);
875
876 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
877 struct dwarf2_cu *cu);
878
879 static void add_partial_subprogram (struct partial_die_info *pdi,
880 CORE_ADDR *lowpc, CORE_ADDR *highpc,
881 int need_pc, struct dwarf2_cu *cu);
882
883 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
884 gdb_byte *buffer, gdb_byte *info_ptr,
885 bfd *abfd, struct dwarf2_cu *cu);
886
887 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
888
889 static void psymtab_to_symtab_1 (struct partial_symtab *);
890
891 static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
892
893 static void dwarf2_free_abbrev_table (void *);
894
895 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
896
897 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
898 struct dwarf2_cu *);
899
900 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
901 struct dwarf2_cu *);
902
903 static struct partial_die_info *load_partial_dies (bfd *,
904 gdb_byte *, gdb_byte *,
905 int, struct dwarf2_cu *);
906
907 static gdb_byte *read_partial_die (struct partial_die_info *,
908 struct abbrev_info *abbrev,
909 unsigned int, bfd *,
910 gdb_byte *, gdb_byte *,
911 struct dwarf2_cu *);
912
913 static struct partial_die_info *find_partial_die (unsigned int,
914 struct dwarf2_cu *);
915
916 static void fixup_partial_die (struct partial_die_info *,
917 struct dwarf2_cu *);
918
919 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
920 bfd *, gdb_byte *, struct dwarf2_cu *);
921
922 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
923 bfd *, gdb_byte *, struct dwarf2_cu *);
924
925 static unsigned int read_1_byte (bfd *, gdb_byte *);
926
927 static int read_1_signed_byte (bfd *, gdb_byte *);
928
929 static unsigned int read_2_bytes (bfd *, gdb_byte *);
930
931 static unsigned int read_4_bytes (bfd *, gdb_byte *);
932
933 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
934
935 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
936 unsigned int *);
937
938 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
939
940 static LONGEST read_checked_initial_length_and_offset
941 (bfd *, gdb_byte *, const struct comp_unit_head *,
942 unsigned int *, unsigned int *);
943
944 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
945 unsigned int *);
946
947 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
948
949 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
950
951 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
952
953 static char *read_indirect_string (bfd *, gdb_byte *,
954 const struct comp_unit_head *,
955 unsigned int *);
956
957 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
958
959 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
960
961 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
962
963 static void set_cu_language (unsigned int, struct dwarf2_cu *);
964
965 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
966 struct dwarf2_cu *);
967
968 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
969 unsigned int,
970 struct dwarf2_cu *);
971
972 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
973 struct dwarf2_cu *cu);
974
975 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
976
977 static struct die_info *die_specification (struct die_info *die,
978 struct dwarf2_cu **);
979
980 static void free_line_header (struct line_header *lh);
981
982 static void add_file_name (struct line_header *, char *, unsigned int,
983 unsigned int, unsigned int);
984
985 static struct line_header *(dwarf_decode_line_header
986 (unsigned int offset,
987 bfd *abfd, struct dwarf2_cu *cu));
988
989 static void dwarf_decode_lines (struct line_header *, const char *,
990 struct dwarf2_cu *, struct partial_symtab *,
991 int);
992
993 static void dwarf2_start_subfile (char *, const char *, const char *);
994
995 static struct symbol *new_symbol (struct die_info *, struct type *,
996 struct dwarf2_cu *);
997
998 static struct symbol *new_symbol_full (struct die_info *, struct type *,
999 struct dwarf2_cu *, struct symbol *);
1000
1001 static void dwarf2_const_value (struct attribute *, struct symbol *,
1002 struct dwarf2_cu *);
1003
1004 static void dwarf2_const_value_attr (struct attribute *attr,
1005 struct type *type,
1006 const char *name,
1007 struct obstack *obstack,
1008 struct dwarf2_cu *cu, long *value,
1009 gdb_byte **bytes,
1010 struct dwarf2_locexpr_baton **baton);
1011
1012 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1013
1014 static int need_gnat_info (struct dwarf2_cu *);
1015
1016 static struct type *die_descriptive_type (struct die_info *,
1017 struct dwarf2_cu *);
1018
1019 static void set_descriptive_type (struct type *, struct die_info *,
1020 struct dwarf2_cu *);
1021
1022 static struct type *die_containing_type (struct die_info *,
1023 struct dwarf2_cu *);
1024
1025 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1029
1030 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1031
1032 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1033
1034 static char *typename_concat (struct obstack *obs, const char *prefix,
1035 const char *suffix, int physname,
1036 struct dwarf2_cu *cu);
1037
1038 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1039
1040 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1041
1042 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1047
1048 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1049 struct dwarf2_cu *, struct partial_symtab *);
1050
1051 static int dwarf2_get_pc_bounds (struct die_info *,
1052 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1053 struct partial_symtab *);
1054
1055 static void get_scope_pc_bounds (struct die_info *,
1056 CORE_ADDR *, CORE_ADDR *,
1057 struct dwarf2_cu *);
1058
1059 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1060 CORE_ADDR, struct dwarf2_cu *);
1061
1062 static void dwarf2_add_field (struct field_info *, struct die_info *,
1063 struct dwarf2_cu *);
1064
1065 static void dwarf2_attach_fields_to_type (struct field_info *,
1066 struct type *, struct dwarf2_cu *);
1067
1068 static void dwarf2_add_member_fn (struct field_info *,
1069 struct die_info *, struct type *,
1070 struct dwarf2_cu *);
1071
1072 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1073 struct type *,
1074 struct dwarf2_cu *);
1075
1076 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1077
1078 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1081
1082 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1083
1084 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1085
1086 static struct type *read_module_type (struct die_info *die,
1087 struct dwarf2_cu *cu);
1088
1089 static const char *namespace_name (struct die_info *die,
1090 int *is_anonymous, struct dwarf2_cu *);
1091
1092 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1095
1096 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1097 struct dwarf2_cu *);
1098
1099 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1100
1101 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1102 gdb_byte *info_ptr,
1103 gdb_byte **new_info_ptr,
1104 struct die_info *parent);
1105
1106 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1107 gdb_byte *info_ptr,
1108 gdb_byte **new_info_ptr,
1109 struct die_info *parent);
1110
1111 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1112 gdb_byte *info_ptr,
1113 gdb_byte **new_info_ptr,
1114 struct die_info *parent);
1115
1116 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1117 struct die_info **, gdb_byte *,
1118 int *);
1119
1120 static void process_die (struct die_info *, struct dwarf2_cu *);
1121
1122 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1123 struct obstack *);
1124
1125 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1126
1127 static const char *dwarf2_full_name (char *name,
1128 struct die_info *die,
1129 struct dwarf2_cu *cu);
1130
1131 static struct die_info *dwarf2_extension (struct die_info *die,
1132 struct dwarf2_cu **);
1133
1134 static char *dwarf_tag_name (unsigned int);
1135
1136 static char *dwarf_attr_name (unsigned int);
1137
1138 static char *dwarf_form_name (unsigned int);
1139
1140 static char *dwarf_bool_name (unsigned int);
1141
1142 static char *dwarf_type_encoding_name (unsigned int);
1143
1144 #if 0
1145 static char *dwarf_cfi_name (unsigned int);
1146 #endif
1147
1148 static struct die_info *sibling_die (struct die_info *);
1149
1150 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1151
1152 static void dump_die_for_error (struct die_info *);
1153
1154 static void dump_die_1 (struct ui_file *, int level, int max_level,
1155 struct die_info *);
1156
1157 /*static*/ void dump_die (struct die_info *, int max_level);
1158
1159 static void store_in_ref_table (struct die_info *,
1160 struct dwarf2_cu *);
1161
1162 static int is_ref_attr (struct attribute *);
1163
1164 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1165
1166 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1167
1168 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1169 struct attribute *,
1170 struct dwarf2_cu **);
1171
1172 static struct die_info *follow_die_ref (struct die_info *,
1173 struct attribute *,
1174 struct dwarf2_cu **);
1175
1176 static struct die_info *follow_die_sig (struct die_info *,
1177 struct attribute *,
1178 struct dwarf2_cu **);
1179
1180 static struct signatured_type *lookup_signatured_type_at_offset
1181 (struct objfile *objfile,
1182 struct dwarf2_section_info *section,
1183 unsigned int offset);
1184
1185 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1186
1187 static void read_signatured_type (struct signatured_type *type_sig);
1188
1189 /* memory allocation interface */
1190
1191 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1192
1193 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1194
1195 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1196
1197 static void dwarf_decode_macros (struct line_header *, unsigned int,
1198 char *, bfd *, struct dwarf2_cu *,
1199 struct dwarf2_section_info *,
1200 int);
1201
1202 static int attr_form_is_block (struct attribute *);
1203
1204 static int attr_form_is_section_offset (struct attribute *);
1205
1206 static int attr_form_is_constant (struct attribute *);
1207
1208 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1209 struct dwarf2_loclist_baton *baton,
1210 struct attribute *attr);
1211
1212 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1213 struct symbol *sym,
1214 struct dwarf2_cu *cu);
1215
1216 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1217 struct abbrev_info *abbrev,
1218 struct dwarf2_cu *cu);
1219
1220 static void free_stack_comp_unit (void *);
1221
1222 static hashval_t partial_die_hash (const void *item);
1223
1224 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1225
1226 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1227 (unsigned int offset, struct objfile *objfile);
1228
1229 static void init_one_comp_unit (struct dwarf2_cu *cu,
1230 struct dwarf2_per_cu_data *per_cu);
1231
1232 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1233 struct die_info *comp_unit_die);
1234
1235 static void free_heap_comp_unit (void *);
1236
1237 static void free_cached_comp_units (void *);
1238
1239 static void age_cached_comp_units (void);
1240
1241 static void free_one_cached_comp_unit (void *);
1242
1243 static struct type *set_die_type (struct die_info *, struct type *,
1244 struct dwarf2_cu *);
1245
1246 static void create_all_comp_units (struct objfile *);
1247
1248 static int create_debug_types_hash_table (struct objfile *objfile);
1249
1250 static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1251
1252 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1253
1254 static void dwarf2_add_dependence (struct dwarf2_cu *,
1255 struct dwarf2_per_cu_data *);
1256
1257 static void dwarf2_mark (struct dwarf2_cu *);
1258
1259 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1260
1261 static struct type *get_die_type_at_offset (unsigned int,
1262 struct dwarf2_per_cu_data *per_cu);
1263
1264 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1265
1266 static void dwarf2_release_queue (void *dummy);
1267
1268 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1269
1270 static void process_queue (void);
1271
1272 static void find_file_and_directory (struct die_info *die,
1273 struct dwarf2_cu *cu,
1274 char **name, char **comp_dir);
1275
1276 static char *file_full_name (int file, struct line_header *lh,
1277 const char *comp_dir);
1278
1279 static gdb_byte *read_and_check_comp_unit_head
1280 (struct comp_unit_head *header,
1281 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1282 int is_debug_types_section);
1283
1284 static void init_cu_die_reader (struct die_reader_specs *reader,
1285 struct dwarf2_cu *cu);
1286
1287 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1288
1289 #if WORDS_BIGENDIAN
1290
1291 /* Convert VALUE between big- and little-endian. */
1292 static offset_type
1293 byte_swap (offset_type value)
1294 {
1295 offset_type result;
1296
1297 result = (value & 0xff) << 24;
1298 result |= (value & 0xff00) << 8;
1299 result |= (value & 0xff0000) >> 8;
1300 result |= (value & 0xff000000) >> 24;
1301 return result;
1302 }
1303
1304 #define MAYBE_SWAP(V) byte_swap (V)
1305
1306 #else
1307 #define MAYBE_SWAP(V) (V)
1308 #endif /* WORDS_BIGENDIAN */
1309
1310 /* The suffix for an index file. */
1311 #define INDEX_SUFFIX ".gdb-index"
1312
1313 static const char *dwarf2_physname (char *name, struct die_info *die,
1314 struct dwarf2_cu *cu);
1315
1316 /* Try to locate the sections we need for DWARF 2 debugging
1317 information and return true if we have enough to do something.
1318 NAMES points to the dwarf2 section names, or is NULL if the standard
1319 ELF names are used. */
1320
1321 int
1322 dwarf2_has_info (struct objfile *objfile,
1323 const struct dwarf2_debug_sections *names)
1324 {
1325 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1326 if (!dwarf2_per_objfile)
1327 {
1328 /* Initialize per-objfile state. */
1329 struct dwarf2_per_objfile *data
1330 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1331
1332 memset (data, 0, sizeof (*data));
1333 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1334 dwarf2_per_objfile = data;
1335
1336 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1337 (void *) names);
1338 dwarf2_per_objfile->objfile = objfile;
1339 }
1340 return (dwarf2_per_objfile->info.asection != NULL
1341 && dwarf2_per_objfile->abbrev.asection != NULL);
1342 }
1343
1344 /* When loading sections, we look either for uncompressed section or for
1345 compressed section names. */
1346
1347 static int
1348 section_is_p (const char *section_name,
1349 const struct dwarf2_section_names *names)
1350 {
1351 if (names->normal != NULL
1352 && strcmp (section_name, names->normal) == 0)
1353 return 1;
1354 if (names->compressed != NULL
1355 && strcmp (section_name, names->compressed) == 0)
1356 return 1;
1357 return 0;
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1366 {
1367 const struct dwarf2_debug_sections *names;
1368
1369 if (vnames == NULL)
1370 names = &dwarf2_elf_names;
1371 else
1372 names = (const struct dwarf2_debug_sections *) vnames;
1373
1374 if (section_is_p (sectp->name, &names->info))
1375 {
1376 dwarf2_per_objfile->info.asection = sectp;
1377 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1378 }
1379 else if (section_is_p (sectp->name, &names->abbrev))
1380 {
1381 dwarf2_per_objfile->abbrev.asection = sectp;
1382 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1383 }
1384 else if (section_is_p (sectp->name, &names->line))
1385 {
1386 dwarf2_per_objfile->line.asection = sectp;
1387 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1388 }
1389 else if (section_is_p (sectp->name, &names->loc))
1390 {
1391 dwarf2_per_objfile->loc.asection = sectp;
1392 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1393 }
1394 else if (section_is_p (sectp->name, &names->macinfo))
1395 {
1396 dwarf2_per_objfile->macinfo.asection = sectp;
1397 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1398 }
1399 else if (section_is_p (sectp->name, &names->macro))
1400 {
1401 dwarf2_per_objfile->macro.asection = sectp;
1402 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1403 }
1404 else if (section_is_p (sectp->name, &names->str))
1405 {
1406 dwarf2_per_objfile->str.asection = sectp;
1407 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1408 }
1409 else if (section_is_p (sectp->name, &names->frame))
1410 {
1411 dwarf2_per_objfile->frame.asection = sectp;
1412 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1413 }
1414 else if (section_is_p (sectp->name, &names->eh_frame))
1415 {
1416 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1417
1418 if (aflag & SEC_HAS_CONTENTS)
1419 {
1420 dwarf2_per_objfile->eh_frame.asection = sectp;
1421 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1422 }
1423 }
1424 else if (section_is_p (sectp->name, &names->ranges))
1425 {
1426 dwarf2_per_objfile->ranges.asection = sectp;
1427 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1428 }
1429 else if (section_is_p (sectp->name, &names->types))
1430 {
1431 struct dwarf2_section_info type_section;
1432
1433 memset (&type_section, 0, sizeof (type_section));
1434 type_section.asection = sectp;
1435 type_section.size = bfd_get_section_size (sectp);
1436
1437 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1438 &type_section);
1439 }
1440 else if (section_is_p (sectp->name, &names->gdb_index))
1441 {
1442 dwarf2_per_objfile->gdb_index.asection = sectp;
1443 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1444 }
1445
1446 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1447 && bfd_section_vma (abfd, sectp) == 0)
1448 dwarf2_per_objfile->has_section_at_zero = 1;
1449 }
1450
1451 /* Decompress a section that was compressed using zlib. Store the
1452 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1453
1454 static void
1455 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1456 gdb_byte **outbuf, bfd_size_type *outsize)
1457 {
1458 bfd *abfd = objfile->obfd;
1459 #ifndef HAVE_ZLIB_H
1460 error (_("Support for zlib-compressed DWARF data (from '%s') "
1461 "is disabled in this copy of GDB"),
1462 bfd_get_filename (abfd));
1463 #else
1464 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1465 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1466 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1467 bfd_size_type uncompressed_size;
1468 gdb_byte *uncompressed_buffer;
1469 z_stream strm;
1470 int rc;
1471 int header_size = 12;
1472
1473 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1474 || bfd_bread (compressed_buffer,
1475 compressed_size, abfd) != compressed_size)
1476 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1477 bfd_get_filename (abfd));
1478
1479 /* Read the zlib header. In this case, it should be "ZLIB" followed
1480 by the uncompressed section size, 8 bytes in big-endian order. */
1481 if (compressed_size < header_size
1482 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1483 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1484 bfd_get_filename (abfd));
1485 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1486 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1487 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1488 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1489 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1490 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1491 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1492 uncompressed_size += compressed_buffer[11];
1493
1494 /* It is possible the section consists of several compressed
1495 buffers concatenated together, so we uncompress in a loop. */
1496 strm.zalloc = NULL;
1497 strm.zfree = NULL;
1498 strm.opaque = NULL;
1499 strm.avail_in = compressed_size - header_size;
1500 strm.next_in = (Bytef*) compressed_buffer + header_size;
1501 strm.avail_out = uncompressed_size;
1502 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1503 uncompressed_size);
1504 rc = inflateInit (&strm);
1505 while (strm.avail_in > 0)
1506 {
1507 if (rc != Z_OK)
1508 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510 strm.next_out = ((Bytef*) uncompressed_buffer
1511 + (uncompressed_size - strm.avail_out));
1512 rc = inflate (&strm, Z_FINISH);
1513 if (rc != Z_STREAM_END)
1514 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1515 bfd_get_filename (abfd), rc);
1516 rc = inflateReset (&strm);
1517 }
1518 rc = inflateEnd (&strm);
1519 if (rc != Z_OK
1520 || strm.avail_out != 0)
1521 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1522 bfd_get_filename (abfd), rc);
1523
1524 do_cleanups (cleanup);
1525 *outbuf = uncompressed_buffer;
1526 *outsize = uncompressed_size;
1527 #endif
1528 }
1529
1530 /* A helper function that decides whether a section is empty. */
1531
1532 static int
1533 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1534 {
1535 return info->asection == NULL || info->size == 0;
1536 }
1537
1538 /* Read the contents of the section INFO from object file specified by
1539 OBJFILE, store info about the section into INFO.
1540 If the section is compressed, uncompress it before returning. */
1541
1542 static void
1543 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1544 {
1545 bfd *abfd = objfile->obfd;
1546 asection *sectp = info->asection;
1547 gdb_byte *buf, *retbuf;
1548 unsigned char header[4];
1549
1550 if (info->readin)
1551 return;
1552 info->buffer = NULL;
1553 info->map_addr = NULL;
1554 info->readin = 1;
1555
1556 if (dwarf2_section_empty_p (info))
1557 return;
1558
1559 /* Check if the file has a 4-byte header indicating compression. */
1560 if (info->size > sizeof (header)
1561 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1562 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1563 {
1564 /* Upon decompression, update the buffer and its size. */
1565 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1566 {
1567 zlib_decompress_section (objfile, sectp, &info->buffer,
1568 &info->size);
1569 return;
1570 }
1571 }
1572
1573 #ifdef HAVE_MMAP
1574 if (pagesize == 0)
1575 pagesize = getpagesize ();
1576
1577 /* Only try to mmap sections which are large enough: we don't want to
1578 waste space due to fragmentation. Also, only try mmap for sections
1579 without relocations. */
1580
1581 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1582 {
1583 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1584 MAP_PRIVATE, sectp->filepos,
1585 &info->map_addr, &info->map_len);
1586
1587 if ((caddr_t)info->buffer != MAP_FAILED)
1588 {
1589 #if HAVE_POSIX_MADVISE
1590 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1591 #endif
1592 return;
1593 }
1594 }
1595 #endif
1596
1597 /* If we get here, we are a normal, not-compressed section. */
1598 info->buffer = buf
1599 = obstack_alloc (&objfile->objfile_obstack, info->size);
1600
1601 /* When debugging .o files, we may need to apply relocations; see
1602 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1603 We never compress sections in .o files, so we only need to
1604 try this when the section is not compressed. */
1605 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1606 if (retbuf != NULL)
1607 {
1608 info->buffer = retbuf;
1609 return;
1610 }
1611
1612 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1613 || bfd_bread (buf, info->size, abfd) != info->size)
1614 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1615 bfd_get_filename (abfd));
1616 }
1617
1618 /* A helper function that returns the size of a section in a safe way.
1619 If you are positive that the section has been read before using the
1620 size, then it is safe to refer to the dwarf2_section_info object's
1621 "size" field directly. In other cases, you must call this
1622 function, because for compressed sections the size field is not set
1623 correctly until the section has been read. */
1624
1625 static bfd_size_type
1626 dwarf2_section_size (struct objfile *objfile,
1627 struct dwarf2_section_info *info)
1628 {
1629 if (!info->readin)
1630 dwarf2_read_section (objfile, info);
1631 return info->size;
1632 }
1633
1634 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1635 SECTION_NAME. */
1636
1637 void
1638 dwarf2_get_section_info (struct objfile *objfile,
1639 enum dwarf2_section_enum sect,
1640 asection **sectp, gdb_byte **bufp,
1641 bfd_size_type *sizep)
1642 {
1643 struct dwarf2_per_objfile *data
1644 = objfile_data (objfile, dwarf2_objfile_data_key);
1645 struct dwarf2_section_info *info;
1646
1647 /* We may see an objfile without any DWARF, in which case we just
1648 return nothing. */
1649 if (data == NULL)
1650 {
1651 *sectp = NULL;
1652 *bufp = NULL;
1653 *sizep = 0;
1654 return;
1655 }
1656 switch (sect)
1657 {
1658 case DWARF2_DEBUG_FRAME:
1659 info = &data->frame;
1660 break;
1661 case DWARF2_EH_FRAME:
1662 info = &data->eh_frame;
1663 break;
1664 default:
1665 gdb_assert_not_reached ("unexpected section");
1666 }
1667
1668 dwarf2_read_section (objfile, info);
1669
1670 *sectp = info->asection;
1671 *bufp = info->buffer;
1672 *sizep = info->size;
1673 }
1674
1675 \f
1676 /* DWARF quick_symbols_functions support. */
1677
1678 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1679 unique line tables, so we maintain a separate table of all .debug_line
1680 derived entries to support the sharing.
1681 All the quick functions need is the list of file names. We discard the
1682 line_header when we're done and don't need to record it here. */
1683 struct quick_file_names
1684 {
1685 /* The offset in .debug_line of the line table. We hash on this. */
1686 unsigned int offset;
1687
1688 /* The number of entries in file_names, real_names. */
1689 unsigned int num_file_names;
1690
1691 /* The file names from the line table, after being run through
1692 file_full_name. */
1693 const char **file_names;
1694
1695 /* The file names from the line table after being run through
1696 gdb_realpath. These are computed lazily. */
1697 const char **real_names;
1698 };
1699
1700 /* When using the index (and thus not using psymtabs), each CU has an
1701 object of this type. This is used to hold information needed by
1702 the various "quick" methods. */
1703 struct dwarf2_per_cu_quick_data
1704 {
1705 /* The file table. This can be NULL if there was no file table
1706 or it's currently not read in.
1707 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1708 struct quick_file_names *file_names;
1709
1710 /* The corresponding symbol table. This is NULL if symbols for this
1711 CU have not yet been read. */
1712 struct symtab *symtab;
1713
1714 /* A temporary mark bit used when iterating over all CUs in
1715 expand_symtabs_matching. */
1716 unsigned int mark : 1;
1717
1718 /* True if we've tried to read the file table and found there isn't one.
1719 There will be no point in trying to read it again next time. */
1720 unsigned int no_file_data : 1;
1721 };
1722
1723 /* Hash function for a quick_file_names. */
1724
1725 static hashval_t
1726 hash_file_name_entry (const void *e)
1727 {
1728 const struct quick_file_names *file_data = e;
1729
1730 return file_data->offset;
1731 }
1732
1733 /* Equality function for a quick_file_names. */
1734
1735 static int
1736 eq_file_name_entry (const void *a, const void *b)
1737 {
1738 const struct quick_file_names *ea = a;
1739 const struct quick_file_names *eb = b;
1740
1741 return ea->offset == eb->offset;
1742 }
1743
1744 /* Delete function for a quick_file_names. */
1745
1746 static void
1747 delete_file_name_entry (void *e)
1748 {
1749 struct quick_file_names *file_data = e;
1750 int i;
1751
1752 for (i = 0; i < file_data->num_file_names; ++i)
1753 {
1754 xfree ((void*) file_data->file_names[i]);
1755 if (file_data->real_names)
1756 xfree ((void*) file_data->real_names[i]);
1757 }
1758
1759 /* The space for the struct itself lives on objfile_obstack,
1760 so we don't free it here. */
1761 }
1762
1763 /* Create a quick_file_names hash table. */
1764
1765 static htab_t
1766 create_quick_file_names_table (unsigned int nr_initial_entries)
1767 {
1768 return htab_create_alloc (nr_initial_entries,
1769 hash_file_name_entry, eq_file_name_entry,
1770 delete_file_name_entry, xcalloc, xfree);
1771 }
1772
1773 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1774 have to be created afterwards. You should call age_cached_comp_units after
1775 processing PER_CU->CU. dw2_setup must have been already called. */
1776
1777 static void
1778 load_cu (struct dwarf2_per_cu_data *per_cu)
1779 {
1780 if (per_cu->debug_types_section)
1781 load_full_type_unit (per_cu);
1782 else
1783 load_full_comp_unit (per_cu);
1784
1785 gdb_assert (per_cu->cu != NULL);
1786
1787 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1788 }
1789
1790 /* Read in the symbols for PER_CU. */
1791
1792 static void
1793 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1794 {
1795 struct cleanup *back_to;
1796
1797 back_to = make_cleanup (dwarf2_release_queue, NULL);
1798
1799 queue_comp_unit (per_cu);
1800
1801 load_cu (per_cu);
1802
1803 process_queue ();
1804
1805 /* Age the cache, releasing compilation units that have not
1806 been used recently. */
1807 age_cached_comp_units ();
1808
1809 do_cleanups (back_to);
1810 }
1811
1812 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1813 the objfile from which this CU came. Returns the resulting symbol
1814 table. */
1815
1816 static struct symtab *
1817 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1818 {
1819 if (!per_cu->v.quick->symtab)
1820 {
1821 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1822 increment_reading_symtab ();
1823 dw2_do_instantiate_symtab (per_cu);
1824 do_cleanups (back_to);
1825 }
1826 return per_cu->v.quick->symtab;
1827 }
1828
1829 /* Return the CU given its index. */
1830
1831 static struct dwarf2_per_cu_data *
1832 dw2_get_cu (int index)
1833 {
1834 if (index >= dwarf2_per_objfile->n_comp_units)
1835 {
1836 index -= dwarf2_per_objfile->n_comp_units;
1837 return dwarf2_per_objfile->all_type_units[index];
1838 }
1839 return dwarf2_per_objfile->all_comp_units[index];
1840 }
1841
1842 /* A helper function that knows how to read a 64-bit value in a way
1843 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1844 otherwise. */
1845
1846 static int
1847 extract_cu_value (const char *bytes, ULONGEST *result)
1848 {
1849 if (sizeof (ULONGEST) < 8)
1850 {
1851 int i;
1852
1853 /* Ignore the upper 4 bytes if they are all zero. */
1854 for (i = 0; i < 4; ++i)
1855 if (bytes[i + 4] != 0)
1856 return 0;
1857
1858 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1859 }
1860 else
1861 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1862 return 1;
1863 }
1864
1865 /* Read the CU list from the mapped index, and use it to create all
1866 the CU objects for this objfile. Return 0 if something went wrong,
1867 1 if everything went ok. */
1868
1869 static int
1870 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1871 offset_type cu_list_elements)
1872 {
1873 offset_type i;
1874
1875 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1876 dwarf2_per_objfile->all_comp_units
1877 = obstack_alloc (&objfile->objfile_obstack,
1878 dwarf2_per_objfile->n_comp_units
1879 * sizeof (struct dwarf2_per_cu_data *));
1880
1881 for (i = 0; i < cu_list_elements; i += 2)
1882 {
1883 struct dwarf2_per_cu_data *the_cu;
1884 ULONGEST offset, length;
1885
1886 if (!extract_cu_value (cu_list, &offset)
1887 || !extract_cu_value (cu_list + 8, &length))
1888 return 0;
1889 cu_list += 2 * 8;
1890
1891 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1892 struct dwarf2_per_cu_data);
1893 the_cu->offset = offset;
1894 the_cu->length = length;
1895 the_cu->objfile = objfile;
1896 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1897 struct dwarf2_per_cu_quick_data);
1898 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1899 }
1900
1901 return 1;
1902 }
1903
1904 /* Create the signatured type hash table from the index. */
1905
1906 static int
1907 create_signatured_type_table_from_index (struct objfile *objfile,
1908 struct dwarf2_section_info *section,
1909 const gdb_byte *bytes,
1910 offset_type elements)
1911 {
1912 offset_type i;
1913 htab_t sig_types_hash;
1914
1915 dwarf2_per_objfile->n_type_units = elements / 3;
1916 dwarf2_per_objfile->all_type_units
1917 = obstack_alloc (&objfile->objfile_obstack,
1918 dwarf2_per_objfile->n_type_units
1919 * sizeof (struct dwarf2_per_cu_data *));
1920
1921 sig_types_hash = allocate_signatured_type_table (objfile);
1922
1923 for (i = 0; i < elements; i += 3)
1924 {
1925 struct signatured_type *type_sig;
1926 ULONGEST offset, type_offset, signature;
1927 void **slot;
1928
1929 if (!extract_cu_value (bytes, &offset)
1930 || !extract_cu_value (bytes + 8, &type_offset))
1931 return 0;
1932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1933 bytes += 3 * 8;
1934
1935 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1936 struct signatured_type);
1937 type_sig->signature = signature;
1938 type_sig->type_offset = type_offset;
1939 type_sig->per_cu.debug_types_section = section;
1940 type_sig->per_cu.offset = offset;
1941 type_sig->per_cu.objfile = objfile;
1942 type_sig->per_cu.v.quick
1943 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1944 struct dwarf2_per_cu_quick_data);
1945
1946 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1947 *slot = type_sig;
1948
1949 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1950 }
1951
1952 dwarf2_per_objfile->signatured_types = sig_types_hash;
1953
1954 return 1;
1955 }
1956
1957 /* Read the address map data from the mapped index, and use it to
1958 populate the objfile's psymtabs_addrmap. */
1959
1960 static void
1961 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1962 {
1963 const gdb_byte *iter, *end;
1964 struct obstack temp_obstack;
1965 struct addrmap *mutable_map;
1966 struct cleanup *cleanup;
1967 CORE_ADDR baseaddr;
1968
1969 obstack_init (&temp_obstack);
1970 cleanup = make_cleanup_obstack_free (&temp_obstack);
1971 mutable_map = addrmap_create_mutable (&temp_obstack);
1972
1973 iter = index->address_table;
1974 end = iter + index->address_table_size;
1975
1976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1977
1978 while (iter < end)
1979 {
1980 ULONGEST hi, lo, cu_index;
1981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1982 iter += 8;
1983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1984 iter += 8;
1985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1986 iter += 4;
1987
1988 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1989 dw2_get_cu (cu_index));
1990 }
1991
1992 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1993 &objfile->objfile_obstack);
1994 do_cleanups (cleanup);
1995 }
1996
1997 /* The hash function for strings in the mapped index. This is the same as
1998 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
1999 implementation. This is necessary because the hash function is tied to the
2000 format of the mapped index file. The hash values do not have to match with
2001 SYMBOL_HASH_NEXT.
2002
2003 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2004
2005 static hashval_t
2006 mapped_index_string_hash (int index_version, const void *p)
2007 {
2008 const unsigned char *str = (const unsigned char *) p;
2009 hashval_t r = 0;
2010 unsigned char c;
2011
2012 while ((c = *str++) != 0)
2013 {
2014 if (index_version >= 5)
2015 c = tolower (c);
2016 r = r * 67 + c - 113;
2017 }
2018
2019 return r;
2020 }
2021
2022 /* Find a slot in the mapped index INDEX for the object named NAME.
2023 If NAME is found, set *VEC_OUT to point to the CU vector in the
2024 constant pool and return 1. If NAME cannot be found, return 0. */
2025
2026 static int
2027 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2028 offset_type **vec_out)
2029 {
2030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2031 offset_type hash;
2032 offset_type slot, step;
2033 int (*cmp) (const char *, const char *);
2034
2035 if (current_language->la_language == language_cplus
2036 || current_language->la_language == language_java
2037 || current_language->la_language == language_fortran)
2038 {
2039 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2040 not contain any. */
2041 const char *paren = strchr (name, '(');
2042
2043 if (paren)
2044 {
2045 char *dup;
2046
2047 dup = xmalloc (paren - name + 1);
2048 memcpy (dup, name, paren - name);
2049 dup[paren - name] = 0;
2050
2051 make_cleanup (xfree, dup);
2052 name = dup;
2053 }
2054 }
2055
2056 /* Index version 4 did not support case insensitive searches. But the
2057 indexes for case insensitive languages are built in lowercase, therefore
2058 simulate our NAME being searched is also lowercased. */
2059 hash = mapped_index_string_hash ((index->version == 4
2060 && case_sensitivity == case_sensitive_off
2061 ? 5 : index->version),
2062 name);
2063
2064 slot = hash & (index->symbol_table_slots - 1);
2065 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2066 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2067
2068 for (;;)
2069 {
2070 /* Convert a slot number to an offset into the table. */
2071 offset_type i = 2 * slot;
2072 const char *str;
2073 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2074 {
2075 do_cleanups (back_to);
2076 return 0;
2077 }
2078
2079 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2080 if (!cmp (name, str))
2081 {
2082 *vec_out = (offset_type *) (index->constant_pool
2083 + MAYBE_SWAP (index->symbol_table[i + 1]));
2084 do_cleanups (back_to);
2085 return 1;
2086 }
2087
2088 slot = (slot + step) & (index->symbol_table_slots - 1);
2089 }
2090 }
2091
2092 /* Read the index file. If everything went ok, initialize the "quick"
2093 elements of all the CUs and return 1. Otherwise, return 0. */
2094
2095 static int
2096 dwarf2_read_index (struct objfile *objfile)
2097 {
2098 char *addr;
2099 struct mapped_index *map;
2100 offset_type *metadata;
2101 const gdb_byte *cu_list;
2102 const gdb_byte *types_list = NULL;
2103 offset_type version, cu_list_elements;
2104 offset_type types_list_elements = 0;
2105 int i;
2106
2107 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2108 return 0;
2109
2110 /* Older elfutils strip versions could keep the section in the main
2111 executable while splitting it for the separate debug info file. */
2112 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2113 & SEC_HAS_CONTENTS) == 0)
2114 return 0;
2115
2116 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2117
2118 addr = dwarf2_per_objfile->gdb_index.buffer;
2119 /* Version check. */
2120 version = MAYBE_SWAP (*(offset_type *) addr);
2121 /* Versions earlier than 3 emitted every copy of a psymbol. This
2122 causes the index to behave very poorly for certain requests. Version 3
2123 contained incomplete addrmap. So, it seems better to just ignore such
2124 indices. Index version 4 uses a different hash function than index
2125 version 5 and later. */
2126 if (version < 4)
2127 return 0;
2128 /* Indexes with higher version than the one supported by GDB may be no
2129 longer backward compatible. */
2130 if (version > 5)
2131 return 0;
2132
2133 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2134 map->version = version;
2135 map->total_size = dwarf2_per_objfile->gdb_index.size;
2136
2137 metadata = (offset_type *) (addr + sizeof (offset_type));
2138
2139 i = 0;
2140 cu_list = addr + MAYBE_SWAP (metadata[i]);
2141 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2142 / 8);
2143 ++i;
2144
2145 types_list = addr + MAYBE_SWAP (metadata[i]);
2146 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2147 - MAYBE_SWAP (metadata[i]))
2148 / 8);
2149 ++i;
2150
2151 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2152 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2153 - MAYBE_SWAP (metadata[i]));
2154 ++i;
2155
2156 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2157 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2158 - MAYBE_SWAP (metadata[i]))
2159 / (2 * sizeof (offset_type)));
2160 ++i;
2161
2162 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2163
2164 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2165 return 0;
2166
2167 if (types_list_elements)
2168 {
2169 struct dwarf2_section_info *section;
2170
2171 /* We can only handle a single .debug_types when we have an
2172 index. */
2173 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2174 return 0;
2175
2176 section = VEC_index (dwarf2_section_info_def,
2177 dwarf2_per_objfile->types, 0);
2178
2179 if (!create_signatured_type_table_from_index (objfile, section,
2180 types_list,
2181 types_list_elements))
2182 return 0;
2183 }
2184
2185 create_addrmap_from_index (objfile, map);
2186
2187 dwarf2_per_objfile->index_table = map;
2188 dwarf2_per_objfile->using_index = 1;
2189 dwarf2_per_objfile->quick_file_names_table =
2190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2191
2192 return 1;
2193 }
2194
2195 /* A helper for the "quick" functions which sets the global
2196 dwarf2_per_objfile according to OBJFILE. */
2197
2198 static void
2199 dw2_setup (struct objfile *objfile)
2200 {
2201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2202 gdb_assert (dwarf2_per_objfile);
2203 }
2204
2205 /* A helper for the "quick" functions which attempts to read the line
2206 table for THIS_CU. */
2207
2208 static struct quick_file_names *
2209 dw2_get_file_names (struct objfile *objfile,
2210 struct dwarf2_per_cu_data *this_cu)
2211 {
2212 bfd *abfd = objfile->obfd;
2213 struct line_header *lh;
2214 struct attribute *attr;
2215 struct cleanup *cleanups;
2216 struct die_info *comp_unit_die;
2217 struct dwarf2_section_info* sec;
2218 gdb_byte *info_ptr;
2219 int has_children, i;
2220 struct dwarf2_cu cu;
2221 unsigned int bytes_read;
2222 struct die_reader_specs reader_specs;
2223 char *name, *comp_dir;
2224 void **slot;
2225 struct quick_file_names *qfn;
2226 unsigned int line_offset;
2227
2228 if (this_cu->v.quick->file_names != NULL)
2229 return this_cu->v.quick->file_names;
2230 /* If we know there is no line data, no point in looking again. */
2231 if (this_cu->v.quick->no_file_data)
2232 return NULL;
2233
2234 init_one_comp_unit (&cu, this_cu);
2235 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2236
2237 if (this_cu->debug_types_section)
2238 sec = this_cu->debug_types_section;
2239 else
2240 sec = &dwarf2_per_objfile->info;
2241 dwarf2_read_section (objfile, sec);
2242 info_ptr = sec->buffer + this_cu->offset;
2243
2244 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2245 this_cu->debug_types_section != NULL);
2246
2247 /* Skip dummy compilation units. */
2248 if (info_ptr >= (sec->buffer + sec->size)
2249 || peek_abbrev_code (abfd, info_ptr) == 0)
2250 {
2251 do_cleanups (cleanups);
2252 return NULL;
2253 }
2254
2255 dwarf2_read_abbrevs (&cu);
2256 make_cleanup (dwarf2_free_abbrev_table, &cu);
2257
2258 init_cu_die_reader (&reader_specs, &cu);
2259 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2260 &has_children);
2261
2262 lh = NULL;
2263 slot = NULL;
2264 line_offset = 0;
2265 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2266 if (attr)
2267 {
2268 struct quick_file_names find_entry;
2269
2270 line_offset = DW_UNSND (attr);
2271
2272 /* We may have already read in this line header (TU line header sharing).
2273 If we have we're done. */
2274 find_entry.offset = line_offset;
2275 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2276 &find_entry, INSERT);
2277 if (*slot != NULL)
2278 {
2279 do_cleanups (cleanups);
2280 this_cu->v.quick->file_names = *slot;
2281 return *slot;
2282 }
2283
2284 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2285 }
2286 if (lh == NULL)
2287 {
2288 do_cleanups (cleanups);
2289 this_cu->v.quick->no_file_data = 1;
2290 return NULL;
2291 }
2292
2293 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2294 qfn->offset = line_offset;
2295 gdb_assert (slot != NULL);
2296 *slot = qfn;
2297
2298 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2299
2300 qfn->num_file_names = lh->num_file_names;
2301 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2302 lh->num_file_names * sizeof (char *));
2303 for (i = 0; i < lh->num_file_names; ++i)
2304 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2305 qfn->real_names = NULL;
2306
2307 free_line_header (lh);
2308 do_cleanups (cleanups);
2309
2310 this_cu->v.quick->file_names = qfn;
2311 return qfn;
2312 }
2313
2314 /* A helper for the "quick" functions which computes and caches the
2315 real path for a given file name from the line table. */
2316
2317 static const char *
2318 dw2_get_real_path (struct objfile *objfile,
2319 struct quick_file_names *qfn, int index)
2320 {
2321 if (qfn->real_names == NULL)
2322 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2323 qfn->num_file_names, sizeof (char *));
2324
2325 if (qfn->real_names[index] == NULL)
2326 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2327
2328 return qfn->real_names[index];
2329 }
2330
2331 static struct symtab *
2332 dw2_find_last_source_symtab (struct objfile *objfile)
2333 {
2334 int index;
2335
2336 dw2_setup (objfile);
2337 index = dwarf2_per_objfile->n_comp_units - 1;
2338 return dw2_instantiate_symtab (dw2_get_cu (index));
2339 }
2340
2341 /* Traversal function for dw2_forget_cached_source_info. */
2342
2343 static int
2344 dw2_free_cached_file_names (void **slot, void *info)
2345 {
2346 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2347
2348 if (file_data->real_names)
2349 {
2350 int i;
2351
2352 for (i = 0; i < file_data->num_file_names; ++i)
2353 {
2354 xfree ((void*) file_data->real_names[i]);
2355 file_data->real_names[i] = NULL;
2356 }
2357 }
2358
2359 return 1;
2360 }
2361
2362 static void
2363 dw2_forget_cached_source_info (struct objfile *objfile)
2364 {
2365 dw2_setup (objfile);
2366
2367 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2368 dw2_free_cached_file_names, NULL);
2369 }
2370
2371 /* Helper function for dw2_map_symtabs_matching_filename that expands
2372 the symtabs and calls the iterator. */
2373
2374 static int
2375 dw2_map_expand_apply (struct objfile *objfile,
2376 struct dwarf2_per_cu_data *per_cu,
2377 const char *name,
2378 const char *full_path, const char *real_path,
2379 int (*callback) (struct symtab *, void *),
2380 void *data)
2381 {
2382 struct symtab *last_made = objfile->symtabs;
2383
2384 /* Don't visit already-expanded CUs. */
2385 if (per_cu->v.quick->symtab)
2386 return 0;
2387
2388 /* This may expand more than one symtab, and we want to iterate over
2389 all of them. */
2390 dw2_instantiate_symtab (per_cu);
2391
2392 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2393 objfile->symtabs, last_made);
2394 }
2395
2396 /* Implementation of the map_symtabs_matching_filename method. */
2397
2398 static int
2399 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2400 const char *full_path, const char *real_path,
2401 int (*callback) (struct symtab *, void *),
2402 void *data)
2403 {
2404 int i;
2405 const char *name_basename = lbasename (name);
2406 int name_len = strlen (name);
2407 int is_abs = IS_ABSOLUTE_PATH (name);
2408
2409 dw2_setup (objfile);
2410
2411 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2412 + dwarf2_per_objfile->n_type_units); ++i)
2413 {
2414 int j;
2415 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2416 struct quick_file_names *file_data;
2417
2418 /* We only need to look at symtabs not already expanded. */
2419 if (per_cu->v.quick->symtab)
2420 continue;
2421
2422 file_data = dw2_get_file_names (objfile, per_cu);
2423 if (file_data == NULL)
2424 continue;
2425
2426 for (j = 0; j < file_data->num_file_names; ++j)
2427 {
2428 const char *this_name = file_data->file_names[j];
2429
2430 if (FILENAME_CMP (name, this_name) == 0
2431 || (!is_abs && compare_filenames_for_search (this_name,
2432 name, name_len)))
2433 {
2434 if (dw2_map_expand_apply (objfile, per_cu,
2435 name, full_path, real_path,
2436 callback, data))
2437 return 1;
2438 }
2439
2440 /* Before we invoke realpath, which can get expensive when many
2441 files are involved, do a quick comparison of the basenames. */
2442 if (! basenames_may_differ
2443 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2444 continue;
2445
2446 if (full_path != NULL)
2447 {
2448 const char *this_real_name = dw2_get_real_path (objfile,
2449 file_data, j);
2450
2451 if (this_real_name != NULL
2452 && (FILENAME_CMP (full_path, this_real_name) == 0
2453 || (!is_abs
2454 && compare_filenames_for_search (this_real_name,
2455 name, name_len))))
2456 {
2457 if (dw2_map_expand_apply (objfile, per_cu,
2458 name, full_path, real_path,
2459 callback, data))
2460 return 1;
2461 }
2462 }
2463
2464 if (real_path != NULL)
2465 {
2466 const char *this_real_name = dw2_get_real_path (objfile,
2467 file_data, j);
2468
2469 if (this_real_name != NULL
2470 && (FILENAME_CMP (real_path, this_real_name) == 0
2471 || (!is_abs
2472 && compare_filenames_for_search (this_real_name,
2473 name, name_len))))
2474 {
2475 if (dw2_map_expand_apply (objfile, per_cu,
2476 name, full_path, real_path,
2477 callback, data))
2478 return 1;
2479 }
2480 }
2481 }
2482 }
2483
2484 return 0;
2485 }
2486
2487 static struct symtab *
2488 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2489 const char *name, domain_enum domain)
2490 {
2491 /* We do all the work in the pre_expand_symtabs_matching hook
2492 instead. */
2493 return NULL;
2494 }
2495
2496 /* A helper function that expands all symtabs that hold an object
2497 named NAME. */
2498
2499 static void
2500 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2501 {
2502 dw2_setup (objfile);
2503
2504 /* index_table is NULL if OBJF_READNOW. */
2505 if (dwarf2_per_objfile->index_table)
2506 {
2507 offset_type *vec;
2508
2509 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2510 name, &vec))
2511 {
2512 offset_type i, len = MAYBE_SWAP (*vec);
2513 for (i = 0; i < len; ++i)
2514 {
2515 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2516 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2517
2518 dw2_instantiate_symtab (per_cu);
2519 }
2520 }
2521 }
2522 }
2523
2524 static void
2525 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2526 enum block_enum block_kind, const char *name,
2527 domain_enum domain)
2528 {
2529 dw2_do_expand_symtabs_matching (objfile, name);
2530 }
2531
2532 static void
2533 dw2_print_stats (struct objfile *objfile)
2534 {
2535 int i, count;
2536
2537 dw2_setup (objfile);
2538 count = 0;
2539 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2540 + dwarf2_per_objfile->n_type_units); ++i)
2541 {
2542 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2543
2544 if (!per_cu->v.quick->symtab)
2545 ++count;
2546 }
2547 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2548 }
2549
2550 static void
2551 dw2_dump (struct objfile *objfile)
2552 {
2553 /* Nothing worth printing. */
2554 }
2555
2556 static void
2557 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2558 struct section_offsets *delta)
2559 {
2560 /* There's nothing to relocate here. */
2561 }
2562
2563 static void
2564 dw2_expand_symtabs_for_function (struct objfile *objfile,
2565 const char *func_name)
2566 {
2567 dw2_do_expand_symtabs_matching (objfile, func_name);
2568 }
2569
2570 static void
2571 dw2_expand_all_symtabs (struct objfile *objfile)
2572 {
2573 int i;
2574
2575 dw2_setup (objfile);
2576
2577 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2578 + dwarf2_per_objfile->n_type_units); ++i)
2579 {
2580 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2581
2582 dw2_instantiate_symtab (per_cu);
2583 }
2584 }
2585
2586 static void
2587 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2588 const char *filename)
2589 {
2590 int i;
2591
2592 dw2_setup (objfile);
2593
2594 /* We don't need to consider type units here.
2595 This is only called for examining code, e.g. expand_line_sal.
2596 There can be an order of magnitude (or more) more type units
2597 than comp units, and we avoid them if we can. */
2598
2599 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2600 {
2601 int j;
2602 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2603 struct quick_file_names *file_data;
2604
2605 /* We only need to look at symtabs not already expanded. */
2606 if (per_cu->v.quick->symtab)
2607 continue;
2608
2609 file_data = dw2_get_file_names (objfile, per_cu);
2610 if (file_data == NULL)
2611 continue;
2612
2613 for (j = 0; j < file_data->num_file_names; ++j)
2614 {
2615 const char *this_name = file_data->file_names[j];
2616 if (FILENAME_CMP (this_name, filename) == 0)
2617 {
2618 dw2_instantiate_symtab (per_cu);
2619 break;
2620 }
2621 }
2622 }
2623 }
2624
2625 static const char *
2626 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2627 {
2628 struct dwarf2_per_cu_data *per_cu;
2629 offset_type *vec;
2630 struct quick_file_names *file_data;
2631
2632 dw2_setup (objfile);
2633
2634 /* index_table is NULL if OBJF_READNOW. */
2635 if (!dwarf2_per_objfile->index_table)
2636 {
2637 struct symtab *s;
2638
2639 ALL_OBJFILE_SYMTABS (objfile, s)
2640 if (s->primary)
2641 {
2642 struct blockvector *bv = BLOCKVECTOR (s);
2643 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2644 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2645
2646 if (sym)
2647 return sym->symtab->filename;
2648 }
2649 return NULL;
2650 }
2651
2652 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2653 name, &vec))
2654 return NULL;
2655
2656 /* Note that this just looks at the very first one named NAME -- but
2657 actually we are looking for a function. find_main_filename
2658 should be rewritten so that it doesn't require a custom hook. It
2659 could just use the ordinary symbol tables. */
2660 /* vec[0] is the length, which must always be >0. */
2661 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2662
2663 file_data = dw2_get_file_names (objfile, per_cu);
2664 if (file_data == NULL)
2665 return NULL;
2666
2667 return file_data->file_names[file_data->num_file_names - 1];
2668 }
2669
2670 static void
2671 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2672 struct objfile *objfile, int global,
2673 int (*callback) (struct block *,
2674 struct symbol *, void *),
2675 void *data, symbol_compare_ftype *match,
2676 symbol_compare_ftype *ordered_compare)
2677 {
2678 /* Currently unimplemented; used for Ada. The function can be called if the
2679 current language is Ada for a non-Ada objfile using GNU index. As Ada
2680 does not look for non-Ada symbols this function should just return. */
2681 }
2682
2683 static void
2684 dw2_expand_symtabs_matching
2685 (struct objfile *objfile,
2686 int (*file_matcher) (const char *, void *),
2687 int (*name_matcher) (const char *, void *),
2688 enum search_domain kind,
2689 void *data)
2690 {
2691 int i;
2692 offset_type iter;
2693 struct mapped_index *index;
2694
2695 dw2_setup (objfile);
2696
2697 /* index_table is NULL if OBJF_READNOW. */
2698 if (!dwarf2_per_objfile->index_table)
2699 return;
2700 index = dwarf2_per_objfile->index_table;
2701
2702 if (file_matcher != NULL)
2703 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2704 + dwarf2_per_objfile->n_type_units); ++i)
2705 {
2706 int j;
2707 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2708 struct quick_file_names *file_data;
2709
2710 per_cu->v.quick->mark = 0;
2711
2712 /* We only need to look at symtabs not already expanded. */
2713 if (per_cu->v.quick->symtab)
2714 continue;
2715
2716 file_data = dw2_get_file_names (objfile, per_cu);
2717 if (file_data == NULL)
2718 continue;
2719
2720 for (j = 0; j < file_data->num_file_names; ++j)
2721 {
2722 if (file_matcher (file_data->file_names[j], data))
2723 {
2724 per_cu->v.quick->mark = 1;
2725 break;
2726 }
2727 }
2728 }
2729
2730 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2731 {
2732 offset_type idx = 2 * iter;
2733 const char *name;
2734 offset_type *vec, vec_len, vec_idx;
2735
2736 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2737 continue;
2738
2739 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2740
2741 if (! (*name_matcher) (name, data))
2742 continue;
2743
2744 /* The name was matched, now expand corresponding CUs that were
2745 marked. */
2746 vec = (offset_type *) (index->constant_pool
2747 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2748 vec_len = MAYBE_SWAP (vec[0]);
2749 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2750 {
2751 struct dwarf2_per_cu_data *per_cu;
2752
2753 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2754 if (file_matcher == NULL || per_cu->v.quick->mark)
2755 dw2_instantiate_symtab (per_cu);
2756 }
2757 }
2758 }
2759
2760 static struct symtab *
2761 dw2_find_pc_sect_symtab (struct objfile *objfile,
2762 struct minimal_symbol *msymbol,
2763 CORE_ADDR pc,
2764 struct obj_section *section,
2765 int warn_if_readin)
2766 {
2767 struct dwarf2_per_cu_data *data;
2768
2769 dw2_setup (objfile);
2770
2771 if (!objfile->psymtabs_addrmap)
2772 return NULL;
2773
2774 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2775 if (!data)
2776 return NULL;
2777
2778 if (warn_if_readin && data->v.quick->symtab)
2779 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2780 paddress (get_objfile_arch (objfile), pc));
2781
2782 return dw2_instantiate_symtab (data);
2783 }
2784
2785 static void
2786 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2787 void *data, int need_fullname)
2788 {
2789 int i;
2790
2791 dw2_setup (objfile);
2792
2793 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2794 + dwarf2_per_objfile->n_type_units); ++i)
2795 {
2796 int j;
2797 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2798 struct quick_file_names *file_data;
2799
2800 /* We only need to look at symtabs not already expanded. */
2801 if (per_cu->v.quick->symtab)
2802 continue;
2803
2804 file_data = dw2_get_file_names (objfile, per_cu);
2805 if (file_data == NULL)
2806 continue;
2807
2808 for (j = 0; j < file_data->num_file_names; ++j)
2809 {
2810 const char *this_real_name;
2811
2812 if (need_fullname)
2813 this_real_name = dw2_get_real_path (objfile, file_data, j);
2814 else
2815 this_real_name = NULL;
2816 (*fun) (file_data->file_names[j], this_real_name, data);
2817 }
2818 }
2819 }
2820
2821 static int
2822 dw2_has_symbols (struct objfile *objfile)
2823 {
2824 return 1;
2825 }
2826
2827 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2828 {
2829 dw2_has_symbols,
2830 dw2_find_last_source_symtab,
2831 dw2_forget_cached_source_info,
2832 dw2_map_symtabs_matching_filename,
2833 dw2_lookup_symbol,
2834 dw2_pre_expand_symtabs_matching,
2835 dw2_print_stats,
2836 dw2_dump,
2837 dw2_relocate,
2838 dw2_expand_symtabs_for_function,
2839 dw2_expand_all_symtabs,
2840 dw2_expand_symtabs_with_filename,
2841 dw2_find_symbol_file,
2842 dw2_map_matching_symbols,
2843 dw2_expand_symtabs_matching,
2844 dw2_find_pc_sect_symtab,
2845 dw2_map_symbol_filenames
2846 };
2847
2848 /* Initialize for reading DWARF for this objfile. Return 0 if this
2849 file will use psymtabs, or 1 if using the GNU index. */
2850
2851 int
2852 dwarf2_initialize_objfile (struct objfile *objfile)
2853 {
2854 /* If we're about to read full symbols, don't bother with the
2855 indices. In this case we also don't care if some other debug
2856 format is making psymtabs, because they are all about to be
2857 expanded anyway. */
2858 if ((objfile->flags & OBJF_READNOW))
2859 {
2860 int i;
2861
2862 dwarf2_per_objfile->using_index = 1;
2863 create_all_comp_units (objfile);
2864 create_debug_types_hash_table (objfile);
2865 dwarf2_per_objfile->quick_file_names_table =
2866 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2867
2868 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2869 + dwarf2_per_objfile->n_type_units); ++i)
2870 {
2871 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2872
2873 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct dwarf2_per_cu_quick_data);
2875 }
2876
2877 /* Return 1 so that gdb sees the "quick" functions. However,
2878 these functions will be no-ops because we will have expanded
2879 all symtabs. */
2880 return 1;
2881 }
2882
2883 if (dwarf2_read_index (objfile))
2884 return 1;
2885
2886 return 0;
2887 }
2888
2889 \f
2890
2891 /* Build a partial symbol table. */
2892
2893 void
2894 dwarf2_build_psymtabs (struct objfile *objfile)
2895 {
2896 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2897 {
2898 init_psymbol_list (objfile, 1024);
2899 }
2900
2901 dwarf2_build_psymtabs_hard (objfile);
2902 }
2903
2904 /* Return TRUE if OFFSET is within CU_HEADER. */
2905
2906 static inline int
2907 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2908 {
2909 unsigned int bottom = cu_header->offset;
2910 unsigned int top = (cu_header->offset
2911 + cu_header->length
2912 + cu_header->initial_length_size);
2913
2914 return (offset >= bottom && offset < top);
2915 }
2916
2917 /* Read in the comp unit header information from the debug_info at info_ptr.
2918 NOTE: This leaves members offset, first_die_offset to be filled in
2919 by the caller. */
2920
2921 static gdb_byte *
2922 read_comp_unit_head (struct comp_unit_head *cu_header,
2923 gdb_byte *info_ptr, bfd *abfd)
2924 {
2925 int signed_addr;
2926 unsigned int bytes_read;
2927
2928 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2929 cu_header->initial_length_size = bytes_read;
2930 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2931 info_ptr += bytes_read;
2932 cu_header->version = read_2_bytes (abfd, info_ptr);
2933 info_ptr += 2;
2934 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2935 &bytes_read);
2936 info_ptr += bytes_read;
2937 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2938 info_ptr += 1;
2939 signed_addr = bfd_get_sign_extend_vma (abfd);
2940 if (signed_addr < 0)
2941 internal_error (__FILE__, __LINE__,
2942 _("read_comp_unit_head: dwarf from non elf file"));
2943 cu_header->signed_addr_p = signed_addr;
2944
2945 return info_ptr;
2946 }
2947
2948 /* Subroutine of read_and_check_comp_unit_head and
2949 read_and_check_type_unit_head to simplify them.
2950 Perform various error checking on the header. */
2951
2952 static void
2953 error_check_comp_unit_head (struct comp_unit_head *header,
2954 struct dwarf2_section_info *section)
2955 {
2956 bfd *abfd = section->asection->owner;
2957 const char *filename = bfd_get_filename (abfd);
2958
2959 if (header->version != 2 && header->version != 3 && header->version != 4)
2960 error (_("Dwarf Error: wrong version in compilation unit header "
2961 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2962 filename);
2963
2964 if (header->abbrev_offset
2965 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2966 &dwarf2_per_objfile->abbrev))
2967 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2968 "(offset 0x%lx + 6) [in module %s]"),
2969 (long) header->abbrev_offset, (long) header->offset,
2970 filename);
2971
2972 /* Cast to unsigned long to use 64-bit arithmetic when possible to
2973 avoid potential 32-bit overflow. */
2974 if (((unsigned long) header->offset
2975 + header->length + header->initial_length_size)
2976 > section->size)
2977 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2978 "(offset 0x%lx + 0) [in module %s]"),
2979 (long) header->length, (long) header->offset,
2980 filename);
2981 }
2982
2983 /* Read in a CU/TU header and perform some basic error checking.
2984 The contents of the header are stored in HEADER.
2985 The result is a pointer to the start of the first DIE. */
2986
2987 static gdb_byte *
2988 read_and_check_comp_unit_head (struct comp_unit_head *header,
2989 struct dwarf2_section_info *section,
2990 gdb_byte *info_ptr,
2991 int is_debug_types_section)
2992 {
2993 gdb_byte *beg_of_comp_unit = info_ptr;
2994 bfd *abfd = section->asection->owner;
2995
2996 header->offset = beg_of_comp_unit - section->buffer;
2997
2998 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2999
3000 /* If we're reading a type unit, skip over the signature and
3001 type_offset fields. */
3002 if (is_debug_types_section)
3003 info_ptr += 8 /*signature*/ + header->offset_size;
3004
3005 header->first_die_offset = info_ptr - beg_of_comp_unit;
3006
3007 error_check_comp_unit_head (header, section);
3008
3009 return info_ptr;
3010 }
3011
3012 /* Read in the types comp unit header information from .debug_types entry at
3013 types_ptr. The result is a pointer to one past the end of the header. */
3014
3015 static gdb_byte *
3016 read_and_check_type_unit_head (struct comp_unit_head *header,
3017 struct dwarf2_section_info *section,
3018 gdb_byte *info_ptr,
3019 ULONGEST *signature, unsigned int *type_offset)
3020 {
3021 gdb_byte *beg_of_comp_unit = info_ptr;
3022 bfd *abfd = section->asection->owner;
3023
3024 header->offset = beg_of_comp_unit - section->buffer;
3025
3026 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3027
3028 /* If we're reading a type unit, skip over the signature and
3029 type_offset fields. */
3030 if (signature != NULL)
3031 *signature = read_8_bytes (abfd, info_ptr);
3032 info_ptr += 8;
3033 if (type_offset != NULL)
3034 *type_offset = read_offset_1 (abfd, info_ptr, header->offset_size);
3035 info_ptr += header->offset_size;
3036
3037 header->first_die_offset = info_ptr - beg_of_comp_unit;
3038
3039 error_check_comp_unit_head (header, section);
3040
3041 return info_ptr;
3042 }
3043
3044 /* Allocate a new partial symtab for file named NAME and mark this new
3045 partial symtab as being an include of PST. */
3046
3047 static void
3048 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3049 struct objfile *objfile)
3050 {
3051 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3052
3053 subpst->section_offsets = pst->section_offsets;
3054 subpst->textlow = 0;
3055 subpst->texthigh = 0;
3056
3057 subpst->dependencies = (struct partial_symtab **)
3058 obstack_alloc (&objfile->objfile_obstack,
3059 sizeof (struct partial_symtab *));
3060 subpst->dependencies[0] = pst;
3061 subpst->number_of_dependencies = 1;
3062
3063 subpst->globals_offset = 0;
3064 subpst->n_global_syms = 0;
3065 subpst->statics_offset = 0;
3066 subpst->n_static_syms = 0;
3067 subpst->symtab = NULL;
3068 subpst->read_symtab = pst->read_symtab;
3069 subpst->readin = 0;
3070
3071 /* No private part is necessary for include psymtabs. This property
3072 can be used to differentiate between such include psymtabs and
3073 the regular ones. */
3074 subpst->read_symtab_private = NULL;
3075 }
3076
3077 /* Read the Line Number Program data and extract the list of files
3078 included by the source file represented by PST. Build an include
3079 partial symtab for each of these included files. */
3080
3081 static void
3082 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3083 struct die_info *die,
3084 struct partial_symtab *pst)
3085 {
3086 struct objfile *objfile = cu->objfile;
3087 bfd *abfd = objfile->obfd;
3088 struct line_header *lh = NULL;
3089 struct attribute *attr;
3090
3091 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3092 if (attr)
3093 {
3094 unsigned int line_offset = DW_UNSND (attr);
3095
3096 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3097 }
3098 if (lh == NULL)
3099 return; /* No linetable, so no includes. */
3100
3101 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3102 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3103
3104 free_line_header (lh);
3105 }
3106
3107 static hashval_t
3108 hash_type_signature (const void *item)
3109 {
3110 const struct signatured_type *type_sig = item;
3111
3112 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3113 return type_sig->signature;
3114 }
3115
3116 static int
3117 eq_type_signature (const void *item_lhs, const void *item_rhs)
3118 {
3119 const struct signatured_type *lhs = item_lhs;
3120 const struct signatured_type *rhs = item_rhs;
3121
3122 return lhs->signature == rhs->signature;
3123 }
3124
3125 /* Allocate a hash table for signatured types. */
3126
3127 static htab_t
3128 allocate_signatured_type_table (struct objfile *objfile)
3129 {
3130 return htab_create_alloc_ex (41,
3131 hash_type_signature,
3132 eq_type_signature,
3133 NULL,
3134 &objfile->objfile_obstack,
3135 hashtab_obstack_allocate,
3136 dummy_obstack_deallocate);
3137 }
3138
3139 /* A helper function to add a signatured type CU to a table. */
3140
3141 static int
3142 add_signatured_type_cu_to_table (void **slot, void *datum)
3143 {
3144 struct signatured_type *sigt = *slot;
3145 struct dwarf2_per_cu_data ***datap = datum;
3146
3147 **datap = &sigt->per_cu;
3148 ++*datap;
3149
3150 return 1;
3151 }
3152
3153 /* Create the hash table of all entries in the .debug_types section(s).
3154 The result is zero if there is an error (e.g. missing .debug_types section),
3155 otherwise non-zero. */
3156
3157 static int
3158 create_debug_types_hash_table (struct objfile *objfile)
3159 {
3160 htab_t types_htab = NULL;
3161 struct dwarf2_per_cu_data **iter;
3162 int ix;
3163 struct dwarf2_section_info *section;
3164
3165 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3166 {
3167 dwarf2_per_objfile->signatured_types = NULL;
3168 return 0;
3169 }
3170
3171 for (ix = 0;
3172 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3173 ix, section);
3174 ++ix)
3175 {
3176 gdb_byte *info_ptr, *end_ptr;
3177
3178 dwarf2_read_section (objfile, section);
3179 info_ptr = section->buffer;
3180
3181 if (info_ptr == NULL)
3182 continue;
3183
3184 if (types_htab == NULL)
3185 types_htab = allocate_signatured_type_table (objfile);
3186
3187 if (dwarf2_die_debug)
3188 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3189
3190 end_ptr = info_ptr + section->size;
3191 while (info_ptr < end_ptr)
3192 {
3193 unsigned int offset;
3194 unsigned int type_offset;
3195 ULONGEST signature;
3196 struct signatured_type *type_sig;
3197 void **slot;
3198 gdb_byte *ptr = info_ptr;
3199 struct comp_unit_head header;
3200
3201 offset = ptr - section->buffer;
3202
3203 /* We need to read the type's signature in order to build the hash
3204 table, but we don't need anything else just yet. */
3205
3206 ptr = read_and_check_type_unit_head (&header, section, ptr,
3207 &signature, &type_offset);
3208
3209 /* Skip dummy type units. */
3210 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3211 {
3212 info_ptr = info_ptr + header.initial_length_size + header.length;
3213 continue;
3214 }
3215
3216 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3217 memset (type_sig, 0, sizeof (*type_sig));
3218 type_sig->signature = signature;
3219 type_sig->type_offset = type_offset;
3220 type_sig->per_cu.objfile = objfile;
3221 type_sig->per_cu.debug_types_section = section;
3222 type_sig->per_cu.offset = offset;
3223
3224 slot = htab_find_slot (types_htab, type_sig, INSERT);
3225 gdb_assert (slot != NULL);
3226 if (*slot != NULL)
3227 {
3228 const struct signatured_type *dup_sig = *slot;
3229
3230 complaint (&symfile_complaints,
3231 _("debug type entry at offset 0x%x is duplicate to the "
3232 "entry at offset 0x%x, signature 0x%s"),
3233 offset, dup_sig->per_cu.offset,
3234 phex (signature, sizeof (signature)));
3235 gdb_assert (signature == dup_sig->signature);
3236 }
3237 *slot = type_sig;
3238
3239 if (dwarf2_die_debug)
3240 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3241 offset, phex (signature, sizeof (signature)));
3242
3243 info_ptr = info_ptr + header.initial_length_size + header.length;
3244 }
3245 }
3246
3247 dwarf2_per_objfile->signatured_types = types_htab;
3248
3249 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3250 dwarf2_per_objfile->all_type_units
3251 = obstack_alloc (&objfile->objfile_obstack,
3252 dwarf2_per_objfile->n_type_units
3253 * sizeof (struct dwarf2_per_cu_data *));
3254 iter = &dwarf2_per_objfile->all_type_units[0];
3255 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3256 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3257 == dwarf2_per_objfile->n_type_units);
3258
3259 return 1;
3260 }
3261
3262 /* Lookup a signature based type.
3263 Returns NULL if SIG is not present in the table. */
3264
3265 static struct signatured_type *
3266 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3267 {
3268 struct signatured_type find_entry, *entry;
3269
3270 if (dwarf2_per_objfile->signatured_types == NULL)
3271 {
3272 complaint (&symfile_complaints,
3273 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3274 return 0;
3275 }
3276
3277 find_entry.signature = sig;
3278 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3279 return entry;
3280 }
3281
3282 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3283
3284 static void
3285 init_cu_die_reader (struct die_reader_specs *reader,
3286 struct dwarf2_cu *cu)
3287 {
3288 reader->abfd = cu->objfile->obfd;
3289 reader->cu = cu;
3290 if (cu->per_cu->debug_types_section)
3291 {
3292 gdb_assert (cu->per_cu->debug_types_section->readin);
3293 reader->buffer = cu->per_cu->debug_types_section->buffer;
3294 }
3295 else
3296 {
3297 gdb_assert (dwarf2_per_objfile->info.readin);
3298 reader->buffer = dwarf2_per_objfile->info.buffer;
3299 }
3300 }
3301
3302 /* Find the base address of the compilation unit for range lists and
3303 location lists. It will normally be specified by DW_AT_low_pc.
3304 In DWARF-3 draft 4, the base address could be overridden by
3305 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3306 compilation units with discontinuous ranges. */
3307
3308 static void
3309 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3310 {
3311 struct attribute *attr;
3312
3313 cu->base_known = 0;
3314 cu->base_address = 0;
3315
3316 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3317 if (attr)
3318 {
3319 cu->base_address = DW_ADDR (attr);
3320 cu->base_known = 1;
3321 }
3322 else
3323 {
3324 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3325 if (attr)
3326 {
3327 cu->base_address = DW_ADDR (attr);
3328 cu->base_known = 1;
3329 }
3330 }
3331 }
3332
3333 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3334 to combine the common parts.
3335 Process compilation unit THIS_CU for a psymtab.
3336 SECTION is the section the CU/TU comes from,
3337 either .debug_info or .debug_types. */
3338
3339 void
3340 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3341 struct dwarf2_section_info *section,
3342 int is_debug_types_section)
3343 {
3344 struct objfile *objfile = this_cu->objfile;
3345 bfd *abfd = objfile->obfd;
3346 gdb_byte *buffer = section->buffer;
3347 gdb_byte *info_ptr = buffer + this_cu->offset;
3348 unsigned int buffer_size = section->size;
3349 gdb_byte *beg_of_comp_unit = info_ptr;
3350 struct die_info *comp_unit_die;
3351 struct partial_symtab *pst;
3352 CORE_ADDR baseaddr;
3353 struct cleanup *back_to_inner;
3354 struct dwarf2_cu cu;
3355 int has_children, has_pc_info;
3356 struct attribute *attr;
3357 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3358 struct die_reader_specs reader_specs;
3359 const char *filename;
3360
3361 /* If this compilation unit was already read in, free the
3362 cached copy in order to read it in again. This is
3363 necessary because we skipped some symbols when we first
3364 read in the compilation unit (see load_partial_dies).
3365 This problem could be avoided, but the benefit is
3366 unclear. */
3367 if (this_cu->cu != NULL)
3368 free_one_cached_comp_unit (this_cu->cu);
3369
3370 /* Note that this is a pointer to our stack frame, being
3371 added to a global data structure. It will be cleaned up
3372 in free_stack_comp_unit when we finish with this
3373 compilation unit. */
3374 init_one_comp_unit (&cu, this_cu);
3375 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3376
3377 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3378 is_debug_types_section);
3379
3380 /* Skip dummy compilation units. */
3381 if (info_ptr >= buffer + buffer_size
3382 || peek_abbrev_code (abfd, info_ptr) == 0)
3383 {
3384 do_cleanups (back_to_inner);
3385 return;
3386 }
3387
3388 cu.list_in_scope = &file_symbols;
3389
3390 /* Read the abbrevs for this compilation unit into a table. */
3391 dwarf2_read_abbrevs (&cu);
3392 make_cleanup (dwarf2_free_abbrev_table, &cu);
3393
3394 /* Read the compilation unit die. */
3395 init_cu_die_reader (&reader_specs, &cu);
3396 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3397 &has_children);
3398
3399 if (is_debug_types_section)
3400 {
3401 /* LENGTH has not been set yet for type units. */
3402 gdb_assert (this_cu->offset == cu.header.offset);
3403 this_cu->length = cu.header.length + cu.header.initial_length_size;
3404 }
3405 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3406 {
3407 do_cleanups (back_to_inner);
3408 return;
3409 }
3410
3411 prepare_one_comp_unit (&cu, comp_unit_die);
3412
3413 /* Allocate a new partial symbol table structure. */
3414 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3415 if (attr == NULL || !DW_STRING (attr))
3416 filename = "";
3417 else
3418 filename = DW_STRING (attr);
3419 pst = start_psymtab_common (objfile, objfile->section_offsets,
3420 filename,
3421 /* TEXTLOW and TEXTHIGH are set below. */
3422 0,
3423 objfile->global_psymbols.next,
3424 objfile->static_psymbols.next);
3425 pst->psymtabs_addrmap_supported = 1;
3426
3427 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3428 if (attr != NULL)
3429 pst->dirname = DW_STRING (attr);
3430
3431 pst->read_symtab_private = this_cu;
3432
3433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3434
3435 /* Store the function that reads in the rest of the symbol table. */
3436 pst->read_symtab = dwarf2_psymtab_to_symtab;
3437
3438 this_cu->v.psymtab = pst;
3439
3440 dwarf2_find_base_address (comp_unit_die, &cu);
3441
3442 /* Possibly set the default values of LOWPC and HIGHPC from
3443 `DW_AT_ranges'. */
3444 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3445 &best_highpc, &cu, pst);
3446 if (has_pc_info == 1 && best_lowpc < best_highpc)
3447 /* Store the contiguous range if it is not empty; it can be empty for
3448 CUs with no code. */
3449 addrmap_set_empty (objfile->psymtabs_addrmap,
3450 best_lowpc + baseaddr,
3451 best_highpc + baseaddr - 1, pst);
3452
3453 /* Check if comp unit has_children.
3454 If so, read the rest of the partial symbols from this comp unit.
3455 If not, there's no more debug_info for this comp unit. */
3456 if (has_children)
3457 {
3458 struct partial_die_info *first_die;
3459 CORE_ADDR lowpc, highpc;
3460
3461 lowpc = ((CORE_ADDR) -1);
3462 highpc = ((CORE_ADDR) 0);
3463
3464 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3465
3466 scan_partial_symbols (first_die, &lowpc, &highpc,
3467 ! has_pc_info, &cu);
3468
3469 /* If we didn't find a lowpc, set it to highpc to avoid
3470 complaints from `maint check'. */
3471 if (lowpc == ((CORE_ADDR) -1))
3472 lowpc = highpc;
3473
3474 /* If the compilation unit didn't have an explicit address range,
3475 then use the information extracted from its child dies. */
3476 if (! has_pc_info)
3477 {
3478 best_lowpc = lowpc;
3479 best_highpc = highpc;
3480 }
3481 }
3482 pst->textlow = best_lowpc + baseaddr;
3483 pst->texthigh = best_highpc + baseaddr;
3484
3485 pst->n_global_syms = objfile->global_psymbols.next -
3486 (objfile->global_psymbols.list + pst->globals_offset);
3487 pst->n_static_syms = objfile->static_psymbols.next -
3488 (objfile->static_psymbols.list + pst->statics_offset);
3489 sort_pst_symbols (pst);
3490
3491 if (is_debug_types_section)
3492 {
3493 /* It's not clear we want to do anything with stmt lists here.
3494 Waiting to see what gcc ultimately does. */
3495 }
3496 else
3497 {
3498 /* Get the list of files included in the current compilation unit,
3499 and build a psymtab for each of them. */
3500 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3501 }
3502
3503 do_cleanups (back_to_inner);
3504 }
3505
3506 /* Traversal function for htab_traverse_noresize.
3507 Process one .debug_types comp-unit. */
3508
3509 static int
3510 process_type_comp_unit (void **slot, void *info)
3511 {
3512 struct signatured_type *entry = (struct signatured_type *) *slot;
3513 struct dwarf2_per_cu_data *this_cu;
3514
3515 gdb_assert (info == NULL);
3516 this_cu = &entry->per_cu;
3517
3518 gdb_assert (this_cu->debug_types_section->readin);
3519 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3520
3521 return 1;
3522 }
3523
3524 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3525 Build partial symbol tables for the .debug_types comp-units. */
3526
3527 static void
3528 build_type_psymtabs (struct objfile *objfile)
3529 {
3530 if (! create_debug_types_hash_table (objfile))
3531 return;
3532
3533 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3534 process_type_comp_unit, NULL);
3535 }
3536
3537 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3538
3539 static void
3540 psymtabs_addrmap_cleanup (void *o)
3541 {
3542 struct objfile *objfile = o;
3543
3544 objfile->psymtabs_addrmap = NULL;
3545 }
3546
3547 /* Build the partial symbol table by doing a quick pass through the
3548 .debug_info and .debug_abbrev sections. */
3549
3550 static void
3551 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3552 {
3553 struct cleanup *back_to, *addrmap_cleanup;
3554 struct obstack temp_obstack;
3555 int i;
3556
3557 dwarf2_per_objfile->reading_partial_symbols = 1;
3558
3559 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3560
3561 /* Any cached compilation units will be linked by the per-objfile
3562 read_in_chain. Make sure to free them when we're done. */
3563 back_to = make_cleanup (free_cached_comp_units, NULL);
3564
3565 build_type_psymtabs (objfile);
3566
3567 create_all_comp_units (objfile);
3568
3569 /* Create a temporary address map on a temporary obstack. We later
3570 copy this to the final obstack. */
3571 obstack_init (&temp_obstack);
3572 make_cleanup_obstack_free (&temp_obstack);
3573 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3574 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3575
3576 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3577 {
3578 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3579
3580 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3581 }
3582
3583 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3584 &objfile->objfile_obstack);
3585 discard_cleanups (addrmap_cleanup);
3586
3587 do_cleanups (back_to);
3588 }
3589
3590 /* Load the partial DIEs for a secondary CU into memory. */
3591
3592 static void
3593 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3594 {
3595 struct objfile *objfile = this_cu->objfile;
3596 bfd *abfd = objfile->obfd;
3597 gdb_byte *info_ptr;
3598 struct die_info *comp_unit_die;
3599 struct dwarf2_cu *cu;
3600 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3601 int has_children;
3602 struct die_reader_specs reader_specs;
3603 int read_cu = 0;
3604 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3605
3606 gdb_assert (! this_cu->debug_types_section);
3607
3608 gdb_assert (section->readin);
3609 info_ptr = section->buffer + this_cu->offset;
3610
3611 if (this_cu->cu == NULL)
3612 {
3613 cu = xmalloc (sizeof (*cu));
3614 init_one_comp_unit (cu, this_cu);
3615
3616 read_cu = 1;
3617
3618 /* If an error occurs while loading, release our storage. */
3619 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3620
3621 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3622 0);
3623
3624 /* Skip dummy compilation units. */
3625 if (info_ptr >= (section->buffer + section->size)
3626 || peek_abbrev_code (abfd, info_ptr) == 0)
3627 {
3628 do_cleanups (free_cu_cleanup);
3629 return;
3630 }
3631
3632 /* Link this CU into read_in_chain. */
3633 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3634 dwarf2_per_objfile->read_in_chain = this_cu;
3635 }
3636 else
3637 {
3638 cu = this_cu->cu;
3639 info_ptr += cu->header.first_die_offset;
3640 }
3641
3642 /* Read the abbrevs for this compilation unit into a table. */
3643 gdb_assert (cu->dwarf2_abbrevs == NULL);
3644 dwarf2_read_abbrevs (cu);
3645 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3646
3647 /* Read the compilation unit die. */
3648 init_cu_die_reader (&reader_specs, cu);
3649 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3650 &has_children);
3651
3652 prepare_one_comp_unit (cu, comp_unit_die);
3653
3654 /* Check if comp unit has_children.
3655 If so, read the rest of the partial symbols from this comp unit.
3656 If not, there's no more debug_info for this comp unit. */
3657 if (has_children)
3658 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3659
3660 do_cleanups (free_abbrevs_cleanup);
3661
3662 if (read_cu)
3663 {
3664 /* We've successfully allocated this compilation unit. Let our
3665 caller clean it up when finished with it. */
3666 discard_cleanups (free_cu_cleanup);
3667 }
3668 }
3669
3670 /* Create a list of all compilation units in OBJFILE.
3671 This is only done for -readnow and building partial symtabs. */
3672
3673 static void
3674 create_all_comp_units (struct objfile *objfile)
3675 {
3676 int n_allocated;
3677 int n_comp_units;
3678 struct dwarf2_per_cu_data **all_comp_units;
3679 gdb_byte *info_ptr;
3680
3681 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3682 info_ptr = dwarf2_per_objfile->info.buffer;
3683
3684 n_comp_units = 0;
3685 n_allocated = 10;
3686 all_comp_units = xmalloc (n_allocated
3687 * sizeof (struct dwarf2_per_cu_data *));
3688
3689 while (info_ptr < dwarf2_per_objfile->info.buffer
3690 + dwarf2_per_objfile->info.size)
3691 {
3692 unsigned int length, initial_length_size;
3693 struct dwarf2_per_cu_data *this_cu;
3694 unsigned int offset;
3695
3696 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3697
3698 /* Read just enough information to find out where the next
3699 compilation unit is. */
3700 length = read_initial_length (objfile->obfd, info_ptr,
3701 &initial_length_size);
3702
3703 /* Save the compilation unit for later lookup. */
3704 this_cu = obstack_alloc (&objfile->objfile_obstack,
3705 sizeof (struct dwarf2_per_cu_data));
3706 memset (this_cu, 0, sizeof (*this_cu));
3707 this_cu->offset = offset;
3708 this_cu->length = length + initial_length_size;
3709 this_cu->objfile = objfile;
3710
3711 if (n_comp_units == n_allocated)
3712 {
3713 n_allocated *= 2;
3714 all_comp_units = xrealloc (all_comp_units,
3715 n_allocated
3716 * sizeof (struct dwarf2_per_cu_data *));
3717 }
3718 all_comp_units[n_comp_units++] = this_cu;
3719
3720 info_ptr = info_ptr + this_cu->length;
3721 }
3722
3723 dwarf2_per_objfile->all_comp_units
3724 = obstack_alloc (&objfile->objfile_obstack,
3725 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3726 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3727 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3728 xfree (all_comp_units);
3729 dwarf2_per_objfile->n_comp_units = n_comp_units;
3730 }
3731
3732 /* Process all loaded DIEs for compilation unit CU, starting at
3733 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3734 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3735 DW_AT_ranges). If NEED_PC is set, then this function will set
3736 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3737 and record the covered ranges in the addrmap. */
3738
3739 static void
3740 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3741 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3742 {
3743 struct partial_die_info *pdi;
3744
3745 /* Now, march along the PDI's, descending into ones which have
3746 interesting children but skipping the children of the other ones,
3747 until we reach the end of the compilation unit. */
3748
3749 pdi = first_die;
3750
3751 while (pdi != NULL)
3752 {
3753 fixup_partial_die (pdi, cu);
3754
3755 /* Anonymous namespaces or modules have no name but have interesting
3756 children, so we need to look at them. Ditto for anonymous
3757 enums. */
3758
3759 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3760 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3761 {
3762 switch (pdi->tag)
3763 {
3764 case DW_TAG_subprogram:
3765 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3766 break;
3767 case DW_TAG_constant:
3768 case DW_TAG_variable:
3769 case DW_TAG_typedef:
3770 case DW_TAG_union_type:
3771 if (!pdi->is_declaration)
3772 {
3773 add_partial_symbol (pdi, cu);
3774 }
3775 break;
3776 case DW_TAG_class_type:
3777 case DW_TAG_interface_type:
3778 case DW_TAG_structure_type:
3779 if (!pdi->is_declaration)
3780 {
3781 add_partial_symbol (pdi, cu);
3782 }
3783 break;
3784 case DW_TAG_enumeration_type:
3785 if (!pdi->is_declaration)
3786 add_partial_enumeration (pdi, cu);
3787 break;
3788 case DW_TAG_base_type:
3789 case DW_TAG_subrange_type:
3790 /* File scope base type definitions are added to the partial
3791 symbol table. */
3792 add_partial_symbol (pdi, cu);
3793 break;
3794 case DW_TAG_namespace:
3795 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3796 break;
3797 case DW_TAG_module:
3798 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3799 break;
3800 default:
3801 break;
3802 }
3803 }
3804
3805 /* If the die has a sibling, skip to the sibling. */
3806
3807 pdi = pdi->die_sibling;
3808 }
3809 }
3810
3811 /* Functions used to compute the fully scoped name of a partial DIE.
3812
3813 Normally, this is simple. For C++, the parent DIE's fully scoped
3814 name is concatenated with "::" and the partial DIE's name. For
3815 Java, the same thing occurs except that "." is used instead of "::".
3816 Enumerators are an exception; they use the scope of their parent
3817 enumeration type, i.e. the name of the enumeration type is not
3818 prepended to the enumerator.
3819
3820 There are two complexities. One is DW_AT_specification; in this
3821 case "parent" means the parent of the target of the specification,
3822 instead of the direct parent of the DIE. The other is compilers
3823 which do not emit DW_TAG_namespace; in this case we try to guess
3824 the fully qualified name of structure types from their members'
3825 linkage names. This must be done using the DIE's children rather
3826 than the children of any DW_AT_specification target. We only need
3827 to do this for structures at the top level, i.e. if the target of
3828 any DW_AT_specification (if any; otherwise the DIE itself) does not
3829 have a parent. */
3830
3831 /* Compute the scope prefix associated with PDI's parent, in
3832 compilation unit CU. The result will be allocated on CU's
3833 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3834 field. NULL is returned if no prefix is necessary. */
3835 static char *
3836 partial_die_parent_scope (struct partial_die_info *pdi,
3837 struct dwarf2_cu *cu)
3838 {
3839 char *grandparent_scope;
3840 struct partial_die_info *parent, *real_pdi;
3841
3842 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3843 then this means the parent of the specification DIE. */
3844
3845 real_pdi = pdi;
3846 while (real_pdi->has_specification)
3847 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3848
3849 parent = real_pdi->die_parent;
3850 if (parent == NULL)
3851 return NULL;
3852
3853 if (parent->scope_set)
3854 return parent->scope;
3855
3856 fixup_partial_die (parent, cu);
3857
3858 grandparent_scope = partial_die_parent_scope (parent, cu);
3859
3860 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3861 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3862 Work around this problem here. */
3863 if (cu->language == language_cplus
3864 && parent->tag == DW_TAG_namespace
3865 && strcmp (parent->name, "::") == 0
3866 && grandparent_scope == NULL)
3867 {
3868 parent->scope = NULL;
3869 parent->scope_set = 1;
3870 return NULL;
3871 }
3872
3873 if (pdi->tag == DW_TAG_enumerator)
3874 /* Enumerators should not get the name of the enumeration as a prefix. */
3875 parent->scope = grandparent_scope;
3876 else if (parent->tag == DW_TAG_namespace
3877 || parent->tag == DW_TAG_module
3878 || parent->tag == DW_TAG_structure_type
3879 || parent->tag == DW_TAG_class_type
3880 || parent->tag == DW_TAG_interface_type
3881 || parent->tag == DW_TAG_union_type
3882 || parent->tag == DW_TAG_enumeration_type)
3883 {
3884 if (grandparent_scope == NULL)
3885 parent->scope = parent->name;
3886 else
3887 parent->scope = typename_concat (&cu->comp_unit_obstack,
3888 grandparent_scope,
3889 parent->name, 0, cu);
3890 }
3891 else
3892 {
3893 /* FIXME drow/2004-04-01: What should we be doing with
3894 function-local names? For partial symbols, we should probably be
3895 ignoring them. */
3896 complaint (&symfile_complaints,
3897 _("unhandled containing DIE tag %d for DIE at %d"),
3898 parent->tag, pdi->offset);
3899 parent->scope = grandparent_scope;
3900 }
3901
3902 parent->scope_set = 1;
3903 return parent->scope;
3904 }
3905
3906 /* Return the fully scoped name associated with PDI, from compilation unit
3907 CU. The result will be allocated with malloc. */
3908 static char *
3909 partial_die_full_name (struct partial_die_info *pdi,
3910 struct dwarf2_cu *cu)
3911 {
3912 char *parent_scope;
3913
3914 /* If this is a template instantiation, we can not work out the
3915 template arguments from partial DIEs. So, unfortunately, we have
3916 to go through the full DIEs. At least any work we do building
3917 types here will be reused if full symbols are loaded later. */
3918 if (pdi->has_template_arguments)
3919 {
3920 fixup_partial_die (pdi, cu);
3921
3922 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3923 {
3924 struct die_info *die;
3925 struct attribute attr;
3926 struct dwarf2_cu *ref_cu = cu;
3927
3928 attr.name = 0;
3929 attr.form = DW_FORM_ref_addr;
3930 attr.u.addr = pdi->offset;
3931 die = follow_die_ref (NULL, &attr, &ref_cu);
3932
3933 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3934 }
3935 }
3936
3937 parent_scope = partial_die_parent_scope (pdi, cu);
3938 if (parent_scope == NULL)
3939 return NULL;
3940 else
3941 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3942 }
3943
3944 static void
3945 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3946 {
3947 struct objfile *objfile = cu->objfile;
3948 CORE_ADDR addr = 0;
3949 char *actual_name = NULL;
3950 CORE_ADDR baseaddr;
3951 int built_actual_name = 0;
3952
3953 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3954
3955 actual_name = partial_die_full_name (pdi, cu);
3956 if (actual_name)
3957 built_actual_name = 1;
3958
3959 if (actual_name == NULL)
3960 actual_name = pdi->name;
3961
3962 switch (pdi->tag)
3963 {
3964 case DW_TAG_subprogram:
3965 if (pdi->is_external || cu->language == language_ada)
3966 {
3967 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3968 of the global scope. But in Ada, we want to be able to access
3969 nested procedures globally. So all Ada subprograms are stored
3970 in the global scope. */
3971 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3972 mst_text, objfile); */
3973 add_psymbol_to_list (actual_name, strlen (actual_name),
3974 built_actual_name,
3975 VAR_DOMAIN, LOC_BLOCK,
3976 &objfile->global_psymbols,
3977 0, pdi->lowpc + baseaddr,
3978 cu->language, objfile);
3979 }
3980 else
3981 {
3982 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3983 mst_file_text, objfile); */
3984 add_psymbol_to_list (actual_name, strlen (actual_name),
3985 built_actual_name,
3986 VAR_DOMAIN, LOC_BLOCK,
3987 &objfile->static_psymbols,
3988 0, pdi->lowpc + baseaddr,
3989 cu->language, objfile);
3990 }
3991 break;
3992 case DW_TAG_constant:
3993 {
3994 struct psymbol_allocation_list *list;
3995
3996 if (pdi->is_external)
3997 list = &objfile->global_psymbols;
3998 else
3999 list = &objfile->static_psymbols;
4000 add_psymbol_to_list (actual_name, strlen (actual_name),
4001 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4002 list, 0, 0, cu->language, objfile);
4003 }
4004 break;
4005 case DW_TAG_variable:
4006 if (pdi->locdesc)
4007 addr = decode_locdesc (pdi->locdesc, cu);
4008
4009 if (pdi->locdesc
4010 && addr == 0
4011 && !dwarf2_per_objfile->has_section_at_zero)
4012 {
4013 /* A global or static variable may also have been stripped
4014 out by the linker if unused, in which case its address
4015 will be nullified; do not add such variables into partial
4016 symbol table then. */
4017 }
4018 else if (pdi->is_external)
4019 {
4020 /* Global Variable.
4021 Don't enter into the minimal symbol tables as there is
4022 a minimal symbol table entry from the ELF symbols already.
4023 Enter into partial symbol table if it has a location
4024 descriptor or a type.
4025 If the location descriptor is missing, new_symbol will create
4026 a LOC_UNRESOLVED symbol, the address of the variable will then
4027 be determined from the minimal symbol table whenever the variable
4028 is referenced.
4029 The address for the partial symbol table entry is not
4030 used by GDB, but it comes in handy for debugging partial symbol
4031 table building. */
4032
4033 if (pdi->locdesc || pdi->has_type)
4034 add_psymbol_to_list (actual_name, strlen (actual_name),
4035 built_actual_name,
4036 VAR_DOMAIN, LOC_STATIC,
4037 &objfile->global_psymbols,
4038 0, addr + baseaddr,
4039 cu->language, objfile);
4040 }
4041 else
4042 {
4043 /* Static Variable. Skip symbols without location descriptors. */
4044 if (pdi->locdesc == NULL)
4045 {
4046 if (built_actual_name)
4047 xfree (actual_name);
4048 return;
4049 }
4050 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4051 mst_file_data, objfile); */
4052 add_psymbol_to_list (actual_name, strlen (actual_name),
4053 built_actual_name,
4054 VAR_DOMAIN, LOC_STATIC,
4055 &objfile->static_psymbols,
4056 0, addr + baseaddr,
4057 cu->language, objfile);
4058 }
4059 break;
4060 case DW_TAG_typedef:
4061 case DW_TAG_base_type:
4062 case DW_TAG_subrange_type:
4063 add_psymbol_to_list (actual_name, strlen (actual_name),
4064 built_actual_name,
4065 VAR_DOMAIN, LOC_TYPEDEF,
4066 &objfile->static_psymbols,
4067 0, (CORE_ADDR) 0, cu->language, objfile);
4068 break;
4069 case DW_TAG_namespace:
4070 add_psymbol_to_list (actual_name, strlen (actual_name),
4071 built_actual_name,
4072 VAR_DOMAIN, LOC_TYPEDEF,
4073 &objfile->global_psymbols,
4074 0, (CORE_ADDR) 0, cu->language, objfile);
4075 break;
4076 case DW_TAG_class_type:
4077 case DW_TAG_interface_type:
4078 case DW_TAG_structure_type:
4079 case DW_TAG_union_type:
4080 case DW_TAG_enumeration_type:
4081 /* Skip external references. The DWARF standard says in the section
4082 about "Structure, Union, and Class Type Entries": "An incomplete
4083 structure, union or class type is represented by a structure,
4084 union or class entry that does not have a byte size attribute
4085 and that has a DW_AT_declaration attribute." */
4086 if (!pdi->has_byte_size && pdi->is_declaration)
4087 {
4088 if (built_actual_name)
4089 xfree (actual_name);
4090 return;
4091 }
4092
4093 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4094 static vs. global. */
4095 add_psymbol_to_list (actual_name, strlen (actual_name),
4096 built_actual_name,
4097 STRUCT_DOMAIN, LOC_TYPEDEF,
4098 (cu->language == language_cplus
4099 || cu->language == language_java)
4100 ? &objfile->global_psymbols
4101 : &objfile->static_psymbols,
4102 0, (CORE_ADDR) 0, cu->language, objfile);
4103
4104 break;
4105 case DW_TAG_enumerator:
4106 add_psymbol_to_list (actual_name, strlen (actual_name),
4107 built_actual_name,
4108 VAR_DOMAIN, LOC_CONST,
4109 (cu->language == language_cplus
4110 || cu->language == language_java)
4111 ? &objfile->global_psymbols
4112 : &objfile->static_psymbols,
4113 0, (CORE_ADDR) 0, cu->language, objfile);
4114 break;
4115 default:
4116 break;
4117 }
4118
4119 if (built_actual_name)
4120 xfree (actual_name);
4121 }
4122
4123 /* Read a partial die corresponding to a namespace; also, add a symbol
4124 corresponding to that namespace to the symbol table. NAMESPACE is
4125 the name of the enclosing namespace. */
4126
4127 static void
4128 add_partial_namespace (struct partial_die_info *pdi,
4129 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4130 int need_pc, struct dwarf2_cu *cu)
4131 {
4132 /* Add a symbol for the namespace. */
4133
4134 add_partial_symbol (pdi, cu);
4135
4136 /* Now scan partial symbols in that namespace. */
4137
4138 if (pdi->has_children)
4139 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4140 }
4141
4142 /* Read a partial die corresponding to a Fortran module. */
4143
4144 static void
4145 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4146 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4147 {
4148 /* Now scan partial symbols in that module. */
4149
4150 if (pdi->has_children)
4151 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4152 }
4153
4154 /* Read a partial die corresponding to a subprogram and create a partial
4155 symbol for that subprogram. When the CU language allows it, this
4156 routine also defines a partial symbol for each nested subprogram
4157 that this subprogram contains.
4158
4159 DIE my also be a lexical block, in which case we simply search
4160 recursively for suprograms defined inside that lexical block.
4161 Again, this is only performed when the CU language allows this
4162 type of definitions. */
4163
4164 static void
4165 add_partial_subprogram (struct partial_die_info *pdi,
4166 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4167 int need_pc, struct dwarf2_cu *cu)
4168 {
4169 if (pdi->tag == DW_TAG_subprogram)
4170 {
4171 if (pdi->has_pc_info)
4172 {
4173 if (pdi->lowpc < *lowpc)
4174 *lowpc = pdi->lowpc;
4175 if (pdi->highpc > *highpc)
4176 *highpc = pdi->highpc;
4177 if (need_pc)
4178 {
4179 CORE_ADDR baseaddr;
4180 struct objfile *objfile = cu->objfile;
4181
4182 baseaddr = ANOFFSET (objfile->section_offsets,
4183 SECT_OFF_TEXT (objfile));
4184 addrmap_set_empty (objfile->psymtabs_addrmap,
4185 pdi->lowpc + baseaddr,
4186 pdi->highpc - 1 + baseaddr,
4187 cu->per_cu->v.psymtab);
4188 }
4189 if (!pdi->is_declaration)
4190 /* Ignore subprogram DIEs that do not have a name, they are
4191 illegal. Do not emit a complaint at this point, we will
4192 do so when we convert this psymtab into a symtab. */
4193 if (pdi->name)
4194 add_partial_symbol (pdi, cu);
4195 }
4196 }
4197
4198 if (! pdi->has_children)
4199 return;
4200
4201 if (cu->language == language_ada)
4202 {
4203 pdi = pdi->die_child;
4204 while (pdi != NULL)
4205 {
4206 fixup_partial_die (pdi, cu);
4207 if (pdi->tag == DW_TAG_subprogram
4208 || pdi->tag == DW_TAG_lexical_block)
4209 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4210 pdi = pdi->die_sibling;
4211 }
4212 }
4213 }
4214
4215 /* Read a partial die corresponding to an enumeration type. */
4216
4217 static void
4218 add_partial_enumeration (struct partial_die_info *enum_pdi,
4219 struct dwarf2_cu *cu)
4220 {
4221 struct partial_die_info *pdi;
4222
4223 if (enum_pdi->name != NULL)
4224 add_partial_symbol (enum_pdi, cu);
4225
4226 pdi = enum_pdi->die_child;
4227 while (pdi)
4228 {
4229 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4230 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4231 else
4232 add_partial_symbol (pdi, cu);
4233 pdi = pdi->die_sibling;
4234 }
4235 }
4236
4237 /* Return the initial uleb128 in the die at INFO_PTR. */
4238
4239 static unsigned int
4240 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4241 {
4242 unsigned int bytes_read;
4243
4244 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4245 }
4246
4247 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4248 Return the corresponding abbrev, or NULL if the number is zero (indicating
4249 an empty DIE). In either case *BYTES_READ will be set to the length of
4250 the initial number. */
4251
4252 static struct abbrev_info *
4253 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4254 struct dwarf2_cu *cu)
4255 {
4256 bfd *abfd = cu->objfile->obfd;
4257 unsigned int abbrev_number;
4258 struct abbrev_info *abbrev;
4259
4260 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4261
4262 if (abbrev_number == 0)
4263 return NULL;
4264
4265 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4266 if (!abbrev)
4267 {
4268 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4269 abbrev_number, bfd_get_filename (abfd));
4270 }
4271
4272 return abbrev;
4273 }
4274
4275 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4276 Returns a pointer to the end of a series of DIEs, terminated by an empty
4277 DIE. Any children of the skipped DIEs will also be skipped. */
4278
4279 static gdb_byte *
4280 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4281 {
4282 struct abbrev_info *abbrev;
4283 unsigned int bytes_read;
4284
4285 while (1)
4286 {
4287 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4288 if (abbrev == NULL)
4289 return info_ptr + bytes_read;
4290 else
4291 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4292 }
4293 }
4294
4295 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4296 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4297 abbrev corresponding to that skipped uleb128 should be passed in
4298 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4299 children. */
4300
4301 static gdb_byte *
4302 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4303 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4304 {
4305 unsigned int bytes_read;
4306 struct attribute attr;
4307 bfd *abfd = cu->objfile->obfd;
4308 unsigned int form, i;
4309
4310 for (i = 0; i < abbrev->num_attrs; i++)
4311 {
4312 /* The only abbrev we care about is DW_AT_sibling. */
4313 if (abbrev->attrs[i].name == DW_AT_sibling)
4314 {
4315 read_attribute (&attr, &abbrev->attrs[i],
4316 abfd, info_ptr, cu);
4317 if (attr.form == DW_FORM_ref_addr)
4318 complaint (&symfile_complaints,
4319 _("ignoring absolute DW_AT_sibling"));
4320 else
4321 return buffer + dwarf2_get_ref_die_offset (&attr);
4322 }
4323
4324 /* If it isn't DW_AT_sibling, skip this attribute. */
4325 form = abbrev->attrs[i].form;
4326 skip_attribute:
4327 switch (form)
4328 {
4329 case DW_FORM_ref_addr:
4330 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4331 and later it is offset sized. */
4332 if (cu->header.version == 2)
4333 info_ptr += cu->header.addr_size;
4334 else
4335 info_ptr += cu->header.offset_size;
4336 break;
4337 case DW_FORM_addr:
4338 info_ptr += cu->header.addr_size;
4339 break;
4340 case DW_FORM_data1:
4341 case DW_FORM_ref1:
4342 case DW_FORM_flag:
4343 info_ptr += 1;
4344 break;
4345 case DW_FORM_flag_present:
4346 break;
4347 case DW_FORM_data2:
4348 case DW_FORM_ref2:
4349 info_ptr += 2;
4350 break;
4351 case DW_FORM_data4:
4352 case DW_FORM_ref4:
4353 info_ptr += 4;
4354 break;
4355 case DW_FORM_data8:
4356 case DW_FORM_ref8:
4357 case DW_FORM_ref_sig8:
4358 info_ptr += 8;
4359 break;
4360 case DW_FORM_string:
4361 read_direct_string (abfd, info_ptr, &bytes_read);
4362 info_ptr += bytes_read;
4363 break;
4364 case DW_FORM_sec_offset:
4365 case DW_FORM_strp:
4366 info_ptr += cu->header.offset_size;
4367 break;
4368 case DW_FORM_exprloc:
4369 case DW_FORM_block:
4370 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4371 info_ptr += bytes_read;
4372 break;
4373 case DW_FORM_block1:
4374 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4375 break;
4376 case DW_FORM_block2:
4377 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4378 break;
4379 case DW_FORM_block4:
4380 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4381 break;
4382 case DW_FORM_sdata:
4383 case DW_FORM_udata:
4384 case DW_FORM_ref_udata:
4385 info_ptr = skip_leb128 (abfd, info_ptr);
4386 break;
4387 case DW_FORM_indirect:
4388 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4389 info_ptr += bytes_read;
4390 /* We need to continue parsing from here, so just go back to
4391 the top. */
4392 goto skip_attribute;
4393
4394 default:
4395 error (_("Dwarf Error: Cannot handle %s "
4396 "in DWARF reader [in module %s]"),
4397 dwarf_form_name (form),
4398 bfd_get_filename (abfd));
4399 }
4400 }
4401
4402 if (abbrev->has_children)
4403 return skip_children (buffer, info_ptr, cu);
4404 else
4405 return info_ptr;
4406 }
4407
4408 /* Locate ORIG_PDI's sibling.
4409 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4410 in BUFFER. */
4411
4412 static gdb_byte *
4413 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4414 gdb_byte *buffer, gdb_byte *info_ptr,
4415 bfd *abfd, struct dwarf2_cu *cu)
4416 {
4417 /* Do we know the sibling already? */
4418
4419 if (orig_pdi->sibling)
4420 return orig_pdi->sibling;
4421
4422 /* Are there any children to deal with? */
4423
4424 if (!orig_pdi->has_children)
4425 return info_ptr;
4426
4427 /* Skip the children the long way. */
4428
4429 return skip_children (buffer, info_ptr, cu);
4430 }
4431
4432 /* Expand this partial symbol table into a full symbol table. */
4433
4434 static void
4435 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4436 {
4437 if (pst != NULL)
4438 {
4439 if (pst->readin)
4440 {
4441 warning (_("bug: psymtab for %s is already read in."),
4442 pst->filename);
4443 }
4444 else
4445 {
4446 if (info_verbose)
4447 {
4448 printf_filtered (_("Reading in symbols for %s..."),
4449 pst->filename);
4450 gdb_flush (gdb_stdout);
4451 }
4452
4453 /* Restore our global data. */
4454 dwarf2_per_objfile = objfile_data (pst->objfile,
4455 dwarf2_objfile_data_key);
4456
4457 /* If this psymtab is constructed from a debug-only objfile, the
4458 has_section_at_zero flag will not necessarily be correct. We
4459 can get the correct value for this flag by looking at the data
4460 associated with the (presumably stripped) associated objfile. */
4461 if (pst->objfile->separate_debug_objfile_backlink)
4462 {
4463 struct dwarf2_per_objfile *dpo_backlink
4464 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4465 dwarf2_objfile_data_key);
4466
4467 dwarf2_per_objfile->has_section_at_zero
4468 = dpo_backlink->has_section_at_zero;
4469 }
4470
4471 dwarf2_per_objfile->reading_partial_symbols = 0;
4472
4473 psymtab_to_symtab_1 (pst);
4474
4475 /* Finish up the debug error message. */
4476 if (info_verbose)
4477 printf_filtered (_("done.\n"));
4478 }
4479 }
4480 }
4481 \f
4482 /* Reading in full CUs. */
4483
4484 /* Add PER_CU to the queue. */
4485
4486 static void
4487 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4488 {
4489 struct dwarf2_queue_item *item;
4490
4491 per_cu->queued = 1;
4492 item = xmalloc (sizeof (*item));
4493 item->per_cu = per_cu;
4494 item->next = NULL;
4495
4496 if (dwarf2_queue == NULL)
4497 dwarf2_queue = item;
4498 else
4499 dwarf2_queue_tail->next = item;
4500
4501 dwarf2_queue_tail = item;
4502 }
4503
4504 /* Process the queue. */
4505
4506 static void
4507 process_queue (void)
4508 {
4509 struct dwarf2_queue_item *item, *next_item;
4510
4511 /* The queue starts out with one item, but following a DIE reference
4512 may load a new CU, adding it to the end of the queue. */
4513 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4514 {
4515 if (dwarf2_per_objfile->using_index
4516 ? !item->per_cu->v.quick->symtab
4517 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4518 process_full_comp_unit (item->per_cu);
4519
4520 item->per_cu->queued = 0;
4521 next_item = item->next;
4522 xfree (item);
4523 }
4524
4525 dwarf2_queue_tail = NULL;
4526 }
4527
4528 /* Free all allocated queue entries. This function only releases anything if
4529 an error was thrown; if the queue was processed then it would have been
4530 freed as we went along. */
4531
4532 static void
4533 dwarf2_release_queue (void *dummy)
4534 {
4535 struct dwarf2_queue_item *item, *last;
4536
4537 item = dwarf2_queue;
4538 while (item)
4539 {
4540 /* Anything still marked queued is likely to be in an
4541 inconsistent state, so discard it. */
4542 if (item->per_cu->queued)
4543 {
4544 if (item->per_cu->cu != NULL)
4545 free_one_cached_comp_unit (item->per_cu->cu);
4546 item->per_cu->queued = 0;
4547 }
4548
4549 last = item;
4550 item = item->next;
4551 xfree (last);
4552 }
4553
4554 dwarf2_queue = dwarf2_queue_tail = NULL;
4555 }
4556
4557 /* Read in full symbols for PST, and anything it depends on. */
4558
4559 static void
4560 psymtab_to_symtab_1 (struct partial_symtab *pst)
4561 {
4562 struct dwarf2_per_cu_data *per_cu;
4563 struct cleanup *back_to;
4564 int i;
4565
4566 for (i = 0; i < pst->number_of_dependencies; i++)
4567 if (!pst->dependencies[i]->readin)
4568 {
4569 /* Inform about additional files that need to be read in. */
4570 if (info_verbose)
4571 {
4572 /* FIXME: i18n: Need to make this a single string. */
4573 fputs_filtered (" ", gdb_stdout);
4574 wrap_here ("");
4575 fputs_filtered ("and ", gdb_stdout);
4576 wrap_here ("");
4577 printf_filtered ("%s...", pst->dependencies[i]->filename);
4578 wrap_here (""); /* Flush output. */
4579 gdb_flush (gdb_stdout);
4580 }
4581 psymtab_to_symtab_1 (pst->dependencies[i]);
4582 }
4583
4584 per_cu = pst->read_symtab_private;
4585
4586 if (per_cu == NULL)
4587 {
4588 /* It's an include file, no symbols to read for it.
4589 Everything is in the parent symtab. */
4590 pst->readin = 1;
4591 return;
4592 }
4593
4594 dw2_do_instantiate_symtab (per_cu);
4595 }
4596
4597 /* Load the DIEs associated with PER_CU into memory. */
4598
4599 static void
4600 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4601 {
4602 struct objfile *objfile = per_cu->objfile;
4603 bfd *abfd = objfile->obfd;
4604 struct dwarf2_cu *cu;
4605 unsigned int offset;
4606 gdb_byte *info_ptr, *beg_of_comp_unit;
4607 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4608 struct attribute *attr;
4609 int read_cu = 0;
4610
4611 gdb_assert (! per_cu->debug_types_section);
4612
4613 /* Set local variables from the partial symbol table info. */
4614 offset = per_cu->offset;
4615
4616 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4617 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4618 beg_of_comp_unit = info_ptr;
4619
4620 if (per_cu->cu == NULL)
4621 {
4622 cu = xmalloc (sizeof (*cu));
4623 init_one_comp_unit (cu, per_cu);
4624
4625 read_cu = 1;
4626
4627 /* If an error occurs while loading, release our storage. */
4628 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4629
4630 /* Read in the comp_unit header. */
4631 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4632
4633 /* Skip dummy compilation units. */
4634 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4635 + dwarf2_per_objfile->info.size)
4636 || peek_abbrev_code (abfd, info_ptr) == 0)
4637 {
4638 do_cleanups (free_cu_cleanup);
4639 return;
4640 }
4641
4642 /* Complete the cu_header. */
4643 cu->header.offset = offset;
4644 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4645
4646 /* Read the abbrevs for this compilation unit. */
4647 dwarf2_read_abbrevs (cu);
4648 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4649
4650 /* Link this CU into read_in_chain. */
4651 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4652 dwarf2_per_objfile->read_in_chain = per_cu;
4653 }
4654 else
4655 {
4656 cu = per_cu->cu;
4657 info_ptr += cu->header.first_die_offset;
4658 }
4659
4660 cu->dies = read_comp_unit (info_ptr, cu);
4661
4662 /* We try not to read any attributes in this function, because not
4663 all CUs needed for references have been loaded yet, and symbol
4664 table processing isn't initialized. But we have to set the CU language,
4665 or we won't be able to build types correctly. */
4666 prepare_one_comp_unit (cu, cu->dies);
4667
4668 /* Similarly, if we do not read the producer, we can not apply
4669 producer-specific interpretation. */
4670 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4671 if (attr)
4672 cu->producer = DW_STRING (attr);
4673
4674 if (read_cu)
4675 {
4676 do_cleanups (free_abbrevs_cleanup);
4677
4678 /* We've successfully allocated this compilation unit. Let our
4679 caller clean it up when finished with it. */
4680 discard_cleanups (free_cu_cleanup);
4681 }
4682 }
4683
4684 /* Add a DIE to the delayed physname list. */
4685
4686 static void
4687 add_to_method_list (struct type *type, int fnfield_index, int index,
4688 const char *name, struct die_info *die,
4689 struct dwarf2_cu *cu)
4690 {
4691 struct delayed_method_info mi;
4692 mi.type = type;
4693 mi.fnfield_index = fnfield_index;
4694 mi.index = index;
4695 mi.name = name;
4696 mi.die = die;
4697 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4698 }
4699
4700 /* A cleanup for freeing the delayed method list. */
4701
4702 static void
4703 free_delayed_list (void *ptr)
4704 {
4705 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4706 if (cu->method_list != NULL)
4707 {
4708 VEC_free (delayed_method_info, cu->method_list);
4709 cu->method_list = NULL;
4710 }
4711 }
4712
4713 /* Compute the physnames of any methods on the CU's method list.
4714
4715 The computation of method physnames is delayed in order to avoid the
4716 (bad) condition that one of the method's formal parameters is of an as yet
4717 incomplete type. */
4718
4719 static void
4720 compute_delayed_physnames (struct dwarf2_cu *cu)
4721 {
4722 int i;
4723 struct delayed_method_info *mi;
4724 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4725 {
4726 const char *physname;
4727 struct fn_fieldlist *fn_flp
4728 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4729 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4730 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4731 }
4732 }
4733
4734 /* Generate full symbol information for PER_CU, whose DIEs have
4735 already been loaded into memory. */
4736
4737 static void
4738 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4739 {
4740 struct dwarf2_cu *cu = per_cu->cu;
4741 struct objfile *objfile = per_cu->objfile;
4742 CORE_ADDR lowpc, highpc;
4743 struct symtab *symtab;
4744 struct cleanup *back_to, *delayed_list_cleanup;
4745 CORE_ADDR baseaddr;
4746
4747 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4748
4749 buildsym_init ();
4750 back_to = make_cleanup (really_free_pendings, NULL);
4751 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4752
4753 cu->list_in_scope = &file_symbols;
4754
4755 /* Do line number decoding in read_file_scope () */
4756 process_die (cu->dies, cu);
4757
4758 /* Now that we have processed all the DIEs in the CU, all the types
4759 should be complete, and it should now be safe to compute all of the
4760 physnames. */
4761 compute_delayed_physnames (cu);
4762 do_cleanups (delayed_list_cleanup);
4763
4764 /* Some compilers don't define a DW_AT_high_pc attribute for the
4765 compilation unit. If the DW_AT_high_pc is missing, synthesize
4766 it, by scanning the DIE's below the compilation unit. */
4767 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4768
4769 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4770
4771 if (symtab != NULL)
4772 {
4773 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4774
4775 /* Set symtab language to language from DW_AT_language. If the
4776 compilation is from a C file generated by language preprocessors, do
4777 not set the language if it was already deduced by start_subfile. */
4778 if (!(cu->language == language_c && symtab->language != language_c))
4779 symtab->language = cu->language;
4780
4781 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4782 produce DW_AT_location with location lists but it can be possibly
4783 invalid without -fvar-tracking.
4784
4785 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4786 needed, it would be wrong due to missing DW_AT_producer there.
4787
4788 Still one can confuse GDB by using non-standard GCC compilation
4789 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4790 */
4791 if (cu->has_loclist && gcc_4_minor >= 0)
4792 symtab->locations_valid = 1;
4793
4794 if (gcc_4_minor >= 5)
4795 symtab->epilogue_unwind_valid = 1;
4796
4797 symtab->call_site_htab = cu->call_site_htab;
4798 }
4799
4800 if (dwarf2_per_objfile->using_index)
4801 per_cu->v.quick->symtab = symtab;
4802 else
4803 {
4804 struct partial_symtab *pst = per_cu->v.psymtab;
4805 pst->symtab = symtab;
4806 pst->readin = 1;
4807 }
4808
4809 do_cleanups (back_to);
4810 }
4811
4812 /* Process a die and its children. */
4813
4814 static void
4815 process_die (struct die_info *die, struct dwarf2_cu *cu)
4816 {
4817 switch (die->tag)
4818 {
4819 case DW_TAG_padding:
4820 break;
4821 case DW_TAG_compile_unit:
4822 read_file_scope (die, cu);
4823 break;
4824 case DW_TAG_type_unit:
4825 read_type_unit_scope (die, cu);
4826 break;
4827 case DW_TAG_subprogram:
4828 case DW_TAG_inlined_subroutine:
4829 read_func_scope (die, cu);
4830 break;
4831 case DW_TAG_lexical_block:
4832 case DW_TAG_try_block:
4833 case DW_TAG_catch_block:
4834 read_lexical_block_scope (die, cu);
4835 break;
4836 case DW_TAG_GNU_call_site:
4837 read_call_site_scope (die, cu);
4838 break;
4839 case DW_TAG_class_type:
4840 case DW_TAG_interface_type:
4841 case DW_TAG_structure_type:
4842 case DW_TAG_union_type:
4843 process_structure_scope (die, cu);
4844 break;
4845 case DW_TAG_enumeration_type:
4846 process_enumeration_scope (die, cu);
4847 break;
4848
4849 /* These dies have a type, but processing them does not create
4850 a symbol or recurse to process the children. Therefore we can
4851 read them on-demand through read_type_die. */
4852 case DW_TAG_subroutine_type:
4853 case DW_TAG_set_type:
4854 case DW_TAG_array_type:
4855 case DW_TAG_pointer_type:
4856 case DW_TAG_ptr_to_member_type:
4857 case DW_TAG_reference_type:
4858 case DW_TAG_string_type:
4859 break;
4860
4861 case DW_TAG_base_type:
4862 case DW_TAG_subrange_type:
4863 case DW_TAG_typedef:
4864 /* Add a typedef symbol for the type definition, if it has a
4865 DW_AT_name. */
4866 new_symbol (die, read_type_die (die, cu), cu);
4867 break;
4868 case DW_TAG_common_block:
4869 read_common_block (die, cu);
4870 break;
4871 case DW_TAG_common_inclusion:
4872 break;
4873 case DW_TAG_namespace:
4874 processing_has_namespace_info = 1;
4875 read_namespace (die, cu);
4876 break;
4877 case DW_TAG_module:
4878 processing_has_namespace_info = 1;
4879 read_module (die, cu);
4880 break;
4881 case DW_TAG_imported_declaration:
4882 case DW_TAG_imported_module:
4883 processing_has_namespace_info = 1;
4884 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4885 || cu->language != language_fortran))
4886 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4887 dwarf_tag_name (die->tag));
4888 read_import_statement (die, cu);
4889 break;
4890 default:
4891 new_symbol (die, NULL, cu);
4892 break;
4893 }
4894 }
4895
4896 /* A helper function for dwarf2_compute_name which determines whether DIE
4897 needs to have the name of the scope prepended to the name listed in the
4898 die. */
4899
4900 static int
4901 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4902 {
4903 struct attribute *attr;
4904
4905 switch (die->tag)
4906 {
4907 case DW_TAG_namespace:
4908 case DW_TAG_typedef:
4909 case DW_TAG_class_type:
4910 case DW_TAG_interface_type:
4911 case DW_TAG_structure_type:
4912 case DW_TAG_union_type:
4913 case DW_TAG_enumeration_type:
4914 case DW_TAG_enumerator:
4915 case DW_TAG_subprogram:
4916 case DW_TAG_member:
4917 return 1;
4918
4919 case DW_TAG_variable:
4920 case DW_TAG_constant:
4921 /* We only need to prefix "globally" visible variables. These include
4922 any variable marked with DW_AT_external or any variable that
4923 lives in a namespace. [Variables in anonymous namespaces
4924 require prefixing, but they are not DW_AT_external.] */
4925
4926 if (dwarf2_attr (die, DW_AT_specification, cu))
4927 {
4928 struct dwarf2_cu *spec_cu = cu;
4929
4930 return die_needs_namespace (die_specification (die, &spec_cu),
4931 spec_cu);
4932 }
4933
4934 attr = dwarf2_attr (die, DW_AT_external, cu);
4935 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4936 && die->parent->tag != DW_TAG_module)
4937 return 0;
4938 /* A variable in a lexical block of some kind does not need a
4939 namespace, even though in C++ such variables may be external
4940 and have a mangled name. */
4941 if (die->parent->tag == DW_TAG_lexical_block
4942 || die->parent->tag == DW_TAG_try_block
4943 || die->parent->tag == DW_TAG_catch_block
4944 || die->parent->tag == DW_TAG_subprogram)
4945 return 0;
4946 return 1;
4947
4948 default:
4949 return 0;
4950 }
4951 }
4952
4953 /* Retrieve the last character from a mem_file. */
4954
4955 static void
4956 do_ui_file_peek_last (void *object, const char *buffer, long length)
4957 {
4958 char *last_char_p = (char *) object;
4959
4960 if (length > 0)
4961 *last_char_p = buffer[length - 1];
4962 }
4963
4964 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4965 compute the physname for the object, which include a method's
4966 formal parameters (C++/Java) and return type (Java).
4967
4968 For Ada, return the DIE's linkage name rather than the fully qualified
4969 name. PHYSNAME is ignored..
4970
4971 The result is allocated on the objfile_obstack and canonicalized. */
4972
4973 static const char *
4974 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4975 int physname)
4976 {
4977 struct objfile *objfile = cu->objfile;
4978
4979 if (name == NULL)
4980 name = dwarf2_name (die, cu);
4981
4982 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4983 compute it by typename_concat inside GDB. */
4984 if (cu->language == language_ada
4985 || (cu->language == language_fortran && physname))
4986 {
4987 /* For Ada unit, we prefer the linkage name over the name, as
4988 the former contains the exported name, which the user expects
4989 to be able to reference. Ideally, we want the user to be able
4990 to reference this entity using either natural or linkage name,
4991 but we haven't started looking at this enhancement yet. */
4992 struct attribute *attr;
4993
4994 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4995 if (attr == NULL)
4996 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4997 if (attr && DW_STRING (attr))
4998 return DW_STRING (attr);
4999 }
5000
5001 /* These are the only languages we know how to qualify names in. */
5002 if (name != NULL
5003 && (cu->language == language_cplus || cu->language == language_java
5004 || cu->language == language_fortran))
5005 {
5006 if (die_needs_namespace (die, cu))
5007 {
5008 long length;
5009 const char *prefix;
5010 struct ui_file *buf;
5011
5012 prefix = determine_prefix (die, cu);
5013 buf = mem_fileopen ();
5014 if (*prefix != '\0')
5015 {
5016 char *prefixed_name = typename_concat (NULL, prefix, name,
5017 physname, cu);
5018
5019 fputs_unfiltered (prefixed_name, buf);
5020 xfree (prefixed_name);
5021 }
5022 else
5023 fputs_unfiltered (name, buf);
5024
5025 /* Template parameters may be specified in the DIE's DW_AT_name, or
5026 as children with DW_TAG_template_type_param or
5027 DW_TAG_value_type_param. If the latter, add them to the name
5028 here. If the name already has template parameters, then
5029 skip this step; some versions of GCC emit both, and
5030 it is more efficient to use the pre-computed name.
5031
5032 Something to keep in mind about this process: it is very
5033 unlikely, or in some cases downright impossible, to produce
5034 something that will match the mangled name of a function.
5035 If the definition of the function has the same debug info,
5036 we should be able to match up with it anyway. But fallbacks
5037 using the minimal symbol, for instance to find a method
5038 implemented in a stripped copy of libstdc++, will not work.
5039 If we do not have debug info for the definition, we will have to
5040 match them up some other way.
5041
5042 When we do name matching there is a related problem with function
5043 templates; two instantiated function templates are allowed to
5044 differ only by their return types, which we do not add here. */
5045
5046 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5047 {
5048 struct attribute *attr;
5049 struct die_info *child;
5050 int first = 1;
5051
5052 die->building_fullname = 1;
5053
5054 for (child = die->child; child != NULL; child = child->sibling)
5055 {
5056 struct type *type;
5057 long value;
5058 gdb_byte *bytes;
5059 struct dwarf2_locexpr_baton *baton;
5060 struct value *v;
5061
5062 if (child->tag != DW_TAG_template_type_param
5063 && child->tag != DW_TAG_template_value_param)
5064 continue;
5065
5066 if (first)
5067 {
5068 fputs_unfiltered ("<", buf);
5069 first = 0;
5070 }
5071 else
5072 fputs_unfiltered (", ", buf);
5073
5074 attr = dwarf2_attr (child, DW_AT_type, cu);
5075 if (attr == NULL)
5076 {
5077 complaint (&symfile_complaints,
5078 _("template parameter missing DW_AT_type"));
5079 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5080 continue;
5081 }
5082 type = die_type (child, cu);
5083
5084 if (child->tag == DW_TAG_template_type_param)
5085 {
5086 c_print_type (type, "", buf, -1, 0);
5087 continue;
5088 }
5089
5090 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5091 if (attr == NULL)
5092 {
5093 complaint (&symfile_complaints,
5094 _("template parameter missing "
5095 "DW_AT_const_value"));
5096 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5097 continue;
5098 }
5099
5100 dwarf2_const_value_attr (attr, type, name,
5101 &cu->comp_unit_obstack, cu,
5102 &value, &bytes, &baton);
5103
5104 if (TYPE_NOSIGN (type))
5105 /* GDB prints characters as NUMBER 'CHAR'. If that's
5106 changed, this can use value_print instead. */
5107 c_printchar (value, type, buf);
5108 else
5109 {
5110 struct value_print_options opts;
5111
5112 if (baton != NULL)
5113 v = dwarf2_evaluate_loc_desc (type, NULL,
5114 baton->data,
5115 baton->size,
5116 baton->per_cu);
5117 else if (bytes != NULL)
5118 {
5119 v = allocate_value (type);
5120 memcpy (value_contents_writeable (v), bytes,
5121 TYPE_LENGTH (type));
5122 }
5123 else
5124 v = value_from_longest (type, value);
5125
5126 /* Specify decimal so that we do not depend on
5127 the radix. */
5128 get_formatted_print_options (&opts, 'd');
5129 opts.raw = 1;
5130 value_print (v, buf, &opts);
5131 release_value (v);
5132 value_free (v);
5133 }
5134 }
5135
5136 die->building_fullname = 0;
5137
5138 if (!first)
5139 {
5140 /* Close the argument list, with a space if necessary
5141 (nested templates). */
5142 char last_char = '\0';
5143 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5144 if (last_char == '>')
5145 fputs_unfiltered (" >", buf);
5146 else
5147 fputs_unfiltered (">", buf);
5148 }
5149 }
5150
5151 /* For Java and C++ methods, append formal parameter type
5152 information, if PHYSNAME. */
5153
5154 if (physname && die->tag == DW_TAG_subprogram
5155 && (cu->language == language_cplus
5156 || cu->language == language_java))
5157 {
5158 struct type *type = read_type_die (die, cu);
5159
5160 c_type_print_args (type, buf, 1, cu->language);
5161
5162 if (cu->language == language_java)
5163 {
5164 /* For java, we must append the return type to method
5165 names. */
5166 if (die->tag == DW_TAG_subprogram)
5167 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5168 0, 0);
5169 }
5170 else if (cu->language == language_cplus)
5171 {
5172 /* Assume that an artificial first parameter is
5173 "this", but do not crash if it is not. RealView
5174 marks unnamed (and thus unused) parameters as
5175 artificial; there is no way to differentiate
5176 the two cases. */
5177 if (TYPE_NFIELDS (type) > 0
5178 && TYPE_FIELD_ARTIFICIAL (type, 0)
5179 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5180 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5181 0))))
5182 fputs_unfiltered (" const", buf);
5183 }
5184 }
5185
5186 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5187 &length);
5188 ui_file_delete (buf);
5189
5190 if (cu->language == language_cplus)
5191 {
5192 char *cname
5193 = dwarf2_canonicalize_name (name, cu,
5194 &objfile->objfile_obstack);
5195
5196 if (cname != NULL)
5197 name = cname;
5198 }
5199 }
5200 }
5201
5202 return name;
5203 }
5204
5205 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5206 If scope qualifiers are appropriate they will be added. The result
5207 will be allocated on the objfile_obstack, or NULL if the DIE does
5208 not have a name. NAME may either be from a previous call to
5209 dwarf2_name or NULL.
5210
5211 The output string will be canonicalized (if C++/Java). */
5212
5213 static const char *
5214 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5215 {
5216 return dwarf2_compute_name (name, die, cu, 0);
5217 }
5218
5219 /* Construct a physname for the given DIE in CU. NAME may either be
5220 from a previous call to dwarf2_name or NULL. The result will be
5221 allocated on the objfile_objstack or NULL if the DIE does not have a
5222 name.
5223
5224 The output string will be canonicalized (if C++/Java). */
5225
5226 static const char *
5227 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5228 {
5229 struct objfile *objfile = cu->objfile;
5230 struct attribute *attr;
5231 const char *retval, *mangled = NULL, *canon = NULL;
5232 struct cleanup *back_to;
5233 int need_copy = 1;
5234
5235 /* In this case dwarf2_compute_name is just a shortcut not building anything
5236 on its own. */
5237 if (!die_needs_namespace (die, cu))
5238 return dwarf2_compute_name (name, die, cu, 1);
5239
5240 back_to = make_cleanup (null_cleanup, NULL);
5241
5242 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5243 if (!attr)
5244 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5245
5246 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5247 has computed. */
5248 if (attr && DW_STRING (attr))
5249 {
5250 char *demangled;
5251
5252 mangled = DW_STRING (attr);
5253
5254 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5255 type. It is easier for GDB users to search for such functions as
5256 `name(params)' than `long name(params)'. In such case the minimal
5257 symbol names do not match the full symbol names but for template
5258 functions there is never a need to look up their definition from their
5259 declaration so the only disadvantage remains the minimal symbol
5260 variant `long name(params)' does not have the proper inferior type.
5261 */
5262
5263 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5264 | (cu->language == language_java
5265 ? DMGL_JAVA | DMGL_RET_POSTFIX
5266 : DMGL_RET_DROP)));
5267 if (demangled)
5268 {
5269 make_cleanup (xfree, demangled);
5270 canon = demangled;
5271 }
5272 else
5273 {
5274 canon = mangled;
5275 need_copy = 0;
5276 }
5277 }
5278
5279 if (canon == NULL || check_physname)
5280 {
5281 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5282
5283 if (canon != NULL && strcmp (physname, canon) != 0)
5284 {
5285 /* It may not mean a bug in GDB. The compiler could also
5286 compute DW_AT_linkage_name incorrectly. But in such case
5287 GDB would need to be bug-to-bug compatible. */
5288
5289 complaint (&symfile_complaints,
5290 _("Computed physname <%s> does not match demangled <%s> "
5291 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5292 physname, canon, mangled, die->offset, objfile->name);
5293
5294 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5295 is available here - over computed PHYSNAME. It is safer
5296 against both buggy GDB and buggy compilers. */
5297
5298 retval = canon;
5299 }
5300 else
5301 {
5302 retval = physname;
5303 need_copy = 0;
5304 }
5305 }
5306 else
5307 retval = canon;
5308
5309 if (need_copy)
5310 retval = obsavestring (retval, strlen (retval),
5311 &objfile->objfile_obstack);
5312
5313 do_cleanups (back_to);
5314 return retval;
5315 }
5316
5317 /* Read the import statement specified by the given die and record it. */
5318
5319 static void
5320 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5321 {
5322 struct objfile *objfile = cu->objfile;
5323 struct attribute *import_attr;
5324 struct die_info *imported_die, *child_die;
5325 struct dwarf2_cu *imported_cu;
5326 const char *imported_name;
5327 const char *imported_name_prefix;
5328 const char *canonical_name;
5329 const char *import_alias;
5330 const char *imported_declaration = NULL;
5331 const char *import_prefix;
5332 VEC (const_char_ptr) *excludes = NULL;
5333 struct cleanup *cleanups;
5334
5335 char *temp;
5336
5337 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5338 if (import_attr == NULL)
5339 {
5340 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5341 dwarf_tag_name (die->tag));
5342 return;
5343 }
5344
5345 imported_cu = cu;
5346 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5347 imported_name = dwarf2_name (imported_die, imported_cu);
5348 if (imported_name == NULL)
5349 {
5350 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5351
5352 The import in the following code:
5353 namespace A
5354 {
5355 typedef int B;
5356 }
5357
5358 int main ()
5359 {
5360 using A::B;
5361 B b;
5362 return b;
5363 }
5364
5365 ...
5366 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5367 <52> DW_AT_decl_file : 1
5368 <53> DW_AT_decl_line : 6
5369 <54> DW_AT_import : <0x75>
5370 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5371 <59> DW_AT_name : B
5372 <5b> DW_AT_decl_file : 1
5373 <5c> DW_AT_decl_line : 2
5374 <5d> DW_AT_type : <0x6e>
5375 ...
5376 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5377 <76> DW_AT_byte_size : 4
5378 <77> DW_AT_encoding : 5 (signed)
5379
5380 imports the wrong die ( 0x75 instead of 0x58 ).
5381 This case will be ignored until the gcc bug is fixed. */
5382 return;
5383 }
5384
5385 /* Figure out the local name after import. */
5386 import_alias = dwarf2_name (die, cu);
5387
5388 /* Figure out where the statement is being imported to. */
5389 import_prefix = determine_prefix (die, cu);
5390
5391 /* Figure out what the scope of the imported die is and prepend it
5392 to the name of the imported die. */
5393 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5394
5395 if (imported_die->tag != DW_TAG_namespace
5396 && imported_die->tag != DW_TAG_module)
5397 {
5398 imported_declaration = imported_name;
5399 canonical_name = imported_name_prefix;
5400 }
5401 else if (strlen (imported_name_prefix) > 0)
5402 {
5403 temp = alloca (strlen (imported_name_prefix)
5404 + 2 + strlen (imported_name) + 1);
5405 strcpy (temp, imported_name_prefix);
5406 strcat (temp, "::");
5407 strcat (temp, imported_name);
5408 canonical_name = temp;
5409 }
5410 else
5411 canonical_name = imported_name;
5412
5413 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5414
5415 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5416 for (child_die = die->child; child_die && child_die->tag;
5417 child_die = sibling_die (child_die))
5418 {
5419 /* DWARF-4: A Fortran use statement with a “rename list” may be
5420 represented by an imported module entry with an import attribute
5421 referring to the module and owned entries corresponding to those
5422 entities that are renamed as part of being imported. */
5423
5424 if (child_die->tag != DW_TAG_imported_declaration)
5425 {
5426 complaint (&symfile_complaints,
5427 _("child DW_TAG_imported_declaration expected "
5428 "- DIE at 0x%x [in module %s]"),
5429 child_die->offset, objfile->name);
5430 continue;
5431 }
5432
5433 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5434 if (import_attr == NULL)
5435 {
5436 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5437 dwarf_tag_name (child_die->tag));
5438 continue;
5439 }
5440
5441 imported_cu = cu;
5442 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5443 &imported_cu);
5444 imported_name = dwarf2_name (imported_die, imported_cu);
5445 if (imported_name == NULL)
5446 {
5447 complaint (&symfile_complaints,
5448 _("child DW_TAG_imported_declaration has unknown "
5449 "imported name - DIE at 0x%x [in module %s]"),
5450 child_die->offset, objfile->name);
5451 continue;
5452 }
5453
5454 VEC_safe_push (const_char_ptr, excludes, imported_name);
5455
5456 process_die (child_die, cu);
5457 }
5458
5459 cp_add_using_directive (import_prefix,
5460 canonical_name,
5461 import_alias,
5462 imported_declaration,
5463 excludes,
5464 &objfile->objfile_obstack);
5465
5466 do_cleanups (cleanups);
5467 }
5468
5469 /* Cleanup function for read_file_scope. */
5470
5471 static void
5472 free_cu_line_header (void *arg)
5473 {
5474 struct dwarf2_cu *cu = arg;
5475
5476 free_line_header (cu->line_header);
5477 cu->line_header = NULL;
5478 }
5479
5480 static void
5481 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5482 char **name, char **comp_dir)
5483 {
5484 struct attribute *attr;
5485
5486 *name = NULL;
5487 *comp_dir = NULL;
5488
5489 /* Find the filename. Do not use dwarf2_name here, since the filename
5490 is not a source language identifier. */
5491 attr = dwarf2_attr (die, DW_AT_name, cu);
5492 if (attr)
5493 {
5494 *name = DW_STRING (attr);
5495 }
5496
5497 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5498 if (attr)
5499 *comp_dir = DW_STRING (attr);
5500 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5501 {
5502 *comp_dir = ldirname (*name);
5503 if (*comp_dir != NULL)
5504 make_cleanup (xfree, *comp_dir);
5505 }
5506 if (*comp_dir != NULL)
5507 {
5508 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5509 directory, get rid of it. */
5510 char *cp = strchr (*comp_dir, ':');
5511
5512 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5513 *comp_dir = cp + 1;
5514 }
5515
5516 if (*name == NULL)
5517 *name = "<unknown>";
5518 }
5519
5520 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5521 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5522 COMP_DIR is the compilation directory.
5523 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5524
5525 static void
5526 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5527 const char *comp_dir, int want_line_info)
5528 {
5529 struct attribute *attr;
5530 struct objfile *objfile = cu->objfile;
5531 bfd *abfd = objfile->obfd;
5532
5533 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5534 if (attr)
5535 {
5536 unsigned int line_offset = DW_UNSND (attr);
5537 struct line_header *line_header
5538 = dwarf_decode_line_header (line_offset, abfd, cu);
5539
5540 if (line_header)
5541 {
5542 cu->line_header = line_header;
5543 make_cleanup (free_cu_line_header, cu);
5544 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5545 }
5546 }
5547 }
5548
5549 /* Process DW_TAG_compile_unit. */
5550
5551 static void
5552 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5553 {
5554 struct objfile *objfile = cu->objfile;
5555 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5556 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5557 CORE_ADDR highpc = ((CORE_ADDR) 0);
5558 struct attribute *attr;
5559 char *name = NULL;
5560 char *comp_dir = NULL;
5561 struct die_info *child_die;
5562 bfd *abfd = objfile->obfd;
5563 CORE_ADDR baseaddr;
5564
5565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5566
5567 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5568
5569 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5570 from finish_block. */
5571 if (lowpc == ((CORE_ADDR) -1))
5572 lowpc = highpc;
5573 lowpc += baseaddr;
5574 highpc += baseaddr;
5575
5576 find_file_and_directory (die, cu, &name, &comp_dir);
5577
5578 attr = dwarf2_attr (die, DW_AT_language, cu);
5579 if (attr)
5580 {
5581 set_cu_language (DW_UNSND (attr), cu);
5582 }
5583
5584 attr = dwarf2_attr (die, DW_AT_producer, cu);
5585 if (attr)
5586 cu->producer = DW_STRING (attr);
5587
5588 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5589 standardised yet. As a workaround for the language detection we fall
5590 back to the DW_AT_producer string. */
5591 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5592 cu->language = language_opencl;
5593
5594 /* We assume that we're processing GCC output. */
5595 processing_gcc_compilation = 2;
5596
5597 processing_has_namespace_info = 0;
5598
5599 start_symtab (name, comp_dir, lowpc);
5600 record_debugformat ("DWARF 2");
5601 record_producer (cu->producer);
5602
5603 /* Decode line number information if present. We do this before
5604 processing child DIEs, so that the line header table is available
5605 for DW_AT_decl_file. */
5606 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5607
5608 /* Process all dies in compilation unit. */
5609 if (die->child != NULL)
5610 {
5611 child_die = die->child;
5612 while (child_die && child_die->tag)
5613 {
5614 process_die (child_die, cu);
5615 child_die = sibling_die (child_die);
5616 }
5617 }
5618
5619 /* Decode macro information, if present. Dwarf 2 macro information
5620 refers to information in the line number info statement program
5621 header, so we can only read it if we've read the header
5622 successfully. */
5623 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5624 if (attr && cu->line_header)
5625 {
5626 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5627 complaint (&symfile_complaints,
5628 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5629
5630 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5631 comp_dir, abfd, cu,
5632 &dwarf2_per_objfile->macro, 1);
5633 }
5634 else
5635 {
5636 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5637 if (attr && cu->line_header)
5638 {
5639 unsigned int macro_offset = DW_UNSND (attr);
5640
5641 dwarf_decode_macros (cu->line_header, macro_offset,
5642 comp_dir, abfd, cu,
5643 &dwarf2_per_objfile->macinfo, 0);
5644 }
5645 }
5646
5647 do_cleanups (back_to);
5648 }
5649
5650 /* Process DW_TAG_type_unit.
5651 For TUs we want to skip the first top level sibling if it's not the
5652 actual type being defined by this TU. In this case the first top
5653 level sibling is there to provide context only. */
5654
5655 static void
5656 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5657 {
5658 struct objfile *objfile = cu->objfile;
5659 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5660 CORE_ADDR lowpc;
5661 struct attribute *attr;
5662 char *name = NULL;
5663 char *comp_dir = NULL;
5664 struct die_info *child_die;
5665 bfd *abfd = objfile->obfd;
5666
5667 /* start_symtab needs a low pc, but we don't really have one.
5668 Do what read_file_scope would do in the absence of such info. */
5669 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5670
5671 /* Find the filename. Do not use dwarf2_name here, since the filename
5672 is not a source language identifier. */
5673 attr = dwarf2_attr (die, DW_AT_name, cu);
5674 if (attr)
5675 name = DW_STRING (attr);
5676
5677 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5678 if (attr)
5679 comp_dir = DW_STRING (attr);
5680 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5681 {
5682 comp_dir = ldirname (name);
5683 if (comp_dir != NULL)
5684 make_cleanup (xfree, comp_dir);
5685 }
5686
5687 if (name == NULL)
5688 name = "<unknown>";
5689
5690 attr = dwarf2_attr (die, DW_AT_language, cu);
5691 if (attr)
5692 set_cu_language (DW_UNSND (attr), cu);
5693
5694 /* This isn't technically needed today. It is done for symmetry
5695 with read_file_scope. */
5696 attr = dwarf2_attr (die, DW_AT_producer, cu);
5697 if (attr)
5698 cu->producer = DW_STRING (attr);
5699
5700 /* We assume that we're processing GCC output. */
5701 processing_gcc_compilation = 2;
5702
5703 processing_has_namespace_info = 0;
5704
5705 start_symtab (name, comp_dir, lowpc);
5706 record_debugformat ("DWARF 2");
5707 record_producer (cu->producer);
5708
5709 /* Decode line number information if present. We do this before
5710 processing child DIEs, so that the line header table is available
5711 for DW_AT_decl_file.
5712 We don't need the pc/line-number mapping for type units. */
5713 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5714
5715 /* Process the dies in the type unit. */
5716 if (die->child == NULL)
5717 {
5718 dump_die_for_error (die);
5719 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5720 bfd_get_filename (abfd));
5721 }
5722
5723 child_die = die->child;
5724
5725 while (child_die && child_die->tag)
5726 {
5727 process_die (child_die, cu);
5728
5729 child_die = sibling_die (child_die);
5730 }
5731
5732 do_cleanups (back_to);
5733 }
5734
5735 /* qsort helper for inherit_abstract_dies. */
5736
5737 static int
5738 unsigned_int_compar (const void *ap, const void *bp)
5739 {
5740 unsigned int a = *(unsigned int *) ap;
5741 unsigned int b = *(unsigned int *) bp;
5742
5743 return (a > b) - (b > a);
5744 }
5745
5746 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5747 Inherit only the children of the DW_AT_abstract_origin DIE not being
5748 already referenced by DW_AT_abstract_origin from the children of the
5749 current DIE. */
5750
5751 static void
5752 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5753 {
5754 struct die_info *child_die;
5755 unsigned die_children_count;
5756 /* CU offsets which were referenced by children of the current DIE. */
5757 unsigned *offsets;
5758 unsigned *offsets_end, *offsetp;
5759 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5760 struct die_info *origin_die;
5761 /* Iterator of the ORIGIN_DIE children. */
5762 struct die_info *origin_child_die;
5763 struct cleanup *cleanups;
5764 struct attribute *attr;
5765 struct dwarf2_cu *origin_cu;
5766 struct pending **origin_previous_list_in_scope;
5767
5768 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5769 if (!attr)
5770 return;
5771
5772 /* Note that following die references may follow to a die in a
5773 different cu. */
5774
5775 origin_cu = cu;
5776 origin_die = follow_die_ref (die, attr, &origin_cu);
5777
5778 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5779 symbols in. */
5780 origin_previous_list_in_scope = origin_cu->list_in_scope;
5781 origin_cu->list_in_scope = cu->list_in_scope;
5782
5783 if (die->tag != origin_die->tag
5784 && !(die->tag == DW_TAG_inlined_subroutine
5785 && origin_die->tag == DW_TAG_subprogram))
5786 complaint (&symfile_complaints,
5787 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5788 die->offset, origin_die->offset);
5789
5790 child_die = die->child;
5791 die_children_count = 0;
5792 while (child_die && child_die->tag)
5793 {
5794 child_die = sibling_die (child_die);
5795 die_children_count++;
5796 }
5797 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5798 cleanups = make_cleanup (xfree, offsets);
5799
5800 offsets_end = offsets;
5801 child_die = die->child;
5802 while (child_die && child_die->tag)
5803 {
5804 /* For each CHILD_DIE, find the corresponding child of
5805 ORIGIN_DIE. If there is more than one layer of
5806 DW_AT_abstract_origin, follow them all; there shouldn't be,
5807 but GCC versions at least through 4.4 generate this (GCC PR
5808 40573). */
5809 struct die_info *child_origin_die = child_die;
5810 struct dwarf2_cu *child_origin_cu = cu;
5811
5812 while (1)
5813 {
5814 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5815 child_origin_cu);
5816 if (attr == NULL)
5817 break;
5818 child_origin_die = follow_die_ref (child_origin_die, attr,
5819 &child_origin_cu);
5820 }
5821
5822 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5823 counterpart may exist. */
5824 if (child_origin_die != child_die)
5825 {
5826 if (child_die->tag != child_origin_die->tag
5827 && !(child_die->tag == DW_TAG_inlined_subroutine
5828 && child_origin_die->tag == DW_TAG_subprogram))
5829 complaint (&symfile_complaints,
5830 _("Child DIE 0x%x and its abstract origin 0x%x have "
5831 "different tags"), child_die->offset,
5832 child_origin_die->offset);
5833 if (child_origin_die->parent != origin_die)
5834 complaint (&symfile_complaints,
5835 _("Child DIE 0x%x and its abstract origin 0x%x have "
5836 "different parents"), child_die->offset,
5837 child_origin_die->offset);
5838 else
5839 *offsets_end++ = child_origin_die->offset;
5840 }
5841 child_die = sibling_die (child_die);
5842 }
5843 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5844 unsigned_int_compar);
5845 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5846 if (offsetp[-1] == *offsetp)
5847 complaint (&symfile_complaints,
5848 _("Multiple children of DIE 0x%x refer "
5849 "to DIE 0x%x as their abstract origin"),
5850 die->offset, *offsetp);
5851
5852 offsetp = offsets;
5853 origin_child_die = origin_die->child;
5854 while (origin_child_die && origin_child_die->tag)
5855 {
5856 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5857 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5858 offsetp++;
5859 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5860 {
5861 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5862 process_die (origin_child_die, origin_cu);
5863 }
5864 origin_child_die = sibling_die (origin_child_die);
5865 }
5866 origin_cu->list_in_scope = origin_previous_list_in_scope;
5867
5868 do_cleanups (cleanups);
5869 }
5870
5871 static void
5872 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5873 {
5874 struct objfile *objfile = cu->objfile;
5875 struct context_stack *new;
5876 CORE_ADDR lowpc;
5877 CORE_ADDR highpc;
5878 struct die_info *child_die;
5879 struct attribute *attr, *call_line, *call_file;
5880 char *name;
5881 CORE_ADDR baseaddr;
5882 struct block *block;
5883 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5884 VEC (symbolp) *template_args = NULL;
5885 struct template_symbol *templ_func = NULL;
5886
5887 if (inlined_func)
5888 {
5889 /* If we do not have call site information, we can't show the
5890 caller of this inlined function. That's too confusing, so
5891 only use the scope for local variables. */
5892 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5893 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5894 if (call_line == NULL || call_file == NULL)
5895 {
5896 read_lexical_block_scope (die, cu);
5897 return;
5898 }
5899 }
5900
5901 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5902
5903 name = dwarf2_name (die, cu);
5904
5905 /* Ignore functions with missing or empty names. These are actually
5906 illegal according to the DWARF standard. */
5907 if (name == NULL)
5908 {
5909 complaint (&symfile_complaints,
5910 _("missing name for subprogram DIE at %d"), die->offset);
5911 return;
5912 }
5913
5914 /* Ignore functions with missing or invalid low and high pc attributes. */
5915 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5916 {
5917 attr = dwarf2_attr (die, DW_AT_external, cu);
5918 if (!attr || !DW_UNSND (attr))
5919 complaint (&symfile_complaints,
5920 _("cannot get low and high bounds "
5921 "for subprogram DIE at %d"),
5922 die->offset);
5923 return;
5924 }
5925
5926 lowpc += baseaddr;
5927 highpc += baseaddr;
5928
5929 /* If we have any template arguments, then we must allocate a
5930 different sort of symbol. */
5931 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5932 {
5933 if (child_die->tag == DW_TAG_template_type_param
5934 || child_die->tag == DW_TAG_template_value_param)
5935 {
5936 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5937 struct template_symbol);
5938 templ_func->base.is_cplus_template_function = 1;
5939 break;
5940 }
5941 }
5942
5943 new = push_context (0, lowpc);
5944 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5945 (struct symbol *) templ_func);
5946
5947 /* If there is a location expression for DW_AT_frame_base, record
5948 it. */
5949 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5950 if (attr)
5951 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5952 expression is being recorded directly in the function's symbol
5953 and not in a separate frame-base object. I guess this hack is
5954 to avoid adding some sort of frame-base adjunct/annex to the
5955 function's symbol :-(. The problem with doing this is that it
5956 results in a function symbol with a location expression that
5957 has nothing to do with the location of the function, ouch! The
5958 relationship should be: a function's symbol has-a frame base; a
5959 frame-base has-a location expression. */
5960 dwarf2_symbol_mark_computed (attr, new->name, cu);
5961
5962 cu->list_in_scope = &local_symbols;
5963
5964 if (die->child != NULL)
5965 {
5966 child_die = die->child;
5967 while (child_die && child_die->tag)
5968 {
5969 if (child_die->tag == DW_TAG_template_type_param
5970 || child_die->tag == DW_TAG_template_value_param)
5971 {
5972 struct symbol *arg = new_symbol (child_die, NULL, cu);
5973
5974 if (arg != NULL)
5975 VEC_safe_push (symbolp, template_args, arg);
5976 }
5977 else
5978 process_die (child_die, cu);
5979 child_die = sibling_die (child_die);
5980 }
5981 }
5982
5983 inherit_abstract_dies (die, cu);
5984
5985 /* If we have a DW_AT_specification, we might need to import using
5986 directives from the context of the specification DIE. See the
5987 comment in determine_prefix. */
5988 if (cu->language == language_cplus
5989 && dwarf2_attr (die, DW_AT_specification, cu))
5990 {
5991 struct dwarf2_cu *spec_cu = cu;
5992 struct die_info *spec_die = die_specification (die, &spec_cu);
5993
5994 while (spec_die)
5995 {
5996 child_die = spec_die->child;
5997 while (child_die && child_die->tag)
5998 {
5999 if (child_die->tag == DW_TAG_imported_module)
6000 process_die (child_die, spec_cu);
6001 child_die = sibling_die (child_die);
6002 }
6003
6004 /* In some cases, GCC generates specification DIEs that
6005 themselves contain DW_AT_specification attributes. */
6006 spec_die = die_specification (spec_die, &spec_cu);
6007 }
6008 }
6009
6010 new = pop_context ();
6011 /* Make a block for the local symbols within. */
6012 block = finish_block (new->name, &local_symbols, new->old_blocks,
6013 lowpc, highpc, objfile);
6014
6015 /* For C++, set the block's scope. */
6016 if (cu->language == language_cplus || cu->language == language_fortran)
6017 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6018 determine_prefix (die, cu),
6019 processing_has_namespace_info);
6020
6021 /* If we have address ranges, record them. */
6022 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6023
6024 /* Attach template arguments to function. */
6025 if (! VEC_empty (symbolp, template_args))
6026 {
6027 gdb_assert (templ_func != NULL);
6028
6029 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6030 templ_func->template_arguments
6031 = obstack_alloc (&objfile->objfile_obstack,
6032 (templ_func->n_template_arguments
6033 * sizeof (struct symbol *)));
6034 memcpy (templ_func->template_arguments,
6035 VEC_address (symbolp, template_args),
6036 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6037 VEC_free (symbolp, template_args);
6038 }
6039
6040 /* In C++, we can have functions nested inside functions (e.g., when
6041 a function declares a class that has methods). This means that
6042 when we finish processing a function scope, we may need to go
6043 back to building a containing block's symbol lists. */
6044 local_symbols = new->locals;
6045 param_symbols = new->params;
6046 using_directives = new->using_directives;
6047
6048 /* If we've finished processing a top-level function, subsequent
6049 symbols go in the file symbol list. */
6050 if (outermost_context_p ())
6051 cu->list_in_scope = &file_symbols;
6052 }
6053
6054 /* Process all the DIES contained within a lexical block scope. Start
6055 a new scope, process the dies, and then close the scope. */
6056
6057 static void
6058 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6059 {
6060 struct objfile *objfile = cu->objfile;
6061 struct context_stack *new;
6062 CORE_ADDR lowpc, highpc;
6063 struct die_info *child_die;
6064 CORE_ADDR baseaddr;
6065
6066 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6067
6068 /* Ignore blocks with missing or invalid low and high pc attributes. */
6069 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6070 as multiple lexical blocks? Handling children in a sane way would
6071 be nasty. Might be easier to properly extend generic blocks to
6072 describe ranges. */
6073 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6074 return;
6075 lowpc += baseaddr;
6076 highpc += baseaddr;
6077
6078 push_context (0, lowpc);
6079 if (die->child != NULL)
6080 {
6081 child_die = die->child;
6082 while (child_die && child_die->tag)
6083 {
6084 process_die (child_die, cu);
6085 child_die = sibling_die (child_die);
6086 }
6087 }
6088 new = pop_context ();
6089
6090 if (local_symbols != NULL || using_directives != NULL)
6091 {
6092 struct block *block
6093 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6094 highpc, objfile);
6095
6096 /* Note that recording ranges after traversing children, as we
6097 do here, means that recording a parent's ranges entails
6098 walking across all its children's ranges as they appear in
6099 the address map, which is quadratic behavior.
6100
6101 It would be nicer to record the parent's ranges before
6102 traversing its children, simply overriding whatever you find
6103 there. But since we don't even decide whether to create a
6104 block until after we've traversed its children, that's hard
6105 to do. */
6106 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6107 }
6108 local_symbols = new->locals;
6109 using_directives = new->using_directives;
6110 }
6111
6112 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6113
6114 static void
6115 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6116 {
6117 struct objfile *objfile = cu->objfile;
6118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6119 CORE_ADDR pc, baseaddr;
6120 struct attribute *attr;
6121 struct call_site *call_site, call_site_local;
6122 void **slot;
6123 int nparams;
6124 struct die_info *child_die;
6125
6126 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6127
6128 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6129 if (!attr)
6130 {
6131 complaint (&symfile_complaints,
6132 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6133 "DIE 0x%x [in module %s]"),
6134 die->offset, objfile->name);
6135 return;
6136 }
6137 pc = DW_ADDR (attr) + baseaddr;
6138
6139 if (cu->call_site_htab == NULL)
6140 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6141 NULL, &objfile->objfile_obstack,
6142 hashtab_obstack_allocate, NULL);
6143 call_site_local.pc = pc;
6144 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6145 if (*slot != NULL)
6146 {
6147 complaint (&symfile_complaints,
6148 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6149 "DIE 0x%x [in module %s]"),
6150 paddress (gdbarch, pc), die->offset, objfile->name);
6151 return;
6152 }
6153
6154 /* Count parameters at the caller. */
6155
6156 nparams = 0;
6157 for (child_die = die->child; child_die && child_die->tag;
6158 child_die = sibling_die (child_die))
6159 {
6160 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6161 {
6162 complaint (&symfile_complaints,
6163 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6164 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6165 child_die->tag, child_die->offset, objfile->name);
6166 continue;
6167 }
6168
6169 nparams++;
6170 }
6171
6172 call_site = obstack_alloc (&objfile->objfile_obstack,
6173 (sizeof (*call_site)
6174 + (sizeof (*call_site->parameter)
6175 * (nparams - 1))));
6176 *slot = call_site;
6177 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6178 call_site->pc = pc;
6179
6180 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6181 {
6182 struct die_info *func_die;
6183
6184 /* Skip also over DW_TAG_inlined_subroutine. */
6185 for (func_die = die->parent;
6186 func_die && func_die->tag != DW_TAG_subprogram
6187 && func_die->tag != DW_TAG_subroutine_type;
6188 func_die = func_die->parent);
6189
6190 /* DW_AT_GNU_all_call_sites is a superset
6191 of DW_AT_GNU_all_tail_call_sites. */
6192 if (func_die
6193 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6194 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6195 {
6196 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6197 not complete. But keep CALL_SITE for look ups via call_site_htab,
6198 both the initial caller containing the real return address PC and
6199 the final callee containing the current PC of a chain of tail
6200 calls do not need to have the tail call list complete. But any
6201 function candidate for a virtual tail call frame searched via
6202 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6203 determined unambiguously. */
6204 }
6205 else
6206 {
6207 struct type *func_type = NULL;
6208
6209 if (func_die)
6210 func_type = get_die_type (func_die, cu);
6211 if (func_type != NULL)
6212 {
6213 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6214
6215 /* Enlist this call site to the function. */
6216 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6217 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6218 }
6219 else
6220 complaint (&symfile_complaints,
6221 _("Cannot find function owning DW_TAG_GNU_call_site "
6222 "DIE 0x%x [in module %s]"),
6223 die->offset, objfile->name);
6224 }
6225 }
6226
6227 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6228 if (attr == NULL)
6229 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6230 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6231 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6232 /* Keep NULL DWARF_BLOCK. */;
6233 else if (attr_form_is_block (attr))
6234 {
6235 struct dwarf2_locexpr_baton *dlbaton;
6236
6237 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6238 dlbaton->data = DW_BLOCK (attr)->data;
6239 dlbaton->size = DW_BLOCK (attr)->size;
6240 dlbaton->per_cu = cu->per_cu;
6241
6242 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6243 }
6244 else if (is_ref_attr (attr))
6245 {
6246 struct dwarf2_cu *target_cu = cu;
6247 struct die_info *target_die;
6248
6249 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6250 gdb_assert (target_cu->objfile == objfile);
6251 if (die_is_declaration (target_die, target_cu))
6252 {
6253 const char *target_physname;
6254
6255 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6256 if (target_physname == NULL)
6257 complaint (&symfile_complaints,
6258 _("DW_AT_GNU_call_site_target target DIE has invalid "
6259 "physname, for referencing DIE 0x%x [in module %s]"),
6260 die->offset, objfile->name);
6261 else
6262 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6263 }
6264 else
6265 {
6266 CORE_ADDR lowpc;
6267
6268 /* DW_AT_entry_pc should be preferred. */
6269 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6270 complaint (&symfile_complaints,
6271 _("DW_AT_GNU_call_site_target target DIE has invalid "
6272 "low pc, for referencing DIE 0x%x [in module %s]"),
6273 die->offset, objfile->name);
6274 else
6275 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6276 }
6277 }
6278 else
6279 complaint (&symfile_complaints,
6280 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6281 "block nor reference, for DIE 0x%x [in module %s]"),
6282 die->offset, objfile->name);
6283
6284 call_site->per_cu = cu->per_cu;
6285
6286 for (child_die = die->child;
6287 child_die && child_die->tag;
6288 child_die = sibling_die (child_die))
6289 {
6290 struct dwarf2_locexpr_baton *dlbaton;
6291 struct call_site_parameter *parameter;
6292
6293 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6294 {
6295 /* Already printed the complaint above. */
6296 continue;
6297 }
6298
6299 gdb_assert (call_site->parameter_count < nparams);
6300 parameter = &call_site->parameter[call_site->parameter_count];
6301
6302 /* DW_AT_location specifies the register number. Value of the data
6303 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6304
6305 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6306 if (!attr || !attr_form_is_block (attr))
6307 {
6308 complaint (&symfile_complaints,
6309 _("No DW_FORM_block* DW_AT_location for "
6310 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6311 child_die->offset, objfile->name);
6312 continue;
6313 }
6314 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6315 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6316 if (parameter->dwarf_reg == -1
6317 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6318 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6319 &parameter->fb_offset))
6320 {
6321 complaint (&symfile_complaints,
6322 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6323 "for DW_FORM_block* DW_AT_location for "
6324 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6325 child_die->offset, objfile->name);
6326 continue;
6327 }
6328
6329 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6330 if (!attr_form_is_block (attr))
6331 {
6332 complaint (&symfile_complaints,
6333 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6334 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6335 child_die->offset, objfile->name);
6336 continue;
6337 }
6338 parameter->value = DW_BLOCK (attr)->data;
6339 parameter->value_size = DW_BLOCK (attr)->size;
6340
6341 /* Parameters are not pre-cleared by memset above. */
6342 parameter->data_value = NULL;
6343 parameter->data_value_size = 0;
6344 call_site->parameter_count++;
6345
6346 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6347 if (attr)
6348 {
6349 if (!attr_form_is_block (attr))
6350 complaint (&symfile_complaints,
6351 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6352 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6353 child_die->offset, objfile->name);
6354 else
6355 {
6356 parameter->data_value = DW_BLOCK (attr)->data;
6357 parameter->data_value_size = DW_BLOCK (attr)->size;
6358 }
6359 }
6360 }
6361 }
6362
6363 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6364 Return 1 if the attributes are present and valid, otherwise, return 0.
6365 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6366
6367 static int
6368 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6369 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6370 struct partial_symtab *ranges_pst)
6371 {
6372 struct objfile *objfile = cu->objfile;
6373 struct comp_unit_head *cu_header = &cu->header;
6374 bfd *obfd = objfile->obfd;
6375 unsigned int addr_size = cu_header->addr_size;
6376 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6377 /* Base address selection entry. */
6378 CORE_ADDR base;
6379 int found_base;
6380 unsigned int dummy;
6381 gdb_byte *buffer;
6382 CORE_ADDR marker;
6383 int low_set;
6384 CORE_ADDR low = 0;
6385 CORE_ADDR high = 0;
6386 CORE_ADDR baseaddr;
6387
6388 found_base = cu->base_known;
6389 base = cu->base_address;
6390
6391 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6392 if (offset >= dwarf2_per_objfile->ranges.size)
6393 {
6394 complaint (&symfile_complaints,
6395 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6396 offset);
6397 return 0;
6398 }
6399 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6400
6401 /* Read in the largest possible address. */
6402 marker = read_address (obfd, buffer, cu, &dummy);
6403 if ((marker & mask) == mask)
6404 {
6405 /* If we found the largest possible address, then
6406 read the base address. */
6407 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6408 buffer += 2 * addr_size;
6409 offset += 2 * addr_size;
6410 found_base = 1;
6411 }
6412
6413 low_set = 0;
6414
6415 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6416
6417 while (1)
6418 {
6419 CORE_ADDR range_beginning, range_end;
6420
6421 range_beginning = read_address (obfd, buffer, cu, &dummy);
6422 buffer += addr_size;
6423 range_end = read_address (obfd, buffer, cu, &dummy);
6424 buffer += addr_size;
6425 offset += 2 * addr_size;
6426
6427 /* An end of list marker is a pair of zero addresses. */
6428 if (range_beginning == 0 && range_end == 0)
6429 /* Found the end of list entry. */
6430 break;
6431
6432 /* Each base address selection entry is a pair of 2 values.
6433 The first is the largest possible address, the second is
6434 the base address. Check for a base address here. */
6435 if ((range_beginning & mask) == mask)
6436 {
6437 /* If we found the largest possible address, then
6438 read the base address. */
6439 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6440 found_base = 1;
6441 continue;
6442 }
6443
6444 if (!found_base)
6445 {
6446 /* We have no valid base address for the ranges
6447 data. */
6448 complaint (&symfile_complaints,
6449 _("Invalid .debug_ranges data (no base address)"));
6450 return 0;
6451 }
6452
6453 if (range_beginning > range_end)
6454 {
6455 /* Inverted range entries are invalid. */
6456 complaint (&symfile_complaints,
6457 _("Invalid .debug_ranges data (inverted range)"));
6458 return 0;
6459 }
6460
6461 /* Empty range entries have no effect. */
6462 if (range_beginning == range_end)
6463 continue;
6464
6465 range_beginning += base;
6466 range_end += base;
6467
6468 if (ranges_pst != NULL)
6469 addrmap_set_empty (objfile->psymtabs_addrmap,
6470 range_beginning + baseaddr,
6471 range_end - 1 + baseaddr,
6472 ranges_pst);
6473
6474 /* FIXME: This is recording everything as a low-high
6475 segment of consecutive addresses. We should have a
6476 data structure for discontiguous block ranges
6477 instead. */
6478 if (! low_set)
6479 {
6480 low = range_beginning;
6481 high = range_end;
6482 low_set = 1;
6483 }
6484 else
6485 {
6486 if (range_beginning < low)
6487 low = range_beginning;
6488 if (range_end > high)
6489 high = range_end;
6490 }
6491 }
6492
6493 if (! low_set)
6494 /* If the first entry is an end-of-list marker, the range
6495 describes an empty scope, i.e. no instructions. */
6496 return 0;
6497
6498 if (low_return)
6499 *low_return = low;
6500 if (high_return)
6501 *high_return = high;
6502 return 1;
6503 }
6504
6505 /* Get low and high pc attributes from a die. Return 1 if the attributes
6506 are present and valid, otherwise, return 0. Return -1 if the range is
6507 discontinuous, i.e. derived from DW_AT_ranges information. */
6508 static int
6509 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6510 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6511 struct partial_symtab *pst)
6512 {
6513 struct attribute *attr;
6514 CORE_ADDR low = 0;
6515 CORE_ADDR high = 0;
6516 int ret = 0;
6517
6518 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6519 if (attr)
6520 {
6521 high = DW_ADDR (attr);
6522 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6523 if (attr)
6524 low = DW_ADDR (attr);
6525 else
6526 /* Found high w/o low attribute. */
6527 return 0;
6528
6529 /* Found consecutive range of addresses. */
6530 ret = 1;
6531 }
6532 else
6533 {
6534 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6535 if (attr != NULL)
6536 {
6537 /* Value of the DW_AT_ranges attribute is the offset in the
6538 .debug_ranges section. */
6539 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6540 return 0;
6541 /* Found discontinuous range of addresses. */
6542 ret = -1;
6543 }
6544 }
6545
6546 /* read_partial_die has also the strict LOW < HIGH requirement. */
6547 if (high <= low)
6548 return 0;
6549
6550 /* When using the GNU linker, .gnu.linkonce. sections are used to
6551 eliminate duplicate copies of functions and vtables and such.
6552 The linker will arbitrarily choose one and discard the others.
6553 The AT_*_pc values for such functions refer to local labels in
6554 these sections. If the section from that file was discarded, the
6555 labels are not in the output, so the relocs get a value of 0.
6556 If this is a discarded function, mark the pc bounds as invalid,
6557 so that GDB will ignore it. */
6558 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6559 return 0;
6560
6561 *lowpc = low;
6562 if (highpc)
6563 *highpc = high;
6564 return ret;
6565 }
6566
6567 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6568 its low and high PC addresses. Do nothing if these addresses could not
6569 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6570 and HIGHPC to the high address if greater than HIGHPC. */
6571
6572 static void
6573 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6574 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6575 struct dwarf2_cu *cu)
6576 {
6577 CORE_ADDR low, high;
6578 struct die_info *child = die->child;
6579
6580 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6581 {
6582 *lowpc = min (*lowpc, low);
6583 *highpc = max (*highpc, high);
6584 }
6585
6586 /* If the language does not allow nested subprograms (either inside
6587 subprograms or lexical blocks), we're done. */
6588 if (cu->language != language_ada)
6589 return;
6590
6591 /* Check all the children of the given DIE. If it contains nested
6592 subprograms, then check their pc bounds. Likewise, we need to
6593 check lexical blocks as well, as they may also contain subprogram
6594 definitions. */
6595 while (child && child->tag)
6596 {
6597 if (child->tag == DW_TAG_subprogram
6598 || child->tag == DW_TAG_lexical_block)
6599 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6600 child = sibling_die (child);
6601 }
6602 }
6603
6604 /* Get the low and high pc's represented by the scope DIE, and store
6605 them in *LOWPC and *HIGHPC. If the correct values can't be
6606 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6607
6608 static void
6609 get_scope_pc_bounds (struct die_info *die,
6610 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6611 struct dwarf2_cu *cu)
6612 {
6613 CORE_ADDR best_low = (CORE_ADDR) -1;
6614 CORE_ADDR best_high = (CORE_ADDR) 0;
6615 CORE_ADDR current_low, current_high;
6616
6617 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6618 {
6619 best_low = current_low;
6620 best_high = current_high;
6621 }
6622 else
6623 {
6624 struct die_info *child = die->child;
6625
6626 while (child && child->tag)
6627 {
6628 switch (child->tag) {
6629 case DW_TAG_subprogram:
6630 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6631 break;
6632 case DW_TAG_namespace:
6633 case DW_TAG_module:
6634 /* FIXME: carlton/2004-01-16: Should we do this for
6635 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6636 that current GCC's always emit the DIEs corresponding
6637 to definitions of methods of classes as children of a
6638 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6639 the DIEs giving the declarations, which could be
6640 anywhere). But I don't see any reason why the
6641 standards says that they have to be there. */
6642 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6643
6644 if (current_low != ((CORE_ADDR) -1))
6645 {
6646 best_low = min (best_low, current_low);
6647 best_high = max (best_high, current_high);
6648 }
6649 break;
6650 default:
6651 /* Ignore. */
6652 break;
6653 }
6654
6655 child = sibling_die (child);
6656 }
6657 }
6658
6659 *lowpc = best_low;
6660 *highpc = best_high;
6661 }
6662
6663 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6664 in DIE. */
6665 static void
6666 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6667 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6668 {
6669 struct objfile *objfile = cu->objfile;
6670 struct attribute *attr;
6671
6672 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6673 if (attr)
6674 {
6675 CORE_ADDR high = DW_ADDR (attr);
6676
6677 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6678 if (attr)
6679 {
6680 CORE_ADDR low = DW_ADDR (attr);
6681
6682 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6683 }
6684 }
6685
6686 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6687 if (attr)
6688 {
6689 bfd *obfd = objfile->obfd;
6690
6691 /* The value of the DW_AT_ranges attribute is the offset of the
6692 address range list in the .debug_ranges section. */
6693 unsigned long offset = DW_UNSND (attr);
6694 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6695
6696 /* For some target architectures, but not others, the
6697 read_address function sign-extends the addresses it returns.
6698 To recognize base address selection entries, we need a
6699 mask. */
6700 unsigned int addr_size = cu->header.addr_size;
6701 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6702
6703 /* The base address, to which the next pair is relative. Note
6704 that this 'base' is a DWARF concept: most entries in a range
6705 list are relative, to reduce the number of relocs against the
6706 debugging information. This is separate from this function's
6707 'baseaddr' argument, which GDB uses to relocate debugging
6708 information from a shared library based on the address at
6709 which the library was loaded. */
6710 CORE_ADDR base = cu->base_address;
6711 int base_known = cu->base_known;
6712
6713 gdb_assert (dwarf2_per_objfile->ranges.readin);
6714 if (offset >= dwarf2_per_objfile->ranges.size)
6715 {
6716 complaint (&symfile_complaints,
6717 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6718 offset);
6719 return;
6720 }
6721
6722 for (;;)
6723 {
6724 unsigned int bytes_read;
6725 CORE_ADDR start, end;
6726
6727 start = read_address (obfd, buffer, cu, &bytes_read);
6728 buffer += bytes_read;
6729 end = read_address (obfd, buffer, cu, &bytes_read);
6730 buffer += bytes_read;
6731
6732 /* Did we find the end of the range list? */
6733 if (start == 0 && end == 0)
6734 break;
6735
6736 /* Did we find a base address selection entry? */
6737 else if ((start & base_select_mask) == base_select_mask)
6738 {
6739 base = end;
6740 base_known = 1;
6741 }
6742
6743 /* We found an ordinary address range. */
6744 else
6745 {
6746 if (!base_known)
6747 {
6748 complaint (&symfile_complaints,
6749 _("Invalid .debug_ranges data "
6750 "(no base address)"));
6751 return;
6752 }
6753
6754 if (start > end)
6755 {
6756 /* Inverted range entries are invalid. */
6757 complaint (&symfile_complaints,
6758 _("Invalid .debug_ranges data "
6759 "(inverted range)"));
6760 return;
6761 }
6762
6763 /* Empty range entries have no effect. */
6764 if (start == end)
6765 continue;
6766
6767 record_block_range (block,
6768 baseaddr + base + start,
6769 baseaddr + base + end - 1);
6770 }
6771 }
6772 }
6773 }
6774
6775 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6776 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6777 during 4.6.0 experimental. */
6778
6779 static int
6780 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6781 {
6782 const char *cs;
6783 int major, minor, release;
6784
6785 if (cu->producer == NULL)
6786 {
6787 /* For unknown compilers expect their behavior is DWARF version
6788 compliant.
6789
6790 GCC started to support .debug_types sections by -gdwarf-4 since
6791 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6792 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6793 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6794 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6795
6796 return 0;
6797 }
6798
6799 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6800
6801 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6802 {
6803 /* For non-GCC compilers expect their behavior is DWARF version
6804 compliant. */
6805
6806 return 0;
6807 }
6808 cs = &cu->producer[strlen ("GNU ")];
6809 while (*cs && !isdigit (*cs))
6810 cs++;
6811 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6812 {
6813 /* Not recognized as GCC. */
6814
6815 return 0;
6816 }
6817
6818 return major < 4 || (major == 4 && minor < 6);
6819 }
6820
6821 /* Return the default accessibility type if it is not overriden by
6822 DW_AT_accessibility. */
6823
6824 static enum dwarf_access_attribute
6825 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6826 {
6827 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6828 {
6829 /* The default DWARF 2 accessibility for members is public, the default
6830 accessibility for inheritance is private. */
6831
6832 if (die->tag != DW_TAG_inheritance)
6833 return DW_ACCESS_public;
6834 else
6835 return DW_ACCESS_private;
6836 }
6837 else
6838 {
6839 /* DWARF 3+ defines the default accessibility a different way. The same
6840 rules apply now for DW_TAG_inheritance as for the members and it only
6841 depends on the container kind. */
6842
6843 if (die->parent->tag == DW_TAG_class_type)
6844 return DW_ACCESS_private;
6845 else
6846 return DW_ACCESS_public;
6847 }
6848 }
6849
6850 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6851 offset. If the attribute was not found return 0, otherwise return
6852 1. If it was found but could not properly be handled, set *OFFSET
6853 to 0. */
6854
6855 static int
6856 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6857 LONGEST *offset)
6858 {
6859 struct attribute *attr;
6860
6861 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6862 if (attr != NULL)
6863 {
6864 *offset = 0;
6865
6866 /* Note that we do not check for a section offset first here.
6867 This is because DW_AT_data_member_location is new in DWARF 4,
6868 so if we see it, we can assume that a constant form is really
6869 a constant and not a section offset. */
6870 if (attr_form_is_constant (attr))
6871 *offset = dwarf2_get_attr_constant_value (attr, 0);
6872 else if (attr_form_is_section_offset (attr))
6873 dwarf2_complex_location_expr_complaint ();
6874 else if (attr_form_is_block (attr))
6875 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6876 else
6877 dwarf2_complex_location_expr_complaint ();
6878
6879 return 1;
6880 }
6881
6882 return 0;
6883 }
6884
6885 /* Add an aggregate field to the field list. */
6886
6887 static void
6888 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6889 struct dwarf2_cu *cu)
6890 {
6891 struct objfile *objfile = cu->objfile;
6892 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6893 struct nextfield *new_field;
6894 struct attribute *attr;
6895 struct field *fp;
6896 char *fieldname = "";
6897
6898 /* Allocate a new field list entry and link it in. */
6899 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6900 make_cleanup (xfree, new_field);
6901 memset (new_field, 0, sizeof (struct nextfield));
6902
6903 if (die->tag == DW_TAG_inheritance)
6904 {
6905 new_field->next = fip->baseclasses;
6906 fip->baseclasses = new_field;
6907 }
6908 else
6909 {
6910 new_field->next = fip->fields;
6911 fip->fields = new_field;
6912 }
6913 fip->nfields++;
6914
6915 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6916 if (attr)
6917 new_field->accessibility = DW_UNSND (attr);
6918 else
6919 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
6920 if (new_field->accessibility != DW_ACCESS_public)
6921 fip->non_public_fields = 1;
6922
6923 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6924 if (attr)
6925 new_field->virtuality = DW_UNSND (attr);
6926 else
6927 new_field->virtuality = DW_VIRTUALITY_none;
6928
6929 fp = &new_field->field;
6930
6931 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6932 {
6933 LONGEST offset;
6934
6935 /* Data member other than a C++ static data member. */
6936
6937 /* Get type of field. */
6938 fp->type = die_type (die, cu);
6939
6940 SET_FIELD_BITPOS (*fp, 0);
6941
6942 /* Get bit size of field (zero if none). */
6943 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6944 if (attr)
6945 {
6946 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6947 }
6948 else
6949 {
6950 FIELD_BITSIZE (*fp) = 0;
6951 }
6952
6953 /* Get bit offset of field. */
6954 if (handle_data_member_location (die, cu, &offset))
6955 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
6956 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6957 if (attr)
6958 {
6959 if (gdbarch_bits_big_endian (gdbarch))
6960 {
6961 /* For big endian bits, the DW_AT_bit_offset gives the
6962 additional bit offset from the MSB of the containing
6963 anonymous object to the MSB of the field. We don't
6964 have to do anything special since we don't need to
6965 know the size of the anonymous object. */
6966 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6967 }
6968 else
6969 {
6970 /* For little endian bits, compute the bit offset to the
6971 MSB of the anonymous object, subtract off the number of
6972 bits from the MSB of the field to the MSB of the
6973 object, and then subtract off the number of bits of
6974 the field itself. The result is the bit offset of
6975 the LSB of the field. */
6976 int anonymous_size;
6977 int bit_offset = DW_UNSND (attr);
6978
6979 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6980 if (attr)
6981 {
6982 /* The size of the anonymous object containing
6983 the bit field is explicit, so use the
6984 indicated size (in bytes). */
6985 anonymous_size = DW_UNSND (attr);
6986 }
6987 else
6988 {
6989 /* The size of the anonymous object containing
6990 the bit field must be inferred from the type
6991 attribute of the data member containing the
6992 bit field. */
6993 anonymous_size = TYPE_LENGTH (fp->type);
6994 }
6995 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6996 - bit_offset - FIELD_BITSIZE (*fp);
6997 }
6998 }
6999
7000 /* Get name of field. */
7001 fieldname = dwarf2_name (die, cu);
7002 if (fieldname == NULL)
7003 fieldname = "";
7004
7005 /* The name is already allocated along with this objfile, so we don't
7006 need to duplicate it for the type. */
7007 fp->name = fieldname;
7008
7009 /* Change accessibility for artificial fields (e.g. virtual table
7010 pointer or virtual base class pointer) to private. */
7011 if (dwarf2_attr (die, DW_AT_artificial, cu))
7012 {
7013 FIELD_ARTIFICIAL (*fp) = 1;
7014 new_field->accessibility = DW_ACCESS_private;
7015 fip->non_public_fields = 1;
7016 }
7017 }
7018 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7019 {
7020 /* C++ static member. */
7021
7022 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7023 is a declaration, but all versions of G++ as of this writing
7024 (so through at least 3.2.1) incorrectly generate
7025 DW_TAG_variable tags. */
7026
7027 const char *physname;
7028
7029 /* Get name of field. */
7030 fieldname = dwarf2_name (die, cu);
7031 if (fieldname == NULL)
7032 return;
7033
7034 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7035 if (attr
7036 /* Only create a symbol if this is an external value.
7037 new_symbol checks this and puts the value in the global symbol
7038 table, which we want. If it is not external, new_symbol
7039 will try to put the value in cu->list_in_scope which is wrong. */
7040 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7041 {
7042 /* A static const member, not much different than an enum as far as
7043 we're concerned, except that we can support more types. */
7044 new_symbol (die, NULL, cu);
7045 }
7046
7047 /* Get physical name. */
7048 physname = dwarf2_physname (fieldname, die, cu);
7049
7050 /* The name is already allocated along with this objfile, so we don't
7051 need to duplicate it for the type. */
7052 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7053 FIELD_TYPE (*fp) = die_type (die, cu);
7054 FIELD_NAME (*fp) = fieldname;
7055 }
7056 else if (die->tag == DW_TAG_inheritance)
7057 {
7058 LONGEST offset;
7059
7060 /* C++ base class field. */
7061 if (handle_data_member_location (die, cu, &offset))
7062 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7063 FIELD_BITSIZE (*fp) = 0;
7064 FIELD_TYPE (*fp) = die_type (die, cu);
7065 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7066 fip->nbaseclasses++;
7067 }
7068 }
7069
7070 /* Add a typedef defined in the scope of the FIP's class. */
7071
7072 static void
7073 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7074 struct dwarf2_cu *cu)
7075 {
7076 struct objfile *objfile = cu->objfile;
7077 struct typedef_field_list *new_field;
7078 struct attribute *attr;
7079 struct typedef_field *fp;
7080 char *fieldname = "";
7081
7082 /* Allocate a new field list entry and link it in. */
7083 new_field = xzalloc (sizeof (*new_field));
7084 make_cleanup (xfree, new_field);
7085
7086 gdb_assert (die->tag == DW_TAG_typedef);
7087
7088 fp = &new_field->field;
7089
7090 /* Get name of field. */
7091 fp->name = dwarf2_name (die, cu);
7092 if (fp->name == NULL)
7093 return;
7094
7095 fp->type = read_type_die (die, cu);
7096
7097 new_field->next = fip->typedef_field_list;
7098 fip->typedef_field_list = new_field;
7099 fip->typedef_field_list_count++;
7100 }
7101
7102 /* Create the vector of fields, and attach it to the type. */
7103
7104 static void
7105 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7106 struct dwarf2_cu *cu)
7107 {
7108 int nfields = fip->nfields;
7109
7110 /* Record the field count, allocate space for the array of fields,
7111 and create blank accessibility bitfields if necessary. */
7112 TYPE_NFIELDS (type) = nfields;
7113 TYPE_FIELDS (type) = (struct field *)
7114 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7115 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7116
7117 if (fip->non_public_fields && cu->language != language_ada)
7118 {
7119 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7120
7121 TYPE_FIELD_PRIVATE_BITS (type) =
7122 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7123 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7124
7125 TYPE_FIELD_PROTECTED_BITS (type) =
7126 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7127 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7128
7129 TYPE_FIELD_IGNORE_BITS (type) =
7130 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7131 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7132 }
7133
7134 /* If the type has baseclasses, allocate and clear a bit vector for
7135 TYPE_FIELD_VIRTUAL_BITS. */
7136 if (fip->nbaseclasses && cu->language != language_ada)
7137 {
7138 int num_bytes = B_BYTES (fip->nbaseclasses);
7139 unsigned char *pointer;
7140
7141 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7142 pointer = TYPE_ALLOC (type, num_bytes);
7143 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7144 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7145 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7146 }
7147
7148 /* Copy the saved-up fields into the field vector. Start from the head of
7149 the list, adding to the tail of the field array, so that they end up in
7150 the same order in the array in which they were added to the list. */
7151 while (nfields-- > 0)
7152 {
7153 struct nextfield *fieldp;
7154
7155 if (fip->fields)
7156 {
7157 fieldp = fip->fields;
7158 fip->fields = fieldp->next;
7159 }
7160 else
7161 {
7162 fieldp = fip->baseclasses;
7163 fip->baseclasses = fieldp->next;
7164 }
7165
7166 TYPE_FIELD (type, nfields) = fieldp->field;
7167 switch (fieldp->accessibility)
7168 {
7169 case DW_ACCESS_private:
7170 if (cu->language != language_ada)
7171 SET_TYPE_FIELD_PRIVATE (type, nfields);
7172 break;
7173
7174 case DW_ACCESS_protected:
7175 if (cu->language != language_ada)
7176 SET_TYPE_FIELD_PROTECTED (type, nfields);
7177 break;
7178
7179 case DW_ACCESS_public:
7180 break;
7181
7182 default:
7183 /* Unknown accessibility. Complain and treat it as public. */
7184 {
7185 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7186 fieldp->accessibility);
7187 }
7188 break;
7189 }
7190 if (nfields < fip->nbaseclasses)
7191 {
7192 switch (fieldp->virtuality)
7193 {
7194 case DW_VIRTUALITY_virtual:
7195 case DW_VIRTUALITY_pure_virtual:
7196 if (cu->language == language_ada)
7197 error (_("unexpected virtuality in component of Ada type"));
7198 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7199 break;
7200 }
7201 }
7202 }
7203 }
7204
7205 /* Add a member function to the proper fieldlist. */
7206
7207 static void
7208 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7209 struct type *type, struct dwarf2_cu *cu)
7210 {
7211 struct objfile *objfile = cu->objfile;
7212 struct attribute *attr;
7213 struct fnfieldlist *flp;
7214 int i;
7215 struct fn_field *fnp;
7216 char *fieldname;
7217 struct nextfnfield *new_fnfield;
7218 struct type *this_type;
7219 enum dwarf_access_attribute accessibility;
7220
7221 if (cu->language == language_ada)
7222 error (_("unexpected member function in Ada type"));
7223
7224 /* Get name of member function. */
7225 fieldname = dwarf2_name (die, cu);
7226 if (fieldname == NULL)
7227 return;
7228
7229 /* Look up member function name in fieldlist. */
7230 for (i = 0; i < fip->nfnfields; i++)
7231 {
7232 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7233 break;
7234 }
7235
7236 /* Create new list element if necessary. */
7237 if (i < fip->nfnfields)
7238 flp = &fip->fnfieldlists[i];
7239 else
7240 {
7241 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7242 {
7243 fip->fnfieldlists = (struct fnfieldlist *)
7244 xrealloc (fip->fnfieldlists,
7245 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7246 * sizeof (struct fnfieldlist));
7247 if (fip->nfnfields == 0)
7248 make_cleanup (free_current_contents, &fip->fnfieldlists);
7249 }
7250 flp = &fip->fnfieldlists[fip->nfnfields];
7251 flp->name = fieldname;
7252 flp->length = 0;
7253 flp->head = NULL;
7254 i = fip->nfnfields++;
7255 }
7256
7257 /* Create a new member function field and chain it to the field list
7258 entry. */
7259 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7260 make_cleanup (xfree, new_fnfield);
7261 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7262 new_fnfield->next = flp->head;
7263 flp->head = new_fnfield;
7264 flp->length++;
7265
7266 /* Fill in the member function field info. */
7267 fnp = &new_fnfield->fnfield;
7268
7269 /* Delay processing of the physname until later. */
7270 if (cu->language == language_cplus || cu->language == language_java)
7271 {
7272 add_to_method_list (type, i, flp->length - 1, fieldname,
7273 die, cu);
7274 }
7275 else
7276 {
7277 const char *physname = dwarf2_physname (fieldname, die, cu);
7278 fnp->physname = physname ? physname : "";
7279 }
7280
7281 fnp->type = alloc_type (objfile);
7282 this_type = read_type_die (die, cu);
7283 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7284 {
7285 int nparams = TYPE_NFIELDS (this_type);
7286
7287 /* TYPE is the domain of this method, and THIS_TYPE is the type
7288 of the method itself (TYPE_CODE_METHOD). */
7289 smash_to_method_type (fnp->type, type,
7290 TYPE_TARGET_TYPE (this_type),
7291 TYPE_FIELDS (this_type),
7292 TYPE_NFIELDS (this_type),
7293 TYPE_VARARGS (this_type));
7294
7295 /* Handle static member functions.
7296 Dwarf2 has no clean way to discern C++ static and non-static
7297 member functions. G++ helps GDB by marking the first
7298 parameter for non-static member functions (which is the this
7299 pointer) as artificial. We obtain this information from
7300 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7301 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7302 fnp->voffset = VOFFSET_STATIC;
7303 }
7304 else
7305 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7306 dwarf2_full_name (fieldname, die, cu));
7307
7308 /* Get fcontext from DW_AT_containing_type if present. */
7309 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7310 fnp->fcontext = die_containing_type (die, cu);
7311
7312 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7313 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7314
7315 /* Get accessibility. */
7316 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7317 if (attr)
7318 accessibility = DW_UNSND (attr);
7319 else
7320 accessibility = dwarf2_default_access_attribute (die, cu);
7321 switch (accessibility)
7322 {
7323 case DW_ACCESS_private:
7324 fnp->is_private = 1;
7325 break;
7326 case DW_ACCESS_protected:
7327 fnp->is_protected = 1;
7328 break;
7329 }
7330
7331 /* Check for artificial methods. */
7332 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7333 if (attr && DW_UNSND (attr) != 0)
7334 fnp->is_artificial = 1;
7335
7336 /* Get index in virtual function table if it is a virtual member
7337 function. For older versions of GCC, this is an offset in the
7338 appropriate virtual table, as specified by DW_AT_containing_type.
7339 For everyone else, it is an expression to be evaluated relative
7340 to the object address. */
7341
7342 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7343 if (attr)
7344 {
7345 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7346 {
7347 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7348 {
7349 /* Old-style GCC. */
7350 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7351 }
7352 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7353 || (DW_BLOCK (attr)->size > 1
7354 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7355 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7356 {
7357 struct dwarf_block blk;
7358 int offset;
7359
7360 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7361 ? 1 : 2);
7362 blk.size = DW_BLOCK (attr)->size - offset;
7363 blk.data = DW_BLOCK (attr)->data + offset;
7364 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7365 if ((fnp->voffset % cu->header.addr_size) != 0)
7366 dwarf2_complex_location_expr_complaint ();
7367 else
7368 fnp->voffset /= cu->header.addr_size;
7369 fnp->voffset += 2;
7370 }
7371 else
7372 dwarf2_complex_location_expr_complaint ();
7373
7374 if (!fnp->fcontext)
7375 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7376 }
7377 else if (attr_form_is_section_offset (attr))
7378 {
7379 dwarf2_complex_location_expr_complaint ();
7380 }
7381 else
7382 {
7383 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7384 fieldname);
7385 }
7386 }
7387 else
7388 {
7389 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7390 if (attr && DW_UNSND (attr))
7391 {
7392 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7393 complaint (&symfile_complaints,
7394 _("Member function \"%s\" (offset %d) is virtual "
7395 "but the vtable offset is not specified"),
7396 fieldname, die->offset);
7397 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7398 TYPE_CPLUS_DYNAMIC (type) = 1;
7399 }
7400 }
7401 }
7402
7403 /* Create the vector of member function fields, and attach it to the type. */
7404
7405 static void
7406 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7407 struct dwarf2_cu *cu)
7408 {
7409 struct fnfieldlist *flp;
7410 int i;
7411
7412 if (cu->language == language_ada)
7413 error (_("unexpected member functions in Ada type"));
7414
7415 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7416 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7417 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7418
7419 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7420 {
7421 struct nextfnfield *nfp = flp->head;
7422 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7423 int k;
7424
7425 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7426 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7427 fn_flp->fn_fields = (struct fn_field *)
7428 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7429 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7430 fn_flp->fn_fields[k] = nfp->fnfield;
7431 }
7432
7433 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7434 }
7435
7436 /* Returns non-zero if NAME is the name of a vtable member in CU's
7437 language, zero otherwise. */
7438 static int
7439 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7440 {
7441 static const char vptr[] = "_vptr";
7442 static const char vtable[] = "vtable";
7443
7444 /* Look for the C++ and Java forms of the vtable. */
7445 if ((cu->language == language_java
7446 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7447 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7448 && is_cplus_marker (name[sizeof (vptr) - 1])))
7449 return 1;
7450
7451 return 0;
7452 }
7453
7454 /* GCC outputs unnamed structures that are really pointers to member
7455 functions, with the ABI-specified layout. If TYPE describes
7456 such a structure, smash it into a member function type.
7457
7458 GCC shouldn't do this; it should just output pointer to member DIEs.
7459 This is GCC PR debug/28767. */
7460
7461 static void
7462 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7463 {
7464 struct type *pfn_type, *domain_type, *new_type;
7465
7466 /* Check for a structure with no name and two children. */
7467 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7468 return;
7469
7470 /* Check for __pfn and __delta members. */
7471 if (TYPE_FIELD_NAME (type, 0) == NULL
7472 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7473 || TYPE_FIELD_NAME (type, 1) == NULL
7474 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7475 return;
7476
7477 /* Find the type of the method. */
7478 pfn_type = TYPE_FIELD_TYPE (type, 0);
7479 if (pfn_type == NULL
7480 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7481 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7482 return;
7483
7484 /* Look for the "this" argument. */
7485 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7486 if (TYPE_NFIELDS (pfn_type) == 0
7487 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7488 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7489 return;
7490
7491 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7492 new_type = alloc_type (objfile);
7493 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7494 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7495 TYPE_VARARGS (pfn_type));
7496 smash_to_methodptr_type (type, new_type);
7497 }
7498
7499 /* Called when we find the DIE that starts a structure or union scope
7500 (definition) to create a type for the structure or union. Fill in
7501 the type's name and general properties; the members will not be
7502 processed until process_structure_type.
7503
7504 NOTE: we need to call these functions regardless of whether or not the
7505 DIE has a DW_AT_name attribute, since it might be an anonymous
7506 structure or union. This gets the type entered into our set of
7507 user defined types.
7508
7509 However, if the structure is incomplete (an opaque struct/union)
7510 then suppress creating a symbol table entry for it since gdb only
7511 wants to find the one with the complete definition. Note that if
7512 it is complete, we just call new_symbol, which does it's own
7513 checking about whether the struct/union is anonymous or not (and
7514 suppresses creating a symbol table entry itself). */
7515
7516 static struct type *
7517 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7518 {
7519 struct objfile *objfile = cu->objfile;
7520 struct type *type;
7521 struct attribute *attr;
7522 char *name;
7523
7524 /* If the definition of this type lives in .debug_types, read that type.
7525 Don't follow DW_AT_specification though, that will take us back up
7526 the chain and we want to go down. */
7527 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7528 if (attr)
7529 {
7530 struct dwarf2_cu *type_cu = cu;
7531 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7532
7533 /* We could just recurse on read_structure_type, but we need to call
7534 get_die_type to ensure only one type for this DIE is created.
7535 This is important, for example, because for c++ classes we need
7536 TYPE_NAME set which is only done by new_symbol. Blech. */
7537 type = read_type_die (type_die, type_cu);
7538
7539 /* TYPE_CU may not be the same as CU.
7540 Ensure TYPE is recorded in CU's type_hash table. */
7541 return set_die_type (die, type, cu);
7542 }
7543
7544 type = alloc_type (objfile);
7545 INIT_CPLUS_SPECIFIC (type);
7546
7547 name = dwarf2_name (die, cu);
7548 if (name != NULL)
7549 {
7550 if (cu->language == language_cplus
7551 || cu->language == language_java)
7552 {
7553 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7554
7555 /* dwarf2_full_name might have already finished building the DIE's
7556 type. If so, there is no need to continue. */
7557 if (get_die_type (die, cu) != NULL)
7558 return get_die_type (die, cu);
7559
7560 TYPE_TAG_NAME (type) = full_name;
7561 if (die->tag == DW_TAG_structure_type
7562 || die->tag == DW_TAG_class_type)
7563 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7564 }
7565 else
7566 {
7567 /* The name is already allocated along with this objfile, so
7568 we don't need to duplicate it for the type. */
7569 TYPE_TAG_NAME (type) = (char *) name;
7570 if (die->tag == DW_TAG_class_type)
7571 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7572 }
7573 }
7574
7575 if (die->tag == DW_TAG_structure_type)
7576 {
7577 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7578 }
7579 else if (die->tag == DW_TAG_union_type)
7580 {
7581 TYPE_CODE (type) = TYPE_CODE_UNION;
7582 }
7583 else
7584 {
7585 TYPE_CODE (type) = TYPE_CODE_CLASS;
7586 }
7587
7588 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7589 TYPE_DECLARED_CLASS (type) = 1;
7590
7591 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7592 if (attr)
7593 {
7594 TYPE_LENGTH (type) = DW_UNSND (attr);
7595 }
7596 else
7597 {
7598 TYPE_LENGTH (type) = 0;
7599 }
7600
7601 TYPE_STUB_SUPPORTED (type) = 1;
7602 if (die_is_declaration (die, cu))
7603 TYPE_STUB (type) = 1;
7604 else if (attr == NULL && die->child == NULL
7605 && producer_is_realview (cu->producer))
7606 /* RealView does not output the required DW_AT_declaration
7607 on incomplete types. */
7608 TYPE_STUB (type) = 1;
7609
7610 /* We need to add the type field to the die immediately so we don't
7611 infinitely recurse when dealing with pointers to the structure
7612 type within the structure itself. */
7613 set_die_type (die, type, cu);
7614
7615 /* set_die_type should be already done. */
7616 set_descriptive_type (type, die, cu);
7617
7618 return type;
7619 }
7620
7621 /* Finish creating a structure or union type, including filling in
7622 its members and creating a symbol for it. */
7623
7624 static void
7625 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7626 {
7627 struct objfile *objfile = cu->objfile;
7628 struct die_info *child_die = die->child;
7629 struct type *type;
7630
7631 type = get_die_type (die, cu);
7632 if (type == NULL)
7633 type = read_structure_type (die, cu);
7634
7635 if (die->child != NULL && ! die_is_declaration (die, cu))
7636 {
7637 struct field_info fi;
7638 struct die_info *child_die;
7639 VEC (symbolp) *template_args = NULL;
7640 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7641
7642 memset (&fi, 0, sizeof (struct field_info));
7643
7644 child_die = die->child;
7645
7646 while (child_die && child_die->tag)
7647 {
7648 if (child_die->tag == DW_TAG_member
7649 || child_die->tag == DW_TAG_variable)
7650 {
7651 /* NOTE: carlton/2002-11-05: A C++ static data member
7652 should be a DW_TAG_member that is a declaration, but
7653 all versions of G++ as of this writing (so through at
7654 least 3.2.1) incorrectly generate DW_TAG_variable
7655 tags for them instead. */
7656 dwarf2_add_field (&fi, child_die, cu);
7657 }
7658 else if (child_die->tag == DW_TAG_subprogram)
7659 {
7660 /* C++ member function. */
7661 dwarf2_add_member_fn (&fi, child_die, type, cu);
7662 }
7663 else if (child_die->tag == DW_TAG_inheritance)
7664 {
7665 /* C++ base class field. */
7666 dwarf2_add_field (&fi, child_die, cu);
7667 }
7668 else if (child_die->tag == DW_TAG_typedef)
7669 dwarf2_add_typedef (&fi, child_die, cu);
7670 else if (child_die->tag == DW_TAG_template_type_param
7671 || child_die->tag == DW_TAG_template_value_param)
7672 {
7673 struct symbol *arg = new_symbol (child_die, NULL, cu);
7674
7675 if (arg != NULL)
7676 VEC_safe_push (symbolp, template_args, arg);
7677 }
7678
7679 child_die = sibling_die (child_die);
7680 }
7681
7682 /* Attach template arguments to type. */
7683 if (! VEC_empty (symbolp, template_args))
7684 {
7685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7686 TYPE_N_TEMPLATE_ARGUMENTS (type)
7687 = VEC_length (symbolp, template_args);
7688 TYPE_TEMPLATE_ARGUMENTS (type)
7689 = obstack_alloc (&objfile->objfile_obstack,
7690 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7691 * sizeof (struct symbol *)));
7692 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7693 VEC_address (symbolp, template_args),
7694 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7695 * sizeof (struct symbol *)));
7696 VEC_free (symbolp, template_args);
7697 }
7698
7699 /* Attach fields and member functions to the type. */
7700 if (fi.nfields)
7701 dwarf2_attach_fields_to_type (&fi, type, cu);
7702 if (fi.nfnfields)
7703 {
7704 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7705
7706 /* Get the type which refers to the base class (possibly this
7707 class itself) which contains the vtable pointer for the current
7708 class from the DW_AT_containing_type attribute. This use of
7709 DW_AT_containing_type is a GNU extension. */
7710
7711 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7712 {
7713 struct type *t = die_containing_type (die, cu);
7714
7715 TYPE_VPTR_BASETYPE (type) = t;
7716 if (type == t)
7717 {
7718 int i;
7719
7720 /* Our own class provides vtbl ptr. */
7721 for (i = TYPE_NFIELDS (t) - 1;
7722 i >= TYPE_N_BASECLASSES (t);
7723 --i)
7724 {
7725 const char *fieldname = TYPE_FIELD_NAME (t, i);
7726
7727 if (is_vtable_name (fieldname, cu))
7728 {
7729 TYPE_VPTR_FIELDNO (type) = i;
7730 break;
7731 }
7732 }
7733
7734 /* Complain if virtual function table field not found. */
7735 if (i < TYPE_N_BASECLASSES (t))
7736 complaint (&symfile_complaints,
7737 _("virtual function table pointer "
7738 "not found when defining class '%s'"),
7739 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7740 "");
7741 }
7742 else
7743 {
7744 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7745 }
7746 }
7747 else if (cu->producer
7748 && strncmp (cu->producer,
7749 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7750 {
7751 /* The IBM XLC compiler does not provide direct indication
7752 of the containing type, but the vtable pointer is
7753 always named __vfp. */
7754
7755 int i;
7756
7757 for (i = TYPE_NFIELDS (type) - 1;
7758 i >= TYPE_N_BASECLASSES (type);
7759 --i)
7760 {
7761 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7762 {
7763 TYPE_VPTR_FIELDNO (type) = i;
7764 TYPE_VPTR_BASETYPE (type) = type;
7765 break;
7766 }
7767 }
7768 }
7769 }
7770
7771 /* Copy fi.typedef_field_list linked list elements content into the
7772 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7773 if (fi.typedef_field_list)
7774 {
7775 int i = fi.typedef_field_list_count;
7776
7777 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7778 TYPE_TYPEDEF_FIELD_ARRAY (type)
7779 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7780 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7781
7782 /* Reverse the list order to keep the debug info elements order. */
7783 while (--i >= 0)
7784 {
7785 struct typedef_field *dest, *src;
7786
7787 dest = &TYPE_TYPEDEF_FIELD (type, i);
7788 src = &fi.typedef_field_list->field;
7789 fi.typedef_field_list = fi.typedef_field_list->next;
7790 *dest = *src;
7791 }
7792 }
7793
7794 do_cleanups (back_to);
7795
7796 if (HAVE_CPLUS_STRUCT (type))
7797 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7798 }
7799
7800 quirk_gcc_member_function_pointer (type, objfile);
7801
7802 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7803 snapshots) has been known to create a die giving a declaration
7804 for a class that has, as a child, a die giving a definition for a
7805 nested class. So we have to process our children even if the
7806 current die is a declaration. Normally, of course, a declaration
7807 won't have any children at all. */
7808
7809 while (child_die != NULL && child_die->tag)
7810 {
7811 if (child_die->tag == DW_TAG_member
7812 || child_die->tag == DW_TAG_variable
7813 || child_die->tag == DW_TAG_inheritance
7814 || child_die->tag == DW_TAG_template_value_param
7815 || child_die->tag == DW_TAG_template_type_param)
7816 {
7817 /* Do nothing. */
7818 }
7819 else
7820 process_die (child_die, cu);
7821
7822 child_die = sibling_die (child_die);
7823 }
7824
7825 /* Do not consider external references. According to the DWARF standard,
7826 these DIEs are identified by the fact that they have no byte_size
7827 attribute, and a declaration attribute. */
7828 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7829 || !die_is_declaration (die, cu))
7830 new_symbol (die, type, cu);
7831 }
7832
7833 /* Given a DW_AT_enumeration_type die, set its type. We do not
7834 complete the type's fields yet, or create any symbols. */
7835
7836 static struct type *
7837 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7838 {
7839 struct objfile *objfile = cu->objfile;
7840 struct type *type;
7841 struct attribute *attr;
7842 const char *name;
7843
7844 /* If the definition of this type lives in .debug_types, read that type.
7845 Don't follow DW_AT_specification though, that will take us back up
7846 the chain and we want to go down. */
7847 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7848 if (attr)
7849 {
7850 struct dwarf2_cu *type_cu = cu;
7851 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7852
7853 type = read_type_die (type_die, type_cu);
7854
7855 /* TYPE_CU may not be the same as CU.
7856 Ensure TYPE is recorded in CU's type_hash table. */
7857 return set_die_type (die, type, cu);
7858 }
7859
7860 type = alloc_type (objfile);
7861
7862 TYPE_CODE (type) = TYPE_CODE_ENUM;
7863 name = dwarf2_full_name (NULL, die, cu);
7864 if (name != NULL)
7865 TYPE_TAG_NAME (type) = (char *) name;
7866
7867 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7868 if (attr)
7869 {
7870 TYPE_LENGTH (type) = DW_UNSND (attr);
7871 }
7872 else
7873 {
7874 TYPE_LENGTH (type) = 0;
7875 }
7876
7877 /* The enumeration DIE can be incomplete. In Ada, any type can be
7878 declared as private in the package spec, and then defined only
7879 inside the package body. Such types are known as Taft Amendment
7880 Types. When another package uses such a type, an incomplete DIE
7881 may be generated by the compiler. */
7882 if (die_is_declaration (die, cu))
7883 TYPE_STUB (type) = 1;
7884
7885 return set_die_type (die, type, cu);
7886 }
7887
7888 /* Given a pointer to a die which begins an enumeration, process all
7889 the dies that define the members of the enumeration, and create the
7890 symbol for the enumeration type.
7891
7892 NOTE: We reverse the order of the element list. */
7893
7894 static void
7895 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7896 {
7897 struct type *this_type;
7898
7899 this_type = get_die_type (die, cu);
7900 if (this_type == NULL)
7901 this_type = read_enumeration_type (die, cu);
7902
7903 if (die->child != NULL)
7904 {
7905 struct die_info *child_die;
7906 struct symbol *sym;
7907 struct field *fields = NULL;
7908 int num_fields = 0;
7909 int unsigned_enum = 1;
7910 char *name;
7911 int flag_enum = 1;
7912 ULONGEST mask = 0;
7913
7914 child_die = die->child;
7915 while (child_die && child_die->tag)
7916 {
7917 if (child_die->tag != DW_TAG_enumerator)
7918 {
7919 process_die (child_die, cu);
7920 }
7921 else
7922 {
7923 name = dwarf2_name (child_die, cu);
7924 if (name)
7925 {
7926 sym = new_symbol (child_die, this_type, cu);
7927 if (SYMBOL_VALUE (sym) < 0)
7928 {
7929 unsigned_enum = 0;
7930 flag_enum = 0;
7931 }
7932 else if ((mask & SYMBOL_VALUE (sym)) != 0)
7933 flag_enum = 0;
7934 else
7935 mask |= SYMBOL_VALUE (sym);
7936
7937 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7938 {
7939 fields = (struct field *)
7940 xrealloc (fields,
7941 (num_fields + DW_FIELD_ALLOC_CHUNK)
7942 * sizeof (struct field));
7943 }
7944
7945 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7946 FIELD_TYPE (fields[num_fields]) = NULL;
7947 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7948 FIELD_BITSIZE (fields[num_fields]) = 0;
7949
7950 num_fields++;
7951 }
7952 }
7953
7954 child_die = sibling_die (child_die);
7955 }
7956
7957 if (num_fields)
7958 {
7959 TYPE_NFIELDS (this_type) = num_fields;
7960 TYPE_FIELDS (this_type) = (struct field *)
7961 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7962 memcpy (TYPE_FIELDS (this_type), fields,
7963 sizeof (struct field) * num_fields);
7964 xfree (fields);
7965 }
7966 if (unsigned_enum)
7967 TYPE_UNSIGNED (this_type) = 1;
7968 if (flag_enum)
7969 TYPE_FLAG_ENUM (this_type) = 1;
7970 }
7971
7972 /* If we are reading an enum from a .debug_types unit, and the enum
7973 is a declaration, and the enum is not the signatured type in the
7974 unit, then we do not want to add a symbol for it. Adding a
7975 symbol would in some cases obscure the true definition of the
7976 enum, giving users an incomplete type when the definition is
7977 actually available. Note that we do not want to do this for all
7978 enums which are just declarations, because C++0x allows forward
7979 enum declarations. */
7980 if (cu->per_cu->debug_types_section
7981 && die_is_declaration (die, cu))
7982 {
7983 struct signatured_type *type_sig;
7984
7985 type_sig
7986 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
7987 cu->per_cu->debug_types_section,
7988 cu->per_cu->offset);
7989 if (type_sig->type_offset != die->offset)
7990 return;
7991 }
7992
7993 new_symbol (die, this_type, cu);
7994 }
7995
7996 /* Extract all information from a DW_TAG_array_type DIE and put it in
7997 the DIE's type field. For now, this only handles one dimensional
7998 arrays. */
7999
8000 static struct type *
8001 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8002 {
8003 struct objfile *objfile = cu->objfile;
8004 struct die_info *child_die;
8005 struct type *type;
8006 struct type *element_type, *range_type, *index_type;
8007 struct type **range_types = NULL;
8008 struct attribute *attr;
8009 int ndim = 0;
8010 struct cleanup *back_to;
8011 char *name;
8012
8013 element_type = die_type (die, cu);
8014
8015 /* The die_type call above may have already set the type for this DIE. */
8016 type = get_die_type (die, cu);
8017 if (type)
8018 return type;
8019
8020 /* Irix 6.2 native cc creates array types without children for
8021 arrays with unspecified length. */
8022 if (die->child == NULL)
8023 {
8024 index_type = objfile_type (objfile)->builtin_int;
8025 range_type = create_range_type (NULL, index_type, 0, -1);
8026 type = create_array_type (NULL, element_type, range_type);
8027 return set_die_type (die, type, cu);
8028 }
8029
8030 back_to = make_cleanup (null_cleanup, NULL);
8031 child_die = die->child;
8032 while (child_die && child_die->tag)
8033 {
8034 if (child_die->tag == DW_TAG_subrange_type)
8035 {
8036 struct type *child_type = read_type_die (child_die, cu);
8037
8038 if (child_type != NULL)
8039 {
8040 /* The range type was succesfully read. Save it for the
8041 array type creation. */
8042 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8043 {
8044 range_types = (struct type **)
8045 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8046 * sizeof (struct type *));
8047 if (ndim == 0)
8048 make_cleanup (free_current_contents, &range_types);
8049 }
8050 range_types[ndim++] = child_type;
8051 }
8052 }
8053 child_die = sibling_die (child_die);
8054 }
8055
8056 /* Dwarf2 dimensions are output from left to right, create the
8057 necessary array types in backwards order. */
8058
8059 type = element_type;
8060
8061 if (read_array_order (die, cu) == DW_ORD_col_major)
8062 {
8063 int i = 0;
8064
8065 while (i < ndim)
8066 type = create_array_type (NULL, type, range_types[i++]);
8067 }
8068 else
8069 {
8070 while (ndim-- > 0)
8071 type = create_array_type (NULL, type, range_types[ndim]);
8072 }
8073
8074 /* Understand Dwarf2 support for vector types (like they occur on
8075 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8076 array type. This is not part of the Dwarf2/3 standard yet, but a
8077 custom vendor extension. The main difference between a regular
8078 array and the vector variant is that vectors are passed by value
8079 to functions. */
8080 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8081 if (attr)
8082 make_vector_type (type);
8083
8084 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8085 implementation may choose to implement triple vectors using this
8086 attribute. */
8087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8088 if (attr)
8089 {
8090 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8091 TYPE_LENGTH (type) = DW_UNSND (attr);
8092 else
8093 complaint (&symfile_complaints,
8094 _("DW_AT_byte_size for array type smaller "
8095 "than the total size of elements"));
8096 }
8097
8098 name = dwarf2_name (die, cu);
8099 if (name)
8100 TYPE_NAME (type) = name;
8101
8102 /* Install the type in the die. */
8103 set_die_type (die, type, cu);
8104
8105 /* set_die_type should be already done. */
8106 set_descriptive_type (type, die, cu);
8107
8108 do_cleanups (back_to);
8109
8110 return type;
8111 }
8112
8113 static enum dwarf_array_dim_ordering
8114 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8115 {
8116 struct attribute *attr;
8117
8118 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8119
8120 if (attr) return DW_SND (attr);
8121
8122 /* GNU F77 is a special case, as at 08/2004 array type info is the
8123 opposite order to the dwarf2 specification, but data is still
8124 laid out as per normal fortran.
8125
8126 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8127 version checking. */
8128
8129 if (cu->language == language_fortran
8130 && cu->producer && strstr (cu->producer, "GNU F77"))
8131 {
8132 return DW_ORD_row_major;
8133 }
8134
8135 switch (cu->language_defn->la_array_ordering)
8136 {
8137 case array_column_major:
8138 return DW_ORD_col_major;
8139 case array_row_major:
8140 default:
8141 return DW_ORD_row_major;
8142 };
8143 }
8144
8145 /* Extract all information from a DW_TAG_set_type DIE and put it in
8146 the DIE's type field. */
8147
8148 static struct type *
8149 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8150 {
8151 struct type *domain_type, *set_type;
8152 struct attribute *attr;
8153
8154 domain_type = die_type (die, cu);
8155
8156 /* The die_type call above may have already set the type for this DIE. */
8157 set_type = get_die_type (die, cu);
8158 if (set_type)
8159 return set_type;
8160
8161 set_type = create_set_type (NULL, domain_type);
8162
8163 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8164 if (attr)
8165 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8166
8167 return set_die_type (die, set_type, cu);
8168 }
8169
8170 /* First cut: install each common block member as a global variable. */
8171
8172 static void
8173 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8174 {
8175 struct die_info *child_die;
8176 struct attribute *attr;
8177 struct symbol *sym;
8178 CORE_ADDR base = (CORE_ADDR) 0;
8179
8180 attr = dwarf2_attr (die, DW_AT_location, cu);
8181 if (attr)
8182 {
8183 /* Support the .debug_loc offsets. */
8184 if (attr_form_is_block (attr))
8185 {
8186 base = decode_locdesc (DW_BLOCK (attr), cu);
8187 }
8188 else if (attr_form_is_section_offset (attr))
8189 {
8190 dwarf2_complex_location_expr_complaint ();
8191 }
8192 else
8193 {
8194 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8195 "common block member");
8196 }
8197 }
8198 if (die->child != NULL)
8199 {
8200 child_die = die->child;
8201 while (child_die && child_die->tag)
8202 {
8203 LONGEST offset;
8204
8205 sym = new_symbol (child_die, NULL, cu);
8206 if (sym != NULL
8207 && handle_data_member_location (child_die, cu, &offset))
8208 {
8209 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8210 add_symbol_to_list (sym, &global_symbols);
8211 }
8212 child_die = sibling_die (child_die);
8213 }
8214 }
8215 }
8216
8217 /* Create a type for a C++ namespace. */
8218
8219 static struct type *
8220 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8221 {
8222 struct objfile *objfile = cu->objfile;
8223 const char *previous_prefix, *name;
8224 int is_anonymous;
8225 struct type *type;
8226
8227 /* For extensions, reuse the type of the original namespace. */
8228 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8229 {
8230 struct die_info *ext_die;
8231 struct dwarf2_cu *ext_cu = cu;
8232
8233 ext_die = dwarf2_extension (die, &ext_cu);
8234 type = read_type_die (ext_die, ext_cu);
8235
8236 /* EXT_CU may not be the same as CU.
8237 Ensure TYPE is recorded in CU's type_hash table. */
8238 return set_die_type (die, type, cu);
8239 }
8240
8241 name = namespace_name (die, &is_anonymous, cu);
8242
8243 /* Now build the name of the current namespace. */
8244
8245 previous_prefix = determine_prefix (die, cu);
8246 if (previous_prefix[0] != '\0')
8247 name = typename_concat (&objfile->objfile_obstack,
8248 previous_prefix, name, 0, cu);
8249
8250 /* Create the type. */
8251 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8252 objfile);
8253 TYPE_NAME (type) = (char *) name;
8254 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8255
8256 return set_die_type (die, type, cu);
8257 }
8258
8259 /* Read a C++ namespace. */
8260
8261 static void
8262 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8263 {
8264 struct objfile *objfile = cu->objfile;
8265 int is_anonymous;
8266
8267 /* Add a symbol associated to this if we haven't seen the namespace
8268 before. Also, add a using directive if it's an anonymous
8269 namespace. */
8270
8271 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8272 {
8273 struct type *type;
8274
8275 type = read_type_die (die, cu);
8276 new_symbol (die, type, cu);
8277
8278 namespace_name (die, &is_anonymous, cu);
8279 if (is_anonymous)
8280 {
8281 const char *previous_prefix = determine_prefix (die, cu);
8282
8283 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8284 NULL, NULL, &objfile->objfile_obstack);
8285 }
8286 }
8287
8288 if (die->child != NULL)
8289 {
8290 struct die_info *child_die = die->child;
8291
8292 while (child_die && child_die->tag)
8293 {
8294 process_die (child_die, cu);
8295 child_die = sibling_die (child_die);
8296 }
8297 }
8298 }
8299
8300 /* Read a Fortran module as type. This DIE can be only a declaration used for
8301 imported module. Still we need that type as local Fortran "use ... only"
8302 declaration imports depend on the created type in determine_prefix. */
8303
8304 static struct type *
8305 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8306 {
8307 struct objfile *objfile = cu->objfile;
8308 char *module_name;
8309 struct type *type;
8310
8311 module_name = dwarf2_name (die, cu);
8312 if (!module_name)
8313 complaint (&symfile_complaints,
8314 _("DW_TAG_module has no name, offset 0x%x"),
8315 die->offset);
8316 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8317
8318 /* determine_prefix uses TYPE_TAG_NAME. */
8319 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8320
8321 return set_die_type (die, type, cu);
8322 }
8323
8324 /* Read a Fortran module. */
8325
8326 static void
8327 read_module (struct die_info *die, struct dwarf2_cu *cu)
8328 {
8329 struct die_info *child_die = die->child;
8330
8331 while (child_die && child_die->tag)
8332 {
8333 process_die (child_die, cu);
8334 child_die = sibling_die (child_die);
8335 }
8336 }
8337
8338 /* Return the name of the namespace represented by DIE. Set
8339 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8340 namespace. */
8341
8342 static const char *
8343 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8344 {
8345 struct die_info *current_die;
8346 const char *name = NULL;
8347
8348 /* Loop through the extensions until we find a name. */
8349
8350 for (current_die = die;
8351 current_die != NULL;
8352 current_die = dwarf2_extension (die, &cu))
8353 {
8354 name = dwarf2_name (current_die, cu);
8355 if (name != NULL)
8356 break;
8357 }
8358
8359 /* Is it an anonymous namespace? */
8360
8361 *is_anonymous = (name == NULL);
8362 if (*is_anonymous)
8363 name = CP_ANONYMOUS_NAMESPACE_STR;
8364
8365 return name;
8366 }
8367
8368 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8369 the user defined type vector. */
8370
8371 static struct type *
8372 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8373 {
8374 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8375 struct comp_unit_head *cu_header = &cu->header;
8376 struct type *type;
8377 struct attribute *attr_byte_size;
8378 struct attribute *attr_address_class;
8379 int byte_size, addr_class;
8380 struct type *target_type;
8381
8382 target_type = die_type (die, cu);
8383
8384 /* The die_type call above may have already set the type for this DIE. */
8385 type = get_die_type (die, cu);
8386 if (type)
8387 return type;
8388
8389 type = lookup_pointer_type (target_type);
8390
8391 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8392 if (attr_byte_size)
8393 byte_size = DW_UNSND (attr_byte_size);
8394 else
8395 byte_size = cu_header->addr_size;
8396
8397 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8398 if (attr_address_class)
8399 addr_class = DW_UNSND (attr_address_class);
8400 else
8401 addr_class = DW_ADDR_none;
8402
8403 /* If the pointer size or address class is different than the
8404 default, create a type variant marked as such and set the
8405 length accordingly. */
8406 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8407 {
8408 if (gdbarch_address_class_type_flags_p (gdbarch))
8409 {
8410 int type_flags;
8411
8412 type_flags = gdbarch_address_class_type_flags
8413 (gdbarch, byte_size, addr_class);
8414 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8415 == 0);
8416 type = make_type_with_address_space (type, type_flags);
8417 }
8418 else if (TYPE_LENGTH (type) != byte_size)
8419 {
8420 complaint (&symfile_complaints,
8421 _("invalid pointer size %d"), byte_size);
8422 }
8423 else
8424 {
8425 /* Should we also complain about unhandled address classes? */
8426 }
8427 }
8428
8429 TYPE_LENGTH (type) = byte_size;
8430 return set_die_type (die, type, cu);
8431 }
8432
8433 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8434 the user defined type vector. */
8435
8436 static struct type *
8437 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8438 {
8439 struct type *type;
8440 struct type *to_type;
8441 struct type *domain;
8442
8443 to_type = die_type (die, cu);
8444 domain = die_containing_type (die, cu);
8445
8446 /* The calls above may have already set the type for this DIE. */
8447 type = get_die_type (die, cu);
8448 if (type)
8449 return type;
8450
8451 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8452 type = lookup_methodptr_type (to_type);
8453 else
8454 type = lookup_memberptr_type (to_type, domain);
8455
8456 return set_die_type (die, type, cu);
8457 }
8458
8459 /* Extract all information from a DW_TAG_reference_type DIE and add to
8460 the user defined type vector. */
8461
8462 static struct type *
8463 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8464 {
8465 struct comp_unit_head *cu_header = &cu->header;
8466 struct type *type, *target_type;
8467 struct attribute *attr;
8468
8469 target_type = die_type (die, cu);
8470
8471 /* The die_type call above may have already set the type for this DIE. */
8472 type = get_die_type (die, cu);
8473 if (type)
8474 return type;
8475
8476 type = lookup_reference_type (target_type);
8477 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8478 if (attr)
8479 {
8480 TYPE_LENGTH (type) = DW_UNSND (attr);
8481 }
8482 else
8483 {
8484 TYPE_LENGTH (type) = cu_header->addr_size;
8485 }
8486 return set_die_type (die, type, cu);
8487 }
8488
8489 static struct type *
8490 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8491 {
8492 struct type *base_type, *cv_type;
8493
8494 base_type = die_type (die, cu);
8495
8496 /* The die_type call above may have already set the type for this DIE. */
8497 cv_type = get_die_type (die, cu);
8498 if (cv_type)
8499 return cv_type;
8500
8501 /* In case the const qualifier is applied to an array type, the element type
8502 is so qualified, not the array type (section 6.7.3 of C99). */
8503 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8504 {
8505 struct type *el_type, *inner_array;
8506
8507 base_type = copy_type (base_type);
8508 inner_array = base_type;
8509
8510 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8511 {
8512 TYPE_TARGET_TYPE (inner_array) =
8513 copy_type (TYPE_TARGET_TYPE (inner_array));
8514 inner_array = TYPE_TARGET_TYPE (inner_array);
8515 }
8516
8517 el_type = TYPE_TARGET_TYPE (inner_array);
8518 TYPE_TARGET_TYPE (inner_array) =
8519 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8520
8521 return set_die_type (die, base_type, cu);
8522 }
8523
8524 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8525 return set_die_type (die, cv_type, cu);
8526 }
8527
8528 static struct type *
8529 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8530 {
8531 struct type *base_type, *cv_type;
8532
8533 base_type = die_type (die, cu);
8534
8535 /* The die_type call above may have already set the type for this DIE. */
8536 cv_type = get_die_type (die, cu);
8537 if (cv_type)
8538 return cv_type;
8539
8540 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8541 return set_die_type (die, cv_type, cu);
8542 }
8543
8544 /* Extract all information from a DW_TAG_string_type DIE and add to
8545 the user defined type vector. It isn't really a user defined type,
8546 but it behaves like one, with other DIE's using an AT_user_def_type
8547 attribute to reference it. */
8548
8549 static struct type *
8550 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8551 {
8552 struct objfile *objfile = cu->objfile;
8553 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8554 struct type *type, *range_type, *index_type, *char_type;
8555 struct attribute *attr;
8556 unsigned int length;
8557
8558 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8559 if (attr)
8560 {
8561 length = DW_UNSND (attr);
8562 }
8563 else
8564 {
8565 /* Check for the DW_AT_byte_size attribute. */
8566 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8567 if (attr)
8568 {
8569 length = DW_UNSND (attr);
8570 }
8571 else
8572 {
8573 length = 1;
8574 }
8575 }
8576
8577 index_type = objfile_type (objfile)->builtin_int;
8578 range_type = create_range_type (NULL, index_type, 1, length);
8579 char_type = language_string_char_type (cu->language_defn, gdbarch);
8580 type = create_string_type (NULL, char_type, range_type);
8581
8582 return set_die_type (die, type, cu);
8583 }
8584
8585 /* Handle DIES due to C code like:
8586
8587 struct foo
8588 {
8589 int (*funcp)(int a, long l);
8590 int b;
8591 };
8592
8593 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8594
8595 static struct type *
8596 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8597 {
8598 struct objfile *objfile = cu->objfile;
8599 struct type *type; /* Type that this function returns. */
8600 struct type *ftype; /* Function that returns above type. */
8601 struct attribute *attr;
8602
8603 type = die_type (die, cu);
8604
8605 /* The die_type call above may have already set the type for this DIE. */
8606 ftype = get_die_type (die, cu);
8607 if (ftype)
8608 return ftype;
8609
8610 ftype = lookup_function_type (type);
8611
8612 /* All functions in C++, Pascal and Java have prototypes. */
8613 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8614 if ((attr && (DW_UNSND (attr) != 0))
8615 || cu->language == language_cplus
8616 || cu->language == language_java
8617 || cu->language == language_pascal)
8618 TYPE_PROTOTYPED (ftype) = 1;
8619 else if (producer_is_realview (cu->producer))
8620 /* RealView does not emit DW_AT_prototyped. We can not
8621 distinguish prototyped and unprototyped functions; default to
8622 prototyped, since that is more common in modern code (and
8623 RealView warns about unprototyped functions). */
8624 TYPE_PROTOTYPED (ftype) = 1;
8625
8626 /* Store the calling convention in the type if it's available in
8627 the subroutine die. Otherwise set the calling convention to
8628 the default value DW_CC_normal. */
8629 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8630 if (attr)
8631 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8632 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8633 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8634 else
8635 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8636
8637 /* We need to add the subroutine type to the die immediately so
8638 we don't infinitely recurse when dealing with parameters
8639 declared as the same subroutine type. */
8640 set_die_type (die, ftype, cu);
8641
8642 if (die->child != NULL)
8643 {
8644 struct type *void_type = objfile_type (objfile)->builtin_void;
8645 struct die_info *child_die;
8646 int nparams, iparams;
8647
8648 /* Count the number of parameters.
8649 FIXME: GDB currently ignores vararg functions, but knows about
8650 vararg member functions. */
8651 nparams = 0;
8652 child_die = die->child;
8653 while (child_die && child_die->tag)
8654 {
8655 if (child_die->tag == DW_TAG_formal_parameter)
8656 nparams++;
8657 else if (child_die->tag == DW_TAG_unspecified_parameters)
8658 TYPE_VARARGS (ftype) = 1;
8659 child_die = sibling_die (child_die);
8660 }
8661
8662 /* Allocate storage for parameters and fill them in. */
8663 TYPE_NFIELDS (ftype) = nparams;
8664 TYPE_FIELDS (ftype) = (struct field *)
8665 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8666
8667 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8668 even if we error out during the parameters reading below. */
8669 for (iparams = 0; iparams < nparams; iparams++)
8670 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8671
8672 iparams = 0;
8673 child_die = die->child;
8674 while (child_die && child_die->tag)
8675 {
8676 if (child_die->tag == DW_TAG_formal_parameter)
8677 {
8678 struct type *arg_type;
8679
8680 /* DWARF version 2 has no clean way to discern C++
8681 static and non-static member functions. G++ helps
8682 GDB by marking the first parameter for non-static
8683 member functions (which is the this pointer) as
8684 artificial. We pass this information to
8685 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8686
8687 DWARF version 3 added DW_AT_object_pointer, which GCC
8688 4.5 does not yet generate. */
8689 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8690 if (attr)
8691 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8692 else
8693 {
8694 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8695
8696 /* GCC/43521: In java, the formal parameter
8697 "this" is sometimes not marked with DW_AT_artificial. */
8698 if (cu->language == language_java)
8699 {
8700 const char *name = dwarf2_name (child_die, cu);
8701
8702 if (name && !strcmp (name, "this"))
8703 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8704 }
8705 }
8706 arg_type = die_type (child_die, cu);
8707
8708 /* RealView does not mark THIS as const, which the testsuite
8709 expects. GCC marks THIS as const in method definitions,
8710 but not in the class specifications (GCC PR 43053). */
8711 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8712 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8713 {
8714 int is_this = 0;
8715 struct dwarf2_cu *arg_cu = cu;
8716 const char *name = dwarf2_name (child_die, cu);
8717
8718 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8719 if (attr)
8720 {
8721 /* If the compiler emits this, use it. */
8722 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8723 is_this = 1;
8724 }
8725 else if (name && strcmp (name, "this") == 0)
8726 /* Function definitions will have the argument names. */
8727 is_this = 1;
8728 else if (name == NULL && iparams == 0)
8729 /* Declarations may not have the names, so like
8730 elsewhere in GDB, assume an artificial first
8731 argument is "this". */
8732 is_this = 1;
8733
8734 if (is_this)
8735 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8736 arg_type, 0);
8737 }
8738
8739 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8740 iparams++;
8741 }
8742 child_die = sibling_die (child_die);
8743 }
8744 }
8745
8746 return ftype;
8747 }
8748
8749 static struct type *
8750 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8751 {
8752 struct objfile *objfile = cu->objfile;
8753 const char *name = NULL;
8754 struct type *this_type, *target_type;
8755
8756 name = dwarf2_full_name (NULL, die, cu);
8757 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8758 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8759 TYPE_NAME (this_type) = (char *) name;
8760 set_die_type (die, this_type, cu);
8761 target_type = die_type (die, cu);
8762 if (target_type != this_type)
8763 TYPE_TARGET_TYPE (this_type) = target_type;
8764 else
8765 {
8766 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8767 spec and cause infinite loops in GDB. */
8768 complaint (&symfile_complaints,
8769 _("Self-referential DW_TAG_typedef "
8770 "- DIE at 0x%x [in module %s]"),
8771 die->offset, objfile->name);
8772 TYPE_TARGET_TYPE (this_type) = NULL;
8773 }
8774 return this_type;
8775 }
8776
8777 /* Find a representation of a given base type and install
8778 it in the TYPE field of the die. */
8779
8780 static struct type *
8781 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8782 {
8783 struct objfile *objfile = cu->objfile;
8784 struct type *type;
8785 struct attribute *attr;
8786 int encoding = 0, size = 0;
8787 char *name;
8788 enum type_code code = TYPE_CODE_INT;
8789 int type_flags = 0;
8790 struct type *target_type = NULL;
8791
8792 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8793 if (attr)
8794 {
8795 encoding = DW_UNSND (attr);
8796 }
8797 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8798 if (attr)
8799 {
8800 size = DW_UNSND (attr);
8801 }
8802 name = dwarf2_name (die, cu);
8803 if (!name)
8804 {
8805 complaint (&symfile_complaints,
8806 _("DW_AT_name missing from DW_TAG_base_type"));
8807 }
8808
8809 switch (encoding)
8810 {
8811 case DW_ATE_address:
8812 /* Turn DW_ATE_address into a void * pointer. */
8813 code = TYPE_CODE_PTR;
8814 type_flags |= TYPE_FLAG_UNSIGNED;
8815 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8816 break;
8817 case DW_ATE_boolean:
8818 code = TYPE_CODE_BOOL;
8819 type_flags |= TYPE_FLAG_UNSIGNED;
8820 break;
8821 case DW_ATE_complex_float:
8822 code = TYPE_CODE_COMPLEX;
8823 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8824 break;
8825 case DW_ATE_decimal_float:
8826 code = TYPE_CODE_DECFLOAT;
8827 break;
8828 case DW_ATE_float:
8829 code = TYPE_CODE_FLT;
8830 break;
8831 case DW_ATE_signed:
8832 break;
8833 case DW_ATE_unsigned:
8834 type_flags |= TYPE_FLAG_UNSIGNED;
8835 if (cu->language == language_fortran
8836 && name
8837 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8838 code = TYPE_CODE_CHAR;
8839 break;
8840 case DW_ATE_signed_char:
8841 if (cu->language == language_ada || cu->language == language_m2
8842 || cu->language == language_pascal
8843 || cu->language == language_fortran)
8844 code = TYPE_CODE_CHAR;
8845 break;
8846 case DW_ATE_unsigned_char:
8847 if (cu->language == language_ada || cu->language == language_m2
8848 || cu->language == language_pascal
8849 || cu->language == language_fortran)
8850 code = TYPE_CODE_CHAR;
8851 type_flags |= TYPE_FLAG_UNSIGNED;
8852 break;
8853 case DW_ATE_UTF:
8854 /* We just treat this as an integer and then recognize the
8855 type by name elsewhere. */
8856 break;
8857
8858 default:
8859 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8860 dwarf_type_encoding_name (encoding));
8861 break;
8862 }
8863
8864 type = init_type (code, size, type_flags, NULL, objfile);
8865 TYPE_NAME (type) = name;
8866 TYPE_TARGET_TYPE (type) = target_type;
8867
8868 if (name && strcmp (name, "char") == 0)
8869 TYPE_NOSIGN (type) = 1;
8870
8871 return set_die_type (die, type, cu);
8872 }
8873
8874 /* Read the given DW_AT_subrange DIE. */
8875
8876 static struct type *
8877 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8878 {
8879 struct type *base_type;
8880 struct type *range_type;
8881 struct attribute *attr;
8882 LONGEST low = 0;
8883 LONGEST high = -1;
8884 char *name;
8885 LONGEST negative_mask;
8886
8887 base_type = die_type (die, cu);
8888 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8889 check_typedef (base_type);
8890
8891 /* The die_type call above may have already set the type for this DIE. */
8892 range_type = get_die_type (die, cu);
8893 if (range_type)
8894 return range_type;
8895
8896 if (cu->language == language_fortran)
8897 {
8898 /* FORTRAN implies a lower bound of 1, if not given. */
8899 low = 1;
8900 }
8901
8902 /* FIXME: For variable sized arrays either of these could be
8903 a variable rather than a constant value. We'll allow it,
8904 but we don't know how to handle it. */
8905 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8906 if (attr)
8907 low = dwarf2_get_attr_constant_value (attr, 0);
8908
8909 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8910 if (attr)
8911 {
8912 if (attr_form_is_block (attr) || is_ref_attr (attr))
8913 {
8914 /* GCC encodes arrays with unspecified or dynamic length
8915 with a DW_FORM_block1 attribute or a reference attribute.
8916 FIXME: GDB does not yet know how to handle dynamic
8917 arrays properly, treat them as arrays with unspecified
8918 length for now.
8919
8920 FIXME: jimb/2003-09-22: GDB does not really know
8921 how to handle arrays of unspecified length
8922 either; we just represent them as zero-length
8923 arrays. Choose an appropriate upper bound given
8924 the lower bound we've computed above. */
8925 high = low - 1;
8926 }
8927 else
8928 high = dwarf2_get_attr_constant_value (attr, 1);
8929 }
8930 else
8931 {
8932 attr = dwarf2_attr (die, DW_AT_count, cu);
8933 if (attr)
8934 {
8935 int count = dwarf2_get_attr_constant_value (attr, 1);
8936 high = low + count - 1;
8937 }
8938 else
8939 {
8940 /* Unspecified array length. */
8941 high = low - 1;
8942 }
8943 }
8944
8945 /* Dwarf-2 specifications explicitly allows to create subrange types
8946 without specifying a base type.
8947 In that case, the base type must be set to the type of
8948 the lower bound, upper bound or count, in that order, if any of these
8949 three attributes references an object that has a type.
8950 If no base type is found, the Dwarf-2 specifications say that
8951 a signed integer type of size equal to the size of an address should
8952 be used.
8953 For the following C code: `extern char gdb_int [];'
8954 GCC produces an empty range DIE.
8955 FIXME: muller/2010-05-28: Possible references to object for low bound,
8956 high bound or count are not yet handled by this code. */
8957 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8958 {
8959 struct objfile *objfile = cu->objfile;
8960 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8961 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8962 struct type *int_type = objfile_type (objfile)->builtin_int;
8963
8964 /* Test "int", "long int", and "long long int" objfile types,
8965 and select the first one having a size above or equal to the
8966 architecture address size. */
8967 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8968 base_type = int_type;
8969 else
8970 {
8971 int_type = objfile_type (objfile)->builtin_long;
8972 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8973 base_type = int_type;
8974 else
8975 {
8976 int_type = objfile_type (objfile)->builtin_long_long;
8977 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8978 base_type = int_type;
8979 }
8980 }
8981 }
8982
8983 negative_mask =
8984 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8985 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8986 low |= negative_mask;
8987 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8988 high |= negative_mask;
8989
8990 range_type = create_range_type (NULL, base_type, low, high);
8991
8992 /* Mark arrays with dynamic length at least as an array of unspecified
8993 length. GDB could check the boundary but before it gets implemented at
8994 least allow accessing the array elements. */
8995 if (attr && attr_form_is_block (attr))
8996 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8997
8998 /* Ada expects an empty array on no boundary attributes. */
8999 if (attr == NULL && cu->language != language_ada)
9000 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9001
9002 name = dwarf2_name (die, cu);
9003 if (name)
9004 TYPE_NAME (range_type) = name;
9005
9006 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9007 if (attr)
9008 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9009
9010 set_die_type (die, range_type, cu);
9011
9012 /* set_die_type should be already done. */
9013 set_descriptive_type (range_type, die, cu);
9014
9015 return range_type;
9016 }
9017
9018 static struct type *
9019 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9020 {
9021 struct type *type;
9022
9023 /* For now, we only support the C meaning of an unspecified type: void. */
9024
9025 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9026 TYPE_NAME (type) = dwarf2_name (die, cu);
9027
9028 return set_die_type (die, type, cu);
9029 }
9030
9031 /* Trivial hash function for die_info: the hash value of a DIE
9032 is its offset in .debug_info for this objfile. */
9033
9034 static hashval_t
9035 die_hash (const void *item)
9036 {
9037 const struct die_info *die = item;
9038
9039 return die->offset;
9040 }
9041
9042 /* Trivial comparison function for die_info structures: two DIEs
9043 are equal if they have the same offset. */
9044
9045 static int
9046 die_eq (const void *item_lhs, const void *item_rhs)
9047 {
9048 const struct die_info *die_lhs = item_lhs;
9049 const struct die_info *die_rhs = item_rhs;
9050
9051 return die_lhs->offset == die_rhs->offset;
9052 }
9053
9054 /* Read a whole compilation unit into a linked list of dies. */
9055
9056 static struct die_info *
9057 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9058 {
9059 struct die_reader_specs reader_specs;
9060 int read_abbrevs = 0;
9061 struct cleanup *back_to = NULL;
9062 struct die_info *die;
9063
9064 if (cu->dwarf2_abbrevs == NULL)
9065 {
9066 dwarf2_read_abbrevs (cu);
9067 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9068 read_abbrevs = 1;
9069 }
9070
9071 gdb_assert (cu->die_hash == NULL);
9072 cu->die_hash
9073 = htab_create_alloc_ex (cu->header.length / 12,
9074 die_hash,
9075 die_eq,
9076 NULL,
9077 &cu->comp_unit_obstack,
9078 hashtab_obstack_allocate,
9079 dummy_obstack_deallocate);
9080
9081 init_cu_die_reader (&reader_specs, cu);
9082
9083 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9084
9085 if (read_abbrevs)
9086 do_cleanups (back_to);
9087
9088 return die;
9089 }
9090
9091 /* Main entry point for reading a DIE and all children.
9092 Read the DIE and dump it if requested. */
9093
9094 static struct die_info *
9095 read_die_and_children (const struct die_reader_specs *reader,
9096 gdb_byte *info_ptr,
9097 gdb_byte **new_info_ptr,
9098 struct die_info *parent)
9099 {
9100 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9101 new_info_ptr, parent);
9102
9103 if (dwarf2_die_debug)
9104 {
9105 fprintf_unfiltered (gdb_stdlog,
9106 "\nRead die from %s of %s:\n",
9107 (reader->cu->per_cu->debug_types_section
9108 ? ".debug_types"
9109 : ".debug_info"),
9110 reader->abfd->filename);
9111 dump_die (result, dwarf2_die_debug);
9112 }
9113
9114 return result;
9115 }
9116
9117 /* Read a single die and all its descendents. Set the die's sibling
9118 field to NULL; set other fields in the die correctly, and set all
9119 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9120 location of the info_ptr after reading all of those dies. PARENT
9121 is the parent of the die in question. */
9122
9123 static struct die_info *
9124 read_die_and_children_1 (const struct die_reader_specs *reader,
9125 gdb_byte *info_ptr,
9126 gdb_byte **new_info_ptr,
9127 struct die_info *parent)
9128 {
9129 struct die_info *die;
9130 gdb_byte *cur_ptr;
9131 int has_children;
9132
9133 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9134 if (die == NULL)
9135 {
9136 *new_info_ptr = cur_ptr;
9137 return NULL;
9138 }
9139 store_in_ref_table (die, reader->cu);
9140
9141 if (has_children)
9142 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9143 else
9144 {
9145 die->child = NULL;
9146 *new_info_ptr = cur_ptr;
9147 }
9148
9149 die->sibling = NULL;
9150 die->parent = parent;
9151 return die;
9152 }
9153
9154 /* Read a die, all of its descendents, and all of its siblings; set
9155 all of the fields of all of the dies correctly. Arguments are as
9156 in read_die_and_children. */
9157
9158 static struct die_info *
9159 read_die_and_siblings (const struct die_reader_specs *reader,
9160 gdb_byte *info_ptr,
9161 gdb_byte **new_info_ptr,
9162 struct die_info *parent)
9163 {
9164 struct die_info *first_die, *last_sibling;
9165 gdb_byte *cur_ptr;
9166
9167 cur_ptr = info_ptr;
9168 first_die = last_sibling = NULL;
9169
9170 while (1)
9171 {
9172 struct die_info *die
9173 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9174
9175 if (die == NULL)
9176 {
9177 *new_info_ptr = cur_ptr;
9178 return first_die;
9179 }
9180
9181 if (!first_die)
9182 first_die = die;
9183 else
9184 last_sibling->sibling = die;
9185
9186 last_sibling = die;
9187 }
9188 }
9189
9190 /* Read the die from the .debug_info section buffer. Set DIEP to
9191 point to a newly allocated die with its information, except for its
9192 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9193 whether the die has children or not. */
9194
9195 static gdb_byte *
9196 read_full_die (const struct die_reader_specs *reader,
9197 struct die_info **diep, gdb_byte *info_ptr,
9198 int *has_children)
9199 {
9200 unsigned int abbrev_number, bytes_read, i, offset;
9201 struct abbrev_info *abbrev;
9202 struct die_info *die;
9203 struct dwarf2_cu *cu = reader->cu;
9204 bfd *abfd = reader->abfd;
9205
9206 offset = info_ptr - reader->buffer;
9207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9208 info_ptr += bytes_read;
9209 if (!abbrev_number)
9210 {
9211 *diep = NULL;
9212 *has_children = 0;
9213 return info_ptr;
9214 }
9215
9216 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9217 if (!abbrev)
9218 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9219 abbrev_number,
9220 bfd_get_filename (abfd));
9221
9222 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9223 die->offset = offset;
9224 die->tag = abbrev->tag;
9225 die->abbrev = abbrev_number;
9226
9227 die->num_attrs = abbrev->num_attrs;
9228
9229 for (i = 0; i < abbrev->num_attrs; ++i)
9230 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9231 abfd, info_ptr, cu);
9232
9233 *diep = die;
9234 *has_children = abbrev->has_children;
9235 return info_ptr;
9236 }
9237
9238 /* In DWARF version 2, the description of the debugging information is
9239 stored in a separate .debug_abbrev section. Before we read any
9240 dies from a section we read in all abbreviations and install them
9241 in a hash table. This function also sets flags in CU describing
9242 the data found in the abbrev table. */
9243
9244 static void
9245 dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9246 {
9247 bfd *abfd = cu->objfile->obfd;
9248 struct comp_unit_head *cu_header = &cu->header;
9249 gdb_byte *abbrev_ptr;
9250 struct abbrev_info *cur_abbrev;
9251 unsigned int abbrev_number, bytes_read, abbrev_name;
9252 unsigned int abbrev_form, hash_number;
9253 struct attr_abbrev *cur_attrs;
9254 unsigned int allocated_attrs;
9255
9256 /* Initialize dwarf2 abbrevs. */
9257 obstack_init (&cu->abbrev_obstack);
9258 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9259 (ABBREV_HASH_SIZE
9260 * sizeof (struct abbrev_info *)));
9261 memset (cu->dwarf2_abbrevs, 0,
9262 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9263
9264 dwarf2_read_section (dwarf2_per_objfile->objfile,
9265 &dwarf2_per_objfile->abbrev);
9266 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9267 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9268 abbrev_ptr += bytes_read;
9269
9270 allocated_attrs = ATTR_ALLOC_CHUNK;
9271 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9272
9273 /* Loop until we reach an abbrev number of 0. */
9274 while (abbrev_number)
9275 {
9276 cur_abbrev = dwarf_alloc_abbrev (cu);
9277
9278 /* read in abbrev header */
9279 cur_abbrev->number = abbrev_number;
9280 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9281 abbrev_ptr += bytes_read;
9282 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9283 abbrev_ptr += 1;
9284
9285 if (cur_abbrev->tag == DW_TAG_namespace)
9286 cu->has_namespace_info = 1;
9287
9288 /* now read in declarations */
9289 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9290 abbrev_ptr += bytes_read;
9291 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9292 abbrev_ptr += bytes_read;
9293 while (abbrev_name)
9294 {
9295 if (cur_abbrev->num_attrs == allocated_attrs)
9296 {
9297 allocated_attrs += ATTR_ALLOC_CHUNK;
9298 cur_attrs
9299 = xrealloc (cur_attrs, (allocated_attrs
9300 * sizeof (struct attr_abbrev)));
9301 }
9302
9303 /* Record whether this compilation unit might have
9304 inter-compilation-unit references. If we don't know what form
9305 this attribute will have, then it might potentially be a
9306 DW_FORM_ref_addr, so we conservatively expect inter-CU
9307 references. */
9308
9309 if (abbrev_form == DW_FORM_ref_addr
9310 || abbrev_form == DW_FORM_indirect)
9311 cu->has_form_ref_addr = 1;
9312
9313 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9314 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9315 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9316 abbrev_ptr += bytes_read;
9317 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9318 abbrev_ptr += bytes_read;
9319 }
9320
9321 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9322 (cur_abbrev->num_attrs
9323 * sizeof (struct attr_abbrev)));
9324 memcpy (cur_abbrev->attrs, cur_attrs,
9325 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9326
9327 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9328 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9329 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9330
9331 /* Get next abbreviation.
9332 Under Irix6 the abbreviations for a compilation unit are not
9333 always properly terminated with an abbrev number of 0.
9334 Exit loop if we encounter an abbreviation which we have
9335 already read (which means we are about to read the abbreviations
9336 for the next compile unit) or if the end of the abbreviation
9337 table is reached. */
9338 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9339 >= dwarf2_per_objfile->abbrev.size)
9340 break;
9341 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9342 abbrev_ptr += bytes_read;
9343 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9344 break;
9345 }
9346
9347 xfree (cur_attrs);
9348 }
9349
9350 /* Release the memory used by the abbrev table for a compilation unit. */
9351
9352 static void
9353 dwarf2_free_abbrev_table (void *ptr_to_cu)
9354 {
9355 struct dwarf2_cu *cu = ptr_to_cu;
9356
9357 obstack_free (&cu->abbrev_obstack, NULL);
9358 cu->dwarf2_abbrevs = NULL;
9359 }
9360
9361 /* Lookup an abbrev_info structure in the abbrev hash table. */
9362
9363 static struct abbrev_info *
9364 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9365 {
9366 unsigned int hash_number;
9367 struct abbrev_info *abbrev;
9368
9369 hash_number = number % ABBREV_HASH_SIZE;
9370 abbrev = cu->dwarf2_abbrevs[hash_number];
9371
9372 while (abbrev)
9373 {
9374 if (abbrev->number == number)
9375 return abbrev;
9376 else
9377 abbrev = abbrev->next;
9378 }
9379 return NULL;
9380 }
9381
9382 /* Returns nonzero if TAG represents a type that we might generate a partial
9383 symbol for. */
9384
9385 static int
9386 is_type_tag_for_partial (int tag)
9387 {
9388 switch (tag)
9389 {
9390 #if 0
9391 /* Some types that would be reasonable to generate partial symbols for,
9392 that we don't at present. */
9393 case DW_TAG_array_type:
9394 case DW_TAG_file_type:
9395 case DW_TAG_ptr_to_member_type:
9396 case DW_TAG_set_type:
9397 case DW_TAG_string_type:
9398 case DW_TAG_subroutine_type:
9399 #endif
9400 case DW_TAG_base_type:
9401 case DW_TAG_class_type:
9402 case DW_TAG_interface_type:
9403 case DW_TAG_enumeration_type:
9404 case DW_TAG_structure_type:
9405 case DW_TAG_subrange_type:
9406 case DW_TAG_typedef:
9407 case DW_TAG_union_type:
9408 return 1;
9409 default:
9410 return 0;
9411 }
9412 }
9413
9414 /* Load all DIEs that are interesting for partial symbols into memory. */
9415
9416 static struct partial_die_info *
9417 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9418 int building_psymtab, struct dwarf2_cu *cu)
9419 {
9420 struct objfile *objfile = cu->objfile;
9421 struct partial_die_info *part_die;
9422 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9423 struct abbrev_info *abbrev;
9424 unsigned int bytes_read;
9425 unsigned int load_all = 0;
9426
9427 int nesting_level = 1;
9428
9429 parent_die = NULL;
9430 last_die = NULL;
9431
9432 if (cu->per_cu && cu->per_cu->load_all_dies)
9433 load_all = 1;
9434
9435 cu->partial_dies
9436 = htab_create_alloc_ex (cu->header.length / 12,
9437 partial_die_hash,
9438 partial_die_eq,
9439 NULL,
9440 &cu->comp_unit_obstack,
9441 hashtab_obstack_allocate,
9442 dummy_obstack_deallocate);
9443
9444 part_die = obstack_alloc (&cu->comp_unit_obstack,
9445 sizeof (struct partial_die_info));
9446
9447 while (1)
9448 {
9449 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9450
9451 /* A NULL abbrev means the end of a series of children. */
9452 if (abbrev == NULL)
9453 {
9454 if (--nesting_level == 0)
9455 {
9456 /* PART_DIE was probably the last thing allocated on the
9457 comp_unit_obstack, so we could call obstack_free
9458 here. We don't do that because the waste is small,
9459 and will be cleaned up when we're done with this
9460 compilation unit. This way, we're also more robust
9461 against other users of the comp_unit_obstack. */
9462 return first_die;
9463 }
9464 info_ptr += bytes_read;
9465 last_die = parent_die;
9466 parent_die = parent_die->die_parent;
9467 continue;
9468 }
9469
9470 /* Check for template arguments. We never save these; if
9471 they're seen, we just mark the parent, and go on our way. */
9472 if (parent_die != NULL
9473 && cu->language == language_cplus
9474 && (abbrev->tag == DW_TAG_template_type_param
9475 || abbrev->tag == DW_TAG_template_value_param))
9476 {
9477 parent_die->has_template_arguments = 1;
9478
9479 if (!load_all)
9480 {
9481 /* We don't need a partial DIE for the template argument. */
9482 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9483 cu);
9484 continue;
9485 }
9486 }
9487
9488 /* We only recurse into subprograms looking for template arguments.
9489 Skip their other children. */
9490 if (!load_all
9491 && cu->language == language_cplus
9492 && parent_die != NULL
9493 && parent_die->tag == DW_TAG_subprogram)
9494 {
9495 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9496 continue;
9497 }
9498
9499 /* Check whether this DIE is interesting enough to save. Normally
9500 we would not be interested in members here, but there may be
9501 later variables referencing them via DW_AT_specification (for
9502 static members). */
9503 if (!load_all
9504 && !is_type_tag_for_partial (abbrev->tag)
9505 && abbrev->tag != DW_TAG_constant
9506 && abbrev->tag != DW_TAG_enumerator
9507 && abbrev->tag != DW_TAG_subprogram
9508 && abbrev->tag != DW_TAG_lexical_block
9509 && abbrev->tag != DW_TAG_variable
9510 && abbrev->tag != DW_TAG_namespace
9511 && abbrev->tag != DW_TAG_module
9512 && abbrev->tag != DW_TAG_member)
9513 {
9514 /* Otherwise we skip to the next sibling, if any. */
9515 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9516 continue;
9517 }
9518
9519 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9520 buffer, info_ptr, cu);
9521
9522 /* This two-pass algorithm for processing partial symbols has a
9523 high cost in cache pressure. Thus, handle some simple cases
9524 here which cover the majority of C partial symbols. DIEs
9525 which neither have specification tags in them, nor could have
9526 specification tags elsewhere pointing at them, can simply be
9527 processed and discarded.
9528
9529 This segment is also optional; scan_partial_symbols and
9530 add_partial_symbol will handle these DIEs if we chain
9531 them in normally. When compilers which do not emit large
9532 quantities of duplicate debug information are more common,
9533 this code can probably be removed. */
9534
9535 /* Any complete simple types at the top level (pretty much all
9536 of them, for a language without namespaces), can be processed
9537 directly. */
9538 if (parent_die == NULL
9539 && part_die->has_specification == 0
9540 && part_die->is_declaration == 0
9541 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9542 || part_die->tag == DW_TAG_base_type
9543 || part_die->tag == DW_TAG_subrange_type))
9544 {
9545 if (building_psymtab && part_die->name != NULL)
9546 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9547 VAR_DOMAIN, LOC_TYPEDEF,
9548 &objfile->static_psymbols,
9549 0, (CORE_ADDR) 0, cu->language, objfile);
9550 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9551 continue;
9552 }
9553
9554 /* The exception for DW_TAG_typedef with has_children above is
9555 a workaround of GCC PR debug/47510. In the case of this complaint
9556 type_name_no_tag_or_error will error on such types later.
9557
9558 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9559 it could not find the child DIEs referenced later, this is checked
9560 above. In correct DWARF DW_TAG_typedef should have no children. */
9561
9562 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9563 complaint (&symfile_complaints,
9564 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9565 "- DIE at 0x%x [in module %s]"),
9566 part_die->offset, objfile->name);
9567
9568 /* If we're at the second level, and we're an enumerator, and
9569 our parent has no specification (meaning possibly lives in a
9570 namespace elsewhere), then we can add the partial symbol now
9571 instead of queueing it. */
9572 if (part_die->tag == DW_TAG_enumerator
9573 && parent_die != NULL
9574 && parent_die->die_parent == NULL
9575 && parent_die->tag == DW_TAG_enumeration_type
9576 && parent_die->has_specification == 0)
9577 {
9578 if (part_die->name == NULL)
9579 complaint (&symfile_complaints,
9580 _("malformed enumerator DIE ignored"));
9581 else if (building_psymtab)
9582 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9583 VAR_DOMAIN, LOC_CONST,
9584 (cu->language == language_cplus
9585 || cu->language == language_java)
9586 ? &objfile->global_psymbols
9587 : &objfile->static_psymbols,
9588 0, (CORE_ADDR) 0, cu->language, objfile);
9589
9590 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9591 continue;
9592 }
9593
9594 /* We'll save this DIE so link it in. */
9595 part_die->die_parent = parent_die;
9596 part_die->die_sibling = NULL;
9597 part_die->die_child = NULL;
9598
9599 if (last_die && last_die == parent_die)
9600 last_die->die_child = part_die;
9601 else if (last_die)
9602 last_die->die_sibling = part_die;
9603
9604 last_die = part_die;
9605
9606 if (first_die == NULL)
9607 first_die = part_die;
9608
9609 /* Maybe add the DIE to the hash table. Not all DIEs that we
9610 find interesting need to be in the hash table, because we
9611 also have the parent/sibling/child chains; only those that we
9612 might refer to by offset later during partial symbol reading.
9613
9614 For now this means things that might have be the target of a
9615 DW_AT_specification, DW_AT_abstract_origin, or
9616 DW_AT_extension. DW_AT_extension will refer only to
9617 namespaces; DW_AT_abstract_origin refers to functions (and
9618 many things under the function DIE, but we do not recurse
9619 into function DIEs during partial symbol reading) and
9620 possibly variables as well; DW_AT_specification refers to
9621 declarations. Declarations ought to have the DW_AT_declaration
9622 flag. It happens that GCC forgets to put it in sometimes, but
9623 only for functions, not for types.
9624
9625 Adding more things than necessary to the hash table is harmless
9626 except for the performance cost. Adding too few will result in
9627 wasted time in find_partial_die, when we reread the compilation
9628 unit with load_all_dies set. */
9629
9630 if (load_all
9631 || abbrev->tag == DW_TAG_constant
9632 || abbrev->tag == DW_TAG_subprogram
9633 || abbrev->tag == DW_TAG_variable
9634 || abbrev->tag == DW_TAG_namespace
9635 || part_die->is_declaration)
9636 {
9637 void **slot;
9638
9639 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9640 part_die->offset, INSERT);
9641 *slot = part_die;
9642 }
9643
9644 part_die = obstack_alloc (&cu->comp_unit_obstack,
9645 sizeof (struct partial_die_info));
9646
9647 /* For some DIEs we want to follow their children (if any). For C
9648 we have no reason to follow the children of structures; for other
9649 languages we have to, so that we can get at method physnames
9650 to infer fully qualified class names, for DW_AT_specification,
9651 and for C++ template arguments. For C++, we also look one level
9652 inside functions to find template arguments (if the name of the
9653 function does not already contain the template arguments).
9654
9655 For Ada, we need to scan the children of subprograms and lexical
9656 blocks as well because Ada allows the definition of nested
9657 entities that could be interesting for the debugger, such as
9658 nested subprograms for instance. */
9659 if (last_die->has_children
9660 && (load_all
9661 || last_die->tag == DW_TAG_namespace
9662 || last_die->tag == DW_TAG_module
9663 || last_die->tag == DW_TAG_enumeration_type
9664 || (cu->language == language_cplus
9665 && last_die->tag == DW_TAG_subprogram
9666 && (last_die->name == NULL
9667 || strchr (last_die->name, '<') == NULL))
9668 || (cu->language != language_c
9669 && (last_die->tag == DW_TAG_class_type
9670 || last_die->tag == DW_TAG_interface_type
9671 || last_die->tag == DW_TAG_structure_type
9672 || last_die->tag == DW_TAG_union_type))
9673 || (cu->language == language_ada
9674 && (last_die->tag == DW_TAG_subprogram
9675 || last_die->tag == DW_TAG_lexical_block))))
9676 {
9677 nesting_level++;
9678 parent_die = last_die;
9679 continue;
9680 }
9681
9682 /* Otherwise we skip to the next sibling, if any. */
9683 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9684
9685 /* Back to the top, do it again. */
9686 }
9687 }
9688
9689 /* Read a minimal amount of information into the minimal die structure. */
9690
9691 static gdb_byte *
9692 read_partial_die (struct partial_die_info *part_die,
9693 struct abbrev_info *abbrev,
9694 unsigned int abbrev_len, bfd *abfd,
9695 gdb_byte *buffer, gdb_byte *info_ptr,
9696 struct dwarf2_cu *cu)
9697 {
9698 struct objfile *objfile = cu->objfile;
9699 unsigned int i;
9700 struct attribute attr;
9701 int has_low_pc_attr = 0;
9702 int has_high_pc_attr = 0;
9703
9704 memset (part_die, 0, sizeof (struct partial_die_info));
9705
9706 part_die->offset = info_ptr - buffer;
9707
9708 info_ptr += abbrev_len;
9709
9710 if (abbrev == NULL)
9711 return info_ptr;
9712
9713 part_die->tag = abbrev->tag;
9714 part_die->has_children = abbrev->has_children;
9715
9716 for (i = 0; i < abbrev->num_attrs; ++i)
9717 {
9718 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9719
9720 /* Store the data if it is of an attribute we want to keep in a
9721 partial symbol table. */
9722 switch (attr.name)
9723 {
9724 case DW_AT_name:
9725 switch (part_die->tag)
9726 {
9727 case DW_TAG_compile_unit:
9728 case DW_TAG_type_unit:
9729 /* Compilation units have a DW_AT_name that is a filename, not
9730 a source language identifier. */
9731 case DW_TAG_enumeration_type:
9732 case DW_TAG_enumerator:
9733 /* These tags always have simple identifiers already; no need
9734 to canonicalize them. */
9735 part_die->name = DW_STRING (&attr);
9736 break;
9737 default:
9738 part_die->name
9739 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9740 &objfile->objfile_obstack);
9741 break;
9742 }
9743 break;
9744 case DW_AT_linkage_name:
9745 case DW_AT_MIPS_linkage_name:
9746 /* Note that both forms of linkage name might appear. We
9747 assume they will be the same, and we only store the last
9748 one we see. */
9749 if (cu->language == language_ada)
9750 part_die->name = DW_STRING (&attr);
9751 part_die->linkage_name = DW_STRING (&attr);
9752 break;
9753 case DW_AT_low_pc:
9754 has_low_pc_attr = 1;
9755 part_die->lowpc = DW_ADDR (&attr);
9756 break;
9757 case DW_AT_high_pc:
9758 has_high_pc_attr = 1;
9759 part_die->highpc = DW_ADDR (&attr);
9760 break;
9761 case DW_AT_location:
9762 /* Support the .debug_loc offsets. */
9763 if (attr_form_is_block (&attr))
9764 {
9765 part_die->locdesc = DW_BLOCK (&attr);
9766 }
9767 else if (attr_form_is_section_offset (&attr))
9768 {
9769 dwarf2_complex_location_expr_complaint ();
9770 }
9771 else
9772 {
9773 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9774 "partial symbol information");
9775 }
9776 break;
9777 case DW_AT_external:
9778 part_die->is_external = DW_UNSND (&attr);
9779 break;
9780 case DW_AT_declaration:
9781 part_die->is_declaration = DW_UNSND (&attr);
9782 break;
9783 case DW_AT_type:
9784 part_die->has_type = 1;
9785 break;
9786 case DW_AT_abstract_origin:
9787 case DW_AT_specification:
9788 case DW_AT_extension:
9789 part_die->has_specification = 1;
9790 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9791 break;
9792 case DW_AT_sibling:
9793 /* Ignore absolute siblings, they might point outside of
9794 the current compile unit. */
9795 if (attr.form == DW_FORM_ref_addr)
9796 complaint (&symfile_complaints,
9797 _("ignoring absolute DW_AT_sibling"));
9798 else
9799 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9800 break;
9801 case DW_AT_byte_size:
9802 part_die->has_byte_size = 1;
9803 break;
9804 case DW_AT_calling_convention:
9805 /* DWARF doesn't provide a way to identify a program's source-level
9806 entry point. DW_AT_calling_convention attributes are only meant
9807 to describe functions' calling conventions.
9808
9809 However, because it's a necessary piece of information in
9810 Fortran, and because DW_CC_program is the only piece of debugging
9811 information whose definition refers to a 'main program' at all,
9812 several compilers have begun marking Fortran main programs with
9813 DW_CC_program --- even when those functions use the standard
9814 calling conventions.
9815
9816 So until DWARF specifies a way to provide this information and
9817 compilers pick up the new representation, we'll support this
9818 practice. */
9819 if (DW_UNSND (&attr) == DW_CC_program
9820 && cu->language == language_fortran)
9821 {
9822 set_main_name (part_die->name);
9823
9824 /* As this DIE has a static linkage the name would be difficult
9825 to look up later. */
9826 language_of_main = language_fortran;
9827 }
9828 break;
9829 default:
9830 break;
9831 }
9832 }
9833
9834 if (has_low_pc_attr && has_high_pc_attr)
9835 {
9836 /* When using the GNU linker, .gnu.linkonce. sections are used to
9837 eliminate duplicate copies of functions and vtables and such.
9838 The linker will arbitrarily choose one and discard the others.
9839 The AT_*_pc values for such functions refer to local labels in
9840 these sections. If the section from that file was discarded, the
9841 labels are not in the output, so the relocs get a value of 0.
9842 If this is a discarded function, mark the pc bounds as invalid,
9843 so that GDB will ignore it. */
9844 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9845 {
9846 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9847
9848 complaint (&symfile_complaints,
9849 _("DW_AT_low_pc %s is zero "
9850 "for DIE at 0x%x [in module %s]"),
9851 paddress (gdbarch, part_die->lowpc),
9852 part_die->offset, objfile->name);
9853 }
9854 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9855 else if (part_die->lowpc >= part_die->highpc)
9856 {
9857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9858
9859 complaint (&symfile_complaints,
9860 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9861 "for DIE at 0x%x [in module %s]"),
9862 paddress (gdbarch, part_die->lowpc),
9863 paddress (gdbarch, part_die->highpc),
9864 part_die->offset, objfile->name);
9865 }
9866 else
9867 part_die->has_pc_info = 1;
9868 }
9869
9870 return info_ptr;
9871 }
9872
9873 /* Find a cached partial DIE at OFFSET in CU. */
9874
9875 static struct partial_die_info *
9876 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9877 {
9878 struct partial_die_info *lookup_die = NULL;
9879 struct partial_die_info part_die;
9880
9881 part_die.offset = offset;
9882 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9883
9884 return lookup_die;
9885 }
9886
9887 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9888 except in the case of .debug_types DIEs which do not reference
9889 outside their CU (they do however referencing other types via
9890 DW_FORM_ref_sig8). */
9891
9892 static struct partial_die_info *
9893 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9894 {
9895 struct objfile *objfile = cu->objfile;
9896 struct dwarf2_per_cu_data *per_cu = NULL;
9897 struct partial_die_info *pd = NULL;
9898
9899 if (cu->per_cu->debug_types_section)
9900 {
9901 pd = find_partial_die_in_comp_unit (offset, cu);
9902 if (pd != NULL)
9903 return pd;
9904 goto not_found;
9905 }
9906
9907 if (offset_in_cu_p (&cu->header, offset))
9908 {
9909 pd = find_partial_die_in_comp_unit (offset, cu);
9910 if (pd != NULL)
9911 return pd;
9912 }
9913
9914 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9915
9916 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9917 load_partial_comp_unit (per_cu);
9918
9919 per_cu->cu->last_used = 0;
9920 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9921
9922 if (pd == NULL && per_cu->load_all_dies == 0)
9923 {
9924 struct cleanup *back_to;
9925 struct partial_die_info comp_unit_die;
9926 struct abbrev_info *abbrev;
9927 unsigned int bytes_read;
9928 char *info_ptr;
9929
9930 per_cu->load_all_dies = 1;
9931
9932 /* Re-read the DIEs. */
9933 back_to = make_cleanup (null_cleanup, 0);
9934 if (per_cu->cu->dwarf2_abbrevs == NULL)
9935 {
9936 dwarf2_read_abbrevs (per_cu->cu);
9937 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9938 }
9939 info_ptr = (dwarf2_per_objfile->info.buffer
9940 + per_cu->cu->header.offset
9941 + per_cu->cu->header.first_die_offset);
9942 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9943 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9944 objfile->obfd,
9945 dwarf2_per_objfile->info.buffer, info_ptr,
9946 per_cu->cu);
9947 if (comp_unit_die.has_children)
9948 load_partial_dies (objfile->obfd,
9949 dwarf2_per_objfile->info.buffer, info_ptr,
9950 0, per_cu->cu);
9951 do_cleanups (back_to);
9952
9953 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9954 }
9955
9956 not_found:
9957
9958 if (pd == NULL)
9959 internal_error (__FILE__, __LINE__,
9960 _("could not find partial DIE 0x%x "
9961 "in cache [from module %s]\n"),
9962 offset, bfd_get_filename (objfile->obfd));
9963 return pd;
9964 }
9965
9966 /* See if we can figure out if the class lives in a namespace. We do
9967 this by looking for a member function; its demangled name will
9968 contain namespace info, if there is any. */
9969
9970 static void
9971 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9972 struct dwarf2_cu *cu)
9973 {
9974 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9975 what template types look like, because the demangler
9976 frequently doesn't give the same name as the debug info. We
9977 could fix this by only using the demangled name to get the
9978 prefix (but see comment in read_structure_type). */
9979
9980 struct partial_die_info *real_pdi;
9981 struct partial_die_info *child_pdi;
9982
9983 /* If this DIE (this DIE's specification, if any) has a parent, then
9984 we should not do this. We'll prepend the parent's fully qualified
9985 name when we create the partial symbol. */
9986
9987 real_pdi = struct_pdi;
9988 while (real_pdi->has_specification)
9989 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9990
9991 if (real_pdi->die_parent != NULL)
9992 return;
9993
9994 for (child_pdi = struct_pdi->die_child;
9995 child_pdi != NULL;
9996 child_pdi = child_pdi->die_sibling)
9997 {
9998 if (child_pdi->tag == DW_TAG_subprogram
9999 && child_pdi->linkage_name != NULL)
10000 {
10001 char *actual_class_name
10002 = language_class_name_from_physname (cu->language_defn,
10003 child_pdi->linkage_name);
10004 if (actual_class_name != NULL)
10005 {
10006 struct_pdi->name
10007 = obsavestring (actual_class_name,
10008 strlen (actual_class_name),
10009 &cu->objfile->objfile_obstack);
10010 xfree (actual_class_name);
10011 }
10012 break;
10013 }
10014 }
10015 }
10016
10017 /* Adjust PART_DIE before generating a symbol for it. This function
10018 may set the is_external flag or change the DIE's name. */
10019
10020 static void
10021 fixup_partial_die (struct partial_die_info *part_die,
10022 struct dwarf2_cu *cu)
10023 {
10024 /* Once we've fixed up a die, there's no point in doing so again.
10025 This also avoids a memory leak if we were to call
10026 guess_partial_die_structure_name multiple times. */
10027 if (part_die->fixup_called)
10028 return;
10029
10030 /* If we found a reference attribute and the DIE has no name, try
10031 to find a name in the referred to DIE. */
10032
10033 if (part_die->name == NULL && part_die->has_specification)
10034 {
10035 struct partial_die_info *spec_die;
10036
10037 spec_die = find_partial_die (part_die->spec_offset, cu);
10038
10039 fixup_partial_die (spec_die, cu);
10040
10041 if (spec_die->name)
10042 {
10043 part_die->name = spec_die->name;
10044
10045 /* Copy DW_AT_external attribute if it is set. */
10046 if (spec_die->is_external)
10047 part_die->is_external = spec_die->is_external;
10048 }
10049 }
10050
10051 /* Set default names for some unnamed DIEs. */
10052
10053 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10054 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10055
10056 /* If there is no parent die to provide a namespace, and there are
10057 children, see if we can determine the namespace from their linkage
10058 name.
10059 NOTE: We need to do this even if cu->has_namespace_info != 0.
10060 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
10061 if (cu->language == language_cplus
10062 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10063 && part_die->die_parent == NULL
10064 && part_die->has_children
10065 && (part_die->tag == DW_TAG_class_type
10066 || part_die->tag == DW_TAG_structure_type
10067 || part_die->tag == DW_TAG_union_type))
10068 guess_partial_die_structure_name (part_die, cu);
10069
10070 /* GCC might emit a nameless struct or union that has a linkage
10071 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10072 if (part_die->name == NULL
10073 && (part_die->tag == DW_TAG_class_type
10074 || part_die->tag == DW_TAG_interface_type
10075 || part_die->tag == DW_TAG_structure_type
10076 || part_die->tag == DW_TAG_union_type)
10077 && part_die->linkage_name != NULL)
10078 {
10079 char *demangled;
10080
10081 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10082 if (demangled)
10083 {
10084 const char *base;
10085
10086 /* Strip any leading namespaces/classes, keep only the base name.
10087 DW_AT_name for named DIEs does not contain the prefixes. */
10088 base = strrchr (demangled, ':');
10089 if (base && base > demangled && base[-1] == ':')
10090 base++;
10091 else
10092 base = demangled;
10093
10094 part_die->name = obsavestring (base, strlen (base),
10095 &cu->objfile->objfile_obstack);
10096 xfree (demangled);
10097 }
10098 }
10099
10100 part_die->fixup_called = 1;
10101 }
10102
10103 /* Read an attribute value described by an attribute form. */
10104
10105 static gdb_byte *
10106 read_attribute_value (struct attribute *attr, unsigned form,
10107 bfd *abfd, gdb_byte *info_ptr,
10108 struct dwarf2_cu *cu)
10109 {
10110 struct comp_unit_head *cu_header = &cu->header;
10111 unsigned int bytes_read;
10112 struct dwarf_block *blk;
10113
10114 attr->form = form;
10115 switch (form)
10116 {
10117 case DW_FORM_ref_addr:
10118 if (cu->header.version == 2)
10119 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10120 else
10121 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10122 &cu->header, &bytes_read);
10123 info_ptr += bytes_read;
10124 break;
10125 case DW_FORM_addr:
10126 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10127 info_ptr += bytes_read;
10128 break;
10129 case DW_FORM_block2:
10130 blk = dwarf_alloc_block (cu);
10131 blk->size = read_2_bytes (abfd, info_ptr);
10132 info_ptr += 2;
10133 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10134 info_ptr += blk->size;
10135 DW_BLOCK (attr) = blk;
10136 break;
10137 case DW_FORM_block4:
10138 blk = dwarf_alloc_block (cu);
10139 blk->size = read_4_bytes (abfd, info_ptr);
10140 info_ptr += 4;
10141 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10142 info_ptr += blk->size;
10143 DW_BLOCK (attr) = blk;
10144 break;
10145 case DW_FORM_data2:
10146 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10147 info_ptr += 2;
10148 break;
10149 case DW_FORM_data4:
10150 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10151 info_ptr += 4;
10152 break;
10153 case DW_FORM_data8:
10154 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10155 info_ptr += 8;
10156 break;
10157 case DW_FORM_sec_offset:
10158 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10159 info_ptr += bytes_read;
10160 break;
10161 case DW_FORM_string:
10162 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10163 DW_STRING_IS_CANONICAL (attr) = 0;
10164 info_ptr += bytes_read;
10165 break;
10166 case DW_FORM_strp:
10167 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10168 &bytes_read);
10169 DW_STRING_IS_CANONICAL (attr) = 0;
10170 info_ptr += bytes_read;
10171 break;
10172 case DW_FORM_exprloc:
10173 case DW_FORM_block:
10174 blk = dwarf_alloc_block (cu);
10175 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10176 info_ptr += bytes_read;
10177 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10178 info_ptr += blk->size;
10179 DW_BLOCK (attr) = blk;
10180 break;
10181 case DW_FORM_block1:
10182 blk = dwarf_alloc_block (cu);
10183 blk->size = read_1_byte (abfd, info_ptr);
10184 info_ptr += 1;
10185 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10186 info_ptr += blk->size;
10187 DW_BLOCK (attr) = blk;
10188 break;
10189 case DW_FORM_data1:
10190 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10191 info_ptr += 1;
10192 break;
10193 case DW_FORM_flag:
10194 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10195 info_ptr += 1;
10196 break;
10197 case DW_FORM_flag_present:
10198 DW_UNSND (attr) = 1;
10199 break;
10200 case DW_FORM_sdata:
10201 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10202 info_ptr += bytes_read;
10203 break;
10204 case DW_FORM_udata:
10205 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10206 info_ptr += bytes_read;
10207 break;
10208 case DW_FORM_ref1:
10209 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10210 info_ptr += 1;
10211 break;
10212 case DW_FORM_ref2:
10213 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10214 info_ptr += 2;
10215 break;
10216 case DW_FORM_ref4:
10217 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10218 info_ptr += 4;
10219 break;
10220 case DW_FORM_ref8:
10221 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10222 info_ptr += 8;
10223 break;
10224 case DW_FORM_ref_sig8:
10225 /* Convert the signature to something we can record in DW_UNSND
10226 for later lookup.
10227 NOTE: This is NULL if the type wasn't found. */
10228 DW_SIGNATURED_TYPE (attr) =
10229 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10230 info_ptr += 8;
10231 break;
10232 case DW_FORM_ref_udata:
10233 DW_ADDR (attr) = (cu->header.offset
10234 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10235 info_ptr += bytes_read;
10236 break;
10237 case DW_FORM_indirect:
10238 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10239 info_ptr += bytes_read;
10240 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10241 break;
10242 default:
10243 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10244 dwarf_form_name (form),
10245 bfd_get_filename (abfd));
10246 }
10247
10248 /* We have seen instances where the compiler tried to emit a byte
10249 size attribute of -1 which ended up being encoded as an unsigned
10250 0xffffffff. Although 0xffffffff is technically a valid size value,
10251 an object of this size seems pretty unlikely so we can relatively
10252 safely treat these cases as if the size attribute was invalid and
10253 treat them as zero by default. */
10254 if (attr->name == DW_AT_byte_size
10255 && form == DW_FORM_data4
10256 && DW_UNSND (attr) >= 0xffffffff)
10257 {
10258 complaint
10259 (&symfile_complaints,
10260 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10261 hex_string (DW_UNSND (attr)));
10262 DW_UNSND (attr) = 0;
10263 }
10264
10265 return info_ptr;
10266 }
10267
10268 /* Read an attribute described by an abbreviated attribute. */
10269
10270 static gdb_byte *
10271 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10272 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10273 {
10274 attr->name = abbrev->name;
10275 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10276 }
10277
10278 /* Read dwarf information from a buffer. */
10279
10280 static unsigned int
10281 read_1_byte (bfd *abfd, gdb_byte *buf)
10282 {
10283 return bfd_get_8 (abfd, buf);
10284 }
10285
10286 static int
10287 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10288 {
10289 return bfd_get_signed_8 (abfd, buf);
10290 }
10291
10292 static unsigned int
10293 read_2_bytes (bfd *abfd, gdb_byte *buf)
10294 {
10295 return bfd_get_16 (abfd, buf);
10296 }
10297
10298 static int
10299 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10300 {
10301 return bfd_get_signed_16 (abfd, buf);
10302 }
10303
10304 static unsigned int
10305 read_4_bytes (bfd *abfd, gdb_byte *buf)
10306 {
10307 return bfd_get_32 (abfd, buf);
10308 }
10309
10310 static int
10311 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10312 {
10313 return bfd_get_signed_32 (abfd, buf);
10314 }
10315
10316 static ULONGEST
10317 read_8_bytes (bfd *abfd, gdb_byte *buf)
10318 {
10319 return bfd_get_64 (abfd, buf);
10320 }
10321
10322 static CORE_ADDR
10323 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10324 unsigned int *bytes_read)
10325 {
10326 struct comp_unit_head *cu_header = &cu->header;
10327 CORE_ADDR retval = 0;
10328
10329 if (cu_header->signed_addr_p)
10330 {
10331 switch (cu_header->addr_size)
10332 {
10333 case 2:
10334 retval = bfd_get_signed_16 (abfd, buf);
10335 break;
10336 case 4:
10337 retval = bfd_get_signed_32 (abfd, buf);
10338 break;
10339 case 8:
10340 retval = bfd_get_signed_64 (abfd, buf);
10341 break;
10342 default:
10343 internal_error (__FILE__, __LINE__,
10344 _("read_address: bad switch, signed [in module %s]"),
10345 bfd_get_filename (abfd));
10346 }
10347 }
10348 else
10349 {
10350 switch (cu_header->addr_size)
10351 {
10352 case 2:
10353 retval = bfd_get_16 (abfd, buf);
10354 break;
10355 case 4:
10356 retval = bfd_get_32 (abfd, buf);
10357 break;
10358 case 8:
10359 retval = bfd_get_64 (abfd, buf);
10360 break;
10361 default:
10362 internal_error (__FILE__, __LINE__,
10363 _("read_address: bad switch, "
10364 "unsigned [in module %s]"),
10365 bfd_get_filename (abfd));
10366 }
10367 }
10368
10369 *bytes_read = cu_header->addr_size;
10370 return retval;
10371 }
10372
10373 /* Read the initial length from a section. The (draft) DWARF 3
10374 specification allows the initial length to take up either 4 bytes
10375 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10376 bytes describe the length and all offsets will be 8 bytes in length
10377 instead of 4.
10378
10379 An older, non-standard 64-bit format is also handled by this
10380 function. The older format in question stores the initial length
10381 as an 8-byte quantity without an escape value. Lengths greater
10382 than 2^32 aren't very common which means that the initial 4 bytes
10383 is almost always zero. Since a length value of zero doesn't make
10384 sense for the 32-bit format, this initial zero can be considered to
10385 be an escape value which indicates the presence of the older 64-bit
10386 format. As written, the code can't detect (old format) lengths
10387 greater than 4GB. If it becomes necessary to handle lengths
10388 somewhat larger than 4GB, we could allow other small values (such
10389 as the non-sensical values of 1, 2, and 3) to also be used as
10390 escape values indicating the presence of the old format.
10391
10392 The value returned via bytes_read should be used to increment the
10393 relevant pointer after calling read_initial_length().
10394
10395 [ Note: read_initial_length() and read_offset() are based on the
10396 document entitled "DWARF Debugging Information Format", revision
10397 3, draft 8, dated November 19, 2001. This document was obtained
10398 from:
10399
10400 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10401
10402 This document is only a draft and is subject to change. (So beware.)
10403
10404 Details regarding the older, non-standard 64-bit format were
10405 determined empirically by examining 64-bit ELF files produced by
10406 the SGI toolchain on an IRIX 6.5 machine.
10407
10408 - Kevin, July 16, 2002
10409 ] */
10410
10411 static LONGEST
10412 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10413 {
10414 LONGEST length = bfd_get_32 (abfd, buf);
10415
10416 if (length == 0xffffffff)
10417 {
10418 length = bfd_get_64 (abfd, buf + 4);
10419 *bytes_read = 12;
10420 }
10421 else if (length == 0)
10422 {
10423 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10424 length = bfd_get_64 (abfd, buf);
10425 *bytes_read = 8;
10426 }
10427 else
10428 {
10429 *bytes_read = 4;
10430 }
10431
10432 return length;
10433 }
10434
10435 /* Cover function for read_initial_length.
10436 Returns the length of the object at BUF, and stores the size of the
10437 initial length in *BYTES_READ and stores the size that offsets will be in
10438 *OFFSET_SIZE.
10439 If the initial length size is not equivalent to that specified in
10440 CU_HEADER then issue a complaint.
10441 This is useful when reading non-comp-unit headers. */
10442
10443 static LONGEST
10444 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10445 const struct comp_unit_head *cu_header,
10446 unsigned int *bytes_read,
10447 unsigned int *offset_size)
10448 {
10449 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10450
10451 gdb_assert (cu_header->initial_length_size == 4
10452 || cu_header->initial_length_size == 8
10453 || cu_header->initial_length_size == 12);
10454
10455 if (cu_header->initial_length_size != *bytes_read)
10456 complaint (&symfile_complaints,
10457 _("intermixed 32-bit and 64-bit DWARF sections"));
10458
10459 *offset_size = (*bytes_read == 4) ? 4 : 8;
10460 return length;
10461 }
10462
10463 /* Read an offset from the data stream. The size of the offset is
10464 given by cu_header->offset_size. */
10465
10466 static LONGEST
10467 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10468 unsigned int *bytes_read)
10469 {
10470 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10471
10472 *bytes_read = cu_header->offset_size;
10473 return offset;
10474 }
10475
10476 /* Read an offset from the data stream. */
10477
10478 static LONGEST
10479 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10480 {
10481 LONGEST retval = 0;
10482
10483 switch (offset_size)
10484 {
10485 case 4:
10486 retval = bfd_get_32 (abfd, buf);
10487 break;
10488 case 8:
10489 retval = bfd_get_64 (abfd, buf);
10490 break;
10491 default:
10492 internal_error (__FILE__, __LINE__,
10493 _("read_offset_1: bad switch [in module %s]"),
10494 bfd_get_filename (abfd));
10495 }
10496
10497 return retval;
10498 }
10499
10500 static gdb_byte *
10501 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10502 {
10503 /* If the size of a host char is 8 bits, we can return a pointer
10504 to the buffer, otherwise we have to copy the data to a buffer
10505 allocated on the temporary obstack. */
10506 gdb_assert (HOST_CHAR_BIT == 8);
10507 return buf;
10508 }
10509
10510 static char *
10511 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10512 {
10513 /* If the size of a host char is 8 bits, we can return a pointer
10514 to the string, otherwise we have to copy the string to a buffer
10515 allocated on the temporary obstack. */
10516 gdb_assert (HOST_CHAR_BIT == 8);
10517 if (*buf == '\0')
10518 {
10519 *bytes_read_ptr = 1;
10520 return NULL;
10521 }
10522 *bytes_read_ptr = strlen ((char *) buf) + 1;
10523 return (char *) buf;
10524 }
10525
10526 static char *
10527 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10528 {
10529 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10530 if (dwarf2_per_objfile->str.buffer == NULL)
10531 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10532 bfd_get_filename (abfd));
10533 if (str_offset >= dwarf2_per_objfile->str.size)
10534 error (_("DW_FORM_strp pointing outside of "
10535 ".debug_str section [in module %s]"),
10536 bfd_get_filename (abfd));
10537 gdb_assert (HOST_CHAR_BIT == 8);
10538 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10539 return NULL;
10540 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10541 }
10542
10543 static char *
10544 read_indirect_string (bfd *abfd, gdb_byte *buf,
10545 const struct comp_unit_head *cu_header,
10546 unsigned int *bytes_read_ptr)
10547 {
10548 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10549
10550 return read_indirect_string_at_offset (abfd, str_offset);
10551 }
10552
10553 static unsigned long
10554 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10555 {
10556 unsigned long result;
10557 unsigned int num_read;
10558 int i, shift;
10559 unsigned char byte;
10560
10561 result = 0;
10562 shift = 0;
10563 num_read = 0;
10564 i = 0;
10565 while (1)
10566 {
10567 byte = bfd_get_8 (abfd, buf);
10568 buf++;
10569 num_read++;
10570 result |= ((unsigned long)(byte & 127) << shift);
10571 if ((byte & 128) == 0)
10572 {
10573 break;
10574 }
10575 shift += 7;
10576 }
10577 *bytes_read_ptr = num_read;
10578 return result;
10579 }
10580
10581 static long
10582 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10583 {
10584 long result;
10585 int i, shift, num_read;
10586 unsigned char byte;
10587
10588 result = 0;
10589 shift = 0;
10590 num_read = 0;
10591 i = 0;
10592 while (1)
10593 {
10594 byte = bfd_get_8 (abfd, buf);
10595 buf++;
10596 num_read++;
10597 result |= ((long)(byte & 127) << shift);
10598 shift += 7;
10599 if ((byte & 128) == 0)
10600 {
10601 break;
10602 }
10603 }
10604 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10605 result |= -(((long)1) << shift);
10606 *bytes_read_ptr = num_read;
10607 return result;
10608 }
10609
10610 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10611
10612 static gdb_byte *
10613 skip_leb128 (bfd *abfd, gdb_byte *buf)
10614 {
10615 int byte;
10616
10617 while (1)
10618 {
10619 byte = bfd_get_8 (abfd, buf);
10620 buf++;
10621 if ((byte & 128) == 0)
10622 return buf;
10623 }
10624 }
10625
10626 static void
10627 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10628 {
10629 switch (lang)
10630 {
10631 case DW_LANG_C89:
10632 case DW_LANG_C99:
10633 case DW_LANG_C:
10634 cu->language = language_c;
10635 break;
10636 case DW_LANG_C_plus_plus:
10637 cu->language = language_cplus;
10638 break;
10639 case DW_LANG_D:
10640 cu->language = language_d;
10641 break;
10642 case DW_LANG_Fortran77:
10643 case DW_LANG_Fortran90:
10644 case DW_LANG_Fortran95:
10645 cu->language = language_fortran;
10646 break;
10647 case DW_LANG_Mips_Assembler:
10648 cu->language = language_asm;
10649 break;
10650 case DW_LANG_Java:
10651 cu->language = language_java;
10652 break;
10653 case DW_LANG_Ada83:
10654 case DW_LANG_Ada95:
10655 cu->language = language_ada;
10656 break;
10657 case DW_LANG_Modula2:
10658 cu->language = language_m2;
10659 break;
10660 case DW_LANG_Pascal83:
10661 cu->language = language_pascal;
10662 break;
10663 case DW_LANG_ObjC:
10664 cu->language = language_objc;
10665 break;
10666 case DW_LANG_Cobol74:
10667 case DW_LANG_Cobol85:
10668 default:
10669 cu->language = language_minimal;
10670 break;
10671 }
10672 cu->language_defn = language_def (cu->language);
10673 }
10674
10675 /* Return the named attribute or NULL if not there. */
10676
10677 static struct attribute *
10678 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10679 {
10680 unsigned int i;
10681 struct attribute *spec = NULL;
10682
10683 for (i = 0; i < die->num_attrs; ++i)
10684 {
10685 if (die->attrs[i].name == name)
10686 return &die->attrs[i];
10687 if (die->attrs[i].name == DW_AT_specification
10688 || die->attrs[i].name == DW_AT_abstract_origin)
10689 spec = &die->attrs[i];
10690 }
10691
10692 if (spec)
10693 {
10694 die = follow_die_ref (die, spec, &cu);
10695 return dwarf2_attr (die, name, cu);
10696 }
10697
10698 return NULL;
10699 }
10700
10701 /* Return the named attribute or NULL if not there,
10702 but do not follow DW_AT_specification, etc.
10703 This is for use in contexts where we're reading .debug_types dies.
10704 Following DW_AT_specification, DW_AT_abstract_origin will take us
10705 back up the chain, and we want to go down. */
10706
10707 static struct attribute *
10708 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10709 struct dwarf2_cu *cu)
10710 {
10711 unsigned int i;
10712
10713 for (i = 0; i < die->num_attrs; ++i)
10714 if (die->attrs[i].name == name)
10715 return &die->attrs[i];
10716
10717 return NULL;
10718 }
10719
10720 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10721 and holds a non-zero value. This function should only be used for
10722 DW_FORM_flag or DW_FORM_flag_present attributes. */
10723
10724 static int
10725 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10726 {
10727 struct attribute *attr = dwarf2_attr (die, name, cu);
10728
10729 return (attr && DW_UNSND (attr));
10730 }
10731
10732 static int
10733 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10734 {
10735 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10736 which value is non-zero. However, we have to be careful with
10737 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10738 (via dwarf2_flag_true_p) follows this attribute. So we may
10739 end up accidently finding a declaration attribute that belongs
10740 to a different DIE referenced by the specification attribute,
10741 even though the given DIE does not have a declaration attribute. */
10742 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10743 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10744 }
10745
10746 /* Return the die giving the specification for DIE, if there is
10747 one. *SPEC_CU is the CU containing DIE on input, and the CU
10748 containing the return value on output. If there is no
10749 specification, but there is an abstract origin, that is
10750 returned. */
10751
10752 static struct die_info *
10753 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10754 {
10755 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10756 *spec_cu);
10757
10758 if (spec_attr == NULL)
10759 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10760
10761 if (spec_attr == NULL)
10762 return NULL;
10763 else
10764 return follow_die_ref (die, spec_attr, spec_cu);
10765 }
10766
10767 /* Free the line_header structure *LH, and any arrays and strings it
10768 refers to.
10769 NOTE: This is also used as a "cleanup" function. */
10770
10771 static void
10772 free_line_header (struct line_header *lh)
10773 {
10774 if (lh->standard_opcode_lengths)
10775 xfree (lh->standard_opcode_lengths);
10776
10777 /* Remember that all the lh->file_names[i].name pointers are
10778 pointers into debug_line_buffer, and don't need to be freed. */
10779 if (lh->file_names)
10780 xfree (lh->file_names);
10781
10782 /* Similarly for the include directory names. */
10783 if (lh->include_dirs)
10784 xfree (lh->include_dirs);
10785
10786 xfree (lh);
10787 }
10788
10789 /* Add an entry to LH's include directory table. */
10790
10791 static void
10792 add_include_dir (struct line_header *lh, char *include_dir)
10793 {
10794 /* Grow the array if necessary. */
10795 if (lh->include_dirs_size == 0)
10796 {
10797 lh->include_dirs_size = 1; /* for testing */
10798 lh->include_dirs = xmalloc (lh->include_dirs_size
10799 * sizeof (*lh->include_dirs));
10800 }
10801 else if (lh->num_include_dirs >= lh->include_dirs_size)
10802 {
10803 lh->include_dirs_size *= 2;
10804 lh->include_dirs = xrealloc (lh->include_dirs,
10805 (lh->include_dirs_size
10806 * sizeof (*lh->include_dirs)));
10807 }
10808
10809 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10810 }
10811
10812 /* Add an entry to LH's file name table. */
10813
10814 static void
10815 add_file_name (struct line_header *lh,
10816 char *name,
10817 unsigned int dir_index,
10818 unsigned int mod_time,
10819 unsigned int length)
10820 {
10821 struct file_entry *fe;
10822
10823 /* Grow the array if necessary. */
10824 if (lh->file_names_size == 0)
10825 {
10826 lh->file_names_size = 1; /* for testing */
10827 lh->file_names = xmalloc (lh->file_names_size
10828 * sizeof (*lh->file_names));
10829 }
10830 else if (lh->num_file_names >= lh->file_names_size)
10831 {
10832 lh->file_names_size *= 2;
10833 lh->file_names = xrealloc (lh->file_names,
10834 (lh->file_names_size
10835 * sizeof (*lh->file_names)));
10836 }
10837
10838 fe = &lh->file_names[lh->num_file_names++];
10839 fe->name = name;
10840 fe->dir_index = dir_index;
10841 fe->mod_time = mod_time;
10842 fe->length = length;
10843 fe->included_p = 0;
10844 fe->symtab = NULL;
10845 }
10846
10847 /* Read the statement program header starting at OFFSET in
10848 .debug_line, according to the endianness of ABFD. Return a pointer
10849 to a struct line_header, allocated using xmalloc.
10850
10851 NOTE: the strings in the include directory and file name tables of
10852 the returned object point into debug_line_buffer, and must not be
10853 freed. */
10854
10855 static struct line_header *
10856 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10857 struct dwarf2_cu *cu)
10858 {
10859 struct cleanup *back_to;
10860 struct line_header *lh;
10861 gdb_byte *line_ptr;
10862 unsigned int bytes_read, offset_size;
10863 int i;
10864 char *cur_dir, *cur_file;
10865
10866 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10867 if (dwarf2_per_objfile->line.buffer == NULL)
10868 {
10869 complaint (&symfile_complaints, _("missing .debug_line section"));
10870 return 0;
10871 }
10872
10873 /* Make sure that at least there's room for the total_length field.
10874 That could be 12 bytes long, but we're just going to fudge that. */
10875 if (offset + 4 >= dwarf2_per_objfile->line.size)
10876 {
10877 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10878 return 0;
10879 }
10880
10881 lh = xmalloc (sizeof (*lh));
10882 memset (lh, 0, sizeof (*lh));
10883 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10884 (void *) lh);
10885
10886 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10887
10888 /* Read in the header. */
10889 lh->total_length =
10890 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10891 &bytes_read, &offset_size);
10892 line_ptr += bytes_read;
10893 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10894 + dwarf2_per_objfile->line.size))
10895 {
10896 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10897 return 0;
10898 }
10899 lh->statement_program_end = line_ptr + lh->total_length;
10900 lh->version = read_2_bytes (abfd, line_ptr);
10901 line_ptr += 2;
10902 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10903 line_ptr += offset_size;
10904 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10905 line_ptr += 1;
10906 if (lh->version >= 4)
10907 {
10908 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10909 line_ptr += 1;
10910 }
10911 else
10912 lh->maximum_ops_per_instruction = 1;
10913
10914 if (lh->maximum_ops_per_instruction == 0)
10915 {
10916 lh->maximum_ops_per_instruction = 1;
10917 complaint (&symfile_complaints,
10918 _("invalid maximum_ops_per_instruction "
10919 "in `.debug_line' section"));
10920 }
10921
10922 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10923 line_ptr += 1;
10924 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10925 line_ptr += 1;
10926 lh->line_range = read_1_byte (abfd, line_ptr);
10927 line_ptr += 1;
10928 lh->opcode_base = read_1_byte (abfd, line_ptr);
10929 line_ptr += 1;
10930 lh->standard_opcode_lengths
10931 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10932
10933 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10934 for (i = 1; i < lh->opcode_base; ++i)
10935 {
10936 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10937 line_ptr += 1;
10938 }
10939
10940 /* Read directory table. */
10941 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10942 {
10943 line_ptr += bytes_read;
10944 add_include_dir (lh, cur_dir);
10945 }
10946 line_ptr += bytes_read;
10947
10948 /* Read file name table. */
10949 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10950 {
10951 unsigned int dir_index, mod_time, length;
10952
10953 line_ptr += bytes_read;
10954 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10955 line_ptr += bytes_read;
10956 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10957 line_ptr += bytes_read;
10958 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10959 line_ptr += bytes_read;
10960
10961 add_file_name (lh, cur_file, dir_index, mod_time, length);
10962 }
10963 line_ptr += bytes_read;
10964 lh->statement_program_start = line_ptr;
10965
10966 if (line_ptr > (dwarf2_per_objfile->line.buffer
10967 + dwarf2_per_objfile->line.size))
10968 complaint (&symfile_complaints,
10969 _("line number info header doesn't "
10970 "fit in `.debug_line' section"));
10971
10972 discard_cleanups (back_to);
10973 return lh;
10974 }
10975
10976 /* Subroutine of dwarf_decode_lines to simplify it.
10977 Return the file name of the psymtab for included file FILE_INDEX
10978 in line header LH of PST.
10979 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10980 If space for the result is malloc'd, it will be freed by a cleanup.
10981 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10982
10983 static char *
10984 psymtab_include_file_name (const struct line_header *lh, int file_index,
10985 const struct partial_symtab *pst,
10986 const char *comp_dir)
10987 {
10988 const struct file_entry fe = lh->file_names [file_index];
10989 char *include_name = fe.name;
10990 char *include_name_to_compare = include_name;
10991 char *dir_name = NULL;
10992 const char *pst_filename;
10993 char *copied_name = NULL;
10994 int file_is_pst;
10995
10996 if (fe.dir_index)
10997 dir_name = lh->include_dirs[fe.dir_index - 1];
10998
10999 if (!IS_ABSOLUTE_PATH (include_name)
11000 && (dir_name != NULL || comp_dir != NULL))
11001 {
11002 /* Avoid creating a duplicate psymtab for PST.
11003 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11004 Before we do the comparison, however, we need to account
11005 for DIR_NAME and COMP_DIR.
11006 First prepend dir_name (if non-NULL). If we still don't
11007 have an absolute path prepend comp_dir (if non-NULL).
11008 However, the directory we record in the include-file's
11009 psymtab does not contain COMP_DIR (to match the
11010 corresponding symtab(s)).
11011
11012 Example:
11013
11014 bash$ cd /tmp
11015 bash$ gcc -g ./hello.c
11016 include_name = "hello.c"
11017 dir_name = "."
11018 DW_AT_comp_dir = comp_dir = "/tmp"
11019 DW_AT_name = "./hello.c" */
11020
11021 if (dir_name != NULL)
11022 {
11023 include_name = concat (dir_name, SLASH_STRING,
11024 include_name, (char *)NULL);
11025 include_name_to_compare = include_name;
11026 make_cleanup (xfree, include_name);
11027 }
11028 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11029 {
11030 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11031 include_name, (char *)NULL);
11032 }
11033 }
11034
11035 pst_filename = pst->filename;
11036 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11037 {
11038 copied_name = concat (pst->dirname, SLASH_STRING,
11039 pst_filename, (char *)NULL);
11040 pst_filename = copied_name;
11041 }
11042
11043 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11044
11045 if (include_name_to_compare != include_name)
11046 xfree (include_name_to_compare);
11047 if (copied_name != NULL)
11048 xfree (copied_name);
11049
11050 if (file_is_pst)
11051 return NULL;
11052 return include_name;
11053 }
11054
11055 /* Ignore this record_line request. */
11056
11057 static void
11058 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11059 {
11060 return;
11061 }
11062
11063 /* Subroutine of dwarf_decode_lines to simplify it.
11064 Process the line number information in LH. */
11065
11066 static void
11067 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11068 struct dwarf2_cu *cu, struct partial_symtab *pst)
11069 {
11070 gdb_byte *line_ptr, *extended_end;
11071 gdb_byte *line_end;
11072 unsigned int bytes_read, extended_len;
11073 unsigned char op_code, extended_op, adj_opcode;
11074 CORE_ADDR baseaddr;
11075 struct objfile *objfile = cu->objfile;
11076 bfd *abfd = objfile->obfd;
11077 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11078 const int decode_for_pst_p = (pst != NULL);
11079 struct subfile *last_subfile = NULL;
11080 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11081 = record_line;
11082
11083 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11084
11085 line_ptr = lh->statement_program_start;
11086 line_end = lh->statement_program_end;
11087
11088 /* Read the statement sequences until there's nothing left. */
11089 while (line_ptr < line_end)
11090 {
11091 /* state machine registers */
11092 CORE_ADDR address = 0;
11093 unsigned int file = 1;
11094 unsigned int line = 1;
11095 unsigned int column = 0;
11096 int is_stmt = lh->default_is_stmt;
11097 int basic_block = 0;
11098 int end_sequence = 0;
11099 CORE_ADDR addr;
11100 unsigned char op_index = 0;
11101
11102 if (!decode_for_pst_p && lh->num_file_names >= file)
11103 {
11104 /* Start a subfile for the current file of the state machine. */
11105 /* lh->include_dirs and lh->file_names are 0-based, but the
11106 directory and file name numbers in the statement program
11107 are 1-based. */
11108 struct file_entry *fe = &lh->file_names[file - 1];
11109 char *dir = NULL;
11110
11111 if (fe->dir_index)
11112 dir = lh->include_dirs[fe->dir_index - 1];
11113
11114 dwarf2_start_subfile (fe->name, dir, comp_dir);
11115 }
11116
11117 /* Decode the table. */
11118 while (!end_sequence)
11119 {
11120 op_code = read_1_byte (abfd, line_ptr);
11121 line_ptr += 1;
11122 if (line_ptr > line_end)
11123 {
11124 dwarf2_debug_line_missing_end_sequence_complaint ();
11125 break;
11126 }
11127
11128 if (op_code >= lh->opcode_base)
11129 {
11130 /* Special operand. */
11131 adj_opcode = op_code - lh->opcode_base;
11132 address += (((op_index + (adj_opcode / lh->line_range))
11133 / lh->maximum_ops_per_instruction)
11134 * lh->minimum_instruction_length);
11135 op_index = ((op_index + (adj_opcode / lh->line_range))
11136 % lh->maximum_ops_per_instruction);
11137 line += lh->line_base + (adj_opcode % lh->line_range);
11138 if (lh->num_file_names < file || file == 0)
11139 dwarf2_debug_line_missing_file_complaint ();
11140 /* For now we ignore lines not starting on an
11141 instruction boundary. */
11142 else if (op_index == 0)
11143 {
11144 lh->file_names[file - 1].included_p = 1;
11145 if (!decode_for_pst_p && is_stmt)
11146 {
11147 if (last_subfile != current_subfile)
11148 {
11149 addr = gdbarch_addr_bits_remove (gdbarch, address);
11150 if (last_subfile)
11151 (*p_record_line) (last_subfile, 0, addr);
11152 last_subfile = current_subfile;
11153 }
11154 /* Append row to matrix using current values. */
11155 addr = gdbarch_addr_bits_remove (gdbarch, address);
11156 (*p_record_line) (current_subfile, line, addr);
11157 }
11158 }
11159 basic_block = 0;
11160 }
11161 else switch (op_code)
11162 {
11163 case DW_LNS_extended_op:
11164 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11165 &bytes_read);
11166 line_ptr += bytes_read;
11167 extended_end = line_ptr + extended_len;
11168 extended_op = read_1_byte (abfd, line_ptr);
11169 line_ptr += 1;
11170 switch (extended_op)
11171 {
11172 case DW_LNE_end_sequence:
11173 p_record_line = record_line;
11174 end_sequence = 1;
11175 break;
11176 case DW_LNE_set_address:
11177 address = read_address (abfd, line_ptr, cu, &bytes_read);
11178
11179 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11180 {
11181 /* This line table is for a function which has been
11182 GCd by the linker. Ignore it. PR gdb/12528 */
11183
11184 long line_offset
11185 = line_ptr - dwarf2_per_objfile->line.buffer;
11186
11187 complaint (&symfile_complaints,
11188 _(".debug_line address at offset 0x%lx is 0 "
11189 "[in module %s]"),
11190 line_offset, objfile->name);
11191 p_record_line = noop_record_line;
11192 }
11193
11194 op_index = 0;
11195 line_ptr += bytes_read;
11196 address += baseaddr;
11197 break;
11198 case DW_LNE_define_file:
11199 {
11200 char *cur_file;
11201 unsigned int dir_index, mod_time, length;
11202
11203 cur_file = read_direct_string (abfd, line_ptr,
11204 &bytes_read);
11205 line_ptr += bytes_read;
11206 dir_index =
11207 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11208 line_ptr += bytes_read;
11209 mod_time =
11210 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11211 line_ptr += bytes_read;
11212 length =
11213 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11214 line_ptr += bytes_read;
11215 add_file_name (lh, cur_file, dir_index, mod_time, length);
11216 }
11217 break;
11218 case DW_LNE_set_discriminator:
11219 /* The discriminator is not interesting to the debugger;
11220 just ignore it. */
11221 line_ptr = extended_end;
11222 break;
11223 default:
11224 complaint (&symfile_complaints,
11225 _("mangled .debug_line section"));
11226 return;
11227 }
11228 /* Make sure that we parsed the extended op correctly. If e.g.
11229 we expected a different address size than the producer used,
11230 we may have read the wrong number of bytes. */
11231 if (line_ptr != extended_end)
11232 {
11233 complaint (&symfile_complaints,
11234 _("mangled .debug_line section"));
11235 return;
11236 }
11237 break;
11238 case DW_LNS_copy:
11239 if (lh->num_file_names < file || file == 0)
11240 dwarf2_debug_line_missing_file_complaint ();
11241 else
11242 {
11243 lh->file_names[file - 1].included_p = 1;
11244 if (!decode_for_pst_p && is_stmt)
11245 {
11246 if (last_subfile != current_subfile)
11247 {
11248 addr = gdbarch_addr_bits_remove (gdbarch, address);
11249 if (last_subfile)
11250 (*p_record_line) (last_subfile, 0, addr);
11251 last_subfile = current_subfile;
11252 }
11253 addr = gdbarch_addr_bits_remove (gdbarch, address);
11254 (*p_record_line) (current_subfile, line, addr);
11255 }
11256 }
11257 basic_block = 0;
11258 break;
11259 case DW_LNS_advance_pc:
11260 {
11261 CORE_ADDR adjust
11262 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11263
11264 address += (((op_index + adjust)
11265 / lh->maximum_ops_per_instruction)
11266 * lh->minimum_instruction_length);
11267 op_index = ((op_index + adjust)
11268 % lh->maximum_ops_per_instruction);
11269 line_ptr += bytes_read;
11270 }
11271 break;
11272 case DW_LNS_advance_line:
11273 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11274 line_ptr += bytes_read;
11275 break;
11276 case DW_LNS_set_file:
11277 {
11278 /* The arrays lh->include_dirs and lh->file_names are
11279 0-based, but the directory and file name numbers in
11280 the statement program are 1-based. */
11281 struct file_entry *fe;
11282 char *dir = NULL;
11283
11284 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11285 line_ptr += bytes_read;
11286 if (lh->num_file_names < file || file == 0)
11287 dwarf2_debug_line_missing_file_complaint ();
11288 else
11289 {
11290 fe = &lh->file_names[file - 1];
11291 if (fe->dir_index)
11292 dir = lh->include_dirs[fe->dir_index - 1];
11293 if (!decode_for_pst_p)
11294 {
11295 last_subfile = current_subfile;
11296 dwarf2_start_subfile (fe->name, dir, comp_dir);
11297 }
11298 }
11299 }
11300 break;
11301 case DW_LNS_set_column:
11302 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11303 line_ptr += bytes_read;
11304 break;
11305 case DW_LNS_negate_stmt:
11306 is_stmt = (!is_stmt);
11307 break;
11308 case DW_LNS_set_basic_block:
11309 basic_block = 1;
11310 break;
11311 /* Add to the address register of the state machine the
11312 address increment value corresponding to special opcode
11313 255. I.e., this value is scaled by the minimum
11314 instruction length since special opcode 255 would have
11315 scaled the increment. */
11316 case DW_LNS_const_add_pc:
11317 {
11318 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11319
11320 address += (((op_index + adjust)
11321 / lh->maximum_ops_per_instruction)
11322 * lh->minimum_instruction_length);
11323 op_index = ((op_index + adjust)
11324 % lh->maximum_ops_per_instruction);
11325 }
11326 break;
11327 case DW_LNS_fixed_advance_pc:
11328 address += read_2_bytes (abfd, line_ptr);
11329 op_index = 0;
11330 line_ptr += 2;
11331 break;
11332 default:
11333 {
11334 /* Unknown standard opcode, ignore it. */
11335 int i;
11336
11337 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11338 {
11339 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11340 line_ptr += bytes_read;
11341 }
11342 }
11343 }
11344 }
11345 if (lh->num_file_names < file || file == 0)
11346 dwarf2_debug_line_missing_file_complaint ();
11347 else
11348 {
11349 lh->file_names[file - 1].included_p = 1;
11350 if (!decode_for_pst_p)
11351 {
11352 addr = gdbarch_addr_bits_remove (gdbarch, address);
11353 (*p_record_line) (current_subfile, 0, addr);
11354 }
11355 }
11356 }
11357 }
11358
11359 /* Decode the Line Number Program (LNP) for the given line_header
11360 structure and CU. The actual information extracted and the type
11361 of structures created from the LNP depends on the value of PST.
11362
11363 1. If PST is NULL, then this procedure uses the data from the program
11364 to create all necessary symbol tables, and their linetables.
11365
11366 2. If PST is not NULL, this procedure reads the program to determine
11367 the list of files included by the unit represented by PST, and
11368 builds all the associated partial symbol tables.
11369
11370 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11371 It is used for relative paths in the line table.
11372 NOTE: When processing partial symtabs (pst != NULL),
11373 comp_dir == pst->dirname.
11374
11375 NOTE: It is important that psymtabs have the same file name (via strcmp)
11376 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11377 symtab we don't use it in the name of the psymtabs we create.
11378 E.g. expand_line_sal requires this when finding psymtabs to expand.
11379 A good testcase for this is mb-inline.exp. */
11380
11381 static void
11382 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11383 struct dwarf2_cu *cu, struct partial_symtab *pst,
11384 int want_line_info)
11385 {
11386 struct objfile *objfile = cu->objfile;
11387 const int decode_for_pst_p = (pst != NULL);
11388 struct subfile *first_subfile = current_subfile;
11389
11390 if (want_line_info)
11391 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11392
11393 if (decode_for_pst_p)
11394 {
11395 int file_index;
11396
11397 /* Now that we're done scanning the Line Header Program, we can
11398 create the psymtab of each included file. */
11399 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11400 if (lh->file_names[file_index].included_p == 1)
11401 {
11402 char *include_name =
11403 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11404 if (include_name != NULL)
11405 dwarf2_create_include_psymtab (include_name, pst, objfile);
11406 }
11407 }
11408 else
11409 {
11410 /* Make sure a symtab is created for every file, even files
11411 which contain only variables (i.e. no code with associated
11412 line numbers). */
11413 int i;
11414
11415 for (i = 0; i < lh->num_file_names; i++)
11416 {
11417 char *dir = NULL;
11418 struct file_entry *fe;
11419
11420 fe = &lh->file_names[i];
11421 if (fe->dir_index)
11422 dir = lh->include_dirs[fe->dir_index - 1];
11423 dwarf2_start_subfile (fe->name, dir, comp_dir);
11424
11425 /* Skip the main file; we don't need it, and it must be
11426 allocated last, so that it will show up before the
11427 non-primary symtabs in the objfile's symtab list. */
11428 if (current_subfile == first_subfile)
11429 continue;
11430
11431 if (current_subfile->symtab == NULL)
11432 current_subfile->symtab = allocate_symtab (current_subfile->name,
11433 objfile);
11434 fe->symtab = current_subfile->symtab;
11435 }
11436 }
11437 }
11438
11439 /* Start a subfile for DWARF. FILENAME is the name of the file and
11440 DIRNAME the name of the source directory which contains FILENAME
11441 or NULL if not known. COMP_DIR is the compilation directory for the
11442 linetable's compilation unit or NULL if not known.
11443 This routine tries to keep line numbers from identical absolute and
11444 relative file names in a common subfile.
11445
11446 Using the `list' example from the GDB testsuite, which resides in
11447 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11448 of /srcdir/list0.c yields the following debugging information for list0.c:
11449
11450 DW_AT_name: /srcdir/list0.c
11451 DW_AT_comp_dir: /compdir
11452 files.files[0].name: list0.h
11453 files.files[0].dir: /srcdir
11454 files.files[1].name: list0.c
11455 files.files[1].dir: /srcdir
11456
11457 The line number information for list0.c has to end up in a single
11458 subfile, so that `break /srcdir/list0.c:1' works as expected.
11459 start_subfile will ensure that this happens provided that we pass the
11460 concatenation of files.files[1].dir and files.files[1].name as the
11461 subfile's name. */
11462
11463 static void
11464 dwarf2_start_subfile (char *filename, const char *dirname,
11465 const char *comp_dir)
11466 {
11467 char *fullname;
11468
11469 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11470 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11471 second argument to start_subfile. To be consistent, we do the
11472 same here. In order not to lose the line information directory,
11473 we concatenate it to the filename when it makes sense.
11474 Note that the Dwarf3 standard says (speaking of filenames in line
11475 information): ``The directory index is ignored for file names
11476 that represent full path names''. Thus ignoring dirname in the
11477 `else' branch below isn't an issue. */
11478
11479 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11480 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11481 else
11482 fullname = filename;
11483
11484 start_subfile (fullname, comp_dir);
11485
11486 if (fullname != filename)
11487 xfree (fullname);
11488 }
11489
11490 static void
11491 var_decode_location (struct attribute *attr, struct symbol *sym,
11492 struct dwarf2_cu *cu)
11493 {
11494 struct objfile *objfile = cu->objfile;
11495 struct comp_unit_head *cu_header = &cu->header;
11496
11497 /* NOTE drow/2003-01-30: There used to be a comment and some special
11498 code here to turn a symbol with DW_AT_external and a
11499 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11500 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11501 with some versions of binutils) where shared libraries could have
11502 relocations against symbols in their debug information - the
11503 minimal symbol would have the right address, but the debug info
11504 would not. It's no longer necessary, because we will explicitly
11505 apply relocations when we read in the debug information now. */
11506
11507 /* A DW_AT_location attribute with no contents indicates that a
11508 variable has been optimized away. */
11509 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11510 {
11511 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11512 return;
11513 }
11514
11515 /* Handle one degenerate form of location expression specially, to
11516 preserve GDB's previous behavior when section offsets are
11517 specified. If this is just a DW_OP_addr then mark this symbol
11518 as LOC_STATIC. */
11519
11520 if (attr_form_is_block (attr)
11521 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11522 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11523 {
11524 unsigned int dummy;
11525
11526 SYMBOL_VALUE_ADDRESS (sym) =
11527 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11528 SYMBOL_CLASS (sym) = LOC_STATIC;
11529 fixup_symbol_section (sym, objfile);
11530 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11531 SYMBOL_SECTION (sym));
11532 return;
11533 }
11534
11535 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11536 expression evaluator, and use LOC_COMPUTED only when necessary
11537 (i.e. when the value of a register or memory location is
11538 referenced, or a thread-local block, etc.). Then again, it might
11539 not be worthwhile. I'm assuming that it isn't unless performance
11540 or memory numbers show me otherwise. */
11541
11542 dwarf2_symbol_mark_computed (attr, sym, cu);
11543 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11544
11545 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11546 cu->has_loclist = 1;
11547 }
11548
11549 /* Given a pointer to a DWARF information entry, figure out if we need
11550 to make a symbol table entry for it, and if so, create a new entry
11551 and return a pointer to it.
11552 If TYPE is NULL, determine symbol type from the die, otherwise
11553 used the passed type.
11554 If SPACE is not NULL, use it to hold the new symbol. If it is
11555 NULL, allocate a new symbol on the objfile's obstack. */
11556
11557 static struct symbol *
11558 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11559 struct symbol *space)
11560 {
11561 struct objfile *objfile = cu->objfile;
11562 struct symbol *sym = NULL;
11563 char *name;
11564 struct attribute *attr = NULL;
11565 struct attribute *attr2 = NULL;
11566 CORE_ADDR baseaddr;
11567 struct pending **list_to_add = NULL;
11568
11569 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11570
11571 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11572
11573 name = dwarf2_name (die, cu);
11574 if (name)
11575 {
11576 const char *linkagename;
11577 int suppress_add = 0;
11578
11579 if (space)
11580 sym = space;
11581 else
11582 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11583 OBJSTAT (objfile, n_syms++);
11584
11585 /* Cache this symbol's name and the name's demangled form (if any). */
11586 SYMBOL_SET_LANGUAGE (sym, cu->language);
11587 linkagename = dwarf2_physname (name, die, cu);
11588 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11589
11590 /* Fortran does not have mangling standard and the mangling does differ
11591 between gfortran, iFort etc. */
11592 if (cu->language == language_fortran
11593 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11594 symbol_set_demangled_name (&(sym->ginfo),
11595 (char *) dwarf2_full_name (name, die, cu),
11596 NULL);
11597
11598 /* Default assumptions.
11599 Use the passed type or decode it from the die. */
11600 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11601 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11602 if (type != NULL)
11603 SYMBOL_TYPE (sym) = type;
11604 else
11605 SYMBOL_TYPE (sym) = die_type (die, cu);
11606 attr = dwarf2_attr (die,
11607 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11608 cu);
11609 if (attr)
11610 {
11611 SYMBOL_LINE (sym) = DW_UNSND (attr);
11612 }
11613
11614 attr = dwarf2_attr (die,
11615 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11616 cu);
11617 if (attr)
11618 {
11619 int file_index = DW_UNSND (attr);
11620
11621 if (cu->line_header == NULL
11622 || file_index > cu->line_header->num_file_names)
11623 complaint (&symfile_complaints,
11624 _("file index out of range"));
11625 else if (file_index > 0)
11626 {
11627 struct file_entry *fe;
11628
11629 fe = &cu->line_header->file_names[file_index - 1];
11630 SYMBOL_SYMTAB (sym) = fe->symtab;
11631 }
11632 }
11633
11634 switch (die->tag)
11635 {
11636 case DW_TAG_label:
11637 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11638 if (attr)
11639 {
11640 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11641 }
11642 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11643 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11644 SYMBOL_CLASS (sym) = LOC_LABEL;
11645 add_symbol_to_list (sym, cu->list_in_scope);
11646 break;
11647 case DW_TAG_subprogram:
11648 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11649 finish_block. */
11650 SYMBOL_CLASS (sym) = LOC_BLOCK;
11651 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11652 if ((attr2 && (DW_UNSND (attr2) != 0))
11653 || cu->language == language_ada)
11654 {
11655 /* Subprograms marked external are stored as a global symbol.
11656 Ada subprograms, whether marked external or not, are always
11657 stored as a global symbol, because we want to be able to
11658 access them globally. For instance, we want to be able
11659 to break on a nested subprogram without having to
11660 specify the context. */
11661 list_to_add = &global_symbols;
11662 }
11663 else
11664 {
11665 list_to_add = cu->list_in_scope;
11666 }
11667 break;
11668 case DW_TAG_inlined_subroutine:
11669 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11670 finish_block. */
11671 SYMBOL_CLASS (sym) = LOC_BLOCK;
11672 SYMBOL_INLINED (sym) = 1;
11673 /* Do not add the symbol to any lists. It will be found via
11674 BLOCK_FUNCTION from the blockvector. */
11675 break;
11676 case DW_TAG_template_value_param:
11677 suppress_add = 1;
11678 /* Fall through. */
11679 case DW_TAG_constant:
11680 case DW_TAG_variable:
11681 case DW_TAG_member:
11682 /* Compilation with minimal debug info may result in
11683 variables with missing type entries. Change the
11684 misleading `void' type to something sensible. */
11685 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11686 SYMBOL_TYPE (sym)
11687 = objfile_type (objfile)->nodebug_data_symbol;
11688
11689 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11690 /* In the case of DW_TAG_member, we should only be called for
11691 static const members. */
11692 if (die->tag == DW_TAG_member)
11693 {
11694 /* dwarf2_add_field uses die_is_declaration,
11695 so we do the same. */
11696 gdb_assert (die_is_declaration (die, cu));
11697 gdb_assert (attr);
11698 }
11699 if (attr)
11700 {
11701 dwarf2_const_value (attr, sym, cu);
11702 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11703 if (!suppress_add)
11704 {
11705 if (attr2 && (DW_UNSND (attr2) != 0))
11706 list_to_add = &global_symbols;
11707 else
11708 list_to_add = cu->list_in_scope;
11709 }
11710 break;
11711 }
11712 attr = dwarf2_attr (die, DW_AT_location, cu);
11713 if (attr)
11714 {
11715 var_decode_location (attr, sym, cu);
11716 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11717 if (SYMBOL_CLASS (sym) == LOC_STATIC
11718 && SYMBOL_VALUE_ADDRESS (sym) == 0
11719 && !dwarf2_per_objfile->has_section_at_zero)
11720 {
11721 /* When a static variable is eliminated by the linker,
11722 the corresponding debug information is not stripped
11723 out, but the variable address is set to null;
11724 do not add such variables into symbol table. */
11725 }
11726 else if (attr2 && (DW_UNSND (attr2) != 0))
11727 {
11728 /* Workaround gfortran PR debug/40040 - it uses
11729 DW_AT_location for variables in -fPIC libraries which may
11730 get overriden by other libraries/executable and get
11731 a different address. Resolve it by the minimal symbol
11732 which may come from inferior's executable using copy
11733 relocation. Make this workaround only for gfortran as for
11734 other compilers GDB cannot guess the minimal symbol
11735 Fortran mangling kind. */
11736 if (cu->language == language_fortran && die->parent
11737 && die->parent->tag == DW_TAG_module
11738 && cu->producer
11739 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11740 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11741
11742 /* A variable with DW_AT_external is never static,
11743 but it may be block-scoped. */
11744 list_to_add = (cu->list_in_scope == &file_symbols
11745 ? &global_symbols : cu->list_in_scope);
11746 }
11747 else
11748 list_to_add = cu->list_in_scope;
11749 }
11750 else
11751 {
11752 /* We do not know the address of this symbol.
11753 If it is an external symbol and we have type information
11754 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11755 The address of the variable will then be determined from
11756 the minimal symbol table whenever the variable is
11757 referenced. */
11758 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11759 if (attr2 && (DW_UNSND (attr2) != 0)
11760 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11761 {
11762 /* A variable with DW_AT_external is never static, but it
11763 may be block-scoped. */
11764 list_to_add = (cu->list_in_scope == &file_symbols
11765 ? &global_symbols : cu->list_in_scope);
11766
11767 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11768 }
11769 else if (!die_is_declaration (die, cu))
11770 {
11771 /* Use the default LOC_OPTIMIZED_OUT class. */
11772 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11773 if (!suppress_add)
11774 list_to_add = cu->list_in_scope;
11775 }
11776 }
11777 break;
11778 case DW_TAG_formal_parameter:
11779 /* If we are inside a function, mark this as an argument. If
11780 not, we might be looking at an argument to an inlined function
11781 when we do not have enough information to show inlined frames;
11782 pretend it's a local variable in that case so that the user can
11783 still see it. */
11784 if (context_stack_depth > 0
11785 && context_stack[context_stack_depth - 1].name != NULL)
11786 SYMBOL_IS_ARGUMENT (sym) = 1;
11787 attr = dwarf2_attr (die, DW_AT_location, cu);
11788 if (attr)
11789 {
11790 var_decode_location (attr, sym, cu);
11791 }
11792 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11793 if (attr)
11794 {
11795 dwarf2_const_value (attr, sym, cu);
11796 }
11797
11798 list_to_add = cu->list_in_scope;
11799 break;
11800 case DW_TAG_unspecified_parameters:
11801 /* From varargs functions; gdb doesn't seem to have any
11802 interest in this information, so just ignore it for now.
11803 (FIXME?) */
11804 break;
11805 case DW_TAG_template_type_param:
11806 suppress_add = 1;
11807 /* Fall through. */
11808 case DW_TAG_class_type:
11809 case DW_TAG_interface_type:
11810 case DW_TAG_structure_type:
11811 case DW_TAG_union_type:
11812 case DW_TAG_set_type:
11813 case DW_TAG_enumeration_type:
11814 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11815 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11816
11817 {
11818 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11819 really ever be static objects: otherwise, if you try
11820 to, say, break of a class's method and you're in a file
11821 which doesn't mention that class, it won't work unless
11822 the check for all static symbols in lookup_symbol_aux
11823 saves you. See the OtherFileClass tests in
11824 gdb.c++/namespace.exp. */
11825
11826 if (!suppress_add)
11827 {
11828 list_to_add = (cu->list_in_scope == &file_symbols
11829 && (cu->language == language_cplus
11830 || cu->language == language_java)
11831 ? &global_symbols : cu->list_in_scope);
11832
11833 /* The semantics of C++ state that "struct foo {
11834 ... }" also defines a typedef for "foo". A Java
11835 class declaration also defines a typedef for the
11836 class. */
11837 if (cu->language == language_cplus
11838 || cu->language == language_java
11839 || cu->language == language_ada)
11840 {
11841 /* The symbol's name is already allocated along
11842 with this objfile, so we don't need to
11843 duplicate it for the type. */
11844 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11845 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11846 }
11847 }
11848 }
11849 break;
11850 case DW_TAG_typedef:
11851 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11852 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11853 list_to_add = cu->list_in_scope;
11854 break;
11855 case DW_TAG_base_type:
11856 case DW_TAG_subrange_type:
11857 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11859 list_to_add = cu->list_in_scope;
11860 break;
11861 case DW_TAG_enumerator:
11862 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11863 if (attr)
11864 {
11865 dwarf2_const_value (attr, sym, cu);
11866 }
11867 {
11868 /* NOTE: carlton/2003-11-10: See comment above in the
11869 DW_TAG_class_type, etc. block. */
11870
11871 list_to_add = (cu->list_in_scope == &file_symbols
11872 && (cu->language == language_cplus
11873 || cu->language == language_java)
11874 ? &global_symbols : cu->list_in_scope);
11875 }
11876 break;
11877 case DW_TAG_namespace:
11878 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11879 list_to_add = &global_symbols;
11880 break;
11881 default:
11882 /* Not a tag we recognize. Hopefully we aren't processing
11883 trash data, but since we must specifically ignore things
11884 we don't recognize, there is nothing else we should do at
11885 this point. */
11886 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11887 dwarf_tag_name (die->tag));
11888 break;
11889 }
11890
11891 if (suppress_add)
11892 {
11893 sym->hash_next = objfile->template_symbols;
11894 objfile->template_symbols = sym;
11895 list_to_add = NULL;
11896 }
11897
11898 if (list_to_add != NULL)
11899 add_symbol_to_list (sym, list_to_add);
11900
11901 /* For the benefit of old versions of GCC, check for anonymous
11902 namespaces based on the demangled name. */
11903 if (!processing_has_namespace_info
11904 && cu->language == language_cplus)
11905 cp_scan_for_anonymous_namespaces (sym, objfile);
11906 }
11907 return (sym);
11908 }
11909
11910 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11911
11912 static struct symbol *
11913 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11914 {
11915 return new_symbol_full (die, type, cu, NULL);
11916 }
11917
11918 /* Given an attr with a DW_FORM_dataN value in host byte order,
11919 zero-extend it as appropriate for the symbol's type. The DWARF
11920 standard (v4) is not entirely clear about the meaning of using
11921 DW_FORM_dataN for a constant with a signed type, where the type is
11922 wider than the data. The conclusion of a discussion on the DWARF
11923 list was that this is unspecified. We choose to always zero-extend
11924 because that is the interpretation long in use by GCC. */
11925
11926 static gdb_byte *
11927 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11928 const char *name, struct obstack *obstack,
11929 struct dwarf2_cu *cu, long *value, int bits)
11930 {
11931 struct objfile *objfile = cu->objfile;
11932 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11933 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11934 LONGEST l = DW_UNSND (attr);
11935
11936 if (bits < sizeof (*value) * 8)
11937 {
11938 l &= ((LONGEST) 1 << bits) - 1;
11939 *value = l;
11940 }
11941 else if (bits == sizeof (*value) * 8)
11942 *value = l;
11943 else
11944 {
11945 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11946 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11947 return bytes;
11948 }
11949
11950 return NULL;
11951 }
11952
11953 /* Read a constant value from an attribute. Either set *VALUE, or if
11954 the value does not fit in *VALUE, set *BYTES - either already
11955 allocated on the objfile obstack, or newly allocated on OBSTACK,
11956 or, set *BATON, if we translated the constant to a location
11957 expression. */
11958
11959 static void
11960 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11961 const char *name, struct obstack *obstack,
11962 struct dwarf2_cu *cu,
11963 long *value, gdb_byte **bytes,
11964 struct dwarf2_locexpr_baton **baton)
11965 {
11966 struct objfile *objfile = cu->objfile;
11967 struct comp_unit_head *cu_header = &cu->header;
11968 struct dwarf_block *blk;
11969 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11970 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11971
11972 *value = 0;
11973 *bytes = NULL;
11974 *baton = NULL;
11975
11976 switch (attr->form)
11977 {
11978 case DW_FORM_addr:
11979 {
11980 gdb_byte *data;
11981
11982 if (TYPE_LENGTH (type) != cu_header->addr_size)
11983 dwarf2_const_value_length_mismatch_complaint (name,
11984 cu_header->addr_size,
11985 TYPE_LENGTH (type));
11986 /* Symbols of this form are reasonably rare, so we just
11987 piggyback on the existing location code rather than writing
11988 a new implementation of symbol_computed_ops. */
11989 *baton = obstack_alloc (&objfile->objfile_obstack,
11990 sizeof (struct dwarf2_locexpr_baton));
11991 (*baton)->per_cu = cu->per_cu;
11992 gdb_assert ((*baton)->per_cu);
11993
11994 (*baton)->size = 2 + cu_header->addr_size;
11995 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11996 (*baton)->data = data;
11997
11998 data[0] = DW_OP_addr;
11999 store_unsigned_integer (&data[1], cu_header->addr_size,
12000 byte_order, DW_ADDR (attr));
12001 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12002 }
12003 break;
12004 case DW_FORM_string:
12005 case DW_FORM_strp:
12006 /* DW_STRING is already allocated on the objfile obstack, point
12007 directly to it. */
12008 *bytes = (gdb_byte *) DW_STRING (attr);
12009 break;
12010 case DW_FORM_block1:
12011 case DW_FORM_block2:
12012 case DW_FORM_block4:
12013 case DW_FORM_block:
12014 case DW_FORM_exprloc:
12015 blk = DW_BLOCK (attr);
12016 if (TYPE_LENGTH (type) != blk->size)
12017 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12018 TYPE_LENGTH (type));
12019 *bytes = blk->data;
12020 break;
12021
12022 /* The DW_AT_const_value attributes are supposed to carry the
12023 symbol's value "represented as it would be on the target
12024 architecture." By the time we get here, it's already been
12025 converted to host endianness, so we just need to sign- or
12026 zero-extend it as appropriate. */
12027 case DW_FORM_data1:
12028 *bytes = dwarf2_const_value_data (attr, type, name,
12029 obstack, cu, value, 8);
12030 break;
12031 case DW_FORM_data2:
12032 *bytes = dwarf2_const_value_data (attr, type, name,
12033 obstack, cu, value, 16);
12034 break;
12035 case DW_FORM_data4:
12036 *bytes = dwarf2_const_value_data (attr, type, name,
12037 obstack, cu, value, 32);
12038 break;
12039 case DW_FORM_data8:
12040 *bytes = dwarf2_const_value_data (attr, type, name,
12041 obstack, cu, value, 64);
12042 break;
12043
12044 case DW_FORM_sdata:
12045 *value = DW_SND (attr);
12046 break;
12047
12048 case DW_FORM_udata:
12049 *value = DW_UNSND (attr);
12050 break;
12051
12052 default:
12053 complaint (&symfile_complaints,
12054 _("unsupported const value attribute form: '%s'"),
12055 dwarf_form_name (attr->form));
12056 *value = 0;
12057 break;
12058 }
12059 }
12060
12061
12062 /* Copy constant value from an attribute to a symbol. */
12063
12064 static void
12065 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12066 struct dwarf2_cu *cu)
12067 {
12068 struct objfile *objfile = cu->objfile;
12069 struct comp_unit_head *cu_header = &cu->header;
12070 long value;
12071 gdb_byte *bytes;
12072 struct dwarf2_locexpr_baton *baton;
12073
12074 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12075 SYMBOL_PRINT_NAME (sym),
12076 &objfile->objfile_obstack, cu,
12077 &value, &bytes, &baton);
12078
12079 if (baton != NULL)
12080 {
12081 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12082 SYMBOL_LOCATION_BATON (sym) = baton;
12083 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12084 }
12085 else if (bytes != NULL)
12086 {
12087 SYMBOL_VALUE_BYTES (sym) = bytes;
12088 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12089 }
12090 else
12091 {
12092 SYMBOL_VALUE (sym) = value;
12093 SYMBOL_CLASS (sym) = LOC_CONST;
12094 }
12095 }
12096
12097 /* Return the type of the die in question using its DW_AT_type attribute. */
12098
12099 static struct type *
12100 die_type (struct die_info *die, struct dwarf2_cu *cu)
12101 {
12102 struct attribute *type_attr;
12103
12104 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12105 if (!type_attr)
12106 {
12107 /* A missing DW_AT_type represents a void type. */
12108 return objfile_type (cu->objfile)->builtin_void;
12109 }
12110
12111 return lookup_die_type (die, type_attr, cu);
12112 }
12113
12114 /* True iff CU's producer generates GNAT Ada auxiliary information
12115 that allows to find parallel types through that information instead
12116 of having to do expensive parallel lookups by type name. */
12117
12118 static int
12119 need_gnat_info (struct dwarf2_cu *cu)
12120 {
12121 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12122 of GNAT produces this auxiliary information, without any indication
12123 that it is produced. Part of enhancing the FSF version of GNAT
12124 to produce that information will be to put in place an indicator
12125 that we can use in order to determine whether the descriptive type
12126 info is available or not. One suggestion that has been made is
12127 to use a new attribute, attached to the CU die. For now, assume
12128 that the descriptive type info is not available. */
12129 return 0;
12130 }
12131
12132 /* Return the auxiliary type of the die in question using its
12133 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12134 attribute is not present. */
12135
12136 static struct type *
12137 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12138 {
12139 struct attribute *type_attr;
12140
12141 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12142 if (!type_attr)
12143 return NULL;
12144
12145 return lookup_die_type (die, type_attr, cu);
12146 }
12147
12148 /* If DIE has a descriptive_type attribute, then set the TYPE's
12149 descriptive type accordingly. */
12150
12151 static void
12152 set_descriptive_type (struct type *type, struct die_info *die,
12153 struct dwarf2_cu *cu)
12154 {
12155 struct type *descriptive_type = die_descriptive_type (die, cu);
12156
12157 if (descriptive_type)
12158 {
12159 ALLOCATE_GNAT_AUX_TYPE (type);
12160 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12161 }
12162 }
12163
12164 /* Return the containing type of the die in question using its
12165 DW_AT_containing_type attribute. */
12166
12167 static struct type *
12168 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12169 {
12170 struct attribute *type_attr;
12171
12172 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12173 if (!type_attr)
12174 error (_("Dwarf Error: Problem turning containing type into gdb type "
12175 "[in module %s]"), cu->objfile->name);
12176
12177 return lookup_die_type (die, type_attr, cu);
12178 }
12179
12180 /* Look up the type of DIE in CU using its type attribute ATTR.
12181 If there is no type substitute an error marker. */
12182
12183 static struct type *
12184 lookup_die_type (struct die_info *die, struct attribute *attr,
12185 struct dwarf2_cu *cu)
12186 {
12187 struct objfile *objfile = cu->objfile;
12188 struct type *this_type;
12189
12190 /* First see if we have it cached. */
12191
12192 if (is_ref_attr (attr))
12193 {
12194 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12195
12196 this_type = get_die_type_at_offset (offset, cu->per_cu);
12197 }
12198 else if (attr->form == DW_FORM_ref_sig8)
12199 {
12200 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12201 struct dwarf2_cu *sig_cu;
12202 unsigned int offset;
12203
12204 /* sig_type will be NULL if the signatured type is missing from
12205 the debug info. */
12206 if (sig_type == NULL)
12207 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12208 "at 0x%x [in module %s]"),
12209 die->offset, objfile->name);
12210
12211 gdb_assert (sig_type->per_cu.debug_types_section);
12212 offset = sig_type->per_cu.offset + sig_type->type_offset;
12213 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12214 }
12215 else
12216 {
12217 dump_die_for_error (die);
12218 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12219 dwarf_attr_name (attr->name), objfile->name);
12220 }
12221
12222 /* If not cached we need to read it in. */
12223
12224 if (this_type == NULL)
12225 {
12226 struct die_info *type_die;
12227 struct dwarf2_cu *type_cu = cu;
12228
12229 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12230 /* If the type is cached, we should have found it above. */
12231 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12232 this_type = read_type_die_1 (type_die, type_cu);
12233 }
12234
12235 /* If we still don't have a type use an error marker. */
12236
12237 if (this_type == NULL)
12238 {
12239 char *message, *saved;
12240
12241 /* read_type_die already issued a complaint. */
12242 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12243 objfile->name,
12244 cu->header.offset,
12245 die->offset);
12246 saved = obstack_copy0 (&objfile->objfile_obstack,
12247 message, strlen (message));
12248 xfree (message);
12249
12250 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12251 }
12252
12253 return this_type;
12254 }
12255
12256 /* Return the type in DIE, CU.
12257 Returns NULL for invalid types.
12258
12259 This first does a lookup in the appropriate type_hash table,
12260 and only reads the die in if necessary.
12261
12262 NOTE: This can be called when reading in partial or full symbols. */
12263
12264 static struct type *
12265 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12266 {
12267 struct type *this_type;
12268
12269 this_type = get_die_type (die, cu);
12270 if (this_type)
12271 return this_type;
12272
12273 return read_type_die_1 (die, cu);
12274 }
12275
12276 /* Read the type in DIE, CU.
12277 Returns NULL for invalid types. */
12278
12279 static struct type *
12280 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12281 {
12282 struct type *this_type = NULL;
12283
12284 switch (die->tag)
12285 {
12286 case DW_TAG_class_type:
12287 case DW_TAG_interface_type:
12288 case DW_TAG_structure_type:
12289 case DW_TAG_union_type:
12290 this_type = read_structure_type (die, cu);
12291 break;
12292 case DW_TAG_enumeration_type:
12293 this_type = read_enumeration_type (die, cu);
12294 break;
12295 case DW_TAG_subprogram:
12296 case DW_TAG_subroutine_type:
12297 case DW_TAG_inlined_subroutine:
12298 this_type = read_subroutine_type (die, cu);
12299 break;
12300 case DW_TAG_array_type:
12301 this_type = read_array_type (die, cu);
12302 break;
12303 case DW_TAG_set_type:
12304 this_type = read_set_type (die, cu);
12305 break;
12306 case DW_TAG_pointer_type:
12307 this_type = read_tag_pointer_type (die, cu);
12308 break;
12309 case DW_TAG_ptr_to_member_type:
12310 this_type = read_tag_ptr_to_member_type (die, cu);
12311 break;
12312 case DW_TAG_reference_type:
12313 this_type = read_tag_reference_type (die, cu);
12314 break;
12315 case DW_TAG_const_type:
12316 this_type = read_tag_const_type (die, cu);
12317 break;
12318 case DW_TAG_volatile_type:
12319 this_type = read_tag_volatile_type (die, cu);
12320 break;
12321 case DW_TAG_string_type:
12322 this_type = read_tag_string_type (die, cu);
12323 break;
12324 case DW_TAG_typedef:
12325 this_type = read_typedef (die, cu);
12326 break;
12327 case DW_TAG_subrange_type:
12328 this_type = read_subrange_type (die, cu);
12329 break;
12330 case DW_TAG_base_type:
12331 this_type = read_base_type (die, cu);
12332 break;
12333 case DW_TAG_unspecified_type:
12334 this_type = read_unspecified_type (die, cu);
12335 break;
12336 case DW_TAG_namespace:
12337 this_type = read_namespace_type (die, cu);
12338 break;
12339 case DW_TAG_module:
12340 this_type = read_module_type (die, cu);
12341 break;
12342 default:
12343 complaint (&symfile_complaints,
12344 _("unexpected tag in read_type_die: '%s'"),
12345 dwarf_tag_name (die->tag));
12346 break;
12347 }
12348
12349 return this_type;
12350 }
12351
12352 /* See if we can figure out if the class lives in a namespace. We do
12353 this by looking for a member function; its demangled name will
12354 contain namespace info, if there is any.
12355 Return the computed name or NULL.
12356 Space for the result is allocated on the objfile's obstack.
12357 This is the full-die version of guess_partial_die_structure_name.
12358 In this case we know DIE has no useful parent. */
12359
12360 static char *
12361 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12362 {
12363 struct die_info *spec_die;
12364 struct dwarf2_cu *spec_cu;
12365 struct die_info *child;
12366
12367 spec_cu = cu;
12368 spec_die = die_specification (die, &spec_cu);
12369 if (spec_die != NULL)
12370 {
12371 die = spec_die;
12372 cu = spec_cu;
12373 }
12374
12375 for (child = die->child;
12376 child != NULL;
12377 child = child->sibling)
12378 {
12379 if (child->tag == DW_TAG_subprogram)
12380 {
12381 struct attribute *attr;
12382
12383 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12384 if (attr == NULL)
12385 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12386 if (attr != NULL)
12387 {
12388 char *actual_name
12389 = language_class_name_from_physname (cu->language_defn,
12390 DW_STRING (attr));
12391 char *name = NULL;
12392
12393 if (actual_name != NULL)
12394 {
12395 char *die_name = dwarf2_name (die, cu);
12396
12397 if (die_name != NULL
12398 && strcmp (die_name, actual_name) != 0)
12399 {
12400 /* Strip off the class name from the full name.
12401 We want the prefix. */
12402 int die_name_len = strlen (die_name);
12403 int actual_name_len = strlen (actual_name);
12404
12405 /* Test for '::' as a sanity check. */
12406 if (actual_name_len > die_name_len + 2
12407 && actual_name[actual_name_len
12408 - die_name_len - 1] == ':')
12409 name =
12410 obsavestring (actual_name,
12411 actual_name_len - die_name_len - 2,
12412 &cu->objfile->objfile_obstack);
12413 }
12414 }
12415 xfree (actual_name);
12416 return name;
12417 }
12418 }
12419 }
12420
12421 return NULL;
12422 }
12423
12424 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12425 prefix part in such case. See
12426 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12427
12428 static char *
12429 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12430 {
12431 struct attribute *attr;
12432 char *base;
12433
12434 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12435 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12436 return NULL;
12437
12438 attr = dwarf2_attr (die, DW_AT_name, cu);
12439 if (attr != NULL && DW_STRING (attr) != NULL)
12440 return NULL;
12441
12442 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12443 if (attr == NULL)
12444 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12445 if (attr == NULL || DW_STRING (attr) == NULL)
12446 return NULL;
12447
12448 /* dwarf2_name had to be already called. */
12449 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12450
12451 /* Strip the base name, keep any leading namespaces/classes. */
12452 base = strrchr (DW_STRING (attr), ':');
12453 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12454 return "";
12455
12456 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12457 &cu->objfile->objfile_obstack);
12458 }
12459
12460 /* Return the name of the namespace/class that DIE is defined within,
12461 or "" if we can't tell. The caller should not xfree the result.
12462
12463 For example, if we're within the method foo() in the following
12464 code:
12465
12466 namespace N {
12467 class C {
12468 void foo () {
12469 }
12470 };
12471 }
12472
12473 then determine_prefix on foo's die will return "N::C". */
12474
12475 static const char *
12476 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12477 {
12478 struct die_info *parent, *spec_die;
12479 struct dwarf2_cu *spec_cu;
12480 struct type *parent_type;
12481 char *retval;
12482
12483 if (cu->language != language_cplus && cu->language != language_java
12484 && cu->language != language_fortran)
12485 return "";
12486
12487 retval = anonymous_struct_prefix (die, cu);
12488 if (retval)
12489 return retval;
12490
12491 /* We have to be careful in the presence of DW_AT_specification.
12492 For example, with GCC 3.4, given the code
12493
12494 namespace N {
12495 void foo() {
12496 // Definition of N::foo.
12497 }
12498 }
12499
12500 then we'll have a tree of DIEs like this:
12501
12502 1: DW_TAG_compile_unit
12503 2: DW_TAG_namespace // N
12504 3: DW_TAG_subprogram // declaration of N::foo
12505 4: DW_TAG_subprogram // definition of N::foo
12506 DW_AT_specification // refers to die #3
12507
12508 Thus, when processing die #4, we have to pretend that we're in
12509 the context of its DW_AT_specification, namely the contex of die
12510 #3. */
12511 spec_cu = cu;
12512 spec_die = die_specification (die, &spec_cu);
12513 if (spec_die == NULL)
12514 parent = die->parent;
12515 else
12516 {
12517 parent = spec_die->parent;
12518 cu = spec_cu;
12519 }
12520
12521 if (parent == NULL)
12522 return "";
12523 else if (parent->building_fullname)
12524 {
12525 const char *name;
12526 const char *parent_name;
12527
12528 /* It has been seen on RealView 2.2 built binaries,
12529 DW_TAG_template_type_param types actually _defined_ as
12530 children of the parent class:
12531
12532 enum E {};
12533 template class <class Enum> Class{};
12534 Class<enum E> class_e;
12535
12536 1: DW_TAG_class_type (Class)
12537 2: DW_TAG_enumeration_type (E)
12538 3: DW_TAG_enumerator (enum1:0)
12539 3: DW_TAG_enumerator (enum2:1)
12540 ...
12541 2: DW_TAG_template_type_param
12542 DW_AT_type DW_FORM_ref_udata (E)
12543
12544 Besides being broken debug info, it can put GDB into an
12545 infinite loop. Consider:
12546
12547 When we're building the full name for Class<E>, we'll start
12548 at Class, and go look over its template type parameters,
12549 finding E. We'll then try to build the full name of E, and
12550 reach here. We're now trying to build the full name of E,
12551 and look over the parent DIE for containing scope. In the
12552 broken case, if we followed the parent DIE of E, we'd again
12553 find Class, and once again go look at its template type
12554 arguments, etc., etc. Simply don't consider such parent die
12555 as source-level parent of this die (it can't be, the language
12556 doesn't allow it), and break the loop here. */
12557 name = dwarf2_name (die, cu);
12558 parent_name = dwarf2_name (parent, cu);
12559 complaint (&symfile_complaints,
12560 _("template param type '%s' defined within parent '%s'"),
12561 name ? name : "<unknown>",
12562 parent_name ? parent_name : "<unknown>");
12563 return "";
12564 }
12565 else
12566 switch (parent->tag)
12567 {
12568 case DW_TAG_namespace:
12569 parent_type = read_type_die (parent, cu);
12570 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12571 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12572 Work around this problem here. */
12573 if (cu->language == language_cplus
12574 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12575 return "";
12576 /* We give a name to even anonymous namespaces. */
12577 return TYPE_TAG_NAME (parent_type);
12578 case DW_TAG_class_type:
12579 case DW_TAG_interface_type:
12580 case DW_TAG_structure_type:
12581 case DW_TAG_union_type:
12582 case DW_TAG_module:
12583 parent_type = read_type_die (parent, cu);
12584 if (TYPE_TAG_NAME (parent_type) != NULL)
12585 return TYPE_TAG_NAME (parent_type);
12586 else
12587 /* An anonymous structure is only allowed non-static data
12588 members; no typedefs, no member functions, et cetera.
12589 So it does not need a prefix. */
12590 return "";
12591 case DW_TAG_compile_unit:
12592 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12593 if (cu->language == language_cplus
12594 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12595 && die->child != NULL
12596 && (die->tag == DW_TAG_class_type
12597 || die->tag == DW_TAG_structure_type
12598 || die->tag == DW_TAG_union_type))
12599 {
12600 char *name = guess_full_die_structure_name (die, cu);
12601 if (name != NULL)
12602 return name;
12603 }
12604 return "";
12605 default:
12606 return determine_prefix (parent, cu);
12607 }
12608 }
12609
12610 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12611 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12612 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12613 an obconcat, otherwise allocate storage for the result. The CU argument is
12614 used to determine the language and hence, the appropriate separator. */
12615
12616 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12617
12618 static char *
12619 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12620 int physname, struct dwarf2_cu *cu)
12621 {
12622 const char *lead = "";
12623 const char *sep;
12624
12625 if (suffix == NULL || suffix[0] == '\0'
12626 || prefix == NULL || prefix[0] == '\0')
12627 sep = "";
12628 else if (cu->language == language_java)
12629 sep = ".";
12630 else if (cu->language == language_fortran && physname)
12631 {
12632 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12633 DW_AT_MIPS_linkage_name is preferred and used instead. */
12634
12635 lead = "__";
12636 sep = "_MOD_";
12637 }
12638 else
12639 sep = "::";
12640
12641 if (prefix == NULL)
12642 prefix = "";
12643 if (suffix == NULL)
12644 suffix = "";
12645
12646 if (obs == NULL)
12647 {
12648 char *retval
12649 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12650
12651 strcpy (retval, lead);
12652 strcat (retval, prefix);
12653 strcat (retval, sep);
12654 strcat (retval, suffix);
12655 return retval;
12656 }
12657 else
12658 {
12659 /* We have an obstack. */
12660 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12661 }
12662 }
12663
12664 /* Return sibling of die, NULL if no sibling. */
12665
12666 static struct die_info *
12667 sibling_die (struct die_info *die)
12668 {
12669 return die->sibling;
12670 }
12671
12672 /* Get name of a die, return NULL if not found. */
12673
12674 static char *
12675 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12676 struct obstack *obstack)
12677 {
12678 if (name && cu->language == language_cplus)
12679 {
12680 char *canon_name = cp_canonicalize_string (name);
12681
12682 if (canon_name != NULL)
12683 {
12684 if (strcmp (canon_name, name) != 0)
12685 name = obsavestring (canon_name, strlen (canon_name),
12686 obstack);
12687 xfree (canon_name);
12688 }
12689 }
12690
12691 return name;
12692 }
12693
12694 /* Get name of a die, return NULL if not found. */
12695
12696 static char *
12697 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12698 {
12699 struct attribute *attr;
12700
12701 attr = dwarf2_attr (die, DW_AT_name, cu);
12702 if ((!attr || !DW_STRING (attr))
12703 && die->tag != DW_TAG_class_type
12704 && die->tag != DW_TAG_interface_type
12705 && die->tag != DW_TAG_structure_type
12706 && die->tag != DW_TAG_union_type)
12707 return NULL;
12708
12709 switch (die->tag)
12710 {
12711 case DW_TAG_compile_unit:
12712 /* Compilation units have a DW_AT_name that is a filename, not
12713 a source language identifier. */
12714 case DW_TAG_enumeration_type:
12715 case DW_TAG_enumerator:
12716 /* These tags always have simple identifiers already; no need
12717 to canonicalize them. */
12718 return DW_STRING (attr);
12719
12720 case DW_TAG_subprogram:
12721 /* Java constructors will all be named "<init>", so return
12722 the class name when we see this special case. */
12723 if (cu->language == language_java
12724 && DW_STRING (attr) != NULL
12725 && strcmp (DW_STRING (attr), "<init>") == 0)
12726 {
12727 struct dwarf2_cu *spec_cu = cu;
12728 struct die_info *spec_die;
12729
12730 /* GCJ will output '<init>' for Java constructor names.
12731 For this special case, return the name of the parent class. */
12732
12733 /* GCJ may output suprogram DIEs with AT_specification set.
12734 If so, use the name of the specified DIE. */
12735 spec_die = die_specification (die, &spec_cu);
12736 if (spec_die != NULL)
12737 return dwarf2_name (spec_die, spec_cu);
12738
12739 do
12740 {
12741 die = die->parent;
12742 if (die->tag == DW_TAG_class_type)
12743 return dwarf2_name (die, cu);
12744 }
12745 while (die->tag != DW_TAG_compile_unit);
12746 }
12747 break;
12748
12749 case DW_TAG_class_type:
12750 case DW_TAG_interface_type:
12751 case DW_TAG_structure_type:
12752 case DW_TAG_union_type:
12753 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12754 structures or unions. These were of the form "._%d" in GCC 4.1,
12755 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12756 and GCC 4.4. We work around this problem by ignoring these. */
12757 if (attr && DW_STRING (attr)
12758 && (strncmp (DW_STRING (attr), "._", 2) == 0
12759 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12760 return NULL;
12761
12762 /* GCC might emit a nameless typedef that has a linkage name. See
12763 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12764 if (!attr || DW_STRING (attr) == NULL)
12765 {
12766 char *demangled = NULL;
12767
12768 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12769 if (attr == NULL)
12770 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12771
12772 if (attr == NULL || DW_STRING (attr) == NULL)
12773 return NULL;
12774
12775 /* Avoid demangling DW_STRING (attr) the second time on a second
12776 call for the same DIE. */
12777 if (!DW_STRING_IS_CANONICAL (attr))
12778 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12779
12780 if (demangled)
12781 {
12782 char *base;
12783
12784 /* FIXME: we already did this for the partial symbol... */
12785 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12786 &cu->objfile->objfile_obstack);
12787 DW_STRING_IS_CANONICAL (attr) = 1;
12788 xfree (demangled);
12789
12790 /* Strip any leading namespaces/classes, keep only the base name.
12791 DW_AT_name for named DIEs does not contain the prefixes. */
12792 base = strrchr (DW_STRING (attr), ':');
12793 if (base && base > DW_STRING (attr) && base[-1] == ':')
12794 return &base[1];
12795 else
12796 return DW_STRING (attr);
12797 }
12798 }
12799 break;
12800
12801 default:
12802 break;
12803 }
12804
12805 if (!DW_STRING_IS_CANONICAL (attr))
12806 {
12807 DW_STRING (attr)
12808 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12809 &cu->objfile->objfile_obstack);
12810 DW_STRING_IS_CANONICAL (attr) = 1;
12811 }
12812 return DW_STRING (attr);
12813 }
12814
12815 /* Return the die that this die in an extension of, or NULL if there
12816 is none. *EXT_CU is the CU containing DIE on input, and the CU
12817 containing the return value on output. */
12818
12819 static struct die_info *
12820 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12821 {
12822 struct attribute *attr;
12823
12824 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12825 if (attr == NULL)
12826 return NULL;
12827
12828 return follow_die_ref (die, attr, ext_cu);
12829 }
12830
12831 /* Convert a DIE tag into its string name. */
12832
12833 static char *
12834 dwarf_tag_name (unsigned tag)
12835 {
12836 switch (tag)
12837 {
12838 case DW_TAG_padding:
12839 return "DW_TAG_padding";
12840 case DW_TAG_array_type:
12841 return "DW_TAG_array_type";
12842 case DW_TAG_class_type:
12843 return "DW_TAG_class_type";
12844 case DW_TAG_entry_point:
12845 return "DW_TAG_entry_point";
12846 case DW_TAG_enumeration_type:
12847 return "DW_TAG_enumeration_type";
12848 case DW_TAG_formal_parameter:
12849 return "DW_TAG_formal_parameter";
12850 case DW_TAG_imported_declaration:
12851 return "DW_TAG_imported_declaration";
12852 case DW_TAG_label:
12853 return "DW_TAG_label";
12854 case DW_TAG_lexical_block:
12855 return "DW_TAG_lexical_block";
12856 case DW_TAG_member:
12857 return "DW_TAG_member";
12858 case DW_TAG_pointer_type:
12859 return "DW_TAG_pointer_type";
12860 case DW_TAG_reference_type:
12861 return "DW_TAG_reference_type";
12862 case DW_TAG_compile_unit:
12863 return "DW_TAG_compile_unit";
12864 case DW_TAG_string_type:
12865 return "DW_TAG_string_type";
12866 case DW_TAG_structure_type:
12867 return "DW_TAG_structure_type";
12868 case DW_TAG_subroutine_type:
12869 return "DW_TAG_subroutine_type";
12870 case DW_TAG_typedef:
12871 return "DW_TAG_typedef";
12872 case DW_TAG_union_type:
12873 return "DW_TAG_union_type";
12874 case DW_TAG_unspecified_parameters:
12875 return "DW_TAG_unspecified_parameters";
12876 case DW_TAG_variant:
12877 return "DW_TAG_variant";
12878 case DW_TAG_common_block:
12879 return "DW_TAG_common_block";
12880 case DW_TAG_common_inclusion:
12881 return "DW_TAG_common_inclusion";
12882 case DW_TAG_inheritance:
12883 return "DW_TAG_inheritance";
12884 case DW_TAG_inlined_subroutine:
12885 return "DW_TAG_inlined_subroutine";
12886 case DW_TAG_module:
12887 return "DW_TAG_module";
12888 case DW_TAG_ptr_to_member_type:
12889 return "DW_TAG_ptr_to_member_type";
12890 case DW_TAG_set_type:
12891 return "DW_TAG_set_type";
12892 case DW_TAG_subrange_type:
12893 return "DW_TAG_subrange_type";
12894 case DW_TAG_with_stmt:
12895 return "DW_TAG_with_stmt";
12896 case DW_TAG_access_declaration:
12897 return "DW_TAG_access_declaration";
12898 case DW_TAG_base_type:
12899 return "DW_TAG_base_type";
12900 case DW_TAG_catch_block:
12901 return "DW_TAG_catch_block";
12902 case DW_TAG_const_type:
12903 return "DW_TAG_const_type";
12904 case DW_TAG_constant:
12905 return "DW_TAG_constant";
12906 case DW_TAG_enumerator:
12907 return "DW_TAG_enumerator";
12908 case DW_TAG_file_type:
12909 return "DW_TAG_file_type";
12910 case DW_TAG_friend:
12911 return "DW_TAG_friend";
12912 case DW_TAG_namelist:
12913 return "DW_TAG_namelist";
12914 case DW_TAG_namelist_item:
12915 return "DW_TAG_namelist_item";
12916 case DW_TAG_packed_type:
12917 return "DW_TAG_packed_type";
12918 case DW_TAG_subprogram:
12919 return "DW_TAG_subprogram";
12920 case DW_TAG_template_type_param:
12921 return "DW_TAG_template_type_param";
12922 case DW_TAG_template_value_param:
12923 return "DW_TAG_template_value_param";
12924 case DW_TAG_thrown_type:
12925 return "DW_TAG_thrown_type";
12926 case DW_TAG_try_block:
12927 return "DW_TAG_try_block";
12928 case DW_TAG_variant_part:
12929 return "DW_TAG_variant_part";
12930 case DW_TAG_variable:
12931 return "DW_TAG_variable";
12932 case DW_TAG_volatile_type:
12933 return "DW_TAG_volatile_type";
12934 case DW_TAG_dwarf_procedure:
12935 return "DW_TAG_dwarf_procedure";
12936 case DW_TAG_restrict_type:
12937 return "DW_TAG_restrict_type";
12938 case DW_TAG_interface_type:
12939 return "DW_TAG_interface_type";
12940 case DW_TAG_namespace:
12941 return "DW_TAG_namespace";
12942 case DW_TAG_imported_module:
12943 return "DW_TAG_imported_module";
12944 case DW_TAG_unspecified_type:
12945 return "DW_TAG_unspecified_type";
12946 case DW_TAG_partial_unit:
12947 return "DW_TAG_partial_unit";
12948 case DW_TAG_imported_unit:
12949 return "DW_TAG_imported_unit";
12950 case DW_TAG_condition:
12951 return "DW_TAG_condition";
12952 case DW_TAG_shared_type:
12953 return "DW_TAG_shared_type";
12954 case DW_TAG_type_unit:
12955 return "DW_TAG_type_unit";
12956 case DW_TAG_MIPS_loop:
12957 return "DW_TAG_MIPS_loop";
12958 case DW_TAG_HP_array_descriptor:
12959 return "DW_TAG_HP_array_descriptor";
12960 case DW_TAG_format_label:
12961 return "DW_TAG_format_label";
12962 case DW_TAG_function_template:
12963 return "DW_TAG_function_template";
12964 case DW_TAG_class_template:
12965 return "DW_TAG_class_template";
12966 case DW_TAG_GNU_BINCL:
12967 return "DW_TAG_GNU_BINCL";
12968 case DW_TAG_GNU_EINCL:
12969 return "DW_TAG_GNU_EINCL";
12970 case DW_TAG_upc_shared_type:
12971 return "DW_TAG_upc_shared_type";
12972 case DW_TAG_upc_strict_type:
12973 return "DW_TAG_upc_strict_type";
12974 case DW_TAG_upc_relaxed_type:
12975 return "DW_TAG_upc_relaxed_type";
12976 case DW_TAG_PGI_kanji_type:
12977 return "DW_TAG_PGI_kanji_type";
12978 case DW_TAG_PGI_interface_block:
12979 return "DW_TAG_PGI_interface_block";
12980 case DW_TAG_GNU_call_site:
12981 return "DW_TAG_GNU_call_site";
12982 default:
12983 return "DW_TAG_<unknown>";
12984 }
12985 }
12986
12987 /* Convert a DWARF attribute code into its string name. */
12988
12989 static char *
12990 dwarf_attr_name (unsigned attr)
12991 {
12992 switch (attr)
12993 {
12994 case DW_AT_sibling:
12995 return "DW_AT_sibling";
12996 case DW_AT_location:
12997 return "DW_AT_location";
12998 case DW_AT_name:
12999 return "DW_AT_name";
13000 case DW_AT_ordering:
13001 return "DW_AT_ordering";
13002 case DW_AT_subscr_data:
13003 return "DW_AT_subscr_data";
13004 case DW_AT_byte_size:
13005 return "DW_AT_byte_size";
13006 case DW_AT_bit_offset:
13007 return "DW_AT_bit_offset";
13008 case DW_AT_bit_size:
13009 return "DW_AT_bit_size";
13010 case DW_AT_element_list:
13011 return "DW_AT_element_list";
13012 case DW_AT_stmt_list:
13013 return "DW_AT_stmt_list";
13014 case DW_AT_low_pc:
13015 return "DW_AT_low_pc";
13016 case DW_AT_high_pc:
13017 return "DW_AT_high_pc";
13018 case DW_AT_language:
13019 return "DW_AT_language";
13020 case DW_AT_member:
13021 return "DW_AT_member";
13022 case DW_AT_discr:
13023 return "DW_AT_discr";
13024 case DW_AT_discr_value:
13025 return "DW_AT_discr_value";
13026 case DW_AT_visibility:
13027 return "DW_AT_visibility";
13028 case DW_AT_import:
13029 return "DW_AT_import";
13030 case DW_AT_string_length:
13031 return "DW_AT_string_length";
13032 case DW_AT_common_reference:
13033 return "DW_AT_common_reference";
13034 case DW_AT_comp_dir:
13035 return "DW_AT_comp_dir";
13036 case DW_AT_const_value:
13037 return "DW_AT_const_value";
13038 case DW_AT_containing_type:
13039 return "DW_AT_containing_type";
13040 case DW_AT_default_value:
13041 return "DW_AT_default_value";
13042 case DW_AT_inline:
13043 return "DW_AT_inline";
13044 case DW_AT_is_optional:
13045 return "DW_AT_is_optional";
13046 case DW_AT_lower_bound:
13047 return "DW_AT_lower_bound";
13048 case DW_AT_producer:
13049 return "DW_AT_producer";
13050 case DW_AT_prototyped:
13051 return "DW_AT_prototyped";
13052 case DW_AT_return_addr:
13053 return "DW_AT_return_addr";
13054 case DW_AT_start_scope:
13055 return "DW_AT_start_scope";
13056 case DW_AT_bit_stride:
13057 return "DW_AT_bit_stride";
13058 case DW_AT_upper_bound:
13059 return "DW_AT_upper_bound";
13060 case DW_AT_abstract_origin:
13061 return "DW_AT_abstract_origin";
13062 case DW_AT_accessibility:
13063 return "DW_AT_accessibility";
13064 case DW_AT_address_class:
13065 return "DW_AT_address_class";
13066 case DW_AT_artificial:
13067 return "DW_AT_artificial";
13068 case DW_AT_base_types:
13069 return "DW_AT_base_types";
13070 case DW_AT_calling_convention:
13071 return "DW_AT_calling_convention";
13072 case DW_AT_count:
13073 return "DW_AT_count";
13074 case DW_AT_data_member_location:
13075 return "DW_AT_data_member_location";
13076 case DW_AT_decl_column:
13077 return "DW_AT_decl_column";
13078 case DW_AT_decl_file:
13079 return "DW_AT_decl_file";
13080 case DW_AT_decl_line:
13081 return "DW_AT_decl_line";
13082 case DW_AT_declaration:
13083 return "DW_AT_declaration";
13084 case DW_AT_discr_list:
13085 return "DW_AT_discr_list";
13086 case DW_AT_encoding:
13087 return "DW_AT_encoding";
13088 case DW_AT_external:
13089 return "DW_AT_external";
13090 case DW_AT_frame_base:
13091 return "DW_AT_frame_base";
13092 case DW_AT_friend:
13093 return "DW_AT_friend";
13094 case DW_AT_identifier_case:
13095 return "DW_AT_identifier_case";
13096 case DW_AT_macro_info:
13097 return "DW_AT_macro_info";
13098 case DW_AT_namelist_items:
13099 return "DW_AT_namelist_items";
13100 case DW_AT_priority:
13101 return "DW_AT_priority";
13102 case DW_AT_segment:
13103 return "DW_AT_segment";
13104 case DW_AT_specification:
13105 return "DW_AT_specification";
13106 case DW_AT_static_link:
13107 return "DW_AT_static_link";
13108 case DW_AT_type:
13109 return "DW_AT_type";
13110 case DW_AT_use_location:
13111 return "DW_AT_use_location";
13112 case DW_AT_variable_parameter:
13113 return "DW_AT_variable_parameter";
13114 case DW_AT_virtuality:
13115 return "DW_AT_virtuality";
13116 case DW_AT_vtable_elem_location:
13117 return "DW_AT_vtable_elem_location";
13118 /* DWARF 3 values. */
13119 case DW_AT_allocated:
13120 return "DW_AT_allocated";
13121 case DW_AT_associated:
13122 return "DW_AT_associated";
13123 case DW_AT_data_location:
13124 return "DW_AT_data_location";
13125 case DW_AT_byte_stride:
13126 return "DW_AT_byte_stride";
13127 case DW_AT_entry_pc:
13128 return "DW_AT_entry_pc";
13129 case DW_AT_use_UTF8:
13130 return "DW_AT_use_UTF8";
13131 case DW_AT_extension:
13132 return "DW_AT_extension";
13133 case DW_AT_ranges:
13134 return "DW_AT_ranges";
13135 case DW_AT_trampoline:
13136 return "DW_AT_trampoline";
13137 case DW_AT_call_column:
13138 return "DW_AT_call_column";
13139 case DW_AT_call_file:
13140 return "DW_AT_call_file";
13141 case DW_AT_call_line:
13142 return "DW_AT_call_line";
13143 case DW_AT_description:
13144 return "DW_AT_description";
13145 case DW_AT_binary_scale:
13146 return "DW_AT_binary_scale";
13147 case DW_AT_decimal_scale:
13148 return "DW_AT_decimal_scale";
13149 case DW_AT_small:
13150 return "DW_AT_small";
13151 case DW_AT_decimal_sign:
13152 return "DW_AT_decimal_sign";
13153 case DW_AT_digit_count:
13154 return "DW_AT_digit_count";
13155 case DW_AT_picture_string:
13156 return "DW_AT_picture_string";
13157 case DW_AT_mutable:
13158 return "DW_AT_mutable";
13159 case DW_AT_threads_scaled:
13160 return "DW_AT_threads_scaled";
13161 case DW_AT_explicit:
13162 return "DW_AT_explicit";
13163 case DW_AT_object_pointer:
13164 return "DW_AT_object_pointer";
13165 case DW_AT_endianity:
13166 return "DW_AT_endianity";
13167 case DW_AT_elemental:
13168 return "DW_AT_elemental";
13169 case DW_AT_pure:
13170 return "DW_AT_pure";
13171 case DW_AT_recursive:
13172 return "DW_AT_recursive";
13173 /* DWARF 4 values. */
13174 case DW_AT_signature:
13175 return "DW_AT_signature";
13176 case DW_AT_linkage_name:
13177 return "DW_AT_linkage_name";
13178 /* SGI/MIPS extensions. */
13179 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13180 case DW_AT_MIPS_fde:
13181 return "DW_AT_MIPS_fde";
13182 #endif
13183 case DW_AT_MIPS_loop_begin:
13184 return "DW_AT_MIPS_loop_begin";
13185 case DW_AT_MIPS_tail_loop_begin:
13186 return "DW_AT_MIPS_tail_loop_begin";
13187 case DW_AT_MIPS_epilog_begin:
13188 return "DW_AT_MIPS_epilog_begin";
13189 case DW_AT_MIPS_loop_unroll_factor:
13190 return "DW_AT_MIPS_loop_unroll_factor";
13191 case DW_AT_MIPS_software_pipeline_depth:
13192 return "DW_AT_MIPS_software_pipeline_depth";
13193 case DW_AT_MIPS_linkage_name:
13194 return "DW_AT_MIPS_linkage_name";
13195 case DW_AT_MIPS_stride:
13196 return "DW_AT_MIPS_stride";
13197 case DW_AT_MIPS_abstract_name:
13198 return "DW_AT_MIPS_abstract_name";
13199 case DW_AT_MIPS_clone_origin:
13200 return "DW_AT_MIPS_clone_origin";
13201 case DW_AT_MIPS_has_inlines:
13202 return "DW_AT_MIPS_has_inlines";
13203 /* HP extensions. */
13204 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13205 case DW_AT_HP_block_index:
13206 return "DW_AT_HP_block_index";
13207 #endif
13208 case DW_AT_HP_unmodifiable:
13209 return "DW_AT_HP_unmodifiable";
13210 case DW_AT_HP_actuals_stmt_list:
13211 return "DW_AT_HP_actuals_stmt_list";
13212 case DW_AT_HP_proc_per_section:
13213 return "DW_AT_HP_proc_per_section";
13214 case DW_AT_HP_raw_data_ptr:
13215 return "DW_AT_HP_raw_data_ptr";
13216 case DW_AT_HP_pass_by_reference:
13217 return "DW_AT_HP_pass_by_reference";
13218 case DW_AT_HP_opt_level:
13219 return "DW_AT_HP_opt_level";
13220 case DW_AT_HP_prof_version_id:
13221 return "DW_AT_HP_prof_version_id";
13222 case DW_AT_HP_opt_flags:
13223 return "DW_AT_HP_opt_flags";
13224 case DW_AT_HP_cold_region_low_pc:
13225 return "DW_AT_HP_cold_region_low_pc";
13226 case DW_AT_HP_cold_region_high_pc:
13227 return "DW_AT_HP_cold_region_high_pc";
13228 case DW_AT_HP_all_variables_modifiable:
13229 return "DW_AT_HP_all_variables_modifiable";
13230 case DW_AT_HP_linkage_name:
13231 return "DW_AT_HP_linkage_name";
13232 case DW_AT_HP_prof_flags:
13233 return "DW_AT_HP_prof_flags";
13234 /* GNU extensions. */
13235 case DW_AT_sf_names:
13236 return "DW_AT_sf_names";
13237 case DW_AT_src_info:
13238 return "DW_AT_src_info";
13239 case DW_AT_mac_info:
13240 return "DW_AT_mac_info";
13241 case DW_AT_src_coords:
13242 return "DW_AT_src_coords";
13243 case DW_AT_body_begin:
13244 return "DW_AT_body_begin";
13245 case DW_AT_body_end:
13246 return "DW_AT_body_end";
13247 case DW_AT_GNU_vector:
13248 return "DW_AT_GNU_vector";
13249 case DW_AT_GNU_odr_signature:
13250 return "DW_AT_GNU_odr_signature";
13251 /* VMS extensions. */
13252 case DW_AT_VMS_rtnbeg_pd_address:
13253 return "DW_AT_VMS_rtnbeg_pd_address";
13254 /* UPC extension. */
13255 case DW_AT_upc_threads_scaled:
13256 return "DW_AT_upc_threads_scaled";
13257 /* PGI (STMicroelectronics) extensions. */
13258 case DW_AT_PGI_lbase:
13259 return "DW_AT_PGI_lbase";
13260 case DW_AT_PGI_soffset:
13261 return "DW_AT_PGI_soffset";
13262 case DW_AT_PGI_lstride:
13263 return "DW_AT_PGI_lstride";
13264 default:
13265 return "DW_AT_<unknown>";
13266 }
13267 }
13268
13269 /* Convert a DWARF value form code into its string name. */
13270
13271 static char *
13272 dwarf_form_name (unsigned form)
13273 {
13274 switch (form)
13275 {
13276 case DW_FORM_addr:
13277 return "DW_FORM_addr";
13278 case DW_FORM_block2:
13279 return "DW_FORM_block2";
13280 case DW_FORM_block4:
13281 return "DW_FORM_block4";
13282 case DW_FORM_data2:
13283 return "DW_FORM_data2";
13284 case DW_FORM_data4:
13285 return "DW_FORM_data4";
13286 case DW_FORM_data8:
13287 return "DW_FORM_data8";
13288 case DW_FORM_string:
13289 return "DW_FORM_string";
13290 case DW_FORM_block:
13291 return "DW_FORM_block";
13292 case DW_FORM_block1:
13293 return "DW_FORM_block1";
13294 case DW_FORM_data1:
13295 return "DW_FORM_data1";
13296 case DW_FORM_flag:
13297 return "DW_FORM_flag";
13298 case DW_FORM_sdata:
13299 return "DW_FORM_sdata";
13300 case DW_FORM_strp:
13301 return "DW_FORM_strp";
13302 case DW_FORM_udata:
13303 return "DW_FORM_udata";
13304 case DW_FORM_ref_addr:
13305 return "DW_FORM_ref_addr";
13306 case DW_FORM_ref1:
13307 return "DW_FORM_ref1";
13308 case DW_FORM_ref2:
13309 return "DW_FORM_ref2";
13310 case DW_FORM_ref4:
13311 return "DW_FORM_ref4";
13312 case DW_FORM_ref8:
13313 return "DW_FORM_ref8";
13314 case DW_FORM_ref_udata:
13315 return "DW_FORM_ref_udata";
13316 case DW_FORM_indirect:
13317 return "DW_FORM_indirect";
13318 case DW_FORM_sec_offset:
13319 return "DW_FORM_sec_offset";
13320 case DW_FORM_exprloc:
13321 return "DW_FORM_exprloc";
13322 case DW_FORM_flag_present:
13323 return "DW_FORM_flag_present";
13324 case DW_FORM_ref_sig8:
13325 return "DW_FORM_ref_sig8";
13326 default:
13327 return "DW_FORM_<unknown>";
13328 }
13329 }
13330
13331 /* Convert a DWARF stack opcode into its string name. */
13332
13333 const char *
13334 dwarf_stack_op_name (unsigned op)
13335 {
13336 switch (op)
13337 {
13338 case DW_OP_addr:
13339 return "DW_OP_addr";
13340 case DW_OP_deref:
13341 return "DW_OP_deref";
13342 case DW_OP_const1u:
13343 return "DW_OP_const1u";
13344 case DW_OP_const1s:
13345 return "DW_OP_const1s";
13346 case DW_OP_const2u:
13347 return "DW_OP_const2u";
13348 case DW_OP_const2s:
13349 return "DW_OP_const2s";
13350 case DW_OP_const4u:
13351 return "DW_OP_const4u";
13352 case DW_OP_const4s:
13353 return "DW_OP_const4s";
13354 case DW_OP_const8u:
13355 return "DW_OP_const8u";
13356 case DW_OP_const8s:
13357 return "DW_OP_const8s";
13358 case DW_OP_constu:
13359 return "DW_OP_constu";
13360 case DW_OP_consts:
13361 return "DW_OP_consts";
13362 case DW_OP_dup:
13363 return "DW_OP_dup";
13364 case DW_OP_drop:
13365 return "DW_OP_drop";
13366 case DW_OP_over:
13367 return "DW_OP_over";
13368 case DW_OP_pick:
13369 return "DW_OP_pick";
13370 case DW_OP_swap:
13371 return "DW_OP_swap";
13372 case DW_OP_rot:
13373 return "DW_OP_rot";
13374 case DW_OP_xderef:
13375 return "DW_OP_xderef";
13376 case DW_OP_abs:
13377 return "DW_OP_abs";
13378 case DW_OP_and:
13379 return "DW_OP_and";
13380 case DW_OP_div:
13381 return "DW_OP_div";
13382 case DW_OP_minus:
13383 return "DW_OP_minus";
13384 case DW_OP_mod:
13385 return "DW_OP_mod";
13386 case DW_OP_mul:
13387 return "DW_OP_mul";
13388 case DW_OP_neg:
13389 return "DW_OP_neg";
13390 case DW_OP_not:
13391 return "DW_OP_not";
13392 case DW_OP_or:
13393 return "DW_OP_or";
13394 case DW_OP_plus:
13395 return "DW_OP_plus";
13396 case DW_OP_plus_uconst:
13397 return "DW_OP_plus_uconst";
13398 case DW_OP_shl:
13399 return "DW_OP_shl";
13400 case DW_OP_shr:
13401 return "DW_OP_shr";
13402 case DW_OP_shra:
13403 return "DW_OP_shra";
13404 case DW_OP_xor:
13405 return "DW_OP_xor";
13406 case DW_OP_bra:
13407 return "DW_OP_bra";
13408 case DW_OP_eq:
13409 return "DW_OP_eq";
13410 case DW_OP_ge:
13411 return "DW_OP_ge";
13412 case DW_OP_gt:
13413 return "DW_OP_gt";
13414 case DW_OP_le:
13415 return "DW_OP_le";
13416 case DW_OP_lt:
13417 return "DW_OP_lt";
13418 case DW_OP_ne:
13419 return "DW_OP_ne";
13420 case DW_OP_skip:
13421 return "DW_OP_skip";
13422 case DW_OP_lit0:
13423 return "DW_OP_lit0";
13424 case DW_OP_lit1:
13425 return "DW_OP_lit1";
13426 case DW_OP_lit2:
13427 return "DW_OP_lit2";
13428 case DW_OP_lit3:
13429 return "DW_OP_lit3";
13430 case DW_OP_lit4:
13431 return "DW_OP_lit4";
13432 case DW_OP_lit5:
13433 return "DW_OP_lit5";
13434 case DW_OP_lit6:
13435 return "DW_OP_lit6";
13436 case DW_OP_lit7:
13437 return "DW_OP_lit7";
13438 case DW_OP_lit8:
13439 return "DW_OP_lit8";
13440 case DW_OP_lit9:
13441 return "DW_OP_lit9";
13442 case DW_OP_lit10:
13443 return "DW_OP_lit10";
13444 case DW_OP_lit11:
13445 return "DW_OP_lit11";
13446 case DW_OP_lit12:
13447 return "DW_OP_lit12";
13448 case DW_OP_lit13:
13449 return "DW_OP_lit13";
13450 case DW_OP_lit14:
13451 return "DW_OP_lit14";
13452 case DW_OP_lit15:
13453 return "DW_OP_lit15";
13454 case DW_OP_lit16:
13455 return "DW_OP_lit16";
13456 case DW_OP_lit17:
13457 return "DW_OP_lit17";
13458 case DW_OP_lit18:
13459 return "DW_OP_lit18";
13460 case DW_OP_lit19:
13461 return "DW_OP_lit19";
13462 case DW_OP_lit20:
13463 return "DW_OP_lit20";
13464 case DW_OP_lit21:
13465 return "DW_OP_lit21";
13466 case DW_OP_lit22:
13467 return "DW_OP_lit22";
13468 case DW_OP_lit23:
13469 return "DW_OP_lit23";
13470 case DW_OP_lit24:
13471 return "DW_OP_lit24";
13472 case DW_OP_lit25:
13473 return "DW_OP_lit25";
13474 case DW_OP_lit26:
13475 return "DW_OP_lit26";
13476 case DW_OP_lit27:
13477 return "DW_OP_lit27";
13478 case DW_OP_lit28:
13479 return "DW_OP_lit28";
13480 case DW_OP_lit29:
13481 return "DW_OP_lit29";
13482 case DW_OP_lit30:
13483 return "DW_OP_lit30";
13484 case DW_OP_lit31:
13485 return "DW_OP_lit31";
13486 case DW_OP_reg0:
13487 return "DW_OP_reg0";
13488 case DW_OP_reg1:
13489 return "DW_OP_reg1";
13490 case DW_OP_reg2:
13491 return "DW_OP_reg2";
13492 case DW_OP_reg3:
13493 return "DW_OP_reg3";
13494 case DW_OP_reg4:
13495 return "DW_OP_reg4";
13496 case DW_OP_reg5:
13497 return "DW_OP_reg5";
13498 case DW_OP_reg6:
13499 return "DW_OP_reg6";
13500 case DW_OP_reg7:
13501 return "DW_OP_reg7";
13502 case DW_OP_reg8:
13503 return "DW_OP_reg8";
13504 case DW_OP_reg9:
13505 return "DW_OP_reg9";
13506 case DW_OP_reg10:
13507 return "DW_OP_reg10";
13508 case DW_OP_reg11:
13509 return "DW_OP_reg11";
13510 case DW_OP_reg12:
13511 return "DW_OP_reg12";
13512 case DW_OP_reg13:
13513 return "DW_OP_reg13";
13514 case DW_OP_reg14:
13515 return "DW_OP_reg14";
13516 case DW_OP_reg15:
13517 return "DW_OP_reg15";
13518 case DW_OP_reg16:
13519 return "DW_OP_reg16";
13520 case DW_OP_reg17:
13521 return "DW_OP_reg17";
13522 case DW_OP_reg18:
13523 return "DW_OP_reg18";
13524 case DW_OP_reg19:
13525 return "DW_OP_reg19";
13526 case DW_OP_reg20:
13527 return "DW_OP_reg20";
13528 case DW_OP_reg21:
13529 return "DW_OP_reg21";
13530 case DW_OP_reg22:
13531 return "DW_OP_reg22";
13532 case DW_OP_reg23:
13533 return "DW_OP_reg23";
13534 case DW_OP_reg24:
13535 return "DW_OP_reg24";
13536 case DW_OP_reg25:
13537 return "DW_OP_reg25";
13538 case DW_OP_reg26:
13539 return "DW_OP_reg26";
13540 case DW_OP_reg27:
13541 return "DW_OP_reg27";
13542 case DW_OP_reg28:
13543 return "DW_OP_reg28";
13544 case DW_OP_reg29:
13545 return "DW_OP_reg29";
13546 case DW_OP_reg30:
13547 return "DW_OP_reg30";
13548 case DW_OP_reg31:
13549 return "DW_OP_reg31";
13550 case DW_OP_breg0:
13551 return "DW_OP_breg0";
13552 case DW_OP_breg1:
13553 return "DW_OP_breg1";
13554 case DW_OP_breg2:
13555 return "DW_OP_breg2";
13556 case DW_OP_breg3:
13557 return "DW_OP_breg3";
13558 case DW_OP_breg4:
13559 return "DW_OP_breg4";
13560 case DW_OP_breg5:
13561 return "DW_OP_breg5";
13562 case DW_OP_breg6:
13563 return "DW_OP_breg6";
13564 case DW_OP_breg7:
13565 return "DW_OP_breg7";
13566 case DW_OP_breg8:
13567 return "DW_OP_breg8";
13568 case DW_OP_breg9:
13569 return "DW_OP_breg9";
13570 case DW_OP_breg10:
13571 return "DW_OP_breg10";
13572 case DW_OP_breg11:
13573 return "DW_OP_breg11";
13574 case DW_OP_breg12:
13575 return "DW_OP_breg12";
13576 case DW_OP_breg13:
13577 return "DW_OP_breg13";
13578 case DW_OP_breg14:
13579 return "DW_OP_breg14";
13580 case DW_OP_breg15:
13581 return "DW_OP_breg15";
13582 case DW_OP_breg16:
13583 return "DW_OP_breg16";
13584 case DW_OP_breg17:
13585 return "DW_OP_breg17";
13586 case DW_OP_breg18:
13587 return "DW_OP_breg18";
13588 case DW_OP_breg19:
13589 return "DW_OP_breg19";
13590 case DW_OP_breg20:
13591 return "DW_OP_breg20";
13592 case DW_OP_breg21:
13593 return "DW_OP_breg21";
13594 case DW_OP_breg22:
13595 return "DW_OP_breg22";
13596 case DW_OP_breg23:
13597 return "DW_OP_breg23";
13598 case DW_OP_breg24:
13599 return "DW_OP_breg24";
13600 case DW_OP_breg25:
13601 return "DW_OP_breg25";
13602 case DW_OP_breg26:
13603 return "DW_OP_breg26";
13604 case DW_OP_breg27:
13605 return "DW_OP_breg27";
13606 case DW_OP_breg28:
13607 return "DW_OP_breg28";
13608 case DW_OP_breg29:
13609 return "DW_OP_breg29";
13610 case DW_OP_breg30:
13611 return "DW_OP_breg30";
13612 case DW_OP_breg31:
13613 return "DW_OP_breg31";
13614 case DW_OP_regx:
13615 return "DW_OP_regx";
13616 case DW_OP_fbreg:
13617 return "DW_OP_fbreg";
13618 case DW_OP_bregx:
13619 return "DW_OP_bregx";
13620 case DW_OP_piece:
13621 return "DW_OP_piece";
13622 case DW_OP_deref_size:
13623 return "DW_OP_deref_size";
13624 case DW_OP_xderef_size:
13625 return "DW_OP_xderef_size";
13626 case DW_OP_nop:
13627 return "DW_OP_nop";
13628 /* DWARF 3 extensions. */
13629 case DW_OP_push_object_address:
13630 return "DW_OP_push_object_address";
13631 case DW_OP_call2:
13632 return "DW_OP_call2";
13633 case DW_OP_call4:
13634 return "DW_OP_call4";
13635 case DW_OP_call_ref:
13636 return "DW_OP_call_ref";
13637 case DW_OP_form_tls_address:
13638 return "DW_OP_form_tls_address";
13639 case DW_OP_call_frame_cfa:
13640 return "DW_OP_call_frame_cfa";
13641 case DW_OP_bit_piece:
13642 return "DW_OP_bit_piece";
13643 /* DWARF 4 extensions. */
13644 case DW_OP_implicit_value:
13645 return "DW_OP_implicit_value";
13646 case DW_OP_stack_value:
13647 return "DW_OP_stack_value";
13648 /* GNU extensions. */
13649 case DW_OP_GNU_push_tls_address:
13650 return "DW_OP_GNU_push_tls_address";
13651 case DW_OP_GNU_uninit:
13652 return "DW_OP_GNU_uninit";
13653 case DW_OP_GNU_implicit_pointer:
13654 return "DW_OP_GNU_implicit_pointer";
13655 case DW_OP_GNU_entry_value:
13656 return "DW_OP_GNU_entry_value";
13657 case DW_OP_GNU_const_type:
13658 return "DW_OP_GNU_const_type";
13659 case DW_OP_GNU_regval_type:
13660 return "DW_OP_GNU_regval_type";
13661 case DW_OP_GNU_deref_type:
13662 return "DW_OP_GNU_deref_type";
13663 case DW_OP_GNU_convert:
13664 return "DW_OP_GNU_convert";
13665 case DW_OP_GNU_reinterpret:
13666 return "DW_OP_GNU_reinterpret";
13667 default:
13668 return NULL;
13669 }
13670 }
13671
13672 static char *
13673 dwarf_bool_name (unsigned mybool)
13674 {
13675 if (mybool)
13676 return "TRUE";
13677 else
13678 return "FALSE";
13679 }
13680
13681 /* Convert a DWARF type code into its string name. */
13682
13683 static char *
13684 dwarf_type_encoding_name (unsigned enc)
13685 {
13686 switch (enc)
13687 {
13688 case DW_ATE_void:
13689 return "DW_ATE_void";
13690 case DW_ATE_address:
13691 return "DW_ATE_address";
13692 case DW_ATE_boolean:
13693 return "DW_ATE_boolean";
13694 case DW_ATE_complex_float:
13695 return "DW_ATE_complex_float";
13696 case DW_ATE_float:
13697 return "DW_ATE_float";
13698 case DW_ATE_signed:
13699 return "DW_ATE_signed";
13700 case DW_ATE_signed_char:
13701 return "DW_ATE_signed_char";
13702 case DW_ATE_unsigned:
13703 return "DW_ATE_unsigned";
13704 case DW_ATE_unsigned_char:
13705 return "DW_ATE_unsigned_char";
13706 /* DWARF 3. */
13707 case DW_ATE_imaginary_float:
13708 return "DW_ATE_imaginary_float";
13709 case DW_ATE_packed_decimal:
13710 return "DW_ATE_packed_decimal";
13711 case DW_ATE_numeric_string:
13712 return "DW_ATE_numeric_string";
13713 case DW_ATE_edited:
13714 return "DW_ATE_edited";
13715 case DW_ATE_signed_fixed:
13716 return "DW_ATE_signed_fixed";
13717 case DW_ATE_unsigned_fixed:
13718 return "DW_ATE_unsigned_fixed";
13719 case DW_ATE_decimal_float:
13720 return "DW_ATE_decimal_float";
13721 /* DWARF 4. */
13722 case DW_ATE_UTF:
13723 return "DW_ATE_UTF";
13724 /* HP extensions. */
13725 case DW_ATE_HP_float80:
13726 return "DW_ATE_HP_float80";
13727 case DW_ATE_HP_complex_float80:
13728 return "DW_ATE_HP_complex_float80";
13729 case DW_ATE_HP_float128:
13730 return "DW_ATE_HP_float128";
13731 case DW_ATE_HP_complex_float128:
13732 return "DW_ATE_HP_complex_float128";
13733 case DW_ATE_HP_floathpintel:
13734 return "DW_ATE_HP_floathpintel";
13735 case DW_ATE_HP_imaginary_float80:
13736 return "DW_ATE_HP_imaginary_float80";
13737 case DW_ATE_HP_imaginary_float128:
13738 return "DW_ATE_HP_imaginary_float128";
13739 default:
13740 return "DW_ATE_<unknown>";
13741 }
13742 }
13743
13744 /* Convert a DWARF call frame info operation to its string name. */
13745
13746 #if 0
13747 static char *
13748 dwarf_cfi_name (unsigned cfi_opc)
13749 {
13750 switch (cfi_opc)
13751 {
13752 case DW_CFA_advance_loc:
13753 return "DW_CFA_advance_loc";
13754 case DW_CFA_offset:
13755 return "DW_CFA_offset";
13756 case DW_CFA_restore:
13757 return "DW_CFA_restore";
13758 case DW_CFA_nop:
13759 return "DW_CFA_nop";
13760 case DW_CFA_set_loc:
13761 return "DW_CFA_set_loc";
13762 case DW_CFA_advance_loc1:
13763 return "DW_CFA_advance_loc1";
13764 case DW_CFA_advance_loc2:
13765 return "DW_CFA_advance_loc2";
13766 case DW_CFA_advance_loc4:
13767 return "DW_CFA_advance_loc4";
13768 case DW_CFA_offset_extended:
13769 return "DW_CFA_offset_extended";
13770 case DW_CFA_restore_extended:
13771 return "DW_CFA_restore_extended";
13772 case DW_CFA_undefined:
13773 return "DW_CFA_undefined";
13774 case DW_CFA_same_value:
13775 return "DW_CFA_same_value";
13776 case DW_CFA_register:
13777 return "DW_CFA_register";
13778 case DW_CFA_remember_state:
13779 return "DW_CFA_remember_state";
13780 case DW_CFA_restore_state:
13781 return "DW_CFA_restore_state";
13782 case DW_CFA_def_cfa:
13783 return "DW_CFA_def_cfa";
13784 case DW_CFA_def_cfa_register:
13785 return "DW_CFA_def_cfa_register";
13786 case DW_CFA_def_cfa_offset:
13787 return "DW_CFA_def_cfa_offset";
13788 /* DWARF 3. */
13789 case DW_CFA_def_cfa_expression:
13790 return "DW_CFA_def_cfa_expression";
13791 case DW_CFA_expression:
13792 return "DW_CFA_expression";
13793 case DW_CFA_offset_extended_sf:
13794 return "DW_CFA_offset_extended_sf";
13795 case DW_CFA_def_cfa_sf:
13796 return "DW_CFA_def_cfa_sf";
13797 case DW_CFA_def_cfa_offset_sf:
13798 return "DW_CFA_def_cfa_offset_sf";
13799 case DW_CFA_val_offset:
13800 return "DW_CFA_val_offset";
13801 case DW_CFA_val_offset_sf:
13802 return "DW_CFA_val_offset_sf";
13803 case DW_CFA_val_expression:
13804 return "DW_CFA_val_expression";
13805 /* SGI/MIPS specific. */
13806 case DW_CFA_MIPS_advance_loc8:
13807 return "DW_CFA_MIPS_advance_loc8";
13808 /* GNU extensions. */
13809 case DW_CFA_GNU_window_save:
13810 return "DW_CFA_GNU_window_save";
13811 case DW_CFA_GNU_args_size:
13812 return "DW_CFA_GNU_args_size";
13813 case DW_CFA_GNU_negative_offset_extended:
13814 return "DW_CFA_GNU_negative_offset_extended";
13815 default:
13816 return "DW_CFA_<unknown>";
13817 }
13818 }
13819 #endif
13820
13821 static void
13822 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13823 {
13824 unsigned int i;
13825
13826 print_spaces (indent, f);
13827 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13828 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13829
13830 if (die->parent != NULL)
13831 {
13832 print_spaces (indent, f);
13833 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13834 die->parent->offset);
13835 }
13836
13837 print_spaces (indent, f);
13838 fprintf_unfiltered (f, " has children: %s\n",
13839 dwarf_bool_name (die->child != NULL));
13840
13841 print_spaces (indent, f);
13842 fprintf_unfiltered (f, " attributes:\n");
13843
13844 for (i = 0; i < die->num_attrs; ++i)
13845 {
13846 print_spaces (indent, f);
13847 fprintf_unfiltered (f, " %s (%s) ",
13848 dwarf_attr_name (die->attrs[i].name),
13849 dwarf_form_name (die->attrs[i].form));
13850
13851 switch (die->attrs[i].form)
13852 {
13853 case DW_FORM_ref_addr:
13854 case DW_FORM_addr:
13855 fprintf_unfiltered (f, "address: ");
13856 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13857 break;
13858 case DW_FORM_block2:
13859 case DW_FORM_block4:
13860 case DW_FORM_block:
13861 case DW_FORM_block1:
13862 fprintf_unfiltered (f, "block: size %d",
13863 DW_BLOCK (&die->attrs[i])->size);
13864 break;
13865 case DW_FORM_exprloc:
13866 fprintf_unfiltered (f, "expression: size %u",
13867 DW_BLOCK (&die->attrs[i])->size);
13868 break;
13869 case DW_FORM_ref1:
13870 case DW_FORM_ref2:
13871 case DW_FORM_ref4:
13872 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13873 (long) (DW_ADDR (&die->attrs[i])));
13874 break;
13875 case DW_FORM_data1:
13876 case DW_FORM_data2:
13877 case DW_FORM_data4:
13878 case DW_FORM_data8:
13879 case DW_FORM_udata:
13880 case DW_FORM_sdata:
13881 fprintf_unfiltered (f, "constant: %s",
13882 pulongest (DW_UNSND (&die->attrs[i])));
13883 break;
13884 case DW_FORM_sec_offset:
13885 fprintf_unfiltered (f, "section offset: %s",
13886 pulongest (DW_UNSND (&die->attrs[i])));
13887 break;
13888 case DW_FORM_ref_sig8:
13889 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13890 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13891 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
13892 else
13893 fprintf_unfiltered (f, "signatured type, offset: unknown");
13894 break;
13895 case DW_FORM_string:
13896 case DW_FORM_strp:
13897 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13898 DW_STRING (&die->attrs[i])
13899 ? DW_STRING (&die->attrs[i]) : "",
13900 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13901 break;
13902 case DW_FORM_flag:
13903 if (DW_UNSND (&die->attrs[i]))
13904 fprintf_unfiltered (f, "flag: TRUE");
13905 else
13906 fprintf_unfiltered (f, "flag: FALSE");
13907 break;
13908 case DW_FORM_flag_present:
13909 fprintf_unfiltered (f, "flag: TRUE");
13910 break;
13911 case DW_FORM_indirect:
13912 /* The reader will have reduced the indirect form to
13913 the "base form" so this form should not occur. */
13914 fprintf_unfiltered (f,
13915 "unexpected attribute form: DW_FORM_indirect");
13916 break;
13917 default:
13918 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13919 die->attrs[i].form);
13920 break;
13921 }
13922 fprintf_unfiltered (f, "\n");
13923 }
13924 }
13925
13926 static void
13927 dump_die_for_error (struct die_info *die)
13928 {
13929 dump_die_shallow (gdb_stderr, 0, die);
13930 }
13931
13932 static void
13933 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13934 {
13935 int indent = level * 4;
13936
13937 gdb_assert (die != NULL);
13938
13939 if (level >= max_level)
13940 return;
13941
13942 dump_die_shallow (f, indent, die);
13943
13944 if (die->child != NULL)
13945 {
13946 print_spaces (indent, f);
13947 fprintf_unfiltered (f, " Children:");
13948 if (level + 1 < max_level)
13949 {
13950 fprintf_unfiltered (f, "\n");
13951 dump_die_1 (f, level + 1, max_level, die->child);
13952 }
13953 else
13954 {
13955 fprintf_unfiltered (f,
13956 " [not printed, max nesting level reached]\n");
13957 }
13958 }
13959
13960 if (die->sibling != NULL && level > 0)
13961 {
13962 dump_die_1 (f, level, max_level, die->sibling);
13963 }
13964 }
13965
13966 /* This is called from the pdie macro in gdbinit.in.
13967 It's not static so gcc will keep a copy callable from gdb. */
13968
13969 void
13970 dump_die (struct die_info *die, int max_level)
13971 {
13972 dump_die_1 (gdb_stdlog, 0, max_level, die);
13973 }
13974
13975 static void
13976 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13977 {
13978 void **slot;
13979
13980 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13981
13982 *slot = die;
13983 }
13984
13985 static int
13986 is_ref_attr (struct attribute *attr)
13987 {
13988 switch (attr->form)
13989 {
13990 case DW_FORM_ref_addr:
13991 case DW_FORM_ref1:
13992 case DW_FORM_ref2:
13993 case DW_FORM_ref4:
13994 case DW_FORM_ref8:
13995 case DW_FORM_ref_udata:
13996 return 1;
13997 default:
13998 return 0;
13999 }
14000 }
14001
14002 static unsigned int
14003 dwarf2_get_ref_die_offset (struct attribute *attr)
14004 {
14005 if (is_ref_attr (attr))
14006 return DW_ADDR (attr);
14007
14008 complaint (&symfile_complaints,
14009 _("unsupported die ref attribute form: '%s'"),
14010 dwarf_form_name (attr->form));
14011 return 0;
14012 }
14013
14014 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14015 * the value held by the attribute is not constant. */
14016
14017 static LONGEST
14018 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14019 {
14020 if (attr->form == DW_FORM_sdata)
14021 return DW_SND (attr);
14022 else if (attr->form == DW_FORM_udata
14023 || attr->form == DW_FORM_data1
14024 || attr->form == DW_FORM_data2
14025 || attr->form == DW_FORM_data4
14026 || attr->form == DW_FORM_data8)
14027 return DW_UNSND (attr);
14028 else
14029 {
14030 complaint (&symfile_complaints,
14031 _("Attribute value is not a constant (%s)"),
14032 dwarf_form_name (attr->form));
14033 return default_value;
14034 }
14035 }
14036
14037 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14038 unit and add it to our queue.
14039 The result is non-zero if PER_CU was queued, otherwise the result is zero
14040 meaning either PER_CU is already queued or it is already loaded. */
14041
14042 static int
14043 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14044 struct dwarf2_per_cu_data *per_cu)
14045 {
14046 /* We may arrive here during partial symbol reading, if we need full
14047 DIEs to process an unusual case (e.g. template arguments). Do
14048 not queue PER_CU, just tell our caller to load its DIEs. */
14049 if (dwarf2_per_objfile->reading_partial_symbols)
14050 {
14051 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14052 return 1;
14053 return 0;
14054 }
14055
14056 /* Mark the dependence relation so that we don't flush PER_CU
14057 too early. */
14058 dwarf2_add_dependence (this_cu, per_cu);
14059
14060 /* If it's already on the queue, we have nothing to do. */
14061 if (per_cu->queued)
14062 return 0;
14063
14064 /* If the compilation unit is already loaded, just mark it as
14065 used. */
14066 if (per_cu->cu != NULL)
14067 {
14068 per_cu->cu->last_used = 0;
14069 return 0;
14070 }
14071
14072 /* Add it to the queue. */
14073 queue_comp_unit (per_cu);
14074
14075 return 1;
14076 }
14077
14078 /* Follow reference or signature attribute ATTR of SRC_DIE.
14079 On entry *REF_CU is the CU of SRC_DIE.
14080 On exit *REF_CU is the CU of the result. */
14081
14082 static struct die_info *
14083 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14084 struct dwarf2_cu **ref_cu)
14085 {
14086 struct die_info *die;
14087
14088 if (is_ref_attr (attr))
14089 die = follow_die_ref (src_die, attr, ref_cu);
14090 else if (attr->form == DW_FORM_ref_sig8)
14091 die = follow_die_sig (src_die, attr, ref_cu);
14092 else
14093 {
14094 dump_die_for_error (src_die);
14095 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14096 (*ref_cu)->objfile->name);
14097 }
14098
14099 return die;
14100 }
14101
14102 /* Follow reference OFFSET.
14103 On entry *REF_CU is the CU of the source die referencing OFFSET.
14104 On exit *REF_CU is the CU of the result.
14105 Returns NULL if OFFSET is invalid. */
14106
14107 static struct die_info *
14108 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14109 {
14110 struct die_info temp_die;
14111 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14112
14113 gdb_assert (cu->per_cu != NULL);
14114
14115 target_cu = cu;
14116
14117 if (cu->per_cu->debug_types_section)
14118 {
14119 /* .debug_types CUs cannot reference anything outside their CU.
14120 If they need to, they have to reference a signatured type via
14121 DW_FORM_ref_sig8. */
14122 if (! offset_in_cu_p (&cu->header, offset))
14123 return NULL;
14124 }
14125 else if (! offset_in_cu_p (&cu->header, offset))
14126 {
14127 struct dwarf2_per_cu_data *per_cu;
14128
14129 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14130
14131 /* If necessary, add it to the queue and load its DIEs. */
14132 if (maybe_queue_comp_unit (cu, per_cu))
14133 load_full_comp_unit (per_cu);
14134
14135 target_cu = per_cu->cu;
14136 }
14137 else if (cu->dies == NULL)
14138 {
14139 /* We're loading full DIEs during partial symbol reading. */
14140 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14141 load_full_comp_unit (cu->per_cu);
14142 }
14143
14144 *ref_cu = target_cu;
14145 temp_die.offset = offset;
14146 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14147 }
14148
14149 /* Follow reference attribute ATTR of SRC_DIE.
14150 On entry *REF_CU is the CU of SRC_DIE.
14151 On exit *REF_CU is the CU of the result. */
14152
14153 static struct die_info *
14154 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14155 struct dwarf2_cu **ref_cu)
14156 {
14157 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14158 struct dwarf2_cu *cu = *ref_cu;
14159 struct die_info *die;
14160
14161 die = follow_die_offset (offset, ref_cu);
14162 if (!die)
14163 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14164 "at 0x%x [in module %s]"),
14165 offset, src_die->offset, cu->objfile->name);
14166
14167 return die;
14168 }
14169
14170 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14171 Returned value is intended for DW_OP_call*. Returned
14172 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14173
14174 struct dwarf2_locexpr_baton
14175 dwarf2_fetch_die_location_block (unsigned int offset,
14176 struct dwarf2_per_cu_data *per_cu,
14177 CORE_ADDR (*get_frame_pc) (void *baton),
14178 void *baton)
14179 {
14180 struct dwarf2_cu *cu;
14181 struct die_info *die;
14182 struct attribute *attr;
14183 struct dwarf2_locexpr_baton retval;
14184
14185 dw2_setup (per_cu->objfile);
14186
14187 if (per_cu->cu == NULL)
14188 load_cu (per_cu);
14189 cu = per_cu->cu;
14190
14191 die = follow_die_offset (offset, &cu);
14192 if (!die)
14193 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14194 offset, per_cu->objfile->name);
14195
14196 attr = dwarf2_attr (die, DW_AT_location, cu);
14197 if (!attr)
14198 {
14199 /* DWARF: "If there is no such attribute, then there is no effect.".
14200 DATA is ignored if SIZE is 0. */
14201
14202 retval.data = NULL;
14203 retval.size = 0;
14204 }
14205 else if (attr_form_is_section_offset (attr))
14206 {
14207 struct dwarf2_loclist_baton loclist_baton;
14208 CORE_ADDR pc = (*get_frame_pc) (baton);
14209 size_t size;
14210
14211 fill_in_loclist_baton (cu, &loclist_baton, attr);
14212
14213 retval.data = dwarf2_find_location_expression (&loclist_baton,
14214 &size, pc);
14215 retval.size = size;
14216 }
14217 else
14218 {
14219 if (!attr_form_is_block (attr))
14220 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14221 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14222 offset, per_cu->objfile->name);
14223
14224 retval.data = DW_BLOCK (attr)->data;
14225 retval.size = DW_BLOCK (attr)->size;
14226 }
14227 retval.per_cu = cu->per_cu;
14228
14229 age_cached_comp_units ();
14230
14231 return retval;
14232 }
14233
14234 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14235 PER_CU. */
14236
14237 struct type *
14238 dwarf2_get_die_type (unsigned int die_offset,
14239 struct dwarf2_per_cu_data *per_cu)
14240 {
14241 dw2_setup (per_cu->objfile);
14242 return get_die_type_at_offset (die_offset, per_cu);
14243 }
14244
14245 /* Follow the signature attribute ATTR in SRC_DIE.
14246 On entry *REF_CU is the CU of SRC_DIE.
14247 On exit *REF_CU is the CU of the result. */
14248
14249 static struct die_info *
14250 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14251 struct dwarf2_cu **ref_cu)
14252 {
14253 struct objfile *objfile = (*ref_cu)->objfile;
14254 struct die_info temp_die;
14255 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14256 struct dwarf2_cu *sig_cu;
14257 struct die_info *die;
14258
14259 /* sig_type will be NULL if the signatured type is missing from
14260 the debug info. */
14261 if (sig_type == NULL)
14262 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14263 "at 0x%x [in module %s]"),
14264 src_die->offset, objfile->name);
14265
14266 /* If necessary, add it to the queue and load its DIEs. */
14267
14268 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14269 read_signatured_type (sig_type);
14270
14271 gdb_assert (sig_type->per_cu.cu != NULL);
14272
14273 sig_cu = sig_type->per_cu.cu;
14274 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14275 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14276 if (die)
14277 {
14278 *ref_cu = sig_cu;
14279 return die;
14280 }
14281
14282 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14283 "from DIE at 0x%x [in module %s]"),
14284 sig_type->type_offset, src_die->offset, objfile->name);
14285 }
14286
14287 /* Given an offset of a signatured type, return its signatured_type. */
14288
14289 static struct signatured_type *
14290 lookup_signatured_type_at_offset (struct objfile *objfile,
14291 struct dwarf2_section_info *section,
14292 unsigned int offset)
14293 {
14294 gdb_byte *info_ptr = section->buffer + offset;
14295 unsigned int length, initial_length_size;
14296 unsigned int sig_offset;
14297 struct signatured_type find_entry, *type_sig;
14298
14299 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14300 sig_offset = (initial_length_size
14301 + 2 /*version*/
14302 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14303 + 1 /*address_size*/);
14304 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14305 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14306
14307 /* This is only used to lookup previously recorded types.
14308 If we didn't find it, it's our bug. */
14309 gdb_assert (type_sig != NULL);
14310 gdb_assert (offset == type_sig->per_cu.offset);
14311
14312 return type_sig;
14313 }
14314
14315 /* Load the DIEs associated with type unit PER_CU into memory. */
14316
14317 static void
14318 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14319 {
14320 struct objfile *objfile = per_cu->objfile;
14321 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14322 unsigned int offset = per_cu->offset;
14323 struct signatured_type *type_sig;
14324
14325 dwarf2_read_section (objfile, sect);
14326
14327 /* We have the section offset, but we need the signature to do the
14328 hash table lookup. */
14329 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14330 the signature to assert we found the right one.
14331 Ok, but it's a lot of work. We should simplify things so any needed
14332 assert doesn't require all this clumsiness. */
14333 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14334
14335 gdb_assert (type_sig->per_cu.cu == NULL);
14336
14337 read_signatured_type (type_sig);
14338
14339 gdb_assert (type_sig->per_cu.cu != NULL);
14340 }
14341
14342 /* Read in a signatured type and build its CU and DIEs. */
14343
14344 static void
14345 read_signatured_type (struct signatured_type *type_sig)
14346 {
14347 struct objfile *objfile = type_sig->per_cu.objfile;
14348 gdb_byte *types_ptr;
14349 struct die_reader_specs reader_specs;
14350 struct dwarf2_cu *cu;
14351 ULONGEST signature;
14352 struct cleanup *back_to, *free_cu_cleanup;
14353 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14354
14355 dwarf2_read_section (objfile, section);
14356 types_ptr = section->buffer + type_sig->per_cu.offset;
14357
14358 gdb_assert (type_sig->per_cu.cu == NULL);
14359
14360 cu = xmalloc (sizeof (*cu));
14361 init_one_comp_unit (cu, &type_sig->per_cu);
14362
14363 /* If an error occurs while loading, release our storage. */
14364 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14365
14366 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14367 &signature, NULL);
14368 gdb_assert (signature == type_sig->signature);
14369
14370 cu->die_hash
14371 = htab_create_alloc_ex (cu->header.length / 12,
14372 die_hash,
14373 die_eq,
14374 NULL,
14375 &cu->comp_unit_obstack,
14376 hashtab_obstack_allocate,
14377 dummy_obstack_deallocate);
14378
14379 dwarf2_read_abbrevs (cu);
14380 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14381
14382 init_cu_die_reader (&reader_specs, cu);
14383
14384 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14385 NULL /*parent*/);
14386
14387 /* We try not to read any attributes in this function, because not
14388 all CUs needed for references have been loaded yet, and symbol
14389 table processing isn't initialized. But we have to set the CU language,
14390 or we won't be able to build types correctly. */
14391 prepare_one_comp_unit (cu, cu->dies);
14392
14393 do_cleanups (back_to);
14394
14395 /* We've successfully allocated this compilation unit. Let our caller
14396 clean it up when finished with it. */
14397 discard_cleanups (free_cu_cleanup);
14398
14399 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14400 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14401 }
14402
14403 /* Decode simple location descriptions.
14404 Given a pointer to a dwarf block that defines a location, compute
14405 the location and return the value.
14406
14407 NOTE drow/2003-11-18: This function is called in two situations
14408 now: for the address of static or global variables (partial symbols
14409 only) and for offsets into structures which are expected to be
14410 (more or less) constant. The partial symbol case should go away,
14411 and only the constant case should remain. That will let this
14412 function complain more accurately. A few special modes are allowed
14413 without complaint for global variables (for instance, global
14414 register values and thread-local values).
14415
14416 A location description containing no operations indicates that the
14417 object is optimized out. The return value is 0 for that case.
14418 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14419 callers will only want a very basic result and this can become a
14420 complaint.
14421
14422 Note that stack[0] is unused except as a default error return. */
14423
14424 static CORE_ADDR
14425 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14426 {
14427 struct objfile *objfile = cu->objfile;
14428 int i;
14429 int size = blk->size;
14430 gdb_byte *data = blk->data;
14431 CORE_ADDR stack[64];
14432 int stacki;
14433 unsigned int bytes_read, unsnd;
14434 gdb_byte op;
14435
14436 i = 0;
14437 stacki = 0;
14438 stack[stacki] = 0;
14439 stack[++stacki] = 0;
14440
14441 while (i < size)
14442 {
14443 op = data[i++];
14444 switch (op)
14445 {
14446 case DW_OP_lit0:
14447 case DW_OP_lit1:
14448 case DW_OP_lit2:
14449 case DW_OP_lit3:
14450 case DW_OP_lit4:
14451 case DW_OP_lit5:
14452 case DW_OP_lit6:
14453 case DW_OP_lit7:
14454 case DW_OP_lit8:
14455 case DW_OP_lit9:
14456 case DW_OP_lit10:
14457 case DW_OP_lit11:
14458 case DW_OP_lit12:
14459 case DW_OP_lit13:
14460 case DW_OP_lit14:
14461 case DW_OP_lit15:
14462 case DW_OP_lit16:
14463 case DW_OP_lit17:
14464 case DW_OP_lit18:
14465 case DW_OP_lit19:
14466 case DW_OP_lit20:
14467 case DW_OP_lit21:
14468 case DW_OP_lit22:
14469 case DW_OP_lit23:
14470 case DW_OP_lit24:
14471 case DW_OP_lit25:
14472 case DW_OP_lit26:
14473 case DW_OP_lit27:
14474 case DW_OP_lit28:
14475 case DW_OP_lit29:
14476 case DW_OP_lit30:
14477 case DW_OP_lit31:
14478 stack[++stacki] = op - DW_OP_lit0;
14479 break;
14480
14481 case DW_OP_reg0:
14482 case DW_OP_reg1:
14483 case DW_OP_reg2:
14484 case DW_OP_reg3:
14485 case DW_OP_reg4:
14486 case DW_OP_reg5:
14487 case DW_OP_reg6:
14488 case DW_OP_reg7:
14489 case DW_OP_reg8:
14490 case DW_OP_reg9:
14491 case DW_OP_reg10:
14492 case DW_OP_reg11:
14493 case DW_OP_reg12:
14494 case DW_OP_reg13:
14495 case DW_OP_reg14:
14496 case DW_OP_reg15:
14497 case DW_OP_reg16:
14498 case DW_OP_reg17:
14499 case DW_OP_reg18:
14500 case DW_OP_reg19:
14501 case DW_OP_reg20:
14502 case DW_OP_reg21:
14503 case DW_OP_reg22:
14504 case DW_OP_reg23:
14505 case DW_OP_reg24:
14506 case DW_OP_reg25:
14507 case DW_OP_reg26:
14508 case DW_OP_reg27:
14509 case DW_OP_reg28:
14510 case DW_OP_reg29:
14511 case DW_OP_reg30:
14512 case DW_OP_reg31:
14513 stack[++stacki] = op - DW_OP_reg0;
14514 if (i < size)
14515 dwarf2_complex_location_expr_complaint ();
14516 break;
14517
14518 case DW_OP_regx:
14519 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14520 i += bytes_read;
14521 stack[++stacki] = unsnd;
14522 if (i < size)
14523 dwarf2_complex_location_expr_complaint ();
14524 break;
14525
14526 case DW_OP_addr:
14527 stack[++stacki] = read_address (objfile->obfd, &data[i],
14528 cu, &bytes_read);
14529 i += bytes_read;
14530 break;
14531
14532 case DW_OP_const1u:
14533 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14534 i += 1;
14535 break;
14536
14537 case DW_OP_const1s:
14538 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14539 i += 1;
14540 break;
14541
14542 case DW_OP_const2u:
14543 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14544 i += 2;
14545 break;
14546
14547 case DW_OP_const2s:
14548 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14549 i += 2;
14550 break;
14551
14552 case DW_OP_const4u:
14553 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14554 i += 4;
14555 break;
14556
14557 case DW_OP_const4s:
14558 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14559 i += 4;
14560 break;
14561
14562 case DW_OP_const8u:
14563 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14564 i += 8;
14565 break;
14566
14567 case DW_OP_constu:
14568 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14569 &bytes_read);
14570 i += bytes_read;
14571 break;
14572
14573 case DW_OP_consts:
14574 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14575 i += bytes_read;
14576 break;
14577
14578 case DW_OP_dup:
14579 stack[stacki + 1] = stack[stacki];
14580 stacki++;
14581 break;
14582
14583 case DW_OP_plus:
14584 stack[stacki - 1] += stack[stacki];
14585 stacki--;
14586 break;
14587
14588 case DW_OP_plus_uconst:
14589 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14590 &bytes_read);
14591 i += bytes_read;
14592 break;
14593
14594 case DW_OP_minus:
14595 stack[stacki - 1] -= stack[stacki];
14596 stacki--;
14597 break;
14598
14599 case DW_OP_deref:
14600 /* If we're not the last op, then we definitely can't encode
14601 this using GDB's address_class enum. This is valid for partial
14602 global symbols, although the variable's address will be bogus
14603 in the psymtab. */
14604 if (i < size)
14605 dwarf2_complex_location_expr_complaint ();
14606 break;
14607
14608 case DW_OP_GNU_push_tls_address:
14609 /* The top of the stack has the offset from the beginning
14610 of the thread control block at which the variable is located. */
14611 /* Nothing should follow this operator, so the top of stack would
14612 be returned. */
14613 /* This is valid for partial global symbols, but the variable's
14614 address will be bogus in the psymtab. Make it always at least
14615 non-zero to not look as a variable garbage collected by linker
14616 which have DW_OP_addr 0. */
14617 if (i < size)
14618 dwarf2_complex_location_expr_complaint ();
14619 stack[stacki]++;
14620 break;
14621
14622 case DW_OP_GNU_uninit:
14623 break;
14624
14625 default:
14626 {
14627 const char *name = dwarf_stack_op_name (op);
14628
14629 if (name)
14630 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14631 name);
14632 else
14633 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14634 op);
14635 }
14636
14637 return (stack[stacki]);
14638 }
14639
14640 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14641 outside of the allocated space. Also enforce minimum>0. */
14642 if (stacki >= ARRAY_SIZE (stack) - 1)
14643 {
14644 complaint (&symfile_complaints,
14645 _("location description stack overflow"));
14646 return 0;
14647 }
14648
14649 if (stacki <= 0)
14650 {
14651 complaint (&symfile_complaints,
14652 _("location description stack underflow"));
14653 return 0;
14654 }
14655 }
14656 return (stack[stacki]);
14657 }
14658
14659 /* memory allocation interface */
14660
14661 static struct dwarf_block *
14662 dwarf_alloc_block (struct dwarf2_cu *cu)
14663 {
14664 struct dwarf_block *blk;
14665
14666 blk = (struct dwarf_block *)
14667 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14668 return (blk);
14669 }
14670
14671 static struct abbrev_info *
14672 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14673 {
14674 struct abbrev_info *abbrev;
14675
14676 abbrev = (struct abbrev_info *)
14677 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14678 memset (abbrev, 0, sizeof (struct abbrev_info));
14679 return (abbrev);
14680 }
14681
14682 static struct die_info *
14683 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14684 {
14685 struct die_info *die;
14686 size_t size = sizeof (struct die_info);
14687
14688 if (num_attrs > 1)
14689 size += (num_attrs - 1) * sizeof (struct attribute);
14690
14691 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14692 memset (die, 0, sizeof (struct die_info));
14693 return (die);
14694 }
14695
14696 \f
14697 /* Macro support. */
14698
14699 /* Return the full name of file number I in *LH's file name table.
14700 Use COMP_DIR as the name of the current directory of the
14701 compilation. The result is allocated using xmalloc; the caller is
14702 responsible for freeing it. */
14703 static char *
14704 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14705 {
14706 /* Is the file number a valid index into the line header's file name
14707 table? Remember that file numbers start with one, not zero. */
14708 if (1 <= file && file <= lh->num_file_names)
14709 {
14710 struct file_entry *fe = &lh->file_names[file - 1];
14711
14712 if (IS_ABSOLUTE_PATH (fe->name))
14713 return xstrdup (fe->name);
14714 else
14715 {
14716 const char *dir;
14717 int dir_len;
14718 char *full_name;
14719
14720 if (fe->dir_index)
14721 dir = lh->include_dirs[fe->dir_index - 1];
14722 else
14723 dir = comp_dir;
14724
14725 if (dir)
14726 {
14727 dir_len = strlen (dir);
14728 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14729 strcpy (full_name, dir);
14730 full_name[dir_len] = '/';
14731 strcpy (full_name + dir_len + 1, fe->name);
14732 return full_name;
14733 }
14734 else
14735 return xstrdup (fe->name);
14736 }
14737 }
14738 else
14739 {
14740 /* The compiler produced a bogus file number. We can at least
14741 record the macro definitions made in the file, even if we
14742 won't be able to find the file by name. */
14743 char fake_name[80];
14744
14745 sprintf (fake_name, "<bad macro file number %d>", file);
14746
14747 complaint (&symfile_complaints,
14748 _("bad file number in macro information (%d)"),
14749 file);
14750
14751 return xstrdup (fake_name);
14752 }
14753 }
14754
14755
14756 static struct macro_source_file *
14757 macro_start_file (int file, int line,
14758 struct macro_source_file *current_file,
14759 const char *comp_dir,
14760 struct line_header *lh, struct objfile *objfile)
14761 {
14762 /* The full name of this source file. */
14763 char *full_name = file_full_name (file, lh, comp_dir);
14764
14765 /* We don't create a macro table for this compilation unit
14766 at all until we actually get a filename. */
14767 if (! pending_macros)
14768 pending_macros = new_macro_table (&objfile->objfile_obstack,
14769 objfile->macro_cache);
14770
14771 if (! current_file)
14772 /* If we have no current file, then this must be the start_file
14773 directive for the compilation unit's main source file. */
14774 current_file = macro_set_main (pending_macros, full_name);
14775 else
14776 current_file = macro_include (current_file, line, full_name);
14777
14778 xfree (full_name);
14779
14780 return current_file;
14781 }
14782
14783
14784 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14785 followed by a null byte. */
14786 static char *
14787 copy_string (const char *buf, int len)
14788 {
14789 char *s = xmalloc (len + 1);
14790
14791 memcpy (s, buf, len);
14792 s[len] = '\0';
14793 return s;
14794 }
14795
14796
14797 static const char *
14798 consume_improper_spaces (const char *p, const char *body)
14799 {
14800 if (*p == ' ')
14801 {
14802 complaint (&symfile_complaints,
14803 _("macro definition contains spaces "
14804 "in formal argument list:\n`%s'"),
14805 body);
14806
14807 while (*p == ' ')
14808 p++;
14809 }
14810
14811 return p;
14812 }
14813
14814
14815 static void
14816 parse_macro_definition (struct macro_source_file *file, int line,
14817 const char *body)
14818 {
14819 const char *p;
14820
14821 /* The body string takes one of two forms. For object-like macro
14822 definitions, it should be:
14823
14824 <macro name> " " <definition>
14825
14826 For function-like macro definitions, it should be:
14827
14828 <macro name> "() " <definition>
14829 or
14830 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14831
14832 Spaces may appear only where explicitly indicated, and in the
14833 <definition>.
14834
14835 The Dwarf 2 spec says that an object-like macro's name is always
14836 followed by a space, but versions of GCC around March 2002 omit
14837 the space when the macro's definition is the empty string.
14838
14839 The Dwarf 2 spec says that there should be no spaces between the
14840 formal arguments in a function-like macro's formal argument list,
14841 but versions of GCC around March 2002 include spaces after the
14842 commas. */
14843
14844
14845 /* Find the extent of the macro name. The macro name is terminated
14846 by either a space or null character (for an object-like macro) or
14847 an opening paren (for a function-like macro). */
14848 for (p = body; *p; p++)
14849 if (*p == ' ' || *p == '(')
14850 break;
14851
14852 if (*p == ' ' || *p == '\0')
14853 {
14854 /* It's an object-like macro. */
14855 int name_len = p - body;
14856 char *name = copy_string (body, name_len);
14857 const char *replacement;
14858
14859 if (*p == ' ')
14860 replacement = body + name_len + 1;
14861 else
14862 {
14863 dwarf2_macro_malformed_definition_complaint (body);
14864 replacement = body + name_len;
14865 }
14866
14867 macro_define_object (file, line, name, replacement);
14868
14869 xfree (name);
14870 }
14871 else if (*p == '(')
14872 {
14873 /* It's a function-like macro. */
14874 char *name = copy_string (body, p - body);
14875 int argc = 0;
14876 int argv_size = 1;
14877 char **argv = xmalloc (argv_size * sizeof (*argv));
14878
14879 p++;
14880
14881 p = consume_improper_spaces (p, body);
14882
14883 /* Parse the formal argument list. */
14884 while (*p && *p != ')')
14885 {
14886 /* Find the extent of the current argument name. */
14887 const char *arg_start = p;
14888
14889 while (*p && *p != ',' && *p != ')' && *p != ' ')
14890 p++;
14891
14892 if (! *p || p == arg_start)
14893 dwarf2_macro_malformed_definition_complaint (body);
14894 else
14895 {
14896 /* Make sure argv has room for the new argument. */
14897 if (argc >= argv_size)
14898 {
14899 argv_size *= 2;
14900 argv = xrealloc (argv, argv_size * sizeof (*argv));
14901 }
14902
14903 argv[argc++] = copy_string (arg_start, p - arg_start);
14904 }
14905
14906 p = consume_improper_spaces (p, body);
14907
14908 /* Consume the comma, if present. */
14909 if (*p == ',')
14910 {
14911 p++;
14912
14913 p = consume_improper_spaces (p, body);
14914 }
14915 }
14916
14917 if (*p == ')')
14918 {
14919 p++;
14920
14921 if (*p == ' ')
14922 /* Perfectly formed definition, no complaints. */
14923 macro_define_function (file, line, name,
14924 argc, (const char **) argv,
14925 p + 1);
14926 else if (*p == '\0')
14927 {
14928 /* Complain, but do define it. */
14929 dwarf2_macro_malformed_definition_complaint (body);
14930 macro_define_function (file, line, name,
14931 argc, (const char **) argv,
14932 p);
14933 }
14934 else
14935 /* Just complain. */
14936 dwarf2_macro_malformed_definition_complaint (body);
14937 }
14938 else
14939 /* Just complain. */
14940 dwarf2_macro_malformed_definition_complaint (body);
14941
14942 xfree (name);
14943 {
14944 int i;
14945
14946 for (i = 0; i < argc; i++)
14947 xfree (argv[i]);
14948 }
14949 xfree (argv);
14950 }
14951 else
14952 dwarf2_macro_malformed_definition_complaint (body);
14953 }
14954
14955 /* Skip some bytes from BYTES according to the form given in FORM.
14956 Returns the new pointer. */
14957
14958 static gdb_byte *
14959 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
14960 enum dwarf_form form,
14961 unsigned int offset_size,
14962 struct dwarf2_section_info *section)
14963 {
14964 unsigned int bytes_read;
14965
14966 switch (form)
14967 {
14968 case DW_FORM_data1:
14969 case DW_FORM_flag:
14970 ++bytes;
14971 break;
14972
14973 case DW_FORM_data2:
14974 bytes += 2;
14975 break;
14976
14977 case DW_FORM_data4:
14978 bytes += 4;
14979 break;
14980
14981 case DW_FORM_data8:
14982 bytes += 8;
14983 break;
14984
14985 case DW_FORM_string:
14986 read_direct_string (abfd, bytes, &bytes_read);
14987 bytes += bytes_read;
14988 break;
14989
14990 case DW_FORM_sec_offset:
14991 case DW_FORM_strp:
14992 bytes += offset_size;
14993 break;
14994
14995 case DW_FORM_block:
14996 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
14997 bytes += bytes_read;
14998 break;
14999
15000 case DW_FORM_block1:
15001 bytes += 1 + read_1_byte (abfd, bytes);
15002 break;
15003 case DW_FORM_block2:
15004 bytes += 2 + read_2_bytes (abfd, bytes);
15005 break;
15006 case DW_FORM_block4:
15007 bytes += 4 + read_4_bytes (abfd, bytes);
15008 break;
15009
15010 case DW_FORM_sdata:
15011 case DW_FORM_udata:
15012 bytes = skip_leb128 (abfd, bytes);
15013 break;
15014
15015 default:
15016 {
15017 complain:
15018 complaint (&symfile_complaints,
15019 _("invalid form 0x%x in `%s'"),
15020 form,
15021 section->asection->name);
15022 return NULL;
15023 }
15024 }
15025
15026 return bytes;
15027 }
15028
15029 /* A helper for dwarf_decode_macros that handles skipping an unknown
15030 opcode. Returns an updated pointer to the macro data buffer; or,
15031 on error, issues a complaint and returns NULL. */
15032
15033 static gdb_byte *
15034 skip_unknown_opcode (unsigned int opcode,
15035 gdb_byte **opcode_definitions,
15036 gdb_byte *mac_ptr,
15037 bfd *abfd,
15038 unsigned int offset_size,
15039 struct dwarf2_section_info *section)
15040 {
15041 unsigned int bytes_read, i;
15042 unsigned long arg;
15043 gdb_byte *defn;
15044
15045 if (opcode_definitions[opcode] == NULL)
15046 {
15047 complaint (&symfile_complaints,
15048 _("unrecognized DW_MACFINO opcode 0x%x"),
15049 opcode);
15050 return NULL;
15051 }
15052
15053 defn = opcode_definitions[opcode];
15054 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15055 defn += bytes_read;
15056
15057 for (i = 0; i < arg; ++i)
15058 {
15059 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15060 if (mac_ptr == NULL)
15061 {
15062 /* skip_form_bytes already issued the complaint. */
15063 return NULL;
15064 }
15065 }
15066
15067 return mac_ptr;
15068 }
15069
15070 /* A helper function which parses the header of a macro section.
15071 If the macro section is the extended (for now called "GNU") type,
15072 then this updates *OFFSET_SIZE. Returns a pointer to just after
15073 the header, or issues a complaint and returns NULL on error. */
15074
15075 static gdb_byte *
15076 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15077 bfd *abfd,
15078 gdb_byte *mac_ptr,
15079 unsigned int *offset_size,
15080 int section_is_gnu)
15081 {
15082 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15083
15084 if (section_is_gnu)
15085 {
15086 unsigned int version, flags;
15087
15088 version = read_2_bytes (abfd, mac_ptr);
15089 if (version != 4)
15090 {
15091 complaint (&symfile_complaints,
15092 _("unrecognized version `%d' in .debug_macro section"),
15093 version);
15094 return NULL;
15095 }
15096 mac_ptr += 2;
15097
15098 flags = read_1_byte (abfd, mac_ptr);
15099 ++mac_ptr;
15100 *offset_size = (flags & 1) ? 8 : 4;
15101
15102 if ((flags & 2) != 0)
15103 /* We don't need the line table offset. */
15104 mac_ptr += *offset_size;
15105
15106 /* Vendor opcode descriptions. */
15107 if ((flags & 4) != 0)
15108 {
15109 unsigned int i, count;
15110
15111 count = read_1_byte (abfd, mac_ptr);
15112 ++mac_ptr;
15113 for (i = 0; i < count; ++i)
15114 {
15115 unsigned int opcode, bytes_read;
15116 unsigned long arg;
15117
15118 opcode = read_1_byte (abfd, mac_ptr);
15119 ++mac_ptr;
15120 opcode_definitions[opcode] = mac_ptr;
15121 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15122 mac_ptr += bytes_read;
15123 mac_ptr += arg;
15124 }
15125 }
15126 }
15127
15128 return mac_ptr;
15129 }
15130
15131 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15132 including DW_MACRO_GNU_transparent_include. */
15133
15134 static void
15135 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15136 struct macro_source_file *current_file,
15137 struct line_header *lh, char *comp_dir,
15138 struct dwarf2_section_info *section,
15139 int section_is_gnu,
15140 unsigned int offset_size,
15141 struct objfile *objfile,
15142 htab_t include_hash)
15143 {
15144 enum dwarf_macro_record_type macinfo_type;
15145 int at_commandline;
15146 gdb_byte *opcode_definitions[256];
15147
15148 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15149 &offset_size, section_is_gnu);
15150 if (mac_ptr == NULL)
15151 {
15152 /* We already issued a complaint. */
15153 return;
15154 }
15155
15156 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15157 GDB is still reading the definitions from command line. First
15158 DW_MACINFO_start_file will need to be ignored as it was already executed
15159 to create CURRENT_FILE for the main source holding also the command line
15160 definitions. On first met DW_MACINFO_start_file this flag is reset to
15161 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15162
15163 at_commandline = 1;
15164
15165 do
15166 {
15167 /* Do we at least have room for a macinfo type byte? */
15168 if (mac_ptr >= mac_end)
15169 {
15170 dwarf2_macros_too_long_complaint (section);
15171 break;
15172 }
15173
15174 macinfo_type = read_1_byte (abfd, mac_ptr);
15175 mac_ptr++;
15176
15177 /* Note that we rely on the fact that the corresponding GNU and
15178 DWARF constants are the same. */
15179 switch (macinfo_type)
15180 {
15181 /* A zero macinfo type indicates the end of the macro
15182 information. */
15183 case 0:
15184 break;
15185
15186 case DW_MACRO_GNU_define:
15187 case DW_MACRO_GNU_undef:
15188 case DW_MACRO_GNU_define_indirect:
15189 case DW_MACRO_GNU_undef_indirect:
15190 {
15191 unsigned int bytes_read;
15192 int line;
15193 char *body;
15194 int is_define;
15195
15196 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15197 mac_ptr += bytes_read;
15198
15199 if (macinfo_type == DW_MACRO_GNU_define
15200 || macinfo_type == DW_MACRO_GNU_undef)
15201 {
15202 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15203 mac_ptr += bytes_read;
15204 }
15205 else
15206 {
15207 LONGEST str_offset;
15208
15209 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15210 mac_ptr += offset_size;
15211
15212 body = read_indirect_string_at_offset (abfd, str_offset);
15213 }
15214
15215 is_define = (macinfo_type == DW_MACRO_GNU_define
15216 || macinfo_type == DW_MACRO_GNU_define_indirect);
15217 if (! current_file)
15218 {
15219 /* DWARF violation as no main source is present. */
15220 complaint (&symfile_complaints,
15221 _("debug info with no main source gives macro %s "
15222 "on line %d: %s"),
15223 is_define ? _("definition") : _("undefinition"),
15224 line, body);
15225 break;
15226 }
15227 if ((line == 0 && !at_commandline)
15228 || (line != 0 && at_commandline))
15229 complaint (&symfile_complaints,
15230 _("debug info gives %s macro %s with %s line %d: %s"),
15231 at_commandline ? _("command-line") : _("in-file"),
15232 is_define ? _("definition") : _("undefinition"),
15233 line == 0 ? _("zero") : _("non-zero"), line, body);
15234
15235 if (is_define)
15236 parse_macro_definition (current_file, line, body);
15237 else
15238 {
15239 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15240 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15241 macro_undef (current_file, line, body);
15242 }
15243 }
15244 break;
15245
15246 case DW_MACRO_GNU_start_file:
15247 {
15248 unsigned int bytes_read;
15249 int line, file;
15250
15251 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15252 mac_ptr += bytes_read;
15253 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15254 mac_ptr += bytes_read;
15255
15256 if ((line == 0 && !at_commandline)
15257 || (line != 0 && at_commandline))
15258 complaint (&symfile_complaints,
15259 _("debug info gives source %d included "
15260 "from %s at %s line %d"),
15261 file, at_commandline ? _("command-line") : _("file"),
15262 line == 0 ? _("zero") : _("non-zero"), line);
15263
15264 if (at_commandline)
15265 {
15266 /* This DW_MACRO_GNU_start_file was executed in the
15267 pass one. */
15268 at_commandline = 0;
15269 }
15270 else
15271 current_file = macro_start_file (file, line,
15272 current_file, comp_dir,
15273 lh, objfile);
15274 }
15275 break;
15276
15277 case DW_MACRO_GNU_end_file:
15278 if (! current_file)
15279 complaint (&symfile_complaints,
15280 _("macro debug info has an unmatched "
15281 "`close_file' directive"));
15282 else
15283 {
15284 current_file = current_file->included_by;
15285 if (! current_file)
15286 {
15287 enum dwarf_macro_record_type next_type;
15288
15289 /* GCC circa March 2002 doesn't produce the zero
15290 type byte marking the end of the compilation
15291 unit. Complain if it's not there, but exit no
15292 matter what. */
15293
15294 /* Do we at least have room for a macinfo type byte? */
15295 if (mac_ptr >= mac_end)
15296 {
15297 dwarf2_macros_too_long_complaint (section);
15298 return;
15299 }
15300
15301 /* We don't increment mac_ptr here, so this is just
15302 a look-ahead. */
15303 next_type = read_1_byte (abfd, mac_ptr);
15304 if (next_type != 0)
15305 complaint (&symfile_complaints,
15306 _("no terminating 0-type entry for "
15307 "macros in `.debug_macinfo' section"));
15308
15309 return;
15310 }
15311 }
15312 break;
15313
15314 case DW_MACRO_GNU_transparent_include:
15315 {
15316 LONGEST offset;
15317 void **slot;
15318
15319 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15320 mac_ptr += offset_size;
15321
15322 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15323 if (*slot != NULL)
15324 {
15325 /* This has actually happened; see
15326 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15327 complaint (&symfile_complaints,
15328 _("recursive DW_MACRO_GNU_transparent_include in "
15329 ".debug_macro section"));
15330 }
15331 else
15332 {
15333 *slot = mac_ptr;
15334
15335 dwarf_decode_macro_bytes (abfd,
15336 section->buffer + offset,
15337 mac_end, current_file,
15338 lh, comp_dir,
15339 section, section_is_gnu,
15340 offset_size, objfile, include_hash);
15341
15342 htab_remove_elt (include_hash, mac_ptr);
15343 }
15344 }
15345 break;
15346
15347 case DW_MACINFO_vendor_ext:
15348 if (!section_is_gnu)
15349 {
15350 unsigned int bytes_read;
15351 int constant;
15352
15353 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15354 mac_ptr += bytes_read;
15355 read_direct_string (abfd, mac_ptr, &bytes_read);
15356 mac_ptr += bytes_read;
15357
15358 /* We don't recognize any vendor extensions. */
15359 break;
15360 }
15361 /* FALLTHROUGH */
15362
15363 default:
15364 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15365 mac_ptr, abfd, offset_size,
15366 section);
15367 if (mac_ptr == NULL)
15368 return;
15369 break;
15370 }
15371 } while (macinfo_type != 0);
15372 }
15373
15374 static void
15375 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15376 char *comp_dir, bfd *abfd,
15377 struct dwarf2_cu *cu,
15378 struct dwarf2_section_info *section,
15379 int section_is_gnu)
15380 {
15381 struct objfile *objfile = dwarf2_per_objfile->objfile;
15382 gdb_byte *mac_ptr, *mac_end;
15383 struct macro_source_file *current_file = 0;
15384 enum dwarf_macro_record_type macinfo_type;
15385 unsigned int offset_size = cu->header.offset_size;
15386 gdb_byte *opcode_definitions[256];
15387 struct cleanup *cleanup;
15388 htab_t include_hash;
15389 void **slot;
15390
15391 dwarf2_read_section (objfile, section);
15392 if (section->buffer == NULL)
15393 {
15394 complaint (&symfile_complaints, _("missing %s section"),
15395 section->asection->name);
15396 return;
15397 }
15398
15399 /* First pass: Find the name of the base filename.
15400 This filename is needed in order to process all macros whose definition
15401 (or undefinition) comes from the command line. These macros are defined
15402 before the first DW_MACINFO_start_file entry, and yet still need to be
15403 associated to the base file.
15404
15405 To determine the base file name, we scan the macro definitions until we
15406 reach the first DW_MACINFO_start_file entry. We then initialize
15407 CURRENT_FILE accordingly so that any macro definition found before the
15408 first DW_MACINFO_start_file can still be associated to the base file. */
15409
15410 mac_ptr = section->buffer + offset;
15411 mac_end = section->buffer + section->size;
15412
15413 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15414 &offset_size, section_is_gnu);
15415 if (mac_ptr == NULL)
15416 {
15417 /* We already issued a complaint. */
15418 return;
15419 }
15420
15421 do
15422 {
15423 /* Do we at least have room for a macinfo type byte? */
15424 if (mac_ptr >= mac_end)
15425 {
15426 /* Complaint is printed during the second pass as GDB will probably
15427 stop the first pass earlier upon finding
15428 DW_MACINFO_start_file. */
15429 break;
15430 }
15431
15432 macinfo_type = read_1_byte (abfd, mac_ptr);
15433 mac_ptr++;
15434
15435 /* Note that we rely on the fact that the corresponding GNU and
15436 DWARF constants are the same. */
15437 switch (macinfo_type)
15438 {
15439 /* A zero macinfo type indicates the end of the macro
15440 information. */
15441 case 0:
15442 break;
15443
15444 case DW_MACRO_GNU_define:
15445 case DW_MACRO_GNU_undef:
15446 /* Only skip the data by MAC_PTR. */
15447 {
15448 unsigned int bytes_read;
15449
15450 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15451 mac_ptr += bytes_read;
15452 read_direct_string (abfd, mac_ptr, &bytes_read);
15453 mac_ptr += bytes_read;
15454 }
15455 break;
15456
15457 case DW_MACRO_GNU_start_file:
15458 {
15459 unsigned int bytes_read;
15460 int line, file;
15461
15462 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15463 mac_ptr += bytes_read;
15464 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15465 mac_ptr += bytes_read;
15466
15467 current_file = macro_start_file (file, line, current_file,
15468 comp_dir, lh, objfile);
15469 }
15470 break;
15471
15472 case DW_MACRO_GNU_end_file:
15473 /* No data to skip by MAC_PTR. */
15474 break;
15475
15476 case DW_MACRO_GNU_define_indirect:
15477 case DW_MACRO_GNU_undef_indirect:
15478 {
15479 unsigned int bytes_read;
15480
15481 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15482 mac_ptr += bytes_read;
15483 mac_ptr += offset_size;
15484 }
15485 break;
15486
15487 case DW_MACRO_GNU_transparent_include:
15488 /* Note that, according to the spec, a transparent include
15489 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15490 skip this opcode. */
15491 mac_ptr += offset_size;
15492 break;
15493
15494 case DW_MACINFO_vendor_ext:
15495 /* Only skip the data by MAC_PTR. */
15496 if (!section_is_gnu)
15497 {
15498 unsigned int bytes_read;
15499
15500 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15501 mac_ptr += bytes_read;
15502 read_direct_string (abfd, mac_ptr, &bytes_read);
15503 mac_ptr += bytes_read;
15504 }
15505 /* FALLTHROUGH */
15506
15507 default:
15508 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15509 mac_ptr, abfd, offset_size,
15510 section);
15511 if (mac_ptr == NULL)
15512 return;
15513 break;
15514 }
15515 } while (macinfo_type != 0 && current_file == NULL);
15516
15517 /* Second pass: Process all entries.
15518
15519 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15520 command-line macro definitions/undefinitions. This flag is unset when we
15521 reach the first DW_MACINFO_start_file entry. */
15522
15523 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15524 NULL, xcalloc, xfree);
15525 cleanup = make_cleanup_htab_delete (include_hash);
15526 mac_ptr = section->buffer + offset;
15527 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15528 *slot = mac_ptr;
15529 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15530 current_file, lh, comp_dir, section, section_is_gnu,
15531 offset_size, objfile, include_hash);
15532 do_cleanups (cleanup);
15533 }
15534
15535 /* Check if the attribute's form is a DW_FORM_block*
15536 if so return true else false. */
15537 static int
15538 attr_form_is_block (struct attribute *attr)
15539 {
15540 return (attr == NULL ? 0 :
15541 attr->form == DW_FORM_block1
15542 || attr->form == DW_FORM_block2
15543 || attr->form == DW_FORM_block4
15544 || attr->form == DW_FORM_block
15545 || attr->form == DW_FORM_exprloc);
15546 }
15547
15548 /* Return non-zero if ATTR's value is a section offset --- classes
15549 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15550 You may use DW_UNSND (attr) to retrieve such offsets.
15551
15552 Section 7.5.4, "Attribute Encodings", explains that no attribute
15553 may have a value that belongs to more than one of these classes; it
15554 would be ambiguous if we did, because we use the same forms for all
15555 of them. */
15556 static int
15557 attr_form_is_section_offset (struct attribute *attr)
15558 {
15559 return (attr->form == DW_FORM_data4
15560 || attr->form == DW_FORM_data8
15561 || attr->form == DW_FORM_sec_offset);
15562 }
15563
15564
15565 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15566 zero otherwise. When this function returns true, you can apply
15567 dwarf2_get_attr_constant_value to it.
15568
15569 However, note that for some attributes you must check
15570 attr_form_is_section_offset before using this test. DW_FORM_data4
15571 and DW_FORM_data8 are members of both the constant class, and of
15572 the classes that contain offsets into other debug sections
15573 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15574 that, if an attribute's can be either a constant or one of the
15575 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15576 taken as section offsets, not constants. */
15577 static int
15578 attr_form_is_constant (struct attribute *attr)
15579 {
15580 switch (attr->form)
15581 {
15582 case DW_FORM_sdata:
15583 case DW_FORM_udata:
15584 case DW_FORM_data1:
15585 case DW_FORM_data2:
15586 case DW_FORM_data4:
15587 case DW_FORM_data8:
15588 return 1;
15589 default:
15590 return 0;
15591 }
15592 }
15593
15594 /* A helper function that fills in a dwarf2_loclist_baton. */
15595
15596 static void
15597 fill_in_loclist_baton (struct dwarf2_cu *cu,
15598 struct dwarf2_loclist_baton *baton,
15599 struct attribute *attr)
15600 {
15601 dwarf2_read_section (dwarf2_per_objfile->objfile,
15602 &dwarf2_per_objfile->loc);
15603
15604 baton->per_cu = cu->per_cu;
15605 gdb_assert (baton->per_cu);
15606 /* We don't know how long the location list is, but make sure we
15607 don't run off the edge of the section. */
15608 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15609 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15610 baton->base_address = cu->base_address;
15611 }
15612
15613 static void
15614 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15615 struct dwarf2_cu *cu)
15616 {
15617 struct objfile *objfile = dwarf2_per_objfile->objfile;
15618
15619 if (attr_form_is_section_offset (attr)
15620 /* ".debug_loc" may not exist at all, or the offset may be outside
15621 the section. If so, fall through to the complaint in the
15622 other branch. */
15623 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15624 &dwarf2_per_objfile->loc))
15625 {
15626 struct dwarf2_loclist_baton *baton;
15627
15628 baton = obstack_alloc (&objfile->objfile_obstack,
15629 sizeof (struct dwarf2_loclist_baton));
15630
15631 fill_in_loclist_baton (cu, baton, attr);
15632
15633 if (cu->base_known == 0)
15634 complaint (&symfile_complaints,
15635 _("Location list used without "
15636 "specifying the CU base address."));
15637
15638 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15639 SYMBOL_LOCATION_BATON (sym) = baton;
15640 }
15641 else
15642 {
15643 struct dwarf2_locexpr_baton *baton;
15644
15645 baton = obstack_alloc (&objfile->objfile_obstack,
15646 sizeof (struct dwarf2_locexpr_baton));
15647 baton->per_cu = cu->per_cu;
15648 gdb_assert (baton->per_cu);
15649
15650 if (attr_form_is_block (attr))
15651 {
15652 /* Note that we're just copying the block's data pointer
15653 here, not the actual data. We're still pointing into the
15654 info_buffer for SYM's objfile; right now we never release
15655 that buffer, but when we do clean up properly this may
15656 need to change. */
15657 baton->size = DW_BLOCK (attr)->size;
15658 baton->data = DW_BLOCK (attr)->data;
15659 }
15660 else
15661 {
15662 dwarf2_invalid_attrib_class_complaint ("location description",
15663 SYMBOL_NATURAL_NAME (sym));
15664 baton->size = 0;
15665 }
15666
15667 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15668 SYMBOL_LOCATION_BATON (sym) = baton;
15669 }
15670 }
15671
15672 /* Return the OBJFILE associated with the compilation unit CU. If CU
15673 came from a separate debuginfo file, then the master objfile is
15674 returned. */
15675
15676 struct objfile *
15677 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15678 {
15679 struct objfile *objfile = per_cu->objfile;
15680
15681 /* Return the master objfile, so that we can report and look up the
15682 correct file containing this variable. */
15683 if (objfile->separate_debug_objfile_backlink)
15684 objfile = objfile->separate_debug_objfile_backlink;
15685
15686 return objfile;
15687 }
15688
15689 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15690 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15691 CU_HEADERP first. */
15692
15693 static const struct comp_unit_head *
15694 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15695 struct dwarf2_per_cu_data *per_cu)
15696 {
15697 struct objfile *objfile;
15698 struct dwarf2_per_objfile *per_objfile;
15699 gdb_byte *info_ptr;
15700
15701 if (per_cu->cu)
15702 return &per_cu->cu->header;
15703
15704 objfile = per_cu->objfile;
15705 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15706 info_ptr = per_objfile->info.buffer + per_cu->offset;
15707
15708 memset (cu_headerp, 0, sizeof (*cu_headerp));
15709 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15710
15711 return cu_headerp;
15712 }
15713
15714 /* Return the address size given in the compilation unit header for CU. */
15715
15716 int
15717 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15718 {
15719 struct comp_unit_head cu_header_local;
15720 const struct comp_unit_head *cu_headerp;
15721
15722 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15723
15724 return cu_headerp->addr_size;
15725 }
15726
15727 /* Return the offset size given in the compilation unit header for CU. */
15728
15729 int
15730 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15731 {
15732 struct comp_unit_head cu_header_local;
15733 const struct comp_unit_head *cu_headerp;
15734
15735 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15736
15737 return cu_headerp->offset_size;
15738 }
15739
15740 /* See its dwarf2loc.h declaration. */
15741
15742 int
15743 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15744 {
15745 struct comp_unit_head cu_header_local;
15746 const struct comp_unit_head *cu_headerp;
15747
15748 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15749
15750 if (cu_headerp->version == 2)
15751 return cu_headerp->addr_size;
15752 else
15753 return cu_headerp->offset_size;
15754 }
15755
15756 /* Return the text offset of the CU. The returned offset comes from
15757 this CU's objfile. If this objfile came from a separate debuginfo
15758 file, then the offset may be different from the corresponding
15759 offset in the parent objfile. */
15760
15761 CORE_ADDR
15762 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15763 {
15764 struct objfile *objfile = per_cu->objfile;
15765
15766 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15767 }
15768
15769 /* Locate the .debug_info compilation unit from CU's objfile which contains
15770 the DIE at OFFSET. Raises an error on failure. */
15771
15772 static struct dwarf2_per_cu_data *
15773 dwarf2_find_containing_comp_unit (unsigned int offset,
15774 struct objfile *objfile)
15775 {
15776 struct dwarf2_per_cu_data *this_cu;
15777 int low, high;
15778
15779 low = 0;
15780 high = dwarf2_per_objfile->n_comp_units - 1;
15781 while (high > low)
15782 {
15783 int mid = low + (high - low) / 2;
15784
15785 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15786 high = mid;
15787 else
15788 low = mid + 1;
15789 }
15790 gdb_assert (low == high);
15791 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15792 {
15793 if (low == 0)
15794 error (_("Dwarf Error: could not find partial DIE containing "
15795 "offset 0x%lx [in module %s]"),
15796 (long) offset, bfd_get_filename (objfile->obfd));
15797
15798 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15799 return dwarf2_per_objfile->all_comp_units[low-1];
15800 }
15801 else
15802 {
15803 this_cu = dwarf2_per_objfile->all_comp_units[low];
15804 if (low == dwarf2_per_objfile->n_comp_units - 1
15805 && offset >= this_cu->offset + this_cu->length)
15806 error (_("invalid dwarf2 offset %u"), offset);
15807 gdb_assert (offset < this_cu->offset + this_cu->length);
15808 return this_cu;
15809 }
15810 }
15811
15812 /* Initialize dwarf2_cu CU, owned by PER_CU. */
15813
15814 static void
15815 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15816 {
15817 memset (cu, 0, sizeof (*cu));
15818 per_cu->cu = cu;
15819 cu->per_cu = per_cu;
15820 cu->objfile = per_cu->objfile;
15821 obstack_init (&cu->comp_unit_obstack);
15822 }
15823
15824 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15825
15826 static void
15827 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15828 {
15829 struct attribute *attr;
15830
15831 /* Set the language we're debugging. */
15832 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15833 if (attr)
15834 set_cu_language (DW_UNSND (attr), cu);
15835 else
15836 {
15837 cu->language = language_minimal;
15838 cu->language_defn = language_def (cu->language);
15839 }
15840 }
15841
15842 /* Release one cached compilation unit, CU. We unlink it from the tree
15843 of compilation units, but we don't remove it from the read_in_chain;
15844 the caller is responsible for that.
15845 NOTE: DATA is a void * because this function is also used as a
15846 cleanup routine. */
15847
15848 static void
15849 free_heap_comp_unit (void *data)
15850 {
15851 struct dwarf2_cu *cu = data;
15852
15853 gdb_assert (cu->per_cu != NULL);
15854 cu->per_cu->cu = NULL;
15855 cu->per_cu = NULL;
15856
15857 obstack_free (&cu->comp_unit_obstack, NULL);
15858
15859 xfree (cu);
15860 }
15861
15862 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15863 when we're finished with it. We can't free the pointer itself, but be
15864 sure to unlink it from the cache. Also release any associated storage
15865 and perform cache maintenance.
15866
15867 Only used during partial symbol parsing. */
15868
15869 static void
15870 free_stack_comp_unit (void *data)
15871 {
15872 struct dwarf2_cu *cu = data;
15873
15874 gdb_assert (cu->per_cu != NULL);
15875 cu->per_cu->cu = NULL;
15876 cu->per_cu = NULL;
15877
15878 obstack_free (&cu->comp_unit_obstack, NULL);
15879 cu->partial_dies = NULL;
15880
15881 /* The previous code only did this if per_cu != NULL.
15882 But that would always succeed, so now we just unconditionally do
15883 the aging. This seems like the wrong place to do such aging,
15884 but cleaning that up is left for later. */
15885 age_cached_comp_units ();
15886 }
15887
15888 /* Free all cached compilation units. */
15889
15890 static void
15891 free_cached_comp_units (void *data)
15892 {
15893 struct dwarf2_per_cu_data *per_cu, **last_chain;
15894
15895 per_cu = dwarf2_per_objfile->read_in_chain;
15896 last_chain = &dwarf2_per_objfile->read_in_chain;
15897 while (per_cu != NULL)
15898 {
15899 struct dwarf2_per_cu_data *next_cu;
15900
15901 next_cu = per_cu->cu->read_in_chain;
15902
15903 free_heap_comp_unit (per_cu->cu);
15904 *last_chain = next_cu;
15905
15906 per_cu = next_cu;
15907 }
15908 }
15909
15910 /* Increase the age counter on each cached compilation unit, and free
15911 any that are too old. */
15912
15913 static void
15914 age_cached_comp_units (void)
15915 {
15916 struct dwarf2_per_cu_data *per_cu, **last_chain;
15917
15918 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15919 per_cu = dwarf2_per_objfile->read_in_chain;
15920 while (per_cu != NULL)
15921 {
15922 per_cu->cu->last_used ++;
15923 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15924 dwarf2_mark (per_cu->cu);
15925 per_cu = per_cu->cu->read_in_chain;
15926 }
15927
15928 per_cu = dwarf2_per_objfile->read_in_chain;
15929 last_chain = &dwarf2_per_objfile->read_in_chain;
15930 while (per_cu != NULL)
15931 {
15932 struct dwarf2_per_cu_data *next_cu;
15933
15934 next_cu = per_cu->cu->read_in_chain;
15935
15936 if (!per_cu->cu->mark)
15937 {
15938 free_heap_comp_unit (per_cu->cu);
15939 *last_chain = next_cu;
15940 }
15941 else
15942 last_chain = &per_cu->cu->read_in_chain;
15943
15944 per_cu = next_cu;
15945 }
15946 }
15947
15948 /* Remove a single compilation unit from the cache. */
15949
15950 static void
15951 free_one_cached_comp_unit (void *target_cu)
15952 {
15953 struct dwarf2_per_cu_data *per_cu, **last_chain;
15954
15955 per_cu = dwarf2_per_objfile->read_in_chain;
15956 last_chain = &dwarf2_per_objfile->read_in_chain;
15957 while (per_cu != NULL)
15958 {
15959 struct dwarf2_per_cu_data *next_cu;
15960
15961 next_cu = per_cu->cu->read_in_chain;
15962
15963 if (per_cu->cu == target_cu)
15964 {
15965 free_heap_comp_unit (per_cu->cu);
15966 *last_chain = next_cu;
15967 break;
15968 }
15969 else
15970 last_chain = &per_cu->cu->read_in_chain;
15971
15972 per_cu = next_cu;
15973 }
15974 }
15975
15976 /* Release all extra memory associated with OBJFILE. */
15977
15978 void
15979 dwarf2_free_objfile (struct objfile *objfile)
15980 {
15981 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15982
15983 if (dwarf2_per_objfile == NULL)
15984 return;
15985
15986 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
15987 free_cached_comp_units (NULL);
15988
15989 if (dwarf2_per_objfile->quick_file_names_table)
15990 htab_delete (dwarf2_per_objfile->quick_file_names_table);
15991
15992 /* Everything else should be on the objfile obstack. */
15993 }
15994
15995 /* A pair of DIE offset and GDB type pointer. We store these
15996 in a hash table separate from the DIEs, and preserve them
15997 when the DIEs are flushed out of cache. */
15998
15999 struct dwarf2_offset_and_type
16000 {
16001 unsigned int offset;
16002 struct type *type;
16003 };
16004
16005 /* Hash function for a dwarf2_offset_and_type. */
16006
16007 static hashval_t
16008 offset_and_type_hash (const void *item)
16009 {
16010 const struct dwarf2_offset_and_type *ofs = item;
16011
16012 return ofs->offset;
16013 }
16014
16015 /* Equality function for a dwarf2_offset_and_type. */
16016
16017 static int
16018 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16019 {
16020 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16021 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16022
16023 return ofs_lhs->offset == ofs_rhs->offset;
16024 }
16025
16026 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16027 table if necessary. For convenience, return TYPE.
16028
16029 The DIEs reading must have careful ordering to:
16030 * Not cause infite loops trying to read in DIEs as a prerequisite for
16031 reading current DIE.
16032 * Not trying to dereference contents of still incompletely read in types
16033 while reading in other DIEs.
16034 * Enable referencing still incompletely read in types just by a pointer to
16035 the type without accessing its fields.
16036
16037 Therefore caller should follow these rules:
16038 * Try to fetch any prerequisite types we may need to build this DIE type
16039 before building the type and calling set_die_type.
16040 * After building type call set_die_type for current DIE as soon as
16041 possible before fetching more types to complete the current type.
16042 * Make the type as complete as possible before fetching more types. */
16043
16044 static struct type *
16045 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16046 {
16047 struct dwarf2_offset_and_type **slot, ofs;
16048 struct objfile *objfile = cu->objfile;
16049 htab_t *type_hash_ptr;
16050
16051 /* For Ada types, make sure that the gnat-specific data is always
16052 initialized (if not already set). There are a few types where
16053 we should not be doing so, because the type-specific area is
16054 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16055 where the type-specific area is used to store the floatformat).
16056 But this is not a problem, because the gnat-specific information
16057 is actually not needed for these types. */
16058 if (need_gnat_info (cu)
16059 && TYPE_CODE (type) != TYPE_CODE_FUNC
16060 && TYPE_CODE (type) != TYPE_CODE_FLT
16061 && !HAVE_GNAT_AUX_INFO (type))
16062 INIT_GNAT_SPECIFIC (type);
16063
16064 if (cu->per_cu->debug_types_section)
16065 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16066 else
16067 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16068
16069 if (*type_hash_ptr == NULL)
16070 {
16071 *type_hash_ptr
16072 = htab_create_alloc_ex (127,
16073 offset_and_type_hash,
16074 offset_and_type_eq,
16075 NULL,
16076 &objfile->objfile_obstack,
16077 hashtab_obstack_allocate,
16078 dummy_obstack_deallocate);
16079 }
16080
16081 ofs.offset = die->offset;
16082 ofs.type = type;
16083 slot = (struct dwarf2_offset_and_type **)
16084 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16085 if (*slot)
16086 complaint (&symfile_complaints,
16087 _("A problem internal to GDB: DIE 0x%x has type already set"),
16088 die->offset);
16089 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16090 **slot = ofs;
16091 return type;
16092 }
16093
16094 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16095 table, or return NULL if the die does not have a saved type. */
16096
16097 static struct type *
16098 get_die_type_at_offset (unsigned int offset,
16099 struct dwarf2_per_cu_data *per_cu)
16100 {
16101 struct dwarf2_offset_and_type *slot, ofs;
16102 htab_t type_hash;
16103
16104 if (per_cu->debug_types_section)
16105 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16106 else
16107 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16108 if (type_hash == NULL)
16109 return NULL;
16110
16111 ofs.offset = offset;
16112 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16113 if (slot)
16114 return slot->type;
16115 else
16116 return NULL;
16117 }
16118
16119 /* Look up the type for DIE in the appropriate type_hash table,
16120 or return NULL if DIE does not have a saved type. */
16121
16122 static struct type *
16123 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16124 {
16125 return get_die_type_at_offset (die->offset, cu->per_cu);
16126 }
16127
16128 /* Add a dependence relationship from CU to REF_PER_CU. */
16129
16130 static void
16131 dwarf2_add_dependence (struct dwarf2_cu *cu,
16132 struct dwarf2_per_cu_data *ref_per_cu)
16133 {
16134 void **slot;
16135
16136 if (cu->dependencies == NULL)
16137 cu->dependencies
16138 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16139 NULL, &cu->comp_unit_obstack,
16140 hashtab_obstack_allocate,
16141 dummy_obstack_deallocate);
16142
16143 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16144 if (*slot == NULL)
16145 *slot = ref_per_cu;
16146 }
16147
16148 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16149 Set the mark field in every compilation unit in the
16150 cache that we must keep because we are keeping CU. */
16151
16152 static int
16153 dwarf2_mark_helper (void **slot, void *data)
16154 {
16155 struct dwarf2_per_cu_data *per_cu;
16156
16157 per_cu = (struct dwarf2_per_cu_data *) *slot;
16158
16159 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16160 reading of the chain. As such dependencies remain valid it is not much
16161 useful to track and undo them during QUIT cleanups. */
16162 if (per_cu->cu == NULL)
16163 return 1;
16164
16165 if (per_cu->cu->mark)
16166 return 1;
16167 per_cu->cu->mark = 1;
16168
16169 if (per_cu->cu->dependencies != NULL)
16170 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16171
16172 return 1;
16173 }
16174
16175 /* Set the mark field in CU and in every other compilation unit in the
16176 cache that we must keep because we are keeping CU. */
16177
16178 static void
16179 dwarf2_mark (struct dwarf2_cu *cu)
16180 {
16181 if (cu->mark)
16182 return;
16183 cu->mark = 1;
16184 if (cu->dependencies != NULL)
16185 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16186 }
16187
16188 static void
16189 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16190 {
16191 while (per_cu)
16192 {
16193 per_cu->cu->mark = 0;
16194 per_cu = per_cu->cu->read_in_chain;
16195 }
16196 }
16197
16198 /* Trivial hash function for partial_die_info: the hash value of a DIE
16199 is its offset in .debug_info for this objfile. */
16200
16201 static hashval_t
16202 partial_die_hash (const void *item)
16203 {
16204 const struct partial_die_info *part_die = item;
16205
16206 return part_die->offset;
16207 }
16208
16209 /* Trivial comparison function for partial_die_info structures: two DIEs
16210 are equal if they have the same offset. */
16211
16212 static int
16213 partial_die_eq (const void *item_lhs, const void *item_rhs)
16214 {
16215 const struct partial_die_info *part_die_lhs = item_lhs;
16216 const struct partial_die_info *part_die_rhs = item_rhs;
16217
16218 return part_die_lhs->offset == part_die_rhs->offset;
16219 }
16220
16221 static struct cmd_list_element *set_dwarf2_cmdlist;
16222 static struct cmd_list_element *show_dwarf2_cmdlist;
16223
16224 static void
16225 set_dwarf2_cmd (char *args, int from_tty)
16226 {
16227 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16228 }
16229
16230 static void
16231 show_dwarf2_cmd (char *args, int from_tty)
16232 {
16233 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16234 }
16235
16236 /* If section described by INFO was mmapped, munmap it now. */
16237
16238 static void
16239 munmap_section_buffer (struct dwarf2_section_info *info)
16240 {
16241 if (info->map_addr != NULL)
16242 {
16243 #ifdef HAVE_MMAP
16244 int res;
16245
16246 res = munmap (info->map_addr, info->map_len);
16247 gdb_assert (res == 0);
16248 #else
16249 /* Without HAVE_MMAP, we should never be here to begin with. */
16250 gdb_assert_not_reached ("no mmap support");
16251 #endif
16252 }
16253 }
16254
16255 /* munmap debug sections for OBJFILE, if necessary. */
16256
16257 static void
16258 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16259 {
16260 struct dwarf2_per_objfile *data = d;
16261 int ix;
16262 struct dwarf2_section_info *section;
16263
16264 /* This is sorted according to the order they're defined in to make it easier
16265 to keep in sync. */
16266 munmap_section_buffer (&data->info);
16267 munmap_section_buffer (&data->abbrev);
16268 munmap_section_buffer (&data->line);
16269 munmap_section_buffer (&data->loc);
16270 munmap_section_buffer (&data->macinfo);
16271 munmap_section_buffer (&data->macro);
16272 munmap_section_buffer (&data->str);
16273 munmap_section_buffer (&data->ranges);
16274 munmap_section_buffer (&data->frame);
16275 munmap_section_buffer (&data->eh_frame);
16276 munmap_section_buffer (&data->gdb_index);
16277
16278 for (ix = 0;
16279 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16280 ++ix)
16281 munmap_section_buffer (section);
16282
16283 VEC_free (dwarf2_section_info_def, data->types);
16284 }
16285
16286 \f
16287 /* The "save gdb-index" command. */
16288
16289 /* The contents of the hash table we create when building the string
16290 table. */
16291 struct strtab_entry
16292 {
16293 offset_type offset;
16294 const char *str;
16295 };
16296
16297 /* Hash function for a strtab_entry.
16298
16299 Function is used only during write_hash_table so no index format backward
16300 compatibility is needed. */
16301
16302 static hashval_t
16303 hash_strtab_entry (const void *e)
16304 {
16305 const struct strtab_entry *entry = e;
16306 return mapped_index_string_hash (INT_MAX, entry->str);
16307 }
16308
16309 /* Equality function for a strtab_entry. */
16310
16311 static int
16312 eq_strtab_entry (const void *a, const void *b)
16313 {
16314 const struct strtab_entry *ea = a;
16315 const struct strtab_entry *eb = b;
16316 return !strcmp (ea->str, eb->str);
16317 }
16318
16319 /* Create a strtab_entry hash table. */
16320
16321 static htab_t
16322 create_strtab (void)
16323 {
16324 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16325 xfree, xcalloc, xfree);
16326 }
16327
16328 /* Add a string to the constant pool. Return the string's offset in
16329 host order. */
16330
16331 static offset_type
16332 add_string (htab_t table, struct obstack *cpool, const char *str)
16333 {
16334 void **slot;
16335 struct strtab_entry entry;
16336 struct strtab_entry *result;
16337
16338 entry.str = str;
16339 slot = htab_find_slot (table, &entry, INSERT);
16340 if (*slot)
16341 result = *slot;
16342 else
16343 {
16344 result = XNEW (struct strtab_entry);
16345 result->offset = obstack_object_size (cpool);
16346 result->str = str;
16347 obstack_grow_str0 (cpool, str);
16348 *slot = result;
16349 }
16350 return result->offset;
16351 }
16352
16353 /* An entry in the symbol table. */
16354 struct symtab_index_entry
16355 {
16356 /* The name of the symbol. */
16357 const char *name;
16358 /* The offset of the name in the constant pool. */
16359 offset_type index_offset;
16360 /* A sorted vector of the indices of all the CUs that hold an object
16361 of this name. */
16362 VEC (offset_type) *cu_indices;
16363 };
16364
16365 /* The symbol table. This is a power-of-2-sized hash table. */
16366 struct mapped_symtab
16367 {
16368 offset_type n_elements;
16369 offset_type size;
16370 struct symtab_index_entry **data;
16371 };
16372
16373 /* Hash function for a symtab_index_entry. */
16374
16375 static hashval_t
16376 hash_symtab_entry (const void *e)
16377 {
16378 const struct symtab_index_entry *entry = e;
16379 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16380 sizeof (offset_type) * VEC_length (offset_type,
16381 entry->cu_indices),
16382 0);
16383 }
16384
16385 /* Equality function for a symtab_index_entry. */
16386
16387 static int
16388 eq_symtab_entry (const void *a, const void *b)
16389 {
16390 const struct symtab_index_entry *ea = a;
16391 const struct symtab_index_entry *eb = b;
16392 int len = VEC_length (offset_type, ea->cu_indices);
16393 if (len != VEC_length (offset_type, eb->cu_indices))
16394 return 0;
16395 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16396 VEC_address (offset_type, eb->cu_indices),
16397 sizeof (offset_type) * len);
16398 }
16399
16400 /* Destroy a symtab_index_entry. */
16401
16402 static void
16403 delete_symtab_entry (void *p)
16404 {
16405 struct symtab_index_entry *entry = p;
16406 VEC_free (offset_type, entry->cu_indices);
16407 xfree (entry);
16408 }
16409
16410 /* Create a hash table holding symtab_index_entry objects. */
16411
16412 static htab_t
16413 create_symbol_hash_table (void)
16414 {
16415 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16416 delete_symtab_entry, xcalloc, xfree);
16417 }
16418
16419 /* Create a new mapped symtab object. */
16420
16421 static struct mapped_symtab *
16422 create_mapped_symtab (void)
16423 {
16424 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16425 symtab->n_elements = 0;
16426 symtab->size = 1024;
16427 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16428 return symtab;
16429 }
16430
16431 /* Destroy a mapped_symtab. */
16432
16433 static void
16434 cleanup_mapped_symtab (void *p)
16435 {
16436 struct mapped_symtab *symtab = p;
16437 /* The contents of the array are freed when the other hash table is
16438 destroyed. */
16439 xfree (symtab->data);
16440 xfree (symtab);
16441 }
16442
16443 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16444 the slot.
16445
16446 Function is used only during write_hash_table so no index format backward
16447 compatibility is needed. */
16448
16449 static struct symtab_index_entry **
16450 find_slot (struct mapped_symtab *symtab, const char *name)
16451 {
16452 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16453
16454 index = hash & (symtab->size - 1);
16455 step = ((hash * 17) & (symtab->size - 1)) | 1;
16456
16457 for (;;)
16458 {
16459 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16460 return &symtab->data[index];
16461 index = (index + step) & (symtab->size - 1);
16462 }
16463 }
16464
16465 /* Expand SYMTAB's hash table. */
16466
16467 static void
16468 hash_expand (struct mapped_symtab *symtab)
16469 {
16470 offset_type old_size = symtab->size;
16471 offset_type i;
16472 struct symtab_index_entry **old_entries = symtab->data;
16473
16474 symtab->size *= 2;
16475 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16476
16477 for (i = 0; i < old_size; ++i)
16478 {
16479 if (old_entries[i])
16480 {
16481 struct symtab_index_entry **slot = find_slot (symtab,
16482 old_entries[i]->name);
16483 *slot = old_entries[i];
16484 }
16485 }
16486
16487 xfree (old_entries);
16488 }
16489
16490 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16491 is the index of the CU in which the symbol appears. */
16492
16493 static void
16494 add_index_entry (struct mapped_symtab *symtab, const char *name,
16495 offset_type cu_index)
16496 {
16497 struct symtab_index_entry **slot;
16498
16499 ++symtab->n_elements;
16500 if (4 * symtab->n_elements / 3 >= symtab->size)
16501 hash_expand (symtab);
16502
16503 slot = find_slot (symtab, name);
16504 if (!*slot)
16505 {
16506 *slot = XNEW (struct symtab_index_entry);
16507 (*slot)->name = name;
16508 (*slot)->cu_indices = NULL;
16509 }
16510 /* Don't push an index twice. Due to how we add entries we only
16511 have to check the last one. */
16512 if (VEC_empty (offset_type, (*slot)->cu_indices)
16513 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16514 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16515 }
16516
16517 /* Add a vector of indices to the constant pool. */
16518
16519 static offset_type
16520 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16521 struct symtab_index_entry *entry)
16522 {
16523 void **slot;
16524
16525 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16526 if (!*slot)
16527 {
16528 offset_type len = VEC_length (offset_type, entry->cu_indices);
16529 offset_type val = MAYBE_SWAP (len);
16530 offset_type iter;
16531 int i;
16532
16533 *slot = entry;
16534 entry->index_offset = obstack_object_size (cpool);
16535
16536 obstack_grow (cpool, &val, sizeof (val));
16537 for (i = 0;
16538 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16539 ++i)
16540 {
16541 val = MAYBE_SWAP (iter);
16542 obstack_grow (cpool, &val, sizeof (val));
16543 }
16544 }
16545 else
16546 {
16547 struct symtab_index_entry *old_entry = *slot;
16548 entry->index_offset = old_entry->index_offset;
16549 entry = old_entry;
16550 }
16551 return entry->index_offset;
16552 }
16553
16554 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16555 constant pool entries going into the obstack CPOOL. */
16556
16557 static void
16558 write_hash_table (struct mapped_symtab *symtab,
16559 struct obstack *output, struct obstack *cpool)
16560 {
16561 offset_type i;
16562 htab_t symbol_hash_table;
16563 htab_t str_table;
16564
16565 symbol_hash_table = create_symbol_hash_table ();
16566 str_table = create_strtab ();
16567
16568 /* We add all the index vectors to the constant pool first, to
16569 ensure alignment is ok. */
16570 for (i = 0; i < symtab->size; ++i)
16571 {
16572 if (symtab->data[i])
16573 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16574 }
16575
16576 /* Now write out the hash table. */
16577 for (i = 0; i < symtab->size; ++i)
16578 {
16579 offset_type str_off, vec_off;
16580
16581 if (symtab->data[i])
16582 {
16583 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16584 vec_off = symtab->data[i]->index_offset;
16585 }
16586 else
16587 {
16588 /* While 0 is a valid constant pool index, it is not valid
16589 to have 0 for both offsets. */
16590 str_off = 0;
16591 vec_off = 0;
16592 }
16593
16594 str_off = MAYBE_SWAP (str_off);
16595 vec_off = MAYBE_SWAP (vec_off);
16596
16597 obstack_grow (output, &str_off, sizeof (str_off));
16598 obstack_grow (output, &vec_off, sizeof (vec_off));
16599 }
16600
16601 htab_delete (str_table);
16602 htab_delete (symbol_hash_table);
16603 }
16604
16605 /* Struct to map psymtab to CU index in the index file. */
16606 struct psymtab_cu_index_map
16607 {
16608 struct partial_symtab *psymtab;
16609 unsigned int cu_index;
16610 };
16611
16612 static hashval_t
16613 hash_psymtab_cu_index (const void *item)
16614 {
16615 const struct psymtab_cu_index_map *map = item;
16616
16617 return htab_hash_pointer (map->psymtab);
16618 }
16619
16620 static int
16621 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16622 {
16623 const struct psymtab_cu_index_map *lhs = item_lhs;
16624 const struct psymtab_cu_index_map *rhs = item_rhs;
16625
16626 return lhs->psymtab == rhs->psymtab;
16627 }
16628
16629 /* Helper struct for building the address table. */
16630 struct addrmap_index_data
16631 {
16632 struct objfile *objfile;
16633 struct obstack *addr_obstack;
16634 htab_t cu_index_htab;
16635
16636 /* Non-zero if the previous_* fields are valid.
16637 We can't write an entry until we see the next entry (since it is only then
16638 that we know the end of the entry). */
16639 int previous_valid;
16640 /* Index of the CU in the table of all CUs in the index file. */
16641 unsigned int previous_cu_index;
16642 /* Start address of the CU. */
16643 CORE_ADDR previous_cu_start;
16644 };
16645
16646 /* Write an address entry to OBSTACK. */
16647
16648 static void
16649 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16650 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16651 {
16652 offset_type cu_index_to_write;
16653 char addr[8];
16654 CORE_ADDR baseaddr;
16655
16656 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16657
16658 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16659 obstack_grow (obstack, addr, 8);
16660 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16661 obstack_grow (obstack, addr, 8);
16662 cu_index_to_write = MAYBE_SWAP (cu_index);
16663 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16664 }
16665
16666 /* Worker function for traversing an addrmap to build the address table. */
16667
16668 static int
16669 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16670 {
16671 struct addrmap_index_data *data = datap;
16672 struct partial_symtab *pst = obj;
16673 offset_type cu_index;
16674 void **slot;
16675
16676 if (data->previous_valid)
16677 add_address_entry (data->objfile, data->addr_obstack,
16678 data->previous_cu_start, start_addr,
16679 data->previous_cu_index);
16680
16681 data->previous_cu_start = start_addr;
16682 if (pst != NULL)
16683 {
16684 struct psymtab_cu_index_map find_map, *map;
16685 find_map.psymtab = pst;
16686 map = htab_find (data->cu_index_htab, &find_map);
16687 gdb_assert (map != NULL);
16688 data->previous_cu_index = map->cu_index;
16689 data->previous_valid = 1;
16690 }
16691 else
16692 data->previous_valid = 0;
16693
16694 return 0;
16695 }
16696
16697 /* Write OBJFILE's address map to OBSTACK.
16698 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16699 in the index file. */
16700
16701 static void
16702 write_address_map (struct objfile *objfile, struct obstack *obstack,
16703 htab_t cu_index_htab)
16704 {
16705 struct addrmap_index_data addrmap_index_data;
16706
16707 /* When writing the address table, we have to cope with the fact that
16708 the addrmap iterator only provides the start of a region; we have to
16709 wait until the next invocation to get the start of the next region. */
16710
16711 addrmap_index_data.objfile = objfile;
16712 addrmap_index_data.addr_obstack = obstack;
16713 addrmap_index_data.cu_index_htab = cu_index_htab;
16714 addrmap_index_data.previous_valid = 0;
16715
16716 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16717 &addrmap_index_data);
16718
16719 /* It's highly unlikely the last entry (end address = 0xff...ff)
16720 is valid, but we should still handle it.
16721 The end address is recorded as the start of the next region, but that
16722 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16723 anyway. */
16724 if (addrmap_index_data.previous_valid)
16725 add_address_entry (objfile, obstack,
16726 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16727 addrmap_index_data.previous_cu_index);
16728 }
16729
16730 /* Add a list of partial symbols to SYMTAB. */
16731
16732 static void
16733 write_psymbols (struct mapped_symtab *symtab,
16734 htab_t psyms_seen,
16735 struct partial_symbol **psymp,
16736 int count,
16737 offset_type cu_index,
16738 int is_static)
16739 {
16740 for (; count-- > 0; ++psymp)
16741 {
16742 void **slot, *lookup;
16743
16744 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16745 error (_("Ada is not currently supported by the index"));
16746
16747 /* We only want to add a given psymbol once. However, we also
16748 want to account for whether it is global or static. So, we
16749 may add it twice, using slightly different values. */
16750 if (is_static)
16751 {
16752 uintptr_t val = 1 | (uintptr_t) *psymp;
16753
16754 lookup = (void *) val;
16755 }
16756 else
16757 lookup = *psymp;
16758
16759 /* Only add a given psymbol once. */
16760 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16761 if (!*slot)
16762 {
16763 *slot = lookup;
16764 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16765 }
16766 }
16767 }
16768
16769 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16770 exception if there is an error. */
16771
16772 static void
16773 write_obstack (FILE *file, struct obstack *obstack)
16774 {
16775 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16776 file)
16777 != obstack_object_size (obstack))
16778 error (_("couldn't data write to file"));
16779 }
16780
16781 /* Unlink a file if the argument is not NULL. */
16782
16783 static void
16784 unlink_if_set (void *p)
16785 {
16786 char **filename = p;
16787 if (*filename)
16788 unlink (*filename);
16789 }
16790
16791 /* A helper struct used when iterating over debug_types. */
16792 struct signatured_type_index_data
16793 {
16794 struct objfile *objfile;
16795 struct mapped_symtab *symtab;
16796 struct obstack *types_list;
16797 htab_t psyms_seen;
16798 int cu_index;
16799 };
16800
16801 /* A helper function that writes a single signatured_type to an
16802 obstack. */
16803
16804 static int
16805 write_one_signatured_type (void **slot, void *d)
16806 {
16807 struct signatured_type_index_data *info = d;
16808 struct signatured_type *entry = (struct signatured_type *) *slot;
16809 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16810 struct partial_symtab *psymtab = per_cu->v.psymtab;
16811 gdb_byte val[8];
16812
16813 write_psymbols (info->symtab,
16814 info->psyms_seen,
16815 info->objfile->global_psymbols.list
16816 + psymtab->globals_offset,
16817 psymtab->n_global_syms, info->cu_index,
16818 0);
16819 write_psymbols (info->symtab,
16820 info->psyms_seen,
16821 info->objfile->static_psymbols.list
16822 + psymtab->statics_offset,
16823 psymtab->n_static_syms, info->cu_index,
16824 1);
16825
16826 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16827 obstack_grow (info->types_list, val, 8);
16828 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16829 obstack_grow (info->types_list, val, 8);
16830 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16831 obstack_grow (info->types_list, val, 8);
16832
16833 ++info->cu_index;
16834
16835 return 1;
16836 }
16837
16838 /* Create an index file for OBJFILE in the directory DIR. */
16839
16840 static void
16841 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16842 {
16843 struct cleanup *cleanup;
16844 char *filename, *cleanup_filename;
16845 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16846 struct obstack cu_list, types_cu_list;
16847 int i;
16848 FILE *out_file;
16849 struct mapped_symtab *symtab;
16850 offset_type val, size_of_contents, total_len;
16851 struct stat st;
16852 char buf[8];
16853 htab_t psyms_seen;
16854 htab_t cu_index_htab;
16855 struct psymtab_cu_index_map *psymtab_cu_index_map;
16856
16857 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16858 return;
16859
16860 if (dwarf2_per_objfile->using_index)
16861 error (_("Cannot use an index to create the index"));
16862
16863 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16864 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16865
16866 if (stat (objfile->name, &st) < 0)
16867 perror_with_name (objfile->name);
16868
16869 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16870 INDEX_SUFFIX, (char *) NULL);
16871 cleanup = make_cleanup (xfree, filename);
16872
16873 out_file = fopen (filename, "wb");
16874 if (!out_file)
16875 error (_("Can't open `%s' for writing"), filename);
16876
16877 cleanup_filename = filename;
16878 make_cleanup (unlink_if_set, &cleanup_filename);
16879
16880 symtab = create_mapped_symtab ();
16881 make_cleanup (cleanup_mapped_symtab, symtab);
16882
16883 obstack_init (&addr_obstack);
16884 make_cleanup_obstack_free (&addr_obstack);
16885
16886 obstack_init (&cu_list);
16887 make_cleanup_obstack_free (&cu_list);
16888
16889 obstack_init (&types_cu_list);
16890 make_cleanup_obstack_free (&types_cu_list);
16891
16892 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16893 NULL, xcalloc, xfree);
16894 make_cleanup_htab_delete (psyms_seen);
16895
16896 /* While we're scanning CU's create a table that maps a psymtab pointer
16897 (which is what addrmap records) to its index (which is what is recorded
16898 in the index file). This will later be needed to write the address
16899 table. */
16900 cu_index_htab = htab_create_alloc (100,
16901 hash_psymtab_cu_index,
16902 eq_psymtab_cu_index,
16903 NULL, xcalloc, xfree);
16904 make_cleanup_htab_delete (cu_index_htab);
16905 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16906 xmalloc (sizeof (struct psymtab_cu_index_map)
16907 * dwarf2_per_objfile->n_comp_units);
16908 make_cleanup (xfree, psymtab_cu_index_map);
16909
16910 /* The CU list is already sorted, so we don't need to do additional
16911 work here. Also, the debug_types entries do not appear in
16912 all_comp_units, but only in their own hash table. */
16913 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16914 {
16915 struct dwarf2_per_cu_data *per_cu
16916 = dwarf2_per_objfile->all_comp_units[i];
16917 struct partial_symtab *psymtab = per_cu->v.psymtab;
16918 gdb_byte val[8];
16919 struct psymtab_cu_index_map *map;
16920 void **slot;
16921
16922 write_psymbols (symtab,
16923 psyms_seen,
16924 objfile->global_psymbols.list + psymtab->globals_offset,
16925 psymtab->n_global_syms, i,
16926 0);
16927 write_psymbols (symtab,
16928 psyms_seen,
16929 objfile->static_psymbols.list + psymtab->statics_offset,
16930 psymtab->n_static_syms, i,
16931 1);
16932
16933 map = &psymtab_cu_index_map[i];
16934 map->psymtab = psymtab;
16935 map->cu_index = i;
16936 slot = htab_find_slot (cu_index_htab, map, INSERT);
16937 gdb_assert (slot != NULL);
16938 gdb_assert (*slot == NULL);
16939 *slot = map;
16940
16941 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
16942 obstack_grow (&cu_list, val, 8);
16943 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
16944 obstack_grow (&cu_list, val, 8);
16945 }
16946
16947 /* Dump the address map. */
16948 write_address_map (objfile, &addr_obstack, cu_index_htab);
16949
16950 /* Write out the .debug_type entries, if any. */
16951 if (dwarf2_per_objfile->signatured_types)
16952 {
16953 struct signatured_type_index_data sig_data;
16954
16955 sig_data.objfile = objfile;
16956 sig_data.symtab = symtab;
16957 sig_data.types_list = &types_cu_list;
16958 sig_data.psyms_seen = psyms_seen;
16959 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
16960 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
16961 write_one_signatured_type, &sig_data);
16962 }
16963
16964 obstack_init (&constant_pool);
16965 make_cleanup_obstack_free (&constant_pool);
16966 obstack_init (&symtab_obstack);
16967 make_cleanup_obstack_free (&symtab_obstack);
16968 write_hash_table (symtab, &symtab_obstack, &constant_pool);
16969
16970 obstack_init (&contents);
16971 make_cleanup_obstack_free (&contents);
16972 size_of_contents = 6 * sizeof (offset_type);
16973 total_len = size_of_contents;
16974
16975 /* The version number. */
16976 val = MAYBE_SWAP (5);
16977 obstack_grow (&contents, &val, sizeof (val));
16978
16979 /* The offset of the CU list from the start of the file. */
16980 val = MAYBE_SWAP (total_len);
16981 obstack_grow (&contents, &val, sizeof (val));
16982 total_len += obstack_object_size (&cu_list);
16983
16984 /* The offset of the types CU list from the start of the file. */
16985 val = MAYBE_SWAP (total_len);
16986 obstack_grow (&contents, &val, sizeof (val));
16987 total_len += obstack_object_size (&types_cu_list);
16988
16989 /* The offset of the address table from the start of the file. */
16990 val = MAYBE_SWAP (total_len);
16991 obstack_grow (&contents, &val, sizeof (val));
16992 total_len += obstack_object_size (&addr_obstack);
16993
16994 /* The offset of the symbol table from the start of the file. */
16995 val = MAYBE_SWAP (total_len);
16996 obstack_grow (&contents, &val, sizeof (val));
16997 total_len += obstack_object_size (&symtab_obstack);
16998
16999 /* The offset of the constant pool from the start of the file. */
17000 val = MAYBE_SWAP (total_len);
17001 obstack_grow (&contents, &val, sizeof (val));
17002 total_len += obstack_object_size (&constant_pool);
17003
17004 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17005
17006 write_obstack (out_file, &contents);
17007 write_obstack (out_file, &cu_list);
17008 write_obstack (out_file, &types_cu_list);
17009 write_obstack (out_file, &addr_obstack);
17010 write_obstack (out_file, &symtab_obstack);
17011 write_obstack (out_file, &constant_pool);
17012
17013 fclose (out_file);
17014
17015 /* We want to keep the file, so we set cleanup_filename to NULL
17016 here. See unlink_if_set. */
17017 cleanup_filename = NULL;
17018
17019 do_cleanups (cleanup);
17020 }
17021
17022 /* Implementation of the `save gdb-index' command.
17023
17024 Note that the file format used by this command is documented in the
17025 GDB manual. Any changes here must be documented there. */
17026
17027 static void
17028 save_gdb_index_command (char *arg, int from_tty)
17029 {
17030 struct objfile *objfile;
17031
17032 if (!arg || !*arg)
17033 error (_("usage: save gdb-index DIRECTORY"));
17034
17035 ALL_OBJFILES (objfile)
17036 {
17037 struct stat st;
17038
17039 /* If the objfile does not correspond to an actual file, skip it. */
17040 if (stat (objfile->name, &st) < 0)
17041 continue;
17042
17043 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17044 if (dwarf2_per_objfile)
17045 {
17046 volatile struct gdb_exception except;
17047
17048 TRY_CATCH (except, RETURN_MASK_ERROR)
17049 {
17050 write_psymtabs_to_index (objfile, arg);
17051 }
17052 if (except.reason < 0)
17053 exception_fprintf (gdb_stderr, except,
17054 _("Error while writing index for `%s': "),
17055 objfile->name);
17056 }
17057 }
17058 }
17059
17060 \f
17061
17062 int dwarf2_always_disassemble;
17063
17064 static void
17065 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17066 struct cmd_list_element *c, const char *value)
17067 {
17068 fprintf_filtered (file,
17069 _("Whether to always disassemble "
17070 "DWARF expressions is %s.\n"),
17071 value);
17072 }
17073
17074 static void
17075 show_check_physname (struct ui_file *file, int from_tty,
17076 struct cmd_list_element *c, const char *value)
17077 {
17078 fprintf_filtered (file,
17079 _("Whether to check \"physname\" is %s.\n"),
17080 value);
17081 }
17082
17083 void _initialize_dwarf2_read (void);
17084
17085 void
17086 _initialize_dwarf2_read (void)
17087 {
17088 struct cmd_list_element *c;
17089
17090 dwarf2_objfile_data_key
17091 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17092
17093 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17094 Set DWARF 2 specific variables.\n\
17095 Configure DWARF 2 variables such as the cache size"),
17096 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17097 0/*allow-unknown*/, &maintenance_set_cmdlist);
17098
17099 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17100 Show DWARF 2 specific variables\n\
17101 Show DWARF 2 variables such as the cache size"),
17102 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17103 0/*allow-unknown*/, &maintenance_show_cmdlist);
17104
17105 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17106 &dwarf2_max_cache_age, _("\
17107 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17108 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17109 A higher limit means that cached compilation units will be stored\n\
17110 in memory longer, and more total memory will be used. Zero disables\n\
17111 caching, which can slow down startup."),
17112 NULL,
17113 show_dwarf2_max_cache_age,
17114 &set_dwarf2_cmdlist,
17115 &show_dwarf2_cmdlist);
17116
17117 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17118 &dwarf2_always_disassemble, _("\
17119 Set whether `info address' always disassembles DWARF expressions."), _("\
17120 Show whether `info address' always disassembles DWARF expressions."), _("\
17121 When enabled, DWARF expressions are always printed in an assembly-like\n\
17122 syntax. When disabled, expressions will be printed in a more\n\
17123 conversational style, when possible."),
17124 NULL,
17125 show_dwarf2_always_disassemble,
17126 &set_dwarf2_cmdlist,
17127 &show_dwarf2_cmdlist);
17128
17129 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17130 Set debugging of the dwarf2 DIE reader."), _("\
17131 Show debugging of the dwarf2 DIE reader."), _("\
17132 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17133 The value is the maximum depth to print."),
17134 NULL,
17135 NULL,
17136 &setdebuglist, &showdebuglist);
17137
17138 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17139 Set cross-checking of \"physname\" code against demangler."), _("\
17140 Show cross-checking of \"physname\" code against demangler."), _("\
17141 When enabled, GDB's internal \"physname\" code is checked against\n\
17142 the demangler."),
17143 NULL, show_check_physname,
17144 &setdebuglist, &showdebuglist);
17145
17146 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17147 _("\
17148 Save a gdb-index file.\n\
17149 Usage: save gdb-index DIRECTORY"),
17150 &save_cmdlist);
17151 set_cmd_completer (c, filename_completer);
17152 }