buildsym API cleanup
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The primary symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the primary symtab. */
721 struct symtab *primary_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *);
1518
1519 static void dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *, CORE_ADDR);
1521
1522 static struct symbol *new_symbol (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1527
1528 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1529 struct dwarf2_cu *);
1530
1531 static void dwarf2_const_value_attr (const struct attribute *attr,
1532 struct type *type,
1533 const char *name,
1534 struct obstack *obstack,
1535 struct dwarf2_cu *cu, LONGEST *value,
1536 const gdb_byte **bytes,
1537 struct dwarf2_locexpr_baton **baton);
1538
1539 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1540
1541 static int need_gnat_info (struct dwarf2_cu *);
1542
1543 static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
1545
1546 static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1556
1557 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1558
1559 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1560
1561 static char *typename_concat (struct obstack *obs, const char *prefix,
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
1564
1565 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1566
1567 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1574
1575 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1577
1578 static int dwarf2_get_pc_bounds (struct die_info *,
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
1581
1582 static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1585
1586 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1588
1589 static void dwarf2_add_field (struct field_info *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_attach_fields_to_type (struct field_info *,
1593 struct type *, struct dwarf2_cu *);
1594
1595 static void dwarf2_add_member_fn (struct field_info *,
1596 struct die_info *, struct type *,
1597 struct dwarf2_cu *);
1598
1599 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1600 struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1608
1609 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610
1611 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1612
1613 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1614
1615 static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
1618 static const char *namespace_name (struct die_info *die,
1619 int *is_anonymous, struct dwarf2_cu *);
1620
1621 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1624
1625 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1626 struct dwarf2_cu *);
1627
1628 static struct die_info *read_die_and_siblings_1
1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1630 struct die_info *);
1631
1632 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
1635 struct die_info *parent);
1636
1637 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
1640
1641 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_form_name (unsigned int);
1667
1668 static char *dwarf_bool_name (unsigned int);
1669
1670 static const char *dwarf_type_encoding_name (unsigned int);
1671
1672 static struct die_info *sibling_die (struct die_info *);
1673
1674 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676 static void dump_die_for_error (struct die_info *);
1677
1678 static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
1680
1681 /*static*/ void dump_die (struct die_info *, int max_level);
1682
1683 static void store_in_ref_table (struct die_info *,
1684 struct dwarf2_cu *);
1685
1686 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1687
1688 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1689
1690 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1691 const struct attribute *,
1692 struct dwarf2_cu **);
1693
1694 static struct die_info *follow_die_ref (struct die_info *,
1695 const struct attribute *,
1696 struct dwarf2_cu **);
1697
1698 static struct die_info *follow_die_sig (struct die_info *,
1699 const struct attribute *,
1700 struct dwarf2_cu **);
1701
1702 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705 static struct type *get_DW_AT_signature_type (struct die_info *,
1706 const struct attribute *,
1707 struct dwarf2_cu *);
1708
1709 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1710
1711 static void read_signatured_type (struct signatured_type *);
1712
1713 /* memory allocation interface */
1714
1715 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1716
1717 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1718
1719 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1720 const char *, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct symtab *symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663
2664 /* The result of symtab expansion is always the primary symtab. */
2665 gdb_assert (per_cu->v.quick->symtab->primary);
2666
2667 return per_cu->v.quick->symtab;
2668 }
2669
2670 /* Return the CU/TU given its index.
2671
2672 This is intended for loops like:
2673
2674 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2675 + dwarf2_per_objfile->n_type_units); ++i)
2676 {
2677 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2678
2679 ...;
2680 }
2681 */
2682
2683 static struct dwarf2_per_cu_data *
2684 dw2_get_cutu (int index)
2685 {
2686 if (index >= dwarf2_per_objfile->n_comp_units)
2687 {
2688 index -= dwarf2_per_objfile->n_comp_units;
2689 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2690 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2691 }
2692
2693 return dwarf2_per_objfile->all_comp_units[index];
2694 }
2695
2696 /* Return the CU given its index.
2697 This differs from dw2_get_cutu in that it's for when you know INDEX
2698 refers to a CU. */
2699
2700 static struct dwarf2_per_cu_data *
2701 dw2_get_cu (int index)
2702 {
2703 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2704
2705 return dwarf2_per_objfile->all_comp_units[index];
2706 }
2707
2708 /* A helper for create_cus_from_index that handles a given list of
2709 CUs. */
2710
2711 static void
2712 create_cus_from_index_list (struct objfile *objfile,
2713 const gdb_byte *cu_list, offset_type n_elements,
2714 struct dwarf2_section_info *section,
2715 int is_dwz,
2716 int base_offset)
2717 {
2718 offset_type i;
2719
2720 for (i = 0; i < n_elements; i += 2)
2721 {
2722 struct dwarf2_per_cu_data *the_cu;
2723 ULONGEST offset, length;
2724
2725 gdb_static_assert (sizeof (ULONGEST) >= 8);
2726 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2727 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2728 cu_list += 2 * 8;
2729
2730 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2731 struct dwarf2_per_cu_data);
2732 the_cu->offset.sect_off = offset;
2733 the_cu->length = length;
2734 the_cu->objfile = objfile;
2735 the_cu->section = section;
2736 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2737 struct dwarf2_per_cu_quick_data);
2738 the_cu->is_dwz = is_dwz;
2739 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2740 }
2741 }
2742
2743 /* Read the CU list from the mapped index, and use it to create all
2744 the CU objects for this objfile. */
2745
2746 static void
2747 create_cus_from_index (struct objfile *objfile,
2748 const gdb_byte *cu_list, offset_type cu_list_elements,
2749 const gdb_byte *dwz_list, offset_type dwz_elements)
2750 {
2751 struct dwz_file *dwz;
2752
2753 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2754 dwarf2_per_objfile->all_comp_units
2755 = obstack_alloc (&objfile->objfile_obstack,
2756 dwarf2_per_objfile->n_comp_units
2757 * sizeof (struct dwarf2_per_cu_data *));
2758
2759 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2760 &dwarf2_per_objfile->info, 0, 0);
2761
2762 if (dwz_elements == 0)
2763 return;
2764
2765 dwz = dwarf2_get_dwz_file ();
2766 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2767 cu_list_elements / 2);
2768 }
2769
2770 /* Create the signatured type hash table from the index. */
2771
2772 static void
2773 create_signatured_type_table_from_index (struct objfile *objfile,
2774 struct dwarf2_section_info *section,
2775 const gdb_byte *bytes,
2776 offset_type elements)
2777 {
2778 offset_type i;
2779 htab_t sig_types_hash;
2780
2781 dwarf2_per_objfile->n_type_units
2782 = dwarf2_per_objfile->n_allocated_type_units
2783 = elements / 3;
2784 dwarf2_per_objfile->all_type_units
2785 = xmalloc (dwarf2_per_objfile->n_type_units
2786 * sizeof (struct signatured_type *));
2787
2788 sig_types_hash = allocate_signatured_type_table (objfile);
2789
2790 for (i = 0; i < elements; i += 3)
2791 {
2792 struct signatured_type *sig_type;
2793 ULONGEST offset, type_offset_in_tu, signature;
2794 void **slot;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2798 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2799 BFD_ENDIAN_LITTLE);
2800 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2801 bytes += 3 * 8;
2802
2803 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2804 struct signatured_type);
2805 sig_type->signature = signature;
2806 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2807 sig_type->per_cu.is_debug_types = 1;
2808 sig_type->per_cu.section = section;
2809 sig_type->per_cu.offset.sect_off = offset;
2810 sig_type->per_cu.objfile = objfile;
2811 sig_type->per_cu.v.quick
2812 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2813 struct dwarf2_per_cu_quick_data);
2814
2815 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2816 *slot = sig_type;
2817
2818 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2819 }
2820
2821 dwarf2_per_objfile->signatured_types = sig_types_hash;
2822 }
2823
2824 /* Read the address map data from the mapped index, and use it to
2825 populate the objfile's psymtabs_addrmap. */
2826
2827 static void
2828 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2829 {
2830 const gdb_byte *iter, *end;
2831 struct obstack temp_obstack;
2832 struct addrmap *mutable_map;
2833 struct cleanup *cleanup;
2834 CORE_ADDR baseaddr;
2835
2836 obstack_init (&temp_obstack);
2837 cleanup = make_cleanup_obstack_free (&temp_obstack);
2838 mutable_map = addrmap_create_mutable (&temp_obstack);
2839
2840 iter = index->address_table;
2841 end = iter + index->address_table_size;
2842
2843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2844
2845 while (iter < end)
2846 {
2847 ULONGEST hi, lo, cu_index;
2848 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 iter += 8;
2850 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2851 iter += 8;
2852 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2853 iter += 4;
2854
2855 if (lo > hi)
2856 {
2857 complaint (&symfile_complaints,
2858 _(".gdb_index address table has invalid range (%s - %s)"),
2859 hex_string (lo), hex_string (hi));
2860 continue;
2861 }
2862
2863 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2864 {
2865 complaint (&symfile_complaints,
2866 _(".gdb_index address table has invalid CU number %u"),
2867 (unsigned) cu_index);
2868 continue;
2869 }
2870
2871 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2872 dw2_get_cutu (cu_index));
2873 }
2874
2875 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2876 &objfile->objfile_obstack);
2877 do_cleanups (cleanup);
2878 }
2879
2880 /* The hash function for strings in the mapped index. This is the same as
2881 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2882 implementation. This is necessary because the hash function is tied to the
2883 format of the mapped index file. The hash values do not have to match with
2884 SYMBOL_HASH_NEXT.
2885
2886 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2887
2888 static hashval_t
2889 mapped_index_string_hash (int index_version, const void *p)
2890 {
2891 const unsigned char *str = (const unsigned char *) p;
2892 hashval_t r = 0;
2893 unsigned char c;
2894
2895 while ((c = *str++) != 0)
2896 {
2897 if (index_version >= 5)
2898 c = tolower (c);
2899 r = r * 67 + c - 113;
2900 }
2901
2902 return r;
2903 }
2904
2905 /* Find a slot in the mapped index INDEX for the object named NAME.
2906 If NAME is found, set *VEC_OUT to point to the CU vector in the
2907 constant pool and return 1. If NAME cannot be found, return 0. */
2908
2909 static int
2910 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2911 offset_type **vec_out)
2912 {
2913 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2914 offset_type hash;
2915 offset_type slot, step;
2916 int (*cmp) (const char *, const char *);
2917
2918 if (current_language->la_language == language_cplus
2919 || current_language->la_language == language_java
2920 || current_language->la_language == language_fortran)
2921 {
2922 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2923 not contain any. */
2924 const char *paren = NULL;
2925
2926 /* Need to handle "(anonymous namespace)". */
2927 if (*name != '(')
2928 paren = strchr (name, '(');
2929
2930 if (paren)
2931 {
2932 char *dup;
2933
2934 dup = xmalloc (paren - name + 1);
2935 memcpy (dup, name, paren - name);
2936 dup[paren - name] = 0;
2937
2938 make_cleanup (xfree, dup);
2939 name = dup;
2940 }
2941 }
2942
2943 /* Index version 4 did not support case insensitive searches. But the
2944 indices for case insensitive languages are built in lowercase, therefore
2945 simulate our NAME being searched is also lowercased. */
2946 hash = mapped_index_string_hash ((index->version == 4
2947 && case_sensitivity == case_sensitive_off
2948 ? 5 : index->version),
2949 name);
2950
2951 slot = hash & (index->symbol_table_slots - 1);
2952 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2953 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2954
2955 for (;;)
2956 {
2957 /* Convert a slot number to an offset into the table. */
2958 offset_type i = 2 * slot;
2959 const char *str;
2960 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2961 {
2962 do_cleanups (back_to);
2963 return 0;
2964 }
2965
2966 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2967 if (!cmp (name, str))
2968 {
2969 *vec_out = (offset_type *) (index->constant_pool
2970 + MAYBE_SWAP (index->symbol_table[i + 1]));
2971 do_cleanups (back_to);
2972 return 1;
2973 }
2974
2975 slot = (slot + step) & (index->symbol_table_slots - 1);
2976 }
2977 }
2978
2979 /* A helper function that reads the .gdb_index from SECTION and fills
2980 in MAP. FILENAME is the name of the file containing the section;
2981 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2982 ok to use deprecated sections.
2983
2984 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2985 out parameters that are filled in with information about the CU and
2986 TU lists in the section.
2987
2988 Returns 1 if all went well, 0 otherwise. */
2989
2990 static int
2991 read_index_from_section (struct objfile *objfile,
2992 const char *filename,
2993 int deprecated_ok,
2994 struct dwarf2_section_info *section,
2995 struct mapped_index *map,
2996 const gdb_byte **cu_list,
2997 offset_type *cu_list_elements,
2998 const gdb_byte **types_list,
2999 offset_type *types_list_elements)
3000 {
3001 const gdb_byte *addr;
3002 offset_type version;
3003 offset_type *metadata;
3004 int i;
3005
3006 if (dwarf2_section_empty_p (section))
3007 return 0;
3008
3009 /* Older elfutils strip versions could keep the section in the main
3010 executable while splitting it for the separate debug info file. */
3011 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3012 return 0;
3013
3014 dwarf2_read_section (objfile, section);
3015
3016 addr = section->buffer;
3017 /* Version check. */
3018 version = MAYBE_SWAP (*(offset_type *) addr);
3019 /* Versions earlier than 3 emitted every copy of a psymbol. This
3020 causes the index to behave very poorly for certain requests. Version 3
3021 contained incomplete addrmap. So, it seems better to just ignore such
3022 indices. */
3023 if (version < 4)
3024 {
3025 static int warning_printed = 0;
3026 if (!warning_printed)
3027 {
3028 warning (_("Skipping obsolete .gdb_index section in %s."),
3029 filename);
3030 warning_printed = 1;
3031 }
3032 return 0;
3033 }
3034 /* Index version 4 uses a different hash function than index version
3035 5 and later.
3036
3037 Versions earlier than 6 did not emit psymbols for inlined
3038 functions. Using these files will cause GDB not to be able to
3039 set breakpoints on inlined functions by name, so we ignore these
3040 indices unless the user has done
3041 "set use-deprecated-index-sections on". */
3042 if (version < 6 && !deprecated_ok)
3043 {
3044 static int warning_printed = 0;
3045 if (!warning_printed)
3046 {
3047 warning (_("\
3048 Skipping deprecated .gdb_index section in %s.\n\
3049 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3050 to use the section anyway."),
3051 filename);
3052 warning_printed = 1;
3053 }
3054 return 0;
3055 }
3056 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3057 of the TU (for symbols coming from TUs),
3058 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3059 Plus gold-generated indices can have duplicate entries for global symbols,
3060 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3061 These are just performance bugs, and we can't distinguish gdb-generated
3062 indices from gold-generated ones, so issue no warning here. */
3063
3064 /* Indexes with higher version than the one supported by GDB may be no
3065 longer backward compatible. */
3066 if (version > 8)
3067 return 0;
3068
3069 map->version = version;
3070 map->total_size = section->size;
3071
3072 metadata = (offset_type *) (addr + sizeof (offset_type));
3073
3074 i = 0;
3075 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3076 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3077 / 8);
3078 ++i;
3079
3080 *types_list = addr + MAYBE_SWAP (metadata[i]);
3081 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3082 - MAYBE_SWAP (metadata[i]))
3083 / 8);
3084 ++i;
3085
3086 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3087 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3088 - MAYBE_SWAP (metadata[i]));
3089 ++i;
3090
3091 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3092 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3093 - MAYBE_SWAP (metadata[i]))
3094 / (2 * sizeof (offset_type)));
3095 ++i;
3096
3097 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3098
3099 return 1;
3100 }
3101
3102
3103 /* Read the index file. If everything went ok, initialize the "quick"
3104 elements of all the CUs and return 1. Otherwise, return 0. */
3105
3106 static int
3107 dwarf2_read_index (struct objfile *objfile)
3108 {
3109 struct mapped_index local_map, *map;
3110 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3111 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3112 struct dwz_file *dwz;
3113
3114 if (!read_index_from_section (objfile, objfile_name (objfile),
3115 use_deprecated_index_sections,
3116 &dwarf2_per_objfile->gdb_index, &local_map,
3117 &cu_list, &cu_list_elements,
3118 &types_list, &types_list_elements))
3119 return 0;
3120
3121 /* Don't use the index if it's empty. */
3122 if (local_map.symbol_table_slots == 0)
3123 return 0;
3124
3125 /* If there is a .dwz file, read it so we can get its CU list as
3126 well. */
3127 dwz = dwarf2_get_dwz_file ();
3128 if (dwz != NULL)
3129 {
3130 struct mapped_index dwz_map;
3131 const gdb_byte *dwz_types_ignore;
3132 offset_type dwz_types_elements_ignore;
3133
3134 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3135 1,
3136 &dwz->gdb_index, &dwz_map,
3137 &dwz_list, &dwz_list_elements,
3138 &dwz_types_ignore,
3139 &dwz_types_elements_ignore))
3140 {
3141 warning (_("could not read '.gdb_index' section from %s; skipping"),
3142 bfd_get_filename (dwz->dwz_bfd));
3143 return 0;
3144 }
3145 }
3146
3147 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3148 dwz_list_elements);
3149
3150 if (types_list_elements)
3151 {
3152 struct dwarf2_section_info *section;
3153
3154 /* We can only handle a single .debug_types when we have an
3155 index. */
3156 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3157 return 0;
3158
3159 section = VEC_index (dwarf2_section_info_def,
3160 dwarf2_per_objfile->types, 0);
3161
3162 create_signatured_type_table_from_index (objfile, section, types_list,
3163 types_list_elements);
3164 }
3165
3166 create_addrmap_from_index (objfile, &local_map);
3167
3168 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3169 *map = local_map;
3170
3171 dwarf2_per_objfile->index_table = map;
3172 dwarf2_per_objfile->using_index = 1;
3173 dwarf2_per_objfile->quick_file_names_table =
3174 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3175
3176 return 1;
3177 }
3178
3179 /* A helper for the "quick" functions which sets the global
3180 dwarf2_per_objfile according to OBJFILE. */
3181
3182 static void
3183 dw2_setup (struct objfile *objfile)
3184 {
3185 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3186 gdb_assert (dwarf2_per_objfile);
3187 }
3188
3189 /* die_reader_func for dw2_get_file_names. */
3190
3191 static void
3192 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3193 const gdb_byte *info_ptr,
3194 struct die_info *comp_unit_die,
3195 int has_children,
3196 void *data)
3197 {
3198 struct dwarf2_cu *cu = reader->cu;
3199 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3200 struct objfile *objfile = dwarf2_per_objfile->objfile;
3201 struct dwarf2_per_cu_data *lh_cu;
3202 struct line_header *lh;
3203 struct attribute *attr;
3204 int i;
3205 const char *name, *comp_dir;
3206 void **slot;
3207 struct quick_file_names *qfn;
3208 unsigned int line_offset;
3209
3210 gdb_assert (! this_cu->is_debug_types);
3211
3212 /* Our callers never want to match partial units -- instead they
3213 will match the enclosing full CU. */
3214 if (comp_unit_die->tag == DW_TAG_partial_unit)
3215 {
3216 this_cu->v.quick->no_file_data = 1;
3217 return;
3218 }
3219
3220 lh_cu = this_cu;
3221 lh = NULL;
3222 slot = NULL;
3223 line_offset = 0;
3224
3225 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3226 if (attr)
3227 {
3228 struct quick_file_names find_entry;
3229
3230 line_offset = DW_UNSND (attr);
3231
3232 /* We may have already read in this line header (TU line header sharing).
3233 If we have we're done. */
3234 find_entry.hash.dwo_unit = cu->dwo_unit;
3235 find_entry.hash.line_offset.sect_off = line_offset;
3236 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3237 &find_entry, INSERT);
3238 if (*slot != NULL)
3239 {
3240 lh_cu->v.quick->file_names = *slot;
3241 return;
3242 }
3243
3244 lh = dwarf_decode_line_header (line_offset, cu);
3245 }
3246 if (lh == NULL)
3247 {
3248 lh_cu->v.quick->no_file_data = 1;
3249 return;
3250 }
3251
3252 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3253 qfn->hash.dwo_unit = cu->dwo_unit;
3254 qfn->hash.line_offset.sect_off = line_offset;
3255 gdb_assert (slot != NULL);
3256 *slot = qfn;
3257
3258 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3259
3260 qfn->num_file_names = lh->num_file_names;
3261 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3262 lh->num_file_names * sizeof (char *));
3263 for (i = 0; i < lh->num_file_names; ++i)
3264 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3265 qfn->real_names = NULL;
3266
3267 free_line_header (lh);
3268
3269 lh_cu->v.quick->file_names = qfn;
3270 }
3271
3272 /* A helper for the "quick" functions which attempts to read the line
3273 table for THIS_CU. */
3274
3275 static struct quick_file_names *
3276 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3277 {
3278 /* This should never be called for TUs. */
3279 gdb_assert (! this_cu->is_debug_types);
3280 /* Nor type unit groups. */
3281 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3282
3283 if (this_cu->v.quick->file_names != NULL)
3284 return this_cu->v.quick->file_names;
3285 /* If we know there is no line data, no point in looking again. */
3286 if (this_cu->v.quick->no_file_data)
3287 return NULL;
3288
3289 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3290
3291 if (this_cu->v.quick->no_file_data)
3292 return NULL;
3293 return this_cu->v.quick->file_names;
3294 }
3295
3296 /* A helper for the "quick" functions which computes and caches the
3297 real path for a given file name from the line table. */
3298
3299 static const char *
3300 dw2_get_real_path (struct objfile *objfile,
3301 struct quick_file_names *qfn, int index)
3302 {
3303 if (qfn->real_names == NULL)
3304 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3305 qfn->num_file_names, const char *);
3306
3307 if (qfn->real_names[index] == NULL)
3308 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3309
3310 return qfn->real_names[index];
3311 }
3312
3313 static struct symtab *
3314 dw2_find_last_source_symtab (struct objfile *objfile)
3315 {
3316 int index;
3317
3318 dw2_setup (objfile);
3319 index = dwarf2_per_objfile->n_comp_units - 1;
3320 return dw2_instantiate_symtab (dw2_get_cutu (index));
3321 }
3322
3323 /* Traversal function for dw2_forget_cached_source_info. */
3324
3325 static int
3326 dw2_free_cached_file_names (void **slot, void *info)
3327 {
3328 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3329
3330 if (file_data->real_names)
3331 {
3332 int i;
3333
3334 for (i = 0; i < file_data->num_file_names; ++i)
3335 {
3336 xfree ((void*) file_data->real_names[i]);
3337 file_data->real_names[i] = NULL;
3338 }
3339 }
3340
3341 return 1;
3342 }
3343
3344 static void
3345 dw2_forget_cached_source_info (struct objfile *objfile)
3346 {
3347 dw2_setup (objfile);
3348
3349 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3350 dw2_free_cached_file_names, NULL);
3351 }
3352
3353 /* Helper function for dw2_map_symtabs_matching_filename that expands
3354 the symtabs and calls the iterator. */
3355
3356 static int
3357 dw2_map_expand_apply (struct objfile *objfile,
3358 struct dwarf2_per_cu_data *per_cu,
3359 const char *name, const char *real_path,
3360 int (*callback) (struct symtab *, void *),
3361 void *data)
3362 {
3363 struct symtab *last_made = objfile->symtabs;
3364
3365 /* Don't visit already-expanded CUs. */
3366 if (per_cu->v.quick->symtab)
3367 return 0;
3368
3369 /* This may expand more than one symtab, and we want to iterate over
3370 all of them. */
3371 dw2_instantiate_symtab (per_cu);
3372
3373 return iterate_over_some_symtabs (name, real_path, callback, data,
3374 objfile->symtabs, last_made);
3375 }
3376
3377 /* Implementation of the map_symtabs_matching_filename method. */
3378
3379 static int
3380 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3381 const char *real_path,
3382 int (*callback) (struct symtab *, void *),
3383 void *data)
3384 {
3385 int i;
3386 const char *name_basename = lbasename (name);
3387
3388 dw2_setup (objfile);
3389
3390 /* The rule is CUs specify all the files, including those used by
3391 any TU, so there's no need to scan TUs here. */
3392
3393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3394 {
3395 int j;
3396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3397 struct quick_file_names *file_data;
3398
3399 /* We only need to look at symtabs not already expanded. */
3400 if (per_cu->v.quick->symtab)
3401 continue;
3402
3403 file_data = dw2_get_file_names (per_cu);
3404 if (file_data == NULL)
3405 continue;
3406
3407 for (j = 0; j < file_data->num_file_names; ++j)
3408 {
3409 const char *this_name = file_data->file_names[j];
3410 const char *this_real_name;
3411
3412 if (compare_filenames_for_search (this_name, name))
3413 {
3414 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3415 callback, data))
3416 return 1;
3417 continue;
3418 }
3419
3420 /* Before we invoke realpath, which can get expensive when many
3421 files are involved, do a quick comparison of the basenames. */
3422 if (! basenames_may_differ
3423 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3424 continue;
3425
3426 this_real_name = dw2_get_real_path (objfile, file_data, j);
3427 if (compare_filenames_for_search (this_real_name, name))
3428 {
3429 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3430 callback, data))
3431 return 1;
3432 continue;
3433 }
3434
3435 if (real_path != NULL)
3436 {
3437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3438 gdb_assert (IS_ABSOLUTE_PATH (name));
3439 if (this_real_name != NULL
3440 && FILENAME_CMP (real_path, this_real_name) == 0)
3441 {
3442 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3443 callback, data))
3444 return 1;
3445 continue;
3446 }
3447 }
3448 }
3449 }
3450
3451 return 0;
3452 }
3453
3454 /* Struct used to manage iterating over all CUs looking for a symbol. */
3455
3456 struct dw2_symtab_iterator
3457 {
3458 /* The internalized form of .gdb_index. */
3459 struct mapped_index *index;
3460 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3461 int want_specific_block;
3462 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3463 Unused if !WANT_SPECIFIC_BLOCK. */
3464 int block_index;
3465 /* The kind of symbol we're looking for. */
3466 domain_enum domain;
3467 /* The list of CUs from the index entry of the symbol,
3468 or NULL if not found. */
3469 offset_type *vec;
3470 /* The next element in VEC to look at. */
3471 int next;
3472 /* The number of elements in VEC, or zero if there is no match. */
3473 int length;
3474 /* Have we seen a global version of the symbol?
3475 If so we can ignore all further global instances.
3476 This is to work around gold/15646, inefficient gold-generated
3477 indices. */
3478 int global_seen;
3479 };
3480
3481 /* Initialize the index symtab iterator ITER.
3482 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3483 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3484
3485 static void
3486 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3487 struct mapped_index *index,
3488 int want_specific_block,
3489 int block_index,
3490 domain_enum domain,
3491 const char *name)
3492 {
3493 iter->index = index;
3494 iter->want_specific_block = want_specific_block;
3495 iter->block_index = block_index;
3496 iter->domain = domain;
3497 iter->next = 0;
3498 iter->global_seen = 0;
3499
3500 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3501 iter->length = MAYBE_SWAP (*iter->vec);
3502 else
3503 {
3504 iter->vec = NULL;
3505 iter->length = 0;
3506 }
3507 }
3508
3509 /* Return the next matching CU or NULL if there are no more. */
3510
3511 static struct dwarf2_per_cu_data *
3512 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3513 {
3514 for ( ; iter->next < iter->length; ++iter->next)
3515 {
3516 offset_type cu_index_and_attrs =
3517 MAYBE_SWAP (iter->vec[iter->next + 1]);
3518 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3519 struct dwarf2_per_cu_data *per_cu;
3520 int want_static = iter->block_index != GLOBAL_BLOCK;
3521 /* This value is only valid for index versions >= 7. */
3522 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3523 gdb_index_symbol_kind symbol_kind =
3524 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3525 /* Only check the symbol attributes if they're present.
3526 Indices prior to version 7 don't record them,
3527 and indices >= 7 may elide them for certain symbols
3528 (gold does this). */
3529 int attrs_valid =
3530 (iter->index->version >= 7
3531 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3532
3533 /* Don't crash on bad data. */
3534 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3535 + dwarf2_per_objfile->n_type_units))
3536 {
3537 complaint (&symfile_complaints,
3538 _(".gdb_index entry has bad CU index"
3539 " [in module %s]"),
3540 objfile_name (dwarf2_per_objfile->objfile));
3541 continue;
3542 }
3543
3544 per_cu = dw2_get_cutu (cu_index);
3545
3546 /* Skip if already read in. */
3547 if (per_cu->v.quick->symtab)
3548 continue;
3549
3550 /* Check static vs global. */
3551 if (attrs_valid)
3552 {
3553 if (iter->want_specific_block
3554 && want_static != is_static)
3555 continue;
3556 /* Work around gold/15646. */
3557 if (!is_static && iter->global_seen)
3558 continue;
3559 if (!is_static)
3560 iter->global_seen = 1;
3561 }
3562
3563 /* Only check the symbol's kind if it has one. */
3564 if (attrs_valid)
3565 {
3566 switch (iter->domain)
3567 {
3568 case VAR_DOMAIN:
3569 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3570 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3571 /* Some types are also in VAR_DOMAIN. */
3572 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3573 continue;
3574 break;
3575 case STRUCT_DOMAIN:
3576 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3577 continue;
3578 break;
3579 case LABEL_DOMAIN:
3580 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3581 continue;
3582 break;
3583 default:
3584 break;
3585 }
3586 }
3587
3588 ++iter->next;
3589 return per_cu;
3590 }
3591
3592 return NULL;
3593 }
3594
3595 static struct symtab *
3596 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3597 const char *name, domain_enum domain)
3598 {
3599 struct symtab *stab_best = NULL;
3600 struct mapped_index *index;
3601
3602 dw2_setup (objfile);
3603
3604 index = dwarf2_per_objfile->index_table;
3605
3606 /* index is NULL if OBJF_READNOW. */
3607 if (index)
3608 {
3609 struct dw2_symtab_iterator iter;
3610 struct dwarf2_per_cu_data *per_cu;
3611
3612 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3613
3614 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3615 {
3616 struct symbol *sym = NULL;
3617 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3618 const struct blockvector *bv = BLOCKVECTOR (stab);
3619 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3620
3621 /* Some caution must be observed with overloaded functions
3622 and methods, since the index will not contain any overload
3623 information (but NAME might contain it). */
3624 sym = block_lookup_symbol (block, name, domain);
3625
3626 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3627 {
3628 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3629 return stab;
3630
3631 stab_best = stab;
3632 }
3633
3634 /* Keep looking through other CUs. */
3635 }
3636 }
3637
3638 return stab_best;
3639 }
3640
3641 static void
3642 dw2_print_stats (struct objfile *objfile)
3643 {
3644 int i, total, count;
3645
3646 dw2_setup (objfile);
3647 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3648 count = 0;
3649 for (i = 0; i < total; ++i)
3650 {
3651 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3652
3653 if (!per_cu->v.quick->symtab)
3654 ++count;
3655 }
3656 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3657 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3658 }
3659
3660 /* This dumps minimal information about the index.
3661 It is called via "mt print objfiles".
3662 One use is to verify .gdb_index has been loaded by the
3663 gdb.dwarf2/gdb-index.exp testcase. */
3664
3665 static void
3666 dw2_dump (struct objfile *objfile)
3667 {
3668 dw2_setup (objfile);
3669 gdb_assert (dwarf2_per_objfile->using_index);
3670 printf_filtered (".gdb_index:");
3671 if (dwarf2_per_objfile->index_table != NULL)
3672 {
3673 printf_filtered (" version %d\n",
3674 dwarf2_per_objfile->index_table->version);
3675 }
3676 else
3677 printf_filtered (" faked for \"readnow\"\n");
3678 printf_filtered ("\n");
3679 }
3680
3681 static void
3682 dw2_relocate (struct objfile *objfile,
3683 const struct section_offsets *new_offsets,
3684 const struct section_offsets *delta)
3685 {
3686 /* There's nothing to relocate here. */
3687 }
3688
3689 static void
3690 dw2_expand_symtabs_for_function (struct objfile *objfile,
3691 const char *func_name)
3692 {
3693 struct mapped_index *index;
3694
3695 dw2_setup (objfile);
3696
3697 index = dwarf2_per_objfile->index_table;
3698
3699 /* index is NULL if OBJF_READNOW. */
3700 if (index)
3701 {
3702 struct dw2_symtab_iterator iter;
3703 struct dwarf2_per_cu_data *per_cu;
3704
3705 /* Note: It doesn't matter what we pass for block_index here. */
3706 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3707 func_name);
3708
3709 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3710 dw2_instantiate_symtab (per_cu);
3711 }
3712 }
3713
3714 static void
3715 dw2_expand_all_symtabs (struct objfile *objfile)
3716 {
3717 int i;
3718
3719 dw2_setup (objfile);
3720
3721 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3722 + dwarf2_per_objfile->n_type_units); ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 dw2_instantiate_symtab (per_cu);
3727 }
3728 }
3729
3730 static void
3731 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3732 const char *fullname)
3733 {
3734 int i;
3735
3736 dw2_setup (objfile);
3737
3738 /* We don't need to consider type units here.
3739 This is only called for examining code, e.g. expand_line_sal.
3740 There can be an order of magnitude (or more) more type units
3741 than comp units, and we avoid them if we can. */
3742
3743 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3744 {
3745 int j;
3746 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3747 struct quick_file_names *file_data;
3748
3749 /* We only need to look at symtabs not already expanded. */
3750 if (per_cu->v.quick->symtab)
3751 continue;
3752
3753 file_data = dw2_get_file_names (per_cu);
3754 if (file_data == NULL)
3755 continue;
3756
3757 for (j = 0; j < file_data->num_file_names; ++j)
3758 {
3759 const char *this_fullname = file_data->file_names[j];
3760
3761 if (filename_cmp (this_fullname, fullname) == 0)
3762 {
3763 dw2_instantiate_symtab (per_cu);
3764 break;
3765 }
3766 }
3767 }
3768 }
3769
3770 static void
3771 dw2_map_matching_symbols (struct objfile *objfile,
3772 const char * name, domain_enum namespace,
3773 int global,
3774 int (*callback) (struct block *,
3775 struct symbol *, void *),
3776 void *data, symbol_compare_ftype *match,
3777 symbol_compare_ftype *ordered_compare)
3778 {
3779 /* Currently unimplemented; used for Ada. The function can be called if the
3780 current language is Ada for a non-Ada objfile using GNU index. As Ada
3781 does not look for non-Ada symbols this function should just return. */
3782 }
3783
3784 static void
3785 dw2_expand_symtabs_matching
3786 (struct objfile *objfile,
3787 expand_symtabs_file_matcher_ftype *file_matcher,
3788 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3789 enum search_domain kind,
3790 void *data)
3791 {
3792 int i;
3793 offset_type iter;
3794 struct mapped_index *index;
3795
3796 dw2_setup (objfile);
3797
3798 /* index_table is NULL if OBJF_READNOW. */
3799 if (!dwarf2_per_objfile->index_table)
3800 return;
3801 index = dwarf2_per_objfile->index_table;
3802
3803 if (file_matcher != NULL)
3804 {
3805 struct cleanup *cleanup;
3806 htab_t visited_found, visited_not_found;
3807
3808 visited_found = htab_create_alloc (10,
3809 htab_hash_pointer, htab_eq_pointer,
3810 NULL, xcalloc, xfree);
3811 cleanup = make_cleanup_htab_delete (visited_found);
3812 visited_not_found = htab_create_alloc (10,
3813 htab_hash_pointer, htab_eq_pointer,
3814 NULL, xcalloc, xfree);
3815 make_cleanup_htab_delete (visited_not_found);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3821 {
3822 int j;
3823 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3824 struct quick_file_names *file_data;
3825 void **slot;
3826
3827 per_cu->v.quick->mark = 0;
3828
3829 /* We only need to look at symtabs not already expanded. */
3830 if (per_cu->v.quick->symtab)
3831 continue;
3832
3833 file_data = dw2_get_file_names (per_cu);
3834 if (file_data == NULL)
3835 continue;
3836
3837 if (htab_find (visited_not_found, file_data) != NULL)
3838 continue;
3839 else if (htab_find (visited_found, file_data) != NULL)
3840 {
3841 per_cu->v.quick->mark = 1;
3842 continue;
3843 }
3844
3845 for (j = 0; j < file_data->num_file_names; ++j)
3846 {
3847 const char *this_real_name;
3848
3849 if (file_matcher (file_data->file_names[j], data, 0))
3850 {
3851 per_cu->v.quick->mark = 1;
3852 break;
3853 }
3854
3855 /* Before we invoke realpath, which can get expensive when many
3856 files are involved, do a quick comparison of the basenames. */
3857 if (!basenames_may_differ
3858 && !file_matcher (lbasename (file_data->file_names[j]),
3859 data, 1))
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (file_matcher (this_real_name, data, 0))
3864 {
3865 per_cu->v.quick->mark = 1;
3866 break;
3867 }
3868 }
3869
3870 slot = htab_find_slot (per_cu->v.quick->mark
3871 ? visited_found
3872 : visited_not_found,
3873 file_data, INSERT);
3874 *slot = file_data;
3875 }
3876
3877 do_cleanups (cleanup);
3878 }
3879
3880 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3881 {
3882 offset_type idx = 2 * iter;
3883 const char *name;
3884 offset_type *vec, vec_len, vec_idx;
3885 int global_seen = 0;
3886
3887 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3888 continue;
3889
3890 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3891
3892 if (! (*symbol_matcher) (name, data))
3893 continue;
3894
3895 /* The name was matched, now expand corresponding CUs that were
3896 marked. */
3897 vec = (offset_type *) (index->constant_pool
3898 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3899 vec_len = MAYBE_SWAP (vec[0]);
3900 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3901 {
3902 struct dwarf2_per_cu_data *per_cu;
3903 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3904 /* This value is only valid for index versions >= 7. */
3905 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3906 gdb_index_symbol_kind symbol_kind =
3907 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3908 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3909 /* Only check the symbol attributes if they're present.
3910 Indices prior to version 7 don't record them,
3911 and indices >= 7 may elide them for certain symbols
3912 (gold does this). */
3913 int attrs_valid =
3914 (index->version >= 7
3915 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3916
3917 /* Work around gold/15646. */
3918 if (attrs_valid)
3919 {
3920 if (!is_static && global_seen)
3921 continue;
3922 if (!is_static)
3923 global_seen = 1;
3924 }
3925
3926 /* Only check the symbol's kind if it has one. */
3927 if (attrs_valid)
3928 {
3929 switch (kind)
3930 {
3931 case VARIABLES_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3933 continue;
3934 break;
3935 case FUNCTIONS_DOMAIN:
3936 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3937 continue;
3938 break;
3939 case TYPES_DOMAIN:
3940 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3941 continue;
3942 break;
3943 default:
3944 break;
3945 }
3946 }
3947
3948 /* Don't crash on bad data. */
3949 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3950 + dwarf2_per_objfile->n_type_units))
3951 {
3952 complaint (&symfile_complaints,
3953 _(".gdb_index entry has bad CU index"
3954 " [in module %s]"), objfile_name (objfile));
3955 continue;
3956 }
3957
3958 per_cu = dw2_get_cutu (cu_index);
3959 if (file_matcher == NULL || per_cu->v.quick->mark)
3960 dw2_instantiate_symtab (per_cu);
3961 }
3962 }
3963 }
3964
3965 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3966 symtab. */
3967
3968 static struct symtab *
3969 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3970 {
3971 int i;
3972
3973 if (BLOCKVECTOR (symtab) != NULL
3974 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3975 return symtab;
3976
3977 if (symtab->includes == NULL)
3978 return NULL;
3979
3980 for (i = 0; symtab->includes[i]; ++i)
3981 {
3982 struct symtab *s = symtab->includes[i];
3983
3984 s = recursively_find_pc_sect_symtab (s, pc);
3985 if (s != NULL)
3986 return s;
3987 }
3988
3989 return NULL;
3990 }
3991
3992 static struct symtab *
3993 dw2_find_pc_sect_symtab (struct objfile *objfile,
3994 struct bound_minimal_symbol msymbol,
3995 CORE_ADDR pc,
3996 struct obj_section *section,
3997 int warn_if_readin)
3998 {
3999 struct dwarf2_per_cu_data *data;
4000 struct symtab *result;
4001
4002 dw2_setup (objfile);
4003
4004 if (!objfile->psymtabs_addrmap)
4005 return NULL;
4006
4007 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4008 if (!data)
4009 return NULL;
4010
4011 if (warn_if_readin && data->v.quick->symtab)
4012 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4013 paddress (get_objfile_arch (objfile), pc));
4014
4015 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4016 gdb_assert (result != NULL);
4017 return result;
4018 }
4019
4020 static void
4021 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4022 void *data, int need_fullname)
4023 {
4024 int i;
4025 struct cleanup *cleanup;
4026 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4027 NULL, xcalloc, xfree);
4028
4029 cleanup = make_cleanup_htab_delete (visited);
4030 dw2_setup (objfile);
4031
4032 /* The rule is CUs specify all the files, including those used by
4033 any TU, so there's no need to scan TUs here.
4034 We can ignore file names coming from already-expanded CUs. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4039
4040 if (per_cu->v.quick->symtab)
4041 {
4042 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4043 INSERT);
4044
4045 *slot = per_cu->v.quick->file_names;
4046 }
4047 }
4048
4049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4050 {
4051 int j;
4052 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4053 struct quick_file_names *file_data;
4054 void **slot;
4055
4056 /* We only need to look at symtabs not already expanded. */
4057 if (per_cu->v.quick->symtab)
4058 continue;
4059
4060 file_data = dw2_get_file_names (per_cu);
4061 if (file_data == NULL)
4062 continue;
4063
4064 slot = htab_find_slot (visited, file_data, INSERT);
4065 if (*slot)
4066 {
4067 /* Already visited. */
4068 continue;
4069 }
4070 *slot = file_data;
4071
4072 for (j = 0; j < file_data->num_file_names; ++j)
4073 {
4074 const char *this_real_name;
4075
4076 if (need_fullname)
4077 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 else
4079 this_real_name = NULL;
4080 (*fun) (file_data->file_names[j], this_real_name, data);
4081 }
4082 }
4083
4084 do_cleanups (cleanup);
4085 }
4086
4087 static int
4088 dw2_has_symbols (struct objfile *objfile)
4089 {
4090 return 1;
4091 }
4092
4093 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4094 {
4095 dw2_has_symbols,
4096 dw2_find_last_source_symtab,
4097 dw2_forget_cached_source_info,
4098 dw2_map_symtabs_matching_filename,
4099 dw2_lookup_symbol,
4100 dw2_print_stats,
4101 dw2_dump,
4102 dw2_relocate,
4103 dw2_expand_symtabs_for_function,
4104 dw2_expand_all_symtabs,
4105 dw2_expand_symtabs_with_fullname,
4106 dw2_map_matching_symbols,
4107 dw2_expand_symtabs_matching,
4108 dw2_find_pc_sect_symtab,
4109 dw2_map_symbol_filenames
4110 };
4111
4112 /* Initialize for reading DWARF for this objfile. Return 0 if this
4113 file will use psymtabs, or 1 if using the GNU index. */
4114
4115 int
4116 dwarf2_initialize_objfile (struct objfile *objfile)
4117 {
4118 /* If we're about to read full symbols, don't bother with the
4119 indices. In this case we also don't care if some other debug
4120 format is making psymtabs, because they are all about to be
4121 expanded anyway. */
4122 if ((objfile->flags & OBJF_READNOW))
4123 {
4124 int i;
4125
4126 dwarf2_per_objfile->using_index = 1;
4127 create_all_comp_units (objfile);
4128 create_all_type_units (objfile);
4129 dwarf2_per_objfile->quick_file_names_table =
4130 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4131
4132 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4133 + dwarf2_per_objfile->n_type_units); ++i)
4134 {
4135 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4136
4137 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4138 struct dwarf2_per_cu_quick_data);
4139 }
4140
4141 /* Return 1 so that gdb sees the "quick" functions. However,
4142 these functions will be no-ops because we will have expanded
4143 all symtabs. */
4144 return 1;
4145 }
4146
4147 if (dwarf2_read_index (objfile))
4148 return 1;
4149
4150 return 0;
4151 }
4152
4153 \f
4154
4155 /* Build a partial symbol table. */
4156
4157 void
4158 dwarf2_build_psymtabs (struct objfile *objfile)
4159 {
4160 volatile struct gdb_exception except;
4161
4162 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4163 {
4164 init_psymbol_list (objfile, 1024);
4165 }
4166
4167 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 {
4169 /* This isn't really ideal: all the data we allocate on the
4170 objfile's obstack is still uselessly kept around. However,
4171 freeing it seems unsafe. */
4172 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173
4174 dwarf2_build_psymtabs_hard (objfile);
4175 discard_cleanups (cleanups);
4176 }
4177 if (except.reason < 0)
4178 exception_print (gdb_stderr, except);
4179 }
4180
4181 /* Return the total length of the CU described by HEADER. */
4182
4183 static unsigned int
4184 get_cu_length (const struct comp_unit_head *header)
4185 {
4186 return header->initial_length_size + header->length;
4187 }
4188
4189 /* Return TRUE if OFFSET is within CU_HEADER. */
4190
4191 static inline int
4192 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4193 {
4194 sect_offset bottom = { cu_header->offset.sect_off };
4195 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4196
4197 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4198 }
4199
4200 /* Find the base address of the compilation unit for range lists and
4201 location lists. It will normally be specified by DW_AT_low_pc.
4202 In DWARF-3 draft 4, the base address could be overridden by
4203 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4204 compilation units with discontinuous ranges. */
4205
4206 static void
4207 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208 {
4209 struct attribute *attr;
4210
4211 cu->base_known = 0;
4212 cu->base_address = 0;
4213
4214 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4215 if (attr)
4216 {
4217 cu->base_address = attr_value_as_address (attr);
4218 cu->base_known = 1;
4219 }
4220 else
4221 {
4222 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4223 if (attr)
4224 {
4225 cu->base_address = attr_value_as_address (attr);
4226 cu->base_known = 1;
4227 }
4228 }
4229 }
4230
4231 /* Read in the comp unit header information from the debug_info at info_ptr.
4232 NOTE: This leaves members offset, first_die_offset to be filled in
4233 by the caller. */
4234
4235 static const gdb_byte *
4236 read_comp_unit_head (struct comp_unit_head *cu_header,
4237 const gdb_byte *info_ptr, bfd *abfd)
4238 {
4239 int signed_addr;
4240 unsigned int bytes_read;
4241
4242 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4243 cu_header->initial_length_size = bytes_read;
4244 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4245 info_ptr += bytes_read;
4246 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 info_ptr += 2;
4248 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 &bytes_read);
4250 info_ptr += bytes_read;
4251 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 info_ptr += 1;
4253 signed_addr = bfd_get_sign_extend_vma (abfd);
4254 if (signed_addr < 0)
4255 internal_error (__FILE__, __LINE__,
4256 _("read_comp_unit_head: dwarf from non elf file"));
4257 cu_header->signed_addr_p = signed_addr;
4258
4259 return info_ptr;
4260 }
4261
4262 /* Helper function that returns the proper abbrev section for
4263 THIS_CU. */
4264
4265 static struct dwarf2_section_info *
4266 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267 {
4268 struct dwarf2_section_info *abbrev;
4269
4270 if (this_cu->is_dwz)
4271 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 else
4273 abbrev = &dwarf2_per_objfile->abbrev;
4274
4275 return abbrev;
4276 }
4277
4278 /* Subroutine of read_and_check_comp_unit_head and
4279 read_and_check_type_unit_head to simplify them.
4280 Perform various error checking on the header. */
4281
4282 static void
4283 error_check_comp_unit_head (struct comp_unit_head *header,
4284 struct dwarf2_section_info *section,
4285 struct dwarf2_section_info *abbrev_section)
4286 {
4287 bfd *abfd = get_section_bfd_owner (section);
4288 const char *filename = get_section_file_name (section);
4289
4290 if (header->version != 2 && header->version != 3 && header->version != 4)
4291 error (_("Dwarf Error: wrong version in compilation unit header "
4292 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4293 filename);
4294
4295 if (header->abbrev_offset.sect_off
4296 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4297 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4298 "(offset 0x%lx + 6) [in module %s]"),
4299 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4300 filename);
4301
4302 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4303 avoid potential 32-bit overflow. */
4304 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4305 > section->size)
4306 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4307 "(offset 0x%lx + 0) [in module %s]"),
4308 (long) header->length, (long) header->offset.sect_off,
4309 filename);
4310 }
4311
4312 /* Read in a CU/TU header and perform some basic error checking.
4313 The contents of the header are stored in HEADER.
4314 The result is a pointer to the start of the first DIE. */
4315
4316 static const gdb_byte *
4317 read_and_check_comp_unit_head (struct comp_unit_head *header,
4318 struct dwarf2_section_info *section,
4319 struct dwarf2_section_info *abbrev_section,
4320 const gdb_byte *info_ptr,
4321 int is_debug_types_section)
4322 {
4323 const gdb_byte *beg_of_comp_unit = info_ptr;
4324 bfd *abfd = get_section_bfd_owner (section);
4325
4326 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4327
4328 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329
4330 /* If we're reading a type unit, skip over the signature and
4331 type_offset fields. */
4332 if (is_debug_types_section)
4333 info_ptr += 8 /*signature*/ + header->offset_size;
4334
4335 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4336
4337 error_check_comp_unit_head (header, section, abbrev_section);
4338
4339 return info_ptr;
4340 }
4341
4342 /* Read in the types comp unit header information from .debug_types entry at
4343 types_ptr. The result is a pointer to one past the end of the header. */
4344
4345 static const gdb_byte *
4346 read_and_check_type_unit_head (struct comp_unit_head *header,
4347 struct dwarf2_section_info *section,
4348 struct dwarf2_section_info *abbrev_section,
4349 const gdb_byte *info_ptr,
4350 ULONGEST *signature,
4351 cu_offset *type_offset_in_tu)
4352 {
4353 const gdb_byte *beg_of_comp_unit = info_ptr;
4354 bfd *abfd = get_section_bfd_owner (section);
4355
4356 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4357
4358 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4359
4360 /* If we're reading a type unit, skip over the signature and
4361 type_offset fields. */
4362 if (signature != NULL)
4363 *signature = read_8_bytes (abfd, info_ptr);
4364 info_ptr += 8;
4365 if (type_offset_in_tu != NULL)
4366 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4367 header->offset_size);
4368 info_ptr += header->offset_size;
4369
4370 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4371
4372 error_check_comp_unit_head (header, section, abbrev_section);
4373
4374 return info_ptr;
4375 }
4376
4377 /* Fetch the abbreviation table offset from a comp or type unit header. */
4378
4379 static sect_offset
4380 read_abbrev_offset (struct dwarf2_section_info *section,
4381 sect_offset offset)
4382 {
4383 bfd *abfd = get_section_bfd_owner (section);
4384 const gdb_byte *info_ptr;
4385 unsigned int length, initial_length_size, offset_size;
4386 sect_offset abbrev_offset;
4387
4388 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4389 info_ptr = section->buffer + offset.sect_off;
4390 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4391 offset_size = initial_length_size == 4 ? 4 : 8;
4392 info_ptr += initial_length_size + 2 /*version*/;
4393 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4394 return abbrev_offset;
4395 }
4396
4397 /* Allocate a new partial symtab for file named NAME and mark this new
4398 partial symtab as being an include of PST. */
4399
4400 static void
4401 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4402 struct objfile *objfile)
4403 {
4404 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405
4406 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 {
4408 /* It shares objfile->objfile_obstack. */
4409 subpst->dirname = pst->dirname;
4410 }
4411
4412 subpst->section_offsets = pst->section_offsets;
4413 subpst->textlow = 0;
4414 subpst->texthigh = 0;
4415
4416 subpst->dependencies = (struct partial_symtab **)
4417 obstack_alloc (&objfile->objfile_obstack,
4418 sizeof (struct partial_symtab *));
4419 subpst->dependencies[0] = pst;
4420 subpst->number_of_dependencies = 1;
4421
4422 subpst->globals_offset = 0;
4423 subpst->n_global_syms = 0;
4424 subpst->statics_offset = 0;
4425 subpst->n_static_syms = 0;
4426 subpst->symtab = NULL;
4427 subpst->read_symtab = pst->read_symtab;
4428 subpst->readin = 0;
4429
4430 /* No private part is necessary for include psymtabs. This property
4431 can be used to differentiate between such include psymtabs and
4432 the regular ones. */
4433 subpst->read_symtab_private = NULL;
4434 }
4435
4436 /* Read the Line Number Program data and extract the list of files
4437 included by the source file represented by PST. Build an include
4438 partial symtab for each of these included files. */
4439
4440 static void
4441 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4442 struct die_info *die,
4443 struct partial_symtab *pst)
4444 {
4445 struct line_header *lh = NULL;
4446 struct attribute *attr;
4447
4448 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 if (attr)
4450 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4451 if (lh == NULL)
4452 return; /* No linetable, so no includes. */
4453
4454 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4455 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4456
4457 free_line_header (lh);
4458 }
4459
4460 static hashval_t
4461 hash_signatured_type (const void *item)
4462 {
4463 const struct signatured_type *sig_type = item;
4464
4465 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4466 return sig_type->signature;
4467 }
4468
4469 static int
4470 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4471 {
4472 const struct signatured_type *lhs = item_lhs;
4473 const struct signatured_type *rhs = item_rhs;
4474
4475 return lhs->signature == rhs->signature;
4476 }
4477
4478 /* Allocate a hash table for signatured types. */
4479
4480 static htab_t
4481 allocate_signatured_type_table (struct objfile *objfile)
4482 {
4483 return htab_create_alloc_ex (41,
4484 hash_signatured_type,
4485 eq_signatured_type,
4486 NULL,
4487 &objfile->objfile_obstack,
4488 hashtab_obstack_allocate,
4489 dummy_obstack_deallocate);
4490 }
4491
4492 /* A helper function to add a signatured type CU to a table. */
4493
4494 static int
4495 add_signatured_type_cu_to_table (void **slot, void *datum)
4496 {
4497 struct signatured_type *sigt = *slot;
4498 struct signatured_type ***datap = datum;
4499
4500 **datap = sigt;
4501 ++*datap;
4502
4503 return 1;
4504 }
4505
4506 /* Create the hash table of all entries in the .debug_types
4507 (or .debug_types.dwo) section(s).
4508 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4509 otherwise it is NULL.
4510
4511 The result is a pointer to the hash table or NULL if there are no types.
4512
4513 Note: This function processes DWO files only, not DWP files. */
4514
4515 static htab_t
4516 create_debug_types_hash_table (struct dwo_file *dwo_file,
4517 VEC (dwarf2_section_info_def) *types)
4518 {
4519 struct objfile *objfile = dwarf2_per_objfile->objfile;
4520 htab_t types_htab = NULL;
4521 int ix;
4522 struct dwarf2_section_info *section;
4523 struct dwarf2_section_info *abbrev_section;
4524
4525 if (VEC_empty (dwarf2_section_info_def, types))
4526 return NULL;
4527
4528 abbrev_section = (dwo_file != NULL
4529 ? &dwo_file->sections.abbrev
4530 : &dwarf2_per_objfile->abbrev);
4531
4532 if (dwarf2_read_debug)
4533 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4534 dwo_file ? ".dwo" : "",
4535 get_section_file_name (abbrev_section));
4536
4537 for (ix = 0;
4538 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4539 ++ix)
4540 {
4541 bfd *abfd;
4542 const gdb_byte *info_ptr, *end_ptr;
4543
4544 dwarf2_read_section (objfile, section);
4545 info_ptr = section->buffer;
4546
4547 if (info_ptr == NULL)
4548 continue;
4549
4550 /* We can't set abfd until now because the section may be empty or
4551 not present, in which case the bfd is unknown. */
4552 abfd = get_section_bfd_owner (section);
4553
4554 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4555 because we don't need to read any dies: the signature is in the
4556 header. */
4557
4558 end_ptr = info_ptr + section->size;
4559 while (info_ptr < end_ptr)
4560 {
4561 sect_offset offset;
4562 cu_offset type_offset_in_tu;
4563 ULONGEST signature;
4564 struct signatured_type *sig_type;
4565 struct dwo_unit *dwo_tu;
4566 void **slot;
4567 const gdb_byte *ptr = info_ptr;
4568 struct comp_unit_head header;
4569 unsigned int length;
4570
4571 offset.sect_off = ptr - section->buffer;
4572
4573 /* We need to read the type's signature in order to build the hash
4574 table, but we don't need anything else just yet. */
4575
4576 ptr = read_and_check_type_unit_head (&header, section,
4577 abbrev_section, ptr,
4578 &signature, &type_offset_in_tu);
4579
4580 length = get_cu_length (&header);
4581
4582 /* Skip dummy type units. */
4583 if (ptr >= info_ptr + length
4584 || peek_abbrev_code (abfd, ptr) == 0)
4585 {
4586 info_ptr += length;
4587 continue;
4588 }
4589
4590 if (types_htab == NULL)
4591 {
4592 if (dwo_file)
4593 types_htab = allocate_dwo_unit_table (objfile);
4594 else
4595 types_htab = allocate_signatured_type_table (objfile);
4596 }
4597
4598 if (dwo_file)
4599 {
4600 sig_type = NULL;
4601 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct dwo_unit);
4603 dwo_tu->dwo_file = dwo_file;
4604 dwo_tu->signature = signature;
4605 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4606 dwo_tu->section = section;
4607 dwo_tu->offset = offset;
4608 dwo_tu->length = length;
4609 }
4610 else
4611 {
4612 /* N.B.: type_offset is not usable if this type uses a DWO file.
4613 The real type_offset is in the DWO file. */
4614 dwo_tu = NULL;
4615 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4616 struct signatured_type);
4617 sig_type->signature = signature;
4618 sig_type->type_offset_in_tu = type_offset_in_tu;
4619 sig_type->per_cu.objfile = objfile;
4620 sig_type->per_cu.is_debug_types = 1;
4621 sig_type->per_cu.section = section;
4622 sig_type->per_cu.offset = offset;
4623 sig_type->per_cu.length = length;
4624 }
4625
4626 slot = htab_find_slot (types_htab,
4627 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 INSERT);
4629 gdb_assert (slot != NULL);
4630 if (*slot != NULL)
4631 {
4632 sect_offset dup_offset;
4633
4634 if (dwo_file)
4635 {
4636 const struct dwo_unit *dup_tu = *slot;
4637
4638 dup_offset = dup_tu->offset;
4639 }
4640 else
4641 {
4642 const struct signatured_type *dup_tu = *slot;
4643
4644 dup_offset = dup_tu->per_cu.offset;
4645 }
4646
4647 complaint (&symfile_complaints,
4648 _("debug type entry at offset 0x%x is duplicate to"
4649 " the entry at offset 0x%x, signature %s"),
4650 offset.sect_off, dup_offset.sect_off,
4651 hex_string (signature));
4652 }
4653 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4654
4655 if (dwarf2_read_debug > 1)
4656 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4657 offset.sect_off,
4658 hex_string (signature));
4659
4660 info_ptr += length;
4661 }
4662 }
4663
4664 return types_htab;
4665 }
4666
4667 /* Create the hash table of all entries in the .debug_types section,
4668 and initialize all_type_units.
4669 The result is zero if there is an error (e.g. missing .debug_types section),
4670 otherwise non-zero. */
4671
4672 static int
4673 create_all_type_units (struct objfile *objfile)
4674 {
4675 htab_t types_htab;
4676 struct signatured_type **iter;
4677
4678 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4679 if (types_htab == NULL)
4680 {
4681 dwarf2_per_objfile->signatured_types = NULL;
4682 return 0;
4683 }
4684
4685 dwarf2_per_objfile->signatured_types = types_htab;
4686
4687 dwarf2_per_objfile->n_type_units
4688 = dwarf2_per_objfile->n_allocated_type_units
4689 = htab_elements (types_htab);
4690 dwarf2_per_objfile->all_type_units
4691 = xmalloc (dwarf2_per_objfile->n_type_units
4692 * sizeof (struct signatured_type *));
4693 iter = &dwarf2_per_objfile->all_type_units[0];
4694 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4695 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4696 == dwarf2_per_objfile->n_type_units);
4697
4698 return 1;
4699 }
4700
4701 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4702 If SLOT is non-NULL, it is the entry to use in the hash table.
4703 Otherwise we find one. */
4704
4705 static struct signatured_type *
4706 add_type_unit (ULONGEST sig, void **slot)
4707 {
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 int n_type_units = dwarf2_per_objfile->n_type_units;
4710 struct signatured_type *sig_type;
4711
4712 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 ++n_type_units;
4714 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 {
4716 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4717 dwarf2_per_objfile->n_allocated_type_units = 1;
4718 dwarf2_per_objfile->n_allocated_type_units *= 2;
4719 dwarf2_per_objfile->all_type_units
4720 = xrealloc (dwarf2_per_objfile->all_type_units,
4721 dwarf2_per_objfile->n_allocated_type_units
4722 * sizeof (struct signatured_type *));
4723 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 }
4725 dwarf2_per_objfile->n_type_units = n_type_units;
4726
4727 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4728 struct signatured_type);
4729 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4730 sig_type->signature = sig;
4731 sig_type->per_cu.is_debug_types = 1;
4732 if (dwarf2_per_objfile->using_index)
4733 {
4734 sig_type->per_cu.v.quick =
4735 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4736 struct dwarf2_per_cu_quick_data);
4737 }
4738
4739 if (slot == NULL)
4740 {
4741 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4742 sig_type, INSERT);
4743 }
4744 gdb_assert (*slot == NULL);
4745 *slot = sig_type;
4746 /* The rest of sig_type must be filled in by the caller. */
4747 return sig_type;
4748 }
4749
4750 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4751 Fill in SIG_ENTRY with DWO_ENTRY. */
4752
4753 static void
4754 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4755 struct signatured_type *sig_entry,
4756 struct dwo_unit *dwo_entry)
4757 {
4758 /* Make sure we're not clobbering something we don't expect to. */
4759 gdb_assert (! sig_entry->per_cu.queued);
4760 gdb_assert (sig_entry->per_cu.cu == NULL);
4761 if (dwarf2_per_objfile->using_index)
4762 {
4763 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4764 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4765 }
4766 else
4767 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4768 gdb_assert (sig_entry->signature == dwo_entry->signature);
4769 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4770 gdb_assert (sig_entry->type_unit_group == NULL);
4771 gdb_assert (sig_entry->dwo_unit == NULL);
4772
4773 sig_entry->per_cu.section = dwo_entry->section;
4774 sig_entry->per_cu.offset = dwo_entry->offset;
4775 sig_entry->per_cu.length = dwo_entry->length;
4776 sig_entry->per_cu.reading_dwo_directly = 1;
4777 sig_entry->per_cu.objfile = objfile;
4778 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4779 sig_entry->dwo_unit = dwo_entry;
4780 }
4781
4782 /* Subroutine of lookup_signatured_type.
4783 If we haven't read the TU yet, create the signatured_type data structure
4784 for a TU to be read in directly from a DWO file, bypassing the stub.
4785 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4786 using .gdb_index, then when reading a CU we want to stay in the DWO file
4787 containing that CU. Otherwise we could end up reading several other DWO
4788 files (due to comdat folding) to process the transitive closure of all the
4789 mentioned TUs, and that can be slow. The current DWO file will have every
4790 type signature that it needs.
4791 We only do this for .gdb_index because in the psymtab case we already have
4792 to read all the DWOs to build the type unit groups. */
4793
4794 static struct signatured_type *
4795 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 struct dwo_file *dwo_file;
4799 struct dwo_unit find_dwo_entry, *dwo_entry;
4800 struct signatured_type find_sig_entry, *sig_entry;
4801 void **slot;
4802
4803 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804
4805 /* If TU skeletons have been removed then we may not have read in any
4806 TUs yet. */
4807 if (dwarf2_per_objfile->signatured_types == NULL)
4808 {
4809 dwarf2_per_objfile->signatured_types
4810 = allocate_signatured_type_table (objfile);
4811 }
4812
4813 /* We only ever need to read in one copy of a signatured type.
4814 Use the global signatured_types array to do our own comdat-folding
4815 of types. If this is the first time we're reading this TU, and
4816 the TU has an entry in .gdb_index, replace the recorded data from
4817 .gdb_index with this TU. */
4818
4819 find_sig_entry.signature = sig;
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 &find_sig_entry, INSERT);
4822 sig_entry = *slot;
4823
4824 /* We can get here with the TU already read, *or* in the process of being
4825 read. Don't reassign the global entry to point to this DWO if that's
4826 the case. Also note that if the TU is already being read, it may not
4827 have come from a DWO, the program may be a mix of Fission-compiled
4828 code and non-Fission-compiled code. */
4829
4830 /* Have we already tried to read this TU?
4831 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4832 needn't exist in the global table yet). */
4833 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4834 return sig_entry;
4835
4836 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4837 dwo_unit of the TU itself. */
4838 dwo_file = cu->dwo_unit->dwo_file;
4839
4840 /* Ok, this is the first time we're reading this TU. */
4841 if (dwo_file->tus == NULL)
4842 return NULL;
4843 find_dwo_entry.signature = sig;
4844 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4845 if (dwo_entry == NULL)
4846 return NULL;
4847
4848 /* If the global table doesn't have an entry for this TU, add one. */
4849 if (sig_entry == NULL)
4850 sig_entry = add_type_unit (sig, slot);
4851
4852 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4853 sig_entry->per_cu.tu_read = 1;
4854 return sig_entry;
4855 }
4856
4857 /* Subroutine of lookup_signatured_type.
4858 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4859 then try the DWP file. If the TU stub (skeleton) has been removed then
4860 it won't be in .gdb_index. */
4861
4862 static struct signatured_type *
4863 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 {
4865 struct objfile *objfile = dwarf2_per_objfile->objfile;
4866 struct dwp_file *dwp_file = get_dwp_file ();
4867 struct dwo_unit *dwo_entry;
4868 struct signatured_type find_sig_entry, *sig_entry;
4869 void **slot;
4870
4871 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4872 gdb_assert (dwp_file != NULL);
4873
4874 /* If TU skeletons have been removed then we may not have read in any
4875 TUs yet. */
4876 if (dwarf2_per_objfile->signatured_types == NULL)
4877 {
4878 dwarf2_per_objfile->signatured_types
4879 = allocate_signatured_type_table (objfile);
4880 }
4881
4882 find_sig_entry.signature = sig;
4883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4884 &find_sig_entry, INSERT);
4885 sig_entry = *slot;
4886
4887 /* Have we already tried to read this TU?
4888 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4889 needn't exist in the global table yet). */
4890 if (sig_entry != NULL)
4891 return sig_entry;
4892
4893 if (dwp_file->tus == NULL)
4894 return NULL;
4895 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4896 sig, 1 /* is_debug_types */);
4897 if (dwo_entry == NULL)
4898 return NULL;
4899
4900 sig_entry = add_type_unit (sig, slot);
4901 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902
4903 return sig_entry;
4904 }
4905
4906 /* Lookup a signature based type for DW_FORM_ref_sig8.
4907 Returns NULL if signature SIG is not present in the table.
4908 It is up to the caller to complain about this. */
4909
4910 static struct signatured_type *
4911 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4912 {
4913 if (cu->dwo_unit
4914 && dwarf2_per_objfile->using_index)
4915 {
4916 /* We're in a DWO/DWP file, and we're using .gdb_index.
4917 These cases require special processing. */
4918 if (get_dwp_file () == NULL)
4919 return lookup_dwo_signatured_type (cu, sig);
4920 else
4921 return lookup_dwp_signatured_type (cu, sig);
4922 }
4923 else
4924 {
4925 struct signatured_type find_entry, *entry;
4926
4927 if (dwarf2_per_objfile->signatured_types == NULL)
4928 return NULL;
4929 find_entry.signature = sig;
4930 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 return entry;
4932 }
4933 }
4934 \f
4935 /* Low level DIE reading support. */
4936
4937 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4938
4939 static void
4940 init_cu_die_reader (struct die_reader_specs *reader,
4941 struct dwarf2_cu *cu,
4942 struct dwarf2_section_info *section,
4943 struct dwo_file *dwo_file)
4944 {
4945 gdb_assert (section->readin && section->buffer != NULL);
4946 reader->abfd = get_section_bfd_owner (section);
4947 reader->cu = cu;
4948 reader->dwo_file = dwo_file;
4949 reader->die_section = section;
4950 reader->buffer = section->buffer;
4951 reader->buffer_end = section->buffer + section->size;
4952 reader->comp_dir = NULL;
4953 }
4954
4955 /* Subroutine of init_cutu_and_read_dies to simplify it.
4956 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4957 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4958 already.
4959
4960 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4961 from it to the DIE in the DWO. If NULL we are skipping the stub.
4962 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4963 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4964 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4965 STUB_COMP_DIR may be non-NULL.
4966 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4967 are filled in with the info of the DIE from the DWO file.
4968 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4969 provided an abbrev table to use.
4970 The result is non-zero if a valid (non-dummy) DIE was found. */
4971
4972 static int
4973 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4974 struct dwo_unit *dwo_unit,
4975 int abbrev_table_provided,
4976 struct die_info *stub_comp_unit_die,
4977 const char *stub_comp_dir,
4978 struct die_reader_specs *result_reader,
4979 const gdb_byte **result_info_ptr,
4980 struct die_info **result_comp_unit_die,
4981 int *result_has_children)
4982 {
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_cu *cu = this_cu->cu;
4985 struct dwarf2_section_info *section;
4986 bfd *abfd;
4987 const gdb_byte *begin_info_ptr, *info_ptr;
4988 ULONGEST signature; /* Or dwo_id. */
4989 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4990 int i,num_extra_attrs;
4991 struct dwarf2_section_info *dwo_abbrev_section;
4992 struct attribute *attr;
4993 struct die_info *comp_unit_die;
4994
4995 /* At most one of these may be provided. */
4996 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4997
4998 /* These attributes aren't processed until later:
4999 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5000 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5001 referenced later. However, these attributes are found in the stub
5002 which we won't have later. In order to not impose this complication
5003 on the rest of the code, we read them here and copy them to the
5004 DWO CU/TU die. */
5005
5006 stmt_list = NULL;
5007 low_pc = NULL;
5008 high_pc = NULL;
5009 ranges = NULL;
5010 comp_dir = NULL;
5011
5012 if (stub_comp_unit_die != NULL)
5013 {
5014 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 DWO file. */
5016 if (! this_cu->is_debug_types)
5017 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5018 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5019 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5020 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5021 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022
5023 /* There should be a DW_AT_addr_base attribute here (if needed).
5024 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 cu->addr_base = 0;
5026 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 if (attr)
5028 cu->addr_base = DW_UNSND (attr);
5029
5030 /* There should be a DW_AT_ranges_base attribute here (if needed).
5031 We need the value before we can process DW_AT_ranges. */
5032 cu->ranges_base = 0;
5033 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 if (attr)
5035 cu->ranges_base = DW_UNSND (attr);
5036 }
5037 else if (stub_comp_dir != NULL)
5038 {
5039 /* Reconstruct the comp_dir attribute to simplify the code below. */
5040 comp_dir = (struct attribute *)
5041 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5042 comp_dir->name = DW_AT_comp_dir;
5043 comp_dir->form = DW_FORM_string;
5044 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5045 DW_STRING (comp_dir) = stub_comp_dir;
5046 }
5047
5048 /* Set up for reading the DWO CU/TU. */
5049 cu->dwo_unit = dwo_unit;
5050 section = dwo_unit->section;
5051 dwarf2_read_section (objfile, section);
5052 abfd = get_section_bfd_owner (section);
5053 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5054 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5055 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056
5057 if (this_cu->is_debug_types)
5058 {
5059 ULONGEST header_signature;
5060 cu_offset type_offset_in_tu;
5061 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062
5063 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 dwo_abbrev_section,
5065 info_ptr,
5066 &header_signature,
5067 &type_offset_in_tu);
5068 /* This is not an assert because it can be caused by bad debug info. */
5069 if (sig_type->signature != header_signature)
5070 {
5071 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5072 " TU at offset 0x%x [in module %s]"),
5073 hex_string (sig_type->signature),
5074 hex_string (header_signature),
5075 dwo_unit->offset.sect_off,
5076 bfd_get_filename (abfd));
5077 }
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 nor the type's offset in the TU until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083
5084 /* Establish the type offset that can be used to lookup the type.
5085 For DWO files, we don't know it until now. */
5086 sig_type->type_offset_in_section.sect_off =
5087 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 }
5089 else
5090 {
5091 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5092 dwo_abbrev_section,
5093 info_ptr, 0);
5094 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5095 /* For DWOs coming from DWP files, we don't know the CU length
5096 until now. */
5097 dwo_unit->length = get_cu_length (&cu->header);
5098 }
5099
5100 /* Replace the CU's original abbrev table with the DWO's.
5101 Reminder: We can't read the abbrev table until we've read the header. */
5102 if (abbrev_table_provided)
5103 {
5104 /* Don't free the provided abbrev table, the caller of
5105 init_cutu_and_read_dies owns it. */
5106 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5107 /* Ensure the DWO abbrev table gets freed. */
5108 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 }
5110 else
5111 {
5112 dwarf2_free_abbrev_table (cu);
5113 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5114 /* Leave any existing abbrev table cleanup as is. */
5115 }
5116
5117 /* Read in the die, but leave space to copy over the attributes
5118 from the stub. This has the benefit of simplifying the rest of
5119 the code - all the work to maintain the illusion of a single
5120 DW_TAG_{compile,type}_unit DIE is done here. */
5121 num_extra_attrs = ((stmt_list != NULL)
5122 + (low_pc != NULL)
5123 + (high_pc != NULL)
5124 + (ranges != NULL)
5125 + (comp_dir != NULL));
5126 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5127 result_has_children, num_extra_attrs);
5128
5129 /* Copy over the attributes from the stub to the DIE we just read in. */
5130 comp_unit_die = *result_comp_unit_die;
5131 i = comp_unit_die->num_attrs;
5132 if (stmt_list != NULL)
5133 comp_unit_die->attrs[i++] = *stmt_list;
5134 if (low_pc != NULL)
5135 comp_unit_die->attrs[i++] = *low_pc;
5136 if (high_pc != NULL)
5137 comp_unit_die->attrs[i++] = *high_pc;
5138 if (ranges != NULL)
5139 comp_unit_die->attrs[i++] = *ranges;
5140 if (comp_dir != NULL)
5141 comp_unit_die->attrs[i++] = *comp_dir;
5142 comp_unit_die->num_attrs += num_extra_attrs;
5143
5144 if (dwarf2_die_debug)
5145 {
5146 fprintf_unfiltered (gdb_stdlog,
5147 "Read die from %s@0x%x of %s:\n",
5148 get_section_name (section),
5149 (unsigned) (begin_info_ptr - section->buffer),
5150 bfd_get_filename (abfd));
5151 dump_die (comp_unit_die, dwarf2_die_debug);
5152 }
5153
5154 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5155 TUs by skipping the stub and going directly to the entry in the DWO file.
5156 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5157 to get it via circuitous means. Blech. */
5158 if (comp_dir != NULL)
5159 result_reader->comp_dir = DW_STRING (comp_dir);
5160
5161 /* Skip dummy compilation units. */
5162 if (info_ptr >= begin_info_ptr + dwo_unit->length
5163 || peek_abbrev_code (abfd, info_ptr) == 0)
5164 return 0;
5165
5166 *result_info_ptr = info_ptr;
5167 return 1;
5168 }
5169
5170 /* Subroutine of init_cutu_and_read_dies to simplify it.
5171 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5172 Returns NULL if the specified DWO unit cannot be found. */
5173
5174 static struct dwo_unit *
5175 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5176 struct die_info *comp_unit_die)
5177 {
5178 struct dwarf2_cu *cu = this_cu->cu;
5179 struct attribute *attr;
5180 ULONGEST signature;
5181 struct dwo_unit *dwo_unit;
5182 const char *comp_dir, *dwo_name;
5183
5184 gdb_assert (cu != NULL);
5185
5186 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5188 gdb_assert (attr != NULL);
5189 dwo_name = DW_STRING (attr);
5190 comp_dir = NULL;
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 if (attr)
5193 comp_dir = DW_STRING (attr);
5194
5195 if (this_cu->is_debug_types)
5196 {
5197 struct signatured_type *sig_type;
5198
5199 /* Since this_cu is the first member of struct signatured_type,
5200 we can go from a pointer to one to a pointer to the other. */
5201 sig_type = (struct signatured_type *) this_cu;
5202 signature = sig_type->signature;
5203 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 }
5205 else
5206 {
5207 struct attribute *attr;
5208
5209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 if (! attr)
5211 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 " [in module %s]"),
5213 dwo_name, objfile_name (this_cu->objfile));
5214 signature = DW_UNSND (attr);
5215 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5216 signature);
5217 }
5218
5219 return dwo_unit;
5220 }
5221
5222 /* Subroutine of init_cutu_and_read_dies to simplify it.
5223 See it for a description of the parameters.
5224 Read a TU directly from a DWO file, bypassing the stub.
5225
5226 Note: This function could be a little bit simpler if we shared cleanups
5227 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5228 to do, so we keep this function self-contained. Or we could move this
5229 into our caller, but it's complex enough already. */
5230
5231 static void
5232 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5233 int use_existing_cu, int keep,
5234 die_reader_func_ftype *die_reader_func,
5235 void *data)
5236 {
5237 struct dwarf2_cu *cu;
5238 struct signatured_type *sig_type;
5239 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5240 struct die_reader_specs reader;
5241 const gdb_byte *info_ptr;
5242 struct die_info *comp_unit_die;
5243 int has_children;
5244
5245 /* Verify we can do the following downcast, and that we have the
5246 data we need. */
5247 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5248 sig_type = (struct signatured_type *) this_cu;
5249 gdb_assert (sig_type->dwo_unit != NULL);
5250
5251 cleanups = make_cleanup (null_cleanup, NULL);
5252
5253 if (use_existing_cu && this_cu->cu != NULL)
5254 {
5255 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 cu = this_cu->cu;
5257 /* There's no need to do the rereading_dwo_cu handling that
5258 init_cutu_and_read_dies does since we don't read the stub. */
5259 }
5260 else
5261 {
5262 /* If !use_existing_cu, this_cu->cu must be NULL. */
5263 gdb_assert (this_cu->cu == NULL);
5264 cu = xmalloc (sizeof (*cu));
5265 init_one_comp_unit (cu, this_cu);
5266 /* If an error occurs while loading, release our storage. */
5267 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5268 }
5269
5270 /* A future optimization, if needed, would be to use an existing
5271 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5272 could share abbrev tables. */
5273
5274 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5275 0 /* abbrev_table_provided */,
5276 NULL /* stub_comp_unit_die */,
5277 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &reader, &info_ptr,
5279 &comp_unit_die, &has_children) == 0)
5280 {
5281 /* Dummy die. */
5282 do_cleanups (cleanups);
5283 return;
5284 }
5285
5286 /* All the "real" work is done here. */
5287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288
5289 /* This duplicates the code in init_cutu_and_read_dies,
5290 but the alternative is making the latter more complex.
5291 This function is only for the special case of using DWO files directly:
5292 no point in overly complicating the general case just to handle this. */
5293 if (free_cu_cleanup != NULL)
5294 {
5295 if (keep)
5296 {
5297 /* We've successfully allocated this compilation unit. Let our
5298 caller clean it up when finished with it. */
5299 discard_cleanups (free_cu_cleanup);
5300
5301 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5302 So we have to manually free the abbrev table. */
5303 dwarf2_free_abbrev_table (cu);
5304
5305 /* Link this CU into read_in_chain. */
5306 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5307 dwarf2_per_objfile->read_in_chain = this_cu;
5308 }
5309 else
5310 do_cleanups (free_cu_cleanup);
5311 }
5312
5313 do_cleanups (cleanups);
5314 }
5315
5316 /* Initialize a CU (or TU) and read its DIEs.
5317 If the CU defers to a DWO file, read the DWO file as well.
5318
5319 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5320 Otherwise the table specified in the comp unit header is read in and used.
5321 This is an optimization for when we already have the abbrev table.
5322
5323 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5324 Otherwise, a new CU is allocated with xmalloc.
5325
5326 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5327 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328
5329 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5330 linker) then DIE_READER_FUNC will not get called. */
5331
5332 static void
5333 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5334 struct abbrev_table *abbrev_table,
5335 int use_existing_cu, int keep,
5336 die_reader_func_ftype *die_reader_func,
5337 void *data)
5338 {
5339 struct objfile *objfile = dwarf2_per_objfile->objfile;
5340 struct dwarf2_section_info *section = this_cu->section;
5341 bfd *abfd = get_section_bfd_owner (section);
5342 struct dwarf2_cu *cu;
5343 const gdb_byte *begin_info_ptr, *info_ptr;
5344 struct die_reader_specs reader;
5345 struct die_info *comp_unit_die;
5346 int has_children;
5347 struct attribute *attr;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct signatured_type *sig_type = NULL;
5350 struct dwarf2_section_info *abbrev_section;
5351 /* Non-zero if CU currently points to a DWO file and we need to
5352 reread it. When this happens we need to reread the skeleton die
5353 before we can reread the DWO file (this only applies to CUs, not TUs). */
5354 int rereading_dwo_cu = 0;
5355
5356 if (dwarf2_die_debug)
5357 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5358 this_cu->is_debug_types ? "type" : "comp",
5359 this_cu->offset.sect_off);
5360
5361 if (use_existing_cu)
5362 gdb_assert (keep);
5363
5364 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5365 file (instead of going through the stub), short-circuit all of this. */
5366 if (this_cu->reading_dwo_directly)
5367 {
5368 /* Narrow down the scope of possibilities to have to understand. */
5369 gdb_assert (this_cu->is_debug_types);
5370 gdb_assert (abbrev_table == NULL);
5371 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5372 die_reader_func, data);
5373 return;
5374 }
5375
5376 cleanups = make_cleanup (null_cleanup, NULL);
5377
5378 /* This is cheap if the section is already read in. */
5379 dwarf2_read_section (objfile, section);
5380
5381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5382
5383 abbrev_section = get_abbrev_section_for_cu (this_cu);
5384
5385 if (use_existing_cu && this_cu->cu != NULL)
5386 {
5387 cu = this_cu->cu;
5388 /* If this CU is from a DWO file we need to start over, we need to
5389 refetch the attributes from the skeleton CU.
5390 This could be optimized by retrieving those attributes from when we
5391 were here the first time: the previous comp_unit_die was stored in
5392 comp_unit_obstack. But there's no data yet that we need this
5393 optimization. */
5394 if (cu->dwo_unit != NULL)
5395 rereading_dwo_cu = 1;
5396 }
5397 else
5398 {
5399 /* If !use_existing_cu, this_cu->cu must be NULL. */
5400 gdb_assert (this_cu->cu == NULL);
5401 cu = xmalloc (sizeof (*cu));
5402 init_one_comp_unit (cu, this_cu);
5403 /* If an error occurs while loading, release our storage. */
5404 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5405 }
5406
5407 /* Get the header. */
5408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 {
5410 /* We already have the header, there's no need to read it in again. */
5411 info_ptr += cu->header.first_die_offset.cu_off;
5412 }
5413 else
5414 {
5415 if (this_cu->is_debug_types)
5416 {
5417 ULONGEST signature;
5418 cu_offset type_offset_in_tu;
5419
5420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5421 abbrev_section, info_ptr,
5422 &signature,
5423 &type_offset_in_tu);
5424
5425 /* Since per_cu is the first member of struct signatured_type,
5426 we can go from a pointer to one to a pointer to the other. */
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->signature == signature);
5429 gdb_assert (sig_type->type_offset_in_tu.cu_off
5430 == type_offset_in_tu.cu_off);
5431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432
5433 /* LENGTH has not been set yet for type units if we're
5434 using .gdb_index. */
5435 this_cu->length = get_cu_length (&cu->header);
5436
5437 /* Establish the type offset that can be used to lookup the type. */
5438 sig_type->type_offset_in_section.sect_off =
5439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5440 }
5441 else
5442 {
5443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 abbrev_section,
5445 info_ptr, 0);
5446
5447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5449 }
5450 }
5451
5452 /* Skip dummy compilation units. */
5453 if (info_ptr >= begin_info_ptr + this_cu->length
5454 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 {
5456 do_cleanups (cleanups);
5457 return;
5458 }
5459
5460 /* If we don't have them yet, read the abbrevs for this compilation unit.
5461 And if we need to read them now, make sure they're freed when we're
5462 done. Note that it's important that if the CU had an abbrev table
5463 on entry we don't free it when we're done: Somewhere up the call stack
5464 it may be in use. */
5465 if (abbrev_table != NULL)
5466 {
5467 gdb_assert (cu->abbrev_table == NULL);
5468 gdb_assert (cu->header.abbrev_offset.sect_off
5469 == abbrev_table->offset.sect_off);
5470 cu->abbrev_table = abbrev_table;
5471 }
5472 else if (cu->abbrev_table == NULL)
5473 {
5474 dwarf2_read_abbrevs (cu, abbrev_section);
5475 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 }
5477 else if (rereading_dwo_cu)
5478 {
5479 dwarf2_free_abbrev_table (cu);
5480 dwarf2_read_abbrevs (cu, abbrev_section);
5481 }
5482
5483 /* Read the top level CU/TU die. */
5484 init_cu_die_reader (&reader, cu, section, NULL);
5485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5486
5487 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 from the DWO file.
5489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5490 DWO CU, that this test will fail (the attribute will not be present). */
5491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5492 if (attr)
5493 {
5494 struct dwo_unit *dwo_unit;
5495 struct die_info *dwo_comp_unit_die;
5496
5497 if (has_children)
5498 {
5499 complaint (&symfile_complaints,
5500 _("compilation unit with DW_AT_GNU_dwo_name"
5501 " has children (offset 0x%x) [in module %s]"),
5502 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 }
5504 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5505 if (dwo_unit != NULL)
5506 {
5507 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5508 abbrev_table != NULL,
5509 comp_unit_die, NULL,
5510 &reader, &info_ptr,
5511 &dwo_comp_unit_die, &has_children) == 0)
5512 {
5513 /* Dummy die. */
5514 do_cleanups (cleanups);
5515 return;
5516 }
5517 comp_unit_die = dwo_comp_unit_die;
5518 }
5519 else
5520 {
5521 /* Yikes, we couldn't find the rest of the DIE, we only have
5522 the stub. A complaint has already been logged. There's
5523 not much more we can do except pass on the stub DIE to
5524 die_reader_func. We don't want to throw an error on bad
5525 debug info. */
5526 }
5527 }
5528
5529 /* All of the above is setup for this call. Yikes. */
5530 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531
5532 /* Done, clean up. */
5533 if (free_cu_cleanup != NULL)
5534 {
5535 if (keep)
5536 {
5537 /* We've successfully allocated this compilation unit. Let our
5538 caller clean it up when finished with it. */
5539 discard_cleanups (free_cu_cleanup);
5540
5541 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5542 So we have to manually free the abbrev table. */
5543 dwarf2_free_abbrev_table (cu);
5544
5545 /* Link this CU into read_in_chain. */
5546 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5547 dwarf2_per_objfile->read_in_chain = this_cu;
5548 }
5549 else
5550 do_cleanups (free_cu_cleanup);
5551 }
5552
5553 do_cleanups (cleanups);
5554 }
5555
5556 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5557 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5558 to have already done the lookup to find the DWO file).
5559
5560 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5561 THIS_CU->is_debug_types, but nothing else.
5562
5563 We fill in THIS_CU->length.
5564
5565 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5566 linker) then DIE_READER_FUNC will not get called.
5567
5568 THIS_CU->cu is always freed when done.
5569 This is done in order to not leave THIS_CU->cu in a state where we have
5570 to care whether it refers to the "main" CU or the DWO CU. */
5571
5572 static void
5573 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5574 struct dwo_file *dwo_file,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
5579 struct dwarf2_section_info *section = this_cu->section;
5580 bfd *abfd = get_section_bfd_owner (section);
5581 struct dwarf2_section_info *abbrev_section;
5582 struct dwarf2_cu cu;
5583 const gdb_byte *begin_info_ptr, *info_ptr;
5584 struct die_reader_specs reader;
5585 struct cleanup *cleanups;
5586 struct die_info *comp_unit_die;
5587 int has_children;
5588
5589 if (dwarf2_die_debug)
5590 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5591 this_cu->is_debug_types ? "type" : "comp",
5592 this_cu->offset.sect_off);
5593
5594 gdb_assert (this_cu->cu == NULL);
5595
5596 abbrev_section = (dwo_file != NULL
5597 ? &dwo_file->sections.abbrev
5598 : get_abbrev_section_for_cu (this_cu));
5599
5600 /* This is cheap if the section is already read in. */
5601 dwarf2_read_section (objfile, section);
5602
5603 init_one_comp_unit (&cu, this_cu);
5604
5605 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606
5607 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5608 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5609 abbrev_section, info_ptr,
5610 this_cu->is_debug_types);
5611
5612 this_cu->length = get_cu_length (&cu.header);
5613
5614 /* Skip dummy compilation units. */
5615 if (info_ptr >= begin_info_ptr + this_cu->length
5616 || peek_abbrev_code (abfd, info_ptr) == 0)
5617 {
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621
5622 dwarf2_read_abbrevs (&cu, abbrev_section);
5623 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624
5625 init_cu_die_reader (&reader, &cu, section, dwo_file);
5626 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 do_cleanups (cleanups);
5631 }
5632
5633 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5634 does not lookup the specified DWO file.
5635 This cannot be used to read DWO files.
5636
5637 THIS_CU->cu is always freed when done.
5638 This is done in order to not leave THIS_CU->cu in a state where we have
5639 to care whether it refers to the "main" CU or the DWO CU.
5640 We can revisit this if the data shows there's a performance issue. */
5641
5642 static void
5643 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5644 die_reader_func_ftype *die_reader_func,
5645 void *data)
5646 {
5647 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5648 }
5649 \f
5650 /* Type Unit Groups.
5651
5652 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5653 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5654 so that all types coming from the same compilation (.o file) are grouped
5655 together. A future step could be to put the types in the same symtab as
5656 the CU the types ultimately came from. */
5657
5658 static hashval_t
5659 hash_type_unit_group (const void *item)
5660 {
5661 const struct type_unit_group *tu_group = item;
5662
5663 return hash_stmt_list_entry (&tu_group->hash);
5664 }
5665
5666 static int
5667 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5668 {
5669 const struct type_unit_group *lhs = item_lhs;
5670 const struct type_unit_group *rhs = item_rhs;
5671
5672 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5673 }
5674
5675 /* Allocate a hash table for type unit groups. */
5676
5677 static htab_t
5678 allocate_type_unit_groups_table (void)
5679 {
5680 return htab_create_alloc_ex (3,
5681 hash_type_unit_group,
5682 eq_type_unit_group,
5683 NULL,
5684 &dwarf2_per_objfile->objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687 }
5688
5689 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5690 partial symtabs. We combine several TUs per psymtab to not let the size
5691 of any one psymtab grow too big. */
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5693 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5694
5695 /* Helper routine for get_type_unit_group.
5696 Create the type_unit_group object used to hold one or more TUs. */
5697
5698 static struct type_unit_group *
5699 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5700 {
5701 struct objfile *objfile = dwarf2_per_objfile->objfile;
5702 struct dwarf2_per_cu_data *per_cu;
5703 struct type_unit_group *tu_group;
5704
5705 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5706 struct type_unit_group);
5707 per_cu = &tu_group->per_cu;
5708 per_cu->objfile = objfile;
5709
5710 if (dwarf2_per_objfile->using_index)
5711 {
5712 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5713 struct dwarf2_per_cu_quick_data);
5714 }
5715 else
5716 {
5717 unsigned int line_offset = line_offset_struct.sect_off;
5718 struct partial_symtab *pst;
5719 char *name;
5720
5721 /* Give the symtab a useful name for debug purposes. */
5722 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5723 name = xstrprintf ("<type_units_%d>",
5724 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 else
5726 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727
5728 pst = create_partial_symtab (per_cu, name);
5729 pst->anonymous = 1;
5730
5731 xfree (name);
5732 }
5733
5734 tu_group->hash.dwo_unit = cu->dwo_unit;
5735 tu_group->hash.line_offset = line_offset_struct;
5736
5737 return tu_group;
5738 }
5739
5740 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5741 STMT_LIST is a DW_AT_stmt_list attribute. */
5742
5743 static struct type_unit_group *
5744 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5745 {
5746 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5747 struct type_unit_group *tu_group;
5748 void **slot;
5749 unsigned int line_offset;
5750 struct type_unit_group type_unit_group_for_lookup;
5751
5752 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 {
5754 dwarf2_per_objfile->type_unit_groups =
5755 allocate_type_unit_groups_table ();
5756 }
5757
5758 /* Do we need to create a new group, or can we use an existing one? */
5759
5760 if (stmt_list)
5761 {
5762 line_offset = DW_UNSND (stmt_list);
5763 ++tu_stats->nr_symtab_sharers;
5764 }
5765 else
5766 {
5767 /* Ugh, no stmt_list. Rare, but we have to handle it.
5768 We can do various things here like create one group per TU or
5769 spread them over multiple groups to split up the expansion work.
5770 To avoid worst case scenarios (too many groups or too large groups)
5771 we, umm, group them in bunches. */
5772 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5773 | (tu_stats->nr_stmt_less_type_units
5774 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5775 ++tu_stats->nr_stmt_less_type_units;
5776 }
5777
5778 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5779 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5780 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5781 &type_unit_group_for_lookup, INSERT);
5782 if (*slot != NULL)
5783 {
5784 tu_group = *slot;
5785 gdb_assert (tu_group != NULL);
5786 }
5787 else
5788 {
5789 sect_offset line_offset_struct;
5790
5791 line_offset_struct.sect_off = line_offset;
5792 tu_group = create_type_unit_group (cu, line_offset_struct);
5793 *slot = tu_group;
5794 ++tu_stats->nr_symtabs;
5795 }
5796
5797 return tu_group;
5798 }
5799 \f
5800 /* Partial symbol tables. */
5801
5802 /* Create a psymtab named NAME and assign it to PER_CU.
5803
5804 The caller must fill in the following details:
5805 dirname, textlow, texthigh. */
5806
5807 static struct partial_symtab *
5808 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809 {
5810 struct objfile *objfile = per_cu->objfile;
5811 struct partial_symtab *pst;
5812
5813 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 name, 0,
5815 objfile->global_psymbols.next,
5816 objfile->static_psymbols.next);
5817
5818 pst->psymtabs_addrmap_supported = 1;
5819
5820 /* This is the glue that links PST into GDB's symbol API. */
5821 pst->read_symtab_private = per_cu;
5822 pst->read_symtab = dwarf2_read_symtab;
5823 per_cu->v.psymtab = pst;
5824
5825 return pst;
5826 }
5827
5828 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5829 type. */
5830
5831 struct process_psymtab_comp_unit_data
5832 {
5833 /* True if we are reading a DW_TAG_partial_unit. */
5834
5835 int want_partial_unit;
5836
5837 /* The "pretend" language that is used if the CU doesn't declare a
5838 language. */
5839
5840 enum language pretend_language;
5841 };
5842
5843 /* die_reader_func for process_psymtab_comp_unit. */
5844
5845 static void
5846 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5847 const gdb_byte *info_ptr,
5848 struct die_info *comp_unit_die,
5849 int has_children,
5850 void *data)
5851 {
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct objfile *objfile = cu->objfile;
5854 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5855 struct attribute *attr;
5856 CORE_ADDR baseaddr;
5857 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5858 struct partial_symtab *pst;
5859 int has_pc_info;
5860 const char *filename;
5861 struct process_psymtab_comp_unit_data *info = data;
5862
5863 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5864 return;
5865
5866 gdb_assert (! per_cu->is_debug_types);
5867
5868 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5869
5870 cu->list_in_scope = &file_symbols;
5871
5872 /* Allocate a new partial symbol table structure. */
5873 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5874 if (attr == NULL || !DW_STRING (attr))
5875 filename = "";
5876 else
5877 filename = DW_STRING (attr);
5878
5879 pst = create_partial_symtab (per_cu, filename);
5880
5881 /* This must be done before calling dwarf2_build_include_psymtabs. */
5882 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5883 if (attr != NULL)
5884 pst->dirname = DW_STRING (attr);
5885
5886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5887
5888 dwarf2_find_base_address (comp_unit_die, cu);
5889
5890 /* Possibly set the default values of LOWPC and HIGHPC from
5891 `DW_AT_ranges'. */
5892 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5893 &best_highpc, cu, pst);
5894 if (has_pc_info == 1 && best_lowpc < best_highpc)
5895 /* Store the contiguous range if it is not empty; it can be empty for
5896 CUs with no code. */
5897 addrmap_set_empty (objfile->psymtabs_addrmap,
5898 best_lowpc + baseaddr,
5899 best_highpc + baseaddr - 1, pst);
5900
5901 /* Check if comp unit has_children.
5902 If so, read the rest of the partial symbols from this comp unit.
5903 If not, there's no more debug_info for this comp unit. */
5904 if (has_children)
5905 {
5906 struct partial_die_info *first_die;
5907 CORE_ADDR lowpc, highpc;
5908
5909 lowpc = ((CORE_ADDR) -1);
5910 highpc = ((CORE_ADDR) 0);
5911
5912 first_die = load_partial_dies (reader, info_ptr, 1);
5913
5914 scan_partial_symbols (first_die, &lowpc, &highpc,
5915 ! has_pc_info, cu);
5916
5917 /* If we didn't find a lowpc, set it to highpc to avoid
5918 complaints from `maint check'. */
5919 if (lowpc == ((CORE_ADDR) -1))
5920 lowpc = highpc;
5921
5922 /* If the compilation unit didn't have an explicit address range,
5923 then use the information extracted from its child dies. */
5924 if (! has_pc_info)
5925 {
5926 best_lowpc = lowpc;
5927 best_highpc = highpc;
5928 }
5929 }
5930 pst->textlow = best_lowpc + baseaddr;
5931 pst->texthigh = best_highpc + baseaddr;
5932
5933 pst->n_global_syms = objfile->global_psymbols.next -
5934 (objfile->global_psymbols.list + pst->globals_offset);
5935 pst->n_static_syms = objfile->static_psymbols.next -
5936 (objfile->static_psymbols.list + pst->statics_offset);
5937 sort_pst_symbols (objfile, pst);
5938
5939 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5940 {
5941 int i;
5942 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5943 struct dwarf2_per_cu_data *iter;
5944
5945 /* Fill in 'dependencies' here; we fill in 'users' in a
5946 post-pass. */
5947 pst->number_of_dependencies = len;
5948 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5949 len * sizeof (struct symtab *));
5950 for (i = 0;
5951 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5952 i, iter);
5953 ++i)
5954 pst->dependencies[i] = iter->v.psymtab;
5955
5956 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5957 }
5958
5959 /* Get the list of files included in the current compilation unit,
5960 and build a psymtab for each of them. */
5961 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5962
5963 if (dwarf2_read_debug)
5964 {
5965 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5966
5967 fprintf_unfiltered (gdb_stdlog,
5968 "Psymtab for %s unit @0x%x: %s - %s"
5969 ", %d global, %d static syms\n",
5970 per_cu->is_debug_types ? "type" : "comp",
5971 per_cu->offset.sect_off,
5972 paddress (gdbarch, pst->textlow),
5973 paddress (gdbarch, pst->texthigh),
5974 pst->n_global_syms, pst->n_static_syms);
5975 }
5976 }
5977
5978 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5979 Process compilation unit THIS_CU for a psymtab. */
5980
5981 static void
5982 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5983 int want_partial_unit,
5984 enum language pretend_language)
5985 {
5986 struct process_psymtab_comp_unit_data info;
5987
5988 /* If this compilation unit was already read in, free the
5989 cached copy in order to read it in again. This is
5990 necessary because we skipped some symbols when we first
5991 read in the compilation unit (see load_partial_dies).
5992 This problem could be avoided, but the benefit is unclear. */
5993 if (this_cu->cu != NULL)
5994 free_one_cached_comp_unit (this_cu);
5995
5996 gdb_assert (! this_cu->is_debug_types);
5997 info.want_partial_unit = want_partial_unit;
5998 info.pretend_language = pretend_language;
5999 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6000 process_psymtab_comp_unit_reader,
6001 &info);
6002
6003 /* Age out any secondary CUs. */
6004 age_cached_comp_units ();
6005 }
6006
6007 /* Reader function for build_type_psymtabs. */
6008
6009 static void
6010 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6011 const gdb_byte *info_ptr,
6012 struct die_info *type_unit_die,
6013 int has_children,
6014 void *data)
6015 {
6016 struct objfile *objfile = dwarf2_per_objfile->objfile;
6017 struct dwarf2_cu *cu = reader->cu;
6018 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6019 struct signatured_type *sig_type;
6020 struct type_unit_group *tu_group;
6021 struct attribute *attr;
6022 struct partial_die_info *first_die;
6023 CORE_ADDR lowpc, highpc;
6024 struct partial_symtab *pst;
6025
6026 gdb_assert (data == NULL);
6027 gdb_assert (per_cu->is_debug_types);
6028 sig_type = (struct signatured_type *) per_cu;
6029
6030 if (! has_children)
6031 return;
6032
6033 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6034 tu_group = get_type_unit_group (cu, attr);
6035
6036 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6037
6038 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6039 cu->list_in_scope = &file_symbols;
6040 pst = create_partial_symtab (per_cu, "");
6041 pst->anonymous = 1;
6042
6043 first_die = load_partial_dies (reader, info_ptr, 1);
6044
6045 lowpc = (CORE_ADDR) -1;
6046 highpc = (CORE_ADDR) 0;
6047 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6048
6049 pst->n_global_syms = objfile->global_psymbols.next -
6050 (objfile->global_psymbols.list + pst->globals_offset);
6051 pst->n_static_syms = objfile->static_psymbols.next -
6052 (objfile->static_psymbols.list + pst->statics_offset);
6053 sort_pst_symbols (objfile, pst);
6054 }
6055
6056 /* Struct used to sort TUs by their abbreviation table offset. */
6057
6058 struct tu_abbrev_offset
6059 {
6060 struct signatured_type *sig_type;
6061 sect_offset abbrev_offset;
6062 };
6063
6064 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6065
6066 static int
6067 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6068 {
6069 const struct tu_abbrev_offset * const *a = ap;
6070 const struct tu_abbrev_offset * const *b = bp;
6071 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6072 unsigned int boff = (*b)->abbrev_offset.sect_off;
6073
6074 return (aoff > boff) - (aoff < boff);
6075 }
6076
6077 /* Efficiently read all the type units.
6078 This does the bulk of the work for build_type_psymtabs.
6079
6080 The efficiency is because we sort TUs by the abbrev table they use and
6081 only read each abbrev table once. In one program there are 200K TUs
6082 sharing 8K abbrev tables.
6083
6084 The main purpose of this function is to support building the
6085 dwarf2_per_objfile->type_unit_groups table.
6086 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6087 can collapse the search space by grouping them by stmt_list.
6088 The savings can be significant, in the same program from above the 200K TUs
6089 share 8K stmt_list tables.
6090
6091 FUNC is expected to call get_type_unit_group, which will create the
6092 struct type_unit_group if necessary and add it to
6093 dwarf2_per_objfile->type_unit_groups. */
6094
6095 static void
6096 build_type_psymtabs_1 (void)
6097 {
6098 struct objfile *objfile = dwarf2_per_objfile->objfile;
6099 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6100 struct cleanup *cleanups;
6101 struct abbrev_table *abbrev_table;
6102 sect_offset abbrev_offset;
6103 struct tu_abbrev_offset *sorted_by_abbrev;
6104 struct type_unit_group **iter;
6105 int i;
6106
6107 /* It's up to the caller to not call us multiple times. */
6108 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6109
6110 if (dwarf2_per_objfile->n_type_units == 0)
6111 return;
6112
6113 /* TUs typically share abbrev tables, and there can be way more TUs than
6114 abbrev tables. Sort by abbrev table to reduce the number of times we
6115 read each abbrev table in.
6116 Alternatives are to punt or to maintain a cache of abbrev tables.
6117 This is simpler and efficient enough for now.
6118
6119 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6120 symtab to use). Typically TUs with the same abbrev offset have the same
6121 stmt_list value too so in practice this should work well.
6122
6123 The basic algorithm here is:
6124
6125 sort TUs by abbrev table
6126 for each TU with same abbrev table:
6127 read abbrev table if first user
6128 read TU top level DIE
6129 [IWBN if DWO skeletons had DW_AT_stmt_list]
6130 call FUNC */
6131
6132 if (dwarf2_read_debug)
6133 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6134
6135 /* Sort in a separate table to maintain the order of all_type_units
6136 for .gdb_index: TU indices directly index all_type_units. */
6137 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6138 dwarf2_per_objfile->n_type_units);
6139 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6140 {
6141 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6142
6143 sorted_by_abbrev[i].sig_type = sig_type;
6144 sorted_by_abbrev[i].abbrev_offset =
6145 read_abbrev_offset (sig_type->per_cu.section,
6146 sig_type->per_cu.offset);
6147 }
6148 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6149 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6150 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6151
6152 abbrev_offset.sect_off = ~(unsigned) 0;
6153 abbrev_table = NULL;
6154 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6155
6156 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6157 {
6158 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6159
6160 /* Switch to the next abbrev table if necessary. */
6161 if (abbrev_table == NULL
6162 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6163 {
6164 if (abbrev_table != NULL)
6165 {
6166 abbrev_table_free (abbrev_table);
6167 /* Reset to NULL in case abbrev_table_read_table throws
6168 an error: abbrev_table_free_cleanup will get called. */
6169 abbrev_table = NULL;
6170 }
6171 abbrev_offset = tu->abbrev_offset;
6172 abbrev_table =
6173 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6174 abbrev_offset);
6175 ++tu_stats->nr_uniq_abbrev_tables;
6176 }
6177
6178 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6179 build_type_psymtabs_reader, NULL);
6180 }
6181
6182 do_cleanups (cleanups);
6183 }
6184
6185 /* Print collected type unit statistics. */
6186
6187 static void
6188 print_tu_stats (void)
6189 {
6190 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6191
6192 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6193 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6194 dwarf2_per_objfile->n_type_units);
6195 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6196 tu_stats->nr_uniq_abbrev_tables);
6197 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6198 tu_stats->nr_symtabs);
6199 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6200 tu_stats->nr_symtab_sharers);
6201 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6202 tu_stats->nr_stmt_less_type_units);
6203 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6204 tu_stats->nr_all_type_units_reallocs);
6205 }
6206
6207 /* Traversal function for build_type_psymtabs. */
6208
6209 static int
6210 build_type_psymtab_dependencies (void **slot, void *info)
6211 {
6212 struct objfile *objfile = dwarf2_per_objfile->objfile;
6213 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6214 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6215 struct partial_symtab *pst = per_cu->v.psymtab;
6216 int len = VEC_length (sig_type_ptr, tu_group->tus);
6217 struct signatured_type *iter;
6218 int i;
6219
6220 gdb_assert (len > 0);
6221 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6222
6223 pst->number_of_dependencies = len;
6224 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6225 len * sizeof (struct psymtab *));
6226 for (i = 0;
6227 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6228 ++i)
6229 {
6230 gdb_assert (iter->per_cu.is_debug_types);
6231 pst->dependencies[i] = iter->per_cu.v.psymtab;
6232 iter->type_unit_group = tu_group;
6233 }
6234
6235 VEC_free (sig_type_ptr, tu_group->tus);
6236
6237 return 1;
6238 }
6239
6240 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6241 Build partial symbol tables for the .debug_types comp-units. */
6242
6243 static void
6244 build_type_psymtabs (struct objfile *objfile)
6245 {
6246 if (! create_all_type_units (objfile))
6247 return;
6248
6249 build_type_psymtabs_1 ();
6250 }
6251
6252 /* Traversal function for process_skeletonless_type_unit.
6253 Read a TU in a DWO file and build partial symbols for it. */
6254
6255 static int
6256 process_skeletonless_type_unit (void **slot, void *info)
6257 {
6258 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6259 struct objfile *objfile = info;
6260 struct signatured_type find_entry, *entry;
6261
6262 /* If this TU doesn't exist in the global table, add it and read it in. */
6263
6264 if (dwarf2_per_objfile->signatured_types == NULL)
6265 {
6266 dwarf2_per_objfile->signatured_types
6267 = allocate_signatured_type_table (objfile);
6268 }
6269
6270 find_entry.signature = dwo_unit->signature;
6271 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6272 INSERT);
6273 /* If we've already seen this type there's nothing to do. What's happening
6274 is we're doing our own version of comdat-folding here. */
6275 if (*slot != NULL)
6276 return 1;
6277
6278 /* This does the job that create_all_type_units would have done for
6279 this TU. */
6280 entry = add_type_unit (dwo_unit->signature, slot);
6281 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6282 *slot = entry;
6283
6284 /* This does the job that build_type_psymtabs_1 would have done. */
6285 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6286 build_type_psymtabs_reader, NULL);
6287
6288 return 1;
6289 }
6290
6291 /* Traversal function for process_skeletonless_type_units. */
6292
6293 static int
6294 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6295 {
6296 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6297
6298 if (dwo_file->tus != NULL)
6299 {
6300 htab_traverse_noresize (dwo_file->tus,
6301 process_skeletonless_type_unit, info);
6302 }
6303
6304 return 1;
6305 }
6306
6307 /* Scan all TUs of DWO files, verifying we've processed them.
6308 This is needed in case a TU was emitted without its skeleton.
6309 Note: This can't be done until we know what all the DWO files are. */
6310
6311 static void
6312 process_skeletonless_type_units (struct objfile *objfile)
6313 {
6314 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6315 if (get_dwp_file () == NULL
6316 && dwarf2_per_objfile->dwo_files != NULL)
6317 {
6318 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6319 process_dwo_file_for_skeletonless_type_units,
6320 objfile);
6321 }
6322 }
6323
6324 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6325
6326 static void
6327 psymtabs_addrmap_cleanup (void *o)
6328 {
6329 struct objfile *objfile = o;
6330
6331 objfile->psymtabs_addrmap = NULL;
6332 }
6333
6334 /* Compute the 'user' field for each psymtab in OBJFILE. */
6335
6336 static void
6337 set_partial_user (struct objfile *objfile)
6338 {
6339 int i;
6340
6341 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6342 {
6343 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6344 struct partial_symtab *pst = per_cu->v.psymtab;
6345 int j;
6346
6347 if (pst == NULL)
6348 continue;
6349
6350 for (j = 0; j < pst->number_of_dependencies; ++j)
6351 {
6352 /* Set the 'user' field only if it is not already set. */
6353 if (pst->dependencies[j]->user == NULL)
6354 pst->dependencies[j]->user = pst;
6355 }
6356 }
6357 }
6358
6359 /* Build the partial symbol table by doing a quick pass through the
6360 .debug_info and .debug_abbrev sections. */
6361
6362 static void
6363 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6364 {
6365 struct cleanup *back_to, *addrmap_cleanup;
6366 struct obstack temp_obstack;
6367 int i;
6368
6369 if (dwarf2_read_debug)
6370 {
6371 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6372 objfile_name (objfile));
6373 }
6374
6375 dwarf2_per_objfile->reading_partial_symbols = 1;
6376
6377 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6378
6379 /* Any cached compilation units will be linked by the per-objfile
6380 read_in_chain. Make sure to free them when we're done. */
6381 back_to = make_cleanup (free_cached_comp_units, NULL);
6382
6383 build_type_psymtabs (objfile);
6384
6385 create_all_comp_units (objfile);
6386
6387 /* Create a temporary address map on a temporary obstack. We later
6388 copy this to the final obstack. */
6389 obstack_init (&temp_obstack);
6390 make_cleanup_obstack_free (&temp_obstack);
6391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6393
6394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6395 {
6396 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6397
6398 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6399 }
6400
6401 /* This has to wait until we read the CUs, we need the list of DWOs. */
6402 process_skeletonless_type_units (objfile);
6403
6404 /* Now that all TUs have been processed we can fill in the dependencies. */
6405 if (dwarf2_per_objfile->type_unit_groups != NULL)
6406 {
6407 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6408 build_type_psymtab_dependencies, NULL);
6409 }
6410
6411 if (dwarf2_read_debug)
6412 print_tu_stats ();
6413
6414 set_partial_user (objfile);
6415
6416 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6417 &objfile->objfile_obstack);
6418 discard_cleanups (addrmap_cleanup);
6419
6420 do_cleanups (back_to);
6421
6422 if (dwarf2_read_debug)
6423 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6424 objfile_name (objfile));
6425 }
6426
6427 /* die_reader_func for load_partial_comp_unit. */
6428
6429 static void
6430 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6431 const gdb_byte *info_ptr,
6432 struct die_info *comp_unit_die,
6433 int has_children,
6434 void *data)
6435 {
6436 struct dwarf2_cu *cu = reader->cu;
6437
6438 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6439
6440 /* Check if comp unit has_children.
6441 If so, read the rest of the partial symbols from this comp unit.
6442 If not, there's no more debug_info for this comp unit. */
6443 if (has_children)
6444 load_partial_dies (reader, info_ptr, 0);
6445 }
6446
6447 /* Load the partial DIEs for a secondary CU into memory.
6448 This is also used when rereading a primary CU with load_all_dies. */
6449
6450 static void
6451 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6452 {
6453 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6454 load_partial_comp_unit_reader, NULL);
6455 }
6456
6457 static void
6458 read_comp_units_from_section (struct objfile *objfile,
6459 struct dwarf2_section_info *section,
6460 unsigned int is_dwz,
6461 int *n_allocated,
6462 int *n_comp_units,
6463 struct dwarf2_per_cu_data ***all_comp_units)
6464 {
6465 const gdb_byte *info_ptr;
6466 bfd *abfd = get_section_bfd_owner (section);
6467
6468 if (dwarf2_read_debug)
6469 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6470 get_section_name (section),
6471 get_section_file_name (section));
6472
6473 dwarf2_read_section (objfile, section);
6474
6475 info_ptr = section->buffer;
6476
6477 while (info_ptr < section->buffer + section->size)
6478 {
6479 unsigned int length, initial_length_size;
6480 struct dwarf2_per_cu_data *this_cu;
6481 sect_offset offset;
6482
6483 offset.sect_off = info_ptr - section->buffer;
6484
6485 /* Read just enough information to find out where the next
6486 compilation unit is. */
6487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6488
6489 /* Save the compilation unit for later lookup. */
6490 this_cu = obstack_alloc (&objfile->objfile_obstack,
6491 sizeof (struct dwarf2_per_cu_data));
6492 memset (this_cu, 0, sizeof (*this_cu));
6493 this_cu->offset = offset;
6494 this_cu->length = length + initial_length_size;
6495 this_cu->is_dwz = is_dwz;
6496 this_cu->objfile = objfile;
6497 this_cu->section = section;
6498
6499 if (*n_comp_units == *n_allocated)
6500 {
6501 *n_allocated *= 2;
6502 *all_comp_units = xrealloc (*all_comp_units,
6503 *n_allocated
6504 * sizeof (struct dwarf2_per_cu_data *));
6505 }
6506 (*all_comp_units)[*n_comp_units] = this_cu;
6507 ++*n_comp_units;
6508
6509 info_ptr = info_ptr + this_cu->length;
6510 }
6511 }
6512
6513 /* Create a list of all compilation units in OBJFILE.
6514 This is only done for -readnow and building partial symtabs. */
6515
6516 static void
6517 create_all_comp_units (struct objfile *objfile)
6518 {
6519 int n_allocated;
6520 int n_comp_units;
6521 struct dwarf2_per_cu_data **all_comp_units;
6522 struct dwz_file *dwz;
6523
6524 n_comp_units = 0;
6525 n_allocated = 10;
6526 all_comp_units = xmalloc (n_allocated
6527 * sizeof (struct dwarf2_per_cu_data *));
6528
6529 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6530 &n_allocated, &n_comp_units, &all_comp_units);
6531
6532 dwz = dwarf2_get_dwz_file ();
6533 if (dwz != NULL)
6534 read_comp_units_from_section (objfile, &dwz->info, 1,
6535 &n_allocated, &n_comp_units,
6536 &all_comp_units);
6537
6538 dwarf2_per_objfile->all_comp_units
6539 = obstack_alloc (&objfile->objfile_obstack,
6540 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6541 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6542 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6543 xfree (all_comp_units);
6544 dwarf2_per_objfile->n_comp_units = n_comp_units;
6545 }
6546
6547 /* Process all loaded DIEs for compilation unit CU, starting at
6548 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6549 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6550 DW_AT_ranges). See the comments of add_partial_subprogram on how
6551 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6552
6553 static void
6554 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, int set_addrmap,
6556 struct dwarf2_cu *cu)
6557 {
6558 struct partial_die_info *pdi;
6559
6560 /* Now, march along the PDI's, descending into ones which have
6561 interesting children but skipping the children of the other ones,
6562 until we reach the end of the compilation unit. */
6563
6564 pdi = first_die;
6565
6566 while (pdi != NULL)
6567 {
6568 fixup_partial_die (pdi, cu);
6569
6570 /* Anonymous namespaces or modules have no name but have interesting
6571 children, so we need to look at them. Ditto for anonymous
6572 enums. */
6573
6574 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6575 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6576 || pdi->tag == DW_TAG_imported_unit)
6577 {
6578 switch (pdi->tag)
6579 {
6580 case DW_TAG_subprogram:
6581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6582 break;
6583 case DW_TAG_constant:
6584 case DW_TAG_variable:
6585 case DW_TAG_typedef:
6586 case DW_TAG_union_type:
6587 if (!pdi->is_declaration)
6588 {
6589 add_partial_symbol (pdi, cu);
6590 }
6591 break;
6592 case DW_TAG_class_type:
6593 case DW_TAG_interface_type:
6594 case DW_TAG_structure_type:
6595 if (!pdi->is_declaration)
6596 {
6597 add_partial_symbol (pdi, cu);
6598 }
6599 break;
6600 case DW_TAG_enumeration_type:
6601 if (!pdi->is_declaration)
6602 add_partial_enumeration (pdi, cu);
6603 break;
6604 case DW_TAG_base_type:
6605 case DW_TAG_subrange_type:
6606 /* File scope base type definitions are added to the partial
6607 symbol table. */
6608 add_partial_symbol (pdi, cu);
6609 break;
6610 case DW_TAG_namespace:
6611 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6612 break;
6613 case DW_TAG_module:
6614 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6615 break;
6616 case DW_TAG_imported_unit:
6617 {
6618 struct dwarf2_per_cu_data *per_cu;
6619
6620 /* For now we don't handle imported units in type units. */
6621 if (cu->per_cu->is_debug_types)
6622 {
6623 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6624 " supported in type units [in module %s]"),
6625 objfile_name (cu->objfile));
6626 }
6627
6628 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6629 pdi->is_dwz,
6630 cu->objfile);
6631
6632 /* Go read the partial unit, if needed. */
6633 if (per_cu->v.psymtab == NULL)
6634 process_psymtab_comp_unit (per_cu, 1, cu->language);
6635
6636 VEC_safe_push (dwarf2_per_cu_ptr,
6637 cu->per_cu->imported_symtabs, per_cu);
6638 }
6639 break;
6640 case DW_TAG_imported_declaration:
6641 add_partial_symbol (pdi, cu);
6642 break;
6643 default:
6644 break;
6645 }
6646 }
6647
6648 /* If the die has a sibling, skip to the sibling. */
6649
6650 pdi = pdi->die_sibling;
6651 }
6652 }
6653
6654 /* Functions used to compute the fully scoped name of a partial DIE.
6655
6656 Normally, this is simple. For C++, the parent DIE's fully scoped
6657 name is concatenated with "::" and the partial DIE's name. For
6658 Java, the same thing occurs except that "." is used instead of "::".
6659 Enumerators are an exception; they use the scope of their parent
6660 enumeration type, i.e. the name of the enumeration type is not
6661 prepended to the enumerator.
6662
6663 There are two complexities. One is DW_AT_specification; in this
6664 case "parent" means the parent of the target of the specification,
6665 instead of the direct parent of the DIE. The other is compilers
6666 which do not emit DW_TAG_namespace; in this case we try to guess
6667 the fully qualified name of structure types from their members'
6668 linkage names. This must be done using the DIE's children rather
6669 than the children of any DW_AT_specification target. We only need
6670 to do this for structures at the top level, i.e. if the target of
6671 any DW_AT_specification (if any; otherwise the DIE itself) does not
6672 have a parent. */
6673
6674 /* Compute the scope prefix associated with PDI's parent, in
6675 compilation unit CU. The result will be allocated on CU's
6676 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6677 field. NULL is returned if no prefix is necessary. */
6678 static const char *
6679 partial_die_parent_scope (struct partial_die_info *pdi,
6680 struct dwarf2_cu *cu)
6681 {
6682 const char *grandparent_scope;
6683 struct partial_die_info *parent, *real_pdi;
6684
6685 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6686 then this means the parent of the specification DIE. */
6687
6688 real_pdi = pdi;
6689 while (real_pdi->has_specification)
6690 real_pdi = find_partial_die (real_pdi->spec_offset,
6691 real_pdi->spec_is_dwz, cu);
6692
6693 parent = real_pdi->die_parent;
6694 if (parent == NULL)
6695 return NULL;
6696
6697 if (parent->scope_set)
6698 return parent->scope;
6699
6700 fixup_partial_die (parent, cu);
6701
6702 grandparent_scope = partial_die_parent_scope (parent, cu);
6703
6704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6706 Work around this problem here. */
6707 if (cu->language == language_cplus
6708 && parent->tag == DW_TAG_namespace
6709 && strcmp (parent->name, "::") == 0
6710 && grandparent_scope == NULL)
6711 {
6712 parent->scope = NULL;
6713 parent->scope_set = 1;
6714 return NULL;
6715 }
6716
6717 if (pdi->tag == DW_TAG_enumerator)
6718 /* Enumerators should not get the name of the enumeration as a prefix. */
6719 parent->scope = grandparent_scope;
6720 else if (parent->tag == DW_TAG_namespace
6721 || parent->tag == DW_TAG_module
6722 || parent->tag == DW_TAG_structure_type
6723 || parent->tag == DW_TAG_class_type
6724 || parent->tag == DW_TAG_interface_type
6725 || parent->tag == DW_TAG_union_type
6726 || parent->tag == DW_TAG_enumeration_type)
6727 {
6728 if (grandparent_scope == NULL)
6729 parent->scope = parent->name;
6730 else
6731 parent->scope = typename_concat (&cu->comp_unit_obstack,
6732 grandparent_scope,
6733 parent->name, 0, cu);
6734 }
6735 else
6736 {
6737 /* FIXME drow/2004-04-01: What should we be doing with
6738 function-local names? For partial symbols, we should probably be
6739 ignoring them. */
6740 complaint (&symfile_complaints,
6741 _("unhandled containing DIE tag %d for DIE at %d"),
6742 parent->tag, pdi->offset.sect_off);
6743 parent->scope = grandparent_scope;
6744 }
6745
6746 parent->scope_set = 1;
6747 return parent->scope;
6748 }
6749
6750 /* Return the fully scoped name associated with PDI, from compilation unit
6751 CU. The result will be allocated with malloc. */
6752
6753 static char *
6754 partial_die_full_name (struct partial_die_info *pdi,
6755 struct dwarf2_cu *cu)
6756 {
6757 const char *parent_scope;
6758
6759 /* If this is a template instantiation, we can not work out the
6760 template arguments from partial DIEs. So, unfortunately, we have
6761 to go through the full DIEs. At least any work we do building
6762 types here will be reused if full symbols are loaded later. */
6763 if (pdi->has_template_arguments)
6764 {
6765 fixup_partial_die (pdi, cu);
6766
6767 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6768 {
6769 struct die_info *die;
6770 struct attribute attr;
6771 struct dwarf2_cu *ref_cu = cu;
6772
6773 /* DW_FORM_ref_addr is using section offset. */
6774 attr.name = 0;
6775 attr.form = DW_FORM_ref_addr;
6776 attr.u.unsnd = pdi->offset.sect_off;
6777 die = follow_die_ref (NULL, &attr, &ref_cu);
6778
6779 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6780 }
6781 }
6782
6783 parent_scope = partial_die_parent_scope (pdi, cu);
6784 if (parent_scope == NULL)
6785 return NULL;
6786 else
6787 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6788 }
6789
6790 static void
6791 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6792 {
6793 struct objfile *objfile = cu->objfile;
6794 CORE_ADDR addr = 0;
6795 const char *actual_name = NULL;
6796 CORE_ADDR baseaddr;
6797 char *built_actual_name;
6798
6799 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6800
6801 built_actual_name = partial_die_full_name (pdi, cu);
6802 if (built_actual_name != NULL)
6803 actual_name = built_actual_name;
6804
6805 if (actual_name == NULL)
6806 actual_name = pdi->name;
6807
6808 switch (pdi->tag)
6809 {
6810 case DW_TAG_subprogram:
6811 if (pdi->is_external || cu->language == language_ada)
6812 {
6813 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6814 of the global scope. But in Ada, we want to be able to access
6815 nested procedures globally. So all Ada subprograms are stored
6816 in the global scope. */
6817 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6818 mst_text, objfile); */
6819 add_psymbol_to_list (actual_name, strlen (actual_name),
6820 built_actual_name != NULL,
6821 VAR_DOMAIN, LOC_BLOCK,
6822 &objfile->global_psymbols,
6823 0, pdi->lowpc + baseaddr,
6824 cu->language, objfile);
6825 }
6826 else
6827 {
6828 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6829 mst_file_text, objfile); */
6830 add_psymbol_to_list (actual_name, strlen (actual_name),
6831 built_actual_name != NULL,
6832 VAR_DOMAIN, LOC_BLOCK,
6833 &objfile->static_psymbols,
6834 0, pdi->lowpc + baseaddr,
6835 cu->language, objfile);
6836 }
6837 break;
6838 case DW_TAG_constant:
6839 {
6840 struct psymbol_allocation_list *list;
6841
6842 if (pdi->is_external)
6843 list = &objfile->global_psymbols;
6844 else
6845 list = &objfile->static_psymbols;
6846 add_psymbol_to_list (actual_name, strlen (actual_name),
6847 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6848 list, 0, 0, cu->language, objfile);
6849 }
6850 break;
6851 case DW_TAG_variable:
6852 if (pdi->d.locdesc)
6853 addr = decode_locdesc (pdi->d.locdesc, cu);
6854
6855 if (pdi->d.locdesc
6856 && addr == 0
6857 && !dwarf2_per_objfile->has_section_at_zero)
6858 {
6859 /* A global or static variable may also have been stripped
6860 out by the linker if unused, in which case its address
6861 will be nullified; do not add such variables into partial
6862 symbol table then. */
6863 }
6864 else if (pdi->is_external)
6865 {
6866 /* Global Variable.
6867 Don't enter into the minimal symbol tables as there is
6868 a minimal symbol table entry from the ELF symbols already.
6869 Enter into partial symbol table if it has a location
6870 descriptor or a type.
6871 If the location descriptor is missing, new_symbol will create
6872 a LOC_UNRESOLVED symbol, the address of the variable will then
6873 be determined from the minimal symbol table whenever the variable
6874 is referenced.
6875 The address for the partial symbol table entry is not
6876 used by GDB, but it comes in handy for debugging partial symbol
6877 table building. */
6878
6879 if (pdi->d.locdesc || pdi->has_type)
6880 add_psymbol_to_list (actual_name, strlen (actual_name),
6881 built_actual_name != NULL,
6882 VAR_DOMAIN, LOC_STATIC,
6883 &objfile->global_psymbols,
6884 0, addr + baseaddr,
6885 cu->language, objfile);
6886 }
6887 else
6888 {
6889 /* Static Variable. Skip symbols without location descriptors. */
6890 if (pdi->d.locdesc == NULL)
6891 {
6892 xfree (built_actual_name);
6893 return;
6894 }
6895 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6896 mst_file_data, objfile); */
6897 add_psymbol_to_list (actual_name, strlen (actual_name),
6898 built_actual_name != NULL,
6899 VAR_DOMAIN, LOC_STATIC,
6900 &objfile->static_psymbols,
6901 0, addr + baseaddr,
6902 cu->language, objfile);
6903 }
6904 break;
6905 case DW_TAG_typedef:
6906 case DW_TAG_base_type:
6907 case DW_TAG_subrange_type:
6908 add_psymbol_to_list (actual_name, strlen (actual_name),
6909 built_actual_name != NULL,
6910 VAR_DOMAIN, LOC_TYPEDEF,
6911 &objfile->static_psymbols,
6912 0, (CORE_ADDR) 0, cu->language, objfile);
6913 break;
6914 case DW_TAG_imported_declaration:
6915 case DW_TAG_namespace:
6916 add_psymbol_to_list (actual_name, strlen (actual_name),
6917 built_actual_name != NULL,
6918 VAR_DOMAIN, LOC_TYPEDEF,
6919 &objfile->global_psymbols,
6920 0, (CORE_ADDR) 0, cu->language, objfile);
6921 break;
6922 case DW_TAG_module:
6923 add_psymbol_to_list (actual_name, strlen (actual_name),
6924 built_actual_name != NULL,
6925 MODULE_DOMAIN, LOC_TYPEDEF,
6926 &objfile->global_psymbols,
6927 0, (CORE_ADDR) 0, cu->language, objfile);
6928 break;
6929 case DW_TAG_class_type:
6930 case DW_TAG_interface_type:
6931 case DW_TAG_structure_type:
6932 case DW_TAG_union_type:
6933 case DW_TAG_enumeration_type:
6934 /* Skip external references. The DWARF standard says in the section
6935 about "Structure, Union, and Class Type Entries": "An incomplete
6936 structure, union or class type is represented by a structure,
6937 union or class entry that does not have a byte size attribute
6938 and that has a DW_AT_declaration attribute." */
6939 if (!pdi->has_byte_size && pdi->is_declaration)
6940 {
6941 xfree (built_actual_name);
6942 return;
6943 }
6944
6945 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6946 static vs. global. */
6947 add_psymbol_to_list (actual_name, strlen (actual_name),
6948 built_actual_name != NULL,
6949 STRUCT_DOMAIN, LOC_TYPEDEF,
6950 (cu->language == language_cplus
6951 || cu->language == language_java)
6952 ? &objfile->global_psymbols
6953 : &objfile->static_psymbols,
6954 0, (CORE_ADDR) 0, cu->language, objfile);
6955
6956 break;
6957 case DW_TAG_enumerator:
6958 add_psymbol_to_list (actual_name, strlen (actual_name),
6959 built_actual_name != NULL,
6960 VAR_DOMAIN, LOC_CONST,
6961 (cu->language == language_cplus
6962 || cu->language == language_java)
6963 ? &objfile->global_psymbols
6964 : &objfile->static_psymbols,
6965 0, (CORE_ADDR) 0, cu->language, objfile);
6966 break;
6967 default:
6968 break;
6969 }
6970
6971 xfree (built_actual_name);
6972 }
6973
6974 /* Read a partial die corresponding to a namespace; also, add a symbol
6975 corresponding to that namespace to the symbol table. NAMESPACE is
6976 the name of the enclosing namespace. */
6977
6978 static void
6979 add_partial_namespace (struct partial_die_info *pdi,
6980 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6981 int set_addrmap, struct dwarf2_cu *cu)
6982 {
6983 /* Add a symbol for the namespace. */
6984
6985 add_partial_symbol (pdi, cu);
6986
6987 /* Now scan partial symbols in that namespace. */
6988
6989 if (pdi->has_children)
6990 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6991 }
6992
6993 /* Read a partial die corresponding to a Fortran module. */
6994
6995 static void
6996 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6997 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
6998 {
6999 /* Add a symbol for the namespace. */
7000
7001 add_partial_symbol (pdi, cu);
7002
7003 /* Now scan partial symbols in that module. */
7004
7005 if (pdi->has_children)
7006 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7007 }
7008
7009 /* Read a partial die corresponding to a subprogram and create a partial
7010 symbol for that subprogram. When the CU language allows it, this
7011 routine also defines a partial symbol for each nested subprogram
7012 that this subprogram contains. If SET_ADDRMAP is true, record the
7013 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7014 and highest PC values found in PDI.
7015
7016 PDI may also be a lexical block, in which case we simply search
7017 recursively for subprograms defined inside that lexical block.
7018 Again, this is only performed when the CU language allows this
7019 type of definitions. */
7020
7021 static void
7022 add_partial_subprogram (struct partial_die_info *pdi,
7023 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7024 int set_addrmap, struct dwarf2_cu *cu)
7025 {
7026 if (pdi->tag == DW_TAG_subprogram)
7027 {
7028 if (pdi->has_pc_info)
7029 {
7030 if (pdi->lowpc < *lowpc)
7031 *lowpc = pdi->lowpc;
7032 if (pdi->highpc > *highpc)
7033 *highpc = pdi->highpc;
7034 if (set_addrmap)
7035 {
7036 CORE_ADDR baseaddr;
7037 struct objfile *objfile = cu->objfile;
7038
7039 baseaddr = ANOFFSET (objfile->section_offsets,
7040 SECT_OFF_TEXT (objfile));
7041 addrmap_set_empty (objfile->psymtabs_addrmap,
7042 pdi->lowpc + baseaddr,
7043 pdi->highpc - 1 + baseaddr,
7044 cu->per_cu->v.psymtab);
7045 }
7046 }
7047
7048 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7049 {
7050 if (!pdi->is_declaration)
7051 /* Ignore subprogram DIEs that do not have a name, they are
7052 illegal. Do not emit a complaint at this point, we will
7053 do so when we convert this psymtab into a symtab. */
7054 if (pdi->name)
7055 add_partial_symbol (pdi, cu);
7056 }
7057 }
7058
7059 if (! pdi->has_children)
7060 return;
7061
7062 if (cu->language == language_ada)
7063 {
7064 pdi = pdi->die_child;
7065 while (pdi != NULL)
7066 {
7067 fixup_partial_die (pdi, cu);
7068 if (pdi->tag == DW_TAG_subprogram
7069 || pdi->tag == DW_TAG_lexical_block)
7070 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7071 pdi = pdi->die_sibling;
7072 }
7073 }
7074 }
7075
7076 /* Read a partial die corresponding to an enumeration type. */
7077
7078 static void
7079 add_partial_enumeration (struct partial_die_info *enum_pdi,
7080 struct dwarf2_cu *cu)
7081 {
7082 struct partial_die_info *pdi;
7083
7084 if (enum_pdi->name != NULL)
7085 add_partial_symbol (enum_pdi, cu);
7086
7087 pdi = enum_pdi->die_child;
7088 while (pdi)
7089 {
7090 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7091 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7092 else
7093 add_partial_symbol (pdi, cu);
7094 pdi = pdi->die_sibling;
7095 }
7096 }
7097
7098 /* Return the initial uleb128 in the die at INFO_PTR. */
7099
7100 static unsigned int
7101 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7102 {
7103 unsigned int bytes_read;
7104
7105 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7106 }
7107
7108 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7109 Return the corresponding abbrev, or NULL if the number is zero (indicating
7110 an empty DIE). In either case *BYTES_READ will be set to the length of
7111 the initial number. */
7112
7113 static struct abbrev_info *
7114 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7115 struct dwarf2_cu *cu)
7116 {
7117 bfd *abfd = cu->objfile->obfd;
7118 unsigned int abbrev_number;
7119 struct abbrev_info *abbrev;
7120
7121 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7122
7123 if (abbrev_number == 0)
7124 return NULL;
7125
7126 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7127 if (!abbrev)
7128 {
7129 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7130 abbrev_number, bfd_get_filename (abfd));
7131 }
7132
7133 return abbrev;
7134 }
7135
7136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7137 Returns a pointer to the end of a series of DIEs, terminated by an empty
7138 DIE. Any children of the skipped DIEs will also be skipped. */
7139
7140 static const gdb_byte *
7141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7142 {
7143 struct dwarf2_cu *cu = reader->cu;
7144 struct abbrev_info *abbrev;
7145 unsigned int bytes_read;
7146
7147 while (1)
7148 {
7149 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7150 if (abbrev == NULL)
7151 return info_ptr + bytes_read;
7152 else
7153 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7154 }
7155 }
7156
7157 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7158 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7159 abbrev corresponding to that skipped uleb128 should be passed in
7160 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7161 children. */
7162
7163 static const gdb_byte *
7164 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7165 struct abbrev_info *abbrev)
7166 {
7167 unsigned int bytes_read;
7168 struct attribute attr;
7169 bfd *abfd = reader->abfd;
7170 struct dwarf2_cu *cu = reader->cu;
7171 const gdb_byte *buffer = reader->buffer;
7172 const gdb_byte *buffer_end = reader->buffer_end;
7173 const gdb_byte *start_info_ptr = info_ptr;
7174 unsigned int form, i;
7175
7176 for (i = 0; i < abbrev->num_attrs; i++)
7177 {
7178 /* The only abbrev we care about is DW_AT_sibling. */
7179 if (abbrev->attrs[i].name == DW_AT_sibling)
7180 {
7181 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7182 if (attr.form == DW_FORM_ref_addr)
7183 complaint (&symfile_complaints,
7184 _("ignoring absolute DW_AT_sibling"));
7185 else
7186 {
7187 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7188 const gdb_byte *sibling_ptr = buffer + off;
7189
7190 if (sibling_ptr < info_ptr)
7191 complaint (&symfile_complaints,
7192 _("DW_AT_sibling points backwards"));
7193 else if (sibling_ptr > reader->buffer_end)
7194 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7195 else
7196 return sibling_ptr;
7197 }
7198 }
7199
7200 /* If it isn't DW_AT_sibling, skip this attribute. */
7201 form = abbrev->attrs[i].form;
7202 skip_attribute:
7203 switch (form)
7204 {
7205 case DW_FORM_ref_addr:
7206 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7207 and later it is offset sized. */
7208 if (cu->header.version == 2)
7209 info_ptr += cu->header.addr_size;
7210 else
7211 info_ptr += cu->header.offset_size;
7212 break;
7213 case DW_FORM_GNU_ref_alt:
7214 info_ptr += cu->header.offset_size;
7215 break;
7216 case DW_FORM_addr:
7217 info_ptr += cu->header.addr_size;
7218 break;
7219 case DW_FORM_data1:
7220 case DW_FORM_ref1:
7221 case DW_FORM_flag:
7222 info_ptr += 1;
7223 break;
7224 case DW_FORM_flag_present:
7225 break;
7226 case DW_FORM_data2:
7227 case DW_FORM_ref2:
7228 info_ptr += 2;
7229 break;
7230 case DW_FORM_data4:
7231 case DW_FORM_ref4:
7232 info_ptr += 4;
7233 break;
7234 case DW_FORM_data8:
7235 case DW_FORM_ref8:
7236 case DW_FORM_ref_sig8:
7237 info_ptr += 8;
7238 break;
7239 case DW_FORM_string:
7240 read_direct_string (abfd, info_ptr, &bytes_read);
7241 info_ptr += bytes_read;
7242 break;
7243 case DW_FORM_sec_offset:
7244 case DW_FORM_strp:
7245 case DW_FORM_GNU_strp_alt:
7246 info_ptr += cu->header.offset_size;
7247 break;
7248 case DW_FORM_exprloc:
7249 case DW_FORM_block:
7250 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7251 info_ptr += bytes_read;
7252 break;
7253 case DW_FORM_block1:
7254 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block2:
7257 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_block4:
7260 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7261 break;
7262 case DW_FORM_sdata:
7263 case DW_FORM_udata:
7264 case DW_FORM_ref_udata:
7265 case DW_FORM_GNU_addr_index:
7266 case DW_FORM_GNU_str_index:
7267 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7268 break;
7269 case DW_FORM_indirect:
7270 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7271 info_ptr += bytes_read;
7272 /* We need to continue parsing from here, so just go back to
7273 the top. */
7274 goto skip_attribute;
7275
7276 default:
7277 error (_("Dwarf Error: Cannot handle %s "
7278 "in DWARF reader [in module %s]"),
7279 dwarf_form_name (form),
7280 bfd_get_filename (abfd));
7281 }
7282 }
7283
7284 if (abbrev->has_children)
7285 return skip_children (reader, info_ptr);
7286 else
7287 return info_ptr;
7288 }
7289
7290 /* Locate ORIG_PDI's sibling.
7291 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7292
7293 static const gdb_byte *
7294 locate_pdi_sibling (const struct die_reader_specs *reader,
7295 struct partial_die_info *orig_pdi,
7296 const gdb_byte *info_ptr)
7297 {
7298 /* Do we know the sibling already? */
7299
7300 if (orig_pdi->sibling)
7301 return orig_pdi->sibling;
7302
7303 /* Are there any children to deal with? */
7304
7305 if (!orig_pdi->has_children)
7306 return info_ptr;
7307
7308 /* Skip the children the long way. */
7309
7310 return skip_children (reader, info_ptr);
7311 }
7312
7313 /* Expand this partial symbol table into a full symbol table. SELF is
7314 not NULL. */
7315
7316 static void
7317 dwarf2_read_symtab (struct partial_symtab *self,
7318 struct objfile *objfile)
7319 {
7320 if (self->readin)
7321 {
7322 warning (_("bug: psymtab for %s is already read in."),
7323 self->filename);
7324 }
7325 else
7326 {
7327 if (info_verbose)
7328 {
7329 printf_filtered (_("Reading in symbols for %s..."),
7330 self->filename);
7331 gdb_flush (gdb_stdout);
7332 }
7333
7334 /* Restore our global data. */
7335 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7336
7337 /* If this psymtab is constructed from a debug-only objfile, the
7338 has_section_at_zero flag will not necessarily be correct. We
7339 can get the correct value for this flag by looking at the data
7340 associated with the (presumably stripped) associated objfile. */
7341 if (objfile->separate_debug_objfile_backlink)
7342 {
7343 struct dwarf2_per_objfile *dpo_backlink
7344 = objfile_data (objfile->separate_debug_objfile_backlink,
7345 dwarf2_objfile_data_key);
7346
7347 dwarf2_per_objfile->has_section_at_zero
7348 = dpo_backlink->has_section_at_zero;
7349 }
7350
7351 dwarf2_per_objfile->reading_partial_symbols = 0;
7352
7353 psymtab_to_symtab_1 (self);
7354
7355 /* Finish up the debug error message. */
7356 if (info_verbose)
7357 printf_filtered (_("done.\n"));
7358 }
7359
7360 process_cu_includes ();
7361 }
7362 \f
7363 /* Reading in full CUs. */
7364
7365 /* Add PER_CU to the queue. */
7366
7367 static void
7368 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7369 enum language pretend_language)
7370 {
7371 struct dwarf2_queue_item *item;
7372
7373 per_cu->queued = 1;
7374 item = xmalloc (sizeof (*item));
7375 item->per_cu = per_cu;
7376 item->pretend_language = pretend_language;
7377 item->next = NULL;
7378
7379 if (dwarf2_queue == NULL)
7380 dwarf2_queue = item;
7381 else
7382 dwarf2_queue_tail->next = item;
7383
7384 dwarf2_queue_tail = item;
7385 }
7386
7387 /* If PER_CU is not yet queued, add it to the queue.
7388 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7389 dependency.
7390 The result is non-zero if PER_CU was queued, otherwise the result is zero
7391 meaning either PER_CU is already queued or it is already loaded.
7392
7393 N.B. There is an invariant here that if a CU is queued then it is loaded.
7394 The caller is required to load PER_CU if we return non-zero. */
7395
7396 static int
7397 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7398 struct dwarf2_per_cu_data *per_cu,
7399 enum language pretend_language)
7400 {
7401 /* We may arrive here during partial symbol reading, if we need full
7402 DIEs to process an unusual case (e.g. template arguments). Do
7403 not queue PER_CU, just tell our caller to load its DIEs. */
7404 if (dwarf2_per_objfile->reading_partial_symbols)
7405 {
7406 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7407 return 1;
7408 return 0;
7409 }
7410
7411 /* Mark the dependence relation so that we don't flush PER_CU
7412 too early. */
7413 if (dependent_cu != NULL)
7414 dwarf2_add_dependence (dependent_cu, per_cu);
7415
7416 /* If it's already on the queue, we have nothing to do. */
7417 if (per_cu->queued)
7418 return 0;
7419
7420 /* If the compilation unit is already loaded, just mark it as
7421 used. */
7422 if (per_cu->cu != NULL)
7423 {
7424 per_cu->cu->last_used = 0;
7425 return 0;
7426 }
7427
7428 /* Add it to the queue. */
7429 queue_comp_unit (per_cu, pretend_language);
7430
7431 return 1;
7432 }
7433
7434 /* Process the queue. */
7435
7436 static void
7437 process_queue (void)
7438 {
7439 struct dwarf2_queue_item *item, *next_item;
7440
7441 if (dwarf2_read_debug)
7442 {
7443 fprintf_unfiltered (gdb_stdlog,
7444 "Expanding one or more symtabs of objfile %s ...\n",
7445 objfile_name (dwarf2_per_objfile->objfile));
7446 }
7447
7448 /* The queue starts out with one item, but following a DIE reference
7449 may load a new CU, adding it to the end of the queue. */
7450 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7451 {
7452 if (dwarf2_per_objfile->using_index
7453 ? !item->per_cu->v.quick->symtab
7454 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7455 {
7456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7457 unsigned int debug_print_threshold;
7458 char buf[100];
7459
7460 if (per_cu->is_debug_types)
7461 {
7462 struct signatured_type *sig_type =
7463 (struct signatured_type *) per_cu;
7464
7465 sprintf (buf, "TU %s at offset 0x%x",
7466 hex_string (sig_type->signature),
7467 per_cu->offset.sect_off);
7468 /* There can be 100s of TUs.
7469 Only print them in verbose mode. */
7470 debug_print_threshold = 2;
7471 }
7472 else
7473 {
7474 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7475 debug_print_threshold = 1;
7476 }
7477
7478 if (dwarf2_read_debug >= debug_print_threshold)
7479 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7480
7481 if (per_cu->is_debug_types)
7482 process_full_type_unit (per_cu, item->pretend_language);
7483 else
7484 process_full_comp_unit (per_cu, item->pretend_language);
7485
7486 if (dwarf2_read_debug >= debug_print_threshold)
7487 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7488 }
7489
7490 item->per_cu->queued = 0;
7491 next_item = item->next;
7492 xfree (item);
7493 }
7494
7495 dwarf2_queue_tail = NULL;
7496
7497 if (dwarf2_read_debug)
7498 {
7499 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7500 objfile_name (dwarf2_per_objfile->objfile));
7501 }
7502 }
7503
7504 /* Free all allocated queue entries. This function only releases anything if
7505 an error was thrown; if the queue was processed then it would have been
7506 freed as we went along. */
7507
7508 static void
7509 dwarf2_release_queue (void *dummy)
7510 {
7511 struct dwarf2_queue_item *item, *last;
7512
7513 item = dwarf2_queue;
7514 while (item)
7515 {
7516 /* Anything still marked queued is likely to be in an
7517 inconsistent state, so discard it. */
7518 if (item->per_cu->queued)
7519 {
7520 if (item->per_cu->cu != NULL)
7521 free_one_cached_comp_unit (item->per_cu);
7522 item->per_cu->queued = 0;
7523 }
7524
7525 last = item;
7526 item = item->next;
7527 xfree (last);
7528 }
7529
7530 dwarf2_queue = dwarf2_queue_tail = NULL;
7531 }
7532
7533 /* Read in full symbols for PST, and anything it depends on. */
7534
7535 static void
7536 psymtab_to_symtab_1 (struct partial_symtab *pst)
7537 {
7538 struct dwarf2_per_cu_data *per_cu;
7539 int i;
7540
7541 if (pst->readin)
7542 return;
7543
7544 for (i = 0; i < pst->number_of_dependencies; i++)
7545 if (!pst->dependencies[i]->readin
7546 && pst->dependencies[i]->user == NULL)
7547 {
7548 /* Inform about additional files that need to be read in. */
7549 if (info_verbose)
7550 {
7551 /* FIXME: i18n: Need to make this a single string. */
7552 fputs_filtered (" ", gdb_stdout);
7553 wrap_here ("");
7554 fputs_filtered ("and ", gdb_stdout);
7555 wrap_here ("");
7556 printf_filtered ("%s...", pst->dependencies[i]->filename);
7557 wrap_here (""); /* Flush output. */
7558 gdb_flush (gdb_stdout);
7559 }
7560 psymtab_to_symtab_1 (pst->dependencies[i]);
7561 }
7562
7563 per_cu = pst->read_symtab_private;
7564
7565 if (per_cu == NULL)
7566 {
7567 /* It's an include file, no symbols to read for it.
7568 Everything is in the parent symtab. */
7569 pst->readin = 1;
7570 return;
7571 }
7572
7573 dw2_do_instantiate_symtab (per_cu);
7574 }
7575
7576 /* Trivial hash function for die_info: the hash value of a DIE
7577 is its offset in .debug_info for this objfile. */
7578
7579 static hashval_t
7580 die_hash (const void *item)
7581 {
7582 const struct die_info *die = item;
7583
7584 return die->offset.sect_off;
7585 }
7586
7587 /* Trivial comparison function for die_info structures: two DIEs
7588 are equal if they have the same offset. */
7589
7590 static int
7591 die_eq (const void *item_lhs, const void *item_rhs)
7592 {
7593 const struct die_info *die_lhs = item_lhs;
7594 const struct die_info *die_rhs = item_rhs;
7595
7596 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7597 }
7598
7599 /* die_reader_func for load_full_comp_unit.
7600 This is identical to read_signatured_type_reader,
7601 but is kept separate for now. */
7602
7603 static void
7604 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7605 const gdb_byte *info_ptr,
7606 struct die_info *comp_unit_die,
7607 int has_children,
7608 void *data)
7609 {
7610 struct dwarf2_cu *cu = reader->cu;
7611 enum language *language_ptr = data;
7612
7613 gdb_assert (cu->die_hash == NULL);
7614 cu->die_hash =
7615 htab_create_alloc_ex (cu->header.length / 12,
7616 die_hash,
7617 die_eq,
7618 NULL,
7619 &cu->comp_unit_obstack,
7620 hashtab_obstack_allocate,
7621 dummy_obstack_deallocate);
7622
7623 if (has_children)
7624 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7625 &info_ptr, comp_unit_die);
7626 cu->dies = comp_unit_die;
7627 /* comp_unit_die is not stored in die_hash, no need. */
7628
7629 /* We try not to read any attributes in this function, because not
7630 all CUs needed for references have been loaded yet, and symbol
7631 table processing isn't initialized. But we have to set the CU language,
7632 or we won't be able to build types correctly.
7633 Similarly, if we do not read the producer, we can not apply
7634 producer-specific interpretation. */
7635 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7636 }
7637
7638 /* Load the DIEs associated with PER_CU into memory. */
7639
7640 static void
7641 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7642 enum language pretend_language)
7643 {
7644 gdb_assert (! this_cu->is_debug_types);
7645
7646 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7647 load_full_comp_unit_reader, &pretend_language);
7648 }
7649
7650 /* Add a DIE to the delayed physname list. */
7651
7652 static void
7653 add_to_method_list (struct type *type, int fnfield_index, int index,
7654 const char *name, struct die_info *die,
7655 struct dwarf2_cu *cu)
7656 {
7657 struct delayed_method_info mi;
7658 mi.type = type;
7659 mi.fnfield_index = fnfield_index;
7660 mi.index = index;
7661 mi.name = name;
7662 mi.die = die;
7663 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7664 }
7665
7666 /* A cleanup for freeing the delayed method list. */
7667
7668 static void
7669 free_delayed_list (void *ptr)
7670 {
7671 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7672 if (cu->method_list != NULL)
7673 {
7674 VEC_free (delayed_method_info, cu->method_list);
7675 cu->method_list = NULL;
7676 }
7677 }
7678
7679 /* Compute the physnames of any methods on the CU's method list.
7680
7681 The computation of method physnames is delayed in order to avoid the
7682 (bad) condition that one of the method's formal parameters is of an as yet
7683 incomplete type. */
7684
7685 static void
7686 compute_delayed_physnames (struct dwarf2_cu *cu)
7687 {
7688 int i;
7689 struct delayed_method_info *mi;
7690 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7691 {
7692 const char *physname;
7693 struct fn_fieldlist *fn_flp
7694 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7695 physname = dwarf2_physname (mi->name, mi->die, cu);
7696 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7697 }
7698 }
7699
7700 /* Go objects should be embedded in a DW_TAG_module DIE,
7701 and it's not clear if/how imported objects will appear.
7702 To keep Go support simple until that's worked out,
7703 go back through what we've read and create something usable.
7704 We could do this while processing each DIE, and feels kinda cleaner,
7705 but that way is more invasive.
7706 This is to, for example, allow the user to type "p var" or "b main"
7707 without having to specify the package name, and allow lookups
7708 of module.object to work in contexts that use the expression
7709 parser. */
7710
7711 static void
7712 fixup_go_packaging (struct dwarf2_cu *cu)
7713 {
7714 char *package_name = NULL;
7715 struct pending *list;
7716 int i;
7717
7718 for (list = global_symbols; list != NULL; list = list->next)
7719 {
7720 for (i = 0; i < list->nsyms; ++i)
7721 {
7722 struct symbol *sym = list->symbol[i];
7723
7724 if (SYMBOL_LANGUAGE (sym) == language_go
7725 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7726 {
7727 char *this_package_name = go_symbol_package_name (sym);
7728
7729 if (this_package_name == NULL)
7730 continue;
7731 if (package_name == NULL)
7732 package_name = this_package_name;
7733 else
7734 {
7735 if (strcmp (package_name, this_package_name) != 0)
7736 complaint (&symfile_complaints,
7737 _("Symtab %s has objects from two different Go packages: %s and %s"),
7738 (SYMBOL_SYMTAB (sym)
7739 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7740 : objfile_name (cu->objfile)),
7741 this_package_name, package_name);
7742 xfree (this_package_name);
7743 }
7744 }
7745 }
7746 }
7747
7748 if (package_name != NULL)
7749 {
7750 struct objfile *objfile = cu->objfile;
7751 const char *saved_package_name
7752 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7753 package_name,
7754 strlen (package_name));
7755 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7756 saved_package_name, objfile);
7757 struct symbol *sym;
7758
7759 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7760
7761 sym = allocate_symbol (objfile);
7762 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7763 SYMBOL_SET_NAMES (sym, saved_package_name,
7764 strlen (saved_package_name), 0, objfile);
7765 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7766 e.g., "main" finds the "main" module and not C's main(). */
7767 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7769 SYMBOL_TYPE (sym) = type;
7770
7771 add_symbol_to_list (sym, &global_symbols);
7772
7773 xfree (package_name);
7774 }
7775 }
7776
7777 /* Return the symtab for PER_CU. This works properly regardless of
7778 whether we're using the index or psymtabs. */
7779
7780 static struct symtab *
7781 get_symtab (struct dwarf2_per_cu_data *per_cu)
7782 {
7783 return (dwarf2_per_objfile->using_index
7784 ? per_cu->v.quick->symtab
7785 : per_cu->v.psymtab->symtab);
7786 }
7787
7788 /* A helper function for computing the list of all symbol tables
7789 included by PER_CU. */
7790
7791 static void
7792 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7793 htab_t all_children, htab_t all_type_symtabs,
7794 struct dwarf2_per_cu_data *per_cu,
7795 struct symtab *immediate_parent)
7796 {
7797 void **slot;
7798 int ix;
7799 struct symtab *symtab;
7800 struct dwarf2_per_cu_data *iter;
7801
7802 slot = htab_find_slot (all_children, per_cu, INSERT);
7803 if (*slot != NULL)
7804 {
7805 /* This inclusion and its children have been processed. */
7806 return;
7807 }
7808
7809 *slot = per_cu;
7810 /* Only add a CU if it has a symbol table. */
7811 symtab = get_symtab (per_cu);
7812 if (symtab != NULL)
7813 {
7814 /* If this is a type unit only add its symbol table if we haven't
7815 seen it yet (type unit per_cu's can share symtabs). */
7816 if (per_cu->is_debug_types)
7817 {
7818 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7819 if (*slot == NULL)
7820 {
7821 *slot = symtab;
7822 VEC_safe_push (symtab_ptr, *result, symtab);
7823 if (symtab->user == NULL)
7824 symtab->user = immediate_parent;
7825 }
7826 }
7827 else
7828 {
7829 VEC_safe_push (symtab_ptr, *result, symtab);
7830 if (symtab->user == NULL)
7831 symtab->user = immediate_parent;
7832 }
7833 }
7834
7835 for (ix = 0;
7836 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7837 ++ix)
7838 {
7839 recursively_compute_inclusions (result, all_children,
7840 all_type_symtabs, iter, symtab);
7841 }
7842 }
7843
7844 /* Compute the symtab 'includes' fields for the symtab related to
7845 PER_CU. */
7846
7847 static void
7848 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7849 {
7850 gdb_assert (! per_cu->is_debug_types);
7851
7852 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7853 {
7854 int ix, len;
7855 struct dwarf2_per_cu_data *per_cu_iter;
7856 struct symtab *symtab_iter;
7857 VEC (symtab_ptr) *result_symtabs = NULL;
7858 htab_t all_children, all_type_symtabs;
7859 struct symtab *symtab = get_symtab (per_cu);
7860
7861 /* If we don't have a symtab, we can just skip this case. */
7862 if (symtab == NULL)
7863 return;
7864
7865 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7866 NULL, xcalloc, xfree);
7867 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7868 NULL, xcalloc, xfree);
7869
7870 for (ix = 0;
7871 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7872 ix, per_cu_iter);
7873 ++ix)
7874 {
7875 recursively_compute_inclusions (&result_symtabs, all_children,
7876 all_type_symtabs, per_cu_iter,
7877 symtab);
7878 }
7879
7880 /* Now we have a transitive closure of all the included symtabs. */
7881 len = VEC_length (symtab_ptr, result_symtabs);
7882 symtab->includes
7883 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7884 (len + 1) * sizeof (struct symtab *));
7885 for (ix = 0;
7886 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7887 ++ix)
7888 symtab->includes[ix] = symtab_iter;
7889 symtab->includes[len] = NULL;
7890
7891 VEC_free (symtab_ptr, result_symtabs);
7892 htab_delete (all_children);
7893 htab_delete (all_type_symtabs);
7894 }
7895 }
7896
7897 /* Compute the 'includes' field for the symtabs of all the CUs we just
7898 read. */
7899
7900 static void
7901 process_cu_includes (void)
7902 {
7903 int ix;
7904 struct dwarf2_per_cu_data *iter;
7905
7906 for (ix = 0;
7907 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7908 ix, iter);
7909 ++ix)
7910 {
7911 if (! iter->is_debug_types)
7912 compute_symtab_includes (iter);
7913 }
7914
7915 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7916 }
7917
7918 /* Generate full symbol information for PER_CU, whose DIEs have
7919 already been loaded into memory. */
7920
7921 static void
7922 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7923 enum language pretend_language)
7924 {
7925 struct dwarf2_cu *cu = per_cu->cu;
7926 struct objfile *objfile = per_cu->objfile;
7927 CORE_ADDR lowpc, highpc;
7928 struct symtab *symtab;
7929 struct cleanup *back_to, *delayed_list_cleanup;
7930 CORE_ADDR baseaddr;
7931 struct block *static_block;
7932
7933 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7934
7935 buildsym_init ();
7936 back_to = make_cleanup (really_free_pendings, NULL);
7937 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7938
7939 cu->list_in_scope = &file_symbols;
7940
7941 cu->language = pretend_language;
7942 cu->language_defn = language_def (cu->language);
7943
7944 /* Do line number decoding in read_file_scope () */
7945 process_die (cu->dies, cu);
7946
7947 /* For now fudge the Go package. */
7948 if (cu->language == language_go)
7949 fixup_go_packaging (cu);
7950
7951 /* Now that we have processed all the DIEs in the CU, all the types
7952 should be complete, and it should now be safe to compute all of the
7953 physnames. */
7954 compute_delayed_physnames (cu);
7955 do_cleanups (delayed_list_cleanup);
7956
7957 /* Some compilers don't define a DW_AT_high_pc attribute for the
7958 compilation unit. If the DW_AT_high_pc is missing, synthesize
7959 it, by scanning the DIE's below the compilation unit. */
7960 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7961
7962 static_block
7963 = end_symtab_get_static_block (highpc + baseaddr, 0, 1);
7964
7965 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7966 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7967 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7968 addrmap to help ensure it has an accurate map of pc values belonging to
7969 this comp unit. */
7970 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7971
7972 symtab = end_symtab_from_static_block (static_block,
7973 SECT_OFF_TEXT (objfile), 0);
7974
7975 if (symtab != NULL)
7976 {
7977 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7978
7979 /* Set symtab language to language from DW_AT_language. If the
7980 compilation is from a C file generated by language preprocessors, do
7981 not set the language if it was already deduced by start_subfile. */
7982 if (!(cu->language == language_c && symtab->language != language_c))
7983 symtab->language = cu->language;
7984
7985 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7986 produce DW_AT_location with location lists but it can be possibly
7987 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7988 there were bugs in prologue debug info, fixed later in GCC-4.5
7989 by "unwind info for epilogues" patch (which is not directly related).
7990
7991 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7992 needed, it would be wrong due to missing DW_AT_producer there.
7993
7994 Still one can confuse GDB by using non-standard GCC compilation
7995 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7996 */
7997 if (cu->has_loclist && gcc_4_minor >= 5)
7998 symtab->locations_valid = 1;
7999
8000 if (gcc_4_minor >= 5)
8001 symtab->epilogue_unwind_valid = 1;
8002
8003 symtab->call_site_htab = cu->call_site_htab;
8004 }
8005
8006 if (dwarf2_per_objfile->using_index)
8007 per_cu->v.quick->symtab = symtab;
8008 else
8009 {
8010 struct partial_symtab *pst = per_cu->v.psymtab;
8011 pst->symtab = symtab;
8012 pst->readin = 1;
8013 }
8014
8015 /* Push it for inclusion processing later. */
8016 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8017
8018 do_cleanups (back_to);
8019 }
8020
8021 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8022 already been loaded into memory. */
8023
8024 static void
8025 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8026 enum language pretend_language)
8027 {
8028 struct dwarf2_cu *cu = per_cu->cu;
8029 struct objfile *objfile = per_cu->objfile;
8030 struct symtab *symtab;
8031 struct cleanup *back_to, *delayed_list_cleanup;
8032 struct signatured_type *sig_type;
8033
8034 gdb_assert (per_cu->is_debug_types);
8035 sig_type = (struct signatured_type *) per_cu;
8036
8037 buildsym_init ();
8038 back_to = make_cleanup (really_free_pendings, NULL);
8039 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8040
8041 cu->list_in_scope = &file_symbols;
8042
8043 cu->language = pretend_language;
8044 cu->language_defn = language_def (cu->language);
8045
8046 /* The symbol tables are set up in read_type_unit_scope. */
8047 process_die (cu->dies, cu);
8048
8049 /* For now fudge the Go package. */
8050 if (cu->language == language_go)
8051 fixup_go_packaging (cu);
8052
8053 /* Now that we have processed all the DIEs in the CU, all the types
8054 should be complete, and it should now be safe to compute all of the
8055 physnames. */
8056 compute_delayed_physnames (cu);
8057 do_cleanups (delayed_list_cleanup);
8058
8059 /* TUs share symbol tables.
8060 If this is the first TU to use this symtab, complete the construction
8061 of it with end_expandable_symtab. Otherwise, complete the addition of
8062 this TU's symbols to the existing symtab. */
8063 if (sig_type->type_unit_group->primary_symtab == NULL)
8064 {
8065 symtab = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8066 sig_type->type_unit_group->primary_symtab = symtab;
8067
8068 if (symtab != NULL)
8069 {
8070 /* Set symtab language to language from DW_AT_language. If the
8071 compilation is from a C file generated by language preprocessors,
8072 do not set the language if it was already deduced by
8073 start_subfile. */
8074 if (!(cu->language == language_c && symtab->language != language_c))
8075 symtab->language = cu->language;
8076 }
8077 }
8078 else
8079 {
8080 augment_type_symtab (sig_type->type_unit_group->primary_symtab);
8081 symtab = sig_type->type_unit_group->primary_symtab;
8082 }
8083
8084 if (dwarf2_per_objfile->using_index)
8085 per_cu->v.quick->symtab = symtab;
8086 else
8087 {
8088 struct partial_symtab *pst = per_cu->v.psymtab;
8089 pst->symtab = symtab;
8090 pst->readin = 1;
8091 }
8092
8093 do_cleanups (back_to);
8094 }
8095
8096 /* Process an imported unit DIE. */
8097
8098 static void
8099 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8100 {
8101 struct attribute *attr;
8102
8103 /* For now we don't handle imported units in type units. */
8104 if (cu->per_cu->is_debug_types)
8105 {
8106 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8107 " supported in type units [in module %s]"),
8108 objfile_name (cu->objfile));
8109 }
8110
8111 attr = dwarf2_attr (die, DW_AT_import, cu);
8112 if (attr != NULL)
8113 {
8114 struct dwarf2_per_cu_data *per_cu;
8115 struct symtab *imported_symtab;
8116 sect_offset offset;
8117 int is_dwz;
8118
8119 offset = dwarf2_get_ref_die_offset (attr);
8120 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8121 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8122
8123 /* If necessary, add it to the queue and load its DIEs. */
8124 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8125 load_full_comp_unit (per_cu, cu->language);
8126
8127 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8128 per_cu);
8129 }
8130 }
8131
8132 /* Reset the in_process bit of a die. */
8133
8134 static void
8135 reset_die_in_process (void *arg)
8136 {
8137 struct die_info *die = arg;
8138
8139 die->in_process = 0;
8140 }
8141
8142 /* Process a die and its children. */
8143
8144 static void
8145 process_die (struct die_info *die, struct dwarf2_cu *cu)
8146 {
8147 struct cleanup *in_process;
8148
8149 /* We should only be processing those not already in process. */
8150 gdb_assert (!die->in_process);
8151
8152 die->in_process = 1;
8153 in_process = make_cleanup (reset_die_in_process,die);
8154
8155 switch (die->tag)
8156 {
8157 case DW_TAG_padding:
8158 break;
8159 case DW_TAG_compile_unit:
8160 case DW_TAG_partial_unit:
8161 read_file_scope (die, cu);
8162 break;
8163 case DW_TAG_type_unit:
8164 read_type_unit_scope (die, cu);
8165 break;
8166 case DW_TAG_subprogram:
8167 case DW_TAG_inlined_subroutine:
8168 read_func_scope (die, cu);
8169 break;
8170 case DW_TAG_lexical_block:
8171 case DW_TAG_try_block:
8172 case DW_TAG_catch_block:
8173 read_lexical_block_scope (die, cu);
8174 break;
8175 case DW_TAG_GNU_call_site:
8176 read_call_site_scope (die, cu);
8177 break;
8178 case DW_TAG_class_type:
8179 case DW_TAG_interface_type:
8180 case DW_TAG_structure_type:
8181 case DW_TAG_union_type:
8182 process_structure_scope (die, cu);
8183 break;
8184 case DW_TAG_enumeration_type:
8185 process_enumeration_scope (die, cu);
8186 break;
8187
8188 /* These dies have a type, but processing them does not create
8189 a symbol or recurse to process the children. Therefore we can
8190 read them on-demand through read_type_die. */
8191 case DW_TAG_subroutine_type:
8192 case DW_TAG_set_type:
8193 case DW_TAG_array_type:
8194 case DW_TAG_pointer_type:
8195 case DW_TAG_ptr_to_member_type:
8196 case DW_TAG_reference_type:
8197 case DW_TAG_string_type:
8198 break;
8199
8200 case DW_TAG_base_type:
8201 case DW_TAG_subrange_type:
8202 case DW_TAG_typedef:
8203 /* Add a typedef symbol for the type definition, if it has a
8204 DW_AT_name. */
8205 new_symbol (die, read_type_die (die, cu), cu);
8206 break;
8207 case DW_TAG_common_block:
8208 read_common_block (die, cu);
8209 break;
8210 case DW_TAG_common_inclusion:
8211 break;
8212 case DW_TAG_namespace:
8213 cu->processing_has_namespace_info = 1;
8214 read_namespace (die, cu);
8215 break;
8216 case DW_TAG_module:
8217 cu->processing_has_namespace_info = 1;
8218 read_module (die, cu);
8219 break;
8220 case DW_TAG_imported_declaration:
8221 cu->processing_has_namespace_info = 1;
8222 if (read_namespace_alias (die, cu))
8223 break;
8224 /* The declaration is not a global namespace alias: fall through. */
8225 case DW_TAG_imported_module:
8226 cu->processing_has_namespace_info = 1;
8227 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8228 || cu->language != language_fortran))
8229 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8230 dwarf_tag_name (die->tag));
8231 read_import_statement (die, cu);
8232 break;
8233
8234 case DW_TAG_imported_unit:
8235 process_imported_unit_die (die, cu);
8236 break;
8237
8238 default:
8239 new_symbol (die, NULL, cu);
8240 break;
8241 }
8242
8243 do_cleanups (in_process);
8244 }
8245 \f
8246 /* DWARF name computation. */
8247
8248 /* A helper function for dwarf2_compute_name which determines whether DIE
8249 needs to have the name of the scope prepended to the name listed in the
8250 die. */
8251
8252 static int
8253 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8254 {
8255 struct attribute *attr;
8256
8257 switch (die->tag)
8258 {
8259 case DW_TAG_namespace:
8260 case DW_TAG_typedef:
8261 case DW_TAG_class_type:
8262 case DW_TAG_interface_type:
8263 case DW_TAG_structure_type:
8264 case DW_TAG_union_type:
8265 case DW_TAG_enumeration_type:
8266 case DW_TAG_enumerator:
8267 case DW_TAG_subprogram:
8268 case DW_TAG_member:
8269 case DW_TAG_imported_declaration:
8270 return 1;
8271
8272 case DW_TAG_variable:
8273 case DW_TAG_constant:
8274 /* We only need to prefix "globally" visible variables. These include
8275 any variable marked with DW_AT_external or any variable that
8276 lives in a namespace. [Variables in anonymous namespaces
8277 require prefixing, but they are not DW_AT_external.] */
8278
8279 if (dwarf2_attr (die, DW_AT_specification, cu))
8280 {
8281 struct dwarf2_cu *spec_cu = cu;
8282
8283 return die_needs_namespace (die_specification (die, &spec_cu),
8284 spec_cu);
8285 }
8286
8287 attr = dwarf2_attr (die, DW_AT_external, cu);
8288 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8289 && die->parent->tag != DW_TAG_module)
8290 return 0;
8291 /* A variable in a lexical block of some kind does not need a
8292 namespace, even though in C++ such variables may be external
8293 and have a mangled name. */
8294 if (die->parent->tag == DW_TAG_lexical_block
8295 || die->parent->tag == DW_TAG_try_block
8296 || die->parent->tag == DW_TAG_catch_block
8297 || die->parent->tag == DW_TAG_subprogram)
8298 return 0;
8299 return 1;
8300
8301 default:
8302 return 0;
8303 }
8304 }
8305
8306 /* Retrieve the last character from a mem_file. */
8307
8308 static void
8309 do_ui_file_peek_last (void *object, const char *buffer, long length)
8310 {
8311 char *last_char_p = (char *) object;
8312
8313 if (length > 0)
8314 *last_char_p = buffer[length - 1];
8315 }
8316
8317 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8318 compute the physname for the object, which include a method's:
8319 - formal parameters (C++/Java),
8320 - receiver type (Go),
8321 - return type (Java).
8322
8323 The term "physname" is a bit confusing.
8324 For C++, for example, it is the demangled name.
8325 For Go, for example, it's the mangled name.
8326
8327 For Ada, return the DIE's linkage name rather than the fully qualified
8328 name. PHYSNAME is ignored..
8329
8330 The result is allocated on the objfile_obstack and canonicalized. */
8331
8332 static const char *
8333 dwarf2_compute_name (const char *name,
8334 struct die_info *die, struct dwarf2_cu *cu,
8335 int physname)
8336 {
8337 struct objfile *objfile = cu->objfile;
8338
8339 if (name == NULL)
8340 name = dwarf2_name (die, cu);
8341
8342 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8343 compute it by typename_concat inside GDB. */
8344 if (cu->language == language_ada
8345 || (cu->language == language_fortran && physname))
8346 {
8347 /* For Ada unit, we prefer the linkage name over the name, as
8348 the former contains the exported name, which the user expects
8349 to be able to reference. Ideally, we want the user to be able
8350 to reference this entity using either natural or linkage name,
8351 but we haven't started looking at this enhancement yet. */
8352 struct attribute *attr;
8353
8354 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8355 if (attr == NULL)
8356 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8357 if (attr && DW_STRING (attr))
8358 return DW_STRING (attr);
8359 }
8360
8361 /* These are the only languages we know how to qualify names in. */
8362 if (name != NULL
8363 && (cu->language == language_cplus || cu->language == language_java
8364 || cu->language == language_fortran))
8365 {
8366 if (die_needs_namespace (die, cu))
8367 {
8368 long length;
8369 const char *prefix;
8370 struct ui_file *buf;
8371 char *intermediate_name;
8372 const char *canonical_name = NULL;
8373
8374 prefix = determine_prefix (die, cu);
8375 buf = mem_fileopen ();
8376 if (*prefix != '\0')
8377 {
8378 char *prefixed_name = typename_concat (NULL, prefix, name,
8379 physname, cu);
8380
8381 fputs_unfiltered (prefixed_name, buf);
8382 xfree (prefixed_name);
8383 }
8384 else
8385 fputs_unfiltered (name, buf);
8386
8387 /* Template parameters may be specified in the DIE's DW_AT_name, or
8388 as children with DW_TAG_template_type_param or
8389 DW_TAG_value_type_param. If the latter, add them to the name
8390 here. If the name already has template parameters, then
8391 skip this step; some versions of GCC emit both, and
8392 it is more efficient to use the pre-computed name.
8393
8394 Something to keep in mind about this process: it is very
8395 unlikely, or in some cases downright impossible, to produce
8396 something that will match the mangled name of a function.
8397 If the definition of the function has the same debug info,
8398 we should be able to match up with it anyway. But fallbacks
8399 using the minimal symbol, for instance to find a method
8400 implemented in a stripped copy of libstdc++, will not work.
8401 If we do not have debug info for the definition, we will have to
8402 match them up some other way.
8403
8404 When we do name matching there is a related problem with function
8405 templates; two instantiated function templates are allowed to
8406 differ only by their return types, which we do not add here. */
8407
8408 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8409 {
8410 struct attribute *attr;
8411 struct die_info *child;
8412 int first = 1;
8413
8414 die->building_fullname = 1;
8415
8416 for (child = die->child; child != NULL; child = child->sibling)
8417 {
8418 struct type *type;
8419 LONGEST value;
8420 const gdb_byte *bytes;
8421 struct dwarf2_locexpr_baton *baton;
8422 struct value *v;
8423
8424 if (child->tag != DW_TAG_template_type_param
8425 && child->tag != DW_TAG_template_value_param)
8426 continue;
8427
8428 if (first)
8429 {
8430 fputs_unfiltered ("<", buf);
8431 first = 0;
8432 }
8433 else
8434 fputs_unfiltered (", ", buf);
8435
8436 attr = dwarf2_attr (child, DW_AT_type, cu);
8437 if (attr == NULL)
8438 {
8439 complaint (&symfile_complaints,
8440 _("template parameter missing DW_AT_type"));
8441 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8442 continue;
8443 }
8444 type = die_type (child, cu);
8445
8446 if (child->tag == DW_TAG_template_type_param)
8447 {
8448 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8449 continue;
8450 }
8451
8452 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8453 if (attr == NULL)
8454 {
8455 complaint (&symfile_complaints,
8456 _("template parameter missing "
8457 "DW_AT_const_value"));
8458 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8459 continue;
8460 }
8461
8462 dwarf2_const_value_attr (attr, type, name,
8463 &cu->comp_unit_obstack, cu,
8464 &value, &bytes, &baton);
8465
8466 if (TYPE_NOSIGN (type))
8467 /* GDB prints characters as NUMBER 'CHAR'. If that's
8468 changed, this can use value_print instead. */
8469 c_printchar (value, type, buf);
8470 else
8471 {
8472 struct value_print_options opts;
8473
8474 if (baton != NULL)
8475 v = dwarf2_evaluate_loc_desc (type, NULL,
8476 baton->data,
8477 baton->size,
8478 baton->per_cu);
8479 else if (bytes != NULL)
8480 {
8481 v = allocate_value (type);
8482 memcpy (value_contents_writeable (v), bytes,
8483 TYPE_LENGTH (type));
8484 }
8485 else
8486 v = value_from_longest (type, value);
8487
8488 /* Specify decimal so that we do not depend on
8489 the radix. */
8490 get_formatted_print_options (&opts, 'd');
8491 opts.raw = 1;
8492 value_print (v, buf, &opts);
8493 release_value (v);
8494 value_free (v);
8495 }
8496 }
8497
8498 die->building_fullname = 0;
8499
8500 if (!first)
8501 {
8502 /* Close the argument list, with a space if necessary
8503 (nested templates). */
8504 char last_char = '\0';
8505 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8506 if (last_char == '>')
8507 fputs_unfiltered (" >", buf);
8508 else
8509 fputs_unfiltered (">", buf);
8510 }
8511 }
8512
8513 /* For Java and C++ methods, append formal parameter type
8514 information, if PHYSNAME. */
8515
8516 if (physname && die->tag == DW_TAG_subprogram
8517 && (cu->language == language_cplus
8518 || cu->language == language_java))
8519 {
8520 struct type *type = read_type_die (die, cu);
8521
8522 c_type_print_args (type, buf, 1, cu->language,
8523 &type_print_raw_options);
8524
8525 if (cu->language == language_java)
8526 {
8527 /* For java, we must append the return type to method
8528 names. */
8529 if (die->tag == DW_TAG_subprogram)
8530 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8531 0, 0, &type_print_raw_options);
8532 }
8533 else if (cu->language == language_cplus)
8534 {
8535 /* Assume that an artificial first parameter is
8536 "this", but do not crash if it is not. RealView
8537 marks unnamed (and thus unused) parameters as
8538 artificial; there is no way to differentiate
8539 the two cases. */
8540 if (TYPE_NFIELDS (type) > 0
8541 && TYPE_FIELD_ARTIFICIAL (type, 0)
8542 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8543 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8544 0))))
8545 fputs_unfiltered (" const", buf);
8546 }
8547 }
8548
8549 intermediate_name = ui_file_xstrdup (buf, &length);
8550 ui_file_delete (buf);
8551
8552 if (cu->language == language_cplus)
8553 canonical_name
8554 = dwarf2_canonicalize_name (intermediate_name, cu,
8555 &objfile->per_bfd->storage_obstack);
8556
8557 /* If we only computed INTERMEDIATE_NAME, or if
8558 INTERMEDIATE_NAME is already canonical, then we need to
8559 copy it to the appropriate obstack. */
8560 if (canonical_name == NULL || canonical_name == intermediate_name)
8561 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8562 intermediate_name,
8563 strlen (intermediate_name));
8564 else
8565 name = canonical_name;
8566
8567 xfree (intermediate_name);
8568 }
8569 }
8570
8571 return name;
8572 }
8573
8574 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8575 If scope qualifiers are appropriate they will be added. The result
8576 will be allocated on the storage_obstack, or NULL if the DIE does
8577 not have a name. NAME may either be from a previous call to
8578 dwarf2_name or NULL.
8579
8580 The output string will be canonicalized (if C++/Java). */
8581
8582 static const char *
8583 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8584 {
8585 return dwarf2_compute_name (name, die, cu, 0);
8586 }
8587
8588 /* Construct a physname for the given DIE in CU. NAME may either be
8589 from a previous call to dwarf2_name or NULL. The result will be
8590 allocated on the objfile_objstack or NULL if the DIE does not have a
8591 name.
8592
8593 The output string will be canonicalized (if C++/Java). */
8594
8595 static const char *
8596 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8597 {
8598 struct objfile *objfile = cu->objfile;
8599 struct attribute *attr;
8600 const char *retval, *mangled = NULL, *canon = NULL;
8601 struct cleanup *back_to;
8602 int need_copy = 1;
8603
8604 /* In this case dwarf2_compute_name is just a shortcut not building anything
8605 on its own. */
8606 if (!die_needs_namespace (die, cu))
8607 return dwarf2_compute_name (name, die, cu, 1);
8608
8609 back_to = make_cleanup (null_cleanup, NULL);
8610
8611 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8612 if (!attr)
8613 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8614
8615 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8616 has computed. */
8617 if (attr && DW_STRING (attr))
8618 {
8619 char *demangled;
8620
8621 mangled = DW_STRING (attr);
8622
8623 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8624 type. It is easier for GDB users to search for such functions as
8625 `name(params)' than `long name(params)'. In such case the minimal
8626 symbol names do not match the full symbol names but for template
8627 functions there is never a need to look up their definition from their
8628 declaration so the only disadvantage remains the minimal symbol
8629 variant `long name(params)' does not have the proper inferior type.
8630 */
8631
8632 if (cu->language == language_go)
8633 {
8634 /* This is a lie, but we already lie to the caller new_symbol_full.
8635 new_symbol_full assumes we return the mangled name.
8636 This just undoes that lie until things are cleaned up. */
8637 demangled = NULL;
8638 }
8639 else
8640 {
8641 demangled = gdb_demangle (mangled,
8642 (DMGL_PARAMS | DMGL_ANSI
8643 | (cu->language == language_java
8644 ? DMGL_JAVA | DMGL_RET_POSTFIX
8645 : DMGL_RET_DROP)));
8646 }
8647 if (demangled)
8648 {
8649 make_cleanup (xfree, demangled);
8650 canon = demangled;
8651 }
8652 else
8653 {
8654 canon = mangled;
8655 need_copy = 0;
8656 }
8657 }
8658
8659 if (canon == NULL || check_physname)
8660 {
8661 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8662
8663 if (canon != NULL && strcmp (physname, canon) != 0)
8664 {
8665 /* It may not mean a bug in GDB. The compiler could also
8666 compute DW_AT_linkage_name incorrectly. But in such case
8667 GDB would need to be bug-to-bug compatible. */
8668
8669 complaint (&symfile_complaints,
8670 _("Computed physname <%s> does not match demangled <%s> "
8671 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8672 physname, canon, mangled, die->offset.sect_off,
8673 objfile_name (objfile));
8674
8675 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8676 is available here - over computed PHYSNAME. It is safer
8677 against both buggy GDB and buggy compilers. */
8678
8679 retval = canon;
8680 }
8681 else
8682 {
8683 retval = physname;
8684 need_copy = 0;
8685 }
8686 }
8687 else
8688 retval = canon;
8689
8690 if (need_copy)
8691 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8692 retval, strlen (retval));
8693
8694 do_cleanups (back_to);
8695 return retval;
8696 }
8697
8698 /* Inspect DIE in CU for a namespace alias. If one exists, record
8699 a new symbol for it.
8700
8701 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8702
8703 static int
8704 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8705 {
8706 struct attribute *attr;
8707
8708 /* If the die does not have a name, this is not a namespace
8709 alias. */
8710 attr = dwarf2_attr (die, DW_AT_name, cu);
8711 if (attr != NULL)
8712 {
8713 int num;
8714 struct die_info *d = die;
8715 struct dwarf2_cu *imported_cu = cu;
8716
8717 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8718 keep inspecting DIEs until we hit the underlying import. */
8719 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8720 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8721 {
8722 attr = dwarf2_attr (d, DW_AT_import, cu);
8723 if (attr == NULL)
8724 break;
8725
8726 d = follow_die_ref (d, attr, &imported_cu);
8727 if (d->tag != DW_TAG_imported_declaration)
8728 break;
8729 }
8730
8731 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8732 {
8733 complaint (&symfile_complaints,
8734 _("DIE at 0x%x has too many recursively imported "
8735 "declarations"), d->offset.sect_off);
8736 return 0;
8737 }
8738
8739 if (attr != NULL)
8740 {
8741 struct type *type;
8742 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8743
8744 type = get_die_type_at_offset (offset, cu->per_cu);
8745 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8746 {
8747 /* This declaration is a global namespace alias. Add
8748 a symbol for it whose type is the aliased namespace. */
8749 new_symbol (die, type, cu);
8750 return 1;
8751 }
8752 }
8753 }
8754
8755 return 0;
8756 }
8757
8758 /* Read the import statement specified by the given die and record it. */
8759
8760 static void
8761 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8762 {
8763 struct objfile *objfile = cu->objfile;
8764 struct attribute *import_attr;
8765 struct die_info *imported_die, *child_die;
8766 struct dwarf2_cu *imported_cu;
8767 const char *imported_name;
8768 const char *imported_name_prefix;
8769 const char *canonical_name;
8770 const char *import_alias;
8771 const char *imported_declaration = NULL;
8772 const char *import_prefix;
8773 VEC (const_char_ptr) *excludes = NULL;
8774 struct cleanup *cleanups;
8775
8776 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8777 if (import_attr == NULL)
8778 {
8779 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8780 dwarf_tag_name (die->tag));
8781 return;
8782 }
8783
8784 imported_cu = cu;
8785 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8786 imported_name = dwarf2_name (imported_die, imported_cu);
8787 if (imported_name == NULL)
8788 {
8789 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8790
8791 The import in the following code:
8792 namespace A
8793 {
8794 typedef int B;
8795 }
8796
8797 int main ()
8798 {
8799 using A::B;
8800 B b;
8801 return b;
8802 }
8803
8804 ...
8805 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8806 <52> DW_AT_decl_file : 1
8807 <53> DW_AT_decl_line : 6
8808 <54> DW_AT_import : <0x75>
8809 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8810 <59> DW_AT_name : B
8811 <5b> DW_AT_decl_file : 1
8812 <5c> DW_AT_decl_line : 2
8813 <5d> DW_AT_type : <0x6e>
8814 ...
8815 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8816 <76> DW_AT_byte_size : 4
8817 <77> DW_AT_encoding : 5 (signed)
8818
8819 imports the wrong die ( 0x75 instead of 0x58 ).
8820 This case will be ignored until the gcc bug is fixed. */
8821 return;
8822 }
8823
8824 /* Figure out the local name after import. */
8825 import_alias = dwarf2_name (die, cu);
8826
8827 /* Figure out where the statement is being imported to. */
8828 import_prefix = determine_prefix (die, cu);
8829
8830 /* Figure out what the scope of the imported die is and prepend it
8831 to the name of the imported die. */
8832 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8833
8834 if (imported_die->tag != DW_TAG_namespace
8835 && imported_die->tag != DW_TAG_module)
8836 {
8837 imported_declaration = imported_name;
8838 canonical_name = imported_name_prefix;
8839 }
8840 else if (strlen (imported_name_prefix) > 0)
8841 canonical_name = obconcat (&objfile->objfile_obstack,
8842 imported_name_prefix, "::", imported_name,
8843 (char *) NULL);
8844 else
8845 canonical_name = imported_name;
8846
8847 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8848
8849 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8850 for (child_die = die->child; child_die && child_die->tag;
8851 child_die = sibling_die (child_die))
8852 {
8853 /* DWARF-4: A Fortran use statement with a “rename list” may be
8854 represented by an imported module entry with an import attribute
8855 referring to the module and owned entries corresponding to those
8856 entities that are renamed as part of being imported. */
8857
8858 if (child_die->tag != DW_TAG_imported_declaration)
8859 {
8860 complaint (&symfile_complaints,
8861 _("child DW_TAG_imported_declaration expected "
8862 "- DIE at 0x%x [in module %s]"),
8863 child_die->offset.sect_off, objfile_name (objfile));
8864 continue;
8865 }
8866
8867 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8868 if (import_attr == NULL)
8869 {
8870 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8871 dwarf_tag_name (child_die->tag));
8872 continue;
8873 }
8874
8875 imported_cu = cu;
8876 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8877 &imported_cu);
8878 imported_name = dwarf2_name (imported_die, imported_cu);
8879 if (imported_name == NULL)
8880 {
8881 complaint (&symfile_complaints,
8882 _("child DW_TAG_imported_declaration has unknown "
8883 "imported name - DIE at 0x%x [in module %s]"),
8884 child_die->offset.sect_off, objfile_name (objfile));
8885 continue;
8886 }
8887
8888 VEC_safe_push (const_char_ptr, excludes, imported_name);
8889
8890 process_die (child_die, cu);
8891 }
8892
8893 cp_add_using_directive (import_prefix,
8894 canonical_name,
8895 import_alias,
8896 imported_declaration,
8897 excludes,
8898 0,
8899 &objfile->objfile_obstack);
8900
8901 do_cleanups (cleanups);
8902 }
8903
8904 /* Cleanup function for handle_DW_AT_stmt_list. */
8905
8906 static void
8907 free_cu_line_header (void *arg)
8908 {
8909 struct dwarf2_cu *cu = arg;
8910
8911 free_line_header (cu->line_header);
8912 cu->line_header = NULL;
8913 }
8914
8915 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8916 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8917 this, it was first present in GCC release 4.3.0. */
8918
8919 static int
8920 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8921 {
8922 if (!cu->checked_producer)
8923 check_producer (cu);
8924
8925 return cu->producer_is_gcc_lt_4_3;
8926 }
8927
8928 static void
8929 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8930 const char **name, const char **comp_dir)
8931 {
8932 struct attribute *attr;
8933
8934 *name = NULL;
8935 *comp_dir = NULL;
8936
8937 /* Find the filename. Do not use dwarf2_name here, since the filename
8938 is not a source language identifier. */
8939 attr = dwarf2_attr (die, DW_AT_name, cu);
8940 if (attr)
8941 {
8942 *name = DW_STRING (attr);
8943 }
8944
8945 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8946 if (attr)
8947 *comp_dir = DW_STRING (attr);
8948 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8949 && IS_ABSOLUTE_PATH (*name))
8950 {
8951 char *d = ldirname (*name);
8952
8953 *comp_dir = d;
8954 if (d != NULL)
8955 make_cleanup (xfree, d);
8956 }
8957 if (*comp_dir != NULL)
8958 {
8959 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8960 directory, get rid of it. */
8961 char *cp = strchr (*comp_dir, ':');
8962
8963 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8964 *comp_dir = cp + 1;
8965 }
8966
8967 if (*name == NULL)
8968 *name = "<unknown>";
8969 }
8970
8971 /* Handle DW_AT_stmt_list for a compilation unit.
8972 DIE is the DW_TAG_compile_unit die for CU.
8973 COMP_DIR is the compilation directory. LOWPC is passed to
8974 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8975
8976 static void
8977 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8978 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8979 {
8980 struct attribute *attr;
8981
8982 gdb_assert (! cu->per_cu->is_debug_types);
8983
8984 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8985 if (attr)
8986 {
8987 unsigned int line_offset = DW_UNSND (attr);
8988 struct line_header *line_header
8989 = dwarf_decode_line_header (line_offset, cu);
8990
8991 if (line_header)
8992 {
8993 cu->line_header = line_header;
8994 make_cleanup (free_cu_line_header, cu);
8995 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
8996 }
8997 }
8998 }
8999
9000 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9001
9002 static void
9003 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9004 {
9005 struct objfile *objfile = dwarf2_per_objfile->objfile;
9006 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9007 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9008 CORE_ADDR highpc = ((CORE_ADDR) 0);
9009 struct attribute *attr;
9010 const char *name = NULL;
9011 const char *comp_dir = NULL;
9012 struct die_info *child_die;
9013 bfd *abfd = objfile->obfd;
9014 CORE_ADDR baseaddr;
9015
9016 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9017
9018 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9019
9020 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9021 from finish_block. */
9022 if (lowpc == ((CORE_ADDR) -1))
9023 lowpc = highpc;
9024 lowpc += baseaddr;
9025 highpc += baseaddr;
9026
9027 find_file_and_directory (die, cu, &name, &comp_dir);
9028
9029 prepare_one_comp_unit (cu, die, cu->language);
9030
9031 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9032 standardised yet. As a workaround for the language detection we fall
9033 back to the DW_AT_producer string. */
9034 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9035 cu->language = language_opencl;
9036
9037 /* Similar hack for Go. */
9038 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9039 set_cu_language (DW_LANG_Go, cu);
9040
9041 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9042
9043 /* Decode line number information if present. We do this before
9044 processing child DIEs, so that the line header table is available
9045 for DW_AT_decl_file. */
9046 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9047
9048 /* Process all dies in compilation unit. */
9049 if (die->child != NULL)
9050 {
9051 child_die = die->child;
9052 while (child_die && child_die->tag)
9053 {
9054 process_die (child_die, cu);
9055 child_die = sibling_die (child_die);
9056 }
9057 }
9058
9059 /* Decode macro information, if present. Dwarf 2 macro information
9060 refers to information in the line number info statement program
9061 header, so we can only read it if we've read the header
9062 successfully. */
9063 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9064 if (attr && cu->line_header)
9065 {
9066 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9067 complaint (&symfile_complaints,
9068 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9069
9070 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9071 }
9072 else
9073 {
9074 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9075 if (attr && cu->line_header)
9076 {
9077 unsigned int macro_offset = DW_UNSND (attr);
9078
9079 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9080 }
9081 }
9082
9083 do_cleanups (back_to);
9084 }
9085
9086 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9087 Create the set of symtabs used by this TU, or if this TU is sharing
9088 symtabs with another TU and the symtabs have already been created
9089 then restore those symtabs in the line header.
9090 We don't need the pc/line-number mapping for type units. */
9091
9092 static void
9093 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9094 {
9095 struct objfile *objfile = dwarf2_per_objfile->objfile;
9096 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9097 struct type_unit_group *tu_group;
9098 int first_time;
9099 struct line_header *lh;
9100 struct attribute *attr;
9101 unsigned int i, line_offset;
9102 struct signatured_type *sig_type;
9103
9104 gdb_assert (per_cu->is_debug_types);
9105 sig_type = (struct signatured_type *) per_cu;
9106
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9108
9109 /* If we're using .gdb_index (includes -readnow) then
9110 per_cu->type_unit_group may not have been set up yet. */
9111 if (sig_type->type_unit_group == NULL)
9112 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9113 tu_group = sig_type->type_unit_group;
9114
9115 /* If we've already processed this stmt_list there's no real need to
9116 do it again, we could fake it and just recreate the part we need
9117 (file name,index -> symtab mapping). If data shows this optimization
9118 is useful we can do it then. */
9119 first_time = tu_group->primary_symtab == NULL;
9120
9121 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9122 debug info. */
9123 lh = NULL;
9124 if (attr != NULL)
9125 {
9126 line_offset = DW_UNSND (attr);
9127 lh = dwarf_decode_line_header (line_offset, cu);
9128 }
9129 if (lh == NULL)
9130 {
9131 if (first_time)
9132 dwarf2_start_symtab (cu, "", NULL, 0);
9133 else
9134 {
9135 gdb_assert (tu_group->symtabs == NULL);
9136 restart_symtab (0);
9137 }
9138 /* Note: The primary symtab will get allocated at the end. */
9139 return;
9140 }
9141
9142 cu->line_header = lh;
9143 make_cleanup (free_cu_line_header, cu);
9144
9145 if (first_time)
9146 {
9147 dwarf2_start_symtab (cu, "", NULL, 0);
9148
9149 tu_group->num_symtabs = lh->num_file_names;
9150 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9151
9152 for (i = 0; i < lh->num_file_names; ++i)
9153 {
9154 const char *dir = NULL;
9155 struct file_entry *fe = &lh->file_names[i];
9156
9157 if (fe->dir_index)
9158 dir = lh->include_dirs[fe->dir_index - 1];
9159 dwarf2_start_subfile (fe->name, dir);
9160
9161 /* Note: We don't have to watch for the main subfile here, type units
9162 don't have DW_AT_name. */
9163
9164 if (current_subfile->symtab == NULL)
9165 {
9166 /* NOTE: start_subfile will recognize when it's been passed
9167 a file it has already seen. So we can't assume there's a
9168 simple mapping from lh->file_names to subfiles,
9169 lh->file_names may contain dups. */
9170 current_subfile->symtab = allocate_symtab (current_subfile->name,
9171 objfile);
9172 }
9173
9174 fe->symtab = current_subfile->symtab;
9175 tu_group->symtabs[i] = fe->symtab;
9176 }
9177 }
9178 else
9179 {
9180 restart_symtab (0);
9181
9182 for (i = 0; i < lh->num_file_names; ++i)
9183 {
9184 struct file_entry *fe = &lh->file_names[i];
9185
9186 fe->symtab = tu_group->symtabs[i];
9187 }
9188 }
9189
9190 /* The main symtab is allocated last. Type units don't have DW_AT_name
9191 so they don't have a "real" (so to speak) symtab anyway.
9192 There is later code that will assign the main symtab to all symbols
9193 that don't have one. We need to handle the case of a symbol with a
9194 missing symtab (DW_AT_decl_file) anyway. */
9195 }
9196
9197 /* Process DW_TAG_type_unit.
9198 For TUs we want to skip the first top level sibling if it's not the
9199 actual type being defined by this TU. In this case the first top
9200 level sibling is there to provide context only. */
9201
9202 static void
9203 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9204 {
9205 struct die_info *child_die;
9206
9207 prepare_one_comp_unit (cu, die, language_minimal);
9208
9209 /* Initialize (or reinitialize) the machinery for building symtabs.
9210 We do this before processing child DIEs, so that the line header table
9211 is available for DW_AT_decl_file. */
9212 setup_type_unit_groups (die, cu);
9213
9214 if (die->child != NULL)
9215 {
9216 child_die = die->child;
9217 while (child_die && child_die->tag)
9218 {
9219 process_die (child_die, cu);
9220 child_die = sibling_die (child_die);
9221 }
9222 }
9223 }
9224 \f
9225 /* DWO/DWP files.
9226
9227 http://gcc.gnu.org/wiki/DebugFission
9228 http://gcc.gnu.org/wiki/DebugFissionDWP
9229
9230 To simplify handling of both DWO files ("object" files with the DWARF info)
9231 and DWP files (a file with the DWOs packaged up into one file), we treat
9232 DWP files as having a collection of virtual DWO files. */
9233
9234 static hashval_t
9235 hash_dwo_file (const void *item)
9236 {
9237 const struct dwo_file *dwo_file = item;
9238 hashval_t hash;
9239
9240 hash = htab_hash_string (dwo_file->dwo_name);
9241 if (dwo_file->comp_dir != NULL)
9242 hash += htab_hash_string (dwo_file->comp_dir);
9243 return hash;
9244 }
9245
9246 static int
9247 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9248 {
9249 const struct dwo_file *lhs = item_lhs;
9250 const struct dwo_file *rhs = item_rhs;
9251
9252 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9253 return 0;
9254 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9255 return lhs->comp_dir == rhs->comp_dir;
9256 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9257 }
9258
9259 /* Allocate a hash table for DWO files. */
9260
9261 static htab_t
9262 allocate_dwo_file_hash_table (void)
9263 {
9264 struct objfile *objfile = dwarf2_per_objfile->objfile;
9265
9266 return htab_create_alloc_ex (41,
9267 hash_dwo_file,
9268 eq_dwo_file,
9269 NULL,
9270 &objfile->objfile_obstack,
9271 hashtab_obstack_allocate,
9272 dummy_obstack_deallocate);
9273 }
9274
9275 /* Lookup DWO file DWO_NAME. */
9276
9277 static void **
9278 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9279 {
9280 struct dwo_file find_entry;
9281 void **slot;
9282
9283 if (dwarf2_per_objfile->dwo_files == NULL)
9284 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9285
9286 memset (&find_entry, 0, sizeof (find_entry));
9287 find_entry.dwo_name = dwo_name;
9288 find_entry.comp_dir = comp_dir;
9289 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9290
9291 return slot;
9292 }
9293
9294 static hashval_t
9295 hash_dwo_unit (const void *item)
9296 {
9297 const struct dwo_unit *dwo_unit = item;
9298
9299 /* This drops the top 32 bits of the id, but is ok for a hash. */
9300 return dwo_unit->signature;
9301 }
9302
9303 static int
9304 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9305 {
9306 const struct dwo_unit *lhs = item_lhs;
9307 const struct dwo_unit *rhs = item_rhs;
9308
9309 /* The signature is assumed to be unique within the DWO file.
9310 So while object file CU dwo_id's always have the value zero,
9311 that's OK, assuming each object file DWO file has only one CU,
9312 and that's the rule for now. */
9313 return lhs->signature == rhs->signature;
9314 }
9315
9316 /* Allocate a hash table for DWO CUs,TUs.
9317 There is one of these tables for each of CUs,TUs for each DWO file. */
9318
9319 static htab_t
9320 allocate_dwo_unit_table (struct objfile *objfile)
9321 {
9322 /* Start out with a pretty small number.
9323 Generally DWO files contain only one CU and maybe some TUs. */
9324 return htab_create_alloc_ex (3,
9325 hash_dwo_unit,
9326 eq_dwo_unit,
9327 NULL,
9328 &objfile->objfile_obstack,
9329 hashtab_obstack_allocate,
9330 dummy_obstack_deallocate);
9331 }
9332
9333 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9334
9335 struct create_dwo_cu_data
9336 {
9337 struct dwo_file *dwo_file;
9338 struct dwo_unit dwo_unit;
9339 };
9340
9341 /* die_reader_func for create_dwo_cu. */
9342
9343 static void
9344 create_dwo_cu_reader (const struct die_reader_specs *reader,
9345 const gdb_byte *info_ptr,
9346 struct die_info *comp_unit_die,
9347 int has_children,
9348 void *datap)
9349 {
9350 struct dwarf2_cu *cu = reader->cu;
9351 struct objfile *objfile = dwarf2_per_objfile->objfile;
9352 sect_offset offset = cu->per_cu->offset;
9353 struct dwarf2_section_info *section = cu->per_cu->section;
9354 struct create_dwo_cu_data *data = datap;
9355 struct dwo_file *dwo_file = data->dwo_file;
9356 struct dwo_unit *dwo_unit = &data->dwo_unit;
9357 struct attribute *attr;
9358
9359 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9360 if (attr == NULL)
9361 {
9362 complaint (&symfile_complaints,
9363 _("Dwarf Error: debug entry at offset 0x%x is missing"
9364 " its dwo_id [in module %s]"),
9365 offset.sect_off, dwo_file->dwo_name);
9366 return;
9367 }
9368
9369 dwo_unit->dwo_file = dwo_file;
9370 dwo_unit->signature = DW_UNSND (attr);
9371 dwo_unit->section = section;
9372 dwo_unit->offset = offset;
9373 dwo_unit->length = cu->per_cu->length;
9374
9375 if (dwarf2_read_debug)
9376 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9377 offset.sect_off, hex_string (dwo_unit->signature));
9378 }
9379
9380 /* Create the dwo_unit for the lone CU in DWO_FILE.
9381 Note: This function processes DWO files only, not DWP files. */
9382
9383 static struct dwo_unit *
9384 create_dwo_cu (struct dwo_file *dwo_file)
9385 {
9386 struct objfile *objfile = dwarf2_per_objfile->objfile;
9387 struct dwarf2_section_info *section = &dwo_file->sections.info;
9388 bfd *abfd;
9389 htab_t cu_htab;
9390 const gdb_byte *info_ptr, *end_ptr;
9391 struct create_dwo_cu_data create_dwo_cu_data;
9392 struct dwo_unit *dwo_unit;
9393
9394 dwarf2_read_section (objfile, section);
9395 info_ptr = section->buffer;
9396
9397 if (info_ptr == NULL)
9398 return NULL;
9399
9400 /* We can't set abfd until now because the section may be empty or
9401 not present, in which case section->asection will be NULL. */
9402 abfd = get_section_bfd_owner (section);
9403
9404 if (dwarf2_read_debug)
9405 {
9406 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9407 get_section_name (section),
9408 get_section_file_name (section));
9409 }
9410
9411 create_dwo_cu_data.dwo_file = dwo_file;
9412 dwo_unit = NULL;
9413
9414 end_ptr = info_ptr + section->size;
9415 while (info_ptr < end_ptr)
9416 {
9417 struct dwarf2_per_cu_data per_cu;
9418
9419 memset (&create_dwo_cu_data.dwo_unit, 0,
9420 sizeof (create_dwo_cu_data.dwo_unit));
9421 memset (&per_cu, 0, sizeof (per_cu));
9422 per_cu.objfile = objfile;
9423 per_cu.is_debug_types = 0;
9424 per_cu.offset.sect_off = info_ptr - section->buffer;
9425 per_cu.section = section;
9426
9427 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9428 create_dwo_cu_reader,
9429 &create_dwo_cu_data);
9430
9431 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9432 {
9433 /* If we've already found one, complain. We only support one
9434 because having more than one requires hacking the dwo_name of
9435 each to match, which is highly unlikely to happen. */
9436 if (dwo_unit != NULL)
9437 {
9438 complaint (&symfile_complaints,
9439 _("Multiple CUs in DWO file %s [in module %s]"),
9440 dwo_file->dwo_name, objfile_name (objfile));
9441 break;
9442 }
9443
9444 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9445 *dwo_unit = create_dwo_cu_data.dwo_unit;
9446 }
9447
9448 info_ptr += per_cu.length;
9449 }
9450
9451 return dwo_unit;
9452 }
9453
9454 /* DWP file .debug_{cu,tu}_index section format:
9455 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9456
9457 DWP Version 1:
9458
9459 Both index sections have the same format, and serve to map a 64-bit
9460 signature to a set of section numbers. Each section begins with a header,
9461 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9462 indexes, and a pool of 32-bit section numbers. The index sections will be
9463 aligned at 8-byte boundaries in the file.
9464
9465 The index section header consists of:
9466
9467 V, 32 bit version number
9468 -, 32 bits unused
9469 N, 32 bit number of compilation units or type units in the index
9470 M, 32 bit number of slots in the hash table
9471
9472 Numbers are recorded using the byte order of the application binary.
9473
9474 The hash table begins at offset 16 in the section, and consists of an array
9475 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9476 order of the application binary). Unused slots in the hash table are 0.
9477 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9478
9479 The parallel table begins immediately after the hash table
9480 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9481 array of 32-bit indexes (using the byte order of the application binary),
9482 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9483 table contains a 32-bit index into the pool of section numbers. For unused
9484 hash table slots, the corresponding entry in the parallel table will be 0.
9485
9486 The pool of section numbers begins immediately following the hash table
9487 (at offset 16 + 12 * M from the beginning of the section). The pool of
9488 section numbers consists of an array of 32-bit words (using the byte order
9489 of the application binary). Each item in the array is indexed starting
9490 from 0. The hash table entry provides the index of the first section
9491 number in the set. Additional section numbers in the set follow, and the
9492 set is terminated by a 0 entry (section number 0 is not used in ELF).
9493
9494 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9495 section must be the first entry in the set, and the .debug_abbrev.dwo must
9496 be the second entry. Other members of the set may follow in any order.
9497
9498 ---
9499
9500 DWP Version 2:
9501
9502 DWP Version 2 combines all the .debug_info, etc. sections into one,
9503 and the entries in the index tables are now offsets into these sections.
9504 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9505 section.
9506
9507 Index Section Contents:
9508 Header
9509 Hash Table of Signatures dwp_hash_table.hash_table
9510 Parallel Table of Indices dwp_hash_table.unit_table
9511 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9512 Table of Section Sizes dwp_hash_table.v2.sizes
9513
9514 The index section header consists of:
9515
9516 V, 32 bit version number
9517 L, 32 bit number of columns in the table of section offsets
9518 N, 32 bit number of compilation units or type units in the index
9519 M, 32 bit number of slots in the hash table
9520
9521 Numbers are recorded using the byte order of the application binary.
9522
9523 The hash table has the same format as version 1.
9524 The parallel table of indices has the same format as version 1,
9525 except that the entries are origin-1 indices into the table of sections
9526 offsets and the table of section sizes.
9527
9528 The table of offsets begins immediately following the parallel table
9529 (at offset 16 + 12 * M from the beginning of the section). The table is
9530 a two-dimensional array of 32-bit words (using the byte order of the
9531 application binary), with L columns and N+1 rows, in row-major order.
9532 Each row in the array is indexed starting from 0. The first row provides
9533 a key to the remaining rows: each column in this row provides an identifier
9534 for a debug section, and the offsets in the same column of subsequent rows
9535 refer to that section. The section identifiers are:
9536
9537 DW_SECT_INFO 1 .debug_info.dwo
9538 DW_SECT_TYPES 2 .debug_types.dwo
9539 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9540 DW_SECT_LINE 4 .debug_line.dwo
9541 DW_SECT_LOC 5 .debug_loc.dwo
9542 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9543 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9544 DW_SECT_MACRO 8 .debug_macro.dwo
9545
9546 The offsets provided by the CU and TU index sections are the base offsets
9547 for the contributions made by each CU or TU to the corresponding section
9548 in the package file. Each CU and TU header contains an abbrev_offset
9549 field, used to find the abbreviations table for that CU or TU within the
9550 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9551 be interpreted as relative to the base offset given in the index section.
9552 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9553 should be interpreted as relative to the base offset for .debug_line.dwo,
9554 and offsets into other debug sections obtained from DWARF attributes should
9555 also be interpreted as relative to the corresponding base offset.
9556
9557 The table of sizes begins immediately following the table of offsets.
9558 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9559 with L columns and N rows, in row-major order. Each row in the array is
9560 indexed starting from 1 (row 0 is shared by the two tables).
9561
9562 ---
9563
9564 Hash table lookup is handled the same in version 1 and 2:
9565
9566 We assume that N and M will not exceed 2^32 - 1.
9567 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9568
9569 Given a 64-bit compilation unit signature or a type signature S, an entry
9570 in the hash table is located as follows:
9571
9572 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9573 the low-order k bits all set to 1.
9574
9575 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9576
9577 3) If the hash table entry at index H matches the signature, use that
9578 entry. If the hash table entry at index H is unused (all zeroes),
9579 terminate the search: the signature is not present in the table.
9580
9581 4) Let H = (H + H') modulo M. Repeat at Step 3.
9582
9583 Because M > N and H' and M are relatively prime, the search is guaranteed
9584 to stop at an unused slot or find the match. */
9585
9586 /* Create a hash table to map DWO IDs to their CU/TU entry in
9587 .debug_{info,types}.dwo in DWP_FILE.
9588 Returns NULL if there isn't one.
9589 Note: This function processes DWP files only, not DWO files. */
9590
9591 static struct dwp_hash_table *
9592 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9593 {
9594 struct objfile *objfile = dwarf2_per_objfile->objfile;
9595 bfd *dbfd = dwp_file->dbfd;
9596 const gdb_byte *index_ptr, *index_end;
9597 struct dwarf2_section_info *index;
9598 uint32_t version, nr_columns, nr_units, nr_slots;
9599 struct dwp_hash_table *htab;
9600
9601 if (is_debug_types)
9602 index = &dwp_file->sections.tu_index;
9603 else
9604 index = &dwp_file->sections.cu_index;
9605
9606 if (dwarf2_section_empty_p (index))
9607 return NULL;
9608 dwarf2_read_section (objfile, index);
9609
9610 index_ptr = index->buffer;
9611 index_end = index_ptr + index->size;
9612
9613 version = read_4_bytes (dbfd, index_ptr);
9614 index_ptr += 4;
9615 if (version == 2)
9616 nr_columns = read_4_bytes (dbfd, index_ptr);
9617 else
9618 nr_columns = 0;
9619 index_ptr += 4;
9620 nr_units = read_4_bytes (dbfd, index_ptr);
9621 index_ptr += 4;
9622 nr_slots = read_4_bytes (dbfd, index_ptr);
9623 index_ptr += 4;
9624
9625 if (version != 1 && version != 2)
9626 {
9627 error (_("Dwarf Error: unsupported DWP file version (%s)"
9628 " [in module %s]"),
9629 pulongest (version), dwp_file->name);
9630 }
9631 if (nr_slots != (nr_slots & -nr_slots))
9632 {
9633 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9634 " is not power of 2 [in module %s]"),
9635 pulongest (nr_slots), dwp_file->name);
9636 }
9637
9638 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9639 htab->version = version;
9640 htab->nr_columns = nr_columns;
9641 htab->nr_units = nr_units;
9642 htab->nr_slots = nr_slots;
9643 htab->hash_table = index_ptr;
9644 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9645
9646 /* Exit early if the table is empty. */
9647 if (nr_slots == 0 || nr_units == 0
9648 || (version == 2 && nr_columns == 0))
9649 {
9650 /* All must be zero. */
9651 if (nr_slots != 0 || nr_units != 0
9652 || (version == 2 && nr_columns != 0))
9653 {
9654 complaint (&symfile_complaints,
9655 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9656 " all zero [in modules %s]"),
9657 dwp_file->name);
9658 }
9659 return htab;
9660 }
9661
9662 if (version == 1)
9663 {
9664 htab->section_pool.v1.indices =
9665 htab->unit_table + sizeof (uint32_t) * nr_slots;
9666 /* It's harder to decide whether the section is too small in v1.
9667 V1 is deprecated anyway so we punt. */
9668 }
9669 else
9670 {
9671 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9672 int *ids = htab->section_pool.v2.section_ids;
9673 /* Reverse map for error checking. */
9674 int ids_seen[DW_SECT_MAX + 1];
9675 int i;
9676
9677 if (nr_columns < 2)
9678 {
9679 error (_("Dwarf Error: bad DWP hash table, too few columns"
9680 " in section table [in module %s]"),
9681 dwp_file->name);
9682 }
9683 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9684 {
9685 error (_("Dwarf Error: bad DWP hash table, too many columns"
9686 " in section table [in module %s]"),
9687 dwp_file->name);
9688 }
9689 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9690 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9691 for (i = 0; i < nr_columns; ++i)
9692 {
9693 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9694
9695 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9696 {
9697 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9698 " in section table [in module %s]"),
9699 id, dwp_file->name);
9700 }
9701 if (ids_seen[id] != -1)
9702 {
9703 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9704 " id %d in section table [in module %s]"),
9705 id, dwp_file->name);
9706 }
9707 ids_seen[id] = i;
9708 ids[i] = id;
9709 }
9710 /* Must have exactly one info or types section. */
9711 if (((ids_seen[DW_SECT_INFO] != -1)
9712 + (ids_seen[DW_SECT_TYPES] != -1))
9713 != 1)
9714 {
9715 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9716 " DWO info/types section [in module %s]"),
9717 dwp_file->name);
9718 }
9719 /* Must have an abbrev section. */
9720 if (ids_seen[DW_SECT_ABBREV] == -1)
9721 {
9722 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9723 " section [in module %s]"),
9724 dwp_file->name);
9725 }
9726 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9727 htab->section_pool.v2.sizes =
9728 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9729 * nr_units * nr_columns);
9730 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9731 * nr_units * nr_columns))
9732 > index_end)
9733 {
9734 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9735 " [in module %s]"),
9736 dwp_file->name);
9737 }
9738 }
9739
9740 return htab;
9741 }
9742
9743 /* Update SECTIONS with the data from SECTP.
9744
9745 This function is like the other "locate" section routines that are
9746 passed to bfd_map_over_sections, but in this context the sections to
9747 read comes from the DWP V1 hash table, not the full ELF section table.
9748
9749 The result is non-zero for success, or zero if an error was found. */
9750
9751 static int
9752 locate_v1_virtual_dwo_sections (asection *sectp,
9753 struct virtual_v1_dwo_sections *sections)
9754 {
9755 const struct dwop_section_names *names = &dwop_section_names;
9756
9757 if (section_is_p (sectp->name, &names->abbrev_dwo))
9758 {
9759 /* There can be only one. */
9760 if (sections->abbrev.s.asection != NULL)
9761 return 0;
9762 sections->abbrev.s.asection = sectp;
9763 sections->abbrev.size = bfd_get_section_size (sectp);
9764 }
9765 else if (section_is_p (sectp->name, &names->info_dwo)
9766 || section_is_p (sectp->name, &names->types_dwo))
9767 {
9768 /* There can be only one. */
9769 if (sections->info_or_types.s.asection != NULL)
9770 return 0;
9771 sections->info_or_types.s.asection = sectp;
9772 sections->info_or_types.size = bfd_get_section_size (sectp);
9773 }
9774 else if (section_is_p (sectp->name, &names->line_dwo))
9775 {
9776 /* There can be only one. */
9777 if (sections->line.s.asection != NULL)
9778 return 0;
9779 sections->line.s.asection = sectp;
9780 sections->line.size = bfd_get_section_size (sectp);
9781 }
9782 else if (section_is_p (sectp->name, &names->loc_dwo))
9783 {
9784 /* There can be only one. */
9785 if (sections->loc.s.asection != NULL)
9786 return 0;
9787 sections->loc.s.asection = sectp;
9788 sections->loc.size = bfd_get_section_size (sectp);
9789 }
9790 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9791 {
9792 /* There can be only one. */
9793 if (sections->macinfo.s.asection != NULL)
9794 return 0;
9795 sections->macinfo.s.asection = sectp;
9796 sections->macinfo.size = bfd_get_section_size (sectp);
9797 }
9798 else if (section_is_p (sectp->name, &names->macro_dwo))
9799 {
9800 /* There can be only one. */
9801 if (sections->macro.s.asection != NULL)
9802 return 0;
9803 sections->macro.s.asection = sectp;
9804 sections->macro.size = bfd_get_section_size (sectp);
9805 }
9806 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9807 {
9808 /* There can be only one. */
9809 if (sections->str_offsets.s.asection != NULL)
9810 return 0;
9811 sections->str_offsets.s.asection = sectp;
9812 sections->str_offsets.size = bfd_get_section_size (sectp);
9813 }
9814 else
9815 {
9816 /* No other kind of section is valid. */
9817 return 0;
9818 }
9819
9820 return 1;
9821 }
9822
9823 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9824 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9825 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9826 This is for DWP version 1 files. */
9827
9828 static struct dwo_unit *
9829 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9830 uint32_t unit_index,
9831 const char *comp_dir,
9832 ULONGEST signature, int is_debug_types)
9833 {
9834 struct objfile *objfile = dwarf2_per_objfile->objfile;
9835 const struct dwp_hash_table *dwp_htab =
9836 is_debug_types ? dwp_file->tus : dwp_file->cus;
9837 bfd *dbfd = dwp_file->dbfd;
9838 const char *kind = is_debug_types ? "TU" : "CU";
9839 struct dwo_file *dwo_file;
9840 struct dwo_unit *dwo_unit;
9841 struct virtual_v1_dwo_sections sections;
9842 void **dwo_file_slot;
9843 char *virtual_dwo_name;
9844 struct dwarf2_section_info *cutu;
9845 struct cleanup *cleanups;
9846 int i;
9847
9848 gdb_assert (dwp_file->version == 1);
9849
9850 if (dwarf2_read_debug)
9851 {
9852 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9853 kind,
9854 pulongest (unit_index), hex_string (signature),
9855 dwp_file->name);
9856 }
9857
9858 /* Fetch the sections of this DWO unit.
9859 Put a limit on the number of sections we look for so that bad data
9860 doesn't cause us to loop forever. */
9861
9862 #define MAX_NR_V1_DWO_SECTIONS \
9863 (1 /* .debug_info or .debug_types */ \
9864 + 1 /* .debug_abbrev */ \
9865 + 1 /* .debug_line */ \
9866 + 1 /* .debug_loc */ \
9867 + 1 /* .debug_str_offsets */ \
9868 + 1 /* .debug_macro or .debug_macinfo */ \
9869 + 1 /* trailing zero */)
9870
9871 memset (&sections, 0, sizeof (sections));
9872 cleanups = make_cleanup (null_cleanup, 0);
9873
9874 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9875 {
9876 asection *sectp;
9877 uint32_t section_nr =
9878 read_4_bytes (dbfd,
9879 dwp_htab->section_pool.v1.indices
9880 + (unit_index + i) * sizeof (uint32_t));
9881
9882 if (section_nr == 0)
9883 break;
9884 if (section_nr >= dwp_file->num_sections)
9885 {
9886 error (_("Dwarf Error: bad DWP hash table, section number too large"
9887 " [in module %s]"),
9888 dwp_file->name);
9889 }
9890
9891 sectp = dwp_file->elf_sections[section_nr];
9892 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9893 {
9894 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9895 " [in module %s]"),
9896 dwp_file->name);
9897 }
9898 }
9899
9900 if (i < 2
9901 || dwarf2_section_empty_p (&sections.info_or_types)
9902 || dwarf2_section_empty_p (&sections.abbrev))
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9905 " [in module %s]"),
9906 dwp_file->name);
9907 }
9908 if (i == MAX_NR_V1_DWO_SECTIONS)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9911 " [in module %s]"),
9912 dwp_file->name);
9913 }
9914
9915 /* It's easier for the rest of the code if we fake a struct dwo_file and
9916 have dwo_unit "live" in that. At least for now.
9917
9918 The DWP file can be made up of a random collection of CUs and TUs.
9919 However, for each CU + set of TUs that came from the same original DWO
9920 file, we can combine them back into a virtual DWO file to save space
9921 (fewer struct dwo_file objects to allocate). Remember that for really
9922 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9923
9924 virtual_dwo_name =
9925 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9926 get_section_id (&sections.abbrev),
9927 get_section_id (&sections.line),
9928 get_section_id (&sections.loc),
9929 get_section_id (&sections.str_offsets));
9930 make_cleanup (xfree, virtual_dwo_name);
9931 /* Can we use an existing virtual DWO file? */
9932 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9933 /* Create one if necessary. */
9934 if (*dwo_file_slot == NULL)
9935 {
9936 if (dwarf2_read_debug)
9937 {
9938 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9939 virtual_dwo_name);
9940 }
9941 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9942 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9943 virtual_dwo_name,
9944 strlen (virtual_dwo_name));
9945 dwo_file->comp_dir = comp_dir;
9946 dwo_file->sections.abbrev = sections.abbrev;
9947 dwo_file->sections.line = sections.line;
9948 dwo_file->sections.loc = sections.loc;
9949 dwo_file->sections.macinfo = sections.macinfo;
9950 dwo_file->sections.macro = sections.macro;
9951 dwo_file->sections.str_offsets = sections.str_offsets;
9952 /* The "str" section is global to the entire DWP file. */
9953 dwo_file->sections.str = dwp_file->sections.str;
9954 /* The info or types section is assigned below to dwo_unit,
9955 there's no need to record it in dwo_file.
9956 Also, we can't simply record type sections in dwo_file because
9957 we record a pointer into the vector in dwo_unit. As we collect more
9958 types we'll grow the vector and eventually have to reallocate space
9959 for it, invalidating all copies of pointers into the previous
9960 contents. */
9961 *dwo_file_slot = dwo_file;
9962 }
9963 else
9964 {
9965 if (dwarf2_read_debug)
9966 {
9967 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9968 virtual_dwo_name);
9969 }
9970 dwo_file = *dwo_file_slot;
9971 }
9972 do_cleanups (cleanups);
9973
9974 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9975 dwo_unit->dwo_file = dwo_file;
9976 dwo_unit->signature = signature;
9977 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9978 sizeof (struct dwarf2_section_info));
9979 *dwo_unit->section = sections.info_or_types;
9980 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9981
9982 return dwo_unit;
9983 }
9984
9985 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9986 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9987 piece within that section used by a TU/CU, return a virtual section
9988 of just that piece. */
9989
9990 static struct dwarf2_section_info
9991 create_dwp_v2_section (struct dwarf2_section_info *section,
9992 bfd_size_type offset, bfd_size_type size)
9993 {
9994 struct dwarf2_section_info result;
9995 asection *sectp;
9996
9997 gdb_assert (section != NULL);
9998 gdb_assert (!section->is_virtual);
9999
10000 memset (&result, 0, sizeof (result));
10001 result.s.containing_section = section;
10002 result.is_virtual = 1;
10003
10004 if (size == 0)
10005 return result;
10006
10007 sectp = get_section_bfd_section (section);
10008
10009 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10010 bounds of the real section. This is a pretty-rare event, so just
10011 flag an error (easier) instead of a warning and trying to cope. */
10012 if (sectp == NULL
10013 || offset + size > bfd_get_section_size (sectp))
10014 {
10015 bfd *abfd = sectp->owner;
10016
10017 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10018 " in section %s [in module %s]"),
10019 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10020 objfile_name (dwarf2_per_objfile->objfile));
10021 }
10022
10023 result.virtual_offset = offset;
10024 result.size = size;
10025 return result;
10026 }
10027
10028 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10029 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10030 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10031 This is for DWP version 2 files. */
10032
10033 static struct dwo_unit *
10034 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10035 uint32_t unit_index,
10036 const char *comp_dir,
10037 ULONGEST signature, int is_debug_types)
10038 {
10039 struct objfile *objfile = dwarf2_per_objfile->objfile;
10040 const struct dwp_hash_table *dwp_htab =
10041 is_debug_types ? dwp_file->tus : dwp_file->cus;
10042 bfd *dbfd = dwp_file->dbfd;
10043 const char *kind = is_debug_types ? "TU" : "CU";
10044 struct dwo_file *dwo_file;
10045 struct dwo_unit *dwo_unit;
10046 struct virtual_v2_dwo_sections sections;
10047 void **dwo_file_slot;
10048 char *virtual_dwo_name;
10049 struct dwarf2_section_info *cutu;
10050 struct cleanup *cleanups;
10051 int i;
10052
10053 gdb_assert (dwp_file->version == 2);
10054
10055 if (dwarf2_read_debug)
10056 {
10057 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10058 kind,
10059 pulongest (unit_index), hex_string (signature),
10060 dwp_file->name);
10061 }
10062
10063 /* Fetch the section offsets of this DWO unit. */
10064
10065 memset (&sections, 0, sizeof (sections));
10066 cleanups = make_cleanup (null_cleanup, 0);
10067
10068 for (i = 0; i < dwp_htab->nr_columns; ++i)
10069 {
10070 uint32_t offset = read_4_bytes (dbfd,
10071 dwp_htab->section_pool.v2.offsets
10072 + (((unit_index - 1) * dwp_htab->nr_columns
10073 + i)
10074 * sizeof (uint32_t)));
10075 uint32_t size = read_4_bytes (dbfd,
10076 dwp_htab->section_pool.v2.sizes
10077 + (((unit_index - 1) * dwp_htab->nr_columns
10078 + i)
10079 * sizeof (uint32_t)));
10080
10081 switch (dwp_htab->section_pool.v2.section_ids[i])
10082 {
10083 case DW_SECT_INFO:
10084 case DW_SECT_TYPES:
10085 sections.info_or_types_offset = offset;
10086 sections.info_or_types_size = size;
10087 break;
10088 case DW_SECT_ABBREV:
10089 sections.abbrev_offset = offset;
10090 sections.abbrev_size = size;
10091 break;
10092 case DW_SECT_LINE:
10093 sections.line_offset = offset;
10094 sections.line_size = size;
10095 break;
10096 case DW_SECT_LOC:
10097 sections.loc_offset = offset;
10098 sections.loc_size = size;
10099 break;
10100 case DW_SECT_STR_OFFSETS:
10101 sections.str_offsets_offset = offset;
10102 sections.str_offsets_size = size;
10103 break;
10104 case DW_SECT_MACINFO:
10105 sections.macinfo_offset = offset;
10106 sections.macinfo_size = size;
10107 break;
10108 case DW_SECT_MACRO:
10109 sections.macro_offset = offset;
10110 sections.macro_size = size;
10111 break;
10112 }
10113 }
10114
10115 /* It's easier for the rest of the code if we fake a struct dwo_file and
10116 have dwo_unit "live" in that. At least for now.
10117
10118 The DWP file can be made up of a random collection of CUs and TUs.
10119 However, for each CU + set of TUs that came from the same original DWO
10120 file, we can combine them back into a virtual DWO file to save space
10121 (fewer struct dwo_file objects to allocate). Remember that for really
10122 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10123
10124 virtual_dwo_name =
10125 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10126 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10127 (long) (sections.line_size ? sections.line_offset : 0),
10128 (long) (sections.loc_size ? sections.loc_offset : 0),
10129 (long) (sections.str_offsets_size
10130 ? sections.str_offsets_offset : 0));
10131 make_cleanup (xfree, virtual_dwo_name);
10132 /* Can we use an existing virtual DWO file? */
10133 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10134 /* Create one if necessary. */
10135 if (*dwo_file_slot == NULL)
10136 {
10137 if (dwarf2_read_debug)
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10143 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10144 virtual_dwo_name,
10145 strlen (virtual_dwo_name));
10146 dwo_file->comp_dir = comp_dir;
10147 dwo_file->sections.abbrev =
10148 create_dwp_v2_section (&dwp_file->sections.abbrev,
10149 sections.abbrev_offset, sections.abbrev_size);
10150 dwo_file->sections.line =
10151 create_dwp_v2_section (&dwp_file->sections.line,
10152 sections.line_offset, sections.line_size);
10153 dwo_file->sections.loc =
10154 create_dwp_v2_section (&dwp_file->sections.loc,
10155 sections.loc_offset, sections.loc_size);
10156 dwo_file->sections.macinfo =
10157 create_dwp_v2_section (&dwp_file->sections.macinfo,
10158 sections.macinfo_offset, sections.macinfo_size);
10159 dwo_file->sections.macro =
10160 create_dwp_v2_section (&dwp_file->sections.macro,
10161 sections.macro_offset, sections.macro_size);
10162 dwo_file->sections.str_offsets =
10163 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10164 sections.str_offsets_offset,
10165 sections.str_offsets_size);
10166 /* The "str" section is global to the entire DWP file. */
10167 dwo_file->sections.str = dwp_file->sections.str;
10168 /* The info or types section is assigned below to dwo_unit,
10169 there's no need to record it in dwo_file.
10170 Also, we can't simply record type sections in dwo_file because
10171 we record a pointer into the vector in dwo_unit. As we collect more
10172 types we'll grow the vector and eventually have to reallocate space
10173 for it, invalidating all copies of pointers into the previous
10174 contents. */
10175 *dwo_file_slot = dwo_file;
10176 }
10177 else
10178 {
10179 if (dwarf2_read_debug)
10180 {
10181 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10182 virtual_dwo_name);
10183 }
10184 dwo_file = *dwo_file_slot;
10185 }
10186 do_cleanups (cleanups);
10187
10188 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10189 dwo_unit->dwo_file = dwo_file;
10190 dwo_unit->signature = signature;
10191 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10192 sizeof (struct dwarf2_section_info));
10193 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10194 ? &dwp_file->sections.types
10195 : &dwp_file->sections.info,
10196 sections.info_or_types_offset,
10197 sections.info_or_types_size);
10198 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10199
10200 return dwo_unit;
10201 }
10202
10203 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10204 Returns NULL if the signature isn't found. */
10205
10206 static struct dwo_unit *
10207 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10208 ULONGEST signature, int is_debug_types)
10209 {
10210 const struct dwp_hash_table *dwp_htab =
10211 is_debug_types ? dwp_file->tus : dwp_file->cus;
10212 bfd *dbfd = dwp_file->dbfd;
10213 uint32_t mask = dwp_htab->nr_slots - 1;
10214 uint32_t hash = signature & mask;
10215 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10216 unsigned int i;
10217 void **slot;
10218 struct dwo_unit find_dwo_cu, *dwo_cu;
10219
10220 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10221 find_dwo_cu.signature = signature;
10222 slot = htab_find_slot (is_debug_types
10223 ? dwp_file->loaded_tus
10224 : dwp_file->loaded_cus,
10225 &find_dwo_cu, INSERT);
10226
10227 if (*slot != NULL)
10228 return *slot;
10229
10230 /* Use a for loop so that we don't loop forever on bad debug info. */
10231 for (i = 0; i < dwp_htab->nr_slots; ++i)
10232 {
10233 ULONGEST signature_in_table;
10234
10235 signature_in_table =
10236 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10237 if (signature_in_table == signature)
10238 {
10239 uint32_t unit_index =
10240 read_4_bytes (dbfd,
10241 dwp_htab->unit_table + hash * sizeof (uint32_t));
10242
10243 if (dwp_file->version == 1)
10244 {
10245 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10246 comp_dir, signature,
10247 is_debug_types);
10248 }
10249 else
10250 {
10251 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10252 comp_dir, signature,
10253 is_debug_types);
10254 }
10255 return *slot;
10256 }
10257 if (signature_in_table == 0)
10258 return NULL;
10259 hash = (hash + hash2) & mask;
10260 }
10261
10262 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10263 " [in module %s]"),
10264 dwp_file->name);
10265 }
10266
10267 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10268 Open the file specified by FILE_NAME and hand it off to BFD for
10269 preliminary analysis. Return a newly initialized bfd *, which
10270 includes a canonicalized copy of FILE_NAME.
10271 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10272 SEARCH_CWD is true if the current directory is to be searched.
10273 It will be searched before debug-file-directory.
10274 If successful, the file is added to the bfd include table of the
10275 objfile's bfd (see gdb_bfd_record_inclusion).
10276 If unable to find/open the file, return NULL.
10277 NOTE: This function is derived from symfile_bfd_open. */
10278
10279 static bfd *
10280 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10281 {
10282 bfd *sym_bfd;
10283 int desc, flags;
10284 char *absolute_name;
10285 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10286 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10287 to debug_file_directory. */
10288 char *search_path;
10289 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10290
10291 if (search_cwd)
10292 {
10293 if (*debug_file_directory != '\0')
10294 search_path = concat (".", dirname_separator_string,
10295 debug_file_directory, NULL);
10296 else
10297 search_path = xstrdup (".");
10298 }
10299 else
10300 search_path = xstrdup (debug_file_directory);
10301
10302 flags = OPF_RETURN_REALPATH;
10303 if (is_dwp)
10304 flags |= OPF_SEARCH_IN_PATH;
10305 desc = openp (search_path, flags, file_name,
10306 O_RDONLY | O_BINARY, &absolute_name);
10307 xfree (search_path);
10308 if (desc < 0)
10309 return NULL;
10310
10311 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10312 xfree (absolute_name);
10313 if (sym_bfd == NULL)
10314 return NULL;
10315 bfd_set_cacheable (sym_bfd, 1);
10316
10317 if (!bfd_check_format (sym_bfd, bfd_object))
10318 {
10319 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10320 return NULL;
10321 }
10322
10323 /* Success. Record the bfd as having been included by the objfile's bfd.
10324 This is important because things like demangled_names_hash lives in the
10325 objfile's per_bfd space and may have references to things like symbol
10326 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10327 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10328
10329 return sym_bfd;
10330 }
10331
10332 /* Try to open DWO file FILE_NAME.
10333 COMP_DIR is the DW_AT_comp_dir attribute.
10334 The result is the bfd handle of the file.
10335 If there is a problem finding or opening the file, return NULL.
10336 Upon success, the canonicalized path of the file is stored in the bfd,
10337 same as symfile_bfd_open. */
10338
10339 static bfd *
10340 open_dwo_file (const char *file_name, const char *comp_dir)
10341 {
10342 bfd *abfd;
10343
10344 if (IS_ABSOLUTE_PATH (file_name))
10345 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10346
10347 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10348
10349 if (comp_dir != NULL)
10350 {
10351 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10352
10353 /* NOTE: If comp_dir is a relative path, this will also try the
10354 search path, which seems useful. */
10355 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10356 xfree (path_to_try);
10357 if (abfd != NULL)
10358 return abfd;
10359 }
10360
10361 /* That didn't work, try debug-file-directory, which, despite its name,
10362 is a list of paths. */
10363
10364 if (*debug_file_directory == '\0')
10365 return NULL;
10366
10367 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10368 }
10369
10370 /* This function is mapped across the sections and remembers the offset and
10371 size of each of the DWO debugging sections we are interested in. */
10372
10373 static void
10374 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10375 {
10376 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10377 const struct dwop_section_names *names = &dwop_section_names;
10378
10379 if (section_is_p (sectp->name, &names->abbrev_dwo))
10380 {
10381 dwo_sections->abbrev.s.asection = sectp;
10382 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10383 }
10384 else if (section_is_p (sectp->name, &names->info_dwo))
10385 {
10386 dwo_sections->info.s.asection = sectp;
10387 dwo_sections->info.size = bfd_get_section_size (sectp);
10388 }
10389 else if (section_is_p (sectp->name, &names->line_dwo))
10390 {
10391 dwo_sections->line.s.asection = sectp;
10392 dwo_sections->line.size = bfd_get_section_size (sectp);
10393 }
10394 else if (section_is_p (sectp->name, &names->loc_dwo))
10395 {
10396 dwo_sections->loc.s.asection = sectp;
10397 dwo_sections->loc.size = bfd_get_section_size (sectp);
10398 }
10399 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10400 {
10401 dwo_sections->macinfo.s.asection = sectp;
10402 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10403 }
10404 else if (section_is_p (sectp->name, &names->macro_dwo))
10405 {
10406 dwo_sections->macro.s.asection = sectp;
10407 dwo_sections->macro.size = bfd_get_section_size (sectp);
10408 }
10409 else if (section_is_p (sectp->name, &names->str_dwo))
10410 {
10411 dwo_sections->str.s.asection = sectp;
10412 dwo_sections->str.size = bfd_get_section_size (sectp);
10413 }
10414 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10415 {
10416 dwo_sections->str_offsets.s.asection = sectp;
10417 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10418 }
10419 else if (section_is_p (sectp->name, &names->types_dwo))
10420 {
10421 struct dwarf2_section_info type_section;
10422
10423 memset (&type_section, 0, sizeof (type_section));
10424 type_section.s.asection = sectp;
10425 type_section.size = bfd_get_section_size (sectp);
10426 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10427 &type_section);
10428 }
10429 }
10430
10431 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10432 by PER_CU. This is for the non-DWP case.
10433 The result is NULL if DWO_NAME can't be found. */
10434
10435 static struct dwo_file *
10436 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10437 const char *dwo_name, const char *comp_dir)
10438 {
10439 struct objfile *objfile = dwarf2_per_objfile->objfile;
10440 struct dwo_file *dwo_file;
10441 bfd *dbfd;
10442 struct cleanup *cleanups;
10443
10444 dbfd = open_dwo_file (dwo_name, comp_dir);
10445 if (dbfd == NULL)
10446 {
10447 if (dwarf2_read_debug)
10448 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10449 return NULL;
10450 }
10451 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10452 dwo_file->dwo_name = dwo_name;
10453 dwo_file->comp_dir = comp_dir;
10454 dwo_file->dbfd = dbfd;
10455
10456 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10457
10458 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10459
10460 dwo_file->cu = create_dwo_cu (dwo_file);
10461
10462 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10463 dwo_file->sections.types);
10464
10465 discard_cleanups (cleanups);
10466
10467 if (dwarf2_read_debug)
10468 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10469
10470 return dwo_file;
10471 }
10472
10473 /* This function is mapped across the sections and remembers the offset and
10474 size of each of the DWP debugging sections common to version 1 and 2 that
10475 we are interested in. */
10476
10477 static void
10478 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10479 void *dwp_file_ptr)
10480 {
10481 struct dwp_file *dwp_file = dwp_file_ptr;
10482 const struct dwop_section_names *names = &dwop_section_names;
10483 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10484
10485 /* Record the ELF section number for later lookup: this is what the
10486 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10487 gdb_assert (elf_section_nr < dwp_file->num_sections);
10488 dwp_file->elf_sections[elf_section_nr] = sectp;
10489
10490 /* Look for specific sections that we need. */
10491 if (section_is_p (sectp->name, &names->str_dwo))
10492 {
10493 dwp_file->sections.str.s.asection = sectp;
10494 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10495 }
10496 else if (section_is_p (sectp->name, &names->cu_index))
10497 {
10498 dwp_file->sections.cu_index.s.asection = sectp;
10499 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10500 }
10501 else if (section_is_p (sectp->name, &names->tu_index))
10502 {
10503 dwp_file->sections.tu_index.s.asection = sectp;
10504 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10505 }
10506 }
10507
10508 /* This function is mapped across the sections and remembers the offset and
10509 size of each of the DWP version 2 debugging sections that we are interested
10510 in. This is split into a separate function because we don't know if we
10511 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10512
10513 static void
10514 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10515 {
10516 struct dwp_file *dwp_file = dwp_file_ptr;
10517 const struct dwop_section_names *names = &dwop_section_names;
10518 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10519
10520 /* Record the ELF section number for later lookup: this is what the
10521 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10522 gdb_assert (elf_section_nr < dwp_file->num_sections);
10523 dwp_file->elf_sections[elf_section_nr] = sectp;
10524
10525 /* Look for specific sections that we need. */
10526 if (section_is_p (sectp->name, &names->abbrev_dwo))
10527 {
10528 dwp_file->sections.abbrev.s.asection = sectp;
10529 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10530 }
10531 else if (section_is_p (sectp->name, &names->info_dwo))
10532 {
10533 dwp_file->sections.info.s.asection = sectp;
10534 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10535 }
10536 else if (section_is_p (sectp->name, &names->line_dwo))
10537 {
10538 dwp_file->sections.line.s.asection = sectp;
10539 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10540 }
10541 else if (section_is_p (sectp->name, &names->loc_dwo))
10542 {
10543 dwp_file->sections.loc.s.asection = sectp;
10544 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10547 {
10548 dwp_file->sections.macinfo.s.asection = sectp;
10549 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->macro_dwo))
10552 {
10553 dwp_file->sections.macro.s.asection = sectp;
10554 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10557 {
10558 dwp_file->sections.str_offsets.s.asection = sectp;
10559 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->types_dwo))
10562 {
10563 dwp_file->sections.types.s.asection = sectp;
10564 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10565 }
10566 }
10567
10568 /* Hash function for dwp_file loaded CUs/TUs. */
10569
10570 static hashval_t
10571 hash_dwp_loaded_cutus (const void *item)
10572 {
10573 const struct dwo_unit *dwo_unit = item;
10574
10575 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10576 return dwo_unit->signature;
10577 }
10578
10579 /* Equality function for dwp_file loaded CUs/TUs. */
10580
10581 static int
10582 eq_dwp_loaded_cutus (const void *a, const void *b)
10583 {
10584 const struct dwo_unit *dua = a;
10585 const struct dwo_unit *dub = b;
10586
10587 return dua->signature == dub->signature;
10588 }
10589
10590 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10591
10592 static htab_t
10593 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10594 {
10595 return htab_create_alloc_ex (3,
10596 hash_dwp_loaded_cutus,
10597 eq_dwp_loaded_cutus,
10598 NULL,
10599 &objfile->objfile_obstack,
10600 hashtab_obstack_allocate,
10601 dummy_obstack_deallocate);
10602 }
10603
10604 /* Try to open DWP file FILE_NAME.
10605 The result is the bfd handle of the file.
10606 If there is a problem finding or opening the file, return NULL.
10607 Upon success, the canonicalized path of the file is stored in the bfd,
10608 same as symfile_bfd_open. */
10609
10610 static bfd *
10611 open_dwp_file (const char *file_name)
10612 {
10613 bfd *abfd;
10614
10615 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10616 if (abfd != NULL)
10617 return abfd;
10618
10619 /* Work around upstream bug 15652.
10620 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10621 [Whether that's a "bug" is debatable, but it is getting in our way.]
10622 We have no real idea where the dwp file is, because gdb's realpath-ing
10623 of the executable's path may have discarded the needed info.
10624 [IWBN if the dwp file name was recorded in the executable, akin to
10625 .gnu_debuglink, but that doesn't exist yet.]
10626 Strip the directory from FILE_NAME and search again. */
10627 if (*debug_file_directory != '\0')
10628 {
10629 /* Don't implicitly search the current directory here.
10630 If the user wants to search "." to handle this case,
10631 it must be added to debug-file-directory. */
10632 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10633 0 /*search_cwd*/);
10634 }
10635
10636 return NULL;
10637 }
10638
10639 /* Initialize the use of the DWP file for the current objfile.
10640 By convention the name of the DWP file is ${objfile}.dwp.
10641 The result is NULL if it can't be found. */
10642
10643 static struct dwp_file *
10644 open_and_init_dwp_file (void)
10645 {
10646 struct objfile *objfile = dwarf2_per_objfile->objfile;
10647 struct dwp_file *dwp_file;
10648 char *dwp_name;
10649 bfd *dbfd;
10650 struct cleanup *cleanups;
10651
10652 /* Try to find first .dwp for the binary file before any symbolic links
10653 resolving. */
10654 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10655 cleanups = make_cleanup (xfree, dwp_name);
10656
10657 dbfd = open_dwp_file (dwp_name);
10658 if (dbfd == NULL
10659 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10660 {
10661 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10662 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10663 make_cleanup (xfree, dwp_name);
10664 dbfd = open_dwp_file (dwp_name);
10665 }
10666
10667 if (dbfd == NULL)
10668 {
10669 if (dwarf2_read_debug)
10670 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10671 do_cleanups (cleanups);
10672 return NULL;
10673 }
10674 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10675 dwp_file->name = bfd_get_filename (dbfd);
10676 dwp_file->dbfd = dbfd;
10677 do_cleanups (cleanups);
10678
10679 /* +1: section 0 is unused */
10680 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10681 dwp_file->elf_sections =
10682 OBSTACK_CALLOC (&objfile->objfile_obstack,
10683 dwp_file->num_sections, asection *);
10684
10685 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10686
10687 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10688
10689 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10690
10691 /* The DWP file version is stored in the hash table. Oh well. */
10692 if (dwp_file->cus->version != dwp_file->tus->version)
10693 {
10694 /* Technically speaking, we should try to limp along, but this is
10695 pretty bizarre. We use pulongest here because that's the established
10696 portability solution (e.g, we cannot use %u for uint32_t). */
10697 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10698 " TU version %s [in DWP file %s]"),
10699 pulongest (dwp_file->cus->version),
10700 pulongest (dwp_file->tus->version), dwp_name);
10701 }
10702 dwp_file->version = dwp_file->cus->version;
10703
10704 if (dwp_file->version == 2)
10705 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10706
10707 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10708 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10709
10710 if (dwarf2_read_debug)
10711 {
10712 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10713 fprintf_unfiltered (gdb_stdlog,
10714 " %s CUs, %s TUs\n",
10715 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10716 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10717 }
10718
10719 return dwp_file;
10720 }
10721
10722 /* Wrapper around open_and_init_dwp_file, only open it once. */
10723
10724 static struct dwp_file *
10725 get_dwp_file (void)
10726 {
10727 if (! dwarf2_per_objfile->dwp_checked)
10728 {
10729 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10730 dwarf2_per_objfile->dwp_checked = 1;
10731 }
10732 return dwarf2_per_objfile->dwp_file;
10733 }
10734
10735 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10736 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10737 or in the DWP file for the objfile, referenced by THIS_UNIT.
10738 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10739 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10740
10741 This is called, for example, when wanting to read a variable with a
10742 complex location. Therefore we don't want to do file i/o for every call.
10743 Therefore we don't want to look for a DWO file on every call.
10744 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10745 then we check if we've already seen DWO_NAME, and only THEN do we check
10746 for a DWO file.
10747
10748 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10749 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10750
10751 static struct dwo_unit *
10752 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10753 const char *dwo_name, const char *comp_dir,
10754 ULONGEST signature, int is_debug_types)
10755 {
10756 struct objfile *objfile = dwarf2_per_objfile->objfile;
10757 const char *kind = is_debug_types ? "TU" : "CU";
10758 void **dwo_file_slot;
10759 struct dwo_file *dwo_file;
10760 struct dwp_file *dwp_file;
10761
10762 /* First see if there's a DWP file.
10763 If we have a DWP file but didn't find the DWO inside it, don't
10764 look for the original DWO file. It makes gdb behave differently
10765 depending on whether one is debugging in the build tree. */
10766
10767 dwp_file = get_dwp_file ();
10768 if (dwp_file != NULL)
10769 {
10770 const struct dwp_hash_table *dwp_htab =
10771 is_debug_types ? dwp_file->tus : dwp_file->cus;
10772
10773 if (dwp_htab != NULL)
10774 {
10775 struct dwo_unit *dwo_cutu =
10776 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10777 signature, is_debug_types);
10778
10779 if (dwo_cutu != NULL)
10780 {
10781 if (dwarf2_read_debug)
10782 {
10783 fprintf_unfiltered (gdb_stdlog,
10784 "Virtual DWO %s %s found: @%s\n",
10785 kind, hex_string (signature),
10786 host_address_to_string (dwo_cutu));
10787 }
10788 return dwo_cutu;
10789 }
10790 }
10791 }
10792 else
10793 {
10794 /* No DWP file, look for the DWO file. */
10795
10796 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10797 if (*dwo_file_slot == NULL)
10798 {
10799 /* Read in the file and build a table of the CUs/TUs it contains. */
10800 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10801 }
10802 /* NOTE: This will be NULL if unable to open the file. */
10803 dwo_file = *dwo_file_slot;
10804
10805 if (dwo_file != NULL)
10806 {
10807 struct dwo_unit *dwo_cutu = NULL;
10808
10809 if (is_debug_types && dwo_file->tus)
10810 {
10811 struct dwo_unit find_dwo_cutu;
10812
10813 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10814 find_dwo_cutu.signature = signature;
10815 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10816 }
10817 else if (!is_debug_types && dwo_file->cu)
10818 {
10819 if (signature == dwo_file->cu->signature)
10820 dwo_cutu = dwo_file->cu;
10821 }
10822
10823 if (dwo_cutu != NULL)
10824 {
10825 if (dwarf2_read_debug)
10826 {
10827 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10828 kind, dwo_name, hex_string (signature),
10829 host_address_to_string (dwo_cutu));
10830 }
10831 return dwo_cutu;
10832 }
10833 }
10834 }
10835
10836 /* We didn't find it. This could mean a dwo_id mismatch, or
10837 someone deleted the DWO/DWP file, or the search path isn't set up
10838 correctly to find the file. */
10839
10840 if (dwarf2_read_debug)
10841 {
10842 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10843 kind, dwo_name, hex_string (signature));
10844 }
10845
10846 /* This is a warning and not a complaint because it can be caused by
10847 pilot error (e.g., user accidentally deleting the DWO). */
10848 {
10849 /* Print the name of the DWP file if we looked there, helps the user
10850 better diagnose the problem. */
10851 char *dwp_text = NULL;
10852 struct cleanup *cleanups;
10853
10854 if (dwp_file != NULL)
10855 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10856 cleanups = make_cleanup (xfree, dwp_text);
10857
10858 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10859 " [in module %s]"),
10860 kind, dwo_name, hex_string (signature),
10861 dwp_text != NULL ? dwp_text : "",
10862 this_unit->is_debug_types ? "TU" : "CU",
10863 this_unit->offset.sect_off, objfile_name (objfile));
10864
10865 do_cleanups (cleanups);
10866 }
10867 return NULL;
10868 }
10869
10870 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10871 See lookup_dwo_cutu_unit for details. */
10872
10873 static struct dwo_unit *
10874 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10875 const char *dwo_name, const char *comp_dir,
10876 ULONGEST signature)
10877 {
10878 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10879 }
10880
10881 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10882 See lookup_dwo_cutu_unit for details. */
10883
10884 static struct dwo_unit *
10885 lookup_dwo_type_unit (struct signatured_type *this_tu,
10886 const char *dwo_name, const char *comp_dir)
10887 {
10888 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10889 }
10890
10891 /* Traversal function for queue_and_load_all_dwo_tus. */
10892
10893 static int
10894 queue_and_load_dwo_tu (void **slot, void *info)
10895 {
10896 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10897 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10898 ULONGEST signature = dwo_unit->signature;
10899 struct signatured_type *sig_type =
10900 lookup_dwo_signatured_type (per_cu->cu, signature);
10901
10902 if (sig_type != NULL)
10903 {
10904 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10905
10906 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10907 a real dependency of PER_CU on SIG_TYPE. That is detected later
10908 while processing PER_CU. */
10909 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10910 load_full_type_unit (sig_cu);
10911 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10912 }
10913
10914 return 1;
10915 }
10916
10917 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10918 The DWO may have the only definition of the type, though it may not be
10919 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10921
10922 static void
10923 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10924 {
10925 struct dwo_unit *dwo_unit;
10926 struct dwo_file *dwo_file;
10927
10928 gdb_assert (!per_cu->is_debug_types);
10929 gdb_assert (get_dwp_file () == NULL);
10930 gdb_assert (per_cu->cu != NULL);
10931
10932 dwo_unit = per_cu->cu->dwo_unit;
10933 gdb_assert (dwo_unit != NULL);
10934
10935 dwo_file = dwo_unit->dwo_file;
10936 if (dwo_file->tus != NULL)
10937 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10938 }
10939
10940 /* Free all resources associated with DWO_FILE.
10941 Close the DWO file and munmap the sections.
10942 All memory should be on the objfile obstack. */
10943
10944 static void
10945 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10946 {
10947 int ix;
10948 struct dwarf2_section_info *section;
10949
10950 /* Note: dbfd is NULL for virtual DWO files. */
10951 gdb_bfd_unref (dwo_file->dbfd);
10952
10953 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10954 }
10955
10956 /* Wrapper for free_dwo_file for use in cleanups. */
10957
10958 static void
10959 free_dwo_file_cleanup (void *arg)
10960 {
10961 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10962 struct objfile *objfile = dwarf2_per_objfile->objfile;
10963
10964 free_dwo_file (dwo_file, objfile);
10965 }
10966
10967 /* Traversal function for free_dwo_files. */
10968
10969 static int
10970 free_dwo_file_from_slot (void **slot, void *info)
10971 {
10972 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10973 struct objfile *objfile = (struct objfile *) info;
10974
10975 free_dwo_file (dwo_file, objfile);
10976
10977 return 1;
10978 }
10979
10980 /* Free all resources associated with DWO_FILES. */
10981
10982 static void
10983 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10984 {
10985 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10986 }
10987 \f
10988 /* Read in various DIEs. */
10989
10990 /* qsort helper for inherit_abstract_dies. */
10991
10992 static int
10993 unsigned_int_compar (const void *ap, const void *bp)
10994 {
10995 unsigned int a = *(unsigned int *) ap;
10996 unsigned int b = *(unsigned int *) bp;
10997
10998 return (a > b) - (b > a);
10999 }
11000
11001 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11002 Inherit only the children of the DW_AT_abstract_origin DIE not being
11003 already referenced by DW_AT_abstract_origin from the children of the
11004 current DIE. */
11005
11006 static void
11007 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11008 {
11009 struct die_info *child_die;
11010 unsigned die_children_count;
11011 /* CU offsets which were referenced by children of the current DIE. */
11012 sect_offset *offsets;
11013 sect_offset *offsets_end, *offsetp;
11014 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11015 struct die_info *origin_die;
11016 /* Iterator of the ORIGIN_DIE children. */
11017 struct die_info *origin_child_die;
11018 struct cleanup *cleanups;
11019 struct attribute *attr;
11020 struct dwarf2_cu *origin_cu;
11021 struct pending **origin_previous_list_in_scope;
11022
11023 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11024 if (!attr)
11025 return;
11026
11027 /* Note that following die references may follow to a die in a
11028 different cu. */
11029
11030 origin_cu = cu;
11031 origin_die = follow_die_ref (die, attr, &origin_cu);
11032
11033 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11034 symbols in. */
11035 origin_previous_list_in_scope = origin_cu->list_in_scope;
11036 origin_cu->list_in_scope = cu->list_in_scope;
11037
11038 if (die->tag != origin_die->tag
11039 && !(die->tag == DW_TAG_inlined_subroutine
11040 && origin_die->tag == DW_TAG_subprogram))
11041 complaint (&symfile_complaints,
11042 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11043 die->offset.sect_off, origin_die->offset.sect_off);
11044
11045 child_die = die->child;
11046 die_children_count = 0;
11047 while (child_die && child_die->tag)
11048 {
11049 child_die = sibling_die (child_die);
11050 die_children_count++;
11051 }
11052 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11053 cleanups = make_cleanup (xfree, offsets);
11054
11055 offsets_end = offsets;
11056 child_die = die->child;
11057 while (child_die && child_die->tag)
11058 {
11059 /* For each CHILD_DIE, find the corresponding child of
11060 ORIGIN_DIE. If there is more than one layer of
11061 DW_AT_abstract_origin, follow them all; there shouldn't be,
11062 but GCC versions at least through 4.4 generate this (GCC PR
11063 40573). */
11064 struct die_info *child_origin_die = child_die;
11065 struct dwarf2_cu *child_origin_cu = cu;
11066
11067 while (1)
11068 {
11069 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11070 child_origin_cu);
11071 if (attr == NULL)
11072 break;
11073 child_origin_die = follow_die_ref (child_origin_die, attr,
11074 &child_origin_cu);
11075 }
11076
11077 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11078 counterpart may exist. */
11079 if (child_origin_die != child_die)
11080 {
11081 if (child_die->tag != child_origin_die->tag
11082 && !(child_die->tag == DW_TAG_inlined_subroutine
11083 && child_origin_die->tag == DW_TAG_subprogram))
11084 complaint (&symfile_complaints,
11085 _("Child DIE 0x%x and its abstract origin 0x%x have "
11086 "different tags"), child_die->offset.sect_off,
11087 child_origin_die->offset.sect_off);
11088 if (child_origin_die->parent != origin_die)
11089 complaint (&symfile_complaints,
11090 _("Child DIE 0x%x and its abstract origin 0x%x have "
11091 "different parents"), child_die->offset.sect_off,
11092 child_origin_die->offset.sect_off);
11093 else
11094 *offsets_end++ = child_origin_die->offset;
11095 }
11096 child_die = sibling_die (child_die);
11097 }
11098 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11099 unsigned_int_compar);
11100 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11101 if (offsetp[-1].sect_off == offsetp->sect_off)
11102 complaint (&symfile_complaints,
11103 _("Multiple children of DIE 0x%x refer "
11104 "to DIE 0x%x as their abstract origin"),
11105 die->offset.sect_off, offsetp->sect_off);
11106
11107 offsetp = offsets;
11108 origin_child_die = origin_die->child;
11109 while (origin_child_die && origin_child_die->tag)
11110 {
11111 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11112 while (offsetp < offsets_end
11113 && offsetp->sect_off < origin_child_die->offset.sect_off)
11114 offsetp++;
11115 if (offsetp >= offsets_end
11116 || offsetp->sect_off > origin_child_die->offset.sect_off)
11117 {
11118 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11119 Check whether we're already processing ORIGIN_CHILD_DIE.
11120 This can happen with mutually referenced abstract_origins.
11121 PR 16581. */
11122 if (!origin_child_die->in_process)
11123 process_die (origin_child_die, origin_cu);
11124 }
11125 origin_child_die = sibling_die (origin_child_die);
11126 }
11127 origin_cu->list_in_scope = origin_previous_list_in_scope;
11128
11129 do_cleanups (cleanups);
11130 }
11131
11132 static void
11133 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11134 {
11135 struct objfile *objfile = cu->objfile;
11136 struct context_stack *new;
11137 CORE_ADDR lowpc;
11138 CORE_ADDR highpc;
11139 struct die_info *child_die;
11140 struct attribute *attr, *call_line, *call_file;
11141 const char *name;
11142 CORE_ADDR baseaddr;
11143 struct block *block;
11144 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11145 VEC (symbolp) *template_args = NULL;
11146 struct template_symbol *templ_func = NULL;
11147
11148 if (inlined_func)
11149 {
11150 /* If we do not have call site information, we can't show the
11151 caller of this inlined function. That's too confusing, so
11152 only use the scope for local variables. */
11153 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11154 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11155 if (call_line == NULL || call_file == NULL)
11156 {
11157 read_lexical_block_scope (die, cu);
11158 return;
11159 }
11160 }
11161
11162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11163
11164 name = dwarf2_name (die, cu);
11165
11166 /* Ignore functions with missing or empty names. These are actually
11167 illegal according to the DWARF standard. */
11168 if (name == NULL)
11169 {
11170 complaint (&symfile_complaints,
11171 _("missing name for subprogram DIE at %d"),
11172 die->offset.sect_off);
11173 return;
11174 }
11175
11176 /* Ignore functions with missing or invalid low and high pc attributes. */
11177 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11178 {
11179 attr = dwarf2_attr (die, DW_AT_external, cu);
11180 if (!attr || !DW_UNSND (attr))
11181 complaint (&symfile_complaints,
11182 _("cannot get low and high bounds "
11183 "for subprogram DIE at %d"),
11184 die->offset.sect_off);
11185 return;
11186 }
11187
11188 lowpc += baseaddr;
11189 highpc += baseaddr;
11190
11191 /* If we have any template arguments, then we must allocate a
11192 different sort of symbol. */
11193 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11194 {
11195 if (child_die->tag == DW_TAG_template_type_param
11196 || child_die->tag == DW_TAG_template_value_param)
11197 {
11198 templ_func = allocate_template_symbol (objfile);
11199 templ_func->base.is_cplus_template_function = 1;
11200 break;
11201 }
11202 }
11203
11204 new = push_context (0, lowpc);
11205 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11206 (struct symbol *) templ_func);
11207
11208 /* If there is a location expression for DW_AT_frame_base, record
11209 it. */
11210 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11211 if (attr)
11212 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11213
11214 cu->list_in_scope = &local_symbols;
11215
11216 if (die->child != NULL)
11217 {
11218 child_die = die->child;
11219 while (child_die && child_die->tag)
11220 {
11221 if (child_die->tag == DW_TAG_template_type_param
11222 || child_die->tag == DW_TAG_template_value_param)
11223 {
11224 struct symbol *arg = new_symbol (child_die, NULL, cu);
11225
11226 if (arg != NULL)
11227 VEC_safe_push (symbolp, template_args, arg);
11228 }
11229 else
11230 process_die (child_die, cu);
11231 child_die = sibling_die (child_die);
11232 }
11233 }
11234
11235 inherit_abstract_dies (die, cu);
11236
11237 /* If we have a DW_AT_specification, we might need to import using
11238 directives from the context of the specification DIE. See the
11239 comment in determine_prefix. */
11240 if (cu->language == language_cplus
11241 && dwarf2_attr (die, DW_AT_specification, cu))
11242 {
11243 struct dwarf2_cu *spec_cu = cu;
11244 struct die_info *spec_die = die_specification (die, &spec_cu);
11245
11246 while (spec_die)
11247 {
11248 child_die = spec_die->child;
11249 while (child_die && child_die->tag)
11250 {
11251 if (child_die->tag == DW_TAG_imported_module)
11252 process_die (child_die, spec_cu);
11253 child_die = sibling_die (child_die);
11254 }
11255
11256 /* In some cases, GCC generates specification DIEs that
11257 themselves contain DW_AT_specification attributes. */
11258 spec_die = die_specification (spec_die, &spec_cu);
11259 }
11260 }
11261
11262 new = pop_context ();
11263 /* Make a block for the local symbols within. */
11264 block = finish_block (new->name, &local_symbols, new->old_blocks,
11265 lowpc, highpc);
11266
11267 /* For C++, set the block's scope. */
11268 if ((cu->language == language_cplus || cu->language == language_fortran)
11269 && cu->processing_has_namespace_info)
11270 block_set_scope (block, determine_prefix (die, cu),
11271 &objfile->objfile_obstack);
11272
11273 /* If we have address ranges, record them. */
11274 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11275
11276 /* Attach template arguments to function. */
11277 if (! VEC_empty (symbolp, template_args))
11278 {
11279 gdb_assert (templ_func != NULL);
11280
11281 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11282 templ_func->template_arguments
11283 = obstack_alloc (&objfile->objfile_obstack,
11284 (templ_func->n_template_arguments
11285 * sizeof (struct symbol *)));
11286 memcpy (templ_func->template_arguments,
11287 VEC_address (symbolp, template_args),
11288 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11289 VEC_free (symbolp, template_args);
11290 }
11291
11292 /* In C++, we can have functions nested inside functions (e.g., when
11293 a function declares a class that has methods). This means that
11294 when we finish processing a function scope, we may need to go
11295 back to building a containing block's symbol lists. */
11296 local_symbols = new->locals;
11297 using_directives = new->using_directives;
11298
11299 /* If we've finished processing a top-level function, subsequent
11300 symbols go in the file symbol list. */
11301 if (outermost_context_p ())
11302 cu->list_in_scope = &file_symbols;
11303 }
11304
11305 /* Process all the DIES contained within a lexical block scope. Start
11306 a new scope, process the dies, and then close the scope. */
11307
11308 static void
11309 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11310 {
11311 struct objfile *objfile = cu->objfile;
11312 struct context_stack *new;
11313 CORE_ADDR lowpc, highpc;
11314 struct die_info *child_die;
11315 CORE_ADDR baseaddr;
11316
11317 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11318
11319 /* Ignore blocks with missing or invalid low and high pc attributes. */
11320 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11321 as multiple lexical blocks? Handling children in a sane way would
11322 be nasty. Might be easier to properly extend generic blocks to
11323 describe ranges. */
11324 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11325 return;
11326 lowpc += baseaddr;
11327 highpc += baseaddr;
11328
11329 push_context (0, lowpc);
11330 if (die->child != NULL)
11331 {
11332 child_die = die->child;
11333 while (child_die && child_die->tag)
11334 {
11335 process_die (child_die, cu);
11336 child_die = sibling_die (child_die);
11337 }
11338 }
11339 new = pop_context ();
11340
11341 if (local_symbols != NULL || using_directives != NULL)
11342 {
11343 struct block *block
11344 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11345 highpc);
11346
11347 /* Note that recording ranges after traversing children, as we
11348 do here, means that recording a parent's ranges entails
11349 walking across all its children's ranges as they appear in
11350 the address map, which is quadratic behavior.
11351
11352 It would be nicer to record the parent's ranges before
11353 traversing its children, simply overriding whatever you find
11354 there. But since we don't even decide whether to create a
11355 block until after we've traversed its children, that's hard
11356 to do. */
11357 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11358 }
11359 local_symbols = new->locals;
11360 using_directives = new->using_directives;
11361 }
11362
11363 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11364
11365 static void
11366 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11367 {
11368 struct objfile *objfile = cu->objfile;
11369 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11370 CORE_ADDR pc, baseaddr;
11371 struct attribute *attr;
11372 struct call_site *call_site, call_site_local;
11373 void **slot;
11374 int nparams;
11375 struct die_info *child_die;
11376
11377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11378
11379 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11380 if (!attr)
11381 {
11382 complaint (&symfile_complaints,
11383 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11384 "DIE 0x%x [in module %s]"),
11385 die->offset.sect_off, objfile_name (objfile));
11386 return;
11387 }
11388 pc = attr_value_as_address (attr) + baseaddr;
11389
11390 if (cu->call_site_htab == NULL)
11391 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11392 NULL, &objfile->objfile_obstack,
11393 hashtab_obstack_allocate, NULL);
11394 call_site_local.pc = pc;
11395 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11396 if (*slot != NULL)
11397 {
11398 complaint (&symfile_complaints,
11399 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11400 "DIE 0x%x [in module %s]"),
11401 paddress (gdbarch, pc), die->offset.sect_off,
11402 objfile_name (objfile));
11403 return;
11404 }
11405
11406 /* Count parameters at the caller. */
11407
11408 nparams = 0;
11409 for (child_die = die->child; child_die && child_die->tag;
11410 child_die = sibling_die (child_die))
11411 {
11412 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11413 {
11414 complaint (&symfile_complaints,
11415 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11416 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11417 child_die->tag, child_die->offset.sect_off,
11418 objfile_name (objfile));
11419 continue;
11420 }
11421
11422 nparams++;
11423 }
11424
11425 call_site = obstack_alloc (&objfile->objfile_obstack,
11426 (sizeof (*call_site)
11427 + (sizeof (*call_site->parameter)
11428 * (nparams - 1))));
11429 *slot = call_site;
11430 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11431 call_site->pc = pc;
11432
11433 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11434 {
11435 struct die_info *func_die;
11436
11437 /* Skip also over DW_TAG_inlined_subroutine. */
11438 for (func_die = die->parent;
11439 func_die && func_die->tag != DW_TAG_subprogram
11440 && func_die->tag != DW_TAG_subroutine_type;
11441 func_die = func_die->parent);
11442
11443 /* DW_AT_GNU_all_call_sites is a superset
11444 of DW_AT_GNU_all_tail_call_sites. */
11445 if (func_die
11446 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11447 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11448 {
11449 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11450 not complete. But keep CALL_SITE for look ups via call_site_htab,
11451 both the initial caller containing the real return address PC and
11452 the final callee containing the current PC of a chain of tail
11453 calls do not need to have the tail call list complete. But any
11454 function candidate for a virtual tail call frame searched via
11455 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11456 determined unambiguously. */
11457 }
11458 else
11459 {
11460 struct type *func_type = NULL;
11461
11462 if (func_die)
11463 func_type = get_die_type (func_die, cu);
11464 if (func_type != NULL)
11465 {
11466 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11467
11468 /* Enlist this call site to the function. */
11469 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11470 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11471 }
11472 else
11473 complaint (&symfile_complaints,
11474 _("Cannot find function owning DW_TAG_GNU_call_site "
11475 "DIE 0x%x [in module %s]"),
11476 die->offset.sect_off, objfile_name (objfile));
11477 }
11478 }
11479
11480 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11481 if (attr == NULL)
11482 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11483 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11484 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11485 /* Keep NULL DWARF_BLOCK. */;
11486 else if (attr_form_is_block (attr))
11487 {
11488 struct dwarf2_locexpr_baton *dlbaton;
11489
11490 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11491 dlbaton->data = DW_BLOCK (attr)->data;
11492 dlbaton->size = DW_BLOCK (attr)->size;
11493 dlbaton->per_cu = cu->per_cu;
11494
11495 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11496 }
11497 else if (attr_form_is_ref (attr))
11498 {
11499 struct dwarf2_cu *target_cu = cu;
11500 struct die_info *target_die;
11501
11502 target_die = follow_die_ref (die, attr, &target_cu);
11503 gdb_assert (target_cu->objfile == objfile);
11504 if (die_is_declaration (target_die, target_cu))
11505 {
11506 const char *target_physname = NULL;
11507 struct attribute *target_attr;
11508
11509 /* Prefer the mangled name; otherwise compute the demangled one. */
11510 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11511 if (target_attr == NULL)
11512 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11513 target_cu);
11514 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11515 target_physname = DW_STRING (target_attr);
11516 else
11517 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11518 if (target_physname == NULL)
11519 complaint (&symfile_complaints,
11520 _("DW_AT_GNU_call_site_target target DIE has invalid "
11521 "physname, for referencing DIE 0x%x [in module %s]"),
11522 die->offset.sect_off, objfile_name (objfile));
11523 else
11524 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11525 }
11526 else
11527 {
11528 CORE_ADDR lowpc;
11529
11530 /* DW_AT_entry_pc should be preferred. */
11531 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11532 complaint (&symfile_complaints,
11533 _("DW_AT_GNU_call_site_target target DIE has invalid "
11534 "low pc, for referencing DIE 0x%x [in module %s]"),
11535 die->offset.sect_off, objfile_name (objfile));
11536 else
11537 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11538 }
11539 }
11540 else
11541 complaint (&symfile_complaints,
11542 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11543 "block nor reference, for DIE 0x%x [in module %s]"),
11544 die->offset.sect_off, objfile_name (objfile));
11545
11546 call_site->per_cu = cu->per_cu;
11547
11548 for (child_die = die->child;
11549 child_die && child_die->tag;
11550 child_die = sibling_die (child_die))
11551 {
11552 struct call_site_parameter *parameter;
11553 struct attribute *loc, *origin;
11554
11555 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11556 {
11557 /* Already printed the complaint above. */
11558 continue;
11559 }
11560
11561 gdb_assert (call_site->parameter_count < nparams);
11562 parameter = &call_site->parameter[call_site->parameter_count];
11563
11564 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11565 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11566 register is contained in DW_AT_GNU_call_site_value. */
11567
11568 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11569 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11570 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11571 {
11572 sect_offset offset;
11573
11574 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11575 offset = dwarf2_get_ref_die_offset (origin);
11576 if (!offset_in_cu_p (&cu->header, offset))
11577 {
11578 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11579 binding can be done only inside one CU. Such referenced DIE
11580 therefore cannot be even moved to DW_TAG_partial_unit. */
11581 complaint (&symfile_complaints,
11582 _("DW_AT_abstract_origin offset is not in CU for "
11583 "DW_TAG_GNU_call_site child DIE 0x%x "
11584 "[in module %s]"),
11585 child_die->offset.sect_off, objfile_name (objfile));
11586 continue;
11587 }
11588 parameter->u.param_offset.cu_off = (offset.sect_off
11589 - cu->header.offset.sect_off);
11590 }
11591 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11592 {
11593 complaint (&symfile_complaints,
11594 _("No DW_FORM_block* DW_AT_location for "
11595 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11596 child_die->offset.sect_off, objfile_name (objfile));
11597 continue;
11598 }
11599 else
11600 {
11601 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11602 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11603 if (parameter->u.dwarf_reg != -1)
11604 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11605 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11606 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11607 &parameter->u.fb_offset))
11608 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11609 else
11610 {
11611 complaint (&symfile_complaints,
11612 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11613 "for DW_FORM_block* DW_AT_location is supported for "
11614 "DW_TAG_GNU_call_site child DIE 0x%x "
11615 "[in module %s]"),
11616 child_die->offset.sect_off, objfile_name (objfile));
11617 continue;
11618 }
11619 }
11620
11621 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11622 if (!attr_form_is_block (attr))
11623 {
11624 complaint (&symfile_complaints,
11625 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11626 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11627 child_die->offset.sect_off, objfile_name (objfile));
11628 continue;
11629 }
11630 parameter->value = DW_BLOCK (attr)->data;
11631 parameter->value_size = DW_BLOCK (attr)->size;
11632
11633 /* Parameters are not pre-cleared by memset above. */
11634 parameter->data_value = NULL;
11635 parameter->data_value_size = 0;
11636 call_site->parameter_count++;
11637
11638 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11639 if (attr)
11640 {
11641 if (!attr_form_is_block (attr))
11642 complaint (&symfile_complaints,
11643 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11644 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11645 child_die->offset.sect_off, objfile_name (objfile));
11646 else
11647 {
11648 parameter->data_value = DW_BLOCK (attr)->data;
11649 parameter->data_value_size = DW_BLOCK (attr)->size;
11650 }
11651 }
11652 }
11653 }
11654
11655 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11656 Return 1 if the attributes are present and valid, otherwise, return 0.
11657 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11658
11659 static int
11660 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11661 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11662 struct partial_symtab *ranges_pst)
11663 {
11664 struct objfile *objfile = cu->objfile;
11665 struct comp_unit_head *cu_header = &cu->header;
11666 bfd *obfd = objfile->obfd;
11667 unsigned int addr_size = cu_header->addr_size;
11668 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11669 /* Base address selection entry. */
11670 CORE_ADDR base;
11671 int found_base;
11672 unsigned int dummy;
11673 const gdb_byte *buffer;
11674 CORE_ADDR marker;
11675 int low_set;
11676 CORE_ADDR low = 0;
11677 CORE_ADDR high = 0;
11678 CORE_ADDR baseaddr;
11679
11680 found_base = cu->base_known;
11681 base = cu->base_address;
11682
11683 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11684 if (offset >= dwarf2_per_objfile->ranges.size)
11685 {
11686 complaint (&symfile_complaints,
11687 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11688 offset);
11689 return 0;
11690 }
11691 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11692
11693 /* Read in the largest possible address. */
11694 marker = read_address (obfd, buffer, cu, &dummy);
11695 if ((marker & mask) == mask)
11696 {
11697 /* If we found the largest possible address, then
11698 read the base address. */
11699 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11700 buffer += 2 * addr_size;
11701 offset += 2 * addr_size;
11702 found_base = 1;
11703 }
11704
11705 low_set = 0;
11706
11707 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11708
11709 while (1)
11710 {
11711 CORE_ADDR range_beginning, range_end;
11712
11713 range_beginning = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 range_end = read_address (obfd, buffer, cu, &dummy);
11716 buffer += addr_size;
11717 offset += 2 * addr_size;
11718
11719 /* An end of list marker is a pair of zero addresses. */
11720 if (range_beginning == 0 && range_end == 0)
11721 /* Found the end of list entry. */
11722 break;
11723
11724 /* Each base address selection entry is a pair of 2 values.
11725 The first is the largest possible address, the second is
11726 the base address. Check for a base address here. */
11727 if ((range_beginning & mask) == mask)
11728 {
11729 /* If we found the largest possible address, then
11730 read the base address. */
11731 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11732 found_base = 1;
11733 continue;
11734 }
11735
11736 if (!found_base)
11737 {
11738 /* We have no valid base address for the ranges
11739 data. */
11740 complaint (&symfile_complaints,
11741 _("Invalid .debug_ranges data (no base address)"));
11742 return 0;
11743 }
11744
11745 if (range_beginning > range_end)
11746 {
11747 /* Inverted range entries are invalid. */
11748 complaint (&symfile_complaints,
11749 _("Invalid .debug_ranges data (inverted range)"));
11750 return 0;
11751 }
11752
11753 /* Empty range entries have no effect. */
11754 if (range_beginning == range_end)
11755 continue;
11756
11757 range_beginning += base;
11758 range_end += base;
11759
11760 /* A not-uncommon case of bad debug info.
11761 Don't pollute the addrmap with bad data. */
11762 if (range_beginning + baseaddr == 0
11763 && !dwarf2_per_objfile->has_section_at_zero)
11764 {
11765 complaint (&symfile_complaints,
11766 _(".debug_ranges entry has start address of zero"
11767 " [in module %s]"), objfile_name (objfile));
11768 continue;
11769 }
11770
11771 if (ranges_pst != NULL)
11772 addrmap_set_empty (objfile->psymtabs_addrmap,
11773 range_beginning + baseaddr,
11774 range_end - 1 + baseaddr,
11775 ranges_pst);
11776
11777 /* FIXME: This is recording everything as a low-high
11778 segment of consecutive addresses. We should have a
11779 data structure for discontiguous block ranges
11780 instead. */
11781 if (! low_set)
11782 {
11783 low = range_beginning;
11784 high = range_end;
11785 low_set = 1;
11786 }
11787 else
11788 {
11789 if (range_beginning < low)
11790 low = range_beginning;
11791 if (range_end > high)
11792 high = range_end;
11793 }
11794 }
11795
11796 if (! low_set)
11797 /* If the first entry is an end-of-list marker, the range
11798 describes an empty scope, i.e. no instructions. */
11799 return 0;
11800
11801 if (low_return)
11802 *low_return = low;
11803 if (high_return)
11804 *high_return = high;
11805 return 1;
11806 }
11807
11808 /* Get low and high pc attributes from a die. Return 1 if the attributes
11809 are present and valid, otherwise, return 0. Return -1 if the range is
11810 discontinuous, i.e. derived from DW_AT_ranges information. */
11811
11812 static int
11813 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11814 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11815 struct partial_symtab *pst)
11816 {
11817 struct attribute *attr;
11818 struct attribute *attr_high;
11819 CORE_ADDR low = 0;
11820 CORE_ADDR high = 0;
11821 int ret = 0;
11822
11823 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11824 if (attr_high)
11825 {
11826 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11827 if (attr)
11828 {
11829 low = attr_value_as_address (attr);
11830 high = attr_value_as_address (attr_high);
11831 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11832 high += low;
11833 }
11834 else
11835 /* Found high w/o low attribute. */
11836 return 0;
11837
11838 /* Found consecutive range of addresses. */
11839 ret = 1;
11840 }
11841 else
11842 {
11843 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11844 if (attr != NULL)
11845 {
11846 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11847 We take advantage of the fact that DW_AT_ranges does not appear
11848 in DW_TAG_compile_unit of DWO files. */
11849 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11850 unsigned int ranges_offset = (DW_UNSND (attr)
11851 + (need_ranges_base
11852 ? cu->ranges_base
11853 : 0));
11854
11855 /* Value of the DW_AT_ranges attribute is the offset in the
11856 .debug_ranges section. */
11857 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11858 return 0;
11859 /* Found discontinuous range of addresses. */
11860 ret = -1;
11861 }
11862 }
11863
11864 /* read_partial_die has also the strict LOW < HIGH requirement. */
11865 if (high <= low)
11866 return 0;
11867
11868 /* When using the GNU linker, .gnu.linkonce. sections are used to
11869 eliminate duplicate copies of functions and vtables and such.
11870 The linker will arbitrarily choose one and discard the others.
11871 The AT_*_pc values for such functions refer to local labels in
11872 these sections. If the section from that file was discarded, the
11873 labels are not in the output, so the relocs get a value of 0.
11874 If this is a discarded function, mark the pc bounds as invalid,
11875 so that GDB will ignore it. */
11876 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11877 return 0;
11878
11879 *lowpc = low;
11880 if (highpc)
11881 *highpc = high;
11882 return ret;
11883 }
11884
11885 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11886 its low and high PC addresses. Do nothing if these addresses could not
11887 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11888 and HIGHPC to the high address if greater than HIGHPC. */
11889
11890 static void
11891 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11893 struct dwarf2_cu *cu)
11894 {
11895 CORE_ADDR low, high;
11896 struct die_info *child = die->child;
11897
11898 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11899 {
11900 *lowpc = min (*lowpc, low);
11901 *highpc = max (*highpc, high);
11902 }
11903
11904 /* If the language does not allow nested subprograms (either inside
11905 subprograms or lexical blocks), we're done. */
11906 if (cu->language != language_ada)
11907 return;
11908
11909 /* Check all the children of the given DIE. If it contains nested
11910 subprograms, then check their pc bounds. Likewise, we need to
11911 check lexical blocks as well, as they may also contain subprogram
11912 definitions. */
11913 while (child && child->tag)
11914 {
11915 if (child->tag == DW_TAG_subprogram
11916 || child->tag == DW_TAG_lexical_block)
11917 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11918 child = sibling_die (child);
11919 }
11920 }
11921
11922 /* Get the low and high pc's represented by the scope DIE, and store
11923 them in *LOWPC and *HIGHPC. If the correct values can't be
11924 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11925
11926 static void
11927 get_scope_pc_bounds (struct die_info *die,
11928 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11929 struct dwarf2_cu *cu)
11930 {
11931 CORE_ADDR best_low = (CORE_ADDR) -1;
11932 CORE_ADDR best_high = (CORE_ADDR) 0;
11933 CORE_ADDR current_low, current_high;
11934
11935 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11936 {
11937 best_low = current_low;
11938 best_high = current_high;
11939 }
11940 else
11941 {
11942 struct die_info *child = die->child;
11943
11944 while (child && child->tag)
11945 {
11946 switch (child->tag) {
11947 case DW_TAG_subprogram:
11948 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11949 break;
11950 case DW_TAG_namespace:
11951 case DW_TAG_module:
11952 /* FIXME: carlton/2004-01-16: Should we do this for
11953 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11954 that current GCC's always emit the DIEs corresponding
11955 to definitions of methods of classes as children of a
11956 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11957 the DIEs giving the declarations, which could be
11958 anywhere). But I don't see any reason why the
11959 standards says that they have to be there. */
11960 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11961
11962 if (current_low != ((CORE_ADDR) -1))
11963 {
11964 best_low = min (best_low, current_low);
11965 best_high = max (best_high, current_high);
11966 }
11967 break;
11968 default:
11969 /* Ignore. */
11970 break;
11971 }
11972
11973 child = sibling_die (child);
11974 }
11975 }
11976
11977 *lowpc = best_low;
11978 *highpc = best_high;
11979 }
11980
11981 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11982 in DIE. */
11983
11984 static void
11985 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11986 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11987 {
11988 struct objfile *objfile = cu->objfile;
11989 struct attribute *attr;
11990 struct attribute *attr_high;
11991
11992 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11993 if (attr_high)
11994 {
11995 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11996 if (attr)
11997 {
11998 CORE_ADDR low = attr_value_as_address (attr);
11999 CORE_ADDR high = attr_value_as_address (attr_high);
12000
12001 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12002 high += low;
12003
12004 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12005 }
12006 }
12007
12008 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12009 if (attr)
12010 {
12011 bfd *obfd = objfile->obfd;
12012 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12013 We take advantage of the fact that DW_AT_ranges does not appear
12014 in DW_TAG_compile_unit of DWO files. */
12015 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12016
12017 /* The value of the DW_AT_ranges attribute is the offset of the
12018 address range list in the .debug_ranges section. */
12019 unsigned long offset = (DW_UNSND (attr)
12020 + (need_ranges_base ? cu->ranges_base : 0));
12021 const gdb_byte *buffer;
12022
12023 /* For some target architectures, but not others, the
12024 read_address function sign-extends the addresses it returns.
12025 To recognize base address selection entries, we need a
12026 mask. */
12027 unsigned int addr_size = cu->header.addr_size;
12028 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12029
12030 /* The base address, to which the next pair is relative. Note
12031 that this 'base' is a DWARF concept: most entries in a range
12032 list are relative, to reduce the number of relocs against the
12033 debugging information. This is separate from this function's
12034 'baseaddr' argument, which GDB uses to relocate debugging
12035 information from a shared library based on the address at
12036 which the library was loaded. */
12037 CORE_ADDR base = cu->base_address;
12038 int base_known = cu->base_known;
12039
12040 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12041 if (offset >= dwarf2_per_objfile->ranges.size)
12042 {
12043 complaint (&symfile_complaints,
12044 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12045 offset);
12046 return;
12047 }
12048 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12049
12050 for (;;)
12051 {
12052 unsigned int bytes_read;
12053 CORE_ADDR start, end;
12054
12055 start = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12057 end = read_address (obfd, buffer, cu, &bytes_read);
12058 buffer += bytes_read;
12059
12060 /* Did we find the end of the range list? */
12061 if (start == 0 && end == 0)
12062 break;
12063
12064 /* Did we find a base address selection entry? */
12065 else if ((start & base_select_mask) == base_select_mask)
12066 {
12067 base = end;
12068 base_known = 1;
12069 }
12070
12071 /* We found an ordinary address range. */
12072 else
12073 {
12074 if (!base_known)
12075 {
12076 complaint (&symfile_complaints,
12077 _("Invalid .debug_ranges data "
12078 "(no base address)"));
12079 return;
12080 }
12081
12082 if (start > end)
12083 {
12084 /* Inverted range entries are invalid. */
12085 complaint (&symfile_complaints,
12086 _("Invalid .debug_ranges data "
12087 "(inverted range)"));
12088 return;
12089 }
12090
12091 /* Empty range entries have no effect. */
12092 if (start == end)
12093 continue;
12094
12095 start += base + baseaddr;
12096 end += base + baseaddr;
12097
12098 /* A not-uncommon case of bad debug info.
12099 Don't pollute the addrmap with bad data. */
12100 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12101 {
12102 complaint (&symfile_complaints,
12103 _(".debug_ranges entry has start address of zero"
12104 " [in module %s]"), objfile_name (objfile));
12105 continue;
12106 }
12107
12108 record_block_range (block, start, end - 1);
12109 }
12110 }
12111 }
12112 }
12113
12114 /* Check whether the producer field indicates either of GCC < 4.6, or the
12115 Intel C/C++ compiler, and cache the result in CU. */
12116
12117 static void
12118 check_producer (struct dwarf2_cu *cu)
12119 {
12120 const char *cs;
12121 int major, minor, release;
12122
12123 if (cu->producer == NULL)
12124 {
12125 /* For unknown compilers expect their behavior is DWARF version
12126 compliant.
12127
12128 GCC started to support .debug_types sections by -gdwarf-4 since
12129 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12130 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12131 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12132 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12133 }
12134 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12135 {
12136 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12137
12138 cs = &cu->producer[strlen ("GNU ")];
12139 while (*cs && !isdigit (*cs))
12140 cs++;
12141 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12142 {
12143 /* Not recognized as GCC. */
12144 }
12145 else
12146 {
12147 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12148 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12149 }
12150 }
12151 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12152 cu->producer_is_icc = 1;
12153 else
12154 {
12155 /* For other non-GCC compilers, expect their behavior is DWARF version
12156 compliant. */
12157 }
12158
12159 cu->checked_producer = 1;
12160 }
12161
12162 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12163 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12164 during 4.6.0 experimental. */
12165
12166 static int
12167 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12168 {
12169 if (!cu->checked_producer)
12170 check_producer (cu);
12171
12172 return cu->producer_is_gxx_lt_4_6;
12173 }
12174
12175 /* Return the default accessibility type if it is not overriden by
12176 DW_AT_accessibility. */
12177
12178 static enum dwarf_access_attribute
12179 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12180 {
12181 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12182 {
12183 /* The default DWARF 2 accessibility for members is public, the default
12184 accessibility for inheritance is private. */
12185
12186 if (die->tag != DW_TAG_inheritance)
12187 return DW_ACCESS_public;
12188 else
12189 return DW_ACCESS_private;
12190 }
12191 else
12192 {
12193 /* DWARF 3+ defines the default accessibility a different way. The same
12194 rules apply now for DW_TAG_inheritance as for the members and it only
12195 depends on the container kind. */
12196
12197 if (die->parent->tag == DW_TAG_class_type)
12198 return DW_ACCESS_private;
12199 else
12200 return DW_ACCESS_public;
12201 }
12202 }
12203
12204 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12205 offset. If the attribute was not found return 0, otherwise return
12206 1. If it was found but could not properly be handled, set *OFFSET
12207 to 0. */
12208
12209 static int
12210 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12211 LONGEST *offset)
12212 {
12213 struct attribute *attr;
12214
12215 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12216 if (attr != NULL)
12217 {
12218 *offset = 0;
12219
12220 /* Note that we do not check for a section offset first here.
12221 This is because DW_AT_data_member_location is new in DWARF 4,
12222 so if we see it, we can assume that a constant form is really
12223 a constant and not a section offset. */
12224 if (attr_form_is_constant (attr))
12225 *offset = dwarf2_get_attr_constant_value (attr, 0);
12226 else if (attr_form_is_section_offset (attr))
12227 dwarf2_complex_location_expr_complaint ();
12228 else if (attr_form_is_block (attr))
12229 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12230 else
12231 dwarf2_complex_location_expr_complaint ();
12232
12233 return 1;
12234 }
12235
12236 return 0;
12237 }
12238
12239 /* Add an aggregate field to the field list. */
12240
12241 static void
12242 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12243 struct dwarf2_cu *cu)
12244 {
12245 struct objfile *objfile = cu->objfile;
12246 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12247 struct nextfield *new_field;
12248 struct attribute *attr;
12249 struct field *fp;
12250 const char *fieldname = "";
12251
12252 /* Allocate a new field list entry and link it in. */
12253 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12254 make_cleanup (xfree, new_field);
12255 memset (new_field, 0, sizeof (struct nextfield));
12256
12257 if (die->tag == DW_TAG_inheritance)
12258 {
12259 new_field->next = fip->baseclasses;
12260 fip->baseclasses = new_field;
12261 }
12262 else
12263 {
12264 new_field->next = fip->fields;
12265 fip->fields = new_field;
12266 }
12267 fip->nfields++;
12268
12269 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12270 if (attr)
12271 new_field->accessibility = DW_UNSND (attr);
12272 else
12273 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12274 if (new_field->accessibility != DW_ACCESS_public)
12275 fip->non_public_fields = 1;
12276
12277 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12278 if (attr)
12279 new_field->virtuality = DW_UNSND (attr);
12280 else
12281 new_field->virtuality = DW_VIRTUALITY_none;
12282
12283 fp = &new_field->field;
12284
12285 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12286 {
12287 LONGEST offset;
12288
12289 /* Data member other than a C++ static data member. */
12290
12291 /* Get type of field. */
12292 fp->type = die_type (die, cu);
12293
12294 SET_FIELD_BITPOS (*fp, 0);
12295
12296 /* Get bit size of field (zero if none). */
12297 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12298 if (attr)
12299 {
12300 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12301 }
12302 else
12303 {
12304 FIELD_BITSIZE (*fp) = 0;
12305 }
12306
12307 /* Get bit offset of field. */
12308 if (handle_data_member_location (die, cu, &offset))
12309 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12310 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12311 if (attr)
12312 {
12313 if (gdbarch_bits_big_endian (gdbarch))
12314 {
12315 /* For big endian bits, the DW_AT_bit_offset gives the
12316 additional bit offset from the MSB of the containing
12317 anonymous object to the MSB of the field. We don't
12318 have to do anything special since we don't need to
12319 know the size of the anonymous object. */
12320 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12321 }
12322 else
12323 {
12324 /* For little endian bits, compute the bit offset to the
12325 MSB of the anonymous object, subtract off the number of
12326 bits from the MSB of the field to the MSB of the
12327 object, and then subtract off the number of bits of
12328 the field itself. The result is the bit offset of
12329 the LSB of the field. */
12330 int anonymous_size;
12331 int bit_offset = DW_UNSND (attr);
12332
12333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12334 if (attr)
12335 {
12336 /* The size of the anonymous object containing
12337 the bit field is explicit, so use the
12338 indicated size (in bytes). */
12339 anonymous_size = DW_UNSND (attr);
12340 }
12341 else
12342 {
12343 /* The size of the anonymous object containing
12344 the bit field must be inferred from the type
12345 attribute of the data member containing the
12346 bit field. */
12347 anonymous_size = TYPE_LENGTH (fp->type);
12348 }
12349 SET_FIELD_BITPOS (*fp,
12350 (FIELD_BITPOS (*fp)
12351 + anonymous_size * bits_per_byte
12352 - bit_offset - FIELD_BITSIZE (*fp)));
12353 }
12354 }
12355
12356 /* Get name of field. */
12357 fieldname = dwarf2_name (die, cu);
12358 if (fieldname == NULL)
12359 fieldname = "";
12360
12361 /* The name is already allocated along with this objfile, so we don't
12362 need to duplicate it for the type. */
12363 fp->name = fieldname;
12364
12365 /* Change accessibility for artificial fields (e.g. virtual table
12366 pointer or virtual base class pointer) to private. */
12367 if (dwarf2_attr (die, DW_AT_artificial, cu))
12368 {
12369 FIELD_ARTIFICIAL (*fp) = 1;
12370 new_field->accessibility = DW_ACCESS_private;
12371 fip->non_public_fields = 1;
12372 }
12373 }
12374 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12375 {
12376 /* C++ static member. */
12377
12378 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12379 is a declaration, but all versions of G++ as of this writing
12380 (so through at least 3.2.1) incorrectly generate
12381 DW_TAG_variable tags. */
12382
12383 const char *physname;
12384
12385 /* Get name of field. */
12386 fieldname = dwarf2_name (die, cu);
12387 if (fieldname == NULL)
12388 return;
12389
12390 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12391 if (attr
12392 /* Only create a symbol if this is an external value.
12393 new_symbol checks this and puts the value in the global symbol
12394 table, which we want. If it is not external, new_symbol
12395 will try to put the value in cu->list_in_scope which is wrong. */
12396 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12397 {
12398 /* A static const member, not much different than an enum as far as
12399 we're concerned, except that we can support more types. */
12400 new_symbol (die, NULL, cu);
12401 }
12402
12403 /* Get physical name. */
12404 physname = dwarf2_physname (fieldname, die, cu);
12405
12406 /* The name is already allocated along with this objfile, so we don't
12407 need to duplicate it for the type. */
12408 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12409 FIELD_TYPE (*fp) = die_type (die, cu);
12410 FIELD_NAME (*fp) = fieldname;
12411 }
12412 else if (die->tag == DW_TAG_inheritance)
12413 {
12414 LONGEST offset;
12415
12416 /* C++ base class field. */
12417 if (handle_data_member_location (die, cu, &offset))
12418 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12419 FIELD_BITSIZE (*fp) = 0;
12420 FIELD_TYPE (*fp) = die_type (die, cu);
12421 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12422 fip->nbaseclasses++;
12423 }
12424 }
12425
12426 /* Add a typedef defined in the scope of the FIP's class. */
12427
12428 static void
12429 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12430 struct dwarf2_cu *cu)
12431 {
12432 struct objfile *objfile = cu->objfile;
12433 struct typedef_field_list *new_field;
12434 struct attribute *attr;
12435 struct typedef_field *fp;
12436 char *fieldname = "";
12437
12438 /* Allocate a new field list entry and link it in. */
12439 new_field = xzalloc (sizeof (*new_field));
12440 make_cleanup (xfree, new_field);
12441
12442 gdb_assert (die->tag == DW_TAG_typedef);
12443
12444 fp = &new_field->field;
12445
12446 /* Get name of field. */
12447 fp->name = dwarf2_name (die, cu);
12448 if (fp->name == NULL)
12449 return;
12450
12451 fp->type = read_type_die (die, cu);
12452
12453 new_field->next = fip->typedef_field_list;
12454 fip->typedef_field_list = new_field;
12455 fip->typedef_field_list_count++;
12456 }
12457
12458 /* Create the vector of fields, and attach it to the type. */
12459
12460 static void
12461 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12462 struct dwarf2_cu *cu)
12463 {
12464 int nfields = fip->nfields;
12465
12466 /* Record the field count, allocate space for the array of fields,
12467 and create blank accessibility bitfields if necessary. */
12468 TYPE_NFIELDS (type) = nfields;
12469 TYPE_FIELDS (type) = (struct field *)
12470 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12471 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12472
12473 if (fip->non_public_fields && cu->language != language_ada)
12474 {
12475 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12476
12477 TYPE_FIELD_PRIVATE_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12480
12481 TYPE_FIELD_PROTECTED_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12484
12485 TYPE_FIELD_IGNORE_BITS (type) =
12486 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12487 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12488 }
12489
12490 /* If the type has baseclasses, allocate and clear a bit vector for
12491 TYPE_FIELD_VIRTUAL_BITS. */
12492 if (fip->nbaseclasses && cu->language != language_ada)
12493 {
12494 int num_bytes = B_BYTES (fip->nbaseclasses);
12495 unsigned char *pointer;
12496
12497 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12498 pointer = TYPE_ALLOC (type, num_bytes);
12499 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12500 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12501 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12502 }
12503
12504 /* Copy the saved-up fields into the field vector. Start from the head of
12505 the list, adding to the tail of the field array, so that they end up in
12506 the same order in the array in which they were added to the list. */
12507 while (nfields-- > 0)
12508 {
12509 struct nextfield *fieldp;
12510
12511 if (fip->fields)
12512 {
12513 fieldp = fip->fields;
12514 fip->fields = fieldp->next;
12515 }
12516 else
12517 {
12518 fieldp = fip->baseclasses;
12519 fip->baseclasses = fieldp->next;
12520 }
12521
12522 TYPE_FIELD (type, nfields) = fieldp->field;
12523 switch (fieldp->accessibility)
12524 {
12525 case DW_ACCESS_private:
12526 if (cu->language != language_ada)
12527 SET_TYPE_FIELD_PRIVATE (type, nfields);
12528 break;
12529
12530 case DW_ACCESS_protected:
12531 if (cu->language != language_ada)
12532 SET_TYPE_FIELD_PROTECTED (type, nfields);
12533 break;
12534
12535 case DW_ACCESS_public:
12536 break;
12537
12538 default:
12539 /* Unknown accessibility. Complain and treat it as public. */
12540 {
12541 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12542 fieldp->accessibility);
12543 }
12544 break;
12545 }
12546 if (nfields < fip->nbaseclasses)
12547 {
12548 switch (fieldp->virtuality)
12549 {
12550 case DW_VIRTUALITY_virtual:
12551 case DW_VIRTUALITY_pure_virtual:
12552 if (cu->language == language_ada)
12553 error (_("unexpected virtuality in component of Ada type"));
12554 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12555 break;
12556 }
12557 }
12558 }
12559 }
12560
12561 /* Return true if this member function is a constructor, false
12562 otherwise. */
12563
12564 static int
12565 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12566 {
12567 const char *fieldname;
12568 const char *typename;
12569 int len;
12570
12571 if (die->parent == NULL)
12572 return 0;
12573
12574 if (die->parent->tag != DW_TAG_structure_type
12575 && die->parent->tag != DW_TAG_union_type
12576 && die->parent->tag != DW_TAG_class_type)
12577 return 0;
12578
12579 fieldname = dwarf2_name (die, cu);
12580 typename = dwarf2_name (die->parent, cu);
12581 if (fieldname == NULL || typename == NULL)
12582 return 0;
12583
12584 len = strlen (fieldname);
12585 return (strncmp (fieldname, typename, len) == 0
12586 && (typename[len] == '\0' || typename[len] == '<'));
12587 }
12588
12589 /* Add a member function to the proper fieldlist. */
12590
12591 static void
12592 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12593 struct type *type, struct dwarf2_cu *cu)
12594 {
12595 struct objfile *objfile = cu->objfile;
12596 struct attribute *attr;
12597 struct fnfieldlist *flp;
12598 int i;
12599 struct fn_field *fnp;
12600 const char *fieldname;
12601 struct nextfnfield *new_fnfield;
12602 struct type *this_type;
12603 enum dwarf_access_attribute accessibility;
12604
12605 if (cu->language == language_ada)
12606 error (_("unexpected member function in Ada type"));
12607
12608 /* Get name of member function. */
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 return;
12612
12613 /* Look up member function name in fieldlist. */
12614 for (i = 0; i < fip->nfnfields; i++)
12615 {
12616 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12617 break;
12618 }
12619
12620 /* Create new list element if necessary. */
12621 if (i < fip->nfnfields)
12622 flp = &fip->fnfieldlists[i];
12623 else
12624 {
12625 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12626 {
12627 fip->fnfieldlists = (struct fnfieldlist *)
12628 xrealloc (fip->fnfieldlists,
12629 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12630 * sizeof (struct fnfieldlist));
12631 if (fip->nfnfields == 0)
12632 make_cleanup (free_current_contents, &fip->fnfieldlists);
12633 }
12634 flp = &fip->fnfieldlists[fip->nfnfields];
12635 flp->name = fieldname;
12636 flp->length = 0;
12637 flp->head = NULL;
12638 i = fip->nfnfields++;
12639 }
12640
12641 /* Create a new member function field and chain it to the field list
12642 entry. */
12643 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12644 make_cleanup (xfree, new_fnfield);
12645 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12646 new_fnfield->next = flp->head;
12647 flp->head = new_fnfield;
12648 flp->length++;
12649
12650 /* Fill in the member function field info. */
12651 fnp = &new_fnfield->fnfield;
12652
12653 /* Delay processing of the physname until later. */
12654 if (cu->language == language_cplus || cu->language == language_java)
12655 {
12656 add_to_method_list (type, i, flp->length - 1, fieldname,
12657 die, cu);
12658 }
12659 else
12660 {
12661 const char *physname = dwarf2_physname (fieldname, die, cu);
12662 fnp->physname = physname ? physname : "";
12663 }
12664
12665 fnp->type = alloc_type (objfile);
12666 this_type = read_type_die (die, cu);
12667 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12668 {
12669 int nparams = TYPE_NFIELDS (this_type);
12670
12671 /* TYPE is the domain of this method, and THIS_TYPE is the type
12672 of the method itself (TYPE_CODE_METHOD). */
12673 smash_to_method_type (fnp->type, type,
12674 TYPE_TARGET_TYPE (this_type),
12675 TYPE_FIELDS (this_type),
12676 TYPE_NFIELDS (this_type),
12677 TYPE_VARARGS (this_type));
12678
12679 /* Handle static member functions.
12680 Dwarf2 has no clean way to discern C++ static and non-static
12681 member functions. G++ helps GDB by marking the first
12682 parameter for non-static member functions (which is the this
12683 pointer) as artificial. We obtain this information from
12684 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12685 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12686 fnp->voffset = VOFFSET_STATIC;
12687 }
12688 else
12689 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12690 dwarf2_full_name (fieldname, die, cu));
12691
12692 /* Get fcontext from DW_AT_containing_type if present. */
12693 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12694 fnp->fcontext = die_containing_type (die, cu);
12695
12696 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12697 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12698
12699 /* Get accessibility. */
12700 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12701 if (attr)
12702 accessibility = DW_UNSND (attr);
12703 else
12704 accessibility = dwarf2_default_access_attribute (die, cu);
12705 switch (accessibility)
12706 {
12707 case DW_ACCESS_private:
12708 fnp->is_private = 1;
12709 break;
12710 case DW_ACCESS_protected:
12711 fnp->is_protected = 1;
12712 break;
12713 }
12714
12715 /* Check for artificial methods. */
12716 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12717 if (attr && DW_UNSND (attr) != 0)
12718 fnp->is_artificial = 1;
12719
12720 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12721
12722 /* Get index in virtual function table if it is a virtual member
12723 function. For older versions of GCC, this is an offset in the
12724 appropriate virtual table, as specified by DW_AT_containing_type.
12725 For everyone else, it is an expression to be evaluated relative
12726 to the object address. */
12727
12728 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12729 if (attr)
12730 {
12731 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12732 {
12733 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12734 {
12735 /* Old-style GCC. */
12736 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12737 }
12738 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12739 || (DW_BLOCK (attr)->size > 1
12740 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12741 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12742 {
12743 struct dwarf_block blk;
12744 int offset;
12745
12746 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12747 ? 1 : 2);
12748 blk.size = DW_BLOCK (attr)->size - offset;
12749 blk.data = DW_BLOCK (attr)->data + offset;
12750 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12751 if ((fnp->voffset % cu->header.addr_size) != 0)
12752 dwarf2_complex_location_expr_complaint ();
12753 else
12754 fnp->voffset /= cu->header.addr_size;
12755 fnp->voffset += 2;
12756 }
12757 else
12758 dwarf2_complex_location_expr_complaint ();
12759
12760 if (!fnp->fcontext)
12761 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12762 }
12763 else if (attr_form_is_section_offset (attr))
12764 {
12765 dwarf2_complex_location_expr_complaint ();
12766 }
12767 else
12768 {
12769 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12770 fieldname);
12771 }
12772 }
12773 else
12774 {
12775 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12776 if (attr && DW_UNSND (attr))
12777 {
12778 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12779 complaint (&symfile_complaints,
12780 _("Member function \"%s\" (offset %d) is virtual "
12781 "but the vtable offset is not specified"),
12782 fieldname, die->offset.sect_off);
12783 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12784 TYPE_CPLUS_DYNAMIC (type) = 1;
12785 }
12786 }
12787 }
12788
12789 /* Create the vector of member function fields, and attach it to the type. */
12790
12791 static void
12792 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12793 struct dwarf2_cu *cu)
12794 {
12795 struct fnfieldlist *flp;
12796 int i;
12797
12798 if (cu->language == language_ada)
12799 error (_("unexpected member functions in Ada type"));
12800
12801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12802 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12803 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12804
12805 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12806 {
12807 struct nextfnfield *nfp = flp->head;
12808 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12809 int k;
12810
12811 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12812 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12813 fn_flp->fn_fields = (struct fn_field *)
12814 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12815 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12816 fn_flp->fn_fields[k] = nfp->fnfield;
12817 }
12818
12819 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12820 }
12821
12822 /* Returns non-zero if NAME is the name of a vtable member in CU's
12823 language, zero otherwise. */
12824 static int
12825 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12826 {
12827 static const char vptr[] = "_vptr";
12828 static const char vtable[] = "vtable";
12829
12830 /* Look for the C++ and Java forms of the vtable. */
12831 if ((cu->language == language_java
12832 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12833 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12834 && is_cplus_marker (name[sizeof (vptr) - 1])))
12835 return 1;
12836
12837 return 0;
12838 }
12839
12840 /* GCC outputs unnamed structures that are really pointers to member
12841 functions, with the ABI-specified layout. If TYPE describes
12842 such a structure, smash it into a member function type.
12843
12844 GCC shouldn't do this; it should just output pointer to member DIEs.
12845 This is GCC PR debug/28767. */
12846
12847 static void
12848 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12849 {
12850 struct type *pfn_type, *domain_type, *new_type;
12851
12852 /* Check for a structure with no name and two children. */
12853 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12854 return;
12855
12856 /* Check for __pfn and __delta members. */
12857 if (TYPE_FIELD_NAME (type, 0) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12859 || TYPE_FIELD_NAME (type, 1) == NULL
12860 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12861 return;
12862
12863 /* Find the type of the method. */
12864 pfn_type = TYPE_FIELD_TYPE (type, 0);
12865 if (pfn_type == NULL
12866 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12867 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12868 return;
12869
12870 /* Look for the "this" argument. */
12871 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12872 if (TYPE_NFIELDS (pfn_type) == 0
12873 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12874 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12875 return;
12876
12877 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12878 new_type = alloc_type (objfile);
12879 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12880 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12881 TYPE_VARARGS (pfn_type));
12882 smash_to_methodptr_type (type, new_type);
12883 }
12884
12885 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12886 (icc). */
12887
12888 static int
12889 producer_is_icc (struct dwarf2_cu *cu)
12890 {
12891 if (!cu->checked_producer)
12892 check_producer (cu);
12893
12894 return cu->producer_is_icc;
12895 }
12896
12897 /* Called when we find the DIE that starts a structure or union scope
12898 (definition) to create a type for the structure or union. Fill in
12899 the type's name and general properties; the members will not be
12900 processed until process_structure_scope. A symbol table entry for
12901 the type will also not be done until process_structure_scope (assuming
12902 the type has a name).
12903
12904 NOTE: we need to call these functions regardless of whether or not the
12905 DIE has a DW_AT_name attribute, since it might be an anonymous
12906 structure or union. This gets the type entered into our set of
12907 user defined types. */
12908
12909 static struct type *
12910 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12911 {
12912 struct objfile *objfile = cu->objfile;
12913 struct type *type;
12914 struct attribute *attr;
12915 const char *name;
12916
12917 /* If the definition of this type lives in .debug_types, read that type.
12918 Don't follow DW_AT_specification though, that will take us back up
12919 the chain and we want to go down. */
12920 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12921 if (attr)
12922 {
12923 type = get_DW_AT_signature_type (die, attr, cu);
12924
12925 /* The type's CU may not be the same as CU.
12926 Ensure TYPE is recorded with CU in die_type_hash. */
12927 return set_die_type (die, type, cu);
12928 }
12929
12930 type = alloc_type (objfile);
12931 INIT_CPLUS_SPECIFIC (type);
12932
12933 name = dwarf2_name (die, cu);
12934 if (name != NULL)
12935 {
12936 if (cu->language == language_cplus
12937 || cu->language == language_java)
12938 {
12939 const char *full_name = dwarf2_full_name (name, die, cu);
12940
12941 /* dwarf2_full_name might have already finished building the DIE's
12942 type. If so, there is no need to continue. */
12943 if (get_die_type (die, cu) != NULL)
12944 return get_die_type (die, cu);
12945
12946 TYPE_TAG_NAME (type) = full_name;
12947 if (die->tag == DW_TAG_structure_type
12948 || die->tag == DW_TAG_class_type)
12949 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12950 }
12951 else
12952 {
12953 /* The name is already allocated along with this objfile, so
12954 we don't need to duplicate it for the type. */
12955 TYPE_TAG_NAME (type) = name;
12956 if (die->tag == DW_TAG_class_type)
12957 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12958 }
12959 }
12960
12961 if (die->tag == DW_TAG_structure_type)
12962 {
12963 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12964 }
12965 else if (die->tag == DW_TAG_union_type)
12966 {
12967 TYPE_CODE (type) = TYPE_CODE_UNION;
12968 }
12969 else
12970 {
12971 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12972 }
12973
12974 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12975 TYPE_DECLARED_CLASS (type) = 1;
12976
12977 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12978 if (attr)
12979 {
12980 TYPE_LENGTH (type) = DW_UNSND (attr);
12981 }
12982 else
12983 {
12984 TYPE_LENGTH (type) = 0;
12985 }
12986
12987 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12988 {
12989 /* ICC does not output the required DW_AT_declaration
12990 on incomplete types, but gives them a size of zero. */
12991 TYPE_STUB (type) = 1;
12992 }
12993 else
12994 TYPE_STUB_SUPPORTED (type) = 1;
12995
12996 if (die_is_declaration (die, cu))
12997 TYPE_STUB (type) = 1;
12998 else if (attr == NULL && die->child == NULL
12999 && producer_is_realview (cu->producer))
13000 /* RealView does not output the required DW_AT_declaration
13001 on incomplete types. */
13002 TYPE_STUB (type) = 1;
13003
13004 /* We need to add the type field to the die immediately so we don't
13005 infinitely recurse when dealing with pointers to the structure
13006 type within the structure itself. */
13007 set_die_type (die, type, cu);
13008
13009 /* set_die_type should be already done. */
13010 set_descriptive_type (type, die, cu);
13011
13012 return type;
13013 }
13014
13015 /* Finish creating a structure or union type, including filling in
13016 its members and creating a symbol for it. */
13017
13018 static void
13019 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13020 {
13021 struct objfile *objfile = cu->objfile;
13022 struct die_info *child_die;
13023 struct type *type;
13024
13025 type = get_die_type (die, cu);
13026 if (type == NULL)
13027 type = read_structure_type (die, cu);
13028
13029 if (die->child != NULL && ! die_is_declaration (die, cu))
13030 {
13031 struct field_info fi;
13032 VEC (symbolp) *template_args = NULL;
13033 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13034
13035 memset (&fi, 0, sizeof (struct field_info));
13036
13037 child_die = die->child;
13038
13039 while (child_die && child_die->tag)
13040 {
13041 if (child_die->tag == DW_TAG_member
13042 || child_die->tag == DW_TAG_variable)
13043 {
13044 /* NOTE: carlton/2002-11-05: A C++ static data member
13045 should be a DW_TAG_member that is a declaration, but
13046 all versions of G++ as of this writing (so through at
13047 least 3.2.1) incorrectly generate DW_TAG_variable
13048 tags for them instead. */
13049 dwarf2_add_field (&fi, child_die, cu);
13050 }
13051 else if (child_die->tag == DW_TAG_subprogram)
13052 {
13053 /* C++ member function. */
13054 dwarf2_add_member_fn (&fi, child_die, type, cu);
13055 }
13056 else if (child_die->tag == DW_TAG_inheritance)
13057 {
13058 /* C++ base class field. */
13059 dwarf2_add_field (&fi, child_die, cu);
13060 }
13061 else if (child_die->tag == DW_TAG_typedef)
13062 dwarf2_add_typedef (&fi, child_die, cu);
13063 else if (child_die->tag == DW_TAG_template_type_param
13064 || child_die->tag == DW_TAG_template_value_param)
13065 {
13066 struct symbol *arg = new_symbol (child_die, NULL, cu);
13067
13068 if (arg != NULL)
13069 VEC_safe_push (symbolp, template_args, arg);
13070 }
13071
13072 child_die = sibling_die (child_die);
13073 }
13074
13075 /* Attach template arguments to type. */
13076 if (! VEC_empty (symbolp, template_args))
13077 {
13078 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13079 TYPE_N_TEMPLATE_ARGUMENTS (type)
13080 = VEC_length (symbolp, template_args);
13081 TYPE_TEMPLATE_ARGUMENTS (type)
13082 = obstack_alloc (&objfile->objfile_obstack,
13083 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13084 * sizeof (struct symbol *)));
13085 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13086 VEC_address (symbolp, template_args),
13087 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13088 * sizeof (struct symbol *)));
13089 VEC_free (symbolp, template_args);
13090 }
13091
13092 /* Attach fields and member functions to the type. */
13093 if (fi.nfields)
13094 dwarf2_attach_fields_to_type (&fi, type, cu);
13095 if (fi.nfnfields)
13096 {
13097 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13098
13099 /* Get the type which refers to the base class (possibly this
13100 class itself) which contains the vtable pointer for the current
13101 class from the DW_AT_containing_type attribute. This use of
13102 DW_AT_containing_type is a GNU extension. */
13103
13104 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13105 {
13106 struct type *t = die_containing_type (die, cu);
13107
13108 TYPE_VPTR_BASETYPE (type) = t;
13109 if (type == t)
13110 {
13111 int i;
13112
13113 /* Our own class provides vtbl ptr. */
13114 for (i = TYPE_NFIELDS (t) - 1;
13115 i >= TYPE_N_BASECLASSES (t);
13116 --i)
13117 {
13118 const char *fieldname = TYPE_FIELD_NAME (t, i);
13119
13120 if (is_vtable_name (fieldname, cu))
13121 {
13122 TYPE_VPTR_FIELDNO (type) = i;
13123 break;
13124 }
13125 }
13126
13127 /* Complain if virtual function table field not found. */
13128 if (i < TYPE_N_BASECLASSES (t))
13129 complaint (&symfile_complaints,
13130 _("virtual function table pointer "
13131 "not found when defining class '%s'"),
13132 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13133 "");
13134 }
13135 else
13136 {
13137 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13138 }
13139 }
13140 else if (cu->producer
13141 && strncmp (cu->producer,
13142 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13143 {
13144 /* The IBM XLC compiler does not provide direct indication
13145 of the containing type, but the vtable pointer is
13146 always named __vfp. */
13147
13148 int i;
13149
13150 for (i = TYPE_NFIELDS (type) - 1;
13151 i >= TYPE_N_BASECLASSES (type);
13152 --i)
13153 {
13154 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13155 {
13156 TYPE_VPTR_FIELDNO (type) = i;
13157 TYPE_VPTR_BASETYPE (type) = type;
13158 break;
13159 }
13160 }
13161 }
13162 }
13163
13164 /* Copy fi.typedef_field_list linked list elements content into the
13165 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13166 if (fi.typedef_field_list)
13167 {
13168 int i = fi.typedef_field_list_count;
13169
13170 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13171 TYPE_TYPEDEF_FIELD_ARRAY (type)
13172 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13173 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13174
13175 /* Reverse the list order to keep the debug info elements order. */
13176 while (--i >= 0)
13177 {
13178 struct typedef_field *dest, *src;
13179
13180 dest = &TYPE_TYPEDEF_FIELD (type, i);
13181 src = &fi.typedef_field_list->field;
13182 fi.typedef_field_list = fi.typedef_field_list->next;
13183 *dest = *src;
13184 }
13185 }
13186
13187 do_cleanups (back_to);
13188
13189 if (HAVE_CPLUS_STRUCT (type))
13190 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13191 }
13192
13193 quirk_gcc_member_function_pointer (type, objfile);
13194
13195 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13196 snapshots) has been known to create a die giving a declaration
13197 for a class that has, as a child, a die giving a definition for a
13198 nested class. So we have to process our children even if the
13199 current die is a declaration. Normally, of course, a declaration
13200 won't have any children at all. */
13201
13202 child_die = die->child;
13203
13204 while (child_die != NULL && child_die->tag)
13205 {
13206 if (child_die->tag == DW_TAG_member
13207 || child_die->tag == DW_TAG_variable
13208 || child_die->tag == DW_TAG_inheritance
13209 || child_die->tag == DW_TAG_template_value_param
13210 || child_die->tag == DW_TAG_template_type_param)
13211 {
13212 /* Do nothing. */
13213 }
13214 else
13215 process_die (child_die, cu);
13216
13217 child_die = sibling_die (child_die);
13218 }
13219
13220 /* Do not consider external references. According to the DWARF standard,
13221 these DIEs are identified by the fact that they have no byte_size
13222 attribute, and a declaration attribute. */
13223 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13224 || !die_is_declaration (die, cu))
13225 new_symbol (die, type, cu);
13226 }
13227
13228 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13229 update TYPE using some information only available in DIE's children. */
13230
13231 static void
13232 update_enumeration_type_from_children (struct die_info *die,
13233 struct type *type,
13234 struct dwarf2_cu *cu)
13235 {
13236 struct obstack obstack;
13237 struct die_info *child_die;
13238 int unsigned_enum = 1;
13239 int flag_enum = 1;
13240 ULONGEST mask = 0;
13241 struct cleanup *old_chain;
13242
13243 obstack_init (&obstack);
13244 old_chain = make_cleanup_obstack_free (&obstack);
13245
13246 for (child_die = die->child;
13247 child_die != NULL && child_die->tag;
13248 child_die = sibling_die (child_die))
13249 {
13250 struct attribute *attr;
13251 LONGEST value;
13252 const gdb_byte *bytes;
13253 struct dwarf2_locexpr_baton *baton;
13254 const char *name;
13255
13256 if (child_die->tag != DW_TAG_enumerator)
13257 continue;
13258
13259 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13260 if (attr == NULL)
13261 continue;
13262
13263 name = dwarf2_name (child_die, cu);
13264 if (name == NULL)
13265 name = "<anonymous enumerator>";
13266
13267 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13268 &value, &bytes, &baton);
13269 if (value < 0)
13270 {
13271 unsigned_enum = 0;
13272 flag_enum = 0;
13273 }
13274 else if ((mask & value) != 0)
13275 flag_enum = 0;
13276 else
13277 mask |= value;
13278
13279 /* If we already know that the enum type is neither unsigned, nor
13280 a flag type, no need to look at the rest of the enumerates. */
13281 if (!unsigned_enum && !flag_enum)
13282 break;
13283 }
13284
13285 if (unsigned_enum)
13286 TYPE_UNSIGNED (type) = 1;
13287 if (flag_enum)
13288 TYPE_FLAG_ENUM (type) = 1;
13289
13290 do_cleanups (old_chain);
13291 }
13292
13293 /* Given a DW_AT_enumeration_type die, set its type. We do not
13294 complete the type's fields yet, or create any symbols. */
13295
13296 static struct type *
13297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13298 {
13299 struct objfile *objfile = cu->objfile;
13300 struct type *type;
13301 struct attribute *attr;
13302 const char *name;
13303
13304 /* If the definition of this type lives in .debug_types, read that type.
13305 Don't follow DW_AT_specification though, that will take us back up
13306 the chain and we want to go down. */
13307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13308 if (attr)
13309 {
13310 type = get_DW_AT_signature_type (die, attr, cu);
13311
13312 /* The type's CU may not be the same as CU.
13313 Ensure TYPE is recorded with CU in die_type_hash. */
13314 return set_die_type (die, type, cu);
13315 }
13316
13317 type = alloc_type (objfile);
13318
13319 TYPE_CODE (type) = TYPE_CODE_ENUM;
13320 name = dwarf2_full_name (NULL, die, cu);
13321 if (name != NULL)
13322 TYPE_TAG_NAME (type) = name;
13323
13324 attr = dwarf2_attr (die, DW_AT_type, cu);
13325 if (attr != NULL)
13326 {
13327 struct type *underlying_type = die_type (die, cu);
13328
13329 TYPE_TARGET_TYPE (type) = underlying_type;
13330 }
13331
13332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13333 if (attr)
13334 {
13335 TYPE_LENGTH (type) = DW_UNSND (attr);
13336 }
13337 else
13338 {
13339 TYPE_LENGTH (type) = 0;
13340 }
13341
13342 /* The enumeration DIE can be incomplete. In Ada, any type can be
13343 declared as private in the package spec, and then defined only
13344 inside the package body. Such types are known as Taft Amendment
13345 Types. When another package uses such a type, an incomplete DIE
13346 may be generated by the compiler. */
13347 if (die_is_declaration (die, cu))
13348 TYPE_STUB (type) = 1;
13349
13350 /* Finish the creation of this type by using the enum's children.
13351 We must call this even when the underlying type has been provided
13352 so that we can determine if we're looking at a "flag" enum. */
13353 update_enumeration_type_from_children (die, type, cu);
13354
13355 /* If this type has an underlying type that is not a stub, then we
13356 may use its attributes. We always use the "unsigned" attribute
13357 in this situation, because ordinarily we guess whether the type
13358 is unsigned -- but the guess can be wrong and the underlying type
13359 can tell us the reality. However, we defer to a local size
13360 attribute if one exists, because this lets the compiler override
13361 the underlying type if needed. */
13362 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13363 {
13364 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13365 if (TYPE_LENGTH (type) == 0)
13366 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13367 }
13368
13369 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13370
13371 return set_die_type (die, type, cu);
13372 }
13373
13374 /* Given a pointer to a die which begins an enumeration, process all
13375 the dies that define the members of the enumeration, and create the
13376 symbol for the enumeration type.
13377
13378 NOTE: We reverse the order of the element list. */
13379
13380 static void
13381 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13382 {
13383 struct type *this_type;
13384
13385 this_type = get_die_type (die, cu);
13386 if (this_type == NULL)
13387 this_type = read_enumeration_type (die, cu);
13388
13389 if (die->child != NULL)
13390 {
13391 struct die_info *child_die;
13392 struct symbol *sym;
13393 struct field *fields = NULL;
13394 int num_fields = 0;
13395 const char *name;
13396
13397 child_die = die->child;
13398 while (child_die && child_die->tag)
13399 {
13400 if (child_die->tag != DW_TAG_enumerator)
13401 {
13402 process_die (child_die, cu);
13403 }
13404 else
13405 {
13406 name = dwarf2_name (child_die, cu);
13407 if (name)
13408 {
13409 sym = new_symbol (child_die, this_type, cu);
13410
13411 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13412 {
13413 fields = (struct field *)
13414 xrealloc (fields,
13415 (num_fields + DW_FIELD_ALLOC_CHUNK)
13416 * sizeof (struct field));
13417 }
13418
13419 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13420 FIELD_TYPE (fields[num_fields]) = NULL;
13421 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13422 FIELD_BITSIZE (fields[num_fields]) = 0;
13423
13424 num_fields++;
13425 }
13426 }
13427
13428 child_die = sibling_die (child_die);
13429 }
13430
13431 if (num_fields)
13432 {
13433 TYPE_NFIELDS (this_type) = num_fields;
13434 TYPE_FIELDS (this_type) = (struct field *)
13435 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13436 memcpy (TYPE_FIELDS (this_type), fields,
13437 sizeof (struct field) * num_fields);
13438 xfree (fields);
13439 }
13440 }
13441
13442 /* If we are reading an enum from a .debug_types unit, and the enum
13443 is a declaration, and the enum is not the signatured type in the
13444 unit, then we do not want to add a symbol for it. Adding a
13445 symbol would in some cases obscure the true definition of the
13446 enum, giving users an incomplete type when the definition is
13447 actually available. Note that we do not want to do this for all
13448 enums which are just declarations, because C++0x allows forward
13449 enum declarations. */
13450 if (cu->per_cu->is_debug_types
13451 && die_is_declaration (die, cu))
13452 {
13453 struct signatured_type *sig_type;
13454
13455 sig_type = (struct signatured_type *) cu->per_cu;
13456 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13457 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13458 return;
13459 }
13460
13461 new_symbol (die, this_type, cu);
13462 }
13463
13464 /* Extract all information from a DW_TAG_array_type DIE and put it in
13465 the DIE's type field. For now, this only handles one dimensional
13466 arrays. */
13467
13468 static struct type *
13469 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13470 {
13471 struct objfile *objfile = cu->objfile;
13472 struct die_info *child_die;
13473 struct type *type;
13474 struct type *element_type, *range_type, *index_type;
13475 struct type **range_types = NULL;
13476 struct attribute *attr;
13477 int ndim = 0;
13478 struct cleanup *back_to;
13479 const char *name;
13480 unsigned int bit_stride = 0;
13481
13482 element_type = die_type (die, cu);
13483
13484 /* The die_type call above may have already set the type for this DIE. */
13485 type = get_die_type (die, cu);
13486 if (type)
13487 return type;
13488
13489 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13490 if (attr != NULL)
13491 bit_stride = DW_UNSND (attr) * 8;
13492
13493 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13494 if (attr != NULL)
13495 bit_stride = DW_UNSND (attr);
13496
13497 /* Irix 6.2 native cc creates array types without children for
13498 arrays with unspecified length. */
13499 if (die->child == NULL)
13500 {
13501 index_type = objfile_type (objfile)->builtin_int;
13502 range_type = create_static_range_type (NULL, index_type, 0, -1);
13503 type = create_array_type_with_stride (NULL, element_type, range_type,
13504 bit_stride);
13505 return set_die_type (die, type, cu);
13506 }
13507
13508 back_to = make_cleanup (null_cleanup, NULL);
13509 child_die = die->child;
13510 while (child_die && child_die->tag)
13511 {
13512 if (child_die->tag == DW_TAG_subrange_type)
13513 {
13514 struct type *child_type = read_type_die (child_die, cu);
13515
13516 if (child_type != NULL)
13517 {
13518 /* The range type was succesfully read. Save it for the
13519 array type creation. */
13520 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13521 {
13522 range_types = (struct type **)
13523 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13524 * sizeof (struct type *));
13525 if (ndim == 0)
13526 make_cleanup (free_current_contents, &range_types);
13527 }
13528 range_types[ndim++] = child_type;
13529 }
13530 }
13531 child_die = sibling_die (child_die);
13532 }
13533
13534 /* Dwarf2 dimensions are output from left to right, create the
13535 necessary array types in backwards order. */
13536
13537 type = element_type;
13538
13539 if (read_array_order (die, cu) == DW_ORD_col_major)
13540 {
13541 int i = 0;
13542
13543 while (i < ndim)
13544 type = create_array_type_with_stride (NULL, type, range_types[i++],
13545 bit_stride);
13546 }
13547 else
13548 {
13549 while (ndim-- > 0)
13550 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13551 bit_stride);
13552 }
13553
13554 /* Understand Dwarf2 support for vector types (like they occur on
13555 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13556 array type. This is not part of the Dwarf2/3 standard yet, but a
13557 custom vendor extension. The main difference between a regular
13558 array and the vector variant is that vectors are passed by value
13559 to functions. */
13560 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13561 if (attr)
13562 make_vector_type (type);
13563
13564 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13565 implementation may choose to implement triple vectors using this
13566 attribute. */
13567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13568 if (attr)
13569 {
13570 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13571 TYPE_LENGTH (type) = DW_UNSND (attr);
13572 else
13573 complaint (&symfile_complaints,
13574 _("DW_AT_byte_size for array type smaller "
13575 "than the total size of elements"));
13576 }
13577
13578 name = dwarf2_name (die, cu);
13579 if (name)
13580 TYPE_NAME (type) = name;
13581
13582 /* Install the type in the die. */
13583 set_die_type (die, type, cu);
13584
13585 /* set_die_type should be already done. */
13586 set_descriptive_type (type, die, cu);
13587
13588 do_cleanups (back_to);
13589
13590 return type;
13591 }
13592
13593 static enum dwarf_array_dim_ordering
13594 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13595 {
13596 struct attribute *attr;
13597
13598 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13599
13600 if (attr) return DW_SND (attr);
13601
13602 /* GNU F77 is a special case, as at 08/2004 array type info is the
13603 opposite order to the dwarf2 specification, but data is still
13604 laid out as per normal fortran.
13605
13606 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13607 version checking. */
13608
13609 if (cu->language == language_fortran
13610 && cu->producer && strstr (cu->producer, "GNU F77"))
13611 {
13612 return DW_ORD_row_major;
13613 }
13614
13615 switch (cu->language_defn->la_array_ordering)
13616 {
13617 case array_column_major:
13618 return DW_ORD_col_major;
13619 case array_row_major:
13620 default:
13621 return DW_ORD_row_major;
13622 };
13623 }
13624
13625 /* Extract all information from a DW_TAG_set_type DIE and put it in
13626 the DIE's type field. */
13627
13628 static struct type *
13629 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13630 {
13631 struct type *domain_type, *set_type;
13632 struct attribute *attr;
13633
13634 domain_type = die_type (die, cu);
13635
13636 /* The die_type call above may have already set the type for this DIE. */
13637 set_type = get_die_type (die, cu);
13638 if (set_type)
13639 return set_type;
13640
13641 set_type = create_set_type (NULL, domain_type);
13642
13643 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13644 if (attr)
13645 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13646
13647 return set_die_type (die, set_type, cu);
13648 }
13649
13650 /* A helper for read_common_block that creates a locexpr baton.
13651 SYM is the symbol which we are marking as computed.
13652 COMMON_DIE is the DIE for the common block.
13653 COMMON_LOC is the location expression attribute for the common
13654 block itself.
13655 MEMBER_LOC is the location expression attribute for the particular
13656 member of the common block that we are processing.
13657 CU is the CU from which the above come. */
13658
13659 static void
13660 mark_common_block_symbol_computed (struct symbol *sym,
13661 struct die_info *common_die,
13662 struct attribute *common_loc,
13663 struct attribute *member_loc,
13664 struct dwarf2_cu *cu)
13665 {
13666 struct objfile *objfile = dwarf2_per_objfile->objfile;
13667 struct dwarf2_locexpr_baton *baton;
13668 gdb_byte *ptr;
13669 unsigned int cu_off;
13670 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13671 LONGEST offset = 0;
13672
13673 gdb_assert (common_loc && member_loc);
13674 gdb_assert (attr_form_is_block (common_loc));
13675 gdb_assert (attr_form_is_block (member_loc)
13676 || attr_form_is_constant (member_loc));
13677
13678 baton = obstack_alloc (&objfile->objfile_obstack,
13679 sizeof (struct dwarf2_locexpr_baton));
13680 baton->per_cu = cu->per_cu;
13681 gdb_assert (baton->per_cu);
13682
13683 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13684
13685 if (attr_form_is_constant (member_loc))
13686 {
13687 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13688 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13689 }
13690 else
13691 baton->size += DW_BLOCK (member_loc)->size;
13692
13693 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13694 baton->data = ptr;
13695
13696 *ptr++ = DW_OP_call4;
13697 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13698 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13699 ptr += 4;
13700
13701 if (attr_form_is_constant (member_loc))
13702 {
13703 *ptr++ = DW_OP_addr;
13704 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13705 ptr += cu->header.addr_size;
13706 }
13707 else
13708 {
13709 /* We have to copy the data here, because DW_OP_call4 will only
13710 use a DW_AT_location attribute. */
13711 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13712 ptr += DW_BLOCK (member_loc)->size;
13713 }
13714
13715 *ptr++ = DW_OP_plus;
13716 gdb_assert (ptr - baton->data == baton->size);
13717
13718 SYMBOL_LOCATION_BATON (sym) = baton;
13719 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13720 }
13721
13722 /* Create appropriate locally-scoped variables for all the
13723 DW_TAG_common_block entries. Also create a struct common_block
13724 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13725 is used to sepate the common blocks name namespace from regular
13726 variable names. */
13727
13728 static void
13729 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13730 {
13731 struct attribute *attr;
13732
13733 attr = dwarf2_attr (die, DW_AT_location, cu);
13734 if (attr)
13735 {
13736 /* Support the .debug_loc offsets. */
13737 if (attr_form_is_block (attr))
13738 {
13739 /* Ok. */
13740 }
13741 else if (attr_form_is_section_offset (attr))
13742 {
13743 dwarf2_complex_location_expr_complaint ();
13744 attr = NULL;
13745 }
13746 else
13747 {
13748 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13749 "common block member");
13750 attr = NULL;
13751 }
13752 }
13753
13754 if (die->child != NULL)
13755 {
13756 struct objfile *objfile = cu->objfile;
13757 struct die_info *child_die;
13758 size_t n_entries = 0, size;
13759 struct common_block *common_block;
13760 struct symbol *sym;
13761
13762 for (child_die = die->child;
13763 child_die && child_die->tag;
13764 child_die = sibling_die (child_die))
13765 ++n_entries;
13766
13767 size = (sizeof (struct common_block)
13768 + (n_entries - 1) * sizeof (struct symbol *));
13769 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13770 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13771 common_block->n_entries = 0;
13772
13773 for (child_die = die->child;
13774 child_die && child_die->tag;
13775 child_die = sibling_die (child_die))
13776 {
13777 /* Create the symbol in the DW_TAG_common_block block in the current
13778 symbol scope. */
13779 sym = new_symbol (child_die, NULL, cu);
13780 if (sym != NULL)
13781 {
13782 struct attribute *member_loc;
13783
13784 common_block->contents[common_block->n_entries++] = sym;
13785
13786 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13787 cu);
13788 if (member_loc)
13789 {
13790 /* GDB has handled this for a long time, but it is
13791 not specified by DWARF. It seems to have been
13792 emitted by gfortran at least as recently as:
13793 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13794 complaint (&symfile_complaints,
13795 _("Variable in common block has "
13796 "DW_AT_data_member_location "
13797 "- DIE at 0x%x [in module %s]"),
13798 child_die->offset.sect_off,
13799 objfile_name (cu->objfile));
13800
13801 if (attr_form_is_section_offset (member_loc))
13802 dwarf2_complex_location_expr_complaint ();
13803 else if (attr_form_is_constant (member_loc)
13804 || attr_form_is_block (member_loc))
13805 {
13806 if (attr)
13807 mark_common_block_symbol_computed (sym, die, attr,
13808 member_loc, cu);
13809 }
13810 else
13811 dwarf2_complex_location_expr_complaint ();
13812 }
13813 }
13814 }
13815
13816 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13817 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13818 }
13819 }
13820
13821 /* Create a type for a C++ namespace. */
13822
13823 static struct type *
13824 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13825 {
13826 struct objfile *objfile = cu->objfile;
13827 const char *previous_prefix, *name;
13828 int is_anonymous;
13829 struct type *type;
13830
13831 /* For extensions, reuse the type of the original namespace. */
13832 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13833 {
13834 struct die_info *ext_die;
13835 struct dwarf2_cu *ext_cu = cu;
13836
13837 ext_die = dwarf2_extension (die, &ext_cu);
13838 type = read_type_die (ext_die, ext_cu);
13839
13840 /* EXT_CU may not be the same as CU.
13841 Ensure TYPE is recorded with CU in die_type_hash. */
13842 return set_die_type (die, type, cu);
13843 }
13844
13845 name = namespace_name (die, &is_anonymous, cu);
13846
13847 /* Now build the name of the current namespace. */
13848
13849 previous_prefix = determine_prefix (die, cu);
13850 if (previous_prefix[0] != '\0')
13851 name = typename_concat (&objfile->objfile_obstack,
13852 previous_prefix, name, 0, cu);
13853
13854 /* Create the type. */
13855 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13856 objfile);
13857 TYPE_NAME (type) = name;
13858 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13859
13860 return set_die_type (die, type, cu);
13861 }
13862
13863 /* Read a C++ namespace. */
13864
13865 static void
13866 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13867 {
13868 struct objfile *objfile = cu->objfile;
13869 int is_anonymous;
13870
13871 /* Add a symbol associated to this if we haven't seen the namespace
13872 before. Also, add a using directive if it's an anonymous
13873 namespace. */
13874
13875 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13876 {
13877 struct type *type;
13878
13879 type = read_type_die (die, cu);
13880 new_symbol (die, type, cu);
13881
13882 namespace_name (die, &is_anonymous, cu);
13883 if (is_anonymous)
13884 {
13885 const char *previous_prefix = determine_prefix (die, cu);
13886
13887 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13888 NULL, NULL, 0, &objfile->objfile_obstack);
13889 }
13890 }
13891
13892 if (die->child != NULL)
13893 {
13894 struct die_info *child_die = die->child;
13895
13896 while (child_die && child_die->tag)
13897 {
13898 process_die (child_die, cu);
13899 child_die = sibling_die (child_die);
13900 }
13901 }
13902 }
13903
13904 /* Read a Fortran module as type. This DIE can be only a declaration used for
13905 imported module. Still we need that type as local Fortran "use ... only"
13906 declaration imports depend on the created type in determine_prefix. */
13907
13908 static struct type *
13909 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13910 {
13911 struct objfile *objfile = cu->objfile;
13912 const char *module_name;
13913 struct type *type;
13914
13915 module_name = dwarf2_name (die, cu);
13916 if (!module_name)
13917 complaint (&symfile_complaints,
13918 _("DW_TAG_module has no name, offset 0x%x"),
13919 die->offset.sect_off);
13920 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13921
13922 /* determine_prefix uses TYPE_TAG_NAME. */
13923 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13924
13925 return set_die_type (die, type, cu);
13926 }
13927
13928 /* Read a Fortran module. */
13929
13930 static void
13931 read_module (struct die_info *die, struct dwarf2_cu *cu)
13932 {
13933 struct die_info *child_die = die->child;
13934 struct type *type;
13935
13936 type = read_type_die (die, cu);
13937 new_symbol (die, type, cu);
13938
13939 while (child_die && child_die->tag)
13940 {
13941 process_die (child_die, cu);
13942 child_die = sibling_die (child_die);
13943 }
13944 }
13945
13946 /* Return the name of the namespace represented by DIE. Set
13947 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13948 namespace. */
13949
13950 static const char *
13951 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13952 {
13953 struct die_info *current_die;
13954 const char *name = NULL;
13955
13956 /* Loop through the extensions until we find a name. */
13957
13958 for (current_die = die;
13959 current_die != NULL;
13960 current_die = dwarf2_extension (die, &cu))
13961 {
13962 name = dwarf2_name (current_die, cu);
13963 if (name != NULL)
13964 break;
13965 }
13966
13967 /* Is it an anonymous namespace? */
13968
13969 *is_anonymous = (name == NULL);
13970 if (*is_anonymous)
13971 name = CP_ANONYMOUS_NAMESPACE_STR;
13972
13973 return name;
13974 }
13975
13976 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13977 the user defined type vector. */
13978
13979 static struct type *
13980 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13981 {
13982 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13983 struct comp_unit_head *cu_header = &cu->header;
13984 struct type *type;
13985 struct attribute *attr_byte_size;
13986 struct attribute *attr_address_class;
13987 int byte_size, addr_class;
13988 struct type *target_type;
13989
13990 target_type = die_type (die, cu);
13991
13992 /* The die_type call above may have already set the type for this DIE. */
13993 type = get_die_type (die, cu);
13994 if (type)
13995 return type;
13996
13997 type = lookup_pointer_type (target_type);
13998
13999 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14000 if (attr_byte_size)
14001 byte_size = DW_UNSND (attr_byte_size);
14002 else
14003 byte_size = cu_header->addr_size;
14004
14005 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14006 if (attr_address_class)
14007 addr_class = DW_UNSND (attr_address_class);
14008 else
14009 addr_class = DW_ADDR_none;
14010
14011 /* If the pointer size or address class is different than the
14012 default, create a type variant marked as such and set the
14013 length accordingly. */
14014 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14015 {
14016 if (gdbarch_address_class_type_flags_p (gdbarch))
14017 {
14018 int type_flags;
14019
14020 type_flags = gdbarch_address_class_type_flags
14021 (gdbarch, byte_size, addr_class);
14022 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14023 == 0);
14024 type = make_type_with_address_space (type, type_flags);
14025 }
14026 else if (TYPE_LENGTH (type) != byte_size)
14027 {
14028 complaint (&symfile_complaints,
14029 _("invalid pointer size %d"), byte_size);
14030 }
14031 else
14032 {
14033 /* Should we also complain about unhandled address classes? */
14034 }
14035 }
14036
14037 TYPE_LENGTH (type) = byte_size;
14038 return set_die_type (die, type, cu);
14039 }
14040
14041 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14042 the user defined type vector. */
14043
14044 static struct type *
14045 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14046 {
14047 struct type *type;
14048 struct type *to_type;
14049 struct type *domain;
14050
14051 to_type = die_type (die, cu);
14052 domain = die_containing_type (die, cu);
14053
14054 /* The calls above may have already set the type for this DIE. */
14055 type = get_die_type (die, cu);
14056 if (type)
14057 return type;
14058
14059 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14060 type = lookup_methodptr_type (to_type);
14061 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14062 {
14063 struct type *new_type = alloc_type (cu->objfile);
14064
14065 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14066 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14067 TYPE_VARARGS (to_type));
14068 type = lookup_methodptr_type (new_type);
14069 }
14070 else
14071 type = lookup_memberptr_type (to_type, domain);
14072
14073 return set_die_type (die, type, cu);
14074 }
14075
14076 /* Extract all information from a DW_TAG_reference_type DIE and add to
14077 the user defined type vector. */
14078
14079 static struct type *
14080 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14081 {
14082 struct comp_unit_head *cu_header = &cu->header;
14083 struct type *type, *target_type;
14084 struct attribute *attr;
14085
14086 target_type = die_type (die, cu);
14087
14088 /* The die_type call above may have already set the type for this DIE. */
14089 type = get_die_type (die, cu);
14090 if (type)
14091 return type;
14092
14093 type = lookup_reference_type (target_type);
14094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14095 if (attr)
14096 {
14097 TYPE_LENGTH (type) = DW_UNSND (attr);
14098 }
14099 else
14100 {
14101 TYPE_LENGTH (type) = cu_header->addr_size;
14102 }
14103 return set_die_type (die, type, cu);
14104 }
14105
14106 /* Add the given cv-qualifiers to the element type of the array. GCC
14107 outputs DWARF type qualifiers that apply to an array, not the
14108 element type. But GDB relies on the array element type to carry
14109 the cv-qualifiers. This mimics section 6.7.3 of the C99
14110 specification. */
14111
14112 static struct type *
14113 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14114 struct type *base_type, int cnst, int voltl)
14115 {
14116 struct type *el_type, *inner_array;
14117
14118 base_type = copy_type (base_type);
14119 inner_array = base_type;
14120
14121 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14122 {
14123 TYPE_TARGET_TYPE (inner_array) =
14124 copy_type (TYPE_TARGET_TYPE (inner_array));
14125 inner_array = TYPE_TARGET_TYPE (inner_array);
14126 }
14127
14128 el_type = TYPE_TARGET_TYPE (inner_array);
14129 cnst |= TYPE_CONST (el_type);
14130 voltl |= TYPE_VOLATILE (el_type);
14131 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14132
14133 return set_die_type (die, base_type, cu);
14134 }
14135
14136 static struct type *
14137 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14138 {
14139 struct type *base_type, *cv_type;
14140
14141 base_type = die_type (die, cu);
14142
14143 /* The die_type call above may have already set the type for this DIE. */
14144 cv_type = get_die_type (die, cu);
14145 if (cv_type)
14146 return cv_type;
14147
14148 /* In case the const qualifier is applied to an array type, the element type
14149 is so qualified, not the array type (section 6.7.3 of C99). */
14150 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14151 return add_array_cv_type (die, cu, base_type, 1, 0);
14152
14153 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14154 return set_die_type (die, cv_type, cu);
14155 }
14156
14157 static struct type *
14158 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14159 {
14160 struct type *base_type, *cv_type;
14161
14162 base_type = die_type (die, cu);
14163
14164 /* The die_type call above may have already set the type for this DIE. */
14165 cv_type = get_die_type (die, cu);
14166 if (cv_type)
14167 return cv_type;
14168
14169 /* In case the volatile qualifier is applied to an array type, the
14170 element type is so qualified, not the array type (section 6.7.3
14171 of C99). */
14172 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14173 return add_array_cv_type (die, cu, base_type, 0, 1);
14174
14175 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14176 return set_die_type (die, cv_type, cu);
14177 }
14178
14179 /* Handle DW_TAG_restrict_type. */
14180
14181 static struct type *
14182 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14183 {
14184 struct type *base_type, *cv_type;
14185
14186 base_type = die_type (die, cu);
14187
14188 /* The die_type call above may have already set the type for this DIE. */
14189 cv_type = get_die_type (die, cu);
14190 if (cv_type)
14191 return cv_type;
14192
14193 cv_type = make_restrict_type (base_type);
14194 return set_die_type (die, cv_type, cu);
14195 }
14196
14197 /* Extract all information from a DW_TAG_string_type DIE and add to
14198 the user defined type vector. It isn't really a user defined type,
14199 but it behaves like one, with other DIE's using an AT_user_def_type
14200 attribute to reference it. */
14201
14202 static struct type *
14203 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14204 {
14205 struct objfile *objfile = cu->objfile;
14206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14207 struct type *type, *range_type, *index_type, *char_type;
14208 struct attribute *attr;
14209 unsigned int length;
14210
14211 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14212 if (attr)
14213 {
14214 length = DW_UNSND (attr);
14215 }
14216 else
14217 {
14218 /* Check for the DW_AT_byte_size attribute. */
14219 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14220 if (attr)
14221 {
14222 length = DW_UNSND (attr);
14223 }
14224 else
14225 {
14226 length = 1;
14227 }
14228 }
14229
14230 index_type = objfile_type (objfile)->builtin_int;
14231 range_type = create_static_range_type (NULL, index_type, 1, length);
14232 char_type = language_string_char_type (cu->language_defn, gdbarch);
14233 type = create_string_type (NULL, char_type, range_type);
14234
14235 return set_die_type (die, type, cu);
14236 }
14237
14238 /* Assuming that DIE corresponds to a function, returns nonzero
14239 if the function is prototyped. */
14240
14241 static int
14242 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14243 {
14244 struct attribute *attr;
14245
14246 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14247 if (attr && (DW_UNSND (attr) != 0))
14248 return 1;
14249
14250 /* The DWARF standard implies that the DW_AT_prototyped attribute
14251 is only meaninful for C, but the concept also extends to other
14252 languages that allow unprototyped functions (Eg: Objective C).
14253 For all other languages, assume that functions are always
14254 prototyped. */
14255 if (cu->language != language_c
14256 && cu->language != language_objc
14257 && cu->language != language_opencl)
14258 return 1;
14259
14260 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14261 prototyped and unprototyped functions; default to prototyped,
14262 since that is more common in modern code (and RealView warns
14263 about unprototyped functions). */
14264 if (producer_is_realview (cu->producer))
14265 return 1;
14266
14267 return 0;
14268 }
14269
14270 /* Handle DIES due to C code like:
14271
14272 struct foo
14273 {
14274 int (*funcp)(int a, long l);
14275 int b;
14276 };
14277
14278 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14279
14280 static struct type *
14281 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14282 {
14283 struct objfile *objfile = cu->objfile;
14284 struct type *type; /* Type that this function returns. */
14285 struct type *ftype; /* Function that returns above type. */
14286 struct attribute *attr;
14287
14288 type = die_type (die, cu);
14289
14290 /* The die_type call above may have already set the type for this DIE. */
14291 ftype = get_die_type (die, cu);
14292 if (ftype)
14293 return ftype;
14294
14295 ftype = lookup_function_type (type);
14296
14297 if (prototyped_function_p (die, cu))
14298 TYPE_PROTOTYPED (ftype) = 1;
14299
14300 /* Store the calling convention in the type if it's available in
14301 the subroutine die. Otherwise set the calling convention to
14302 the default value DW_CC_normal. */
14303 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14304 if (attr)
14305 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14306 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14307 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14308 else
14309 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14310
14311 /* We need to add the subroutine type to the die immediately so
14312 we don't infinitely recurse when dealing with parameters
14313 declared as the same subroutine type. */
14314 set_die_type (die, ftype, cu);
14315
14316 if (die->child != NULL)
14317 {
14318 struct type *void_type = objfile_type (objfile)->builtin_void;
14319 struct die_info *child_die;
14320 int nparams, iparams;
14321
14322 /* Count the number of parameters.
14323 FIXME: GDB currently ignores vararg functions, but knows about
14324 vararg member functions. */
14325 nparams = 0;
14326 child_die = die->child;
14327 while (child_die && child_die->tag)
14328 {
14329 if (child_die->tag == DW_TAG_formal_parameter)
14330 nparams++;
14331 else if (child_die->tag == DW_TAG_unspecified_parameters)
14332 TYPE_VARARGS (ftype) = 1;
14333 child_die = sibling_die (child_die);
14334 }
14335
14336 /* Allocate storage for parameters and fill them in. */
14337 TYPE_NFIELDS (ftype) = nparams;
14338 TYPE_FIELDS (ftype) = (struct field *)
14339 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14340
14341 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14342 even if we error out during the parameters reading below. */
14343 for (iparams = 0; iparams < nparams; iparams++)
14344 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14345
14346 iparams = 0;
14347 child_die = die->child;
14348 while (child_die && child_die->tag)
14349 {
14350 if (child_die->tag == DW_TAG_formal_parameter)
14351 {
14352 struct type *arg_type;
14353
14354 /* DWARF version 2 has no clean way to discern C++
14355 static and non-static member functions. G++ helps
14356 GDB by marking the first parameter for non-static
14357 member functions (which is the this pointer) as
14358 artificial. We pass this information to
14359 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14360
14361 DWARF version 3 added DW_AT_object_pointer, which GCC
14362 4.5 does not yet generate. */
14363 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14364 if (attr)
14365 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14366 else
14367 {
14368 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14369
14370 /* GCC/43521: In java, the formal parameter
14371 "this" is sometimes not marked with DW_AT_artificial. */
14372 if (cu->language == language_java)
14373 {
14374 const char *name = dwarf2_name (child_die, cu);
14375
14376 if (name && !strcmp (name, "this"))
14377 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14378 }
14379 }
14380 arg_type = die_type (child_die, cu);
14381
14382 /* RealView does not mark THIS as const, which the testsuite
14383 expects. GCC marks THIS as const in method definitions,
14384 but not in the class specifications (GCC PR 43053). */
14385 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14386 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14387 {
14388 int is_this = 0;
14389 struct dwarf2_cu *arg_cu = cu;
14390 const char *name = dwarf2_name (child_die, cu);
14391
14392 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14393 if (attr)
14394 {
14395 /* If the compiler emits this, use it. */
14396 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14397 is_this = 1;
14398 }
14399 else if (name && strcmp (name, "this") == 0)
14400 /* Function definitions will have the argument names. */
14401 is_this = 1;
14402 else if (name == NULL && iparams == 0)
14403 /* Declarations may not have the names, so like
14404 elsewhere in GDB, assume an artificial first
14405 argument is "this". */
14406 is_this = 1;
14407
14408 if (is_this)
14409 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14410 arg_type, 0);
14411 }
14412
14413 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14414 iparams++;
14415 }
14416 child_die = sibling_die (child_die);
14417 }
14418 }
14419
14420 return ftype;
14421 }
14422
14423 static struct type *
14424 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14425 {
14426 struct objfile *objfile = cu->objfile;
14427 const char *name = NULL;
14428 struct type *this_type, *target_type;
14429
14430 name = dwarf2_full_name (NULL, die, cu);
14431 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14432 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14433 TYPE_NAME (this_type) = name;
14434 set_die_type (die, this_type, cu);
14435 target_type = die_type (die, cu);
14436 if (target_type != this_type)
14437 TYPE_TARGET_TYPE (this_type) = target_type;
14438 else
14439 {
14440 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14441 spec and cause infinite loops in GDB. */
14442 complaint (&symfile_complaints,
14443 _("Self-referential DW_TAG_typedef "
14444 "- DIE at 0x%x [in module %s]"),
14445 die->offset.sect_off, objfile_name (objfile));
14446 TYPE_TARGET_TYPE (this_type) = NULL;
14447 }
14448 return this_type;
14449 }
14450
14451 /* Find a representation of a given base type and install
14452 it in the TYPE field of the die. */
14453
14454 static struct type *
14455 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14456 {
14457 struct objfile *objfile = cu->objfile;
14458 struct type *type;
14459 struct attribute *attr;
14460 int encoding = 0, size = 0;
14461 const char *name;
14462 enum type_code code = TYPE_CODE_INT;
14463 int type_flags = 0;
14464 struct type *target_type = NULL;
14465
14466 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14467 if (attr)
14468 {
14469 encoding = DW_UNSND (attr);
14470 }
14471 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14472 if (attr)
14473 {
14474 size = DW_UNSND (attr);
14475 }
14476 name = dwarf2_name (die, cu);
14477 if (!name)
14478 {
14479 complaint (&symfile_complaints,
14480 _("DW_AT_name missing from DW_TAG_base_type"));
14481 }
14482
14483 switch (encoding)
14484 {
14485 case DW_ATE_address:
14486 /* Turn DW_ATE_address into a void * pointer. */
14487 code = TYPE_CODE_PTR;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14489 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14490 break;
14491 case DW_ATE_boolean:
14492 code = TYPE_CODE_BOOL;
14493 type_flags |= TYPE_FLAG_UNSIGNED;
14494 break;
14495 case DW_ATE_complex_float:
14496 code = TYPE_CODE_COMPLEX;
14497 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14498 break;
14499 case DW_ATE_decimal_float:
14500 code = TYPE_CODE_DECFLOAT;
14501 break;
14502 case DW_ATE_float:
14503 code = TYPE_CODE_FLT;
14504 break;
14505 case DW_ATE_signed:
14506 break;
14507 case DW_ATE_unsigned:
14508 type_flags |= TYPE_FLAG_UNSIGNED;
14509 if (cu->language == language_fortran
14510 && name
14511 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14512 code = TYPE_CODE_CHAR;
14513 break;
14514 case DW_ATE_signed_char:
14515 if (cu->language == language_ada || cu->language == language_m2
14516 || cu->language == language_pascal
14517 || cu->language == language_fortran)
14518 code = TYPE_CODE_CHAR;
14519 break;
14520 case DW_ATE_unsigned_char:
14521 if (cu->language == language_ada || cu->language == language_m2
14522 || cu->language == language_pascal
14523 || cu->language == language_fortran)
14524 code = TYPE_CODE_CHAR;
14525 type_flags |= TYPE_FLAG_UNSIGNED;
14526 break;
14527 case DW_ATE_UTF:
14528 /* We just treat this as an integer and then recognize the
14529 type by name elsewhere. */
14530 break;
14531
14532 default:
14533 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14534 dwarf_type_encoding_name (encoding));
14535 break;
14536 }
14537
14538 type = init_type (code, size, type_flags, NULL, objfile);
14539 TYPE_NAME (type) = name;
14540 TYPE_TARGET_TYPE (type) = target_type;
14541
14542 if (name && strcmp (name, "char") == 0)
14543 TYPE_NOSIGN (type) = 1;
14544
14545 return set_die_type (die, type, cu);
14546 }
14547
14548 /* Parse dwarf attribute if it's a block, reference or constant and put the
14549 resulting value of the attribute into struct bound_prop.
14550 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14551
14552 static int
14553 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14554 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14555 {
14556 struct dwarf2_property_baton *baton;
14557 struct obstack *obstack = &cu->objfile->objfile_obstack;
14558
14559 if (attr == NULL || prop == NULL)
14560 return 0;
14561
14562 if (attr_form_is_block (attr))
14563 {
14564 baton = obstack_alloc (obstack, sizeof (*baton));
14565 baton->referenced_type = NULL;
14566 baton->locexpr.per_cu = cu->per_cu;
14567 baton->locexpr.size = DW_BLOCK (attr)->size;
14568 baton->locexpr.data = DW_BLOCK (attr)->data;
14569 prop->data.baton = baton;
14570 prop->kind = PROP_LOCEXPR;
14571 gdb_assert (prop->data.baton != NULL);
14572 }
14573 else if (attr_form_is_ref (attr))
14574 {
14575 struct dwarf2_cu *target_cu = cu;
14576 struct die_info *target_die;
14577 struct attribute *target_attr;
14578
14579 target_die = follow_die_ref (die, attr, &target_cu);
14580 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14581 if (target_attr == NULL)
14582 return 0;
14583
14584 if (attr_form_is_section_offset (target_attr))
14585 {
14586 baton = obstack_alloc (obstack, sizeof (*baton));
14587 baton->referenced_type = die_type (target_die, target_cu);
14588 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14589 prop->data.baton = baton;
14590 prop->kind = PROP_LOCLIST;
14591 gdb_assert (prop->data.baton != NULL);
14592 }
14593 else if (attr_form_is_block (target_attr))
14594 {
14595 baton = obstack_alloc (obstack, sizeof (*baton));
14596 baton->referenced_type = die_type (target_die, target_cu);
14597 baton->locexpr.per_cu = cu->per_cu;
14598 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14599 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14600 prop->data.baton = baton;
14601 prop->kind = PROP_LOCEXPR;
14602 gdb_assert (prop->data.baton != NULL);
14603 }
14604 else
14605 {
14606 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14607 "dynamic property");
14608 return 0;
14609 }
14610 }
14611 else if (attr_form_is_constant (attr))
14612 {
14613 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14614 prop->kind = PROP_CONST;
14615 }
14616 else
14617 {
14618 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14619 dwarf2_name (die, cu));
14620 return 0;
14621 }
14622
14623 return 1;
14624 }
14625
14626 /* Read the given DW_AT_subrange DIE. */
14627
14628 static struct type *
14629 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14630 {
14631 struct type *base_type, *orig_base_type;
14632 struct type *range_type;
14633 struct attribute *attr;
14634 struct dynamic_prop low, high;
14635 int low_default_is_valid;
14636 int high_bound_is_count = 0;
14637 const char *name;
14638 LONGEST negative_mask;
14639
14640 orig_base_type = die_type (die, cu);
14641 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14642 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14643 creating the range type, but we use the result of check_typedef
14644 when examining properties of the type. */
14645 base_type = check_typedef (orig_base_type);
14646
14647 /* The die_type call above may have already set the type for this DIE. */
14648 range_type = get_die_type (die, cu);
14649 if (range_type)
14650 return range_type;
14651
14652 low.kind = PROP_CONST;
14653 high.kind = PROP_CONST;
14654 high.data.const_val = 0;
14655
14656 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14657 omitting DW_AT_lower_bound. */
14658 switch (cu->language)
14659 {
14660 case language_c:
14661 case language_cplus:
14662 low.data.const_val = 0;
14663 low_default_is_valid = 1;
14664 break;
14665 case language_fortran:
14666 low.data.const_val = 1;
14667 low_default_is_valid = 1;
14668 break;
14669 case language_d:
14670 case language_java:
14671 case language_objc:
14672 low.data.const_val = 0;
14673 low_default_is_valid = (cu->header.version >= 4);
14674 break;
14675 case language_ada:
14676 case language_m2:
14677 case language_pascal:
14678 low.data.const_val = 1;
14679 low_default_is_valid = (cu->header.version >= 4);
14680 break;
14681 default:
14682 low.data.const_val = 0;
14683 low_default_is_valid = 0;
14684 break;
14685 }
14686
14687 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14688 if (attr)
14689 attr_to_dynamic_prop (attr, die, cu, &low);
14690 else if (!low_default_is_valid)
14691 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14692 "- DIE at 0x%x [in module %s]"),
14693 die->offset.sect_off, objfile_name (cu->objfile));
14694
14695 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14696 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14697 {
14698 attr = dwarf2_attr (die, DW_AT_count, cu);
14699 if (attr_to_dynamic_prop (attr, die, cu, &high))
14700 {
14701 /* If bounds are constant do the final calculation here. */
14702 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14703 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14704 else
14705 high_bound_is_count = 1;
14706 }
14707 }
14708
14709 /* Dwarf-2 specifications explicitly allows to create subrange types
14710 without specifying a base type.
14711 In that case, the base type must be set to the type of
14712 the lower bound, upper bound or count, in that order, if any of these
14713 three attributes references an object that has a type.
14714 If no base type is found, the Dwarf-2 specifications say that
14715 a signed integer type of size equal to the size of an address should
14716 be used.
14717 For the following C code: `extern char gdb_int [];'
14718 GCC produces an empty range DIE.
14719 FIXME: muller/2010-05-28: Possible references to object for low bound,
14720 high bound or count are not yet handled by this code. */
14721 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14722 {
14723 struct objfile *objfile = cu->objfile;
14724 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14725 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14726 struct type *int_type = objfile_type (objfile)->builtin_int;
14727
14728 /* Test "int", "long int", and "long long int" objfile types,
14729 and select the first one having a size above or equal to the
14730 architecture address size. */
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14733 else
14734 {
14735 int_type = objfile_type (objfile)->builtin_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14738 else
14739 {
14740 int_type = objfile_type (objfile)->builtin_long_long;
14741 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14742 base_type = int_type;
14743 }
14744 }
14745 }
14746
14747 /* Normally, the DWARF producers are expected to use a signed
14748 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14749 But this is unfortunately not always the case, as witnessed
14750 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14751 is used instead. To work around that ambiguity, we treat
14752 the bounds as signed, and thus sign-extend their values, when
14753 the base type is signed. */
14754 negative_mask =
14755 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14756 if (low.kind == PROP_CONST
14757 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14758 low.data.const_val |= negative_mask;
14759 if (high.kind == PROP_CONST
14760 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14761 high.data.const_val |= negative_mask;
14762
14763 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14764
14765 if (high_bound_is_count)
14766 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14767
14768 /* Ada expects an empty array on no boundary attributes. */
14769 if (attr == NULL && cu->language != language_ada)
14770 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14771
14772 name = dwarf2_name (die, cu);
14773 if (name)
14774 TYPE_NAME (range_type) = name;
14775
14776 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14777 if (attr)
14778 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14779
14780 set_die_type (die, range_type, cu);
14781
14782 /* set_die_type should be already done. */
14783 set_descriptive_type (range_type, die, cu);
14784
14785 return range_type;
14786 }
14787
14788 static struct type *
14789 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14790 {
14791 struct type *type;
14792
14793 /* For now, we only support the C meaning of an unspecified type: void. */
14794
14795 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14796 TYPE_NAME (type) = dwarf2_name (die, cu);
14797
14798 return set_die_type (die, type, cu);
14799 }
14800
14801 /* Read a single die and all its descendents. Set the die's sibling
14802 field to NULL; set other fields in the die correctly, and set all
14803 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14804 location of the info_ptr after reading all of those dies. PARENT
14805 is the parent of the die in question. */
14806
14807 static struct die_info *
14808 read_die_and_children (const struct die_reader_specs *reader,
14809 const gdb_byte *info_ptr,
14810 const gdb_byte **new_info_ptr,
14811 struct die_info *parent)
14812 {
14813 struct die_info *die;
14814 const gdb_byte *cur_ptr;
14815 int has_children;
14816
14817 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14818 if (die == NULL)
14819 {
14820 *new_info_ptr = cur_ptr;
14821 return NULL;
14822 }
14823 store_in_ref_table (die, reader->cu);
14824
14825 if (has_children)
14826 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14827 else
14828 {
14829 die->child = NULL;
14830 *new_info_ptr = cur_ptr;
14831 }
14832
14833 die->sibling = NULL;
14834 die->parent = parent;
14835 return die;
14836 }
14837
14838 /* Read a die, all of its descendents, and all of its siblings; set
14839 all of the fields of all of the dies correctly. Arguments are as
14840 in read_die_and_children. */
14841
14842 static struct die_info *
14843 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14844 const gdb_byte *info_ptr,
14845 const gdb_byte **new_info_ptr,
14846 struct die_info *parent)
14847 {
14848 struct die_info *first_die, *last_sibling;
14849 const gdb_byte *cur_ptr;
14850
14851 cur_ptr = info_ptr;
14852 first_die = last_sibling = NULL;
14853
14854 while (1)
14855 {
14856 struct die_info *die
14857 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14858
14859 if (die == NULL)
14860 {
14861 *new_info_ptr = cur_ptr;
14862 return first_die;
14863 }
14864
14865 if (!first_die)
14866 first_die = die;
14867 else
14868 last_sibling->sibling = die;
14869
14870 last_sibling = die;
14871 }
14872 }
14873
14874 /* Read a die, all of its descendents, and all of its siblings; set
14875 all of the fields of all of the dies correctly. Arguments are as
14876 in read_die_and_children.
14877 This the main entry point for reading a DIE and all its children. */
14878
14879 static struct die_info *
14880 read_die_and_siblings (const struct die_reader_specs *reader,
14881 const gdb_byte *info_ptr,
14882 const gdb_byte **new_info_ptr,
14883 struct die_info *parent)
14884 {
14885 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14886 new_info_ptr, parent);
14887
14888 if (dwarf2_die_debug)
14889 {
14890 fprintf_unfiltered (gdb_stdlog,
14891 "Read die from %s@0x%x of %s:\n",
14892 get_section_name (reader->die_section),
14893 (unsigned) (info_ptr - reader->die_section->buffer),
14894 bfd_get_filename (reader->abfd));
14895 dump_die (die, dwarf2_die_debug);
14896 }
14897
14898 return die;
14899 }
14900
14901 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14902 attributes.
14903 The caller is responsible for filling in the extra attributes
14904 and updating (*DIEP)->num_attrs.
14905 Set DIEP to point to a newly allocated die with its information,
14906 except for its child, sibling, and parent fields.
14907 Set HAS_CHILDREN to tell whether the die has children or not. */
14908
14909 static const gdb_byte *
14910 read_full_die_1 (const struct die_reader_specs *reader,
14911 struct die_info **diep, const gdb_byte *info_ptr,
14912 int *has_children, int num_extra_attrs)
14913 {
14914 unsigned int abbrev_number, bytes_read, i;
14915 sect_offset offset;
14916 struct abbrev_info *abbrev;
14917 struct die_info *die;
14918 struct dwarf2_cu *cu = reader->cu;
14919 bfd *abfd = reader->abfd;
14920
14921 offset.sect_off = info_ptr - reader->buffer;
14922 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14923 info_ptr += bytes_read;
14924 if (!abbrev_number)
14925 {
14926 *diep = NULL;
14927 *has_children = 0;
14928 return info_ptr;
14929 }
14930
14931 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14932 if (!abbrev)
14933 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14934 abbrev_number,
14935 bfd_get_filename (abfd));
14936
14937 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14938 die->offset = offset;
14939 die->tag = abbrev->tag;
14940 die->abbrev = abbrev_number;
14941
14942 /* Make the result usable.
14943 The caller needs to update num_attrs after adding the extra
14944 attributes. */
14945 die->num_attrs = abbrev->num_attrs;
14946
14947 for (i = 0; i < abbrev->num_attrs; ++i)
14948 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14949 info_ptr);
14950
14951 *diep = die;
14952 *has_children = abbrev->has_children;
14953 return info_ptr;
14954 }
14955
14956 /* Read a die and all its attributes.
14957 Set DIEP to point to a newly allocated die with its information,
14958 except for its child, sibling, and parent fields.
14959 Set HAS_CHILDREN to tell whether the die has children or not. */
14960
14961 static const gdb_byte *
14962 read_full_die (const struct die_reader_specs *reader,
14963 struct die_info **diep, const gdb_byte *info_ptr,
14964 int *has_children)
14965 {
14966 const gdb_byte *result;
14967
14968 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14969
14970 if (dwarf2_die_debug)
14971 {
14972 fprintf_unfiltered (gdb_stdlog,
14973 "Read die from %s@0x%x of %s:\n",
14974 get_section_name (reader->die_section),
14975 (unsigned) (info_ptr - reader->die_section->buffer),
14976 bfd_get_filename (reader->abfd));
14977 dump_die (*diep, dwarf2_die_debug);
14978 }
14979
14980 return result;
14981 }
14982 \f
14983 /* Abbreviation tables.
14984
14985 In DWARF version 2, the description of the debugging information is
14986 stored in a separate .debug_abbrev section. Before we read any
14987 dies from a section we read in all abbreviations and install them
14988 in a hash table. */
14989
14990 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14991
14992 static struct abbrev_info *
14993 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14994 {
14995 struct abbrev_info *abbrev;
14996
14997 abbrev = (struct abbrev_info *)
14998 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14999 memset (abbrev, 0, sizeof (struct abbrev_info));
15000 return abbrev;
15001 }
15002
15003 /* Add an abbreviation to the table. */
15004
15005 static void
15006 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15007 unsigned int abbrev_number,
15008 struct abbrev_info *abbrev)
15009 {
15010 unsigned int hash_number;
15011
15012 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15013 abbrev->next = abbrev_table->abbrevs[hash_number];
15014 abbrev_table->abbrevs[hash_number] = abbrev;
15015 }
15016
15017 /* Look up an abbrev in the table.
15018 Returns NULL if the abbrev is not found. */
15019
15020 static struct abbrev_info *
15021 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15022 unsigned int abbrev_number)
15023 {
15024 unsigned int hash_number;
15025 struct abbrev_info *abbrev;
15026
15027 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15028 abbrev = abbrev_table->abbrevs[hash_number];
15029
15030 while (abbrev)
15031 {
15032 if (abbrev->number == abbrev_number)
15033 return abbrev;
15034 abbrev = abbrev->next;
15035 }
15036 return NULL;
15037 }
15038
15039 /* Read in an abbrev table. */
15040
15041 static struct abbrev_table *
15042 abbrev_table_read_table (struct dwarf2_section_info *section,
15043 sect_offset offset)
15044 {
15045 struct objfile *objfile = dwarf2_per_objfile->objfile;
15046 bfd *abfd = get_section_bfd_owner (section);
15047 struct abbrev_table *abbrev_table;
15048 const gdb_byte *abbrev_ptr;
15049 struct abbrev_info *cur_abbrev;
15050 unsigned int abbrev_number, bytes_read, abbrev_name;
15051 unsigned int abbrev_form;
15052 struct attr_abbrev *cur_attrs;
15053 unsigned int allocated_attrs;
15054
15055 abbrev_table = XNEW (struct abbrev_table);
15056 abbrev_table->offset = offset;
15057 obstack_init (&abbrev_table->abbrev_obstack);
15058 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15059 (ABBREV_HASH_SIZE
15060 * sizeof (struct abbrev_info *)));
15061 memset (abbrev_table->abbrevs, 0,
15062 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15063
15064 dwarf2_read_section (objfile, section);
15065 abbrev_ptr = section->buffer + offset.sect_off;
15066 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15067 abbrev_ptr += bytes_read;
15068
15069 allocated_attrs = ATTR_ALLOC_CHUNK;
15070 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15071
15072 /* Loop until we reach an abbrev number of 0. */
15073 while (abbrev_number)
15074 {
15075 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15076
15077 /* read in abbrev header */
15078 cur_abbrev->number = abbrev_number;
15079 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15080 abbrev_ptr += bytes_read;
15081 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15082 abbrev_ptr += 1;
15083
15084 /* now read in declarations */
15085 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15086 abbrev_ptr += bytes_read;
15087 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15088 abbrev_ptr += bytes_read;
15089 while (abbrev_name)
15090 {
15091 if (cur_abbrev->num_attrs == allocated_attrs)
15092 {
15093 allocated_attrs += ATTR_ALLOC_CHUNK;
15094 cur_attrs
15095 = xrealloc (cur_attrs, (allocated_attrs
15096 * sizeof (struct attr_abbrev)));
15097 }
15098
15099 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15100 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15101 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15102 abbrev_ptr += bytes_read;
15103 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15104 abbrev_ptr += bytes_read;
15105 }
15106
15107 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15108 (cur_abbrev->num_attrs
15109 * sizeof (struct attr_abbrev)));
15110 memcpy (cur_abbrev->attrs, cur_attrs,
15111 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15112
15113 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15114
15115 /* Get next abbreviation.
15116 Under Irix6 the abbreviations for a compilation unit are not
15117 always properly terminated with an abbrev number of 0.
15118 Exit loop if we encounter an abbreviation which we have
15119 already read (which means we are about to read the abbreviations
15120 for the next compile unit) or if the end of the abbreviation
15121 table is reached. */
15122 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15123 break;
15124 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15125 abbrev_ptr += bytes_read;
15126 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15127 break;
15128 }
15129
15130 xfree (cur_attrs);
15131 return abbrev_table;
15132 }
15133
15134 /* Free the resources held by ABBREV_TABLE. */
15135
15136 static void
15137 abbrev_table_free (struct abbrev_table *abbrev_table)
15138 {
15139 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15140 xfree (abbrev_table);
15141 }
15142
15143 /* Same as abbrev_table_free but as a cleanup.
15144 We pass in a pointer to the pointer to the table so that we can
15145 set the pointer to NULL when we're done. It also simplifies
15146 build_type_psymtabs_1. */
15147
15148 static void
15149 abbrev_table_free_cleanup (void *table_ptr)
15150 {
15151 struct abbrev_table **abbrev_table_ptr = table_ptr;
15152
15153 if (*abbrev_table_ptr != NULL)
15154 abbrev_table_free (*abbrev_table_ptr);
15155 *abbrev_table_ptr = NULL;
15156 }
15157
15158 /* Read the abbrev table for CU from ABBREV_SECTION. */
15159
15160 static void
15161 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15162 struct dwarf2_section_info *abbrev_section)
15163 {
15164 cu->abbrev_table =
15165 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15166 }
15167
15168 /* Release the memory used by the abbrev table for a compilation unit. */
15169
15170 static void
15171 dwarf2_free_abbrev_table (void *ptr_to_cu)
15172 {
15173 struct dwarf2_cu *cu = ptr_to_cu;
15174
15175 if (cu->abbrev_table != NULL)
15176 abbrev_table_free (cu->abbrev_table);
15177 /* Set this to NULL so that we SEGV if we try to read it later,
15178 and also because free_comp_unit verifies this is NULL. */
15179 cu->abbrev_table = NULL;
15180 }
15181 \f
15182 /* Returns nonzero if TAG represents a type that we might generate a partial
15183 symbol for. */
15184
15185 static int
15186 is_type_tag_for_partial (int tag)
15187 {
15188 switch (tag)
15189 {
15190 #if 0
15191 /* Some types that would be reasonable to generate partial symbols for,
15192 that we don't at present. */
15193 case DW_TAG_array_type:
15194 case DW_TAG_file_type:
15195 case DW_TAG_ptr_to_member_type:
15196 case DW_TAG_set_type:
15197 case DW_TAG_string_type:
15198 case DW_TAG_subroutine_type:
15199 #endif
15200 case DW_TAG_base_type:
15201 case DW_TAG_class_type:
15202 case DW_TAG_interface_type:
15203 case DW_TAG_enumeration_type:
15204 case DW_TAG_structure_type:
15205 case DW_TAG_subrange_type:
15206 case DW_TAG_typedef:
15207 case DW_TAG_union_type:
15208 return 1;
15209 default:
15210 return 0;
15211 }
15212 }
15213
15214 /* Load all DIEs that are interesting for partial symbols into memory. */
15215
15216 static struct partial_die_info *
15217 load_partial_dies (const struct die_reader_specs *reader,
15218 const gdb_byte *info_ptr, int building_psymtab)
15219 {
15220 struct dwarf2_cu *cu = reader->cu;
15221 struct objfile *objfile = cu->objfile;
15222 struct partial_die_info *part_die;
15223 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15224 struct abbrev_info *abbrev;
15225 unsigned int bytes_read;
15226 unsigned int load_all = 0;
15227 int nesting_level = 1;
15228
15229 parent_die = NULL;
15230 last_die = NULL;
15231
15232 gdb_assert (cu->per_cu != NULL);
15233 if (cu->per_cu->load_all_dies)
15234 load_all = 1;
15235
15236 cu->partial_dies
15237 = htab_create_alloc_ex (cu->header.length / 12,
15238 partial_die_hash,
15239 partial_die_eq,
15240 NULL,
15241 &cu->comp_unit_obstack,
15242 hashtab_obstack_allocate,
15243 dummy_obstack_deallocate);
15244
15245 part_die = obstack_alloc (&cu->comp_unit_obstack,
15246 sizeof (struct partial_die_info));
15247
15248 while (1)
15249 {
15250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15251
15252 /* A NULL abbrev means the end of a series of children. */
15253 if (abbrev == NULL)
15254 {
15255 if (--nesting_level == 0)
15256 {
15257 /* PART_DIE was probably the last thing allocated on the
15258 comp_unit_obstack, so we could call obstack_free
15259 here. We don't do that because the waste is small,
15260 and will be cleaned up when we're done with this
15261 compilation unit. This way, we're also more robust
15262 against other users of the comp_unit_obstack. */
15263 return first_die;
15264 }
15265 info_ptr += bytes_read;
15266 last_die = parent_die;
15267 parent_die = parent_die->die_parent;
15268 continue;
15269 }
15270
15271 /* Check for template arguments. We never save these; if
15272 they're seen, we just mark the parent, and go on our way. */
15273 if (parent_die != NULL
15274 && cu->language == language_cplus
15275 && (abbrev->tag == DW_TAG_template_type_param
15276 || abbrev->tag == DW_TAG_template_value_param))
15277 {
15278 parent_die->has_template_arguments = 1;
15279
15280 if (!load_all)
15281 {
15282 /* We don't need a partial DIE for the template argument. */
15283 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15284 continue;
15285 }
15286 }
15287
15288 /* We only recurse into c++ subprograms looking for template arguments.
15289 Skip their other children. */
15290 if (!load_all
15291 && cu->language == language_cplus
15292 && parent_die != NULL
15293 && parent_die->tag == DW_TAG_subprogram)
15294 {
15295 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15296 continue;
15297 }
15298
15299 /* Check whether this DIE is interesting enough to save. Normally
15300 we would not be interested in members here, but there may be
15301 later variables referencing them via DW_AT_specification (for
15302 static members). */
15303 if (!load_all
15304 && !is_type_tag_for_partial (abbrev->tag)
15305 && abbrev->tag != DW_TAG_constant
15306 && abbrev->tag != DW_TAG_enumerator
15307 && abbrev->tag != DW_TAG_subprogram
15308 && abbrev->tag != DW_TAG_lexical_block
15309 && abbrev->tag != DW_TAG_variable
15310 && abbrev->tag != DW_TAG_namespace
15311 && abbrev->tag != DW_TAG_module
15312 && abbrev->tag != DW_TAG_member
15313 && abbrev->tag != DW_TAG_imported_unit
15314 && abbrev->tag != DW_TAG_imported_declaration)
15315 {
15316 /* Otherwise we skip to the next sibling, if any. */
15317 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15318 continue;
15319 }
15320
15321 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15322 info_ptr);
15323
15324 /* This two-pass algorithm for processing partial symbols has a
15325 high cost in cache pressure. Thus, handle some simple cases
15326 here which cover the majority of C partial symbols. DIEs
15327 which neither have specification tags in them, nor could have
15328 specification tags elsewhere pointing at them, can simply be
15329 processed and discarded.
15330
15331 This segment is also optional; scan_partial_symbols and
15332 add_partial_symbol will handle these DIEs if we chain
15333 them in normally. When compilers which do not emit large
15334 quantities of duplicate debug information are more common,
15335 this code can probably be removed. */
15336
15337 /* Any complete simple types at the top level (pretty much all
15338 of them, for a language without namespaces), can be processed
15339 directly. */
15340 if (parent_die == NULL
15341 && part_die->has_specification == 0
15342 && part_die->is_declaration == 0
15343 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15344 || part_die->tag == DW_TAG_base_type
15345 || part_die->tag == DW_TAG_subrange_type))
15346 {
15347 if (building_psymtab && part_die->name != NULL)
15348 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15349 VAR_DOMAIN, LOC_TYPEDEF,
15350 &objfile->static_psymbols,
15351 0, (CORE_ADDR) 0, cu->language, objfile);
15352 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15353 continue;
15354 }
15355
15356 /* The exception for DW_TAG_typedef with has_children above is
15357 a workaround of GCC PR debug/47510. In the case of this complaint
15358 type_name_no_tag_or_error will error on such types later.
15359
15360 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15361 it could not find the child DIEs referenced later, this is checked
15362 above. In correct DWARF DW_TAG_typedef should have no children. */
15363
15364 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15365 complaint (&symfile_complaints,
15366 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15367 "- DIE at 0x%x [in module %s]"),
15368 part_die->offset.sect_off, objfile_name (objfile));
15369
15370 /* If we're at the second level, and we're an enumerator, and
15371 our parent has no specification (meaning possibly lives in a
15372 namespace elsewhere), then we can add the partial symbol now
15373 instead of queueing it. */
15374 if (part_die->tag == DW_TAG_enumerator
15375 && parent_die != NULL
15376 && parent_die->die_parent == NULL
15377 && parent_die->tag == DW_TAG_enumeration_type
15378 && parent_die->has_specification == 0)
15379 {
15380 if (part_die->name == NULL)
15381 complaint (&symfile_complaints,
15382 _("malformed enumerator DIE ignored"));
15383 else if (building_psymtab)
15384 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15385 VAR_DOMAIN, LOC_CONST,
15386 (cu->language == language_cplus
15387 || cu->language == language_java)
15388 ? &objfile->global_psymbols
15389 : &objfile->static_psymbols,
15390 0, (CORE_ADDR) 0, cu->language, objfile);
15391
15392 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15393 continue;
15394 }
15395
15396 /* We'll save this DIE so link it in. */
15397 part_die->die_parent = parent_die;
15398 part_die->die_sibling = NULL;
15399 part_die->die_child = NULL;
15400
15401 if (last_die && last_die == parent_die)
15402 last_die->die_child = part_die;
15403 else if (last_die)
15404 last_die->die_sibling = part_die;
15405
15406 last_die = part_die;
15407
15408 if (first_die == NULL)
15409 first_die = part_die;
15410
15411 /* Maybe add the DIE to the hash table. Not all DIEs that we
15412 find interesting need to be in the hash table, because we
15413 also have the parent/sibling/child chains; only those that we
15414 might refer to by offset later during partial symbol reading.
15415
15416 For now this means things that might have be the target of a
15417 DW_AT_specification, DW_AT_abstract_origin, or
15418 DW_AT_extension. DW_AT_extension will refer only to
15419 namespaces; DW_AT_abstract_origin refers to functions (and
15420 many things under the function DIE, but we do not recurse
15421 into function DIEs during partial symbol reading) and
15422 possibly variables as well; DW_AT_specification refers to
15423 declarations. Declarations ought to have the DW_AT_declaration
15424 flag. It happens that GCC forgets to put it in sometimes, but
15425 only for functions, not for types.
15426
15427 Adding more things than necessary to the hash table is harmless
15428 except for the performance cost. Adding too few will result in
15429 wasted time in find_partial_die, when we reread the compilation
15430 unit with load_all_dies set. */
15431
15432 if (load_all
15433 || abbrev->tag == DW_TAG_constant
15434 || abbrev->tag == DW_TAG_subprogram
15435 || abbrev->tag == DW_TAG_variable
15436 || abbrev->tag == DW_TAG_namespace
15437 || part_die->is_declaration)
15438 {
15439 void **slot;
15440
15441 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15442 part_die->offset.sect_off, INSERT);
15443 *slot = part_die;
15444 }
15445
15446 part_die = obstack_alloc (&cu->comp_unit_obstack,
15447 sizeof (struct partial_die_info));
15448
15449 /* For some DIEs we want to follow their children (if any). For C
15450 we have no reason to follow the children of structures; for other
15451 languages we have to, so that we can get at method physnames
15452 to infer fully qualified class names, for DW_AT_specification,
15453 and for C++ template arguments. For C++, we also look one level
15454 inside functions to find template arguments (if the name of the
15455 function does not already contain the template arguments).
15456
15457 For Ada, we need to scan the children of subprograms and lexical
15458 blocks as well because Ada allows the definition of nested
15459 entities that could be interesting for the debugger, such as
15460 nested subprograms for instance. */
15461 if (last_die->has_children
15462 && (load_all
15463 || last_die->tag == DW_TAG_namespace
15464 || last_die->tag == DW_TAG_module
15465 || last_die->tag == DW_TAG_enumeration_type
15466 || (cu->language == language_cplus
15467 && last_die->tag == DW_TAG_subprogram
15468 && (last_die->name == NULL
15469 || strchr (last_die->name, '<') == NULL))
15470 || (cu->language != language_c
15471 && (last_die->tag == DW_TAG_class_type
15472 || last_die->tag == DW_TAG_interface_type
15473 || last_die->tag == DW_TAG_structure_type
15474 || last_die->tag == DW_TAG_union_type))
15475 || (cu->language == language_ada
15476 && (last_die->tag == DW_TAG_subprogram
15477 || last_die->tag == DW_TAG_lexical_block))))
15478 {
15479 nesting_level++;
15480 parent_die = last_die;
15481 continue;
15482 }
15483
15484 /* Otherwise we skip to the next sibling, if any. */
15485 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15486
15487 /* Back to the top, do it again. */
15488 }
15489 }
15490
15491 /* Read a minimal amount of information into the minimal die structure. */
15492
15493 static const gdb_byte *
15494 read_partial_die (const struct die_reader_specs *reader,
15495 struct partial_die_info *part_die,
15496 struct abbrev_info *abbrev, unsigned int abbrev_len,
15497 const gdb_byte *info_ptr)
15498 {
15499 struct dwarf2_cu *cu = reader->cu;
15500 struct objfile *objfile = cu->objfile;
15501 const gdb_byte *buffer = reader->buffer;
15502 unsigned int i;
15503 struct attribute attr;
15504 int has_low_pc_attr = 0;
15505 int has_high_pc_attr = 0;
15506 int high_pc_relative = 0;
15507
15508 memset (part_die, 0, sizeof (struct partial_die_info));
15509
15510 part_die->offset.sect_off = info_ptr - buffer;
15511
15512 info_ptr += abbrev_len;
15513
15514 if (abbrev == NULL)
15515 return info_ptr;
15516
15517 part_die->tag = abbrev->tag;
15518 part_die->has_children = abbrev->has_children;
15519
15520 for (i = 0; i < abbrev->num_attrs; ++i)
15521 {
15522 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15523
15524 /* Store the data if it is of an attribute we want to keep in a
15525 partial symbol table. */
15526 switch (attr.name)
15527 {
15528 case DW_AT_name:
15529 switch (part_die->tag)
15530 {
15531 case DW_TAG_compile_unit:
15532 case DW_TAG_partial_unit:
15533 case DW_TAG_type_unit:
15534 /* Compilation units have a DW_AT_name that is a filename, not
15535 a source language identifier. */
15536 case DW_TAG_enumeration_type:
15537 case DW_TAG_enumerator:
15538 /* These tags always have simple identifiers already; no need
15539 to canonicalize them. */
15540 part_die->name = DW_STRING (&attr);
15541 break;
15542 default:
15543 part_die->name
15544 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15545 &objfile->per_bfd->storage_obstack);
15546 break;
15547 }
15548 break;
15549 case DW_AT_linkage_name:
15550 case DW_AT_MIPS_linkage_name:
15551 /* Note that both forms of linkage name might appear. We
15552 assume they will be the same, and we only store the last
15553 one we see. */
15554 if (cu->language == language_ada)
15555 part_die->name = DW_STRING (&attr);
15556 part_die->linkage_name = DW_STRING (&attr);
15557 break;
15558 case DW_AT_low_pc:
15559 has_low_pc_attr = 1;
15560 part_die->lowpc = attr_value_as_address (&attr);
15561 break;
15562 case DW_AT_high_pc:
15563 has_high_pc_attr = 1;
15564 part_die->highpc = attr_value_as_address (&attr);
15565 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15566 high_pc_relative = 1;
15567 break;
15568 case DW_AT_location:
15569 /* Support the .debug_loc offsets. */
15570 if (attr_form_is_block (&attr))
15571 {
15572 part_die->d.locdesc = DW_BLOCK (&attr);
15573 }
15574 else if (attr_form_is_section_offset (&attr))
15575 {
15576 dwarf2_complex_location_expr_complaint ();
15577 }
15578 else
15579 {
15580 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15581 "partial symbol information");
15582 }
15583 break;
15584 case DW_AT_external:
15585 part_die->is_external = DW_UNSND (&attr);
15586 break;
15587 case DW_AT_declaration:
15588 part_die->is_declaration = DW_UNSND (&attr);
15589 break;
15590 case DW_AT_type:
15591 part_die->has_type = 1;
15592 break;
15593 case DW_AT_abstract_origin:
15594 case DW_AT_specification:
15595 case DW_AT_extension:
15596 part_die->has_specification = 1;
15597 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15598 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15599 || cu->per_cu->is_dwz);
15600 break;
15601 case DW_AT_sibling:
15602 /* Ignore absolute siblings, they might point outside of
15603 the current compile unit. */
15604 if (attr.form == DW_FORM_ref_addr)
15605 complaint (&symfile_complaints,
15606 _("ignoring absolute DW_AT_sibling"));
15607 else
15608 {
15609 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15610 const gdb_byte *sibling_ptr = buffer + off;
15611
15612 if (sibling_ptr < info_ptr)
15613 complaint (&symfile_complaints,
15614 _("DW_AT_sibling points backwards"));
15615 else if (sibling_ptr > reader->buffer_end)
15616 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15617 else
15618 part_die->sibling = sibling_ptr;
15619 }
15620 break;
15621 case DW_AT_byte_size:
15622 part_die->has_byte_size = 1;
15623 break;
15624 case DW_AT_calling_convention:
15625 /* DWARF doesn't provide a way to identify a program's source-level
15626 entry point. DW_AT_calling_convention attributes are only meant
15627 to describe functions' calling conventions.
15628
15629 However, because it's a necessary piece of information in
15630 Fortran, and because DW_CC_program is the only piece of debugging
15631 information whose definition refers to a 'main program' at all,
15632 several compilers have begun marking Fortran main programs with
15633 DW_CC_program --- even when those functions use the standard
15634 calling conventions.
15635
15636 So until DWARF specifies a way to provide this information and
15637 compilers pick up the new representation, we'll support this
15638 practice. */
15639 if (DW_UNSND (&attr) == DW_CC_program
15640 && cu->language == language_fortran)
15641 set_objfile_main_name (objfile, part_die->name, language_fortran);
15642 break;
15643 case DW_AT_inline:
15644 if (DW_UNSND (&attr) == DW_INL_inlined
15645 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15646 part_die->may_be_inlined = 1;
15647 break;
15648
15649 case DW_AT_import:
15650 if (part_die->tag == DW_TAG_imported_unit)
15651 {
15652 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15653 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15654 || cu->per_cu->is_dwz);
15655 }
15656 break;
15657
15658 default:
15659 break;
15660 }
15661 }
15662
15663 if (high_pc_relative)
15664 part_die->highpc += part_die->lowpc;
15665
15666 if (has_low_pc_attr && has_high_pc_attr)
15667 {
15668 /* When using the GNU linker, .gnu.linkonce. sections are used to
15669 eliminate duplicate copies of functions and vtables and such.
15670 The linker will arbitrarily choose one and discard the others.
15671 The AT_*_pc values for such functions refer to local labels in
15672 these sections. If the section from that file was discarded, the
15673 labels are not in the output, so the relocs get a value of 0.
15674 If this is a discarded function, mark the pc bounds as invalid,
15675 so that GDB will ignore it. */
15676 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15677 {
15678 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15679
15680 complaint (&symfile_complaints,
15681 _("DW_AT_low_pc %s is zero "
15682 "for DIE at 0x%x [in module %s]"),
15683 paddress (gdbarch, part_die->lowpc),
15684 part_die->offset.sect_off, objfile_name (objfile));
15685 }
15686 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15687 else if (part_die->lowpc >= part_die->highpc)
15688 {
15689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15690
15691 complaint (&symfile_complaints,
15692 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15693 "for DIE at 0x%x [in module %s]"),
15694 paddress (gdbarch, part_die->lowpc),
15695 paddress (gdbarch, part_die->highpc),
15696 part_die->offset.sect_off, objfile_name (objfile));
15697 }
15698 else
15699 part_die->has_pc_info = 1;
15700 }
15701
15702 return info_ptr;
15703 }
15704
15705 /* Find a cached partial DIE at OFFSET in CU. */
15706
15707 static struct partial_die_info *
15708 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15709 {
15710 struct partial_die_info *lookup_die = NULL;
15711 struct partial_die_info part_die;
15712
15713 part_die.offset = offset;
15714 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15715 offset.sect_off);
15716
15717 return lookup_die;
15718 }
15719
15720 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15721 except in the case of .debug_types DIEs which do not reference
15722 outside their CU (they do however referencing other types via
15723 DW_FORM_ref_sig8). */
15724
15725 static struct partial_die_info *
15726 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15727 {
15728 struct objfile *objfile = cu->objfile;
15729 struct dwarf2_per_cu_data *per_cu = NULL;
15730 struct partial_die_info *pd = NULL;
15731
15732 if (offset_in_dwz == cu->per_cu->is_dwz
15733 && offset_in_cu_p (&cu->header, offset))
15734 {
15735 pd = find_partial_die_in_comp_unit (offset, cu);
15736 if (pd != NULL)
15737 return pd;
15738 /* We missed recording what we needed.
15739 Load all dies and try again. */
15740 per_cu = cu->per_cu;
15741 }
15742 else
15743 {
15744 /* TUs don't reference other CUs/TUs (except via type signatures). */
15745 if (cu->per_cu->is_debug_types)
15746 {
15747 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15748 " external reference to offset 0x%lx [in module %s].\n"),
15749 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15750 bfd_get_filename (objfile->obfd));
15751 }
15752 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15753 objfile);
15754
15755 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15756 load_partial_comp_unit (per_cu);
15757
15758 per_cu->cu->last_used = 0;
15759 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15760 }
15761
15762 /* If we didn't find it, and not all dies have been loaded,
15763 load them all and try again. */
15764
15765 if (pd == NULL && per_cu->load_all_dies == 0)
15766 {
15767 per_cu->load_all_dies = 1;
15768
15769 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15770 THIS_CU->cu may already be in use. So we can't just free it and
15771 replace its DIEs with the ones we read in. Instead, we leave those
15772 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15773 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15774 set. */
15775 load_partial_comp_unit (per_cu);
15776
15777 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15778 }
15779
15780 if (pd == NULL)
15781 internal_error (__FILE__, __LINE__,
15782 _("could not find partial DIE 0x%x "
15783 "in cache [from module %s]\n"),
15784 offset.sect_off, bfd_get_filename (objfile->obfd));
15785 return pd;
15786 }
15787
15788 /* See if we can figure out if the class lives in a namespace. We do
15789 this by looking for a member function; its demangled name will
15790 contain namespace info, if there is any. */
15791
15792 static void
15793 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15794 struct dwarf2_cu *cu)
15795 {
15796 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15797 what template types look like, because the demangler
15798 frequently doesn't give the same name as the debug info. We
15799 could fix this by only using the demangled name to get the
15800 prefix (but see comment in read_structure_type). */
15801
15802 struct partial_die_info *real_pdi;
15803 struct partial_die_info *child_pdi;
15804
15805 /* If this DIE (this DIE's specification, if any) has a parent, then
15806 we should not do this. We'll prepend the parent's fully qualified
15807 name when we create the partial symbol. */
15808
15809 real_pdi = struct_pdi;
15810 while (real_pdi->has_specification)
15811 real_pdi = find_partial_die (real_pdi->spec_offset,
15812 real_pdi->spec_is_dwz, cu);
15813
15814 if (real_pdi->die_parent != NULL)
15815 return;
15816
15817 for (child_pdi = struct_pdi->die_child;
15818 child_pdi != NULL;
15819 child_pdi = child_pdi->die_sibling)
15820 {
15821 if (child_pdi->tag == DW_TAG_subprogram
15822 && child_pdi->linkage_name != NULL)
15823 {
15824 char *actual_class_name
15825 = language_class_name_from_physname (cu->language_defn,
15826 child_pdi->linkage_name);
15827 if (actual_class_name != NULL)
15828 {
15829 struct_pdi->name
15830 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15831 actual_class_name,
15832 strlen (actual_class_name));
15833 xfree (actual_class_name);
15834 }
15835 break;
15836 }
15837 }
15838 }
15839
15840 /* Adjust PART_DIE before generating a symbol for it. This function
15841 may set the is_external flag or change the DIE's name. */
15842
15843 static void
15844 fixup_partial_die (struct partial_die_info *part_die,
15845 struct dwarf2_cu *cu)
15846 {
15847 /* Once we've fixed up a die, there's no point in doing so again.
15848 This also avoids a memory leak if we were to call
15849 guess_partial_die_structure_name multiple times. */
15850 if (part_die->fixup_called)
15851 return;
15852
15853 /* If we found a reference attribute and the DIE has no name, try
15854 to find a name in the referred to DIE. */
15855
15856 if (part_die->name == NULL && part_die->has_specification)
15857 {
15858 struct partial_die_info *spec_die;
15859
15860 spec_die = find_partial_die (part_die->spec_offset,
15861 part_die->spec_is_dwz, cu);
15862
15863 fixup_partial_die (spec_die, cu);
15864
15865 if (spec_die->name)
15866 {
15867 part_die->name = spec_die->name;
15868
15869 /* Copy DW_AT_external attribute if it is set. */
15870 if (spec_die->is_external)
15871 part_die->is_external = spec_die->is_external;
15872 }
15873 }
15874
15875 /* Set default names for some unnamed DIEs. */
15876
15877 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15878 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15879
15880 /* If there is no parent die to provide a namespace, and there are
15881 children, see if we can determine the namespace from their linkage
15882 name. */
15883 if (cu->language == language_cplus
15884 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15885 && part_die->die_parent == NULL
15886 && part_die->has_children
15887 && (part_die->tag == DW_TAG_class_type
15888 || part_die->tag == DW_TAG_structure_type
15889 || part_die->tag == DW_TAG_union_type))
15890 guess_partial_die_structure_name (part_die, cu);
15891
15892 /* GCC might emit a nameless struct or union that has a linkage
15893 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15894 if (part_die->name == NULL
15895 && (part_die->tag == DW_TAG_class_type
15896 || part_die->tag == DW_TAG_interface_type
15897 || part_die->tag == DW_TAG_structure_type
15898 || part_die->tag == DW_TAG_union_type)
15899 && part_die->linkage_name != NULL)
15900 {
15901 char *demangled;
15902
15903 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15904 if (demangled)
15905 {
15906 const char *base;
15907
15908 /* Strip any leading namespaces/classes, keep only the base name.
15909 DW_AT_name for named DIEs does not contain the prefixes. */
15910 base = strrchr (demangled, ':');
15911 if (base && base > demangled && base[-1] == ':')
15912 base++;
15913 else
15914 base = demangled;
15915
15916 part_die->name
15917 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15918 base, strlen (base));
15919 xfree (demangled);
15920 }
15921 }
15922
15923 part_die->fixup_called = 1;
15924 }
15925
15926 /* Read an attribute value described by an attribute form. */
15927
15928 static const gdb_byte *
15929 read_attribute_value (const struct die_reader_specs *reader,
15930 struct attribute *attr, unsigned form,
15931 const gdb_byte *info_ptr)
15932 {
15933 struct dwarf2_cu *cu = reader->cu;
15934 bfd *abfd = reader->abfd;
15935 struct comp_unit_head *cu_header = &cu->header;
15936 unsigned int bytes_read;
15937 struct dwarf_block *blk;
15938
15939 attr->form = form;
15940 switch (form)
15941 {
15942 case DW_FORM_ref_addr:
15943 if (cu->header.version == 2)
15944 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15945 else
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15947 &cu->header, &bytes_read);
15948 info_ptr += bytes_read;
15949 break;
15950 case DW_FORM_GNU_ref_alt:
15951 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15952 info_ptr += bytes_read;
15953 break;
15954 case DW_FORM_addr:
15955 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15956 info_ptr += bytes_read;
15957 break;
15958 case DW_FORM_block2:
15959 blk = dwarf_alloc_block (cu);
15960 blk->size = read_2_bytes (abfd, info_ptr);
15961 info_ptr += 2;
15962 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15963 info_ptr += blk->size;
15964 DW_BLOCK (attr) = blk;
15965 break;
15966 case DW_FORM_block4:
15967 blk = dwarf_alloc_block (cu);
15968 blk->size = read_4_bytes (abfd, info_ptr);
15969 info_ptr += 4;
15970 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15971 info_ptr += blk->size;
15972 DW_BLOCK (attr) = blk;
15973 break;
15974 case DW_FORM_data2:
15975 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15976 info_ptr += 2;
15977 break;
15978 case DW_FORM_data4:
15979 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15980 info_ptr += 4;
15981 break;
15982 case DW_FORM_data8:
15983 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15984 info_ptr += 8;
15985 break;
15986 case DW_FORM_sec_offset:
15987 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15988 info_ptr += bytes_read;
15989 break;
15990 case DW_FORM_string:
15991 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15992 DW_STRING_IS_CANONICAL (attr) = 0;
15993 info_ptr += bytes_read;
15994 break;
15995 case DW_FORM_strp:
15996 if (!cu->per_cu->is_dwz)
15997 {
15998 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15999 &bytes_read);
16000 DW_STRING_IS_CANONICAL (attr) = 0;
16001 info_ptr += bytes_read;
16002 break;
16003 }
16004 /* FALLTHROUGH */
16005 case DW_FORM_GNU_strp_alt:
16006 {
16007 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16008 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16009 &bytes_read);
16010
16011 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16012 DW_STRING_IS_CANONICAL (attr) = 0;
16013 info_ptr += bytes_read;
16014 }
16015 break;
16016 case DW_FORM_exprloc:
16017 case DW_FORM_block:
16018 blk = dwarf_alloc_block (cu);
16019 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16020 info_ptr += bytes_read;
16021 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16022 info_ptr += blk->size;
16023 DW_BLOCK (attr) = blk;
16024 break;
16025 case DW_FORM_block1:
16026 blk = dwarf_alloc_block (cu);
16027 blk->size = read_1_byte (abfd, info_ptr);
16028 info_ptr += 1;
16029 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16030 info_ptr += blk->size;
16031 DW_BLOCK (attr) = blk;
16032 break;
16033 case DW_FORM_data1:
16034 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16035 info_ptr += 1;
16036 break;
16037 case DW_FORM_flag:
16038 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16039 info_ptr += 1;
16040 break;
16041 case DW_FORM_flag_present:
16042 DW_UNSND (attr) = 1;
16043 break;
16044 case DW_FORM_sdata:
16045 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16046 info_ptr += bytes_read;
16047 break;
16048 case DW_FORM_udata:
16049 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16050 info_ptr += bytes_read;
16051 break;
16052 case DW_FORM_ref1:
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_1_byte (abfd, info_ptr));
16055 info_ptr += 1;
16056 break;
16057 case DW_FORM_ref2:
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_2_bytes (abfd, info_ptr));
16060 info_ptr += 2;
16061 break;
16062 case DW_FORM_ref4:
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_4_bytes (abfd, info_ptr));
16065 info_ptr += 4;
16066 break;
16067 case DW_FORM_ref8:
16068 DW_UNSND (attr) = (cu->header.offset.sect_off
16069 + read_8_bytes (abfd, info_ptr));
16070 info_ptr += 8;
16071 break;
16072 case DW_FORM_ref_sig8:
16073 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16074 info_ptr += 8;
16075 break;
16076 case DW_FORM_ref_udata:
16077 DW_UNSND (attr) = (cu->header.offset.sect_off
16078 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16079 info_ptr += bytes_read;
16080 break;
16081 case DW_FORM_indirect:
16082 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16083 info_ptr += bytes_read;
16084 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16085 break;
16086 case DW_FORM_GNU_addr_index:
16087 if (reader->dwo_file == NULL)
16088 {
16089 /* For now flag a hard error.
16090 Later we can turn this into a complaint. */
16091 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16092 dwarf_form_name (form),
16093 bfd_get_filename (abfd));
16094 }
16095 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16096 info_ptr += bytes_read;
16097 break;
16098 case DW_FORM_GNU_str_index:
16099 if (reader->dwo_file == NULL)
16100 {
16101 /* For now flag a hard error.
16102 Later we can turn this into a complaint if warranted. */
16103 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16104 dwarf_form_name (form),
16105 bfd_get_filename (abfd));
16106 }
16107 {
16108 ULONGEST str_index =
16109 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16110
16111 DW_STRING (attr) = read_str_index (reader, str_index);
16112 DW_STRING_IS_CANONICAL (attr) = 0;
16113 info_ptr += bytes_read;
16114 }
16115 break;
16116 default:
16117 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16118 dwarf_form_name (form),
16119 bfd_get_filename (abfd));
16120 }
16121
16122 /* Super hack. */
16123 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16124 attr->form = DW_FORM_GNU_ref_alt;
16125
16126 /* We have seen instances where the compiler tried to emit a byte
16127 size attribute of -1 which ended up being encoded as an unsigned
16128 0xffffffff. Although 0xffffffff is technically a valid size value,
16129 an object of this size seems pretty unlikely so we can relatively
16130 safely treat these cases as if the size attribute was invalid and
16131 treat them as zero by default. */
16132 if (attr->name == DW_AT_byte_size
16133 && form == DW_FORM_data4
16134 && DW_UNSND (attr) >= 0xffffffff)
16135 {
16136 complaint
16137 (&symfile_complaints,
16138 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16139 hex_string (DW_UNSND (attr)));
16140 DW_UNSND (attr) = 0;
16141 }
16142
16143 return info_ptr;
16144 }
16145
16146 /* Read an attribute described by an abbreviated attribute. */
16147
16148 static const gdb_byte *
16149 read_attribute (const struct die_reader_specs *reader,
16150 struct attribute *attr, struct attr_abbrev *abbrev,
16151 const gdb_byte *info_ptr)
16152 {
16153 attr->name = abbrev->name;
16154 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16155 }
16156
16157 /* Read dwarf information from a buffer. */
16158
16159 static unsigned int
16160 read_1_byte (bfd *abfd, const gdb_byte *buf)
16161 {
16162 return bfd_get_8 (abfd, buf);
16163 }
16164
16165 static int
16166 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16167 {
16168 return bfd_get_signed_8 (abfd, buf);
16169 }
16170
16171 static unsigned int
16172 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16173 {
16174 return bfd_get_16 (abfd, buf);
16175 }
16176
16177 static int
16178 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16179 {
16180 return bfd_get_signed_16 (abfd, buf);
16181 }
16182
16183 static unsigned int
16184 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16185 {
16186 return bfd_get_32 (abfd, buf);
16187 }
16188
16189 static int
16190 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16191 {
16192 return bfd_get_signed_32 (abfd, buf);
16193 }
16194
16195 static ULONGEST
16196 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16197 {
16198 return bfd_get_64 (abfd, buf);
16199 }
16200
16201 static CORE_ADDR
16202 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16203 unsigned int *bytes_read)
16204 {
16205 struct comp_unit_head *cu_header = &cu->header;
16206 CORE_ADDR retval = 0;
16207
16208 if (cu_header->signed_addr_p)
16209 {
16210 switch (cu_header->addr_size)
16211 {
16212 case 2:
16213 retval = bfd_get_signed_16 (abfd, buf);
16214 break;
16215 case 4:
16216 retval = bfd_get_signed_32 (abfd, buf);
16217 break;
16218 case 8:
16219 retval = bfd_get_signed_64 (abfd, buf);
16220 break;
16221 default:
16222 internal_error (__FILE__, __LINE__,
16223 _("read_address: bad switch, signed [in module %s]"),
16224 bfd_get_filename (abfd));
16225 }
16226 }
16227 else
16228 {
16229 switch (cu_header->addr_size)
16230 {
16231 case 2:
16232 retval = bfd_get_16 (abfd, buf);
16233 break;
16234 case 4:
16235 retval = bfd_get_32 (abfd, buf);
16236 break;
16237 case 8:
16238 retval = bfd_get_64 (abfd, buf);
16239 break;
16240 default:
16241 internal_error (__FILE__, __LINE__,
16242 _("read_address: bad switch, "
16243 "unsigned [in module %s]"),
16244 bfd_get_filename (abfd));
16245 }
16246 }
16247
16248 *bytes_read = cu_header->addr_size;
16249 return retval;
16250 }
16251
16252 /* Read the initial length from a section. The (draft) DWARF 3
16253 specification allows the initial length to take up either 4 bytes
16254 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16255 bytes describe the length and all offsets will be 8 bytes in length
16256 instead of 4.
16257
16258 An older, non-standard 64-bit format is also handled by this
16259 function. The older format in question stores the initial length
16260 as an 8-byte quantity without an escape value. Lengths greater
16261 than 2^32 aren't very common which means that the initial 4 bytes
16262 is almost always zero. Since a length value of zero doesn't make
16263 sense for the 32-bit format, this initial zero can be considered to
16264 be an escape value which indicates the presence of the older 64-bit
16265 format. As written, the code can't detect (old format) lengths
16266 greater than 4GB. If it becomes necessary to handle lengths
16267 somewhat larger than 4GB, we could allow other small values (such
16268 as the non-sensical values of 1, 2, and 3) to also be used as
16269 escape values indicating the presence of the old format.
16270
16271 The value returned via bytes_read should be used to increment the
16272 relevant pointer after calling read_initial_length().
16273
16274 [ Note: read_initial_length() and read_offset() are based on the
16275 document entitled "DWARF Debugging Information Format", revision
16276 3, draft 8, dated November 19, 2001. This document was obtained
16277 from:
16278
16279 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16280
16281 This document is only a draft and is subject to change. (So beware.)
16282
16283 Details regarding the older, non-standard 64-bit format were
16284 determined empirically by examining 64-bit ELF files produced by
16285 the SGI toolchain on an IRIX 6.5 machine.
16286
16287 - Kevin, July 16, 2002
16288 ] */
16289
16290 static LONGEST
16291 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16292 {
16293 LONGEST length = bfd_get_32 (abfd, buf);
16294
16295 if (length == 0xffffffff)
16296 {
16297 length = bfd_get_64 (abfd, buf + 4);
16298 *bytes_read = 12;
16299 }
16300 else if (length == 0)
16301 {
16302 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16303 length = bfd_get_64 (abfd, buf);
16304 *bytes_read = 8;
16305 }
16306 else
16307 {
16308 *bytes_read = 4;
16309 }
16310
16311 return length;
16312 }
16313
16314 /* Cover function for read_initial_length.
16315 Returns the length of the object at BUF, and stores the size of the
16316 initial length in *BYTES_READ and stores the size that offsets will be in
16317 *OFFSET_SIZE.
16318 If the initial length size is not equivalent to that specified in
16319 CU_HEADER then issue a complaint.
16320 This is useful when reading non-comp-unit headers. */
16321
16322 static LONGEST
16323 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16324 const struct comp_unit_head *cu_header,
16325 unsigned int *bytes_read,
16326 unsigned int *offset_size)
16327 {
16328 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16329
16330 gdb_assert (cu_header->initial_length_size == 4
16331 || cu_header->initial_length_size == 8
16332 || cu_header->initial_length_size == 12);
16333
16334 if (cu_header->initial_length_size != *bytes_read)
16335 complaint (&symfile_complaints,
16336 _("intermixed 32-bit and 64-bit DWARF sections"));
16337
16338 *offset_size = (*bytes_read == 4) ? 4 : 8;
16339 return length;
16340 }
16341
16342 /* Read an offset from the data stream. The size of the offset is
16343 given by cu_header->offset_size. */
16344
16345 static LONGEST
16346 read_offset (bfd *abfd, const gdb_byte *buf,
16347 const struct comp_unit_head *cu_header,
16348 unsigned int *bytes_read)
16349 {
16350 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16351
16352 *bytes_read = cu_header->offset_size;
16353 return offset;
16354 }
16355
16356 /* Read an offset from the data stream. */
16357
16358 static LONGEST
16359 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16360 {
16361 LONGEST retval = 0;
16362
16363 switch (offset_size)
16364 {
16365 case 4:
16366 retval = bfd_get_32 (abfd, buf);
16367 break;
16368 case 8:
16369 retval = bfd_get_64 (abfd, buf);
16370 break;
16371 default:
16372 internal_error (__FILE__, __LINE__,
16373 _("read_offset_1: bad switch [in module %s]"),
16374 bfd_get_filename (abfd));
16375 }
16376
16377 return retval;
16378 }
16379
16380 static const gdb_byte *
16381 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16382 {
16383 /* If the size of a host char is 8 bits, we can return a pointer
16384 to the buffer, otherwise we have to copy the data to a buffer
16385 allocated on the temporary obstack. */
16386 gdb_assert (HOST_CHAR_BIT == 8);
16387 return buf;
16388 }
16389
16390 static const char *
16391 read_direct_string (bfd *abfd, const gdb_byte *buf,
16392 unsigned int *bytes_read_ptr)
16393 {
16394 /* If the size of a host char is 8 bits, we can return a pointer
16395 to the string, otherwise we have to copy the string to a buffer
16396 allocated on the temporary obstack. */
16397 gdb_assert (HOST_CHAR_BIT == 8);
16398 if (*buf == '\0')
16399 {
16400 *bytes_read_ptr = 1;
16401 return NULL;
16402 }
16403 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16404 return (const char *) buf;
16405 }
16406
16407 static const char *
16408 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16409 {
16410 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16411 if (dwarf2_per_objfile->str.buffer == NULL)
16412 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16413 bfd_get_filename (abfd));
16414 if (str_offset >= dwarf2_per_objfile->str.size)
16415 error (_("DW_FORM_strp pointing outside of "
16416 ".debug_str section [in module %s]"),
16417 bfd_get_filename (abfd));
16418 gdb_assert (HOST_CHAR_BIT == 8);
16419 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16420 return NULL;
16421 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16422 }
16423
16424 /* Read a string at offset STR_OFFSET in the .debug_str section from
16425 the .dwz file DWZ. Throw an error if the offset is too large. If
16426 the string consists of a single NUL byte, return NULL; otherwise
16427 return a pointer to the string. */
16428
16429 static const char *
16430 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16431 {
16432 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16433
16434 if (dwz->str.buffer == NULL)
16435 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16436 "section [in module %s]"),
16437 bfd_get_filename (dwz->dwz_bfd));
16438 if (str_offset >= dwz->str.size)
16439 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16440 ".debug_str section [in module %s]"),
16441 bfd_get_filename (dwz->dwz_bfd));
16442 gdb_assert (HOST_CHAR_BIT == 8);
16443 if (dwz->str.buffer[str_offset] == '\0')
16444 return NULL;
16445 return (const char *) (dwz->str.buffer + str_offset);
16446 }
16447
16448 static const char *
16449 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16450 const struct comp_unit_head *cu_header,
16451 unsigned int *bytes_read_ptr)
16452 {
16453 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16454
16455 return read_indirect_string_at_offset (abfd, str_offset);
16456 }
16457
16458 static ULONGEST
16459 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16460 unsigned int *bytes_read_ptr)
16461 {
16462 ULONGEST result;
16463 unsigned int num_read;
16464 int i, shift;
16465 unsigned char byte;
16466
16467 result = 0;
16468 shift = 0;
16469 num_read = 0;
16470 i = 0;
16471 while (1)
16472 {
16473 byte = bfd_get_8 (abfd, buf);
16474 buf++;
16475 num_read++;
16476 result |= ((ULONGEST) (byte & 127) << shift);
16477 if ((byte & 128) == 0)
16478 {
16479 break;
16480 }
16481 shift += 7;
16482 }
16483 *bytes_read_ptr = num_read;
16484 return result;
16485 }
16486
16487 static LONGEST
16488 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16489 unsigned int *bytes_read_ptr)
16490 {
16491 LONGEST result;
16492 int i, shift, num_read;
16493 unsigned char byte;
16494
16495 result = 0;
16496 shift = 0;
16497 num_read = 0;
16498 i = 0;
16499 while (1)
16500 {
16501 byte = bfd_get_8 (abfd, buf);
16502 buf++;
16503 num_read++;
16504 result |= ((LONGEST) (byte & 127) << shift);
16505 shift += 7;
16506 if ((byte & 128) == 0)
16507 {
16508 break;
16509 }
16510 }
16511 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16512 result |= -(((LONGEST) 1) << shift);
16513 *bytes_read_ptr = num_read;
16514 return result;
16515 }
16516
16517 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16518 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16519 ADDR_SIZE is the size of addresses from the CU header. */
16520
16521 static CORE_ADDR
16522 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16523 {
16524 struct objfile *objfile = dwarf2_per_objfile->objfile;
16525 bfd *abfd = objfile->obfd;
16526 const gdb_byte *info_ptr;
16527
16528 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16529 if (dwarf2_per_objfile->addr.buffer == NULL)
16530 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16531 objfile_name (objfile));
16532 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16533 error (_("DW_FORM_addr_index pointing outside of "
16534 ".debug_addr section [in module %s]"),
16535 objfile_name (objfile));
16536 info_ptr = (dwarf2_per_objfile->addr.buffer
16537 + addr_base + addr_index * addr_size);
16538 if (addr_size == 4)
16539 return bfd_get_32 (abfd, info_ptr);
16540 else
16541 return bfd_get_64 (abfd, info_ptr);
16542 }
16543
16544 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16545
16546 static CORE_ADDR
16547 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16548 {
16549 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16550 }
16551
16552 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16553
16554 static CORE_ADDR
16555 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16556 unsigned int *bytes_read)
16557 {
16558 bfd *abfd = cu->objfile->obfd;
16559 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16560
16561 return read_addr_index (cu, addr_index);
16562 }
16563
16564 /* Data structure to pass results from dwarf2_read_addr_index_reader
16565 back to dwarf2_read_addr_index. */
16566
16567 struct dwarf2_read_addr_index_data
16568 {
16569 ULONGEST addr_base;
16570 int addr_size;
16571 };
16572
16573 /* die_reader_func for dwarf2_read_addr_index. */
16574
16575 static void
16576 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16577 const gdb_byte *info_ptr,
16578 struct die_info *comp_unit_die,
16579 int has_children,
16580 void *data)
16581 {
16582 struct dwarf2_cu *cu = reader->cu;
16583 struct dwarf2_read_addr_index_data *aidata =
16584 (struct dwarf2_read_addr_index_data *) data;
16585
16586 aidata->addr_base = cu->addr_base;
16587 aidata->addr_size = cu->header.addr_size;
16588 }
16589
16590 /* Given an index in .debug_addr, fetch the value.
16591 NOTE: This can be called during dwarf expression evaluation,
16592 long after the debug information has been read, and thus per_cu->cu
16593 may no longer exist. */
16594
16595 CORE_ADDR
16596 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16597 unsigned int addr_index)
16598 {
16599 struct objfile *objfile = per_cu->objfile;
16600 struct dwarf2_cu *cu = per_cu->cu;
16601 ULONGEST addr_base;
16602 int addr_size;
16603
16604 /* This is intended to be called from outside this file. */
16605 dw2_setup (objfile);
16606
16607 /* We need addr_base and addr_size.
16608 If we don't have PER_CU->cu, we have to get it.
16609 Nasty, but the alternative is storing the needed info in PER_CU,
16610 which at this point doesn't seem justified: it's not clear how frequently
16611 it would get used and it would increase the size of every PER_CU.
16612 Entry points like dwarf2_per_cu_addr_size do a similar thing
16613 so we're not in uncharted territory here.
16614 Alas we need to be a bit more complicated as addr_base is contained
16615 in the DIE.
16616
16617 We don't need to read the entire CU(/TU).
16618 We just need the header and top level die.
16619
16620 IWBN to use the aging mechanism to let us lazily later discard the CU.
16621 For now we skip this optimization. */
16622
16623 if (cu != NULL)
16624 {
16625 addr_base = cu->addr_base;
16626 addr_size = cu->header.addr_size;
16627 }
16628 else
16629 {
16630 struct dwarf2_read_addr_index_data aidata;
16631
16632 /* Note: We can't use init_cutu_and_read_dies_simple here,
16633 we need addr_base. */
16634 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16635 dwarf2_read_addr_index_reader, &aidata);
16636 addr_base = aidata.addr_base;
16637 addr_size = aidata.addr_size;
16638 }
16639
16640 return read_addr_index_1 (addr_index, addr_base, addr_size);
16641 }
16642
16643 /* Given a DW_FORM_GNU_str_index, fetch the string.
16644 This is only used by the Fission support. */
16645
16646 static const char *
16647 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16648 {
16649 struct objfile *objfile = dwarf2_per_objfile->objfile;
16650 const char *objf_name = objfile_name (objfile);
16651 bfd *abfd = objfile->obfd;
16652 struct dwarf2_cu *cu = reader->cu;
16653 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16654 struct dwarf2_section_info *str_offsets_section =
16655 &reader->dwo_file->sections.str_offsets;
16656 const gdb_byte *info_ptr;
16657 ULONGEST str_offset;
16658 static const char form_name[] = "DW_FORM_GNU_str_index";
16659
16660 dwarf2_read_section (objfile, str_section);
16661 dwarf2_read_section (objfile, str_offsets_section);
16662 if (str_section->buffer == NULL)
16663 error (_("%s used without .debug_str.dwo section"
16664 " in CU at offset 0x%lx [in module %s]"),
16665 form_name, (long) cu->header.offset.sect_off, objf_name);
16666 if (str_offsets_section->buffer == NULL)
16667 error (_("%s used without .debug_str_offsets.dwo section"
16668 " in CU at offset 0x%lx [in module %s]"),
16669 form_name, (long) cu->header.offset.sect_off, objf_name);
16670 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16671 error (_("%s pointing outside of .debug_str_offsets.dwo"
16672 " section in CU at offset 0x%lx [in module %s]"),
16673 form_name, (long) cu->header.offset.sect_off, objf_name);
16674 info_ptr = (str_offsets_section->buffer
16675 + str_index * cu->header.offset_size);
16676 if (cu->header.offset_size == 4)
16677 str_offset = bfd_get_32 (abfd, info_ptr);
16678 else
16679 str_offset = bfd_get_64 (abfd, info_ptr);
16680 if (str_offset >= str_section->size)
16681 error (_("Offset from %s pointing outside of"
16682 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16683 form_name, (long) cu->header.offset.sect_off, objf_name);
16684 return (const char *) (str_section->buffer + str_offset);
16685 }
16686
16687 /* Return the length of an LEB128 number in BUF. */
16688
16689 static int
16690 leb128_size (const gdb_byte *buf)
16691 {
16692 const gdb_byte *begin = buf;
16693 gdb_byte byte;
16694
16695 while (1)
16696 {
16697 byte = *buf++;
16698 if ((byte & 128) == 0)
16699 return buf - begin;
16700 }
16701 }
16702
16703 static void
16704 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16705 {
16706 switch (lang)
16707 {
16708 case DW_LANG_C89:
16709 case DW_LANG_C99:
16710 case DW_LANG_C:
16711 case DW_LANG_UPC:
16712 cu->language = language_c;
16713 break;
16714 case DW_LANG_C_plus_plus:
16715 cu->language = language_cplus;
16716 break;
16717 case DW_LANG_D:
16718 cu->language = language_d;
16719 break;
16720 case DW_LANG_Fortran77:
16721 case DW_LANG_Fortran90:
16722 case DW_LANG_Fortran95:
16723 cu->language = language_fortran;
16724 break;
16725 case DW_LANG_Go:
16726 cu->language = language_go;
16727 break;
16728 case DW_LANG_Mips_Assembler:
16729 cu->language = language_asm;
16730 break;
16731 case DW_LANG_Java:
16732 cu->language = language_java;
16733 break;
16734 case DW_LANG_Ada83:
16735 case DW_LANG_Ada95:
16736 cu->language = language_ada;
16737 break;
16738 case DW_LANG_Modula2:
16739 cu->language = language_m2;
16740 break;
16741 case DW_LANG_Pascal83:
16742 cu->language = language_pascal;
16743 break;
16744 case DW_LANG_ObjC:
16745 cu->language = language_objc;
16746 break;
16747 case DW_LANG_Cobol74:
16748 case DW_LANG_Cobol85:
16749 default:
16750 cu->language = language_minimal;
16751 break;
16752 }
16753 cu->language_defn = language_def (cu->language);
16754 }
16755
16756 /* Return the named attribute or NULL if not there. */
16757
16758 static struct attribute *
16759 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16760 {
16761 for (;;)
16762 {
16763 unsigned int i;
16764 struct attribute *spec = NULL;
16765
16766 for (i = 0; i < die->num_attrs; ++i)
16767 {
16768 if (die->attrs[i].name == name)
16769 return &die->attrs[i];
16770 if (die->attrs[i].name == DW_AT_specification
16771 || die->attrs[i].name == DW_AT_abstract_origin)
16772 spec = &die->attrs[i];
16773 }
16774
16775 if (!spec)
16776 break;
16777
16778 die = follow_die_ref (die, spec, &cu);
16779 }
16780
16781 return NULL;
16782 }
16783
16784 /* Return the named attribute or NULL if not there,
16785 but do not follow DW_AT_specification, etc.
16786 This is for use in contexts where we're reading .debug_types dies.
16787 Following DW_AT_specification, DW_AT_abstract_origin will take us
16788 back up the chain, and we want to go down. */
16789
16790 static struct attribute *
16791 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16792 {
16793 unsigned int i;
16794
16795 for (i = 0; i < die->num_attrs; ++i)
16796 if (die->attrs[i].name == name)
16797 return &die->attrs[i];
16798
16799 return NULL;
16800 }
16801
16802 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16803 and holds a non-zero value. This function should only be used for
16804 DW_FORM_flag or DW_FORM_flag_present attributes. */
16805
16806 static int
16807 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16808 {
16809 struct attribute *attr = dwarf2_attr (die, name, cu);
16810
16811 return (attr && DW_UNSND (attr));
16812 }
16813
16814 static int
16815 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16816 {
16817 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16818 which value is non-zero. However, we have to be careful with
16819 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16820 (via dwarf2_flag_true_p) follows this attribute. So we may
16821 end up accidently finding a declaration attribute that belongs
16822 to a different DIE referenced by the specification attribute,
16823 even though the given DIE does not have a declaration attribute. */
16824 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16825 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16826 }
16827
16828 /* Return the die giving the specification for DIE, if there is
16829 one. *SPEC_CU is the CU containing DIE on input, and the CU
16830 containing the return value on output. If there is no
16831 specification, but there is an abstract origin, that is
16832 returned. */
16833
16834 static struct die_info *
16835 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16836 {
16837 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16838 *spec_cu);
16839
16840 if (spec_attr == NULL)
16841 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16842
16843 if (spec_attr == NULL)
16844 return NULL;
16845 else
16846 return follow_die_ref (die, spec_attr, spec_cu);
16847 }
16848
16849 /* Free the line_header structure *LH, and any arrays and strings it
16850 refers to.
16851 NOTE: This is also used as a "cleanup" function. */
16852
16853 static void
16854 free_line_header (struct line_header *lh)
16855 {
16856 if (lh->standard_opcode_lengths)
16857 xfree (lh->standard_opcode_lengths);
16858
16859 /* Remember that all the lh->file_names[i].name pointers are
16860 pointers into debug_line_buffer, and don't need to be freed. */
16861 if (lh->file_names)
16862 xfree (lh->file_names);
16863
16864 /* Similarly for the include directory names. */
16865 if (lh->include_dirs)
16866 xfree (lh->include_dirs);
16867
16868 xfree (lh);
16869 }
16870
16871 /* Add an entry to LH's include directory table. */
16872
16873 static void
16874 add_include_dir (struct line_header *lh, const char *include_dir)
16875 {
16876 /* Grow the array if necessary. */
16877 if (lh->include_dirs_size == 0)
16878 {
16879 lh->include_dirs_size = 1; /* for testing */
16880 lh->include_dirs = xmalloc (lh->include_dirs_size
16881 * sizeof (*lh->include_dirs));
16882 }
16883 else if (lh->num_include_dirs >= lh->include_dirs_size)
16884 {
16885 lh->include_dirs_size *= 2;
16886 lh->include_dirs = xrealloc (lh->include_dirs,
16887 (lh->include_dirs_size
16888 * sizeof (*lh->include_dirs)));
16889 }
16890
16891 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16892 }
16893
16894 /* Add an entry to LH's file name table. */
16895
16896 static void
16897 add_file_name (struct line_header *lh,
16898 const char *name,
16899 unsigned int dir_index,
16900 unsigned int mod_time,
16901 unsigned int length)
16902 {
16903 struct file_entry *fe;
16904
16905 /* Grow the array if necessary. */
16906 if (lh->file_names_size == 0)
16907 {
16908 lh->file_names_size = 1; /* for testing */
16909 lh->file_names = xmalloc (lh->file_names_size
16910 * sizeof (*lh->file_names));
16911 }
16912 else if (lh->num_file_names >= lh->file_names_size)
16913 {
16914 lh->file_names_size *= 2;
16915 lh->file_names = xrealloc (lh->file_names,
16916 (lh->file_names_size
16917 * sizeof (*lh->file_names)));
16918 }
16919
16920 fe = &lh->file_names[lh->num_file_names++];
16921 fe->name = name;
16922 fe->dir_index = dir_index;
16923 fe->mod_time = mod_time;
16924 fe->length = length;
16925 fe->included_p = 0;
16926 fe->symtab = NULL;
16927 }
16928
16929 /* A convenience function to find the proper .debug_line section for a
16930 CU. */
16931
16932 static struct dwarf2_section_info *
16933 get_debug_line_section (struct dwarf2_cu *cu)
16934 {
16935 struct dwarf2_section_info *section;
16936
16937 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16938 DWO file. */
16939 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16940 section = &cu->dwo_unit->dwo_file->sections.line;
16941 else if (cu->per_cu->is_dwz)
16942 {
16943 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16944
16945 section = &dwz->line;
16946 }
16947 else
16948 section = &dwarf2_per_objfile->line;
16949
16950 return section;
16951 }
16952
16953 /* Read the statement program header starting at OFFSET in
16954 .debug_line, or .debug_line.dwo. Return a pointer
16955 to a struct line_header, allocated using xmalloc.
16956
16957 NOTE: the strings in the include directory and file name tables of
16958 the returned object point into the dwarf line section buffer,
16959 and must not be freed. */
16960
16961 static struct line_header *
16962 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16963 {
16964 struct cleanup *back_to;
16965 struct line_header *lh;
16966 const gdb_byte *line_ptr;
16967 unsigned int bytes_read, offset_size;
16968 int i;
16969 const char *cur_dir, *cur_file;
16970 struct dwarf2_section_info *section;
16971 bfd *abfd;
16972
16973 section = get_debug_line_section (cu);
16974 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16975 if (section->buffer == NULL)
16976 {
16977 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16978 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16979 else
16980 complaint (&symfile_complaints, _("missing .debug_line section"));
16981 return 0;
16982 }
16983
16984 /* We can't do this until we know the section is non-empty.
16985 Only then do we know we have such a section. */
16986 abfd = get_section_bfd_owner (section);
16987
16988 /* Make sure that at least there's room for the total_length field.
16989 That could be 12 bytes long, but we're just going to fudge that. */
16990 if (offset + 4 >= section->size)
16991 {
16992 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16993 return 0;
16994 }
16995
16996 lh = xmalloc (sizeof (*lh));
16997 memset (lh, 0, sizeof (*lh));
16998 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16999 (void *) lh);
17000
17001 line_ptr = section->buffer + offset;
17002
17003 /* Read in the header. */
17004 lh->total_length =
17005 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17006 &bytes_read, &offset_size);
17007 line_ptr += bytes_read;
17008 if (line_ptr + lh->total_length > (section->buffer + section->size))
17009 {
17010 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17011 do_cleanups (back_to);
17012 return 0;
17013 }
17014 lh->statement_program_end = line_ptr + lh->total_length;
17015 lh->version = read_2_bytes (abfd, line_ptr);
17016 line_ptr += 2;
17017 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17018 line_ptr += offset_size;
17019 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17020 line_ptr += 1;
17021 if (lh->version >= 4)
17022 {
17023 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17024 line_ptr += 1;
17025 }
17026 else
17027 lh->maximum_ops_per_instruction = 1;
17028
17029 if (lh->maximum_ops_per_instruction == 0)
17030 {
17031 lh->maximum_ops_per_instruction = 1;
17032 complaint (&symfile_complaints,
17033 _("invalid maximum_ops_per_instruction "
17034 "in `.debug_line' section"));
17035 }
17036
17037 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17038 line_ptr += 1;
17039 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17040 line_ptr += 1;
17041 lh->line_range = read_1_byte (abfd, line_ptr);
17042 line_ptr += 1;
17043 lh->opcode_base = read_1_byte (abfd, line_ptr);
17044 line_ptr += 1;
17045 lh->standard_opcode_lengths
17046 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17047
17048 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17049 for (i = 1; i < lh->opcode_base; ++i)
17050 {
17051 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17052 line_ptr += 1;
17053 }
17054
17055 /* Read directory table. */
17056 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17057 {
17058 line_ptr += bytes_read;
17059 add_include_dir (lh, cur_dir);
17060 }
17061 line_ptr += bytes_read;
17062
17063 /* Read file name table. */
17064 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17065 {
17066 unsigned int dir_index, mod_time, length;
17067
17068 line_ptr += bytes_read;
17069 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17070 line_ptr += bytes_read;
17071 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17072 line_ptr += bytes_read;
17073 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17074 line_ptr += bytes_read;
17075
17076 add_file_name (lh, cur_file, dir_index, mod_time, length);
17077 }
17078 line_ptr += bytes_read;
17079 lh->statement_program_start = line_ptr;
17080
17081 if (line_ptr > (section->buffer + section->size))
17082 complaint (&symfile_complaints,
17083 _("line number info header doesn't "
17084 "fit in `.debug_line' section"));
17085
17086 discard_cleanups (back_to);
17087 return lh;
17088 }
17089
17090 /* Subroutine of dwarf_decode_lines to simplify it.
17091 Return the file name of the psymtab for included file FILE_INDEX
17092 in line header LH of PST.
17093 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17094 If space for the result is malloc'd, it will be freed by a cleanup.
17095 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17096
17097 The function creates dangling cleanup registration. */
17098
17099 static const char *
17100 psymtab_include_file_name (const struct line_header *lh, int file_index,
17101 const struct partial_symtab *pst,
17102 const char *comp_dir)
17103 {
17104 const struct file_entry fe = lh->file_names [file_index];
17105 const char *include_name = fe.name;
17106 const char *include_name_to_compare = include_name;
17107 const char *dir_name = NULL;
17108 const char *pst_filename;
17109 char *copied_name = NULL;
17110 int file_is_pst;
17111
17112 if (fe.dir_index)
17113 dir_name = lh->include_dirs[fe.dir_index - 1];
17114
17115 if (!IS_ABSOLUTE_PATH (include_name)
17116 && (dir_name != NULL || comp_dir != NULL))
17117 {
17118 /* Avoid creating a duplicate psymtab for PST.
17119 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17120 Before we do the comparison, however, we need to account
17121 for DIR_NAME and COMP_DIR.
17122 First prepend dir_name (if non-NULL). If we still don't
17123 have an absolute path prepend comp_dir (if non-NULL).
17124 However, the directory we record in the include-file's
17125 psymtab does not contain COMP_DIR (to match the
17126 corresponding symtab(s)).
17127
17128 Example:
17129
17130 bash$ cd /tmp
17131 bash$ gcc -g ./hello.c
17132 include_name = "hello.c"
17133 dir_name = "."
17134 DW_AT_comp_dir = comp_dir = "/tmp"
17135 DW_AT_name = "./hello.c"
17136
17137 */
17138
17139 if (dir_name != NULL)
17140 {
17141 char *tem = concat (dir_name, SLASH_STRING,
17142 include_name, (char *)NULL);
17143
17144 make_cleanup (xfree, tem);
17145 include_name = tem;
17146 include_name_to_compare = include_name;
17147 }
17148 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17149 {
17150 char *tem = concat (comp_dir, SLASH_STRING,
17151 include_name, (char *)NULL);
17152
17153 make_cleanup (xfree, tem);
17154 include_name_to_compare = tem;
17155 }
17156 }
17157
17158 pst_filename = pst->filename;
17159 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17160 {
17161 copied_name = concat (pst->dirname, SLASH_STRING,
17162 pst_filename, (char *)NULL);
17163 pst_filename = copied_name;
17164 }
17165
17166 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17167
17168 if (copied_name != NULL)
17169 xfree (copied_name);
17170
17171 if (file_is_pst)
17172 return NULL;
17173 return include_name;
17174 }
17175
17176 /* Ignore this record_line request. */
17177
17178 static void
17179 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17180 {
17181 return;
17182 }
17183
17184 /* Return non-zero if we should add LINE to the line number table.
17185 LINE is the line to add, LAST_LINE is the last line that was added,
17186 LAST_SUBFILE is the subfile for LAST_LINE.
17187 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17188 had a non-zero discriminator.
17189
17190 We have to be careful in the presence of discriminators.
17191 E.g., for this line:
17192
17193 for (i = 0; i < 100000; i++);
17194
17195 clang can emit four line number entries for that one line,
17196 each with a different discriminator.
17197 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17198
17199 However, we want gdb to coalesce all four entries into one.
17200 Otherwise the user could stepi into the middle of the line and
17201 gdb would get confused about whether the pc really was in the
17202 middle of the line.
17203
17204 Things are further complicated by the fact that two consecutive
17205 line number entries for the same line is a heuristic used by gcc
17206 to denote the end of the prologue. So we can't just discard duplicate
17207 entries, we have to be selective about it. The heuristic we use is
17208 that we only collapse consecutive entries for the same line if at least
17209 one of those entries has a non-zero discriminator. PR 17276.
17210
17211 Note: Addresses in the line number state machine can never go backwards
17212 within one sequence, thus this coalescing is ok. */
17213
17214 static int
17215 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17216 int line_has_non_zero_discriminator,
17217 struct subfile *last_subfile)
17218 {
17219 if (current_subfile != last_subfile)
17220 return 1;
17221 if (line != last_line)
17222 return 1;
17223 /* Same line for the same file that we've seen already.
17224 As a last check, for pr 17276, only record the line if the line
17225 has never had a non-zero discriminator. */
17226 if (!line_has_non_zero_discriminator)
17227 return 1;
17228 return 0;
17229 }
17230
17231 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17232 in the line table of subfile SUBFILE. */
17233
17234 static void
17235 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17236 unsigned int line, CORE_ADDR address,
17237 record_line_ftype p_record_line)
17238 {
17239 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17240
17241 (*p_record_line) (subfile, line, addr);
17242 }
17243
17244 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17245 Mark the end of a set of line number records.
17246 The arguments are the same as for dwarf_record_line.
17247 If SUBFILE is NULL the request is ignored. */
17248
17249 static void
17250 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17251 CORE_ADDR address, record_line_ftype p_record_line)
17252 {
17253 if (subfile != NULL)
17254 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17255 }
17256
17257 /* Subroutine of dwarf_decode_lines to simplify it.
17258 Process the line number information in LH. */
17259
17260 static void
17261 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17262 struct dwarf2_cu *cu, const int decode_for_pst_p,
17263 CORE_ADDR lowpc)
17264 {
17265 const gdb_byte *line_ptr, *extended_end;
17266 const gdb_byte *line_end;
17267 unsigned int bytes_read, extended_len;
17268 unsigned char op_code, extended_op;
17269 CORE_ADDR baseaddr;
17270 struct objfile *objfile = cu->objfile;
17271 bfd *abfd = objfile->obfd;
17272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17273 struct subfile *last_subfile = NULL;
17274 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17275 = record_line;
17276
17277 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17278
17279 line_ptr = lh->statement_program_start;
17280 line_end = lh->statement_program_end;
17281
17282 /* Read the statement sequences until there's nothing left. */
17283 while (line_ptr < line_end)
17284 {
17285 /* state machine registers */
17286 CORE_ADDR address = 0;
17287 unsigned int file = 1;
17288 unsigned int line = 1;
17289 int is_stmt = lh->default_is_stmt;
17290 int end_sequence = 0;
17291 unsigned char op_index = 0;
17292 unsigned int discriminator = 0;
17293 /* The last line number that was recorded, used to coalesce
17294 consecutive entries for the same line. This can happen, for
17295 example, when discriminators are present. PR 17276. */
17296 unsigned int last_line = 0;
17297 int line_has_non_zero_discriminator = 0;
17298
17299 if (!decode_for_pst_p && lh->num_file_names >= file)
17300 {
17301 /* Start a subfile for the current file of the state machine. */
17302 /* lh->include_dirs and lh->file_names are 0-based, but the
17303 directory and file name numbers in the statement program
17304 are 1-based. */
17305 struct file_entry *fe = &lh->file_names[file - 1];
17306 const char *dir = NULL;
17307
17308 if (fe->dir_index)
17309 dir = lh->include_dirs[fe->dir_index - 1];
17310
17311 dwarf2_start_subfile (fe->name, dir);
17312 }
17313
17314 /* Decode the table. */
17315 while (!end_sequence)
17316 {
17317 op_code = read_1_byte (abfd, line_ptr);
17318 line_ptr += 1;
17319 if (line_ptr > line_end)
17320 {
17321 dwarf2_debug_line_missing_end_sequence_complaint ();
17322 break;
17323 }
17324
17325 if (op_code >= lh->opcode_base)
17326 {
17327 /* Special opcode. */
17328 unsigned char adj_opcode;
17329 int line_delta;
17330
17331 adj_opcode = op_code - lh->opcode_base;
17332 address += (((op_index + (adj_opcode / lh->line_range))
17333 / lh->maximum_ops_per_instruction)
17334 * lh->minimum_instruction_length);
17335 op_index = ((op_index + (adj_opcode / lh->line_range))
17336 % lh->maximum_ops_per_instruction);
17337 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17338 line += line_delta;
17339 if (line_delta != 0)
17340 line_has_non_zero_discriminator = discriminator != 0;
17341 if (lh->num_file_names < file || file == 0)
17342 dwarf2_debug_line_missing_file_complaint ();
17343 /* For now we ignore lines not starting on an
17344 instruction boundary. */
17345 else if (op_index == 0)
17346 {
17347 lh->file_names[file - 1].included_p = 1;
17348 if (!decode_for_pst_p && is_stmt)
17349 {
17350 if (last_subfile != current_subfile)
17351 {
17352 dwarf_finish_line (gdbarch, last_subfile,
17353 address, p_record_line);
17354 }
17355 if (dwarf_record_line_p (line, last_line,
17356 line_has_non_zero_discriminator,
17357 last_subfile))
17358 {
17359 dwarf_record_line (gdbarch, current_subfile,
17360 line, address, p_record_line);
17361 }
17362 last_subfile = current_subfile;
17363 last_line = line;
17364 }
17365 }
17366 discriminator = 0;
17367 }
17368 else switch (op_code)
17369 {
17370 case DW_LNS_extended_op:
17371 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17372 &bytes_read);
17373 line_ptr += bytes_read;
17374 extended_end = line_ptr + extended_len;
17375 extended_op = read_1_byte (abfd, line_ptr);
17376 line_ptr += 1;
17377 switch (extended_op)
17378 {
17379 case DW_LNE_end_sequence:
17380 p_record_line = record_line;
17381 end_sequence = 1;
17382 break;
17383 case DW_LNE_set_address:
17384 address = read_address (abfd, line_ptr, cu, &bytes_read);
17385
17386 /* If address < lowpc then it's not a usable value, it's
17387 outside the pc range of the CU. However, we restrict
17388 the test to only address values of zero to preserve
17389 GDB's previous behaviour which is to handle the specific
17390 case of a function being GC'd by the linker. */
17391 if (address == 0 && address < lowpc)
17392 {
17393 /* This line table is for a function which has been
17394 GCd by the linker. Ignore it. PR gdb/12528 */
17395
17396 long line_offset
17397 = line_ptr - get_debug_line_section (cu)->buffer;
17398
17399 complaint (&symfile_complaints,
17400 _(".debug_line address at offset 0x%lx is 0 "
17401 "[in module %s]"),
17402 line_offset, objfile_name (objfile));
17403 p_record_line = noop_record_line;
17404 /* Note: p_record_line is left as noop_record_line
17405 until we see DW_LNE_end_sequence. */
17406 }
17407
17408 op_index = 0;
17409 line_ptr += bytes_read;
17410 address += baseaddr;
17411 break;
17412 case DW_LNE_define_file:
17413 {
17414 const char *cur_file;
17415 unsigned int dir_index, mod_time, length;
17416
17417 cur_file = read_direct_string (abfd, line_ptr,
17418 &bytes_read);
17419 line_ptr += bytes_read;
17420 dir_index =
17421 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17422 line_ptr += bytes_read;
17423 mod_time =
17424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17425 line_ptr += bytes_read;
17426 length =
17427 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17428 line_ptr += bytes_read;
17429 add_file_name (lh, cur_file, dir_index, mod_time, length);
17430 }
17431 break;
17432 case DW_LNE_set_discriminator:
17433 /* The discriminator is not interesting to the debugger;
17434 just ignore it. We still need to check its value though:
17435 if there are consecutive entries for the same
17436 (non-prologue) line we want to coalesce them.
17437 PR 17276. */
17438 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17439 &bytes_read);
17440 line_has_non_zero_discriminator |= discriminator != 0;
17441 line_ptr += bytes_read;
17442 break;
17443 default:
17444 complaint (&symfile_complaints,
17445 _("mangled .debug_line section"));
17446 return;
17447 }
17448 /* Make sure that we parsed the extended op correctly. If e.g.
17449 we expected a different address size than the producer used,
17450 we may have read the wrong number of bytes. */
17451 if (line_ptr != extended_end)
17452 {
17453 complaint (&symfile_complaints,
17454 _("mangled .debug_line section"));
17455 return;
17456 }
17457 break;
17458 case DW_LNS_copy:
17459 if (lh->num_file_names < file || file == 0)
17460 dwarf2_debug_line_missing_file_complaint ();
17461 else
17462 {
17463 lh->file_names[file - 1].included_p = 1;
17464 if (!decode_for_pst_p && is_stmt)
17465 {
17466 if (last_subfile != current_subfile)
17467 {
17468 dwarf_finish_line (gdbarch, last_subfile,
17469 address, p_record_line);
17470 }
17471 if (dwarf_record_line_p (line, last_line,
17472 line_has_non_zero_discriminator,
17473 last_subfile))
17474 {
17475 dwarf_record_line (gdbarch, current_subfile,
17476 line, address, p_record_line);
17477 }
17478 last_subfile = current_subfile;
17479 last_line = line;
17480 }
17481 }
17482 discriminator = 0;
17483 break;
17484 case DW_LNS_advance_pc:
17485 {
17486 CORE_ADDR adjust
17487 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17488
17489 address += (((op_index + adjust)
17490 / lh->maximum_ops_per_instruction)
17491 * lh->minimum_instruction_length);
17492 op_index = ((op_index + adjust)
17493 % lh->maximum_ops_per_instruction);
17494 line_ptr += bytes_read;
17495 }
17496 break;
17497 case DW_LNS_advance_line:
17498 {
17499 int line_delta
17500 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17501
17502 line += line_delta;
17503 if (line_delta != 0)
17504 line_has_non_zero_discriminator = discriminator != 0;
17505 line_ptr += bytes_read;
17506 }
17507 break;
17508 case DW_LNS_set_file:
17509 {
17510 /* The arrays lh->include_dirs and lh->file_names are
17511 0-based, but the directory and file name numbers in
17512 the statement program are 1-based. */
17513 struct file_entry *fe;
17514 const char *dir = NULL;
17515
17516 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17517 line_ptr += bytes_read;
17518 if (lh->num_file_names < file || file == 0)
17519 dwarf2_debug_line_missing_file_complaint ();
17520 else
17521 {
17522 fe = &lh->file_names[file - 1];
17523 if (fe->dir_index)
17524 dir = lh->include_dirs[fe->dir_index - 1];
17525 if (!decode_for_pst_p)
17526 {
17527 last_subfile = current_subfile;
17528 line_has_non_zero_discriminator = discriminator != 0;
17529 dwarf2_start_subfile (fe->name, dir);
17530 }
17531 }
17532 }
17533 break;
17534 case DW_LNS_set_column:
17535 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17536 line_ptr += bytes_read;
17537 break;
17538 case DW_LNS_negate_stmt:
17539 is_stmt = (!is_stmt);
17540 break;
17541 case DW_LNS_set_basic_block:
17542 break;
17543 /* Add to the address register of the state machine the
17544 address increment value corresponding to special opcode
17545 255. I.e., this value is scaled by the minimum
17546 instruction length since special opcode 255 would have
17547 scaled the increment. */
17548 case DW_LNS_const_add_pc:
17549 {
17550 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17551
17552 address += (((op_index + adjust)
17553 / lh->maximum_ops_per_instruction)
17554 * lh->minimum_instruction_length);
17555 op_index = ((op_index + adjust)
17556 % lh->maximum_ops_per_instruction);
17557 }
17558 break;
17559 case DW_LNS_fixed_advance_pc:
17560 address += read_2_bytes (abfd, line_ptr);
17561 op_index = 0;
17562 line_ptr += 2;
17563 break;
17564 default:
17565 {
17566 /* Unknown standard opcode, ignore it. */
17567 int i;
17568
17569 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17570 {
17571 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17572 line_ptr += bytes_read;
17573 }
17574 }
17575 }
17576 }
17577 if (lh->num_file_names < file || file == 0)
17578 dwarf2_debug_line_missing_file_complaint ();
17579 else
17580 {
17581 lh->file_names[file - 1].included_p = 1;
17582 if (!decode_for_pst_p)
17583 {
17584 dwarf_finish_line (gdbarch, current_subfile, address,
17585 p_record_line);
17586 }
17587 }
17588 }
17589 }
17590
17591 /* Decode the Line Number Program (LNP) for the given line_header
17592 structure and CU. The actual information extracted and the type
17593 of structures created from the LNP depends on the value of PST.
17594
17595 1. If PST is NULL, then this procedure uses the data from the program
17596 to create all necessary symbol tables, and their linetables.
17597
17598 2. If PST is not NULL, this procedure reads the program to determine
17599 the list of files included by the unit represented by PST, and
17600 builds all the associated partial symbol tables.
17601
17602 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17603 It is used for relative paths in the line table.
17604 NOTE: When processing partial symtabs (pst != NULL),
17605 comp_dir == pst->dirname.
17606
17607 NOTE: It is important that psymtabs have the same file name (via strcmp)
17608 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17609 symtab we don't use it in the name of the psymtabs we create.
17610 E.g. expand_line_sal requires this when finding psymtabs to expand.
17611 A good testcase for this is mb-inline.exp.
17612
17613 LOWPC is the lowest address in CU (or 0 if not known). */
17614
17615 static void
17616 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17617 struct dwarf2_cu *cu, struct partial_symtab *pst,
17618 CORE_ADDR lowpc)
17619 {
17620 struct objfile *objfile = cu->objfile;
17621 const int decode_for_pst_p = (pst != NULL);
17622 struct subfile *first_subfile = current_subfile;
17623
17624 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p, lowpc);
17625
17626 if (decode_for_pst_p)
17627 {
17628 int file_index;
17629
17630 /* Now that we're done scanning the Line Header Program, we can
17631 create the psymtab of each included file. */
17632 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17633 if (lh->file_names[file_index].included_p == 1)
17634 {
17635 const char *include_name =
17636 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17637 if (include_name != NULL)
17638 dwarf2_create_include_psymtab (include_name, pst, objfile);
17639 }
17640 }
17641 else
17642 {
17643 /* Make sure a symtab is created for every file, even files
17644 which contain only variables (i.e. no code with associated
17645 line numbers). */
17646 int i;
17647
17648 for (i = 0; i < lh->num_file_names; i++)
17649 {
17650 const char *dir = NULL;
17651 struct file_entry *fe;
17652
17653 fe = &lh->file_names[i];
17654 if (fe->dir_index)
17655 dir = lh->include_dirs[fe->dir_index - 1];
17656 dwarf2_start_subfile (fe->name, dir);
17657
17658 /* Skip the main file; we don't need it, and it must be
17659 allocated last, so that it will show up before the
17660 non-primary symtabs in the objfile's symtab list. */
17661 if (current_subfile == first_subfile)
17662 continue;
17663
17664 if (current_subfile->symtab == NULL)
17665 current_subfile->symtab = allocate_symtab (current_subfile->name,
17666 objfile);
17667 fe->symtab = current_subfile->symtab;
17668 }
17669 }
17670 }
17671
17672 /* Start a subfile for DWARF. FILENAME is the name of the file and
17673 DIRNAME the name of the source directory which contains FILENAME
17674 or NULL if not known.
17675 This routine tries to keep line numbers from identical absolute and
17676 relative file names in a common subfile.
17677
17678 Using the `list' example from the GDB testsuite, which resides in
17679 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17680 of /srcdir/list0.c yields the following debugging information for list0.c:
17681
17682 DW_AT_name: /srcdir/list0.c
17683 DW_AT_comp_dir: /compdir
17684 files.files[0].name: list0.h
17685 files.files[0].dir: /srcdir
17686 files.files[1].name: list0.c
17687 files.files[1].dir: /srcdir
17688
17689 The line number information for list0.c has to end up in a single
17690 subfile, so that `break /srcdir/list0.c:1' works as expected.
17691 start_subfile will ensure that this happens provided that we pass the
17692 concatenation of files.files[1].dir and files.files[1].name as the
17693 subfile's name. */
17694
17695 static void
17696 dwarf2_start_subfile (const char *filename, const char *dirname)
17697 {
17698 char *copy = NULL;
17699
17700 /* In order not to lose the line information directory,
17701 we concatenate it to the filename when it makes sense.
17702 Note that the Dwarf3 standard says (speaking of filenames in line
17703 information): ``The directory index is ignored for file names
17704 that represent full path names''. Thus ignoring dirname in the
17705 `else' branch below isn't an issue. */
17706
17707 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17708 {
17709 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17710 filename = copy;
17711 }
17712
17713 start_subfile (filename);
17714
17715 if (copy != NULL)
17716 xfree (copy);
17717 }
17718
17719 /* Start a symtab for DWARF.
17720 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17721
17722 static void
17723 dwarf2_start_symtab (struct dwarf2_cu *cu,
17724 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17725 {
17726 start_symtab (dwarf2_per_objfile->objfile, name, comp_dir, low_pc);
17727 record_debugformat ("DWARF 2");
17728 record_producer (cu->producer);
17729
17730 /* We assume that we're processing GCC output. */
17731 processing_gcc_compilation = 2;
17732
17733 cu->processing_has_namespace_info = 0;
17734 }
17735
17736 static void
17737 var_decode_location (struct attribute *attr, struct symbol *sym,
17738 struct dwarf2_cu *cu)
17739 {
17740 struct objfile *objfile = cu->objfile;
17741 struct comp_unit_head *cu_header = &cu->header;
17742
17743 /* NOTE drow/2003-01-30: There used to be a comment and some special
17744 code here to turn a symbol with DW_AT_external and a
17745 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17746 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17747 with some versions of binutils) where shared libraries could have
17748 relocations against symbols in their debug information - the
17749 minimal symbol would have the right address, but the debug info
17750 would not. It's no longer necessary, because we will explicitly
17751 apply relocations when we read in the debug information now. */
17752
17753 /* A DW_AT_location attribute with no contents indicates that a
17754 variable has been optimized away. */
17755 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17756 {
17757 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17758 return;
17759 }
17760
17761 /* Handle one degenerate form of location expression specially, to
17762 preserve GDB's previous behavior when section offsets are
17763 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17764 then mark this symbol as LOC_STATIC. */
17765
17766 if (attr_form_is_block (attr)
17767 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17768 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17769 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17770 && (DW_BLOCK (attr)->size
17771 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17772 {
17773 unsigned int dummy;
17774
17775 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17776 SYMBOL_VALUE_ADDRESS (sym) =
17777 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17778 else
17779 SYMBOL_VALUE_ADDRESS (sym) =
17780 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17781 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17782 fixup_symbol_section (sym, objfile);
17783 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17784 SYMBOL_SECTION (sym));
17785 return;
17786 }
17787
17788 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17789 expression evaluator, and use LOC_COMPUTED only when necessary
17790 (i.e. when the value of a register or memory location is
17791 referenced, or a thread-local block, etc.). Then again, it might
17792 not be worthwhile. I'm assuming that it isn't unless performance
17793 or memory numbers show me otherwise. */
17794
17795 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17796
17797 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17798 cu->has_loclist = 1;
17799 }
17800
17801 /* Given a pointer to a DWARF information entry, figure out if we need
17802 to make a symbol table entry for it, and if so, create a new entry
17803 and return a pointer to it.
17804 If TYPE is NULL, determine symbol type from the die, otherwise
17805 used the passed type.
17806 If SPACE is not NULL, use it to hold the new symbol. If it is
17807 NULL, allocate a new symbol on the objfile's obstack. */
17808
17809 static struct symbol *
17810 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17811 struct symbol *space)
17812 {
17813 struct objfile *objfile = cu->objfile;
17814 struct symbol *sym = NULL;
17815 const char *name;
17816 struct attribute *attr = NULL;
17817 struct attribute *attr2 = NULL;
17818 CORE_ADDR baseaddr;
17819 struct pending **list_to_add = NULL;
17820
17821 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17822
17823 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17824
17825 name = dwarf2_name (die, cu);
17826 if (name)
17827 {
17828 const char *linkagename;
17829 int suppress_add = 0;
17830
17831 if (space)
17832 sym = space;
17833 else
17834 sym = allocate_symbol (objfile);
17835 OBJSTAT (objfile, n_syms++);
17836
17837 /* Cache this symbol's name and the name's demangled form (if any). */
17838 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17839 linkagename = dwarf2_physname (name, die, cu);
17840 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17841
17842 /* Fortran does not have mangling standard and the mangling does differ
17843 between gfortran, iFort etc. */
17844 if (cu->language == language_fortran
17845 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17846 symbol_set_demangled_name (&(sym->ginfo),
17847 dwarf2_full_name (name, die, cu),
17848 NULL);
17849
17850 /* Default assumptions.
17851 Use the passed type or decode it from the die. */
17852 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17853 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17854 if (type != NULL)
17855 SYMBOL_TYPE (sym) = type;
17856 else
17857 SYMBOL_TYPE (sym) = die_type (die, cu);
17858 attr = dwarf2_attr (die,
17859 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17860 cu);
17861 if (attr)
17862 {
17863 SYMBOL_LINE (sym) = DW_UNSND (attr);
17864 }
17865
17866 attr = dwarf2_attr (die,
17867 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17868 cu);
17869 if (attr)
17870 {
17871 int file_index = DW_UNSND (attr);
17872
17873 if (cu->line_header == NULL
17874 || file_index > cu->line_header->num_file_names)
17875 complaint (&symfile_complaints,
17876 _("file index out of range"));
17877 else if (file_index > 0)
17878 {
17879 struct file_entry *fe;
17880
17881 fe = &cu->line_header->file_names[file_index - 1];
17882 SYMBOL_SYMTAB (sym) = fe->symtab;
17883 }
17884 }
17885
17886 switch (die->tag)
17887 {
17888 case DW_TAG_label:
17889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17890 if (attr)
17891 SYMBOL_VALUE_ADDRESS (sym)
17892 = attr_value_as_address (attr) + baseaddr;
17893 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17894 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17895 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17896 add_symbol_to_list (sym, cu->list_in_scope);
17897 break;
17898 case DW_TAG_subprogram:
17899 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17900 finish_block. */
17901 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17902 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17903 if ((attr2 && (DW_UNSND (attr2) != 0))
17904 || cu->language == language_ada)
17905 {
17906 /* Subprograms marked external are stored as a global symbol.
17907 Ada subprograms, whether marked external or not, are always
17908 stored as a global symbol, because we want to be able to
17909 access them globally. For instance, we want to be able
17910 to break on a nested subprogram without having to
17911 specify the context. */
17912 list_to_add = &global_symbols;
17913 }
17914 else
17915 {
17916 list_to_add = cu->list_in_scope;
17917 }
17918 break;
17919 case DW_TAG_inlined_subroutine:
17920 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17921 finish_block. */
17922 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17923 SYMBOL_INLINED (sym) = 1;
17924 list_to_add = cu->list_in_scope;
17925 break;
17926 case DW_TAG_template_value_param:
17927 suppress_add = 1;
17928 /* Fall through. */
17929 case DW_TAG_constant:
17930 case DW_TAG_variable:
17931 case DW_TAG_member:
17932 /* Compilation with minimal debug info may result in
17933 variables with missing type entries. Change the
17934 misleading `void' type to something sensible. */
17935 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17936 SYMBOL_TYPE (sym)
17937 = objfile_type (objfile)->nodebug_data_symbol;
17938
17939 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17940 /* In the case of DW_TAG_member, we should only be called for
17941 static const members. */
17942 if (die->tag == DW_TAG_member)
17943 {
17944 /* dwarf2_add_field uses die_is_declaration,
17945 so we do the same. */
17946 gdb_assert (die_is_declaration (die, cu));
17947 gdb_assert (attr);
17948 }
17949 if (attr)
17950 {
17951 dwarf2_const_value (attr, sym, cu);
17952 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17953 if (!suppress_add)
17954 {
17955 if (attr2 && (DW_UNSND (attr2) != 0))
17956 list_to_add = &global_symbols;
17957 else
17958 list_to_add = cu->list_in_scope;
17959 }
17960 break;
17961 }
17962 attr = dwarf2_attr (die, DW_AT_location, cu);
17963 if (attr)
17964 {
17965 var_decode_location (attr, sym, cu);
17966 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17967
17968 /* Fortran explicitly imports any global symbols to the local
17969 scope by DW_TAG_common_block. */
17970 if (cu->language == language_fortran && die->parent
17971 && die->parent->tag == DW_TAG_common_block)
17972 attr2 = NULL;
17973
17974 if (SYMBOL_CLASS (sym) == LOC_STATIC
17975 && SYMBOL_VALUE_ADDRESS (sym) == 0
17976 && !dwarf2_per_objfile->has_section_at_zero)
17977 {
17978 /* When a static variable is eliminated by the linker,
17979 the corresponding debug information is not stripped
17980 out, but the variable address is set to null;
17981 do not add such variables into symbol table. */
17982 }
17983 else if (attr2 && (DW_UNSND (attr2) != 0))
17984 {
17985 /* Workaround gfortran PR debug/40040 - it uses
17986 DW_AT_location for variables in -fPIC libraries which may
17987 get overriden by other libraries/executable and get
17988 a different address. Resolve it by the minimal symbol
17989 which may come from inferior's executable using copy
17990 relocation. Make this workaround only for gfortran as for
17991 other compilers GDB cannot guess the minimal symbol
17992 Fortran mangling kind. */
17993 if (cu->language == language_fortran && die->parent
17994 && die->parent->tag == DW_TAG_module
17995 && cu->producer
17996 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17997 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17998
17999 /* A variable with DW_AT_external is never static,
18000 but it may be block-scoped. */
18001 list_to_add = (cu->list_in_scope == &file_symbols
18002 ? &global_symbols : cu->list_in_scope);
18003 }
18004 else
18005 list_to_add = cu->list_in_scope;
18006 }
18007 else
18008 {
18009 /* We do not know the address of this symbol.
18010 If it is an external symbol and we have type information
18011 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18012 The address of the variable will then be determined from
18013 the minimal symbol table whenever the variable is
18014 referenced. */
18015 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18016
18017 /* Fortran explicitly imports any global symbols to the local
18018 scope by DW_TAG_common_block. */
18019 if (cu->language == language_fortran && die->parent
18020 && die->parent->tag == DW_TAG_common_block)
18021 {
18022 /* SYMBOL_CLASS doesn't matter here because
18023 read_common_block is going to reset it. */
18024 if (!suppress_add)
18025 list_to_add = cu->list_in_scope;
18026 }
18027 else if (attr2 && (DW_UNSND (attr2) != 0)
18028 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18029 {
18030 /* A variable with DW_AT_external is never static, but it
18031 may be block-scoped. */
18032 list_to_add = (cu->list_in_scope == &file_symbols
18033 ? &global_symbols : cu->list_in_scope);
18034
18035 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18036 }
18037 else if (!die_is_declaration (die, cu))
18038 {
18039 /* Use the default LOC_OPTIMIZED_OUT class. */
18040 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18041 if (!suppress_add)
18042 list_to_add = cu->list_in_scope;
18043 }
18044 }
18045 break;
18046 case DW_TAG_formal_parameter:
18047 /* If we are inside a function, mark this as an argument. If
18048 not, we might be looking at an argument to an inlined function
18049 when we do not have enough information to show inlined frames;
18050 pretend it's a local variable in that case so that the user can
18051 still see it. */
18052 if (context_stack_depth > 0
18053 && context_stack[context_stack_depth - 1].name != NULL)
18054 SYMBOL_IS_ARGUMENT (sym) = 1;
18055 attr = dwarf2_attr (die, DW_AT_location, cu);
18056 if (attr)
18057 {
18058 var_decode_location (attr, sym, cu);
18059 }
18060 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18061 if (attr)
18062 {
18063 dwarf2_const_value (attr, sym, cu);
18064 }
18065
18066 list_to_add = cu->list_in_scope;
18067 break;
18068 case DW_TAG_unspecified_parameters:
18069 /* From varargs functions; gdb doesn't seem to have any
18070 interest in this information, so just ignore it for now.
18071 (FIXME?) */
18072 break;
18073 case DW_TAG_template_type_param:
18074 suppress_add = 1;
18075 /* Fall through. */
18076 case DW_TAG_class_type:
18077 case DW_TAG_interface_type:
18078 case DW_TAG_structure_type:
18079 case DW_TAG_union_type:
18080 case DW_TAG_set_type:
18081 case DW_TAG_enumeration_type:
18082 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18083 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18084
18085 {
18086 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18087 really ever be static objects: otherwise, if you try
18088 to, say, break of a class's method and you're in a file
18089 which doesn't mention that class, it won't work unless
18090 the check for all static symbols in lookup_symbol_aux
18091 saves you. See the OtherFileClass tests in
18092 gdb.c++/namespace.exp. */
18093
18094 if (!suppress_add)
18095 {
18096 list_to_add = (cu->list_in_scope == &file_symbols
18097 && (cu->language == language_cplus
18098 || cu->language == language_java)
18099 ? &global_symbols : cu->list_in_scope);
18100
18101 /* The semantics of C++ state that "struct foo {
18102 ... }" also defines a typedef for "foo". A Java
18103 class declaration also defines a typedef for the
18104 class. */
18105 if (cu->language == language_cplus
18106 || cu->language == language_java
18107 || cu->language == language_ada)
18108 {
18109 /* The symbol's name is already allocated along
18110 with this objfile, so we don't need to
18111 duplicate it for the type. */
18112 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18113 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18114 }
18115 }
18116 }
18117 break;
18118 case DW_TAG_typedef:
18119 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18121 list_to_add = cu->list_in_scope;
18122 break;
18123 case DW_TAG_base_type:
18124 case DW_TAG_subrange_type:
18125 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18126 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18127 list_to_add = cu->list_in_scope;
18128 break;
18129 case DW_TAG_enumerator:
18130 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18131 if (attr)
18132 {
18133 dwarf2_const_value (attr, sym, cu);
18134 }
18135 {
18136 /* NOTE: carlton/2003-11-10: See comment above in the
18137 DW_TAG_class_type, etc. block. */
18138
18139 list_to_add = (cu->list_in_scope == &file_symbols
18140 && (cu->language == language_cplus
18141 || cu->language == language_java)
18142 ? &global_symbols : cu->list_in_scope);
18143 }
18144 break;
18145 case DW_TAG_imported_declaration:
18146 case DW_TAG_namespace:
18147 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18148 list_to_add = &global_symbols;
18149 break;
18150 case DW_TAG_module:
18151 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18152 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18153 list_to_add = &global_symbols;
18154 break;
18155 case DW_TAG_common_block:
18156 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18157 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18158 add_symbol_to_list (sym, cu->list_in_scope);
18159 break;
18160 default:
18161 /* Not a tag we recognize. Hopefully we aren't processing
18162 trash data, but since we must specifically ignore things
18163 we don't recognize, there is nothing else we should do at
18164 this point. */
18165 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18166 dwarf_tag_name (die->tag));
18167 break;
18168 }
18169
18170 if (suppress_add)
18171 {
18172 sym->hash_next = objfile->template_symbols;
18173 objfile->template_symbols = sym;
18174 list_to_add = NULL;
18175 }
18176
18177 if (list_to_add != NULL)
18178 add_symbol_to_list (sym, list_to_add);
18179
18180 /* For the benefit of old versions of GCC, check for anonymous
18181 namespaces based on the demangled name. */
18182 if (!cu->processing_has_namespace_info
18183 && cu->language == language_cplus)
18184 cp_scan_for_anonymous_namespaces (sym, objfile);
18185 }
18186 return (sym);
18187 }
18188
18189 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18190
18191 static struct symbol *
18192 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18193 {
18194 return new_symbol_full (die, type, cu, NULL);
18195 }
18196
18197 /* Given an attr with a DW_FORM_dataN value in host byte order,
18198 zero-extend it as appropriate for the symbol's type. The DWARF
18199 standard (v4) is not entirely clear about the meaning of using
18200 DW_FORM_dataN for a constant with a signed type, where the type is
18201 wider than the data. The conclusion of a discussion on the DWARF
18202 list was that this is unspecified. We choose to always zero-extend
18203 because that is the interpretation long in use by GCC. */
18204
18205 static gdb_byte *
18206 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18207 struct dwarf2_cu *cu, LONGEST *value, int bits)
18208 {
18209 struct objfile *objfile = cu->objfile;
18210 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18211 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18212 LONGEST l = DW_UNSND (attr);
18213
18214 if (bits < sizeof (*value) * 8)
18215 {
18216 l &= ((LONGEST) 1 << bits) - 1;
18217 *value = l;
18218 }
18219 else if (bits == sizeof (*value) * 8)
18220 *value = l;
18221 else
18222 {
18223 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18224 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18225 return bytes;
18226 }
18227
18228 return NULL;
18229 }
18230
18231 /* Read a constant value from an attribute. Either set *VALUE, or if
18232 the value does not fit in *VALUE, set *BYTES - either already
18233 allocated on the objfile obstack, or newly allocated on OBSTACK,
18234 or, set *BATON, if we translated the constant to a location
18235 expression. */
18236
18237 static void
18238 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18239 const char *name, struct obstack *obstack,
18240 struct dwarf2_cu *cu,
18241 LONGEST *value, const gdb_byte **bytes,
18242 struct dwarf2_locexpr_baton **baton)
18243 {
18244 struct objfile *objfile = cu->objfile;
18245 struct comp_unit_head *cu_header = &cu->header;
18246 struct dwarf_block *blk;
18247 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18248 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18249
18250 *value = 0;
18251 *bytes = NULL;
18252 *baton = NULL;
18253
18254 switch (attr->form)
18255 {
18256 case DW_FORM_addr:
18257 case DW_FORM_GNU_addr_index:
18258 {
18259 gdb_byte *data;
18260
18261 if (TYPE_LENGTH (type) != cu_header->addr_size)
18262 dwarf2_const_value_length_mismatch_complaint (name,
18263 cu_header->addr_size,
18264 TYPE_LENGTH (type));
18265 /* Symbols of this form are reasonably rare, so we just
18266 piggyback on the existing location code rather than writing
18267 a new implementation of symbol_computed_ops. */
18268 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18269 (*baton)->per_cu = cu->per_cu;
18270 gdb_assert ((*baton)->per_cu);
18271
18272 (*baton)->size = 2 + cu_header->addr_size;
18273 data = obstack_alloc (obstack, (*baton)->size);
18274 (*baton)->data = data;
18275
18276 data[0] = DW_OP_addr;
18277 store_unsigned_integer (&data[1], cu_header->addr_size,
18278 byte_order, DW_ADDR (attr));
18279 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18280 }
18281 break;
18282 case DW_FORM_string:
18283 case DW_FORM_strp:
18284 case DW_FORM_GNU_str_index:
18285 case DW_FORM_GNU_strp_alt:
18286 /* DW_STRING is already allocated on the objfile obstack, point
18287 directly to it. */
18288 *bytes = (const gdb_byte *) DW_STRING (attr);
18289 break;
18290 case DW_FORM_block1:
18291 case DW_FORM_block2:
18292 case DW_FORM_block4:
18293 case DW_FORM_block:
18294 case DW_FORM_exprloc:
18295 blk = DW_BLOCK (attr);
18296 if (TYPE_LENGTH (type) != blk->size)
18297 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18298 TYPE_LENGTH (type));
18299 *bytes = blk->data;
18300 break;
18301
18302 /* The DW_AT_const_value attributes are supposed to carry the
18303 symbol's value "represented as it would be on the target
18304 architecture." By the time we get here, it's already been
18305 converted to host endianness, so we just need to sign- or
18306 zero-extend it as appropriate. */
18307 case DW_FORM_data1:
18308 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18309 break;
18310 case DW_FORM_data2:
18311 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18312 break;
18313 case DW_FORM_data4:
18314 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18315 break;
18316 case DW_FORM_data8:
18317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18318 break;
18319
18320 case DW_FORM_sdata:
18321 *value = DW_SND (attr);
18322 break;
18323
18324 case DW_FORM_udata:
18325 *value = DW_UNSND (attr);
18326 break;
18327
18328 default:
18329 complaint (&symfile_complaints,
18330 _("unsupported const value attribute form: '%s'"),
18331 dwarf_form_name (attr->form));
18332 *value = 0;
18333 break;
18334 }
18335 }
18336
18337
18338 /* Copy constant value from an attribute to a symbol. */
18339
18340 static void
18341 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18342 struct dwarf2_cu *cu)
18343 {
18344 struct objfile *objfile = cu->objfile;
18345 struct comp_unit_head *cu_header = &cu->header;
18346 LONGEST value;
18347 const gdb_byte *bytes;
18348 struct dwarf2_locexpr_baton *baton;
18349
18350 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18351 SYMBOL_PRINT_NAME (sym),
18352 &objfile->objfile_obstack, cu,
18353 &value, &bytes, &baton);
18354
18355 if (baton != NULL)
18356 {
18357 SYMBOL_LOCATION_BATON (sym) = baton;
18358 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18359 }
18360 else if (bytes != NULL)
18361 {
18362 SYMBOL_VALUE_BYTES (sym) = bytes;
18363 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18364 }
18365 else
18366 {
18367 SYMBOL_VALUE (sym) = value;
18368 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18369 }
18370 }
18371
18372 /* Return the type of the die in question using its DW_AT_type attribute. */
18373
18374 static struct type *
18375 die_type (struct die_info *die, struct dwarf2_cu *cu)
18376 {
18377 struct attribute *type_attr;
18378
18379 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18380 if (!type_attr)
18381 {
18382 /* A missing DW_AT_type represents a void type. */
18383 return objfile_type (cu->objfile)->builtin_void;
18384 }
18385
18386 return lookup_die_type (die, type_attr, cu);
18387 }
18388
18389 /* True iff CU's producer generates GNAT Ada auxiliary information
18390 that allows to find parallel types through that information instead
18391 of having to do expensive parallel lookups by type name. */
18392
18393 static int
18394 need_gnat_info (struct dwarf2_cu *cu)
18395 {
18396 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18397 of GNAT produces this auxiliary information, without any indication
18398 that it is produced. Part of enhancing the FSF version of GNAT
18399 to produce that information will be to put in place an indicator
18400 that we can use in order to determine whether the descriptive type
18401 info is available or not. One suggestion that has been made is
18402 to use a new attribute, attached to the CU die. For now, assume
18403 that the descriptive type info is not available. */
18404 return 0;
18405 }
18406
18407 /* Return the auxiliary type of the die in question using its
18408 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18409 attribute is not present. */
18410
18411 static struct type *
18412 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18413 {
18414 struct attribute *type_attr;
18415
18416 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18417 if (!type_attr)
18418 return NULL;
18419
18420 return lookup_die_type (die, type_attr, cu);
18421 }
18422
18423 /* If DIE has a descriptive_type attribute, then set the TYPE's
18424 descriptive type accordingly. */
18425
18426 static void
18427 set_descriptive_type (struct type *type, struct die_info *die,
18428 struct dwarf2_cu *cu)
18429 {
18430 struct type *descriptive_type = die_descriptive_type (die, cu);
18431
18432 if (descriptive_type)
18433 {
18434 ALLOCATE_GNAT_AUX_TYPE (type);
18435 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18436 }
18437 }
18438
18439 /* Return the containing type of the die in question using its
18440 DW_AT_containing_type attribute. */
18441
18442 static struct type *
18443 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18444 {
18445 struct attribute *type_attr;
18446
18447 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18448 if (!type_attr)
18449 error (_("Dwarf Error: Problem turning containing type into gdb type "
18450 "[in module %s]"), objfile_name (cu->objfile));
18451
18452 return lookup_die_type (die, type_attr, cu);
18453 }
18454
18455 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18456
18457 static struct type *
18458 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18459 {
18460 struct objfile *objfile = dwarf2_per_objfile->objfile;
18461 char *message, *saved;
18462
18463 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18464 objfile_name (objfile),
18465 cu->header.offset.sect_off,
18466 die->offset.sect_off);
18467 saved = obstack_copy0 (&objfile->objfile_obstack,
18468 message, strlen (message));
18469 xfree (message);
18470
18471 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18472 }
18473
18474 /* Look up the type of DIE in CU using its type attribute ATTR.
18475 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18476 DW_AT_containing_type.
18477 If there is no type substitute an error marker. */
18478
18479 static struct type *
18480 lookup_die_type (struct die_info *die, const struct attribute *attr,
18481 struct dwarf2_cu *cu)
18482 {
18483 struct objfile *objfile = cu->objfile;
18484 struct type *this_type;
18485
18486 gdb_assert (attr->name == DW_AT_type
18487 || attr->name == DW_AT_GNAT_descriptive_type
18488 || attr->name == DW_AT_containing_type);
18489
18490 /* First see if we have it cached. */
18491
18492 if (attr->form == DW_FORM_GNU_ref_alt)
18493 {
18494 struct dwarf2_per_cu_data *per_cu;
18495 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18496
18497 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18498 this_type = get_die_type_at_offset (offset, per_cu);
18499 }
18500 else if (attr_form_is_ref (attr))
18501 {
18502 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18503
18504 this_type = get_die_type_at_offset (offset, cu->per_cu);
18505 }
18506 else if (attr->form == DW_FORM_ref_sig8)
18507 {
18508 ULONGEST signature = DW_SIGNATURE (attr);
18509
18510 return get_signatured_type (die, signature, cu);
18511 }
18512 else
18513 {
18514 complaint (&symfile_complaints,
18515 _("Dwarf Error: Bad type attribute %s in DIE"
18516 " at 0x%x [in module %s]"),
18517 dwarf_attr_name (attr->name), die->offset.sect_off,
18518 objfile_name (objfile));
18519 return build_error_marker_type (cu, die);
18520 }
18521
18522 /* If not cached we need to read it in. */
18523
18524 if (this_type == NULL)
18525 {
18526 struct die_info *type_die = NULL;
18527 struct dwarf2_cu *type_cu = cu;
18528
18529 if (attr_form_is_ref (attr))
18530 type_die = follow_die_ref (die, attr, &type_cu);
18531 if (type_die == NULL)
18532 return build_error_marker_type (cu, die);
18533 /* If we find the type now, it's probably because the type came
18534 from an inter-CU reference and the type's CU got expanded before
18535 ours. */
18536 this_type = read_type_die (type_die, type_cu);
18537 }
18538
18539 /* If we still don't have a type use an error marker. */
18540
18541 if (this_type == NULL)
18542 return build_error_marker_type (cu, die);
18543
18544 return this_type;
18545 }
18546
18547 /* Return the type in DIE, CU.
18548 Returns NULL for invalid types.
18549
18550 This first does a lookup in die_type_hash,
18551 and only reads the die in if necessary.
18552
18553 NOTE: This can be called when reading in partial or full symbols. */
18554
18555 static struct type *
18556 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18557 {
18558 struct type *this_type;
18559
18560 this_type = get_die_type (die, cu);
18561 if (this_type)
18562 return this_type;
18563
18564 return read_type_die_1 (die, cu);
18565 }
18566
18567 /* Read the type in DIE, CU.
18568 Returns NULL for invalid types. */
18569
18570 static struct type *
18571 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18572 {
18573 struct type *this_type = NULL;
18574
18575 switch (die->tag)
18576 {
18577 case DW_TAG_class_type:
18578 case DW_TAG_interface_type:
18579 case DW_TAG_structure_type:
18580 case DW_TAG_union_type:
18581 this_type = read_structure_type (die, cu);
18582 break;
18583 case DW_TAG_enumeration_type:
18584 this_type = read_enumeration_type (die, cu);
18585 break;
18586 case DW_TAG_subprogram:
18587 case DW_TAG_subroutine_type:
18588 case DW_TAG_inlined_subroutine:
18589 this_type = read_subroutine_type (die, cu);
18590 break;
18591 case DW_TAG_array_type:
18592 this_type = read_array_type (die, cu);
18593 break;
18594 case DW_TAG_set_type:
18595 this_type = read_set_type (die, cu);
18596 break;
18597 case DW_TAG_pointer_type:
18598 this_type = read_tag_pointer_type (die, cu);
18599 break;
18600 case DW_TAG_ptr_to_member_type:
18601 this_type = read_tag_ptr_to_member_type (die, cu);
18602 break;
18603 case DW_TAG_reference_type:
18604 this_type = read_tag_reference_type (die, cu);
18605 break;
18606 case DW_TAG_const_type:
18607 this_type = read_tag_const_type (die, cu);
18608 break;
18609 case DW_TAG_volatile_type:
18610 this_type = read_tag_volatile_type (die, cu);
18611 break;
18612 case DW_TAG_restrict_type:
18613 this_type = read_tag_restrict_type (die, cu);
18614 break;
18615 case DW_TAG_string_type:
18616 this_type = read_tag_string_type (die, cu);
18617 break;
18618 case DW_TAG_typedef:
18619 this_type = read_typedef (die, cu);
18620 break;
18621 case DW_TAG_subrange_type:
18622 this_type = read_subrange_type (die, cu);
18623 break;
18624 case DW_TAG_base_type:
18625 this_type = read_base_type (die, cu);
18626 break;
18627 case DW_TAG_unspecified_type:
18628 this_type = read_unspecified_type (die, cu);
18629 break;
18630 case DW_TAG_namespace:
18631 this_type = read_namespace_type (die, cu);
18632 break;
18633 case DW_TAG_module:
18634 this_type = read_module_type (die, cu);
18635 break;
18636 default:
18637 complaint (&symfile_complaints,
18638 _("unexpected tag in read_type_die: '%s'"),
18639 dwarf_tag_name (die->tag));
18640 break;
18641 }
18642
18643 return this_type;
18644 }
18645
18646 /* See if we can figure out if the class lives in a namespace. We do
18647 this by looking for a member function; its demangled name will
18648 contain namespace info, if there is any.
18649 Return the computed name or NULL.
18650 Space for the result is allocated on the objfile's obstack.
18651 This is the full-die version of guess_partial_die_structure_name.
18652 In this case we know DIE has no useful parent. */
18653
18654 static char *
18655 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18656 {
18657 struct die_info *spec_die;
18658 struct dwarf2_cu *spec_cu;
18659 struct die_info *child;
18660
18661 spec_cu = cu;
18662 spec_die = die_specification (die, &spec_cu);
18663 if (spec_die != NULL)
18664 {
18665 die = spec_die;
18666 cu = spec_cu;
18667 }
18668
18669 for (child = die->child;
18670 child != NULL;
18671 child = child->sibling)
18672 {
18673 if (child->tag == DW_TAG_subprogram)
18674 {
18675 struct attribute *attr;
18676
18677 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18678 if (attr == NULL)
18679 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18680 if (attr != NULL)
18681 {
18682 char *actual_name
18683 = language_class_name_from_physname (cu->language_defn,
18684 DW_STRING (attr));
18685 char *name = NULL;
18686
18687 if (actual_name != NULL)
18688 {
18689 const char *die_name = dwarf2_name (die, cu);
18690
18691 if (die_name != NULL
18692 && strcmp (die_name, actual_name) != 0)
18693 {
18694 /* Strip off the class name from the full name.
18695 We want the prefix. */
18696 int die_name_len = strlen (die_name);
18697 int actual_name_len = strlen (actual_name);
18698
18699 /* Test for '::' as a sanity check. */
18700 if (actual_name_len > die_name_len + 2
18701 && actual_name[actual_name_len
18702 - die_name_len - 1] == ':')
18703 name =
18704 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18705 actual_name,
18706 actual_name_len - die_name_len - 2);
18707 }
18708 }
18709 xfree (actual_name);
18710 return name;
18711 }
18712 }
18713 }
18714
18715 return NULL;
18716 }
18717
18718 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18719 prefix part in such case. See
18720 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18721
18722 static char *
18723 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18724 {
18725 struct attribute *attr;
18726 char *base;
18727
18728 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18729 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18730 return NULL;
18731
18732 attr = dwarf2_attr (die, DW_AT_name, cu);
18733 if (attr != NULL && DW_STRING (attr) != NULL)
18734 return NULL;
18735
18736 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18737 if (attr == NULL)
18738 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18739 if (attr == NULL || DW_STRING (attr) == NULL)
18740 return NULL;
18741
18742 /* dwarf2_name had to be already called. */
18743 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18744
18745 /* Strip the base name, keep any leading namespaces/classes. */
18746 base = strrchr (DW_STRING (attr), ':');
18747 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18748 return "";
18749
18750 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18751 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18752 }
18753
18754 /* Return the name of the namespace/class that DIE is defined within,
18755 or "" if we can't tell. The caller should not xfree the result.
18756
18757 For example, if we're within the method foo() in the following
18758 code:
18759
18760 namespace N {
18761 class C {
18762 void foo () {
18763 }
18764 };
18765 }
18766
18767 then determine_prefix on foo's die will return "N::C". */
18768
18769 static const char *
18770 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18771 {
18772 struct die_info *parent, *spec_die;
18773 struct dwarf2_cu *spec_cu;
18774 struct type *parent_type;
18775 char *retval;
18776
18777 if (cu->language != language_cplus && cu->language != language_java
18778 && cu->language != language_fortran)
18779 return "";
18780
18781 retval = anonymous_struct_prefix (die, cu);
18782 if (retval)
18783 return retval;
18784
18785 /* We have to be careful in the presence of DW_AT_specification.
18786 For example, with GCC 3.4, given the code
18787
18788 namespace N {
18789 void foo() {
18790 // Definition of N::foo.
18791 }
18792 }
18793
18794 then we'll have a tree of DIEs like this:
18795
18796 1: DW_TAG_compile_unit
18797 2: DW_TAG_namespace // N
18798 3: DW_TAG_subprogram // declaration of N::foo
18799 4: DW_TAG_subprogram // definition of N::foo
18800 DW_AT_specification // refers to die #3
18801
18802 Thus, when processing die #4, we have to pretend that we're in
18803 the context of its DW_AT_specification, namely the contex of die
18804 #3. */
18805 spec_cu = cu;
18806 spec_die = die_specification (die, &spec_cu);
18807 if (spec_die == NULL)
18808 parent = die->parent;
18809 else
18810 {
18811 parent = spec_die->parent;
18812 cu = spec_cu;
18813 }
18814
18815 if (parent == NULL)
18816 return "";
18817 else if (parent->building_fullname)
18818 {
18819 const char *name;
18820 const char *parent_name;
18821
18822 /* It has been seen on RealView 2.2 built binaries,
18823 DW_TAG_template_type_param types actually _defined_ as
18824 children of the parent class:
18825
18826 enum E {};
18827 template class <class Enum> Class{};
18828 Class<enum E> class_e;
18829
18830 1: DW_TAG_class_type (Class)
18831 2: DW_TAG_enumeration_type (E)
18832 3: DW_TAG_enumerator (enum1:0)
18833 3: DW_TAG_enumerator (enum2:1)
18834 ...
18835 2: DW_TAG_template_type_param
18836 DW_AT_type DW_FORM_ref_udata (E)
18837
18838 Besides being broken debug info, it can put GDB into an
18839 infinite loop. Consider:
18840
18841 When we're building the full name for Class<E>, we'll start
18842 at Class, and go look over its template type parameters,
18843 finding E. We'll then try to build the full name of E, and
18844 reach here. We're now trying to build the full name of E,
18845 and look over the parent DIE for containing scope. In the
18846 broken case, if we followed the parent DIE of E, we'd again
18847 find Class, and once again go look at its template type
18848 arguments, etc., etc. Simply don't consider such parent die
18849 as source-level parent of this die (it can't be, the language
18850 doesn't allow it), and break the loop here. */
18851 name = dwarf2_name (die, cu);
18852 parent_name = dwarf2_name (parent, cu);
18853 complaint (&symfile_complaints,
18854 _("template param type '%s' defined within parent '%s'"),
18855 name ? name : "<unknown>",
18856 parent_name ? parent_name : "<unknown>");
18857 return "";
18858 }
18859 else
18860 switch (parent->tag)
18861 {
18862 case DW_TAG_namespace:
18863 parent_type = read_type_die (parent, cu);
18864 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18865 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18866 Work around this problem here. */
18867 if (cu->language == language_cplus
18868 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18869 return "";
18870 /* We give a name to even anonymous namespaces. */
18871 return TYPE_TAG_NAME (parent_type);
18872 case DW_TAG_class_type:
18873 case DW_TAG_interface_type:
18874 case DW_TAG_structure_type:
18875 case DW_TAG_union_type:
18876 case DW_TAG_module:
18877 parent_type = read_type_die (parent, cu);
18878 if (TYPE_TAG_NAME (parent_type) != NULL)
18879 return TYPE_TAG_NAME (parent_type);
18880 else
18881 /* An anonymous structure is only allowed non-static data
18882 members; no typedefs, no member functions, et cetera.
18883 So it does not need a prefix. */
18884 return "";
18885 case DW_TAG_compile_unit:
18886 case DW_TAG_partial_unit:
18887 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18888 if (cu->language == language_cplus
18889 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18890 && die->child != NULL
18891 && (die->tag == DW_TAG_class_type
18892 || die->tag == DW_TAG_structure_type
18893 || die->tag == DW_TAG_union_type))
18894 {
18895 char *name = guess_full_die_structure_name (die, cu);
18896 if (name != NULL)
18897 return name;
18898 }
18899 return "";
18900 case DW_TAG_enumeration_type:
18901 parent_type = read_type_die (parent, cu);
18902 if (TYPE_DECLARED_CLASS (parent_type))
18903 {
18904 if (TYPE_TAG_NAME (parent_type) != NULL)
18905 return TYPE_TAG_NAME (parent_type);
18906 return "";
18907 }
18908 /* Fall through. */
18909 default:
18910 return determine_prefix (parent, cu);
18911 }
18912 }
18913
18914 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18915 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18916 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18917 an obconcat, otherwise allocate storage for the result. The CU argument is
18918 used to determine the language and hence, the appropriate separator. */
18919
18920 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18921
18922 static char *
18923 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18924 int physname, struct dwarf2_cu *cu)
18925 {
18926 const char *lead = "";
18927 const char *sep;
18928
18929 if (suffix == NULL || suffix[0] == '\0'
18930 || prefix == NULL || prefix[0] == '\0')
18931 sep = "";
18932 else if (cu->language == language_java)
18933 sep = ".";
18934 else if (cu->language == language_fortran && physname)
18935 {
18936 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18937 DW_AT_MIPS_linkage_name is preferred and used instead. */
18938
18939 lead = "__";
18940 sep = "_MOD_";
18941 }
18942 else
18943 sep = "::";
18944
18945 if (prefix == NULL)
18946 prefix = "";
18947 if (suffix == NULL)
18948 suffix = "";
18949
18950 if (obs == NULL)
18951 {
18952 char *retval
18953 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18954
18955 strcpy (retval, lead);
18956 strcat (retval, prefix);
18957 strcat (retval, sep);
18958 strcat (retval, suffix);
18959 return retval;
18960 }
18961 else
18962 {
18963 /* We have an obstack. */
18964 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18965 }
18966 }
18967
18968 /* Return sibling of die, NULL if no sibling. */
18969
18970 static struct die_info *
18971 sibling_die (struct die_info *die)
18972 {
18973 return die->sibling;
18974 }
18975
18976 /* Get name of a die, return NULL if not found. */
18977
18978 static const char *
18979 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18980 struct obstack *obstack)
18981 {
18982 if (name && cu->language == language_cplus)
18983 {
18984 char *canon_name = cp_canonicalize_string (name);
18985
18986 if (canon_name != NULL)
18987 {
18988 if (strcmp (canon_name, name) != 0)
18989 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18990 xfree (canon_name);
18991 }
18992 }
18993
18994 return name;
18995 }
18996
18997 /* Get name of a die, return NULL if not found. */
18998
18999 static const char *
19000 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19001 {
19002 struct attribute *attr;
19003
19004 attr = dwarf2_attr (die, DW_AT_name, cu);
19005 if ((!attr || !DW_STRING (attr))
19006 && die->tag != DW_TAG_class_type
19007 && die->tag != DW_TAG_interface_type
19008 && die->tag != DW_TAG_structure_type
19009 && die->tag != DW_TAG_union_type)
19010 return NULL;
19011
19012 switch (die->tag)
19013 {
19014 case DW_TAG_compile_unit:
19015 case DW_TAG_partial_unit:
19016 /* Compilation units have a DW_AT_name that is a filename, not
19017 a source language identifier. */
19018 case DW_TAG_enumeration_type:
19019 case DW_TAG_enumerator:
19020 /* These tags always have simple identifiers already; no need
19021 to canonicalize them. */
19022 return DW_STRING (attr);
19023
19024 case DW_TAG_subprogram:
19025 /* Java constructors will all be named "<init>", so return
19026 the class name when we see this special case. */
19027 if (cu->language == language_java
19028 && DW_STRING (attr) != NULL
19029 && strcmp (DW_STRING (attr), "<init>") == 0)
19030 {
19031 struct dwarf2_cu *spec_cu = cu;
19032 struct die_info *spec_die;
19033
19034 /* GCJ will output '<init>' for Java constructor names.
19035 For this special case, return the name of the parent class. */
19036
19037 /* GCJ may output subprogram DIEs with AT_specification set.
19038 If so, use the name of the specified DIE. */
19039 spec_die = die_specification (die, &spec_cu);
19040 if (spec_die != NULL)
19041 return dwarf2_name (spec_die, spec_cu);
19042
19043 do
19044 {
19045 die = die->parent;
19046 if (die->tag == DW_TAG_class_type)
19047 return dwarf2_name (die, cu);
19048 }
19049 while (die->tag != DW_TAG_compile_unit
19050 && die->tag != DW_TAG_partial_unit);
19051 }
19052 break;
19053
19054 case DW_TAG_class_type:
19055 case DW_TAG_interface_type:
19056 case DW_TAG_structure_type:
19057 case DW_TAG_union_type:
19058 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19059 structures or unions. These were of the form "._%d" in GCC 4.1,
19060 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19061 and GCC 4.4. We work around this problem by ignoring these. */
19062 if (attr && DW_STRING (attr)
19063 && (strncmp (DW_STRING (attr), "._", 2) == 0
19064 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19065 return NULL;
19066
19067 /* GCC might emit a nameless typedef that has a linkage name. See
19068 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19069 if (!attr || DW_STRING (attr) == NULL)
19070 {
19071 char *demangled = NULL;
19072
19073 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19074 if (attr == NULL)
19075 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19076
19077 if (attr == NULL || DW_STRING (attr) == NULL)
19078 return NULL;
19079
19080 /* Avoid demangling DW_STRING (attr) the second time on a second
19081 call for the same DIE. */
19082 if (!DW_STRING_IS_CANONICAL (attr))
19083 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19084
19085 if (demangled)
19086 {
19087 char *base;
19088
19089 /* FIXME: we already did this for the partial symbol... */
19090 DW_STRING (attr)
19091 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19092 demangled, strlen (demangled));
19093 DW_STRING_IS_CANONICAL (attr) = 1;
19094 xfree (demangled);
19095
19096 /* Strip any leading namespaces/classes, keep only the base name.
19097 DW_AT_name for named DIEs does not contain the prefixes. */
19098 base = strrchr (DW_STRING (attr), ':');
19099 if (base && base > DW_STRING (attr) && base[-1] == ':')
19100 return &base[1];
19101 else
19102 return DW_STRING (attr);
19103 }
19104 }
19105 break;
19106
19107 default:
19108 break;
19109 }
19110
19111 if (!DW_STRING_IS_CANONICAL (attr))
19112 {
19113 DW_STRING (attr)
19114 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19115 &cu->objfile->per_bfd->storage_obstack);
19116 DW_STRING_IS_CANONICAL (attr) = 1;
19117 }
19118 return DW_STRING (attr);
19119 }
19120
19121 /* Return the die that this die in an extension of, or NULL if there
19122 is none. *EXT_CU is the CU containing DIE on input, and the CU
19123 containing the return value on output. */
19124
19125 static struct die_info *
19126 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19127 {
19128 struct attribute *attr;
19129
19130 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19131 if (attr == NULL)
19132 return NULL;
19133
19134 return follow_die_ref (die, attr, ext_cu);
19135 }
19136
19137 /* Convert a DIE tag into its string name. */
19138
19139 static const char *
19140 dwarf_tag_name (unsigned tag)
19141 {
19142 const char *name = get_DW_TAG_name (tag);
19143
19144 if (name == NULL)
19145 return "DW_TAG_<unknown>";
19146
19147 return name;
19148 }
19149
19150 /* Convert a DWARF attribute code into its string name. */
19151
19152 static const char *
19153 dwarf_attr_name (unsigned attr)
19154 {
19155 const char *name;
19156
19157 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19158 if (attr == DW_AT_MIPS_fde)
19159 return "DW_AT_MIPS_fde";
19160 #else
19161 if (attr == DW_AT_HP_block_index)
19162 return "DW_AT_HP_block_index";
19163 #endif
19164
19165 name = get_DW_AT_name (attr);
19166
19167 if (name == NULL)
19168 return "DW_AT_<unknown>";
19169
19170 return name;
19171 }
19172
19173 /* Convert a DWARF value form code into its string name. */
19174
19175 static const char *
19176 dwarf_form_name (unsigned form)
19177 {
19178 const char *name = get_DW_FORM_name (form);
19179
19180 if (name == NULL)
19181 return "DW_FORM_<unknown>";
19182
19183 return name;
19184 }
19185
19186 static char *
19187 dwarf_bool_name (unsigned mybool)
19188 {
19189 if (mybool)
19190 return "TRUE";
19191 else
19192 return "FALSE";
19193 }
19194
19195 /* Convert a DWARF type code into its string name. */
19196
19197 static const char *
19198 dwarf_type_encoding_name (unsigned enc)
19199 {
19200 const char *name = get_DW_ATE_name (enc);
19201
19202 if (name == NULL)
19203 return "DW_ATE_<unknown>";
19204
19205 return name;
19206 }
19207
19208 static void
19209 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19210 {
19211 unsigned int i;
19212
19213 print_spaces (indent, f);
19214 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19215 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19216
19217 if (die->parent != NULL)
19218 {
19219 print_spaces (indent, f);
19220 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19221 die->parent->offset.sect_off);
19222 }
19223
19224 print_spaces (indent, f);
19225 fprintf_unfiltered (f, " has children: %s\n",
19226 dwarf_bool_name (die->child != NULL));
19227
19228 print_spaces (indent, f);
19229 fprintf_unfiltered (f, " attributes:\n");
19230
19231 for (i = 0; i < die->num_attrs; ++i)
19232 {
19233 print_spaces (indent, f);
19234 fprintf_unfiltered (f, " %s (%s) ",
19235 dwarf_attr_name (die->attrs[i].name),
19236 dwarf_form_name (die->attrs[i].form));
19237
19238 switch (die->attrs[i].form)
19239 {
19240 case DW_FORM_addr:
19241 case DW_FORM_GNU_addr_index:
19242 fprintf_unfiltered (f, "address: ");
19243 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19244 break;
19245 case DW_FORM_block2:
19246 case DW_FORM_block4:
19247 case DW_FORM_block:
19248 case DW_FORM_block1:
19249 fprintf_unfiltered (f, "block: size %s",
19250 pulongest (DW_BLOCK (&die->attrs[i])->size));
19251 break;
19252 case DW_FORM_exprloc:
19253 fprintf_unfiltered (f, "expression: size %s",
19254 pulongest (DW_BLOCK (&die->attrs[i])->size));
19255 break;
19256 case DW_FORM_ref_addr:
19257 fprintf_unfiltered (f, "ref address: ");
19258 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19259 break;
19260 case DW_FORM_GNU_ref_alt:
19261 fprintf_unfiltered (f, "alt ref address: ");
19262 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19263 break;
19264 case DW_FORM_ref1:
19265 case DW_FORM_ref2:
19266 case DW_FORM_ref4:
19267 case DW_FORM_ref8:
19268 case DW_FORM_ref_udata:
19269 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19270 (long) (DW_UNSND (&die->attrs[i])));
19271 break;
19272 case DW_FORM_data1:
19273 case DW_FORM_data2:
19274 case DW_FORM_data4:
19275 case DW_FORM_data8:
19276 case DW_FORM_udata:
19277 case DW_FORM_sdata:
19278 fprintf_unfiltered (f, "constant: %s",
19279 pulongest (DW_UNSND (&die->attrs[i])));
19280 break;
19281 case DW_FORM_sec_offset:
19282 fprintf_unfiltered (f, "section offset: %s",
19283 pulongest (DW_UNSND (&die->attrs[i])));
19284 break;
19285 case DW_FORM_ref_sig8:
19286 fprintf_unfiltered (f, "signature: %s",
19287 hex_string (DW_SIGNATURE (&die->attrs[i])));
19288 break;
19289 case DW_FORM_string:
19290 case DW_FORM_strp:
19291 case DW_FORM_GNU_str_index:
19292 case DW_FORM_GNU_strp_alt:
19293 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19294 DW_STRING (&die->attrs[i])
19295 ? DW_STRING (&die->attrs[i]) : "",
19296 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19297 break;
19298 case DW_FORM_flag:
19299 if (DW_UNSND (&die->attrs[i]))
19300 fprintf_unfiltered (f, "flag: TRUE");
19301 else
19302 fprintf_unfiltered (f, "flag: FALSE");
19303 break;
19304 case DW_FORM_flag_present:
19305 fprintf_unfiltered (f, "flag: TRUE");
19306 break;
19307 case DW_FORM_indirect:
19308 /* The reader will have reduced the indirect form to
19309 the "base form" so this form should not occur. */
19310 fprintf_unfiltered (f,
19311 "unexpected attribute form: DW_FORM_indirect");
19312 break;
19313 default:
19314 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19315 die->attrs[i].form);
19316 break;
19317 }
19318 fprintf_unfiltered (f, "\n");
19319 }
19320 }
19321
19322 static void
19323 dump_die_for_error (struct die_info *die)
19324 {
19325 dump_die_shallow (gdb_stderr, 0, die);
19326 }
19327
19328 static void
19329 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19330 {
19331 int indent = level * 4;
19332
19333 gdb_assert (die != NULL);
19334
19335 if (level >= max_level)
19336 return;
19337
19338 dump_die_shallow (f, indent, die);
19339
19340 if (die->child != NULL)
19341 {
19342 print_spaces (indent, f);
19343 fprintf_unfiltered (f, " Children:");
19344 if (level + 1 < max_level)
19345 {
19346 fprintf_unfiltered (f, "\n");
19347 dump_die_1 (f, level + 1, max_level, die->child);
19348 }
19349 else
19350 {
19351 fprintf_unfiltered (f,
19352 " [not printed, max nesting level reached]\n");
19353 }
19354 }
19355
19356 if (die->sibling != NULL && level > 0)
19357 {
19358 dump_die_1 (f, level, max_level, die->sibling);
19359 }
19360 }
19361
19362 /* This is called from the pdie macro in gdbinit.in.
19363 It's not static so gcc will keep a copy callable from gdb. */
19364
19365 void
19366 dump_die (struct die_info *die, int max_level)
19367 {
19368 dump_die_1 (gdb_stdlog, 0, max_level, die);
19369 }
19370
19371 static void
19372 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19373 {
19374 void **slot;
19375
19376 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19377 INSERT);
19378
19379 *slot = die;
19380 }
19381
19382 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19383 required kind. */
19384
19385 static sect_offset
19386 dwarf2_get_ref_die_offset (const struct attribute *attr)
19387 {
19388 sect_offset retval = { DW_UNSND (attr) };
19389
19390 if (attr_form_is_ref (attr))
19391 return retval;
19392
19393 retval.sect_off = 0;
19394 complaint (&symfile_complaints,
19395 _("unsupported die ref attribute form: '%s'"),
19396 dwarf_form_name (attr->form));
19397 return retval;
19398 }
19399
19400 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19401 * the value held by the attribute is not constant. */
19402
19403 static LONGEST
19404 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19405 {
19406 if (attr->form == DW_FORM_sdata)
19407 return DW_SND (attr);
19408 else if (attr->form == DW_FORM_udata
19409 || attr->form == DW_FORM_data1
19410 || attr->form == DW_FORM_data2
19411 || attr->form == DW_FORM_data4
19412 || attr->form == DW_FORM_data8)
19413 return DW_UNSND (attr);
19414 else
19415 {
19416 complaint (&symfile_complaints,
19417 _("Attribute value is not a constant (%s)"),
19418 dwarf_form_name (attr->form));
19419 return default_value;
19420 }
19421 }
19422
19423 /* Follow reference or signature attribute ATTR of SRC_DIE.
19424 On entry *REF_CU is the CU of SRC_DIE.
19425 On exit *REF_CU is the CU of the result. */
19426
19427 static struct die_info *
19428 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19429 struct dwarf2_cu **ref_cu)
19430 {
19431 struct die_info *die;
19432
19433 if (attr_form_is_ref (attr))
19434 die = follow_die_ref (src_die, attr, ref_cu);
19435 else if (attr->form == DW_FORM_ref_sig8)
19436 die = follow_die_sig (src_die, attr, ref_cu);
19437 else
19438 {
19439 dump_die_for_error (src_die);
19440 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19441 objfile_name ((*ref_cu)->objfile));
19442 }
19443
19444 return die;
19445 }
19446
19447 /* Follow reference OFFSET.
19448 On entry *REF_CU is the CU of the source die referencing OFFSET.
19449 On exit *REF_CU is the CU of the result.
19450 Returns NULL if OFFSET is invalid. */
19451
19452 static struct die_info *
19453 follow_die_offset (sect_offset offset, int offset_in_dwz,
19454 struct dwarf2_cu **ref_cu)
19455 {
19456 struct die_info temp_die;
19457 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19458
19459 gdb_assert (cu->per_cu != NULL);
19460
19461 target_cu = cu;
19462
19463 if (cu->per_cu->is_debug_types)
19464 {
19465 /* .debug_types CUs cannot reference anything outside their CU.
19466 If they need to, they have to reference a signatured type via
19467 DW_FORM_ref_sig8. */
19468 if (! offset_in_cu_p (&cu->header, offset))
19469 return NULL;
19470 }
19471 else if (offset_in_dwz != cu->per_cu->is_dwz
19472 || ! offset_in_cu_p (&cu->header, offset))
19473 {
19474 struct dwarf2_per_cu_data *per_cu;
19475
19476 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19477 cu->objfile);
19478
19479 /* If necessary, add it to the queue and load its DIEs. */
19480 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19481 load_full_comp_unit (per_cu, cu->language);
19482
19483 target_cu = per_cu->cu;
19484 }
19485 else if (cu->dies == NULL)
19486 {
19487 /* We're loading full DIEs during partial symbol reading. */
19488 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19489 load_full_comp_unit (cu->per_cu, language_minimal);
19490 }
19491
19492 *ref_cu = target_cu;
19493 temp_die.offset = offset;
19494 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19495 }
19496
19497 /* Follow reference attribute ATTR of SRC_DIE.
19498 On entry *REF_CU is the CU of SRC_DIE.
19499 On exit *REF_CU is the CU of the result. */
19500
19501 static struct die_info *
19502 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19503 struct dwarf2_cu **ref_cu)
19504 {
19505 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19506 struct dwarf2_cu *cu = *ref_cu;
19507 struct die_info *die;
19508
19509 die = follow_die_offset (offset,
19510 (attr->form == DW_FORM_GNU_ref_alt
19511 || cu->per_cu->is_dwz),
19512 ref_cu);
19513 if (!die)
19514 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19515 "at 0x%x [in module %s]"),
19516 offset.sect_off, src_die->offset.sect_off,
19517 objfile_name (cu->objfile));
19518
19519 return die;
19520 }
19521
19522 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19523 Returned value is intended for DW_OP_call*. Returned
19524 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19525
19526 struct dwarf2_locexpr_baton
19527 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19528 struct dwarf2_per_cu_data *per_cu,
19529 CORE_ADDR (*get_frame_pc) (void *baton),
19530 void *baton)
19531 {
19532 struct dwarf2_cu *cu;
19533 struct die_info *die;
19534 struct attribute *attr;
19535 struct dwarf2_locexpr_baton retval;
19536
19537 dw2_setup (per_cu->objfile);
19538
19539 if (per_cu->cu == NULL)
19540 load_cu (per_cu);
19541 cu = per_cu->cu;
19542
19543 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19544 if (!die)
19545 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19546 offset.sect_off, objfile_name (per_cu->objfile));
19547
19548 attr = dwarf2_attr (die, DW_AT_location, cu);
19549 if (!attr)
19550 {
19551 /* DWARF: "If there is no such attribute, then there is no effect.".
19552 DATA is ignored if SIZE is 0. */
19553
19554 retval.data = NULL;
19555 retval.size = 0;
19556 }
19557 else if (attr_form_is_section_offset (attr))
19558 {
19559 struct dwarf2_loclist_baton loclist_baton;
19560 CORE_ADDR pc = (*get_frame_pc) (baton);
19561 size_t size;
19562
19563 fill_in_loclist_baton (cu, &loclist_baton, attr);
19564
19565 retval.data = dwarf2_find_location_expression (&loclist_baton,
19566 &size, pc);
19567 retval.size = size;
19568 }
19569 else
19570 {
19571 if (!attr_form_is_block (attr))
19572 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19573 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19574 offset.sect_off, objfile_name (per_cu->objfile));
19575
19576 retval.data = DW_BLOCK (attr)->data;
19577 retval.size = DW_BLOCK (attr)->size;
19578 }
19579 retval.per_cu = cu->per_cu;
19580
19581 age_cached_comp_units ();
19582
19583 return retval;
19584 }
19585
19586 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19587 offset. */
19588
19589 struct dwarf2_locexpr_baton
19590 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19591 struct dwarf2_per_cu_data *per_cu,
19592 CORE_ADDR (*get_frame_pc) (void *baton),
19593 void *baton)
19594 {
19595 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19596
19597 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19598 }
19599
19600 /* Write a constant of a given type as target-ordered bytes into
19601 OBSTACK. */
19602
19603 static const gdb_byte *
19604 write_constant_as_bytes (struct obstack *obstack,
19605 enum bfd_endian byte_order,
19606 struct type *type,
19607 ULONGEST value,
19608 LONGEST *len)
19609 {
19610 gdb_byte *result;
19611
19612 *len = TYPE_LENGTH (type);
19613 result = obstack_alloc (obstack, *len);
19614 store_unsigned_integer (result, *len, byte_order, value);
19615
19616 return result;
19617 }
19618
19619 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19620 pointer to the constant bytes and set LEN to the length of the
19621 data. If memory is needed, allocate it on OBSTACK. If the DIE
19622 does not have a DW_AT_const_value, return NULL. */
19623
19624 const gdb_byte *
19625 dwarf2_fetch_constant_bytes (sect_offset offset,
19626 struct dwarf2_per_cu_data *per_cu,
19627 struct obstack *obstack,
19628 LONGEST *len)
19629 {
19630 struct dwarf2_cu *cu;
19631 struct die_info *die;
19632 struct attribute *attr;
19633 const gdb_byte *result = NULL;
19634 struct type *type;
19635 LONGEST value;
19636 enum bfd_endian byte_order;
19637
19638 dw2_setup (per_cu->objfile);
19639
19640 if (per_cu->cu == NULL)
19641 load_cu (per_cu);
19642 cu = per_cu->cu;
19643
19644 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19645 if (!die)
19646 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19647 offset.sect_off, objfile_name (per_cu->objfile));
19648
19649
19650 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19651 if (attr == NULL)
19652 return NULL;
19653
19654 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19655 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19656
19657 switch (attr->form)
19658 {
19659 case DW_FORM_addr:
19660 case DW_FORM_GNU_addr_index:
19661 {
19662 gdb_byte *tem;
19663
19664 *len = cu->header.addr_size;
19665 tem = obstack_alloc (obstack, *len);
19666 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19667 result = tem;
19668 }
19669 break;
19670 case DW_FORM_string:
19671 case DW_FORM_strp:
19672 case DW_FORM_GNU_str_index:
19673 case DW_FORM_GNU_strp_alt:
19674 /* DW_STRING is already allocated on the objfile obstack, point
19675 directly to it. */
19676 result = (const gdb_byte *) DW_STRING (attr);
19677 *len = strlen (DW_STRING (attr));
19678 break;
19679 case DW_FORM_block1:
19680 case DW_FORM_block2:
19681 case DW_FORM_block4:
19682 case DW_FORM_block:
19683 case DW_FORM_exprloc:
19684 result = DW_BLOCK (attr)->data;
19685 *len = DW_BLOCK (attr)->size;
19686 break;
19687
19688 /* The DW_AT_const_value attributes are supposed to carry the
19689 symbol's value "represented as it would be on the target
19690 architecture." By the time we get here, it's already been
19691 converted to host endianness, so we just need to sign- or
19692 zero-extend it as appropriate. */
19693 case DW_FORM_data1:
19694 type = die_type (die, cu);
19695 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19696 if (result == NULL)
19697 result = write_constant_as_bytes (obstack, byte_order,
19698 type, value, len);
19699 break;
19700 case DW_FORM_data2:
19701 type = die_type (die, cu);
19702 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19703 if (result == NULL)
19704 result = write_constant_as_bytes (obstack, byte_order,
19705 type, value, len);
19706 break;
19707 case DW_FORM_data4:
19708 type = die_type (die, cu);
19709 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19710 if (result == NULL)
19711 result = write_constant_as_bytes (obstack, byte_order,
19712 type, value, len);
19713 break;
19714 case DW_FORM_data8:
19715 type = die_type (die, cu);
19716 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19717 if (result == NULL)
19718 result = write_constant_as_bytes (obstack, byte_order,
19719 type, value, len);
19720 break;
19721
19722 case DW_FORM_sdata:
19723 type = die_type (die, cu);
19724 result = write_constant_as_bytes (obstack, byte_order,
19725 type, DW_SND (attr), len);
19726 break;
19727
19728 case DW_FORM_udata:
19729 type = die_type (die, cu);
19730 result = write_constant_as_bytes (obstack, byte_order,
19731 type, DW_UNSND (attr), len);
19732 break;
19733
19734 default:
19735 complaint (&symfile_complaints,
19736 _("unsupported const value attribute form: '%s'"),
19737 dwarf_form_name (attr->form));
19738 break;
19739 }
19740
19741 return result;
19742 }
19743
19744 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19745 PER_CU. */
19746
19747 struct type *
19748 dwarf2_get_die_type (cu_offset die_offset,
19749 struct dwarf2_per_cu_data *per_cu)
19750 {
19751 sect_offset die_offset_sect;
19752
19753 dw2_setup (per_cu->objfile);
19754
19755 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19756 return get_die_type_at_offset (die_offset_sect, per_cu);
19757 }
19758
19759 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19760 On entry *REF_CU is the CU of SRC_DIE.
19761 On exit *REF_CU is the CU of the result.
19762 Returns NULL if the referenced DIE isn't found. */
19763
19764 static struct die_info *
19765 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19766 struct dwarf2_cu **ref_cu)
19767 {
19768 struct objfile *objfile = (*ref_cu)->objfile;
19769 struct die_info temp_die;
19770 struct dwarf2_cu *sig_cu;
19771 struct die_info *die;
19772
19773 /* While it might be nice to assert sig_type->type == NULL here,
19774 we can get here for DW_AT_imported_declaration where we need
19775 the DIE not the type. */
19776
19777 /* If necessary, add it to the queue and load its DIEs. */
19778
19779 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19780 read_signatured_type (sig_type);
19781
19782 sig_cu = sig_type->per_cu.cu;
19783 gdb_assert (sig_cu != NULL);
19784 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19785 temp_die.offset = sig_type->type_offset_in_section;
19786 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19787 temp_die.offset.sect_off);
19788 if (die)
19789 {
19790 /* For .gdb_index version 7 keep track of included TUs.
19791 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19792 if (dwarf2_per_objfile->index_table != NULL
19793 && dwarf2_per_objfile->index_table->version <= 7)
19794 {
19795 VEC_safe_push (dwarf2_per_cu_ptr,
19796 (*ref_cu)->per_cu->imported_symtabs,
19797 sig_cu->per_cu);
19798 }
19799
19800 *ref_cu = sig_cu;
19801 return die;
19802 }
19803
19804 return NULL;
19805 }
19806
19807 /* Follow signatured type referenced by ATTR in SRC_DIE.
19808 On entry *REF_CU is the CU of SRC_DIE.
19809 On exit *REF_CU is the CU of the result.
19810 The result is the DIE of the type.
19811 If the referenced type cannot be found an error is thrown. */
19812
19813 static struct die_info *
19814 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19815 struct dwarf2_cu **ref_cu)
19816 {
19817 ULONGEST signature = DW_SIGNATURE (attr);
19818 struct signatured_type *sig_type;
19819 struct die_info *die;
19820
19821 gdb_assert (attr->form == DW_FORM_ref_sig8);
19822
19823 sig_type = lookup_signatured_type (*ref_cu, signature);
19824 /* sig_type will be NULL if the signatured type is missing from
19825 the debug info. */
19826 if (sig_type == NULL)
19827 {
19828 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19829 " from DIE at 0x%x [in module %s]"),
19830 hex_string (signature), src_die->offset.sect_off,
19831 objfile_name ((*ref_cu)->objfile));
19832 }
19833
19834 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19835 if (die == NULL)
19836 {
19837 dump_die_for_error (src_die);
19838 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19839 " from DIE at 0x%x [in module %s]"),
19840 hex_string (signature), src_die->offset.sect_off,
19841 objfile_name ((*ref_cu)->objfile));
19842 }
19843
19844 return die;
19845 }
19846
19847 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19848 reading in and processing the type unit if necessary. */
19849
19850 static struct type *
19851 get_signatured_type (struct die_info *die, ULONGEST signature,
19852 struct dwarf2_cu *cu)
19853 {
19854 struct signatured_type *sig_type;
19855 struct dwarf2_cu *type_cu;
19856 struct die_info *type_die;
19857 struct type *type;
19858
19859 sig_type = lookup_signatured_type (cu, signature);
19860 /* sig_type will be NULL if the signatured type is missing from
19861 the debug info. */
19862 if (sig_type == NULL)
19863 {
19864 complaint (&symfile_complaints,
19865 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19866 " from DIE at 0x%x [in module %s]"),
19867 hex_string (signature), die->offset.sect_off,
19868 objfile_name (dwarf2_per_objfile->objfile));
19869 return build_error_marker_type (cu, die);
19870 }
19871
19872 /* If we already know the type we're done. */
19873 if (sig_type->type != NULL)
19874 return sig_type->type;
19875
19876 type_cu = cu;
19877 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19878 if (type_die != NULL)
19879 {
19880 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19881 is created. This is important, for example, because for c++ classes
19882 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19883 type = read_type_die (type_die, type_cu);
19884 if (type == NULL)
19885 {
19886 complaint (&symfile_complaints,
19887 _("Dwarf Error: Cannot build signatured type %s"
19888 " referenced from DIE at 0x%x [in module %s]"),
19889 hex_string (signature), die->offset.sect_off,
19890 objfile_name (dwarf2_per_objfile->objfile));
19891 type = build_error_marker_type (cu, die);
19892 }
19893 }
19894 else
19895 {
19896 complaint (&symfile_complaints,
19897 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19898 " from DIE at 0x%x [in module %s]"),
19899 hex_string (signature), die->offset.sect_off,
19900 objfile_name (dwarf2_per_objfile->objfile));
19901 type = build_error_marker_type (cu, die);
19902 }
19903 sig_type->type = type;
19904
19905 return type;
19906 }
19907
19908 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19909 reading in and processing the type unit if necessary. */
19910
19911 static struct type *
19912 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19913 struct dwarf2_cu *cu) /* ARI: editCase function */
19914 {
19915 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19916 if (attr_form_is_ref (attr))
19917 {
19918 struct dwarf2_cu *type_cu = cu;
19919 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19920
19921 return read_type_die (type_die, type_cu);
19922 }
19923 else if (attr->form == DW_FORM_ref_sig8)
19924 {
19925 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19926 }
19927 else
19928 {
19929 complaint (&symfile_complaints,
19930 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19931 " at 0x%x [in module %s]"),
19932 dwarf_form_name (attr->form), die->offset.sect_off,
19933 objfile_name (dwarf2_per_objfile->objfile));
19934 return build_error_marker_type (cu, die);
19935 }
19936 }
19937
19938 /* Load the DIEs associated with type unit PER_CU into memory. */
19939
19940 static void
19941 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19942 {
19943 struct signatured_type *sig_type;
19944
19945 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19946 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19947
19948 /* We have the per_cu, but we need the signatured_type.
19949 Fortunately this is an easy translation. */
19950 gdb_assert (per_cu->is_debug_types);
19951 sig_type = (struct signatured_type *) per_cu;
19952
19953 gdb_assert (per_cu->cu == NULL);
19954
19955 read_signatured_type (sig_type);
19956
19957 gdb_assert (per_cu->cu != NULL);
19958 }
19959
19960 /* die_reader_func for read_signatured_type.
19961 This is identical to load_full_comp_unit_reader,
19962 but is kept separate for now. */
19963
19964 static void
19965 read_signatured_type_reader (const struct die_reader_specs *reader,
19966 const gdb_byte *info_ptr,
19967 struct die_info *comp_unit_die,
19968 int has_children,
19969 void *data)
19970 {
19971 struct dwarf2_cu *cu = reader->cu;
19972
19973 gdb_assert (cu->die_hash == NULL);
19974 cu->die_hash =
19975 htab_create_alloc_ex (cu->header.length / 12,
19976 die_hash,
19977 die_eq,
19978 NULL,
19979 &cu->comp_unit_obstack,
19980 hashtab_obstack_allocate,
19981 dummy_obstack_deallocate);
19982
19983 if (has_children)
19984 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19985 &info_ptr, comp_unit_die);
19986 cu->dies = comp_unit_die;
19987 /* comp_unit_die is not stored in die_hash, no need. */
19988
19989 /* We try not to read any attributes in this function, because not
19990 all CUs needed for references have been loaded yet, and symbol
19991 table processing isn't initialized. But we have to set the CU language,
19992 or we won't be able to build types correctly.
19993 Similarly, if we do not read the producer, we can not apply
19994 producer-specific interpretation. */
19995 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19996 }
19997
19998 /* Read in a signatured type and build its CU and DIEs.
19999 If the type is a stub for the real type in a DWO file,
20000 read in the real type from the DWO file as well. */
20001
20002 static void
20003 read_signatured_type (struct signatured_type *sig_type)
20004 {
20005 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20006
20007 gdb_assert (per_cu->is_debug_types);
20008 gdb_assert (per_cu->cu == NULL);
20009
20010 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20011 read_signatured_type_reader, NULL);
20012 sig_type->per_cu.tu_read = 1;
20013 }
20014
20015 /* Decode simple location descriptions.
20016 Given a pointer to a dwarf block that defines a location, compute
20017 the location and return the value.
20018
20019 NOTE drow/2003-11-18: This function is called in two situations
20020 now: for the address of static or global variables (partial symbols
20021 only) and for offsets into structures which are expected to be
20022 (more or less) constant. The partial symbol case should go away,
20023 and only the constant case should remain. That will let this
20024 function complain more accurately. A few special modes are allowed
20025 without complaint for global variables (for instance, global
20026 register values and thread-local values).
20027
20028 A location description containing no operations indicates that the
20029 object is optimized out. The return value is 0 for that case.
20030 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20031 callers will only want a very basic result and this can become a
20032 complaint.
20033
20034 Note that stack[0] is unused except as a default error return. */
20035
20036 static CORE_ADDR
20037 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20038 {
20039 struct objfile *objfile = cu->objfile;
20040 size_t i;
20041 size_t size = blk->size;
20042 const gdb_byte *data = blk->data;
20043 CORE_ADDR stack[64];
20044 int stacki;
20045 unsigned int bytes_read, unsnd;
20046 gdb_byte op;
20047
20048 i = 0;
20049 stacki = 0;
20050 stack[stacki] = 0;
20051 stack[++stacki] = 0;
20052
20053 while (i < size)
20054 {
20055 op = data[i++];
20056 switch (op)
20057 {
20058 case DW_OP_lit0:
20059 case DW_OP_lit1:
20060 case DW_OP_lit2:
20061 case DW_OP_lit3:
20062 case DW_OP_lit4:
20063 case DW_OP_lit5:
20064 case DW_OP_lit6:
20065 case DW_OP_lit7:
20066 case DW_OP_lit8:
20067 case DW_OP_lit9:
20068 case DW_OP_lit10:
20069 case DW_OP_lit11:
20070 case DW_OP_lit12:
20071 case DW_OP_lit13:
20072 case DW_OP_lit14:
20073 case DW_OP_lit15:
20074 case DW_OP_lit16:
20075 case DW_OP_lit17:
20076 case DW_OP_lit18:
20077 case DW_OP_lit19:
20078 case DW_OP_lit20:
20079 case DW_OP_lit21:
20080 case DW_OP_lit22:
20081 case DW_OP_lit23:
20082 case DW_OP_lit24:
20083 case DW_OP_lit25:
20084 case DW_OP_lit26:
20085 case DW_OP_lit27:
20086 case DW_OP_lit28:
20087 case DW_OP_lit29:
20088 case DW_OP_lit30:
20089 case DW_OP_lit31:
20090 stack[++stacki] = op - DW_OP_lit0;
20091 break;
20092
20093 case DW_OP_reg0:
20094 case DW_OP_reg1:
20095 case DW_OP_reg2:
20096 case DW_OP_reg3:
20097 case DW_OP_reg4:
20098 case DW_OP_reg5:
20099 case DW_OP_reg6:
20100 case DW_OP_reg7:
20101 case DW_OP_reg8:
20102 case DW_OP_reg9:
20103 case DW_OP_reg10:
20104 case DW_OP_reg11:
20105 case DW_OP_reg12:
20106 case DW_OP_reg13:
20107 case DW_OP_reg14:
20108 case DW_OP_reg15:
20109 case DW_OP_reg16:
20110 case DW_OP_reg17:
20111 case DW_OP_reg18:
20112 case DW_OP_reg19:
20113 case DW_OP_reg20:
20114 case DW_OP_reg21:
20115 case DW_OP_reg22:
20116 case DW_OP_reg23:
20117 case DW_OP_reg24:
20118 case DW_OP_reg25:
20119 case DW_OP_reg26:
20120 case DW_OP_reg27:
20121 case DW_OP_reg28:
20122 case DW_OP_reg29:
20123 case DW_OP_reg30:
20124 case DW_OP_reg31:
20125 stack[++stacki] = op - DW_OP_reg0;
20126 if (i < size)
20127 dwarf2_complex_location_expr_complaint ();
20128 break;
20129
20130 case DW_OP_regx:
20131 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20132 i += bytes_read;
20133 stack[++stacki] = unsnd;
20134 if (i < size)
20135 dwarf2_complex_location_expr_complaint ();
20136 break;
20137
20138 case DW_OP_addr:
20139 stack[++stacki] = read_address (objfile->obfd, &data[i],
20140 cu, &bytes_read);
20141 i += bytes_read;
20142 break;
20143
20144 case DW_OP_const1u:
20145 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20146 i += 1;
20147 break;
20148
20149 case DW_OP_const1s:
20150 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20151 i += 1;
20152 break;
20153
20154 case DW_OP_const2u:
20155 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20156 i += 2;
20157 break;
20158
20159 case DW_OP_const2s:
20160 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20161 i += 2;
20162 break;
20163
20164 case DW_OP_const4u:
20165 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20166 i += 4;
20167 break;
20168
20169 case DW_OP_const4s:
20170 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20171 i += 4;
20172 break;
20173
20174 case DW_OP_const8u:
20175 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20176 i += 8;
20177 break;
20178
20179 case DW_OP_constu:
20180 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20181 &bytes_read);
20182 i += bytes_read;
20183 break;
20184
20185 case DW_OP_consts:
20186 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20187 i += bytes_read;
20188 break;
20189
20190 case DW_OP_dup:
20191 stack[stacki + 1] = stack[stacki];
20192 stacki++;
20193 break;
20194
20195 case DW_OP_plus:
20196 stack[stacki - 1] += stack[stacki];
20197 stacki--;
20198 break;
20199
20200 case DW_OP_plus_uconst:
20201 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20202 &bytes_read);
20203 i += bytes_read;
20204 break;
20205
20206 case DW_OP_minus:
20207 stack[stacki - 1] -= stack[stacki];
20208 stacki--;
20209 break;
20210
20211 case DW_OP_deref:
20212 /* If we're not the last op, then we definitely can't encode
20213 this using GDB's address_class enum. This is valid for partial
20214 global symbols, although the variable's address will be bogus
20215 in the psymtab. */
20216 if (i < size)
20217 dwarf2_complex_location_expr_complaint ();
20218 break;
20219
20220 case DW_OP_GNU_push_tls_address:
20221 /* The top of the stack has the offset from the beginning
20222 of the thread control block at which the variable is located. */
20223 /* Nothing should follow this operator, so the top of stack would
20224 be returned. */
20225 /* This is valid for partial global symbols, but the variable's
20226 address will be bogus in the psymtab. Make it always at least
20227 non-zero to not look as a variable garbage collected by linker
20228 which have DW_OP_addr 0. */
20229 if (i < size)
20230 dwarf2_complex_location_expr_complaint ();
20231 stack[stacki]++;
20232 break;
20233
20234 case DW_OP_GNU_uninit:
20235 break;
20236
20237 case DW_OP_GNU_addr_index:
20238 case DW_OP_GNU_const_index:
20239 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20240 &bytes_read);
20241 i += bytes_read;
20242 break;
20243
20244 default:
20245 {
20246 const char *name = get_DW_OP_name (op);
20247
20248 if (name)
20249 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20250 name);
20251 else
20252 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20253 op);
20254 }
20255
20256 return (stack[stacki]);
20257 }
20258
20259 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20260 outside of the allocated space. Also enforce minimum>0. */
20261 if (stacki >= ARRAY_SIZE (stack) - 1)
20262 {
20263 complaint (&symfile_complaints,
20264 _("location description stack overflow"));
20265 return 0;
20266 }
20267
20268 if (stacki <= 0)
20269 {
20270 complaint (&symfile_complaints,
20271 _("location description stack underflow"));
20272 return 0;
20273 }
20274 }
20275 return (stack[stacki]);
20276 }
20277
20278 /* memory allocation interface */
20279
20280 static struct dwarf_block *
20281 dwarf_alloc_block (struct dwarf2_cu *cu)
20282 {
20283 struct dwarf_block *blk;
20284
20285 blk = (struct dwarf_block *)
20286 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20287 return (blk);
20288 }
20289
20290 static struct die_info *
20291 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20292 {
20293 struct die_info *die;
20294 size_t size = sizeof (struct die_info);
20295
20296 if (num_attrs > 1)
20297 size += (num_attrs - 1) * sizeof (struct attribute);
20298
20299 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20300 memset (die, 0, sizeof (struct die_info));
20301 return (die);
20302 }
20303
20304 \f
20305 /* Macro support. */
20306
20307 /* Return file name relative to the compilation directory of file number I in
20308 *LH's file name table. The result is allocated using xmalloc; the caller is
20309 responsible for freeing it. */
20310
20311 static char *
20312 file_file_name (int file, struct line_header *lh)
20313 {
20314 /* Is the file number a valid index into the line header's file name
20315 table? Remember that file numbers start with one, not zero. */
20316 if (1 <= file && file <= lh->num_file_names)
20317 {
20318 struct file_entry *fe = &lh->file_names[file - 1];
20319
20320 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20321 return xstrdup (fe->name);
20322 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20323 fe->name, NULL);
20324 }
20325 else
20326 {
20327 /* The compiler produced a bogus file number. We can at least
20328 record the macro definitions made in the file, even if we
20329 won't be able to find the file by name. */
20330 char fake_name[80];
20331
20332 xsnprintf (fake_name, sizeof (fake_name),
20333 "<bad macro file number %d>", file);
20334
20335 complaint (&symfile_complaints,
20336 _("bad file number in macro information (%d)"),
20337 file);
20338
20339 return xstrdup (fake_name);
20340 }
20341 }
20342
20343 /* Return the full name of file number I in *LH's file name table.
20344 Use COMP_DIR as the name of the current directory of the
20345 compilation. The result is allocated using xmalloc; the caller is
20346 responsible for freeing it. */
20347 static char *
20348 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20349 {
20350 /* Is the file number a valid index into the line header's file name
20351 table? Remember that file numbers start with one, not zero. */
20352 if (1 <= file && file <= lh->num_file_names)
20353 {
20354 char *relative = file_file_name (file, lh);
20355
20356 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20357 return relative;
20358 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20359 }
20360 else
20361 return file_file_name (file, lh);
20362 }
20363
20364
20365 static struct macro_source_file *
20366 macro_start_file (int file, int line,
20367 struct macro_source_file *current_file,
20368 const char *comp_dir,
20369 struct line_header *lh)
20370 {
20371 /* File name relative to the compilation directory of this source file. */
20372 char *file_name = file_file_name (file, lh);
20373
20374 if (! current_file)
20375 {
20376 /* Note: We don't create a macro table for this compilation unit
20377 at all until we actually get a filename. */
20378 struct macro_table *macro_table = get_macro_table (comp_dir);
20379
20380 /* If we have no current file, then this must be the start_file
20381 directive for the compilation unit's main source file. */
20382 current_file = macro_set_main (macro_table, file_name);
20383 macro_define_special (macro_table);
20384 }
20385 else
20386 current_file = macro_include (current_file, line, file_name);
20387
20388 xfree (file_name);
20389
20390 return current_file;
20391 }
20392
20393
20394 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20395 followed by a null byte. */
20396 static char *
20397 copy_string (const char *buf, int len)
20398 {
20399 char *s = xmalloc (len + 1);
20400
20401 memcpy (s, buf, len);
20402 s[len] = '\0';
20403 return s;
20404 }
20405
20406
20407 static const char *
20408 consume_improper_spaces (const char *p, const char *body)
20409 {
20410 if (*p == ' ')
20411 {
20412 complaint (&symfile_complaints,
20413 _("macro definition contains spaces "
20414 "in formal argument list:\n`%s'"),
20415 body);
20416
20417 while (*p == ' ')
20418 p++;
20419 }
20420
20421 return p;
20422 }
20423
20424
20425 static void
20426 parse_macro_definition (struct macro_source_file *file, int line,
20427 const char *body)
20428 {
20429 const char *p;
20430
20431 /* The body string takes one of two forms. For object-like macro
20432 definitions, it should be:
20433
20434 <macro name> " " <definition>
20435
20436 For function-like macro definitions, it should be:
20437
20438 <macro name> "() " <definition>
20439 or
20440 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20441
20442 Spaces may appear only where explicitly indicated, and in the
20443 <definition>.
20444
20445 The Dwarf 2 spec says that an object-like macro's name is always
20446 followed by a space, but versions of GCC around March 2002 omit
20447 the space when the macro's definition is the empty string.
20448
20449 The Dwarf 2 spec says that there should be no spaces between the
20450 formal arguments in a function-like macro's formal argument list,
20451 but versions of GCC around March 2002 include spaces after the
20452 commas. */
20453
20454
20455 /* Find the extent of the macro name. The macro name is terminated
20456 by either a space or null character (for an object-like macro) or
20457 an opening paren (for a function-like macro). */
20458 for (p = body; *p; p++)
20459 if (*p == ' ' || *p == '(')
20460 break;
20461
20462 if (*p == ' ' || *p == '\0')
20463 {
20464 /* It's an object-like macro. */
20465 int name_len = p - body;
20466 char *name = copy_string (body, name_len);
20467 const char *replacement;
20468
20469 if (*p == ' ')
20470 replacement = body + name_len + 1;
20471 else
20472 {
20473 dwarf2_macro_malformed_definition_complaint (body);
20474 replacement = body + name_len;
20475 }
20476
20477 macro_define_object (file, line, name, replacement);
20478
20479 xfree (name);
20480 }
20481 else if (*p == '(')
20482 {
20483 /* It's a function-like macro. */
20484 char *name = copy_string (body, p - body);
20485 int argc = 0;
20486 int argv_size = 1;
20487 char **argv = xmalloc (argv_size * sizeof (*argv));
20488
20489 p++;
20490
20491 p = consume_improper_spaces (p, body);
20492
20493 /* Parse the formal argument list. */
20494 while (*p && *p != ')')
20495 {
20496 /* Find the extent of the current argument name. */
20497 const char *arg_start = p;
20498
20499 while (*p && *p != ',' && *p != ')' && *p != ' ')
20500 p++;
20501
20502 if (! *p || p == arg_start)
20503 dwarf2_macro_malformed_definition_complaint (body);
20504 else
20505 {
20506 /* Make sure argv has room for the new argument. */
20507 if (argc >= argv_size)
20508 {
20509 argv_size *= 2;
20510 argv = xrealloc (argv, argv_size * sizeof (*argv));
20511 }
20512
20513 argv[argc++] = copy_string (arg_start, p - arg_start);
20514 }
20515
20516 p = consume_improper_spaces (p, body);
20517
20518 /* Consume the comma, if present. */
20519 if (*p == ',')
20520 {
20521 p++;
20522
20523 p = consume_improper_spaces (p, body);
20524 }
20525 }
20526
20527 if (*p == ')')
20528 {
20529 p++;
20530
20531 if (*p == ' ')
20532 /* Perfectly formed definition, no complaints. */
20533 macro_define_function (file, line, name,
20534 argc, (const char **) argv,
20535 p + 1);
20536 else if (*p == '\0')
20537 {
20538 /* Complain, but do define it. */
20539 dwarf2_macro_malformed_definition_complaint (body);
20540 macro_define_function (file, line, name,
20541 argc, (const char **) argv,
20542 p);
20543 }
20544 else
20545 /* Just complain. */
20546 dwarf2_macro_malformed_definition_complaint (body);
20547 }
20548 else
20549 /* Just complain. */
20550 dwarf2_macro_malformed_definition_complaint (body);
20551
20552 xfree (name);
20553 {
20554 int i;
20555
20556 for (i = 0; i < argc; i++)
20557 xfree (argv[i]);
20558 }
20559 xfree (argv);
20560 }
20561 else
20562 dwarf2_macro_malformed_definition_complaint (body);
20563 }
20564
20565 /* Skip some bytes from BYTES according to the form given in FORM.
20566 Returns the new pointer. */
20567
20568 static const gdb_byte *
20569 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20570 enum dwarf_form form,
20571 unsigned int offset_size,
20572 struct dwarf2_section_info *section)
20573 {
20574 unsigned int bytes_read;
20575
20576 switch (form)
20577 {
20578 case DW_FORM_data1:
20579 case DW_FORM_flag:
20580 ++bytes;
20581 break;
20582
20583 case DW_FORM_data2:
20584 bytes += 2;
20585 break;
20586
20587 case DW_FORM_data4:
20588 bytes += 4;
20589 break;
20590
20591 case DW_FORM_data8:
20592 bytes += 8;
20593 break;
20594
20595 case DW_FORM_string:
20596 read_direct_string (abfd, bytes, &bytes_read);
20597 bytes += bytes_read;
20598 break;
20599
20600 case DW_FORM_sec_offset:
20601 case DW_FORM_strp:
20602 case DW_FORM_GNU_strp_alt:
20603 bytes += offset_size;
20604 break;
20605
20606 case DW_FORM_block:
20607 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20608 bytes += bytes_read;
20609 break;
20610
20611 case DW_FORM_block1:
20612 bytes += 1 + read_1_byte (abfd, bytes);
20613 break;
20614 case DW_FORM_block2:
20615 bytes += 2 + read_2_bytes (abfd, bytes);
20616 break;
20617 case DW_FORM_block4:
20618 bytes += 4 + read_4_bytes (abfd, bytes);
20619 break;
20620
20621 case DW_FORM_sdata:
20622 case DW_FORM_udata:
20623 case DW_FORM_GNU_addr_index:
20624 case DW_FORM_GNU_str_index:
20625 bytes = gdb_skip_leb128 (bytes, buffer_end);
20626 if (bytes == NULL)
20627 {
20628 dwarf2_section_buffer_overflow_complaint (section);
20629 return NULL;
20630 }
20631 break;
20632
20633 default:
20634 {
20635 complain:
20636 complaint (&symfile_complaints,
20637 _("invalid form 0x%x in `%s'"),
20638 form, get_section_name (section));
20639 return NULL;
20640 }
20641 }
20642
20643 return bytes;
20644 }
20645
20646 /* A helper for dwarf_decode_macros that handles skipping an unknown
20647 opcode. Returns an updated pointer to the macro data buffer; or,
20648 on error, issues a complaint and returns NULL. */
20649
20650 static const gdb_byte *
20651 skip_unknown_opcode (unsigned int opcode,
20652 const gdb_byte **opcode_definitions,
20653 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20654 bfd *abfd,
20655 unsigned int offset_size,
20656 struct dwarf2_section_info *section)
20657 {
20658 unsigned int bytes_read, i;
20659 unsigned long arg;
20660 const gdb_byte *defn;
20661
20662 if (opcode_definitions[opcode] == NULL)
20663 {
20664 complaint (&symfile_complaints,
20665 _("unrecognized DW_MACFINO opcode 0x%x"),
20666 opcode);
20667 return NULL;
20668 }
20669
20670 defn = opcode_definitions[opcode];
20671 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20672 defn += bytes_read;
20673
20674 for (i = 0; i < arg; ++i)
20675 {
20676 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20677 section);
20678 if (mac_ptr == NULL)
20679 {
20680 /* skip_form_bytes already issued the complaint. */
20681 return NULL;
20682 }
20683 }
20684
20685 return mac_ptr;
20686 }
20687
20688 /* A helper function which parses the header of a macro section.
20689 If the macro section is the extended (for now called "GNU") type,
20690 then this updates *OFFSET_SIZE. Returns a pointer to just after
20691 the header, or issues a complaint and returns NULL on error. */
20692
20693 static const gdb_byte *
20694 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20695 bfd *abfd,
20696 const gdb_byte *mac_ptr,
20697 unsigned int *offset_size,
20698 int section_is_gnu)
20699 {
20700 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20701
20702 if (section_is_gnu)
20703 {
20704 unsigned int version, flags;
20705
20706 version = read_2_bytes (abfd, mac_ptr);
20707 if (version != 4)
20708 {
20709 complaint (&symfile_complaints,
20710 _("unrecognized version `%d' in .debug_macro section"),
20711 version);
20712 return NULL;
20713 }
20714 mac_ptr += 2;
20715
20716 flags = read_1_byte (abfd, mac_ptr);
20717 ++mac_ptr;
20718 *offset_size = (flags & 1) ? 8 : 4;
20719
20720 if ((flags & 2) != 0)
20721 /* We don't need the line table offset. */
20722 mac_ptr += *offset_size;
20723
20724 /* Vendor opcode descriptions. */
20725 if ((flags & 4) != 0)
20726 {
20727 unsigned int i, count;
20728
20729 count = read_1_byte (abfd, mac_ptr);
20730 ++mac_ptr;
20731 for (i = 0; i < count; ++i)
20732 {
20733 unsigned int opcode, bytes_read;
20734 unsigned long arg;
20735
20736 opcode = read_1_byte (abfd, mac_ptr);
20737 ++mac_ptr;
20738 opcode_definitions[opcode] = mac_ptr;
20739 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20740 mac_ptr += bytes_read;
20741 mac_ptr += arg;
20742 }
20743 }
20744 }
20745
20746 return mac_ptr;
20747 }
20748
20749 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20750 including DW_MACRO_GNU_transparent_include. */
20751
20752 static void
20753 dwarf_decode_macro_bytes (bfd *abfd,
20754 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20755 struct macro_source_file *current_file,
20756 struct line_header *lh, const char *comp_dir,
20757 struct dwarf2_section_info *section,
20758 int section_is_gnu, int section_is_dwz,
20759 unsigned int offset_size,
20760 htab_t include_hash)
20761 {
20762 struct objfile *objfile = dwarf2_per_objfile->objfile;
20763 enum dwarf_macro_record_type macinfo_type;
20764 int at_commandline;
20765 const gdb_byte *opcode_definitions[256];
20766
20767 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20768 &offset_size, section_is_gnu);
20769 if (mac_ptr == NULL)
20770 {
20771 /* We already issued a complaint. */
20772 return;
20773 }
20774
20775 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20776 GDB is still reading the definitions from command line. First
20777 DW_MACINFO_start_file will need to be ignored as it was already executed
20778 to create CURRENT_FILE for the main source holding also the command line
20779 definitions. On first met DW_MACINFO_start_file this flag is reset to
20780 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20781
20782 at_commandline = 1;
20783
20784 do
20785 {
20786 /* Do we at least have room for a macinfo type byte? */
20787 if (mac_ptr >= mac_end)
20788 {
20789 dwarf2_section_buffer_overflow_complaint (section);
20790 break;
20791 }
20792
20793 macinfo_type = read_1_byte (abfd, mac_ptr);
20794 mac_ptr++;
20795
20796 /* Note that we rely on the fact that the corresponding GNU and
20797 DWARF constants are the same. */
20798 switch (macinfo_type)
20799 {
20800 /* A zero macinfo type indicates the end of the macro
20801 information. */
20802 case 0:
20803 break;
20804
20805 case DW_MACRO_GNU_define:
20806 case DW_MACRO_GNU_undef:
20807 case DW_MACRO_GNU_define_indirect:
20808 case DW_MACRO_GNU_undef_indirect:
20809 case DW_MACRO_GNU_define_indirect_alt:
20810 case DW_MACRO_GNU_undef_indirect_alt:
20811 {
20812 unsigned int bytes_read;
20813 int line;
20814 const char *body;
20815 int is_define;
20816
20817 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20818 mac_ptr += bytes_read;
20819
20820 if (macinfo_type == DW_MACRO_GNU_define
20821 || macinfo_type == DW_MACRO_GNU_undef)
20822 {
20823 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20824 mac_ptr += bytes_read;
20825 }
20826 else
20827 {
20828 LONGEST str_offset;
20829
20830 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20831 mac_ptr += offset_size;
20832
20833 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20834 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20835 || section_is_dwz)
20836 {
20837 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20838
20839 body = read_indirect_string_from_dwz (dwz, str_offset);
20840 }
20841 else
20842 body = read_indirect_string_at_offset (abfd, str_offset);
20843 }
20844
20845 is_define = (macinfo_type == DW_MACRO_GNU_define
20846 || macinfo_type == DW_MACRO_GNU_define_indirect
20847 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20848 if (! current_file)
20849 {
20850 /* DWARF violation as no main source is present. */
20851 complaint (&symfile_complaints,
20852 _("debug info with no main source gives macro %s "
20853 "on line %d: %s"),
20854 is_define ? _("definition") : _("undefinition"),
20855 line, body);
20856 break;
20857 }
20858 if ((line == 0 && !at_commandline)
20859 || (line != 0 && at_commandline))
20860 complaint (&symfile_complaints,
20861 _("debug info gives %s macro %s with %s line %d: %s"),
20862 at_commandline ? _("command-line") : _("in-file"),
20863 is_define ? _("definition") : _("undefinition"),
20864 line == 0 ? _("zero") : _("non-zero"), line, body);
20865
20866 if (is_define)
20867 parse_macro_definition (current_file, line, body);
20868 else
20869 {
20870 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20871 || macinfo_type == DW_MACRO_GNU_undef_indirect
20872 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20873 macro_undef (current_file, line, body);
20874 }
20875 }
20876 break;
20877
20878 case DW_MACRO_GNU_start_file:
20879 {
20880 unsigned int bytes_read;
20881 int line, file;
20882
20883 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20884 mac_ptr += bytes_read;
20885 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20886 mac_ptr += bytes_read;
20887
20888 if ((line == 0 && !at_commandline)
20889 || (line != 0 && at_commandline))
20890 complaint (&symfile_complaints,
20891 _("debug info gives source %d included "
20892 "from %s at %s line %d"),
20893 file, at_commandline ? _("command-line") : _("file"),
20894 line == 0 ? _("zero") : _("non-zero"), line);
20895
20896 if (at_commandline)
20897 {
20898 /* This DW_MACRO_GNU_start_file was executed in the
20899 pass one. */
20900 at_commandline = 0;
20901 }
20902 else
20903 current_file = macro_start_file (file, line, current_file,
20904 comp_dir, lh);
20905 }
20906 break;
20907
20908 case DW_MACRO_GNU_end_file:
20909 if (! current_file)
20910 complaint (&symfile_complaints,
20911 _("macro debug info has an unmatched "
20912 "`close_file' directive"));
20913 else
20914 {
20915 current_file = current_file->included_by;
20916 if (! current_file)
20917 {
20918 enum dwarf_macro_record_type next_type;
20919
20920 /* GCC circa March 2002 doesn't produce the zero
20921 type byte marking the end of the compilation
20922 unit. Complain if it's not there, but exit no
20923 matter what. */
20924
20925 /* Do we at least have room for a macinfo type byte? */
20926 if (mac_ptr >= mac_end)
20927 {
20928 dwarf2_section_buffer_overflow_complaint (section);
20929 return;
20930 }
20931
20932 /* We don't increment mac_ptr here, so this is just
20933 a look-ahead. */
20934 next_type = read_1_byte (abfd, mac_ptr);
20935 if (next_type != 0)
20936 complaint (&symfile_complaints,
20937 _("no terminating 0-type entry for "
20938 "macros in `.debug_macinfo' section"));
20939
20940 return;
20941 }
20942 }
20943 break;
20944
20945 case DW_MACRO_GNU_transparent_include:
20946 case DW_MACRO_GNU_transparent_include_alt:
20947 {
20948 LONGEST offset;
20949 void **slot;
20950 bfd *include_bfd = abfd;
20951 struct dwarf2_section_info *include_section = section;
20952 struct dwarf2_section_info alt_section;
20953 const gdb_byte *include_mac_end = mac_end;
20954 int is_dwz = section_is_dwz;
20955 const gdb_byte *new_mac_ptr;
20956
20957 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20958 mac_ptr += offset_size;
20959
20960 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20961 {
20962 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20963
20964 dwarf2_read_section (objfile, &dwz->macro);
20965
20966 include_section = &dwz->macro;
20967 include_bfd = get_section_bfd_owner (include_section);
20968 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20969 is_dwz = 1;
20970 }
20971
20972 new_mac_ptr = include_section->buffer + offset;
20973 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20974
20975 if (*slot != NULL)
20976 {
20977 /* This has actually happened; see
20978 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20979 complaint (&symfile_complaints,
20980 _("recursive DW_MACRO_GNU_transparent_include in "
20981 ".debug_macro section"));
20982 }
20983 else
20984 {
20985 *slot = (void *) new_mac_ptr;
20986
20987 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20988 include_mac_end, current_file,
20989 lh, comp_dir,
20990 section, section_is_gnu, is_dwz,
20991 offset_size, include_hash);
20992
20993 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20994 }
20995 }
20996 break;
20997
20998 case DW_MACINFO_vendor_ext:
20999 if (!section_is_gnu)
21000 {
21001 unsigned int bytes_read;
21002 int constant;
21003
21004 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21005 mac_ptr += bytes_read;
21006 read_direct_string (abfd, mac_ptr, &bytes_read);
21007 mac_ptr += bytes_read;
21008
21009 /* We don't recognize any vendor extensions. */
21010 break;
21011 }
21012 /* FALLTHROUGH */
21013
21014 default:
21015 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21016 mac_ptr, mac_end, abfd, offset_size,
21017 section);
21018 if (mac_ptr == NULL)
21019 return;
21020 break;
21021 }
21022 } while (macinfo_type != 0);
21023 }
21024
21025 static void
21026 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21027 const char *comp_dir, int section_is_gnu)
21028 {
21029 struct objfile *objfile = dwarf2_per_objfile->objfile;
21030 struct line_header *lh = cu->line_header;
21031 bfd *abfd;
21032 const gdb_byte *mac_ptr, *mac_end;
21033 struct macro_source_file *current_file = 0;
21034 enum dwarf_macro_record_type macinfo_type;
21035 unsigned int offset_size = cu->header.offset_size;
21036 const gdb_byte *opcode_definitions[256];
21037 struct cleanup *cleanup;
21038 htab_t include_hash;
21039 void **slot;
21040 struct dwarf2_section_info *section;
21041 const char *section_name;
21042
21043 if (cu->dwo_unit != NULL)
21044 {
21045 if (section_is_gnu)
21046 {
21047 section = &cu->dwo_unit->dwo_file->sections.macro;
21048 section_name = ".debug_macro.dwo";
21049 }
21050 else
21051 {
21052 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21053 section_name = ".debug_macinfo.dwo";
21054 }
21055 }
21056 else
21057 {
21058 if (section_is_gnu)
21059 {
21060 section = &dwarf2_per_objfile->macro;
21061 section_name = ".debug_macro";
21062 }
21063 else
21064 {
21065 section = &dwarf2_per_objfile->macinfo;
21066 section_name = ".debug_macinfo";
21067 }
21068 }
21069
21070 dwarf2_read_section (objfile, section);
21071 if (section->buffer == NULL)
21072 {
21073 complaint (&symfile_complaints, _("missing %s section"), section_name);
21074 return;
21075 }
21076 abfd = get_section_bfd_owner (section);
21077
21078 /* First pass: Find the name of the base filename.
21079 This filename is needed in order to process all macros whose definition
21080 (or undefinition) comes from the command line. These macros are defined
21081 before the first DW_MACINFO_start_file entry, and yet still need to be
21082 associated to the base file.
21083
21084 To determine the base file name, we scan the macro definitions until we
21085 reach the first DW_MACINFO_start_file entry. We then initialize
21086 CURRENT_FILE accordingly so that any macro definition found before the
21087 first DW_MACINFO_start_file can still be associated to the base file. */
21088
21089 mac_ptr = section->buffer + offset;
21090 mac_end = section->buffer + section->size;
21091
21092 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21093 &offset_size, section_is_gnu);
21094 if (mac_ptr == NULL)
21095 {
21096 /* We already issued a complaint. */
21097 return;
21098 }
21099
21100 do
21101 {
21102 /* Do we at least have room for a macinfo type byte? */
21103 if (mac_ptr >= mac_end)
21104 {
21105 /* Complaint is printed during the second pass as GDB will probably
21106 stop the first pass earlier upon finding
21107 DW_MACINFO_start_file. */
21108 break;
21109 }
21110
21111 macinfo_type = read_1_byte (abfd, mac_ptr);
21112 mac_ptr++;
21113
21114 /* Note that we rely on the fact that the corresponding GNU and
21115 DWARF constants are the same. */
21116 switch (macinfo_type)
21117 {
21118 /* A zero macinfo type indicates the end of the macro
21119 information. */
21120 case 0:
21121 break;
21122
21123 case DW_MACRO_GNU_define:
21124 case DW_MACRO_GNU_undef:
21125 /* Only skip the data by MAC_PTR. */
21126 {
21127 unsigned int bytes_read;
21128
21129 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21130 mac_ptr += bytes_read;
21131 read_direct_string (abfd, mac_ptr, &bytes_read);
21132 mac_ptr += bytes_read;
21133 }
21134 break;
21135
21136 case DW_MACRO_GNU_start_file:
21137 {
21138 unsigned int bytes_read;
21139 int line, file;
21140
21141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21142 mac_ptr += bytes_read;
21143 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21144 mac_ptr += bytes_read;
21145
21146 current_file = macro_start_file (file, line, current_file,
21147 comp_dir, lh);
21148 }
21149 break;
21150
21151 case DW_MACRO_GNU_end_file:
21152 /* No data to skip by MAC_PTR. */
21153 break;
21154
21155 case DW_MACRO_GNU_define_indirect:
21156 case DW_MACRO_GNU_undef_indirect:
21157 case DW_MACRO_GNU_define_indirect_alt:
21158 case DW_MACRO_GNU_undef_indirect_alt:
21159 {
21160 unsigned int bytes_read;
21161
21162 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21163 mac_ptr += bytes_read;
21164 mac_ptr += offset_size;
21165 }
21166 break;
21167
21168 case DW_MACRO_GNU_transparent_include:
21169 case DW_MACRO_GNU_transparent_include_alt:
21170 /* Note that, according to the spec, a transparent include
21171 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21172 skip this opcode. */
21173 mac_ptr += offset_size;
21174 break;
21175
21176 case DW_MACINFO_vendor_ext:
21177 /* Only skip the data by MAC_PTR. */
21178 if (!section_is_gnu)
21179 {
21180 unsigned int bytes_read;
21181
21182 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21183 mac_ptr += bytes_read;
21184 read_direct_string (abfd, mac_ptr, &bytes_read);
21185 mac_ptr += bytes_read;
21186 }
21187 /* FALLTHROUGH */
21188
21189 default:
21190 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21191 mac_ptr, mac_end, abfd, offset_size,
21192 section);
21193 if (mac_ptr == NULL)
21194 return;
21195 break;
21196 }
21197 } while (macinfo_type != 0 && current_file == NULL);
21198
21199 /* Second pass: Process all entries.
21200
21201 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21202 command-line macro definitions/undefinitions. This flag is unset when we
21203 reach the first DW_MACINFO_start_file entry. */
21204
21205 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21206 NULL, xcalloc, xfree);
21207 cleanup = make_cleanup_htab_delete (include_hash);
21208 mac_ptr = section->buffer + offset;
21209 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21210 *slot = (void *) mac_ptr;
21211 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21212 current_file, lh, comp_dir, section,
21213 section_is_gnu, 0, offset_size, include_hash);
21214 do_cleanups (cleanup);
21215 }
21216
21217 /* Check if the attribute's form is a DW_FORM_block*
21218 if so return true else false. */
21219
21220 static int
21221 attr_form_is_block (const struct attribute *attr)
21222 {
21223 return (attr == NULL ? 0 :
21224 attr->form == DW_FORM_block1
21225 || attr->form == DW_FORM_block2
21226 || attr->form == DW_FORM_block4
21227 || attr->form == DW_FORM_block
21228 || attr->form == DW_FORM_exprloc);
21229 }
21230
21231 /* Return non-zero if ATTR's value is a section offset --- classes
21232 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21233 You may use DW_UNSND (attr) to retrieve such offsets.
21234
21235 Section 7.5.4, "Attribute Encodings", explains that no attribute
21236 may have a value that belongs to more than one of these classes; it
21237 would be ambiguous if we did, because we use the same forms for all
21238 of them. */
21239
21240 static int
21241 attr_form_is_section_offset (const struct attribute *attr)
21242 {
21243 return (attr->form == DW_FORM_data4
21244 || attr->form == DW_FORM_data8
21245 || attr->form == DW_FORM_sec_offset);
21246 }
21247
21248 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21249 zero otherwise. When this function returns true, you can apply
21250 dwarf2_get_attr_constant_value to it.
21251
21252 However, note that for some attributes you must check
21253 attr_form_is_section_offset before using this test. DW_FORM_data4
21254 and DW_FORM_data8 are members of both the constant class, and of
21255 the classes that contain offsets into other debug sections
21256 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21257 that, if an attribute's can be either a constant or one of the
21258 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21259 taken as section offsets, not constants. */
21260
21261 static int
21262 attr_form_is_constant (const struct attribute *attr)
21263 {
21264 switch (attr->form)
21265 {
21266 case DW_FORM_sdata:
21267 case DW_FORM_udata:
21268 case DW_FORM_data1:
21269 case DW_FORM_data2:
21270 case DW_FORM_data4:
21271 case DW_FORM_data8:
21272 return 1;
21273 default:
21274 return 0;
21275 }
21276 }
21277
21278
21279 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21280 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21281
21282 static int
21283 attr_form_is_ref (const struct attribute *attr)
21284 {
21285 switch (attr->form)
21286 {
21287 case DW_FORM_ref_addr:
21288 case DW_FORM_ref1:
21289 case DW_FORM_ref2:
21290 case DW_FORM_ref4:
21291 case DW_FORM_ref8:
21292 case DW_FORM_ref_udata:
21293 case DW_FORM_GNU_ref_alt:
21294 return 1;
21295 default:
21296 return 0;
21297 }
21298 }
21299
21300 /* Return the .debug_loc section to use for CU.
21301 For DWO files use .debug_loc.dwo. */
21302
21303 static struct dwarf2_section_info *
21304 cu_debug_loc_section (struct dwarf2_cu *cu)
21305 {
21306 if (cu->dwo_unit)
21307 return &cu->dwo_unit->dwo_file->sections.loc;
21308 return &dwarf2_per_objfile->loc;
21309 }
21310
21311 /* A helper function that fills in a dwarf2_loclist_baton. */
21312
21313 static void
21314 fill_in_loclist_baton (struct dwarf2_cu *cu,
21315 struct dwarf2_loclist_baton *baton,
21316 const struct attribute *attr)
21317 {
21318 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21319
21320 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21321
21322 baton->per_cu = cu->per_cu;
21323 gdb_assert (baton->per_cu);
21324 /* We don't know how long the location list is, but make sure we
21325 don't run off the edge of the section. */
21326 baton->size = section->size - DW_UNSND (attr);
21327 baton->data = section->buffer + DW_UNSND (attr);
21328 baton->base_address = cu->base_address;
21329 baton->from_dwo = cu->dwo_unit != NULL;
21330 }
21331
21332 static void
21333 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21334 struct dwarf2_cu *cu, int is_block)
21335 {
21336 struct objfile *objfile = dwarf2_per_objfile->objfile;
21337 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21338
21339 if (attr_form_is_section_offset (attr)
21340 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21341 the section. If so, fall through to the complaint in the
21342 other branch. */
21343 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21344 {
21345 struct dwarf2_loclist_baton *baton;
21346
21347 baton = obstack_alloc (&objfile->objfile_obstack,
21348 sizeof (struct dwarf2_loclist_baton));
21349
21350 fill_in_loclist_baton (cu, baton, attr);
21351
21352 if (cu->base_known == 0)
21353 complaint (&symfile_complaints,
21354 _("Location list used without "
21355 "specifying the CU base address."));
21356
21357 SYMBOL_ACLASS_INDEX (sym) = (is_block
21358 ? dwarf2_loclist_block_index
21359 : dwarf2_loclist_index);
21360 SYMBOL_LOCATION_BATON (sym) = baton;
21361 }
21362 else
21363 {
21364 struct dwarf2_locexpr_baton *baton;
21365
21366 baton = obstack_alloc (&objfile->objfile_obstack,
21367 sizeof (struct dwarf2_locexpr_baton));
21368 baton->per_cu = cu->per_cu;
21369 gdb_assert (baton->per_cu);
21370
21371 if (attr_form_is_block (attr))
21372 {
21373 /* Note that we're just copying the block's data pointer
21374 here, not the actual data. We're still pointing into the
21375 info_buffer for SYM's objfile; right now we never release
21376 that buffer, but when we do clean up properly this may
21377 need to change. */
21378 baton->size = DW_BLOCK (attr)->size;
21379 baton->data = DW_BLOCK (attr)->data;
21380 }
21381 else
21382 {
21383 dwarf2_invalid_attrib_class_complaint ("location description",
21384 SYMBOL_NATURAL_NAME (sym));
21385 baton->size = 0;
21386 }
21387
21388 SYMBOL_ACLASS_INDEX (sym) = (is_block
21389 ? dwarf2_locexpr_block_index
21390 : dwarf2_locexpr_index);
21391 SYMBOL_LOCATION_BATON (sym) = baton;
21392 }
21393 }
21394
21395 /* Return the OBJFILE associated with the compilation unit CU. If CU
21396 came from a separate debuginfo file, then the master objfile is
21397 returned. */
21398
21399 struct objfile *
21400 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21401 {
21402 struct objfile *objfile = per_cu->objfile;
21403
21404 /* Return the master objfile, so that we can report and look up the
21405 correct file containing this variable. */
21406 if (objfile->separate_debug_objfile_backlink)
21407 objfile = objfile->separate_debug_objfile_backlink;
21408
21409 return objfile;
21410 }
21411
21412 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21413 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21414 CU_HEADERP first. */
21415
21416 static const struct comp_unit_head *
21417 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21418 struct dwarf2_per_cu_data *per_cu)
21419 {
21420 const gdb_byte *info_ptr;
21421
21422 if (per_cu->cu)
21423 return &per_cu->cu->header;
21424
21425 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21426
21427 memset (cu_headerp, 0, sizeof (*cu_headerp));
21428 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21429
21430 return cu_headerp;
21431 }
21432
21433 /* Return the address size given in the compilation unit header for CU. */
21434
21435 int
21436 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21437 {
21438 struct comp_unit_head cu_header_local;
21439 const struct comp_unit_head *cu_headerp;
21440
21441 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21442
21443 return cu_headerp->addr_size;
21444 }
21445
21446 /* Return the offset size given in the compilation unit header for CU. */
21447
21448 int
21449 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21450 {
21451 struct comp_unit_head cu_header_local;
21452 const struct comp_unit_head *cu_headerp;
21453
21454 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21455
21456 return cu_headerp->offset_size;
21457 }
21458
21459 /* See its dwarf2loc.h declaration. */
21460
21461 int
21462 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21463 {
21464 struct comp_unit_head cu_header_local;
21465 const struct comp_unit_head *cu_headerp;
21466
21467 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21468
21469 if (cu_headerp->version == 2)
21470 return cu_headerp->addr_size;
21471 else
21472 return cu_headerp->offset_size;
21473 }
21474
21475 /* Return the text offset of the CU. The returned offset comes from
21476 this CU's objfile. If this objfile came from a separate debuginfo
21477 file, then the offset may be different from the corresponding
21478 offset in the parent objfile. */
21479
21480 CORE_ADDR
21481 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21482 {
21483 struct objfile *objfile = per_cu->objfile;
21484
21485 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21486 }
21487
21488 /* Locate the .debug_info compilation unit from CU's objfile which contains
21489 the DIE at OFFSET. Raises an error on failure. */
21490
21491 static struct dwarf2_per_cu_data *
21492 dwarf2_find_containing_comp_unit (sect_offset offset,
21493 unsigned int offset_in_dwz,
21494 struct objfile *objfile)
21495 {
21496 struct dwarf2_per_cu_data *this_cu;
21497 int low, high;
21498 const sect_offset *cu_off;
21499
21500 low = 0;
21501 high = dwarf2_per_objfile->n_comp_units - 1;
21502 while (high > low)
21503 {
21504 struct dwarf2_per_cu_data *mid_cu;
21505 int mid = low + (high - low) / 2;
21506
21507 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21508 cu_off = &mid_cu->offset;
21509 if (mid_cu->is_dwz > offset_in_dwz
21510 || (mid_cu->is_dwz == offset_in_dwz
21511 && cu_off->sect_off >= offset.sect_off))
21512 high = mid;
21513 else
21514 low = mid + 1;
21515 }
21516 gdb_assert (low == high);
21517 this_cu = dwarf2_per_objfile->all_comp_units[low];
21518 cu_off = &this_cu->offset;
21519 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21520 {
21521 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21522 error (_("Dwarf Error: could not find partial DIE containing "
21523 "offset 0x%lx [in module %s]"),
21524 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21525
21526 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21527 <= offset.sect_off);
21528 return dwarf2_per_objfile->all_comp_units[low-1];
21529 }
21530 else
21531 {
21532 this_cu = dwarf2_per_objfile->all_comp_units[low];
21533 if (low == dwarf2_per_objfile->n_comp_units - 1
21534 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21535 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21536 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21537 return this_cu;
21538 }
21539 }
21540
21541 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21542
21543 static void
21544 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21545 {
21546 memset (cu, 0, sizeof (*cu));
21547 per_cu->cu = cu;
21548 cu->per_cu = per_cu;
21549 cu->objfile = per_cu->objfile;
21550 obstack_init (&cu->comp_unit_obstack);
21551 }
21552
21553 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21554
21555 static void
21556 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21557 enum language pretend_language)
21558 {
21559 struct attribute *attr;
21560
21561 /* Set the language we're debugging. */
21562 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21563 if (attr)
21564 set_cu_language (DW_UNSND (attr), cu);
21565 else
21566 {
21567 cu->language = pretend_language;
21568 cu->language_defn = language_def (cu->language);
21569 }
21570
21571 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21572 if (attr)
21573 cu->producer = DW_STRING (attr);
21574 }
21575
21576 /* Release one cached compilation unit, CU. We unlink it from the tree
21577 of compilation units, but we don't remove it from the read_in_chain;
21578 the caller is responsible for that.
21579 NOTE: DATA is a void * because this function is also used as a
21580 cleanup routine. */
21581
21582 static void
21583 free_heap_comp_unit (void *data)
21584 {
21585 struct dwarf2_cu *cu = data;
21586
21587 gdb_assert (cu->per_cu != NULL);
21588 cu->per_cu->cu = NULL;
21589 cu->per_cu = NULL;
21590
21591 obstack_free (&cu->comp_unit_obstack, NULL);
21592
21593 xfree (cu);
21594 }
21595
21596 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21597 when we're finished with it. We can't free the pointer itself, but be
21598 sure to unlink it from the cache. Also release any associated storage. */
21599
21600 static void
21601 free_stack_comp_unit (void *data)
21602 {
21603 struct dwarf2_cu *cu = data;
21604
21605 gdb_assert (cu->per_cu != NULL);
21606 cu->per_cu->cu = NULL;
21607 cu->per_cu = NULL;
21608
21609 obstack_free (&cu->comp_unit_obstack, NULL);
21610 cu->partial_dies = NULL;
21611 }
21612
21613 /* Free all cached compilation units. */
21614
21615 static void
21616 free_cached_comp_units (void *data)
21617 {
21618 struct dwarf2_per_cu_data *per_cu, **last_chain;
21619
21620 per_cu = dwarf2_per_objfile->read_in_chain;
21621 last_chain = &dwarf2_per_objfile->read_in_chain;
21622 while (per_cu != NULL)
21623 {
21624 struct dwarf2_per_cu_data *next_cu;
21625
21626 next_cu = per_cu->cu->read_in_chain;
21627
21628 free_heap_comp_unit (per_cu->cu);
21629 *last_chain = next_cu;
21630
21631 per_cu = next_cu;
21632 }
21633 }
21634
21635 /* Increase the age counter on each cached compilation unit, and free
21636 any that are too old. */
21637
21638 static void
21639 age_cached_comp_units (void)
21640 {
21641 struct dwarf2_per_cu_data *per_cu, **last_chain;
21642
21643 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21644 per_cu = dwarf2_per_objfile->read_in_chain;
21645 while (per_cu != NULL)
21646 {
21647 per_cu->cu->last_used ++;
21648 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21649 dwarf2_mark (per_cu->cu);
21650 per_cu = per_cu->cu->read_in_chain;
21651 }
21652
21653 per_cu = dwarf2_per_objfile->read_in_chain;
21654 last_chain = &dwarf2_per_objfile->read_in_chain;
21655 while (per_cu != NULL)
21656 {
21657 struct dwarf2_per_cu_data *next_cu;
21658
21659 next_cu = per_cu->cu->read_in_chain;
21660
21661 if (!per_cu->cu->mark)
21662 {
21663 free_heap_comp_unit (per_cu->cu);
21664 *last_chain = next_cu;
21665 }
21666 else
21667 last_chain = &per_cu->cu->read_in_chain;
21668
21669 per_cu = next_cu;
21670 }
21671 }
21672
21673 /* Remove a single compilation unit from the cache. */
21674
21675 static void
21676 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21677 {
21678 struct dwarf2_per_cu_data *per_cu, **last_chain;
21679
21680 per_cu = dwarf2_per_objfile->read_in_chain;
21681 last_chain = &dwarf2_per_objfile->read_in_chain;
21682 while (per_cu != NULL)
21683 {
21684 struct dwarf2_per_cu_data *next_cu;
21685
21686 next_cu = per_cu->cu->read_in_chain;
21687
21688 if (per_cu == target_per_cu)
21689 {
21690 free_heap_comp_unit (per_cu->cu);
21691 per_cu->cu = NULL;
21692 *last_chain = next_cu;
21693 break;
21694 }
21695 else
21696 last_chain = &per_cu->cu->read_in_chain;
21697
21698 per_cu = next_cu;
21699 }
21700 }
21701
21702 /* Release all extra memory associated with OBJFILE. */
21703
21704 void
21705 dwarf2_free_objfile (struct objfile *objfile)
21706 {
21707 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21708
21709 if (dwarf2_per_objfile == NULL)
21710 return;
21711
21712 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21713 free_cached_comp_units (NULL);
21714
21715 if (dwarf2_per_objfile->quick_file_names_table)
21716 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21717
21718 /* Everything else should be on the objfile obstack. */
21719 }
21720
21721 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21722 We store these in a hash table separate from the DIEs, and preserve them
21723 when the DIEs are flushed out of cache.
21724
21725 The CU "per_cu" pointer is needed because offset alone is not enough to
21726 uniquely identify the type. A file may have multiple .debug_types sections,
21727 or the type may come from a DWO file. Furthermore, while it's more logical
21728 to use per_cu->section+offset, with Fission the section with the data is in
21729 the DWO file but we don't know that section at the point we need it.
21730 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21731 because we can enter the lookup routine, get_die_type_at_offset, from
21732 outside this file, and thus won't necessarily have PER_CU->cu.
21733 Fortunately, PER_CU is stable for the life of the objfile. */
21734
21735 struct dwarf2_per_cu_offset_and_type
21736 {
21737 const struct dwarf2_per_cu_data *per_cu;
21738 sect_offset offset;
21739 struct type *type;
21740 };
21741
21742 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21743
21744 static hashval_t
21745 per_cu_offset_and_type_hash (const void *item)
21746 {
21747 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21748
21749 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21750 }
21751
21752 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21753
21754 static int
21755 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21756 {
21757 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21758 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21759
21760 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21761 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21762 }
21763
21764 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21765 table if necessary. For convenience, return TYPE.
21766
21767 The DIEs reading must have careful ordering to:
21768 * Not cause infite loops trying to read in DIEs as a prerequisite for
21769 reading current DIE.
21770 * Not trying to dereference contents of still incompletely read in types
21771 while reading in other DIEs.
21772 * Enable referencing still incompletely read in types just by a pointer to
21773 the type without accessing its fields.
21774
21775 Therefore caller should follow these rules:
21776 * Try to fetch any prerequisite types we may need to build this DIE type
21777 before building the type and calling set_die_type.
21778 * After building type call set_die_type for current DIE as soon as
21779 possible before fetching more types to complete the current type.
21780 * Make the type as complete as possible before fetching more types. */
21781
21782 static struct type *
21783 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21784 {
21785 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21786 struct objfile *objfile = cu->objfile;
21787 struct attribute *attr;
21788 struct dynamic_prop prop;
21789
21790 /* For Ada types, make sure that the gnat-specific data is always
21791 initialized (if not already set). There are a few types where
21792 we should not be doing so, because the type-specific area is
21793 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21794 where the type-specific area is used to store the floatformat).
21795 But this is not a problem, because the gnat-specific information
21796 is actually not needed for these types. */
21797 if (need_gnat_info (cu)
21798 && TYPE_CODE (type) != TYPE_CODE_FUNC
21799 && TYPE_CODE (type) != TYPE_CODE_FLT
21800 && !HAVE_GNAT_AUX_INFO (type))
21801 INIT_GNAT_SPECIFIC (type);
21802
21803 /* Read DW_AT_data_location and set in type. */
21804 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21805 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21806 {
21807 TYPE_DATA_LOCATION (type)
21808 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21809 *TYPE_DATA_LOCATION (type) = prop;
21810 }
21811
21812 if (dwarf2_per_objfile->die_type_hash == NULL)
21813 {
21814 dwarf2_per_objfile->die_type_hash =
21815 htab_create_alloc_ex (127,
21816 per_cu_offset_and_type_hash,
21817 per_cu_offset_and_type_eq,
21818 NULL,
21819 &objfile->objfile_obstack,
21820 hashtab_obstack_allocate,
21821 dummy_obstack_deallocate);
21822 }
21823
21824 ofs.per_cu = cu->per_cu;
21825 ofs.offset = die->offset;
21826 ofs.type = type;
21827 slot = (struct dwarf2_per_cu_offset_and_type **)
21828 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21829 if (*slot)
21830 complaint (&symfile_complaints,
21831 _("A problem internal to GDB: DIE 0x%x has type already set"),
21832 die->offset.sect_off);
21833 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21834 **slot = ofs;
21835 return type;
21836 }
21837
21838 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21839 or return NULL if the die does not have a saved type. */
21840
21841 static struct type *
21842 get_die_type_at_offset (sect_offset offset,
21843 struct dwarf2_per_cu_data *per_cu)
21844 {
21845 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21846
21847 if (dwarf2_per_objfile->die_type_hash == NULL)
21848 return NULL;
21849
21850 ofs.per_cu = per_cu;
21851 ofs.offset = offset;
21852 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21853 if (slot)
21854 return slot->type;
21855 else
21856 return NULL;
21857 }
21858
21859 /* Look up the type for DIE in CU in die_type_hash,
21860 or return NULL if DIE does not have a saved type. */
21861
21862 static struct type *
21863 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21864 {
21865 return get_die_type_at_offset (die->offset, cu->per_cu);
21866 }
21867
21868 /* Add a dependence relationship from CU to REF_PER_CU. */
21869
21870 static void
21871 dwarf2_add_dependence (struct dwarf2_cu *cu,
21872 struct dwarf2_per_cu_data *ref_per_cu)
21873 {
21874 void **slot;
21875
21876 if (cu->dependencies == NULL)
21877 cu->dependencies
21878 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21879 NULL, &cu->comp_unit_obstack,
21880 hashtab_obstack_allocate,
21881 dummy_obstack_deallocate);
21882
21883 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21884 if (*slot == NULL)
21885 *slot = ref_per_cu;
21886 }
21887
21888 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21889 Set the mark field in every compilation unit in the
21890 cache that we must keep because we are keeping CU. */
21891
21892 static int
21893 dwarf2_mark_helper (void **slot, void *data)
21894 {
21895 struct dwarf2_per_cu_data *per_cu;
21896
21897 per_cu = (struct dwarf2_per_cu_data *) *slot;
21898
21899 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21900 reading of the chain. As such dependencies remain valid it is not much
21901 useful to track and undo them during QUIT cleanups. */
21902 if (per_cu->cu == NULL)
21903 return 1;
21904
21905 if (per_cu->cu->mark)
21906 return 1;
21907 per_cu->cu->mark = 1;
21908
21909 if (per_cu->cu->dependencies != NULL)
21910 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21911
21912 return 1;
21913 }
21914
21915 /* Set the mark field in CU and in every other compilation unit in the
21916 cache that we must keep because we are keeping CU. */
21917
21918 static void
21919 dwarf2_mark (struct dwarf2_cu *cu)
21920 {
21921 if (cu->mark)
21922 return;
21923 cu->mark = 1;
21924 if (cu->dependencies != NULL)
21925 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21926 }
21927
21928 static void
21929 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21930 {
21931 while (per_cu)
21932 {
21933 per_cu->cu->mark = 0;
21934 per_cu = per_cu->cu->read_in_chain;
21935 }
21936 }
21937
21938 /* Trivial hash function for partial_die_info: the hash value of a DIE
21939 is its offset in .debug_info for this objfile. */
21940
21941 static hashval_t
21942 partial_die_hash (const void *item)
21943 {
21944 const struct partial_die_info *part_die = item;
21945
21946 return part_die->offset.sect_off;
21947 }
21948
21949 /* Trivial comparison function for partial_die_info structures: two DIEs
21950 are equal if they have the same offset. */
21951
21952 static int
21953 partial_die_eq (const void *item_lhs, const void *item_rhs)
21954 {
21955 const struct partial_die_info *part_die_lhs = item_lhs;
21956 const struct partial_die_info *part_die_rhs = item_rhs;
21957
21958 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21959 }
21960
21961 static struct cmd_list_element *set_dwarf2_cmdlist;
21962 static struct cmd_list_element *show_dwarf2_cmdlist;
21963
21964 static void
21965 set_dwarf2_cmd (char *args, int from_tty)
21966 {
21967 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21968 gdb_stdout);
21969 }
21970
21971 static void
21972 show_dwarf2_cmd (char *args, int from_tty)
21973 {
21974 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21975 }
21976
21977 /* Free data associated with OBJFILE, if necessary. */
21978
21979 static void
21980 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21981 {
21982 struct dwarf2_per_objfile *data = d;
21983 int ix;
21984
21985 /* Make sure we don't accidentally use dwarf2_per_objfile while
21986 cleaning up. */
21987 dwarf2_per_objfile = NULL;
21988
21989 for (ix = 0; ix < data->n_comp_units; ++ix)
21990 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21991
21992 for (ix = 0; ix < data->n_type_units; ++ix)
21993 VEC_free (dwarf2_per_cu_ptr,
21994 data->all_type_units[ix]->per_cu.imported_symtabs);
21995 xfree (data->all_type_units);
21996
21997 VEC_free (dwarf2_section_info_def, data->types);
21998
21999 if (data->dwo_files)
22000 free_dwo_files (data->dwo_files, objfile);
22001 if (data->dwp_file)
22002 gdb_bfd_unref (data->dwp_file->dbfd);
22003
22004 if (data->dwz_file && data->dwz_file->dwz_bfd)
22005 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22006 }
22007
22008 \f
22009 /* The "save gdb-index" command. */
22010
22011 /* The contents of the hash table we create when building the string
22012 table. */
22013 struct strtab_entry
22014 {
22015 offset_type offset;
22016 const char *str;
22017 };
22018
22019 /* Hash function for a strtab_entry.
22020
22021 Function is used only during write_hash_table so no index format backward
22022 compatibility is needed. */
22023
22024 static hashval_t
22025 hash_strtab_entry (const void *e)
22026 {
22027 const struct strtab_entry *entry = e;
22028 return mapped_index_string_hash (INT_MAX, entry->str);
22029 }
22030
22031 /* Equality function for a strtab_entry. */
22032
22033 static int
22034 eq_strtab_entry (const void *a, const void *b)
22035 {
22036 const struct strtab_entry *ea = a;
22037 const struct strtab_entry *eb = b;
22038 return !strcmp (ea->str, eb->str);
22039 }
22040
22041 /* Create a strtab_entry hash table. */
22042
22043 static htab_t
22044 create_strtab (void)
22045 {
22046 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22047 xfree, xcalloc, xfree);
22048 }
22049
22050 /* Add a string to the constant pool. Return the string's offset in
22051 host order. */
22052
22053 static offset_type
22054 add_string (htab_t table, struct obstack *cpool, const char *str)
22055 {
22056 void **slot;
22057 struct strtab_entry entry;
22058 struct strtab_entry *result;
22059
22060 entry.str = str;
22061 slot = htab_find_slot (table, &entry, INSERT);
22062 if (*slot)
22063 result = *slot;
22064 else
22065 {
22066 result = XNEW (struct strtab_entry);
22067 result->offset = obstack_object_size (cpool);
22068 result->str = str;
22069 obstack_grow_str0 (cpool, str);
22070 *slot = result;
22071 }
22072 return result->offset;
22073 }
22074
22075 /* An entry in the symbol table. */
22076 struct symtab_index_entry
22077 {
22078 /* The name of the symbol. */
22079 const char *name;
22080 /* The offset of the name in the constant pool. */
22081 offset_type index_offset;
22082 /* A sorted vector of the indices of all the CUs that hold an object
22083 of this name. */
22084 VEC (offset_type) *cu_indices;
22085 };
22086
22087 /* The symbol table. This is a power-of-2-sized hash table. */
22088 struct mapped_symtab
22089 {
22090 offset_type n_elements;
22091 offset_type size;
22092 struct symtab_index_entry **data;
22093 };
22094
22095 /* Hash function for a symtab_index_entry. */
22096
22097 static hashval_t
22098 hash_symtab_entry (const void *e)
22099 {
22100 const struct symtab_index_entry *entry = e;
22101 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22102 sizeof (offset_type) * VEC_length (offset_type,
22103 entry->cu_indices),
22104 0);
22105 }
22106
22107 /* Equality function for a symtab_index_entry. */
22108
22109 static int
22110 eq_symtab_entry (const void *a, const void *b)
22111 {
22112 const struct symtab_index_entry *ea = a;
22113 const struct symtab_index_entry *eb = b;
22114 int len = VEC_length (offset_type, ea->cu_indices);
22115 if (len != VEC_length (offset_type, eb->cu_indices))
22116 return 0;
22117 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22118 VEC_address (offset_type, eb->cu_indices),
22119 sizeof (offset_type) * len);
22120 }
22121
22122 /* Destroy a symtab_index_entry. */
22123
22124 static void
22125 delete_symtab_entry (void *p)
22126 {
22127 struct symtab_index_entry *entry = p;
22128 VEC_free (offset_type, entry->cu_indices);
22129 xfree (entry);
22130 }
22131
22132 /* Create a hash table holding symtab_index_entry objects. */
22133
22134 static htab_t
22135 create_symbol_hash_table (void)
22136 {
22137 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22138 delete_symtab_entry, xcalloc, xfree);
22139 }
22140
22141 /* Create a new mapped symtab object. */
22142
22143 static struct mapped_symtab *
22144 create_mapped_symtab (void)
22145 {
22146 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22147 symtab->n_elements = 0;
22148 symtab->size = 1024;
22149 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22150 return symtab;
22151 }
22152
22153 /* Destroy a mapped_symtab. */
22154
22155 static void
22156 cleanup_mapped_symtab (void *p)
22157 {
22158 struct mapped_symtab *symtab = p;
22159 /* The contents of the array are freed when the other hash table is
22160 destroyed. */
22161 xfree (symtab->data);
22162 xfree (symtab);
22163 }
22164
22165 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22166 the slot.
22167
22168 Function is used only during write_hash_table so no index format backward
22169 compatibility is needed. */
22170
22171 static struct symtab_index_entry **
22172 find_slot (struct mapped_symtab *symtab, const char *name)
22173 {
22174 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22175
22176 index = hash & (symtab->size - 1);
22177 step = ((hash * 17) & (symtab->size - 1)) | 1;
22178
22179 for (;;)
22180 {
22181 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22182 return &symtab->data[index];
22183 index = (index + step) & (symtab->size - 1);
22184 }
22185 }
22186
22187 /* Expand SYMTAB's hash table. */
22188
22189 static void
22190 hash_expand (struct mapped_symtab *symtab)
22191 {
22192 offset_type old_size = symtab->size;
22193 offset_type i;
22194 struct symtab_index_entry **old_entries = symtab->data;
22195
22196 symtab->size *= 2;
22197 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22198
22199 for (i = 0; i < old_size; ++i)
22200 {
22201 if (old_entries[i])
22202 {
22203 struct symtab_index_entry **slot = find_slot (symtab,
22204 old_entries[i]->name);
22205 *slot = old_entries[i];
22206 }
22207 }
22208
22209 xfree (old_entries);
22210 }
22211
22212 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22213 CU_INDEX is the index of the CU in which the symbol appears.
22214 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22215
22216 static void
22217 add_index_entry (struct mapped_symtab *symtab, const char *name,
22218 int is_static, gdb_index_symbol_kind kind,
22219 offset_type cu_index)
22220 {
22221 struct symtab_index_entry **slot;
22222 offset_type cu_index_and_attrs;
22223
22224 ++symtab->n_elements;
22225 if (4 * symtab->n_elements / 3 >= symtab->size)
22226 hash_expand (symtab);
22227
22228 slot = find_slot (symtab, name);
22229 if (!*slot)
22230 {
22231 *slot = XNEW (struct symtab_index_entry);
22232 (*slot)->name = name;
22233 /* index_offset is set later. */
22234 (*slot)->cu_indices = NULL;
22235 }
22236
22237 cu_index_and_attrs = 0;
22238 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22239 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22240 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22241
22242 /* We don't want to record an index value twice as we want to avoid the
22243 duplication.
22244 We process all global symbols and then all static symbols
22245 (which would allow us to avoid the duplication by only having to check
22246 the last entry pushed), but a symbol could have multiple kinds in one CU.
22247 To keep things simple we don't worry about the duplication here and
22248 sort and uniqufy the list after we've processed all symbols. */
22249 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22250 }
22251
22252 /* qsort helper routine for uniquify_cu_indices. */
22253
22254 static int
22255 offset_type_compare (const void *ap, const void *bp)
22256 {
22257 offset_type a = *(offset_type *) ap;
22258 offset_type b = *(offset_type *) bp;
22259
22260 return (a > b) - (b > a);
22261 }
22262
22263 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22264
22265 static void
22266 uniquify_cu_indices (struct mapped_symtab *symtab)
22267 {
22268 int i;
22269
22270 for (i = 0; i < symtab->size; ++i)
22271 {
22272 struct symtab_index_entry *entry = symtab->data[i];
22273
22274 if (entry
22275 && entry->cu_indices != NULL)
22276 {
22277 unsigned int next_to_insert, next_to_check;
22278 offset_type last_value;
22279
22280 qsort (VEC_address (offset_type, entry->cu_indices),
22281 VEC_length (offset_type, entry->cu_indices),
22282 sizeof (offset_type), offset_type_compare);
22283
22284 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22285 next_to_insert = 1;
22286 for (next_to_check = 1;
22287 next_to_check < VEC_length (offset_type, entry->cu_indices);
22288 ++next_to_check)
22289 {
22290 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22291 != last_value)
22292 {
22293 last_value = VEC_index (offset_type, entry->cu_indices,
22294 next_to_check);
22295 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22296 last_value);
22297 ++next_to_insert;
22298 }
22299 }
22300 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22301 }
22302 }
22303 }
22304
22305 /* Add a vector of indices to the constant pool. */
22306
22307 static offset_type
22308 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22309 struct symtab_index_entry *entry)
22310 {
22311 void **slot;
22312
22313 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22314 if (!*slot)
22315 {
22316 offset_type len = VEC_length (offset_type, entry->cu_indices);
22317 offset_type val = MAYBE_SWAP (len);
22318 offset_type iter;
22319 int i;
22320
22321 *slot = entry;
22322 entry->index_offset = obstack_object_size (cpool);
22323
22324 obstack_grow (cpool, &val, sizeof (val));
22325 for (i = 0;
22326 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22327 ++i)
22328 {
22329 val = MAYBE_SWAP (iter);
22330 obstack_grow (cpool, &val, sizeof (val));
22331 }
22332 }
22333 else
22334 {
22335 struct symtab_index_entry *old_entry = *slot;
22336 entry->index_offset = old_entry->index_offset;
22337 entry = old_entry;
22338 }
22339 return entry->index_offset;
22340 }
22341
22342 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22343 constant pool entries going into the obstack CPOOL. */
22344
22345 static void
22346 write_hash_table (struct mapped_symtab *symtab,
22347 struct obstack *output, struct obstack *cpool)
22348 {
22349 offset_type i;
22350 htab_t symbol_hash_table;
22351 htab_t str_table;
22352
22353 symbol_hash_table = create_symbol_hash_table ();
22354 str_table = create_strtab ();
22355
22356 /* We add all the index vectors to the constant pool first, to
22357 ensure alignment is ok. */
22358 for (i = 0; i < symtab->size; ++i)
22359 {
22360 if (symtab->data[i])
22361 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22362 }
22363
22364 /* Now write out the hash table. */
22365 for (i = 0; i < symtab->size; ++i)
22366 {
22367 offset_type str_off, vec_off;
22368
22369 if (symtab->data[i])
22370 {
22371 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22372 vec_off = symtab->data[i]->index_offset;
22373 }
22374 else
22375 {
22376 /* While 0 is a valid constant pool index, it is not valid
22377 to have 0 for both offsets. */
22378 str_off = 0;
22379 vec_off = 0;
22380 }
22381
22382 str_off = MAYBE_SWAP (str_off);
22383 vec_off = MAYBE_SWAP (vec_off);
22384
22385 obstack_grow (output, &str_off, sizeof (str_off));
22386 obstack_grow (output, &vec_off, sizeof (vec_off));
22387 }
22388
22389 htab_delete (str_table);
22390 htab_delete (symbol_hash_table);
22391 }
22392
22393 /* Struct to map psymtab to CU index in the index file. */
22394 struct psymtab_cu_index_map
22395 {
22396 struct partial_symtab *psymtab;
22397 unsigned int cu_index;
22398 };
22399
22400 static hashval_t
22401 hash_psymtab_cu_index (const void *item)
22402 {
22403 const struct psymtab_cu_index_map *map = item;
22404
22405 return htab_hash_pointer (map->psymtab);
22406 }
22407
22408 static int
22409 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22410 {
22411 const struct psymtab_cu_index_map *lhs = item_lhs;
22412 const struct psymtab_cu_index_map *rhs = item_rhs;
22413
22414 return lhs->psymtab == rhs->psymtab;
22415 }
22416
22417 /* Helper struct for building the address table. */
22418 struct addrmap_index_data
22419 {
22420 struct objfile *objfile;
22421 struct obstack *addr_obstack;
22422 htab_t cu_index_htab;
22423
22424 /* Non-zero if the previous_* fields are valid.
22425 We can't write an entry until we see the next entry (since it is only then
22426 that we know the end of the entry). */
22427 int previous_valid;
22428 /* Index of the CU in the table of all CUs in the index file. */
22429 unsigned int previous_cu_index;
22430 /* Start address of the CU. */
22431 CORE_ADDR previous_cu_start;
22432 };
22433
22434 /* Write an address entry to OBSTACK. */
22435
22436 static void
22437 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22438 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22439 {
22440 offset_type cu_index_to_write;
22441 gdb_byte addr[8];
22442 CORE_ADDR baseaddr;
22443
22444 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22445
22446 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22447 obstack_grow (obstack, addr, 8);
22448 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22449 obstack_grow (obstack, addr, 8);
22450 cu_index_to_write = MAYBE_SWAP (cu_index);
22451 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22452 }
22453
22454 /* Worker function for traversing an addrmap to build the address table. */
22455
22456 static int
22457 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22458 {
22459 struct addrmap_index_data *data = datap;
22460 struct partial_symtab *pst = obj;
22461
22462 if (data->previous_valid)
22463 add_address_entry (data->objfile, data->addr_obstack,
22464 data->previous_cu_start, start_addr,
22465 data->previous_cu_index);
22466
22467 data->previous_cu_start = start_addr;
22468 if (pst != NULL)
22469 {
22470 struct psymtab_cu_index_map find_map, *map;
22471 find_map.psymtab = pst;
22472 map = htab_find (data->cu_index_htab, &find_map);
22473 gdb_assert (map != NULL);
22474 data->previous_cu_index = map->cu_index;
22475 data->previous_valid = 1;
22476 }
22477 else
22478 data->previous_valid = 0;
22479
22480 return 0;
22481 }
22482
22483 /* Write OBJFILE's address map to OBSTACK.
22484 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22485 in the index file. */
22486
22487 static void
22488 write_address_map (struct objfile *objfile, struct obstack *obstack,
22489 htab_t cu_index_htab)
22490 {
22491 struct addrmap_index_data addrmap_index_data;
22492
22493 /* When writing the address table, we have to cope with the fact that
22494 the addrmap iterator only provides the start of a region; we have to
22495 wait until the next invocation to get the start of the next region. */
22496
22497 addrmap_index_data.objfile = objfile;
22498 addrmap_index_data.addr_obstack = obstack;
22499 addrmap_index_data.cu_index_htab = cu_index_htab;
22500 addrmap_index_data.previous_valid = 0;
22501
22502 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22503 &addrmap_index_data);
22504
22505 /* It's highly unlikely the last entry (end address = 0xff...ff)
22506 is valid, but we should still handle it.
22507 The end address is recorded as the start of the next region, but that
22508 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22509 anyway. */
22510 if (addrmap_index_data.previous_valid)
22511 add_address_entry (objfile, obstack,
22512 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22513 addrmap_index_data.previous_cu_index);
22514 }
22515
22516 /* Return the symbol kind of PSYM. */
22517
22518 static gdb_index_symbol_kind
22519 symbol_kind (struct partial_symbol *psym)
22520 {
22521 domain_enum domain = PSYMBOL_DOMAIN (psym);
22522 enum address_class aclass = PSYMBOL_CLASS (psym);
22523
22524 switch (domain)
22525 {
22526 case VAR_DOMAIN:
22527 switch (aclass)
22528 {
22529 case LOC_BLOCK:
22530 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22531 case LOC_TYPEDEF:
22532 return GDB_INDEX_SYMBOL_KIND_TYPE;
22533 case LOC_COMPUTED:
22534 case LOC_CONST_BYTES:
22535 case LOC_OPTIMIZED_OUT:
22536 case LOC_STATIC:
22537 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22538 case LOC_CONST:
22539 /* Note: It's currently impossible to recognize psyms as enum values
22540 short of reading the type info. For now punt. */
22541 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22542 default:
22543 /* There are other LOC_FOO values that one might want to classify
22544 as variables, but dwarf2read.c doesn't currently use them. */
22545 return GDB_INDEX_SYMBOL_KIND_OTHER;
22546 }
22547 case STRUCT_DOMAIN:
22548 return GDB_INDEX_SYMBOL_KIND_TYPE;
22549 default:
22550 return GDB_INDEX_SYMBOL_KIND_OTHER;
22551 }
22552 }
22553
22554 /* Add a list of partial symbols to SYMTAB. */
22555
22556 static void
22557 write_psymbols (struct mapped_symtab *symtab,
22558 htab_t psyms_seen,
22559 struct partial_symbol **psymp,
22560 int count,
22561 offset_type cu_index,
22562 int is_static)
22563 {
22564 for (; count-- > 0; ++psymp)
22565 {
22566 struct partial_symbol *psym = *psymp;
22567 void **slot;
22568
22569 if (SYMBOL_LANGUAGE (psym) == language_ada)
22570 error (_("Ada is not currently supported by the index"));
22571
22572 /* Only add a given psymbol once. */
22573 slot = htab_find_slot (psyms_seen, psym, INSERT);
22574 if (!*slot)
22575 {
22576 gdb_index_symbol_kind kind = symbol_kind (psym);
22577
22578 *slot = psym;
22579 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22580 is_static, kind, cu_index);
22581 }
22582 }
22583 }
22584
22585 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22586 exception if there is an error. */
22587
22588 static void
22589 write_obstack (FILE *file, struct obstack *obstack)
22590 {
22591 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22592 file)
22593 != obstack_object_size (obstack))
22594 error (_("couldn't data write to file"));
22595 }
22596
22597 /* Unlink a file if the argument is not NULL. */
22598
22599 static void
22600 unlink_if_set (void *p)
22601 {
22602 char **filename = p;
22603 if (*filename)
22604 unlink (*filename);
22605 }
22606
22607 /* A helper struct used when iterating over debug_types. */
22608 struct signatured_type_index_data
22609 {
22610 struct objfile *objfile;
22611 struct mapped_symtab *symtab;
22612 struct obstack *types_list;
22613 htab_t psyms_seen;
22614 int cu_index;
22615 };
22616
22617 /* A helper function that writes a single signatured_type to an
22618 obstack. */
22619
22620 static int
22621 write_one_signatured_type (void **slot, void *d)
22622 {
22623 struct signatured_type_index_data *info = d;
22624 struct signatured_type *entry = (struct signatured_type *) *slot;
22625 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22626 gdb_byte val[8];
22627
22628 write_psymbols (info->symtab,
22629 info->psyms_seen,
22630 info->objfile->global_psymbols.list
22631 + psymtab->globals_offset,
22632 psymtab->n_global_syms, info->cu_index,
22633 0);
22634 write_psymbols (info->symtab,
22635 info->psyms_seen,
22636 info->objfile->static_psymbols.list
22637 + psymtab->statics_offset,
22638 psymtab->n_static_syms, info->cu_index,
22639 1);
22640
22641 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22642 entry->per_cu.offset.sect_off);
22643 obstack_grow (info->types_list, val, 8);
22644 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22645 entry->type_offset_in_tu.cu_off);
22646 obstack_grow (info->types_list, val, 8);
22647 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22648 obstack_grow (info->types_list, val, 8);
22649
22650 ++info->cu_index;
22651
22652 return 1;
22653 }
22654
22655 /* Recurse into all "included" dependencies and write their symbols as
22656 if they appeared in this psymtab. */
22657
22658 static void
22659 recursively_write_psymbols (struct objfile *objfile,
22660 struct partial_symtab *psymtab,
22661 struct mapped_symtab *symtab,
22662 htab_t psyms_seen,
22663 offset_type cu_index)
22664 {
22665 int i;
22666
22667 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22668 if (psymtab->dependencies[i]->user != NULL)
22669 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22670 symtab, psyms_seen, cu_index);
22671
22672 write_psymbols (symtab,
22673 psyms_seen,
22674 objfile->global_psymbols.list + psymtab->globals_offset,
22675 psymtab->n_global_syms, cu_index,
22676 0);
22677 write_psymbols (symtab,
22678 psyms_seen,
22679 objfile->static_psymbols.list + psymtab->statics_offset,
22680 psymtab->n_static_syms, cu_index,
22681 1);
22682 }
22683
22684 /* Create an index file for OBJFILE in the directory DIR. */
22685
22686 static void
22687 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22688 {
22689 struct cleanup *cleanup;
22690 char *filename, *cleanup_filename;
22691 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22692 struct obstack cu_list, types_cu_list;
22693 int i;
22694 FILE *out_file;
22695 struct mapped_symtab *symtab;
22696 offset_type val, size_of_contents, total_len;
22697 struct stat st;
22698 htab_t psyms_seen;
22699 htab_t cu_index_htab;
22700 struct psymtab_cu_index_map *psymtab_cu_index_map;
22701
22702 if (dwarf2_per_objfile->using_index)
22703 error (_("Cannot use an index to create the index"));
22704
22705 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22706 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22707
22708 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22709 return;
22710
22711 if (stat (objfile_name (objfile), &st) < 0)
22712 perror_with_name (objfile_name (objfile));
22713
22714 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22715 INDEX_SUFFIX, (char *) NULL);
22716 cleanup = make_cleanup (xfree, filename);
22717
22718 out_file = gdb_fopen_cloexec (filename, "wb");
22719 if (!out_file)
22720 error (_("Can't open `%s' for writing"), filename);
22721
22722 cleanup_filename = filename;
22723 make_cleanup (unlink_if_set, &cleanup_filename);
22724
22725 symtab = create_mapped_symtab ();
22726 make_cleanup (cleanup_mapped_symtab, symtab);
22727
22728 obstack_init (&addr_obstack);
22729 make_cleanup_obstack_free (&addr_obstack);
22730
22731 obstack_init (&cu_list);
22732 make_cleanup_obstack_free (&cu_list);
22733
22734 obstack_init (&types_cu_list);
22735 make_cleanup_obstack_free (&types_cu_list);
22736
22737 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22738 NULL, xcalloc, xfree);
22739 make_cleanup_htab_delete (psyms_seen);
22740
22741 /* While we're scanning CU's create a table that maps a psymtab pointer
22742 (which is what addrmap records) to its index (which is what is recorded
22743 in the index file). This will later be needed to write the address
22744 table. */
22745 cu_index_htab = htab_create_alloc (100,
22746 hash_psymtab_cu_index,
22747 eq_psymtab_cu_index,
22748 NULL, xcalloc, xfree);
22749 make_cleanup_htab_delete (cu_index_htab);
22750 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22751 xmalloc (sizeof (struct psymtab_cu_index_map)
22752 * dwarf2_per_objfile->n_comp_units);
22753 make_cleanup (xfree, psymtab_cu_index_map);
22754
22755 /* The CU list is already sorted, so we don't need to do additional
22756 work here. Also, the debug_types entries do not appear in
22757 all_comp_units, but only in their own hash table. */
22758 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22759 {
22760 struct dwarf2_per_cu_data *per_cu
22761 = dwarf2_per_objfile->all_comp_units[i];
22762 struct partial_symtab *psymtab = per_cu->v.psymtab;
22763 gdb_byte val[8];
22764 struct psymtab_cu_index_map *map;
22765 void **slot;
22766
22767 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22768 It may be referenced from a local scope but in such case it does not
22769 need to be present in .gdb_index. */
22770 if (psymtab == NULL)
22771 continue;
22772
22773 if (psymtab->user == NULL)
22774 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22775
22776 map = &psymtab_cu_index_map[i];
22777 map->psymtab = psymtab;
22778 map->cu_index = i;
22779 slot = htab_find_slot (cu_index_htab, map, INSERT);
22780 gdb_assert (slot != NULL);
22781 gdb_assert (*slot == NULL);
22782 *slot = map;
22783
22784 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22785 per_cu->offset.sect_off);
22786 obstack_grow (&cu_list, val, 8);
22787 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22788 obstack_grow (&cu_list, val, 8);
22789 }
22790
22791 /* Dump the address map. */
22792 write_address_map (objfile, &addr_obstack, cu_index_htab);
22793
22794 /* Write out the .debug_type entries, if any. */
22795 if (dwarf2_per_objfile->signatured_types)
22796 {
22797 struct signatured_type_index_data sig_data;
22798
22799 sig_data.objfile = objfile;
22800 sig_data.symtab = symtab;
22801 sig_data.types_list = &types_cu_list;
22802 sig_data.psyms_seen = psyms_seen;
22803 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22804 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22805 write_one_signatured_type, &sig_data);
22806 }
22807
22808 /* Now that we've processed all symbols we can shrink their cu_indices
22809 lists. */
22810 uniquify_cu_indices (symtab);
22811
22812 obstack_init (&constant_pool);
22813 make_cleanup_obstack_free (&constant_pool);
22814 obstack_init (&symtab_obstack);
22815 make_cleanup_obstack_free (&symtab_obstack);
22816 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22817
22818 obstack_init (&contents);
22819 make_cleanup_obstack_free (&contents);
22820 size_of_contents = 6 * sizeof (offset_type);
22821 total_len = size_of_contents;
22822
22823 /* The version number. */
22824 val = MAYBE_SWAP (8);
22825 obstack_grow (&contents, &val, sizeof (val));
22826
22827 /* The offset of the CU list from the start of the file. */
22828 val = MAYBE_SWAP (total_len);
22829 obstack_grow (&contents, &val, sizeof (val));
22830 total_len += obstack_object_size (&cu_list);
22831
22832 /* The offset of the types CU list from the start of the file. */
22833 val = MAYBE_SWAP (total_len);
22834 obstack_grow (&contents, &val, sizeof (val));
22835 total_len += obstack_object_size (&types_cu_list);
22836
22837 /* The offset of the address table from the start of the file. */
22838 val = MAYBE_SWAP (total_len);
22839 obstack_grow (&contents, &val, sizeof (val));
22840 total_len += obstack_object_size (&addr_obstack);
22841
22842 /* The offset of the symbol table from the start of the file. */
22843 val = MAYBE_SWAP (total_len);
22844 obstack_grow (&contents, &val, sizeof (val));
22845 total_len += obstack_object_size (&symtab_obstack);
22846
22847 /* The offset of the constant pool from the start of the file. */
22848 val = MAYBE_SWAP (total_len);
22849 obstack_grow (&contents, &val, sizeof (val));
22850 total_len += obstack_object_size (&constant_pool);
22851
22852 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22853
22854 write_obstack (out_file, &contents);
22855 write_obstack (out_file, &cu_list);
22856 write_obstack (out_file, &types_cu_list);
22857 write_obstack (out_file, &addr_obstack);
22858 write_obstack (out_file, &symtab_obstack);
22859 write_obstack (out_file, &constant_pool);
22860
22861 fclose (out_file);
22862
22863 /* We want to keep the file, so we set cleanup_filename to NULL
22864 here. See unlink_if_set. */
22865 cleanup_filename = NULL;
22866
22867 do_cleanups (cleanup);
22868 }
22869
22870 /* Implementation of the `save gdb-index' command.
22871
22872 Note that the file format used by this command is documented in the
22873 GDB manual. Any changes here must be documented there. */
22874
22875 static void
22876 save_gdb_index_command (char *arg, int from_tty)
22877 {
22878 struct objfile *objfile;
22879
22880 if (!arg || !*arg)
22881 error (_("usage: save gdb-index DIRECTORY"));
22882
22883 ALL_OBJFILES (objfile)
22884 {
22885 struct stat st;
22886
22887 /* If the objfile does not correspond to an actual file, skip it. */
22888 if (stat (objfile_name (objfile), &st) < 0)
22889 continue;
22890
22891 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22892 if (dwarf2_per_objfile)
22893 {
22894 volatile struct gdb_exception except;
22895
22896 TRY_CATCH (except, RETURN_MASK_ERROR)
22897 {
22898 write_psymtabs_to_index (objfile, arg);
22899 }
22900 if (except.reason < 0)
22901 exception_fprintf (gdb_stderr, except,
22902 _("Error while writing index for `%s': "),
22903 objfile_name (objfile));
22904 }
22905 }
22906 }
22907
22908 \f
22909
22910 int dwarf2_always_disassemble;
22911
22912 static void
22913 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22914 struct cmd_list_element *c, const char *value)
22915 {
22916 fprintf_filtered (file,
22917 _("Whether to always disassemble "
22918 "DWARF expressions is %s.\n"),
22919 value);
22920 }
22921
22922 static void
22923 show_check_physname (struct ui_file *file, int from_tty,
22924 struct cmd_list_element *c, const char *value)
22925 {
22926 fprintf_filtered (file,
22927 _("Whether to check \"physname\" is %s.\n"),
22928 value);
22929 }
22930
22931 void _initialize_dwarf2_read (void);
22932
22933 void
22934 _initialize_dwarf2_read (void)
22935 {
22936 struct cmd_list_element *c;
22937
22938 dwarf2_objfile_data_key
22939 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22940
22941 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22942 Set DWARF 2 specific variables.\n\
22943 Configure DWARF 2 variables such as the cache size"),
22944 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22945 0/*allow-unknown*/, &maintenance_set_cmdlist);
22946
22947 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22948 Show DWARF 2 specific variables\n\
22949 Show DWARF 2 variables such as the cache size"),
22950 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22951 0/*allow-unknown*/, &maintenance_show_cmdlist);
22952
22953 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22954 &dwarf2_max_cache_age, _("\
22955 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22956 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22957 A higher limit means that cached compilation units will be stored\n\
22958 in memory longer, and more total memory will be used. Zero disables\n\
22959 caching, which can slow down startup."),
22960 NULL,
22961 show_dwarf2_max_cache_age,
22962 &set_dwarf2_cmdlist,
22963 &show_dwarf2_cmdlist);
22964
22965 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22966 &dwarf2_always_disassemble, _("\
22967 Set whether `info address' always disassembles DWARF expressions."), _("\
22968 Show whether `info address' always disassembles DWARF expressions."), _("\
22969 When enabled, DWARF expressions are always printed in an assembly-like\n\
22970 syntax. When disabled, expressions will be printed in a more\n\
22971 conversational style, when possible."),
22972 NULL,
22973 show_dwarf2_always_disassemble,
22974 &set_dwarf2_cmdlist,
22975 &show_dwarf2_cmdlist);
22976
22977 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22978 Set debugging of the dwarf2 reader."), _("\
22979 Show debugging of the dwarf2 reader."), _("\
22980 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22981 reading and symtab expansion. A value of 1 (one) provides basic\n\
22982 information. A value greater than 1 provides more verbose information."),
22983 NULL,
22984 NULL,
22985 &setdebuglist, &showdebuglist);
22986
22987 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22988 Set debugging of the dwarf2 DIE reader."), _("\
22989 Show debugging of the dwarf2 DIE reader."), _("\
22990 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22991 The value is the maximum depth to print."),
22992 NULL,
22993 NULL,
22994 &setdebuglist, &showdebuglist);
22995
22996 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22997 Set cross-checking of \"physname\" code against demangler."), _("\
22998 Show cross-checking of \"physname\" code against demangler."), _("\
22999 When enabled, GDB's internal \"physname\" code is checked against\n\
23000 the demangler."),
23001 NULL, show_check_physname,
23002 &setdebuglist, &showdebuglist);
23003
23004 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23005 no_class, &use_deprecated_index_sections, _("\
23006 Set whether to use deprecated gdb_index sections."), _("\
23007 Show whether to use deprecated gdb_index sections."), _("\
23008 When enabled, deprecated .gdb_index sections are used anyway.\n\
23009 Normally they are ignored either because of a missing feature or\n\
23010 performance issue.\n\
23011 Warning: This option must be enabled before gdb reads the file."),
23012 NULL,
23013 NULL,
23014 &setlist, &showlist);
23015
23016 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23017 _("\
23018 Save a gdb-index file.\n\
23019 Usage: save gdb-index DIRECTORY"),
23020 &save_cmdlist);
23021 set_cmd_completer (c, filename_completer);
23022
23023 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23024 &dwarf2_locexpr_funcs);
23025 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23026 &dwarf2_loclist_funcs);
23027
23028 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23029 &dwarf2_block_frame_base_locexpr_funcs);
23030 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23031 &dwarf2_block_frame_base_loclist_funcs);
23032 }