Fix a regression by: Code cleanup: Split dwarf2_ranges_read to a callback
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76 #include <algorithm>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When non-zero, cross-check physname against demangler. */
93 static int check_physname = 0;
94
95 /* When non-zero, do not reject deprecated .gdb_index sections. */
96 static int use_deprecated_index_sections = 0;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
123 struct dwarf2_section_info
124 {
125 union
126 {
127 /* If this is a real section, the bfd section. */
128 asection *section;
129 /* If this is a virtual section, pointer to the containing ("real")
130 section. */
131 struct dwarf2_section_info *containing_section;
132 } s;
133 /* Pointer to section data, only valid if readin. */
134 const gdb_byte *buffer;
135 /* The size of the section, real or virtual. */
136 bfd_size_type size;
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
140 /* True if we have tried to read this section. */
141 char readin;
142 /* True if this is a virtual section, False otherwise.
143 This specifies which of s.section and s.containing_section to use. */
144 char is_virtual;
145 };
146
147 typedef struct dwarf2_section_info dwarf2_section_info_def;
148 DEF_VEC_O (dwarf2_section_info_def);
149
150 /* All offsets in the index are of this type. It must be
151 architecture-independent. */
152 typedef uint32_t offset_type;
153
154 DEF_VEC_I (offset_type);
155
156 /* Ensure only legit values are used. */
157 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
172 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180 struct mapped_index
181 {
182 /* Index data format version. */
183 int version;
184
185 /* The total length of the buffer. */
186 off_t total_size;
187
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
190
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
193
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
196
197 /* Size in slots, each slot is 2 offset_types. */
198 offset_type symbol_table_slots;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202 };
203
204 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205 DEF_VEC_P (dwarf2_per_cu_ptr);
206
207 struct tu_stats
208 {
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214 };
215
216 /* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
219 struct dwarf2_per_objfile
220 {
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
224 struct dwarf2_section_info loc;
225 struct dwarf2_section_info loclists;
226 struct dwarf2_section_info macinfo;
227 struct dwarf2_section_info macro;
228 struct dwarf2_section_info str;
229 struct dwarf2_section_info line_str;
230 struct dwarf2_section_info ranges;
231 struct dwarf2_section_info rnglists;
232 struct dwarf2_section_info addr;
233 struct dwarf2_section_info frame;
234 struct dwarf2_section_info eh_frame;
235 struct dwarf2_section_info gdb_index;
236
237 VEC (dwarf2_section_info_def) *types;
238
239 /* Back link. */
240 struct objfile *objfile;
241
242 /* Table of all the compilation units. This is used to locate
243 the target compilation unit of a particular reference. */
244 struct dwarf2_per_cu_data **all_comp_units;
245
246 /* The number of compilation units in ALL_COMP_UNITS. */
247 int n_comp_units;
248
249 /* The number of .debug_types-related CUs. */
250 int n_type_units;
251
252 /* The number of elements allocated in all_type_units.
253 If there are skeleton-less TUs, we add them to all_type_units lazily. */
254 int n_allocated_type_units;
255
256 /* The .debug_types-related CUs (TUs).
257 This is stored in malloc space because we may realloc it. */
258 struct signatured_type **all_type_units;
259
260 /* Table of struct type_unit_group objects.
261 The hash key is the DW_AT_stmt_list value. */
262 htab_t type_unit_groups;
263
264 /* A table mapping .debug_types signatures to its signatured_type entry.
265 This is NULL if the .debug_types section hasn't been read in yet. */
266 htab_t signatured_types;
267
268 /* Type unit statistics, to see how well the scaling improvements
269 are doing. */
270 struct tu_stats tu_stats;
271
272 /* A chain of compilation units that are currently read in, so that
273 they can be freed later. */
274 struct dwarf2_per_cu_data *read_in_chain;
275
276 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
277 This is NULL if the table hasn't been allocated yet. */
278 htab_t dwo_files;
279
280 /* Non-zero if we've check for whether there is a DWP file. */
281 int dwp_checked;
282
283 /* The DWP file if there is one, or NULL. */
284 struct dwp_file *dwp_file;
285
286 /* The shared '.dwz' file, if one exists. This is used when the
287 original data was compressed using 'dwz -m'. */
288 struct dwz_file *dwz_file;
289
290 /* A flag indicating wether this objfile has a section loaded at a
291 VMA of 0. */
292 int has_section_at_zero;
293
294 /* True if we are using the mapped index,
295 or we are faking it for OBJF_READNOW's sake. */
296 unsigned char using_index;
297
298 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
299 struct mapped_index *index_table;
300
301 /* When using index_table, this keeps track of all quick_file_names entries.
302 TUs typically share line table entries with a CU, so we maintain a
303 separate table of all line table entries to support the sharing.
304 Note that while there can be way more TUs than CUs, we've already
305 sorted all the TUs into "type unit groups", grouped by their
306 DW_AT_stmt_list value. Therefore the only sharing done here is with a
307 CU and its associated TU group if there is one. */
308 htab_t quick_file_names_table;
309
310 /* Set during partial symbol reading, to prevent queueing of full
311 symbols. */
312 int reading_partial_symbols;
313
314 /* Table mapping type DIEs to their struct type *.
315 This is NULL if not allocated yet.
316 The mapping is done via (CU/TU + DIE offset) -> type. */
317 htab_t die_type_hash;
318
319 /* The CUs we recently read. */
320 VEC (dwarf2_per_cu_ptr) *just_read_cus;
321
322 /* Table containing line_header indexed by offset and offset_in_dwz. */
323 htab_t line_header_hash;
324 };
325
326 static struct dwarf2_per_objfile *dwarf2_per_objfile;
327
328 /* Default names of the debugging sections. */
329
330 /* Note that if the debugging section has been compressed, it might
331 have a name like .zdebug_info. */
332
333 static const struct dwarf2_debug_sections dwarf2_elf_names =
334 {
335 { ".debug_info", ".zdebug_info" },
336 { ".debug_abbrev", ".zdebug_abbrev" },
337 { ".debug_line", ".zdebug_line" },
338 { ".debug_loc", ".zdebug_loc" },
339 { ".debug_loclists", ".zdebug_loclists" },
340 { ".debug_macinfo", ".zdebug_macinfo" },
341 { ".debug_macro", ".zdebug_macro" },
342 { ".debug_str", ".zdebug_str" },
343 { ".debug_line_str", ".zdebug_line_str" },
344 { ".debug_ranges", ".zdebug_ranges" },
345 { ".debug_rnglists", ".zdebug_rnglists" },
346 { ".debug_types", ".zdebug_types" },
347 { ".debug_addr", ".zdebug_addr" },
348 { ".debug_frame", ".zdebug_frame" },
349 { ".eh_frame", NULL },
350 { ".gdb_index", ".zgdb_index" },
351 23
352 };
353
354 /* List of DWO/DWP sections. */
355
356 static const struct dwop_section_names
357 {
358 struct dwarf2_section_names abbrev_dwo;
359 struct dwarf2_section_names info_dwo;
360 struct dwarf2_section_names line_dwo;
361 struct dwarf2_section_names loc_dwo;
362 struct dwarf2_section_names loclists_dwo;
363 struct dwarf2_section_names macinfo_dwo;
364 struct dwarf2_section_names macro_dwo;
365 struct dwarf2_section_names str_dwo;
366 struct dwarf2_section_names str_offsets_dwo;
367 struct dwarf2_section_names types_dwo;
368 struct dwarf2_section_names cu_index;
369 struct dwarf2_section_names tu_index;
370 }
371 dwop_section_names =
372 {
373 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
374 { ".debug_info.dwo", ".zdebug_info.dwo" },
375 { ".debug_line.dwo", ".zdebug_line.dwo" },
376 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
377 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
378 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
379 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
380 { ".debug_str.dwo", ".zdebug_str.dwo" },
381 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
382 { ".debug_types.dwo", ".zdebug_types.dwo" },
383 { ".debug_cu_index", ".zdebug_cu_index" },
384 { ".debug_tu_index", ".zdebug_tu_index" },
385 };
386
387 /* local data types */
388
389 /* The data in a compilation unit header, after target2host
390 translation, looks like this. */
391 struct comp_unit_head
392 {
393 unsigned int length;
394 short version;
395 unsigned char addr_size;
396 unsigned char signed_addr_p;
397 sect_offset abbrev_offset;
398
399 /* Size of file offsets; either 4 or 8. */
400 unsigned int offset_size;
401
402 /* Size of the length field; either 4 or 12. */
403 unsigned int initial_length_size;
404
405 enum dwarf_unit_type unit_type;
406
407 /* Offset to the first byte of this compilation unit header in the
408 .debug_info section, for resolving relative reference dies. */
409 sect_offset offset;
410
411 /* Offset to first die in this cu from the start of the cu.
412 This will be the first byte following the compilation unit header. */
413 cu_offset first_die_offset;
414
415 /* 64-bit signature of this type unit - it is valid only for
416 UNIT_TYPE DW_UT_type. */
417 ULONGEST signature;
418
419 /* For types, offset in the type's DIE of the type defined by this TU. */
420 cu_offset type_offset_in_tu;
421 };
422
423 /* Type used for delaying computation of method physnames.
424 See comments for compute_delayed_physnames. */
425 struct delayed_method_info
426 {
427 /* The type to which the method is attached, i.e., its parent class. */
428 struct type *type;
429
430 /* The index of the method in the type's function fieldlists. */
431 int fnfield_index;
432
433 /* The index of the method in the fieldlist. */
434 int index;
435
436 /* The name of the DIE. */
437 const char *name;
438
439 /* The DIE associated with this method. */
440 struct die_info *die;
441 };
442
443 typedef struct delayed_method_info delayed_method_info;
444 DEF_VEC_O (delayed_method_info);
445
446 /* Internal state when decoding a particular compilation unit. */
447 struct dwarf2_cu
448 {
449 /* The objfile containing this compilation unit. */
450 struct objfile *objfile;
451
452 /* The header of the compilation unit. */
453 struct comp_unit_head header;
454
455 /* Base address of this compilation unit. */
456 CORE_ADDR base_address;
457
458 /* Non-zero if base_address has been set. */
459 int base_known;
460
461 /* The language we are debugging. */
462 enum language language;
463 const struct language_defn *language_defn;
464
465 const char *producer;
466
467 /* The generic symbol table building routines have separate lists for
468 file scope symbols and all all other scopes (local scopes). So
469 we need to select the right one to pass to add_symbol_to_list().
470 We do it by keeping a pointer to the correct list in list_in_scope.
471
472 FIXME: The original dwarf code just treated the file scope as the
473 first local scope, and all other local scopes as nested local
474 scopes, and worked fine. Check to see if we really need to
475 distinguish these in buildsym.c. */
476 struct pending **list_in_scope;
477
478 /* The abbrev table for this CU.
479 Normally this points to the abbrev table in the objfile.
480 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
481 struct abbrev_table *abbrev_table;
482
483 /* Hash table holding all the loaded partial DIEs
484 with partial_die->offset.SECT_OFF as hash. */
485 htab_t partial_dies;
486
487 /* Storage for things with the same lifetime as this read-in compilation
488 unit, including partial DIEs. */
489 struct obstack comp_unit_obstack;
490
491 /* When multiple dwarf2_cu structures are living in memory, this field
492 chains them all together, so that they can be released efficiently.
493 We will probably also want a generation counter so that most-recently-used
494 compilation units are cached... */
495 struct dwarf2_per_cu_data *read_in_chain;
496
497 /* Backlink to our per_cu entry. */
498 struct dwarf2_per_cu_data *per_cu;
499
500 /* How many compilation units ago was this CU last referenced? */
501 int last_used;
502
503 /* A hash table of DIE cu_offset for following references with
504 die_info->offset.sect_off as hash. */
505 htab_t die_hash;
506
507 /* Full DIEs if read in. */
508 struct die_info *dies;
509
510 /* A set of pointers to dwarf2_per_cu_data objects for compilation
511 units referenced by this one. Only set during full symbol processing;
512 partial symbol tables do not have dependencies. */
513 htab_t dependencies;
514
515 /* Header data from the line table, during full symbol processing. */
516 struct line_header *line_header;
517
518 /* A list of methods which need to have physnames computed
519 after all type information has been read. */
520 VEC (delayed_method_info) *method_list;
521
522 /* To be copied to symtab->call_site_htab. */
523 htab_t call_site_htab;
524
525 /* Non-NULL if this CU came from a DWO file.
526 There is an invariant here that is important to remember:
527 Except for attributes copied from the top level DIE in the "main"
528 (or "stub") file in preparation for reading the DWO file
529 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
530 Either there isn't a DWO file (in which case this is NULL and the point
531 is moot), or there is and either we're not going to read it (in which
532 case this is NULL) or there is and we are reading it (in which case this
533 is non-NULL). */
534 struct dwo_unit *dwo_unit;
535
536 /* The DW_AT_addr_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE. */
539 ULONGEST addr_base;
540
541 /* The DW_AT_ranges_base attribute if present, zero otherwise
542 (zero is a valid value though).
543 Note this value comes from the Fission stub CU/TU's DIE.
544 Also note that the value is zero in the non-DWO case so this value can
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_ranges_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
551 ULONGEST ranges_base;
552
553 /* Mark used when releasing cached dies. */
554 unsigned int mark : 1;
555
556 /* This CU references .debug_loc. See the symtab->locations_valid field.
557 This test is imperfect as there may exist optimized debug code not using
558 any location list and still facing inlining issues if handled as
559 unoptimized code. For a future better test see GCC PR other/32998. */
560 unsigned int has_loclist : 1;
561
562 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
563 if all the producer_is_* fields are valid. This information is cached
564 because profiling CU expansion showed excessive time spent in
565 producer_is_gxx_lt_4_6. */
566 unsigned int checked_producer : 1;
567 unsigned int producer_is_gxx_lt_4_6 : 1;
568 unsigned int producer_is_gcc_lt_4_3 : 1;
569 unsigned int producer_is_icc : 1;
570
571 /* When set, the file that we're processing is known to have
572 debugging info for C++ namespaces. GCC 3.3.x did not produce
573 this information, but later versions do. */
574
575 unsigned int processing_has_namespace_info : 1;
576 };
577
578 /* Persistent data held for a compilation unit, even when not
579 processing it. We put a pointer to this structure in the
580 read_symtab_private field of the psymtab. */
581
582 struct dwarf2_per_cu_data
583 {
584 /* The start offset and length of this compilation unit.
585 NOTE: Unlike comp_unit_head.length, this length includes
586 initial_length_size.
587 If the DIE refers to a DWO file, this is always of the original die,
588 not the DWO file. */
589 sect_offset offset;
590 unsigned int length;
591
592 /* DWARF standard version this data has been read from (such as 4 or 5). */
593 short dwarf_version;
594
595 /* Flag indicating this compilation unit will be read in before
596 any of the current compilation units are processed. */
597 unsigned int queued : 1;
598
599 /* This flag will be set when reading partial DIEs if we need to load
600 absolutely all DIEs for this compilation unit, instead of just the ones
601 we think are interesting. It gets set if we look for a DIE in the
602 hash table and don't find it. */
603 unsigned int load_all_dies : 1;
604
605 /* Non-zero if this CU is from .debug_types.
606 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
607 this is non-zero. */
608 unsigned int is_debug_types : 1;
609
610 /* Non-zero if this CU is from the .dwz file. */
611 unsigned int is_dwz : 1;
612
613 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
614 This flag is only valid if is_debug_types is true.
615 We can't read a CU directly from a DWO file: There are required
616 attributes in the stub. */
617 unsigned int reading_dwo_directly : 1;
618
619 /* Non-zero if the TU has been read.
620 This is used to assist the "Stay in DWO Optimization" for Fission:
621 When reading a DWO, it's faster to read TUs from the DWO instead of
622 fetching them from random other DWOs (due to comdat folding).
623 If the TU has already been read, the optimization is unnecessary
624 (and unwise - we don't want to change where gdb thinks the TU lives
625 "midflight").
626 This flag is only valid if is_debug_types is true. */
627 unsigned int tu_read : 1;
628
629 /* The section this CU/TU lives in.
630 If the DIE refers to a DWO file, this is always the original die,
631 not the DWO file. */
632 struct dwarf2_section_info *section;
633
634 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
635 of the CU cache it gets reset to NULL again. This is left as NULL for
636 dummy CUs (a CU header, but nothing else). */
637 struct dwarf2_cu *cu;
638
639 /* The corresponding objfile.
640 Normally we can get the objfile from dwarf2_per_objfile.
641 However we can enter this file with just a "per_cu" handle. */
642 struct objfile *objfile;
643
644 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
645 is active. Otherwise, the 'psymtab' field is active. */
646 union
647 {
648 /* The partial symbol table associated with this compilation unit,
649 or NULL for unread partial units. */
650 struct partial_symtab *psymtab;
651
652 /* Data needed by the "quick" functions. */
653 struct dwarf2_per_cu_quick_data *quick;
654 } v;
655
656 /* The CUs we import using DW_TAG_imported_unit. This is filled in
657 while reading psymtabs, used to compute the psymtab dependencies,
658 and then cleared. Then it is filled in again while reading full
659 symbols, and only deleted when the objfile is destroyed.
660
661 This is also used to work around a difference between the way gold
662 generates .gdb_index version <=7 and the way gdb does. Arguably this
663 is a gold bug. For symbols coming from TUs, gold records in the index
664 the CU that includes the TU instead of the TU itself. This breaks
665 dw2_lookup_symbol: It assumes that if the index says symbol X lives
666 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
667 will find X. Alas TUs live in their own symtab, so after expanding CU Y
668 we need to look in TU Z to find X. Fortunately, this is akin to
669 DW_TAG_imported_unit, so we just use the same mechanism: For
670 .gdb_index version <=7 this also records the TUs that the CU referred
671 to. Concurrently with this change gdb was modified to emit version 8
672 indices so we only pay a price for gold generated indices.
673 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
674 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
675 };
676
677 /* Entry in the signatured_types hash table. */
678
679 struct signatured_type
680 {
681 /* The "per_cu" object of this type.
682 This struct is used iff per_cu.is_debug_types.
683 N.B.: This is the first member so that it's easy to convert pointers
684 between them. */
685 struct dwarf2_per_cu_data per_cu;
686
687 /* The type's signature. */
688 ULONGEST signature;
689
690 /* Offset in the TU of the type's DIE, as read from the TU header.
691 If this TU is a DWO stub and the definition lives in a DWO file
692 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
693 cu_offset type_offset_in_tu;
694
695 /* Offset in the section of the type's DIE.
696 If the definition lives in a DWO file, this is the offset in the
697 .debug_types.dwo section.
698 The value is zero until the actual value is known.
699 Zero is otherwise not a valid section offset. */
700 sect_offset type_offset_in_section;
701
702 /* Type units are grouped by their DW_AT_stmt_list entry so that they
703 can share them. This points to the containing symtab. */
704 struct type_unit_group *type_unit_group;
705
706 /* The type.
707 The first time we encounter this type we fully read it in and install it
708 in the symbol tables. Subsequent times we only need the type. */
709 struct type *type;
710
711 /* Containing DWO unit.
712 This field is valid iff per_cu.reading_dwo_directly. */
713 struct dwo_unit *dwo_unit;
714 };
715
716 typedef struct signatured_type *sig_type_ptr;
717 DEF_VEC_P (sig_type_ptr);
718
719 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
720 This includes type_unit_group and quick_file_names. */
721
722 struct stmt_list_hash
723 {
724 /* The DWO unit this table is from or NULL if there is none. */
725 struct dwo_unit *dwo_unit;
726
727 /* Offset in .debug_line or .debug_line.dwo. */
728 sect_offset line_offset;
729 };
730
731 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
732 an object of this type. */
733
734 struct type_unit_group
735 {
736 /* dwarf2read.c's main "handle" on a TU symtab.
737 To simplify things we create an artificial CU that "includes" all the
738 type units using this stmt_list so that the rest of the code still has
739 a "per_cu" handle on the symtab.
740 This PER_CU is recognized by having no section. */
741 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
742 struct dwarf2_per_cu_data per_cu;
743
744 /* The TUs that share this DW_AT_stmt_list entry.
745 This is added to while parsing type units to build partial symtabs,
746 and is deleted afterwards and not used again. */
747 VEC (sig_type_ptr) *tus;
748
749 /* The compunit symtab.
750 Type units in a group needn't all be defined in the same source file,
751 so we create an essentially anonymous symtab as the compunit symtab. */
752 struct compunit_symtab *compunit_symtab;
753
754 /* The data used to construct the hash key. */
755 struct stmt_list_hash hash;
756
757 /* The number of symtabs from the line header.
758 The value here must match line_header.num_file_names. */
759 unsigned int num_symtabs;
760
761 /* The symbol tables for this TU (obtained from the files listed in
762 DW_AT_stmt_list).
763 WARNING: The order of entries here must match the order of entries
764 in the line header. After the first TU using this type_unit_group, the
765 line header for the subsequent TUs is recreated from this. This is done
766 because we need to use the same symtabs for each TU using the same
767 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
768 there's no guarantee the line header doesn't have duplicate entries. */
769 struct symtab **symtabs;
770 };
771
772 /* These sections are what may appear in a (real or virtual) DWO file. */
773
774 struct dwo_sections
775 {
776 struct dwarf2_section_info abbrev;
777 struct dwarf2_section_info line;
778 struct dwarf2_section_info loc;
779 struct dwarf2_section_info loclists;
780 struct dwarf2_section_info macinfo;
781 struct dwarf2_section_info macro;
782 struct dwarf2_section_info str;
783 struct dwarf2_section_info str_offsets;
784 /* In the case of a virtual DWO file, these two are unused. */
785 struct dwarf2_section_info info;
786 VEC (dwarf2_section_info_def) *types;
787 };
788
789 /* CUs/TUs in DWP/DWO files. */
790
791 struct dwo_unit
792 {
793 /* Backlink to the containing struct dwo_file. */
794 struct dwo_file *dwo_file;
795
796 /* The "id" that distinguishes this CU/TU.
797 .debug_info calls this "dwo_id", .debug_types calls this "signature".
798 Since signatures came first, we stick with it for consistency. */
799 ULONGEST signature;
800
801 /* The section this CU/TU lives in, in the DWO file. */
802 struct dwarf2_section_info *section;
803
804 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
805 sect_offset offset;
806 unsigned int length;
807
808 /* For types, offset in the type's DIE of the type defined by this TU. */
809 cu_offset type_offset_in_tu;
810 };
811
812 /* include/dwarf2.h defines the DWP section codes.
813 It defines a max value but it doesn't define a min value, which we
814 use for error checking, so provide one. */
815
816 enum dwp_v2_section_ids
817 {
818 DW_SECT_MIN = 1
819 };
820
821 /* Data for one DWO file.
822
823 This includes virtual DWO files (a virtual DWO file is a DWO file as it
824 appears in a DWP file). DWP files don't really have DWO files per se -
825 comdat folding of types "loses" the DWO file they came from, and from
826 a high level view DWP files appear to contain a mass of random types.
827 However, to maintain consistency with the non-DWP case we pretend DWP
828 files contain virtual DWO files, and we assign each TU with one virtual
829 DWO file (generally based on the line and abbrev section offsets -
830 a heuristic that seems to work in practice). */
831
832 struct dwo_file
833 {
834 /* The DW_AT_GNU_dwo_name attribute.
835 For virtual DWO files the name is constructed from the section offsets
836 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
837 from related CU+TUs. */
838 const char *dwo_name;
839
840 /* The DW_AT_comp_dir attribute. */
841 const char *comp_dir;
842
843 /* The bfd, when the file is open. Otherwise this is NULL.
844 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
845 bfd *dbfd;
846
847 /* The sections that make up this DWO file.
848 Remember that for virtual DWO files in DWP V2, these are virtual
849 sections (for lack of a better name). */
850 struct dwo_sections sections;
851
852 /* The CU in the file.
853 We only support one because having more than one requires hacking the
854 dwo_name of each to match, which is highly unlikely to happen.
855 Doing this means all TUs can share comp_dir: We also assume that
856 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
857 struct dwo_unit *cu;
858
859 /* Table of TUs in the file.
860 Each element is a struct dwo_unit. */
861 htab_t tus;
862 };
863
864 /* These sections are what may appear in a DWP file. */
865
866 struct dwp_sections
867 {
868 /* These are used by both DWP version 1 and 2. */
869 struct dwarf2_section_info str;
870 struct dwarf2_section_info cu_index;
871 struct dwarf2_section_info tu_index;
872
873 /* These are only used by DWP version 2 files.
874 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
875 sections are referenced by section number, and are not recorded here.
876 In DWP version 2 there is at most one copy of all these sections, each
877 section being (effectively) comprised of the concatenation of all of the
878 individual sections that exist in the version 1 format.
879 To keep the code simple we treat each of these concatenated pieces as a
880 section itself (a virtual section?). */
881 struct dwarf2_section_info abbrev;
882 struct dwarf2_section_info info;
883 struct dwarf2_section_info line;
884 struct dwarf2_section_info loc;
885 struct dwarf2_section_info macinfo;
886 struct dwarf2_section_info macro;
887 struct dwarf2_section_info str_offsets;
888 struct dwarf2_section_info types;
889 };
890
891 /* These sections are what may appear in a virtual DWO file in DWP version 1.
892 A virtual DWO file is a DWO file as it appears in a DWP file. */
893
894 struct virtual_v1_dwo_sections
895 {
896 struct dwarf2_section_info abbrev;
897 struct dwarf2_section_info line;
898 struct dwarf2_section_info loc;
899 struct dwarf2_section_info macinfo;
900 struct dwarf2_section_info macro;
901 struct dwarf2_section_info str_offsets;
902 /* Each DWP hash table entry records one CU or one TU.
903 That is recorded here, and copied to dwo_unit.section. */
904 struct dwarf2_section_info info_or_types;
905 };
906
907 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
908 In version 2, the sections of the DWO files are concatenated together
909 and stored in one section of that name. Thus each ELF section contains
910 several "virtual" sections. */
911
912 struct virtual_v2_dwo_sections
913 {
914 bfd_size_type abbrev_offset;
915 bfd_size_type abbrev_size;
916
917 bfd_size_type line_offset;
918 bfd_size_type line_size;
919
920 bfd_size_type loc_offset;
921 bfd_size_type loc_size;
922
923 bfd_size_type macinfo_offset;
924 bfd_size_type macinfo_size;
925
926 bfd_size_type macro_offset;
927 bfd_size_type macro_size;
928
929 bfd_size_type str_offsets_offset;
930 bfd_size_type str_offsets_size;
931
932 /* Each DWP hash table entry records one CU or one TU.
933 That is recorded here, and copied to dwo_unit.section. */
934 bfd_size_type info_or_types_offset;
935 bfd_size_type info_or_types_size;
936 };
937
938 /* Contents of DWP hash tables. */
939
940 struct dwp_hash_table
941 {
942 uint32_t version, nr_columns;
943 uint32_t nr_units, nr_slots;
944 const gdb_byte *hash_table, *unit_table;
945 union
946 {
947 struct
948 {
949 const gdb_byte *indices;
950 } v1;
951 struct
952 {
953 /* This is indexed by column number and gives the id of the section
954 in that column. */
955 #define MAX_NR_V2_DWO_SECTIONS \
956 (1 /* .debug_info or .debug_types */ \
957 + 1 /* .debug_abbrev */ \
958 + 1 /* .debug_line */ \
959 + 1 /* .debug_loc */ \
960 + 1 /* .debug_str_offsets */ \
961 + 1 /* .debug_macro or .debug_macinfo */)
962 int section_ids[MAX_NR_V2_DWO_SECTIONS];
963 const gdb_byte *offsets;
964 const gdb_byte *sizes;
965 } v2;
966 } section_pool;
967 };
968
969 /* Data for one DWP file. */
970
971 struct dwp_file
972 {
973 /* Name of the file. */
974 const char *name;
975
976 /* File format version. */
977 int version;
978
979 /* The bfd. */
980 bfd *dbfd;
981
982 /* Section info for this file. */
983 struct dwp_sections sections;
984
985 /* Table of CUs in the file. */
986 const struct dwp_hash_table *cus;
987
988 /* Table of TUs in the file. */
989 const struct dwp_hash_table *tus;
990
991 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
992 htab_t loaded_cus;
993 htab_t loaded_tus;
994
995 /* Table to map ELF section numbers to their sections.
996 This is only needed for the DWP V1 file format. */
997 unsigned int num_sections;
998 asection **elf_sections;
999 };
1000
1001 /* This represents a '.dwz' file. */
1002
1003 struct dwz_file
1004 {
1005 /* A dwz file can only contain a few sections. */
1006 struct dwarf2_section_info abbrev;
1007 struct dwarf2_section_info info;
1008 struct dwarf2_section_info str;
1009 struct dwarf2_section_info line;
1010 struct dwarf2_section_info macro;
1011 struct dwarf2_section_info gdb_index;
1012
1013 /* The dwz's BFD. */
1014 bfd *dwz_bfd;
1015 };
1016
1017 /* Struct used to pass misc. parameters to read_die_and_children, et
1018 al. which are used for both .debug_info and .debug_types dies.
1019 All parameters here are unchanging for the life of the call. This
1020 struct exists to abstract away the constant parameters of die reading. */
1021
1022 struct die_reader_specs
1023 {
1024 /* The bfd of die_section. */
1025 bfd* abfd;
1026
1027 /* The CU of the DIE we are parsing. */
1028 struct dwarf2_cu *cu;
1029
1030 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1031 struct dwo_file *dwo_file;
1032
1033 /* The section the die comes from.
1034 This is either .debug_info or .debug_types, or the .dwo variants. */
1035 struct dwarf2_section_info *die_section;
1036
1037 /* die_section->buffer. */
1038 const gdb_byte *buffer;
1039
1040 /* The end of the buffer. */
1041 const gdb_byte *buffer_end;
1042
1043 /* The value of the DW_AT_comp_dir attribute. */
1044 const char *comp_dir;
1045 };
1046
1047 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1048 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1049 const gdb_byte *info_ptr,
1050 struct die_info *comp_unit_die,
1051 int has_children,
1052 void *data);
1053
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 /* Non-zero if referenced by the Line Number Program. */
1061 int included_p;
1062 /* The associated symbol table, if any. */
1063 struct symtab *symtab;
1064 };
1065
1066 /* The line number information for a compilation unit (found in the
1067 .debug_line section) begins with a "statement program header",
1068 which contains the following information. */
1069 struct line_header
1070 {
1071 /* Offset of line number information in .debug_line section. */
1072 sect_offset offset;
1073
1074 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1075 unsigned offset_in_dwz : 1;
1076
1077 unsigned int total_length;
1078 unsigned short version;
1079 unsigned int header_length;
1080 unsigned char minimum_instruction_length;
1081 unsigned char maximum_ops_per_instruction;
1082 unsigned char default_is_stmt;
1083 int line_base;
1084 unsigned char line_range;
1085 unsigned char opcode_base;
1086
1087 /* standard_opcode_lengths[i] is the number of operands for the
1088 standard opcode whose value is i. This means that
1089 standard_opcode_lengths[0] is unused, and the last meaningful
1090 element is standard_opcode_lengths[opcode_base - 1]. */
1091 unsigned char *standard_opcode_lengths;
1092
1093 /* The include_directories table. NOTE! These strings are not
1094 allocated with xmalloc; instead, they are pointers into
1095 debug_line_buffer. If you try to free them, `free' will get
1096 indigestion. */
1097 unsigned int num_include_dirs, include_dirs_size;
1098 const char **include_dirs;
1099
1100 /* The file_names table. NOTE! These strings are not allocated
1101 with xmalloc; instead, they are pointers into debug_line_buffer.
1102 Don't try to free them directly. */
1103 unsigned int num_file_names, file_names_size;
1104 struct file_entry *file_names;
1105
1106 /* The start and end of the statement program following this
1107 header. These point into dwarf2_per_objfile->line_buffer. */
1108 const gdb_byte *statement_program_start, *statement_program_end;
1109 };
1110
1111 /* When we construct a partial symbol table entry we only
1112 need this much information. */
1113 struct partial_die_info
1114 {
1115 /* Offset of this DIE. */
1116 sect_offset offset;
1117
1118 /* DWARF-2 tag for this DIE. */
1119 ENUM_BITFIELD(dwarf_tag) tag : 16;
1120
1121 /* Assorted flags describing the data found in this DIE. */
1122 unsigned int has_children : 1;
1123 unsigned int is_external : 1;
1124 unsigned int is_declaration : 1;
1125 unsigned int has_type : 1;
1126 unsigned int has_specification : 1;
1127 unsigned int has_pc_info : 1;
1128 unsigned int may_be_inlined : 1;
1129
1130 /* This DIE has been marked DW_AT_main_subprogram. */
1131 unsigned int main_subprogram : 1;
1132
1133 /* Flag set if the SCOPE field of this structure has been
1134 computed. */
1135 unsigned int scope_set : 1;
1136
1137 /* Flag set if the DIE has a byte_size attribute. */
1138 unsigned int has_byte_size : 1;
1139
1140 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1141 unsigned int has_const_value : 1;
1142
1143 /* Flag set if any of the DIE's children are template arguments. */
1144 unsigned int has_template_arguments : 1;
1145
1146 /* Flag set if fixup_partial_die has been called on this die. */
1147 unsigned int fixup_called : 1;
1148
1149 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1150 unsigned int is_dwz : 1;
1151
1152 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1153 unsigned int spec_is_dwz : 1;
1154
1155 /* The name of this DIE. Normally the value of DW_AT_name, but
1156 sometimes a default name for unnamed DIEs. */
1157 const char *name;
1158
1159 /* The linkage name, if present. */
1160 const char *linkage_name;
1161
1162 /* The scope to prepend to our children. This is generally
1163 allocated on the comp_unit_obstack, so will disappear
1164 when this compilation unit leaves the cache. */
1165 const char *scope;
1166
1167 /* Some data associated with the partial DIE. The tag determines
1168 which field is live. */
1169 union
1170 {
1171 /* The location description associated with this DIE, if any. */
1172 struct dwarf_block *locdesc;
1173 /* The offset of an import, for DW_TAG_imported_unit. */
1174 sect_offset offset;
1175 } d;
1176
1177 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1178 CORE_ADDR lowpc;
1179 CORE_ADDR highpc;
1180
1181 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1182 DW_AT_sibling, if any. */
1183 /* NOTE: This member isn't strictly necessary, read_partial_die could
1184 return DW_AT_sibling values to its caller load_partial_dies. */
1185 const gdb_byte *sibling;
1186
1187 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1188 DW_AT_specification (or DW_AT_abstract_origin or
1189 DW_AT_extension). */
1190 sect_offset spec_offset;
1191
1192 /* Pointers to this DIE's parent, first child, and next sibling,
1193 if any. */
1194 struct partial_die_info *die_parent, *die_child, *die_sibling;
1195 };
1196
1197 /* This data structure holds the information of an abbrev. */
1198 struct abbrev_info
1199 {
1200 unsigned int number; /* number identifying abbrev */
1201 enum dwarf_tag tag; /* dwarf tag */
1202 unsigned short has_children; /* boolean */
1203 unsigned short num_attrs; /* number of attributes */
1204 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1205 struct abbrev_info *next; /* next in chain */
1206 };
1207
1208 struct attr_abbrev
1209 {
1210 ENUM_BITFIELD(dwarf_attribute) name : 16;
1211 ENUM_BITFIELD(dwarf_form) form : 16;
1212
1213 /* It is valid only if FORM is DW_FORM_implicit_const. */
1214 LONGEST implicit_const;
1215 };
1216
1217 /* Size of abbrev_table.abbrev_hash_table. */
1218 #define ABBREV_HASH_SIZE 121
1219
1220 /* Top level data structure to contain an abbreviation table. */
1221
1222 struct abbrev_table
1223 {
1224 /* Where the abbrev table came from.
1225 This is used as a sanity check when the table is used. */
1226 sect_offset offset;
1227
1228 /* Storage for the abbrev table. */
1229 struct obstack abbrev_obstack;
1230
1231 /* Hash table of abbrevs.
1232 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1233 It could be statically allocated, but the previous code didn't so we
1234 don't either. */
1235 struct abbrev_info **abbrevs;
1236 };
1237
1238 /* Attributes have a name and a value. */
1239 struct attribute
1240 {
1241 ENUM_BITFIELD(dwarf_attribute) name : 16;
1242 ENUM_BITFIELD(dwarf_form) form : 15;
1243
1244 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1245 field should be in u.str (existing only for DW_STRING) but it is kept
1246 here for better struct attribute alignment. */
1247 unsigned int string_is_canonical : 1;
1248
1249 union
1250 {
1251 const char *str;
1252 struct dwarf_block *blk;
1253 ULONGEST unsnd;
1254 LONGEST snd;
1255 CORE_ADDR addr;
1256 ULONGEST signature;
1257 }
1258 u;
1259 };
1260
1261 /* This data structure holds a complete die structure. */
1262 struct die_info
1263 {
1264 /* DWARF-2 tag for this DIE. */
1265 ENUM_BITFIELD(dwarf_tag) tag : 16;
1266
1267 /* Number of attributes */
1268 unsigned char num_attrs;
1269
1270 /* True if we're presently building the full type name for the
1271 type derived from this DIE. */
1272 unsigned char building_fullname : 1;
1273
1274 /* True if this die is in process. PR 16581. */
1275 unsigned char in_process : 1;
1276
1277 /* Abbrev number */
1278 unsigned int abbrev;
1279
1280 /* Offset in .debug_info or .debug_types section. */
1281 sect_offset offset;
1282
1283 /* The dies in a compilation unit form an n-ary tree. PARENT
1284 points to this die's parent; CHILD points to the first child of
1285 this node; and all the children of a given node are chained
1286 together via their SIBLING fields. */
1287 struct die_info *child; /* Its first child, if any. */
1288 struct die_info *sibling; /* Its next sibling, if any. */
1289 struct die_info *parent; /* Its parent, if any. */
1290
1291 /* An array of attributes, with NUM_ATTRS elements. There may be
1292 zero, but it's not common and zero-sized arrays are not
1293 sufficiently portable C. */
1294 struct attribute attrs[1];
1295 };
1296
1297 /* Get at parts of an attribute structure. */
1298
1299 #define DW_STRING(attr) ((attr)->u.str)
1300 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1301 #define DW_UNSND(attr) ((attr)->u.unsnd)
1302 #define DW_BLOCK(attr) ((attr)->u.blk)
1303 #define DW_SND(attr) ((attr)->u.snd)
1304 #define DW_ADDR(attr) ((attr)->u.addr)
1305 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1306
1307 /* Blocks are a bunch of untyped bytes. */
1308 struct dwarf_block
1309 {
1310 size_t size;
1311
1312 /* Valid only if SIZE is not zero. */
1313 const gdb_byte *data;
1314 };
1315
1316 #ifndef ATTR_ALLOC_CHUNK
1317 #define ATTR_ALLOC_CHUNK 4
1318 #endif
1319
1320 /* Allocate fields for structs, unions and enums in this size. */
1321 #ifndef DW_FIELD_ALLOC_CHUNK
1322 #define DW_FIELD_ALLOC_CHUNK 4
1323 #endif
1324
1325 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1326 but this would require a corresponding change in unpack_field_as_long
1327 and friends. */
1328 static int bits_per_byte = 8;
1329
1330 struct nextfield
1331 {
1332 struct nextfield *next;
1333 int accessibility;
1334 int virtuality;
1335 struct field field;
1336 };
1337
1338 struct nextfnfield
1339 {
1340 struct nextfnfield *next;
1341 struct fn_field fnfield;
1342 };
1343
1344 struct fnfieldlist
1345 {
1346 const char *name;
1347 int length;
1348 struct nextfnfield *head;
1349 };
1350
1351 struct typedef_field_list
1352 {
1353 struct typedef_field field;
1354 struct typedef_field_list *next;
1355 };
1356
1357 /* The routines that read and process dies for a C struct or C++ class
1358 pass lists of data member fields and lists of member function fields
1359 in an instance of a field_info structure, as defined below. */
1360 struct field_info
1361 {
1362 /* List of data member and baseclasses fields. */
1363 struct nextfield *fields, *baseclasses;
1364
1365 /* Number of fields (including baseclasses). */
1366 int nfields;
1367
1368 /* Number of baseclasses. */
1369 int nbaseclasses;
1370
1371 /* Set if the accesibility of one of the fields is not public. */
1372 int non_public_fields;
1373
1374 /* Member function fields array, entries are allocated in the order they
1375 are encountered in the object file. */
1376 struct nextfnfield *fnfields;
1377
1378 /* Member function fieldlist array, contains name of possibly overloaded
1379 member function, number of overloaded member functions and a pointer
1380 to the head of the member function field chain. */
1381 struct fnfieldlist *fnfieldlists;
1382
1383 /* Number of entries in the fnfieldlists array. */
1384 int nfnfields;
1385
1386 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1387 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1388 struct typedef_field_list *typedef_field_list;
1389 unsigned typedef_field_list_count;
1390 };
1391
1392 /* One item on the queue of compilation units to read in full symbols
1393 for. */
1394 struct dwarf2_queue_item
1395 {
1396 struct dwarf2_per_cu_data *per_cu;
1397 enum language pretend_language;
1398 struct dwarf2_queue_item *next;
1399 };
1400
1401 /* The current queue. */
1402 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1403
1404 /* Loaded secondary compilation units are kept in memory until they
1405 have not been referenced for the processing of this many
1406 compilation units. Set this to zero to disable caching. Cache
1407 sizes of up to at least twenty will improve startup time for
1408 typical inter-CU-reference binaries, at an obvious memory cost. */
1409 static int dwarf_max_cache_age = 5;
1410 static void
1411 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file, _("The upper bound on the age of cached "
1415 "DWARF compilation units is %s.\n"),
1416 value);
1417 }
1418 \f
1419 /* local function prototypes */
1420
1421 static const char *get_section_name (const struct dwarf2_section_info *);
1422
1423 static const char *get_section_file_name (const struct dwarf2_section_info *);
1424
1425 static void dwarf2_locate_sections (bfd *, asection *, void *);
1426
1427 static void dwarf2_find_base_address (struct die_info *die,
1428 struct dwarf2_cu *cu);
1429
1430 static struct partial_symtab *create_partial_symtab
1431 (struct dwarf2_per_cu_data *per_cu, const char *name);
1432
1433 static void dwarf2_build_psymtabs_hard (struct objfile *);
1434
1435 static void scan_partial_symbols (struct partial_die_info *,
1436 CORE_ADDR *, CORE_ADDR *,
1437 int, struct dwarf2_cu *);
1438
1439 static void add_partial_symbol (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
1442 static void add_partial_namespace (struct partial_die_info *pdi,
1443 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1444 int set_addrmap, struct dwarf2_cu *cu);
1445
1446 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1447 CORE_ADDR *highpc, int set_addrmap,
1448 struct dwarf2_cu *cu);
1449
1450 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1451 struct dwarf2_cu *cu);
1452
1453 static void add_partial_subprogram (struct partial_die_info *pdi,
1454 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1455 int need_pc, struct dwarf2_cu *cu);
1456
1457 static void dwarf2_read_symtab (struct partial_symtab *,
1458 struct objfile *);
1459
1460 static void psymtab_to_symtab_1 (struct partial_symtab *);
1461
1462 static struct abbrev_info *abbrev_table_lookup_abbrev
1463 (const struct abbrev_table *, unsigned int);
1464
1465 static struct abbrev_table *abbrev_table_read_table
1466 (struct dwarf2_section_info *, sect_offset);
1467
1468 static void abbrev_table_free (struct abbrev_table *);
1469
1470 static void abbrev_table_free_cleanup (void *);
1471
1472 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1473 struct dwarf2_section_info *);
1474
1475 static void dwarf2_free_abbrev_table (void *);
1476
1477 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1478
1479 static struct partial_die_info *load_partial_dies
1480 (const struct die_reader_specs *, const gdb_byte *, int);
1481
1482 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1483 struct partial_die_info *,
1484 struct abbrev_info *,
1485 unsigned int,
1486 const gdb_byte *);
1487
1488 static struct partial_die_info *find_partial_die (sect_offset, int,
1489 struct dwarf2_cu *);
1490
1491 static void fixup_partial_die (struct partial_die_info *,
1492 struct dwarf2_cu *);
1493
1494 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1495 struct attribute *, struct attr_abbrev *,
1496 const gdb_byte *);
1497
1498 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1499
1500 static int read_1_signed_byte (bfd *, const gdb_byte *);
1501
1502 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1503
1504 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1505
1506 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1507
1508 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1509 unsigned int *);
1510
1511 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1512
1513 static LONGEST read_checked_initial_length_and_offset
1514 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1515 unsigned int *, unsigned int *);
1516
1517 static LONGEST read_offset (bfd *, const gdb_byte *,
1518 const struct comp_unit_head *,
1519 unsigned int *);
1520
1521 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1522
1523 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1524 sect_offset);
1525
1526 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1527
1528 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1529
1530 static const char *read_indirect_string (bfd *, const gdb_byte *,
1531 const struct comp_unit_head *,
1532 unsigned int *);
1533
1534 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1535 const struct comp_unit_head *,
1536 unsigned int *);
1537
1538 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1539
1540 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1541
1542 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1543 const gdb_byte *,
1544 unsigned int *);
1545
1546 static const char *read_str_index (const struct die_reader_specs *reader,
1547 ULONGEST str_index);
1548
1549 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1550
1551 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1552 struct dwarf2_cu *);
1553
1554 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1555 unsigned int);
1556
1557 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1558 struct dwarf2_cu *cu);
1559
1560 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1561 struct dwarf2_cu *cu);
1562
1563 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1564
1565 static struct die_info *die_specification (struct die_info *die,
1566 struct dwarf2_cu **);
1567
1568 static void free_line_header (struct line_header *lh);
1569
1570 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1571 struct dwarf2_cu *cu);
1572
1573 static void dwarf_decode_lines (struct line_header *, const char *,
1574 struct dwarf2_cu *, struct partial_symtab *,
1575 CORE_ADDR, int decode_mapping);
1576
1577 static void dwarf2_start_subfile (const char *, const char *);
1578
1579 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1580 const char *, const char *,
1581 CORE_ADDR);
1582
1583 static struct symbol *new_symbol (struct die_info *, struct type *,
1584 struct dwarf2_cu *);
1585
1586 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1587 struct dwarf2_cu *, struct symbol *);
1588
1589 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_const_value_attr (const struct attribute *attr,
1593 struct type *type,
1594 const char *name,
1595 struct obstack *obstack,
1596 struct dwarf2_cu *cu, LONGEST *value,
1597 const gdb_byte **bytes,
1598 struct dwarf2_locexpr_baton **baton);
1599
1600 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1601
1602 static int need_gnat_info (struct dwarf2_cu *);
1603
1604 static struct type *die_descriptive_type (struct die_info *,
1605 struct dwarf2_cu *);
1606
1607 static void set_descriptive_type (struct type *, struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static struct type *die_containing_type (struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1614 struct dwarf2_cu *);
1615
1616 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1617
1618 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1619
1620 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1621
1622 static char *typename_concat (struct obstack *obs, const char *prefix,
1623 const char *suffix, int physname,
1624 struct dwarf2_cu *cu);
1625
1626 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1633
1634 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
1639 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1640 values. Keep the items ordered with increasing constraints compliance. */
1641 enum pc_bounds_kind
1642 {
1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1644 PC_BOUNDS_NOT_PRESENT,
1645
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655 };
1656
1657 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
1661
1662 static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
1666 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
1669 static void dwarf2_add_field (struct field_info *, struct die_info *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_attach_fields_to_type (struct field_info *,
1673 struct type *, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_member_fn (struct field_info *,
1676 struct die_info *, struct type *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1680 struct type *,
1681 struct dwarf2_cu *);
1682
1683 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1684
1685 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1686
1687 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1688
1689 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
1691 static struct using_direct **using_directives (enum language);
1692
1693 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
1695 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
1700 static const char *namespace_name (struct die_info *die,
1701 int *is_anonymous, struct dwarf2_cu *);
1702
1703 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1704
1705 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1706
1707 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static struct die_info *read_die_and_siblings_1
1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1712 struct die_info *);
1713
1714 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
1717 struct die_info *parent);
1718
1719 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
1722
1723 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
1726
1727 static void process_die (struct die_info *, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
1731
1732 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_full_name (const char *name,
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
1741 static struct die_info *dwarf2_extension (struct die_info *die,
1742 struct dwarf2_cu **);
1743
1744 static const char *dwarf_tag_name (unsigned int);
1745
1746 static const char *dwarf_attr_name (unsigned int);
1747
1748 static const char *dwarf_form_name (unsigned int);
1749
1750 static char *dwarf_bool_name (unsigned int);
1751
1752 static const char *dwarf_type_encoding_name (unsigned int);
1753
1754 static struct die_info *sibling_die (struct die_info *);
1755
1756 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758 static void dump_die_for_error (struct die_info *);
1759
1760 static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
1762
1763 /*static*/ void dump_die (struct die_info *, int max_level);
1764
1765 static void store_in_ref_table (struct die_info *,
1766 struct dwarf2_cu *);
1767
1768 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1769
1770 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1771
1772 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1773 const struct attribute *,
1774 struct dwarf2_cu **);
1775
1776 static struct die_info *follow_die_ref (struct die_info *,
1777 const struct attribute *,
1778 struct dwarf2_cu **);
1779
1780 static struct die_info *follow_die_sig (struct die_info *,
1781 const struct attribute *,
1782 struct dwarf2_cu **);
1783
1784 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787 static struct type *get_DW_AT_signature_type (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu *);
1790
1791 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1792
1793 static void read_signatured_type (struct signatured_type *);
1794
1795 static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
1799 /* memory allocation interface */
1800
1801 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1802
1803 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1804
1805 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1806
1807 static int attr_form_is_block (const struct attribute *);
1808
1809 static int attr_form_is_section_offset (const struct attribute *);
1810
1811 static int attr_form_is_constant (const struct attribute *);
1812
1813 static int attr_form_is_ref (const struct attribute *);
1814
1815 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
1817 const struct attribute *attr);
1818
1819 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1820 struct symbol *sym,
1821 struct dwarf2_cu *cu,
1822 int is_block);
1823
1824 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
1827
1828 static void free_stack_comp_unit (void *);
1829
1830 static hashval_t partial_die_hash (const void *item);
1831
1832 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1833
1834 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1835 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1836
1837 static void init_one_comp_unit (struct dwarf2_cu *cu,
1838 struct dwarf2_per_cu_data *per_cu);
1839
1840 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1841 struct die_info *comp_unit_die,
1842 enum language pretend_language);
1843
1844 static void free_heap_comp_unit (void *);
1845
1846 static void free_cached_comp_units (void *);
1847
1848 static void age_cached_comp_units (void);
1849
1850 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1851
1852 static struct type *set_die_type (struct die_info *, struct type *,
1853 struct dwarf2_cu *);
1854
1855 static void create_all_comp_units (struct objfile *);
1856
1857 static int create_all_type_units (struct objfile *);
1858
1859 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
1861
1862 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
1865 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1866 enum language);
1867
1868 static void dwarf2_add_dependence (struct dwarf2_cu *,
1869 struct dwarf2_per_cu_data *);
1870
1871 static void dwarf2_mark (struct dwarf2_cu *);
1872
1873 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1874
1875 static struct type *get_die_type_at_offset (sect_offset,
1876 struct dwarf2_per_cu_data *);
1877
1878 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1879
1880 static void dwarf2_release_queue (void *dummy);
1881
1882 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1883 enum language pretend_language);
1884
1885 static void process_queue (void);
1886
1887 static void find_file_and_directory (struct die_info *die,
1888 struct dwarf2_cu *cu,
1889 const char **name, const char **comp_dir);
1890
1891 static char *file_full_name (int file, struct line_header *lh,
1892 const char *comp_dir);
1893
1894 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1895 enum class rcuh_kind { COMPILE, TYPE };
1896
1897 static const gdb_byte *read_and_check_comp_unit_head
1898 (struct comp_unit_head *header,
1899 struct dwarf2_section_info *section,
1900 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1901 rcuh_kind section_kind);
1902
1903 static void init_cutu_and_read_dies
1904 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1905 int use_existing_cu, int keep,
1906 die_reader_func_ftype *die_reader_func, void *data);
1907
1908 static void init_cutu_and_read_dies_simple
1909 (struct dwarf2_per_cu_data *this_cu,
1910 die_reader_func_ftype *die_reader_func, void *data);
1911
1912 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1913
1914 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1915
1916 static struct dwo_unit *lookup_dwo_unit_in_dwp
1917 (struct dwp_file *dwp_file, const char *comp_dir,
1918 ULONGEST signature, int is_debug_types);
1919
1920 static struct dwp_file *get_dwp_file (void);
1921
1922 static struct dwo_unit *lookup_dwo_comp_unit
1923 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1924
1925 static struct dwo_unit *lookup_dwo_type_unit
1926 (struct signatured_type *, const char *, const char *);
1927
1928 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1929
1930 static void free_dwo_file_cleanup (void *);
1931
1932 static void process_cu_includes (void);
1933
1934 static void check_producer (struct dwarf2_cu *cu);
1935
1936 static void free_line_header_voidp (void *arg);
1937 \f
1938 /* Various complaints about symbol reading that don't abort the process. */
1939
1940 static void
1941 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1942 {
1943 complaint (&symfile_complaints,
1944 _("statement list doesn't fit in .debug_line section"));
1945 }
1946
1947 static void
1948 dwarf2_debug_line_missing_file_complaint (void)
1949 {
1950 complaint (&symfile_complaints,
1951 _(".debug_line section has line data without a file"));
1952 }
1953
1954 static void
1955 dwarf2_debug_line_missing_end_sequence_complaint (void)
1956 {
1957 complaint (&symfile_complaints,
1958 _(".debug_line section has line "
1959 "program sequence without an end"));
1960 }
1961
1962 static void
1963 dwarf2_complex_location_expr_complaint (void)
1964 {
1965 complaint (&symfile_complaints, _("location expression too complex"));
1966 }
1967
1968 static void
1969 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1970 int arg3)
1971 {
1972 complaint (&symfile_complaints,
1973 _("const value length mismatch for '%s', got %d, expected %d"),
1974 arg1, arg2, arg3);
1975 }
1976
1977 static void
1978 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1979 {
1980 complaint (&symfile_complaints,
1981 _("debug info runs off end of %s section"
1982 " [in module %s]"),
1983 get_section_name (section),
1984 get_section_file_name (section));
1985 }
1986
1987 static void
1988 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1989 {
1990 complaint (&symfile_complaints,
1991 _("macro debug info contains a "
1992 "malformed macro definition:\n`%s'"),
1993 arg1);
1994 }
1995
1996 static void
1997 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1998 {
1999 complaint (&symfile_complaints,
2000 _("invalid attribute class or form for '%s' in '%s'"),
2001 arg1, arg2);
2002 }
2003
2004 /* Hash function for line_header_hash. */
2005
2006 static hashval_t
2007 line_header_hash (const struct line_header *ofs)
2008 {
2009 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
2010 }
2011
2012 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2013
2014 static hashval_t
2015 line_header_hash_voidp (const void *item)
2016 {
2017 const struct line_header *ofs = (const struct line_header *) item;
2018
2019 return line_header_hash (ofs);
2020 }
2021
2022 /* Equality function for line_header_hash. */
2023
2024 static int
2025 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2026 {
2027 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2028 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2029
2030 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2031 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2032 }
2033
2034 \f
2035 #if WORDS_BIGENDIAN
2036
2037 /* Convert VALUE between big- and little-endian. */
2038 static offset_type
2039 byte_swap (offset_type value)
2040 {
2041 offset_type result;
2042
2043 result = (value & 0xff) << 24;
2044 result |= (value & 0xff00) << 8;
2045 result |= (value & 0xff0000) >> 8;
2046 result |= (value & 0xff000000) >> 24;
2047 return result;
2048 }
2049
2050 #define MAYBE_SWAP(V) byte_swap (V)
2051
2052 #else
2053 #define MAYBE_SWAP(V) (V)
2054 #endif /* WORDS_BIGENDIAN */
2055
2056 /* Read the given attribute value as an address, taking the attribute's
2057 form into account. */
2058
2059 static CORE_ADDR
2060 attr_value_as_address (struct attribute *attr)
2061 {
2062 CORE_ADDR addr;
2063
2064 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2065 {
2066 /* Aside from a few clearly defined exceptions, attributes that
2067 contain an address must always be in DW_FORM_addr form.
2068 Unfortunately, some compilers happen to be violating this
2069 requirement by encoding addresses using other forms, such
2070 as DW_FORM_data4 for example. For those broken compilers,
2071 we try to do our best, without any guarantee of success,
2072 to interpret the address correctly. It would also be nice
2073 to generate a complaint, but that would require us to maintain
2074 a list of legitimate cases where a non-address form is allowed,
2075 as well as update callers to pass in at least the CU's DWARF
2076 version. This is more overhead than what we're willing to
2077 expand for a pretty rare case. */
2078 addr = DW_UNSND (attr);
2079 }
2080 else
2081 addr = DW_ADDR (attr);
2082
2083 return addr;
2084 }
2085
2086 /* The suffix for an index file. */
2087 #define INDEX_SUFFIX ".gdb-index"
2088
2089 /* Try to locate the sections we need for DWARF 2 debugging
2090 information and return true if we have enough to do something.
2091 NAMES points to the dwarf2 section names, or is NULL if the standard
2092 ELF names are used. */
2093
2094 int
2095 dwarf2_has_info (struct objfile *objfile,
2096 const struct dwarf2_debug_sections *names)
2097 {
2098 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2099 objfile_data (objfile, dwarf2_objfile_data_key));
2100 if (!dwarf2_per_objfile)
2101 {
2102 /* Initialize per-objfile state. */
2103 struct dwarf2_per_objfile *data
2104 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2105
2106 memset (data, 0, sizeof (*data));
2107 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2108 dwarf2_per_objfile = data;
2109
2110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2111 (void *) names);
2112 dwarf2_per_objfile->objfile = objfile;
2113 }
2114 return (!dwarf2_per_objfile->info.is_virtual
2115 && dwarf2_per_objfile->info.s.section != NULL
2116 && !dwarf2_per_objfile->abbrev.is_virtual
2117 && dwarf2_per_objfile->abbrev.s.section != NULL);
2118 }
2119
2120 /* Return the containing section of virtual section SECTION. */
2121
2122 static struct dwarf2_section_info *
2123 get_containing_section (const struct dwarf2_section_info *section)
2124 {
2125 gdb_assert (section->is_virtual);
2126 return section->s.containing_section;
2127 }
2128
2129 /* Return the bfd owner of SECTION. */
2130
2131 static struct bfd *
2132 get_section_bfd_owner (const struct dwarf2_section_info *section)
2133 {
2134 if (section->is_virtual)
2135 {
2136 section = get_containing_section (section);
2137 gdb_assert (!section->is_virtual);
2138 }
2139 return section->s.section->owner;
2140 }
2141
2142 /* Return the bfd section of SECTION.
2143 Returns NULL if the section is not present. */
2144
2145 static asection *
2146 get_section_bfd_section (const struct dwarf2_section_info *section)
2147 {
2148 if (section->is_virtual)
2149 {
2150 section = get_containing_section (section);
2151 gdb_assert (!section->is_virtual);
2152 }
2153 return section->s.section;
2154 }
2155
2156 /* Return the name of SECTION. */
2157
2158 static const char *
2159 get_section_name (const struct dwarf2_section_info *section)
2160 {
2161 asection *sectp = get_section_bfd_section (section);
2162
2163 gdb_assert (sectp != NULL);
2164 return bfd_section_name (get_section_bfd_owner (section), sectp);
2165 }
2166
2167 /* Return the name of the file SECTION is in. */
2168
2169 static const char *
2170 get_section_file_name (const struct dwarf2_section_info *section)
2171 {
2172 bfd *abfd = get_section_bfd_owner (section);
2173
2174 return bfd_get_filename (abfd);
2175 }
2176
2177 /* Return the id of SECTION.
2178 Returns 0 if SECTION doesn't exist. */
2179
2180 static int
2181 get_section_id (const struct dwarf2_section_info *section)
2182 {
2183 asection *sectp = get_section_bfd_section (section);
2184
2185 if (sectp == NULL)
2186 return 0;
2187 return sectp->id;
2188 }
2189
2190 /* Return the flags of SECTION.
2191 SECTION (or containing section if this is a virtual section) must exist. */
2192
2193 static int
2194 get_section_flags (const struct dwarf2_section_info *section)
2195 {
2196 asection *sectp = get_section_bfd_section (section);
2197
2198 gdb_assert (sectp != NULL);
2199 return bfd_get_section_flags (sectp->owner, sectp);
2200 }
2201
2202 /* When loading sections, we look either for uncompressed section or for
2203 compressed section names. */
2204
2205 static int
2206 section_is_p (const char *section_name,
2207 const struct dwarf2_section_names *names)
2208 {
2209 if (names->normal != NULL
2210 && strcmp (section_name, names->normal) == 0)
2211 return 1;
2212 if (names->compressed != NULL
2213 && strcmp (section_name, names->compressed) == 0)
2214 return 1;
2215 return 0;
2216 }
2217
2218 /* This function is mapped across the sections and remembers the
2219 offset and size of each of the debugging sections we are interested
2220 in. */
2221
2222 static void
2223 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2224 {
2225 const struct dwarf2_debug_sections *names;
2226 flagword aflag = bfd_get_section_flags (abfd, sectp);
2227
2228 if (vnames == NULL)
2229 names = &dwarf2_elf_names;
2230 else
2231 names = (const struct dwarf2_debug_sections *) vnames;
2232
2233 if ((aflag & SEC_HAS_CONTENTS) == 0)
2234 {
2235 }
2236 else if (section_is_p (sectp->name, &names->info))
2237 {
2238 dwarf2_per_objfile->info.s.section = sectp;
2239 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2240 }
2241 else if (section_is_p (sectp->name, &names->abbrev))
2242 {
2243 dwarf2_per_objfile->abbrev.s.section = sectp;
2244 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2245 }
2246 else if (section_is_p (sectp->name, &names->line))
2247 {
2248 dwarf2_per_objfile->line.s.section = sectp;
2249 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2250 }
2251 else if (section_is_p (sectp->name, &names->loc))
2252 {
2253 dwarf2_per_objfile->loc.s.section = sectp;
2254 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2255 }
2256 else if (section_is_p (sectp->name, &names->loclists))
2257 {
2258 dwarf2_per_objfile->loclists.s.section = sectp;
2259 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2260 }
2261 else if (section_is_p (sectp->name, &names->macinfo))
2262 {
2263 dwarf2_per_objfile->macinfo.s.section = sectp;
2264 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2265 }
2266 else if (section_is_p (sectp->name, &names->macro))
2267 {
2268 dwarf2_per_objfile->macro.s.section = sectp;
2269 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2270 }
2271 else if (section_is_p (sectp->name, &names->str))
2272 {
2273 dwarf2_per_objfile->str.s.section = sectp;
2274 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2275 }
2276 else if (section_is_p (sectp->name, &names->line_str))
2277 {
2278 dwarf2_per_objfile->line_str.s.section = sectp;
2279 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2280 }
2281 else if (section_is_p (sectp->name, &names->addr))
2282 {
2283 dwarf2_per_objfile->addr.s.section = sectp;
2284 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2285 }
2286 else if (section_is_p (sectp->name, &names->frame))
2287 {
2288 dwarf2_per_objfile->frame.s.section = sectp;
2289 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2290 }
2291 else if (section_is_p (sectp->name, &names->eh_frame))
2292 {
2293 dwarf2_per_objfile->eh_frame.s.section = sectp;
2294 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2295 }
2296 else if (section_is_p (sectp->name, &names->ranges))
2297 {
2298 dwarf2_per_objfile->ranges.s.section = sectp;
2299 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2300 }
2301 else if (section_is_p (sectp->name, &names->rnglists))
2302 {
2303 dwarf2_per_objfile->rnglists.s.section = sectp;
2304 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2305 }
2306 else if (section_is_p (sectp->name, &names->types))
2307 {
2308 struct dwarf2_section_info type_section;
2309
2310 memset (&type_section, 0, sizeof (type_section));
2311 type_section.s.section = sectp;
2312 type_section.size = bfd_get_section_size (sectp);
2313
2314 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2315 &type_section);
2316 }
2317 else if (section_is_p (sectp->name, &names->gdb_index))
2318 {
2319 dwarf2_per_objfile->gdb_index.s.section = sectp;
2320 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2321 }
2322
2323 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2324 && bfd_section_vma (abfd, sectp) == 0)
2325 dwarf2_per_objfile->has_section_at_zero = 1;
2326 }
2327
2328 /* A helper function that decides whether a section is empty,
2329 or not present. */
2330
2331 static int
2332 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2333 {
2334 if (section->is_virtual)
2335 return section->size == 0;
2336 return section->s.section == NULL || section->size == 0;
2337 }
2338
2339 /* Read the contents of the section INFO.
2340 OBJFILE is the main object file, but not necessarily the file where
2341 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2342 of the DWO file.
2343 If the section is compressed, uncompress it before returning. */
2344
2345 static void
2346 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2347 {
2348 asection *sectp;
2349 bfd *abfd;
2350 gdb_byte *buf, *retbuf;
2351
2352 if (info->readin)
2353 return;
2354 info->buffer = NULL;
2355 info->readin = 1;
2356
2357 if (dwarf2_section_empty_p (info))
2358 return;
2359
2360 sectp = get_section_bfd_section (info);
2361
2362 /* If this is a virtual section we need to read in the real one first. */
2363 if (info->is_virtual)
2364 {
2365 struct dwarf2_section_info *containing_section =
2366 get_containing_section (info);
2367
2368 gdb_assert (sectp != NULL);
2369 if ((sectp->flags & SEC_RELOC) != 0)
2370 {
2371 error (_("Dwarf Error: DWP format V2 with relocations is not"
2372 " supported in section %s [in module %s]"),
2373 get_section_name (info), get_section_file_name (info));
2374 }
2375 dwarf2_read_section (objfile, containing_section);
2376 /* Other code should have already caught virtual sections that don't
2377 fit. */
2378 gdb_assert (info->virtual_offset + info->size
2379 <= containing_section->size);
2380 /* If the real section is empty or there was a problem reading the
2381 section we shouldn't get here. */
2382 gdb_assert (containing_section->buffer != NULL);
2383 info->buffer = containing_section->buffer + info->virtual_offset;
2384 return;
2385 }
2386
2387 /* If the section has relocations, we must read it ourselves.
2388 Otherwise we attach it to the BFD. */
2389 if ((sectp->flags & SEC_RELOC) == 0)
2390 {
2391 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2392 return;
2393 }
2394
2395 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2396 info->buffer = buf;
2397
2398 /* When debugging .o files, we may need to apply relocations; see
2399 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2400 We never compress sections in .o files, so we only need to
2401 try this when the section is not compressed. */
2402 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2403 if (retbuf != NULL)
2404 {
2405 info->buffer = retbuf;
2406 return;
2407 }
2408
2409 abfd = get_section_bfd_owner (info);
2410 gdb_assert (abfd != NULL);
2411
2412 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2413 || bfd_bread (buf, info->size, abfd) != info->size)
2414 {
2415 error (_("Dwarf Error: Can't read DWARF data"
2416 " in section %s [in module %s]"),
2417 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2418 }
2419 }
2420
2421 /* A helper function that returns the size of a section in a safe way.
2422 If you are positive that the section has been read before using the
2423 size, then it is safe to refer to the dwarf2_section_info object's
2424 "size" field directly. In other cases, you must call this
2425 function, because for compressed sections the size field is not set
2426 correctly until the section has been read. */
2427
2428 static bfd_size_type
2429 dwarf2_section_size (struct objfile *objfile,
2430 struct dwarf2_section_info *info)
2431 {
2432 if (!info->readin)
2433 dwarf2_read_section (objfile, info);
2434 return info->size;
2435 }
2436
2437 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2438 SECTION_NAME. */
2439
2440 void
2441 dwarf2_get_section_info (struct objfile *objfile,
2442 enum dwarf2_section_enum sect,
2443 asection **sectp, const gdb_byte **bufp,
2444 bfd_size_type *sizep)
2445 {
2446 struct dwarf2_per_objfile *data
2447 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2448 dwarf2_objfile_data_key);
2449 struct dwarf2_section_info *info;
2450
2451 /* We may see an objfile without any DWARF, in which case we just
2452 return nothing. */
2453 if (data == NULL)
2454 {
2455 *sectp = NULL;
2456 *bufp = NULL;
2457 *sizep = 0;
2458 return;
2459 }
2460 switch (sect)
2461 {
2462 case DWARF2_DEBUG_FRAME:
2463 info = &data->frame;
2464 break;
2465 case DWARF2_EH_FRAME:
2466 info = &data->eh_frame;
2467 break;
2468 default:
2469 gdb_assert_not_reached ("unexpected section");
2470 }
2471
2472 dwarf2_read_section (objfile, info);
2473
2474 *sectp = get_section_bfd_section (info);
2475 *bufp = info->buffer;
2476 *sizep = info->size;
2477 }
2478
2479 /* A helper function to find the sections for a .dwz file. */
2480
2481 static void
2482 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2483 {
2484 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2485
2486 /* Note that we only support the standard ELF names, because .dwz
2487 is ELF-only (at the time of writing). */
2488 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2489 {
2490 dwz_file->abbrev.s.section = sectp;
2491 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2492 }
2493 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2494 {
2495 dwz_file->info.s.section = sectp;
2496 dwz_file->info.size = bfd_get_section_size (sectp);
2497 }
2498 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2499 {
2500 dwz_file->str.s.section = sectp;
2501 dwz_file->str.size = bfd_get_section_size (sectp);
2502 }
2503 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2504 {
2505 dwz_file->line.s.section = sectp;
2506 dwz_file->line.size = bfd_get_section_size (sectp);
2507 }
2508 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2509 {
2510 dwz_file->macro.s.section = sectp;
2511 dwz_file->macro.size = bfd_get_section_size (sectp);
2512 }
2513 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2514 {
2515 dwz_file->gdb_index.s.section = sectp;
2516 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2517 }
2518 }
2519
2520 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2521 there is no .gnu_debugaltlink section in the file. Error if there
2522 is such a section but the file cannot be found. */
2523
2524 static struct dwz_file *
2525 dwarf2_get_dwz_file (void)
2526 {
2527 char *data;
2528 struct cleanup *cleanup;
2529 const char *filename;
2530 struct dwz_file *result;
2531 bfd_size_type buildid_len_arg;
2532 size_t buildid_len;
2533 bfd_byte *buildid;
2534
2535 if (dwarf2_per_objfile->dwz_file != NULL)
2536 return dwarf2_per_objfile->dwz_file;
2537
2538 bfd_set_error (bfd_error_no_error);
2539 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2540 &buildid_len_arg, &buildid);
2541 if (data == NULL)
2542 {
2543 if (bfd_get_error () == bfd_error_no_error)
2544 return NULL;
2545 error (_("could not read '.gnu_debugaltlink' section: %s"),
2546 bfd_errmsg (bfd_get_error ()));
2547 }
2548 cleanup = make_cleanup (xfree, data);
2549 make_cleanup (xfree, buildid);
2550
2551 buildid_len = (size_t) buildid_len_arg;
2552
2553 filename = (const char *) data;
2554 if (!IS_ABSOLUTE_PATH (filename))
2555 {
2556 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2557 char *rel;
2558
2559 make_cleanup (xfree, abs);
2560 abs = ldirname (abs);
2561 make_cleanup (xfree, abs);
2562
2563 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2564 make_cleanup (xfree, rel);
2565 filename = rel;
2566 }
2567
2568 /* First try the file name given in the section. If that doesn't
2569 work, try to use the build-id instead. */
2570 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2571 if (dwz_bfd != NULL)
2572 {
2573 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2574 dwz_bfd.release ();
2575 }
2576
2577 if (dwz_bfd == NULL)
2578 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2579
2580 if (dwz_bfd == NULL)
2581 error (_("could not find '.gnu_debugaltlink' file for %s"),
2582 objfile_name (dwarf2_per_objfile->objfile));
2583
2584 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2585 struct dwz_file);
2586 result->dwz_bfd = dwz_bfd.release ();
2587
2588 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2589
2590 do_cleanups (cleanup);
2591
2592 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2593 dwarf2_per_objfile->dwz_file = result;
2594 return result;
2595 }
2596 \f
2597 /* DWARF quick_symbols_functions support. */
2598
2599 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2600 unique line tables, so we maintain a separate table of all .debug_line
2601 derived entries to support the sharing.
2602 All the quick functions need is the list of file names. We discard the
2603 line_header when we're done and don't need to record it here. */
2604 struct quick_file_names
2605 {
2606 /* The data used to construct the hash key. */
2607 struct stmt_list_hash hash;
2608
2609 /* The number of entries in file_names, real_names. */
2610 unsigned int num_file_names;
2611
2612 /* The file names from the line table, after being run through
2613 file_full_name. */
2614 const char **file_names;
2615
2616 /* The file names from the line table after being run through
2617 gdb_realpath. These are computed lazily. */
2618 const char **real_names;
2619 };
2620
2621 /* When using the index (and thus not using psymtabs), each CU has an
2622 object of this type. This is used to hold information needed by
2623 the various "quick" methods. */
2624 struct dwarf2_per_cu_quick_data
2625 {
2626 /* The file table. This can be NULL if there was no file table
2627 or it's currently not read in.
2628 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2629 struct quick_file_names *file_names;
2630
2631 /* The corresponding symbol table. This is NULL if symbols for this
2632 CU have not yet been read. */
2633 struct compunit_symtab *compunit_symtab;
2634
2635 /* A temporary mark bit used when iterating over all CUs in
2636 expand_symtabs_matching. */
2637 unsigned int mark : 1;
2638
2639 /* True if we've tried to read the file table and found there isn't one.
2640 There will be no point in trying to read it again next time. */
2641 unsigned int no_file_data : 1;
2642 };
2643
2644 /* Utility hash function for a stmt_list_hash. */
2645
2646 static hashval_t
2647 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2648 {
2649 hashval_t v = 0;
2650
2651 if (stmt_list_hash->dwo_unit != NULL)
2652 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2653 v += stmt_list_hash->line_offset.sect_off;
2654 return v;
2655 }
2656
2657 /* Utility equality function for a stmt_list_hash. */
2658
2659 static int
2660 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2661 const struct stmt_list_hash *rhs)
2662 {
2663 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2664 return 0;
2665 if (lhs->dwo_unit != NULL
2666 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2667 return 0;
2668
2669 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2670 }
2671
2672 /* Hash function for a quick_file_names. */
2673
2674 static hashval_t
2675 hash_file_name_entry (const void *e)
2676 {
2677 const struct quick_file_names *file_data
2678 = (const struct quick_file_names *) e;
2679
2680 return hash_stmt_list_entry (&file_data->hash);
2681 }
2682
2683 /* Equality function for a quick_file_names. */
2684
2685 static int
2686 eq_file_name_entry (const void *a, const void *b)
2687 {
2688 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2689 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2690
2691 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2692 }
2693
2694 /* Delete function for a quick_file_names. */
2695
2696 static void
2697 delete_file_name_entry (void *e)
2698 {
2699 struct quick_file_names *file_data = (struct quick_file_names *) e;
2700 int i;
2701
2702 for (i = 0; i < file_data->num_file_names; ++i)
2703 {
2704 xfree ((void*) file_data->file_names[i]);
2705 if (file_data->real_names)
2706 xfree ((void*) file_data->real_names[i]);
2707 }
2708
2709 /* The space for the struct itself lives on objfile_obstack,
2710 so we don't free it here. */
2711 }
2712
2713 /* Create a quick_file_names hash table. */
2714
2715 static htab_t
2716 create_quick_file_names_table (unsigned int nr_initial_entries)
2717 {
2718 return htab_create_alloc (nr_initial_entries,
2719 hash_file_name_entry, eq_file_name_entry,
2720 delete_file_name_entry, xcalloc, xfree);
2721 }
2722
2723 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2724 have to be created afterwards. You should call age_cached_comp_units after
2725 processing PER_CU->CU. dw2_setup must have been already called. */
2726
2727 static void
2728 load_cu (struct dwarf2_per_cu_data *per_cu)
2729 {
2730 if (per_cu->is_debug_types)
2731 load_full_type_unit (per_cu);
2732 else
2733 load_full_comp_unit (per_cu, language_minimal);
2734
2735 if (per_cu->cu == NULL)
2736 return; /* Dummy CU. */
2737
2738 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2739 }
2740
2741 /* Read in the symbols for PER_CU. */
2742
2743 static void
2744 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2745 {
2746 struct cleanup *back_to;
2747
2748 /* Skip type_unit_groups, reading the type units they contain
2749 is handled elsewhere. */
2750 if (IS_TYPE_UNIT_GROUP (per_cu))
2751 return;
2752
2753 back_to = make_cleanup (dwarf2_release_queue, NULL);
2754
2755 if (dwarf2_per_objfile->using_index
2756 ? per_cu->v.quick->compunit_symtab == NULL
2757 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2758 {
2759 queue_comp_unit (per_cu, language_minimal);
2760 load_cu (per_cu);
2761
2762 /* If we just loaded a CU from a DWO, and we're working with an index
2763 that may badly handle TUs, load all the TUs in that DWO as well.
2764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2765 if (!per_cu->is_debug_types
2766 && per_cu->cu != NULL
2767 && per_cu->cu->dwo_unit != NULL
2768 && dwarf2_per_objfile->index_table != NULL
2769 && dwarf2_per_objfile->index_table->version <= 7
2770 /* DWP files aren't supported yet. */
2771 && get_dwp_file () == NULL)
2772 queue_and_load_all_dwo_tus (per_cu);
2773 }
2774
2775 process_queue ();
2776
2777 /* Age the cache, releasing compilation units that have not
2778 been used recently. */
2779 age_cached_comp_units ();
2780
2781 do_cleanups (back_to);
2782 }
2783
2784 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2785 the objfile from which this CU came. Returns the resulting symbol
2786 table. */
2787
2788 static struct compunit_symtab *
2789 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2790 {
2791 gdb_assert (dwarf2_per_objfile->using_index);
2792 if (!per_cu->v.quick->compunit_symtab)
2793 {
2794 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2795 increment_reading_symtab ();
2796 dw2_do_instantiate_symtab (per_cu);
2797 process_cu_includes ();
2798 do_cleanups (back_to);
2799 }
2800
2801 return per_cu->v.quick->compunit_symtab;
2802 }
2803
2804 /* Return the CU/TU given its index.
2805
2806 This is intended for loops like:
2807
2808 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2809 + dwarf2_per_objfile->n_type_units); ++i)
2810 {
2811 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2812
2813 ...;
2814 }
2815 */
2816
2817 static struct dwarf2_per_cu_data *
2818 dw2_get_cutu (int index)
2819 {
2820 if (index >= dwarf2_per_objfile->n_comp_units)
2821 {
2822 index -= dwarf2_per_objfile->n_comp_units;
2823 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2824 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2825 }
2826
2827 return dwarf2_per_objfile->all_comp_units[index];
2828 }
2829
2830 /* Return the CU given its index.
2831 This differs from dw2_get_cutu in that it's for when you know INDEX
2832 refers to a CU. */
2833
2834 static struct dwarf2_per_cu_data *
2835 dw2_get_cu (int index)
2836 {
2837 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2838
2839 return dwarf2_per_objfile->all_comp_units[index];
2840 }
2841
2842 /* A helper for create_cus_from_index that handles a given list of
2843 CUs. */
2844
2845 static void
2846 create_cus_from_index_list (struct objfile *objfile,
2847 const gdb_byte *cu_list, offset_type n_elements,
2848 struct dwarf2_section_info *section,
2849 int is_dwz,
2850 int base_offset)
2851 {
2852 offset_type i;
2853
2854 for (i = 0; i < n_elements; i += 2)
2855 {
2856 struct dwarf2_per_cu_data *the_cu;
2857 ULONGEST offset, length;
2858
2859 gdb_static_assert (sizeof (ULONGEST) >= 8);
2860 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2861 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2862 cu_list += 2 * 8;
2863
2864 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_data);
2866 the_cu->offset.sect_off = offset;
2867 the_cu->length = length;
2868 the_cu->objfile = objfile;
2869 the_cu->section = section;
2870 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2871 struct dwarf2_per_cu_quick_data);
2872 the_cu->is_dwz = is_dwz;
2873 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2874 }
2875 }
2876
2877 /* Read the CU list from the mapped index, and use it to create all
2878 the CU objects for this objfile. */
2879
2880 static void
2881 create_cus_from_index (struct objfile *objfile,
2882 const gdb_byte *cu_list, offset_type cu_list_elements,
2883 const gdb_byte *dwz_list, offset_type dwz_elements)
2884 {
2885 struct dwz_file *dwz;
2886
2887 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2888 dwarf2_per_objfile->all_comp_units =
2889 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2890 dwarf2_per_objfile->n_comp_units);
2891
2892 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2893 &dwarf2_per_objfile->info, 0, 0);
2894
2895 if (dwz_elements == 0)
2896 return;
2897
2898 dwz = dwarf2_get_dwz_file ();
2899 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2900 cu_list_elements / 2);
2901 }
2902
2903 /* Create the signatured type hash table from the index. */
2904
2905 static void
2906 create_signatured_type_table_from_index (struct objfile *objfile,
2907 struct dwarf2_section_info *section,
2908 const gdb_byte *bytes,
2909 offset_type elements)
2910 {
2911 offset_type i;
2912 htab_t sig_types_hash;
2913
2914 dwarf2_per_objfile->n_type_units
2915 = dwarf2_per_objfile->n_allocated_type_units
2916 = elements / 3;
2917 dwarf2_per_objfile->all_type_units =
2918 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2919
2920 sig_types_hash = allocate_signatured_type_table (objfile);
2921
2922 for (i = 0; i < elements; i += 3)
2923 {
2924 struct signatured_type *sig_type;
2925 ULONGEST offset, type_offset_in_tu, signature;
2926 void **slot;
2927
2928 gdb_static_assert (sizeof (ULONGEST) >= 8);
2929 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2930 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2931 BFD_ENDIAN_LITTLE);
2932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2933 bytes += 3 * 8;
2934
2935 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2936 struct signatured_type);
2937 sig_type->signature = signature;
2938 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2939 sig_type->per_cu.is_debug_types = 1;
2940 sig_type->per_cu.section = section;
2941 sig_type->per_cu.offset.sect_off = offset;
2942 sig_type->per_cu.objfile = objfile;
2943 sig_type->per_cu.v.quick
2944 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2945 struct dwarf2_per_cu_quick_data);
2946
2947 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2948 *slot = sig_type;
2949
2950 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2951 }
2952
2953 dwarf2_per_objfile->signatured_types = sig_types_hash;
2954 }
2955
2956 /* Read the address map data from the mapped index, and use it to
2957 populate the objfile's psymtabs_addrmap. */
2958
2959 static void
2960 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2961 {
2962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2963 const gdb_byte *iter, *end;
2964 struct obstack temp_obstack;
2965 struct addrmap *mutable_map;
2966 struct cleanup *cleanup;
2967 CORE_ADDR baseaddr;
2968
2969 obstack_init (&temp_obstack);
2970 cleanup = make_cleanup_obstack_free (&temp_obstack);
2971 mutable_map = addrmap_create_mutable (&temp_obstack);
2972
2973 iter = index->address_table;
2974 end = iter + index->address_table_size;
2975
2976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2977
2978 while (iter < end)
2979 {
2980 ULONGEST hi, lo, cu_index;
2981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2982 iter += 8;
2983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2984 iter += 8;
2985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2986 iter += 4;
2987
2988 if (lo > hi)
2989 {
2990 complaint (&symfile_complaints,
2991 _(".gdb_index address table has invalid range (%s - %s)"),
2992 hex_string (lo), hex_string (hi));
2993 continue;
2994 }
2995
2996 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2997 {
2998 complaint (&symfile_complaints,
2999 _(".gdb_index address table has invalid CU number %u"),
3000 (unsigned) cu_index);
3001 continue;
3002 }
3003
3004 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3005 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3006 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3007 }
3008
3009 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3010 &objfile->objfile_obstack);
3011 do_cleanups (cleanup);
3012 }
3013
3014 /* The hash function for strings in the mapped index. This is the same as
3015 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3016 implementation. This is necessary because the hash function is tied to the
3017 format of the mapped index file. The hash values do not have to match with
3018 SYMBOL_HASH_NEXT.
3019
3020 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3021
3022 static hashval_t
3023 mapped_index_string_hash (int index_version, const void *p)
3024 {
3025 const unsigned char *str = (const unsigned char *) p;
3026 hashval_t r = 0;
3027 unsigned char c;
3028
3029 while ((c = *str++) != 0)
3030 {
3031 if (index_version >= 5)
3032 c = tolower (c);
3033 r = r * 67 + c - 113;
3034 }
3035
3036 return r;
3037 }
3038
3039 /* Find a slot in the mapped index INDEX for the object named NAME.
3040 If NAME is found, set *VEC_OUT to point to the CU vector in the
3041 constant pool and return 1. If NAME cannot be found, return 0. */
3042
3043 static int
3044 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3045 offset_type **vec_out)
3046 {
3047 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3048 offset_type hash;
3049 offset_type slot, step;
3050 int (*cmp) (const char *, const char *);
3051
3052 if (current_language->la_language == language_cplus
3053 || current_language->la_language == language_fortran
3054 || current_language->la_language == language_d)
3055 {
3056 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3057 not contain any. */
3058
3059 if (strchr (name, '(') != NULL)
3060 {
3061 char *without_params = cp_remove_params (name);
3062
3063 if (without_params != NULL)
3064 {
3065 make_cleanup (xfree, without_params);
3066 name = without_params;
3067 }
3068 }
3069 }
3070
3071 /* Index version 4 did not support case insensitive searches. But the
3072 indices for case insensitive languages are built in lowercase, therefore
3073 simulate our NAME being searched is also lowercased. */
3074 hash = mapped_index_string_hash ((index->version == 4
3075 && case_sensitivity == case_sensitive_off
3076 ? 5 : index->version),
3077 name);
3078
3079 slot = hash & (index->symbol_table_slots - 1);
3080 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3081 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3082
3083 for (;;)
3084 {
3085 /* Convert a slot number to an offset into the table. */
3086 offset_type i = 2 * slot;
3087 const char *str;
3088 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3089 {
3090 do_cleanups (back_to);
3091 return 0;
3092 }
3093
3094 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3095 if (!cmp (name, str))
3096 {
3097 *vec_out = (offset_type *) (index->constant_pool
3098 + MAYBE_SWAP (index->symbol_table[i + 1]));
3099 do_cleanups (back_to);
3100 return 1;
3101 }
3102
3103 slot = (slot + step) & (index->symbol_table_slots - 1);
3104 }
3105 }
3106
3107 /* A helper function that reads the .gdb_index from SECTION and fills
3108 in MAP. FILENAME is the name of the file containing the section;
3109 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3110 ok to use deprecated sections.
3111
3112 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3113 out parameters that are filled in with information about the CU and
3114 TU lists in the section.
3115
3116 Returns 1 if all went well, 0 otherwise. */
3117
3118 static int
3119 read_index_from_section (struct objfile *objfile,
3120 const char *filename,
3121 int deprecated_ok,
3122 struct dwarf2_section_info *section,
3123 struct mapped_index *map,
3124 const gdb_byte **cu_list,
3125 offset_type *cu_list_elements,
3126 const gdb_byte **types_list,
3127 offset_type *types_list_elements)
3128 {
3129 const gdb_byte *addr;
3130 offset_type version;
3131 offset_type *metadata;
3132 int i;
3133
3134 if (dwarf2_section_empty_p (section))
3135 return 0;
3136
3137 /* Older elfutils strip versions could keep the section in the main
3138 executable while splitting it for the separate debug info file. */
3139 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3140 return 0;
3141
3142 dwarf2_read_section (objfile, section);
3143
3144 addr = section->buffer;
3145 /* Version check. */
3146 version = MAYBE_SWAP (*(offset_type *) addr);
3147 /* Versions earlier than 3 emitted every copy of a psymbol. This
3148 causes the index to behave very poorly for certain requests. Version 3
3149 contained incomplete addrmap. So, it seems better to just ignore such
3150 indices. */
3151 if (version < 4)
3152 {
3153 static int warning_printed = 0;
3154 if (!warning_printed)
3155 {
3156 warning (_("Skipping obsolete .gdb_index section in %s."),
3157 filename);
3158 warning_printed = 1;
3159 }
3160 return 0;
3161 }
3162 /* Index version 4 uses a different hash function than index version
3163 5 and later.
3164
3165 Versions earlier than 6 did not emit psymbols for inlined
3166 functions. Using these files will cause GDB not to be able to
3167 set breakpoints on inlined functions by name, so we ignore these
3168 indices unless the user has done
3169 "set use-deprecated-index-sections on". */
3170 if (version < 6 && !deprecated_ok)
3171 {
3172 static int warning_printed = 0;
3173 if (!warning_printed)
3174 {
3175 warning (_("\
3176 Skipping deprecated .gdb_index section in %s.\n\
3177 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3178 to use the section anyway."),
3179 filename);
3180 warning_printed = 1;
3181 }
3182 return 0;
3183 }
3184 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3185 of the TU (for symbols coming from TUs),
3186 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3187 Plus gold-generated indices can have duplicate entries for global symbols,
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3189 These are just performance bugs, and we can't distinguish gdb-generated
3190 indices from gold-generated ones, so issue no warning here. */
3191
3192 /* Indexes with higher version than the one supported by GDB may be no
3193 longer backward compatible. */
3194 if (version > 8)
3195 return 0;
3196
3197 map->version = version;
3198 map->total_size = section->size;
3199
3200 metadata = (offset_type *) (addr + sizeof (offset_type));
3201
3202 i = 0;
3203 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3204 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3205 / 8);
3206 ++i;
3207
3208 *types_list = addr + MAYBE_SWAP (metadata[i]);
3209 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3210 - MAYBE_SWAP (metadata[i]))
3211 / 8);
3212 ++i;
3213
3214 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3215 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3216 - MAYBE_SWAP (metadata[i]));
3217 ++i;
3218
3219 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3220 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3221 - MAYBE_SWAP (metadata[i]))
3222 / (2 * sizeof (offset_type)));
3223 ++i;
3224
3225 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3226
3227 return 1;
3228 }
3229
3230
3231 /* Read the index file. If everything went ok, initialize the "quick"
3232 elements of all the CUs and return 1. Otherwise, return 0. */
3233
3234 static int
3235 dwarf2_read_index (struct objfile *objfile)
3236 {
3237 struct mapped_index local_map, *map;
3238 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3239 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3240 struct dwz_file *dwz;
3241
3242 if (!read_index_from_section (objfile, objfile_name (objfile),
3243 use_deprecated_index_sections,
3244 &dwarf2_per_objfile->gdb_index, &local_map,
3245 &cu_list, &cu_list_elements,
3246 &types_list, &types_list_elements))
3247 return 0;
3248
3249 /* Don't use the index if it's empty. */
3250 if (local_map.symbol_table_slots == 0)
3251 return 0;
3252
3253 /* If there is a .dwz file, read it so we can get its CU list as
3254 well. */
3255 dwz = dwarf2_get_dwz_file ();
3256 if (dwz != NULL)
3257 {
3258 struct mapped_index dwz_map;
3259 const gdb_byte *dwz_types_ignore;
3260 offset_type dwz_types_elements_ignore;
3261
3262 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3263 1,
3264 &dwz->gdb_index, &dwz_map,
3265 &dwz_list, &dwz_list_elements,
3266 &dwz_types_ignore,
3267 &dwz_types_elements_ignore))
3268 {
3269 warning (_("could not read '.gdb_index' section from %s; skipping"),
3270 bfd_get_filename (dwz->dwz_bfd));
3271 return 0;
3272 }
3273 }
3274
3275 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3276 dwz_list_elements);
3277
3278 if (types_list_elements)
3279 {
3280 struct dwarf2_section_info *section;
3281
3282 /* We can only handle a single .debug_types when we have an
3283 index. */
3284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3285 return 0;
3286
3287 section = VEC_index (dwarf2_section_info_def,
3288 dwarf2_per_objfile->types, 0);
3289
3290 create_signatured_type_table_from_index (objfile, section, types_list,
3291 types_list_elements);
3292 }
3293
3294 create_addrmap_from_index (objfile, &local_map);
3295
3296 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3297 *map = local_map;
3298
3299 dwarf2_per_objfile->index_table = map;
3300 dwarf2_per_objfile->using_index = 1;
3301 dwarf2_per_objfile->quick_file_names_table =
3302 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3303
3304 return 1;
3305 }
3306
3307 /* A helper for the "quick" functions which sets the global
3308 dwarf2_per_objfile according to OBJFILE. */
3309
3310 static void
3311 dw2_setup (struct objfile *objfile)
3312 {
3313 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3314 objfile_data (objfile, dwarf2_objfile_data_key));
3315 gdb_assert (dwarf2_per_objfile);
3316 }
3317
3318 /* die_reader_func for dw2_get_file_names. */
3319
3320 static void
3321 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3322 const gdb_byte *info_ptr,
3323 struct die_info *comp_unit_die,
3324 int has_children,
3325 void *data)
3326 {
3327 struct dwarf2_cu *cu = reader->cu;
3328 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3329 struct objfile *objfile = dwarf2_per_objfile->objfile;
3330 struct dwarf2_per_cu_data *lh_cu;
3331 struct line_header *lh;
3332 struct attribute *attr;
3333 int i;
3334 const char *name, *comp_dir;
3335 void **slot;
3336 struct quick_file_names *qfn;
3337 unsigned int line_offset;
3338
3339 gdb_assert (! this_cu->is_debug_types);
3340
3341 /* Our callers never want to match partial units -- instead they
3342 will match the enclosing full CU. */
3343 if (comp_unit_die->tag == DW_TAG_partial_unit)
3344 {
3345 this_cu->v.quick->no_file_data = 1;
3346 return;
3347 }
3348
3349 lh_cu = this_cu;
3350 lh = NULL;
3351 slot = NULL;
3352 line_offset = 0;
3353
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3355 if (attr)
3356 {
3357 struct quick_file_names find_entry;
3358
3359 line_offset = DW_UNSND (attr);
3360
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_offset.sect_off = line_offset;
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3366 &find_entry, INSERT);
3367 if (*slot != NULL)
3368 {
3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3370 return;
3371 }
3372
3373 lh = dwarf_decode_line_header (line_offset, cu);
3374 }
3375 if (lh == NULL)
3376 {
3377 lh_cu->v.quick->no_file_data = 1;
3378 return;
3379 }
3380
3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_offset.sect_off = line_offset;
3384 gdb_assert (slot != NULL);
3385 *slot = qfn;
3386
3387 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3388
3389 qfn->num_file_names = lh->num_file_names;
3390 qfn->file_names =
3391 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3392 for (i = 0; i < lh->num_file_names; ++i)
3393 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3394 qfn->real_names = NULL;
3395
3396 free_line_header (lh);
3397
3398 lh_cu->v.quick->file_names = qfn;
3399 }
3400
3401 /* A helper for the "quick" functions which attempts to read the line
3402 table for THIS_CU. */
3403
3404 static struct quick_file_names *
3405 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3406 {
3407 /* This should never be called for TUs. */
3408 gdb_assert (! this_cu->is_debug_types);
3409 /* Nor type unit groups. */
3410 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3411
3412 if (this_cu->v.quick->file_names != NULL)
3413 return this_cu->v.quick->file_names;
3414 /* If we know there is no line data, no point in looking again. */
3415 if (this_cu->v.quick->no_file_data)
3416 return NULL;
3417
3418 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3419
3420 if (this_cu->v.quick->no_file_data)
3421 return NULL;
3422 return this_cu->v.quick->file_names;
3423 }
3424
3425 /* A helper for the "quick" functions which computes and caches the
3426 real path for a given file name from the line table. */
3427
3428 static const char *
3429 dw2_get_real_path (struct objfile *objfile,
3430 struct quick_file_names *qfn, int index)
3431 {
3432 if (qfn->real_names == NULL)
3433 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3434 qfn->num_file_names, const char *);
3435
3436 if (qfn->real_names[index] == NULL)
3437 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3438
3439 return qfn->real_names[index];
3440 }
3441
3442 static struct symtab *
3443 dw2_find_last_source_symtab (struct objfile *objfile)
3444 {
3445 struct compunit_symtab *cust;
3446 int index;
3447
3448 dw2_setup (objfile);
3449 index = dwarf2_per_objfile->n_comp_units - 1;
3450 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3451 if (cust == NULL)
3452 return NULL;
3453 return compunit_primary_filetab (cust);
3454 }
3455
3456 /* Traversal function for dw2_forget_cached_source_info. */
3457
3458 static int
3459 dw2_free_cached_file_names (void **slot, void *info)
3460 {
3461 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3462
3463 if (file_data->real_names)
3464 {
3465 int i;
3466
3467 for (i = 0; i < file_data->num_file_names; ++i)
3468 {
3469 xfree ((void*) file_data->real_names[i]);
3470 file_data->real_names[i] = NULL;
3471 }
3472 }
3473
3474 return 1;
3475 }
3476
3477 static void
3478 dw2_forget_cached_source_info (struct objfile *objfile)
3479 {
3480 dw2_setup (objfile);
3481
3482 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3483 dw2_free_cached_file_names, NULL);
3484 }
3485
3486 /* Helper function for dw2_map_symtabs_matching_filename that expands
3487 the symtabs and calls the iterator. */
3488
3489 static int
3490 dw2_map_expand_apply (struct objfile *objfile,
3491 struct dwarf2_per_cu_data *per_cu,
3492 const char *name, const char *real_path,
3493 int (*callback) (struct symtab *, void *),
3494 void *data)
3495 {
3496 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3497
3498 /* Don't visit already-expanded CUs. */
3499 if (per_cu->v.quick->compunit_symtab)
3500 return 0;
3501
3502 /* This may expand more than one symtab, and we want to iterate over
3503 all of them. */
3504 dw2_instantiate_symtab (per_cu);
3505
3506 return iterate_over_some_symtabs (name, real_path, callback, data,
3507 objfile->compunit_symtabs, last_made);
3508 }
3509
3510 /* Implementation of the map_symtabs_matching_filename method. */
3511
3512 static int
3513 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3514 const char *real_path,
3515 int (*callback) (struct symtab *, void *),
3516 void *data)
3517 {
3518 int i;
3519 const char *name_basename = lbasename (name);
3520
3521 dw2_setup (objfile);
3522
3523 /* The rule is CUs specify all the files, including those used by
3524 any TU, so there's no need to scan TUs here. */
3525
3526 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3527 {
3528 int j;
3529 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3530 struct quick_file_names *file_data;
3531
3532 /* We only need to look at symtabs not already expanded. */
3533 if (per_cu->v.quick->compunit_symtab)
3534 continue;
3535
3536 file_data = dw2_get_file_names (per_cu);
3537 if (file_data == NULL)
3538 continue;
3539
3540 for (j = 0; j < file_data->num_file_names; ++j)
3541 {
3542 const char *this_name = file_data->file_names[j];
3543 const char *this_real_name;
3544
3545 if (compare_filenames_for_search (this_name, name))
3546 {
3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3548 callback, data))
3549 return 1;
3550 continue;
3551 }
3552
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3557 continue;
3558
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
3561 {
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3563 callback, data))
3564 return 1;
3565 continue;
3566 }
3567
3568 if (real_path != NULL)
3569 {
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
3572 if (this_real_name != NULL
3573 && FILENAME_CMP (real_path, this_real_name) == 0)
3574 {
3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3576 callback, data))
3577 return 1;
3578 continue;
3579 }
3580 }
3581 }
3582 }
3583
3584 return 0;
3585 }
3586
3587 /* Struct used to manage iterating over all CUs looking for a symbol. */
3588
3589 struct dw2_symtab_iterator
3590 {
3591 /* The internalized form of .gdb_index. */
3592 struct mapped_index *index;
3593 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3594 int want_specific_block;
3595 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3596 Unused if !WANT_SPECIFIC_BLOCK. */
3597 int block_index;
3598 /* The kind of symbol we're looking for. */
3599 domain_enum domain;
3600 /* The list of CUs from the index entry of the symbol,
3601 or NULL if not found. */
3602 offset_type *vec;
3603 /* The next element in VEC to look at. */
3604 int next;
3605 /* The number of elements in VEC, or zero if there is no match. */
3606 int length;
3607 /* Have we seen a global version of the symbol?
3608 If so we can ignore all further global instances.
3609 This is to work around gold/15646, inefficient gold-generated
3610 indices. */
3611 int global_seen;
3612 };
3613
3614 /* Initialize the index symtab iterator ITER.
3615 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3616 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3617
3618 static void
3619 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3620 struct mapped_index *index,
3621 int want_specific_block,
3622 int block_index,
3623 domain_enum domain,
3624 const char *name)
3625 {
3626 iter->index = index;
3627 iter->want_specific_block = want_specific_block;
3628 iter->block_index = block_index;
3629 iter->domain = domain;
3630 iter->next = 0;
3631 iter->global_seen = 0;
3632
3633 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3634 iter->length = MAYBE_SWAP (*iter->vec);
3635 else
3636 {
3637 iter->vec = NULL;
3638 iter->length = 0;
3639 }
3640 }
3641
3642 /* Return the next matching CU or NULL if there are no more. */
3643
3644 static struct dwarf2_per_cu_data *
3645 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3646 {
3647 for ( ; iter->next < iter->length; ++iter->next)
3648 {
3649 offset_type cu_index_and_attrs =
3650 MAYBE_SWAP (iter->vec[iter->next + 1]);
3651 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3652 struct dwarf2_per_cu_data *per_cu;
3653 int want_static = iter->block_index != GLOBAL_BLOCK;
3654 /* This value is only valid for index versions >= 7. */
3655 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3656 gdb_index_symbol_kind symbol_kind =
3657 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3658 /* Only check the symbol attributes if they're present.
3659 Indices prior to version 7 don't record them,
3660 and indices >= 7 may elide them for certain symbols
3661 (gold does this). */
3662 int attrs_valid =
3663 (iter->index->version >= 7
3664 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3665
3666 /* Don't crash on bad data. */
3667 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3668 + dwarf2_per_objfile->n_type_units))
3669 {
3670 complaint (&symfile_complaints,
3671 _(".gdb_index entry has bad CU index"
3672 " [in module %s]"),
3673 objfile_name (dwarf2_per_objfile->objfile));
3674 continue;
3675 }
3676
3677 per_cu = dw2_get_cutu (cu_index);
3678
3679 /* Skip if already read in. */
3680 if (per_cu->v.quick->compunit_symtab)
3681 continue;
3682
3683 /* Check static vs global. */
3684 if (attrs_valid)
3685 {
3686 if (iter->want_specific_block
3687 && want_static != is_static)
3688 continue;
3689 /* Work around gold/15646. */
3690 if (!is_static && iter->global_seen)
3691 continue;
3692 if (!is_static)
3693 iter->global_seen = 1;
3694 }
3695
3696 /* Only check the symbol's kind if it has one. */
3697 if (attrs_valid)
3698 {
3699 switch (iter->domain)
3700 {
3701 case VAR_DOMAIN:
3702 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3703 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3704 /* Some types are also in VAR_DOMAIN. */
3705 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3706 continue;
3707 break;
3708 case STRUCT_DOMAIN:
3709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3710 continue;
3711 break;
3712 case LABEL_DOMAIN:
3713 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3714 continue;
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720
3721 ++iter->next;
3722 return per_cu;
3723 }
3724
3725 return NULL;
3726 }
3727
3728 static struct compunit_symtab *
3729 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3730 const char *name, domain_enum domain)
3731 {
3732 struct compunit_symtab *stab_best = NULL;
3733 struct mapped_index *index;
3734
3735 dw2_setup (objfile);
3736
3737 index = dwarf2_per_objfile->index_table;
3738
3739 /* index is NULL if OBJF_READNOW. */
3740 if (index)
3741 {
3742 struct dw2_symtab_iterator iter;
3743 struct dwarf2_per_cu_data *per_cu;
3744
3745 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3746
3747 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3748 {
3749 struct symbol *sym, *with_opaque = NULL;
3750 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3751 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3752 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3753
3754 sym = block_find_symbol (block, name, domain,
3755 block_find_non_opaque_type_preferred,
3756 &with_opaque);
3757
3758 /* Some caution must be observed with overloaded functions
3759 and methods, since the index will not contain any overload
3760 information (but NAME might contain it). */
3761
3762 if (sym != NULL
3763 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3764 return stab;
3765 if (with_opaque != NULL
3766 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3767 stab_best = stab;
3768
3769 /* Keep looking through other CUs. */
3770 }
3771 }
3772
3773 return stab_best;
3774 }
3775
3776 static void
3777 dw2_print_stats (struct objfile *objfile)
3778 {
3779 int i, total, count;
3780
3781 dw2_setup (objfile);
3782 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3783 count = 0;
3784 for (i = 0; i < total; ++i)
3785 {
3786 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3787
3788 if (!per_cu->v.quick->compunit_symtab)
3789 ++count;
3790 }
3791 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3792 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3793 }
3794
3795 /* This dumps minimal information about the index.
3796 It is called via "mt print objfiles".
3797 One use is to verify .gdb_index has been loaded by the
3798 gdb.dwarf2/gdb-index.exp testcase. */
3799
3800 static void
3801 dw2_dump (struct objfile *objfile)
3802 {
3803 dw2_setup (objfile);
3804 gdb_assert (dwarf2_per_objfile->using_index);
3805 printf_filtered (".gdb_index:");
3806 if (dwarf2_per_objfile->index_table != NULL)
3807 {
3808 printf_filtered (" version %d\n",
3809 dwarf2_per_objfile->index_table->version);
3810 }
3811 else
3812 printf_filtered (" faked for \"readnow\"\n");
3813 printf_filtered ("\n");
3814 }
3815
3816 static void
3817 dw2_relocate (struct objfile *objfile,
3818 const struct section_offsets *new_offsets,
3819 const struct section_offsets *delta)
3820 {
3821 /* There's nothing to relocate here. */
3822 }
3823
3824 static void
3825 dw2_expand_symtabs_for_function (struct objfile *objfile,
3826 const char *func_name)
3827 {
3828 struct mapped_index *index;
3829
3830 dw2_setup (objfile);
3831
3832 index = dwarf2_per_objfile->index_table;
3833
3834 /* index is NULL if OBJF_READNOW. */
3835 if (index)
3836 {
3837 struct dw2_symtab_iterator iter;
3838 struct dwarf2_per_cu_data *per_cu;
3839
3840 /* Note: It doesn't matter what we pass for block_index here. */
3841 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3842 func_name);
3843
3844 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3845 dw2_instantiate_symtab (per_cu);
3846 }
3847 }
3848
3849 static void
3850 dw2_expand_all_symtabs (struct objfile *objfile)
3851 {
3852 int i;
3853
3854 dw2_setup (objfile);
3855
3856 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3857 + dwarf2_per_objfile->n_type_units); ++i)
3858 {
3859 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3860
3861 dw2_instantiate_symtab (per_cu);
3862 }
3863 }
3864
3865 static void
3866 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3867 const char *fullname)
3868 {
3869 int i;
3870
3871 dw2_setup (objfile);
3872
3873 /* We don't need to consider type units here.
3874 This is only called for examining code, e.g. expand_line_sal.
3875 There can be an order of magnitude (or more) more type units
3876 than comp units, and we avoid them if we can. */
3877
3878 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3879 {
3880 int j;
3881 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3882 struct quick_file_names *file_data;
3883
3884 /* We only need to look at symtabs not already expanded. */
3885 if (per_cu->v.quick->compunit_symtab)
3886 continue;
3887
3888 file_data = dw2_get_file_names (per_cu);
3889 if (file_data == NULL)
3890 continue;
3891
3892 for (j = 0; j < file_data->num_file_names; ++j)
3893 {
3894 const char *this_fullname = file_data->file_names[j];
3895
3896 if (filename_cmp (this_fullname, fullname) == 0)
3897 {
3898 dw2_instantiate_symtab (per_cu);
3899 break;
3900 }
3901 }
3902 }
3903 }
3904
3905 static void
3906 dw2_map_matching_symbols (struct objfile *objfile,
3907 const char * name, domain_enum domain,
3908 int global,
3909 int (*callback) (struct block *,
3910 struct symbol *, void *),
3911 void *data, symbol_compare_ftype *match,
3912 symbol_compare_ftype *ordered_compare)
3913 {
3914 /* Currently unimplemented; used for Ada. The function can be called if the
3915 current language is Ada for a non-Ada objfile using GNU index. As Ada
3916 does not look for non-Ada symbols this function should just return. */
3917 }
3918
3919 static void
3920 dw2_expand_symtabs_matching
3921 (struct objfile *objfile,
3922 expand_symtabs_file_matcher_ftype *file_matcher,
3923 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3924 expand_symtabs_exp_notify_ftype *expansion_notify,
3925 enum search_domain kind,
3926 void *data)
3927 {
3928 int i;
3929 offset_type iter;
3930 struct mapped_index *index;
3931
3932 dw2_setup (objfile);
3933
3934 /* index_table is NULL if OBJF_READNOW. */
3935 if (!dwarf2_per_objfile->index_table)
3936 return;
3937 index = dwarf2_per_objfile->index_table;
3938
3939 if (file_matcher != NULL)
3940 {
3941 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3942 htab_eq_pointer,
3943 NULL, xcalloc, xfree));
3944 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3945 htab_eq_pointer,
3946 NULL, xcalloc, xfree));
3947
3948 /* The rule is CUs specify all the files, including those used by
3949 any TU, so there's no need to scan TUs here. */
3950
3951 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3952 {
3953 int j;
3954 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3955 struct quick_file_names *file_data;
3956 void **slot;
3957
3958 QUIT;
3959
3960 per_cu->v.quick->mark = 0;
3961
3962 /* We only need to look at symtabs not already expanded. */
3963 if (per_cu->v.quick->compunit_symtab)
3964 continue;
3965
3966 file_data = dw2_get_file_names (per_cu);
3967 if (file_data == NULL)
3968 continue;
3969
3970 if (htab_find (visited_not_found.get (), file_data) != NULL)
3971 continue;
3972 else if (htab_find (visited_found.get (), file_data) != NULL)
3973 {
3974 per_cu->v.quick->mark = 1;
3975 continue;
3976 }
3977
3978 for (j = 0; j < file_data->num_file_names; ++j)
3979 {
3980 const char *this_real_name;
3981
3982 if (file_matcher (file_data->file_names[j], data, 0))
3983 {
3984 per_cu->v.quick->mark = 1;
3985 break;
3986 }
3987
3988 /* Before we invoke realpath, which can get expensive when many
3989 files are involved, do a quick comparison of the basenames. */
3990 if (!basenames_may_differ
3991 && !file_matcher (lbasename (file_data->file_names[j]),
3992 data, 1))
3993 continue;
3994
3995 this_real_name = dw2_get_real_path (objfile, file_data, j);
3996 if (file_matcher (this_real_name, data, 0))
3997 {
3998 per_cu->v.quick->mark = 1;
3999 break;
4000 }
4001 }
4002
4003 slot = htab_find_slot (per_cu->v.quick->mark
4004 ? visited_found.get ()
4005 : visited_not_found.get (),
4006 file_data, INSERT);
4007 *slot = file_data;
4008 }
4009 }
4010
4011 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4012 {
4013 offset_type idx = 2 * iter;
4014 const char *name;
4015 offset_type *vec, vec_len, vec_idx;
4016 int global_seen = 0;
4017
4018 QUIT;
4019
4020 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4021 continue;
4022
4023 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4024
4025 if (! (*symbol_matcher) (name, data))
4026 continue;
4027
4028 /* The name was matched, now expand corresponding CUs that were
4029 marked. */
4030 vec = (offset_type *) (index->constant_pool
4031 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4032 vec_len = MAYBE_SWAP (vec[0]);
4033 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4034 {
4035 struct dwarf2_per_cu_data *per_cu;
4036 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4037 /* This value is only valid for index versions >= 7. */
4038 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4039 gdb_index_symbol_kind symbol_kind =
4040 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4041 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4042 /* Only check the symbol attributes if they're present.
4043 Indices prior to version 7 don't record them,
4044 and indices >= 7 may elide them for certain symbols
4045 (gold does this). */
4046 int attrs_valid =
4047 (index->version >= 7
4048 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4049
4050 /* Work around gold/15646. */
4051 if (attrs_valid)
4052 {
4053 if (!is_static && global_seen)
4054 continue;
4055 if (!is_static)
4056 global_seen = 1;
4057 }
4058
4059 /* Only check the symbol's kind if it has one. */
4060 if (attrs_valid)
4061 {
4062 switch (kind)
4063 {
4064 case VARIABLES_DOMAIN:
4065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4066 continue;
4067 break;
4068 case FUNCTIONS_DOMAIN:
4069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4070 continue;
4071 break;
4072 case TYPES_DOMAIN:
4073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4074 continue;
4075 break;
4076 default:
4077 break;
4078 }
4079 }
4080
4081 /* Don't crash on bad data. */
4082 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4083 + dwarf2_per_objfile->n_type_units))
4084 {
4085 complaint (&symfile_complaints,
4086 _(".gdb_index entry has bad CU index"
4087 " [in module %s]"), objfile_name (objfile));
4088 continue;
4089 }
4090
4091 per_cu = dw2_get_cutu (cu_index);
4092 if (file_matcher == NULL || per_cu->v.quick->mark)
4093 {
4094 int symtab_was_null =
4095 (per_cu->v.quick->compunit_symtab == NULL);
4096
4097 dw2_instantiate_symtab (per_cu);
4098
4099 if (expansion_notify != NULL
4100 && symtab_was_null
4101 && per_cu->v.quick->compunit_symtab != NULL)
4102 {
4103 expansion_notify (per_cu->v.quick->compunit_symtab,
4104 data);
4105 }
4106 }
4107 }
4108 }
4109 }
4110
4111 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4112 symtab. */
4113
4114 static struct compunit_symtab *
4115 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4116 CORE_ADDR pc)
4117 {
4118 int i;
4119
4120 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4121 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4122 return cust;
4123
4124 if (cust->includes == NULL)
4125 return NULL;
4126
4127 for (i = 0; cust->includes[i]; ++i)
4128 {
4129 struct compunit_symtab *s = cust->includes[i];
4130
4131 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4132 if (s != NULL)
4133 return s;
4134 }
4135
4136 return NULL;
4137 }
4138
4139 static struct compunit_symtab *
4140 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4141 struct bound_minimal_symbol msymbol,
4142 CORE_ADDR pc,
4143 struct obj_section *section,
4144 int warn_if_readin)
4145 {
4146 struct dwarf2_per_cu_data *data;
4147 struct compunit_symtab *result;
4148
4149 dw2_setup (objfile);
4150
4151 if (!objfile->psymtabs_addrmap)
4152 return NULL;
4153
4154 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4155 pc);
4156 if (!data)
4157 return NULL;
4158
4159 if (warn_if_readin && data->v.quick->compunit_symtab)
4160 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4161 paddress (get_objfile_arch (objfile), pc));
4162
4163 result
4164 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4165 pc);
4166 gdb_assert (result != NULL);
4167 return result;
4168 }
4169
4170 static void
4171 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4172 void *data, int need_fullname)
4173 {
4174 int i;
4175 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4176 NULL, xcalloc, xfree));
4177
4178 dw2_setup (objfile);
4179
4180 /* The rule is CUs specify all the files, including those used by
4181 any TU, so there's no need to scan TUs here.
4182 We can ignore file names coming from already-expanded CUs. */
4183
4184 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4185 {
4186 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4187
4188 if (per_cu->v.quick->compunit_symtab)
4189 {
4190 void **slot = htab_find_slot (visited.get (),
4191 per_cu->v.quick->file_names,
4192 INSERT);
4193
4194 *slot = per_cu->v.quick->file_names;
4195 }
4196 }
4197
4198 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4199 {
4200 int j;
4201 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4202 struct quick_file_names *file_data;
4203 void **slot;
4204
4205 /* We only need to look at symtabs not already expanded. */
4206 if (per_cu->v.quick->compunit_symtab)
4207 continue;
4208
4209 file_data = dw2_get_file_names (per_cu);
4210 if (file_data == NULL)
4211 continue;
4212
4213 slot = htab_find_slot (visited.get (), file_data, INSERT);
4214 if (*slot)
4215 {
4216 /* Already visited. */
4217 continue;
4218 }
4219 *slot = file_data;
4220
4221 for (j = 0; j < file_data->num_file_names; ++j)
4222 {
4223 const char *this_real_name;
4224
4225 if (need_fullname)
4226 this_real_name = dw2_get_real_path (objfile, file_data, j);
4227 else
4228 this_real_name = NULL;
4229 (*fun) (file_data->file_names[j], this_real_name, data);
4230 }
4231 }
4232 }
4233
4234 static int
4235 dw2_has_symbols (struct objfile *objfile)
4236 {
4237 return 1;
4238 }
4239
4240 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4241 {
4242 dw2_has_symbols,
4243 dw2_find_last_source_symtab,
4244 dw2_forget_cached_source_info,
4245 dw2_map_symtabs_matching_filename,
4246 dw2_lookup_symbol,
4247 dw2_print_stats,
4248 dw2_dump,
4249 dw2_relocate,
4250 dw2_expand_symtabs_for_function,
4251 dw2_expand_all_symtabs,
4252 dw2_expand_symtabs_with_fullname,
4253 dw2_map_matching_symbols,
4254 dw2_expand_symtabs_matching,
4255 dw2_find_pc_sect_compunit_symtab,
4256 dw2_map_symbol_filenames
4257 };
4258
4259 /* Initialize for reading DWARF for this objfile. Return 0 if this
4260 file will use psymtabs, or 1 if using the GNU index. */
4261
4262 int
4263 dwarf2_initialize_objfile (struct objfile *objfile)
4264 {
4265 /* If we're about to read full symbols, don't bother with the
4266 indices. In this case we also don't care if some other debug
4267 format is making psymtabs, because they are all about to be
4268 expanded anyway. */
4269 if ((objfile->flags & OBJF_READNOW))
4270 {
4271 int i;
4272
4273 dwarf2_per_objfile->using_index = 1;
4274 create_all_comp_units (objfile);
4275 create_all_type_units (objfile);
4276 dwarf2_per_objfile->quick_file_names_table =
4277 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4278
4279 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4280 + dwarf2_per_objfile->n_type_units); ++i)
4281 {
4282 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4283
4284 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4285 struct dwarf2_per_cu_quick_data);
4286 }
4287
4288 /* Return 1 so that gdb sees the "quick" functions. However,
4289 these functions will be no-ops because we will have expanded
4290 all symtabs. */
4291 return 1;
4292 }
4293
4294 if (dwarf2_read_index (objfile))
4295 return 1;
4296
4297 return 0;
4298 }
4299
4300 \f
4301
4302 /* Build a partial symbol table. */
4303
4304 void
4305 dwarf2_build_psymtabs (struct objfile *objfile)
4306 {
4307
4308 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4309 {
4310 init_psymbol_list (objfile, 1024);
4311 }
4312
4313 TRY
4314 {
4315 /* This isn't really ideal: all the data we allocate on the
4316 objfile's obstack is still uselessly kept around. However,
4317 freeing it seems unsafe. */
4318 psymtab_discarder psymtabs (objfile);
4319 dwarf2_build_psymtabs_hard (objfile);
4320 psymtabs.keep ();
4321 }
4322 CATCH (except, RETURN_MASK_ERROR)
4323 {
4324 exception_print (gdb_stderr, except);
4325 }
4326 END_CATCH
4327 }
4328
4329 /* Return the total length of the CU described by HEADER. */
4330
4331 static unsigned int
4332 get_cu_length (const struct comp_unit_head *header)
4333 {
4334 return header->initial_length_size + header->length;
4335 }
4336
4337 /* Return TRUE if OFFSET is within CU_HEADER. */
4338
4339 static inline int
4340 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4341 {
4342 sect_offset bottom = { cu_header->offset.sect_off };
4343 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4344
4345 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4346 }
4347
4348 /* Find the base address of the compilation unit for range lists and
4349 location lists. It will normally be specified by DW_AT_low_pc.
4350 In DWARF-3 draft 4, the base address could be overridden by
4351 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4352 compilation units with discontinuous ranges. */
4353
4354 static void
4355 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4356 {
4357 struct attribute *attr;
4358
4359 cu->base_known = 0;
4360 cu->base_address = 0;
4361
4362 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4363 if (attr)
4364 {
4365 cu->base_address = attr_value_as_address (attr);
4366 cu->base_known = 1;
4367 }
4368 else
4369 {
4370 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4371 if (attr)
4372 {
4373 cu->base_address = attr_value_as_address (attr);
4374 cu->base_known = 1;
4375 }
4376 }
4377 }
4378
4379 /* Read in the comp unit header information from the debug_info at info_ptr.
4380 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4381 NOTE: This leaves members offset, first_die_offset to be filled in
4382 by the caller. */
4383
4384 static const gdb_byte *
4385 read_comp_unit_head (struct comp_unit_head *cu_header,
4386 const gdb_byte *info_ptr,
4387 struct dwarf2_section_info *section,
4388 rcuh_kind section_kind)
4389 {
4390 int signed_addr;
4391 unsigned int bytes_read;
4392 const char *filename = get_section_file_name (section);
4393 bfd *abfd = get_section_bfd_owner (section);
4394
4395 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4396 cu_header->initial_length_size = bytes_read;
4397 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4398 info_ptr += bytes_read;
4399 cu_header->version = read_2_bytes (abfd, info_ptr);
4400 info_ptr += 2;
4401 if (cu_header->version < 5)
4402 switch (section_kind)
4403 {
4404 case rcuh_kind::COMPILE:
4405 cu_header->unit_type = DW_UT_compile;
4406 break;
4407 case rcuh_kind::TYPE:
4408 cu_header->unit_type = DW_UT_type;
4409 break;
4410 default:
4411 internal_error (__FILE__, __LINE__,
4412 _("read_comp_unit_head: invalid section_kind"));
4413 }
4414 else
4415 {
4416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4417 (read_1_byte (abfd, info_ptr));
4418 info_ptr += 1;
4419 switch (cu_header->unit_type)
4420 {
4421 case DW_UT_compile:
4422 if (section_kind != rcuh_kind::COMPILE)
4423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4425 filename);
4426 break;
4427 case DW_UT_type:
4428 section_kind = rcuh_kind::TYPE;
4429 break;
4430 default:
4431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4432 "(is %d, should be %d or %d) [in module %s]"),
4433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4434 }
4435
4436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4437 info_ptr += 1;
4438 }
4439 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4440 &bytes_read);
4441 info_ptr += bytes_read;
4442 if (cu_header->version < 5)
4443 {
4444 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4445 info_ptr += 1;
4446 }
4447 signed_addr = bfd_get_sign_extend_vma (abfd);
4448 if (signed_addr < 0)
4449 internal_error (__FILE__, __LINE__,
4450 _("read_comp_unit_head: dwarf from non elf file"));
4451 cu_header->signed_addr_p = signed_addr;
4452
4453 if (section_kind == rcuh_kind::TYPE)
4454 {
4455 LONGEST type_offset;
4456
4457 cu_header->signature = read_8_bytes (abfd, info_ptr);
4458 info_ptr += 8;
4459
4460 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4461 info_ptr += bytes_read;
4462 cu_header->type_offset_in_tu.cu_off = type_offset;
4463 if (cu_header->type_offset_in_tu.cu_off != type_offset)
4464 error (_("Dwarf Error: Too big type_offset in compilation unit "
4465 "header (is %s) [in module %s]"), plongest (type_offset),
4466 filename);
4467 }
4468
4469 return info_ptr;
4470 }
4471
4472 /* Helper function that returns the proper abbrev section for
4473 THIS_CU. */
4474
4475 static struct dwarf2_section_info *
4476 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4477 {
4478 struct dwarf2_section_info *abbrev;
4479
4480 if (this_cu->is_dwz)
4481 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4482 else
4483 abbrev = &dwarf2_per_objfile->abbrev;
4484
4485 return abbrev;
4486 }
4487
4488 /* Subroutine of read_and_check_comp_unit_head and
4489 read_and_check_type_unit_head to simplify them.
4490 Perform various error checking on the header. */
4491
4492 static void
4493 error_check_comp_unit_head (struct comp_unit_head *header,
4494 struct dwarf2_section_info *section,
4495 struct dwarf2_section_info *abbrev_section)
4496 {
4497 const char *filename = get_section_file_name (section);
4498
4499 if (header->version < 2 || header->version > 5)
4500 error (_("Dwarf Error: wrong version in compilation unit header "
4501 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4502 filename);
4503
4504 if (header->abbrev_offset.sect_off
4505 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4506 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4507 "(offset 0x%lx + 6) [in module %s]"),
4508 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4509 filename);
4510
4511 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4512 avoid potential 32-bit overflow. */
4513 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4514 > section->size)
4515 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4516 "(offset 0x%lx + 0) [in module %s]"),
4517 (long) header->length, (long) header->offset.sect_off,
4518 filename);
4519 }
4520
4521 /* Read in a CU/TU header and perform some basic error checking.
4522 The contents of the header are stored in HEADER.
4523 The result is a pointer to the start of the first DIE. */
4524
4525 static const gdb_byte *
4526 read_and_check_comp_unit_head (struct comp_unit_head *header,
4527 struct dwarf2_section_info *section,
4528 struct dwarf2_section_info *abbrev_section,
4529 const gdb_byte *info_ptr,
4530 rcuh_kind section_kind)
4531 {
4532 const gdb_byte *beg_of_comp_unit = info_ptr;
4533 bfd *abfd = get_section_bfd_owner (section);
4534
4535 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4536
4537 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4538
4539 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4540
4541 error_check_comp_unit_head (header, section, abbrev_section);
4542
4543 return info_ptr;
4544 }
4545
4546 /* Fetch the abbreviation table offset from a comp or type unit header. */
4547
4548 static sect_offset
4549 read_abbrev_offset (struct dwarf2_section_info *section,
4550 sect_offset offset)
4551 {
4552 bfd *abfd = get_section_bfd_owner (section);
4553 const gdb_byte *info_ptr;
4554 unsigned int initial_length_size, offset_size;
4555 sect_offset abbrev_offset;
4556 uint16_t version;
4557
4558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4559 info_ptr = section->buffer + offset.sect_off;
4560 read_initial_length (abfd, info_ptr, &initial_length_size);
4561 offset_size = initial_length_size == 4 ? 4 : 8;
4562 info_ptr += initial_length_size;
4563
4564 version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
4566 if (version >= 5)
4567 {
4568 /* Skip unit type and address size. */
4569 info_ptr += 2;
4570 }
4571
4572 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4573 return abbrev_offset;
4574 }
4575
4576 /* Allocate a new partial symtab for file named NAME and mark this new
4577 partial symtab as being an include of PST. */
4578
4579 static void
4580 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4581 struct objfile *objfile)
4582 {
4583 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4584
4585 if (!IS_ABSOLUTE_PATH (subpst->filename))
4586 {
4587 /* It shares objfile->objfile_obstack. */
4588 subpst->dirname = pst->dirname;
4589 }
4590
4591 subpst->textlow = 0;
4592 subpst->texthigh = 0;
4593
4594 subpst->dependencies
4595 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4596 subpst->dependencies[0] = pst;
4597 subpst->number_of_dependencies = 1;
4598
4599 subpst->globals_offset = 0;
4600 subpst->n_global_syms = 0;
4601 subpst->statics_offset = 0;
4602 subpst->n_static_syms = 0;
4603 subpst->compunit_symtab = NULL;
4604 subpst->read_symtab = pst->read_symtab;
4605 subpst->readin = 0;
4606
4607 /* No private part is necessary for include psymtabs. This property
4608 can be used to differentiate between such include psymtabs and
4609 the regular ones. */
4610 subpst->read_symtab_private = NULL;
4611 }
4612
4613 /* Read the Line Number Program data and extract the list of files
4614 included by the source file represented by PST. Build an include
4615 partial symtab for each of these included files. */
4616
4617 static void
4618 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4619 struct die_info *die,
4620 struct partial_symtab *pst)
4621 {
4622 struct line_header *lh = NULL;
4623 struct attribute *attr;
4624
4625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4626 if (attr)
4627 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4628 if (lh == NULL)
4629 return; /* No linetable, so no includes. */
4630
4631 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4632 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4633
4634 free_line_header (lh);
4635 }
4636
4637 static hashval_t
4638 hash_signatured_type (const void *item)
4639 {
4640 const struct signatured_type *sig_type
4641 = (const struct signatured_type *) item;
4642
4643 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4644 return sig_type->signature;
4645 }
4646
4647 static int
4648 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4649 {
4650 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4651 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4652
4653 return lhs->signature == rhs->signature;
4654 }
4655
4656 /* Allocate a hash table for signatured types. */
4657
4658 static htab_t
4659 allocate_signatured_type_table (struct objfile *objfile)
4660 {
4661 return htab_create_alloc_ex (41,
4662 hash_signatured_type,
4663 eq_signatured_type,
4664 NULL,
4665 &objfile->objfile_obstack,
4666 hashtab_obstack_allocate,
4667 dummy_obstack_deallocate);
4668 }
4669
4670 /* A helper function to add a signatured type CU to a table. */
4671
4672 static int
4673 add_signatured_type_cu_to_table (void **slot, void *datum)
4674 {
4675 struct signatured_type *sigt = (struct signatured_type *) *slot;
4676 struct signatured_type ***datap = (struct signatured_type ***) datum;
4677
4678 **datap = sigt;
4679 ++*datap;
4680
4681 return 1;
4682 }
4683
4684 /* A helper for create_debug_types_hash_table. Read types from SECTION
4685 and fill them into TYPES_HTAB. It will process only type units,
4686 therefore DW_UT_type. */
4687
4688 static void
4689 create_debug_type_hash_table (struct dwo_file *dwo_file,
4690 dwarf2_section_info *section, htab_t &types_htab,
4691 rcuh_kind section_kind)
4692 {
4693 struct objfile *objfile = dwarf2_per_objfile->objfile;
4694 struct dwarf2_section_info *abbrev_section;
4695 bfd *abfd;
4696 const gdb_byte *info_ptr, *end_ptr;
4697
4698 abbrev_section = (dwo_file != NULL
4699 ? &dwo_file->sections.abbrev
4700 : &dwarf2_per_objfile->abbrev);
4701
4702 if (dwarf_read_debug)
4703 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4704 get_section_name (section),
4705 get_section_file_name (abbrev_section));
4706
4707 dwarf2_read_section (objfile, section);
4708 info_ptr = section->buffer;
4709
4710 if (info_ptr == NULL)
4711 return;
4712
4713 /* We can't set abfd until now because the section may be empty or
4714 not present, in which case the bfd is unknown. */
4715 abfd = get_section_bfd_owner (section);
4716
4717 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4718 because we don't need to read any dies: the signature is in the
4719 header. */
4720
4721 end_ptr = info_ptr + section->size;
4722 while (info_ptr < end_ptr)
4723 {
4724 sect_offset offset;
4725 struct signatured_type *sig_type;
4726 struct dwo_unit *dwo_tu;
4727 void **slot;
4728 const gdb_byte *ptr = info_ptr;
4729 struct comp_unit_head header;
4730 unsigned int length;
4731
4732 offset.sect_off = ptr - section->buffer;
4733
4734 /* We need to read the type's signature in order to build the hash
4735 table, but we don't need anything else just yet. */
4736
4737 ptr = read_and_check_comp_unit_head (&header, section,
4738 abbrev_section, ptr, section_kind);
4739
4740 length = get_cu_length (&header);
4741
4742 /* Skip dummy type units. */
4743 if (ptr >= info_ptr + length
4744 || peek_abbrev_code (abfd, ptr) == 0
4745 || header.unit_type != DW_UT_type)
4746 {
4747 info_ptr += length;
4748 continue;
4749 }
4750
4751 if (types_htab == NULL)
4752 {
4753 if (dwo_file)
4754 types_htab = allocate_dwo_unit_table (objfile);
4755 else
4756 types_htab = allocate_signatured_type_table (objfile);
4757 }
4758
4759 if (dwo_file)
4760 {
4761 sig_type = NULL;
4762 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwo_unit);
4764 dwo_tu->dwo_file = dwo_file;
4765 dwo_tu->signature = header.signature;
4766 dwo_tu->type_offset_in_tu = header.type_offset_in_tu;
4767 dwo_tu->section = section;
4768 dwo_tu->offset = offset;
4769 dwo_tu->length = length;
4770 }
4771 else
4772 {
4773 /* N.B.: type_offset is not usable if this type uses a DWO file.
4774 The real type_offset is in the DWO file. */
4775 dwo_tu = NULL;
4776 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4777 struct signatured_type);
4778 sig_type->signature = header.signature;
4779 sig_type->type_offset_in_tu = header.type_offset_in_tu;
4780 sig_type->per_cu.objfile = objfile;
4781 sig_type->per_cu.is_debug_types = 1;
4782 sig_type->per_cu.section = section;
4783 sig_type->per_cu.offset = offset;
4784 sig_type->per_cu.length = length;
4785 }
4786
4787 slot = htab_find_slot (types_htab,
4788 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4789 INSERT);
4790 gdb_assert (slot != NULL);
4791 if (*slot != NULL)
4792 {
4793 sect_offset dup_offset;
4794
4795 if (dwo_file)
4796 {
4797 const struct dwo_unit *dup_tu
4798 = (const struct dwo_unit *) *slot;
4799
4800 dup_offset = dup_tu->offset;
4801 }
4802 else
4803 {
4804 const struct signatured_type *dup_tu
4805 = (const struct signatured_type *) *slot;
4806
4807 dup_offset = dup_tu->per_cu.offset;
4808 }
4809
4810 complaint (&symfile_complaints,
4811 _("debug type entry at offset 0x%x is duplicate to"
4812 " the entry at offset 0x%x, signature %s"),
4813 offset.sect_off, dup_offset.sect_off,
4814 hex_string (header.signature));
4815 }
4816 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4817
4818 if (dwarf_read_debug > 1)
4819 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4820 offset.sect_off,
4821 hex_string (header.signature));
4822
4823 info_ptr += length;
4824 }
4825 }
4826
4827 /* Create the hash table of all entries in the .debug_types
4828 (or .debug_types.dwo) section(s).
4829 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4830 otherwise it is NULL.
4831
4832 The result is a pointer to the hash table or NULL if there are no types.
4833
4834 Note: This function processes DWO files only, not DWP files. */
4835
4836 static void
4837 create_debug_types_hash_table (struct dwo_file *dwo_file,
4838 VEC (dwarf2_section_info_def) *types,
4839 htab_t &types_htab)
4840 {
4841 int ix;
4842 struct dwarf2_section_info *section;
4843
4844 if (VEC_empty (dwarf2_section_info_def, types))
4845 return;
4846
4847 for (ix = 0;
4848 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4849 ++ix)
4850 create_debug_type_hash_table (dwo_file, section, types_htab,
4851 rcuh_kind::TYPE);
4852 }
4853
4854 /* Create the hash table of all entries in the .debug_types section,
4855 and initialize all_type_units.
4856 The result is zero if there is an error (e.g. missing .debug_types section),
4857 otherwise non-zero. */
4858
4859 static int
4860 create_all_type_units (struct objfile *objfile)
4861 {
4862 htab_t types_htab = NULL;
4863 struct signatured_type **iter;
4864
4865 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4866 rcuh_kind::COMPILE);
4867 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4868 if (types_htab == NULL)
4869 {
4870 dwarf2_per_objfile->signatured_types = NULL;
4871 return 0;
4872 }
4873
4874 dwarf2_per_objfile->signatured_types = types_htab;
4875
4876 dwarf2_per_objfile->n_type_units
4877 = dwarf2_per_objfile->n_allocated_type_units
4878 = htab_elements (types_htab);
4879 dwarf2_per_objfile->all_type_units =
4880 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4881 iter = &dwarf2_per_objfile->all_type_units[0];
4882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4883 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4884 == dwarf2_per_objfile->n_type_units);
4885
4886 return 1;
4887 }
4888
4889 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4890 If SLOT is non-NULL, it is the entry to use in the hash table.
4891 Otherwise we find one. */
4892
4893 static struct signatured_type *
4894 add_type_unit (ULONGEST sig, void **slot)
4895 {
4896 struct objfile *objfile = dwarf2_per_objfile->objfile;
4897 int n_type_units = dwarf2_per_objfile->n_type_units;
4898 struct signatured_type *sig_type;
4899
4900 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4901 ++n_type_units;
4902 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4903 {
4904 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4905 dwarf2_per_objfile->n_allocated_type_units = 1;
4906 dwarf2_per_objfile->n_allocated_type_units *= 2;
4907 dwarf2_per_objfile->all_type_units
4908 = XRESIZEVEC (struct signatured_type *,
4909 dwarf2_per_objfile->all_type_units,
4910 dwarf2_per_objfile->n_allocated_type_units);
4911 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4912 }
4913 dwarf2_per_objfile->n_type_units = n_type_units;
4914
4915 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4916 struct signatured_type);
4917 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4918 sig_type->signature = sig;
4919 sig_type->per_cu.is_debug_types = 1;
4920 if (dwarf2_per_objfile->using_index)
4921 {
4922 sig_type->per_cu.v.quick =
4923 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwarf2_per_cu_quick_data);
4925 }
4926
4927 if (slot == NULL)
4928 {
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 sig_type, INSERT);
4931 }
4932 gdb_assert (*slot == NULL);
4933 *slot = sig_type;
4934 /* The rest of sig_type must be filled in by the caller. */
4935 return sig_type;
4936 }
4937
4938 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4939 Fill in SIG_ENTRY with DWO_ENTRY. */
4940
4941 static void
4942 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4943 struct signatured_type *sig_entry,
4944 struct dwo_unit *dwo_entry)
4945 {
4946 /* Make sure we're not clobbering something we don't expect to. */
4947 gdb_assert (! sig_entry->per_cu.queued);
4948 gdb_assert (sig_entry->per_cu.cu == NULL);
4949 if (dwarf2_per_objfile->using_index)
4950 {
4951 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4952 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4953 }
4954 else
4955 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4956 gdb_assert (sig_entry->signature == dwo_entry->signature);
4957 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4958 gdb_assert (sig_entry->type_unit_group == NULL);
4959 gdb_assert (sig_entry->dwo_unit == NULL);
4960
4961 sig_entry->per_cu.section = dwo_entry->section;
4962 sig_entry->per_cu.offset = dwo_entry->offset;
4963 sig_entry->per_cu.length = dwo_entry->length;
4964 sig_entry->per_cu.reading_dwo_directly = 1;
4965 sig_entry->per_cu.objfile = objfile;
4966 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4967 sig_entry->dwo_unit = dwo_entry;
4968 }
4969
4970 /* Subroutine of lookup_signatured_type.
4971 If we haven't read the TU yet, create the signatured_type data structure
4972 for a TU to be read in directly from a DWO file, bypassing the stub.
4973 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4974 using .gdb_index, then when reading a CU we want to stay in the DWO file
4975 containing that CU. Otherwise we could end up reading several other DWO
4976 files (due to comdat folding) to process the transitive closure of all the
4977 mentioned TUs, and that can be slow. The current DWO file will have every
4978 type signature that it needs.
4979 We only do this for .gdb_index because in the psymtab case we already have
4980 to read all the DWOs to build the type unit groups. */
4981
4982 static struct signatured_type *
4983 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4984 {
4985 struct objfile *objfile = dwarf2_per_objfile->objfile;
4986 struct dwo_file *dwo_file;
4987 struct dwo_unit find_dwo_entry, *dwo_entry;
4988 struct signatured_type find_sig_entry, *sig_entry;
4989 void **slot;
4990
4991 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4992
4993 /* If TU skeletons have been removed then we may not have read in any
4994 TUs yet. */
4995 if (dwarf2_per_objfile->signatured_types == NULL)
4996 {
4997 dwarf2_per_objfile->signatured_types
4998 = allocate_signatured_type_table (objfile);
4999 }
5000
5001 /* We only ever need to read in one copy of a signatured type.
5002 Use the global signatured_types array to do our own comdat-folding
5003 of types. If this is the first time we're reading this TU, and
5004 the TU has an entry in .gdb_index, replace the recorded data from
5005 .gdb_index with this TU. */
5006
5007 find_sig_entry.signature = sig;
5008 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5009 &find_sig_entry, INSERT);
5010 sig_entry = (struct signatured_type *) *slot;
5011
5012 /* We can get here with the TU already read, *or* in the process of being
5013 read. Don't reassign the global entry to point to this DWO if that's
5014 the case. Also note that if the TU is already being read, it may not
5015 have come from a DWO, the program may be a mix of Fission-compiled
5016 code and non-Fission-compiled code. */
5017
5018 /* Have we already tried to read this TU?
5019 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5020 needn't exist in the global table yet). */
5021 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5022 return sig_entry;
5023
5024 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5025 dwo_unit of the TU itself. */
5026 dwo_file = cu->dwo_unit->dwo_file;
5027
5028 /* Ok, this is the first time we're reading this TU. */
5029 if (dwo_file->tus == NULL)
5030 return NULL;
5031 find_dwo_entry.signature = sig;
5032 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5033 if (dwo_entry == NULL)
5034 return NULL;
5035
5036 /* If the global table doesn't have an entry for this TU, add one. */
5037 if (sig_entry == NULL)
5038 sig_entry = add_type_unit (sig, slot);
5039
5040 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5041 sig_entry->per_cu.tu_read = 1;
5042 return sig_entry;
5043 }
5044
5045 /* Subroutine of lookup_signatured_type.
5046 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5047 then try the DWP file. If the TU stub (skeleton) has been removed then
5048 it won't be in .gdb_index. */
5049
5050 static struct signatured_type *
5051 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5052 {
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 struct dwp_file *dwp_file = get_dwp_file ();
5055 struct dwo_unit *dwo_entry;
5056 struct signatured_type find_sig_entry, *sig_entry;
5057 void **slot;
5058
5059 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5060 gdb_assert (dwp_file != NULL);
5061
5062 /* If TU skeletons have been removed then we may not have read in any
5063 TUs yet. */
5064 if (dwarf2_per_objfile->signatured_types == NULL)
5065 {
5066 dwarf2_per_objfile->signatured_types
5067 = allocate_signatured_type_table (objfile);
5068 }
5069
5070 find_sig_entry.signature = sig;
5071 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5072 &find_sig_entry, INSERT);
5073 sig_entry = (struct signatured_type *) *slot;
5074
5075 /* Have we already tried to read this TU?
5076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5077 needn't exist in the global table yet). */
5078 if (sig_entry != NULL)
5079 return sig_entry;
5080
5081 if (dwp_file->tus == NULL)
5082 return NULL;
5083 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5084 sig, 1 /* is_debug_types */);
5085 if (dwo_entry == NULL)
5086 return NULL;
5087
5088 sig_entry = add_type_unit (sig, slot);
5089 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5090
5091 return sig_entry;
5092 }
5093
5094 /* Lookup a signature based type for DW_FORM_ref_sig8.
5095 Returns NULL if signature SIG is not present in the table.
5096 It is up to the caller to complain about this. */
5097
5098 static struct signatured_type *
5099 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5100 {
5101 if (cu->dwo_unit
5102 && dwarf2_per_objfile->using_index)
5103 {
5104 /* We're in a DWO/DWP file, and we're using .gdb_index.
5105 These cases require special processing. */
5106 if (get_dwp_file () == NULL)
5107 return lookup_dwo_signatured_type (cu, sig);
5108 else
5109 return lookup_dwp_signatured_type (cu, sig);
5110 }
5111 else
5112 {
5113 struct signatured_type find_entry, *entry;
5114
5115 if (dwarf2_per_objfile->signatured_types == NULL)
5116 return NULL;
5117 find_entry.signature = sig;
5118 entry = ((struct signatured_type *)
5119 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5120 return entry;
5121 }
5122 }
5123 \f
5124 /* Low level DIE reading support. */
5125
5126 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5127
5128 static void
5129 init_cu_die_reader (struct die_reader_specs *reader,
5130 struct dwarf2_cu *cu,
5131 struct dwarf2_section_info *section,
5132 struct dwo_file *dwo_file)
5133 {
5134 gdb_assert (section->readin && section->buffer != NULL);
5135 reader->abfd = get_section_bfd_owner (section);
5136 reader->cu = cu;
5137 reader->dwo_file = dwo_file;
5138 reader->die_section = section;
5139 reader->buffer = section->buffer;
5140 reader->buffer_end = section->buffer + section->size;
5141 reader->comp_dir = NULL;
5142 }
5143
5144 /* Subroutine of init_cutu_and_read_dies to simplify it.
5145 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5146 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5147 already.
5148
5149 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5150 from it to the DIE in the DWO. If NULL we are skipping the stub.
5151 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5152 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5153 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5154 STUB_COMP_DIR may be non-NULL.
5155 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5156 are filled in with the info of the DIE from the DWO file.
5157 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5158 provided an abbrev table to use.
5159 The result is non-zero if a valid (non-dummy) DIE was found. */
5160
5161 static int
5162 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5163 struct dwo_unit *dwo_unit,
5164 int abbrev_table_provided,
5165 struct die_info *stub_comp_unit_die,
5166 const char *stub_comp_dir,
5167 struct die_reader_specs *result_reader,
5168 const gdb_byte **result_info_ptr,
5169 struct die_info **result_comp_unit_die,
5170 int *result_has_children)
5171 {
5172 struct objfile *objfile = dwarf2_per_objfile->objfile;
5173 struct dwarf2_cu *cu = this_cu->cu;
5174 struct dwarf2_section_info *section;
5175 bfd *abfd;
5176 const gdb_byte *begin_info_ptr, *info_ptr;
5177 ULONGEST signature; /* Or dwo_id. */
5178 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5179 int i,num_extra_attrs;
5180 struct dwarf2_section_info *dwo_abbrev_section;
5181 struct attribute *attr;
5182 struct die_info *comp_unit_die;
5183
5184 /* At most one of these may be provided. */
5185 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5186
5187 /* These attributes aren't processed until later:
5188 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5189 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5190 referenced later. However, these attributes are found in the stub
5191 which we won't have later. In order to not impose this complication
5192 on the rest of the code, we read them here and copy them to the
5193 DWO CU/TU die. */
5194
5195 stmt_list = NULL;
5196 low_pc = NULL;
5197 high_pc = NULL;
5198 ranges = NULL;
5199 comp_dir = NULL;
5200
5201 if (stub_comp_unit_die != NULL)
5202 {
5203 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5204 DWO file. */
5205 if (! this_cu->is_debug_types)
5206 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5207 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5208 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5209 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5210 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5211
5212 /* There should be a DW_AT_addr_base attribute here (if needed).
5213 We need the value before we can process DW_FORM_GNU_addr_index. */
5214 cu->addr_base = 0;
5215 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5216 if (attr)
5217 cu->addr_base = DW_UNSND (attr);
5218
5219 /* There should be a DW_AT_ranges_base attribute here (if needed).
5220 We need the value before we can process DW_AT_ranges. */
5221 cu->ranges_base = 0;
5222 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5223 if (attr)
5224 cu->ranges_base = DW_UNSND (attr);
5225 }
5226 else if (stub_comp_dir != NULL)
5227 {
5228 /* Reconstruct the comp_dir attribute to simplify the code below. */
5229 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5230 comp_dir->name = DW_AT_comp_dir;
5231 comp_dir->form = DW_FORM_string;
5232 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5233 DW_STRING (comp_dir) = stub_comp_dir;
5234 }
5235
5236 /* Set up for reading the DWO CU/TU. */
5237 cu->dwo_unit = dwo_unit;
5238 section = dwo_unit->section;
5239 dwarf2_read_section (objfile, section);
5240 abfd = get_section_bfd_owner (section);
5241 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5242 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5243 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5244
5245 if (this_cu->is_debug_types)
5246 {
5247 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5248
5249 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5250 dwo_abbrev_section,
5251 info_ptr, rcuh_kind::TYPE);
5252 /* This is not an assert because it can be caused by bad debug info. */
5253 if (sig_type->signature != cu->header.signature)
5254 {
5255 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5256 " TU at offset 0x%x [in module %s]"),
5257 hex_string (sig_type->signature),
5258 hex_string (cu->header.signature),
5259 dwo_unit->offset.sect_off,
5260 bfd_get_filename (abfd));
5261 }
5262 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5263 /* For DWOs coming from DWP files, we don't know the CU length
5264 nor the type's offset in the TU until now. */
5265 dwo_unit->length = get_cu_length (&cu->header);
5266 dwo_unit->type_offset_in_tu = cu->header.type_offset_in_tu;
5267
5268 /* Establish the type offset that can be used to lookup the type.
5269 For DWO files, we don't know it until now. */
5270 sig_type->type_offset_in_section.sect_off =
5271 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5272 }
5273 else
5274 {
5275 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5276 dwo_abbrev_section,
5277 info_ptr, rcuh_kind::COMPILE);
5278 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5279 /* For DWOs coming from DWP files, we don't know the CU length
5280 until now. */
5281 dwo_unit->length = get_cu_length (&cu->header);
5282 }
5283
5284 /* Replace the CU's original abbrev table with the DWO's.
5285 Reminder: We can't read the abbrev table until we've read the header. */
5286 if (abbrev_table_provided)
5287 {
5288 /* Don't free the provided abbrev table, the caller of
5289 init_cutu_and_read_dies owns it. */
5290 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5291 /* Ensure the DWO abbrev table gets freed. */
5292 make_cleanup (dwarf2_free_abbrev_table, cu);
5293 }
5294 else
5295 {
5296 dwarf2_free_abbrev_table (cu);
5297 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5298 /* Leave any existing abbrev table cleanup as is. */
5299 }
5300
5301 /* Read in the die, but leave space to copy over the attributes
5302 from the stub. This has the benefit of simplifying the rest of
5303 the code - all the work to maintain the illusion of a single
5304 DW_TAG_{compile,type}_unit DIE is done here. */
5305 num_extra_attrs = ((stmt_list != NULL)
5306 + (low_pc != NULL)
5307 + (high_pc != NULL)
5308 + (ranges != NULL)
5309 + (comp_dir != NULL));
5310 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5311 result_has_children, num_extra_attrs);
5312
5313 /* Copy over the attributes from the stub to the DIE we just read in. */
5314 comp_unit_die = *result_comp_unit_die;
5315 i = comp_unit_die->num_attrs;
5316 if (stmt_list != NULL)
5317 comp_unit_die->attrs[i++] = *stmt_list;
5318 if (low_pc != NULL)
5319 comp_unit_die->attrs[i++] = *low_pc;
5320 if (high_pc != NULL)
5321 comp_unit_die->attrs[i++] = *high_pc;
5322 if (ranges != NULL)
5323 comp_unit_die->attrs[i++] = *ranges;
5324 if (comp_dir != NULL)
5325 comp_unit_die->attrs[i++] = *comp_dir;
5326 comp_unit_die->num_attrs += num_extra_attrs;
5327
5328 if (dwarf_die_debug)
5329 {
5330 fprintf_unfiltered (gdb_stdlog,
5331 "Read die from %s@0x%x of %s:\n",
5332 get_section_name (section),
5333 (unsigned) (begin_info_ptr - section->buffer),
5334 bfd_get_filename (abfd));
5335 dump_die (comp_unit_die, dwarf_die_debug);
5336 }
5337
5338 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5339 TUs by skipping the stub and going directly to the entry in the DWO file.
5340 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5341 to get it via circuitous means. Blech. */
5342 if (comp_dir != NULL)
5343 result_reader->comp_dir = DW_STRING (comp_dir);
5344
5345 /* Skip dummy compilation units. */
5346 if (info_ptr >= begin_info_ptr + dwo_unit->length
5347 || peek_abbrev_code (abfd, info_ptr) == 0)
5348 return 0;
5349
5350 *result_info_ptr = info_ptr;
5351 return 1;
5352 }
5353
5354 /* Subroutine of init_cutu_and_read_dies to simplify it.
5355 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5356 Returns NULL if the specified DWO unit cannot be found. */
5357
5358 static struct dwo_unit *
5359 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5360 struct die_info *comp_unit_die)
5361 {
5362 struct dwarf2_cu *cu = this_cu->cu;
5363 struct attribute *attr;
5364 ULONGEST signature;
5365 struct dwo_unit *dwo_unit;
5366 const char *comp_dir, *dwo_name;
5367
5368 gdb_assert (cu != NULL);
5369
5370 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5371 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5372 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5373
5374 if (this_cu->is_debug_types)
5375 {
5376 struct signatured_type *sig_type;
5377
5378 /* Since this_cu is the first member of struct signatured_type,
5379 we can go from a pointer to one to a pointer to the other. */
5380 sig_type = (struct signatured_type *) this_cu;
5381 signature = sig_type->signature;
5382 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5383 }
5384 else
5385 {
5386 struct attribute *attr;
5387
5388 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5389 if (! attr)
5390 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5391 " [in module %s]"),
5392 dwo_name, objfile_name (this_cu->objfile));
5393 signature = DW_UNSND (attr);
5394 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5395 signature);
5396 }
5397
5398 return dwo_unit;
5399 }
5400
5401 /* Subroutine of init_cutu_and_read_dies to simplify it.
5402 See it for a description of the parameters.
5403 Read a TU directly from a DWO file, bypassing the stub.
5404
5405 Note: This function could be a little bit simpler if we shared cleanups
5406 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5407 to do, so we keep this function self-contained. Or we could move this
5408 into our caller, but it's complex enough already. */
5409
5410 static void
5411 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5412 int use_existing_cu, int keep,
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
5415 {
5416 struct dwarf2_cu *cu;
5417 struct signatured_type *sig_type;
5418 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5419 struct die_reader_specs reader;
5420 const gdb_byte *info_ptr;
5421 struct die_info *comp_unit_die;
5422 int has_children;
5423
5424 /* Verify we can do the following downcast, and that we have the
5425 data we need. */
5426 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->dwo_unit != NULL);
5429
5430 cleanups = make_cleanup (null_cleanup, NULL);
5431
5432 if (use_existing_cu && this_cu->cu != NULL)
5433 {
5434 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5435 cu = this_cu->cu;
5436 /* There's no need to do the rereading_dwo_cu handling that
5437 init_cutu_and_read_dies does since we don't read the stub. */
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
5443 cu = XNEW (struct dwarf2_cu);
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* A future optimization, if needed, would be to use an existing
5450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5451 could share abbrev tables. */
5452
5453 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5454 0 /* abbrev_table_provided */,
5455 NULL /* stub_comp_unit_die */,
5456 sig_type->dwo_unit->dwo_file->comp_dir,
5457 &reader, &info_ptr,
5458 &comp_unit_die, &has_children) == 0)
5459 {
5460 /* Dummy die. */
5461 do_cleanups (cleanups);
5462 return;
5463 }
5464
5465 /* All the "real" work is done here. */
5466 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5467
5468 /* This duplicates the code in init_cutu_and_read_dies,
5469 but the alternative is making the latter more complex.
5470 This function is only for the special case of using DWO files directly:
5471 no point in overly complicating the general case just to handle this. */
5472 if (free_cu_cleanup != NULL)
5473 {
5474 if (keep)
5475 {
5476 /* We've successfully allocated this compilation unit. Let our
5477 caller clean it up when finished with it. */
5478 discard_cleanups (free_cu_cleanup);
5479
5480 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5481 So we have to manually free the abbrev table. */
5482 dwarf2_free_abbrev_table (cu);
5483
5484 /* Link this CU into read_in_chain. */
5485 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5486 dwarf2_per_objfile->read_in_chain = this_cu;
5487 }
5488 else
5489 do_cleanups (free_cu_cleanup);
5490 }
5491
5492 do_cleanups (cleanups);
5493 }
5494
5495 /* Initialize a CU (or TU) and read its DIEs.
5496 If the CU defers to a DWO file, read the DWO file as well.
5497
5498 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5499 Otherwise the table specified in the comp unit header is read in and used.
5500 This is an optimization for when we already have the abbrev table.
5501
5502 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5503 Otherwise, a new CU is allocated with xmalloc.
5504
5505 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5506 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5507
5508 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5509 linker) then DIE_READER_FUNC will not get called. */
5510
5511 static void
5512 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5513 struct abbrev_table *abbrev_table,
5514 int use_existing_cu, int keep,
5515 die_reader_func_ftype *die_reader_func,
5516 void *data)
5517 {
5518 struct objfile *objfile = dwarf2_per_objfile->objfile;
5519 struct dwarf2_section_info *section = this_cu->section;
5520 bfd *abfd = get_section_bfd_owner (section);
5521 struct dwarf2_cu *cu;
5522 const gdb_byte *begin_info_ptr, *info_ptr;
5523 struct die_reader_specs reader;
5524 struct die_info *comp_unit_die;
5525 int has_children;
5526 struct attribute *attr;
5527 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5528 struct signatured_type *sig_type = NULL;
5529 struct dwarf2_section_info *abbrev_section;
5530 /* Non-zero if CU currently points to a DWO file and we need to
5531 reread it. When this happens we need to reread the skeleton die
5532 before we can reread the DWO file (this only applies to CUs, not TUs). */
5533 int rereading_dwo_cu = 0;
5534
5535 if (dwarf_die_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5537 this_cu->is_debug_types ? "type" : "comp",
5538 this_cu->offset.sect_off);
5539
5540 if (use_existing_cu)
5541 gdb_assert (keep);
5542
5543 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5544 file (instead of going through the stub), short-circuit all of this. */
5545 if (this_cu->reading_dwo_directly)
5546 {
5547 /* Narrow down the scope of possibilities to have to understand. */
5548 gdb_assert (this_cu->is_debug_types);
5549 gdb_assert (abbrev_table == NULL);
5550 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5551 die_reader_func, data);
5552 return;
5553 }
5554
5555 cleanups = make_cleanup (null_cleanup, NULL);
5556
5557 /* This is cheap if the section is already read in. */
5558 dwarf2_read_section (objfile, section);
5559
5560 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5561
5562 abbrev_section = get_abbrev_section_for_cu (this_cu);
5563
5564 if (use_existing_cu && this_cu->cu != NULL)
5565 {
5566 cu = this_cu->cu;
5567 /* If this CU is from a DWO file we need to start over, we need to
5568 refetch the attributes from the skeleton CU.
5569 This could be optimized by retrieving those attributes from when we
5570 were here the first time: the previous comp_unit_die was stored in
5571 comp_unit_obstack. But there's no data yet that we need this
5572 optimization. */
5573 if (cu->dwo_unit != NULL)
5574 rereading_dwo_cu = 1;
5575 }
5576 else
5577 {
5578 /* If !use_existing_cu, this_cu->cu must be NULL. */
5579 gdb_assert (this_cu->cu == NULL);
5580 cu = XNEW (struct dwarf2_cu);
5581 init_one_comp_unit (cu, this_cu);
5582 /* If an error occurs while loading, release our storage. */
5583 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5584 }
5585
5586 /* Get the header. */
5587 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5588 {
5589 /* We already have the header, there's no need to read it in again. */
5590 info_ptr += cu->header.first_die_offset.cu_off;
5591 }
5592 else
5593 {
5594 if (this_cu->is_debug_types)
5595 {
5596 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5597 abbrev_section, info_ptr,
5598 rcuh_kind::TYPE);
5599
5600 /* Since per_cu is the first member of struct signatured_type,
5601 we can go from a pointer to one to a pointer to the other. */
5602 sig_type = (struct signatured_type *) this_cu;
5603 gdb_assert (sig_type->signature == cu->header.signature);
5604 gdb_assert (sig_type->type_offset_in_tu.cu_off
5605 == cu->header.type_offset_in_tu.cu_off);
5606 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5607
5608 /* LENGTH has not been set yet for type units if we're
5609 using .gdb_index. */
5610 this_cu->length = get_cu_length (&cu->header);
5611
5612 /* Establish the type offset that can be used to lookup the type. */
5613 sig_type->type_offset_in_section.sect_off =
5614 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5615
5616 this_cu->dwarf_version = cu->header.version;
5617 }
5618 else
5619 {
5620 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5621 abbrev_section,
5622 info_ptr,
5623 rcuh_kind::COMPILE);
5624
5625 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5626 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5627 this_cu->dwarf_version = cu->header.version;
5628 }
5629 }
5630
5631 /* Skip dummy compilation units. */
5632 if (info_ptr >= begin_info_ptr + this_cu->length
5633 || peek_abbrev_code (abfd, info_ptr) == 0)
5634 {
5635 do_cleanups (cleanups);
5636 return;
5637 }
5638
5639 /* If we don't have them yet, read the abbrevs for this compilation unit.
5640 And if we need to read them now, make sure they're freed when we're
5641 done. Note that it's important that if the CU had an abbrev table
5642 on entry we don't free it when we're done: Somewhere up the call stack
5643 it may be in use. */
5644 if (abbrev_table != NULL)
5645 {
5646 gdb_assert (cu->abbrev_table == NULL);
5647 gdb_assert (cu->header.abbrev_offset.sect_off
5648 == abbrev_table->offset.sect_off);
5649 cu->abbrev_table = abbrev_table;
5650 }
5651 else if (cu->abbrev_table == NULL)
5652 {
5653 dwarf2_read_abbrevs (cu, abbrev_section);
5654 make_cleanup (dwarf2_free_abbrev_table, cu);
5655 }
5656 else if (rereading_dwo_cu)
5657 {
5658 dwarf2_free_abbrev_table (cu);
5659 dwarf2_read_abbrevs (cu, abbrev_section);
5660 }
5661
5662 /* Read the top level CU/TU die. */
5663 init_cu_die_reader (&reader, cu, section, NULL);
5664 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5665
5666 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5667 from the DWO file.
5668 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5669 DWO CU, that this test will fail (the attribute will not be present). */
5670 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5671 if (attr)
5672 {
5673 struct dwo_unit *dwo_unit;
5674 struct die_info *dwo_comp_unit_die;
5675
5676 if (has_children)
5677 {
5678 complaint (&symfile_complaints,
5679 _("compilation unit with DW_AT_GNU_dwo_name"
5680 " has children (offset 0x%x) [in module %s]"),
5681 this_cu->offset.sect_off, bfd_get_filename (abfd));
5682 }
5683 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5684 if (dwo_unit != NULL)
5685 {
5686 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5687 abbrev_table != NULL,
5688 comp_unit_die, NULL,
5689 &reader, &info_ptr,
5690 &dwo_comp_unit_die, &has_children) == 0)
5691 {
5692 /* Dummy die. */
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696 comp_unit_die = dwo_comp_unit_die;
5697 }
5698 else
5699 {
5700 /* Yikes, we couldn't find the rest of the DIE, we only have
5701 the stub. A complaint has already been logged. There's
5702 not much more we can do except pass on the stub DIE to
5703 die_reader_func. We don't want to throw an error on bad
5704 debug info. */
5705 }
5706 }
5707
5708 /* All of the above is setup for this call. Yikes. */
5709 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5710
5711 /* Done, clean up. */
5712 if (free_cu_cleanup != NULL)
5713 {
5714 if (keep)
5715 {
5716 /* We've successfully allocated this compilation unit. Let our
5717 caller clean it up when finished with it. */
5718 discard_cleanups (free_cu_cleanup);
5719
5720 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5721 So we have to manually free the abbrev table. */
5722 dwarf2_free_abbrev_table (cu);
5723
5724 /* Link this CU into read_in_chain. */
5725 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5726 dwarf2_per_objfile->read_in_chain = this_cu;
5727 }
5728 else
5729 do_cleanups (free_cu_cleanup);
5730 }
5731
5732 do_cleanups (cleanups);
5733 }
5734
5735 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5736 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5737 to have already done the lookup to find the DWO file).
5738
5739 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5740 THIS_CU->is_debug_types, but nothing else.
5741
5742 We fill in THIS_CU->length.
5743
5744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5745 linker) then DIE_READER_FUNC will not get called.
5746
5747 THIS_CU->cu is always freed when done.
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU. */
5750
5751 static void
5752 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5753 struct dwo_file *dwo_file,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756 {
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
5758 struct dwarf2_section_info *section = this_cu->section;
5759 bfd *abfd = get_section_bfd_owner (section);
5760 struct dwarf2_section_info *abbrev_section;
5761 struct dwarf2_cu cu;
5762 const gdb_byte *begin_info_ptr, *info_ptr;
5763 struct die_reader_specs reader;
5764 struct cleanup *cleanups;
5765 struct die_info *comp_unit_die;
5766 int has_children;
5767
5768 if (dwarf_die_debug)
5769 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5770 this_cu->is_debug_types ? "type" : "comp",
5771 this_cu->offset.sect_off);
5772
5773 gdb_assert (this_cu->cu == NULL);
5774
5775 abbrev_section = (dwo_file != NULL
5776 ? &dwo_file->sections.abbrev
5777 : get_abbrev_section_for_cu (this_cu));
5778
5779 /* This is cheap if the section is already read in. */
5780 dwarf2_read_section (objfile, section);
5781
5782 init_one_comp_unit (&cu, this_cu);
5783
5784 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5785
5786 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5787 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5788 abbrev_section, info_ptr,
5789 (this_cu->is_debug_types
5790 ? rcuh_kind::TYPE
5791 : rcuh_kind::COMPILE));
5792
5793 this_cu->length = get_cu_length (&cu.header);
5794
5795 /* Skip dummy compilation units. */
5796 if (info_ptr >= begin_info_ptr + this_cu->length
5797 || peek_abbrev_code (abfd, info_ptr) == 0)
5798 {
5799 do_cleanups (cleanups);
5800 return;
5801 }
5802
5803 dwarf2_read_abbrevs (&cu, abbrev_section);
5804 make_cleanup (dwarf2_free_abbrev_table, &cu);
5805
5806 init_cu_die_reader (&reader, &cu, section, dwo_file);
5807 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5808
5809 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5810
5811 do_cleanups (cleanups);
5812 }
5813
5814 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5815 does not lookup the specified DWO file.
5816 This cannot be used to read DWO files.
5817
5818 THIS_CU->cu is always freed when done.
5819 This is done in order to not leave THIS_CU->cu in a state where we have
5820 to care whether it refers to the "main" CU or the DWO CU.
5821 We can revisit this if the data shows there's a performance issue. */
5822
5823 static void
5824 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5825 die_reader_func_ftype *die_reader_func,
5826 void *data)
5827 {
5828 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5829 }
5830 \f
5831 /* Type Unit Groups.
5832
5833 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5834 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5835 so that all types coming from the same compilation (.o file) are grouped
5836 together. A future step could be to put the types in the same symtab as
5837 the CU the types ultimately came from. */
5838
5839 static hashval_t
5840 hash_type_unit_group (const void *item)
5841 {
5842 const struct type_unit_group *tu_group
5843 = (const struct type_unit_group *) item;
5844
5845 return hash_stmt_list_entry (&tu_group->hash);
5846 }
5847
5848 static int
5849 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5850 {
5851 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5852 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5853
5854 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5855 }
5856
5857 /* Allocate a hash table for type unit groups. */
5858
5859 static htab_t
5860 allocate_type_unit_groups_table (void)
5861 {
5862 return htab_create_alloc_ex (3,
5863 hash_type_unit_group,
5864 eq_type_unit_group,
5865 NULL,
5866 &dwarf2_per_objfile->objfile->objfile_obstack,
5867 hashtab_obstack_allocate,
5868 dummy_obstack_deallocate);
5869 }
5870
5871 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5872 partial symtabs. We combine several TUs per psymtab to not let the size
5873 of any one psymtab grow too big. */
5874 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5875 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5876
5877 /* Helper routine for get_type_unit_group.
5878 Create the type_unit_group object used to hold one or more TUs. */
5879
5880 static struct type_unit_group *
5881 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5882 {
5883 struct objfile *objfile = dwarf2_per_objfile->objfile;
5884 struct dwarf2_per_cu_data *per_cu;
5885 struct type_unit_group *tu_group;
5886
5887 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5888 struct type_unit_group);
5889 per_cu = &tu_group->per_cu;
5890 per_cu->objfile = objfile;
5891
5892 if (dwarf2_per_objfile->using_index)
5893 {
5894 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5895 struct dwarf2_per_cu_quick_data);
5896 }
5897 else
5898 {
5899 unsigned int line_offset = line_offset_struct.sect_off;
5900 struct partial_symtab *pst;
5901 char *name;
5902
5903 /* Give the symtab a useful name for debug purposes. */
5904 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5905 name = xstrprintf ("<type_units_%d>",
5906 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5907 else
5908 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5909
5910 pst = create_partial_symtab (per_cu, name);
5911 pst->anonymous = 1;
5912
5913 xfree (name);
5914 }
5915
5916 tu_group->hash.dwo_unit = cu->dwo_unit;
5917 tu_group->hash.line_offset = line_offset_struct;
5918
5919 return tu_group;
5920 }
5921
5922 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5923 STMT_LIST is a DW_AT_stmt_list attribute. */
5924
5925 static struct type_unit_group *
5926 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5927 {
5928 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5929 struct type_unit_group *tu_group;
5930 void **slot;
5931 unsigned int line_offset;
5932 struct type_unit_group type_unit_group_for_lookup;
5933
5934 if (dwarf2_per_objfile->type_unit_groups == NULL)
5935 {
5936 dwarf2_per_objfile->type_unit_groups =
5937 allocate_type_unit_groups_table ();
5938 }
5939
5940 /* Do we need to create a new group, or can we use an existing one? */
5941
5942 if (stmt_list)
5943 {
5944 line_offset = DW_UNSND (stmt_list);
5945 ++tu_stats->nr_symtab_sharers;
5946 }
5947 else
5948 {
5949 /* Ugh, no stmt_list. Rare, but we have to handle it.
5950 We can do various things here like create one group per TU or
5951 spread them over multiple groups to split up the expansion work.
5952 To avoid worst case scenarios (too many groups or too large groups)
5953 we, umm, group them in bunches. */
5954 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5955 | (tu_stats->nr_stmt_less_type_units
5956 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5957 ++tu_stats->nr_stmt_less_type_units;
5958 }
5959
5960 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5961 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5962 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5963 &type_unit_group_for_lookup, INSERT);
5964 if (*slot != NULL)
5965 {
5966 tu_group = (struct type_unit_group *) *slot;
5967 gdb_assert (tu_group != NULL);
5968 }
5969 else
5970 {
5971 sect_offset line_offset_struct;
5972
5973 line_offset_struct.sect_off = line_offset;
5974 tu_group = create_type_unit_group (cu, line_offset_struct);
5975 *slot = tu_group;
5976 ++tu_stats->nr_symtabs;
5977 }
5978
5979 return tu_group;
5980 }
5981 \f
5982 /* Partial symbol tables. */
5983
5984 /* Create a psymtab named NAME and assign it to PER_CU.
5985
5986 The caller must fill in the following details:
5987 dirname, textlow, texthigh. */
5988
5989 static struct partial_symtab *
5990 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5991 {
5992 struct objfile *objfile = per_cu->objfile;
5993 struct partial_symtab *pst;
5994
5995 pst = start_psymtab_common (objfile, name, 0,
5996 objfile->global_psymbols.next,
5997 objfile->static_psymbols.next);
5998
5999 pst->psymtabs_addrmap_supported = 1;
6000
6001 /* This is the glue that links PST into GDB's symbol API. */
6002 pst->read_symtab_private = per_cu;
6003 pst->read_symtab = dwarf2_read_symtab;
6004 per_cu->v.psymtab = pst;
6005
6006 return pst;
6007 }
6008
6009 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6010 type. */
6011
6012 struct process_psymtab_comp_unit_data
6013 {
6014 /* True if we are reading a DW_TAG_partial_unit. */
6015
6016 int want_partial_unit;
6017
6018 /* The "pretend" language that is used if the CU doesn't declare a
6019 language. */
6020
6021 enum language pretend_language;
6022 };
6023
6024 /* die_reader_func for process_psymtab_comp_unit. */
6025
6026 static void
6027 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6028 const gdb_byte *info_ptr,
6029 struct die_info *comp_unit_die,
6030 int has_children,
6031 void *data)
6032 {
6033 struct dwarf2_cu *cu = reader->cu;
6034 struct objfile *objfile = cu->objfile;
6035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6036 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6037 CORE_ADDR baseaddr;
6038 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6039 struct partial_symtab *pst;
6040 enum pc_bounds_kind cu_bounds_kind;
6041 const char *filename;
6042 struct process_psymtab_comp_unit_data *info
6043 = (struct process_psymtab_comp_unit_data *) data;
6044
6045 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6046 return;
6047
6048 gdb_assert (! per_cu->is_debug_types);
6049
6050 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6051
6052 cu->list_in_scope = &file_symbols;
6053
6054 /* Allocate a new partial symbol table structure. */
6055 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6056 if (filename == NULL)
6057 filename = "";
6058
6059 pst = create_partial_symtab (per_cu, filename);
6060
6061 /* This must be done before calling dwarf2_build_include_psymtabs. */
6062 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6063
6064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6065
6066 dwarf2_find_base_address (comp_unit_die, cu);
6067
6068 /* Possibly set the default values of LOWPC and HIGHPC from
6069 `DW_AT_ranges'. */
6070 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6071 &best_highpc, cu, pst);
6072 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6073 /* Store the contiguous range if it is not empty; it can be empty for
6074 CUs with no code. */
6075 addrmap_set_empty (objfile->psymtabs_addrmap,
6076 gdbarch_adjust_dwarf2_addr (gdbarch,
6077 best_lowpc + baseaddr),
6078 gdbarch_adjust_dwarf2_addr (gdbarch,
6079 best_highpc + baseaddr) - 1,
6080 pst);
6081
6082 /* Check if comp unit has_children.
6083 If so, read the rest of the partial symbols from this comp unit.
6084 If not, there's no more debug_info for this comp unit. */
6085 if (has_children)
6086 {
6087 struct partial_die_info *first_die;
6088 CORE_ADDR lowpc, highpc;
6089
6090 lowpc = ((CORE_ADDR) -1);
6091 highpc = ((CORE_ADDR) 0);
6092
6093 first_die = load_partial_dies (reader, info_ptr, 1);
6094
6095 scan_partial_symbols (first_die, &lowpc, &highpc,
6096 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6097
6098 /* If we didn't find a lowpc, set it to highpc to avoid
6099 complaints from `maint check'. */
6100 if (lowpc == ((CORE_ADDR) -1))
6101 lowpc = highpc;
6102
6103 /* If the compilation unit didn't have an explicit address range,
6104 then use the information extracted from its child dies. */
6105 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6106 {
6107 best_lowpc = lowpc;
6108 best_highpc = highpc;
6109 }
6110 }
6111 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6112 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6113
6114 end_psymtab_common (objfile, pst);
6115
6116 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6117 {
6118 int i;
6119 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6120 struct dwarf2_per_cu_data *iter;
6121
6122 /* Fill in 'dependencies' here; we fill in 'users' in a
6123 post-pass. */
6124 pst->number_of_dependencies = len;
6125 pst->dependencies =
6126 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6127 for (i = 0;
6128 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6129 i, iter);
6130 ++i)
6131 pst->dependencies[i] = iter->v.psymtab;
6132
6133 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6134 }
6135
6136 /* Get the list of files included in the current compilation unit,
6137 and build a psymtab for each of them. */
6138 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6139
6140 if (dwarf_read_debug)
6141 {
6142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6143
6144 fprintf_unfiltered (gdb_stdlog,
6145 "Psymtab for %s unit @0x%x: %s - %s"
6146 ", %d global, %d static syms\n",
6147 per_cu->is_debug_types ? "type" : "comp",
6148 per_cu->offset.sect_off,
6149 paddress (gdbarch, pst->textlow),
6150 paddress (gdbarch, pst->texthigh),
6151 pst->n_global_syms, pst->n_static_syms);
6152 }
6153 }
6154
6155 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6156 Process compilation unit THIS_CU for a psymtab. */
6157
6158 static void
6159 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6160 int want_partial_unit,
6161 enum language pretend_language)
6162 {
6163 struct process_psymtab_comp_unit_data info;
6164
6165 /* If this compilation unit was already read in, free the
6166 cached copy in order to read it in again. This is
6167 necessary because we skipped some symbols when we first
6168 read in the compilation unit (see load_partial_dies).
6169 This problem could be avoided, but the benefit is unclear. */
6170 if (this_cu->cu != NULL)
6171 free_one_cached_comp_unit (this_cu);
6172
6173 gdb_assert (! this_cu->is_debug_types);
6174 info.want_partial_unit = want_partial_unit;
6175 info.pretend_language = pretend_language;
6176 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6177 process_psymtab_comp_unit_reader,
6178 &info);
6179
6180 /* Age out any secondary CUs. */
6181 age_cached_comp_units ();
6182 }
6183
6184 /* Reader function for build_type_psymtabs. */
6185
6186 static void
6187 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6188 const gdb_byte *info_ptr,
6189 struct die_info *type_unit_die,
6190 int has_children,
6191 void *data)
6192 {
6193 struct objfile *objfile = dwarf2_per_objfile->objfile;
6194 struct dwarf2_cu *cu = reader->cu;
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6196 struct signatured_type *sig_type;
6197 struct type_unit_group *tu_group;
6198 struct attribute *attr;
6199 struct partial_die_info *first_die;
6200 CORE_ADDR lowpc, highpc;
6201 struct partial_symtab *pst;
6202
6203 gdb_assert (data == NULL);
6204 gdb_assert (per_cu->is_debug_types);
6205 sig_type = (struct signatured_type *) per_cu;
6206
6207 if (! has_children)
6208 return;
6209
6210 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6211 tu_group = get_type_unit_group (cu, attr);
6212
6213 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6214
6215 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6216 cu->list_in_scope = &file_symbols;
6217 pst = create_partial_symtab (per_cu, "");
6218 pst->anonymous = 1;
6219
6220 first_die = load_partial_dies (reader, info_ptr, 1);
6221
6222 lowpc = (CORE_ADDR) -1;
6223 highpc = (CORE_ADDR) 0;
6224 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6225
6226 end_psymtab_common (objfile, pst);
6227 }
6228
6229 /* Struct used to sort TUs by their abbreviation table offset. */
6230
6231 struct tu_abbrev_offset
6232 {
6233 struct signatured_type *sig_type;
6234 sect_offset abbrev_offset;
6235 };
6236
6237 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6238
6239 static int
6240 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6241 {
6242 const struct tu_abbrev_offset * const *a
6243 = (const struct tu_abbrev_offset * const*) ap;
6244 const struct tu_abbrev_offset * const *b
6245 = (const struct tu_abbrev_offset * const*) bp;
6246 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6247 unsigned int boff = (*b)->abbrev_offset.sect_off;
6248
6249 return (aoff > boff) - (aoff < boff);
6250 }
6251
6252 /* Efficiently read all the type units.
6253 This does the bulk of the work for build_type_psymtabs.
6254
6255 The efficiency is because we sort TUs by the abbrev table they use and
6256 only read each abbrev table once. In one program there are 200K TUs
6257 sharing 8K abbrev tables.
6258
6259 The main purpose of this function is to support building the
6260 dwarf2_per_objfile->type_unit_groups table.
6261 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6262 can collapse the search space by grouping them by stmt_list.
6263 The savings can be significant, in the same program from above the 200K TUs
6264 share 8K stmt_list tables.
6265
6266 FUNC is expected to call get_type_unit_group, which will create the
6267 struct type_unit_group if necessary and add it to
6268 dwarf2_per_objfile->type_unit_groups. */
6269
6270 static void
6271 build_type_psymtabs_1 (void)
6272 {
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274 struct cleanup *cleanups;
6275 struct abbrev_table *abbrev_table;
6276 sect_offset abbrev_offset;
6277 struct tu_abbrev_offset *sorted_by_abbrev;
6278 int i;
6279
6280 /* It's up to the caller to not call us multiple times. */
6281 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6282
6283 if (dwarf2_per_objfile->n_type_units == 0)
6284 return;
6285
6286 /* TUs typically share abbrev tables, and there can be way more TUs than
6287 abbrev tables. Sort by abbrev table to reduce the number of times we
6288 read each abbrev table in.
6289 Alternatives are to punt or to maintain a cache of abbrev tables.
6290 This is simpler and efficient enough for now.
6291
6292 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6293 symtab to use). Typically TUs with the same abbrev offset have the same
6294 stmt_list value too so in practice this should work well.
6295
6296 The basic algorithm here is:
6297
6298 sort TUs by abbrev table
6299 for each TU with same abbrev table:
6300 read abbrev table if first user
6301 read TU top level DIE
6302 [IWBN if DWO skeletons had DW_AT_stmt_list]
6303 call FUNC */
6304
6305 if (dwarf_read_debug)
6306 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6307
6308 /* Sort in a separate table to maintain the order of all_type_units
6309 for .gdb_index: TU indices directly index all_type_units. */
6310 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6311 dwarf2_per_objfile->n_type_units);
6312 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6313 {
6314 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6315
6316 sorted_by_abbrev[i].sig_type = sig_type;
6317 sorted_by_abbrev[i].abbrev_offset =
6318 read_abbrev_offset (sig_type->per_cu.section,
6319 sig_type->per_cu.offset);
6320 }
6321 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6322 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6323 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6324
6325 abbrev_offset.sect_off = ~(unsigned) 0;
6326 abbrev_table = NULL;
6327 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6328
6329 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6330 {
6331 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6332
6333 /* Switch to the next abbrev table if necessary. */
6334 if (abbrev_table == NULL
6335 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6336 {
6337 if (abbrev_table != NULL)
6338 {
6339 abbrev_table_free (abbrev_table);
6340 /* Reset to NULL in case abbrev_table_read_table throws
6341 an error: abbrev_table_free_cleanup will get called. */
6342 abbrev_table = NULL;
6343 }
6344 abbrev_offset = tu->abbrev_offset;
6345 abbrev_table =
6346 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6347 abbrev_offset);
6348 ++tu_stats->nr_uniq_abbrev_tables;
6349 }
6350
6351 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6352 build_type_psymtabs_reader, NULL);
6353 }
6354
6355 do_cleanups (cleanups);
6356 }
6357
6358 /* Print collected type unit statistics. */
6359
6360 static void
6361 print_tu_stats (void)
6362 {
6363 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6364
6365 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6366 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6367 dwarf2_per_objfile->n_type_units);
6368 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6369 tu_stats->nr_uniq_abbrev_tables);
6370 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6371 tu_stats->nr_symtabs);
6372 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6373 tu_stats->nr_symtab_sharers);
6374 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6375 tu_stats->nr_stmt_less_type_units);
6376 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6377 tu_stats->nr_all_type_units_reallocs);
6378 }
6379
6380 /* Traversal function for build_type_psymtabs. */
6381
6382 static int
6383 build_type_psymtab_dependencies (void **slot, void *info)
6384 {
6385 struct objfile *objfile = dwarf2_per_objfile->objfile;
6386 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6387 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6388 struct partial_symtab *pst = per_cu->v.psymtab;
6389 int len = VEC_length (sig_type_ptr, tu_group->tus);
6390 struct signatured_type *iter;
6391 int i;
6392
6393 gdb_assert (len > 0);
6394 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6395
6396 pst->number_of_dependencies = len;
6397 pst->dependencies =
6398 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6399 for (i = 0;
6400 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6401 ++i)
6402 {
6403 gdb_assert (iter->per_cu.is_debug_types);
6404 pst->dependencies[i] = iter->per_cu.v.psymtab;
6405 iter->type_unit_group = tu_group;
6406 }
6407
6408 VEC_free (sig_type_ptr, tu_group->tus);
6409
6410 return 1;
6411 }
6412
6413 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6414 Build partial symbol tables for the .debug_types comp-units. */
6415
6416 static void
6417 build_type_psymtabs (struct objfile *objfile)
6418 {
6419 if (! create_all_type_units (objfile))
6420 return;
6421
6422 build_type_psymtabs_1 ();
6423 }
6424
6425 /* Traversal function for process_skeletonless_type_unit.
6426 Read a TU in a DWO file and build partial symbols for it. */
6427
6428 static int
6429 process_skeletonless_type_unit (void **slot, void *info)
6430 {
6431 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6432 struct objfile *objfile = (struct objfile *) info;
6433 struct signatured_type find_entry, *entry;
6434
6435 /* If this TU doesn't exist in the global table, add it and read it in. */
6436
6437 if (dwarf2_per_objfile->signatured_types == NULL)
6438 {
6439 dwarf2_per_objfile->signatured_types
6440 = allocate_signatured_type_table (objfile);
6441 }
6442
6443 find_entry.signature = dwo_unit->signature;
6444 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6445 INSERT);
6446 /* If we've already seen this type there's nothing to do. What's happening
6447 is we're doing our own version of comdat-folding here. */
6448 if (*slot != NULL)
6449 return 1;
6450
6451 /* This does the job that create_all_type_units would have done for
6452 this TU. */
6453 entry = add_type_unit (dwo_unit->signature, slot);
6454 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6455 *slot = entry;
6456
6457 /* This does the job that build_type_psymtabs_1 would have done. */
6458 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6459 build_type_psymtabs_reader, NULL);
6460
6461 return 1;
6462 }
6463
6464 /* Traversal function for process_skeletonless_type_units. */
6465
6466 static int
6467 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6468 {
6469 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6470
6471 if (dwo_file->tus != NULL)
6472 {
6473 htab_traverse_noresize (dwo_file->tus,
6474 process_skeletonless_type_unit, info);
6475 }
6476
6477 return 1;
6478 }
6479
6480 /* Scan all TUs of DWO files, verifying we've processed them.
6481 This is needed in case a TU was emitted without its skeleton.
6482 Note: This can't be done until we know what all the DWO files are. */
6483
6484 static void
6485 process_skeletonless_type_units (struct objfile *objfile)
6486 {
6487 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6488 if (get_dwp_file () == NULL
6489 && dwarf2_per_objfile->dwo_files != NULL)
6490 {
6491 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6492 process_dwo_file_for_skeletonless_type_units,
6493 objfile);
6494 }
6495 }
6496
6497 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6498
6499 static void
6500 psymtabs_addrmap_cleanup (void *o)
6501 {
6502 struct objfile *objfile = (struct objfile *) o;
6503
6504 objfile->psymtabs_addrmap = NULL;
6505 }
6506
6507 /* Compute the 'user' field for each psymtab in OBJFILE. */
6508
6509 static void
6510 set_partial_user (struct objfile *objfile)
6511 {
6512 int i;
6513
6514 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6515 {
6516 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6517 struct partial_symtab *pst = per_cu->v.psymtab;
6518 int j;
6519
6520 if (pst == NULL)
6521 continue;
6522
6523 for (j = 0; j < pst->number_of_dependencies; ++j)
6524 {
6525 /* Set the 'user' field only if it is not already set. */
6526 if (pst->dependencies[j]->user == NULL)
6527 pst->dependencies[j]->user = pst;
6528 }
6529 }
6530 }
6531
6532 /* Build the partial symbol table by doing a quick pass through the
6533 .debug_info and .debug_abbrev sections. */
6534
6535 static void
6536 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6537 {
6538 struct cleanup *back_to, *addrmap_cleanup;
6539 struct obstack temp_obstack;
6540 int i;
6541
6542 if (dwarf_read_debug)
6543 {
6544 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6545 objfile_name (objfile));
6546 }
6547
6548 dwarf2_per_objfile->reading_partial_symbols = 1;
6549
6550 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6551
6552 /* Any cached compilation units will be linked by the per-objfile
6553 read_in_chain. Make sure to free them when we're done. */
6554 back_to = make_cleanup (free_cached_comp_units, NULL);
6555
6556 build_type_psymtabs (objfile);
6557
6558 create_all_comp_units (objfile);
6559
6560 /* Create a temporary address map on a temporary obstack. We later
6561 copy this to the final obstack. */
6562 obstack_init (&temp_obstack);
6563 make_cleanup_obstack_free (&temp_obstack);
6564 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6565 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6566
6567 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6568 {
6569 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6570
6571 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6572 }
6573
6574 /* This has to wait until we read the CUs, we need the list of DWOs. */
6575 process_skeletonless_type_units (objfile);
6576
6577 /* Now that all TUs have been processed we can fill in the dependencies. */
6578 if (dwarf2_per_objfile->type_unit_groups != NULL)
6579 {
6580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6581 build_type_psymtab_dependencies, NULL);
6582 }
6583
6584 if (dwarf_read_debug)
6585 print_tu_stats ();
6586
6587 set_partial_user (objfile);
6588
6589 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6590 &objfile->objfile_obstack);
6591 discard_cleanups (addrmap_cleanup);
6592
6593 do_cleanups (back_to);
6594
6595 if (dwarf_read_debug)
6596 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6597 objfile_name (objfile));
6598 }
6599
6600 /* die_reader_func for load_partial_comp_unit. */
6601
6602 static void
6603 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6604 const gdb_byte *info_ptr,
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
6608 {
6609 struct dwarf2_cu *cu = reader->cu;
6610
6611 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6612
6613 /* Check if comp unit has_children.
6614 If so, read the rest of the partial symbols from this comp unit.
6615 If not, there's no more debug_info for this comp unit. */
6616 if (has_children)
6617 load_partial_dies (reader, info_ptr, 0);
6618 }
6619
6620 /* Load the partial DIEs for a secondary CU into memory.
6621 This is also used when rereading a primary CU with load_all_dies. */
6622
6623 static void
6624 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6625 {
6626 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6627 load_partial_comp_unit_reader, NULL);
6628 }
6629
6630 static void
6631 read_comp_units_from_section (struct objfile *objfile,
6632 struct dwarf2_section_info *section,
6633 unsigned int is_dwz,
6634 int *n_allocated,
6635 int *n_comp_units,
6636 struct dwarf2_per_cu_data ***all_comp_units)
6637 {
6638 const gdb_byte *info_ptr;
6639 bfd *abfd = get_section_bfd_owner (section);
6640
6641 if (dwarf_read_debug)
6642 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6643 get_section_name (section),
6644 get_section_file_name (section));
6645
6646 dwarf2_read_section (objfile, section);
6647
6648 info_ptr = section->buffer;
6649
6650 while (info_ptr < section->buffer + section->size)
6651 {
6652 unsigned int length, initial_length_size;
6653 struct dwarf2_per_cu_data *this_cu;
6654 sect_offset offset;
6655
6656 offset.sect_off = info_ptr - section->buffer;
6657
6658 /* Read just enough information to find out where the next
6659 compilation unit is. */
6660 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6661
6662 /* Save the compilation unit for later lookup. */
6663 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6664 memset (this_cu, 0, sizeof (*this_cu));
6665 this_cu->offset = offset;
6666 this_cu->length = length + initial_length_size;
6667 this_cu->is_dwz = is_dwz;
6668 this_cu->objfile = objfile;
6669 this_cu->section = section;
6670
6671 if (*n_comp_units == *n_allocated)
6672 {
6673 *n_allocated *= 2;
6674 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6675 *all_comp_units, *n_allocated);
6676 }
6677 (*all_comp_units)[*n_comp_units] = this_cu;
6678 ++*n_comp_units;
6679
6680 info_ptr = info_ptr + this_cu->length;
6681 }
6682 }
6683
6684 /* Create a list of all compilation units in OBJFILE.
6685 This is only done for -readnow and building partial symtabs. */
6686
6687 static void
6688 create_all_comp_units (struct objfile *objfile)
6689 {
6690 int n_allocated;
6691 int n_comp_units;
6692 struct dwarf2_per_cu_data **all_comp_units;
6693 struct dwz_file *dwz;
6694
6695 n_comp_units = 0;
6696 n_allocated = 10;
6697 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6698
6699 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6700 &n_allocated, &n_comp_units, &all_comp_units);
6701
6702 dwz = dwarf2_get_dwz_file ();
6703 if (dwz != NULL)
6704 read_comp_units_from_section (objfile, &dwz->info, 1,
6705 &n_allocated, &n_comp_units,
6706 &all_comp_units);
6707
6708 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6709 struct dwarf2_per_cu_data *,
6710 n_comp_units);
6711 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6712 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6713 xfree (all_comp_units);
6714 dwarf2_per_objfile->n_comp_units = n_comp_units;
6715 }
6716
6717 /* Process all loaded DIEs for compilation unit CU, starting at
6718 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6719 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6720 DW_AT_ranges). See the comments of add_partial_subprogram on how
6721 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6722
6723 static void
6724 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6725 CORE_ADDR *highpc, int set_addrmap,
6726 struct dwarf2_cu *cu)
6727 {
6728 struct partial_die_info *pdi;
6729
6730 /* Now, march along the PDI's, descending into ones which have
6731 interesting children but skipping the children of the other ones,
6732 until we reach the end of the compilation unit. */
6733
6734 pdi = first_die;
6735
6736 while (pdi != NULL)
6737 {
6738 fixup_partial_die (pdi, cu);
6739
6740 /* Anonymous namespaces or modules have no name but have interesting
6741 children, so we need to look at them. Ditto for anonymous
6742 enums. */
6743
6744 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6745 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6746 || pdi->tag == DW_TAG_imported_unit)
6747 {
6748 switch (pdi->tag)
6749 {
6750 case DW_TAG_subprogram:
6751 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6752 break;
6753 case DW_TAG_constant:
6754 case DW_TAG_variable:
6755 case DW_TAG_typedef:
6756 case DW_TAG_union_type:
6757 if (!pdi->is_declaration)
6758 {
6759 add_partial_symbol (pdi, cu);
6760 }
6761 break;
6762 case DW_TAG_class_type:
6763 case DW_TAG_interface_type:
6764 case DW_TAG_structure_type:
6765 if (!pdi->is_declaration)
6766 {
6767 add_partial_symbol (pdi, cu);
6768 }
6769 if (cu->language == language_rust && pdi->has_children)
6770 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6771 set_addrmap, cu);
6772 break;
6773 case DW_TAG_enumeration_type:
6774 if (!pdi->is_declaration)
6775 add_partial_enumeration (pdi, cu);
6776 break;
6777 case DW_TAG_base_type:
6778 case DW_TAG_subrange_type:
6779 /* File scope base type definitions are added to the partial
6780 symbol table. */
6781 add_partial_symbol (pdi, cu);
6782 break;
6783 case DW_TAG_namespace:
6784 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6785 break;
6786 case DW_TAG_module:
6787 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6788 break;
6789 case DW_TAG_imported_unit:
6790 {
6791 struct dwarf2_per_cu_data *per_cu;
6792
6793 /* For now we don't handle imported units in type units. */
6794 if (cu->per_cu->is_debug_types)
6795 {
6796 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6797 " supported in type units [in module %s]"),
6798 objfile_name (cu->objfile));
6799 }
6800
6801 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6802 pdi->is_dwz,
6803 cu->objfile);
6804
6805 /* Go read the partial unit, if needed. */
6806 if (per_cu->v.psymtab == NULL)
6807 process_psymtab_comp_unit (per_cu, 1, cu->language);
6808
6809 VEC_safe_push (dwarf2_per_cu_ptr,
6810 cu->per_cu->imported_symtabs, per_cu);
6811 }
6812 break;
6813 case DW_TAG_imported_declaration:
6814 add_partial_symbol (pdi, cu);
6815 break;
6816 default:
6817 break;
6818 }
6819 }
6820
6821 /* If the die has a sibling, skip to the sibling. */
6822
6823 pdi = pdi->die_sibling;
6824 }
6825 }
6826
6827 /* Functions used to compute the fully scoped name of a partial DIE.
6828
6829 Normally, this is simple. For C++, the parent DIE's fully scoped
6830 name is concatenated with "::" and the partial DIE's name.
6831 Enumerators are an exception; they use the scope of their parent
6832 enumeration type, i.e. the name of the enumeration type is not
6833 prepended to the enumerator.
6834
6835 There are two complexities. One is DW_AT_specification; in this
6836 case "parent" means the parent of the target of the specification,
6837 instead of the direct parent of the DIE. The other is compilers
6838 which do not emit DW_TAG_namespace; in this case we try to guess
6839 the fully qualified name of structure types from their members'
6840 linkage names. This must be done using the DIE's children rather
6841 than the children of any DW_AT_specification target. We only need
6842 to do this for structures at the top level, i.e. if the target of
6843 any DW_AT_specification (if any; otherwise the DIE itself) does not
6844 have a parent. */
6845
6846 /* Compute the scope prefix associated with PDI's parent, in
6847 compilation unit CU. The result will be allocated on CU's
6848 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6849 field. NULL is returned if no prefix is necessary. */
6850 static const char *
6851 partial_die_parent_scope (struct partial_die_info *pdi,
6852 struct dwarf2_cu *cu)
6853 {
6854 const char *grandparent_scope;
6855 struct partial_die_info *parent, *real_pdi;
6856
6857 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6858 then this means the parent of the specification DIE. */
6859
6860 real_pdi = pdi;
6861 while (real_pdi->has_specification)
6862 real_pdi = find_partial_die (real_pdi->spec_offset,
6863 real_pdi->spec_is_dwz, cu);
6864
6865 parent = real_pdi->die_parent;
6866 if (parent == NULL)
6867 return NULL;
6868
6869 if (parent->scope_set)
6870 return parent->scope;
6871
6872 fixup_partial_die (parent, cu);
6873
6874 grandparent_scope = partial_die_parent_scope (parent, cu);
6875
6876 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6877 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6878 Work around this problem here. */
6879 if (cu->language == language_cplus
6880 && parent->tag == DW_TAG_namespace
6881 && strcmp (parent->name, "::") == 0
6882 && grandparent_scope == NULL)
6883 {
6884 parent->scope = NULL;
6885 parent->scope_set = 1;
6886 return NULL;
6887 }
6888
6889 if (pdi->tag == DW_TAG_enumerator)
6890 /* Enumerators should not get the name of the enumeration as a prefix. */
6891 parent->scope = grandparent_scope;
6892 else if (parent->tag == DW_TAG_namespace
6893 || parent->tag == DW_TAG_module
6894 || parent->tag == DW_TAG_structure_type
6895 || parent->tag == DW_TAG_class_type
6896 || parent->tag == DW_TAG_interface_type
6897 || parent->tag == DW_TAG_union_type
6898 || parent->tag == DW_TAG_enumeration_type)
6899 {
6900 if (grandparent_scope == NULL)
6901 parent->scope = parent->name;
6902 else
6903 parent->scope = typename_concat (&cu->comp_unit_obstack,
6904 grandparent_scope,
6905 parent->name, 0, cu);
6906 }
6907 else
6908 {
6909 /* FIXME drow/2004-04-01: What should we be doing with
6910 function-local names? For partial symbols, we should probably be
6911 ignoring them. */
6912 complaint (&symfile_complaints,
6913 _("unhandled containing DIE tag %d for DIE at %d"),
6914 parent->tag, pdi->offset.sect_off);
6915 parent->scope = grandparent_scope;
6916 }
6917
6918 parent->scope_set = 1;
6919 return parent->scope;
6920 }
6921
6922 /* Return the fully scoped name associated with PDI, from compilation unit
6923 CU. The result will be allocated with malloc. */
6924
6925 static char *
6926 partial_die_full_name (struct partial_die_info *pdi,
6927 struct dwarf2_cu *cu)
6928 {
6929 const char *parent_scope;
6930
6931 /* If this is a template instantiation, we can not work out the
6932 template arguments from partial DIEs. So, unfortunately, we have
6933 to go through the full DIEs. At least any work we do building
6934 types here will be reused if full symbols are loaded later. */
6935 if (pdi->has_template_arguments)
6936 {
6937 fixup_partial_die (pdi, cu);
6938
6939 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6940 {
6941 struct die_info *die;
6942 struct attribute attr;
6943 struct dwarf2_cu *ref_cu = cu;
6944
6945 /* DW_FORM_ref_addr is using section offset. */
6946 attr.name = (enum dwarf_attribute) 0;
6947 attr.form = DW_FORM_ref_addr;
6948 attr.u.unsnd = pdi->offset.sect_off;
6949 die = follow_die_ref (NULL, &attr, &ref_cu);
6950
6951 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6952 }
6953 }
6954
6955 parent_scope = partial_die_parent_scope (pdi, cu);
6956 if (parent_scope == NULL)
6957 return NULL;
6958 else
6959 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6960 }
6961
6962 static void
6963 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6964 {
6965 struct objfile *objfile = cu->objfile;
6966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6967 CORE_ADDR addr = 0;
6968 const char *actual_name = NULL;
6969 CORE_ADDR baseaddr;
6970 char *built_actual_name;
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6973
6974 built_actual_name = partial_die_full_name (pdi, cu);
6975 if (built_actual_name != NULL)
6976 actual_name = built_actual_name;
6977
6978 if (actual_name == NULL)
6979 actual_name = pdi->name;
6980
6981 switch (pdi->tag)
6982 {
6983 case DW_TAG_subprogram:
6984 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6985 if (pdi->is_external || cu->language == language_ada)
6986 {
6987 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6988 of the global scope. But in Ada, we want to be able to access
6989 nested procedures globally. So all Ada subprograms are stored
6990 in the global scope. */
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 VAR_DOMAIN, LOC_BLOCK,
6994 &objfile->global_psymbols,
6995 addr, cu->language, objfile);
6996 }
6997 else
6998 {
6999 add_psymbol_to_list (actual_name, strlen (actual_name),
7000 built_actual_name != NULL,
7001 VAR_DOMAIN, LOC_BLOCK,
7002 &objfile->static_psymbols,
7003 addr, cu->language, objfile);
7004 }
7005
7006 if (pdi->main_subprogram && actual_name != NULL)
7007 set_objfile_main_name (objfile, actual_name, cu->language);
7008 break;
7009 case DW_TAG_constant:
7010 {
7011 struct psymbol_allocation_list *list;
7012
7013 if (pdi->is_external)
7014 list = &objfile->global_psymbols;
7015 else
7016 list = &objfile->static_psymbols;
7017 add_psymbol_to_list (actual_name, strlen (actual_name),
7018 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7019 list, 0, cu->language, objfile);
7020 }
7021 break;
7022 case DW_TAG_variable:
7023 if (pdi->d.locdesc)
7024 addr = decode_locdesc (pdi->d.locdesc, cu);
7025
7026 if (pdi->d.locdesc
7027 && addr == 0
7028 && !dwarf2_per_objfile->has_section_at_zero)
7029 {
7030 /* A global or static variable may also have been stripped
7031 out by the linker if unused, in which case its address
7032 will be nullified; do not add such variables into partial
7033 symbol table then. */
7034 }
7035 else if (pdi->is_external)
7036 {
7037 /* Global Variable.
7038 Don't enter into the minimal symbol tables as there is
7039 a minimal symbol table entry from the ELF symbols already.
7040 Enter into partial symbol table if it has a location
7041 descriptor or a type.
7042 If the location descriptor is missing, new_symbol will create
7043 a LOC_UNRESOLVED symbol, the address of the variable will then
7044 be determined from the minimal symbol table whenever the variable
7045 is referenced.
7046 The address for the partial symbol table entry is not
7047 used by GDB, but it comes in handy for debugging partial symbol
7048 table building. */
7049
7050 if (pdi->d.locdesc || pdi->has_type)
7051 add_psymbol_to_list (actual_name, strlen (actual_name),
7052 built_actual_name != NULL,
7053 VAR_DOMAIN, LOC_STATIC,
7054 &objfile->global_psymbols,
7055 addr + baseaddr,
7056 cu->language, objfile);
7057 }
7058 else
7059 {
7060 int has_loc = pdi->d.locdesc != NULL;
7061
7062 /* Static Variable. Skip symbols whose value we cannot know (those
7063 without location descriptors or constant values). */
7064 if (!has_loc && !pdi->has_const_value)
7065 {
7066 xfree (built_actual_name);
7067 return;
7068 }
7069
7070 add_psymbol_to_list (actual_name, strlen (actual_name),
7071 built_actual_name != NULL,
7072 VAR_DOMAIN, LOC_STATIC,
7073 &objfile->static_psymbols,
7074 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7075 cu->language, objfile);
7076 }
7077 break;
7078 case DW_TAG_typedef:
7079 case DW_TAG_base_type:
7080 case DW_TAG_subrange_type:
7081 add_psymbol_to_list (actual_name, strlen (actual_name),
7082 built_actual_name != NULL,
7083 VAR_DOMAIN, LOC_TYPEDEF,
7084 &objfile->static_psymbols,
7085 0, cu->language, objfile);
7086 break;
7087 case DW_TAG_imported_declaration:
7088 case DW_TAG_namespace:
7089 add_psymbol_to_list (actual_name, strlen (actual_name),
7090 built_actual_name != NULL,
7091 VAR_DOMAIN, LOC_TYPEDEF,
7092 &objfile->global_psymbols,
7093 0, cu->language, objfile);
7094 break;
7095 case DW_TAG_module:
7096 add_psymbol_to_list (actual_name, strlen (actual_name),
7097 built_actual_name != NULL,
7098 MODULE_DOMAIN, LOC_TYPEDEF,
7099 &objfile->global_psymbols,
7100 0, cu->language, objfile);
7101 break;
7102 case DW_TAG_class_type:
7103 case DW_TAG_interface_type:
7104 case DW_TAG_structure_type:
7105 case DW_TAG_union_type:
7106 case DW_TAG_enumeration_type:
7107 /* Skip external references. The DWARF standard says in the section
7108 about "Structure, Union, and Class Type Entries": "An incomplete
7109 structure, union or class type is represented by a structure,
7110 union or class entry that does not have a byte size attribute
7111 and that has a DW_AT_declaration attribute." */
7112 if (!pdi->has_byte_size && pdi->is_declaration)
7113 {
7114 xfree (built_actual_name);
7115 return;
7116 }
7117
7118 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7119 static vs. global. */
7120 add_psymbol_to_list (actual_name, strlen (actual_name),
7121 built_actual_name != NULL,
7122 STRUCT_DOMAIN, LOC_TYPEDEF,
7123 cu->language == language_cplus
7124 ? &objfile->global_psymbols
7125 : &objfile->static_psymbols,
7126 0, cu->language, objfile);
7127
7128 break;
7129 case DW_TAG_enumerator:
7130 add_psymbol_to_list (actual_name, strlen (actual_name),
7131 built_actual_name != NULL,
7132 VAR_DOMAIN, LOC_CONST,
7133 cu->language == language_cplus
7134 ? &objfile->global_psymbols
7135 : &objfile->static_psymbols,
7136 0, cu->language, objfile);
7137 break;
7138 default:
7139 break;
7140 }
7141
7142 xfree (built_actual_name);
7143 }
7144
7145 /* Read a partial die corresponding to a namespace; also, add a symbol
7146 corresponding to that namespace to the symbol table. NAMESPACE is
7147 the name of the enclosing namespace. */
7148
7149 static void
7150 add_partial_namespace (struct partial_die_info *pdi,
7151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7152 int set_addrmap, struct dwarf2_cu *cu)
7153 {
7154 /* Add a symbol for the namespace. */
7155
7156 add_partial_symbol (pdi, cu);
7157
7158 /* Now scan partial symbols in that namespace. */
7159
7160 if (pdi->has_children)
7161 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7162 }
7163
7164 /* Read a partial die corresponding to a Fortran module. */
7165
7166 static void
7167 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7168 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7169 {
7170 /* Add a symbol for the namespace. */
7171
7172 add_partial_symbol (pdi, cu);
7173
7174 /* Now scan partial symbols in that module. */
7175
7176 if (pdi->has_children)
7177 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7178 }
7179
7180 /* Read a partial die corresponding to a subprogram and create a partial
7181 symbol for that subprogram. When the CU language allows it, this
7182 routine also defines a partial symbol for each nested subprogram
7183 that this subprogram contains. If SET_ADDRMAP is true, record the
7184 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7185 and highest PC values found in PDI.
7186
7187 PDI may also be a lexical block, in which case we simply search
7188 recursively for subprograms defined inside that lexical block.
7189 Again, this is only performed when the CU language allows this
7190 type of definitions. */
7191
7192 static void
7193 add_partial_subprogram (struct partial_die_info *pdi,
7194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7195 int set_addrmap, struct dwarf2_cu *cu)
7196 {
7197 if (pdi->tag == DW_TAG_subprogram)
7198 {
7199 if (pdi->has_pc_info)
7200 {
7201 if (pdi->lowpc < *lowpc)
7202 *lowpc = pdi->lowpc;
7203 if (pdi->highpc > *highpc)
7204 *highpc = pdi->highpc;
7205 if (set_addrmap)
7206 {
7207 struct objfile *objfile = cu->objfile;
7208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7209 CORE_ADDR baseaddr;
7210 CORE_ADDR highpc;
7211 CORE_ADDR lowpc;
7212
7213 baseaddr = ANOFFSET (objfile->section_offsets,
7214 SECT_OFF_TEXT (objfile));
7215 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7216 pdi->lowpc + baseaddr);
7217 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7218 pdi->highpc + baseaddr);
7219 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7220 cu->per_cu->v.psymtab);
7221 }
7222 }
7223
7224 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7225 {
7226 if (!pdi->is_declaration)
7227 /* Ignore subprogram DIEs that do not have a name, they are
7228 illegal. Do not emit a complaint at this point, we will
7229 do so when we convert this psymtab into a symtab. */
7230 if (pdi->name)
7231 add_partial_symbol (pdi, cu);
7232 }
7233 }
7234
7235 if (! pdi->has_children)
7236 return;
7237
7238 if (cu->language == language_ada)
7239 {
7240 pdi = pdi->die_child;
7241 while (pdi != NULL)
7242 {
7243 fixup_partial_die (pdi, cu);
7244 if (pdi->tag == DW_TAG_subprogram
7245 || pdi->tag == DW_TAG_lexical_block)
7246 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7247 pdi = pdi->die_sibling;
7248 }
7249 }
7250 }
7251
7252 /* Read a partial die corresponding to an enumeration type. */
7253
7254 static void
7255 add_partial_enumeration (struct partial_die_info *enum_pdi,
7256 struct dwarf2_cu *cu)
7257 {
7258 struct partial_die_info *pdi;
7259
7260 if (enum_pdi->name != NULL)
7261 add_partial_symbol (enum_pdi, cu);
7262
7263 pdi = enum_pdi->die_child;
7264 while (pdi)
7265 {
7266 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7267 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7268 else
7269 add_partial_symbol (pdi, cu);
7270 pdi = pdi->die_sibling;
7271 }
7272 }
7273
7274 /* Return the initial uleb128 in the die at INFO_PTR. */
7275
7276 static unsigned int
7277 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7278 {
7279 unsigned int bytes_read;
7280
7281 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 }
7283
7284 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7285 Return the corresponding abbrev, or NULL if the number is zero (indicating
7286 an empty DIE). In either case *BYTES_READ will be set to the length of
7287 the initial number. */
7288
7289 static struct abbrev_info *
7290 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7291 struct dwarf2_cu *cu)
7292 {
7293 bfd *abfd = cu->objfile->obfd;
7294 unsigned int abbrev_number;
7295 struct abbrev_info *abbrev;
7296
7297 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7298
7299 if (abbrev_number == 0)
7300 return NULL;
7301
7302 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7303 if (!abbrev)
7304 {
7305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7306 " at offset 0x%x [in module %s]"),
7307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7308 cu->header.offset.sect_off, bfd_get_filename (abfd));
7309 }
7310
7311 return abbrev;
7312 }
7313
7314 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7315 Returns a pointer to the end of a series of DIEs, terminated by an empty
7316 DIE. Any children of the skipped DIEs will also be skipped. */
7317
7318 static const gdb_byte *
7319 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7320 {
7321 struct dwarf2_cu *cu = reader->cu;
7322 struct abbrev_info *abbrev;
7323 unsigned int bytes_read;
7324
7325 while (1)
7326 {
7327 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7328 if (abbrev == NULL)
7329 return info_ptr + bytes_read;
7330 else
7331 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7332 }
7333 }
7334
7335 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7336 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7337 abbrev corresponding to that skipped uleb128 should be passed in
7338 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7339 children. */
7340
7341 static const gdb_byte *
7342 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7343 struct abbrev_info *abbrev)
7344 {
7345 unsigned int bytes_read;
7346 struct attribute attr;
7347 bfd *abfd = reader->abfd;
7348 struct dwarf2_cu *cu = reader->cu;
7349 const gdb_byte *buffer = reader->buffer;
7350 const gdb_byte *buffer_end = reader->buffer_end;
7351 unsigned int form, i;
7352
7353 for (i = 0; i < abbrev->num_attrs; i++)
7354 {
7355 /* The only abbrev we care about is DW_AT_sibling. */
7356 if (abbrev->attrs[i].name == DW_AT_sibling)
7357 {
7358 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7359 if (attr.form == DW_FORM_ref_addr)
7360 complaint (&symfile_complaints,
7361 _("ignoring absolute DW_AT_sibling"));
7362 else
7363 {
7364 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7365 const gdb_byte *sibling_ptr = buffer + off;
7366
7367 if (sibling_ptr < info_ptr)
7368 complaint (&symfile_complaints,
7369 _("DW_AT_sibling points backwards"));
7370 else if (sibling_ptr > reader->buffer_end)
7371 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7372 else
7373 return sibling_ptr;
7374 }
7375 }
7376
7377 /* If it isn't DW_AT_sibling, skip this attribute. */
7378 form = abbrev->attrs[i].form;
7379 skip_attribute:
7380 switch (form)
7381 {
7382 case DW_FORM_ref_addr:
7383 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7384 and later it is offset sized. */
7385 if (cu->header.version == 2)
7386 info_ptr += cu->header.addr_size;
7387 else
7388 info_ptr += cu->header.offset_size;
7389 break;
7390 case DW_FORM_GNU_ref_alt:
7391 info_ptr += cu->header.offset_size;
7392 break;
7393 case DW_FORM_addr:
7394 info_ptr += cu->header.addr_size;
7395 break;
7396 case DW_FORM_data1:
7397 case DW_FORM_ref1:
7398 case DW_FORM_flag:
7399 info_ptr += 1;
7400 break;
7401 case DW_FORM_flag_present:
7402 case DW_FORM_implicit_const:
7403 break;
7404 case DW_FORM_data2:
7405 case DW_FORM_ref2:
7406 info_ptr += 2;
7407 break;
7408 case DW_FORM_data4:
7409 case DW_FORM_ref4:
7410 info_ptr += 4;
7411 break;
7412 case DW_FORM_data8:
7413 case DW_FORM_ref8:
7414 case DW_FORM_ref_sig8:
7415 info_ptr += 8;
7416 break;
7417 case DW_FORM_data16:
7418 info_ptr += 16;
7419 break;
7420 case DW_FORM_string:
7421 read_direct_string (abfd, info_ptr, &bytes_read);
7422 info_ptr += bytes_read;
7423 break;
7424 case DW_FORM_sec_offset:
7425 case DW_FORM_strp:
7426 case DW_FORM_GNU_strp_alt:
7427 info_ptr += cu->header.offset_size;
7428 break;
7429 case DW_FORM_exprloc:
7430 case DW_FORM_block:
7431 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7432 info_ptr += bytes_read;
7433 break;
7434 case DW_FORM_block1:
7435 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7436 break;
7437 case DW_FORM_block2:
7438 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7439 break;
7440 case DW_FORM_block4:
7441 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7442 break;
7443 case DW_FORM_sdata:
7444 case DW_FORM_udata:
7445 case DW_FORM_ref_udata:
7446 case DW_FORM_GNU_addr_index:
7447 case DW_FORM_GNU_str_index:
7448 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7449 break;
7450 case DW_FORM_indirect:
7451 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7452 info_ptr += bytes_read;
7453 /* We need to continue parsing from here, so just go back to
7454 the top. */
7455 goto skip_attribute;
7456
7457 default:
7458 error (_("Dwarf Error: Cannot handle %s "
7459 "in DWARF reader [in module %s]"),
7460 dwarf_form_name (form),
7461 bfd_get_filename (abfd));
7462 }
7463 }
7464
7465 if (abbrev->has_children)
7466 return skip_children (reader, info_ptr);
7467 else
7468 return info_ptr;
7469 }
7470
7471 /* Locate ORIG_PDI's sibling.
7472 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7473
7474 static const gdb_byte *
7475 locate_pdi_sibling (const struct die_reader_specs *reader,
7476 struct partial_die_info *orig_pdi,
7477 const gdb_byte *info_ptr)
7478 {
7479 /* Do we know the sibling already? */
7480
7481 if (orig_pdi->sibling)
7482 return orig_pdi->sibling;
7483
7484 /* Are there any children to deal with? */
7485
7486 if (!orig_pdi->has_children)
7487 return info_ptr;
7488
7489 /* Skip the children the long way. */
7490
7491 return skip_children (reader, info_ptr);
7492 }
7493
7494 /* Expand this partial symbol table into a full symbol table. SELF is
7495 not NULL. */
7496
7497 static void
7498 dwarf2_read_symtab (struct partial_symtab *self,
7499 struct objfile *objfile)
7500 {
7501 if (self->readin)
7502 {
7503 warning (_("bug: psymtab for %s is already read in."),
7504 self->filename);
7505 }
7506 else
7507 {
7508 if (info_verbose)
7509 {
7510 printf_filtered (_("Reading in symbols for %s..."),
7511 self->filename);
7512 gdb_flush (gdb_stdout);
7513 }
7514
7515 /* Restore our global data. */
7516 dwarf2_per_objfile
7517 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7518 dwarf2_objfile_data_key);
7519
7520 /* If this psymtab is constructed from a debug-only objfile, the
7521 has_section_at_zero flag will not necessarily be correct. We
7522 can get the correct value for this flag by looking at the data
7523 associated with the (presumably stripped) associated objfile. */
7524 if (objfile->separate_debug_objfile_backlink)
7525 {
7526 struct dwarf2_per_objfile *dpo_backlink
7527 = ((struct dwarf2_per_objfile *)
7528 objfile_data (objfile->separate_debug_objfile_backlink,
7529 dwarf2_objfile_data_key));
7530
7531 dwarf2_per_objfile->has_section_at_zero
7532 = dpo_backlink->has_section_at_zero;
7533 }
7534
7535 dwarf2_per_objfile->reading_partial_symbols = 0;
7536
7537 psymtab_to_symtab_1 (self);
7538
7539 /* Finish up the debug error message. */
7540 if (info_verbose)
7541 printf_filtered (_("done.\n"));
7542 }
7543
7544 process_cu_includes ();
7545 }
7546 \f
7547 /* Reading in full CUs. */
7548
7549 /* Add PER_CU to the queue. */
7550
7551 static void
7552 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7553 enum language pretend_language)
7554 {
7555 struct dwarf2_queue_item *item;
7556
7557 per_cu->queued = 1;
7558 item = XNEW (struct dwarf2_queue_item);
7559 item->per_cu = per_cu;
7560 item->pretend_language = pretend_language;
7561 item->next = NULL;
7562
7563 if (dwarf2_queue == NULL)
7564 dwarf2_queue = item;
7565 else
7566 dwarf2_queue_tail->next = item;
7567
7568 dwarf2_queue_tail = item;
7569 }
7570
7571 /* If PER_CU is not yet queued, add it to the queue.
7572 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7573 dependency.
7574 The result is non-zero if PER_CU was queued, otherwise the result is zero
7575 meaning either PER_CU is already queued or it is already loaded.
7576
7577 N.B. There is an invariant here that if a CU is queued then it is loaded.
7578 The caller is required to load PER_CU if we return non-zero. */
7579
7580 static int
7581 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7582 struct dwarf2_per_cu_data *per_cu,
7583 enum language pretend_language)
7584 {
7585 /* We may arrive here during partial symbol reading, if we need full
7586 DIEs to process an unusual case (e.g. template arguments). Do
7587 not queue PER_CU, just tell our caller to load its DIEs. */
7588 if (dwarf2_per_objfile->reading_partial_symbols)
7589 {
7590 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7591 return 1;
7592 return 0;
7593 }
7594
7595 /* Mark the dependence relation so that we don't flush PER_CU
7596 too early. */
7597 if (dependent_cu != NULL)
7598 dwarf2_add_dependence (dependent_cu, per_cu);
7599
7600 /* If it's already on the queue, we have nothing to do. */
7601 if (per_cu->queued)
7602 return 0;
7603
7604 /* If the compilation unit is already loaded, just mark it as
7605 used. */
7606 if (per_cu->cu != NULL)
7607 {
7608 per_cu->cu->last_used = 0;
7609 return 0;
7610 }
7611
7612 /* Add it to the queue. */
7613 queue_comp_unit (per_cu, pretend_language);
7614
7615 return 1;
7616 }
7617
7618 /* Process the queue. */
7619
7620 static void
7621 process_queue (void)
7622 {
7623 struct dwarf2_queue_item *item, *next_item;
7624
7625 if (dwarf_read_debug)
7626 {
7627 fprintf_unfiltered (gdb_stdlog,
7628 "Expanding one or more symtabs of objfile %s ...\n",
7629 objfile_name (dwarf2_per_objfile->objfile));
7630 }
7631
7632 /* The queue starts out with one item, but following a DIE reference
7633 may load a new CU, adding it to the end of the queue. */
7634 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7635 {
7636 if ((dwarf2_per_objfile->using_index
7637 ? !item->per_cu->v.quick->compunit_symtab
7638 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7639 /* Skip dummy CUs. */
7640 && item->per_cu->cu != NULL)
7641 {
7642 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7643 unsigned int debug_print_threshold;
7644 char buf[100];
7645
7646 if (per_cu->is_debug_types)
7647 {
7648 struct signatured_type *sig_type =
7649 (struct signatured_type *) per_cu;
7650
7651 sprintf (buf, "TU %s at offset 0x%x",
7652 hex_string (sig_type->signature),
7653 per_cu->offset.sect_off);
7654 /* There can be 100s of TUs.
7655 Only print them in verbose mode. */
7656 debug_print_threshold = 2;
7657 }
7658 else
7659 {
7660 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7661 debug_print_threshold = 1;
7662 }
7663
7664 if (dwarf_read_debug >= debug_print_threshold)
7665 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7666
7667 if (per_cu->is_debug_types)
7668 process_full_type_unit (per_cu, item->pretend_language);
7669 else
7670 process_full_comp_unit (per_cu, item->pretend_language);
7671
7672 if (dwarf_read_debug >= debug_print_threshold)
7673 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7674 }
7675
7676 item->per_cu->queued = 0;
7677 next_item = item->next;
7678 xfree (item);
7679 }
7680
7681 dwarf2_queue_tail = NULL;
7682
7683 if (dwarf_read_debug)
7684 {
7685 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7686 objfile_name (dwarf2_per_objfile->objfile));
7687 }
7688 }
7689
7690 /* Free all allocated queue entries. This function only releases anything if
7691 an error was thrown; if the queue was processed then it would have been
7692 freed as we went along. */
7693
7694 static void
7695 dwarf2_release_queue (void *dummy)
7696 {
7697 struct dwarf2_queue_item *item, *last;
7698
7699 item = dwarf2_queue;
7700 while (item)
7701 {
7702 /* Anything still marked queued is likely to be in an
7703 inconsistent state, so discard it. */
7704 if (item->per_cu->queued)
7705 {
7706 if (item->per_cu->cu != NULL)
7707 free_one_cached_comp_unit (item->per_cu);
7708 item->per_cu->queued = 0;
7709 }
7710
7711 last = item;
7712 item = item->next;
7713 xfree (last);
7714 }
7715
7716 dwarf2_queue = dwarf2_queue_tail = NULL;
7717 }
7718
7719 /* Read in full symbols for PST, and anything it depends on. */
7720
7721 static void
7722 psymtab_to_symtab_1 (struct partial_symtab *pst)
7723 {
7724 struct dwarf2_per_cu_data *per_cu;
7725 int i;
7726
7727 if (pst->readin)
7728 return;
7729
7730 for (i = 0; i < pst->number_of_dependencies; i++)
7731 if (!pst->dependencies[i]->readin
7732 && pst->dependencies[i]->user == NULL)
7733 {
7734 /* Inform about additional files that need to be read in. */
7735 if (info_verbose)
7736 {
7737 /* FIXME: i18n: Need to make this a single string. */
7738 fputs_filtered (" ", gdb_stdout);
7739 wrap_here ("");
7740 fputs_filtered ("and ", gdb_stdout);
7741 wrap_here ("");
7742 printf_filtered ("%s...", pst->dependencies[i]->filename);
7743 wrap_here (""); /* Flush output. */
7744 gdb_flush (gdb_stdout);
7745 }
7746 psymtab_to_symtab_1 (pst->dependencies[i]);
7747 }
7748
7749 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7750
7751 if (per_cu == NULL)
7752 {
7753 /* It's an include file, no symbols to read for it.
7754 Everything is in the parent symtab. */
7755 pst->readin = 1;
7756 return;
7757 }
7758
7759 dw2_do_instantiate_symtab (per_cu);
7760 }
7761
7762 /* Trivial hash function for die_info: the hash value of a DIE
7763 is its offset in .debug_info for this objfile. */
7764
7765 static hashval_t
7766 die_hash (const void *item)
7767 {
7768 const struct die_info *die = (const struct die_info *) item;
7769
7770 return die->offset.sect_off;
7771 }
7772
7773 /* Trivial comparison function for die_info structures: two DIEs
7774 are equal if they have the same offset. */
7775
7776 static int
7777 die_eq (const void *item_lhs, const void *item_rhs)
7778 {
7779 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7780 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7781
7782 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7783 }
7784
7785 /* die_reader_func for load_full_comp_unit.
7786 This is identical to read_signatured_type_reader,
7787 but is kept separate for now. */
7788
7789 static void
7790 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7791 const gdb_byte *info_ptr,
7792 struct die_info *comp_unit_die,
7793 int has_children,
7794 void *data)
7795 {
7796 struct dwarf2_cu *cu = reader->cu;
7797 enum language *language_ptr = (enum language *) data;
7798
7799 gdb_assert (cu->die_hash == NULL);
7800 cu->die_hash =
7801 htab_create_alloc_ex (cu->header.length / 12,
7802 die_hash,
7803 die_eq,
7804 NULL,
7805 &cu->comp_unit_obstack,
7806 hashtab_obstack_allocate,
7807 dummy_obstack_deallocate);
7808
7809 if (has_children)
7810 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7811 &info_ptr, comp_unit_die);
7812 cu->dies = comp_unit_die;
7813 /* comp_unit_die is not stored in die_hash, no need. */
7814
7815 /* We try not to read any attributes in this function, because not
7816 all CUs needed for references have been loaded yet, and symbol
7817 table processing isn't initialized. But we have to set the CU language,
7818 or we won't be able to build types correctly.
7819 Similarly, if we do not read the producer, we can not apply
7820 producer-specific interpretation. */
7821 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7822 }
7823
7824 /* Load the DIEs associated with PER_CU into memory. */
7825
7826 static void
7827 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7828 enum language pretend_language)
7829 {
7830 gdb_assert (! this_cu->is_debug_types);
7831
7832 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7833 load_full_comp_unit_reader, &pretend_language);
7834 }
7835
7836 /* Add a DIE to the delayed physname list. */
7837
7838 static void
7839 add_to_method_list (struct type *type, int fnfield_index, int index,
7840 const char *name, struct die_info *die,
7841 struct dwarf2_cu *cu)
7842 {
7843 struct delayed_method_info mi;
7844 mi.type = type;
7845 mi.fnfield_index = fnfield_index;
7846 mi.index = index;
7847 mi.name = name;
7848 mi.die = die;
7849 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7850 }
7851
7852 /* A cleanup for freeing the delayed method list. */
7853
7854 static void
7855 free_delayed_list (void *ptr)
7856 {
7857 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7858 if (cu->method_list != NULL)
7859 {
7860 VEC_free (delayed_method_info, cu->method_list);
7861 cu->method_list = NULL;
7862 }
7863 }
7864
7865 /* Compute the physnames of any methods on the CU's method list.
7866
7867 The computation of method physnames is delayed in order to avoid the
7868 (bad) condition that one of the method's formal parameters is of an as yet
7869 incomplete type. */
7870
7871 static void
7872 compute_delayed_physnames (struct dwarf2_cu *cu)
7873 {
7874 int i;
7875 struct delayed_method_info *mi;
7876 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7877 {
7878 const char *physname;
7879 struct fn_fieldlist *fn_flp
7880 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7881 physname = dwarf2_physname (mi->name, mi->die, cu);
7882 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7883 = physname ? physname : "";
7884 }
7885 }
7886
7887 /* Go objects should be embedded in a DW_TAG_module DIE,
7888 and it's not clear if/how imported objects will appear.
7889 To keep Go support simple until that's worked out,
7890 go back through what we've read and create something usable.
7891 We could do this while processing each DIE, and feels kinda cleaner,
7892 but that way is more invasive.
7893 This is to, for example, allow the user to type "p var" or "b main"
7894 without having to specify the package name, and allow lookups
7895 of module.object to work in contexts that use the expression
7896 parser. */
7897
7898 static void
7899 fixup_go_packaging (struct dwarf2_cu *cu)
7900 {
7901 char *package_name = NULL;
7902 struct pending *list;
7903 int i;
7904
7905 for (list = global_symbols; list != NULL; list = list->next)
7906 {
7907 for (i = 0; i < list->nsyms; ++i)
7908 {
7909 struct symbol *sym = list->symbol[i];
7910
7911 if (SYMBOL_LANGUAGE (sym) == language_go
7912 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7913 {
7914 char *this_package_name = go_symbol_package_name (sym);
7915
7916 if (this_package_name == NULL)
7917 continue;
7918 if (package_name == NULL)
7919 package_name = this_package_name;
7920 else
7921 {
7922 if (strcmp (package_name, this_package_name) != 0)
7923 complaint (&symfile_complaints,
7924 _("Symtab %s has objects from two different Go packages: %s and %s"),
7925 (symbol_symtab (sym) != NULL
7926 ? symtab_to_filename_for_display
7927 (symbol_symtab (sym))
7928 : objfile_name (cu->objfile)),
7929 this_package_name, package_name);
7930 xfree (this_package_name);
7931 }
7932 }
7933 }
7934 }
7935
7936 if (package_name != NULL)
7937 {
7938 struct objfile *objfile = cu->objfile;
7939 const char *saved_package_name
7940 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7941 package_name,
7942 strlen (package_name));
7943 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7944 saved_package_name);
7945 struct symbol *sym;
7946
7947 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7948
7949 sym = allocate_symbol (objfile);
7950 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7951 SYMBOL_SET_NAMES (sym, saved_package_name,
7952 strlen (saved_package_name), 0, objfile);
7953 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7954 e.g., "main" finds the "main" module and not C's main(). */
7955 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7956 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7957 SYMBOL_TYPE (sym) = type;
7958
7959 add_symbol_to_list (sym, &global_symbols);
7960
7961 xfree (package_name);
7962 }
7963 }
7964
7965 /* Return the symtab for PER_CU. This works properly regardless of
7966 whether we're using the index or psymtabs. */
7967
7968 static struct compunit_symtab *
7969 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7970 {
7971 return (dwarf2_per_objfile->using_index
7972 ? per_cu->v.quick->compunit_symtab
7973 : per_cu->v.psymtab->compunit_symtab);
7974 }
7975
7976 /* A helper function for computing the list of all symbol tables
7977 included by PER_CU. */
7978
7979 static void
7980 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7981 htab_t all_children, htab_t all_type_symtabs,
7982 struct dwarf2_per_cu_data *per_cu,
7983 struct compunit_symtab *immediate_parent)
7984 {
7985 void **slot;
7986 int ix;
7987 struct compunit_symtab *cust;
7988 struct dwarf2_per_cu_data *iter;
7989
7990 slot = htab_find_slot (all_children, per_cu, INSERT);
7991 if (*slot != NULL)
7992 {
7993 /* This inclusion and its children have been processed. */
7994 return;
7995 }
7996
7997 *slot = per_cu;
7998 /* Only add a CU if it has a symbol table. */
7999 cust = get_compunit_symtab (per_cu);
8000 if (cust != NULL)
8001 {
8002 /* If this is a type unit only add its symbol table if we haven't
8003 seen it yet (type unit per_cu's can share symtabs). */
8004 if (per_cu->is_debug_types)
8005 {
8006 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8007 if (*slot == NULL)
8008 {
8009 *slot = cust;
8010 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8011 if (cust->user == NULL)
8012 cust->user = immediate_parent;
8013 }
8014 }
8015 else
8016 {
8017 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8018 if (cust->user == NULL)
8019 cust->user = immediate_parent;
8020 }
8021 }
8022
8023 for (ix = 0;
8024 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8025 ++ix)
8026 {
8027 recursively_compute_inclusions (result, all_children,
8028 all_type_symtabs, iter, cust);
8029 }
8030 }
8031
8032 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8033 PER_CU. */
8034
8035 static void
8036 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8037 {
8038 gdb_assert (! per_cu->is_debug_types);
8039
8040 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8041 {
8042 int ix, len;
8043 struct dwarf2_per_cu_data *per_cu_iter;
8044 struct compunit_symtab *compunit_symtab_iter;
8045 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8046 htab_t all_children, all_type_symtabs;
8047 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8048
8049 /* If we don't have a symtab, we can just skip this case. */
8050 if (cust == NULL)
8051 return;
8052
8053 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8054 NULL, xcalloc, xfree);
8055 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8056 NULL, xcalloc, xfree);
8057
8058 for (ix = 0;
8059 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8060 ix, per_cu_iter);
8061 ++ix)
8062 {
8063 recursively_compute_inclusions (&result_symtabs, all_children,
8064 all_type_symtabs, per_cu_iter,
8065 cust);
8066 }
8067
8068 /* Now we have a transitive closure of all the included symtabs. */
8069 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8070 cust->includes
8071 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8072 struct compunit_symtab *, len + 1);
8073 for (ix = 0;
8074 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8075 compunit_symtab_iter);
8076 ++ix)
8077 cust->includes[ix] = compunit_symtab_iter;
8078 cust->includes[len] = NULL;
8079
8080 VEC_free (compunit_symtab_ptr, result_symtabs);
8081 htab_delete (all_children);
8082 htab_delete (all_type_symtabs);
8083 }
8084 }
8085
8086 /* Compute the 'includes' field for the symtabs of all the CUs we just
8087 read. */
8088
8089 static void
8090 process_cu_includes (void)
8091 {
8092 int ix;
8093 struct dwarf2_per_cu_data *iter;
8094
8095 for (ix = 0;
8096 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8097 ix, iter);
8098 ++ix)
8099 {
8100 if (! iter->is_debug_types)
8101 compute_compunit_symtab_includes (iter);
8102 }
8103
8104 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8105 }
8106
8107 /* Generate full symbol information for PER_CU, whose DIEs have
8108 already been loaded into memory. */
8109
8110 static void
8111 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8112 enum language pretend_language)
8113 {
8114 struct dwarf2_cu *cu = per_cu->cu;
8115 struct objfile *objfile = per_cu->objfile;
8116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8117 CORE_ADDR lowpc, highpc;
8118 struct compunit_symtab *cust;
8119 struct cleanup *back_to, *delayed_list_cleanup;
8120 CORE_ADDR baseaddr;
8121 struct block *static_block;
8122 CORE_ADDR addr;
8123
8124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8125
8126 buildsym_init ();
8127 back_to = make_cleanup (really_free_pendings, NULL);
8128 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8129
8130 cu->list_in_scope = &file_symbols;
8131
8132 cu->language = pretend_language;
8133 cu->language_defn = language_def (cu->language);
8134
8135 /* Do line number decoding in read_file_scope () */
8136 process_die (cu->dies, cu);
8137
8138 /* For now fudge the Go package. */
8139 if (cu->language == language_go)
8140 fixup_go_packaging (cu);
8141
8142 /* Now that we have processed all the DIEs in the CU, all the types
8143 should be complete, and it should now be safe to compute all of the
8144 physnames. */
8145 compute_delayed_physnames (cu);
8146 do_cleanups (delayed_list_cleanup);
8147
8148 /* Some compilers don't define a DW_AT_high_pc attribute for the
8149 compilation unit. If the DW_AT_high_pc is missing, synthesize
8150 it, by scanning the DIE's below the compilation unit. */
8151 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8152
8153 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8154 static_block = end_symtab_get_static_block (addr, 0, 1);
8155
8156 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8157 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8158 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8159 addrmap to help ensure it has an accurate map of pc values belonging to
8160 this comp unit. */
8161 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8162
8163 cust = end_symtab_from_static_block (static_block,
8164 SECT_OFF_TEXT (objfile), 0);
8165
8166 if (cust != NULL)
8167 {
8168 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8169
8170 /* Set symtab language to language from DW_AT_language. If the
8171 compilation is from a C file generated by language preprocessors, do
8172 not set the language if it was already deduced by start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176
8177 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8178 produce DW_AT_location with location lists but it can be possibly
8179 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8180 there were bugs in prologue debug info, fixed later in GCC-4.5
8181 by "unwind info for epilogues" patch (which is not directly related).
8182
8183 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8184 needed, it would be wrong due to missing DW_AT_producer there.
8185
8186 Still one can confuse GDB by using non-standard GCC compilation
8187 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8188 */
8189 if (cu->has_loclist && gcc_4_minor >= 5)
8190 cust->locations_valid = 1;
8191
8192 if (gcc_4_minor >= 5)
8193 cust->epilogue_unwind_valid = 1;
8194
8195 cust->call_site_htab = cu->call_site_htab;
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
8199 per_cu->v.quick->compunit_symtab = cust;
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
8203 pst->compunit_symtab = cust;
8204 pst->readin = 1;
8205 }
8206
8207 /* Push it for inclusion processing later. */
8208 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8209
8210 do_cleanups (back_to);
8211 }
8212
8213 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8214 already been loaded into memory. */
8215
8216 static void
8217 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8218 enum language pretend_language)
8219 {
8220 struct dwarf2_cu *cu = per_cu->cu;
8221 struct objfile *objfile = per_cu->objfile;
8222 struct compunit_symtab *cust;
8223 struct cleanup *back_to, *delayed_list_cleanup;
8224 struct signatured_type *sig_type;
8225
8226 gdb_assert (per_cu->is_debug_types);
8227 sig_type = (struct signatured_type *) per_cu;
8228
8229 buildsym_init ();
8230 back_to = make_cleanup (really_free_pendings, NULL);
8231 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8232
8233 cu->list_in_scope = &file_symbols;
8234
8235 cu->language = pretend_language;
8236 cu->language_defn = language_def (cu->language);
8237
8238 /* The symbol tables are set up in read_type_unit_scope. */
8239 process_die (cu->dies, cu);
8240
8241 /* For now fudge the Go package. */
8242 if (cu->language == language_go)
8243 fixup_go_packaging (cu);
8244
8245 /* Now that we have processed all the DIEs in the CU, all the types
8246 should be complete, and it should now be safe to compute all of the
8247 physnames. */
8248 compute_delayed_physnames (cu);
8249 do_cleanups (delayed_list_cleanup);
8250
8251 /* TUs share symbol tables.
8252 If this is the first TU to use this symtab, complete the construction
8253 of it with end_expandable_symtab. Otherwise, complete the addition of
8254 this TU's symbols to the existing symtab. */
8255 if (sig_type->type_unit_group->compunit_symtab == NULL)
8256 {
8257 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8258 sig_type->type_unit_group->compunit_symtab = cust;
8259
8260 if (cust != NULL)
8261 {
8262 /* Set symtab language to language from DW_AT_language. If the
8263 compilation is from a C file generated by language preprocessors,
8264 do not set the language if it was already deduced by
8265 start_subfile. */
8266 if (!(cu->language == language_c
8267 && COMPUNIT_FILETABS (cust)->language != language_c))
8268 COMPUNIT_FILETABS (cust)->language = cu->language;
8269 }
8270 }
8271 else
8272 {
8273 augment_type_symtab ();
8274 cust = sig_type->type_unit_group->compunit_symtab;
8275 }
8276
8277 if (dwarf2_per_objfile->using_index)
8278 per_cu->v.quick->compunit_symtab = cust;
8279 else
8280 {
8281 struct partial_symtab *pst = per_cu->v.psymtab;
8282 pst->compunit_symtab = cust;
8283 pst->readin = 1;
8284 }
8285
8286 do_cleanups (back_to);
8287 }
8288
8289 /* Process an imported unit DIE. */
8290
8291 static void
8292 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8293 {
8294 struct attribute *attr;
8295
8296 /* For now we don't handle imported units in type units. */
8297 if (cu->per_cu->is_debug_types)
8298 {
8299 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8300 " supported in type units [in module %s]"),
8301 objfile_name (cu->objfile));
8302 }
8303
8304 attr = dwarf2_attr (die, DW_AT_import, cu);
8305 if (attr != NULL)
8306 {
8307 struct dwarf2_per_cu_data *per_cu;
8308 sect_offset offset;
8309 int is_dwz;
8310
8311 offset = dwarf2_get_ref_die_offset (attr);
8312 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8313 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8314
8315 /* If necessary, add it to the queue and load its DIEs. */
8316 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8317 load_full_comp_unit (per_cu, cu->language);
8318
8319 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8320 per_cu);
8321 }
8322 }
8323
8324 /* Reset the in_process bit of a die. */
8325
8326 static void
8327 reset_die_in_process (void *arg)
8328 {
8329 struct die_info *die = (struct die_info *) arg;
8330
8331 die->in_process = 0;
8332 }
8333
8334 /* Process a die and its children. */
8335
8336 static void
8337 process_die (struct die_info *die, struct dwarf2_cu *cu)
8338 {
8339 struct cleanup *in_process;
8340
8341 /* We should only be processing those not already in process. */
8342 gdb_assert (!die->in_process);
8343
8344 die->in_process = 1;
8345 in_process = make_cleanup (reset_die_in_process,die);
8346
8347 switch (die->tag)
8348 {
8349 case DW_TAG_padding:
8350 break;
8351 case DW_TAG_compile_unit:
8352 case DW_TAG_partial_unit:
8353 read_file_scope (die, cu);
8354 break;
8355 case DW_TAG_type_unit:
8356 read_type_unit_scope (die, cu);
8357 break;
8358 case DW_TAG_subprogram:
8359 case DW_TAG_inlined_subroutine:
8360 read_func_scope (die, cu);
8361 break;
8362 case DW_TAG_lexical_block:
8363 case DW_TAG_try_block:
8364 case DW_TAG_catch_block:
8365 read_lexical_block_scope (die, cu);
8366 break;
8367 case DW_TAG_call_site:
8368 case DW_TAG_GNU_call_site:
8369 read_call_site_scope (die, cu);
8370 break;
8371 case DW_TAG_class_type:
8372 case DW_TAG_interface_type:
8373 case DW_TAG_structure_type:
8374 case DW_TAG_union_type:
8375 process_structure_scope (die, cu);
8376 break;
8377 case DW_TAG_enumeration_type:
8378 process_enumeration_scope (die, cu);
8379 break;
8380
8381 /* These dies have a type, but processing them does not create
8382 a symbol or recurse to process the children. Therefore we can
8383 read them on-demand through read_type_die. */
8384 case DW_TAG_subroutine_type:
8385 case DW_TAG_set_type:
8386 case DW_TAG_array_type:
8387 case DW_TAG_pointer_type:
8388 case DW_TAG_ptr_to_member_type:
8389 case DW_TAG_reference_type:
8390 case DW_TAG_string_type:
8391 break;
8392
8393 case DW_TAG_base_type:
8394 case DW_TAG_subrange_type:
8395 case DW_TAG_typedef:
8396 /* Add a typedef symbol for the type definition, if it has a
8397 DW_AT_name. */
8398 new_symbol (die, read_type_die (die, cu), cu);
8399 break;
8400 case DW_TAG_common_block:
8401 read_common_block (die, cu);
8402 break;
8403 case DW_TAG_common_inclusion:
8404 break;
8405 case DW_TAG_namespace:
8406 cu->processing_has_namespace_info = 1;
8407 read_namespace (die, cu);
8408 break;
8409 case DW_TAG_module:
8410 cu->processing_has_namespace_info = 1;
8411 read_module (die, cu);
8412 break;
8413 case DW_TAG_imported_declaration:
8414 cu->processing_has_namespace_info = 1;
8415 if (read_namespace_alias (die, cu))
8416 break;
8417 /* The declaration is not a global namespace alias: fall through. */
8418 case DW_TAG_imported_module:
8419 cu->processing_has_namespace_info = 1;
8420 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8421 || cu->language != language_fortran))
8422 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8423 dwarf_tag_name (die->tag));
8424 read_import_statement (die, cu);
8425 break;
8426
8427 case DW_TAG_imported_unit:
8428 process_imported_unit_die (die, cu);
8429 break;
8430
8431 default:
8432 new_symbol (die, NULL, cu);
8433 break;
8434 }
8435
8436 do_cleanups (in_process);
8437 }
8438 \f
8439 /* DWARF name computation. */
8440
8441 /* A helper function for dwarf2_compute_name which determines whether DIE
8442 needs to have the name of the scope prepended to the name listed in the
8443 die. */
8444
8445 static int
8446 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8447 {
8448 struct attribute *attr;
8449
8450 switch (die->tag)
8451 {
8452 case DW_TAG_namespace:
8453 case DW_TAG_typedef:
8454 case DW_TAG_class_type:
8455 case DW_TAG_interface_type:
8456 case DW_TAG_structure_type:
8457 case DW_TAG_union_type:
8458 case DW_TAG_enumeration_type:
8459 case DW_TAG_enumerator:
8460 case DW_TAG_subprogram:
8461 case DW_TAG_inlined_subroutine:
8462 case DW_TAG_member:
8463 case DW_TAG_imported_declaration:
8464 return 1;
8465
8466 case DW_TAG_variable:
8467 case DW_TAG_constant:
8468 /* We only need to prefix "globally" visible variables. These include
8469 any variable marked with DW_AT_external or any variable that
8470 lives in a namespace. [Variables in anonymous namespaces
8471 require prefixing, but they are not DW_AT_external.] */
8472
8473 if (dwarf2_attr (die, DW_AT_specification, cu))
8474 {
8475 struct dwarf2_cu *spec_cu = cu;
8476
8477 return die_needs_namespace (die_specification (die, &spec_cu),
8478 spec_cu);
8479 }
8480
8481 attr = dwarf2_attr (die, DW_AT_external, cu);
8482 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8483 && die->parent->tag != DW_TAG_module)
8484 return 0;
8485 /* A variable in a lexical block of some kind does not need a
8486 namespace, even though in C++ such variables may be external
8487 and have a mangled name. */
8488 if (die->parent->tag == DW_TAG_lexical_block
8489 || die->parent->tag == DW_TAG_try_block
8490 || die->parent->tag == DW_TAG_catch_block
8491 || die->parent->tag == DW_TAG_subprogram)
8492 return 0;
8493 return 1;
8494
8495 default:
8496 return 0;
8497 }
8498 }
8499
8500 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8501 compute the physname for the object, which include a method's:
8502 - formal parameters (C++),
8503 - receiver type (Go),
8504
8505 The term "physname" is a bit confusing.
8506 For C++, for example, it is the demangled name.
8507 For Go, for example, it's the mangled name.
8508
8509 For Ada, return the DIE's linkage name rather than the fully qualified
8510 name. PHYSNAME is ignored..
8511
8512 The result is allocated on the objfile_obstack and canonicalized. */
8513
8514 static const char *
8515 dwarf2_compute_name (const char *name,
8516 struct die_info *die, struct dwarf2_cu *cu,
8517 int physname)
8518 {
8519 struct objfile *objfile = cu->objfile;
8520
8521 if (name == NULL)
8522 name = dwarf2_name (die, cu);
8523
8524 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8525 but otherwise compute it by typename_concat inside GDB.
8526 FIXME: Actually this is not really true, or at least not always true.
8527 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8528 Fortran names because there is no mangling standard. So new_symbol_full
8529 will set the demangled name to the result of dwarf2_full_name, and it is
8530 the demangled name that GDB uses if it exists. */
8531 if (cu->language == language_ada
8532 || (cu->language == language_fortran && physname))
8533 {
8534 /* For Ada unit, we prefer the linkage name over the name, as
8535 the former contains the exported name, which the user expects
8536 to be able to reference. Ideally, we want the user to be able
8537 to reference this entity using either natural or linkage name,
8538 but we haven't started looking at this enhancement yet. */
8539 const char *linkage_name;
8540
8541 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8542 if (linkage_name == NULL)
8543 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8544 if (linkage_name != NULL)
8545 return linkage_name;
8546 }
8547
8548 /* These are the only languages we know how to qualify names in. */
8549 if (name != NULL
8550 && (cu->language == language_cplus
8551 || cu->language == language_fortran || cu->language == language_d
8552 || cu->language == language_rust))
8553 {
8554 if (die_needs_namespace (die, cu))
8555 {
8556 long length;
8557 const char *prefix;
8558 const char *canonical_name = NULL;
8559
8560 string_file buf;
8561
8562 prefix = determine_prefix (die, cu);
8563 if (*prefix != '\0')
8564 {
8565 char *prefixed_name = typename_concat (NULL, prefix, name,
8566 physname, cu);
8567
8568 buf.puts (prefixed_name);
8569 xfree (prefixed_name);
8570 }
8571 else
8572 buf.puts (name);
8573
8574 /* Template parameters may be specified in the DIE's DW_AT_name, or
8575 as children with DW_TAG_template_type_param or
8576 DW_TAG_value_type_param. If the latter, add them to the name
8577 here. If the name already has template parameters, then
8578 skip this step; some versions of GCC emit both, and
8579 it is more efficient to use the pre-computed name.
8580
8581 Something to keep in mind about this process: it is very
8582 unlikely, or in some cases downright impossible, to produce
8583 something that will match the mangled name of a function.
8584 If the definition of the function has the same debug info,
8585 we should be able to match up with it anyway. But fallbacks
8586 using the minimal symbol, for instance to find a method
8587 implemented in a stripped copy of libstdc++, will not work.
8588 If we do not have debug info for the definition, we will have to
8589 match them up some other way.
8590
8591 When we do name matching there is a related problem with function
8592 templates; two instantiated function templates are allowed to
8593 differ only by their return types, which we do not add here. */
8594
8595 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8596 {
8597 struct attribute *attr;
8598 struct die_info *child;
8599 int first = 1;
8600
8601 die->building_fullname = 1;
8602
8603 for (child = die->child; child != NULL; child = child->sibling)
8604 {
8605 struct type *type;
8606 LONGEST value;
8607 const gdb_byte *bytes;
8608 struct dwarf2_locexpr_baton *baton;
8609 struct value *v;
8610
8611 if (child->tag != DW_TAG_template_type_param
8612 && child->tag != DW_TAG_template_value_param)
8613 continue;
8614
8615 if (first)
8616 {
8617 buf.puts ("<");
8618 first = 0;
8619 }
8620 else
8621 buf.puts (", ");
8622
8623 attr = dwarf2_attr (child, DW_AT_type, cu);
8624 if (attr == NULL)
8625 {
8626 complaint (&symfile_complaints,
8627 _("template parameter missing DW_AT_type"));
8628 buf.puts ("UNKNOWN_TYPE");
8629 continue;
8630 }
8631 type = die_type (child, cu);
8632
8633 if (child->tag == DW_TAG_template_type_param)
8634 {
8635 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8636 continue;
8637 }
8638
8639 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8640 if (attr == NULL)
8641 {
8642 complaint (&symfile_complaints,
8643 _("template parameter missing "
8644 "DW_AT_const_value"));
8645 buf.puts ("UNKNOWN_VALUE");
8646 continue;
8647 }
8648
8649 dwarf2_const_value_attr (attr, type, name,
8650 &cu->comp_unit_obstack, cu,
8651 &value, &bytes, &baton);
8652
8653 if (TYPE_NOSIGN (type))
8654 /* GDB prints characters as NUMBER 'CHAR'. If that's
8655 changed, this can use value_print instead. */
8656 c_printchar (value, type, &buf);
8657 else
8658 {
8659 struct value_print_options opts;
8660
8661 if (baton != NULL)
8662 v = dwarf2_evaluate_loc_desc (type, NULL,
8663 baton->data,
8664 baton->size,
8665 baton->per_cu);
8666 else if (bytes != NULL)
8667 {
8668 v = allocate_value (type);
8669 memcpy (value_contents_writeable (v), bytes,
8670 TYPE_LENGTH (type));
8671 }
8672 else
8673 v = value_from_longest (type, value);
8674
8675 /* Specify decimal so that we do not depend on
8676 the radix. */
8677 get_formatted_print_options (&opts, 'd');
8678 opts.raw = 1;
8679 value_print (v, &buf, &opts);
8680 release_value (v);
8681 value_free (v);
8682 }
8683 }
8684
8685 die->building_fullname = 0;
8686
8687 if (!first)
8688 {
8689 /* Close the argument list, with a space if necessary
8690 (nested templates). */
8691 if (!buf.empty () && buf.string ().back () == '>')
8692 buf.puts (" >");
8693 else
8694 buf.puts (">");
8695 }
8696 }
8697
8698 /* For C++ methods, append formal parameter type
8699 information, if PHYSNAME. */
8700
8701 if (physname && die->tag == DW_TAG_subprogram
8702 && cu->language == language_cplus)
8703 {
8704 struct type *type = read_type_die (die, cu);
8705
8706 c_type_print_args (type, &buf, 1, cu->language,
8707 &type_print_raw_options);
8708
8709 if (cu->language == language_cplus)
8710 {
8711 /* Assume that an artificial first parameter is
8712 "this", but do not crash if it is not. RealView
8713 marks unnamed (and thus unused) parameters as
8714 artificial; there is no way to differentiate
8715 the two cases. */
8716 if (TYPE_NFIELDS (type) > 0
8717 && TYPE_FIELD_ARTIFICIAL (type, 0)
8718 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8719 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8720 0))))
8721 buf.puts (" const");
8722 }
8723 }
8724
8725 const std::string &intermediate_name = buf.string ();
8726
8727 if (cu->language == language_cplus)
8728 canonical_name
8729 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8730 &objfile->per_bfd->storage_obstack);
8731
8732 /* If we only computed INTERMEDIATE_NAME, or if
8733 INTERMEDIATE_NAME is already canonical, then we need to
8734 copy it to the appropriate obstack. */
8735 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8736 name = ((const char *)
8737 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8738 intermediate_name.c_str (),
8739 intermediate_name.length ()));
8740 else
8741 name = canonical_name;
8742 }
8743 }
8744
8745 return name;
8746 }
8747
8748 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8749 If scope qualifiers are appropriate they will be added. The result
8750 will be allocated on the storage_obstack, or NULL if the DIE does
8751 not have a name. NAME may either be from a previous call to
8752 dwarf2_name or NULL.
8753
8754 The output string will be canonicalized (if C++). */
8755
8756 static const char *
8757 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8758 {
8759 return dwarf2_compute_name (name, die, cu, 0);
8760 }
8761
8762 /* Construct a physname for the given DIE in CU. NAME may either be
8763 from a previous call to dwarf2_name or NULL. The result will be
8764 allocated on the objfile_objstack or NULL if the DIE does not have a
8765 name.
8766
8767 The output string will be canonicalized (if C++). */
8768
8769 static const char *
8770 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8771 {
8772 struct objfile *objfile = cu->objfile;
8773 const char *retval, *mangled = NULL, *canon = NULL;
8774 struct cleanup *back_to;
8775 int need_copy = 1;
8776
8777 /* In this case dwarf2_compute_name is just a shortcut not building anything
8778 on its own. */
8779 if (!die_needs_namespace (die, cu))
8780 return dwarf2_compute_name (name, die, cu, 1);
8781
8782 back_to = make_cleanup (null_cleanup, NULL);
8783
8784 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8785 if (mangled == NULL)
8786 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8787
8788 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8789 See https://github.com/rust-lang/rust/issues/32925. */
8790 if (cu->language == language_rust && mangled != NULL
8791 && strchr (mangled, '{') != NULL)
8792 mangled = NULL;
8793
8794 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8795 has computed. */
8796 if (mangled != NULL)
8797 {
8798 char *demangled;
8799
8800 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8801 type. It is easier for GDB users to search for such functions as
8802 `name(params)' than `long name(params)'. In such case the minimal
8803 symbol names do not match the full symbol names but for template
8804 functions there is never a need to look up their definition from their
8805 declaration so the only disadvantage remains the minimal symbol
8806 variant `long name(params)' does not have the proper inferior type.
8807 */
8808
8809 if (cu->language == language_go)
8810 {
8811 /* This is a lie, but we already lie to the caller new_symbol_full.
8812 new_symbol_full assumes we return the mangled name.
8813 This just undoes that lie until things are cleaned up. */
8814 demangled = NULL;
8815 }
8816 else
8817 {
8818 demangled = gdb_demangle (mangled,
8819 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8820 }
8821 if (demangled)
8822 {
8823 make_cleanup (xfree, demangled);
8824 canon = demangled;
8825 }
8826 else
8827 {
8828 canon = mangled;
8829 need_copy = 0;
8830 }
8831 }
8832
8833 if (canon == NULL || check_physname)
8834 {
8835 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8836
8837 if (canon != NULL && strcmp (physname, canon) != 0)
8838 {
8839 /* It may not mean a bug in GDB. The compiler could also
8840 compute DW_AT_linkage_name incorrectly. But in such case
8841 GDB would need to be bug-to-bug compatible. */
8842
8843 complaint (&symfile_complaints,
8844 _("Computed physname <%s> does not match demangled <%s> "
8845 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8846 physname, canon, mangled, die->offset.sect_off,
8847 objfile_name (objfile));
8848
8849 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8850 is available here - over computed PHYSNAME. It is safer
8851 against both buggy GDB and buggy compilers. */
8852
8853 retval = canon;
8854 }
8855 else
8856 {
8857 retval = physname;
8858 need_copy = 0;
8859 }
8860 }
8861 else
8862 retval = canon;
8863
8864 if (need_copy)
8865 retval = ((const char *)
8866 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8867 retval, strlen (retval)));
8868
8869 do_cleanups (back_to);
8870 return retval;
8871 }
8872
8873 /* Inspect DIE in CU for a namespace alias. If one exists, record
8874 a new symbol for it.
8875
8876 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8877
8878 static int
8879 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8880 {
8881 struct attribute *attr;
8882
8883 /* If the die does not have a name, this is not a namespace
8884 alias. */
8885 attr = dwarf2_attr (die, DW_AT_name, cu);
8886 if (attr != NULL)
8887 {
8888 int num;
8889 struct die_info *d = die;
8890 struct dwarf2_cu *imported_cu = cu;
8891
8892 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8893 keep inspecting DIEs until we hit the underlying import. */
8894 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8895 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8896 {
8897 attr = dwarf2_attr (d, DW_AT_import, cu);
8898 if (attr == NULL)
8899 break;
8900
8901 d = follow_die_ref (d, attr, &imported_cu);
8902 if (d->tag != DW_TAG_imported_declaration)
8903 break;
8904 }
8905
8906 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8907 {
8908 complaint (&symfile_complaints,
8909 _("DIE at 0x%x has too many recursively imported "
8910 "declarations"), d->offset.sect_off);
8911 return 0;
8912 }
8913
8914 if (attr != NULL)
8915 {
8916 struct type *type;
8917 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8918
8919 type = get_die_type_at_offset (offset, cu->per_cu);
8920 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8921 {
8922 /* This declaration is a global namespace alias. Add
8923 a symbol for it whose type is the aliased namespace. */
8924 new_symbol (die, type, cu);
8925 return 1;
8926 }
8927 }
8928 }
8929
8930 return 0;
8931 }
8932
8933 /* Return the using directives repository (global or local?) to use in the
8934 current context for LANGUAGE.
8935
8936 For Ada, imported declarations can materialize renamings, which *may* be
8937 global. However it is impossible (for now?) in DWARF to distinguish
8938 "external" imported declarations and "static" ones. As all imported
8939 declarations seem to be static in all other languages, make them all CU-wide
8940 global only in Ada. */
8941
8942 static struct using_direct **
8943 using_directives (enum language language)
8944 {
8945 if (language == language_ada && context_stack_depth == 0)
8946 return &global_using_directives;
8947 else
8948 return &local_using_directives;
8949 }
8950
8951 /* Read the import statement specified by the given die and record it. */
8952
8953 static void
8954 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8955 {
8956 struct objfile *objfile = cu->objfile;
8957 struct attribute *import_attr;
8958 struct die_info *imported_die, *child_die;
8959 struct dwarf2_cu *imported_cu;
8960 const char *imported_name;
8961 const char *imported_name_prefix;
8962 const char *canonical_name;
8963 const char *import_alias;
8964 const char *imported_declaration = NULL;
8965 const char *import_prefix;
8966 VEC (const_char_ptr) *excludes = NULL;
8967 struct cleanup *cleanups;
8968
8969 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8970 if (import_attr == NULL)
8971 {
8972 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8973 dwarf_tag_name (die->tag));
8974 return;
8975 }
8976
8977 imported_cu = cu;
8978 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8979 imported_name = dwarf2_name (imported_die, imported_cu);
8980 if (imported_name == NULL)
8981 {
8982 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8983
8984 The import in the following code:
8985 namespace A
8986 {
8987 typedef int B;
8988 }
8989
8990 int main ()
8991 {
8992 using A::B;
8993 B b;
8994 return b;
8995 }
8996
8997 ...
8998 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8999 <52> DW_AT_decl_file : 1
9000 <53> DW_AT_decl_line : 6
9001 <54> DW_AT_import : <0x75>
9002 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9003 <59> DW_AT_name : B
9004 <5b> DW_AT_decl_file : 1
9005 <5c> DW_AT_decl_line : 2
9006 <5d> DW_AT_type : <0x6e>
9007 ...
9008 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9009 <76> DW_AT_byte_size : 4
9010 <77> DW_AT_encoding : 5 (signed)
9011
9012 imports the wrong die ( 0x75 instead of 0x58 ).
9013 This case will be ignored until the gcc bug is fixed. */
9014 return;
9015 }
9016
9017 /* Figure out the local name after import. */
9018 import_alias = dwarf2_name (die, cu);
9019
9020 /* Figure out where the statement is being imported to. */
9021 import_prefix = determine_prefix (die, cu);
9022
9023 /* Figure out what the scope of the imported die is and prepend it
9024 to the name of the imported die. */
9025 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9026
9027 if (imported_die->tag != DW_TAG_namespace
9028 && imported_die->tag != DW_TAG_module)
9029 {
9030 imported_declaration = imported_name;
9031 canonical_name = imported_name_prefix;
9032 }
9033 else if (strlen (imported_name_prefix) > 0)
9034 canonical_name = obconcat (&objfile->objfile_obstack,
9035 imported_name_prefix,
9036 (cu->language == language_d ? "." : "::"),
9037 imported_name, (char *) NULL);
9038 else
9039 canonical_name = imported_name;
9040
9041 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9042
9043 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9044 for (child_die = die->child; child_die && child_die->tag;
9045 child_die = sibling_die (child_die))
9046 {
9047 /* DWARF-4: A Fortran use statement with a “rename list” may be
9048 represented by an imported module entry with an import attribute
9049 referring to the module and owned entries corresponding to those
9050 entities that are renamed as part of being imported. */
9051
9052 if (child_die->tag != DW_TAG_imported_declaration)
9053 {
9054 complaint (&symfile_complaints,
9055 _("child DW_TAG_imported_declaration expected "
9056 "- DIE at 0x%x [in module %s]"),
9057 child_die->offset.sect_off, objfile_name (objfile));
9058 continue;
9059 }
9060
9061 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9062 if (import_attr == NULL)
9063 {
9064 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9065 dwarf_tag_name (child_die->tag));
9066 continue;
9067 }
9068
9069 imported_cu = cu;
9070 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9071 &imported_cu);
9072 imported_name = dwarf2_name (imported_die, imported_cu);
9073 if (imported_name == NULL)
9074 {
9075 complaint (&symfile_complaints,
9076 _("child DW_TAG_imported_declaration has unknown "
9077 "imported name - DIE at 0x%x [in module %s]"),
9078 child_die->offset.sect_off, objfile_name (objfile));
9079 continue;
9080 }
9081
9082 VEC_safe_push (const_char_ptr, excludes, imported_name);
9083
9084 process_die (child_die, cu);
9085 }
9086
9087 add_using_directive (using_directives (cu->language),
9088 import_prefix,
9089 canonical_name,
9090 import_alias,
9091 imported_declaration,
9092 excludes,
9093 0,
9094 &objfile->objfile_obstack);
9095
9096 do_cleanups (cleanups);
9097 }
9098
9099 /* Cleanup function for handle_DW_AT_stmt_list. */
9100
9101 static void
9102 free_cu_line_header (void *arg)
9103 {
9104 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9105
9106 free_line_header (cu->line_header);
9107 cu->line_header = NULL;
9108 }
9109
9110 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9111 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9112 this, it was first present in GCC release 4.3.0. */
9113
9114 static int
9115 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9116 {
9117 if (!cu->checked_producer)
9118 check_producer (cu);
9119
9120 return cu->producer_is_gcc_lt_4_3;
9121 }
9122
9123 static void
9124 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9125 const char **name, const char **comp_dir)
9126 {
9127 /* Find the filename. Do not use dwarf2_name here, since the filename
9128 is not a source language identifier. */
9129 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9130 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9131
9132 if (*comp_dir == NULL
9133 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9134 && IS_ABSOLUTE_PATH (*name))
9135 {
9136 char *d = ldirname (*name);
9137
9138 *comp_dir = d;
9139 if (d != NULL)
9140 make_cleanup (xfree, d);
9141 }
9142 if (*comp_dir != NULL)
9143 {
9144 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9145 directory, get rid of it. */
9146 const char *cp = strchr (*comp_dir, ':');
9147
9148 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9149 *comp_dir = cp + 1;
9150 }
9151
9152 if (*name == NULL)
9153 *name = "<unknown>";
9154 }
9155
9156 /* Handle DW_AT_stmt_list for a compilation unit.
9157 DIE is the DW_TAG_compile_unit die for CU.
9158 COMP_DIR is the compilation directory. LOWPC is passed to
9159 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9160
9161 static void
9162 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9163 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9164 {
9165 struct objfile *objfile = dwarf2_per_objfile->objfile;
9166 struct attribute *attr;
9167 unsigned int line_offset;
9168 struct line_header line_header_local;
9169 hashval_t line_header_local_hash;
9170 unsigned u;
9171 void **slot;
9172 int decode_mapping;
9173
9174 gdb_assert (! cu->per_cu->is_debug_types);
9175
9176 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9177 if (attr == NULL)
9178 return;
9179
9180 line_offset = DW_UNSND (attr);
9181
9182 /* The line header hash table is only created if needed (it exists to
9183 prevent redundant reading of the line table for partial_units).
9184 If we're given a partial_unit, we'll need it. If we're given a
9185 compile_unit, then use the line header hash table if it's already
9186 created, but don't create one just yet. */
9187
9188 if (dwarf2_per_objfile->line_header_hash == NULL
9189 && die->tag == DW_TAG_partial_unit)
9190 {
9191 dwarf2_per_objfile->line_header_hash
9192 = htab_create_alloc_ex (127, line_header_hash_voidp,
9193 line_header_eq_voidp,
9194 free_line_header_voidp,
9195 &objfile->objfile_obstack,
9196 hashtab_obstack_allocate,
9197 dummy_obstack_deallocate);
9198 }
9199
9200 line_header_local.offset.sect_off = line_offset;
9201 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9202 line_header_local_hash = line_header_hash (&line_header_local);
9203 if (dwarf2_per_objfile->line_header_hash != NULL)
9204 {
9205 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9206 &line_header_local,
9207 line_header_local_hash, NO_INSERT);
9208
9209 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9210 is not present in *SLOT (since if there is something in *SLOT then
9211 it will be for a partial_unit). */
9212 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9213 {
9214 gdb_assert (*slot != NULL);
9215 cu->line_header = (struct line_header *) *slot;
9216 return;
9217 }
9218 }
9219
9220 /* dwarf_decode_line_header does not yet provide sufficient information.
9221 We always have to call also dwarf_decode_lines for it. */
9222 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9223 if (cu->line_header == NULL)
9224 return;
9225
9226 if (dwarf2_per_objfile->line_header_hash == NULL)
9227 slot = NULL;
9228 else
9229 {
9230 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9231 &line_header_local,
9232 line_header_local_hash, INSERT);
9233 gdb_assert (slot != NULL);
9234 }
9235 if (slot != NULL && *slot == NULL)
9236 {
9237 /* This newly decoded line number information unit will be owned
9238 by line_header_hash hash table. */
9239 *slot = cu->line_header;
9240 }
9241 else
9242 {
9243 /* We cannot free any current entry in (*slot) as that struct line_header
9244 may be already used by multiple CUs. Create only temporary decoded
9245 line_header for this CU - it may happen at most once for each line
9246 number information unit. And if we're not using line_header_hash
9247 then this is what we want as well. */
9248 gdb_assert (die->tag != DW_TAG_partial_unit);
9249 make_cleanup (free_cu_line_header, cu);
9250 }
9251 decode_mapping = (die->tag != DW_TAG_partial_unit);
9252 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9253 decode_mapping);
9254 }
9255
9256 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9257
9258 static void
9259 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9260 {
9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9264 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9265 CORE_ADDR highpc = ((CORE_ADDR) 0);
9266 struct attribute *attr;
9267 const char *name = NULL;
9268 const char *comp_dir = NULL;
9269 struct die_info *child_die;
9270 CORE_ADDR baseaddr;
9271
9272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9273
9274 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9275
9276 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9277 from finish_block. */
9278 if (lowpc == ((CORE_ADDR) -1))
9279 lowpc = highpc;
9280 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9281
9282 find_file_and_directory (die, cu, &name, &comp_dir);
9283
9284 prepare_one_comp_unit (cu, die, cu->language);
9285
9286 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9287 standardised yet. As a workaround for the language detection we fall
9288 back to the DW_AT_producer string. */
9289 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9290 cu->language = language_opencl;
9291
9292 /* Similar hack for Go. */
9293 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9294 set_cu_language (DW_LANG_Go, cu);
9295
9296 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9297
9298 /* Decode line number information if present. We do this before
9299 processing child DIEs, so that the line header table is available
9300 for DW_AT_decl_file. */
9301 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9302
9303 /* Process all dies in compilation unit. */
9304 if (die->child != NULL)
9305 {
9306 child_die = die->child;
9307 while (child_die && child_die->tag)
9308 {
9309 process_die (child_die, cu);
9310 child_die = sibling_die (child_die);
9311 }
9312 }
9313
9314 /* Decode macro information, if present. Dwarf 2 macro information
9315 refers to information in the line number info statement program
9316 header, so we can only read it if we've read the header
9317 successfully. */
9318 attr = dwarf2_attr (die, DW_AT_macros, cu);
9319 if (attr == NULL)
9320 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9321 if (attr && cu->line_header)
9322 {
9323 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9324 complaint (&symfile_complaints,
9325 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9326
9327 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9328 }
9329 else
9330 {
9331 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9332 if (attr && cu->line_header)
9333 {
9334 unsigned int macro_offset = DW_UNSND (attr);
9335
9336 dwarf_decode_macros (cu, macro_offset, 0);
9337 }
9338 }
9339
9340 do_cleanups (back_to);
9341 }
9342
9343 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9344 Create the set of symtabs used by this TU, or if this TU is sharing
9345 symtabs with another TU and the symtabs have already been created
9346 then restore those symtabs in the line header.
9347 We don't need the pc/line-number mapping for type units. */
9348
9349 static void
9350 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9351 {
9352 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9353 struct type_unit_group *tu_group;
9354 int first_time;
9355 struct line_header *lh;
9356 struct attribute *attr;
9357 unsigned int i, line_offset;
9358 struct signatured_type *sig_type;
9359
9360 gdb_assert (per_cu->is_debug_types);
9361 sig_type = (struct signatured_type *) per_cu;
9362
9363 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9364
9365 /* If we're using .gdb_index (includes -readnow) then
9366 per_cu->type_unit_group may not have been set up yet. */
9367 if (sig_type->type_unit_group == NULL)
9368 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9369 tu_group = sig_type->type_unit_group;
9370
9371 /* If we've already processed this stmt_list there's no real need to
9372 do it again, we could fake it and just recreate the part we need
9373 (file name,index -> symtab mapping). If data shows this optimization
9374 is useful we can do it then. */
9375 first_time = tu_group->compunit_symtab == NULL;
9376
9377 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9378 debug info. */
9379 lh = NULL;
9380 if (attr != NULL)
9381 {
9382 line_offset = DW_UNSND (attr);
9383 lh = dwarf_decode_line_header (line_offset, cu);
9384 }
9385 if (lh == NULL)
9386 {
9387 if (first_time)
9388 dwarf2_start_symtab (cu, "", NULL, 0);
9389 else
9390 {
9391 gdb_assert (tu_group->symtabs == NULL);
9392 restart_symtab (tu_group->compunit_symtab, "", 0);
9393 }
9394 return;
9395 }
9396
9397 cu->line_header = lh;
9398 make_cleanup (free_cu_line_header, cu);
9399
9400 if (first_time)
9401 {
9402 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9403
9404 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9405 still initializing it, and our caller (a few levels up)
9406 process_full_type_unit still needs to know if this is the first
9407 time. */
9408
9409 tu_group->num_symtabs = lh->num_file_names;
9410 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9411
9412 for (i = 0; i < lh->num_file_names; ++i)
9413 {
9414 const char *dir = NULL;
9415 struct file_entry *fe = &lh->file_names[i];
9416
9417 if (fe->dir_index && lh->include_dirs != NULL)
9418 dir = lh->include_dirs[fe->dir_index - 1];
9419 dwarf2_start_subfile (fe->name, dir);
9420
9421 if (current_subfile->symtab == NULL)
9422 {
9423 /* NOTE: start_subfile will recognize when it's been passed
9424 a file it has already seen. So we can't assume there's a
9425 simple mapping from lh->file_names to subfiles, plus
9426 lh->file_names may contain dups. */
9427 current_subfile->symtab
9428 = allocate_symtab (cust, current_subfile->name);
9429 }
9430
9431 fe->symtab = current_subfile->symtab;
9432 tu_group->symtabs[i] = fe->symtab;
9433 }
9434 }
9435 else
9436 {
9437 restart_symtab (tu_group->compunit_symtab, "", 0);
9438
9439 for (i = 0; i < lh->num_file_names; ++i)
9440 {
9441 struct file_entry *fe = &lh->file_names[i];
9442
9443 fe->symtab = tu_group->symtabs[i];
9444 }
9445 }
9446
9447 /* The main symtab is allocated last. Type units don't have DW_AT_name
9448 so they don't have a "real" (so to speak) symtab anyway.
9449 There is later code that will assign the main symtab to all symbols
9450 that don't have one. We need to handle the case of a symbol with a
9451 missing symtab (DW_AT_decl_file) anyway. */
9452 }
9453
9454 /* Process DW_TAG_type_unit.
9455 For TUs we want to skip the first top level sibling if it's not the
9456 actual type being defined by this TU. In this case the first top
9457 level sibling is there to provide context only. */
9458
9459 static void
9460 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9461 {
9462 struct die_info *child_die;
9463
9464 prepare_one_comp_unit (cu, die, language_minimal);
9465
9466 /* Initialize (or reinitialize) the machinery for building symtabs.
9467 We do this before processing child DIEs, so that the line header table
9468 is available for DW_AT_decl_file. */
9469 setup_type_unit_groups (die, cu);
9470
9471 if (die->child != NULL)
9472 {
9473 child_die = die->child;
9474 while (child_die && child_die->tag)
9475 {
9476 process_die (child_die, cu);
9477 child_die = sibling_die (child_die);
9478 }
9479 }
9480 }
9481 \f
9482 /* DWO/DWP files.
9483
9484 http://gcc.gnu.org/wiki/DebugFission
9485 http://gcc.gnu.org/wiki/DebugFissionDWP
9486
9487 To simplify handling of both DWO files ("object" files with the DWARF info)
9488 and DWP files (a file with the DWOs packaged up into one file), we treat
9489 DWP files as having a collection of virtual DWO files. */
9490
9491 static hashval_t
9492 hash_dwo_file (const void *item)
9493 {
9494 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9495 hashval_t hash;
9496
9497 hash = htab_hash_string (dwo_file->dwo_name);
9498 if (dwo_file->comp_dir != NULL)
9499 hash += htab_hash_string (dwo_file->comp_dir);
9500 return hash;
9501 }
9502
9503 static int
9504 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9505 {
9506 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9507 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9508
9509 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9510 return 0;
9511 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9512 return lhs->comp_dir == rhs->comp_dir;
9513 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9514 }
9515
9516 /* Allocate a hash table for DWO files. */
9517
9518 static htab_t
9519 allocate_dwo_file_hash_table (void)
9520 {
9521 struct objfile *objfile = dwarf2_per_objfile->objfile;
9522
9523 return htab_create_alloc_ex (41,
9524 hash_dwo_file,
9525 eq_dwo_file,
9526 NULL,
9527 &objfile->objfile_obstack,
9528 hashtab_obstack_allocate,
9529 dummy_obstack_deallocate);
9530 }
9531
9532 /* Lookup DWO file DWO_NAME. */
9533
9534 static void **
9535 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9536 {
9537 struct dwo_file find_entry;
9538 void **slot;
9539
9540 if (dwarf2_per_objfile->dwo_files == NULL)
9541 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9542
9543 memset (&find_entry, 0, sizeof (find_entry));
9544 find_entry.dwo_name = dwo_name;
9545 find_entry.comp_dir = comp_dir;
9546 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9547
9548 return slot;
9549 }
9550
9551 static hashval_t
9552 hash_dwo_unit (const void *item)
9553 {
9554 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9555
9556 /* This drops the top 32 bits of the id, but is ok for a hash. */
9557 return dwo_unit->signature;
9558 }
9559
9560 static int
9561 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9562 {
9563 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9564 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9565
9566 /* The signature is assumed to be unique within the DWO file.
9567 So while object file CU dwo_id's always have the value zero,
9568 that's OK, assuming each object file DWO file has only one CU,
9569 and that's the rule for now. */
9570 return lhs->signature == rhs->signature;
9571 }
9572
9573 /* Allocate a hash table for DWO CUs,TUs.
9574 There is one of these tables for each of CUs,TUs for each DWO file. */
9575
9576 static htab_t
9577 allocate_dwo_unit_table (struct objfile *objfile)
9578 {
9579 /* Start out with a pretty small number.
9580 Generally DWO files contain only one CU and maybe some TUs. */
9581 return htab_create_alloc_ex (3,
9582 hash_dwo_unit,
9583 eq_dwo_unit,
9584 NULL,
9585 &objfile->objfile_obstack,
9586 hashtab_obstack_allocate,
9587 dummy_obstack_deallocate);
9588 }
9589
9590 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9591
9592 struct create_dwo_cu_data
9593 {
9594 struct dwo_file *dwo_file;
9595 struct dwo_unit dwo_unit;
9596 };
9597
9598 /* die_reader_func for create_dwo_cu. */
9599
9600 static void
9601 create_dwo_cu_reader (const struct die_reader_specs *reader,
9602 const gdb_byte *info_ptr,
9603 struct die_info *comp_unit_die,
9604 int has_children,
9605 void *datap)
9606 {
9607 struct dwarf2_cu *cu = reader->cu;
9608 sect_offset offset = cu->per_cu->offset;
9609 struct dwarf2_section_info *section = cu->per_cu->section;
9610 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9611 struct dwo_file *dwo_file = data->dwo_file;
9612 struct dwo_unit *dwo_unit = &data->dwo_unit;
9613 struct attribute *attr;
9614
9615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9616 if (attr == NULL)
9617 {
9618 complaint (&symfile_complaints,
9619 _("Dwarf Error: debug entry at offset 0x%x is missing"
9620 " its dwo_id [in module %s]"),
9621 offset.sect_off, dwo_file->dwo_name);
9622 return;
9623 }
9624
9625 dwo_unit->dwo_file = dwo_file;
9626 dwo_unit->signature = DW_UNSND (attr);
9627 dwo_unit->section = section;
9628 dwo_unit->offset = offset;
9629 dwo_unit->length = cu->per_cu->length;
9630
9631 if (dwarf_read_debug)
9632 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9633 offset.sect_off, hex_string (dwo_unit->signature));
9634 }
9635
9636 /* Create the dwo_unit for the lone CU in DWO_FILE.
9637 Note: This function processes DWO files only, not DWP files. */
9638
9639 static struct dwo_unit *
9640 create_dwo_cu (struct dwo_file *dwo_file)
9641 {
9642 struct objfile *objfile = dwarf2_per_objfile->objfile;
9643 struct dwarf2_section_info *section = &dwo_file->sections.info;
9644 const gdb_byte *info_ptr, *end_ptr;
9645 struct create_dwo_cu_data create_dwo_cu_data;
9646 struct dwo_unit *dwo_unit;
9647
9648 dwarf2_read_section (objfile, section);
9649 info_ptr = section->buffer;
9650
9651 if (info_ptr == NULL)
9652 return NULL;
9653
9654 if (dwarf_read_debug)
9655 {
9656 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9657 get_section_name (section),
9658 get_section_file_name (section));
9659 }
9660
9661 create_dwo_cu_data.dwo_file = dwo_file;
9662 dwo_unit = NULL;
9663
9664 end_ptr = info_ptr + section->size;
9665 while (info_ptr < end_ptr)
9666 {
9667 struct dwarf2_per_cu_data per_cu;
9668
9669 memset (&create_dwo_cu_data.dwo_unit, 0,
9670 sizeof (create_dwo_cu_data.dwo_unit));
9671 memset (&per_cu, 0, sizeof (per_cu));
9672 per_cu.objfile = objfile;
9673 per_cu.is_debug_types = 0;
9674 per_cu.offset.sect_off = info_ptr - section->buffer;
9675 per_cu.section = section;
9676
9677 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9678 create_dwo_cu_reader,
9679 &create_dwo_cu_data);
9680
9681 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9682 {
9683 /* If we've already found one, complain. We only support one
9684 because having more than one requires hacking the dwo_name of
9685 each to match, which is highly unlikely to happen. */
9686 if (dwo_unit != NULL)
9687 {
9688 complaint (&symfile_complaints,
9689 _("Multiple CUs in DWO file %s [in module %s]"),
9690 dwo_file->dwo_name, objfile_name (objfile));
9691 break;
9692 }
9693
9694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9695 *dwo_unit = create_dwo_cu_data.dwo_unit;
9696 }
9697
9698 info_ptr += per_cu.length;
9699 }
9700
9701 return dwo_unit;
9702 }
9703
9704 /* DWP file .debug_{cu,tu}_index section format:
9705 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9706
9707 DWP Version 1:
9708
9709 Both index sections have the same format, and serve to map a 64-bit
9710 signature to a set of section numbers. Each section begins with a header,
9711 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9712 indexes, and a pool of 32-bit section numbers. The index sections will be
9713 aligned at 8-byte boundaries in the file.
9714
9715 The index section header consists of:
9716
9717 V, 32 bit version number
9718 -, 32 bits unused
9719 N, 32 bit number of compilation units or type units in the index
9720 M, 32 bit number of slots in the hash table
9721
9722 Numbers are recorded using the byte order of the application binary.
9723
9724 The hash table begins at offset 16 in the section, and consists of an array
9725 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9726 order of the application binary). Unused slots in the hash table are 0.
9727 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9728
9729 The parallel table begins immediately after the hash table
9730 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9731 array of 32-bit indexes (using the byte order of the application binary),
9732 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9733 table contains a 32-bit index into the pool of section numbers. For unused
9734 hash table slots, the corresponding entry in the parallel table will be 0.
9735
9736 The pool of section numbers begins immediately following the hash table
9737 (at offset 16 + 12 * M from the beginning of the section). The pool of
9738 section numbers consists of an array of 32-bit words (using the byte order
9739 of the application binary). Each item in the array is indexed starting
9740 from 0. The hash table entry provides the index of the first section
9741 number in the set. Additional section numbers in the set follow, and the
9742 set is terminated by a 0 entry (section number 0 is not used in ELF).
9743
9744 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9745 section must be the first entry in the set, and the .debug_abbrev.dwo must
9746 be the second entry. Other members of the set may follow in any order.
9747
9748 ---
9749
9750 DWP Version 2:
9751
9752 DWP Version 2 combines all the .debug_info, etc. sections into one,
9753 and the entries in the index tables are now offsets into these sections.
9754 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9755 section.
9756
9757 Index Section Contents:
9758 Header
9759 Hash Table of Signatures dwp_hash_table.hash_table
9760 Parallel Table of Indices dwp_hash_table.unit_table
9761 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9762 Table of Section Sizes dwp_hash_table.v2.sizes
9763
9764 The index section header consists of:
9765
9766 V, 32 bit version number
9767 L, 32 bit number of columns in the table of section offsets
9768 N, 32 bit number of compilation units or type units in the index
9769 M, 32 bit number of slots in the hash table
9770
9771 Numbers are recorded using the byte order of the application binary.
9772
9773 The hash table has the same format as version 1.
9774 The parallel table of indices has the same format as version 1,
9775 except that the entries are origin-1 indices into the table of sections
9776 offsets and the table of section sizes.
9777
9778 The table of offsets begins immediately following the parallel table
9779 (at offset 16 + 12 * M from the beginning of the section). The table is
9780 a two-dimensional array of 32-bit words (using the byte order of the
9781 application binary), with L columns and N+1 rows, in row-major order.
9782 Each row in the array is indexed starting from 0. The first row provides
9783 a key to the remaining rows: each column in this row provides an identifier
9784 for a debug section, and the offsets in the same column of subsequent rows
9785 refer to that section. The section identifiers are:
9786
9787 DW_SECT_INFO 1 .debug_info.dwo
9788 DW_SECT_TYPES 2 .debug_types.dwo
9789 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9790 DW_SECT_LINE 4 .debug_line.dwo
9791 DW_SECT_LOC 5 .debug_loc.dwo
9792 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9793 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9794 DW_SECT_MACRO 8 .debug_macro.dwo
9795
9796 The offsets provided by the CU and TU index sections are the base offsets
9797 for the contributions made by each CU or TU to the corresponding section
9798 in the package file. Each CU and TU header contains an abbrev_offset
9799 field, used to find the abbreviations table for that CU or TU within the
9800 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9801 be interpreted as relative to the base offset given in the index section.
9802 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9803 should be interpreted as relative to the base offset for .debug_line.dwo,
9804 and offsets into other debug sections obtained from DWARF attributes should
9805 also be interpreted as relative to the corresponding base offset.
9806
9807 The table of sizes begins immediately following the table of offsets.
9808 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9809 with L columns and N rows, in row-major order. Each row in the array is
9810 indexed starting from 1 (row 0 is shared by the two tables).
9811
9812 ---
9813
9814 Hash table lookup is handled the same in version 1 and 2:
9815
9816 We assume that N and M will not exceed 2^32 - 1.
9817 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9818
9819 Given a 64-bit compilation unit signature or a type signature S, an entry
9820 in the hash table is located as follows:
9821
9822 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9823 the low-order k bits all set to 1.
9824
9825 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9826
9827 3) If the hash table entry at index H matches the signature, use that
9828 entry. If the hash table entry at index H is unused (all zeroes),
9829 terminate the search: the signature is not present in the table.
9830
9831 4) Let H = (H + H') modulo M. Repeat at Step 3.
9832
9833 Because M > N and H' and M are relatively prime, the search is guaranteed
9834 to stop at an unused slot or find the match. */
9835
9836 /* Create a hash table to map DWO IDs to their CU/TU entry in
9837 .debug_{info,types}.dwo in DWP_FILE.
9838 Returns NULL if there isn't one.
9839 Note: This function processes DWP files only, not DWO files. */
9840
9841 static struct dwp_hash_table *
9842 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9843 {
9844 struct objfile *objfile = dwarf2_per_objfile->objfile;
9845 bfd *dbfd = dwp_file->dbfd;
9846 const gdb_byte *index_ptr, *index_end;
9847 struct dwarf2_section_info *index;
9848 uint32_t version, nr_columns, nr_units, nr_slots;
9849 struct dwp_hash_table *htab;
9850
9851 if (is_debug_types)
9852 index = &dwp_file->sections.tu_index;
9853 else
9854 index = &dwp_file->sections.cu_index;
9855
9856 if (dwarf2_section_empty_p (index))
9857 return NULL;
9858 dwarf2_read_section (objfile, index);
9859
9860 index_ptr = index->buffer;
9861 index_end = index_ptr + index->size;
9862
9863 version = read_4_bytes (dbfd, index_ptr);
9864 index_ptr += 4;
9865 if (version == 2)
9866 nr_columns = read_4_bytes (dbfd, index_ptr);
9867 else
9868 nr_columns = 0;
9869 index_ptr += 4;
9870 nr_units = read_4_bytes (dbfd, index_ptr);
9871 index_ptr += 4;
9872 nr_slots = read_4_bytes (dbfd, index_ptr);
9873 index_ptr += 4;
9874
9875 if (version != 1 && version != 2)
9876 {
9877 error (_("Dwarf Error: unsupported DWP file version (%s)"
9878 " [in module %s]"),
9879 pulongest (version), dwp_file->name);
9880 }
9881 if (nr_slots != (nr_slots & -nr_slots))
9882 {
9883 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9884 " is not power of 2 [in module %s]"),
9885 pulongest (nr_slots), dwp_file->name);
9886 }
9887
9888 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9889 htab->version = version;
9890 htab->nr_columns = nr_columns;
9891 htab->nr_units = nr_units;
9892 htab->nr_slots = nr_slots;
9893 htab->hash_table = index_ptr;
9894 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9895
9896 /* Exit early if the table is empty. */
9897 if (nr_slots == 0 || nr_units == 0
9898 || (version == 2 && nr_columns == 0))
9899 {
9900 /* All must be zero. */
9901 if (nr_slots != 0 || nr_units != 0
9902 || (version == 2 && nr_columns != 0))
9903 {
9904 complaint (&symfile_complaints,
9905 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9906 " all zero [in modules %s]"),
9907 dwp_file->name);
9908 }
9909 return htab;
9910 }
9911
9912 if (version == 1)
9913 {
9914 htab->section_pool.v1.indices =
9915 htab->unit_table + sizeof (uint32_t) * nr_slots;
9916 /* It's harder to decide whether the section is too small in v1.
9917 V1 is deprecated anyway so we punt. */
9918 }
9919 else
9920 {
9921 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9922 int *ids = htab->section_pool.v2.section_ids;
9923 /* Reverse map for error checking. */
9924 int ids_seen[DW_SECT_MAX + 1];
9925 int i;
9926
9927 if (nr_columns < 2)
9928 {
9929 error (_("Dwarf Error: bad DWP hash table, too few columns"
9930 " in section table [in module %s]"),
9931 dwp_file->name);
9932 }
9933 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9934 {
9935 error (_("Dwarf Error: bad DWP hash table, too many columns"
9936 " in section table [in module %s]"),
9937 dwp_file->name);
9938 }
9939 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9940 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9941 for (i = 0; i < nr_columns; ++i)
9942 {
9943 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9944
9945 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9946 {
9947 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9948 " in section table [in module %s]"),
9949 id, dwp_file->name);
9950 }
9951 if (ids_seen[id] != -1)
9952 {
9953 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9954 " id %d in section table [in module %s]"),
9955 id, dwp_file->name);
9956 }
9957 ids_seen[id] = i;
9958 ids[i] = id;
9959 }
9960 /* Must have exactly one info or types section. */
9961 if (((ids_seen[DW_SECT_INFO] != -1)
9962 + (ids_seen[DW_SECT_TYPES] != -1))
9963 != 1)
9964 {
9965 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9966 " DWO info/types section [in module %s]"),
9967 dwp_file->name);
9968 }
9969 /* Must have an abbrev section. */
9970 if (ids_seen[DW_SECT_ABBREV] == -1)
9971 {
9972 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9973 " section [in module %s]"),
9974 dwp_file->name);
9975 }
9976 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9977 htab->section_pool.v2.sizes =
9978 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9979 * nr_units * nr_columns);
9980 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9981 * nr_units * nr_columns))
9982 > index_end)
9983 {
9984 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9985 " [in module %s]"),
9986 dwp_file->name);
9987 }
9988 }
9989
9990 return htab;
9991 }
9992
9993 /* Update SECTIONS with the data from SECTP.
9994
9995 This function is like the other "locate" section routines that are
9996 passed to bfd_map_over_sections, but in this context the sections to
9997 read comes from the DWP V1 hash table, not the full ELF section table.
9998
9999 The result is non-zero for success, or zero if an error was found. */
10000
10001 static int
10002 locate_v1_virtual_dwo_sections (asection *sectp,
10003 struct virtual_v1_dwo_sections *sections)
10004 {
10005 const struct dwop_section_names *names = &dwop_section_names;
10006
10007 if (section_is_p (sectp->name, &names->abbrev_dwo))
10008 {
10009 /* There can be only one. */
10010 if (sections->abbrev.s.section != NULL)
10011 return 0;
10012 sections->abbrev.s.section = sectp;
10013 sections->abbrev.size = bfd_get_section_size (sectp);
10014 }
10015 else if (section_is_p (sectp->name, &names->info_dwo)
10016 || section_is_p (sectp->name, &names->types_dwo))
10017 {
10018 /* There can be only one. */
10019 if (sections->info_or_types.s.section != NULL)
10020 return 0;
10021 sections->info_or_types.s.section = sectp;
10022 sections->info_or_types.size = bfd_get_section_size (sectp);
10023 }
10024 else if (section_is_p (sectp->name, &names->line_dwo))
10025 {
10026 /* There can be only one. */
10027 if (sections->line.s.section != NULL)
10028 return 0;
10029 sections->line.s.section = sectp;
10030 sections->line.size = bfd_get_section_size (sectp);
10031 }
10032 else if (section_is_p (sectp->name, &names->loc_dwo))
10033 {
10034 /* There can be only one. */
10035 if (sections->loc.s.section != NULL)
10036 return 0;
10037 sections->loc.s.section = sectp;
10038 sections->loc.size = bfd_get_section_size (sectp);
10039 }
10040 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10041 {
10042 /* There can be only one. */
10043 if (sections->macinfo.s.section != NULL)
10044 return 0;
10045 sections->macinfo.s.section = sectp;
10046 sections->macinfo.size = bfd_get_section_size (sectp);
10047 }
10048 else if (section_is_p (sectp->name, &names->macro_dwo))
10049 {
10050 /* There can be only one. */
10051 if (sections->macro.s.section != NULL)
10052 return 0;
10053 sections->macro.s.section = sectp;
10054 sections->macro.size = bfd_get_section_size (sectp);
10055 }
10056 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10057 {
10058 /* There can be only one. */
10059 if (sections->str_offsets.s.section != NULL)
10060 return 0;
10061 sections->str_offsets.s.section = sectp;
10062 sections->str_offsets.size = bfd_get_section_size (sectp);
10063 }
10064 else
10065 {
10066 /* No other kind of section is valid. */
10067 return 0;
10068 }
10069
10070 return 1;
10071 }
10072
10073 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10074 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10075 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10076 This is for DWP version 1 files. */
10077
10078 static struct dwo_unit *
10079 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10080 uint32_t unit_index,
10081 const char *comp_dir,
10082 ULONGEST signature, int is_debug_types)
10083 {
10084 struct objfile *objfile = dwarf2_per_objfile->objfile;
10085 const struct dwp_hash_table *dwp_htab =
10086 is_debug_types ? dwp_file->tus : dwp_file->cus;
10087 bfd *dbfd = dwp_file->dbfd;
10088 const char *kind = is_debug_types ? "TU" : "CU";
10089 struct dwo_file *dwo_file;
10090 struct dwo_unit *dwo_unit;
10091 struct virtual_v1_dwo_sections sections;
10092 void **dwo_file_slot;
10093 char *virtual_dwo_name;
10094 struct cleanup *cleanups;
10095 int i;
10096
10097 gdb_assert (dwp_file->version == 1);
10098
10099 if (dwarf_read_debug)
10100 {
10101 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10102 kind,
10103 pulongest (unit_index), hex_string (signature),
10104 dwp_file->name);
10105 }
10106
10107 /* Fetch the sections of this DWO unit.
10108 Put a limit on the number of sections we look for so that bad data
10109 doesn't cause us to loop forever. */
10110
10111 #define MAX_NR_V1_DWO_SECTIONS \
10112 (1 /* .debug_info or .debug_types */ \
10113 + 1 /* .debug_abbrev */ \
10114 + 1 /* .debug_line */ \
10115 + 1 /* .debug_loc */ \
10116 + 1 /* .debug_str_offsets */ \
10117 + 1 /* .debug_macro or .debug_macinfo */ \
10118 + 1 /* trailing zero */)
10119
10120 memset (&sections, 0, sizeof (sections));
10121 cleanups = make_cleanup (null_cleanup, 0);
10122
10123 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10124 {
10125 asection *sectp;
10126 uint32_t section_nr =
10127 read_4_bytes (dbfd,
10128 dwp_htab->section_pool.v1.indices
10129 + (unit_index + i) * sizeof (uint32_t));
10130
10131 if (section_nr == 0)
10132 break;
10133 if (section_nr >= dwp_file->num_sections)
10134 {
10135 error (_("Dwarf Error: bad DWP hash table, section number too large"
10136 " [in module %s]"),
10137 dwp_file->name);
10138 }
10139
10140 sectp = dwp_file->elf_sections[section_nr];
10141 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10142 {
10143 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10144 " [in module %s]"),
10145 dwp_file->name);
10146 }
10147 }
10148
10149 if (i < 2
10150 || dwarf2_section_empty_p (&sections.info_or_types)
10151 || dwarf2_section_empty_p (&sections.abbrev))
10152 {
10153 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10154 " [in module %s]"),
10155 dwp_file->name);
10156 }
10157 if (i == MAX_NR_V1_DWO_SECTIONS)
10158 {
10159 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10160 " [in module %s]"),
10161 dwp_file->name);
10162 }
10163
10164 /* It's easier for the rest of the code if we fake a struct dwo_file and
10165 have dwo_unit "live" in that. At least for now.
10166
10167 The DWP file can be made up of a random collection of CUs and TUs.
10168 However, for each CU + set of TUs that came from the same original DWO
10169 file, we can combine them back into a virtual DWO file to save space
10170 (fewer struct dwo_file objects to allocate). Remember that for really
10171 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10172
10173 virtual_dwo_name =
10174 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10175 get_section_id (&sections.abbrev),
10176 get_section_id (&sections.line),
10177 get_section_id (&sections.loc),
10178 get_section_id (&sections.str_offsets));
10179 make_cleanup (xfree, virtual_dwo_name);
10180 /* Can we use an existing virtual DWO file? */
10181 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10182 /* Create one if necessary. */
10183 if (*dwo_file_slot == NULL)
10184 {
10185 if (dwarf_read_debug)
10186 {
10187 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10188 virtual_dwo_name);
10189 }
10190 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10191 dwo_file->dwo_name
10192 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10193 virtual_dwo_name,
10194 strlen (virtual_dwo_name));
10195 dwo_file->comp_dir = comp_dir;
10196 dwo_file->sections.abbrev = sections.abbrev;
10197 dwo_file->sections.line = sections.line;
10198 dwo_file->sections.loc = sections.loc;
10199 dwo_file->sections.macinfo = sections.macinfo;
10200 dwo_file->sections.macro = sections.macro;
10201 dwo_file->sections.str_offsets = sections.str_offsets;
10202 /* The "str" section is global to the entire DWP file. */
10203 dwo_file->sections.str = dwp_file->sections.str;
10204 /* The info or types section is assigned below to dwo_unit,
10205 there's no need to record it in dwo_file.
10206 Also, we can't simply record type sections in dwo_file because
10207 we record a pointer into the vector in dwo_unit. As we collect more
10208 types we'll grow the vector and eventually have to reallocate space
10209 for it, invalidating all copies of pointers into the previous
10210 contents. */
10211 *dwo_file_slot = dwo_file;
10212 }
10213 else
10214 {
10215 if (dwarf_read_debug)
10216 {
10217 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10218 virtual_dwo_name);
10219 }
10220 dwo_file = (struct dwo_file *) *dwo_file_slot;
10221 }
10222 do_cleanups (cleanups);
10223
10224 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10225 dwo_unit->dwo_file = dwo_file;
10226 dwo_unit->signature = signature;
10227 dwo_unit->section =
10228 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10229 *dwo_unit->section = sections.info_or_types;
10230 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10231
10232 return dwo_unit;
10233 }
10234
10235 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10236 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10237 piece within that section used by a TU/CU, return a virtual section
10238 of just that piece. */
10239
10240 static struct dwarf2_section_info
10241 create_dwp_v2_section (struct dwarf2_section_info *section,
10242 bfd_size_type offset, bfd_size_type size)
10243 {
10244 struct dwarf2_section_info result;
10245 asection *sectp;
10246
10247 gdb_assert (section != NULL);
10248 gdb_assert (!section->is_virtual);
10249
10250 memset (&result, 0, sizeof (result));
10251 result.s.containing_section = section;
10252 result.is_virtual = 1;
10253
10254 if (size == 0)
10255 return result;
10256
10257 sectp = get_section_bfd_section (section);
10258
10259 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10260 bounds of the real section. This is a pretty-rare event, so just
10261 flag an error (easier) instead of a warning and trying to cope. */
10262 if (sectp == NULL
10263 || offset + size > bfd_get_section_size (sectp))
10264 {
10265 bfd *abfd = sectp->owner;
10266
10267 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10268 " in section %s [in module %s]"),
10269 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10270 objfile_name (dwarf2_per_objfile->objfile));
10271 }
10272
10273 result.virtual_offset = offset;
10274 result.size = size;
10275 return result;
10276 }
10277
10278 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10279 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10280 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10281 This is for DWP version 2 files. */
10282
10283 static struct dwo_unit *
10284 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10285 uint32_t unit_index,
10286 const char *comp_dir,
10287 ULONGEST signature, int is_debug_types)
10288 {
10289 struct objfile *objfile = dwarf2_per_objfile->objfile;
10290 const struct dwp_hash_table *dwp_htab =
10291 is_debug_types ? dwp_file->tus : dwp_file->cus;
10292 bfd *dbfd = dwp_file->dbfd;
10293 const char *kind = is_debug_types ? "TU" : "CU";
10294 struct dwo_file *dwo_file;
10295 struct dwo_unit *dwo_unit;
10296 struct virtual_v2_dwo_sections sections;
10297 void **dwo_file_slot;
10298 char *virtual_dwo_name;
10299 struct cleanup *cleanups;
10300 int i;
10301
10302 gdb_assert (dwp_file->version == 2);
10303
10304 if (dwarf_read_debug)
10305 {
10306 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10307 kind,
10308 pulongest (unit_index), hex_string (signature),
10309 dwp_file->name);
10310 }
10311
10312 /* Fetch the section offsets of this DWO unit. */
10313
10314 memset (&sections, 0, sizeof (sections));
10315 cleanups = make_cleanup (null_cleanup, 0);
10316
10317 for (i = 0; i < dwp_htab->nr_columns; ++i)
10318 {
10319 uint32_t offset = read_4_bytes (dbfd,
10320 dwp_htab->section_pool.v2.offsets
10321 + (((unit_index - 1) * dwp_htab->nr_columns
10322 + i)
10323 * sizeof (uint32_t)));
10324 uint32_t size = read_4_bytes (dbfd,
10325 dwp_htab->section_pool.v2.sizes
10326 + (((unit_index - 1) * dwp_htab->nr_columns
10327 + i)
10328 * sizeof (uint32_t)));
10329
10330 switch (dwp_htab->section_pool.v2.section_ids[i])
10331 {
10332 case DW_SECT_INFO:
10333 case DW_SECT_TYPES:
10334 sections.info_or_types_offset = offset;
10335 sections.info_or_types_size = size;
10336 break;
10337 case DW_SECT_ABBREV:
10338 sections.abbrev_offset = offset;
10339 sections.abbrev_size = size;
10340 break;
10341 case DW_SECT_LINE:
10342 sections.line_offset = offset;
10343 sections.line_size = size;
10344 break;
10345 case DW_SECT_LOC:
10346 sections.loc_offset = offset;
10347 sections.loc_size = size;
10348 break;
10349 case DW_SECT_STR_OFFSETS:
10350 sections.str_offsets_offset = offset;
10351 sections.str_offsets_size = size;
10352 break;
10353 case DW_SECT_MACINFO:
10354 sections.macinfo_offset = offset;
10355 sections.macinfo_size = size;
10356 break;
10357 case DW_SECT_MACRO:
10358 sections.macro_offset = offset;
10359 sections.macro_size = size;
10360 break;
10361 }
10362 }
10363
10364 /* It's easier for the rest of the code if we fake a struct dwo_file and
10365 have dwo_unit "live" in that. At least for now.
10366
10367 The DWP file can be made up of a random collection of CUs and TUs.
10368 However, for each CU + set of TUs that came from the same original DWO
10369 file, we can combine them back into a virtual DWO file to save space
10370 (fewer struct dwo_file objects to allocate). Remember that for really
10371 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10372
10373 virtual_dwo_name =
10374 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10375 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10376 (long) (sections.line_size ? sections.line_offset : 0),
10377 (long) (sections.loc_size ? sections.loc_offset : 0),
10378 (long) (sections.str_offsets_size
10379 ? sections.str_offsets_offset : 0));
10380 make_cleanup (xfree, virtual_dwo_name);
10381 /* Can we use an existing virtual DWO file? */
10382 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10383 /* Create one if necessary. */
10384 if (*dwo_file_slot == NULL)
10385 {
10386 if (dwarf_read_debug)
10387 {
10388 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10389 virtual_dwo_name);
10390 }
10391 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10392 dwo_file->dwo_name
10393 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10394 virtual_dwo_name,
10395 strlen (virtual_dwo_name));
10396 dwo_file->comp_dir = comp_dir;
10397 dwo_file->sections.abbrev =
10398 create_dwp_v2_section (&dwp_file->sections.abbrev,
10399 sections.abbrev_offset, sections.abbrev_size);
10400 dwo_file->sections.line =
10401 create_dwp_v2_section (&dwp_file->sections.line,
10402 sections.line_offset, sections.line_size);
10403 dwo_file->sections.loc =
10404 create_dwp_v2_section (&dwp_file->sections.loc,
10405 sections.loc_offset, sections.loc_size);
10406 dwo_file->sections.macinfo =
10407 create_dwp_v2_section (&dwp_file->sections.macinfo,
10408 sections.macinfo_offset, sections.macinfo_size);
10409 dwo_file->sections.macro =
10410 create_dwp_v2_section (&dwp_file->sections.macro,
10411 sections.macro_offset, sections.macro_size);
10412 dwo_file->sections.str_offsets =
10413 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10414 sections.str_offsets_offset,
10415 sections.str_offsets_size);
10416 /* The "str" section is global to the entire DWP file. */
10417 dwo_file->sections.str = dwp_file->sections.str;
10418 /* The info or types section is assigned below to dwo_unit,
10419 there's no need to record it in dwo_file.
10420 Also, we can't simply record type sections in dwo_file because
10421 we record a pointer into the vector in dwo_unit. As we collect more
10422 types we'll grow the vector and eventually have to reallocate space
10423 for it, invalidating all copies of pointers into the previous
10424 contents. */
10425 *dwo_file_slot = dwo_file;
10426 }
10427 else
10428 {
10429 if (dwarf_read_debug)
10430 {
10431 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10432 virtual_dwo_name);
10433 }
10434 dwo_file = (struct dwo_file *) *dwo_file_slot;
10435 }
10436 do_cleanups (cleanups);
10437
10438 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10439 dwo_unit->dwo_file = dwo_file;
10440 dwo_unit->signature = signature;
10441 dwo_unit->section =
10442 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10443 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10444 ? &dwp_file->sections.types
10445 : &dwp_file->sections.info,
10446 sections.info_or_types_offset,
10447 sections.info_or_types_size);
10448 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10449
10450 return dwo_unit;
10451 }
10452
10453 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10454 Returns NULL if the signature isn't found. */
10455
10456 static struct dwo_unit *
10457 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10458 ULONGEST signature, int is_debug_types)
10459 {
10460 const struct dwp_hash_table *dwp_htab =
10461 is_debug_types ? dwp_file->tus : dwp_file->cus;
10462 bfd *dbfd = dwp_file->dbfd;
10463 uint32_t mask = dwp_htab->nr_slots - 1;
10464 uint32_t hash = signature & mask;
10465 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10466 unsigned int i;
10467 void **slot;
10468 struct dwo_unit find_dwo_cu;
10469
10470 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10471 find_dwo_cu.signature = signature;
10472 slot = htab_find_slot (is_debug_types
10473 ? dwp_file->loaded_tus
10474 : dwp_file->loaded_cus,
10475 &find_dwo_cu, INSERT);
10476
10477 if (*slot != NULL)
10478 return (struct dwo_unit *) *slot;
10479
10480 /* Use a for loop so that we don't loop forever on bad debug info. */
10481 for (i = 0; i < dwp_htab->nr_slots; ++i)
10482 {
10483 ULONGEST signature_in_table;
10484
10485 signature_in_table =
10486 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10487 if (signature_in_table == signature)
10488 {
10489 uint32_t unit_index =
10490 read_4_bytes (dbfd,
10491 dwp_htab->unit_table + hash * sizeof (uint32_t));
10492
10493 if (dwp_file->version == 1)
10494 {
10495 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10496 comp_dir, signature,
10497 is_debug_types);
10498 }
10499 else
10500 {
10501 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10502 comp_dir, signature,
10503 is_debug_types);
10504 }
10505 return (struct dwo_unit *) *slot;
10506 }
10507 if (signature_in_table == 0)
10508 return NULL;
10509 hash = (hash + hash2) & mask;
10510 }
10511
10512 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10513 " [in module %s]"),
10514 dwp_file->name);
10515 }
10516
10517 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10518 Open the file specified by FILE_NAME and hand it off to BFD for
10519 preliminary analysis. Return a newly initialized bfd *, which
10520 includes a canonicalized copy of FILE_NAME.
10521 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10522 SEARCH_CWD is true if the current directory is to be searched.
10523 It will be searched before debug-file-directory.
10524 If successful, the file is added to the bfd include table of the
10525 objfile's bfd (see gdb_bfd_record_inclusion).
10526 If unable to find/open the file, return NULL.
10527 NOTE: This function is derived from symfile_bfd_open. */
10528
10529 static gdb_bfd_ref_ptr
10530 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10531 {
10532 int desc, flags;
10533 char *absolute_name;
10534 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10535 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10536 to debug_file_directory. */
10537 char *search_path;
10538 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10539
10540 if (search_cwd)
10541 {
10542 if (*debug_file_directory != '\0')
10543 search_path = concat (".", dirname_separator_string,
10544 debug_file_directory, (char *) NULL);
10545 else
10546 search_path = xstrdup (".");
10547 }
10548 else
10549 search_path = xstrdup (debug_file_directory);
10550
10551 flags = OPF_RETURN_REALPATH;
10552 if (is_dwp)
10553 flags |= OPF_SEARCH_IN_PATH;
10554 desc = openp (search_path, flags, file_name,
10555 O_RDONLY | O_BINARY, &absolute_name);
10556 xfree (search_path);
10557 if (desc < 0)
10558 return NULL;
10559
10560 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10561 xfree (absolute_name);
10562 if (sym_bfd == NULL)
10563 return NULL;
10564 bfd_set_cacheable (sym_bfd.get (), 1);
10565
10566 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10567 return NULL;
10568
10569 /* Success. Record the bfd as having been included by the objfile's bfd.
10570 This is important because things like demangled_names_hash lives in the
10571 objfile's per_bfd space and may have references to things like symbol
10572 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10573 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10574
10575 return sym_bfd;
10576 }
10577
10578 /* Try to open DWO file FILE_NAME.
10579 COMP_DIR is the DW_AT_comp_dir attribute.
10580 The result is the bfd handle of the file.
10581 If there is a problem finding or opening the file, return NULL.
10582 Upon success, the canonicalized path of the file is stored in the bfd,
10583 same as symfile_bfd_open. */
10584
10585 static gdb_bfd_ref_ptr
10586 open_dwo_file (const char *file_name, const char *comp_dir)
10587 {
10588 if (IS_ABSOLUTE_PATH (file_name))
10589 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10590
10591 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10592
10593 if (comp_dir != NULL)
10594 {
10595 char *path_to_try = concat (comp_dir, SLASH_STRING,
10596 file_name, (char *) NULL);
10597
10598 /* NOTE: If comp_dir is a relative path, this will also try the
10599 search path, which seems useful. */
10600 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10601 1 /*search_cwd*/));
10602 xfree (path_to_try);
10603 if (abfd != NULL)
10604 return abfd;
10605 }
10606
10607 /* That didn't work, try debug-file-directory, which, despite its name,
10608 is a list of paths. */
10609
10610 if (*debug_file_directory == '\0')
10611 return NULL;
10612
10613 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10614 }
10615
10616 /* This function is mapped across the sections and remembers the offset and
10617 size of each of the DWO debugging sections we are interested in. */
10618
10619 static void
10620 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10621 {
10622 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10623 const struct dwop_section_names *names = &dwop_section_names;
10624
10625 if (section_is_p (sectp->name, &names->abbrev_dwo))
10626 {
10627 dwo_sections->abbrev.s.section = sectp;
10628 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10629 }
10630 else if (section_is_p (sectp->name, &names->info_dwo))
10631 {
10632 dwo_sections->info.s.section = sectp;
10633 dwo_sections->info.size = bfd_get_section_size (sectp);
10634 }
10635 else if (section_is_p (sectp->name, &names->line_dwo))
10636 {
10637 dwo_sections->line.s.section = sectp;
10638 dwo_sections->line.size = bfd_get_section_size (sectp);
10639 }
10640 else if (section_is_p (sectp->name, &names->loc_dwo))
10641 {
10642 dwo_sections->loc.s.section = sectp;
10643 dwo_sections->loc.size = bfd_get_section_size (sectp);
10644 }
10645 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10646 {
10647 dwo_sections->macinfo.s.section = sectp;
10648 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10649 }
10650 else if (section_is_p (sectp->name, &names->macro_dwo))
10651 {
10652 dwo_sections->macro.s.section = sectp;
10653 dwo_sections->macro.size = bfd_get_section_size (sectp);
10654 }
10655 else if (section_is_p (sectp->name, &names->str_dwo))
10656 {
10657 dwo_sections->str.s.section = sectp;
10658 dwo_sections->str.size = bfd_get_section_size (sectp);
10659 }
10660 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10661 {
10662 dwo_sections->str_offsets.s.section = sectp;
10663 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->types_dwo))
10666 {
10667 struct dwarf2_section_info type_section;
10668
10669 memset (&type_section, 0, sizeof (type_section));
10670 type_section.s.section = sectp;
10671 type_section.size = bfd_get_section_size (sectp);
10672 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10673 &type_section);
10674 }
10675 }
10676
10677 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10678 by PER_CU. This is for the non-DWP case.
10679 The result is NULL if DWO_NAME can't be found. */
10680
10681 static struct dwo_file *
10682 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10683 const char *dwo_name, const char *comp_dir)
10684 {
10685 struct objfile *objfile = dwarf2_per_objfile->objfile;
10686 struct dwo_file *dwo_file;
10687 struct cleanup *cleanups;
10688
10689 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10690 if (dbfd == NULL)
10691 {
10692 if (dwarf_read_debug)
10693 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10694 return NULL;
10695 }
10696 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10697 dwo_file->dwo_name = dwo_name;
10698 dwo_file->comp_dir = comp_dir;
10699 dwo_file->dbfd = dbfd.release ();
10700
10701 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10702
10703 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10704 &dwo_file->sections);
10705
10706 dwo_file->cu = create_dwo_cu (dwo_file);
10707
10708 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10709 dwo_file->tus);
10710
10711 discard_cleanups (cleanups);
10712
10713 if (dwarf_read_debug)
10714 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10715
10716 return dwo_file;
10717 }
10718
10719 /* This function is mapped across the sections and remembers the offset and
10720 size of each of the DWP debugging sections common to version 1 and 2 that
10721 we are interested in. */
10722
10723 static void
10724 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10725 void *dwp_file_ptr)
10726 {
10727 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10728 const struct dwop_section_names *names = &dwop_section_names;
10729 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10730
10731 /* Record the ELF section number for later lookup: this is what the
10732 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10733 gdb_assert (elf_section_nr < dwp_file->num_sections);
10734 dwp_file->elf_sections[elf_section_nr] = sectp;
10735
10736 /* Look for specific sections that we need. */
10737 if (section_is_p (sectp->name, &names->str_dwo))
10738 {
10739 dwp_file->sections.str.s.section = sectp;
10740 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->cu_index))
10743 {
10744 dwp_file->sections.cu_index.s.section = sectp;
10745 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->tu_index))
10748 {
10749 dwp_file->sections.tu_index.s.section = sectp;
10750 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10751 }
10752 }
10753
10754 /* This function is mapped across the sections and remembers the offset and
10755 size of each of the DWP version 2 debugging sections that we are interested
10756 in. This is split into a separate function because we don't know if we
10757 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10758
10759 static void
10760 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10761 {
10762 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10763 const struct dwop_section_names *names = &dwop_section_names;
10764 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10765
10766 /* Record the ELF section number for later lookup: this is what the
10767 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10768 gdb_assert (elf_section_nr < dwp_file->num_sections);
10769 dwp_file->elf_sections[elf_section_nr] = sectp;
10770
10771 /* Look for specific sections that we need. */
10772 if (section_is_p (sectp->name, &names->abbrev_dwo))
10773 {
10774 dwp_file->sections.abbrev.s.section = sectp;
10775 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10776 }
10777 else if (section_is_p (sectp->name, &names->info_dwo))
10778 {
10779 dwp_file->sections.info.s.section = sectp;
10780 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10781 }
10782 else if (section_is_p (sectp->name, &names->line_dwo))
10783 {
10784 dwp_file->sections.line.s.section = sectp;
10785 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10786 }
10787 else if (section_is_p (sectp->name, &names->loc_dwo))
10788 {
10789 dwp_file->sections.loc.s.section = sectp;
10790 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10791 }
10792 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10793 {
10794 dwp_file->sections.macinfo.s.section = sectp;
10795 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10796 }
10797 else if (section_is_p (sectp->name, &names->macro_dwo))
10798 {
10799 dwp_file->sections.macro.s.section = sectp;
10800 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10801 }
10802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10803 {
10804 dwp_file->sections.str_offsets.s.section = sectp;
10805 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10806 }
10807 else if (section_is_p (sectp->name, &names->types_dwo))
10808 {
10809 dwp_file->sections.types.s.section = sectp;
10810 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10811 }
10812 }
10813
10814 /* Hash function for dwp_file loaded CUs/TUs. */
10815
10816 static hashval_t
10817 hash_dwp_loaded_cutus (const void *item)
10818 {
10819 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10820
10821 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10822 return dwo_unit->signature;
10823 }
10824
10825 /* Equality function for dwp_file loaded CUs/TUs. */
10826
10827 static int
10828 eq_dwp_loaded_cutus (const void *a, const void *b)
10829 {
10830 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10831 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10832
10833 return dua->signature == dub->signature;
10834 }
10835
10836 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10837
10838 static htab_t
10839 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10840 {
10841 return htab_create_alloc_ex (3,
10842 hash_dwp_loaded_cutus,
10843 eq_dwp_loaded_cutus,
10844 NULL,
10845 &objfile->objfile_obstack,
10846 hashtab_obstack_allocate,
10847 dummy_obstack_deallocate);
10848 }
10849
10850 /* Try to open DWP file FILE_NAME.
10851 The result is the bfd handle of the file.
10852 If there is a problem finding or opening the file, return NULL.
10853 Upon success, the canonicalized path of the file is stored in the bfd,
10854 same as symfile_bfd_open. */
10855
10856 static gdb_bfd_ref_ptr
10857 open_dwp_file (const char *file_name)
10858 {
10859 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10860 1 /*search_cwd*/));
10861 if (abfd != NULL)
10862 return abfd;
10863
10864 /* Work around upstream bug 15652.
10865 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10866 [Whether that's a "bug" is debatable, but it is getting in our way.]
10867 We have no real idea where the dwp file is, because gdb's realpath-ing
10868 of the executable's path may have discarded the needed info.
10869 [IWBN if the dwp file name was recorded in the executable, akin to
10870 .gnu_debuglink, but that doesn't exist yet.]
10871 Strip the directory from FILE_NAME and search again. */
10872 if (*debug_file_directory != '\0')
10873 {
10874 /* Don't implicitly search the current directory here.
10875 If the user wants to search "." to handle this case,
10876 it must be added to debug-file-directory. */
10877 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10878 0 /*search_cwd*/);
10879 }
10880
10881 return NULL;
10882 }
10883
10884 /* Initialize the use of the DWP file for the current objfile.
10885 By convention the name of the DWP file is ${objfile}.dwp.
10886 The result is NULL if it can't be found. */
10887
10888 static struct dwp_file *
10889 open_and_init_dwp_file (void)
10890 {
10891 struct objfile *objfile = dwarf2_per_objfile->objfile;
10892 struct dwp_file *dwp_file;
10893 char *dwp_name;
10894 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10895
10896 /* Try to find first .dwp for the binary file before any symbolic links
10897 resolving. */
10898
10899 /* If the objfile is a debug file, find the name of the real binary
10900 file and get the name of dwp file from there. */
10901 if (objfile->separate_debug_objfile_backlink != NULL)
10902 {
10903 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10904 const char *backlink_basename = lbasename (backlink->original_name);
10905 char *debug_dirname = ldirname (objfile->original_name);
10906
10907 make_cleanup (xfree, debug_dirname);
10908 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10909 SLASH_STRING, backlink_basename);
10910 }
10911 else
10912 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10913 make_cleanup (xfree, dwp_name);
10914
10915 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
10916 if (dbfd == NULL
10917 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10918 {
10919 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10920 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10921 make_cleanup (xfree, dwp_name);
10922 dbfd = open_dwp_file (dwp_name);
10923 }
10924
10925 if (dbfd == NULL)
10926 {
10927 if (dwarf_read_debug)
10928 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10929 do_cleanups (cleanups);
10930 return NULL;
10931 }
10932 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10933 dwp_file->name = bfd_get_filename (dbfd.get ());
10934 dwp_file->dbfd = dbfd.release ();
10935 do_cleanups (cleanups);
10936
10937 /* +1: section 0 is unused */
10938 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10939 dwp_file->elf_sections =
10940 OBSTACK_CALLOC (&objfile->objfile_obstack,
10941 dwp_file->num_sections, asection *);
10942
10943 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10944 dwp_file);
10945
10946 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10947
10948 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10949
10950 /* The DWP file version is stored in the hash table. Oh well. */
10951 if (dwp_file->cus->version != dwp_file->tus->version)
10952 {
10953 /* Technically speaking, we should try to limp along, but this is
10954 pretty bizarre. We use pulongest here because that's the established
10955 portability solution (e.g, we cannot use %u for uint32_t). */
10956 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10957 " TU version %s [in DWP file %s]"),
10958 pulongest (dwp_file->cus->version),
10959 pulongest (dwp_file->tus->version), dwp_name);
10960 }
10961 dwp_file->version = dwp_file->cus->version;
10962
10963 if (dwp_file->version == 2)
10964 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10965 dwp_file);
10966
10967 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10968 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10969
10970 if (dwarf_read_debug)
10971 {
10972 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10973 fprintf_unfiltered (gdb_stdlog,
10974 " %s CUs, %s TUs\n",
10975 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10976 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10977 }
10978
10979 return dwp_file;
10980 }
10981
10982 /* Wrapper around open_and_init_dwp_file, only open it once. */
10983
10984 static struct dwp_file *
10985 get_dwp_file (void)
10986 {
10987 if (! dwarf2_per_objfile->dwp_checked)
10988 {
10989 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10990 dwarf2_per_objfile->dwp_checked = 1;
10991 }
10992 return dwarf2_per_objfile->dwp_file;
10993 }
10994
10995 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10996 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10997 or in the DWP file for the objfile, referenced by THIS_UNIT.
10998 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10999 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11000
11001 This is called, for example, when wanting to read a variable with a
11002 complex location. Therefore we don't want to do file i/o for every call.
11003 Therefore we don't want to look for a DWO file on every call.
11004 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11005 then we check if we've already seen DWO_NAME, and only THEN do we check
11006 for a DWO file.
11007
11008 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11009 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11010
11011 static struct dwo_unit *
11012 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11013 const char *dwo_name, const char *comp_dir,
11014 ULONGEST signature, int is_debug_types)
11015 {
11016 struct objfile *objfile = dwarf2_per_objfile->objfile;
11017 const char *kind = is_debug_types ? "TU" : "CU";
11018 void **dwo_file_slot;
11019 struct dwo_file *dwo_file;
11020 struct dwp_file *dwp_file;
11021
11022 /* First see if there's a DWP file.
11023 If we have a DWP file but didn't find the DWO inside it, don't
11024 look for the original DWO file. It makes gdb behave differently
11025 depending on whether one is debugging in the build tree. */
11026
11027 dwp_file = get_dwp_file ();
11028 if (dwp_file != NULL)
11029 {
11030 const struct dwp_hash_table *dwp_htab =
11031 is_debug_types ? dwp_file->tus : dwp_file->cus;
11032
11033 if (dwp_htab != NULL)
11034 {
11035 struct dwo_unit *dwo_cutu =
11036 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11037 signature, is_debug_types);
11038
11039 if (dwo_cutu != NULL)
11040 {
11041 if (dwarf_read_debug)
11042 {
11043 fprintf_unfiltered (gdb_stdlog,
11044 "Virtual DWO %s %s found: @%s\n",
11045 kind, hex_string (signature),
11046 host_address_to_string (dwo_cutu));
11047 }
11048 return dwo_cutu;
11049 }
11050 }
11051 }
11052 else
11053 {
11054 /* No DWP file, look for the DWO file. */
11055
11056 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11057 if (*dwo_file_slot == NULL)
11058 {
11059 /* Read in the file and build a table of the CUs/TUs it contains. */
11060 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11061 }
11062 /* NOTE: This will be NULL if unable to open the file. */
11063 dwo_file = (struct dwo_file *) *dwo_file_slot;
11064
11065 if (dwo_file != NULL)
11066 {
11067 struct dwo_unit *dwo_cutu = NULL;
11068
11069 if (is_debug_types && dwo_file->tus)
11070 {
11071 struct dwo_unit find_dwo_cutu;
11072
11073 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11074 find_dwo_cutu.signature = signature;
11075 dwo_cutu
11076 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11077 }
11078 else if (!is_debug_types && dwo_file->cu)
11079 {
11080 if (signature == dwo_file->cu->signature)
11081 dwo_cutu = dwo_file->cu;
11082 }
11083
11084 if (dwo_cutu != NULL)
11085 {
11086 if (dwarf_read_debug)
11087 {
11088 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11089 kind, dwo_name, hex_string (signature),
11090 host_address_to_string (dwo_cutu));
11091 }
11092 return dwo_cutu;
11093 }
11094 }
11095 }
11096
11097 /* We didn't find it. This could mean a dwo_id mismatch, or
11098 someone deleted the DWO/DWP file, or the search path isn't set up
11099 correctly to find the file. */
11100
11101 if (dwarf_read_debug)
11102 {
11103 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11104 kind, dwo_name, hex_string (signature));
11105 }
11106
11107 /* This is a warning and not a complaint because it can be caused by
11108 pilot error (e.g., user accidentally deleting the DWO). */
11109 {
11110 /* Print the name of the DWP file if we looked there, helps the user
11111 better diagnose the problem. */
11112 char *dwp_text = NULL;
11113 struct cleanup *cleanups;
11114
11115 if (dwp_file != NULL)
11116 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11117 cleanups = make_cleanup (xfree, dwp_text);
11118
11119 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11120 " [in module %s]"),
11121 kind, dwo_name, hex_string (signature),
11122 dwp_text != NULL ? dwp_text : "",
11123 this_unit->is_debug_types ? "TU" : "CU",
11124 this_unit->offset.sect_off, objfile_name (objfile));
11125
11126 do_cleanups (cleanups);
11127 }
11128 return NULL;
11129 }
11130
11131 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11132 See lookup_dwo_cutu_unit for details. */
11133
11134 static struct dwo_unit *
11135 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11136 const char *dwo_name, const char *comp_dir,
11137 ULONGEST signature)
11138 {
11139 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11140 }
11141
11142 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11143 See lookup_dwo_cutu_unit for details. */
11144
11145 static struct dwo_unit *
11146 lookup_dwo_type_unit (struct signatured_type *this_tu,
11147 const char *dwo_name, const char *comp_dir)
11148 {
11149 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11150 }
11151
11152 /* Traversal function for queue_and_load_all_dwo_tus. */
11153
11154 static int
11155 queue_and_load_dwo_tu (void **slot, void *info)
11156 {
11157 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11158 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11159 ULONGEST signature = dwo_unit->signature;
11160 struct signatured_type *sig_type =
11161 lookup_dwo_signatured_type (per_cu->cu, signature);
11162
11163 if (sig_type != NULL)
11164 {
11165 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11166
11167 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11168 a real dependency of PER_CU on SIG_TYPE. That is detected later
11169 while processing PER_CU. */
11170 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11171 load_full_type_unit (sig_cu);
11172 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11173 }
11174
11175 return 1;
11176 }
11177
11178 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11179 The DWO may have the only definition of the type, though it may not be
11180 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11181 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11182
11183 static void
11184 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11185 {
11186 struct dwo_unit *dwo_unit;
11187 struct dwo_file *dwo_file;
11188
11189 gdb_assert (!per_cu->is_debug_types);
11190 gdb_assert (get_dwp_file () == NULL);
11191 gdb_assert (per_cu->cu != NULL);
11192
11193 dwo_unit = per_cu->cu->dwo_unit;
11194 gdb_assert (dwo_unit != NULL);
11195
11196 dwo_file = dwo_unit->dwo_file;
11197 if (dwo_file->tus != NULL)
11198 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11199 }
11200
11201 /* Free all resources associated with DWO_FILE.
11202 Close the DWO file and munmap the sections.
11203 All memory should be on the objfile obstack. */
11204
11205 static void
11206 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11207 {
11208
11209 /* Note: dbfd is NULL for virtual DWO files. */
11210 gdb_bfd_unref (dwo_file->dbfd);
11211
11212 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11213 }
11214
11215 /* Wrapper for free_dwo_file for use in cleanups. */
11216
11217 static void
11218 free_dwo_file_cleanup (void *arg)
11219 {
11220 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11221 struct objfile *objfile = dwarf2_per_objfile->objfile;
11222
11223 free_dwo_file (dwo_file, objfile);
11224 }
11225
11226 /* Traversal function for free_dwo_files. */
11227
11228 static int
11229 free_dwo_file_from_slot (void **slot, void *info)
11230 {
11231 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11232 struct objfile *objfile = (struct objfile *) info;
11233
11234 free_dwo_file (dwo_file, objfile);
11235
11236 return 1;
11237 }
11238
11239 /* Free all resources associated with DWO_FILES. */
11240
11241 static void
11242 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11243 {
11244 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11245 }
11246 \f
11247 /* Read in various DIEs. */
11248
11249 /* qsort helper for inherit_abstract_dies. */
11250
11251 static int
11252 unsigned_int_compar (const void *ap, const void *bp)
11253 {
11254 unsigned int a = *(unsigned int *) ap;
11255 unsigned int b = *(unsigned int *) bp;
11256
11257 return (a > b) - (b > a);
11258 }
11259
11260 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11261 Inherit only the children of the DW_AT_abstract_origin DIE not being
11262 already referenced by DW_AT_abstract_origin from the children of the
11263 current DIE. */
11264
11265 static void
11266 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11267 {
11268 struct die_info *child_die;
11269 unsigned die_children_count;
11270 /* CU offsets which were referenced by children of the current DIE. */
11271 sect_offset *offsets;
11272 sect_offset *offsets_end, *offsetp;
11273 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11274 struct die_info *origin_die;
11275 /* Iterator of the ORIGIN_DIE children. */
11276 struct die_info *origin_child_die;
11277 struct cleanup *cleanups;
11278 struct attribute *attr;
11279 struct dwarf2_cu *origin_cu;
11280 struct pending **origin_previous_list_in_scope;
11281
11282 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11283 if (!attr)
11284 return;
11285
11286 /* Note that following die references may follow to a die in a
11287 different cu. */
11288
11289 origin_cu = cu;
11290 origin_die = follow_die_ref (die, attr, &origin_cu);
11291
11292 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11293 symbols in. */
11294 origin_previous_list_in_scope = origin_cu->list_in_scope;
11295 origin_cu->list_in_scope = cu->list_in_scope;
11296
11297 if (die->tag != origin_die->tag
11298 && !(die->tag == DW_TAG_inlined_subroutine
11299 && origin_die->tag == DW_TAG_subprogram))
11300 complaint (&symfile_complaints,
11301 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11302 die->offset.sect_off, origin_die->offset.sect_off);
11303
11304 child_die = die->child;
11305 die_children_count = 0;
11306 while (child_die && child_die->tag)
11307 {
11308 child_die = sibling_die (child_die);
11309 die_children_count++;
11310 }
11311 offsets = XNEWVEC (sect_offset, die_children_count);
11312 cleanups = make_cleanup (xfree, offsets);
11313
11314 offsets_end = offsets;
11315 for (child_die = die->child;
11316 child_die && child_die->tag;
11317 child_die = sibling_die (child_die))
11318 {
11319 struct die_info *child_origin_die;
11320 struct dwarf2_cu *child_origin_cu;
11321
11322 /* We are trying to process concrete instance entries:
11323 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11324 it's not relevant to our analysis here. i.e. detecting DIEs that are
11325 present in the abstract instance but not referenced in the concrete
11326 one. */
11327 if (child_die->tag == DW_TAG_call_site
11328 || child_die->tag == DW_TAG_GNU_call_site)
11329 continue;
11330
11331 /* For each CHILD_DIE, find the corresponding child of
11332 ORIGIN_DIE. If there is more than one layer of
11333 DW_AT_abstract_origin, follow them all; there shouldn't be,
11334 but GCC versions at least through 4.4 generate this (GCC PR
11335 40573). */
11336 child_origin_die = child_die;
11337 child_origin_cu = cu;
11338 while (1)
11339 {
11340 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11341 child_origin_cu);
11342 if (attr == NULL)
11343 break;
11344 child_origin_die = follow_die_ref (child_origin_die, attr,
11345 &child_origin_cu);
11346 }
11347
11348 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11349 counterpart may exist. */
11350 if (child_origin_die != child_die)
11351 {
11352 if (child_die->tag != child_origin_die->tag
11353 && !(child_die->tag == DW_TAG_inlined_subroutine
11354 && child_origin_die->tag == DW_TAG_subprogram))
11355 complaint (&symfile_complaints,
11356 _("Child DIE 0x%x and its abstract origin 0x%x have "
11357 "different tags"), child_die->offset.sect_off,
11358 child_origin_die->offset.sect_off);
11359 if (child_origin_die->parent != origin_die)
11360 complaint (&symfile_complaints,
11361 _("Child DIE 0x%x and its abstract origin 0x%x have "
11362 "different parents"), child_die->offset.sect_off,
11363 child_origin_die->offset.sect_off);
11364 else
11365 *offsets_end++ = child_origin_die->offset;
11366 }
11367 }
11368 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11369 unsigned_int_compar);
11370 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11371 if (offsetp[-1].sect_off == offsetp->sect_off)
11372 complaint (&symfile_complaints,
11373 _("Multiple children of DIE 0x%x refer "
11374 "to DIE 0x%x as their abstract origin"),
11375 die->offset.sect_off, offsetp->sect_off);
11376
11377 offsetp = offsets;
11378 origin_child_die = origin_die->child;
11379 while (origin_child_die && origin_child_die->tag)
11380 {
11381 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11382 while (offsetp < offsets_end
11383 && offsetp->sect_off < origin_child_die->offset.sect_off)
11384 offsetp++;
11385 if (offsetp >= offsets_end
11386 || offsetp->sect_off > origin_child_die->offset.sect_off)
11387 {
11388 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11389 Check whether we're already processing ORIGIN_CHILD_DIE.
11390 This can happen with mutually referenced abstract_origins.
11391 PR 16581. */
11392 if (!origin_child_die->in_process)
11393 process_die (origin_child_die, origin_cu);
11394 }
11395 origin_child_die = sibling_die (origin_child_die);
11396 }
11397 origin_cu->list_in_scope = origin_previous_list_in_scope;
11398
11399 do_cleanups (cleanups);
11400 }
11401
11402 static void
11403 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11404 {
11405 struct objfile *objfile = cu->objfile;
11406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11407 struct context_stack *newobj;
11408 CORE_ADDR lowpc;
11409 CORE_ADDR highpc;
11410 struct die_info *child_die;
11411 struct attribute *attr, *call_line, *call_file;
11412 const char *name;
11413 CORE_ADDR baseaddr;
11414 struct block *block;
11415 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11416 VEC (symbolp) *template_args = NULL;
11417 struct template_symbol *templ_func = NULL;
11418
11419 if (inlined_func)
11420 {
11421 /* If we do not have call site information, we can't show the
11422 caller of this inlined function. That's too confusing, so
11423 only use the scope for local variables. */
11424 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11425 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11426 if (call_line == NULL || call_file == NULL)
11427 {
11428 read_lexical_block_scope (die, cu);
11429 return;
11430 }
11431 }
11432
11433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11434
11435 name = dwarf2_name (die, cu);
11436
11437 /* Ignore functions with missing or empty names. These are actually
11438 illegal according to the DWARF standard. */
11439 if (name == NULL)
11440 {
11441 complaint (&symfile_complaints,
11442 _("missing name for subprogram DIE at %d"),
11443 die->offset.sect_off);
11444 return;
11445 }
11446
11447 /* Ignore functions with missing or invalid low and high pc attributes. */
11448 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11449 <= PC_BOUNDS_INVALID)
11450 {
11451 attr = dwarf2_attr (die, DW_AT_external, cu);
11452 if (!attr || !DW_UNSND (attr))
11453 complaint (&symfile_complaints,
11454 _("cannot get low and high bounds "
11455 "for subprogram DIE at %d"),
11456 die->offset.sect_off);
11457 return;
11458 }
11459
11460 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11461 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11462
11463 /* If we have any template arguments, then we must allocate a
11464 different sort of symbol. */
11465 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11466 {
11467 if (child_die->tag == DW_TAG_template_type_param
11468 || child_die->tag == DW_TAG_template_value_param)
11469 {
11470 templ_func = allocate_template_symbol (objfile);
11471 templ_func->base.is_cplus_template_function = 1;
11472 break;
11473 }
11474 }
11475
11476 newobj = push_context (0, lowpc);
11477 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11478 (struct symbol *) templ_func);
11479
11480 /* If there is a location expression for DW_AT_frame_base, record
11481 it. */
11482 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11483 if (attr)
11484 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11485
11486 /* If there is a location for the static link, record it. */
11487 newobj->static_link = NULL;
11488 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11489 if (attr)
11490 {
11491 newobj->static_link
11492 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11493 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11494 }
11495
11496 cu->list_in_scope = &local_symbols;
11497
11498 if (die->child != NULL)
11499 {
11500 child_die = die->child;
11501 while (child_die && child_die->tag)
11502 {
11503 if (child_die->tag == DW_TAG_template_type_param
11504 || child_die->tag == DW_TAG_template_value_param)
11505 {
11506 struct symbol *arg = new_symbol (child_die, NULL, cu);
11507
11508 if (arg != NULL)
11509 VEC_safe_push (symbolp, template_args, arg);
11510 }
11511 else
11512 process_die (child_die, cu);
11513 child_die = sibling_die (child_die);
11514 }
11515 }
11516
11517 inherit_abstract_dies (die, cu);
11518
11519 /* If we have a DW_AT_specification, we might need to import using
11520 directives from the context of the specification DIE. See the
11521 comment in determine_prefix. */
11522 if (cu->language == language_cplus
11523 && dwarf2_attr (die, DW_AT_specification, cu))
11524 {
11525 struct dwarf2_cu *spec_cu = cu;
11526 struct die_info *spec_die = die_specification (die, &spec_cu);
11527
11528 while (spec_die)
11529 {
11530 child_die = spec_die->child;
11531 while (child_die && child_die->tag)
11532 {
11533 if (child_die->tag == DW_TAG_imported_module)
11534 process_die (child_die, spec_cu);
11535 child_die = sibling_die (child_die);
11536 }
11537
11538 /* In some cases, GCC generates specification DIEs that
11539 themselves contain DW_AT_specification attributes. */
11540 spec_die = die_specification (spec_die, &spec_cu);
11541 }
11542 }
11543
11544 newobj = pop_context ();
11545 /* Make a block for the local symbols within. */
11546 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11547 newobj->static_link, lowpc, highpc);
11548
11549 /* For C++, set the block's scope. */
11550 if ((cu->language == language_cplus
11551 || cu->language == language_fortran
11552 || cu->language == language_d
11553 || cu->language == language_rust)
11554 && cu->processing_has_namespace_info)
11555 block_set_scope (block, determine_prefix (die, cu),
11556 &objfile->objfile_obstack);
11557
11558 /* If we have address ranges, record them. */
11559 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11560
11561 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11562
11563 /* Attach template arguments to function. */
11564 if (! VEC_empty (symbolp, template_args))
11565 {
11566 gdb_assert (templ_func != NULL);
11567
11568 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11569 templ_func->template_arguments
11570 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11571 templ_func->n_template_arguments);
11572 memcpy (templ_func->template_arguments,
11573 VEC_address (symbolp, template_args),
11574 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11575 VEC_free (symbolp, template_args);
11576 }
11577
11578 /* In C++, we can have functions nested inside functions (e.g., when
11579 a function declares a class that has methods). This means that
11580 when we finish processing a function scope, we may need to go
11581 back to building a containing block's symbol lists. */
11582 local_symbols = newobj->locals;
11583 local_using_directives = newobj->local_using_directives;
11584
11585 /* If we've finished processing a top-level function, subsequent
11586 symbols go in the file symbol list. */
11587 if (outermost_context_p ())
11588 cu->list_in_scope = &file_symbols;
11589 }
11590
11591 /* Process all the DIES contained within a lexical block scope. Start
11592 a new scope, process the dies, and then close the scope. */
11593
11594 static void
11595 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11596 {
11597 struct objfile *objfile = cu->objfile;
11598 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11599 struct context_stack *newobj;
11600 CORE_ADDR lowpc, highpc;
11601 struct die_info *child_die;
11602 CORE_ADDR baseaddr;
11603
11604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11605
11606 /* Ignore blocks with missing or invalid low and high pc attributes. */
11607 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11608 as multiple lexical blocks? Handling children in a sane way would
11609 be nasty. Might be easier to properly extend generic blocks to
11610 describe ranges. */
11611 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11612 {
11613 case PC_BOUNDS_NOT_PRESENT:
11614 /* DW_TAG_lexical_block has no attributes, process its children as if
11615 there was no wrapping by that DW_TAG_lexical_block.
11616 GCC does no longer produces such DWARF since GCC r224161. */
11617 for (child_die = die->child;
11618 child_die != NULL && child_die->tag;
11619 child_die = sibling_die (child_die))
11620 process_die (child_die, cu);
11621 return;
11622 case PC_BOUNDS_INVALID:
11623 return;
11624 }
11625 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11626 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11627
11628 push_context (0, lowpc);
11629 if (die->child != NULL)
11630 {
11631 child_die = die->child;
11632 while (child_die && child_die->tag)
11633 {
11634 process_die (child_die, cu);
11635 child_die = sibling_die (child_die);
11636 }
11637 }
11638 inherit_abstract_dies (die, cu);
11639 newobj = pop_context ();
11640
11641 if (local_symbols != NULL || local_using_directives != NULL)
11642 {
11643 struct block *block
11644 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11645 newobj->start_addr, highpc);
11646
11647 /* Note that recording ranges after traversing children, as we
11648 do here, means that recording a parent's ranges entails
11649 walking across all its children's ranges as they appear in
11650 the address map, which is quadratic behavior.
11651
11652 It would be nicer to record the parent's ranges before
11653 traversing its children, simply overriding whatever you find
11654 there. But since we don't even decide whether to create a
11655 block until after we've traversed its children, that's hard
11656 to do. */
11657 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11658 }
11659 local_symbols = newobj->locals;
11660 local_using_directives = newobj->local_using_directives;
11661 }
11662
11663 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11664
11665 static void
11666 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11667 {
11668 struct objfile *objfile = cu->objfile;
11669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11670 CORE_ADDR pc, baseaddr;
11671 struct attribute *attr;
11672 struct call_site *call_site, call_site_local;
11673 void **slot;
11674 int nparams;
11675 struct die_info *child_die;
11676
11677 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11678
11679 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11680 if (attr == NULL)
11681 {
11682 /* This was a pre-DWARF-5 GNU extension alias
11683 for DW_AT_call_return_pc. */
11684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11685 }
11686 if (!attr)
11687 {
11688 complaint (&symfile_complaints,
11689 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11690 "DIE 0x%x [in module %s]"),
11691 die->offset.sect_off, objfile_name (objfile));
11692 return;
11693 }
11694 pc = attr_value_as_address (attr) + baseaddr;
11695 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11696
11697 if (cu->call_site_htab == NULL)
11698 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11699 NULL, &objfile->objfile_obstack,
11700 hashtab_obstack_allocate, NULL);
11701 call_site_local.pc = pc;
11702 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11703 if (*slot != NULL)
11704 {
11705 complaint (&symfile_complaints,
11706 _("Duplicate PC %s for DW_TAG_call_site "
11707 "DIE 0x%x [in module %s]"),
11708 paddress (gdbarch, pc), die->offset.sect_off,
11709 objfile_name (objfile));
11710 return;
11711 }
11712
11713 /* Count parameters at the caller. */
11714
11715 nparams = 0;
11716 for (child_die = die->child; child_die && child_die->tag;
11717 child_die = sibling_die (child_die))
11718 {
11719 if (child_die->tag != DW_TAG_call_site_parameter
11720 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11721 {
11722 complaint (&symfile_complaints,
11723 _("Tag %d is not DW_TAG_call_site_parameter in "
11724 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11725 child_die->tag, child_die->offset.sect_off,
11726 objfile_name (objfile));
11727 continue;
11728 }
11729
11730 nparams++;
11731 }
11732
11733 call_site
11734 = ((struct call_site *)
11735 obstack_alloc (&objfile->objfile_obstack,
11736 sizeof (*call_site)
11737 + (sizeof (*call_site->parameter) * (nparams - 1))));
11738 *slot = call_site;
11739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11740 call_site->pc = pc;
11741
11742 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11743 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11744 {
11745 struct die_info *func_die;
11746
11747 /* Skip also over DW_TAG_inlined_subroutine. */
11748 for (func_die = die->parent;
11749 func_die && func_die->tag != DW_TAG_subprogram
11750 && func_die->tag != DW_TAG_subroutine_type;
11751 func_die = func_die->parent);
11752
11753 /* DW_AT_call_all_calls is a superset
11754 of DW_AT_call_all_tail_calls. */
11755 if (func_die
11756 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11757 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11758 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11759 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11760 {
11761 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11762 not complete. But keep CALL_SITE for look ups via call_site_htab,
11763 both the initial caller containing the real return address PC and
11764 the final callee containing the current PC of a chain of tail
11765 calls do not need to have the tail call list complete. But any
11766 function candidate for a virtual tail call frame searched via
11767 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11768 determined unambiguously. */
11769 }
11770 else
11771 {
11772 struct type *func_type = NULL;
11773
11774 if (func_die)
11775 func_type = get_die_type (func_die, cu);
11776 if (func_type != NULL)
11777 {
11778 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11779
11780 /* Enlist this call site to the function. */
11781 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11782 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11783 }
11784 else
11785 complaint (&symfile_complaints,
11786 _("Cannot find function owning DW_TAG_call_site "
11787 "DIE 0x%x [in module %s]"),
11788 die->offset.sect_off, objfile_name (objfile));
11789 }
11790 }
11791
11792 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11793 if (attr == NULL)
11794 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11795 if (attr == NULL)
11796 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11797 if (attr == NULL)
11798 {
11799 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11800 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11801 }
11802 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11803 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11804 /* Keep NULL DWARF_BLOCK. */;
11805 else if (attr_form_is_block (attr))
11806 {
11807 struct dwarf2_locexpr_baton *dlbaton;
11808
11809 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11810 dlbaton->data = DW_BLOCK (attr)->data;
11811 dlbaton->size = DW_BLOCK (attr)->size;
11812 dlbaton->per_cu = cu->per_cu;
11813
11814 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11815 }
11816 else if (attr_form_is_ref (attr))
11817 {
11818 struct dwarf2_cu *target_cu = cu;
11819 struct die_info *target_die;
11820
11821 target_die = follow_die_ref (die, attr, &target_cu);
11822 gdb_assert (target_cu->objfile == objfile);
11823 if (die_is_declaration (target_die, target_cu))
11824 {
11825 const char *target_physname;
11826
11827 /* Prefer the mangled name; otherwise compute the demangled one. */
11828 target_physname = dwarf2_string_attr (target_die,
11829 DW_AT_linkage_name,
11830 target_cu);
11831 if (target_physname == NULL)
11832 target_physname = dwarf2_string_attr (target_die,
11833 DW_AT_MIPS_linkage_name,
11834 target_cu);
11835 if (target_physname == NULL)
11836 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11837 if (target_physname == NULL)
11838 complaint (&symfile_complaints,
11839 _("DW_AT_call_target target DIE has invalid "
11840 "physname, for referencing DIE 0x%x [in module %s]"),
11841 die->offset.sect_off, objfile_name (objfile));
11842 else
11843 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11844 }
11845 else
11846 {
11847 CORE_ADDR lowpc;
11848
11849 /* DW_AT_entry_pc should be preferred. */
11850 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11851 <= PC_BOUNDS_INVALID)
11852 complaint (&symfile_complaints,
11853 _("DW_AT_call_target target DIE has invalid "
11854 "low pc, for referencing DIE 0x%x [in module %s]"),
11855 die->offset.sect_off, objfile_name (objfile));
11856 else
11857 {
11858 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11859 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11860 }
11861 }
11862 }
11863 else
11864 complaint (&symfile_complaints,
11865 _("DW_TAG_call_site DW_AT_call_target is neither "
11866 "block nor reference, for DIE 0x%x [in module %s]"),
11867 die->offset.sect_off, objfile_name (objfile));
11868
11869 call_site->per_cu = cu->per_cu;
11870
11871 for (child_die = die->child;
11872 child_die && child_die->tag;
11873 child_die = sibling_die (child_die))
11874 {
11875 struct call_site_parameter *parameter;
11876 struct attribute *loc, *origin;
11877
11878 if (child_die->tag != DW_TAG_call_site_parameter
11879 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11880 {
11881 /* Already printed the complaint above. */
11882 continue;
11883 }
11884
11885 gdb_assert (call_site->parameter_count < nparams);
11886 parameter = &call_site->parameter[call_site->parameter_count];
11887
11888 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11889 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11890 register is contained in DW_AT_call_value. */
11891
11892 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11893 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
11894 if (origin == NULL)
11895 {
11896 /* This was a pre-DWARF-5 GNU extension alias
11897 for DW_AT_call_parameter. */
11898 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11899 }
11900 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11901 {
11902 sect_offset offset;
11903
11904 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11905 offset = dwarf2_get_ref_die_offset (origin);
11906 if (!offset_in_cu_p (&cu->header, offset))
11907 {
11908 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11909 binding can be done only inside one CU. Such referenced DIE
11910 therefore cannot be even moved to DW_TAG_partial_unit. */
11911 complaint (&symfile_complaints,
11912 _("DW_AT_call_parameter offset is not in CU for "
11913 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11914 child_die->offset.sect_off, objfile_name (objfile));
11915 continue;
11916 }
11917 parameter->u.param_offset.cu_off = (offset.sect_off
11918 - cu->header.offset.sect_off);
11919 }
11920 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11921 {
11922 complaint (&symfile_complaints,
11923 _("No DW_FORM_block* DW_AT_location for "
11924 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11925 child_die->offset.sect_off, objfile_name (objfile));
11926 continue;
11927 }
11928 else
11929 {
11930 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11931 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11932 if (parameter->u.dwarf_reg != -1)
11933 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11934 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11935 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11936 &parameter->u.fb_offset))
11937 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11938 else
11939 {
11940 complaint (&symfile_complaints,
11941 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11942 "for DW_FORM_block* DW_AT_location is supported for "
11943 "DW_TAG_call_site child DIE 0x%x "
11944 "[in module %s]"),
11945 child_die->offset.sect_off, objfile_name (objfile));
11946 continue;
11947 }
11948 }
11949
11950 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
11951 if (attr == NULL)
11952 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11953 if (!attr_form_is_block (attr))
11954 {
11955 complaint (&symfile_complaints,
11956 _("No DW_FORM_block* DW_AT_call_value for "
11957 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11958 child_die->offset.sect_off, objfile_name (objfile));
11959 continue;
11960 }
11961 parameter->value = DW_BLOCK (attr)->data;
11962 parameter->value_size = DW_BLOCK (attr)->size;
11963
11964 /* Parameters are not pre-cleared by memset above. */
11965 parameter->data_value = NULL;
11966 parameter->data_value_size = 0;
11967 call_site->parameter_count++;
11968
11969 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
11970 if (attr == NULL)
11971 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11972 if (attr)
11973 {
11974 if (!attr_form_is_block (attr))
11975 complaint (&symfile_complaints,
11976 _("No DW_FORM_block* DW_AT_call_data_value for "
11977 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11978 child_die->offset.sect_off, objfile_name (objfile));
11979 else
11980 {
11981 parameter->data_value = DW_BLOCK (attr)->data;
11982 parameter->data_value_size = DW_BLOCK (attr)->size;
11983 }
11984 }
11985 }
11986 }
11987
11988 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
11989 reading .debug_rnglists.
11990 Callback's type should be:
11991 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
11992 Return true if the attributes are present and valid, otherwise,
11993 return false. */
11994
11995 template <typename Callback>
11996 static bool
11997 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
11998 Callback &&callback)
11999 {
12000 struct objfile *objfile = cu->objfile;
12001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12002 struct comp_unit_head *cu_header = &cu->header;
12003 bfd *obfd = objfile->obfd;
12004 unsigned int addr_size = cu_header->addr_size;
12005 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12006 /* Base address selection entry. */
12007 CORE_ADDR base;
12008 int found_base;
12009 unsigned int dummy;
12010 const gdb_byte *buffer;
12011 CORE_ADDR low = 0;
12012 CORE_ADDR high = 0;
12013 CORE_ADDR baseaddr;
12014 bool overflow = false;
12015
12016 found_base = cu->base_known;
12017 base = cu->base_address;
12018
12019 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12020 if (offset >= dwarf2_per_objfile->rnglists.size)
12021 {
12022 complaint (&symfile_complaints,
12023 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12024 offset);
12025 return false;
12026 }
12027 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12028
12029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12030
12031 while (1)
12032 {
12033 /* Initialize it due to a false compiler warning. */
12034 CORE_ADDR range_beginning = 0, range_end = 0;
12035 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12036 + dwarf2_per_objfile->rnglists.size);
12037 unsigned int bytes_read;
12038
12039 if (buffer == buf_end)
12040 {
12041 overflow = true;
12042 break;
12043 }
12044 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12045 switch (rlet)
12046 {
12047 case DW_RLE_end_of_list:
12048 break;
12049 case DW_RLE_base_address:
12050 if (buffer + cu->header.addr_size > buf_end)
12051 {
12052 overflow = true;
12053 break;
12054 }
12055 base = read_address (obfd, buffer, cu, &bytes_read);
12056 found_base = 1;
12057 buffer += bytes_read;
12058 break;
12059 case DW_RLE_start_length:
12060 if (buffer + cu->header.addr_size > buf_end)
12061 {
12062 overflow = true;
12063 break;
12064 }
12065 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12066 buffer += bytes_read;
12067 range_end = (range_beginning
12068 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12069 buffer += bytes_read;
12070 if (buffer > buf_end)
12071 {
12072 overflow = true;
12073 break;
12074 }
12075 break;
12076 case DW_RLE_offset_pair:
12077 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12078 buffer += bytes_read;
12079 if (buffer > buf_end)
12080 {
12081 overflow = true;
12082 break;
12083 }
12084 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12085 buffer += bytes_read;
12086 if (buffer > buf_end)
12087 {
12088 overflow = true;
12089 break;
12090 }
12091 break;
12092 case DW_RLE_start_end:
12093 if (buffer + 2 * cu->header.addr_size > buf_end)
12094 {
12095 overflow = true;
12096 break;
12097 }
12098 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12099 buffer += bytes_read;
12100 range_end = read_address (obfd, buffer, cu, &bytes_read);
12101 buffer += bytes_read;
12102 break;
12103 default:
12104 complaint (&symfile_complaints,
12105 _("Invalid .debug_rnglists data (no base address)"));
12106 return false;
12107 }
12108 if (rlet == DW_RLE_end_of_list || overflow)
12109 break;
12110 if (rlet == DW_RLE_base_address)
12111 continue;
12112
12113 if (!found_base)
12114 {
12115 /* We have no valid base address for the ranges
12116 data. */
12117 complaint (&symfile_complaints,
12118 _("Invalid .debug_rnglists data (no base address)"));
12119 return false;
12120 }
12121
12122 if (range_beginning > range_end)
12123 {
12124 /* Inverted range entries are invalid. */
12125 complaint (&symfile_complaints,
12126 _("Invalid .debug_rnglists data (inverted range)"));
12127 return false;
12128 }
12129
12130 /* Empty range entries have no effect. */
12131 if (range_beginning == range_end)
12132 continue;
12133
12134 range_beginning += base;
12135 range_end += base;
12136
12137 /* A not-uncommon case of bad debug info.
12138 Don't pollute the addrmap with bad data. */
12139 if (range_beginning + baseaddr == 0
12140 && !dwarf2_per_objfile->has_section_at_zero)
12141 {
12142 complaint (&symfile_complaints,
12143 _(".debug_rnglists entry has start address of zero"
12144 " [in module %s]"), objfile_name (objfile));
12145 continue;
12146 }
12147
12148 callback (range_beginning, range_end);
12149 }
12150
12151 if (overflow)
12152 {
12153 complaint (&symfile_complaints,
12154 _("Offset %d is not terminated "
12155 "for DW_AT_ranges attribute"),
12156 offset);
12157 return false;
12158 }
12159
12160 return true;
12161 }
12162
12163 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12164 Callback's type should be:
12165 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12166 Return 1 if the attributes are present and valid, otherwise, return 0. */
12167
12168 template <typename Callback>
12169 static int
12170 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12171 Callback &&callback)
12172 {
12173 struct objfile *objfile = cu->objfile;
12174 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12175 struct comp_unit_head *cu_header = &cu->header;
12176 bfd *obfd = objfile->obfd;
12177 unsigned int addr_size = cu_header->addr_size;
12178 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12179 /* Base address selection entry. */
12180 CORE_ADDR base;
12181 int found_base;
12182 unsigned int dummy;
12183 const gdb_byte *buffer;
12184 CORE_ADDR baseaddr;
12185
12186 if (cu_header->version >= 5)
12187 return dwarf2_rnglists_process (offset, cu, callback);
12188
12189 found_base = cu->base_known;
12190 base = cu->base_address;
12191
12192 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12193 if (offset >= dwarf2_per_objfile->ranges.size)
12194 {
12195 complaint (&symfile_complaints,
12196 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12197 offset);
12198 return 0;
12199 }
12200 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12201
12202 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12203
12204 while (1)
12205 {
12206 CORE_ADDR range_beginning, range_end;
12207
12208 range_beginning = read_address (obfd, buffer, cu, &dummy);
12209 buffer += addr_size;
12210 range_end = read_address (obfd, buffer, cu, &dummy);
12211 buffer += addr_size;
12212 offset += 2 * addr_size;
12213
12214 /* An end of list marker is a pair of zero addresses. */
12215 if (range_beginning == 0 && range_end == 0)
12216 /* Found the end of list entry. */
12217 break;
12218
12219 /* Each base address selection entry is a pair of 2 values.
12220 The first is the largest possible address, the second is
12221 the base address. Check for a base address here. */
12222 if ((range_beginning & mask) == mask)
12223 {
12224 /* If we found the largest possible address, then we already
12225 have the base address in range_end. */
12226 base = range_end;
12227 found_base = 1;
12228 continue;
12229 }
12230
12231 if (!found_base)
12232 {
12233 /* We have no valid base address for the ranges
12234 data. */
12235 complaint (&symfile_complaints,
12236 _("Invalid .debug_ranges data (no base address)"));
12237 return 0;
12238 }
12239
12240 if (range_beginning > range_end)
12241 {
12242 /* Inverted range entries are invalid. */
12243 complaint (&symfile_complaints,
12244 _("Invalid .debug_ranges data (inverted range)"));
12245 return 0;
12246 }
12247
12248 /* Empty range entries have no effect. */
12249 if (range_beginning == range_end)
12250 continue;
12251
12252 range_beginning += base;
12253 range_end += base;
12254
12255 /* A not-uncommon case of bad debug info.
12256 Don't pollute the addrmap with bad data. */
12257 if (range_beginning + baseaddr == 0
12258 && !dwarf2_per_objfile->has_section_at_zero)
12259 {
12260 complaint (&symfile_complaints,
12261 _(".debug_ranges entry has start address of zero"
12262 " [in module %s]"), objfile_name (objfile));
12263 continue;
12264 }
12265
12266 callback (range_beginning, range_end);
12267 }
12268
12269 return 1;
12270 }
12271
12272 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12273 Return 1 if the attributes are present and valid, otherwise, return 0.
12274 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12275
12276 static int
12277 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12278 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12279 struct partial_symtab *ranges_pst)
12280 {
12281 struct objfile *objfile = cu->objfile;
12282 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12283 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12284 SECT_OFF_TEXT (objfile));
12285 int low_set = 0;
12286 CORE_ADDR low = 0;
12287 CORE_ADDR high = 0;
12288 int retval;
12289
12290 retval = dwarf2_ranges_process (offset, cu,
12291 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12292 {
12293 if (ranges_pst != NULL)
12294 {
12295 CORE_ADDR lowpc;
12296 CORE_ADDR highpc;
12297
12298 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12299 range_beginning + baseaddr);
12300 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12301 range_end + baseaddr);
12302 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12303 ranges_pst);
12304 }
12305
12306 /* FIXME: This is recording everything as a low-high
12307 segment of consecutive addresses. We should have a
12308 data structure for discontiguous block ranges
12309 instead. */
12310 if (! low_set)
12311 {
12312 low = range_beginning;
12313 high = range_end;
12314 low_set = 1;
12315 }
12316 else
12317 {
12318 if (range_beginning < low)
12319 low = range_beginning;
12320 if (range_end > high)
12321 high = range_end;
12322 }
12323 });
12324 if (!retval)
12325 return 0;
12326
12327 if (! low_set)
12328 /* If the first entry is an end-of-list marker, the range
12329 describes an empty scope, i.e. no instructions. */
12330 return 0;
12331
12332 if (low_return)
12333 *low_return = low;
12334 if (high_return)
12335 *high_return = high;
12336 return 1;
12337 }
12338
12339 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12340 definition for the return value. *LOWPC and *HIGHPC are set iff
12341 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12342
12343 static enum pc_bounds_kind
12344 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12345 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12346 struct partial_symtab *pst)
12347 {
12348 struct attribute *attr;
12349 struct attribute *attr_high;
12350 CORE_ADDR low = 0;
12351 CORE_ADDR high = 0;
12352 enum pc_bounds_kind ret;
12353
12354 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12355 if (attr_high)
12356 {
12357 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12358 if (attr)
12359 {
12360 low = attr_value_as_address (attr);
12361 high = attr_value_as_address (attr_high);
12362 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12363 high += low;
12364 }
12365 else
12366 /* Found high w/o low attribute. */
12367 return PC_BOUNDS_INVALID;
12368
12369 /* Found consecutive range of addresses. */
12370 ret = PC_BOUNDS_HIGH_LOW;
12371 }
12372 else
12373 {
12374 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12375 if (attr != NULL)
12376 {
12377 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12378 We take advantage of the fact that DW_AT_ranges does not appear
12379 in DW_TAG_compile_unit of DWO files. */
12380 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12381 unsigned int ranges_offset = (DW_UNSND (attr)
12382 + (need_ranges_base
12383 ? cu->ranges_base
12384 : 0));
12385
12386 /* Value of the DW_AT_ranges attribute is the offset in the
12387 .debug_ranges section. */
12388 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12389 return PC_BOUNDS_INVALID;
12390 /* Found discontinuous range of addresses. */
12391 ret = PC_BOUNDS_RANGES;
12392 }
12393 else
12394 return PC_BOUNDS_NOT_PRESENT;
12395 }
12396
12397 /* read_partial_die has also the strict LOW < HIGH requirement. */
12398 if (high <= low)
12399 return PC_BOUNDS_INVALID;
12400
12401 /* When using the GNU linker, .gnu.linkonce. sections are used to
12402 eliminate duplicate copies of functions and vtables and such.
12403 The linker will arbitrarily choose one and discard the others.
12404 The AT_*_pc values for such functions refer to local labels in
12405 these sections. If the section from that file was discarded, the
12406 labels are not in the output, so the relocs get a value of 0.
12407 If this is a discarded function, mark the pc bounds as invalid,
12408 so that GDB will ignore it. */
12409 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12410 return PC_BOUNDS_INVALID;
12411
12412 *lowpc = low;
12413 if (highpc)
12414 *highpc = high;
12415 return ret;
12416 }
12417
12418 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12419 its low and high PC addresses. Do nothing if these addresses could not
12420 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12421 and HIGHPC to the high address if greater than HIGHPC. */
12422
12423 static void
12424 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12425 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12426 struct dwarf2_cu *cu)
12427 {
12428 CORE_ADDR low, high;
12429 struct die_info *child = die->child;
12430
12431 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12432 {
12433 *lowpc = std::min (*lowpc, low);
12434 *highpc = std::max (*highpc, high);
12435 }
12436
12437 /* If the language does not allow nested subprograms (either inside
12438 subprograms or lexical blocks), we're done. */
12439 if (cu->language != language_ada)
12440 return;
12441
12442 /* Check all the children of the given DIE. If it contains nested
12443 subprograms, then check their pc bounds. Likewise, we need to
12444 check lexical blocks as well, as they may also contain subprogram
12445 definitions. */
12446 while (child && child->tag)
12447 {
12448 if (child->tag == DW_TAG_subprogram
12449 || child->tag == DW_TAG_lexical_block)
12450 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12451 child = sibling_die (child);
12452 }
12453 }
12454
12455 /* Get the low and high pc's represented by the scope DIE, and store
12456 them in *LOWPC and *HIGHPC. If the correct values can't be
12457 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12458
12459 static void
12460 get_scope_pc_bounds (struct die_info *die,
12461 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12462 struct dwarf2_cu *cu)
12463 {
12464 CORE_ADDR best_low = (CORE_ADDR) -1;
12465 CORE_ADDR best_high = (CORE_ADDR) 0;
12466 CORE_ADDR current_low, current_high;
12467
12468 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12469 >= PC_BOUNDS_RANGES)
12470 {
12471 best_low = current_low;
12472 best_high = current_high;
12473 }
12474 else
12475 {
12476 struct die_info *child = die->child;
12477
12478 while (child && child->tag)
12479 {
12480 switch (child->tag) {
12481 case DW_TAG_subprogram:
12482 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12483 break;
12484 case DW_TAG_namespace:
12485 case DW_TAG_module:
12486 /* FIXME: carlton/2004-01-16: Should we do this for
12487 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12488 that current GCC's always emit the DIEs corresponding
12489 to definitions of methods of classes as children of a
12490 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12491 the DIEs giving the declarations, which could be
12492 anywhere). But I don't see any reason why the
12493 standards says that they have to be there. */
12494 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12495
12496 if (current_low != ((CORE_ADDR) -1))
12497 {
12498 best_low = std::min (best_low, current_low);
12499 best_high = std::max (best_high, current_high);
12500 }
12501 break;
12502 default:
12503 /* Ignore. */
12504 break;
12505 }
12506
12507 child = sibling_die (child);
12508 }
12509 }
12510
12511 *lowpc = best_low;
12512 *highpc = best_high;
12513 }
12514
12515 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12516 in DIE. */
12517
12518 static void
12519 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12520 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12521 {
12522 struct objfile *objfile = cu->objfile;
12523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12524 struct attribute *attr;
12525 struct attribute *attr_high;
12526
12527 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12528 if (attr_high)
12529 {
12530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12531 if (attr)
12532 {
12533 CORE_ADDR low = attr_value_as_address (attr);
12534 CORE_ADDR high = attr_value_as_address (attr_high);
12535
12536 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12537 high += low;
12538
12539 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12540 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12541 record_block_range (block, low, high - 1);
12542 }
12543 }
12544
12545 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12546 if (attr)
12547 {
12548 bfd *obfd = objfile->obfd;
12549 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12550 We take advantage of the fact that DW_AT_ranges does not appear
12551 in DW_TAG_compile_unit of DWO files. */
12552 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12553
12554 /* The value of the DW_AT_ranges attribute is the offset of the
12555 address range list in the .debug_ranges section. */
12556 unsigned long offset = (DW_UNSND (attr)
12557 + (need_ranges_base ? cu->ranges_base : 0));
12558 const gdb_byte *buffer;
12559
12560 /* For some target architectures, but not others, the
12561 read_address function sign-extends the addresses it returns.
12562 To recognize base address selection entries, we need a
12563 mask. */
12564 unsigned int addr_size = cu->header.addr_size;
12565 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12566
12567 /* The base address, to which the next pair is relative. Note
12568 that this 'base' is a DWARF concept: most entries in a range
12569 list are relative, to reduce the number of relocs against the
12570 debugging information. This is separate from this function's
12571 'baseaddr' argument, which GDB uses to relocate debugging
12572 information from a shared library based on the address at
12573 which the library was loaded. */
12574 CORE_ADDR base = cu->base_address;
12575 int base_known = cu->base_known;
12576
12577 dwarf2_ranges_process (offset, cu,
12578 [&] (CORE_ADDR start, CORE_ADDR end)
12579 {
12580 start += baseaddr;
12581 end += baseaddr;
12582 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12583 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12584 record_block_range (block, start, end - 1);
12585 });
12586 }
12587 }
12588
12589 /* Check whether the producer field indicates either of GCC < 4.6, or the
12590 Intel C/C++ compiler, and cache the result in CU. */
12591
12592 static void
12593 check_producer (struct dwarf2_cu *cu)
12594 {
12595 int major, minor;
12596
12597 if (cu->producer == NULL)
12598 {
12599 /* For unknown compilers expect their behavior is DWARF version
12600 compliant.
12601
12602 GCC started to support .debug_types sections by -gdwarf-4 since
12603 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12604 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12605 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12606 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12607 }
12608 else if (producer_is_gcc (cu->producer, &major, &minor))
12609 {
12610 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12611 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12612 }
12613 else if (startswith (cu->producer, "Intel(R) C"))
12614 cu->producer_is_icc = 1;
12615 else
12616 {
12617 /* For other non-GCC compilers, expect their behavior is DWARF version
12618 compliant. */
12619 }
12620
12621 cu->checked_producer = 1;
12622 }
12623
12624 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12625 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12626 during 4.6.0 experimental. */
12627
12628 static int
12629 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12630 {
12631 if (!cu->checked_producer)
12632 check_producer (cu);
12633
12634 return cu->producer_is_gxx_lt_4_6;
12635 }
12636
12637 /* Return the default accessibility type if it is not overriden by
12638 DW_AT_accessibility. */
12639
12640 static enum dwarf_access_attribute
12641 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12642 {
12643 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12644 {
12645 /* The default DWARF 2 accessibility for members is public, the default
12646 accessibility for inheritance is private. */
12647
12648 if (die->tag != DW_TAG_inheritance)
12649 return DW_ACCESS_public;
12650 else
12651 return DW_ACCESS_private;
12652 }
12653 else
12654 {
12655 /* DWARF 3+ defines the default accessibility a different way. The same
12656 rules apply now for DW_TAG_inheritance as for the members and it only
12657 depends on the container kind. */
12658
12659 if (die->parent->tag == DW_TAG_class_type)
12660 return DW_ACCESS_private;
12661 else
12662 return DW_ACCESS_public;
12663 }
12664 }
12665
12666 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12667 offset. If the attribute was not found return 0, otherwise return
12668 1. If it was found but could not properly be handled, set *OFFSET
12669 to 0. */
12670
12671 static int
12672 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12673 LONGEST *offset)
12674 {
12675 struct attribute *attr;
12676
12677 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12678 if (attr != NULL)
12679 {
12680 *offset = 0;
12681
12682 /* Note that we do not check for a section offset first here.
12683 This is because DW_AT_data_member_location is new in DWARF 4,
12684 so if we see it, we can assume that a constant form is really
12685 a constant and not a section offset. */
12686 if (attr_form_is_constant (attr))
12687 *offset = dwarf2_get_attr_constant_value (attr, 0);
12688 else if (attr_form_is_section_offset (attr))
12689 dwarf2_complex_location_expr_complaint ();
12690 else if (attr_form_is_block (attr))
12691 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12692 else
12693 dwarf2_complex_location_expr_complaint ();
12694
12695 return 1;
12696 }
12697
12698 return 0;
12699 }
12700
12701 /* Add an aggregate field to the field list. */
12702
12703 static void
12704 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12705 struct dwarf2_cu *cu)
12706 {
12707 struct objfile *objfile = cu->objfile;
12708 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12709 struct nextfield *new_field;
12710 struct attribute *attr;
12711 struct field *fp;
12712 const char *fieldname = "";
12713
12714 /* Allocate a new field list entry and link it in. */
12715 new_field = XNEW (struct nextfield);
12716 make_cleanup (xfree, new_field);
12717 memset (new_field, 0, sizeof (struct nextfield));
12718
12719 if (die->tag == DW_TAG_inheritance)
12720 {
12721 new_field->next = fip->baseclasses;
12722 fip->baseclasses = new_field;
12723 }
12724 else
12725 {
12726 new_field->next = fip->fields;
12727 fip->fields = new_field;
12728 }
12729 fip->nfields++;
12730
12731 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12732 if (attr)
12733 new_field->accessibility = DW_UNSND (attr);
12734 else
12735 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12736 if (new_field->accessibility != DW_ACCESS_public)
12737 fip->non_public_fields = 1;
12738
12739 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12740 if (attr)
12741 new_field->virtuality = DW_UNSND (attr);
12742 else
12743 new_field->virtuality = DW_VIRTUALITY_none;
12744
12745 fp = &new_field->field;
12746
12747 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12748 {
12749 LONGEST offset;
12750
12751 /* Data member other than a C++ static data member. */
12752
12753 /* Get type of field. */
12754 fp->type = die_type (die, cu);
12755
12756 SET_FIELD_BITPOS (*fp, 0);
12757
12758 /* Get bit size of field (zero if none). */
12759 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12760 if (attr)
12761 {
12762 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12763 }
12764 else
12765 {
12766 FIELD_BITSIZE (*fp) = 0;
12767 }
12768
12769 /* Get bit offset of field. */
12770 if (handle_data_member_location (die, cu, &offset))
12771 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12772 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12773 if (attr)
12774 {
12775 if (gdbarch_bits_big_endian (gdbarch))
12776 {
12777 /* For big endian bits, the DW_AT_bit_offset gives the
12778 additional bit offset from the MSB of the containing
12779 anonymous object to the MSB of the field. We don't
12780 have to do anything special since we don't need to
12781 know the size of the anonymous object. */
12782 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12783 }
12784 else
12785 {
12786 /* For little endian bits, compute the bit offset to the
12787 MSB of the anonymous object, subtract off the number of
12788 bits from the MSB of the field to the MSB of the
12789 object, and then subtract off the number of bits of
12790 the field itself. The result is the bit offset of
12791 the LSB of the field. */
12792 int anonymous_size;
12793 int bit_offset = DW_UNSND (attr);
12794
12795 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12796 if (attr)
12797 {
12798 /* The size of the anonymous object containing
12799 the bit field is explicit, so use the
12800 indicated size (in bytes). */
12801 anonymous_size = DW_UNSND (attr);
12802 }
12803 else
12804 {
12805 /* The size of the anonymous object containing
12806 the bit field must be inferred from the type
12807 attribute of the data member containing the
12808 bit field. */
12809 anonymous_size = TYPE_LENGTH (fp->type);
12810 }
12811 SET_FIELD_BITPOS (*fp,
12812 (FIELD_BITPOS (*fp)
12813 + anonymous_size * bits_per_byte
12814 - bit_offset - FIELD_BITSIZE (*fp)));
12815 }
12816 }
12817 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12818 if (attr != NULL)
12819 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12820 + dwarf2_get_attr_constant_value (attr, 0)));
12821
12822 /* Get name of field. */
12823 fieldname = dwarf2_name (die, cu);
12824 if (fieldname == NULL)
12825 fieldname = "";
12826
12827 /* The name is already allocated along with this objfile, so we don't
12828 need to duplicate it for the type. */
12829 fp->name = fieldname;
12830
12831 /* Change accessibility for artificial fields (e.g. virtual table
12832 pointer or virtual base class pointer) to private. */
12833 if (dwarf2_attr (die, DW_AT_artificial, cu))
12834 {
12835 FIELD_ARTIFICIAL (*fp) = 1;
12836 new_field->accessibility = DW_ACCESS_private;
12837 fip->non_public_fields = 1;
12838 }
12839 }
12840 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12841 {
12842 /* C++ static member. */
12843
12844 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12845 is a declaration, but all versions of G++ as of this writing
12846 (so through at least 3.2.1) incorrectly generate
12847 DW_TAG_variable tags. */
12848
12849 const char *physname;
12850
12851 /* Get name of field. */
12852 fieldname = dwarf2_name (die, cu);
12853 if (fieldname == NULL)
12854 return;
12855
12856 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12857 if (attr
12858 /* Only create a symbol if this is an external value.
12859 new_symbol checks this and puts the value in the global symbol
12860 table, which we want. If it is not external, new_symbol
12861 will try to put the value in cu->list_in_scope which is wrong. */
12862 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12863 {
12864 /* A static const member, not much different than an enum as far as
12865 we're concerned, except that we can support more types. */
12866 new_symbol (die, NULL, cu);
12867 }
12868
12869 /* Get physical name. */
12870 physname = dwarf2_physname (fieldname, die, cu);
12871
12872 /* The name is already allocated along with this objfile, so we don't
12873 need to duplicate it for the type. */
12874 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12875 FIELD_TYPE (*fp) = die_type (die, cu);
12876 FIELD_NAME (*fp) = fieldname;
12877 }
12878 else if (die->tag == DW_TAG_inheritance)
12879 {
12880 LONGEST offset;
12881
12882 /* C++ base class field. */
12883 if (handle_data_member_location (die, cu, &offset))
12884 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12885 FIELD_BITSIZE (*fp) = 0;
12886 FIELD_TYPE (*fp) = die_type (die, cu);
12887 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12888 fip->nbaseclasses++;
12889 }
12890 }
12891
12892 /* Add a typedef defined in the scope of the FIP's class. */
12893
12894 static void
12895 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12896 struct dwarf2_cu *cu)
12897 {
12898 struct typedef_field_list *new_field;
12899 struct typedef_field *fp;
12900
12901 /* Allocate a new field list entry and link it in. */
12902 new_field = XCNEW (struct typedef_field_list);
12903 make_cleanup (xfree, new_field);
12904
12905 gdb_assert (die->tag == DW_TAG_typedef);
12906
12907 fp = &new_field->field;
12908
12909 /* Get name of field. */
12910 fp->name = dwarf2_name (die, cu);
12911 if (fp->name == NULL)
12912 return;
12913
12914 fp->type = read_type_die (die, cu);
12915
12916 new_field->next = fip->typedef_field_list;
12917 fip->typedef_field_list = new_field;
12918 fip->typedef_field_list_count++;
12919 }
12920
12921 /* Create the vector of fields, and attach it to the type. */
12922
12923 static void
12924 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12925 struct dwarf2_cu *cu)
12926 {
12927 int nfields = fip->nfields;
12928
12929 /* Record the field count, allocate space for the array of fields,
12930 and create blank accessibility bitfields if necessary. */
12931 TYPE_NFIELDS (type) = nfields;
12932 TYPE_FIELDS (type) = (struct field *)
12933 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12934 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12935
12936 if (fip->non_public_fields && cu->language != language_ada)
12937 {
12938 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12939
12940 TYPE_FIELD_PRIVATE_BITS (type) =
12941 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12942 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12943
12944 TYPE_FIELD_PROTECTED_BITS (type) =
12945 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12946 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12947
12948 TYPE_FIELD_IGNORE_BITS (type) =
12949 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12950 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12951 }
12952
12953 /* If the type has baseclasses, allocate and clear a bit vector for
12954 TYPE_FIELD_VIRTUAL_BITS. */
12955 if (fip->nbaseclasses && cu->language != language_ada)
12956 {
12957 int num_bytes = B_BYTES (fip->nbaseclasses);
12958 unsigned char *pointer;
12959
12960 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12961 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12962 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12963 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12964 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12965 }
12966
12967 /* Copy the saved-up fields into the field vector. Start from the head of
12968 the list, adding to the tail of the field array, so that they end up in
12969 the same order in the array in which they were added to the list. */
12970 while (nfields-- > 0)
12971 {
12972 struct nextfield *fieldp;
12973
12974 if (fip->fields)
12975 {
12976 fieldp = fip->fields;
12977 fip->fields = fieldp->next;
12978 }
12979 else
12980 {
12981 fieldp = fip->baseclasses;
12982 fip->baseclasses = fieldp->next;
12983 }
12984
12985 TYPE_FIELD (type, nfields) = fieldp->field;
12986 switch (fieldp->accessibility)
12987 {
12988 case DW_ACCESS_private:
12989 if (cu->language != language_ada)
12990 SET_TYPE_FIELD_PRIVATE (type, nfields);
12991 break;
12992
12993 case DW_ACCESS_protected:
12994 if (cu->language != language_ada)
12995 SET_TYPE_FIELD_PROTECTED (type, nfields);
12996 break;
12997
12998 case DW_ACCESS_public:
12999 break;
13000
13001 default:
13002 /* Unknown accessibility. Complain and treat it as public. */
13003 {
13004 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13005 fieldp->accessibility);
13006 }
13007 break;
13008 }
13009 if (nfields < fip->nbaseclasses)
13010 {
13011 switch (fieldp->virtuality)
13012 {
13013 case DW_VIRTUALITY_virtual:
13014 case DW_VIRTUALITY_pure_virtual:
13015 if (cu->language == language_ada)
13016 error (_("unexpected virtuality in component of Ada type"));
13017 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13018 break;
13019 }
13020 }
13021 }
13022 }
13023
13024 /* Return true if this member function is a constructor, false
13025 otherwise. */
13026
13027 static int
13028 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13029 {
13030 const char *fieldname;
13031 const char *type_name;
13032 int len;
13033
13034 if (die->parent == NULL)
13035 return 0;
13036
13037 if (die->parent->tag != DW_TAG_structure_type
13038 && die->parent->tag != DW_TAG_union_type
13039 && die->parent->tag != DW_TAG_class_type)
13040 return 0;
13041
13042 fieldname = dwarf2_name (die, cu);
13043 type_name = dwarf2_name (die->parent, cu);
13044 if (fieldname == NULL || type_name == NULL)
13045 return 0;
13046
13047 len = strlen (fieldname);
13048 return (strncmp (fieldname, type_name, len) == 0
13049 && (type_name[len] == '\0' || type_name[len] == '<'));
13050 }
13051
13052 /* Add a member function to the proper fieldlist. */
13053
13054 static void
13055 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13056 struct type *type, struct dwarf2_cu *cu)
13057 {
13058 struct objfile *objfile = cu->objfile;
13059 struct attribute *attr;
13060 struct fnfieldlist *flp;
13061 int i;
13062 struct fn_field *fnp;
13063 const char *fieldname;
13064 struct nextfnfield *new_fnfield;
13065 struct type *this_type;
13066 enum dwarf_access_attribute accessibility;
13067
13068 if (cu->language == language_ada)
13069 error (_("unexpected member function in Ada type"));
13070
13071 /* Get name of member function. */
13072 fieldname = dwarf2_name (die, cu);
13073 if (fieldname == NULL)
13074 return;
13075
13076 /* Look up member function name in fieldlist. */
13077 for (i = 0; i < fip->nfnfields; i++)
13078 {
13079 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13080 break;
13081 }
13082
13083 /* Create new list element if necessary. */
13084 if (i < fip->nfnfields)
13085 flp = &fip->fnfieldlists[i];
13086 else
13087 {
13088 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13089 {
13090 fip->fnfieldlists = (struct fnfieldlist *)
13091 xrealloc (fip->fnfieldlists,
13092 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13093 * sizeof (struct fnfieldlist));
13094 if (fip->nfnfields == 0)
13095 make_cleanup (free_current_contents, &fip->fnfieldlists);
13096 }
13097 flp = &fip->fnfieldlists[fip->nfnfields];
13098 flp->name = fieldname;
13099 flp->length = 0;
13100 flp->head = NULL;
13101 i = fip->nfnfields++;
13102 }
13103
13104 /* Create a new member function field and chain it to the field list
13105 entry. */
13106 new_fnfield = XNEW (struct nextfnfield);
13107 make_cleanup (xfree, new_fnfield);
13108 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13109 new_fnfield->next = flp->head;
13110 flp->head = new_fnfield;
13111 flp->length++;
13112
13113 /* Fill in the member function field info. */
13114 fnp = &new_fnfield->fnfield;
13115
13116 /* Delay processing of the physname until later. */
13117 if (cu->language == language_cplus)
13118 {
13119 add_to_method_list (type, i, flp->length - 1, fieldname,
13120 die, cu);
13121 }
13122 else
13123 {
13124 const char *physname = dwarf2_physname (fieldname, die, cu);
13125 fnp->physname = physname ? physname : "";
13126 }
13127
13128 fnp->type = alloc_type (objfile);
13129 this_type = read_type_die (die, cu);
13130 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13131 {
13132 int nparams = TYPE_NFIELDS (this_type);
13133
13134 /* TYPE is the domain of this method, and THIS_TYPE is the type
13135 of the method itself (TYPE_CODE_METHOD). */
13136 smash_to_method_type (fnp->type, type,
13137 TYPE_TARGET_TYPE (this_type),
13138 TYPE_FIELDS (this_type),
13139 TYPE_NFIELDS (this_type),
13140 TYPE_VARARGS (this_type));
13141
13142 /* Handle static member functions.
13143 Dwarf2 has no clean way to discern C++ static and non-static
13144 member functions. G++ helps GDB by marking the first
13145 parameter for non-static member functions (which is the this
13146 pointer) as artificial. We obtain this information from
13147 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13148 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13149 fnp->voffset = VOFFSET_STATIC;
13150 }
13151 else
13152 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13153 dwarf2_full_name (fieldname, die, cu));
13154
13155 /* Get fcontext from DW_AT_containing_type if present. */
13156 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13157 fnp->fcontext = die_containing_type (die, cu);
13158
13159 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13160 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13161
13162 /* Get accessibility. */
13163 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13164 if (attr)
13165 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13166 else
13167 accessibility = dwarf2_default_access_attribute (die, cu);
13168 switch (accessibility)
13169 {
13170 case DW_ACCESS_private:
13171 fnp->is_private = 1;
13172 break;
13173 case DW_ACCESS_protected:
13174 fnp->is_protected = 1;
13175 break;
13176 }
13177
13178 /* Check for artificial methods. */
13179 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13180 if (attr && DW_UNSND (attr) != 0)
13181 fnp->is_artificial = 1;
13182
13183 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13184
13185 /* Get index in virtual function table if it is a virtual member
13186 function. For older versions of GCC, this is an offset in the
13187 appropriate virtual table, as specified by DW_AT_containing_type.
13188 For everyone else, it is an expression to be evaluated relative
13189 to the object address. */
13190
13191 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13192 if (attr)
13193 {
13194 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13195 {
13196 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13197 {
13198 /* Old-style GCC. */
13199 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13200 }
13201 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13202 || (DW_BLOCK (attr)->size > 1
13203 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13204 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13205 {
13206 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13207 if ((fnp->voffset % cu->header.addr_size) != 0)
13208 dwarf2_complex_location_expr_complaint ();
13209 else
13210 fnp->voffset /= cu->header.addr_size;
13211 fnp->voffset += 2;
13212 }
13213 else
13214 dwarf2_complex_location_expr_complaint ();
13215
13216 if (!fnp->fcontext)
13217 {
13218 /* If there is no `this' field and no DW_AT_containing_type,
13219 we cannot actually find a base class context for the
13220 vtable! */
13221 if (TYPE_NFIELDS (this_type) == 0
13222 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13223 {
13224 complaint (&symfile_complaints,
13225 _("cannot determine context for virtual member "
13226 "function \"%s\" (offset %d)"),
13227 fieldname, die->offset.sect_off);
13228 }
13229 else
13230 {
13231 fnp->fcontext
13232 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13233 }
13234 }
13235 }
13236 else if (attr_form_is_section_offset (attr))
13237 {
13238 dwarf2_complex_location_expr_complaint ();
13239 }
13240 else
13241 {
13242 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13243 fieldname);
13244 }
13245 }
13246 else
13247 {
13248 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13249 if (attr && DW_UNSND (attr))
13250 {
13251 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13252 complaint (&symfile_complaints,
13253 _("Member function \"%s\" (offset %d) is virtual "
13254 "but the vtable offset is not specified"),
13255 fieldname, die->offset.sect_off);
13256 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13257 TYPE_CPLUS_DYNAMIC (type) = 1;
13258 }
13259 }
13260 }
13261
13262 /* Create the vector of member function fields, and attach it to the type. */
13263
13264 static void
13265 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13266 struct dwarf2_cu *cu)
13267 {
13268 struct fnfieldlist *flp;
13269 int i;
13270
13271 if (cu->language == language_ada)
13272 error (_("unexpected member functions in Ada type"));
13273
13274 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13275 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13276 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13277
13278 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13279 {
13280 struct nextfnfield *nfp = flp->head;
13281 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13282 int k;
13283
13284 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13285 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13286 fn_flp->fn_fields = (struct fn_field *)
13287 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13288 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13289 fn_flp->fn_fields[k] = nfp->fnfield;
13290 }
13291
13292 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13293 }
13294
13295 /* Returns non-zero if NAME is the name of a vtable member in CU's
13296 language, zero otherwise. */
13297 static int
13298 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13299 {
13300 static const char vptr[] = "_vptr";
13301 static const char vtable[] = "vtable";
13302
13303 /* Look for the C++ form of the vtable. */
13304 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13305 return 1;
13306
13307 return 0;
13308 }
13309
13310 /* GCC outputs unnamed structures that are really pointers to member
13311 functions, with the ABI-specified layout. If TYPE describes
13312 such a structure, smash it into a member function type.
13313
13314 GCC shouldn't do this; it should just output pointer to member DIEs.
13315 This is GCC PR debug/28767. */
13316
13317 static void
13318 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13319 {
13320 struct type *pfn_type, *self_type, *new_type;
13321
13322 /* Check for a structure with no name and two children. */
13323 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13324 return;
13325
13326 /* Check for __pfn and __delta members. */
13327 if (TYPE_FIELD_NAME (type, 0) == NULL
13328 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13329 || TYPE_FIELD_NAME (type, 1) == NULL
13330 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13331 return;
13332
13333 /* Find the type of the method. */
13334 pfn_type = TYPE_FIELD_TYPE (type, 0);
13335 if (pfn_type == NULL
13336 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13337 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13338 return;
13339
13340 /* Look for the "this" argument. */
13341 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13342 if (TYPE_NFIELDS (pfn_type) == 0
13343 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13344 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13345 return;
13346
13347 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13348 new_type = alloc_type (objfile);
13349 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13350 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13351 TYPE_VARARGS (pfn_type));
13352 smash_to_methodptr_type (type, new_type);
13353 }
13354
13355 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13356 (icc). */
13357
13358 static int
13359 producer_is_icc (struct dwarf2_cu *cu)
13360 {
13361 if (!cu->checked_producer)
13362 check_producer (cu);
13363
13364 return cu->producer_is_icc;
13365 }
13366
13367 /* Called when we find the DIE that starts a structure or union scope
13368 (definition) to create a type for the structure or union. Fill in
13369 the type's name and general properties; the members will not be
13370 processed until process_structure_scope. A symbol table entry for
13371 the type will also not be done until process_structure_scope (assuming
13372 the type has a name).
13373
13374 NOTE: we need to call these functions regardless of whether or not the
13375 DIE has a DW_AT_name attribute, since it might be an anonymous
13376 structure or union. This gets the type entered into our set of
13377 user defined types. */
13378
13379 static struct type *
13380 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13381 {
13382 struct objfile *objfile = cu->objfile;
13383 struct type *type;
13384 struct attribute *attr;
13385 const char *name;
13386
13387 /* If the definition of this type lives in .debug_types, read that type.
13388 Don't follow DW_AT_specification though, that will take us back up
13389 the chain and we want to go down. */
13390 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13391 if (attr)
13392 {
13393 type = get_DW_AT_signature_type (die, attr, cu);
13394
13395 /* The type's CU may not be the same as CU.
13396 Ensure TYPE is recorded with CU in die_type_hash. */
13397 return set_die_type (die, type, cu);
13398 }
13399
13400 type = alloc_type (objfile);
13401 INIT_CPLUS_SPECIFIC (type);
13402
13403 name = dwarf2_name (die, cu);
13404 if (name != NULL)
13405 {
13406 if (cu->language == language_cplus
13407 || cu->language == language_d
13408 || cu->language == language_rust)
13409 {
13410 const char *full_name = dwarf2_full_name (name, die, cu);
13411
13412 /* dwarf2_full_name might have already finished building the DIE's
13413 type. If so, there is no need to continue. */
13414 if (get_die_type (die, cu) != NULL)
13415 return get_die_type (die, cu);
13416
13417 TYPE_TAG_NAME (type) = full_name;
13418 if (die->tag == DW_TAG_structure_type
13419 || die->tag == DW_TAG_class_type)
13420 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13421 }
13422 else
13423 {
13424 /* The name is already allocated along with this objfile, so
13425 we don't need to duplicate it for the type. */
13426 TYPE_TAG_NAME (type) = name;
13427 if (die->tag == DW_TAG_class_type)
13428 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13429 }
13430 }
13431
13432 if (die->tag == DW_TAG_structure_type)
13433 {
13434 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13435 }
13436 else if (die->tag == DW_TAG_union_type)
13437 {
13438 TYPE_CODE (type) = TYPE_CODE_UNION;
13439 }
13440 else
13441 {
13442 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13443 }
13444
13445 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13446 TYPE_DECLARED_CLASS (type) = 1;
13447
13448 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13449 if (attr)
13450 {
13451 if (attr_form_is_constant (attr))
13452 TYPE_LENGTH (type) = DW_UNSND (attr);
13453 else
13454 {
13455 /* For the moment, dynamic type sizes are not supported
13456 by GDB's struct type. The actual size is determined
13457 on-demand when resolving the type of a given object,
13458 so set the type's length to zero for now. Otherwise,
13459 we record an expression as the length, and that expression
13460 could lead to a very large value, which could eventually
13461 lead to us trying to allocate that much memory when creating
13462 a value of that type. */
13463 TYPE_LENGTH (type) = 0;
13464 }
13465 }
13466 else
13467 {
13468 TYPE_LENGTH (type) = 0;
13469 }
13470
13471 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13472 {
13473 /* ICC does not output the required DW_AT_declaration
13474 on incomplete types, but gives them a size of zero. */
13475 TYPE_STUB (type) = 1;
13476 }
13477 else
13478 TYPE_STUB_SUPPORTED (type) = 1;
13479
13480 if (die_is_declaration (die, cu))
13481 TYPE_STUB (type) = 1;
13482 else if (attr == NULL && die->child == NULL
13483 && producer_is_realview (cu->producer))
13484 /* RealView does not output the required DW_AT_declaration
13485 on incomplete types. */
13486 TYPE_STUB (type) = 1;
13487
13488 /* We need to add the type field to the die immediately so we don't
13489 infinitely recurse when dealing with pointers to the structure
13490 type within the structure itself. */
13491 set_die_type (die, type, cu);
13492
13493 /* set_die_type should be already done. */
13494 set_descriptive_type (type, die, cu);
13495
13496 return type;
13497 }
13498
13499 /* Finish creating a structure or union type, including filling in
13500 its members and creating a symbol for it. */
13501
13502 static void
13503 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13504 {
13505 struct objfile *objfile = cu->objfile;
13506 struct die_info *child_die;
13507 struct type *type;
13508
13509 type = get_die_type (die, cu);
13510 if (type == NULL)
13511 type = read_structure_type (die, cu);
13512
13513 if (die->child != NULL && ! die_is_declaration (die, cu))
13514 {
13515 struct field_info fi;
13516 VEC (symbolp) *template_args = NULL;
13517 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13518
13519 memset (&fi, 0, sizeof (struct field_info));
13520
13521 child_die = die->child;
13522
13523 while (child_die && child_die->tag)
13524 {
13525 if (child_die->tag == DW_TAG_member
13526 || child_die->tag == DW_TAG_variable)
13527 {
13528 /* NOTE: carlton/2002-11-05: A C++ static data member
13529 should be a DW_TAG_member that is a declaration, but
13530 all versions of G++ as of this writing (so through at
13531 least 3.2.1) incorrectly generate DW_TAG_variable
13532 tags for them instead. */
13533 dwarf2_add_field (&fi, child_die, cu);
13534 }
13535 else if (child_die->tag == DW_TAG_subprogram)
13536 {
13537 /* Rust doesn't have member functions in the C++ sense.
13538 However, it does emit ordinary functions as children
13539 of a struct DIE. */
13540 if (cu->language == language_rust)
13541 read_func_scope (child_die, cu);
13542 else
13543 {
13544 /* C++ member function. */
13545 dwarf2_add_member_fn (&fi, child_die, type, cu);
13546 }
13547 }
13548 else if (child_die->tag == DW_TAG_inheritance)
13549 {
13550 /* C++ base class field. */
13551 dwarf2_add_field (&fi, child_die, cu);
13552 }
13553 else if (child_die->tag == DW_TAG_typedef)
13554 dwarf2_add_typedef (&fi, child_die, cu);
13555 else if (child_die->tag == DW_TAG_template_type_param
13556 || child_die->tag == DW_TAG_template_value_param)
13557 {
13558 struct symbol *arg = new_symbol (child_die, NULL, cu);
13559
13560 if (arg != NULL)
13561 VEC_safe_push (symbolp, template_args, arg);
13562 }
13563
13564 child_die = sibling_die (child_die);
13565 }
13566
13567 /* Attach template arguments to type. */
13568 if (! VEC_empty (symbolp, template_args))
13569 {
13570 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13571 TYPE_N_TEMPLATE_ARGUMENTS (type)
13572 = VEC_length (symbolp, template_args);
13573 TYPE_TEMPLATE_ARGUMENTS (type)
13574 = XOBNEWVEC (&objfile->objfile_obstack,
13575 struct symbol *,
13576 TYPE_N_TEMPLATE_ARGUMENTS (type));
13577 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13578 VEC_address (symbolp, template_args),
13579 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13580 * sizeof (struct symbol *)));
13581 VEC_free (symbolp, template_args);
13582 }
13583
13584 /* Attach fields and member functions to the type. */
13585 if (fi.nfields)
13586 dwarf2_attach_fields_to_type (&fi, type, cu);
13587 if (fi.nfnfields)
13588 {
13589 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13590
13591 /* Get the type which refers to the base class (possibly this
13592 class itself) which contains the vtable pointer for the current
13593 class from the DW_AT_containing_type attribute. This use of
13594 DW_AT_containing_type is a GNU extension. */
13595
13596 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13597 {
13598 struct type *t = die_containing_type (die, cu);
13599
13600 set_type_vptr_basetype (type, t);
13601 if (type == t)
13602 {
13603 int i;
13604
13605 /* Our own class provides vtbl ptr. */
13606 for (i = TYPE_NFIELDS (t) - 1;
13607 i >= TYPE_N_BASECLASSES (t);
13608 --i)
13609 {
13610 const char *fieldname = TYPE_FIELD_NAME (t, i);
13611
13612 if (is_vtable_name (fieldname, cu))
13613 {
13614 set_type_vptr_fieldno (type, i);
13615 break;
13616 }
13617 }
13618
13619 /* Complain if virtual function table field not found. */
13620 if (i < TYPE_N_BASECLASSES (t))
13621 complaint (&symfile_complaints,
13622 _("virtual function table pointer "
13623 "not found when defining class '%s'"),
13624 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13625 "");
13626 }
13627 else
13628 {
13629 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13630 }
13631 }
13632 else if (cu->producer
13633 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13634 {
13635 /* The IBM XLC compiler does not provide direct indication
13636 of the containing type, but the vtable pointer is
13637 always named __vfp. */
13638
13639 int i;
13640
13641 for (i = TYPE_NFIELDS (type) - 1;
13642 i >= TYPE_N_BASECLASSES (type);
13643 --i)
13644 {
13645 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13646 {
13647 set_type_vptr_fieldno (type, i);
13648 set_type_vptr_basetype (type, type);
13649 break;
13650 }
13651 }
13652 }
13653 }
13654
13655 /* Copy fi.typedef_field_list linked list elements content into the
13656 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13657 if (fi.typedef_field_list)
13658 {
13659 int i = fi.typedef_field_list_count;
13660
13661 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13662 TYPE_TYPEDEF_FIELD_ARRAY (type)
13663 = ((struct typedef_field *)
13664 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13665 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13666
13667 /* Reverse the list order to keep the debug info elements order. */
13668 while (--i >= 0)
13669 {
13670 struct typedef_field *dest, *src;
13671
13672 dest = &TYPE_TYPEDEF_FIELD (type, i);
13673 src = &fi.typedef_field_list->field;
13674 fi.typedef_field_list = fi.typedef_field_list->next;
13675 *dest = *src;
13676 }
13677 }
13678
13679 do_cleanups (back_to);
13680 }
13681
13682 quirk_gcc_member_function_pointer (type, objfile);
13683
13684 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13685 snapshots) has been known to create a die giving a declaration
13686 for a class that has, as a child, a die giving a definition for a
13687 nested class. So we have to process our children even if the
13688 current die is a declaration. Normally, of course, a declaration
13689 won't have any children at all. */
13690
13691 child_die = die->child;
13692
13693 while (child_die != NULL && child_die->tag)
13694 {
13695 if (child_die->tag == DW_TAG_member
13696 || child_die->tag == DW_TAG_variable
13697 || child_die->tag == DW_TAG_inheritance
13698 || child_die->tag == DW_TAG_template_value_param
13699 || child_die->tag == DW_TAG_template_type_param)
13700 {
13701 /* Do nothing. */
13702 }
13703 else
13704 process_die (child_die, cu);
13705
13706 child_die = sibling_die (child_die);
13707 }
13708
13709 /* Do not consider external references. According to the DWARF standard,
13710 these DIEs are identified by the fact that they have no byte_size
13711 attribute, and a declaration attribute. */
13712 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13713 || !die_is_declaration (die, cu))
13714 new_symbol (die, type, cu);
13715 }
13716
13717 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13718 update TYPE using some information only available in DIE's children. */
13719
13720 static void
13721 update_enumeration_type_from_children (struct die_info *die,
13722 struct type *type,
13723 struct dwarf2_cu *cu)
13724 {
13725 struct obstack obstack;
13726 struct die_info *child_die;
13727 int unsigned_enum = 1;
13728 int flag_enum = 1;
13729 ULONGEST mask = 0;
13730 struct cleanup *old_chain;
13731
13732 obstack_init (&obstack);
13733 old_chain = make_cleanup_obstack_free (&obstack);
13734
13735 for (child_die = die->child;
13736 child_die != NULL && child_die->tag;
13737 child_die = sibling_die (child_die))
13738 {
13739 struct attribute *attr;
13740 LONGEST value;
13741 const gdb_byte *bytes;
13742 struct dwarf2_locexpr_baton *baton;
13743 const char *name;
13744
13745 if (child_die->tag != DW_TAG_enumerator)
13746 continue;
13747
13748 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13749 if (attr == NULL)
13750 continue;
13751
13752 name = dwarf2_name (child_die, cu);
13753 if (name == NULL)
13754 name = "<anonymous enumerator>";
13755
13756 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13757 &value, &bytes, &baton);
13758 if (value < 0)
13759 {
13760 unsigned_enum = 0;
13761 flag_enum = 0;
13762 }
13763 else if ((mask & value) != 0)
13764 flag_enum = 0;
13765 else
13766 mask |= value;
13767
13768 /* If we already know that the enum type is neither unsigned, nor
13769 a flag type, no need to look at the rest of the enumerates. */
13770 if (!unsigned_enum && !flag_enum)
13771 break;
13772 }
13773
13774 if (unsigned_enum)
13775 TYPE_UNSIGNED (type) = 1;
13776 if (flag_enum)
13777 TYPE_FLAG_ENUM (type) = 1;
13778
13779 do_cleanups (old_chain);
13780 }
13781
13782 /* Given a DW_AT_enumeration_type die, set its type. We do not
13783 complete the type's fields yet, or create any symbols. */
13784
13785 static struct type *
13786 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13787 {
13788 struct objfile *objfile = cu->objfile;
13789 struct type *type;
13790 struct attribute *attr;
13791 const char *name;
13792
13793 /* If the definition of this type lives in .debug_types, read that type.
13794 Don't follow DW_AT_specification though, that will take us back up
13795 the chain and we want to go down. */
13796 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13797 if (attr)
13798 {
13799 type = get_DW_AT_signature_type (die, attr, cu);
13800
13801 /* The type's CU may not be the same as CU.
13802 Ensure TYPE is recorded with CU in die_type_hash. */
13803 return set_die_type (die, type, cu);
13804 }
13805
13806 type = alloc_type (objfile);
13807
13808 TYPE_CODE (type) = TYPE_CODE_ENUM;
13809 name = dwarf2_full_name (NULL, die, cu);
13810 if (name != NULL)
13811 TYPE_TAG_NAME (type) = name;
13812
13813 attr = dwarf2_attr (die, DW_AT_type, cu);
13814 if (attr != NULL)
13815 {
13816 struct type *underlying_type = die_type (die, cu);
13817
13818 TYPE_TARGET_TYPE (type) = underlying_type;
13819 }
13820
13821 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13822 if (attr)
13823 {
13824 TYPE_LENGTH (type) = DW_UNSND (attr);
13825 }
13826 else
13827 {
13828 TYPE_LENGTH (type) = 0;
13829 }
13830
13831 /* The enumeration DIE can be incomplete. In Ada, any type can be
13832 declared as private in the package spec, and then defined only
13833 inside the package body. Such types are known as Taft Amendment
13834 Types. When another package uses such a type, an incomplete DIE
13835 may be generated by the compiler. */
13836 if (die_is_declaration (die, cu))
13837 TYPE_STUB (type) = 1;
13838
13839 /* Finish the creation of this type by using the enum's children.
13840 We must call this even when the underlying type has been provided
13841 so that we can determine if we're looking at a "flag" enum. */
13842 update_enumeration_type_from_children (die, type, cu);
13843
13844 /* If this type has an underlying type that is not a stub, then we
13845 may use its attributes. We always use the "unsigned" attribute
13846 in this situation, because ordinarily we guess whether the type
13847 is unsigned -- but the guess can be wrong and the underlying type
13848 can tell us the reality. However, we defer to a local size
13849 attribute if one exists, because this lets the compiler override
13850 the underlying type if needed. */
13851 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13852 {
13853 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13854 if (TYPE_LENGTH (type) == 0)
13855 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13856 }
13857
13858 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13859
13860 return set_die_type (die, type, cu);
13861 }
13862
13863 /* Given a pointer to a die which begins an enumeration, process all
13864 the dies that define the members of the enumeration, and create the
13865 symbol for the enumeration type.
13866
13867 NOTE: We reverse the order of the element list. */
13868
13869 static void
13870 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13871 {
13872 struct type *this_type;
13873
13874 this_type = get_die_type (die, cu);
13875 if (this_type == NULL)
13876 this_type = read_enumeration_type (die, cu);
13877
13878 if (die->child != NULL)
13879 {
13880 struct die_info *child_die;
13881 struct symbol *sym;
13882 struct field *fields = NULL;
13883 int num_fields = 0;
13884 const char *name;
13885
13886 child_die = die->child;
13887 while (child_die && child_die->tag)
13888 {
13889 if (child_die->tag != DW_TAG_enumerator)
13890 {
13891 process_die (child_die, cu);
13892 }
13893 else
13894 {
13895 name = dwarf2_name (child_die, cu);
13896 if (name)
13897 {
13898 sym = new_symbol (child_die, this_type, cu);
13899
13900 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13901 {
13902 fields = (struct field *)
13903 xrealloc (fields,
13904 (num_fields + DW_FIELD_ALLOC_CHUNK)
13905 * sizeof (struct field));
13906 }
13907
13908 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13909 FIELD_TYPE (fields[num_fields]) = NULL;
13910 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13911 FIELD_BITSIZE (fields[num_fields]) = 0;
13912
13913 num_fields++;
13914 }
13915 }
13916
13917 child_die = sibling_die (child_die);
13918 }
13919
13920 if (num_fields)
13921 {
13922 TYPE_NFIELDS (this_type) = num_fields;
13923 TYPE_FIELDS (this_type) = (struct field *)
13924 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13925 memcpy (TYPE_FIELDS (this_type), fields,
13926 sizeof (struct field) * num_fields);
13927 xfree (fields);
13928 }
13929 }
13930
13931 /* If we are reading an enum from a .debug_types unit, and the enum
13932 is a declaration, and the enum is not the signatured type in the
13933 unit, then we do not want to add a symbol for it. Adding a
13934 symbol would in some cases obscure the true definition of the
13935 enum, giving users an incomplete type when the definition is
13936 actually available. Note that we do not want to do this for all
13937 enums which are just declarations, because C++0x allows forward
13938 enum declarations. */
13939 if (cu->per_cu->is_debug_types
13940 && die_is_declaration (die, cu))
13941 {
13942 struct signatured_type *sig_type;
13943
13944 sig_type = (struct signatured_type *) cu->per_cu;
13945 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13946 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13947 return;
13948 }
13949
13950 new_symbol (die, this_type, cu);
13951 }
13952
13953 /* Extract all information from a DW_TAG_array_type DIE and put it in
13954 the DIE's type field. For now, this only handles one dimensional
13955 arrays. */
13956
13957 static struct type *
13958 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13959 {
13960 struct objfile *objfile = cu->objfile;
13961 struct die_info *child_die;
13962 struct type *type;
13963 struct type *element_type, *range_type, *index_type;
13964 struct type **range_types = NULL;
13965 struct attribute *attr;
13966 int ndim = 0;
13967 struct cleanup *back_to;
13968 const char *name;
13969 unsigned int bit_stride = 0;
13970
13971 element_type = die_type (die, cu);
13972
13973 /* The die_type call above may have already set the type for this DIE. */
13974 type = get_die_type (die, cu);
13975 if (type)
13976 return type;
13977
13978 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13979 if (attr != NULL)
13980 bit_stride = DW_UNSND (attr) * 8;
13981
13982 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13983 if (attr != NULL)
13984 bit_stride = DW_UNSND (attr);
13985
13986 /* Irix 6.2 native cc creates array types without children for
13987 arrays with unspecified length. */
13988 if (die->child == NULL)
13989 {
13990 index_type = objfile_type (objfile)->builtin_int;
13991 range_type = create_static_range_type (NULL, index_type, 0, -1);
13992 type = create_array_type_with_stride (NULL, element_type, range_type,
13993 bit_stride);
13994 return set_die_type (die, type, cu);
13995 }
13996
13997 back_to = make_cleanup (null_cleanup, NULL);
13998 child_die = die->child;
13999 while (child_die && child_die->tag)
14000 {
14001 if (child_die->tag == DW_TAG_subrange_type)
14002 {
14003 struct type *child_type = read_type_die (child_die, cu);
14004
14005 if (child_type != NULL)
14006 {
14007 /* The range type was succesfully read. Save it for the
14008 array type creation. */
14009 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14010 {
14011 range_types = (struct type **)
14012 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14013 * sizeof (struct type *));
14014 if (ndim == 0)
14015 make_cleanup (free_current_contents, &range_types);
14016 }
14017 range_types[ndim++] = child_type;
14018 }
14019 }
14020 child_die = sibling_die (child_die);
14021 }
14022
14023 /* Dwarf2 dimensions are output from left to right, create the
14024 necessary array types in backwards order. */
14025
14026 type = element_type;
14027
14028 if (read_array_order (die, cu) == DW_ORD_col_major)
14029 {
14030 int i = 0;
14031
14032 while (i < ndim)
14033 type = create_array_type_with_stride (NULL, type, range_types[i++],
14034 bit_stride);
14035 }
14036 else
14037 {
14038 while (ndim-- > 0)
14039 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14040 bit_stride);
14041 }
14042
14043 /* Understand Dwarf2 support for vector types (like they occur on
14044 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14045 array type. This is not part of the Dwarf2/3 standard yet, but a
14046 custom vendor extension. The main difference between a regular
14047 array and the vector variant is that vectors are passed by value
14048 to functions. */
14049 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14050 if (attr)
14051 make_vector_type (type);
14052
14053 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14054 implementation may choose to implement triple vectors using this
14055 attribute. */
14056 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14057 if (attr)
14058 {
14059 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14060 TYPE_LENGTH (type) = DW_UNSND (attr);
14061 else
14062 complaint (&symfile_complaints,
14063 _("DW_AT_byte_size for array type smaller "
14064 "than the total size of elements"));
14065 }
14066
14067 name = dwarf2_name (die, cu);
14068 if (name)
14069 TYPE_NAME (type) = name;
14070
14071 /* Install the type in the die. */
14072 set_die_type (die, type, cu);
14073
14074 /* set_die_type should be already done. */
14075 set_descriptive_type (type, die, cu);
14076
14077 do_cleanups (back_to);
14078
14079 return type;
14080 }
14081
14082 static enum dwarf_array_dim_ordering
14083 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14084 {
14085 struct attribute *attr;
14086
14087 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14088
14089 if (attr)
14090 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14091
14092 /* GNU F77 is a special case, as at 08/2004 array type info is the
14093 opposite order to the dwarf2 specification, but data is still
14094 laid out as per normal fortran.
14095
14096 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14097 version checking. */
14098
14099 if (cu->language == language_fortran
14100 && cu->producer && strstr (cu->producer, "GNU F77"))
14101 {
14102 return DW_ORD_row_major;
14103 }
14104
14105 switch (cu->language_defn->la_array_ordering)
14106 {
14107 case array_column_major:
14108 return DW_ORD_col_major;
14109 case array_row_major:
14110 default:
14111 return DW_ORD_row_major;
14112 };
14113 }
14114
14115 /* Extract all information from a DW_TAG_set_type DIE and put it in
14116 the DIE's type field. */
14117
14118 static struct type *
14119 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14120 {
14121 struct type *domain_type, *set_type;
14122 struct attribute *attr;
14123
14124 domain_type = die_type (die, cu);
14125
14126 /* The die_type call above may have already set the type for this DIE. */
14127 set_type = get_die_type (die, cu);
14128 if (set_type)
14129 return set_type;
14130
14131 set_type = create_set_type (NULL, domain_type);
14132
14133 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14134 if (attr)
14135 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14136
14137 return set_die_type (die, set_type, cu);
14138 }
14139
14140 /* A helper for read_common_block that creates a locexpr baton.
14141 SYM is the symbol which we are marking as computed.
14142 COMMON_DIE is the DIE for the common block.
14143 COMMON_LOC is the location expression attribute for the common
14144 block itself.
14145 MEMBER_LOC is the location expression attribute for the particular
14146 member of the common block that we are processing.
14147 CU is the CU from which the above come. */
14148
14149 static void
14150 mark_common_block_symbol_computed (struct symbol *sym,
14151 struct die_info *common_die,
14152 struct attribute *common_loc,
14153 struct attribute *member_loc,
14154 struct dwarf2_cu *cu)
14155 {
14156 struct objfile *objfile = dwarf2_per_objfile->objfile;
14157 struct dwarf2_locexpr_baton *baton;
14158 gdb_byte *ptr;
14159 unsigned int cu_off;
14160 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14161 LONGEST offset = 0;
14162
14163 gdb_assert (common_loc && member_loc);
14164 gdb_assert (attr_form_is_block (common_loc));
14165 gdb_assert (attr_form_is_block (member_loc)
14166 || attr_form_is_constant (member_loc));
14167
14168 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14169 baton->per_cu = cu->per_cu;
14170 gdb_assert (baton->per_cu);
14171
14172 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14173
14174 if (attr_form_is_constant (member_loc))
14175 {
14176 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14177 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14178 }
14179 else
14180 baton->size += DW_BLOCK (member_loc)->size;
14181
14182 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14183 baton->data = ptr;
14184
14185 *ptr++ = DW_OP_call4;
14186 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
14187 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14188 ptr += 4;
14189
14190 if (attr_form_is_constant (member_loc))
14191 {
14192 *ptr++ = DW_OP_addr;
14193 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14194 ptr += cu->header.addr_size;
14195 }
14196 else
14197 {
14198 /* We have to copy the data here, because DW_OP_call4 will only
14199 use a DW_AT_location attribute. */
14200 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14201 ptr += DW_BLOCK (member_loc)->size;
14202 }
14203
14204 *ptr++ = DW_OP_plus;
14205 gdb_assert (ptr - baton->data == baton->size);
14206
14207 SYMBOL_LOCATION_BATON (sym) = baton;
14208 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14209 }
14210
14211 /* Create appropriate locally-scoped variables for all the
14212 DW_TAG_common_block entries. Also create a struct common_block
14213 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14214 is used to sepate the common blocks name namespace from regular
14215 variable names. */
14216
14217 static void
14218 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14219 {
14220 struct attribute *attr;
14221
14222 attr = dwarf2_attr (die, DW_AT_location, cu);
14223 if (attr)
14224 {
14225 /* Support the .debug_loc offsets. */
14226 if (attr_form_is_block (attr))
14227 {
14228 /* Ok. */
14229 }
14230 else if (attr_form_is_section_offset (attr))
14231 {
14232 dwarf2_complex_location_expr_complaint ();
14233 attr = NULL;
14234 }
14235 else
14236 {
14237 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14238 "common block member");
14239 attr = NULL;
14240 }
14241 }
14242
14243 if (die->child != NULL)
14244 {
14245 struct objfile *objfile = cu->objfile;
14246 struct die_info *child_die;
14247 size_t n_entries = 0, size;
14248 struct common_block *common_block;
14249 struct symbol *sym;
14250
14251 for (child_die = die->child;
14252 child_die && child_die->tag;
14253 child_die = sibling_die (child_die))
14254 ++n_entries;
14255
14256 size = (sizeof (struct common_block)
14257 + (n_entries - 1) * sizeof (struct symbol *));
14258 common_block
14259 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14260 size);
14261 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14262 common_block->n_entries = 0;
14263
14264 for (child_die = die->child;
14265 child_die && child_die->tag;
14266 child_die = sibling_die (child_die))
14267 {
14268 /* Create the symbol in the DW_TAG_common_block block in the current
14269 symbol scope. */
14270 sym = new_symbol (child_die, NULL, cu);
14271 if (sym != NULL)
14272 {
14273 struct attribute *member_loc;
14274
14275 common_block->contents[common_block->n_entries++] = sym;
14276
14277 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14278 cu);
14279 if (member_loc)
14280 {
14281 /* GDB has handled this for a long time, but it is
14282 not specified by DWARF. It seems to have been
14283 emitted by gfortran at least as recently as:
14284 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14285 complaint (&symfile_complaints,
14286 _("Variable in common block has "
14287 "DW_AT_data_member_location "
14288 "- DIE at 0x%x [in module %s]"),
14289 child_die->offset.sect_off,
14290 objfile_name (cu->objfile));
14291
14292 if (attr_form_is_section_offset (member_loc))
14293 dwarf2_complex_location_expr_complaint ();
14294 else if (attr_form_is_constant (member_loc)
14295 || attr_form_is_block (member_loc))
14296 {
14297 if (attr)
14298 mark_common_block_symbol_computed (sym, die, attr,
14299 member_loc, cu);
14300 }
14301 else
14302 dwarf2_complex_location_expr_complaint ();
14303 }
14304 }
14305 }
14306
14307 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14308 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14309 }
14310 }
14311
14312 /* Create a type for a C++ namespace. */
14313
14314 static struct type *
14315 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14316 {
14317 struct objfile *objfile = cu->objfile;
14318 const char *previous_prefix, *name;
14319 int is_anonymous;
14320 struct type *type;
14321
14322 /* For extensions, reuse the type of the original namespace. */
14323 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14324 {
14325 struct die_info *ext_die;
14326 struct dwarf2_cu *ext_cu = cu;
14327
14328 ext_die = dwarf2_extension (die, &ext_cu);
14329 type = read_type_die (ext_die, ext_cu);
14330
14331 /* EXT_CU may not be the same as CU.
14332 Ensure TYPE is recorded with CU in die_type_hash. */
14333 return set_die_type (die, type, cu);
14334 }
14335
14336 name = namespace_name (die, &is_anonymous, cu);
14337
14338 /* Now build the name of the current namespace. */
14339
14340 previous_prefix = determine_prefix (die, cu);
14341 if (previous_prefix[0] != '\0')
14342 name = typename_concat (&objfile->objfile_obstack,
14343 previous_prefix, name, 0, cu);
14344
14345 /* Create the type. */
14346 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14347 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14348
14349 return set_die_type (die, type, cu);
14350 }
14351
14352 /* Read a namespace scope. */
14353
14354 static void
14355 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14356 {
14357 struct objfile *objfile = cu->objfile;
14358 int is_anonymous;
14359
14360 /* Add a symbol associated to this if we haven't seen the namespace
14361 before. Also, add a using directive if it's an anonymous
14362 namespace. */
14363
14364 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14365 {
14366 struct type *type;
14367
14368 type = read_type_die (die, cu);
14369 new_symbol (die, type, cu);
14370
14371 namespace_name (die, &is_anonymous, cu);
14372 if (is_anonymous)
14373 {
14374 const char *previous_prefix = determine_prefix (die, cu);
14375
14376 add_using_directive (using_directives (cu->language),
14377 previous_prefix, TYPE_NAME (type), NULL,
14378 NULL, NULL, 0, &objfile->objfile_obstack);
14379 }
14380 }
14381
14382 if (die->child != NULL)
14383 {
14384 struct die_info *child_die = die->child;
14385
14386 while (child_die && child_die->tag)
14387 {
14388 process_die (child_die, cu);
14389 child_die = sibling_die (child_die);
14390 }
14391 }
14392 }
14393
14394 /* Read a Fortran module as type. This DIE can be only a declaration used for
14395 imported module. Still we need that type as local Fortran "use ... only"
14396 declaration imports depend on the created type in determine_prefix. */
14397
14398 static struct type *
14399 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14400 {
14401 struct objfile *objfile = cu->objfile;
14402 const char *module_name;
14403 struct type *type;
14404
14405 module_name = dwarf2_name (die, cu);
14406 if (!module_name)
14407 complaint (&symfile_complaints,
14408 _("DW_TAG_module has no name, offset 0x%x"),
14409 die->offset.sect_off);
14410 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14411
14412 /* determine_prefix uses TYPE_TAG_NAME. */
14413 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14414
14415 return set_die_type (die, type, cu);
14416 }
14417
14418 /* Read a Fortran module. */
14419
14420 static void
14421 read_module (struct die_info *die, struct dwarf2_cu *cu)
14422 {
14423 struct die_info *child_die = die->child;
14424 struct type *type;
14425
14426 type = read_type_die (die, cu);
14427 new_symbol (die, type, cu);
14428
14429 while (child_die && child_die->tag)
14430 {
14431 process_die (child_die, cu);
14432 child_die = sibling_die (child_die);
14433 }
14434 }
14435
14436 /* Return the name of the namespace represented by DIE. Set
14437 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14438 namespace. */
14439
14440 static const char *
14441 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14442 {
14443 struct die_info *current_die;
14444 const char *name = NULL;
14445
14446 /* Loop through the extensions until we find a name. */
14447
14448 for (current_die = die;
14449 current_die != NULL;
14450 current_die = dwarf2_extension (die, &cu))
14451 {
14452 /* We don't use dwarf2_name here so that we can detect the absence
14453 of a name -> anonymous namespace. */
14454 name = dwarf2_string_attr (die, DW_AT_name, cu);
14455
14456 if (name != NULL)
14457 break;
14458 }
14459
14460 /* Is it an anonymous namespace? */
14461
14462 *is_anonymous = (name == NULL);
14463 if (*is_anonymous)
14464 name = CP_ANONYMOUS_NAMESPACE_STR;
14465
14466 return name;
14467 }
14468
14469 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14470 the user defined type vector. */
14471
14472 static struct type *
14473 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14474 {
14475 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14476 struct comp_unit_head *cu_header = &cu->header;
14477 struct type *type;
14478 struct attribute *attr_byte_size;
14479 struct attribute *attr_address_class;
14480 int byte_size, addr_class;
14481 struct type *target_type;
14482
14483 target_type = die_type (die, cu);
14484
14485 /* The die_type call above may have already set the type for this DIE. */
14486 type = get_die_type (die, cu);
14487 if (type)
14488 return type;
14489
14490 type = lookup_pointer_type (target_type);
14491
14492 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14493 if (attr_byte_size)
14494 byte_size = DW_UNSND (attr_byte_size);
14495 else
14496 byte_size = cu_header->addr_size;
14497
14498 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14499 if (attr_address_class)
14500 addr_class = DW_UNSND (attr_address_class);
14501 else
14502 addr_class = DW_ADDR_none;
14503
14504 /* If the pointer size or address class is different than the
14505 default, create a type variant marked as such and set the
14506 length accordingly. */
14507 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14508 {
14509 if (gdbarch_address_class_type_flags_p (gdbarch))
14510 {
14511 int type_flags;
14512
14513 type_flags = gdbarch_address_class_type_flags
14514 (gdbarch, byte_size, addr_class);
14515 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14516 == 0);
14517 type = make_type_with_address_space (type, type_flags);
14518 }
14519 else if (TYPE_LENGTH (type) != byte_size)
14520 {
14521 complaint (&symfile_complaints,
14522 _("invalid pointer size %d"), byte_size);
14523 }
14524 else
14525 {
14526 /* Should we also complain about unhandled address classes? */
14527 }
14528 }
14529
14530 TYPE_LENGTH (type) = byte_size;
14531 return set_die_type (die, type, cu);
14532 }
14533
14534 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14535 the user defined type vector. */
14536
14537 static struct type *
14538 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14539 {
14540 struct type *type;
14541 struct type *to_type;
14542 struct type *domain;
14543
14544 to_type = die_type (die, cu);
14545 domain = die_containing_type (die, cu);
14546
14547 /* The calls above may have already set the type for this DIE. */
14548 type = get_die_type (die, cu);
14549 if (type)
14550 return type;
14551
14552 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14553 type = lookup_methodptr_type (to_type);
14554 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14555 {
14556 struct type *new_type = alloc_type (cu->objfile);
14557
14558 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14559 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14560 TYPE_VARARGS (to_type));
14561 type = lookup_methodptr_type (new_type);
14562 }
14563 else
14564 type = lookup_memberptr_type (to_type, domain);
14565
14566 return set_die_type (die, type, cu);
14567 }
14568
14569 /* Extract all information from a DW_TAG_reference_type DIE and add to
14570 the user defined type vector. */
14571
14572 static struct type *
14573 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14574 {
14575 struct comp_unit_head *cu_header = &cu->header;
14576 struct type *type, *target_type;
14577 struct attribute *attr;
14578
14579 target_type = die_type (die, cu);
14580
14581 /* The die_type call above may have already set the type for this DIE. */
14582 type = get_die_type (die, cu);
14583 if (type)
14584 return type;
14585
14586 type = lookup_reference_type (target_type);
14587 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14588 if (attr)
14589 {
14590 TYPE_LENGTH (type) = DW_UNSND (attr);
14591 }
14592 else
14593 {
14594 TYPE_LENGTH (type) = cu_header->addr_size;
14595 }
14596 return set_die_type (die, type, cu);
14597 }
14598
14599 /* Add the given cv-qualifiers to the element type of the array. GCC
14600 outputs DWARF type qualifiers that apply to an array, not the
14601 element type. But GDB relies on the array element type to carry
14602 the cv-qualifiers. This mimics section 6.7.3 of the C99
14603 specification. */
14604
14605 static struct type *
14606 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14607 struct type *base_type, int cnst, int voltl)
14608 {
14609 struct type *el_type, *inner_array;
14610
14611 base_type = copy_type (base_type);
14612 inner_array = base_type;
14613
14614 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14615 {
14616 TYPE_TARGET_TYPE (inner_array) =
14617 copy_type (TYPE_TARGET_TYPE (inner_array));
14618 inner_array = TYPE_TARGET_TYPE (inner_array);
14619 }
14620
14621 el_type = TYPE_TARGET_TYPE (inner_array);
14622 cnst |= TYPE_CONST (el_type);
14623 voltl |= TYPE_VOLATILE (el_type);
14624 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14625
14626 return set_die_type (die, base_type, cu);
14627 }
14628
14629 static struct type *
14630 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14631 {
14632 struct type *base_type, *cv_type;
14633
14634 base_type = die_type (die, cu);
14635
14636 /* The die_type call above may have already set the type for this DIE. */
14637 cv_type = get_die_type (die, cu);
14638 if (cv_type)
14639 return cv_type;
14640
14641 /* In case the const qualifier is applied to an array type, the element type
14642 is so qualified, not the array type (section 6.7.3 of C99). */
14643 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14644 return add_array_cv_type (die, cu, base_type, 1, 0);
14645
14646 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14647 return set_die_type (die, cv_type, cu);
14648 }
14649
14650 static struct type *
14651 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14652 {
14653 struct type *base_type, *cv_type;
14654
14655 base_type = die_type (die, cu);
14656
14657 /* The die_type call above may have already set the type for this DIE. */
14658 cv_type = get_die_type (die, cu);
14659 if (cv_type)
14660 return cv_type;
14661
14662 /* In case the volatile qualifier is applied to an array type, the
14663 element type is so qualified, not the array type (section 6.7.3
14664 of C99). */
14665 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14666 return add_array_cv_type (die, cu, base_type, 0, 1);
14667
14668 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14669 return set_die_type (die, cv_type, cu);
14670 }
14671
14672 /* Handle DW_TAG_restrict_type. */
14673
14674 static struct type *
14675 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14676 {
14677 struct type *base_type, *cv_type;
14678
14679 base_type = die_type (die, cu);
14680
14681 /* The die_type call above may have already set the type for this DIE. */
14682 cv_type = get_die_type (die, cu);
14683 if (cv_type)
14684 return cv_type;
14685
14686 cv_type = make_restrict_type (base_type);
14687 return set_die_type (die, cv_type, cu);
14688 }
14689
14690 /* Handle DW_TAG_atomic_type. */
14691
14692 static struct type *
14693 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14694 {
14695 struct type *base_type, *cv_type;
14696
14697 base_type = die_type (die, cu);
14698
14699 /* The die_type call above may have already set the type for this DIE. */
14700 cv_type = get_die_type (die, cu);
14701 if (cv_type)
14702 return cv_type;
14703
14704 cv_type = make_atomic_type (base_type);
14705 return set_die_type (die, cv_type, cu);
14706 }
14707
14708 /* Extract all information from a DW_TAG_string_type DIE and add to
14709 the user defined type vector. It isn't really a user defined type,
14710 but it behaves like one, with other DIE's using an AT_user_def_type
14711 attribute to reference it. */
14712
14713 static struct type *
14714 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14715 {
14716 struct objfile *objfile = cu->objfile;
14717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14718 struct type *type, *range_type, *index_type, *char_type;
14719 struct attribute *attr;
14720 unsigned int length;
14721
14722 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14723 if (attr)
14724 {
14725 length = DW_UNSND (attr);
14726 }
14727 else
14728 {
14729 /* Check for the DW_AT_byte_size attribute. */
14730 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14731 if (attr)
14732 {
14733 length = DW_UNSND (attr);
14734 }
14735 else
14736 {
14737 length = 1;
14738 }
14739 }
14740
14741 index_type = objfile_type (objfile)->builtin_int;
14742 range_type = create_static_range_type (NULL, index_type, 1, length);
14743 char_type = language_string_char_type (cu->language_defn, gdbarch);
14744 type = create_string_type (NULL, char_type, range_type);
14745
14746 return set_die_type (die, type, cu);
14747 }
14748
14749 /* Assuming that DIE corresponds to a function, returns nonzero
14750 if the function is prototyped. */
14751
14752 static int
14753 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14754 {
14755 struct attribute *attr;
14756
14757 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14758 if (attr && (DW_UNSND (attr) != 0))
14759 return 1;
14760
14761 /* The DWARF standard implies that the DW_AT_prototyped attribute
14762 is only meaninful for C, but the concept also extends to other
14763 languages that allow unprototyped functions (Eg: Objective C).
14764 For all other languages, assume that functions are always
14765 prototyped. */
14766 if (cu->language != language_c
14767 && cu->language != language_objc
14768 && cu->language != language_opencl)
14769 return 1;
14770
14771 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14772 prototyped and unprototyped functions; default to prototyped,
14773 since that is more common in modern code (and RealView warns
14774 about unprototyped functions). */
14775 if (producer_is_realview (cu->producer))
14776 return 1;
14777
14778 return 0;
14779 }
14780
14781 /* Handle DIES due to C code like:
14782
14783 struct foo
14784 {
14785 int (*funcp)(int a, long l);
14786 int b;
14787 };
14788
14789 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14790
14791 static struct type *
14792 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14793 {
14794 struct objfile *objfile = cu->objfile;
14795 struct type *type; /* Type that this function returns. */
14796 struct type *ftype; /* Function that returns above type. */
14797 struct attribute *attr;
14798
14799 type = die_type (die, cu);
14800
14801 /* The die_type call above may have already set the type for this DIE. */
14802 ftype = get_die_type (die, cu);
14803 if (ftype)
14804 return ftype;
14805
14806 ftype = lookup_function_type (type);
14807
14808 if (prototyped_function_p (die, cu))
14809 TYPE_PROTOTYPED (ftype) = 1;
14810
14811 /* Store the calling convention in the type if it's available in
14812 the subroutine die. Otherwise set the calling convention to
14813 the default value DW_CC_normal. */
14814 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14815 if (attr)
14816 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14817 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14818 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14819 else
14820 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14821
14822 /* Record whether the function returns normally to its caller or not
14823 if the DWARF producer set that information. */
14824 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14825 if (attr && (DW_UNSND (attr) != 0))
14826 TYPE_NO_RETURN (ftype) = 1;
14827
14828 /* We need to add the subroutine type to the die immediately so
14829 we don't infinitely recurse when dealing with parameters
14830 declared as the same subroutine type. */
14831 set_die_type (die, ftype, cu);
14832
14833 if (die->child != NULL)
14834 {
14835 struct type *void_type = objfile_type (objfile)->builtin_void;
14836 struct die_info *child_die;
14837 int nparams, iparams;
14838
14839 /* Count the number of parameters.
14840 FIXME: GDB currently ignores vararg functions, but knows about
14841 vararg member functions. */
14842 nparams = 0;
14843 child_die = die->child;
14844 while (child_die && child_die->tag)
14845 {
14846 if (child_die->tag == DW_TAG_formal_parameter)
14847 nparams++;
14848 else if (child_die->tag == DW_TAG_unspecified_parameters)
14849 TYPE_VARARGS (ftype) = 1;
14850 child_die = sibling_die (child_die);
14851 }
14852
14853 /* Allocate storage for parameters and fill them in. */
14854 TYPE_NFIELDS (ftype) = nparams;
14855 TYPE_FIELDS (ftype) = (struct field *)
14856 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14857
14858 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14859 even if we error out during the parameters reading below. */
14860 for (iparams = 0; iparams < nparams; iparams++)
14861 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14862
14863 iparams = 0;
14864 child_die = die->child;
14865 while (child_die && child_die->tag)
14866 {
14867 if (child_die->tag == DW_TAG_formal_parameter)
14868 {
14869 struct type *arg_type;
14870
14871 /* DWARF version 2 has no clean way to discern C++
14872 static and non-static member functions. G++ helps
14873 GDB by marking the first parameter for non-static
14874 member functions (which is the this pointer) as
14875 artificial. We pass this information to
14876 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14877
14878 DWARF version 3 added DW_AT_object_pointer, which GCC
14879 4.5 does not yet generate. */
14880 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14881 if (attr)
14882 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14883 else
14884 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14885 arg_type = die_type (child_die, cu);
14886
14887 /* RealView does not mark THIS as const, which the testsuite
14888 expects. GCC marks THIS as const in method definitions,
14889 but not in the class specifications (GCC PR 43053). */
14890 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14891 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14892 {
14893 int is_this = 0;
14894 struct dwarf2_cu *arg_cu = cu;
14895 const char *name = dwarf2_name (child_die, cu);
14896
14897 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14898 if (attr)
14899 {
14900 /* If the compiler emits this, use it. */
14901 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14902 is_this = 1;
14903 }
14904 else if (name && strcmp (name, "this") == 0)
14905 /* Function definitions will have the argument names. */
14906 is_this = 1;
14907 else if (name == NULL && iparams == 0)
14908 /* Declarations may not have the names, so like
14909 elsewhere in GDB, assume an artificial first
14910 argument is "this". */
14911 is_this = 1;
14912
14913 if (is_this)
14914 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14915 arg_type, 0);
14916 }
14917
14918 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14919 iparams++;
14920 }
14921 child_die = sibling_die (child_die);
14922 }
14923 }
14924
14925 return ftype;
14926 }
14927
14928 static struct type *
14929 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14930 {
14931 struct objfile *objfile = cu->objfile;
14932 const char *name = NULL;
14933 struct type *this_type, *target_type;
14934
14935 name = dwarf2_full_name (NULL, die, cu);
14936 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14937 TYPE_TARGET_STUB (this_type) = 1;
14938 set_die_type (die, this_type, cu);
14939 target_type = die_type (die, cu);
14940 if (target_type != this_type)
14941 TYPE_TARGET_TYPE (this_type) = target_type;
14942 else
14943 {
14944 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14945 spec and cause infinite loops in GDB. */
14946 complaint (&symfile_complaints,
14947 _("Self-referential DW_TAG_typedef "
14948 "- DIE at 0x%x [in module %s]"),
14949 die->offset.sect_off, objfile_name (objfile));
14950 TYPE_TARGET_TYPE (this_type) = NULL;
14951 }
14952 return this_type;
14953 }
14954
14955 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14956 (which may be different from NAME) to the architecture back-end to allow
14957 it to guess the correct format if necessary. */
14958
14959 static struct type *
14960 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14961 const char *name_hint)
14962 {
14963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14964 const struct floatformat **format;
14965 struct type *type;
14966
14967 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14968 if (format)
14969 type = init_float_type (objfile, bits, name, format);
14970 else
14971 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14972
14973 return type;
14974 }
14975
14976 /* Find a representation of a given base type and install
14977 it in the TYPE field of the die. */
14978
14979 static struct type *
14980 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14981 {
14982 struct objfile *objfile = cu->objfile;
14983 struct type *type;
14984 struct attribute *attr;
14985 int encoding = 0, bits = 0;
14986 const char *name;
14987
14988 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14989 if (attr)
14990 {
14991 encoding = DW_UNSND (attr);
14992 }
14993 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14994 if (attr)
14995 {
14996 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14997 }
14998 name = dwarf2_name (die, cu);
14999 if (!name)
15000 {
15001 complaint (&symfile_complaints,
15002 _("DW_AT_name missing from DW_TAG_base_type"));
15003 }
15004
15005 switch (encoding)
15006 {
15007 case DW_ATE_address:
15008 /* Turn DW_ATE_address into a void * pointer. */
15009 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15010 type = init_pointer_type (objfile, bits, name, type);
15011 break;
15012 case DW_ATE_boolean:
15013 type = init_boolean_type (objfile, bits, 1, name);
15014 break;
15015 case DW_ATE_complex_float:
15016 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15017 type = init_complex_type (objfile, name, type);
15018 break;
15019 case DW_ATE_decimal_float:
15020 type = init_decfloat_type (objfile, bits, name);
15021 break;
15022 case DW_ATE_float:
15023 type = dwarf2_init_float_type (objfile, bits, name, name);
15024 break;
15025 case DW_ATE_signed:
15026 type = init_integer_type (objfile, bits, 0, name);
15027 break;
15028 case DW_ATE_unsigned:
15029 if (cu->language == language_fortran
15030 && name
15031 && startswith (name, "character("))
15032 type = init_character_type (objfile, bits, 1, name);
15033 else
15034 type = init_integer_type (objfile, bits, 1, name);
15035 break;
15036 case DW_ATE_signed_char:
15037 if (cu->language == language_ada || cu->language == language_m2
15038 || cu->language == language_pascal
15039 || cu->language == language_fortran)
15040 type = init_character_type (objfile, bits, 0, name);
15041 else
15042 type = init_integer_type (objfile, bits, 0, name);
15043 break;
15044 case DW_ATE_unsigned_char:
15045 if (cu->language == language_ada || cu->language == language_m2
15046 || cu->language == language_pascal
15047 || cu->language == language_fortran
15048 || cu->language == language_rust)
15049 type = init_character_type (objfile, bits, 1, name);
15050 else
15051 type = init_integer_type (objfile, bits, 1, name);
15052 break;
15053 case DW_ATE_UTF:
15054 /* We just treat this as an integer and then recognize the
15055 type by name elsewhere. */
15056 type = init_integer_type (objfile, bits, 0, name);
15057 break;
15058
15059 default:
15060 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15061 dwarf_type_encoding_name (encoding));
15062 type = init_type (objfile, TYPE_CODE_ERROR,
15063 bits / TARGET_CHAR_BIT, name);
15064 break;
15065 }
15066
15067 if (name && strcmp (name, "char") == 0)
15068 TYPE_NOSIGN (type) = 1;
15069
15070 return set_die_type (die, type, cu);
15071 }
15072
15073 /* Parse dwarf attribute if it's a block, reference or constant and put the
15074 resulting value of the attribute into struct bound_prop.
15075 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15076
15077 static int
15078 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15079 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15080 {
15081 struct dwarf2_property_baton *baton;
15082 struct obstack *obstack = &cu->objfile->objfile_obstack;
15083
15084 if (attr == NULL || prop == NULL)
15085 return 0;
15086
15087 if (attr_form_is_block (attr))
15088 {
15089 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15090 baton->referenced_type = NULL;
15091 baton->locexpr.per_cu = cu->per_cu;
15092 baton->locexpr.size = DW_BLOCK (attr)->size;
15093 baton->locexpr.data = DW_BLOCK (attr)->data;
15094 prop->data.baton = baton;
15095 prop->kind = PROP_LOCEXPR;
15096 gdb_assert (prop->data.baton != NULL);
15097 }
15098 else if (attr_form_is_ref (attr))
15099 {
15100 struct dwarf2_cu *target_cu = cu;
15101 struct die_info *target_die;
15102 struct attribute *target_attr;
15103
15104 target_die = follow_die_ref (die, attr, &target_cu);
15105 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15106 if (target_attr == NULL)
15107 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15108 target_cu);
15109 if (target_attr == NULL)
15110 return 0;
15111
15112 switch (target_attr->name)
15113 {
15114 case DW_AT_location:
15115 if (attr_form_is_section_offset (target_attr))
15116 {
15117 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15118 baton->referenced_type = die_type (target_die, target_cu);
15119 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15120 prop->data.baton = baton;
15121 prop->kind = PROP_LOCLIST;
15122 gdb_assert (prop->data.baton != NULL);
15123 }
15124 else if (attr_form_is_block (target_attr))
15125 {
15126 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15127 baton->referenced_type = die_type (target_die, target_cu);
15128 baton->locexpr.per_cu = cu->per_cu;
15129 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15130 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15131 prop->data.baton = baton;
15132 prop->kind = PROP_LOCEXPR;
15133 gdb_assert (prop->data.baton != NULL);
15134 }
15135 else
15136 {
15137 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15138 "dynamic property");
15139 return 0;
15140 }
15141 break;
15142 case DW_AT_data_member_location:
15143 {
15144 LONGEST offset;
15145
15146 if (!handle_data_member_location (target_die, target_cu,
15147 &offset))
15148 return 0;
15149
15150 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15151 baton->referenced_type = read_type_die (target_die->parent,
15152 target_cu);
15153 baton->offset_info.offset = offset;
15154 baton->offset_info.type = die_type (target_die, target_cu);
15155 prop->data.baton = baton;
15156 prop->kind = PROP_ADDR_OFFSET;
15157 break;
15158 }
15159 }
15160 }
15161 else if (attr_form_is_constant (attr))
15162 {
15163 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15164 prop->kind = PROP_CONST;
15165 }
15166 else
15167 {
15168 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15169 dwarf2_name (die, cu));
15170 return 0;
15171 }
15172
15173 return 1;
15174 }
15175
15176 /* Read the given DW_AT_subrange DIE. */
15177
15178 static struct type *
15179 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15180 {
15181 struct type *base_type, *orig_base_type;
15182 struct type *range_type;
15183 struct attribute *attr;
15184 struct dynamic_prop low, high;
15185 int low_default_is_valid;
15186 int high_bound_is_count = 0;
15187 const char *name;
15188 LONGEST negative_mask;
15189
15190 orig_base_type = die_type (die, cu);
15191 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15192 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15193 creating the range type, but we use the result of check_typedef
15194 when examining properties of the type. */
15195 base_type = check_typedef (orig_base_type);
15196
15197 /* The die_type call above may have already set the type for this DIE. */
15198 range_type = get_die_type (die, cu);
15199 if (range_type)
15200 return range_type;
15201
15202 low.kind = PROP_CONST;
15203 high.kind = PROP_CONST;
15204 high.data.const_val = 0;
15205
15206 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15207 omitting DW_AT_lower_bound. */
15208 switch (cu->language)
15209 {
15210 case language_c:
15211 case language_cplus:
15212 low.data.const_val = 0;
15213 low_default_is_valid = 1;
15214 break;
15215 case language_fortran:
15216 low.data.const_val = 1;
15217 low_default_is_valid = 1;
15218 break;
15219 case language_d:
15220 case language_objc:
15221 case language_rust:
15222 low.data.const_val = 0;
15223 low_default_is_valid = (cu->header.version >= 4);
15224 break;
15225 case language_ada:
15226 case language_m2:
15227 case language_pascal:
15228 low.data.const_val = 1;
15229 low_default_is_valid = (cu->header.version >= 4);
15230 break;
15231 default:
15232 low.data.const_val = 0;
15233 low_default_is_valid = 0;
15234 break;
15235 }
15236
15237 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15238 if (attr)
15239 attr_to_dynamic_prop (attr, die, cu, &low);
15240 else if (!low_default_is_valid)
15241 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15242 "- DIE at 0x%x [in module %s]"),
15243 die->offset.sect_off, objfile_name (cu->objfile));
15244
15245 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15246 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15247 {
15248 attr = dwarf2_attr (die, DW_AT_count, cu);
15249 if (attr_to_dynamic_prop (attr, die, cu, &high))
15250 {
15251 /* If bounds are constant do the final calculation here. */
15252 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15253 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15254 else
15255 high_bound_is_count = 1;
15256 }
15257 }
15258
15259 /* Dwarf-2 specifications explicitly allows to create subrange types
15260 without specifying a base type.
15261 In that case, the base type must be set to the type of
15262 the lower bound, upper bound or count, in that order, if any of these
15263 three attributes references an object that has a type.
15264 If no base type is found, the Dwarf-2 specifications say that
15265 a signed integer type of size equal to the size of an address should
15266 be used.
15267 For the following C code: `extern char gdb_int [];'
15268 GCC produces an empty range DIE.
15269 FIXME: muller/2010-05-28: Possible references to object for low bound,
15270 high bound or count are not yet handled by this code. */
15271 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15272 {
15273 struct objfile *objfile = cu->objfile;
15274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15275 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15276 struct type *int_type = objfile_type (objfile)->builtin_int;
15277
15278 /* Test "int", "long int", and "long long int" objfile types,
15279 and select the first one having a size above or equal to the
15280 architecture address size. */
15281 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15282 base_type = int_type;
15283 else
15284 {
15285 int_type = objfile_type (objfile)->builtin_long;
15286 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15287 base_type = int_type;
15288 else
15289 {
15290 int_type = objfile_type (objfile)->builtin_long_long;
15291 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15292 base_type = int_type;
15293 }
15294 }
15295 }
15296
15297 /* Normally, the DWARF producers are expected to use a signed
15298 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15299 But this is unfortunately not always the case, as witnessed
15300 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15301 is used instead. To work around that ambiguity, we treat
15302 the bounds as signed, and thus sign-extend their values, when
15303 the base type is signed. */
15304 negative_mask =
15305 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15306 if (low.kind == PROP_CONST
15307 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15308 low.data.const_val |= negative_mask;
15309 if (high.kind == PROP_CONST
15310 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15311 high.data.const_val |= negative_mask;
15312
15313 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15314
15315 if (high_bound_is_count)
15316 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15317
15318 /* Ada expects an empty array on no boundary attributes. */
15319 if (attr == NULL && cu->language != language_ada)
15320 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15321
15322 name = dwarf2_name (die, cu);
15323 if (name)
15324 TYPE_NAME (range_type) = name;
15325
15326 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15327 if (attr)
15328 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15329
15330 set_die_type (die, range_type, cu);
15331
15332 /* set_die_type should be already done. */
15333 set_descriptive_type (range_type, die, cu);
15334
15335 return range_type;
15336 }
15337
15338 static struct type *
15339 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15340 {
15341 struct type *type;
15342
15343 /* For now, we only support the C meaning of an unspecified type: void. */
15344
15345 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15346 TYPE_NAME (type) = dwarf2_name (die, cu);
15347
15348 return set_die_type (die, type, cu);
15349 }
15350
15351 /* Read a single die and all its descendents. Set the die's sibling
15352 field to NULL; set other fields in the die correctly, and set all
15353 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15354 location of the info_ptr after reading all of those dies. PARENT
15355 is the parent of the die in question. */
15356
15357 static struct die_info *
15358 read_die_and_children (const struct die_reader_specs *reader,
15359 const gdb_byte *info_ptr,
15360 const gdb_byte **new_info_ptr,
15361 struct die_info *parent)
15362 {
15363 struct die_info *die;
15364 const gdb_byte *cur_ptr;
15365 int has_children;
15366
15367 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15368 if (die == NULL)
15369 {
15370 *new_info_ptr = cur_ptr;
15371 return NULL;
15372 }
15373 store_in_ref_table (die, reader->cu);
15374
15375 if (has_children)
15376 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15377 else
15378 {
15379 die->child = NULL;
15380 *new_info_ptr = cur_ptr;
15381 }
15382
15383 die->sibling = NULL;
15384 die->parent = parent;
15385 return die;
15386 }
15387
15388 /* Read a die, all of its descendents, and all of its siblings; set
15389 all of the fields of all of the dies correctly. Arguments are as
15390 in read_die_and_children. */
15391
15392 static struct die_info *
15393 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15394 const gdb_byte *info_ptr,
15395 const gdb_byte **new_info_ptr,
15396 struct die_info *parent)
15397 {
15398 struct die_info *first_die, *last_sibling;
15399 const gdb_byte *cur_ptr;
15400
15401 cur_ptr = info_ptr;
15402 first_die = last_sibling = NULL;
15403
15404 while (1)
15405 {
15406 struct die_info *die
15407 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15408
15409 if (die == NULL)
15410 {
15411 *new_info_ptr = cur_ptr;
15412 return first_die;
15413 }
15414
15415 if (!first_die)
15416 first_die = die;
15417 else
15418 last_sibling->sibling = die;
15419
15420 last_sibling = die;
15421 }
15422 }
15423
15424 /* Read a die, all of its descendents, and all of its siblings; set
15425 all of the fields of all of the dies correctly. Arguments are as
15426 in read_die_and_children.
15427 This the main entry point for reading a DIE and all its children. */
15428
15429 static struct die_info *
15430 read_die_and_siblings (const struct die_reader_specs *reader,
15431 const gdb_byte *info_ptr,
15432 const gdb_byte **new_info_ptr,
15433 struct die_info *parent)
15434 {
15435 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15436 new_info_ptr, parent);
15437
15438 if (dwarf_die_debug)
15439 {
15440 fprintf_unfiltered (gdb_stdlog,
15441 "Read die from %s@0x%x of %s:\n",
15442 get_section_name (reader->die_section),
15443 (unsigned) (info_ptr - reader->die_section->buffer),
15444 bfd_get_filename (reader->abfd));
15445 dump_die (die, dwarf_die_debug);
15446 }
15447
15448 return die;
15449 }
15450
15451 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15452 attributes.
15453 The caller is responsible for filling in the extra attributes
15454 and updating (*DIEP)->num_attrs.
15455 Set DIEP to point to a newly allocated die with its information,
15456 except for its child, sibling, and parent fields.
15457 Set HAS_CHILDREN to tell whether the die has children or not. */
15458
15459 static const gdb_byte *
15460 read_full_die_1 (const struct die_reader_specs *reader,
15461 struct die_info **diep, const gdb_byte *info_ptr,
15462 int *has_children, int num_extra_attrs)
15463 {
15464 unsigned int abbrev_number, bytes_read, i;
15465 sect_offset offset;
15466 struct abbrev_info *abbrev;
15467 struct die_info *die;
15468 struct dwarf2_cu *cu = reader->cu;
15469 bfd *abfd = reader->abfd;
15470
15471 offset.sect_off = info_ptr - reader->buffer;
15472 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15473 info_ptr += bytes_read;
15474 if (!abbrev_number)
15475 {
15476 *diep = NULL;
15477 *has_children = 0;
15478 return info_ptr;
15479 }
15480
15481 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15482 if (!abbrev)
15483 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15484 abbrev_number,
15485 bfd_get_filename (abfd));
15486
15487 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15488 die->offset = offset;
15489 die->tag = abbrev->tag;
15490 die->abbrev = abbrev_number;
15491
15492 /* Make the result usable.
15493 The caller needs to update num_attrs after adding the extra
15494 attributes. */
15495 die->num_attrs = abbrev->num_attrs;
15496
15497 for (i = 0; i < abbrev->num_attrs; ++i)
15498 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15499 info_ptr);
15500
15501 *diep = die;
15502 *has_children = abbrev->has_children;
15503 return info_ptr;
15504 }
15505
15506 /* Read a die and all its attributes.
15507 Set DIEP to point to a newly allocated die with its information,
15508 except for its child, sibling, and parent fields.
15509 Set HAS_CHILDREN to tell whether the die has children or not. */
15510
15511 static const gdb_byte *
15512 read_full_die (const struct die_reader_specs *reader,
15513 struct die_info **diep, const gdb_byte *info_ptr,
15514 int *has_children)
15515 {
15516 const gdb_byte *result;
15517
15518 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15519
15520 if (dwarf_die_debug)
15521 {
15522 fprintf_unfiltered (gdb_stdlog,
15523 "Read die from %s@0x%x of %s:\n",
15524 get_section_name (reader->die_section),
15525 (unsigned) (info_ptr - reader->die_section->buffer),
15526 bfd_get_filename (reader->abfd));
15527 dump_die (*diep, dwarf_die_debug);
15528 }
15529
15530 return result;
15531 }
15532 \f
15533 /* Abbreviation tables.
15534
15535 In DWARF version 2, the description of the debugging information is
15536 stored in a separate .debug_abbrev section. Before we read any
15537 dies from a section we read in all abbreviations and install them
15538 in a hash table. */
15539
15540 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15541
15542 static struct abbrev_info *
15543 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15544 {
15545 struct abbrev_info *abbrev;
15546
15547 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15548 memset (abbrev, 0, sizeof (struct abbrev_info));
15549
15550 return abbrev;
15551 }
15552
15553 /* Add an abbreviation to the table. */
15554
15555 static void
15556 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15557 unsigned int abbrev_number,
15558 struct abbrev_info *abbrev)
15559 {
15560 unsigned int hash_number;
15561
15562 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15563 abbrev->next = abbrev_table->abbrevs[hash_number];
15564 abbrev_table->abbrevs[hash_number] = abbrev;
15565 }
15566
15567 /* Look up an abbrev in the table.
15568 Returns NULL if the abbrev is not found. */
15569
15570 static struct abbrev_info *
15571 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15572 unsigned int abbrev_number)
15573 {
15574 unsigned int hash_number;
15575 struct abbrev_info *abbrev;
15576
15577 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15578 abbrev = abbrev_table->abbrevs[hash_number];
15579
15580 while (abbrev)
15581 {
15582 if (abbrev->number == abbrev_number)
15583 return abbrev;
15584 abbrev = abbrev->next;
15585 }
15586 return NULL;
15587 }
15588
15589 /* Read in an abbrev table. */
15590
15591 static struct abbrev_table *
15592 abbrev_table_read_table (struct dwarf2_section_info *section,
15593 sect_offset offset)
15594 {
15595 struct objfile *objfile = dwarf2_per_objfile->objfile;
15596 bfd *abfd = get_section_bfd_owner (section);
15597 struct abbrev_table *abbrev_table;
15598 const gdb_byte *abbrev_ptr;
15599 struct abbrev_info *cur_abbrev;
15600 unsigned int abbrev_number, bytes_read, abbrev_name;
15601 unsigned int abbrev_form;
15602 struct attr_abbrev *cur_attrs;
15603 unsigned int allocated_attrs;
15604
15605 abbrev_table = XNEW (struct abbrev_table);
15606 abbrev_table->offset = offset;
15607 obstack_init (&abbrev_table->abbrev_obstack);
15608 abbrev_table->abbrevs =
15609 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15610 ABBREV_HASH_SIZE);
15611 memset (abbrev_table->abbrevs, 0,
15612 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15613
15614 dwarf2_read_section (objfile, section);
15615 abbrev_ptr = section->buffer + offset.sect_off;
15616 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15617 abbrev_ptr += bytes_read;
15618
15619 allocated_attrs = ATTR_ALLOC_CHUNK;
15620 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15621
15622 /* Loop until we reach an abbrev number of 0. */
15623 while (abbrev_number)
15624 {
15625 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15626
15627 /* read in abbrev header */
15628 cur_abbrev->number = abbrev_number;
15629 cur_abbrev->tag
15630 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15631 abbrev_ptr += bytes_read;
15632 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15633 abbrev_ptr += 1;
15634
15635 /* now read in declarations */
15636 for (;;)
15637 {
15638 LONGEST implicit_const;
15639
15640 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15641 abbrev_ptr += bytes_read;
15642 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15643 abbrev_ptr += bytes_read;
15644 if (abbrev_form == DW_FORM_implicit_const)
15645 {
15646 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15647 &bytes_read);
15648 abbrev_ptr += bytes_read;
15649 }
15650 else
15651 {
15652 /* Initialize it due to a false compiler warning. */
15653 implicit_const = -1;
15654 }
15655
15656 if (abbrev_name == 0)
15657 break;
15658
15659 if (cur_abbrev->num_attrs == allocated_attrs)
15660 {
15661 allocated_attrs += ATTR_ALLOC_CHUNK;
15662 cur_attrs
15663 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15664 }
15665
15666 cur_attrs[cur_abbrev->num_attrs].name
15667 = (enum dwarf_attribute) abbrev_name;
15668 cur_attrs[cur_abbrev->num_attrs].form
15669 = (enum dwarf_form) abbrev_form;
15670 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15671 ++cur_abbrev->num_attrs;
15672 }
15673
15674 cur_abbrev->attrs =
15675 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15676 cur_abbrev->num_attrs);
15677 memcpy (cur_abbrev->attrs, cur_attrs,
15678 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15679
15680 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15681
15682 /* Get next abbreviation.
15683 Under Irix6 the abbreviations for a compilation unit are not
15684 always properly terminated with an abbrev number of 0.
15685 Exit loop if we encounter an abbreviation which we have
15686 already read (which means we are about to read the abbreviations
15687 for the next compile unit) or if the end of the abbreviation
15688 table is reached. */
15689 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15690 break;
15691 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15692 abbrev_ptr += bytes_read;
15693 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15694 break;
15695 }
15696
15697 xfree (cur_attrs);
15698 return abbrev_table;
15699 }
15700
15701 /* Free the resources held by ABBREV_TABLE. */
15702
15703 static void
15704 abbrev_table_free (struct abbrev_table *abbrev_table)
15705 {
15706 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15707 xfree (abbrev_table);
15708 }
15709
15710 /* Same as abbrev_table_free but as a cleanup.
15711 We pass in a pointer to the pointer to the table so that we can
15712 set the pointer to NULL when we're done. It also simplifies
15713 build_type_psymtabs_1. */
15714
15715 static void
15716 abbrev_table_free_cleanup (void *table_ptr)
15717 {
15718 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15719
15720 if (*abbrev_table_ptr != NULL)
15721 abbrev_table_free (*abbrev_table_ptr);
15722 *abbrev_table_ptr = NULL;
15723 }
15724
15725 /* Read the abbrev table for CU from ABBREV_SECTION. */
15726
15727 static void
15728 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15729 struct dwarf2_section_info *abbrev_section)
15730 {
15731 cu->abbrev_table =
15732 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15733 }
15734
15735 /* Release the memory used by the abbrev table for a compilation unit. */
15736
15737 static void
15738 dwarf2_free_abbrev_table (void *ptr_to_cu)
15739 {
15740 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15741
15742 if (cu->abbrev_table != NULL)
15743 abbrev_table_free (cu->abbrev_table);
15744 /* Set this to NULL so that we SEGV if we try to read it later,
15745 and also because free_comp_unit verifies this is NULL. */
15746 cu->abbrev_table = NULL;
15747 }
15748 \f
15749 /* Returns nonzero if TAG represents a type that we might generate a partial
15750 symbol for. */
15751
15752 static int
15753 is_type_tag_for_partial (int tag)
15754 {
15755 switch (tag)
15756 {
15757 #if 0
15758 /* Some types that would be reasonable to generate partial symbols for,
15759 that we don't at present. */
15760 case DW_TAG_array_type:
15761 case DW_TAG_file_type:
15762 case DW_TAG_ptr_to_member_type:
15763 case DW_TAG_set_type:
15764 case DW_TAG_string_type:
15765 case DW_TAG_subroutine_type:
15766 #endif
15767 case DW_TAG_base_type:
15768 case DW_TAG_class_type:
15769 case DW_TAG_interface_type:
15770 case DW_TAG_enumeration_type:
15771 case DW_TAG_structure_type:
15772 case DW_TAG_subrange_type:
15773 case DW_TAG_typedef:
15774 case DW_TAG_union_type:
15775 return 1;
15776 default:
15777 return 0;
15778 }
15779 }
15780
15781 /* Load all DIEs that are interesting for partial symbols into memory. */
15782
15783 static struct partial_die_info *
15784 load_partial_dies (const struct die_reader_specs *reader,
15785 const gdb_byte *info_ptr, int building_psymtab)
15786 {
15787 struct dwarf2_cu *cu = reader->cu;
15788 struct objfile *objfile = cu->objfile;
15789 struct partial_die_info *part_die;
15790 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15791 struct abbrev_info *abbrev;
15792 unsigned int bytes_read;
15793 unsigned int load_all = 0;
15794 int nesting_level = 1;
15795
15796 parent_die = NULL;
15797 last_die = NULL;
15798
15799 gdb_assert (cu->per_cu != NULL);
15800 if (cu->per_cu->load_all_dies)
15801 load_all = 1;
15802
15803 cu->partial_dies
15804 = htab_create_alloc_ex (cu->header.length / 12,
15805 partial_die_hash,
15806 partial_die_eq,
15807 NULL,
15808 &cu->comp_unit_obstack,
15809 hashtab_obstack_allocate,
15810 dummy_obstack_deallocate);
15811
15812 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15813
15814 while (1)
15815 {
15816 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15817
15818 /* A NULL abbrev means the end of a series of children. */
15819 if (abbrev == NULL)
15820 {
15821 if (--nesting_level == 0)
15822 {
15823 /* PART_DIE was probably the last thing allocated on the
15824 comp_unit_obstack, so we could call obstack_free
15825 here. We don't do that because the waste is small,
15826 and will be cleaned up when we're done with this
15827 compilation unit. This way, we're also more robust
15828 against other users of the comp_unit_obstack. */
15829 return first_die;
15830 }
15831 info_ptr += bytes_read;
15832 last_die = parent_die;
15833 parent_die = parent_die->die_parent;
15834 continue;
15835 }
15836
15837 /* Check for template arguments. We never save these; if
15838 they're seen, we just mark the parent, and go on our way. */
15839 if (parent_die != NULL
15840 && cu->language == language_cplus
15841 && (abbrev->tag == DW_TAG_template_type_param
15842 || abbrev->tag == DW_TAG_template_value_param))
15843 {
15844 parent_die->has_template_arguments = 1;
15845
15846 if (!load_all)
15847 {
15848 /* We don't need a partial DIE for the template argument. */
15849 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15850 continue;
15851 }
15852 }
15853
15854 /* We only recurse into c++ subprograms looking for template arguments.
15855 Skip their other children. */
15856 if (!load_all
15857 && cu->language == language_cplus
15858 && parent_die != NULL
15859 && parent_die->tag == DW_TAG_subprogram)
15860 {
15861 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15862 continue;
15863 }
15864
15865 /* Check whether this DIE is interesting enough to save. Normally
15866 we would not be interested in members here, but there may be
15867 later variables referencing them via DW_AT_specification (for
15868 static members). */
15869 if (!load_all
15870 && !is_type_tag_for_partial (abbrev->tag)
15871 && abbrev->tag != DW_TAG_constant
15872 && abbrev->tag != DW_TAG_enumerator
15873 && abbrev->tag != DW_TAG_subprogram
15874 && abbrev->tag != DW_TAG_lexical_block
15875 && abbrev->tag != DW_TAG_variable
15876 && abbrev->tag != DW_TAG_namespace
15877 && abbrev->tag != DW_TAG_module
15878 && abbrev->tag != DW_TAG_member
15879 && abbrev->tag != DW_TAG_imported_unit
15880 && abbrev->tag != DW_TAG_imported_declaration)
15881 {
15882 /* Otherwise we skip to the next sibling, if any. */
15883 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15884 continue;
15885 }
15886
15887 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15888 info_ptr);
15889
15890 /* This two-pass algorithm for processing partial symbols has a
15891 high cost in cache pressure. Thus, handle some simple cases
15892 here which cover the majority of C partial symbols. DIEs
15893 which neither have specification tags in them, nor could have
15894 specification tags elsewhere pointing at them, can simply be
15895 processed and discarded.
15896
15897 This segment is also optional; scan_partial_symbols and
15898 add_partial_symbol will handle these DIEs if we chain
15899 them in normally. When compilers which do not emit large
15900 quantities of duplicate debug information are more common,
15901 this code can probably be removed. */
15902
15903 /* Any complete simple types at the top level (pretty much all
15904 of them, for a language without namespaces), can be processed
15905 directly. */
15906 if (parent_die == NULL
15907 && part_die->has_specification == 0
15908 && part_die->is_declaration == 0
15909 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15910 || part_die->tag == DW_TAG_base_type
15911 || part_die->tag == DW_TAG_subrange_type))
15912 {
15913 if (building_psymtab && part_die->name != NULL)
15914 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15915 VAR_DOMAIN, LOC_TYPEDEF,
15916 &objfile->static_psymbols,
15917 0, cu->language, objfile);
15918 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15919 continue;
15920 }
15921
15922 /* The exception for DW_TAG_typedef with has_children above is
15923 a workaround of GCC PR debug/47510. In the case of this complaint
15924 type_name_no_tag_or_error will error on such types later.
15925
15926 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15927 it could not find the child DIEs referenced later, this is checked
15928 above. In correct DWARF DW_TAG_typedef should have no children. */
15929
15930 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15931 complaint (&symfile_complaints,
15932 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15933 "- DIE at 0x%x [in module %s]"),
15934 part_die->offset.sect_off, objfile_name (objfile));
15935
15936 /* If we're at the second level, and we're an enumerator, and
15937 our parent has no specification (meaning possibly lives in a
15938 namespace elsewhere), then we can add the partial symbol now
15939 instead of queueing it. */
15940 if (part_die->tag == DW_TAG_enumerator
15941 && parent_die != NULL
15942 && parent_die->die_parent == NULL
15943 && parent_die->tag == DW_TAG_enumeration_type
15944 && parent_die->has_specification == 0)
15945 {
15946 if (part_die->name == NULL)
15947 complaint (&symfile_complaints,
15948 _("malformed enumerator DIE ignored"));
15949 else if (building_psymtab)
15950 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15951 VAR_DOMAIN, LOC_CONST,
15952 cu->language == language_cplus
15953 ? &objfile->global_psymbols
15954 : &objfile->static_psymbols,
15955 0, cu->language, objfile);
15956
15957 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15958 continue;
15959 }
15960
15961 /* We'll save this DIE so link it in. */
15962 part_die->die_parent = parent_die;
15963 part_die->die_sibling = NULL;
15964 part_die->die_child = NULL;
15965
15966 if (last_die && last_die == parent_die)
15967 last_die->die_child = part_die;
15968 else if (last_die)
15969 last_die->die_sibling = part_die;
15970
15971 last_die = part_die;
15972
15973 if (first_die == NULL)
15974 first_die = part_die;
15975
15976 /* Maybe add the DIE to the hash table. Not all DIEs that we
15977 find interesting need to be in the hash table, because we
15978 also have the parent/sibling/child chains; only those that we
15979 might refer to by offset later during partial symbol reading.
15980
15981 For now this means things that might have be the target of a
15982 DW_AT_specification, DW_AT_abstract_origin, or
15983 DW_AT_extension. DW_AT_extension will refer only to
15984 namespaces; DW_AT_abstract_origin refers to functions (and
15985 many things under the function DIE, but we do not recurse
15986 into function DIEs during partial symbol reading) and
15987 possibly variables as well; DW_AT_specification refers to
15988 declarations. Declarations ought to have the DW_AT_declaration
15989 flag. It happens that GCC forgets to put it in sometimes, but
15990 only for functions, not for types.
15991
15992 Adding more things than necessary to the hash table is harmless
15993 except for the performance cost. Adding too few will result in
15994 wasted time in find_partial_die, when we reread the compilation
15995 unit with load_all_dies set. */
15996
15997 if (load_all
15998 || abbrev->tag == DW_TAG_constant
15999 || abbrev->tag == DW_TAG_subprogram
16000 || abbrev->tag == DW_TAG_variable
16001 || abbrev->tag == DW_TAG_namespace
16002 || part_die->is_declaration)
16003 {
16004 void **slot;
16005
16006 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16007 part_die->offset.sect_off, INSERT);
16008 *slot = part_die;
16009 }
16010
16011 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16012
16013 /* For some DIEs we want to follow their children (if any). For C
16014 we have no reason to follow the children of structures; for other
16015 languages we have to, so that we can get at method physnames
16016 to infer fully qualified class names, for DW_AT_specification,
16017 and for C++ template arguments. For C++, we also look one level
16018 inside functions to find template arguments (if the name of the
16019 function does not already contain the template arguments).
16020
16021 For Ada, we need to scan the children of subprograms and lexical
16022 blocks as well because Ada allows the definition of nested
16023 entities that could be interesting for the debugger, such as
16024 nested subprograms for instance. */
16025 if (last_die->has_children
16026 && (load_all
16027 || last_die->tag == DW_TAG_namespace
16028 || last_die->tag == DW_TAG_module
16029 || last_die->tag == DW_TAG_enumeration_type
16030 || (cu->language == language_cplus
16031 && last_die->tag == DW_TAG_subprogram
16032 && (last_die->name == NULL
16033 || strchr (last_die->name, '<') == NULL))
16034 || (cu->language != language_c
16035 && (last_die->tag == DW_TAG_class_type
16036 || last_die->tag == DW_TAG_interface_type
16037 || last_die->tag == DW_TAG_structure_type
16038 || last_die->tag == DW_TAG_union_type))
16039 || (cu->language == language_ada
16040 && (last_die->tag == DW_TAG_subprogram
16041 || last_die->tag == DW_TAG_lexical_block))))
16042 {
16043 nesting_level++;
16044 parent_die = last_die;
16045 continue;
16046 }
16047
16048 /* Otherwise we skip to the next sibling, if any. */
16049 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16050
16051 /* Back to the top, do it again. */
16052 }
16053 }
16054
16055 /* Read a minimal amount of information into the minimal die structure. */
16056
16057 static const gdb_byte *
16058 read_partial_die (const struct die_reader_specs *reader,
16059 struct partial_die_info *part_die,
16060 struct abbrev_info *abbrev, unsigned int abbrev_len,
16061 const gdb_byte *info_ptr)
16062 {
16063 struct dwarf2_cu *cu = reader->cu;
16064 struct objfile *objfile = cu->objfile;
16065 const gdb_byte *buffer = reader->buffer;
16066 unsigned int i;
16067 struct attribute attr;
16068 int has_low_pc_attr = 0;
16069 int has_high_pc_attr = 0;
16070 int high_pc_relative = 0;
16071
16072 memset (part_die, 0, sizeof (struct partial_die_info));
16073
16074 part_die->offset.sect_off = info_ptr - buffer;
16075
16076 info_ptr += abbrev_len;
16077
16078 if (abbrev == NULL)
16079 return info_ptr;
16080
16081 part_die->tag = abbrev->tag;
16082 part_die->has_children = abbrev->has_children;
16083
16084 for (i = 0; i < abbrev->num_attrs; ++i)
16085 {
16086 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16087
16088 /* Store the data if it is of an attribute we want to keep in a
16089 partial symbol table. */
16090 switch (attr.name)
16091 {
16092 case DW_AT_name:
16093 switch (part_die->tag)
16094 {
16095 case DW_TAG_compile_unit:
16096 case DW_TAG_partial_unit:
16097 case DW_TAG_type_unit:
16098 /* Compilation units have a DW_AT_name that is a filename, not
16099 a source language identifier. */
16100 case DW_TAG_enumeration_type:
16101 case DW_TAG_enumerator:
16102 /* These tags always have simple identifiers already; no need
16103 to canonicalize them. */
16104 part_die->name = DW_STRING (&attr);
16105 break;
16106 default:
16107 part_die->name
16108 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16109 &objfile->per_bfd->storage_obstack);
16110 break;
16111 }
16112 break;
16113 case DW_AT_linkage_name:
16114 case DW_AT_MIPS_linkage_name:
16115 /* Note that both forms of linkage name might appear. We
16116 assume they will be the same, and we only store the last
16117 one we see. */
16118 if (cu->language == language_ada)
16119 part_die->name = DW_STRING (&attr);
16120 part_die->linkage_name = DW_STRING (&attr);
16121 break;
16122 case DW_AT_low_pc:
16123 has_low_pc_attr = 1;
16124 part_die->lowpc = attr_value_as_address (&attr);
16125 break;
16126 case DW_AT_high_pc:
16127 has_high_pc_attr = 1;
16128 part_die->highpc = attr_value_as_address (&attr);
16129 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16130 high_pc_relative = 1;
16131 break;
16132 case DW_AT_location:
16133 /* Support the .debug_loc offsets. */
16134 if (attr_form_is_block (&attr))
16135 {
16136 part_die->d.locdesc = DW_BLOCK (&attr);
16137 }
16138 else if (attr_form_is_section_offset (&attr))
16139 {
16140 dwarf2_complex_location_expr_complaint ();
16141 }
16142 else
16143 {
16144 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16145 "partial symbol information");
16146 }
16147 break;
16148 case DW_AT_external:
16149 part_die->is_external = DW_UNSND (&attr);
16150 break;
16151 case DW_AT_declaration:
16152 part_die->is_declaration = DW_UNSND (&attr);
16153 break;
16154 case DW_AT_type:
16155 part_die->has_type = 1;
16156 break;
16157 case DW_AT_abstract_origin:
16158 case DW_AT_specification:
16159 case DW_AT_extension:
16160 part_die->has_specification = 1;
16161 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16162 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16163 || cu->per_cu->is_dwz);
16164 break;
16165 case DW_AT_sibling:
16166 /* Ignore absolute siblings, they might point outside of
16167 the current compile unit. */
16168 if (attr.form == DW_FORM_ref_addr)
16169 complaint (&symfile_complaints,
16170 _("ignoring absolute DW_AT_sibling"));
16171 else
16172 {
16173 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
16174 const gdb_byte *sibling_ptr = buffer + off;
16175
16176 if (sibling_ptr < info_ptr)
16177 complaint (&symfile_complaints,
16178 _("DW_AT_sibling points backwards"));
16179 else if (sibling_ptr > reader->buffer_end)
16180 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16181 else
16182 part_die->sibling = sibling_ptr;
16183 }
16184 break;
16185 case DW_AT_byte_size:
16186 part_die->has_byte_size = 1;
16187 break;
16188 case DW_AT_const_value:
16189 part_die->has_const_value = 1;
16190 break;
16191 case DW_AT_calling_convention:
16192 /* DWARF doesn't provide a way to identify a program's source-level
16193 entry point. DW_AT_calling_convention attributes are only meant
16194 to describe functions' calling conventions.
16195
16196 However, because it's a necessary piece of information in
16197 Fortran, and before DWARF 4 DW_CC_program was the only
16198 piece of debugging information whose definition refers to
16199 a 'main program' at all, several compilers marked Fortran
16200 main programs with DW_CC_program --- even when those
16201 functions use the standard calling conventions.
16202
16203 Although DWARF now specifies a way to provide this
16204 information, we support this practice for backward
16205 compatibility. */
16206 if (DW_UNSND (&attr) == DW_CC_program
16207 && cu->language == language_fortran)
16208 part_die->main_subprogram = 1;
16209 break;
16210 case DW_AT_inline:
16211 if (DW_UNSND (&attr) == DW_INL_inlined
16212 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16213 part_die->may_be_inlined = 1;
16214 break;
16215
16216 case DW_AT_import:
16217 if (part_die->tag == DW_TAG_imported_unit)
16218 {
16219 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16220 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16221 || cu->per_cu->is_dwz);
16222 }
16223 break;
16224
16225 case DW_AT_main_subprogram:
16226 part_die->main_subprogram = DW_UNSND (&attr);
16227 break;
16228
16229 default:
16230 break;
16231 }
16232 }
16233
16234 if (high_pc_relative)
16235 part_die->highpc += part_die->lowpc;
16236
16237 if (has_low_pc_attr && has_high_pc_attr)
16238 {
16239 /* When using the GNU linker, .gnu.linkonce. sections are used to
16240 eliminate duplicate copies of functions and vtables and such.
16241 The linker will arbitrarily choose one and discard the others.
16242 The AT_*_pc values for such functions refer to local labels in
16243 these sections. If the section from that file was discarded, the
16244 labels are not in the output, so the relocs get a value of 0.
16245 If this is a discarded function, mark the pc bounds as invalid,
16246 so that GDB will ignore it. */
16247 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16248 {
16249 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16250
16251 complaint (&symfile_complaints,
16252 _("DW_AT_low_pc %s is zero "
16253 "for DIE at 0x%x [in module %s]"),
16254 paddress (gdbarch, part_die->lowpc),
16255 part_die->offset.sect_off, objfile_name (objfile));
16256 }
16257 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16258 else if (part_die->lowpc >= part_die->highpc)
16259 {
16260 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16261
16262 complaint (&symfile_complaints,
16263 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16264 "for DIE at 0x%x [in module %s]"),
16265 paddress (gdbarch, part_die->lowpc),
16266 paddress (gdbarch, part_die->highpc),
16267 part_die->offset.sect_off, objfile_name (objfile));
16268 }
16269 else
16270 part_die->has_pc_info = 1;
16271 }
16272
16273 return info_ptr;
16274 }
16275
16276 /* Find a cached partial DIE at OFFSET in CU. */
16277
16278 static struct partial_die_info *
16279 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16280 {
16281 struct partial_die_info *lookup_die = NULL;
16282 struct partial_die_info part_die;
16283
16284 part_die.offset = offset;
16285 lookup_die = ((struct partial_die_info *)
16286 htab_find_with_hash (cu->partial_dies, &part_die,
16287 offset.sect_off));
16288
16289 return lookup_die;
16290 }
16291
16292 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16293 except in the case of .debug_types DIEs which do not reference
16294 outside their CU (they do however referencing other types via
16295 DW_FORM_ref_sig8). */
16296
16297 static struct partial_die_info *
16298 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16299 {
16300 struct objfile *objfile = cu->objfile;
16301 struct dwarf2_per_cu_data *per_cu = NULL;
16302 struct partial_die_info *pd = NULL;
16303
16304 if (offset_in_dwz == cu->per_cu->is_dwz
16305 && offset_in_cu_p (&cu->header, offset))
16306 {
16307 pd = find_partial_die_in_comp_unit (offset, cu);
16308 if (pd != NULL)
16309 return pd;
16310 /* We missed recording what we needed.
16311 Load all dies and try again. */
16312 per_cu = cu->per_cu;
16313 }
16314 else
16315 {
16316 /* TUs don't reference other CUs/TUs (except via type signatures). */
16317 if (cu->per_cu->is_debug_types)
16318 {
16319 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16320 " external reference to offset 0x%lx [in module %s].\n"),
16321 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16322 bfd_get_filename (objfile->obfd));
16323 }
16324 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16325 objfile);
16326
16327 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16328 load_partial_comp_unit (per_cu);
16329
16330 per_cu->cu->last_used = 0;
16331 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16332 }
16333
16334 /* If we didn't find it, and not all dies have been loaded,
16335 load them all and try again. */
16336
16337 if (pd == NULL && per_cu->load_all_dies == 0)
16338 {
16339 per_cu->load_all_dies = 1;
16340
16341 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16342 THIS_CU->cu may already be in use. So we can't just free it and
16343 replace its DIEs with the ones we read in. Instead, we leave those
16344 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16345 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16346 set. */
16347 load_partial_comp_unit (per_cu);
16348
16349 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16350 }
16351
16352 if (pd == NULL)
16353 internal_error (__FILE__, __LINE__,
16354 _("could not find partial DIE 0x%x "
16355 "in cache [from module %s]\n"),
16356 offset.sect_off, bfd_get_filename (objfile->obfd));
16357 return pd;
16358 }
16359
16360 /* See if we can figure out if the class lives in a namespace. We do
16361 this by looking for a member function; its demangled name will
16362 contain namespace info, if there is any. */
16363
16364 static void
16365 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16366 struct dwarf2_cu *cu)
16367 {
16368 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16369 what template types look like, because the demangler
16370 frequently doesn't give the same name as the debug info. We
16371 could fix this by only using the demangled name to get the
16372 prefix (but see comment in read_structure_type). */
16373
16374 struct partial_die_info *real_pdi;
16375 struct partial_die_info *child_pdi;
16376
16377 /* If this DIE (this DIE's specification, if any) has a parent, then
16378 we should not do this. We'll prepend the parent's fully qualified
16379 name when we create the partial symbol. */
16380
16381 real_pdi = struct_pdi;
16382 while (real_pdi->has_specification)
16383 real_pdi = find_partial_die (real_pdi->spec_offset,
16384 real_pdi->spec_is_dwz, cu);
16385
16386 if (real_pdi->die_parent != NULL)
16387 return;
16388
16389 for (child_pdi = struct_pdi->die_child;
16390 child_pdi != NULL;
16391 child_pdi = child_pdi->die_sibling)
16392 {
16393 if (child_pdi->tag == DW_TAG_subprogram
16394 && child_pdi->linkage_name != NULL)
16395 {
16396 char *actual_class_name
16397 = language_class_name_from_physname (cu->language_defn,
16398 child_pdi->linkage_name);
16399 if (actual_class_name != NULL)
16400 {
16401 struct_pdi->name
16402 = ((const char *)
16403 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16404 actual_class_name,
16405 strlen (actual_class_name)));
16406 xfree (actual_class_name);
16407 }
16408 break;
16409 }
16410 }
16411 }
16412
16413 /* Adjust PART_DIE before generating a symbol for it. This function
16414 may set the is_external flag or change the DIE's name. */
16415
16416 static void
16417 fixup_partial_die (struct partial_die_info *part_die,
16418 struct dwarf2_cu *cu)
16419 {
16420 /* Once we've fixed up a die, there's no point in doing so again.
16421 This also avoids a memory leak if we were to call
16422 guess_partial_die_structure_name multiple times. */
16423 if (part_die->fixup_called)
16424 return;
16425
16426 /* If we found a reference attribute and the DIE has no name, try
16427 to find a name in the referred to DIE. */
16428
16429 if (part_die->name == NULL && part_die->has_specification)
16430 {
16431 struct partial_die_info *spec_die;
16432
16433 spec_die = find_partial_die (part_die->spec_offset,
16434 part_die->spec_is_dwz, cu);
16435
16436 fixup_partial_die (spec_die, cu);
16437
16438 if (spec_die->name)
16439 {
16440 part_die->name = spec_die->name;
16441
16442 /* Copy DW_AT_external attribute if it is set. */
16443 if (spec_die->is_external)
16444 part_die->is_external = spec_die->is_external;
16445 }
16446 }
16447
16448 /* Set default names for some unnamed DIEs. */
16449
16450 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16451 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16452
16453 /* If there is no parent die to provide a namespace, and there are
16454 children, see if we can determine the namespace from their linkage
16455 name. */
16456 if (cu->language == language_cplus
16457 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16458 && part_die->die_parent == NULL
16459 && part_die->has_children
16460 && (part_die->tag == DW_TAG_class_type
16461 || part_die->tag == DW_TAG_structure_type
16462 || part_die->tag == DW_TAG_union_type))
16463 guess_partial_die_structure_name (part_die, cu);
16464
16465 /* GCC might emit a nameless struct or union that has a linkage
16466 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16467 if (part_die->name == NULL
16468 && (part_die->tag == DW_TAG_class_type
16469 || part_die->tag == DW_TAG_interface_type
16470 || part_die->tag == DW_TAG_structure_type
16471 || part_die->tag == DW_TAG_union_type)
16472 && part_die->linkage_name != NULL)
16473 {
16474 char *demangled;
16475
16476 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16477 if (demangled)
16478 {
16479 const char *base;
16480
16481 /* Strip any leading namespaces/classes, keep only the base name.
16482 DW_AT_name for named DIEs does not contain the prefixes. */
16483 base = strrchr (demangled, ':');
16484 if (base && base > demangled && base[-1] == ':')
16485 base++;
16486 else
16487 base = demangled;
16488
16489 part_die->name
16490 = ((const char *)
16491 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16492 base, strlen (base)));
16493 xfree (demangled);
16494 }
16495 }
16496
16497 part_die->fixup_called = 1;
16498 }
16499
16500 /* Read an attribute value described by an attribute form. */
16501
16502 static const gdb_byte *
16503 read_attribute_value (const struct die_reader_specs *reader,
16504 struct attribute *attr, unsigned form,
16505 LONGEST implicit_const, const gdb_byte *info_ptr)
16506 {
16507 struct dwarf2_cu *cu = reader->cu;
16508 struct objfile *objfile = cu->objfile;
16509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16510 bfd *abfd = reader->abfd;
16511 struct comp_unit_head *cu_header = &cu->header;
16512 unsigned int bytes_read;
16513 struct dwarf_block *blk;
16514
16515 attr->form = (enum dwarf_form) form;
16516 switch (form)
16517 {
16518 case DW_FORM_ref_addr:
16519 if (cu->header.version == 2)
16520 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16521 else
16522 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16523 &cu->header, &bytes_read);
16524 info_ptr += bytes_read;
16525 break;
16526 case DW_FORM_GNU_ref_alt:
16527 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16528 info_ptr += bytes_read;
16529 break;
16530 case DW_FORM_addr:
16531 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16532 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16533 info_ptr += bytes_read;
16534 break;
16535 case DW_FORM_block2:
16536 blk = dwarf_alloc_block (cu);
16537 blk->size = read_2_bytes (abfd, info_ptr);
16538 info_ptr += 2;
16539 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16540 info_ptr += blk->size;
16541 DW_BLOCK (attr) = blk;
16542 break;
16543 case DW_FORM_block4:
16544 blk = dwarf_alloc_block (cu);
16545 blk->size = read_4_bytes (abfd, info_ptr);
16546 info_ptr += 4;
16547 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16548 info_ptr += blk->size;
16549 DW_BLOCK (attr) = blk;
16550 break;
16551 case DW_FORM_data2:
16552 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16553 info_ptr += 2;
16554 break;
16555 case DW_FORM_data4:
16556 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16557 info_ptr += 4;
16558 break;
16559 case DW_FORM_data8:
16560 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16561 info_ptr += 8;
16562 break;
16563 case DW_FORM_data16:
16564 blk = dwarf_alloc_block (cu);
16565 blk->size = 16;
16566 blk->data = read_n_bytes (abfd, info_ptr, 16);
16567 info_ptr += 16;
16568 DW_BLOCK (attr) = blk;
16569 break;
16570 case DW_FORM_sec_offset:
16571 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16572 info_ptr += bytes_read;
16573 break;
16574 case DW_FORM_string:
16575 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16576 DW_STRING_IS_CANONICAL (attr) = 0;
16577 info_ptr += bytes_read;
16578 break;
16579 case DW_FORM_strp:
16580 if (!cu->per_cu->is_dwz)
16581 {
16582 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16583 &bytes_read);
16584 DW_STRING_IS_CANONICAL (attr) = 0;
16585 info_ptr += bytes_read;
16586 break;
16587 }
16588 /* FALLTHROUGH */
16589 case DW_FORM_line_strp:
16590 if (!cu->per_cu->is_dwz)
16591 {
16592 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16593 cu_header, &bytes_read);
16594 DW_STRING_IS_CANONICAL (attr) = 0;
16595 info_ptr += bytes_read;
16596 break;
16597 }
16598 /* FALLTHROUGH */
16599 case DW_FORM_GNU_strp_alt:
16600 {
16601 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16602 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16603 &bytes_read);
16604
16605 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16606 DW_STRING_IS_CANONICAL (attr) = 0;
16607 info_ptr += bytes_read;
16608 }
16609 break;
16610 case DW_FORM_exprloc:
16611 case DW_FORM_block:
16612 blk = dwarf_alloc_block (cu);
16613 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16614 info_ptr += bytes_read;
16615 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16616 info_ptr += blk->size;
16617 DW_BLOCK (attr) = blk;
16618 break;
16619 case DW_FORM_block1:
16620 blk = dwarf_alloc_block (cu);
16621 blk->size = read_1_byte (abfd, info_ptr);
16622 info_ptr += 1;
16623 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16624 info_ptr += blk->size;
16625 DW_BLOCK (attr) = blk;
16626 break;
16627 case DW_FORM_data1:
16628 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16629 info_ptr += 1;
16630 break;
16631 case DW_FORM_flag:
16632 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16633 info_ptr += 1;
16634 break;
16635 case DW_FORM_flag_present:
16636 DW_UNSND (attr) = 1;
16637 break;
16638 case DW_FORM_sdata:
16639 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16640 info_ptr += bytes_read;
16641 break;
16642 case DW_FORM_udata:
16643 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16644 info_ptr += bytes_read;
16645 break;
16646 case DW_FORM_ref1:
16647 DW_UNSND (attr) = (cu->header.offset.sect_off
16648 + read_1_byte (abfd, info_ptr));
16649 info_ptr += 1;
16650 break;
16651 case DW_FORM_ref2:
16652 DW_UNSND (attr) = (cu->header.offset.sect_off
16653 + read_2_bytes (abfd, info_ptr));
16654 info_ptr += 2;
16655 break;
16656 case DW_FORM_ref4:
16657 DW_UNSND (attr) = (cu->header.offset.sect_off
16658 + read_4_bytes (abfd, info_ptr));
16659 info_ptr += 4;
16660 break;
16661 case DW_FORM_ref8:
16662 DW_UNSND (attr) = (cu->header.offset.sect_off
16663 + read_8_bytes (abfd, info_ptr));
16664 info_ptr += 8;
16665 break;
16666 case DW_FORM_ref_sig8:
16667 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16668 info_ptr += 8;
16669 break;
16670 case DW_FORM_ref_udata:
16671 DW_UNSND (attr) = (cu->header.offset.sect_off
16672 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16673 info_ptr += bytes_read;
16674 break;
16675 case DW_FORM_indirect:
16676 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16677 info_ptr += bytes_read;
16678 if (form == DW_FORM_implicit_const)
16679 {
16680 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16681 info_ptr += bytes_read;
16682 }
16683 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16684 info_ptr);
16685 break;
16686 case DW_FORM_implicit_const:
16687 DW_SND (attr) = implicit_const;
16688 break;
16689 case DW_FORM_GNU_addr_index:
16690 if (reader->dwo_file == NULL)
16691 {
16692 /* For now flag a hard error.
16693 Later we can turn this into a complaint. */
16694 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16695 dwarf_form_name (form),
16696 bfd_get_filename (abfd));
16697 }
16698 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16699 info_ptr += bytes_read;
16700 break;
16701 case DW_FORM_GNU_str_index:
16702 if (reader->dwo_file == NULL)
16703 {
16704 /* For now flag a hard error.
16705 Later we can turn this into a complaint if warranted. */
16706 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16707 dwarf_form_name (form),
16708 bfd_get_filename (abfd));
16709 }
16710 {
16711 ULONGEST str_index =
16712 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16713
16714 DW_STRING (attr) = read_str_index (reader, str_index);
16715 DW_STRING_IS_CANONICAL (attr) = 0;
16716 info_ptr += bytes_read;
16717 }
16718 break;
16719 default:
16720 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16721 dwarf_form_name (form),
16722 bfd_get_filename (abfd));
16723 }
16724
16725 /* Super hack. */
16726 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16727 attr->form = DW_FORM_GNU_ref_alt;
16728
16729 /* We have seen instances where the compiler tried to emit a byte
16730 size attribute of -1 which ended up being encoded as an unsigned
16731 0xffffffff. Although 0xffffffff is technically a valid size value,
16732 an object of this size seems pretty unlikely so we can relatively
16733 safely treat these cases as if the size attribute was invalid and
16734 treat them as zero by default. */
16735 if (attr->name == DW_AT_byte_size
16736 && form == DW_FORM_data4
16737 && DW_UNSND (attr) >= 0xffffffff)
16738 {
16739 complaint
16740 (&symfile_complaints,
16741 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16742 hex_string (DW_UNSND (attr)));
16743 DW_UNSND (attr) = 0;
16744 }
16745
16746 return info_ptr;
16747 }
16748
16749 /* Read an attribute described by an abbreviated attribute. */
16750
16751 static const gdb_byte *
16752 read_attribute (const struct die_reader_specs *reader,
16753 struct attribute *attr, struct attr_abbrev *abbrev,
16754 const gdb_byte *info_ptr)
16755 {
16756 attr->name = abbrev->name;
16757 return read_attribute_value (reader, attr, abbrev->form,
16758 abbrev->implicit_const, info_ptr);
16759 }
16760
16761 /* Read dwarf information from a buffer. */
16762
16763 static unsigned int
16764 read_1_byte (bfd *abfd, const gdb_byte *buf)
16765 {
16766 return bfd_get_8 (abfd, buf);
16767 }
16768
16769 static int
16770 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16771 {
16772 return bfd_get_signed_8 (abfd, buf);
16773 }
16774
16775 static unsigned int
16776 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16777 {
16778 return bfd_get_16 (abfd, buf);
16779 }
16780
16781 static int
16782 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16783 {
16784 return bfd_get_signed_16 (abfd, buf);
16785 }
16786
16787 static unsigned int
16788 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16789 {
16790 return bfd_get_32 (abfd, buf);
16791 }
16792
16793 static int
16794 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16795 {
16796 return bfd_get_signed_32 (abfd, buf);
16797 }
16798
16799 static ULONGEST
16800 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16801 {
16802 return bfd_get_64 (abfd, buf);
16803 }
16804
16805 static CORE_ADDR
16806 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16807 unsigned int *bytes_read)
16808 {
16809 struct comp_unit_head *cu_header = &cu->header;
16810 CORE_ADDR retval = 0;
16811
16812 if (cu_header->signed_addr_p)
16813 {
16814 switch (cu_header->addr_size)
16815 {
16816 case 2:
16817 retval = bfd_get_signed_16 (abfd, buf);
16818 break;
16819 case 4:
16820 retval = bfd_get_signed_32 (abfd, buf);
16821 break;
16822 case 8:
16823 retval = bfd_get_signed_64 (abfd, buf);
16824 break;
16825 default:
16826 internal_error (__FILE__, __LINE__,
16827 _("read_address: bad switch, signed [in module %s]"),
16828 bfd_get_filename (abfd));
16829 }
16830 }
16831 else
16832 {
16833 switch (cu_header->addr_size)
16834 {
16835 case 2:
16836 retval = bfd_get_16 (abfd, buf);
16837 break;
16838 case 4:
16839 retval = bfd_get_32 (abfd, buf);
16840 break;
16841 case 8:
16842 retval = bfd_get_64 (abfd, buf);
16843 break;
16844 default:
16845 internal_error (__FILE__, __LINE__,
16846 _("read_address: bad switch, "
16847 "unsigned [in module %s]"),
16848 bfd_get_filename (abfd));
16849 }
16850 }
16851
16852 *bytes_read = cu_header->addr_size;
16853 return retval;
16854 }
16855
16856 /* Read the initial length from a section. The (draft) DWARF 3
16857 specification allows the initial length to take up either 4 bytes
16858 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16859 bytes describe the length and all offsets will be 8 bytes in length
16860 instead of 4.
16861
16862 An older, non-standard 64-bit format is also handled by this
16863 function. The older format in question stores the initial length
16864 as an 8-byte quantity without an escape value. Lengths greater
16865 than 2^32 aren't very common which means that the initial 4 bytes
16866 is almost always zero. Since a length value of zero doesn't make
16867 sense for the 32-bit format, this initial zero can be considered to
16868 be an escape value which indicates the presence of the older 64-bit
16869 format. As written, the code can't detect (old format) lengths
16870 greater than 4GB. If it becomes necessary to handle lengths
16871 somewhat larger than 4GB, we could allow other small values (such
16872 as the non-sensical values of 1, 2, and 3) to also be used as
16873 escape values indicating the presence of the old format.
16874
16875 The value returned via bytes_read should be used to increment the
16876 relevant pointer after calling read_initial_length().
16877
16878 [ Note: read_initial_length() and read_offset() are based on the
16879 document entitled "DWARF Debugging Information Format", revision
16880 3, draft 8, dated November 19, 2001. This document was obtained
16881 from:
16882
16883 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16884
16885 This document is only a draft and is subject to change. (So beware.)
16886
16887 Details regarding the older, non-standard 64-bit format were
16888 determined empirically by examining 64-bit ELF files produced by
16889 the SGI toolchain on an IRIX 6.5 machine.
16890
16891 - Kevin, July 16, 2002
16892 ] */
16893
16894 static LONGEST
16895 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16896 {
16897 LONGEST length = bfd_get_32 (abfd, buf);
16898
16899 if (length == 0xffffffff)
16900 {
16901 length = bfd_get_64 (abfd, buf + 4);
16902 *bytes_read = 12;
16903 }
16904 else if (length == 0)
16905 {
16906 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16907 length = bfd_get_64 (abfd, buf);
16908 *bytes_read = 8;
16909 }
16910 else
16911 {
16912 *bytes_read = 4;
16913 }
16914
16915 return length;
16916 }
16917
16918 /* Cover function for read_initial_length.
16919 Returns the length of the object at BUF, and stores the size of the
16920 initial length in *BYTES_READ and stores the size that offsets will be in
16921 *OFFSET_SIZE.
16922 If the initial length size is not equivalent to that specified in
16923 CU_HEADER then issue a complaint.
16924 This is useful when reading non-comp-unit headers. */
16925
16926 static LONGEST
16927 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16928 const struct comp_unit_head *cu_header,
16929 unsigned int *bytes_read,
16930 unsigned int *offset_size)
16931 {
16932 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16933
16934 gdb_assert (cu_header->initial_length_size == 4
16935 || cu_header->initial_length_size == 8
16936 || cu_header->initial_length_size == 12);
16937
16938 if (cu_header->initial_length_size != *bytes_read)
16939 complaint (&symfile_complaints,
16940 _("intermixed 32-bit and 64-bit DWARF sections"));
16941
16942 *offset_size = (*bytes_read == 4) ? 4 : 8;
16943 return length;
16944 }
16945
16946 /* Read an offset from the data stream. The size of the offset is
16947 given by cu_header->offset_size. */
16948
16949 static LONGEST
16950 read_offset (bfd *abfd, const gdb_byte *buf,
16951 const struct comp_unit_head *cu_header,
16952 unsigned int *bytes_read)
16953 {
16954 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16955
16956 *bytes_read = cu_header->offset_size;
16957 return offset;
16958 }
16959
16960 /* Read an offset from the data stream. */
16961
16962 static LONGEST
16963 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16964 {
16965 LONGEST retval = 0;
16966
16967 switch (offset_size)
16968 {
16969 case 4:
16970 retval = bfd_get_32 (abfd, buf);
16971 break;
16972 case 8:
16973 retval = bfd_get_64 (abfd, buf);
16974 break;
16975 default:
16976 internal_error (__FILE__, __LINE__,
16977 _("read_offset_1: bad switch [in module %s]"),
16978 bfd_get_filename (abfd));
16979 }
16980
16981 return retval;
16982 }
16983
16984 static const gdb_byte *
16985 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16986 {
16987 /* If the size of a host char is 8 bits, we can return a pointer
16988 to the buffer, otherwise we have to copy the data to a buffer
16989 allocated on the temporary obstack. */
16990 gdb_assert (HOST_CHAR_BIT == 8);
16991 return buf;
16992 }
16993
16994 static const char *
16995 read_direct_string (bfd *abfd, const gdb_byte *buf,
16996 unsigned int *bytes_read_ptr)
16997 {
16998 /* If the size of a host char is 8 bits, we can return a pointer
16999 to the string, otherwise we have to copy the string to a buffer
17000 allocated on the temporary obstack. */
17001 gdb_assert (HOST_CHAR_BIT == 8);
17002 if (*buf == '\0')
17003 {
17004 *bytes_read_ptr = 1;
17005 return NULL;
17006 }
17007 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17008 return (const char *) buf;
17009 }
17010
17011 /* Return pointer to string at section SECT offset STR_OFFSET with error
17012 reporting strings FORM_NAME and SECT_NAME. */
17013
17014 static const char *
17015 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17016 struct dwarf2_section_info *sect,
17017 const char *form_name,
17018 const char *sect_name)
17019 {
17020 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17021 if (sect->buffer == NULL)
17022 error (_("%s used without %s section [in module %s]"),
17023 form_name, sect_name, bfd_get_filename (abfd));
17024 if (str_offset >= sect->size)
17025 error (_("%s pointing outside of %s section [in module %s]"),
17026 form_name, sect_name, bfd_get_filename (abfd));
17027 gdb_assert (HOST_CHAR_BIT == 8);
17028 if (sect->buffer[str_offset] == '\0')
17029 return NULL;
17030 return (const char *) (sect->buffer + str_offset);
17031 }
17032
17033 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17034
17035 static const char *
17036 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17037 {
17038 return read_indirect_string_at_offset_from (abfd, str_offset,
17039 &dwarf2_per_objfile->str,
17040 "DW_FORM_strp", ".debug_str");
17041 }
17042
17043 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17044
17045 static const char *
17046 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17047 {
17048 return read_indirect_string_at_offset_from (abfd, str_offset,
17049 &dwarf2_per_objfile->line_str,
17050 "DW_FORM_line_strp",
17051 ".debug_line_str");
17052 }
17053
17054 /* Read a string at offset STR_OFFSET in the .debug_str section from
17055 the .dwz file DWZ. Throw an error if the offset is too large. If
17056 the string consists of a single NUL byte, return NULL; otherwise
17057 return a pointer to the string. */
17058
17059 static const char *
17060 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17061 {
17062 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17063
17064 if (dwz->str.buffer == NULL)
17065 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17066 "section [in module %s]"),
17067 bfd_get_filename (dwz->dwz_bfd));
17068 if (str_offset >= dwz->str.size)
17069 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17070 ".debug_str section [in module %s]"),
17071 bfd_get_filename (dwz->dwz_bfd));
17072 gdb_assert (HOST_CHAR_BIT == 8);
17073 if (dwz->str.buffer[str_offset] == '\0')
17074 return NULL;
17075 return (const char *) (dwz->str.buffer + str_offset);
17076 }
17077
17078 /* Return pointer to string at .debug_str offset as read from BUF.
17079 BUF is assumed to be in a compilation unit described by CU_HEADER.
17080 Return *BYTES_READ_PTR count of bytes read from BUF. */
17081
17082 static const char *
17083 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17084 const struct comp_unit_head *cu_header,
17085 unsigned int *bytes_read_ptr)
17086 {
17087 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17088
17089 return read_indirect_string_at_offset (abfd, str_offset);
17090 }
17091
17092 /* Return pointer to string at .debug_line_str offset as read from BUF.
17093 BUF is assumed to be in a compilation unit described by CU_HEADER.
17094 Return *BYTES_READ_PTR count of bytes read from BUF. */
17095
17096 static const char *
17097 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17098 const struct comp_unit_head *cu_header,
17099 unsigned int *bytes_read_ptr)
17100 {
17101 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17102
17103 return read_indirect_line_string_at_offset (abfd, str_offset);
17104 }
17105
17106 ULONGEST
17107 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17108 unsigned int *bytes_read_ptr)
17109 {
17110 ULONGEST result;
17111 unsigned int num_read;
17112 int shift;
17113 unsigned char byte;
17114
17115 result = 0;
17116 shift = 0;
17117 num_read = 0;
17118 while (1)
17119 {
17120 byte = bfd_get_8 (abfd, buf);
17121 buf++;
17122 num_read++;
17123 result |= ((ULONGEST) (byte & 127) << shift);
17124 if ((byte & 128) == 0)
17125 {
17126 break;
17127 }
17128 shift += 7;
17129 }
17130 *bytes_read_ptr = num_read;
17131 return result;
17132 }
17133
17134 static LONGEST
17135 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17136 unsigned int *bytes_read_ptr)
17137 {
17138 LONGEST result;
17139 int shift, num_read;
17140 unsigned char byte;
17141
17142 result = 0;
17143 shift = 0;
17144 num_read = 0;
17145 while (1)
17146 {
17147 byte = bfd_get_8 (abfd, buf);
17148 buf++;
17149 num_read++;
17150 result |= ((LONGEST) (byte & 127) << shift);
17151 shift += 7;
17152 if ((byte & 128) == 0)
17153 {
17154 break;
17155 }
17156 }
17157 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17158 result |= -(((LONGEST) 1) << shift);
17159 *bytes_read_ptr = num_read;
17160 return result;
17161 }
17162
17163 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17164 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17165 ADDR_SIZE is the size of addresses from the CU header. */
17166
17167 static CORE_ADDR
17168 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17169 {
17170 struct objfile *objfile = dwarf2_per_objfile->objfile;
17171 bfd *abfd = objfile->obfd;
17172 const gdb_byte *info_ptr;
17173
17174 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17175 if (dwarf2_per_objfile->addr.buffer == NULL)
17176 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17177 objfile_name (objfile));
17178 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17179 error (_("DW_FORM_addr_index pointing outside of "
17180 ".debug_addr section [in module %s]"),
17181 objfile_name (objfile));
17182 info_ptr = (dwarf2_per_objfile->addr.buffer
17183 + addr_base + addr_index * addr_size);
17184 if (addr_size == 4)
17185 return bfd_get_32 (abfd, info_ptr);
17186 else
17187 return bfd_get_64 (abfd, info_ptr);
17188 }
17189
17190 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17191
17192 static CORE_ADDR
17193 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17194 {
17195 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17196 }
17197
17198 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17199
17200 static CORE_ADDR
17201 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17202 unsigned int *bytes_read)
17203 {
17204 bfd *abfd = cu->objfile->obfd;
17205 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17206
17207 return read_addr_index (cu, addr_index);
17208 }
17209
17210 /* Data structure to pass results from dwarf2_read_addr_index_reader
17211 back to dwarf2_read_addr_index. */
17212
17213 struct dwarf2_read_addr_index_data
17214 {
17215 ULONGEST addr_base;
17216 int addr_size;
17217 };
17218
17219 /* die_reader_func for dwarf2_read_addr_index. */
17220
17221 static void
17222 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17223 const gdb_byte *info_ptr,
17224 struct die_info *comp_unit_die,
17225 int has_children,
17226 void *data)
17227 {
17228 struct dwarf2_cu *cu = reader->cu;
17229 struct dwarf2_read_addr_index_data *aidata =
17230 (struct dwarf2_read_addr_index_data *) data;
17231
17232 aidata->addr_base = cu->addr_base;
17233 aidata->addr_size = cu->header.addr_size;
17234 }
17235
17236 /* Given an index in .debug_addr, fetch the value.
17237 NOTE: This can be called during dwarf expression evaluation,
17238 long after the debug information has been read, and thus per_cu->cu
17239 may no longer exist. */
17240
17241 CORE_ADDR
17242 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17243 unsigned int addr_index)
17244 {
17245 struct objfile *objfile = per_cu->objfile;
17246 struct dwarf2_cu *cu = per_cu->cu;
17247 ULONGEST addr_base;
17248 int addr_size;
17249
17250 /* This is intended to be called from outside this file. */
17251 dw2_setup (objfile);
17252
17253 /* We need addr_base and addr_size.
17254 If we don't have PER_CU->cu, we have to get it.
17255 Nasty, but the alternative is storing the needed info in PER_CU,
17256 which at this point doesn't seem justified: it's not clear how frequently
17257 it would get used and it would increase the size of every PER_CU.
17258 Entry points like dwarf2_per_cu_addr_size do a similar thing
17259 so we're not in uncharted territory here.
17260 Alas we need to be a bit more complicated as addr_base is contained
17261 in the DIE.
17262
17263 We don't need to read the entire CU(/TU).
17264 We just need the header and top level die.
17265
17266 IWBN to use the aging mechanism to let us lazily later discard the CU.
17267 For now we skip this optimization. */
17268
17269 if (cu != NULL)
17270 {
17271 addr_base = cu->addr_base;
17272 addr_size = cu->header.addr_size;
17273 }
17274 else
17275 {
17276 struct dwarf2_read_addr_index_data aidata;
17277
17278 /* Note: We can't use init_cutu_and_read_dies_simple here,
17279 we need addr_base. */
17280 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17281 dwarf2_read_addr_index_reader, &aidata);
17282 addr_base = aidata.addr_base;
17283 addr_size = aidata.addr_size;
17284 }
17285
17286 return read_addr_index_1 (addr_index, addr_base, addr_size);
17287 }
17288
17289 /* Given a DW_FORM_GNU_str_index, fetch the string.
17290 This is only used by the Fission support. */
17291
17292 static const char *
17293 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17294 {
17295 struct objfile *objfile = dwarf2_per_objfile->objfile;
17296 const char *objf_name = objfile_name (objfile);
17297 bfd *abfd = objfile->obfd;
17298 struct dwarf2_cu *cu = reader->cu;
17299 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17300 struct dwarf2_section_info *str_offsets_section =
17301 &reader->dwo_file->sections.str_offsets;
17302 const gdb_byte *info_ptr;
17303 ULONGEST str_offset;
17304 static const char form_name[] = "DW_FORM_GNU_str_index";
17305
17306 dwarf2_read_section (objfile, str_section);
17307 dwarf2_read_section (objfile, str_offsets_section);
17308 if (str_section->buffer == NULL)
17309 error (_("%s used without .debug_str.dwo section"
17310 " in CU at offset 0x%lx [in module %s]"),
17311 form_name, (long) cu->header.offset.sect_off, objf_name);
17312 if (str_offsets_section->buffer == NULL)
17313 error (_("%s used without .debug_str_offsets.dwo section"
17314 " in CU at offset 0x%lx [in module %s]"),
17315 form_name, (long) cu->header.offset.sect_off, objf_name);
17316 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17317 error (_("%s pointing outside of .debug_str_offsets.dwo"
17318 " section in CU at offset 0x%lx [in module %s]"),
17319 form_name, (long) cu->header.offset.sect_off, objf_name);
17320 info_ptr = (str_offsets_section->buffer
17321 + str_index * cu->header.offset_size);
17322 if (cu->header.offset_size == 4)
17323 str_offset = bfd_get_32 (abfd, info_ptr);
17324 else
17325 str_offset = bfd_get_64 (abfd, info_ptr);
17326 if (str_offset >= str_section->size)
17327 error (_("Offset from %s pointing outside of"
17328 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17329 form_name, (long) cu->header.offset.sect_off, objf_name);
17330 return (const char *) (str_section->buffer + str_offset);
17331 }
17332
17333 /* Return the length of an LEB128 number in BUF. */
17334
17335 static int
17336 leb128_size (const gdb_byte *buf)
17337 {
17338 const gdb_byte *begin = buf;
17339 gdb_byte byte;
17340
17341 while (1)
17342 {
17343 byte = *buf++;
17344 if ((byte & 128) == 0)
17345 return buf - begin;
17346 }
17347 }
17348
17349 static void
17350 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17351 {
17352 switch (lang)
17353 {
17354 case DW_LANG_C89:
17355 case DW_LANG_C99:
17356 case DW_LANG_C11:
17357 case DW_LANG_C:
17358 case DW_LANG_UPC:
17359 cu->language = language_c;
17360 break;
17361 case DW_LANG_Java:
17362 case DW_LANG_C_plus_plus:
17363 case DW_LANG_C_plus_plus_11:
17364 case DW_LANG_C_plus_plus_14:
17365 cu->language = language_cplus;
17366 break;
17367 case DW_LANG_D:
17368 cu->language = language_d;
17369 break;
17370 case DW_LANG_Fortran77:
17371 case DW_LANG_Fortran90:
17372 case DW_LANG_Fortran95:
17373 case DW_LANG_Fortran03:
17374 case DW_LANG_Fortran08:
17375 cu->language = language_fortran;
17376 break;
17377 case DW_LANG_Go:
17378 cu->language = language_go;
17379 break;
17380 case DW_LANG_Mips_Assembler:
17381 cu->language = language_asm;
17382 break;
17383 case DW_LANG_Ada83:
17384 case DW_LANG_Ada95:
17385 cu->language = language_ada;
17386 break;
17387 case DW_LANG_Modula2:
17388 cu->language = language_m2;
17389 break;
17390 case DW_LANG_Pascal83:
17391 cu->language = language_pascal;
17392 break;
17393 case DW_LANG_ObjC:
17394 cu->language = language_objc;
17395 break;
17396 case DW_LANG_Rust:
17397 case DW_LANG_Rust_old:
17398 cu->language = language_rust;
17399 break;
17400 case DW_LANG_Cobol74:
17401 case DW_LANG_Cobol85:
17402 default:
17403 cu->language = language_minimal;
17404 break;
17405 }
17406 cu->language_defn = language_def (cu->language);
17407 }
17408
17409 /* Return the named attribute or NULL if not there. */
17410
17411 static struct attribute *
17412 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17413 {
17414 for (;;)
17415 {
17416 unsigned int i;
17417 struct attribute *spec = NULL;
17418
17419 for (i = 0; i < die->num_attrs; ++i)
17420 {
17421 if (die->attrs[i].name == name)
17422 return &die->attrs[i];
17423 if (die->attrs[i].name == DW_AT_specification
17424 || die->attrs[i].name == DW_AT_abstract_origin)
17425 spec = &die->attrs[i];
17426 }
17427
17428 if (!spec)
17429 break;
17430
17431 die = follow_die_ref (die, spec, &cu);
17432 }
17433
17434 return NULL;
17435 }
17436
17437 /* Return the named attribute or NULL if not there,
17438 but do not follow DW_AT_specification, etc.
17439 This is for use in contexts where we're reading .debug_types dies.
17440 Following DW_AT_specification, DW_AT_abstract_origin will take us
17441 back up the chain, and we want to go down. */
17442
17443 static struct attribute *
17444 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17445 {
17446 unsigned int i;
17447
17448 for (i = 0; i < die->num_attrs; ++i)
17449 if (die->attrs[i].name == name)
17450 return &die->attrs[i];
17451
17452 return NULL;
17453 }
17454
17455 /* Return the string associated with a string-typed attribute, or NULL if it
17456 is either not found or is of an incorrect type. */
17457
17458 static const char *
17459 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17460 {
17461 struct attribute *attr;
17462 const char *str = NULL;
17463
17464 attr = dwarf2_attr (die, name, cu);
17465
17466 if (attr != NULL)
17467 {
17468 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17469 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17470 str = DW_STRING (attr);
17471 else
17472 complaint (&symfile_complaints,
17473 _("string type expected for attribute %s for "
17474 "DIE at 0x%x in module %s"),
17475 dwarf_attr_name (name), die->offset.sect_off,
17476 objfile_name (cu->objfile));
17477 }
17478
17479 return str;
17480 }
17481
17482 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17483 and holds a non-zero value. This function should only be used for
17484 DW_FORM_flag or DW_FORM_flag_present attributes. */
17485
17486 static int
17487 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17488 {
17489 struct attribute *attr = dwarf2_attr (die, name, cu);
17490
17491 return (attr && DW_UNSND (attr));
17492 }
17493
17494 static int
17495 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17496 {
17497 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17498 which value is non-zero. However, we have to be careful with
17499 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17500 (via dwarf2_flag_true_p) follows this attribute. So we may
17501 end up accidently finding a declaration attribute that belongs
17502 to a different DIE referenced by the specification attribute,
17503 even though the given DIE does not have a declaration attribute. */
17504 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17505 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17506 }
17507
17508 /* Return the die giving the specification for DIE, if there is
17509 one. *SPEC_CU is the CU containing DIE on input, and the CU
17510 containing the return value on output. If there is no
17511 specification, but there is an abstract origin, that is
17512 returned. */
17513
17514 static struct die_info *
17515 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17516 {
17517 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17518 *spec_cu);
17519
17520 if (spec_attr == NULL)
17521 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17522
17523 if (spec_attr == NULL)
17524 return NULL;
17525 else
17526 return follow_die_ref (die, spec_attr, spec_cu);
17527 }
17528
17529 /* Free the line_header structure *LH, and any arrays and strings it
17530 refers to.
17531 NOTE: This is also used as a "cleanup" function. */
17532
17533 static void
17534 free_line_header (struct line_header *lh)
17535 {
17536 if (lh->standard_opcode_lengths)
17537 xfree (lh->standard_opcode_lengths);
17538
17539 /* Remember that all the lh->file_names[i].name pointers are
17540 pointers into debug_line_buffer, and don't need to be freed. */
17541 if (lh->file_names)
17542 xfree (lh->file_names);
17543
17544 /* Similarly for the include directory names. */
17545 if (lh->include_dirs)
17546 xfree (lh->include_dirs);
17547
17548 xfree (lh);
17549 }
17550
17551 /* Stub for free_line_header to match void * callback types. */
17552
17553 static void
17554 free_line_header_voidp (void *arg)
17555 {
17556 struct line_header *lh = (struct line_header *) arg;
17557
17558 free_line_header (lh);
17559 }
17560
17561 /* Add an entry to LH's include directory table. */
17562
17563 static void
17564 add_include_dir (struct line_header *lh, const char *include_dir)
17565 {
17566 if (dwarf_line_debug >= 2)
17567 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17568 lh->num_include_dirs + 1, include_dir);
17569
17570 /* Grow the array if necessary. */
17571 if (lh->include_dirs_size == 0)
17572 {
17573 lh->include_dirs_size = 1; /* for testing */
17574 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17575 }
17576 else if (lh->num_include_dirs >= lh->include_dirs_size)
17577 {
17578 lh->include_dirs_size *= 2;
17579 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17580 lh->include_dirs_size);
17581 }
17582
17583 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17584 }
17585
17586 /* Add an entry to LH's file name table. */
17587
17588 static void
17589 add_file_name (struct line_header *lh,
17590 const char *name,
17591 unsigned int dir_index,
17592 unsigned int mod_time,
17593 unsigned int length)
17594 {
17595 struct file_entry *fe;
17596
17597 if (dwarf_line_debug >= 2)
17598 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17599 lh->num_file_names + 1, name);
17600
17601 /* Grow the array if necessary. */
17602 if (lh->file_names_size == 0)
17603 {
17604 lh->file_names_size = 1; /* for testing */
17605 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17606 }
17607 else if (lh->num_file_names >= lh->file_names_size)
17608 {
17609 lh->file_names_size *= 2;
17610 lh->file_names
17611 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17612 }
17613
17614 fe = &lh->file_names[lh->num_file_names++];
17615 fe->name = name;
17616 fe->dir_index = dir_index;
17617 fe->mod_time = mod_time;
17618 fe->length = length;
17619 fe->included_p = 0;
17620 fe->symtab = NULL;
17621 }
17622
17623 /* A convenience function to find the proper .debug_line section for a CU. */
17624
17625 static struct dwarf2_section_info *
17626 get_debug_line_section (struct dwarf2_cu *cu)
17627 {
17628 struct dwarf2_section_info *section;
17629
17630 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17631 DWO file. */
17632 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17633 section = &cu->dwo_unit->dwo_file->sections.line;
17634 else if (cu->per_cu->is_dwz)
17635 {
17636 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17637
17638 section = &dwz->line;
17639 }
17640 else
17641 section = &dwarf2_per_objfile->line;
17642
17643 return section;
17644 }
17645
17646 /* Forwarding function for read_formatted_entries. */
17647
17648 static void
17649 add_include_dir_stub (struct line_header *lh, const char *name,
17650 unsigned int dir_index, unsigned int mod_time,
17651 unsigned int length)
17652 {
17653 add_include_dir (lh, name);
17654 }
17655
17656 /* Read directory or file name entry format, starting with byte of
17657 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17658 entries count and the entries themselves in the described entry
17659 format. */
17660
17661 static void
17662 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17663 struct line_header *lh,
17664 const struct comp_unit_head *cu_header,
17665 void (*callback) (struct line_header *lh,
17666 const char *name,
17667 unsigned int dir_index,
17668 unsigned int mod_time,
17669 unsigned int length))
17670 {
17671 gdb_byte format_count, formati;
17672 ULONGEST data_count, datai;
17673 const gdb_byte *buf = *bufp;
17674 const gdb_byte *format_header_data;
17675 int i;
17676 unsigned int bytes_read;
17677
17678 format_count = read_1_byte (abfd, buf);
17679 buf += 1;
17680 format_header_data = buf;
17681 for (formati = 0; formati < format_count; formati++)
17682 {
17683 read_unsigned_leb128 (abfd, buf, &bytes_read);
17684 buf += bytes_read;
17685 read_unsigned_leb128 (abfd, buf, &bytes_read);
17686 buf += bytes_read;
17687 }
17688
17689 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17690 buf += bytes_read;
17691 for (datai = 0; datai < data_count; datai++)
17692 {
17693 const gdb_byte *format = format_header_data;
17694 struct file_entry fe;
17695
17696 memset (&fe, 0, sizeof (fe));
17697
17698 for (formati = 0; formati < format_count; formati++)
17699 {
17700 ULONGEST content_type, form;
17701 const char *string_trash;
17702 const char **stringp = &string_trash;
17703 unsigned int uint_trash, *uintp = &uint_trash;
17704
17705 content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17706 format += bytes_read;
17707 switch (content_type)
17708 {
17709 case DW_LNCT_path:
17710 stringp = &fe.name;
17711 break;
17712 case DW_LNCT_directory_index:
17713 uintp = &fe.dir_index;
17714 break;
17715 case DW_LNCT_timestamp:
17716 uintp = &fe.mod_time;
17717 break;
17718 case DW_LNCT_size:
17719 uintp = &fe.length;
17720 break;
17721 case DW_LNCT_MD5:
17722 break;
17723 default:
17724 complaint (&symfile_complaints,
17725 _("Unknown format content type %s"),
17726 pulongest (content_type));
17727 }
17728
17729 form = read_unsigned_leb128 (abfd, format, &bytes_read);
17730 format += bytes_read;
17731 switch (form)
17732 {
17733 case DW_FORM_string:
17734 *stringp = read_direct_string (abfd, buf, &bytes_read);
17735 buf += bytes_read;
17736 break;
17737
17738 case DW_FORM_line_strp:
17739 *stringp = read_indirect_line_string (abfd, buf, cu_header, &bytes_read);
17740 buf += bytes_read;
17741 break;
17742
17743 case DW_FORM_data1:
17744 *uintp = read_1_byte (abfd, buf);
17745 buf += 1;
17746 break;
17747
17748 case DW_FORM_data2:
17749 *uintp = read_2_bytes (abfd, buf);
17750 buf += 2;
17751 break;
17752
17753 case DW_FORM_data4:
17754 *uintp = read_4_bytes (abfd, buf);
17755 buf += 4;
17756 break;
17757
17758 case DW_FORM_data8:
17759 *uintp = read_8_bytes (abfd, buf);
17760 buf += 8;
17761 break;
17762
17763 case DW_FORM_udata:
17764 *uintp = read_unsigned_leb128 (abfd, buf, &bytes_read);
17765 buf += bytes_read;
17766 break;
17767
17768 case DW_FORM_block:
17769 /* It is valid only for DW_LNCT_timestamp which is ignored by
17770 current GDB. */
17771 break;
17772 }
17773 }
17774
17775 callback (lh, fe.name, fe.dir_index, fe.mod_time, fe.length);
17776 }
17777
17778 *bufp = buf;
17779 }
17780
17781 /* Read the statement program header starting at OFFSET in
17782 .debug_line, or .debug_line.dwo. Return a pointer
17783 to a struct line_header, allocated using xmalloc.
17784 Returns NULL if there is a problem reading the header, e.g., if it
17785 has a version we don't understand.
17786
17787 NOTE: the strings in the include directory and file name tables of
17788 the returned object point into the dwarf line section buffer,
17789 and must not be freed. */
17790
17791 static struct line_header *
17792 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17793 {
17794 struct cleanup *back_to;
17795 struct line_header *lh;
17796 const gdb_byte *line_ptr;
17797 unsigned int bytes_read, offset_size;
17798 int i;
17799 const char *cur_dir, *cur_file;
17800 struct dwarf2_section_info *section;
17801 bfd *abfd;
17802
17803 section = get_debug_line_section (cu);
17804 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17805 if (section->buffer == NULL)
17806 {
17807 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17808 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17809 else
17810 complaint (&symfile_complaints, _("missing .debug_line section"));
17811 return 0;
17812 }
17813
17814 /* We can't do this until we know the section is non-empty.
17815 Only then do we know we have such a section. */
17816 abfd = get_section_bfd_owner (section);
17817
17818 /* Make sure that at least there's room for the total_length field.
17819 That could be 12 bytes long, but we're just going to fudge that. */
17820 if (offset + 4 >= section->size)
17821 {
17822 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17823 return 0;
17824 }
17825
17826 lh = XNEW (struct line_header);
17827 memset (lh, 0, sizeof (*lh));
17828 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17829 (void *) lh);
17830
17831 lh->offset.sect_off = offset;
17832 lh->offset_in_dwz = cu->per_cu->is_dwz;
17833
17834 line_ptr = section->buffer + offset;
17835
17836 /* Read in the header. */
17837 lh->total_length =
17838 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17839 &bytes_read, &offset_size);
17840 line_ptr += bytes_read;
17841 if (line_ptr + lh->total_length > (section->buffer + section->size))
17842 {
17843 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17844 do_cleanups (back_to);
17845 return 0;
17846 }
17847 lh->statement_program_end = line_ptr + lh->total_length;
17848 lh->version = read_2_bytes (abfd, line_ptr);
17849 line_ptr += 2;
17850 if (lh->version > 5)
17851 {
17852 /* This is a version we don't understand. The format could have
17853 changed in ways we don't handle properly so just punt. */
17854 complaint (&symfile_complaints,
17855 _("unsupported version in .debug_line section"));
17856 return NULL;
17857 }
17858 if (lh->version >= 5)
17859 {
17860 gdb_byte segment_selector_size;
17861
17862 /* Skip address size. */
17863 read_1_byte (abfd, line_ptr);
17864 line_ptr += 1;
17865
17866 segment_selector_size = read_1_byte (abfd, line_ptr);
17867 line_ptr += 1;
17868 if (segment_selector_size != 0)
17869 {
17870 complaint (&symfile_complaints,
17871 _("unsupported segment selector size %u "
17872 "in .debug_line section"),
17873 segment_selector_size);
17874 return NULL;
17875 }
17876 }
17877 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17878 line_ptr += offset_size;
17879 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17880 line_ptr += 1;
17881 if (lh->version >= 4)
17882 {
17883 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17884 line_ptr += 1;
17885 }
17886 else
17887 lh->maximum_ops_per_instruction = 1;
17888
17889 if (lh->maximum_ops_per_instruction == 0)
17890 {
17891 lh->maximum_ops_per_instruction = 1;
17892 complaint (&symfile_complaints,
17893 _("invalid maximum_ops_per_instruction "
17894 "in `.debug_line' section"));
17895 }
17896
17897 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17898 line_ptr += 1;
17899 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17900 line_ptr += 1;
17901 lh->line_range = read_1_byte (abfd, line_ptr);
17902 line_ptr += 1;
17903 lh->opcode_base = read_1_byte (abfd, line_ptr);
17904 line_ptr += 1;
17905 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17906
17907 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17908 for (i = 1; i < lh->opcode_base; ++i)
17909 {
17910 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17911 line_ptr += 1;
17912 }
17913
17914 if (lh->version >= 5)
17915 {
17916 /* Read directory table. */
17917 read_formatted_entries (abfd, &line_ptr, lh, &cu->header,
17918 add_include_dir_stub);
17919
17920 /* Read file name table. */
17921 read_formatted_entries (abfd, &line_ptr, lh, &cu->header, add_file_name);
17922 }
17923 else
17924 {
17925 /* Read directory table. */
17926 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17927 {
17928 line_ptr += bytes_read;
17929 add_include_dir (lh, cur_dir);
17930 }
17931 line_ptr += bytes_read;
17932
17933 /* Read file name table. */
17934 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17935 {
17936 unsigned int dir_index, mod_time, length;
17937
17938 line_ptr += bytes_read;
17939 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17940 line_ptr += bytes_read;
17941 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17942 line_ptr += bytes_read;
17943 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17944 line_ptr += bytes_read;
17945
17946 add_file_name (lh, cur_file, dir_index, mod_time, length);
17947 }
17948 line_ptr += bytes_read;
17949 }
17950 lh->statement_program_start = line_ptr;
17951
17952 if (line_ptr > (section->buffer + section->size))
17953 complaint (&symfile_complaints,
17954 _("line number info header doesn't "
17955 "fit in `.debug_line' section"));
17956
17957 discard_cleanups (back_to);
17958 return lh;
17959 }
17960
17961 /* Subroutine of dwarf_decode_lines to simplify it.
17962 Return the file name of the psymtab for included file FILE_INDEX
17963 in line header LH of PST.
17964 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17965 If space for the result is malloc'd, it will be freed by a cleanup.
17966 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17967
17968 The function creates dangling cleanup registration. */
17969
17970 static const char *
17971 psymtab_include_file_name (const struct line_header *lh, int file_index,
17972 const struct partial_symtab *pst,
17973 const char *comp_dir)
17974 {
17975 const struct file_entry fe = lh->file_names [file_index];
17976 const char *include_name = fe.name;
17977 const char *include_name_to_compare = include_name;
17978 const char *dir_name = NULL;
17979 const char *pst_filename;
17980 char *copied_name = NULL;
17981 int file_is_pst;
17982
17983 if (fe.dir_index && lh->include_dirs != NULL)
17984 dir_name = lh->include_dirs[fe.dir_index - 1];
17985
17986 if (!IS_ABSOLUTE_PATH (include_name)
17987 && (dir_name != NULL || comp_dir != NULL))
17988 {
17989 /* Avoid creating a duplicate psymtab for PST.
17990 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17991 Before we do the comparison, however, we need to account
17992 for DIR_NAME and COMP_DIR.
17993 First prepend dir_name (if non-NULL). If we still don't
17994 have an absolute path prepend comp_dir (if non-NULL).
17995 However, the directory we record in the include-file's
17996 psymtab does not contain COMP_DIR (to match the
17997 corresponding symtab(s)).
17998
17999 Example:
18000
18001 bash$ cd /tmp
18002 bash$ gcc -g ./hello.c
18003 include_name = "hello.c"
18004 dir_name = "."
18005 DW_AT_comp_dir = comp_dir = "/tmp"
18006 DW_AT_name = "./hello.c"
18007
18008 */
18009
18010 if (dir_name != NULL)
18011 {
18012 char *tem = concat (dir_name, SLASH_STRING,
18013 include_name, (char *)NULL);
18014
18015 make_cleanup (xfree, tem);
18016 include_name = tem;
18017 include_name_to_compare = include_name;
18018 }
18019 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18020 {
18021 char *tem = concat (comp_dir, SLASH_STRING,
18022 include_name, (char *)NULL);
18023
18024 make_cleanup (xfree, tem);
18025 include_name_to_compare = tem;
18026 }
18027 }
18028
18029 pst_filename = pst->filename;
18030 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18031 {
18032 copied_name = concat (pst->dirname, SLASH_STRING,
18033 pst_filename, (char *)NULL);
18034 pst_filename = copied_name;
18035 }
18036
18037 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18038
18039 if (copied_name != NULL)
18040 xfree (copied_name);
18041
18042 if (file_is_pst)
18043 return NULL;
18044 return include_name;
18045 }
18046
18047 /* State machine to track the state of the line number program. */
18048
18049 typedef struct
18050 {
18051 /* These are part of the standard DWARF line number state machine. */
18052
18053 unsigned char op_index;
18054 unsigned int file;
18055 unsigned int line;
18056 CORE_ADDR address;
18057 int is_stmt;
18058 unsigned int discriminator;
18059
18060 /* Additional bits of state we need to track. */
18061
18062 /* The last file that we called dwarf2_start_subfile for.
18063 This is only used for TLLs. */
18064 unsigned int last_file;
18065 /* The last file a line number was recorded for. */
18066 struct subfile *last_subfile;
18067
18068 /* The function to call to record a line. */
18069 record_line_ftype *record_line;
18070
18071 /* The last line number that was recorded, used to coalesce
18072 consecutive entries for the same line. This can happen, for
18073 example, when discriminators are present. PR 17276. */
18074 unsigned int last_line;
18075 int line_has_non_zero_discriminator;
18076 } lnp_state_machine;
18077
18078 /* There's a lot of static state to pass to dwarf_record_line.
18079 This keeps it all together. */
18080
18081 typedef struct
18082 {
18083 /* The gdbarch. */
18084 struct gdbarch *gdbarch;
18085
18086 /* The line number header. */
18087 struct line_header *line_header;
18088
18089 /* Non-zero if we're recording lines.
18090 Otherwise we're building partial symtabs and are just interested in
18091 finding include files mentioned by the line number program. */
18092 int record_lines_p;
18093 } lnp_reader_state;
18094
18095 /* Ignore this record_line request. */
18096
18097 static void
18098 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18099 {
18100 return;
18101 }
18102
18103 /* Return non-zero if we should add LINE to the line number table.
18104 LINE is the line to add, LAST_LINE is the last line that was added,
18105 LAST_SUBFILE is the subfile for LAST_LINE.
18106 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18107 had a non-zero discriminator.
18108
18109 We have to be careful in the presence of discriminators.
18110 E.g., for this line:
18111
18112 for (i = 0; i < 100000; i++);
18113
18114 clang can emit four line number entries for that one line,
18115 each with a different discriminator.
18116 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18117
18118 However, we want gdb to coalesce all four entries into one.
18119 Otherwise the user could stepi into the middle of the line and
18120 gdb would get confused about whether the pc really was in the
18121 middle of the line.
18122
18123 Things are further complicated by the fact that two consecutive
18124 line number entries for the same line is a heuristic used by gcc
18125 to denote the end of the prologue. So we can't just discard duplicate
18126 entries, we have to be selective about it. The heuristic we use is
18127 that we only collapse consecutive entries for the same line if at least
18128 one of those entries has a non-zero discriminator. PR 17276.
18129
18130 Note: Addresses in the line number state machine can never go backwards
18131 within one sequence, thus this coalescing is ok. */
18132
18133 static int
18134 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18135 int line_has_non_zero_discriminator,
18136 struct subfile *last_subfile)
18137 {
18138 if (current_subfile != last_subfile)
18139 return 1;
18140 if (line != last_line)
18141 return 1;
18142 /* Same line for the same file that we've seen already.
18143 As a last check, for pr 17276, only record the line if the line
18144 has never had a non-zero discriminator. */
18145 if (!line_has_non_zero_discriminator)
18146 return 1;
18147 return 0;
18148 }
18149
18150 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18151 in the line table of subfile SUBFILE. */
18152
18153 static void
18154 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18155 unsigned int line, CORE_ADDR address,
18156 record_line_ftype p_record_line)
18157 {
18158 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18159
18160 if (dwarf_line_debug)
18161 {
18162 fprintf_unfiltered (gdb_stdlog,
18163 "Recording line %u, file %s, address %s\n",
18164 line, lbasename (subfile->name),
18165 paddress (gdbarch, address));
18166 }
18167
18168 (*p_record_line) (subfile, line, addr);
18169 }
18170
18171 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18172 Mark the end of a set of line number records.
18173 The arguments are the same as for dwarf_record_line_1.
18174 If SUBFILE is NULL the request is ignored. */
18175
18176 static void
18177 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18178 CORE_ADDR address, record_line_ftype p_record_line)
18179 {
18180 if (subfile == NULL)
18181 return;
18182
18183 if (dwarf_line_debug)
18184 {
18185 fprintf_unfiltered (gdb_stdlog,
18186 "Finishing current line, file %s, address %s\n",
18187 lbasename (subfile->name),
18188 paddress (gdbarch, address));
18189 }
18190
18191 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18192 }
18193
18194 /* Record the line in STATE.
18195 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
18196
18197 static void
18198 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
18199 int end_sequence)
18200 {
18201 const struct line_header *lh = reader->line_header;
18202 unsigned int file, line, discriminator;
18203 int is_stmt;
18204
18205 file = state->file;
18206 line = state->line;
18207 is_stmt = state->is_stmt;
18208 discriminator = state->discriminator;
18209
18210 if (dwarf_line_debug)
18211 {
18212 fprintf_unfiltered (gdb_stdlog,
18213 "Processing actual line %u: file %u,"
18214 " address %s, is_stmt %u, discrim %u\n",
18215 line, file,
18216 paddress (reader->gdbarch, state->address),
18217 is_stmt, discriminator);
18218 }
18219
18220 if (file == 0 || file - 1 >= lh->num_file_names)
18221 dwarf2_debug_line_missing_file_complaint ();
18222 /* For now we ignore lines not starting on an instruction boundary.
18223 But not when processing end_sequence for compatibility with the
18224 previous version of the code. */
18225 else if (state->op_index == 0 || end_sequence)
18226 {
18227 lh->file_names[file - 1].included_p = 1;
18228 if (reader->record_lines_p && is_stmt)
18229 {
18230 if (state->last_subfile != current_subfile || end_sequence)
18231 {
18232 dwarf_finish_line (reader->gdbarch, state->last_subfile,
18233 state->address, state->record_line);
18234 }
18235
18236 if (!end_sequence)
18237 {
18238 if (dwarf_record_line_p (line, state->last_line,
18239 state->line_has_non_zero_discriminator,
18240 state->last_subfile))
18241 {
18242 dwarf_record_line_1 (reader->gdbarch, current_subfile,
18243 line, state->address,
18244 state->record_line);
18245 }
18246 state->last_subfile = current_subfile;
18247 state->last_line = line;
18248 }
18249 }
18250 }
18251 }
18252
18253 /* Initialize STATE for the start of a line number program. */
18254
18255 static void
18256 init_lnp_state_machine (lnp_state_machine *state,
18257 const lnp_reader_state *reader)
18258 {
18259 memset (state, 0, sizeof (*state));
18260
18261 /* Just starting, there is no "last file". */
18262 state->last_file = 0;
18263 state->last_subfile = NULL;
18264
18265 state->record_line = record_line;
18266
18267 state->last_line = 0;
18268 state->line_has_non_zero_discriminator = 0;
18269
18270 /* Initialize these according to the DWARF spec. */
18271 state->op_index = 0;
18272 state->file = 1;
18273 state->line = 1;
18274 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18275 was a line entry for it so that the backend has a chance to adjust it
18276 and also record it in case it needs it. This is currently used by MIPS
18277 code, cf. `mips_adjust_dwarf2_line'. */
18278 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
18279 state->is_stmt = reader->line_header->default_is_stmt;
18280 state->discriminator = 0;
18281 }
18282
18283 /* Check address and if invalid nop-out the rest of the lines in this
18284 sequence. */
18285
18286 static void
18287 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
18288 const gdb_byte *line_ptr,
18289 CORE_ADDR lowpc, CORE_ADDR address)
18290 {
18291 /* If address < lowpc then it's not a usable value, it's outside the
18292 pc range of the CU. However, we restrict the test to only address
18293 values of zero to preserve GDB's previous behaviour which is to
18294 handle the specific case of a function being GC'd by the linker. */
18295
18296 if (address == 0 && address < lowpc)
18297 {
18298 /* This line table is for a function which has been
18299 GCd by the linker. Ignore it. PR gdb/12528 */
18300
18301 struct objfile *objfile = cu->objfile;
18302 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18303
18304 complaint (&symfile_complaints,
18305 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18306 line_offset, objfile_name (objfile));
18307 state->record_line = noop_record_line;
18308 /* Note: sm.record_line is left as noop_record_line
18309 until we see DW_LNE_end_sequence. */
18310 }
18311 }
18312
18313 /* Subroutine of dwarf_decode_lines to simplify it.
18314 Process the line number information in LH.
18315 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18316 program in order to set included_p for every referenced header. */
18317
18318 static void
18319 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18320 const int decode_for_pst_p, CORE_ADDR lowpc)
18321 {
18322 const gdb_byte *line_ptr, *extended_end;
18323 const gdb_byte *line_end;
18324 unsigned int bytes_read, extended_len;
18325 unsigned char op_code, extended_op;
18326 CORE_ADDR baseaddr;
18327 struct objfile *objfile = cu->objfile;
18328 bfd *abfd = objfile->obfd;
18329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18330 /* Non-zero if we're recording line info (as opposed to building partial
18331 symtabs). */
18332 int record_lines_p = !decode_for_pst_p;
18333 /* A collection of things we need to pass to dwarf_record_line. */
18334 lnp_reader_state reader_state;
18335
18336 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18337
18338 line_ptr = lh->statement_program_start;
18339 line_end = lh->statement_program_end;
18340
18341 reader_state.gdbarch = gdbarch;
18342 reader_state.line_header = lh;
18343 reader_state.record_lines_p = record_lines_p;
18344
18345 /* Read the statement sequences until there's nothing left. */
18346 while (line_ptr < line_end)
18347 {
18348 /* The DWARF line number program state machine. */
18349 lnp_state_machine state_machine;
18350 int end_sequence = 0;
18351
18352 /* Reset the state machine at the start of each sequence. */
18353 init_lnp_state_machine (&state_machine, &reader_state);
18354
18355 if (record_lines_p && lh->num_file_names >= state_machine.file)
18356 {
18357 /* Start a subfile for the current file of the state machine. */
18358 /* lh->include_dirs and lh->file_names are 0-based, but the
18359 directory and file name numbers in the statement program
18360 are 1-based. */
18361 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
18362 const char *dir = NULL;
18363
18364 if (fe->dir_index && lh->include_dirs != NULL)
18365 dir = lh->include_dirs[fe->dir_index - 1];
18366
18367 dwarf2_start_subfile (fe->name, dir);
18368 }
18369
18370 /* Decode the table. */
18371 while (line_ptr < line_end && !end_sequence)
18372 {
18373 op_code = read_1_byte (abfd, line_ptr);
18374 line_ptr += 1;
18375
18376 if (op_code >= lh->opcode_base)
18377 {
18378 /* Special opcode. */
18379 unsigned char adj_opcode;
18380 CORE_ADDR addr_adj;
18381 int line_delta;
18382
18383 adj_opcode = op_code - lh->opcode_base;
18384 addr_adj = (((state_machine.op_index
18385 + (adj_opcode / lh->line_range))
18386 / lh->maximum_ops_per_instruction)
18387 * lh->minimum_instruction_length);
18388 state_machine.address
18389 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18390 state_machine.op_index = ((state_machine.op_index
18391 + (adj_opcode / lh->line_range))
18392 % lh->maximum_ops_per_instruction);
18393 line_delta = lh->line_base + (adj_opcode % lh->line_range);
18394 state_machine.line += line_delta;
18395 if (line_delta != 0)
18396 state_machine.line_has_non_zero_discriminator
18397 = state_machine.discriminator != 0;
18398
18399 dwarf_record_line (&reader_state, &state_machine, 0);
18400 state_machine.discriminator = 0;
18401 }
18402 else switch (op_code)
18403 {
18404 case DW_LNS_extended_op:
18405 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18406 &bytes_read);
18407 line_ptr += bytes_read;
18408 extended_end = line_ptr + extended_len;
18409 extended_op = read_1_byte (abfd, line_ptr);
18410 line_ptr += 1;
18411 switch (extended_op)
18412 {
18413 case DW_LNE_end_sequence:
18414 state_machine.record_line = record_line;
18415 end_sequence = 1;
18416 break;
18417 case DW_LNE_set_address:
18418 {
18419 CORE_ADDR address
18420 = read_address (abfd, line_ptr, cu, &bytes_read);
18421
18422 line_ptr += bytes_read;
18423 check_line_address (cu, &state_machine, line_ptr,
18424 lowpc, address);
18425 state_machine.op_index = 0;
18426 address += baseaddr;
18427 state_machine.address
18428 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
18429 }
18430 break;
18431 case DW_LNE_define_file:
18432 {
18433 const char *cur_file;
18434 unsigned int dir_index, mod_time, length;
18435
18436 cur_file = read_direct_string (abfd, line_ptr,
18437 &bytes_read);
18438 line_ptr += bytes_read;
18439 dir_index =
18440 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18441 line_ptr += bytes_read;
18442 mod_time =
18443 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18444 line_ptr += bytes_read;
18445 length =
18446 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18447 line_ptr += bytes_read;
18448 add_file_name (lh, cur_file, dir_index, mod_time, length);
18449 }
18450 break;
18451 case DW_LNE_set_discriminator:
18452 /* The discriminator is not interesting to the debugger;
18453 just ignore it. We still need to check its value though:
18454 if there are consecutive entries for the same
18455 (non-prologue) line we want to coalesce them.
18456 PR 17276. */
18457 state_machine.discriminator
18458 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18459 state_machine.line_has_non_zero_discriminator
18460 |= state_machine.discriminator != 0;
18461 line_ptr += bytes_read;
18462 break;
18463 default:
18464 complaint (&symfile_complaints,
18465 _("mangled .debug_line section"));
18466 return;
18467 }
18468 /* Make sure that we parsed the extended op correctly. If e.g.
18469 we expected a different address size than the producer used,
18470 we may have read the wrong number of bytes. */
18471 if (line_ptr != extended_end)
18472 {
18473 complaint (&symfile_complaints,
18474 _("mangled .debug_line section"));
18475 return;
18476 }
18477 break;
18478 case DW_LNS_copy:
18479 dwarf_record_line (&reader_state, &state_machine, 0);
18480 state_machine.discriminator = 0;
18481 break;
18482 case DW_LNS_advance_pc:
18483 {
18484 CORE_ADDR adjust
18485 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18486 CORE_ADDR addr_adj;
18487
18488 addr_adj = (((state_machine.op_index + adjust)
18489 / lh->maximum_ops_per_instruction)
18490 * lh->minimum_instruction_length);
18491 state_machine.address
18492 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18493 state_machine.op_index = ((state_machine.op_index + adjust)
18494 % lh->maximum_ops_per_instruction);
18495 line_ptr += bytes_read;
18496 }
18497 break;
18498 case DW_LNS_advance_line:
18499 {
18500 int line_delta
18501 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18502
18503 state_machine.line += line_delta;
18504 if (line_delta != 0)
18505 state_machine.line_has_non_zero_discriminator
18506 = state_machine.discriminator != 0;
18507 line_ptr += bytes_read;
18508 }
18509 break;
18510 case DW_LNS_set_file:
18511 {
18512 /* The arrays lh->include_dirs and lh->file_names are
18513 0-based, but the directory and file name numbers in
18514 the statement program are 1-based. */
18515 struct file_entry *fe;
18516 const char *dir = NULL;
18517
18518 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18519 &bytes_read);
18520 line_ptr += bytes_read;
18521 if (state_machine.file == 0
18522 || state_machine.file - 1 >= lh->num_file_names)
18523 dwarf2_debug_line_missing_file_complaint ();
18524 else
18525 {
18526 fe = &lh->file_names[state_machine.file - 1];
18527 if (fe->dir_index && lh->include_dirs != NULL)
18528 dir = lh->include_dirs[fe->dir_index - 1];
18529 if (record_lines_p)
18530 {
18531 state_machine.last_subfile = current_subfile;
18532 state_machine.line_has_non_zero_discriminator
18533 = state_machine.discriminator != 0;
18534 dwarf2_start_subfile (fe->name, dir);
18535 }
18536 }
18537 }
18538 break;
18539 case DW_LNS_set_column:
18540 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18541 line_ptr += bytes_read;
18542 break;
18543 case DW_LNS_negate_stmt:
18544 state_machine.is_stmt = (!state_machine.is_stmt);
18545 break;
18546 case DW_LNS_set_basic_block:
18547 break;
18548 /* Add to the address register of the state machine the
18549 address increment value corresponding to special opcode
18550 255. I.e., this value is scaled by the minimum
18551 instruction length since special opcode 255 would have
18552 scaled the increment. */
18553 case DW_LNS_const_add_pc:
18554 {
18555 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18556 CORE_ADDR addr_adj;
18557
18558 addr_adj = (((state_machine.op_index + adjust)
18559 / lh->maximum_ops_per_instruction)
18560 * lh->minimum_instruction_length);
18561 state_machine.address
18562 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18563 state_machine.op_index = ((state_machine.op_index + adjust)
18564 % lh->maximum_ops_per_instruction);
18565 }
18566 break;
18567 case DW_LNS_fixed_advance_pc:
18568 {
18569 CORE_ADDR addr_adj;
18570
18571 addr_adj = read_2_bytes (abfd, line_ptr);
18572 state_machine.address
18573 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18574 state_machine.op_index = 0;
18575 line_ptr += 2;
18576 }
18577 break;
18578 default:
18579 {
18580 /* Unknown standard opcode, ignore it. */
18581 int i;
18582
18583 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18584 {
18585 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18586 line_ptr += bytes_read;
18587 }
18588 }
18589 }
18590 }
18591
18592 if (!end_sequence)
18593 dwarf2_debug_line_missing_end_sequence_complaint ();
18594
18595 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18596 in which case we still finish recording the last line). */
18597 dwarf_record_line (&reader_state, &state_machine, 1);
18598 }
18599 }
18600
18601 /* Decode the Line Number Program (LNP) for the given line_header
18602 structure and CU. The actual information extracted and the type
18603 of structures created from the LNP depends on the value of PST.
18604
18605 1. If PST is NULL, then this procedure uses the data from the program
18606 to create all necessary symbol tables, and their linetables.
18607
18608 2. If PST is not NULL, this procedure reads the program to determine
18609 the list of files included by the unit represented by PST, and
18610 builds all the associated partial symbol tables.
18611
18612 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18613 It is used for relative paths in the line table.
18614 NOTE: When processing partial symtabs (pst != NULL),
18615 comp_dir == pst->dirname.
18616
18617 NOTE: It is important that psymtabs have the same file name (via strcmp)
18618 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18619 symtab we don't use it in the name of the psymtabs we create.
18620 E.g. expand_line_sal requires this when finding psymtabs to expand.
18621 A good testcase for this is mb-inline.exp.
18622
18623 LOWPC is the lowest address in CU (or 0 if not known).
18624
18625 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18626 for its PC<->lines mapping information. Otherwise only the filename
18627 table is read in. */
18628
18629 static void
18630 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18631 struct dwarf2_cu *cu, struct partial_symtab *pst,
18632 CORE_ADDR lowpc, int decode_mapping)
18633 {
18634 struct objfile *objfile = cu->objfile;
18635 const int decode_for_pst_p = (pst != NULL);
18636
18637 if (decode_mapping)
18638 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18639
18640 if (decode_for_pst_p)
18641 {
18642 int file_index;
18643
18644 /* Now that we're done scanning the Line Header Program, we can
18645 create the psymtab of each included file. */
18646 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18647 if (lh->file_names[file_index].included_p == 1)
18648 {
18649 const char *include_name =
18650 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18651 if (include_name != NULL)
18652 dwarf2_create_include_psymtab (include_name, pst, objfile);
18653 }
18654 }
18655 else
18656 {
18657 /* Make sure a symtab is created for every file, even files
18658 which contain only variables (i.e. no code with associated
18659 line numbers). */
18660 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18661 int i;
18662
18663 for (i = 0; i < lh->num_file_names; i++)
18664 {
18665 const char *dir = NULL;
18666 struct file_entry *fe;
18667
18668 fe = &lh->file_names[i];
18669 if (fe->dir_index && lh->include_dirs != NULL)
18670 dir = lh->include_dirs[fe->dir_index - 1];
18671 dwarf2_start_subfile (fe->name, dir);
18672
18673 if (current_subfile->symtab == NULL)
18674 {
18675 current_subfile->symtab
18676 = allocate_symtab (cust, current_subfile->name);
18677 }
18678 fe->symtab = current_subfile->symtab;
18679 }
18680 }
18681 }
18682
18683 /* Start a subfile for DWARF. FILENAME is the name of the file and
18684 DIRNAME the name of the source directory which contains FILENAME
18685 or NULL if not known.
18686 This routine tries to keep line numbers from identical absolute and
18687 relative file names in a common subfile.
18688
18689 Using the `list' example from the GDB testsuite, which resides in
18690 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18691 of /srcdir/list0.c yields the following debugging information for list0.c:
18692
18693 DW_AT_name: /srcdir/list0.c
18694 DW_AT_comp_dir: /compdir
18695 files.files[0].name: list0.h
18696 files.files[0].dir: /srcdir
18697 files.files[1].name: list0.c
18698 files.files[1].dir: /srcdir
18699
18700 The line number information for list0.c has to end up in a single
18701 subfile, so that `break /srcdir/list0.c:1' works as expected.
18702 start_subfile will ensure that this happens provided that we pass the
18703 concatenation of files.files[1].dir and files.files[1].name as the
18704 subfile's name. */
18705
18706 static void
18707 dwarf2_start_subfile (const char *filename, const char *dirname)
18708 {
18709 char *copy = NULL;
18710
18711 /* In order not to lose the line information directory,
18712 we concatenate it to the filename when it makes sense.
18713 Note that the Dwarf3 standard says (speaking of filenames in line
18714 information): ``The directory index is ignored for file names
18715 that represent full path names''. Thus ignoring dirname in the
18716 `else' branch below isn't an issue. */
18717
18718 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18719 {
18720 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18721 filename = copy;
18722 }
18723
18724 start_subfile (filename);
18725
18726 if (copy != NULL)
18727 xfree (copy);
18728 }
18729
18730 /* Start a symtab for DWARF.
18731 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18732
18733 static struct compunit_symtab *
18734 dwarf2_start_symtab (struct dwarf2_cu *cu,
18735 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18736 {
18737 struct compunit_symtab *cust
18738 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18739
18740 record_debugformat ("DWARF 2");
18741 record_producer (cu->producer);
18742
18743 /* We assume that we're processing GCC output. */
18744 processing_gcc_compilation = 2;
18745
18746 cu->processing_has_namespace_info = 0;
18747
18748 return cust;
18749 }
18750
18751 static void
18752 var_decode_location (struct attribute *attr, struct symbol *sym,
18753 struct dwarf2_cu *cu)
18754 {
18755 struct objfile *objfile = cu->objfile;
18756 struct comp_unit_head *cu_header = &cu->header;
18757
18758 /* NOTE drow/2003-01-30: There used to be a comment and some special
18759 code here to turn a symbol with DW_AT_external and a
18760 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18761 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18762 with some versions of binutils) where shared libraries could have
18763 relocations against symbols in their debug information - the
18764 minimal symbol would have the right address, but the debug info
18765 would not. It's no longer necessary, because we will explicitly
18766 apply relocations when we read in the debug information now. */
18767
18768 /* A DW_AT_location attribute with no contents indicates that a
18769 variable has been optimized away. */
18770 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18771 {
18772 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18773 return;
18774 }
18775
18776 /* Handle one degenerate form of location expression specially, to
18777 preserve GDB's previous behavior when section offsets are
18778 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18779 then mark this symbol as LOC_STATIC. */
18780
18781 if (attr_form_is_block (attr)
18782 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18783 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18784 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18785 && (DW_BLOCK (attr)->size
18786 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18787 {
18788 unsigned int dummy;
18789
18790 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18791 SYMBOL_VALUE_ADDRESS (sym) =
18792 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18793 else
18794 SYMBOL_VALUE_ADDRESS (sym) =
18795 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18796 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18797 fixup_symbol_section (sym, objfile);
18798 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18799 SYMBOL_SECTION (sym));
18800 return;
18801 }
18802
18803 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18804 expression evaluator, and use LOC_COMPUTED only when necessary
18805 (i.e. when the value of a register or memory location is
18806 referenced, or a thread-local block, etc.). Then again, it might
18807 not be worthwhile. I'm assuming that it isn't unless performance
18808 or memory numbers show me otherwise. */
18809
18810 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18811
18812 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18813 cu->has_loclist = 1;
18814 }
18815
18816 /* Given a pointer to a DWARF information entry, figure out if we need
18817 to make a symbol table entry for it, and if so, create a new entry
18818 and return a pointer to it.
18819 If TYPE is NULL, determine symbol type from the die, otherwise
18820 used the passed type.
18821 If SPACE is not NULL, use it to hold the new symbol. If it is
18822 NULL, allocate a new symbol on the objfile's obstack. */
18823
18824 static struct symbol *
18825 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18826 struct symbol *space)
18827 {
18828 struct objfile *objfile = cu->objfile;
18829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18830 struct symbol *sym = NULL;
18831 const char *name;
18832 struct attribute *attr = NULL;
18833 struct attribute *attr2 = NULL;
18834 CORE_ADDR baseaddr;
18835 struct pending **list_to_add = NULL;
18836
18837 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18838
18839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18840
18841 name = dwarf2_name (die, cu);
18842 if (name)
18843 {
18844 const char *linkagename;
18845 int suppress_add = 0;
18846
18847 if (space)
18848 sym = space;
18849 else
18850 sym = allocate_symbol (objfile);
18851 OBJSTAT (objfile, n_syms++);
18852
18853 /* Cache this symbol's name and the name's demangled form (if any). */
18854 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18855 linkagename = dwarf2_physname (name, die, cu);
18856 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18857
18858 /* Fortran does not have mangling standard and the mangling does differ
18859 between gfortran, iFort etc. */
18860 if (cu->language == language_fortran
18861 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18862 symbol_set_demangled_name (&(sym->ginfo),
18863 dwarf2_full_name (name, die, cu),
18864 NULL);
18865
18866 /* Default assumptions.
18867 Use the passed type or decode it from the die. */
18868 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18869 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18870 if (type != NULL)
18871 SYMBOL_TYPE (sym) = type;
18872 else
18873 SYMBOL_TYPE (sym) = die_type (die, cu);
18874 attr = dwarf2_attr (die,
18875 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18876 cu);
18877 if (attr)
18878 {
18879 SYMBOL_LINE (sym) = DW_UNSND (attr);
18880 }
18881
18882 attr = dwarf2_attr (die,
18883 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18884 cu);
18885 if (attr)
18886 {
18887 int file_index = DW_UNSND (attr);
18888
18889 if (cu->line_header == NULL
18890 || file_index > cu->line_header->num_file_names)
18891 complaint (&symfile_complaints,
18892 _("file index out of range"));
18893 else if (file_index > 0)
18894 {
18895 struct file_entry *fe;
18896
18897 fe = &cu->line_header->file_names[file_index - 1];
18898 symbol_set_symtab (sym, fe->symtab);
18899 }
18900 }
18901
18902 switch (die->tag)
18903 {
18904 case DW_TAG_label:
18905 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18906 if (attr)
18907 {
18908 CORE_ADDR addr;
18909
18910 addr = attr_value_as_address (attr);
18911 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18912 SYMBOL_VALUE_ADDRESS (sym) = addr;
18913 }
18914 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18915 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18916 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18917 add_symbol_to_list (sym, cu->list_in_scope);
18918 break;
18919 case DW_TAG_subprogram:
18920 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18921 finish_block. */
18922 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18923 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18924 if ((attr2 && (DW_UNSND (attr2) != 0))
18925 || cu->language == language_ada)
18926 {
18927 /* Subprograms marked external are stored as a global symbol.
18928 Ada subprograms, whether marked external or not, are always
18929 stored as a global symbol, because we want to be able to
18930 access them globally. For instance, we want to be able
18931 to break on a nested subprogram without having to
18932 specify the context. */
18933 list_to_add = &global_symbols;
18934 }
18935 else
18936 {
18937 list_to_add = cu->list_in_scope;
18938 }
18939 break;
18940 case DW_TAG_inlined_subroutine:
18941 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18942 finish_block. */
18943 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18944 SYMBOL_INLINED (sym) = 1;
18945 list_to_add = cu->list_in_scope;
18946 break;
18947 case DW_TAG_template_value_param:
18948 suppress_add = 1;
18949 /* Fall through. */
18950 case DW_TAG_constant:
18951 case DW_TAG_variable:
18952 case DW_TAG_member:
18953 /* Compilation with minimal debug info may result in
18954 variables with missing type entries. Change the
18955 misleading `void' type to something sensible. */
18956 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18957 SYMBOL_TYPE (sym)
18958 = objfile_type (objfile)->nodebug_data_symbol;
18959
18960 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18961 /* In the case of DW_TAG_member, we should only be called for
18962 static const members. */
18963 if (die->tag == DW_TAG_member)
18964 {
18965 /* dwarf2_add_field uses die_is_declaration,
18966 so we do the same. */
18967 gdb_assert (die_is_declaration (die, cu));
18968 gdb_assert (attr);
18969 }
18970 if (attr)
18971 {
18972 dwarf2_const_value (attr, sym, cu);
18973 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18974 if (!suppress_add)
18975 {
18976 if (attr2 && (DW_UNSND (attr2) != 0))
18977 list_to_add = &global_symbols;
18978 else
18979 list_to_add = cu->list_in_scope;
18980 }
18981 break;
18982 }
18983 attr = dwarf2_attr (die, DW_AT_location, cu);
18984 if (attr)
18985 {
18986 var_decode_location (attr, sym, cu);
18987 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18988
18989 /* Fortran explicitly imports any global symbols to the local
18990 scope by DW_TAG_common_block. */
18991 if (cu->language == language_fortran && die->parent
18992 && die->parent->tag == DW_TAG_common_block)
18993 attr2 = NULL;
18994
18995 if (SYMBOL_CLASS (sym) == LOC_STATIC
18996 && SYMBOL_VALUE_ADDRESS (sym) == 0
18997 && !dwarf2_per_objfile->has_section_at_zero)
18998 {
18999 /* When a static variable is eliminated by the linker,
19000 the corresponding debug information is not stripped
19001 out, but the variable address is set to null;
19002 do not add such variables into symbol table. */
19003 }
19004 else if (attr2 && (DW_UNSND (attr2) != 0))
19005 {
19006 /* Workaround gfortran PR debug/40040 - it uses
19007 DW_AT_location for variables in -fPIC libraries which may
19008 get overriden by other libraries/executable and get
19009 a different address. Resolve it by the minimal symbol
19010 which may come from inferior's executable using copy
19011 relocation. Make this workaround only for gfortran as for
19012 other compilers GDB cannot guess the minimal symbol
19013 Fortran mangling kind. */
19014 if (cu->language == language_fortran && die->parent
19015 && die->parent->tag == DW_TAG_module
19016 && cu->producer
19017 && startswith (cu->producer, "GNU Fortran"))
19018 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19019
19020 /* A variable with DW_AT_external is never static,
19021 but it may be block-scoped. */
19022 list_to_add = (cu->list_in_scope == &file_symbols
19023 ? &global_symbols : cu->list_in_scope);
19024 }
19025 else
19026 list_to_add = cu->list_in_scope;
19027 }
19028 else
19029 {
19030 /* We do not know the address of this symbol.
19031 If it is an external symbol and we have type information
19032 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19033 The address of the variable will then be determined from
19034 the minimal symbol table whenever the variable is
19035 referenced. */
19036 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19037
19038 /* Fortran explicitly imports any global symbols to the local
19039 scope by DW_TAG_common_block. */
19040 if (cu->language == language_fortran && die->parent
19041 && die->parent->tag == DW_TAG_common_block)
19042 {
19043 /* SYMBOL_CLASS doesn't matter here because
19044 read_common_block is going to reset it. */
19045 if (!suppress_add)
19046 list_to_add = cu->list_in_scope;
19047 }
19048 else if (attr2 && (DW_UNSND (attr2) != 0)
19049 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19050 {
19051 /* A variable with DW_AT_external is never static, but it
19052 may be block-scoped. */
19053 list_to_add = (cu->list_in_scope == &file_symbols
19054 ? &global_symbols : cu->list_in_scope);
19055
19056 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19057 }
19058 else if (!die_is_declaration (die, cu))
19059 {
19060 /* Use the default LOC_OPTIMIZED_OUT class. */
19061 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19062 if (!suppress_add)
19063 list_to_add = cu->list_in_scope;
19064 }
19065 }
19066 break;
19067 case DW_TAG_formal_parameter:
19068 /* If we are inside a function, mark this as an argument. If
19069 not, we might be looking at an argument to an inlined function
19070 when we do not have enough information to show inlined frames;
19071 pretend it's a local variable in that case so that the user can
19072 still see it. */
19073 if (context_stack_depth > 0
19074 && context_stack[context_stack_depth - 1].name != NULL)
19075 SYMBOL_IS_ARGUMENT (sym) = 1;
19076 attr = dwarf2_attr (die, DW_AT_location, cu);
19077 if (attr)
19078 {
19079 var_decode_location (attr, sym, cu);
19080 }
19081 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19082 if (attr)
19083 {
19084 dwarf2_const_value (attr, sym, cu);
19085 }
19086
19087 list_to_add = cu->list_in_scope;
19088 break;
19089 case DW_TAG_unspecified_parameters:
19090 /* From varargs functions; gdb doesn't seem to have any
19091 interest in this information, so just ignore it for now.
19092 (FIXME?) */
19093 break;
19094 case DW_TAG_template_type_param:
19095 suppress_add = 1;
19096 /* Fall through. */
19097 case DW_TAG_class_type:
19098 case DW_TAG_interface_type:
19099 case DW_TAG_structure_type:
19100 case DW_TAG_union_type:
19101 case DW_TAG_set_type:
19102 case DW_TAG_enumeration_type:
19103 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19104 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19105
19106 {
19107 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19108 really ever be static objects: otherwise, if you try
19109 to, say, break of a class's method and you're in a file
19110 which doesn't mention that class, it won't work unless
19111 the check for all static symbols in lookup_symbol_aux
19112 saves you. See the OtherFileClass tests in
19113 gdb.c++/namespace.exp. */
19114
19115 if (!suppress_add)
19116 {
19117 list_to_add = (cu->list_in_scope == &file_symbols
19118 && cu->language == language_cplus
19119 ? &global_symbols : cu->list_in_scope);
19120
19121 /* The semantics of C++ state that "struct foo {
19122 ... }" also defines a typedef for "foo". */
19123 if (cu->language == language_cplus
19124 || cu->language == language_ada
19125 || cu->language == language_d
19126 || cu->language == language_rust)
19127 {
19128 /* The symbol's name is already allocated along
19129 with this objfile, so we don't need to
19130 duplicate it for the type. */
19131 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19132 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19133 }
19134 }
19135 }
19136 break;
19137 case DW_TAG_typedef:
19138 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19139 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19140 list_to_add = cu->list_in_scope;
19141 break;
19142 case DW_TAG_base_type:
19143 case DW_TAG_subrange_type:
19144 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19145 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19146 list_to_add = cu->list_in_scope;
19147 break;
19148 case DW_TAG_enumerator:
19149 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19150 if (attr)
19151 {
19152 dwarf2_const_value (attr, sym, cu);
19153 }
19154 {
19155 /* NOTE: carlton/2003-11-10: See comment above in the
19156 DW_TAG_class_type, etc. block. */
19157
19158 list_to_add = (cu->list_in_scope == &file_symbols
19159 && cu->language == language_cplus
19160 ? &global_symbols : cu->list_in_scope);
19161 }
19162 break;
19163 case DW_TAG_imported_declaration:
19164 case DW_TAG_namespace:
19165 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19166 list_to_add = &global_symbols;
19167 break;
19168 case DW_TAG_module:
19169 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19170 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19171 list_to_add = &global_symbols;
19172 break;
19173 case DW_TAG_common_block:
19174 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19175 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19176 add_symbol_to_list (sym, cu->list_in_scope);
19177 break;
19178 default:
19179 /* Not a tag we recognize. Hopefully we aren't processing
19180 trash data, but since we must specifically ignore things
19181 we don't recognize, there is nothing else we should do at
19182 this point. */
19183 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19184 dwarf_tag_name (die->tag));
19185 break;
19186 }
19187
19188 if (suppress_add)
19189 {
19190 sym->hash_next = objfile->template_symbols;
19191 objfile->template_symbols = sym;
19192 list_to_add = NULL;
19193 }
19194
19195 if (list_to_add != NULL)
19196 add_symbol_to_list (sym, list_to_add);
19197
19198 /* For the benefit of old versions of GCC, check for anonymous
19199 namespaces based on the demangled name. */
19200 if (!cu->processing_has_namespace_info
19201 && cu->language == language_cplus)
19202 cp_scan_for_anonymous_namespaces (sym, objfile);
19203 }
19204 return (sym);
19205 }
19206
19207 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19208
19209 static struct symbol *
19210 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19211 {
19212 return new_symbol_full (die, type, cu, NULL);
19213 }
19214
19215 /* Given an attr with a DW_FORM_dataN value in host byte order,
19216 zero-extend it as appropriate for the symbol's type. The DWARF
19217 standard (v4) is not entirely clear about the meaning of using
19218 DW_FORM_dataN for a constant with a signed type, where the type is
19219 wider than the data. The conclusion of a discussion on the DWARF
19220 list was that this is unspecified. We choose to always zero-extend
19221 because that is the interpretation long in use by GCC. */
19222
19223 static gdb_byte *
19224 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19225 struct dwarf2_cu *cu, LONGEST *value, int bits)
19226 {
19227 struct objfile *objfile = cu->objfile;
19228 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19229 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19230 LONGEST l = DW_UNSND (attr);
19231
19232 if (bits < sizeof (*value) * 8)
19233 {
19234 l &= ((LONGEST) 1 << bits) - 1;
19235 *value = l;
19236 }
19237 else if (bits == sizeof (*value) * 8)
19238 *value = l;
19239 else
19240 {
19241 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19242 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19243 return bytes;
19244 }
19245
19246 return NULL;
19247 }
19248
19249 /* Read a constant value from an attribute. Either set *VALUE, or if
19250 the value does not fit in *VALUE, set *BYTES - either already
19251 allocated on the objfile obstack, or newly allocated on OBSTACK,
19252 or, set *BATON, if we translated the constant to a location
19253 expression. */
19254
19255 static void
19256 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19257 const char *name, struct obstack *obstack,
19258 struct dwarf2_cu *cu,
19259 LONGEST *value, const gdb_byte **bytes,
19260 struct dwarf2_locexpr_baton **baton)
19261 {
19262 struct objfile *objfile = cu->objfile;
19263 struct comp_unit_head *cu_header = &cu->header;
19264 struct dwarf_block *blk;
19265 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19266 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19267
19268 *value = 0;
19269 *bytes = NULL;
19270 *baton = NULL;
19271
19272 switch (attr->form)
19273 {
19274 case DW_FORM_addr:
19275 case DW_FORM_GNU_addr_index:
19276 {
19277 gdb_byte *data;
19278
19279 if (TYPE_LENGTH (type) != cu_header->addr_size)
19280 dwarf2_const_value_length_mismatch_complaint (name,
19281 cu_header->addr_size,
19282 TYPE_LENGTH (type));
19283 /* Symbols of this form are reasonably rare, so we just
19284 piggyback on the existing location code rather than writing
19285 a new implementation of symbol_computed_ops. */
19286 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19287 (*baton)->per_cu = cu->per_cu;
19288 gdb_assert ((*baton)->per_cu);
19289
19290 (*baton)->size = 2 + cu_header->addr_size;
19291 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19292 (*baton)->data = data;
19293
19294 data[0] = DW_OP_addr;
19295 store_unsigned_integer (&data[1], cu_header->addr_size,
19296 byte_order, DW_ADDR (attr));
19297 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19298 }
19299 break;
19300 case DW_FORM_string:
19301 case DW_FORM_strp:
19302 case DW_FORM_GNU_str_index:
19303 case DW_FORM_GNU_strp_alt:
19304 /* DW_STRING is already allocated on the objfile obstack, point
19305 directly to it. */
19306 *bytes = (const gdb_byte *) DW_STRING (attr);
19307 break;
19308 case DW_FORM_block1:
19309 case DW_FORM_block2:
19310 case DW_FORM_block4:
19311 case DW_FORM_block:
19312 case DW_FORM_exprloc:
19313 case DW_FORM_data16:
19314 blk = DW_BLOCK (attr);
19315 if (TYPE_LENGTH (type) != blk->size)
19316 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19317 TYPE_LENGTH (type));
19318 *bytes = blk->data;
19319 break;
19320
19321 /* The DW_AT_const_value attributes are supposed to carry the
19322 symbol's value "represented as it would be on the target
19323 architecture." By the time we get here, it's already been
19324 converted to host endianness, so we just need to sign- or
19325 zero-extend it as appropriate. */
19326 case DW_FORM_data1:
19327 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19328 break;
19329 case DW_FORM_data2:
19330 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19331 break;
19332 case DW_FORM_data4:
19333 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19334 break;
19335 case DW_FORM_data8:
19336 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19337 break;
19338
19339 case DW_FORM_sdata:
19340 *value = DW_SND (attr);
19341 break;
19342
19343 case DW_FORM_udata:
19344 *value = DW_UNSND (attr);
19345 break;
19346
19347 default:
19348 complaint (&symfile_complaints,
19349 _("unsupported const value attribute form: '%s'"),
19350 dwarf_form_name (attr->form));
19351 *value = 0;
19352 break;
19353 }
19354 }
19355
19356
19357 /* Copy constant value from an attribute to a symbol. */
19358
19359 static void
19360 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19361 struct dwarf2_cu *cu)
19362 {
19363 struct objfile *objfile = cu->objfile;
19364 LONGEST value;
19365 const gdb_byte *bytes;
19366 struct dwarf2_locexpr_baton *baton;
19367
19368 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19369 SYMBOL_PRINT_NAME (sym),
19370 &objfile->objfile_obstack, cu,
19371 &value, &bytes, &baton);
19372
19373 if (baton != NULL)
19374 {
19375 SYMBOL_LOCATION_BATON (sym) = baton;
19376 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19377 }
19378 else if (bytes != NULL)
19379 {
19380 SYMBOL_VALUE_BYTES (sym) = bytes;
19381 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19382 }
19383 else
19384 {
19385 SYMBOL_VALUE (sym) = value;
19386 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19387 }
19388 }
19389
19390 /* Return the type of the die in question using its DW_AT_type attribute. */
19391
19392 static struct type *
19393 die_type (struct die_info *die, struct dwarf2_cu *cu)
19394 {
19395 struct attribute *type_attr;
19396
19397 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19398 if (!type_attr)
19399 {
19400 /* A missing DW_AT_type represents a void type. */
19401 return objfile_type (cu->objfile)->builtin_void;
19402 }
19403
19404 return lookup_die_type (die, type_attr, cu);
19405 }
19406
19407 /* True iff CU's producer generates GNAT Ada auxiliary information
19408 that allows to find parallel types through that information instead
19409 of having to do expensive parallel lookups by type name. */
19410
19411 static int
19412 need_gnat_info (struct dwarf2_cu *cu)
19413 {
19414 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19415 of GNAT produces this auxiliary information, without any indication
19416 that it is produced. Part of enhancing the FSF version of GNAT
19417 to produce that information will be to put in place an indicator
19418 that we can use in order to determine whether the descriptive type
19419 info is available or not. One suggestion that has been made is
19420 to use a new attribute, attached to the CU die. For now, assume
19421 that the descriptive type info is not available. */
19422 return 0;
19423 }
19424
19425 /* Return the auxiliary type of the die in question using its
19426 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19427 attribute is not present. */
19428
19429 static struct type *
19430 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19431 {
19432 struct attribute *type_attr;
19433
19434 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19435 if (!type_attr)
19436 return NULL;
19437
19438 return lookup_die_type (die, type_attr, cu);
19439 }
19440
19441 /* If DIE has a descriptive_type attribute, then set the TYPE's
19442 descriptive type accordingly. */
19443
19444 static void
19445 set_descriptive_type (struct type *type, struct die_info *die,
19446 struct dwarf2_cu *cu)
19447 {
19448 struct type *descriptive_type = die_descriptive_type (die, cu);
19449
19450 if (descriptive_type)
19451 {
19452 ALLOCATE_GNAT_AUX_TYPE (type);
19453 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19454 }
19455 }
19456
19457 /* Return the containing type of the die in question using its
19458 DW_AT_containing_type attribute. */
19459
19460 static struct type *
19461 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19462 {
19463 struct attribute *type_attr;
19464
19465 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19466 if (!type_attr)
19467 error (_("Dwarf Error: Problem turning containing type into gdb type "
19468 "[in module %s]"), objfile_name (cu->objfile));
19469
19470 return lookup_die_type (die, type_attr, cu);
19471 }
19472
19473 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19474
19475 static struct type *
19476 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19477 {
19478 struct objfile *objfile = dwarf2_per_objfile->objfile;
19479 char *message, *saved;
19480
19481 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19482 objfile_name (objfile),
19483 cu->header.offset.sect_off,
19484 die->offset.sect_off);
19485 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19486 message, strlen (message));
19487 xfree (message);
19488
19489 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19490 }
19491
19492 /* Look up the type of DIE in CU using its type attribute ATTR.
19493 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19494 DW_AT_containing_type.
19495 If there is no type substitute an error marker. */
19496
19497 static struct type *
19498 lookup_die_type (struct die_info *die, const struct attribute *attr,
19499 struct dwarf2_cu *cu)
19500 {
19501 struct objfile *objfile = cu->objfile;
19502 struct type *this_type;
19503
19504 gdb_assert (attr->name == DW_AT_type
19505 || attr->name == DW_AT_GNAT_descriptive_type
19506 || attr->name == DW_AT_containing_type);
19507
19508 /* First see if we have it cached. */
19509
19510 if (attr->form == DW_FORM_GNU_ref_alt)
19511 {
19512 struct dwarf2_per_cu_data *per_cu;
19513 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19514
19515 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19516 this_type = get_die_type_at_offset (offset, per_cu);
19517 }
19518 else if (attr_form_is_ref (attr))
19519 {
19520 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19521
19522 this_type = get_die_type_at_offset (offset, cu->per_cu);
19523 }
19524 else if (attr->form == DW_FORM_ref_sig8)
19525 {
19526 ULONGEST signature = DW_SIGNATURE (attr);
19527
19528 return get_signatured_type (die, signature, cu);
19529 }
19530 else
19531 {
19532 complaint (&symfile_complaints,
19533 _("Dwarf Error: Bad type attribute %s in DIE"
19534 " at 0x%x [in module %s]"),
19535 dwarf_attr_name (attr->name), die->offset.sect_off,
19536 objfile_name (objfile));
19537 return build_error_marker_type (cu, die);
19538 }
19539
19540 /* If not cached we need to read it in. */
19541
19542 if (this_type == NULL)
19543 {
19544 struct die_info *type_die = NULL;
19545 struct dwarf2_cu *type_cu = cu;
19546
19547 if (attr_form_is_ref (attr))
19548 type_die = follow_die_ref (die, attr, &type_cu);
19549 if (type_die == NULL)
19550 return build_error_marker_type (cu, die);
19551 /* If we find the type now, it's probably because the type came
19552 from an inter-CU reference and the type's CU got expanded before
19553 ours. */
19554 this_type = read_type_die (type_die, type_cu);
19555 }
19556
19557 /* If we still don't have a type use an error marker. */
19558
19559 if (this_type == NULL)
19560 return build_error_marker_type (cu, die);
19561
19562 return this_type;
19563 }
19564
19565 /* Return the type in DIE, CU.
19566 Returns NULL for invalid types.
19567
19568 This first does a lookup in die_type_hash,
19569 and only reads the die in if necessary.
19570
19571 NOTE: This can be called when reading in partial or full symbols. */
19572
19573 static struct type *
19574 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19575 {
19576 struct type *this_type;
19577
19578 this_type = get_die_type (die, cu);
19579 if (this_type)
19580 return this_type;
19581
19582 return read_type_die_1 (die, cu);
19583 }
19584
19585 /* Read the type in DIE, CU.
19586 Returns NULL for invalid types. */
19587
19588 static struct type *
19589 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19590 {
19591 struct type *this_type = NULL;
19592
19593 switch (die->tag)
19594 {
19595 case DW_TAG_class_type:
19596 case DW_TAG_interface_type:
19597 case DW_TAG_structure_type:
19598 case DW_TAG_union_type:
19599 this_type = read_structure_type (die, cu);
19600 break;
19601 case DW_TAG_enumeration_type:
19602 this_type = read_enumeration_type (die, cu);
19603 break;
19604 case DW_TAG_subprogram:
19605 case DW_TAG_subroutine_type:
19606 case DW_TAG_inlined_subroutine:
19607 this_type = read_subroutine_type (die, cu);
19608 break;
19609 case DW_TAG_array_type:
19610 this_type = read_array_type (die, cu);
19611 break;
19612 case DW_TAG_set_type:
19613 this_type = read_set_type (die, cu);
19614 break;
19615 case DW_TAG_pointer_type:
19616 this_type = read_tag_pointer_type (die, cu);
19617 break;
19618 case DW_TAG_ptr_to_member_type:
19619 this_type = read_tag_ptr_to_member_type (die, cu);
19620 break;
19621 case DW_TAG_reference_type:
19622 this_type = read_tag_reference_type (die, cu);
19623 break;
19624 case DW_TAG_const_type:
19625 this_type = read_tag_const_type (die, cu);
19626 break;
19627 case DW_TAG_volatile_type:
19628 this_type = read_tag_volatile_type (die, cu);
19629 break;
19630 case DW_TAG_restrict_type:
19631 this_type = read_tag_restrict_type (die, cu);
19632 break;
19633 case DW_TAG_string_type:
19634 this_type = read_tag_string_type (die, cu);
19635 break;
19636 case DW_TAG_typedef:
19637 this_type = read_typedef (die, cu);
19638 break;
19639 case DW_TAG_subrange_type:
19640 this_type = read_subrange_type (die, cu);
19641 break;
19642 case DW_TAG_base_type:
19643 this_type = read_base_type (die, cu);
19644 break;
19645 case DW_TAG_unspecified_type:
19646 this_type = read_unspecified_type (die, cu);
19647 break;
19648 case DW_TAG_namespace:
19649 this_type = read_namespace_type (die, cu);
19650 break;
19651 case DW_TAG_module:
19652 this_type = read_module_type (die, cu);
19653 break;
19654 case DW_TAG_atomic_type:
19655 this_type = read_tag_atomic_type (die, cu);
19656 break;
19657 default:
19658 complaint (&symfile_complaints,
19659 _("unexpected tag in read_type_die: '%s'"),
19660 dwarf_tag_name (die->tag));
19661 break;
19662 }
19663
19664 return this_type;
19665 }
19666
19667 /* See if we can figure out if the class lives in a namespace. We do
19668 this by looking for a member function; its demangled name will
19669 contain namespace info, if there is any.
19670 Return the computed name or NULL.
19671 Space for the result is allocated on the objfile's obstack.
19672 This is the full-die version of guess_partial_die_structure_name.
19673 In this case we know DIE has no useful parent. */
19674
19675 static char *
19676 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19677 {
19678 struct die_info *spec_die;
19679 struct dwarf2_cu *spec_cu;
19680 struct die_info *child;
19681
19682 spec_cu = cu;
19683 spec_die = die_specification (die, &spec_cu);
19684 if (spec_die != NULL)
19685 {
19686 die = spec_die;
19687 cu = spec_cu;
19688 }
19689
19690 for (child = die->child;
19691 child != NULL;
19692 child = child->sibling)
19693 {
19694 if (child->tag == DW_TAG_subprogram)
19695 {
19696 const char *linkage_name;
19697
19698 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19699 if (linkage_name == NULL)
19700 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19701 cu);
19702 if (linkage_name != NULL)
19703 {
19704 char *actual_name
19705 = language_class_name_from_physname (cu->language_defn,
19706 linkage_name);
19707 char *name = NULL;
19708
19709 if (actual_name != NULL)
19710 {
19711 const char *die_name = dwarf2_name (die, cu);
19712
19713 if (die_name != NULL
19714 && strcmp (die_name, actual_name) != 0)
19715 {
19716 /* Strip off the class name from the full name.
19717 We want the prefix. */
19718 int die_name_len = strlen (die_name);
19719 int actual_name_len = strlen (actual_name);
19720
19721 /* Test for '::' as a sanity check. */
19722 if (actual_name_len > die_name_len + 2
19723 && actual_name[actual_name_len
19724 - die_name_len - 1] == ':')
19725 name = (char *) obstack_copy0 (
19726 &cu->objfile->per_bfd->storage_obstack,
19727 actual_name, actual_name_len - die_name_len - 2);
19728 }
19729 }
19730 xfree (actual_name);
19731 return name;
19732 }
19733 }
19734 }
19735
19736 return NULL;
19737 }
19738
19739 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19740 prefix part in such case. See
19741 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19742
19743 static char *
19744 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19745 {
19746 struct attribute *attr;
19747 const char *base;
19748
19749 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19750 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19751 return NULL;
19752
19753 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19754 return NULL;
19755
19756 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19757 if (attr == NULL)
19758 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19759 if (attr == NULL || DW_STRING (attr) == NULL)
19760 return NULL;
19761
19762 /* dwarf2_name had to be already called. */
19763 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19764
19765 /* Strip the base name, keep any leading namespaces/classes. */
19766 base = strrchr (DW_STRING (attr), ':');
19767 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19768 return "";
19769
19770 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19771 DW_STRING (attr),
19772 &base[-1] - DW_STRING (attr));
19773 }
19774
19775 /* Return the name of the namespace/class that DIE is defined within,
19776 or "" if we can't tell. The caller should not xfree the result.
19777
19778 For example, if we're within the method foo() in the following
19779 code:
19780
19781 namespace N {
19782 class C {
19783 void foo () {
19784 }
19785 };
19786 }
19787
19788 then determine_prefix on foo's die will return "N::C". */
19789
19790 static const char *
19791 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19792 {
19793 struct die_info *parent, *spec_die;
19794 struct dwarf2_cu *spec_cu;
19795 struct type *parent_type;
19796 char *retval;
19797
19798 if (cu->language != language_cplus
19799 && cu->language != language_fortran && cu->language != language_d
19800 && cu->language != language_rust)
19801 return "";
19802
19803 retval = anonymous_struct_prefix (die, cu);
19804 if (retval)
19805 return retval;
19806
19807 /* We have to be careful in the presence of DW_AT_specification.
19808 For example, with GCC 3.4, given the code
19809
19810 namespace N {
19811 void foo() {
19812 // Definition of N::foo.
19813 }
19814 }
19815
19816 then we'll have a tree of DIEs like this:
19817
19818 1: DW_TAG_compile_unit
19819 2: DW_TAG_namespace // N
19820 3: DW_TAG_subprogram // declaration of N::foo
19821 4: DW_TAG_subprogram // definition of N::foo
19822 DW_AT_specification // refers to die #3
19823
19824 Thus, when processing die #4, we have to pretend that we're in
19825 the context of its DW_AT_specification, namely the contex of die
19826 #3. */
19827 spec_cu = cu;
19828 spec_die = die_specification (die, &spec_cu);
19829 if (spec_die == NULL)
19830 parent = die->parent;
19831 else
19832 {
19833 parent = spec_die->parent;
19834 cu = spec_cu;
19835 }
19836
19837 if (parent == NULL)
19838 return "";
19839 else if (parent->building_fullname)
19840 {
19841 const char *name;
19842 const char *parent_name;
19843
19844 /* It has been seen on RealView 2.2 built binaries,
19845 DW_TAG_template_type_param types actually _defined_ as
19846 children of the parent class:
19847
19848 enum E {};
19849 template class <class Enum> Class{};
19850 Class<enum E> class_e;
19851
19852 1: DW_TAG_class_type (Class)
19853 2: DW_TAG_enumeration_type (E)
19854 3: DW_TAG_enumerator (enum1:0)
19855 3: DW_TAG_enumerator (enum2:1)
19856 ...
19857 2: DW_TAG_template_type_param
19858 DW_AT_type DW_FORM_ref_udata (E)
19859
19860 Besides being broken debug info, it can put GDB into an
19861 infinite loop. Consider:
19862
19863 When we're building the full name for Class<E>, we'll start
19864 at Class, and go look over its template type parameters,
19865 finding E. We'll then try to build the full name of E, and
19866 reach here. We're now trying to build the full name of E,
19867 and look over the parent DIE for containing scope. In the
19868 broken case, if we followed the parent DIE of E, we'd again
19869 find Class, and once again go look at its template type
19870 arguments, etc., etc. Simply don't consider such parent die
19871 as source-level parent of this die (it can't be, the language
19872 doesn't allow it), and break the loop here. */
19873 name = dwarf2_name (die, cu);
19874 parent_name = dwarf2_name (parent, cu);
19875 complaint (&symfile_complaints,
19876 _("template param type '%s' defined within parent '%s'"),
19877 name ? name : "<unknown>",
19878 parent_name ? parent_name : "<unknown>");
19879 return "";
19880 }
19881 else
19882 switch (parent->tag)
19883 {
19884 case DW_TAG_namespace:
19885 parent_type = read_type_die (parent, cu);
19886 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19887 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19888 Work around this problem here. */
19889 if (cu->language == language_cplus
19890 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19891 return "";
19892 /* We give a name to even anonymous namespaces. */
19893 return TYPE_TAG_NAME (parent_type);
19894 case DW_TAG_class_type:
19895 case DW_TAG_interface_type:
19896 case DW_TAG_structure_type:
19897 case DW_TAG_union_type:
19898 case DW_TAG_module:
19899 parent_type = read_type_die (parent, cu);
19900 if (TYPE_TAG_NAME (parent_type) != NULL)
19901 return TYPE_TAG_NAME (parent_type);
19902 else
19903 /* An anonymous structure is only allowed non-static data
19904 members; no typedefs, no member functions, et cetera.
19905 So it does not need a prefix. */
19906 return "";
19907 case DW_TAG_compile_unit:
19908 case DW_TAG_partial_unit:
19909 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19910 if (cu->language == language_cplus
19911 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19912 && die->child != NULL
19913 && (die->tag == DW_TAG_class_type
19914 || die->tag == DW_TAG_structure_type
19915 || die->tag == DW_TAG_union_type))
19916 {
19917 char *name = guess_full_die_structure_name (die, cu);
19918 if (name != NULL)
19919 return name;
19920 }
19921 return "";
19922 case DW_TAG_enumeration_type:
19923 parent_type = read_type_die (parent, cu);
19924 if (TYPE_DECLARED_CLASS (parent_type))
19925 {
19926 if (TYPE_TAG_NAME (parent_type) != NULL)
19927 return TYPE_TAG_NAME (parent_type);
19928 return "";
19929 }
19930 /* Fall through. */
19931 default:
19932 return determine_prefix (parent, cu);
19933 }
19934 }
19935
19936 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19937 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19938 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19939 an obconcat, otherwise allocate storage for the result. The CU argument is
19940 used to determine the language and hence, the appropriate separator. */
19941
19942 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19943
19944 static char *
19945 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19946 int physname, struct dwarf2_cu *cu)
19947 {
19948 const char *lead = "";
19949 const char *sep;
19950
19951 if (suffix == NULL || suffix[0] == '\0'
19952 || prefix == NULL || prefix[0] == '\0')
19953 sep = "";
19954 else if (cu->language == language_d)
19955 {
19956 /* For D, the 'main' function could be defined in any module, but it
19957 should never be prefixed. */
19958 if (strcmp (suffix, "D main") == 0)
19959 {
19960 prefix = "";
19961 sep = "";
19962 }
19963 else
19964 sep = ".";
19965 }
19966 else if (cu->language == language_fortran && physname)
19967 {
19968 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19969 DW_AT_MIPS_linkage_name is preferred and used instead. */
19970
19971 lead = "__";
19972 sep = "_MOD_";
19973 }
19974 else
19975 sep = "::";
19976
19977 if (prefix == NULL)
19978 prefix = "";
19979 if (suffix == NULL)
19980 suffix = "";
19981
19982 if (obs == NULL)
19983 {
19984 char *retval
19985 = ((char *)
19986 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19987
19988 strcpy (retval, lead);
19989 strcat (retval, prefix);
19990 strcat (retval, sep);
19991 strcat (retval, suffix);
19992 return retval;
19993 }
19994 else
19995 {
19996 /* We have an obstack. */
19997 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19998 }
19999 }
20000
20001 /* Return sibling of die, NULL if no sibling. */
20002
20003 static struct die_info *
20004 sibling_die (struct die_info *die)
20005 {
20006 return die->sibling;
20007 }
20008
20009 /* Get name of a die, return NULL if not found. */
20010
20011 static const char *
20012 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20013 struct obstack *obstack)
20014 {
20015 if (name && cu->language == language_cplus)
20016 {
20017 std::string canon_name = cp_canonicalize_string (name);
20018
20019 if (!canon_name.empty ())
20020 {
20021 if (canon_name != name)
20022 name = (const char *) obstack_copy0 (obstack,
20023 canon_name.c_str (),
20024 canon_name.length ());
20025 }
20026 }
20027
20028 return name;
20029 }
20030
20031 /* Get name of a die, return NULL if not found.
20032 Anonymous namespaces are converted to their magic string. */
20033
20034 static const char *
20035 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20036 {
20037 struct attribute *attr;
20038
20039 attr = dwarf2_attr (die, DW_AT_name, cu);
20040 if ((!attr || !DW_STRING (attr))
20041 && die->tag != DW_TAG_namespace
20042 && die->tag != DW_TAG_class_type
20043 && die->tag != DW_TAG_interface_type
20044 && die->tag != DW_TAG_structure_type
20045 && die->tag != DW_TAG_union_type)
20046 return NULL;
20047
20048 switch (die->tag)
20049 {
20050 case DW_TAG_compile_unit:
20051 case DW_TAG_partial_unit:
20052 /* Compilation units have a DW_AT_name that is a filename, not
20053 a source language identifier. */
20054 case DW_TAG_enumeration_type:
20055 case DW_TAG_enumerator:
20056 /* These tags always have simple identifiers already; no need
20057 to canonicalize them. */
20058 return DW_STRING (attr);
20059
20060 case DW_TAG_namespace:
20061 if (attr != NULL && DW_STRING (attr) != NULL)
20062 return DW_STRING (attr);
20063 return CP_ANONYMOUS_NAMESPACE_STR;
20064
20065 case DW_TAG_class_type:
20066 case DW_TAG_interface_type:
20067 case DW_TAG_structure_type:
20068 case DW_TAG_union_type:
20069 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20070 structures or unions. These were of the form "._%d" in GCC 4.1,
20071 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20072 and GCC 4.4. We work around this problem by ignoring these. */
20073 if (attr && DW_STRING (attr)
20074 && (startswith (DW_STRING (attr), "._")
20075 || startswith (DW_STRING (attr), "<anonymous")))
20076 return NULL;
20077
20078 /* GCC might emit a nameless typedef that has a linkage name. See
20079 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20080 if (!attr || DW_STRING (attr) == NULL)
20081 {
20082 char *demangled = NULL;
20083
20084 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20085 if (attr == NULL)
20086 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20087
20088 if (attr == NULL || DW_STRING (attr) == NULL)
20089 return NULL;
20090
20091 /* Avoid demangling DW_STRING (attr) the second time on a second
20092 call for the same DIE. */
20093 if (!DW_STRING_IS_CANONICAL (attr))
20094 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20095
20096 if (demangled)
20097 {
20098 const char *base;
20099
20100 /* FIXME: we already did this for the partial symbol... */
20101 DW_STRING (attr)
20102 = ((const char *)
20103 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20104 demangled, strlen (demangled)));
20105 DW_STRING_IS_CANONICAL (attr) = 1;
20106 xfree (demangled);
20107
20108 /* Strip any leading namespaces/classes, keep only the base name.
20109 DW_AT_name for named DIEs does not contain the prefixes. */
20110 base = strrchr (DW_STRING (attr), ':');
20111 if (base && base > DW_STRING (attr) && base[-1] == ':')
20112 return &base[1];
20113 else
20114 return DW_STRING (attr);
20115 }
20116 }
20117 break;
20118
20119 default:
20120 break;
20121 }
20122
20123 if (!DW_STRING_IS_CANONICAL (attr))
20124 {
20125 DW_STRING (attr)
20126 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20127 &cu->objfile->per_bfd->storage_obstack);
20128 DW_STRING_IS_CANONICAL (attr) = 1;
20129 }
20130 return DW_STRING (attr);
20131 }
20132
20133 /* Return the die that this die in an extension of, or NULL if there
20134 is none. *EXT_CU is the CU containing DIE on input, and the CU
20135 containing the return value on output. */
20136
20137 static struct die_info *
20138 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20139 {
20140 struct attribute *attr;
20141
20142 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20143 if (attr == NULL)
20144 return NULL;
20145
20146 return follow_die_ref (die, attr, ext_cu);
20147 }
20148
20149 /* Convert a DIE tag into its string name. */
20150
20151 static const char *
20152 dwarf_tag_name (unsigned tag)
20153 {
20154 const char *name = get_DW_TAG_name (tag);
20155
20156 if (name == NULL)
20157 return "DW_TAG_<unknown>";
20158
20159 return name;
20160 }
20161
20162 /* Convert a DWARF attribute code into its string name. */
20163
20164 static const char *
20165 dwarf_attr_name (unsigned attr)
20166 {
20167 const char *name;
20168
20169 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20170 if (attr == DW_AT_MIPS_fde)
20171 return "DW_AT_MIPS_fde";
20172 #else
20173 if (attr == DW_AT_HP_block_index)
20174 return "DW_AT_HP_block_index";
20175 #endif
20176
20177 name = get_DW_AT_name (attr);
20178
20179 if (name == NULL)
20180 return "DW_AT_<unknown>";
20181
20182 return name;
20183 }
20184
20185 /* Convert a DWARF value form code into its string name. */
20186
20187 static const char *
20188 dwarf_form_name (unsigned form)
20189 {
20190 const char *name = get_DW_FORM_name (form);
20191
20192 if (name == NULL)
20193 return "DW_FORM_<unknown>";
20194
20195 return name;
20196 }
20197
20198 static char *
20199 dwarf_bool_name (unsigned mybool)
20200 {
20201 if (mybool)
20202 return "TRUE";
20203 else
20204 return "FALSE";
20205 }
20206
20207 /* Convert a DWARF type code into its string name. */
20208
20209 static const char *
20210 dwarf_type_encoding_name (unsigned enc)
20211 {
20212 const char *name = get_DW_ATE_name (enc);
20213
20214 if (name == NULL)
20215 return "DW_ATE_<unknown>";
20216
20217 return name;
20218 }
20219
20220 static void
20221 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20222 {
20223 unsigned int i;
20224
20225 print_spaces (indent, f);
20226 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20227 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
20228
20229 if (die->parent != NULL)
20230 {
20231 print_spaces (indent, f);
20232 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20233 die->parent->offset.sect_off);
20234 }
20235
20236 print_spaces (indent, f);
20237 fprintf_unfiltered (f, " has children: %s\n",
20238 dwarf_bool_name (die->child != NULL));
20239
20240 print_spaces (indent, f);
20241 fprintf_unfiltered (f, " attributes:\n");
20242
20243 for (i = 0; i < die->num_attrs; ++i)
20244 {
20245 print_spaces (indent, f);
20246 fprintf_unfiltered (f, " %s (%s) ",
20247 dwarf_attr_name (die->attrs[i].name),
20248 dwarf_form_name (die->attrs[i].form));
20249
20250 switch (die->attrs[i].form)
20251 {
20252 case DW_FORM_addr:
20253 case DW_FORM_GNU_addr_index:
20254 fprintf_unfiltered (f, "address: ");
20255 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20256 break;
20257 case DW_FORM_block2:
20258 case DW_FORM_block4:
20259 case DW_FORM_block:
20260 case DW_FORM_block1:
20261 fprintf_unfiltered (f, "block: size %s",
20262 pulongest (DW_BLOCK (&die->attrs[i])->size));
20263 break;
20264 case DW_FORM_exprloc:
20265 fprintf_unfiltered (f, "expression: size %s",
20266 pulongest (DW_BLOCK (&die->attrs[i])->size));
20267 break;
20268 case DW_FORM_data16:
20269 fprintf_unfiltered (f, "constant of 16 bytes");
20270 break;
20271 case DW_FORM_ref_addr:
20272 fprintf_unfiltered (f, "ref address: ");
20273 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20274 break;
20275 case DW_FORM_GNU_ref_alt:
20276 fprintf_unfiltered (f, "alt ref address: ");
20277 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20278 break;
20279 case DW_FORM_ref1:
20280 case DW_FORM_ref2:
20281 case DW_FORM_ref4:
20282 case DW_FORM_ref8:
20283 case DW_FORM_ref_udata:
20284 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20285 (long) (DW_UNSND (&die->attrs[i])));
20286 break;
20287 case DW_FORM_data1:
20288 case DW_FORM_data2:
20289 case DW_FORM_data4:
20290 case DW_FORM_data8:
20291 case DW_FORM_udata:
20292 case DW_FORM_sdata:
20293 fprintf_unfiltered (f, "constant: %s",
20294 pulongest (DW_UNSND (&die->attrs[i])));
20295 break;
20296 case DW_FORM_sec_offset:
20297 fprintf_unfiltered (f, "section offset: %s",
20298 pulongest (DW_UNSND (&die->attrs[i])));
20299 break;
20300 case DW_FORM_ref_sig8:
20301 fprintf_unfiltered (f, "signature: %s",
20302 hex_string (DW_SIGNATURE (&die->attrs[i])));
20303 break;
20304 case DW_FORM_string:
20305 case DW_FORM_strp:
20306 case DW_FORM_line_strp:
20307 case DW_FORM_GNU_str_index:
20308 case DW_FORM_GNU_strp_alt:
20309 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20310 DW_STRING (&die->attrs[i])
20311 ? DW_STRING (&die->attrs[i]) : "",
20312 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20313 break;
20314 case DW_FORM_flag:
20315 if (DW_UNSND (&die->attrs[i]))
20316 fprintf_unfiltered (f, "flag: TRUE");
20317 else
20318 fprintf_unfiltered (f, "flag: FALSE");
20319 break;
20320 case DW_FORM_flag_present:
20321 fprintf_unfiltered (f, "flag: TRUE");
20322 break;
20323 case DW_FORM_indirect:
20324 /* The reader will have reduced the indirect form to
20325 the "base form" so this form should not occur. */
20326 fprintf_unfiltered (f,
20327 "unexpected attribute form: DW_FORM_indirect");
20328 break;
20329 default:
20330 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20331 die->attrs[i].form);
20332 break;
20333 }
20334 fprintf_unfiltered (f, "\n");
20335 }
20336 }
20337
20338 static void
20339 dump_die_for_error (struct die_info *die)
20340 {
20341 dump_die_shallow (gdb_stderr, 0, die);
20342 }
20343
20344 static void
20345 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20346 {
20347 int indent = level * 4;
20348
20349 gdb_assert (die != NULL);
20350
20351 if (level >= max_level)
20352 return;
20353
20354 dump_die_shallow (f, indent, die);
20355
20356 if (die->child != NULL)
20357 {
20358 print_spaces (indent, f);
20359 fprintf_unfiltered (f, " Children:");
20360 if (level + 1 < max_level)
20361 {
20362 fprintf_unfiltered (f, "\n");
20363 dump_die_1 (f, level + 1, max_level, die->child);
20364 }
20365 else
20366 {
20367 fprintf_unfiltered (f,
20368 " [not printed, max nesting level reached]\n");
20369 }
20370 }
20371
20372 if (die->sibling != NULL && level > 0)
20373 {
20374 dump_die_1 (f, level, max_level, die->sibling);
20375 }
20376 }
20377
20378 /* This is called from the pdie macro in gdbinit.in.
20379 It's not static so gcc will keep a copy callable from gdb. */
20380
20381 void
20382 dump_die (struct die_info *die, int max_level)
20383 {
20384 dump_die_1 (gdb_stdlog, 0, max_level, die);
20385 }
20386
20387 static void
20388 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20389 {
20390 void **slot;
20391
20392 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
20393 INSERT);
20394
20395 *slot = die;
20396 }
20397
20398 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20399 required kind. */
20400
20401 static sect_offset
20402 dwarf2_get_ref_die_offset (const struct attribute *attr)
20403 {
20404 sect_offset retval = { DW_UNSND (attr) };
20405
20406 if (attr_form_is_ref (attr))
20407 return retval;
20408
20409 retval.sect_off = 0;
20410 complaint (&symfile_complaints,
20411 _("unsupported die ref attribute form: '%s'"),
20412 dwarf_form_name (attr->form));
20413 return retval;
20414 }
20415
20416 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20417 * the value held by the attribute is not constant. */
20418
20419 static LONGEST
20420 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20421 {
20422 if (attr->form == DW_FORM_sdata)
20423 return DW_SND (attr);
20424 else if (attr->form == DW_FORM_udata
20425 || attr->form == DW_FORM_data1
20426 || attr->form == DW_FORM_data2
20427 || attr->form == DW_FORM_data4
20428 || attr->form == DW_FORM_data8)
20429 return DW_UNSND (attr);
20430 else
20431 {
20432 /* For DW_FORM_data16 see attr_form_is_constant. */
20433 complaint (&symfile_complaints,
20434 _("Attribute value is not a constant (%s)"),
20435 dwarf_form_name (attr->form));
20436 return default_value;
20437 }
20438 }
20439
20440 /* Follow reference or signature attribute ATTR of SRC_DIE.
20441 On entry *REF_CU is the CU of SRC_DIE.
20442 On exit *REF_CU is the CU of the result. */
20443
20444 static struct die_info *
20445 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20446 struct dwarf2_cu **ref_cu)
20447 {
20448 struct die_info *die;
20449
20450 if (attr_form_is_ref (attr))
20451 die = follow_die_ref (src_die, attr, ref_cu);
20452 else if (attr->form == DW_FORM_ref_sig8)
20453 die = follow_die_sig (src_die, attr, ref_cu);
20454 else
20455 {
20456 dump_die_for_error (src_die);
20457 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20458 objfile_name ((*ref_cu)->objfile));
20459 }
20460
20461 return die;
20462 }
20463
20464 /* Follow reference OFFSET.
20465 On entry *REF_CU is the CU of the source die referencing OFFSET.
20466 On exit *REF_CU is the CU of the result.
20467 Returns NULL if OFFSET is invalid. */
20468
20469 static struct die_info *
20470 follow_die_offset (sect_offset offset, int offset_in_dwz,
20471 struct dwarf2_cu **ref_cu)
20472 {
20473 struct die_info temp_die;
20474 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20475
20476 gdb_assert (cu->per_cu != NULL);
20477
20478 target_cu = cu;
20479
20480 if (cu->per_cu->is_debug_types)
20481 {
20482 /* .debug_types CUs cannot reference anything outside their CU.
20483 If they need to, they have to reference a signatured type via
20484 DW_FORM_ref_sig8. */
20485 if (! offset_in_cu_p (&cu->header, offset))
20486 return NULL;
20487 }
20488 else if (offset_in_dwz != cu->per_cu->is_dwz
20489 || ! offset_in_cu_p (&cu->header, offset))
20490 {
20491 struct dwarf2_per_cu_data *per_cu;
20492
20493 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20494 cu->objfile);
20495
20496 /* If necessary, add it to the queue and load its DIEs. */
20497 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20498 load_full_comp_unit (per_cu, cu->language);
20499
20500 target_cu = per_cu->cu;
20501 }
20502 else if (cu->dies == NULL)
20503 {
20504 /* We're loading full DIEs during partial symbol reading. */
20505 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20506 load_full_comp_unit (cu->per_cu, language_minimal);
20507 }
20508
20509 *ref_cu = target_cu;
20510 temp_die.offset = offset;
20511 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20512 &temp_die, offset.sect_off);
20513 }
20514
20515 /* Follow reference attribute ATTR of SRC_DIE.
20516 On entry *REF_CU is the CU of SRC_DIE.
20517 On exit *REF_CU is the CU of the result. */
20518
20519 static struct die_info *
20520 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20521 struct dwarf2_cu **ref_cu)
20522 {
20523 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20524 struct dwarf2_cu *cu = *ref_cu;
20525 struct die_info *die;
20526
20527 die = follow_die_offset (offset,
20528 (attr->form == DW_FORM_GNU_ref_alt
20529 || cu->per_cu->is_dwz),
20530 ref_cu);
20531 if (!die)
20532 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20533 "at 0x%x [in module %s]"),
20534 offset.sect_off, src_die->offset.sect_off,
20535 objfile_name (cu->objfile));
20536
20537 return die;
20538 }
20539
20540 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20541 Returned value is intended for DW_OP_call*. Returned
20542 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20543
20544 struct dwarf2_locexpr_baton
20545 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20546 struct dwarf2_per_cu_data *per_cu,
20547 CORE_ADDR (*get_frame_pc) (void *baton),
20548 void *baton)
20549 {
20550 struct dwarf2_cu *cu;
20551 struct die_info *die;
20552 struct attribute *attr;
20553 struct dwarf2_locexpr_baton retval;
20554
20555 dw2_setup (per_cu->objfile);
20556
20557 if (per_cu->cu == NULL)
20558 load_cu (per_cu);
20559 cu = per_cu->cu;
20560 if (cu == NULL)
20561 {
20562 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20563 Instead just throw an error, not much else we can do. */
20564 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20565 offset.sect_off, objfile_name (per_cu->objfile));
20566 }
20567
20568 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20569 if (!die)
20570 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20571 offset.sect_off, objfile_name (per_cu->objfile));
20572
20573 attr = dwarf2_attr (die, DW_AT_location, cu);
20574 if (!attr)
20575 {
20576 /* DWARF: "If there is no such attribute, then there is no effect.".
20577 DATA is ignored if SIZE is 0. */
20578
20579 retval.data = NULL;
20580 retval.size = 0;
20581 }
20582 else if (attr_form_is_section_offset (attr))
20583 {
20584 struct dwarf2_loclist_baton loclist_baton;
20585 CORE_ADDR pc = (*get_frame_pc) (baton);
20586 size_t size;
20587
20588 fill_in_loclist_baton (cu, &loclist_baton, attr);
20589
20590 retval.data = dwarf2_find_location_expression (&loclist_baton,
20591 &size, pc);
20592 retval.size = size;
20593 }
20594 else
20595 {
20596 if (!attr_form_is_block (attr))
20597 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20598 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20599 offset.sect_off, objfile_name (per_cu->objfile));
20600
20601 retval.data = DW_BLOCK (attr)->data;
20602 retval.size = DW_BLOCK (attr)->size;
20603 }
20604 retval.per_cu = cu->per_cu;
20605
20606 age_cached_comp_units ();
20607
20608 return retval;
20609 }
20610
20611 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20612 offset. */
20613
20614 struct dwarf2_locexpr_baton
20615 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20616 struct dwarf2_per_cu_data *per_cu,
20617 CORE_ADDR (*get_frame_pc) (void *baton),
20618 void *baton)
20619 {
20620 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20621
20622 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20623 }
20624
20625 /* Write a constant of a given type as target-ordered bytes into
20626 OBSTACK. */
20627
20628 static const gdb_byte *
20629 write_constant_as_bytes (struct obstack *obstack,
20630 enum bfd_endian byte_order,
20631 struct type *type,
20632 ULONGEST value,
20633 LONGEST *len)
20634 {
20635 gdb_byte *result;
20636
20637 *len = TYPE_LENGTH (type);
20638 result = (gdb_byte *) obstack_alloc (obstack, *len);
20639 store_unsigned_integer (result, *len, byte_order, value);
20640
20641 return result;
20642 }
20643
20644 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20645 pointer to the constant bytes and set LEN to the length of the
20646 data. If memory is needed, allocate it on OBSTACK. If the DIE
20647 does not have a DW_AT_const_value, return NULL. */
20648
20649 const gdb_byte *
20650 dwarf2_fetch_constant_bytes (sect_offset offset,
20651 struct dwarf2_per_cu_data *per_cu,
20652 struct obstack *obstack,
20653 LONGEST *len)
20654 {
20655 struct dwarf2_cu *cu;
20656 struct die_info *die;
20657 struct attribute *attr;
20658 const gdb_byte *result = NULL;
20659 struct type *type;
20660 LONGEST value;
20661 enum bfd_endian byte_order;
20662
20663 dw2_setup (per_cu->objfile);
20664
20665 if (per_cu->cu == NULL)
20666 load_cu (per_cu);
20667 cu = per_cu->cu;
20668 if (cu == NULL)
20669 {
20670 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20671 Instead just throw an error, not much else we can do. */
20672 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20673 offset.sect_off, objfile_name (per_cu->objfile));
20674 }
20675
20676 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20677 if (!die)
20678 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20679 offset.sect_off, objfile_name (per_cu->objfile));
20680
20681
20682 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20683 if (attr == NULL)
20684 return NULL;
20685
20686 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20687 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20688
20689 switch (attr->form)
20690 {
20691 case DW_FORM_addr:
20692 case DW_FORM_GNU_addr_index:
20693 {
20694 gdb_byte *tem;
20695
20696 *len = cu->header.addr_size;
20697 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20698 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20699 result = tem;
20700 }
20701 break;
20702 case DW_FORM_string:
20703 case DW_FORM_strp:
20704 case DW_FORM_GNU_str_index:
20705 case DW_FORM_GNU_strp_alt:
20706 /* DW_STRING is already allocated on the objfile obstack, point
20707 directly to it. */
20708 result = (const gdb_byte *) DW_STRING (attr);
20709 *len = strlen (DW_STRING (attr));
20710 break;
20711 case DW_FORM_block1:
20712 case DW_FORM_block2:
20713 case DW_FORM_block4:
20714 case DW_FORM_block:
20715 case DW_FORM_exprloc:
20716 case DW_FORM_data16:
20717 result = DW_BLOCK (attr)->data;
20718 *len = DW_BLOCK (attr)->size;
20719 break;
20720
20721 /* The DW_AT_const_value attributes are supposed to carry the
20722 symbol's value "represented as it would be on the target
20723 architecture." By the time we get here, it's already been
20724 converted to host endianness, so we just need to sign- or
20725 zero-extend it as appropriate. */
20726 case DW_FORM_data1:
20727 type = die_type (die, cu);
20728 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20729 if (result == NULL)
20730 result = write_constant_as_bytes (obstack, byte_order,
20731 type, value, len);
20732 break;
20733 case DW_FORM_data2:
20734 type = die_type (die, cu);
20735 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20736 if (result == NULL)
20737 result = write_constant_as_bytes (obstack, byte_order,
20738 type, value, len);
20739 break;
20740 case DW_FORM_data4:
20741 type = die_type (die, cu);
20742 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20743 if (result == NULL)
20744 result = write_constant_as_bytes (obstack, byte_order,
20745 type, value, len);
20746 break;
20747 case DW_FORM_data8:
20748 type = die_type (die, cu);
20749 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20750 if (result == NULL)
20751 result = write_constant_as_bytes (obstack, byte_order,
20752 type, value, len);
20753 break;
20754
20755 case DW_FORM_sdata:
20756 type = die_type (die, cu);
20757 result = write_constant_as_bytes (obstack, byte_order,
20758 type, DW_SND (attr), len);
20759 break;
20760
20761 case DW_FORM_udata:
20762 type = die_type (die, cu);
20763 result = write_constant_as_bytes (obstack, byte_order,
20764 type, DW_UNSND (attr), len);
20765 break;
20766
20767 default:
20768 complaint (&symfile_complaints,
20769 _("unsupported const value attribute form: '%s'"),
20770 dwarf_form_name (attr->form));
20771 break;
20772 }
20773
20774 return result;
20775 }
20776
20777 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20778 PER_CU. */
20779
20780 struct type *
20781 dwarf2_get_die_type (cu_offset die_offset,
20782 struct dwarf2_per_cu_data *per_cu)
20783 {
20784 sect_offset die_offset_sect;
20785
20786 dw2_setup (per_cu->objfile);
20787
20788 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20789 return get_die_type_at_offset (die_offset_sect, per_cu);
20790 }
20791
20792 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20793 On entry *REF_CU is the CU of SRC_DIE.
20794 On exit *REF_CU is the CU of the result.
20795 Returns NULL if the referenced DIE isn't found. */
20796
20797 static struct die_info *
20798 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20799 struct dwarf2_cu **ref_cu)
20800 {
20801 struct die_info temp_die;
20802 struct dwarf2_cu *sig_cu;
20803 struct die_info *die;
20804
20805 /* While it might be nice to assert sig_type->type == NULL here,
20806 we can get here for DW_AT_imported_declaration where we need
20807 the DIE not the type. */
20808
20809 /* If necessary, add it to the queue and load its DIEs. */
20810
20811 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20812 read_signatured_type (sig_type);
20813
20814 sig_cu = sig_type->per_cu.cu;
20815 gdb_assert (sig_cu != NULL);
20816 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20817 temp_die.offset = sig_type->type_offset_in_section;
20818 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20819 temp_die.offset.sect_off);
20820 if (die)
20821 {
20822 /* For .gdb_index version 7 keep track of included TUs.
20823 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20824 if (dwarf2_per_objfile->index_table != NULL
20825 && dwarf2_per_objfile->index_table->version <= 7)
20826 {
20827 VEC_safe_push (dwarf2_per_cu_ptr,
20828 (*ref_cu)->per_cu->imported_symtabs,
20829 sig_cu->per_cu);
20830 }
20831
20832 *ref_cu = sig_cu;
20833 return die;
20834 }
20835
20836 return NULL;
20837 }
20838
20839 /* Follow signatured type referenced by ATTR in SRC_DIE.
20840 On entry *REF_CU is the CU of SRC_DIE.
20841 On exit *REF_CU is the CU of the result.
20842 The result is the DIE of the type.
20843 If the referenced type cannot be found an error is thrown. */
20844
20845 static struct die_info *
20846 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20847 struct dwarf2_cu **ref_cu)
20848 {
20849 ULONGEST signature = DW_SIGNATURE (attr);
20850 struct signatured_type *sig_type;
20851 struct die_info *die;
20852
20853 gdb_assert (attr->form == DW_FORM_ref_sig8);
20854
20855 sig_type = lookup_signatured_type (*ref_cu, signature);
20856 /* sig_type will be NULL if the signatured type is missing from
20857 the debug info. */
20858 if (sig_type == NULL)
20859 {
20860 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20861 " from DIE at 0x%x [in module %s]"),
20862 hex_string (signature), src_die->offset.sect_off,
20863 objfile_name ((*ref_cu)->objfile));
20864 }
20865
20866 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20867 if (die == NULL)
20868 {
20869 dump_die_for_error (src_die);
20870 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20871 " from DIE at 0x%x [in module %s]"),
20872 hex_string (signature), src_die->offset.sect_off,
20873 objfile_name ((*ref_cu)->objfile));
20874 }
20875
20876 return die;
20877 }
20878
20879 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20880 reading in and processing the type unit if necessary. */
20881
20882 static struct type *
20883 get_signatured_type (struct die_info *die, ULONGEST signature,
20884 struct dwarf2_cu *cu)
20885 {
20886 struct signatured_type *sig_type;
20887 struct dwarf2_cu *type_cu;
20888 struct die_info *type_die;
20889 struct type *type;
20890
20891 sig_type = lookup_signatured_type (cu, signature);
20892 /* sig_type will be NULL if the signatured type is missing from
20893 the debug info. */
20894 if (sig_type == NULL)
20895 {
20896 complaint (&symfile_complaints,
20897 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20898 " from DIE at 0x%x [in module %s]"),
20899 hex_string (signature), die->offset.sect_off,
20900 objfile_name (dwarf2_per_objfile->objfile));
20901 return build_error_marker_type (cu, die);
20902 }
20903
20904 /* If we already know the type we're done. */
20905 if (sig_type->type != NULL)
20906 return sig_type->type;
20907
20908 type_cu = cu;
20909 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20910 if (type_die != NULL)
20911 {
20912 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20913 is created. This is important, for example, because for c++ classes
20914 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20915 type = read_type_die (type_die, type_cu);
20916 if (type == NULL)
20917 {
20918 complaint (&symfile_complaints,
20919 _("Dwarf Error: Cannot build signatured type %s"
20920 " referenced from DIE at 0x%x [in module %s]"),
20921 hex_string (signature), die->offset.sect_off,
20922 objfile_name (dwarf2_per_objfile->objfile));
20923 type = build_error_marker_type (cu, die);
20924 }
20925 }
20926 else
20927 {
20928 complaint (&symfile_complaints,
20929 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20930 " from DIE at 0x%x [in module %s]"),
20931 hex_string (signature), die->offset.sect_off,
20932 objfile_name (dwarf2_per_objfile->objfile));
20933 type = build_error_marker_type (cu, die);
20934 }
20935 sig_type->type = type;
20936
20937 return type;
20938 }
20939
20940 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20941 reading in and processing the type unit if necessary. */
20942
20943 static struct type *
20944 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20945 struct dwarf2_cu *cu) /* ARI: editCase function */
20946 {
20947 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20948 if (attr_form_is_ref (attr))
20949 {
20950 struct dwarf2_cu *type_cu = cu;
20951 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20952
20953 return read_type_die (type_die, type_cu);
20954 }
20955 else if (attr->form == DW_FORM_ref_sig8)
20956 {
20957 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20958 }
20959 else
20960 {
20961 complaint (&symfile_complaints,
20962 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20963 " at 0x%x [in module %s]"),
20964 dwarf_form_name (attr->form), die->offset.sect_off,
20965 objfile_name (dwarf2_per_objfile->objfile));
20966 return build_error_marker_type (cu, die);
20967 }
20968 }
20969
20970 /* Load the DIEs associated with type unit PER_CU into memory. */
20971
20972 static void
20973 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20974 {
20975 struct signatured_type *sig_type;
20976
20977 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20978 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20979
20980 /* We have the per_cu, but we need the signatured_type.
20981 Fortunately this is an easy translation. */
20982 gdb_assert (per_cu->is_debug_types);
20983 sig_type = (struct signatured_type *) per_cu;
20984
20985 gdb_assert (per_cu->cu == NULL);
20986
20987 read_signatured_type (sig_type);
20988
20989 gdb_assert (per_cu->cu != NULL);
20990 }
20991
20992 /* die_reader_func for read_signatured_type.
20993 This is identical to load_full_comp_unit_reader,
20994 but is kept separate for now. */
20995
20996 static void
20997 read_signatured_type_reader (const struct die_reader_specs *reader,
20998 const gdb_byte *info_ptr,
20999 struct die_info *comp_unit_die,
21000 int has_children,
21001 void *data)
21002 {
21003 struct dwarf2_cu *cu = reader->cu;
21004
21005 gdb_assert (cu->die_hash == NULL);
21006 cu->die_hash =
21007 htab_create_alloc_ex (cu->header.length / 12,
21008 die_hash,
21009 die_eq,
21010 NULL,
21011 &cu->comp_unit_obstack,
21012 hashtab_obstack_allocate,
21013 dummy_obstack_deallocate);
21014
21015 if (has_children)
21016 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21017 &info_ptr, comp_unit_die);
21018 cu->dies = comp_unit_die;
21019 /* comp_unit_die is not stored in die_hash, no need. */
21020
21021 /* We try not to read any attributes in this function, because not
21022 all CUs needed for references have been loaded yet, and symbol
21023 table processing isn't initialized. But we have to set the CU language,
21024 or we won't be able to build types correctly.
21025 Similarly, if we do not read the producer, we can not apply
21026 producer-specific interpretation. */
21027 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21028 }
21029
21030 /* Read in a signatured type and build its CU and DIEs.
21031 If the type is a stub for the real type in a DWO file,
21032 read in the real type from the DWO file as well. */
21033
21034 static void
21035 read_signatured_type (struct signatured_type *sig_type)
21036 {
21037 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21038
21039 gdb_assert (per_cu->is_debug_types);
21040 gdb_assert (per_cu->cu == NULL);
21041
21042 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21043 read_signatured_type_reader, NULL);
21044 sig_type->per_cu.tu_read = 1;
21045 }
21046
21047 /* Decode simple location descriptions.
21048 Given a pointer to a dwarf block that defines a location, compute
21049 the location and return the value.
21050
21051 NOTE drow/2003-11-18: This function is called in two situations
21052 now: for the address of static or global variables (partial symbols
21053 only) and for offsets into structures which are expected to be
21054 (more or less) constant. The partial symbol case should go away,
21055 and only the constant case should remain. That will let this
21056 function complain more accurately. A few special modes are allowed
21057 without complaint for global variables (for instance, global
21058 register values and thread-local values).
21059
21060 A location description containing no operations indicates that the
21061 object is optimized out. The return value is 0 for that case.
21062 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21063 callers will only want a very basic result and this can become a
21064 complaint.
21065
21066 Note that stack[0] is unused except as a default error return. */
21067
21068 static CORE_ADDR
21069 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21070 {
21071 struct objfile *objfile = cu->objfile;
21072 size_t i;
21073 size_t size = blk->size;
21074 const gdb_byte *data = blk->data;
21075 CORE_ADDR stack[64];
21076 int stacki;
21077 unsigned int bytes_read, unsnd;
21078 gdb_byte op;
21079
21080 i = 0;
21081 stacki = 0;
21082 stack[stacki] = 0;
21083 stack[++stacki] = 0;
21084
21085 while (i < size)
21086 {
21087 op = data[i++];
21088 switch (op)
21089 {
21090 case DW_OP_lit0:
21091 case DW_OP_lit1:
21092 case DW_OP_lit2:
21093 case DW_OP_lit3:
21094 case DW_OP_lit4:
21095 case DW_OP_lit5:
21096 case DW_OP_lit6:
21097 case DW_OP_lit7:
21098 case DW_OP_lit8:
21099 case DW_OP_lit9:
21100 case DW_OP_lit10:
21101 case DW_OP_lit11:
21102 case DW_OP_lit12:
21103 case DW_OP_lit13:
21104 case DW_OP_lit14:
21105 case DW_OP_lit15:
21106 case DW_OP_lit16:
21107 case DW_OP_lit17:
21108 case DW_OP_lit18:
21109 case DW_OP_lit19:
21110 case DW_OP_lit20:
21111 case DW_OP_lit21:
21112 case DW_OP_lit22:
21113 case DW_OP_lit23:
21114 case DW_OP_lit24:
21115 case DW_OP_lit25:
21116 case DW_OP_lit26:
21117 case DW_OP_lit27:
21118 case DW_OP_lit28:
21119 case DW_OP_lit29:
21120 case DW_OP_lit30:
21121 case DW_OP_lit31:
21122 stack[++stacki] = op - DW_OP_lit0;
21123 break;
21124
21125 case DW_OP_reg0:
21126 case DW_OP_reg1:
21127 case DW_OP_reg2:
21128 case DW_OP_reg3:
21129 case DW_OP_reg4:
21130 case DW_OP_reg5:
21131 case DW_OP_reg6:
21132 case DW_OP_reg7:
21133 case DW_OP_reg8:
21134 case DW_OP_reg9:
21135 case DW_OP_reg10:
21136 case DW_OP_reg11:
21137 case DW_OP_reg12:
21138 case DW_OP_reg13:
21139 case DW_OP_reg14:
21140 case DW_OP_reg15:
21141 case DW_OP_reg16:
21142 case DW_OP_reg17:
21143 case DW_OP_reg18:
21144 case DW_OP_reg19:
21145 case DW_OP_reg20:
21146 case DW_OP_reg21:
21147 case DW_OP_reg22:
21148 case DW_OP_reg23:
21149 case DW_OP_reg24:
21150 case DW_OP_reg25:
21151 case DW_OP_reg26:
21152 case DW_OP_reg27:
21153 case DW_OP_reg28:
21154 case DW_OP_reg29:
21155 case DW_OP_reg30:
21156 case DW_OP_reg31:
21157 stack[++stacki] = op - DW_OP_reg0;
21158 if (i < size)
21159 dwarf2_complex_location_expr_complaint ();
21160 break;
21161
21162 case DW_OP_regx:
21163 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21164 i += bytes_read;
21165 stack[++stacki] = unsnd;
21166 if (i < size)
21167 dwarf2_complex_location_expr_complaint ();
21168 break;
21169
21170 case DW_OP_addr:
21171 stack[++stacki] = read_address (objfile->obfd, &data[i],
21172 cu, &bytes_read);
21173 i += bytes_read;
21174 break;
21175
21176 case DW_OP_const1u:
21177 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21178 i += 1;
21179 break;
21180
21181 case DW_OP_const1s:
21182 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21183 i += 1;
21184 break;
21185
21186 case DW_OP_const2u:
21187 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21188 i += 2;
21189 break;
21190
21191 case DW_OP_const2s:
21192 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21193 i += 2;
21194 break;
21195
21196 case DW_OP_const4u:
21197 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21198 i += 4;
21199 break;
21200
21201 case DW_OP_const4s:
21202 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21203 i += 4;
21204 break;
21205
21206 case DW_OP_const8u:
21207 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21208 i += 8;
21209 break;
21210
21211 case DW_OP_constu:
21212 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21213 &bytes_read);
21214 i += bytes_read;
21215 break;
21216
21217 case DW_OP_consts:
21218 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21219 i += bytes_read;
21220 break;
21221
21222 case DW_OP_dup:
21223 stack[stacki + 1] = stack[stacki];
21224 stacki++;
21225 break;
21226
21227 case DW_OP_plus:
21228 stack[stacki - 1] += stack[stacki];
21229 stacki--;
21230 break;
21231
21232 case DW_OP_plus_uconst:
21233 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21234 &bytes_read);
21235 i += bytes_read;
21236 break;
21237
21238 case DW_OP_minus:
21239 stack[stacki - 1] -= stack[stacki];
21240 stacki--;
21241 break;
21242
21243 case DW_OP_deref:
21244 /* If we're not the last op, then we definitely can't encode
21245 this using GDB's address_class enum. This is valid for partial
21246 global symbols, although the variable's address will be bogus
21247 in the psymtab. */
21248 if (i < size)
21249 dwarf2_complex_location_expr_complaint ();
21250 break;
21251
21252 case DW_OP_GNU_push_tls_address:
21253 case DW_OP_form_tls_address:
21254 /* The top of the stack has the offset from the beginning
21255 of the thread control block at which the variable is located. */
21256 /* Nothing should follow this operator, so the top of stack would
21257 be returned. */
21258 /* This is valid for partial global symbols, but the variable's
21259 address will be bogus in the psymtab. Make it always at least
21260 non-zero to not look as a variable garbage collected by linker
21261 which have DW_OP_addr 0. */
21262 if (i < size)
21263 dwarf2_complex_location_expr_complaint ();
21264 stack[stacki]++;
21265 break;
21266
21267 case DW_OP_GNU_uninit:
21268 break;
21269
21270 case DW_OP_GNU_addr_index:
21271 case DW_OP_GNU_const_index:
21272 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21273 &bytes_read);
21274 i += bytes_read;
21275 break;
21276
21277 default:
21278 {
21279 const char *name = get_DW_OP_name (op);
21280
21281 if (name)
21282 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21283 name);
21284 else
21285 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21286 op);
21287 }
21288
21289 return (stack[stacki]);
21290 }
21291
21292 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21293 outside of the allocated space. Also enforce minimum>0. */
21294 if (stacki >= ARRAY_SIZE (stack) - 1)
21295 {
21296 complaint (&symfile_complaints,
21297 _("location description stack overflow"));
21298 return 0;
21299 }
21300
21301 if (stacki <= 0)
21302 {
21303 complaint (&symfile_complaints,
21304 _("location description stack underflow"));
21305 return 0;
21306 }
21307 }
21308 return (stack[stacki]);
21309 }
21310
21311 /* memory allocation interface */
21312
21313 static struct dwarf_block *
21314 dwarf_alloc_block (struct dwarf2_cu *cu)
21315 {
21316 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21317 }
21318
21319 static struct die_info *
21320 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21321 {
21322 struct die_info *die;
21323 size_t size = sizeof (struct die_info);
21324
21325 if (num_attrs > 1)
21326 size += (num_attrs - 1) * sizeof (struct attribute);
21327
21328 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21329 memset (die, 0, sizeof (struct die_info));
21330 return (die);
21331 }
21332
21333 \f
21334 /* Macro support. */
21335
21336 /* Return file name relative to the compilation directory of file number I in
21337 *LH's file name table. The result is allocated using xmalloc; the caller is
21338 responsible for freeing it. */
21339
21340 static char *
21341 file_file_name (int file, struct line_header *lh)
21342 {
21343 /* Is the file number a valid index into the line header's file name
21344 table? Remember that file numbers start with one, not zero. */
21345 if (1 <= file && file <= lh->num_file_names)
21346 {
21347 struct file_entry *fe = &lh->file_names[file - 1];
21348
21349 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
21350 || lh->include_dirs == NULL)
21351 return xstrdup (fe->name);
21352 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
21353 fe->name, (char *) NULL);
21354 }
21355 else
21356 {
21357 /* The compiler produced a bogus file number. We can at least
21358 record the macro definitions made in the file, even if we
21359 won't be able to find the file by name. */
21360 char fake_name[80];
21361
21362 xsnprintf (fake_name, sizeof (fake_name),
21363 "<bad macro file number %d>", file);
21364
21365 complaint (&symfile_complaints,
21366 _("bad file number in macro information (%d)"),
21367 file);
21368
21369 return xstrdup (fake_name);
21370 }
21371 }
21372
21373 /* Return the full name of file number I in *LH's file name table.
21374 Use COMP_DIR as the name of the current directory of the
21375 compilation. The result is allocated using xmalloc; the caller is
21376 responsible for freeing it. */
21377 static char *
21378 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21379 {
21380 /* Is the file number a valid index into the line header's file name
21381 table? Remember that file numbers start with one, not zero. */
21382 if (1 <= file && file <= lh->num_file_names)
21383 {
21384 char *relative = file_file_name (file, lh);
21385
21386 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21387 return relative;
21388 return reconcat (relative, comp_dir, SLASH_STRING,
21389 relative, (char *) NULL);
21390 }
21391 else
21392 return file_file_name (file, lh);
21393 }
21394
21395
21396 static struct macro_source_file *
21397 macro_start_file (int file, int line,
21398 struct macro_source_file *current_file,
21399 struct line_header *lh)
21400 {
21401 /* File name relative to the compilation directory of this source file. */
21402 char *file_name = file_file_name (file, lh);
21403
21404 if (! current_file)
21405 {
21406 /* Note: We don't create a macro table for this compilation unit
21407 at all until we actually get a filename. */
21408 struct macro_table *macro_table = get_macro_table ();
21409
21410 /* If we have no current file, then this must be the start_file
21411 directive for the compilation unit's main source file. */
21412 current_file = macro_set_main (macro_table, file_name);
21413 macro_define_special (macro_table);
21414 }
21415 else
21416 current_file = macro_include (current_file, line, file_name);
21417
21418 xfree (file_name);
21419
21420 return current_file;
21421 }
21422
21423
21424 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21425 followed by a null byte. */
21426 static char *
21427 copy_string (const char *buf, int len)
21428 {
21429 char *s = (char *) xmalloc (len + 1);
21430
21431 memcpy (s, buf, len);
21432 s[len] = '\0';
21433 return s;
21434 }
21435
21436
21437 static const char *
21438 consume_improper_spaces (const char *p, const char *body)
21439 {
21440 if (*p == ' ')
21441 {
21442 complaint (&symfile_complaints,
21443 _("macro definition contains spaces "
21444 "in formal argument list:\n`%s'"),
21445 body);
21446
21447 while (*p == ' ')
21448 p++;
21449 }
21450
21451 return p;
21452 }
21453
21454
21455 static void
21456 parse_macro_definition (struct macro_source_file *file, int line,
21457 const char *body)
21458 {
21459 const char *p;
21460
21461 /* The body string takes one of two forms. For object-like macro
21462 definitions, it should be:
21463
21464 <macro name> " " <definition>
21465
21466 For function-like macro definitions, it should be:
21467
21468 <macro name> "() " <definition>
21469 or
21470 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21471
21472 Spaces may appear only where explicitly indicated, and in the
21473 <definition>.
21474
21475 The Dwarf 2 spec says that an object-like macro's name is always
21476 followed by a space, but versions of GCC around March 2002 omit
21477 the space when the macro's definition is the empty string.
21478
21479 The Dwarf 2 spec says that there should be no spaces between the
21480 formal arguments in a function-like macro's formal argument list,
21481 but versions of GCC around March 2002 include spaces after the
21482 commas. */
21483
21484
21485 /* Find the extent of the macro name. The macro name is terminated
21486 by either a space or null character (for an object-like macro) or
21487 an opening paren (for a function-like macro). */
21488 for (p = body; *p; p++)
21489 if (*p == ' ' || *p == '(')
21490 break;
21491
21492 if (*p == ' ' || *p == '\0')
21493 {
21494 /* It's an object-like macro. */
21495 int name_len = p - body;
21496 char *name = copy_string (body, name_len);
21497 const char *replacement;
21498
21499 if (*p == ' ')
21500 replacement = body + name_len + 1;
21501 else
21502 {
21503 dwarf2_macro_malformed_definition_complaint (body);
21504 replacement = body + name_len;
21505 }
21506
21507 macro_define_object (file, line, name, replacement);
21508
21509 xfree (name);
21510 }
21511 else if (*p == '(')
21512 {
21513 /* It's a function-like macro. */
21514 char *name = copy_string (body, p - body);
21515 int argc = 0;
21516 int argv_size = 1;
21517 char **argv = XNEWVEC (char *, argv_size);
21518
21519 p++;
21520
21521 p = consume_improper_spaces (p, body);
21522
21523 /* Parse the formal argument list. */
21524 while (*p && *p != ')')
21525 {
21526 /* Find the extent of the current argument name. */
21527 const char *arg_start = p;
21528
21529 while (*p && *p != ',' && *p != ')' && *p != ' ')
21530 p++;
21531
21532 if (! *p || p == arg_start)
21533 dwarf2_macro_malformed_definition_complaint (body);
21534 else
21535 {
21536 /* Make sure argv has room for the new argument. */
21537 if (argc >= argv_size)
21538 {
21539 argv_size *= 2;
21540 argv = XRESIZEVEC (char *, argv, argv_size);
21541 }
21542
21543 argv[argc++] = copy_string (arg_start, p - arg_start);
21544 }
21545
21546 p = consume_improper_spaces (p, body);
21547
21548 /* Consume the comma, if present. */
21549 if (*p == ',')
21550 {
21551 p++;
21552
21553 p = consume_improper_spaces (p, body);
21554 }
21555 }
21556
21557 if (*p == ')')
21558 {
21559 p++;
21560
21561 if (*p == ' ')
21562 /* Perfectly formed definition, no complaints. */
21563 macro_define_function (file, line, name,
21564 argc, (const char **) argv,
21565 p + 1);
21566 else if (*p == '\0')
21567 {
21568 /* Complain, but do define it. */
21569 dwarf2_macro_malformed_definition_complaint (body);
21570 macro_define_function (file, line, name,
21571 argc, (const char **) argv,
21572 p);
21573 }
21574 else
21575 /* Just complain. */
21576 dwarf2_macro_malformed_definition_complaint (body);
21577 }
21578 else
21579 /* Just complain. */
21580 dwarf2_macro_malformed_definition_complaint (body);
21581
21582 xfree (name);
21583 {
21584 int i;
21585
21586 for (i = 0; i < argc; i++)
21587 xfree (argv[i]);
21588 }
21589 xfree (argv);
21590 }
21591 else
21592 dwarf2_macro_malformed_definition_complaint (body);
21593 }
21594
21595 /* Skip some bytes from BYTES according to the form given in FORM.
21596 Returns the new pointer. */
21597
21598 static const gdb_byte *
21599 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21600 enum dwarf_form form,
21601 unsigned int offset_size,
21602 struct dwarf2_section_info *section)
21603 {
21604 unsigned int bytes_read;
21605
21606 switch (form)
21607 {
21608 case DW_FORM_data1:
21609 case DW_FORM_flag:
21610 ++bytes;
21611 break;
21612
21613 case DW_FORM_data2:
21614 bytes += 2;
21615 break;
21616
21617 case DW_FORM_data4:
21618 bytes += 4;
21619 break;
21620
21621 case DW_FORM_data8:
21622 bytes += 8;
21623 break;
21624
21625 case DW_FORM_data16:
21626 bytes += 16;
21627 break;
21628
21629 case DW_FORM_string:
21630 read_direct_string (abfd, bytes, &bytes_read);
21631 bytes += bytes_read;
21632 break;
21633
21634 case DW_FORM_sec_offset:
21635 case DW_FORM_strp:
21636 case DW_FORM_GNU_strp_alt:
21637 bytes += offset_size;
21638 break;
21639
21640 case DW_FORM_block:
21641 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21642 bytes += bytes_read;
21643 break;
21644
21645 case DW_FORM_block1:
21646 bytes += 1 + read_1_byte (abfd, bytes);
21647 break;
21648 case DW_FORM_block2:
21649 bytes += 2 + read_2_bytes (abfd, bytes);
21650 break;
21651 case DW_FORM_block4:
21652 bytes += 4 + read_4_bytes (abfd, bytes);
21653 break;
21654
21655 case DW_FORM_sdata:
21656 case DW_FORM_udata:
21657 case DW_FORM_GNU_addr_index:
21658 case DW_FORM_GNU_str_index:
21659 bytes = gdb_skip_leb128 (bytes, buffer_end);
21660 if (bytes == NULL)
21661 {
21662 dwarf2_section_buffer_overflow_complaint (section);
21663 return NULL;
21664 }
21665 break;
21666
21667 default:
21668 {
21669 complain:
21670 complaint (&symfile_complaints,
21671 _("invalid form 0x%x in `%s'"),
21672 form, get_section_name (section));
21673 return NULL;
21674 }
21675 }
21676
21677 return bytes;
21678 }
21679
21680 /* A helper for dwarf_decode_macros that handles skipping an unknown
21681 opcode. Returns an updated pointer to the macro data buffer; or,
21682 on error, issues a complaint and returns NULL. */
21683
21684 static const gdb_byte *
21685 skip_unknown_opcode (unsigned int opcode,
21686 const gdb_byte **opcode_definitions,
21687 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21688 bfd *abfd,
21689 unsigned int offset_size,
21690 struct dwarf2_section_info *section)
21691 {
21692 unsigned int bytes_read, i;
21693 unsigned long arg;
21694 const gdb_byte *defn;
21695
21696 if (opcode_definitions[opcode] == NULL)
21697 {
21698 complaint (&symfile_complaints,
21699 _("unrecognized DW_MACFINO opcode 0x%x"),
21700 opcode);
21701 return NULL;
21702 }
21703
21704 defn = opcode_definitions[opcode];
21705 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21706 defn += bytes_read;
21707
21708 for (i = 0; i < arg; ++i)
21709 {
21710 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21711 (enum dwarf_form) defn[i], offset_size,
21712 section);
21713 if (mac_ptr == NULL)
21714 {
21715 /* skip_form_bytes already issued the complaint. */
21716 return NULL;
21717 }
21718 }
21719
21720 return mac_ptr;
21721 }
21722
21723 /* A helper function which parses the header of a macro section.
21724 If the macro section is the extended (for now called "GNU") type,
21725 then this updates *OFFSET_SIZE. Returns a pointer to just after
21726 the header, or issues a complaint and returns NULL on error. */
21727
21728 static const gdb_byte *
21729 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21730 bfd *abfd,
21731 const gdb_byte *mac_ptr,
21732 unsigned int *offset_size,
21733 int section_is_gnu)
21734 {
21735 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21736
21737 if (section_is_gnu)
21738 {
21739 unsigned int version, flags;
21740
21741 version = read_2_bytes (abfd, mac_ptr);
21742 if (version != 4 && version != 5)
21743 {
21744 complaint (&symfile_complaints,
21745 _("unrecognized version `%d' in .debug_macro section"),
21746 version);
21747 return NULL;
21748 }
21749 mac_ptr += 2;
21750
21751 flags = read_1_byte (abfd, mac_ptr);
21752 ++mac_ptr;
21753 *offset_size = (flags & 1) ? 8 : 4;
21754
21755 if ((flags & 2) != 0)
21756 /* We don't need the line table offset. */
21757 mac_ptr += *offset_size;
21758
21759 /* Vendor opcode descriptions. */
21760 if ((flags & 4) != 0)
21761 {
21762 unsigned int i, count;
21763
21764 count = read_1_byte (abfd, mac_ptr);
21765 ++mac_ptr;
21766 for (i = 0; i < count; ++i)
21767 {
21768 unsigned int opcode, bytes_read;
21769 unsigned long arg;
21770
21771 opcode = read_1_byte (abfd, mac_ptr);
21772 ++mac_ptr;
21773 opcode_definitions[opcode] = mac_ptr;
21774 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21775 mac_ptr += bytes_read;
21776 mac_ptr += arg;
21777 }
21778 }
21779 }
21780
21781 return mac_ptr;
21782 }
21783
21784 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21785 including DW_MACRO_import. */
21786
21787 static void
21788 dwarf_decode_macro_bytes (bfd *abfd,
21789 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21790 struct macro_source_file *current_file,
21791 struct line_header *lh,
21792 struct dwarf2_section_info *section,
21793 int section_is_gnu, int section_is_dwz,
21794 unsigned int offset_size,
21795 htab_t include_hash)
21796 {
21797 struct objfile *objfile = dwarf2_per_objfile->objfile;
21798 enum dwarf_macro_record_type macinfo_type;
21799 int at_commandline;
21800 const gdb_byte *opcode_definitions[256];
21801
21802 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21803 &offset_size, section_is_gnu);
21804 if (mac_ptr == NULL)
21805 {
21806 /* We already issued a complaint. */
21807 return;
21808 }
21809
21810 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21811 GDB is still reading the definitions from command line. First
21812 DW_MACINFO_start_file will need to be ignored as it was already executed
21813 to create CURRENT_FILE for the main source holding also the command line
21814 definitions. On first met DW_MACINFO_start_file this flag is reset to
21815 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21816
21817 at_commandline = 1;
21818
21819 do
21820 {
21821 /* Do we at least have room for a macinfo type byte? */
21822 if (mac_ptr >= mac_end)
21823 {
21824 dwarf2_section_buffer_overflow_complaint (section);
21825 break;
21826 }
21827
21828 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21829 mac_ptr++;
21830
21831 /* Note that we rely on the fact that the corresponding GNU and
21832 DWARF constants are the same. */
21833 switch (macinfo_type)
21834 {
21835 /* A zero macinfo type indicates the end of the macro
21836 information. */
21837 case 0:
21838 break;
21839
21840 case DW_MACRO_define:
21841 case DW_MACRO_undef:
21842 case DW_MACRO_define_strp:
21843 case DW_MACRO_undef_strp:
21844 case DW_MACRO_define_sup:
21845 case DW_MACRO_undef_sup:
21846 {
21847 unsigned int bytes_read;
21848 int line;
21849 const char *body;
21850 int is_define;
21851
21852 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21853 mac_ptr += bytes_read;
21854
21855 if (macinfo_type == DW_MACRO_define
21856 || macinfo_type == DW_MACRO_undef)
21857 {
21858 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21859 mac_ptr += bytes_read;
21860 }
21861 else
21862 {
21863 LONGEST str_offset;
21864
21865 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21866 mac_ptr += offset_size;
21867
21868 if (macinfo_type == DW_MACRO_define_sup
21869 || macinfo_type == DW_MACRO_undef_sup
21870 || section_is_dwz)
21871 {
21872 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21873
21874 body = read_indirect_string_from_dwz (dwz, str_offset);
21875 }
21876 else
21877 body = read_indirect_string_at_offset (abfd, str_offset);
21878 }
21879
21880 is_define = (macinfo_type == DW_MACRO_define
21881 || macinfo_type == DW_MACRO_define_strp
21882 || macinfo_type == DW_MACRO_define_sup);
21883 if (! current_file)
21884 {
21885 /* DWARF violation as no main source is present. */
21886 complaint (&symfile_complaints,
21887 _("debug info with no main source gives macro %s "
21888 "on line %d: %s"),
21889 is_define ? _("definition") : _("undefinition"),
21890 line, body);
21891 break;
21892 }
21893 if ((line == 0 && !at_commandline)
21894 || (line != 0 && at_commandline))
21895 complaint (&symfile_complaints,
21896 _("debug info gives %s macro %s with %s line %d: %s"),
21897 at_commandline ? _("command-line") : _("in-file"),
21898 is_define ? _("definition") : _("undefinition"),
21899 line == 0 ? _("zero") : _("non-zero"), line, body);
21900
21901 if (is_define)
21902 parse_macro_definition (current_file, line, body);
21903 else
21904 {
21905 gdb_assert (macinfo_type == DW_MACRO_undef
21906 || macinfo_type == DW_MACRO_undef_strp
21907 || macinfo_type == DW_MACRO_undef_sup);
21908 macro_undef (current_file, line, body);
21909 }
21910 }
21911 break;
21912
21913 case DW_MACRO_start_file:
21914 {
21915 unsigned int bytes_read;
21916 int line, file;
21917
21918 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21919 mac_ptr += bytes_read;
21920 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21921 mac_ptr += bytes_read;
21922
21923 if ((line == 0 && !at_commandline)
21924 || (line != 0 && at_commandline))
21925 complaint (&symfile_complaints,
21926 _("debug info gives source %d included "
21927 "from %s at %s line %d"),
21928 file, at_commandline ? _("command-line") : _("file"),
21929 line == 0 ? _("zero") : _("non-zero"), line);
21930
21931 if (at_commandline)
21932 {
21933 /* This DW_MACRO_start_file was executed in the
21934 pass one. */
21935 at_commandline = 0;
21936 }
21937 else
21938 current_file = macro_start_file (file, line, current_file, lh);
21939 }
21940 break;
21941
21942 case DW_MACRO_end_file:
21943 if (! current_file)
21944 complaint (&symfile_complaints,
21945 _("macro debug info has an unmatched "
21946 "`close_file' directive"));
21947 else
21948 {
21949 current_file = current_file->included_by;
21950 if (! current_file)
21951 {
21952 enum dwarf_macro_record_type next_type;
21953
21954 /* GCC circa March 2002 doesn't produce the zero
21955 type byte marking the end of the compilation
21956 unit. Complain if it's not there, but exit no
21957 matter what. */
21958
21959 /* Do we at least have room for a macinfo type byte? */
21960 if (mac_ptr >= mac_end)
21961 {
21962 dwarf2_section_buffer_overflow_complaint (section);
21963 return;
21964 }
21965
21966 /* We don't increment mac_ptr here, so this is just
21967 a look-ahead. */
21968 next_type
21969 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21970 mac_ptr);
21971 if (next_type != 0)
21972 complaint (&symfile_complaints,
21973 _("no terminating 0-type entry for "
21974 "macros in `.debug_macinfo' section"));
21975
21976 return;
21977 }
21978 }
21979 break;
21980
21981 case DW_MACRO_import:
21982 case DW_MACRO_import_sup:
21983 {
21984 LONGEST offset;
21985 void **slot;
21986 bfd *include_bfd = abfd;
21987 struct dwarf2_section_info *include_section = section;
21988 const gdb_byte *include_mac_end = mac_end;
21989 int is_dwz = section_is_dwz;
21990 const gdb_byte *new_mac_ptr;
21991
21992 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21993 mac_ptr += offset_size;
21994
21995 if (macinfo_type == DW_MACRO_import_sup)
21996 {
21997 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21998
21999 dwarf2_read_section (objfile, &dwz->macro);
22000
22001 include_section = &dwz->macro;
22002 include_bfd = get_section_bfd_owner (include_section);
22003 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22004 is_dwz = 1;
22005 }
22006
22007 new_mac_ptr = include_section->buffer + offset;
22008 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22009
22010 if (*slot != NULL)
22011 {
22012 /* This has actually happened; see
22013 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22014 complaint (&symfile_complaints,
22015 _("recursive DW_MACRO_import in "
22016 ".debug_macro section"));
22017 }
22018 else
22019 {
22020 *slot = (void *) new_mac_ptr;
22021
22022 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22023 include_mac_end, current_file, lh,
22024 section, section_is_gnu, is_dwz,
22025 offset_size, include_hash);
22026
22027 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22028 }
22029 }
22030 break;
22031
22032 case DW_MACINFO_vendor_ext:
22033 if (!section_is_gnu)
22034 {
22035 unsigned int bytes_read;
22036
22037 /* This reads the constant, but since we don't recognize
22038 any vendor extensions, we ignore it. */
22039 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22040 mac_ptr += bytes_read;
22041 read_direct_string (abfd, mac_ptr, &bytes_read);
22042 mac_ptr += bytes_read;
22043
22044 /* We don't recognize any vendor extensions. */
22045 break;
22046 }
22047 /* FALLTHROUGH */
22048
22049 default:
22050 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22051 mac_ptr, mac_end, abfd, offset_size,
22052 section);
22053 if (mac_ptr == NULL)
22054 return;
22055 break;
22056 }
22057 } while (macinfo_type != 0);
22058 }
22059
22060 static void
22061 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22062 int section_is_gnu)
22063 {
22064 struct objfile *objfile = dwarf2_per_objfile->objfile;
22065 struct line_header *lh = cu->line_header;
22066 bfd *abfd;
22067 const gdb_byte *mac_ptr, *mac_end;
22068 struct macro_source_file *current_file = 0;
22069 enum dwarf_macro_record_type macinfo_type;
22070 unsigned int offset_size = cu->header.offset_size;
22071 const gdb_byte *opcode_definitions[256];
22072 struct cleanup *cleanup;
22073 void **slot;
22074 struct dwarf2_section_info *section;
22075 const char *section_name;
22076
22077 if (cu->dwo_unit != NULL)
22078 {
22079 if (section_is_gnu)
22080 {
22081 section = &cu->dwo_unit->dwo_file->sections.macro;
22082 section_name = ".debug_macro.dwo";
22083 }
22084 else
22085 {
22086 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22087 section_name = ".debug_macinfo.dwo";
22088 }
22089 }
22090 else
22091 {
22092 if (section_is_gnu)
22093 {
22094 section = &dwarf2_per_objfile->macro;
22095 section_name = ".debug_macro";
22096 }
22097 else
22098 {
22099 section = &dwarf2_per_objfile->macinfo;
22100 section_name = ".debug_macinfo";
22101 }
22102 }
22103
22104 dwarf2_read_section (objfile, section);
22105 if (section->buffer == NULL)
22106 {
22107 complaint (&symfile_complaints, _("missing %s section"), section_name);
22108 return;
22109 }
22110 abfd = get_section_bfd_owner (section);
22111
22112 /* First pass: Find the name of the base filename.
22113 This filename is needed in order to process all macros whose definition
22114 (or undefinition) comes from the command line. These macros are defined
22115 before the first DW_MACINFO_start_file entry, and yet still need to be
22116 associated to the base file.
22117
22118 To determine the base file name, we scan the macro definitions until we
22119 reach the first DW_MACINFO_start_file entry. We then initialize
22120 CURRENT_FILE accordingly so that any macro definition found before the
22121 first DW_MACINFO_start_file can still be associated to the base file. */
22122
22123 mac_ptr = section->buffer + offset;
22124 mac_end = section->buffer + section->size;
22125
22126 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22127 &offset_size, section_is_gnu);
22128 if (mac_ptr == NULL)
22129 {
22130 /* We already issued a complaint. */
22131 return;
22132 }
22133
22134 do
22135 {
22136 /* Do we at least have room for a macinfo type byte? */
22137 if (mac_ptr >= mac_end)
22138 {
22139 /* Complaint is printed during the second pass as GDB will probably
22140 stop the first pass earlier upon finding
22141 DW_MACINFO_start_file. */
22142 break;
22143 }
22144
22145 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22146 mac_ptr++;
22147
22148 /* Note that we rely on the fact that the corresponding GNU and
22149 DWARF constants are the same. */
22150 switch (macinfo_type)
22151 {
22152 /* A zero macinfo type indicates the end of the macro
22153 information. */
22154 case 0:
22155 break;
22156
22157 case DW_MACRO_define:
22158 case DW_MACRO_undef:
22159 /* Only skip the data by MAC_PTR. */
22160 {
22161 unsigned int bytes_read;
22162
22163 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22164 mac_ptr += bytes_read;
22165 read_direct_string (abfd, mac_ptr, &bytes_read);
22166 mac_ptr += bytes_read;
22167 }
22168 break;
22169
22170 case DW_MACRO_start_file:
22171 {
22172 unsigned int bytes_read;
22173 int line, file;
22174
22175 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22176 mac_ptr += bytes_read;
22177 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22178 mac_ptr += bytes_read;
22179
22180 current_file = macro_start_file (file, line, current_file, lh);
22181 }
22182 break;
22183
22184 case DW_MACRO_end_file:
22185 /* No data to skip by MAC_PTR. */
22186 break;
22187
22188 case DW_MACRO_define_strp:
22189 case DW_MACRO_undef_strp:
22190 case DW_MACRO_define_sup:
22191 case DW_MACRO_undef_sup:
22192 {
22193 unsigned int bytes_read;
22194
22195 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22196 mac_ptr += bytes_read;
22197 mac_ptr += offset_size;
22198 }
22199 break;
22200
22201 case DW_MACRO_import:
22202 case DW_MACRO_import_sup:
22203 /* Note that, according to the spec, a transparent include
22204 chain cannot call DW_MACRO_start_file. So, we can just
22205 skip this opcode. */
22206 mac_ptr += offset_size;
22207 break;
22208
22209 case DW_MACINFO_vendor_ext:
22210 /* Only skip the data by MAC_PTR. */
22211 if (!section_is_gnu)
22212 {
22213 unsigned int bytes_read;
22214
22215 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22216 mac_ptr += bytes_read;
22217 read_direct_string (abfd, mac_ptr, &bytes_read);
22218 mac_ptr += bytes_read;
22219 }
22220 /* FALLTHROUGH */
22221
22222 default:
22223 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22224 mac_ptr, mac_end, abfd, offset_size,
22225 section);
22226 if (mac_ptr == NULL)
22227 return;
22228 break;
22229 }
22230 } while (macinfo_type != 0 && current_file == NULL);
22231
22232 /* Second pass: Process all entries.
22233
22234 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22235 command-line macro definitions/undefinitions. This flag is unset when we
22236 reach the first DW_MACINFO_start_file entry. */
22237
22238 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22239 htab_eq_pointer,
22240 NULL, xcalloc, xfree));
22241 mac_ptr = section->buffer + offset;
22242 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22243 *slot = (void *) mac_ptr;
22244 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22245 current_file, lh, section,
22246 section_is_gnu, 0, offset_size,
22247 include_hash.get ());
22248 }
22249
22250 /* Check if the attribute's form is a DW_FORM_block*
22251 if so return true else false. */
22252
22253 static int
22254 attr_form_is_block (const struct attribute *attr)
22255 {
22256 return (attr == NULL ? 0 :
22257 attr->form == DW_FORM_block1
22258 || attr->form == DW_FORM_block2
22259 || attr->form == DW_FORM_block4
22260 || attr->form == DW_FORM_block
22261 || attr->form == DW_FORM_exprloc);
22262 }
22263
22264 /* Return non-zero if ATTR's value is a section offset --- classes
22265 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22266 You may use DW_UNSND (attr) to retrieve such offsets.
22267
22268 Section 7.5.4, "Attribute Encodings", explains that no attribute
22269 may have a value that belongs to more than one of these classes; it
22270 would be ambiguous if we did, because we use the same forms for all
22271 of them. */
22272
22273 static int
22274 attr_form_is_section_offset (const struct attribute *attr)
22275 {
22276 return (attr->form == DW_FORM_data4
22277 || attr->form == DW_FORM_data8
22278 || attr->form == DW_FORM_sec_offset);
22279 }
22280
22281 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22282 zero otherwise. When this function returns true, you can apply
22283 dwarf2_get_attr_constant_value to it.
22284
22285 However, note that for some attributes you must check
22286 attr_form_is_section_offset before using this test. DW_FORM_data4
22287 and DW_FORM_data8 are members of both the constant class, and of
22288 the classes that contain offsets into other debug sections
22289 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22290 that, if an attribute's can be either a constant or one of the
22291 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22292 taken as section offsets, not constants.
22293
22294 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22295 cannot handle that. */
22296
22297 static int
22298 attr_form_is_constant (const struct attribute *attr)
22299 {
22300 switch (attr->form)
22301 {
22302 case DW_FORM_sdata:
22303 case DW_FORM_udata:
22304 case DW_FORM_data1:
22305 case DW_FORM_data2:
22306 case DW_FORM_data4:
22307 case DW_FORM_data8:
22308 return 1;
22309 default:
22310 return 0;
22311 }
22312 }
22313
22314
22315 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22316 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22317
22318 static int
22319 attr_form_is_ref (const struct attribute *attr)
22320 {
22321 switch (attr->form)
22322 {
22323 case DW_FORM_ref_addr:
22324 case DW_FORM_ref1:
22325 case DW_FORM_ref2:
22326 case DW_FORM_ref4:
22327 case DW_FORM_ref8:
22328 case DW_FORM_ref_udata:
22329 case DW_FORM_GNU_ref_alt:
22330 return 1;
22331 default:
22332 return 0;
22333 }
22334 }
22335
22336 /* Return the .debug_loc section to use for CU.
22337 For DWO files use .debug_loc.dwo. */
22338
22339 static struct dwarf2_section_info *
22340 cu_debug_loc_section (struct dwarf2_cu *cu)
22341 {
22342 if (cu->dwo_unit)
22343 {
22344 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22345
22346 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22347 }
22348 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22349 : &dwarf2_per_objfile->loc);
22350 }
22351
22352 /* A helper function that fills in a dwarf2_loclist_baton. */
22353
22354 static void
22355 fill_in_loclist_baton (struct dwarf2_cu *cu,
22356 struct dwarf2_loclist_baton *baton,
22357 const struct attribute *attr)
22358 {
22359 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22360
22361 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22362
22363 baton->per_cu = cu->per_cu;
22364 gdb_assert (baton->per_cu);
22365 /* We don't know how long the location list is, but make sure we
22366 don't run off the edge of the section. */
22367 baton->size = section->size - DW_UNSND (attr);
22368 baton->data = section->buffer + DW_UNSND (attr);
22369 baton->base_address = cu->base_address;
22370 baton->from_dwo = cu->dwo_unit != NULL;
22371 }
22372
22373 static void
22374 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22375 struct dwarf2_cu *cu, int is_block)
22376 {
22377 struct objfile *objfile = dwarf2_per_objfile->objfile;
22378 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22379
22380 if (attr_form_is_section_offset (attr)
22381 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22382 the section. If so, fall through to the complaint in the
22383 other branch. */
22384 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22385 {
22386 struct dwarf2_loclist_baton *baton;
22387
22388 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22389
22390 fill_in_loclist_baton (cu, baton, attr);
22391
22392 if (cu->base_known == 0)
22393 complaint (&symfile_complaints,
22394 _("Location list used without "
22395 "specifying the CU base address."));
22396
22397 SYMBOL_ACLASS_INDEX (sym) = (is_block
22398 ? dwarf2_loclist_block_index
22399 : dwarf2_loclist_index);
22400 SYMBOL_LOCATION_BATON (sym) = baton;
22401 }
22402 else
22403 {
22404 struct dwarf2_locexpr_baton *baton;
22405
22406 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22407 baton->per_cu = cu->per_cu;
22408 gdb_assert (baton->per_cu);
22409
22410 if (attr_form_is_block (attr))
22411 {
22412 /* Note that we're just copying the block's data pointer
22413 here, not the actual data. We're still pointing into the
22414 info_buffer for SYM's objfile; right now we never release
22415 that buffer, but when we do clean up properly this may
22416 need to change. */
22417 baton->size = DW_BLOCK (attr)->size;
22418 baton->data = DW_BLOCK (attr)->data;
22419 }
22420 else
22421 {
22422 dwarf2_invalid_attrib_class_complaint ("location description",
22423 SYMBOL_NATURAL_NAME (sym));
22424 baton->size = 0;
22425 }
22426
22427 SYMBOL_ACLASS_INDEX (sym) = (is_block
22428 ? dwarf2_locexpr_block_index
22429 : dwarf2_locexpr_index);
22430 SYMBOL_LOCATION_BATON (sym) = baton;
22431 }
22432 }
22433
22434 /* Return the OBJFILE associated with the compilation unit CU. If CU
22435 came from a separate debuginfo file, then the master objfile is
22436 returned. */
22437
22438 struct objfile *
22439 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22440 {
22441 struct objfile *objfile = per_cu->objfile;
22442
22443 /* Return the master objfile, so that we can report and look up the
22444 correct file containing this variable. */
22445 if (objfile->separate_debug_objfile_backlink)
22446 objfile = objfile->separate_debug_objfile_backlink;
22447
22448 return objfile;
22449 }
22450
22451 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22452 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22453 CU_HEADERP first. */
22454
22455 static const struct comp_unit_head *
22456 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22457 struct dwarf2_per_cu_data *per_cu)
22458 {
22459 const gdb_byte *info_ptr;
22460
22461 if (per_cu->cu)
22462 return &per_cu->cu->header;
22463
22464 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
22465
22466 memset (cu_headerp, 0, sizeof (*cu_headerp));
22467 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22468 rcuh_kind::COMPILE);
22469
22470 return cu_headerp;
22471 }
22472
22473 /* Return the address size given in the compilation unit header for CU. */
22474
22475 int
22476 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22477 {
22478 struct comp_unit_head cu_header_local;
22479 const struct comp_unit_head *cu_headerp;
22480
22481 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22482
22483 return cu_headerp->addr_size;
22484 }
22485
22486 /* Return the offset size given in the compilation unit header for CU. */
22487
22488 int
22489 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22490 {
22491 struct comp_unit_head cu_header_local;
22492 const struct comp_unit_head *cu_headerp;
22493
22494 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22495
22496 return cu_headerp->offset_size;
22497 }
22498
22499 /* See its dwarf2loc.h declaration. */
22500
22501 int
22502 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22503 {
22504 struct comp_unit_head cu_header_local;
22505 const struct comp_unit_head *cu_headerp;
22506
22507 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22508
22509 if (cu_headerp->version == 2)
22510 return cu_headerp->addr_size;
22511 else
22512 return cu_headerp->offset_size;
22513 }
22514
22515 /* Return the text offset of the CU. The returned offset comes from
22516 this CU's objfile. If this objfile came from a separate debuginfo
22517 file, then the offset may be different from the corresponding
22518 offset in the parent objfile. */
22519
22520 CORE_ADDR
22521 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22522 {
22523 struct objfile *objfile = per_cu->objfile;
22524
22525 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22526 }
22527
22528 /* Return DWARF version number of PER_CU. */
22529
22530 short
22531 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22532 {
22533 return per_cu->dwarf_version;
22534 }
22535
22536 /* Locate the .debug_info compilation unit from CU's objfile which contains
22537 the DIE at OFFSET. Raises an error on failure. */
22538
22539 static struct dwarf2_per_cu_data *
22540 dwarf2_find_containing_comp_unit (sect_offset offset,
22541 unsigned int offset_in_dwz,
22542 struct objfile *objfile)
22543 {
22544 struct dwarf2_per_cu_data *this_cu;
22545 int low, high;
22546 const sect_offset *cu_off;
22547
22548 low = 0;
22549 high = dwarf2_per_objfile->n_comp_units - 1;
22550 while (high > low)
22551 {
22552 struct dwarf2_per_cu_data *mid_cu;
22553 int mid = low + (high - low) / 2;
22554
22555 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22556 cu_off = &mid_cu->offset;
22557 if (mid_cu->is_dwz > offset_in_dwz
22558 || (mid_cu->is_dwz == offset_in_dwz
22559 && cu_off->sect_off >= offset.sect_off))
22560 high = mid;
22561 else
22562 low = mid + 1;
22563 }
22564 gdb_assert (low == high);
22565 this_cu = dwarf2_per_objfile->all_comp_units[low];
22566 cu_off = &this_cu->offset;
22567 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22568 {
22569 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22570 error (_("Dwarf Error: could not find partial DIE containing "
22571 "offset 0x%lx [in module %s]"),
22572 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22573
22574 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22575 <= offset.sect_off);
22576 return dwarf2_per_objfile->all_comp_units[low-1];
22577 }
22578 else
22579 {
22580 this_cu = dwarf2_per_objfile->all_comp_units[low];
22581 if (low == dwarf2_per_objfile->n_comp_units - 1
22582 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22583 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22584 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22585 return this_cu;
22586 }
22587 }
22588
22589 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22590
22591 static void
22592 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22593 {
22594 memset (cu, 0, sizeof (*cu));
22595 per_cu->cu = cu;
22596 cu->per_cu = per_cu;
22597 cu->objfile = per_cu->objfile;
22598 obstack_init (&cu->comp_unit_obstack);
22599 }
22600
22601 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22602
22603 static void
22604 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22605 enum language pretend_language)
22606 {
22607 struct attribute *attr;
22608
22609 /* Set the language we're debugging. */
22610 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22611 if (attr)
22612 set_cu_language (DW_UNSND (attr), cu);
22613 else
22614 {
22615 cu->language = pretend_language;
22616 cu->language_defn = language_def (cu->language);
22617 }
22618
22619 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22620 }
22621
22622 /* Release one cached compilation unit, CU. We unlink it from the tree
22623 of compilation units, but we don't remove it from the read_in_chain;
22624 the caller is responsible for that.
22625 NOTE: DATA is a void * because this function is also used as a
22626 cleanup routine. */
22627
22628 static void
22629 free_heap_comp_unit (void *data)
22630 {
22631 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22632
22633 gdb_assert (cu->per_cu != NULL);
22634 cu->per_cu->cu = NULL;
22635 cu->per_cu = NULL;
22636
22637 obstack_free (&cu->comp_unit_obstack, NULL);
22638
22639 xfree (cu);
22640 }
22641
22642 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22643 when we're finished with it. We can't free the pointer itself, but be
22644 sure to unlink it from the cache. Also release any associated storage. */
22645
22646 static void
22647 free_stack_comp_unit (void *data)
22648 {
22649 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22650
22651 gdb_assert (cu->per_cu != NULL);
22652 cu->per_cu->cu = NULL;
22653 cu->per_cu = NULL;
22654
22655 obstack_free (&cu->comp_unit_obstack, NULL);
22656 cu->partial_dies = NULL;
22657 }
22658
22659 /* Free all cached compilation units. */
22660
22661 static void
22662 free_cached_comp_units (void *data)
22663 {
22664 struct dwarf2_per_cu_data *per_cu, **last_chain;
22665
22666 per_cu = dwarf2_per_objfile->read_in_chain;
22667 last_chain = &dwarf2_per_objfile->read_in_chain;
22668 while (per_cu != NULL)
22669 {
22670 struct dwarf2_per_cu_data *next_cu;
22671
22672 next_cu = per_cu->cu->read_in_chain;
22673
22674 free_heap_comp_unit (per_cu->cu);
22675 *last_chain = next_cu;
22676
22677 per_cu = next_cu;
22678 }
22679 }
22680
22681 /* Increase the age counter on each cached compilation unit, and free
22682 any that are too old. */
22683
22684 static void
22685 age_cached_comp_units (void)
22686 {
22687 struct dwarf2_per_cu_data *per_cu, **last_chain;
22688
22689 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22690 per_cu = dwarf2_per_objfile->read_in_chain;
22691 while (per_cu != NULL)
22692 {
22693 per_cu->cu->last_used ++;
22694 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22695 dwarf2_mark (per_cu->cu);
22696 per_cu = per_cu->cu->read_in_chain;
22697 }
22698
22699 per_cu = dwarf2_per_objfile->read_in_chain;
22700 last_chain = &dwarf2_per_objfile->read_in_chain;
22701 while (per_cu != NULL)
22702 {
22703 struct dwarf2_per_cu_data *next_cu;
22704
22705 next_cu = per_cu->cu->read_in_chain;
22706
22707 if (!per_cu->cu->mark)
22708 {
22709 free_heap_comp_unit (per_cu->cu);
22710 *last_chain = next_cu;
22711 }
22712 else
22713 last_chain = &per_cu->cu->read_in_chain;
22714
22715 per_cu = next_cu;
22716 }
22717 }
22718
22719 /* Remove a single compilation unit from the cache. */
22720
22721 static void
22722 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22723 {
22724 struct dwarf2_per_cu_data *per_cu, **last_chain;
22725
22726 per_cu = dwarf2_per_objfile->read_in_chain;
22727 last_chain = &dwarf2_per_objfile->read_in_chain;
22728 while (per_cu != NULL)
22729 {
22730 struct dwarf2_per_cu_data *next_cu;
22731
22732 next_cu = per_cu->cu->read_in_chain;
22733
22734 if (per_cu == target_per_cu)
22735 {
22736 free_heap_comp_unit (per_cu->cu);
22737 per_cu->cu = NULL;
22738 *last_chain = next_cu;
22739 break;
22740 }
22741 else
22742 last_chain = &per_cu->cu->read_in_chain;
22743
22744 per_cu = next_cu;
22745 }
22746 }
22747
22748 /* Release all extra memory associated with OBJFILE. */
22749
22750 void
22751 dwarf2_free_objfile (struct objfile *objfile)
22752 {
22753 dwarf2_per_objfile
22754 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22755 dwarf2_objfile_data_key);
22756
22757 if (dwarf2_per_objfile == NULL)
22758 return;
22759
22760 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22761 free_cached_comp_units (NULL);
22762
22763 if (dwarf2_per_objfile->quick_file_names_table)
22764 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22765
22766 if (dwarf2_per_objfile->line_header_hash)
22767 htab_delete (dwarf2_per_objfile->line_header_hash);
22768
22769 /* Everything else should be on the objfile obstack. */
22770 }
22771
22772 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22773 We store these in a hash table separate from the DIEs, and preserve them
22774 when the DIEs are flushed out of cache.
22775
22776 The CU "per_cu" pointer is needed because offset alone is not enough to
22777 uniquely identify the type. A file may have multiple .debug_types sections,
22778 or the type may come from a DWO file. Furthermore, while it's more logical
22779 to use per_cu->section+offset, with Fission the section with the data is in
22780 the DWO file but we don't know that section at the point we need it.
22781 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22782 because we can enter the lookup routine, get_die_type_at_offset, from
22783 outside this file, and thus won't necessarily have PER_CU->cu.
22784 Fortunately, PER_CU is stable for the life of the objfile. */
22785
22786 struct dwarf2_per_cu_offset_and_type
22787 {
22788 const struct dwarf2_per_cu_data *per_cu;
22789 sect_offset offset;
22790 struct type *type;
22791 };
22792
22793 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22794
22795 static hashval_t
22796 per_cu_offset_and_type_hash (const void *item)
22797 {
22798 const struct dwarf2_per_cu_offset_and_type *ofs
22799 = (const struct dwarf2_per_cu_offset_and_type *) item;
22800
22801 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22802 }
22803
22804 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22805
22806 static int
22807 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22808 {
22809 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22810 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22811 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22812 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22813
22814 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22815 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22816 }
22817
22818 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22819 table if necessary. For convenience, return TYPE.
22820
22821 The DIEs reading must have careful ordering to:
22822 * Not cause infite loops trying to read in DIEs as a prerequisite for
22823 reading current DIE.
22824 * Not trying to dereference contents of still incompletely read in types
22825 while reading in other DIEs.
22826 * Enable referencing still incompletely read in types just by a pointer to
22827 the type without accessing its fields.
22828
22829 Therefore caller should follow these rules:
22830 * Try to fetch any prerequisite types we may need to build this DIE type
22831 before building the type and calling set_die_type.
22832 * After building type call set_die_type for current DIE as soon as
22833 possible before fetching more types to complete the current type.
22834 * Make the type as complete as possible before fetching more types. */
22835
22836 static struct type *
22837 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22838 {
22839 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22840 struct objfile *objfile = cu->objfile;
22841 struct attribute *attr;
22842 struct dynamic_prop prop;
22843
22844 /* For Ada types, make sure that the gnat-specific data is always
22845 initialized (if not already set). There are a few types where
22846 we should not be doing so, because the type-specific area is
22847 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22848 where the type-specific area is used to store the floatformat).
22849 But this is not a problem, because the gnat-specific information
22850 is actually not needed for these types. */
22851 if (need_gnat_info (cu)
22852 && TYPE_CODE (type) != TYPE_CODE_FUNC
22853 && TYPE_CODE (type) != TYPE_CODE_FLT
22854 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22855 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22856 && TYPE_CODE (type) != TYPE_CODE_METHOD
22857 && !HAVE_GNAT_AUX_INFO (type))
22858 INIT_GNAT_SPECIFIC (type);
22859
22860 /* Read DW_AT_allocated and set in type. */
22861 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22862 if (attr_form_is_block (attr))
22863 {
22864 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22865 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22866 }
22867 else if (attr != NULL)
22868 {
22869 complaint (&symfile_complaints,
22870 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22871 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22872 die->offset.sect_off);
22873 }
22874
22875 /* Read DW_AT_associated and set in type. */
22876 attr = dwarf2_attr (die, DW_AT_associated, cu);
22877 if (attr_form_is_block (attr))
22878 {
22879 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22880 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22881 }
22882 else if (attr != NULL)
22883 {
22884 complaint (&symfile_complaints,
22885 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22886 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22887 die->offset.sect_off);
22888 }
22889
22890 /* Read DW_AT_data_location and set in type. */
22891 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22892 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22893 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22894
22895 if (dwarf2_per_objfile->die_type_hash == NULL)
22896 {
22897 dwarf2_per_objfile->die_type_hash =
22898 htab_create_alloc_ex (127,
22899 per_cu_offset_and_type_hash,
22900 per_cu_offset_and_type_eq,
22901 NULL,
22902 &objfile->objfile_obstack,
22903 hashtab_obstack_allocate,
22904 dummy_obstack_deallocate);
22905 }
22906
22907 ofs.per_cu = cu->per_cu;
22908 ofs.offset = die->offset;
22909 ofs.type = type;
22910 slot = (struct dwarf2_per_cu_offset_and_type **)
22911 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22912 if (*slot)
22913 complaint (&symfile_complaints,
22914 _("A problem internal to GDB: DIE 0x%x has type already set"),
22915 die->offset.sect_off);
22916 *slot = XOBNEW (&objfile->objfile_obstack,
22917 struct dwarf2_per_cu_offset_and_type);
22918 **slot = ofs;
22919 return type;
22920 }
22921
22922 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22923 or return NULL if the die does not have a saved type. */
22924
22925 static struct type *
22926 get_die_type_at_offset (sect_offset offset,
22927 struct dwarf2_per_cu_data *per_cu)
22928 {
22929 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22930
22931 if (dwarf2_per_objfile->die_type_hash == NULL)
22932 return NULL;
22933
22934 ofs.per_cu = per_cu;
22935 ofs.offset = offset;
22936 slot = ((struct dwarf2_per_cu_offset_and_type *)
22937 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22938 if (slot)
22939 return slot->type;
22940 else
22941 return NULL;
22942 }
22943
22944 /* Look up the type for DIE in CU in die_type_hash,
22945 or return NULL if DIE does not have a saved type. */
22946
22947 static struct type *
22948 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22949 {
22950 return get_die_type_at_offset (die->offset, cu->per_cu);
22951 }
22952
22953 /* Add a dependence relationship from CU to REF_PER_CU. */
22954
22955 static void
22956 dwarf2_add_dependence (struct dwarf2_cu *cu,
22957 struct dwarf2_per_cu_data *ref_per_cu)
22958 {
22959 void **slot;
22960
22961 if (cu->dependencies == NULL)
22962 cu->dependencies
22963 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22964 NULL, &cu->comp_unit_obstack,
22965 hashtab_obstack_allocate,
22966 dummy_obstack_deallocate);
22967
22968 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22969 if (*slot == NULL)
22970 *slot = ref_per_cu;
22971 }
22972
22973 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22974 Set the mark field in every compilation unit in the
22975 cache that we must keep because we are keeping CU. */
22976
22977 static int
22978 dwarf2_mark_helper (void **slot, void *data)
22979 {
22980 struct dwarf2_per_cu_data *per_cu;
22981
22982 per_cu = (struct dwarf2_per_cu_data *) *slot;
22983
22984 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22985 reading of the chain. As such dependencies remain valid it is not much
22986 useful to track and undo them during QUIT cleanups. */
22987 if (per_cu->cu == NULL)
22988 return 1;
22989
22990 if (per_cu->cu->mark)
22991 return 1;
22992 per_cu->cu->mark = 1;
22993
22994 if (per_cu->cu->dependencies != NULL)
22995 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22996
22997 return 1;
22998 }
22999
23000 /* Set the mark field in CU and in every other compilation unit in the
23001 cache that we must keep because we are keeping CU. */
23002
23003 static void
23004 dwarf2_mark (struct dwarf2_cu *cu)
23005 {
23006 if (cu->mark)
23007 return;
23008 cu->mark = 1;
23009 if (cu->dependencies != NULL)
23010 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23011 }
23012
23013 static void
23014 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23015 {
23016 while (per_cu)
23017 {
23018 per_cu->cu->mark = 0;
23019 per_cu = per_cu->cu->read_in_chain;
23020 }
23021 }
23022
23023 /* Trivial hash function for partial_die_info: the hash value of a DIE
23024 is its offset in .debug_info for this objfile. */
23025
23026 static hashval_t
23027 partial_die_hash (const void *item)
23028 {
23029 const struct partial_die_info *part_die
23030 = (const struct partial_die_info *) item;
23031
23032 return part_die->offset.sect_off;
23033 }
23034
23035 /* Trivial comparison function for partial_die_info structures: two DIEs
23036 are equal if they have the same offset. */
23037
23038 static int
23039 partial_die_eq (const void *item_lhs, const void *item_rhs)
23040 {
23041 const struct partial_die_info *part_die_lhs
23042 = (const struct partial_die_info *) item_lhs;
23043 const struct partial_die_info *part_die_rhs
23044 = (const struct partial_die_info *) item_rhs;
23045
23046 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
23047 }
23048
23049 static struct cmd_list_element *set_dwarf_cmdlist;
23050 static struct cmd_list_element *show_dwarf_cmdlist;
23051
23052 static void
23053 set_dwarf_cmd (char *args, int from_tty)
23054 {
23055 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23056 gdb_stdout);
23057 }
23058
23059 static void
23060 show_dwarf_cmd (char *args, int from_tty)
23061 {
23062 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23063 }
23064
23065 /* Free data associated with OBJFILE, if necessary. */
23066
23067 static void
23068 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23069 {
23070 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23071 int ix;
23072
23073 /* Make sure we don't accidentally use dwarf2_per_objfile while
23074 cleaning up. */
23075 dwarf2_per_objfile = NULL;
23076
23077 for (ix = 0; ix < data->n_comp_units; ++ix)
23078 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23079
23080 for (ix = 0; ix < data->n_type_units; ++ix)
23081 VEC_free (dwarf2_per_cu_ptr,
23082 data->all_type_units[ix]->per_cu.imported_symtabs);
23083 xfree (data->all_type_units);
23084
23085 VEC_free (dwarf2_section_info_def, data->types);
23086
23087 if (data->dwo_files)
23088 free_dwo_files (data->dwo_files, objfile);
23089 if (data->dwp_file)
23090 gdb_bfd_unref (data->dwp_file->dbfd);
23091
23092 if (data->dwz_file && data->dwz_file->dwz_bfd)
23093 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23094 }
23095
23096 \f
23097 /* The "save gdb-index" command. */
23098
23099 /* The contents of the hash table we create when building the string
23100 table. */
23101 struct strtab_entry
23102 {
23103 offset_type offset;
23104 const char *str;
23105 };
23106
23107 /* Hash function for a strtab_entry.
23108
23109 Function is used only during write_hash_table so no index format backward
23110 compatibility is needed. */
23111
23112 static hashval_t
23113 hash_strtab_entry (const void *e)
23114 {
23115 const struct strtab_entry *entry = (const struct strtab_entry *) e;
23116 return mapped_index_string_hash (INT_MAX, entry->str);
23117 }
23118
23119 /* Equality function for a strtab_entry. */
23120
23121 static int
23122 eq_strtab_entry (const void *a, const void *b)
23123 {
23124 const struct strtab_entry *ea = (const struct strtab_entry *) a;
23125 const struct strtab_entry *eb = (const struct strtab_entry *) b;
23126 return !strcmp (ea->str, eb->str);
23127 }
23128
23129 /* Create a strtab_entry hash table. */
23130
23131 static htab_t
23132 create_strtab (void)
23133 {
23134 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
23135 xfree, xcalloc, xfree);
23136 }
23137
23138 /* Add a string to the constant pool. Return the string's offset in
23139 host order. */
23140
23141 static offset_type
23142 add_string (htab_t table, struct obstack *cpool, const char *str)
23143 {
23144 void **slot;
23145 struct strtab_entry entry;
23146 struct strtab_entry *result;
23147
23148 entry.str = str;
23149 slot = htab_find_slot (table, &entry, INSERT);
23150 if (*slot)
23151 result = (struct strtab_entry *) *slot;
23152 else
23153 {
23154 result = XNEW (struct strtab_entry);
23155 result->offset = obstack_object_size (cpool);
23156 result->str = str;
23157 obstack_grow_str0 (cpool, str);
23158 *slot = result;
23159 }
23160 return result->offset;
23161 }
23162
23163 /* An entry in the symbol table. */
23164 struct symtab_index_entry
23165 {
23166 /* The name of the symbol. */
23167 const char *name;
23168 /* The offset of the name in the constant pool. */
23169 offset_type index_offset;
23170 /* A sorted vector of the indices of all the CUs that hold an object
23171 of this name. */
23172 VEC (offset_type) *cu_indices;
23173 };
23174
23175 /* The symbol table. This is a power-of-2-sized hash table. */
23176 struct mapped_symtab
23177 {
23178 offset_type n_elements;
23179 offset_type size;
23180 struct symtab_index_entry **data;
23181 };
23182
23183 /* Hash function for a symtab_index_entry. */
23184
23185 static hashval_t
23186 hash_symtab_entry (const void *e)
23187 {
23188 const struct symtab_index_entry *entry
23189 = (const struct symtab_index_entry *) e;
23190 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
23191 sizeof (offset_type) * VEC_length (offset_type,
23192 entry->cu_indices),
23193 0);
23194 }
23195
23196 /* Equality function for a symtab_index_entry. */
23197
23198 static int
23199 eq_symtab_entry (const void *a, const void *b)
23200 {
23201 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
23202 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
23203 int len = VEC_length (offset_type, ea->cu_indices);
23204 if (len != VEC_length (offset_type, eb->cu_indices))
23205 return 0;
23206 return !memcmp (VEC_address (offset_type, ea->cu_indices),
23207 VEC_address (offset_type, eb->cu_indices),
23208 sizeof (offset_type) * len);
23209 }
23210
23211 /* Destroy a symtab_index_entry. */
23212
23213 static void
23214 delete_symtab_entry (void *p)
23215 {
23216 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
23217 VEC_free (offset_type, entry->cu_indices);
23218 xfree (entry);
23219 }
23220
23221 /* Create a hash table holding symtab_index_entry objects. */
23222
23223 static htab_t
23224 create_symbol_hash_table (void)
23225 {
23226 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
23227 delete_symtab_entry, xcalloc, xfree);
23228 }
23229
23230 /* Create a new mapped symtab object. */
23231
23232 static struct mapped_symtab *
23233 create_mapped_symtab (void)
23234 {
23235 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
23236 symtab->n_elements = 0;
23237 symtab->size = 1024;
23238 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23239 return symtab;
23240 }
23241
23242 /* Destroy a mapped_symtab. */
23243
23244 static void
23245 cleanup_mapped_symtab (void *p)
23246 {
23247 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
23248 /* The contents of the array are freed when the other hash table is
23249 destroyed. */
23250 xfree (symtab->data);
23251 xfree (symtab);
23252 }
23253
23254 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
23255 the slot.
23256
23257 Function is used only during write_hash_table so no index format backward
23258 compatibility is needed. */
23259
23260 static struct symtab_index_entry **
23261 find_slot (struct mapped_symtab *symtab, const char *name)
23262 {
23263 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23264
23265 index = hash & (symtab->size - 1);
23266 step = ((hash * 17) & (symtab->size - 1)) | 1;
23267
23268 for (;;)
23269 {
23270 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
23271 return &symtab->data[index];
23272 index = (index + step) & (symtab->size - 1);
23273 }
23274 }
23275
23276 /* Expand SYMTAB's hash table. */
23277
23278 static void
23279 hash_expand (struct mapped_symtab *symtab)
23280 {
23281 offset_type old_size = symtab->size;
23282 offset_type i;
23283 struct symtab_index_entry **old_entries = symtab->data;
23284
23285 symtab->size *= 2;
23286 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23287
23288 for (i = 0; i < old_size; ++i)
23289 {
23290 if (old_entries[i])
23291 {
23292 struct symtab_index_entry **slot = find_slot (symtab,
23293 old_entries[i]->name);
23294 *slot = old_entries[i];
23295 }
23296 }
23297
23298 xfree (old_entries);
23299 }
23300
23301 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23302 CU_INDEX is the index of the CU in which the symbol appears.
23303 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23304
23305 static void
23306 add_index_entry (struct mapped_symtab *symtab, const char *name,
23307 int is_static, gdb_index_symbol_kind kind,
23308 offset_type cu_index)
23309 {
23310 struct symtab_index_entry **slot;
23311 offset_type cu_index_and_attrs;
23312
23313 ++symtab->n_elements;
23314 if (4 * symtab->n_elements / 3 >= symtab->size)
23315 hash_expand (symtab);
23316
23317 slot = find_slot (symtab, name);
23318 if (!*slot)
23319 {
23320 *slot = XNEW (struct symtab_index_entry);
23321 (*slot)->name = name;
23322 /* index_offset is set later. */
23323 (*slot)->cu_indices = NULL;
23324 }
23325
23326 cu_index_and_attrs = 0;
23327 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23328 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23329 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23330
23331 /* We don't want to record an index value twice as we want to avoid the
23332 duplication.
23333 We process all global symbols and then all static symbols
23334 (which would allow us to avoid the duplication by only having to check
23335 the last entry pushed), but a symbol could have multiple kinds in one CU.
23336 To keep things simple we don't worry about the duplication here and
23337 sort and uniqufy the list after we've processed all symbols. */
23338 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
23339 }
23340
23341 /* qsort helper routine for uniquify_cu_indices. */
23342
23343 static int
23344 offset_type_compare (const void *ap, const void *bp)
23345 {
23346 offset_type a = *(offset_type *) ap;
23347 offset_type b = *(offset_type *) bp;
23348
23349 return (a > b) - (b > a);
23350 }
23351
23352 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23353
23354 static void
23355 uniquify_cu_indices (struct mapped_symtab *symtab)
23356 {
23357 int i;
23358
23359 for (i = 0; i < symtab->size; ++i)
23360 {
23361 struct symtab_index_entry *entry = symtab->data[i];
23362
23363 if (entry
23364 && entry->cu_indices != NULL)
23365 {
23366 unsigned int next_to_insert, next_to_check;
23367 offset_type last_value;
23368
23369 qsort (VEC_address (offset_type, entry->cu_indices),
23370 VEC_length (offset_type, entry->cu_indices),
23371 sizeof (offset_type), offset_type_compare);
23372
23373 last_value = VEC_index (offset_type, entry->cu_indices, 0);
23374 next_to_insert = 1;
23375 for (next_to_check = 1;
23376 next_to_check < VEC_length (offset_type, entry->cu_indices);
23377 ++next_to_check)
23378 {
23379 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
23380 != last_value)
23381 {
23382 last_value = VEC_index (offset_type, entry->cu_indices,
23383 next_to_check);
23384 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
23385 last_value);
23386 ++next_to_insert;
23387 }
23388 }
23389 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
23390 }
23391 }
23392 }
23393
23394 /* Add a vector of indices to the constant pool. */
23395
23396 static offset_type
23397 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
23398 struct symtab_index_entry *entry)
23399 {
23400 void **slot;
23401
23402 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
23403 if (!*slot)
23404 {
23405 offset_type len = VEC_length (offset_type, entry->cu_indices);
23406 offset_type val = MAYBE_SWAP (len);
23407 offset_type iter;
23408 int i;
23409
23410 *slot = entry;
23411 entry->index_offset = obstack_object_size (cpool);
23412
23413 obstack_grow (cpool, &val, sizeof (val));
23414 for (i = 0;
23415 VEC_iterate (offset_type, entry->cu_indices, i, iter);
23416 ++i)
23417 {
23418 val = MAYBE_SWAP (iter);
23419 obstack_grow (cpool, &val, sizeof (val));
23420 }
23421 }
23422 else
23423 {
23424 struct symtab_index_entry *old_entry
23425 = (struct symtab_index_entry *) *slot;
23426 entry->index_offset = old_entry->index_offset;
23427 entry = old_entry;
23428 }
23429 return entry->index_offset;
23430 }
23431
23432 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
23433 constant pool entries going into the obstack CPOOL. */
23434
23435 static void
23436 write_hash_table (struct mapped_symtab *symtab,
23437 struct obstack *output, struct obstack *cpool)
23438 {
23439 offset_type i;
23440 htab_t symbol_hash_table;
23441 htab_t str_table;
23442
23443 symbol_hash_table = create_symbol_hash_table ();
23444 str_table = create_strtab ();
23445
23446 /* We add all the index vectors to the constant pool first, to
23447 ensure alignment is ok. */
23448 for (i = 0; i < symtab->size; ++i)
23449 {
23450 if (symtab->data[i])
23451 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
23452 }
23453
23454 /* Now write out the hash table. */
23455 for (i = 0; i < symtab->size; ++i)
23456 {
23457 offset_type str_off, vec_off;
23458
23459 if (symtab->data[i])
23460 {
23461 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23462 vec_off = symtab->data[i]->index_offset;
23463 }
23464 else
23465 {
23466 /* While 0 is a valid constant pool index, it is not valid
23467 to have 0 for both offsets. */
23468 str_off = 0;
23469 vec_off = 0;
23470 }
23471
23472 str_off = MAYBE_SWAP (str_off);
23473 vec_off = MAYBE_SWAP (vec_off);
23474
23475 obstack_grow (output, &str_off, sizeof (str_off));
23476 obstack_grow (output, &vec_off, sizeof (vec_off));
23477 }
23478
23479 htab_delete (str_table);
23480 htab_delete (symbol_hash_table);
23481 }
23482
23483 /* Struct to map psymtab to CU index in the index file. */
23484 struct psymtab_cu_index_map
23485 {
23486 struct partial_symtab *psymtab;
23487 unsigned int cu_index;
23488 };
23489
23490 static hashval_t
23491 hash_psymtab_cu_index (const void *item)
23492 {
23493 const struct psymtab_cu_index_map *map
23494 = (const struct psymtab_cu_index_map *) item;
23495
23496 return htab_hash_pointer (map->psymtab);
23497 }
23498
23499 static int
23500 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23501 {
23502 const struct psymtab_cu_index_map *lhs
23503 = (const struct psymtab_cu_index_map *) item_lhs;
23504 const struct psymtab_cu_index_map *rhs
23505 = (const struct psymtab_cu_index_map *) item_rhs;
23506
23507 return lhs->psymtab == rhs->psymtab;
23508 }
23509
23510 /* Helper struct for building the address table. */
23511 struct addrmap_index_data
23512 {
23513 struct objfile *objfile;
23514 struct obstack *addr_obstack;
23515 htab_t cu_index_htab;
23516
23517 /* Non-zero if the previous_* fields are valid.
23518 We can't write an entry until we see the next entry (since it is only then
23519 that we know the end of the entry). */
23520 int previous_valid;
23521 /* Index of the CU in the table of all CUs in the index file. */
23522 unsigned int previous_cu_index;
23523 /* Start address of the CU. */
23524 CORE_ADDR previous_cu_start;
23525 };
23526
23527 /* Write an address entry to OBSTACK. */
23528
23529 static void
23530 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23531 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23532 {
23533 offset_type cu_index_to_write;
23534 gdb_byte addr[8];
23535 CORE_ADDR baseaddr;
23536
23537 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23538
23539 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23540 obstack_grow (obstack, addr, 8);
23541 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23542 obstack_grow (obstack, addr, 8);
23543 cu_index_to_write = MAYBE_SWAP (cu_index);
23544 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23545 }
23546
23547 /* Worker function for traversing an addrmap to build the address table. */
23548
23549 static int
23550 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23551 {
23552 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23553 struct partial_symtab *pst = (struct partial_symtab *) obj;
23554
23555 if (data->previous_valid)
23556 add_address_entry (data->objfile, data->addr_obstack,
23557 data->previous_cu_start, start_addr,
23558 data->previous_cu_index);
23559
23560 data->previous_cu_start = start_addr;
23561 if (pst != NULL)
23562 {
23563 struct psymtab_cu_index_map find_map, *map;
23564 find_map.psymtab = pst;
23565 map = ((struct psymtab_cu_index_map *)
23566 htab_find (data->cu_index_htab, &find_map));
23567 gdb_assert (map != NULL);
23568 data->previous_cu_index = map->cu_index;
23569 data->previous_valid = 1;
23570 }
23571 else
23572 data->previous_valid = 0;
23573
23574 return 0;
23575 }
23576
23577 /* Write OBJFILE's address map to OBSTACK.
23578 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23579 in the index file. */
23580
23581 static void
23582 write_address_map (struct objfile *objfile, struct obstack *obstack,
23583 htab_t cu_index_htab)
23584 {
23585 struct addrmap_index_data addrmap_index_data;
23586
23587 /* When writing the address table, we have to cope with the fact that
23588 the addrmap iterator only provides the start of a region; we have to
23589 wait until the next invocation to get the start of the next region. */
23590
23591 addrmap_index_data.objfile = objfile;
23592 addrmap_index_data.addr_obstack = obstack;
23593 addrmap_index_data.cu_index_htab = cu_index_htab;
23594 addrmap_index_data.previous_valid = 0;
23595
23596 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23597 &addrmap_index_data);
23598
23599 /* It's highly unlikely the last entry (end address = 0xff...ff)
23600 is valid, but we should still handle it.
23601 The end address is recorded as the start of the next region, but that
23602 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23603 anyway. */
23604 if (addrmap_index_data.previous_valid)
23605 add_address_entry (objfile, obstack,
23606 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23607 addrmap_index_data.previous_cu_index);
23608 }
23609
23610 /* Return the symbol kind of PSYM. */
23611
23612 static gdb_index_symbol_kind
23613 symbol_kind (struct partial_symbol *psym)
23614 {
23615 domain_enum domain = PSYMBOL_DOMAIN (psym);
23616 enum address_class aclass = PSYMBOL_CLASS (psym);
23617
23618 switch (domain)
23619 {
23620 case VAR_DOMAIN:
23621 switch (aclass)
23622 {
23623 case LOC_BLOCK:
23624 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23625 case LOC_TYPEDEF:
23626 return GDB_INDEX_SYMBOL_KIND_TYPE;
23627 case LOC_COMPUTED:
23628 case LOC_CONST_BYTES:
23629 case LOC_OPTIMIZED_OUT:
23630 case LOC_STATIC:
23631 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23632 case LOC_CONST:
23633 /* Note: It's currently impossible to recognize psyms as enum values
23634 short of reading the type info. For now punt. */
23635 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23636 default:
23637 /* There are other LOC_FOO values that one might want to classify
23638 as variables, but dwarf2read.c doesn't currently use them. */
23639 return GDB_INDEX_SYMBOL_KIND_OTHER;
23640 }
23641 case STRUCT_DOMAIN:
23642 return GDB_INDEX_SYMBOL_KIND_TYPE;
23643 default:
23644 return GDB_INDEX_SYMBOL_KIND_OTHER;
23645 }
23646 }
23647
23648 /* Add a list of partial symbols to SYMTAB. */
23649
23650 static void
23651 write_psymbols (struct mapped_symtab *symtab,
23652 htab_t psyms_seen,
23653 struct partial_symbol **psymp,
23654 int count,
23655 offset_type cu_index,
23656 int is_static)
23657 {
23658 for (; count-- > 0; ++psymp)
23659 {
23660 struct partial_symbol *psym = *psymp;
23661 void **slot;
23662
23663 if (SYMBOL_LANGUAGE (psym) == language_ada)
23664 error (_("Ada is not currently supported by the index"));
23665
23666 /* Only add a given psymbol once. */
23667 slot = htab_find_slot (psyms_seen, psym, INSERT);
23668 if (!*slot)
23669 {
23670 gdb_index_symbol_kind kind = symbol_kind (psym);
23671
23672 *slot = psym;
23673 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23674 is_static, kind, cu_index);
23675 }
23676 }
23677 }
23678
23679 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23680 exception if there is an error. */
23681
23682 static void
23683 write_obstack (FILE *file, struct obstack *obstack)
23684 {
23685 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23686 file)
23687 != obstack_object_size (obstack))
23688 error (_("couldn't data write to file"));
23689 }
23690
23691 /* A helper struct used when iterating over debug_types. */
23692 struct signatured_type_index_data
23693 {
23694 struct objfile *objfile;
23695 struct mapped_symtab *symtab;
23696 struct obstack *types_list;
23697 htab_t psyms_seen;
23698 int cu_index;
23699 };
23700
23701 /* A helper function that writes a single signatured_type to an
23702 obstack. */
23703
23704 static int
23705 write_one_signatured_type (void **slot, void *d)
23706 {
23707 struct signatured_type_index_data *info
23708 = (struct signatured_type_index_data *) d;
23709 struct signatured_type *entry = (struct signatured_type *) *slot;
23710 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23711 gdb_byte val[8];
23712
23713 write_psymbols (info->symtab,
23714 info->psyms_seen,
23715 info->objfile->global_psymbols.list
23716 + psymtab->globals_offset,
23717 psymtab->n_global_syms, info->cu_index,
23718 0);
23719 write_psymbols (info->symtab,
23720 info->psyms_seen,
23721 info->objfile->static_psymbols.list
23722 + psymtab->statics_offset,
23723 psymtab->n_static_syms, info->cu_index,
23724 1);
23725
23726 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23727 entry->per_cu.offset.sect_off);
23728 obstack_grow (info->types_list, val, 8);
23729 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23730 entry->type_offset_in_tu.cu_off);
23731 obstack_grow (info->types_list, val, 8);
23732 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23733 obstack_grow (info->types_list, val, 8);
23734
23735 ++info->cu_index;
23736
23737 return 1;
23738 }
23739
23740 /* Recurse into all "included" dependencies and write their symbols as
23741 if they appeared in this psymtab. */
23742
23743 static void
23744 recursively_write_psymbols (struct objfile *objfile,
23745 struct partial_symtab *psymtab,
23746 struct mapped_symtab *symtab,
23747 htab_t psyms_seen,
23748 offset_type cu_index)
23749 {
23750 int i;
23751
23752 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23753 if (psymtab->dependencies[i]->user != NULL)
23754 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23755 symtab, psyms_seen, cu_index);
23756
23757 write_psymbols (symtab,
23758 psyms_seen,
23759 objfile->global_psymbols.list + psymtab->globals_offset,
23760 psymtab->n_global_syms, cu_index,
23761 0);
23762 write_psymbols (symtab,
23763 psyms_seen,
23764 objfile->static_psymbols.list + psymtab->statics_offset,
23765 psymtab->n_static_syms, cu_index,
23766 1);
23767 }
23768
23769 /* Create an index file for OBJFILE in the directory DIR. */
23770
23771 static void
23772 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23773 {
23774 struct cleanup *cleanup;
23775 char *filename;
23776 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23777 struct obstack cu_list, types_cu_list;
23778 int i;
23779 FILE *out_file;
23780 struct mapped_symtab *symtab;
23781 offset_type val, size_of_contents, total_len;
23782 struct stat st;
23783 struct psymtab_cu_index_map *psymtab_cu_index_map;
23784
23785 if (dwarf2_per_objfile->using_index)
23786 error (_("Cannot use an index to create the index"));
23787
23788 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23789 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23790
23791 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23792 return;
23793
23794 if (stat (objfile_name (objfile), &st) < 0)
23795 perror_with_name (objfile_name (objfile));
23796
23797 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23798 INDEX_SUFFIX, (char *) NULL);
23799 cleanup = make_cleanup (xfree, filename);
23800
23801 out_file = gdb_fopen_cloexec (filename, "wb");
23802 if (!out_file)
23803 error (_("Can't open `%s' for writing"), filename);
23804
23805 gdb::unlinker unlink_file (filename);
23806
23807 symtab = create_mapped_symtab ();
23808 make_cleanup (cleanup_mapped_symtab, symtab);
23809
23810 obstack_init (&addr_obstack);
23811 make_cleanup_obstack_free (&addr_obstack);
23812
23813 obstack_init (&cu_list);
23814 make_cleanup_obstack_free (&cu_list);
23815
23816 obstack_init (&types_cu_list);
23817 make_cleanup_obstack_free (&types_cu_list);
23818
23819 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23820 htab_eq_pointer,
23821 NULL, xcalloc, xfree));
23822
23823 /* While we're scanning CU's create a table that maps a psymtab pointer
23824 (which is what addrmap records) to its index (which is what is recorded
23825 in the index file). This will later be needed to write the address
23826 table. */
23827 htab_up cu_index_htab (htab_create_alloc (100,
23828 hash_psymtab_cu_index,
23829 eq_psymtab_cu_index,
23830 NULL, xcalloc, xfree));
23831 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23832 dwarf2_per_objfile->n_comp_units);
23833 make_cleanup (xfree, psymtab_cu_index_map);
23834
23835 /* The CU list is already sorted, so we don't need to do additional
23836 work here. Also, the debug_types entries do not appear in
23837 all_comp_units, but only in their own hash table. */
23838 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23839 {
23840 struct dwarf2_per_cu_data *per_cu
23841 = dwarf2_per_objfile->all_comp_units[i];
23842 struct partial_symtab *psymtab = per_cu->v.psymtab;
23843 gdb_byte val[8];
23844 struct psymtab_cu_index_map *map;
23845 void **slot;
23846
23847 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23848 It may be referenced from a local scope but in such case it does not
23849 need to be present in .gdb_index. */
23850 if (psymtab == NULL)
23851 continue;
23852
23853 if (psymtab->user == NULL)
23854 recursively_write_psymbols (objfile, psymtab, symtab,
23855 psyms_seen.get (), i);
23856
23857 map = &psymtab_cu_index_map[i];
23858 map->psymtab = psymtab;
23859 map->cu_index = i;
23860 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23861 gdb_assert (slot != NULL);
23862 gdb_assert (*slot == NULL);
23863 *slot = map;
23864
23865 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23866 per_cu->offset.sect_off);
23867 obstack_grow (&cu_list, val, 8);
23868 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23869 obstack_grow (&cu_list, val, 8);
23870 }
23871
23872 /* Dump the address map. */
23873 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23874
23875 /* Write out the .debug_type entries, if any. */
23876 if (dwarf2_per_objfile->signatured_types)
23877 {
23878 struct signatured_type_index_data sig_data;
23879
23880 sig_data.objfile = objfile;
23881 sig_data.symtab = symtab;
23882 sig_data.types_list = &types_cu_list;
23883 sig_data.psyms_seen = psyms_seen.get ();
23884 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23885 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23886 write_one_signatured_type, &sig_data);
23887 }
23888
23889 /* Now that we've processed all symbols we can shrink their cu_indices
23890 lists. */
23891 uniquify_cu_indices (symtab);
23892
23893 obstack_init (&constant_pool);
23894 make_cleanup_obstack_free (&constant_pool);
23895 obstack_init (&symtab_obstack);
23896 make_cleanup_obstack_free (&symtab_obstack);
23897 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23898
23899 obstack_init (&contents);
23900 make_cleanup_obstack_free (&contents);
23901 size_of_contents = 6 * sizeof (offset_type);
23902 total_len = size_of_contents;
23903
23904 /* The version number. */
23905 val = MAYBE_SWAP (8);
23906 obstack_grow (&contents, &val, sizeof (val));
23907
23908 /* The offset of the CU list from the start of the file. */
23909 val = MAYBE_SWAP (total_len);
23910 obstack_grow (&contents, &val, sizeof (val));
23911 total_len += obstack_object_size (&cu_list);
23912
23913 /* The offset of the types CU list from the start of the file. */
23914 val = MAYBE_SWAP (total_len);
23915 obstack_grow (&contents, &val, sizeof (val));
23916 total_len += obstack_object_size (&types_cu_list);
23917
23918 /* The offset of the address table from the start of the file. */
23919 val = MAYBE_SWAP (total_len);
23920 obstack_grow (&contents, &val, sizeof (val));
23921 total_len += obstack_object_size (&addr_obstack);
23922
23923 /* The offset of the symbol table from the start of the file. */
23924 val = MAYBE_SWAP (total_len);
23925 obstack_grow (&contents, &val, sizeof (val));
23926 total_len += obstack_object_size (&symtab_obstack);
23927
23928 /* The offset of the constant pool from the start of the file. */
23929 val = MAYBE_SWAP (total_len);
23930 obstack_grow (&contents, &val, sizeof (val));
23931 total_len += obstack_object_size (&constant_pool);
23932
23933 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23934
23935 write_obstack (out_file, &contents);
23936 write_obstack (out_file, &cu_list);
23937 write_obstack (out_file, &types_cu_list);
23938 write_obstack (out_file, &addr_obstack);
23939 write_obstack (out_file, &symtab_obstack);
23940 write_obstack (out_file, &constant_pool);
23941
23942 fclose (out_file);
23943
23944 /* We want to keep the file. */
23945 unlink_file.keep ();
23946
23947 do_cleanups (cleanup);
23948 }
23949
23950 /* Implementation of the `save gdb-index' command.
23951
23952 Note that the file format used by this command is documented in the
23953 GDB manual. Any changes here must be documented there. */
23954
23955 static void
23956 save_gdb_index_command (char *arg, int from_tty)
23957 {
23958 struct objfile *objfile;
23959
23960 if (!arg || !*arg)
23961 error (_("usage: save gdb-index DIRECTORY"));
23962
23963 ALL_OBJFILES (objfile)
23964 {
23965 struct stat st;
23966
23967 /* If the objfile does not correspond to an actual file, skip it. */
23968 if (stat (objfile_name (objfile), &st) < 0)
23969 continue;
23970
23971 dwarf2_per_objfile
23972 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23973 dwarf2_objfile_data_key);
23974 if (dwarf2_per_objfile)
23975 {
23976
23977 TRY
23978 {
23979 write_psymtabs_to_index (objfile, arg);
23980 }
23981 CATCH (except, RETURN_MASK_ERROR)
23982 {
23983 exception_fprintf (gdb_stderr, except,
23984 _("Error while writing index for `%s': "),
23985 objfile_name (objfile));
23986 }
23987 END_CATCH
23988 }
23989 }
23990 }
23991
23992 \f
23993
23994 int dwarf_always_disassemble;
23995
23996 static void
23997 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23998 struct cmd_list_element *c, const char *value)
23999 {
24000 fprintf_filtered (file,
24001 _("Whether to always disassemble "
24002 "DWARF expressions is %s.\n"),
24003 value);
24004 }
24005
24006 static void
24007 show_check_physname (struct ui_file *file, int from_tty,
24008 struct cmd_list_element *c, const char *value)
24009 {
24010 fprintf_filtered (file,
24011 _("Whether to check \"physname\" is %s.\n"),
24012 value);
24013 }
24014
24015 void _initialize_dwarf2_read (void);
24016
24017 void
24018 _initialize_dwarf2_read (void)
24019 {
24020 struct cmd_list_element *c;
24021
24022 dwarf2_objfile_data_key
24023 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24024
24025 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24026 Set DWARF specific variables.\n\
24027 Configure DWARF variables such as the cache size"),
24028 &set_dwarf_cmdlist, "maintenance set dwarf ",
24029 0/*allow-unknown*/, &maintenance_set_cmdlist);
24030
24031 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24032 Show DWARF specific variables\n\
24033 Show DWARF variables such as the cache size"),
24034 &show_dwarf_cmdlist, "maintenance show dwarf ",
24035 0/*allow-unknown*/, &maintenance_show_cmdlist);
24036
24037 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24038 &dwarf_max_cache_age, _("\
24039 Set the upper bound on the age of cached DWARF compilation units."), _("\
24040 Show the upper bound on the age of cached DWARF compilation units."), _("\
24041 A higher limit means that cached compilation units will be stored\n\
24042 in memory longer, and more total memory will be used. Zero disables\n\
24043 caching, which can slow down startup."),
24044 NULL,
24045 show_dwarf_max_cache_age,
24046 &set_dwarf_cmdlist,
24047 &show_dwarf_cmdlist);
24048
24049 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24050 &dwarf_always_disassemble, _("\
24051 Set whether `info address' always disassembles DWARF expressions."), _("\
24052 Show whether `info address' always disassembles DWARF expressions."), _("\
24053 When enabled, DWARF expressions are always printed in an assembly-like\n\
24054 syntax. When disabled, expressions will be printed in a more\n\
24055 conversational style, when possible."),
24056 NULL,
24057 show_dwarf_always_disassemble,
24058 &set_dwarf_cmdlist,
24059 &show_dwarf_cmdlist);
24060
24061 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24062 Set debugging of the DWARF reader."), _("\
24063 Show debugging of the DWARF reader."), _("\
24064 When enabled (non-zero), debugging messages are printed during DWARF\n\
24065 reading and symtab expansion. A value of 1 (one) provides basic\n\
24066 information. A value greater than 1 provides more verbose information."),
24067 NULL,
24068 NULL,
24069 &setdebuglist, &showdebuglist);
24070
24071 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24072 Set debugging of the DWARF DIE reader."), _("\
24073 Show debugging of the DWARF DIE reader."), _("\
24074 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24075 The value is the maximum depth to print."),
24076 NULL,
24077 NULL,
24078 &setdebuglist, &showdebuglist);
24079
24080 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24081 Set debugging of the dwarf line reader."), _("\
24082 Show debugging of the dwarf line reader."), _("\
24083 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24084 A value of 1 (one) provides basic information.\n\
24085 A value greater than 1 provides more verbose information."),
24086 NULL,
24087 NULL,
24088 &setdebuglist, &showdebuglist);
24089
24090 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24091 Set cross-checking of \"physname\" code against demangler."), _("\
24092 Show cross-checking of \"physname\" code against demangler."), _("\
24093 When enabled, GDB's internal \"physname\" code is checked against\n\
24094 the demangler."),
24095 NULL, show_check_physname,
24096 &setdebuglist, &showdebuglist);
24097
24098 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24099 no_class, &use_deprecated_index_sections, _("\
24100 Set whether to use deprecated gdb_index sections."), _("\
24101 Show whether to use deprecated gdb_index sections."), _("\
24102 When enabled, deprecated .gdb_index sections are used anyway.\n\
24103 Normally they are ignored either because of a missing feature or\n\
24104 performance issue.\n\
24105 Warning: This option must be enabled before gdb reads the file."),
24106 NULL,
24107 NULL,
24108 &setlist, &showlist);
24109
24110 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24111 _("\
24112 Save a gdb-index file.\n\
24113 Usage: save gdb-index DIRECTORY"),
24114 &save_cmdlist);
24115 set_cmd_completer (c, filename_completer);
24116
24117 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24118 &dwarf2_locexpr_funcs);
24119 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24120 &dwarf2_loclist_funcs);
24121
24122 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24123 &dwarf2_block_frame_base_locexpr_funcs);
24124 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24125 &dwarf2_block_frame_base_loclist_funcs);
24126 }