gdb/
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
226 };
227
228 static struct dwarf2_per_objfile *dwarf2_per_objfile;
229
230 /* names of the debugging sections */
231
232 /* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235 #define INFO_SECTION "debug_info"
236 #define ABBREV_SECTION "debug_abbrev"
237 #define LINE_SECTION "debug_line"
238 #define LOC_SECTION "debug_loc"
239 #define MACINFO_SECTION "debug_macinfo"
240 #define STR_SECTION "debug_str"
241 #define RANGES_SECTION "debug_ranges"
242 #define TYPES_SECTION "debug_types"
243 #define FRAME_SECTION "debug_frame"
244 #define EH_FRAME_SECTION "eh_frame"
245 #define GDB_INDEX_SECTION "gdb_index"
246
247 /* local data types */
248
249 /* We hold several abbreviation tables in memory at the same time. */
250 #ifndef ABBREV_HASH_SIZE
251 #define ABBREV_HASH_SIZE 121
252 #endif
253
254 /* The data in a compilation unit header, after target2host
255 translation, looks like this. */
256 struct comp_unit_head
257 {
258 unsigned int length;
259 short version;
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
262 unsigned int abbrev_offset;
263
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
266
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
269
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
273
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
277 };
278
279 /* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281 struct delayed_method_info
282 {
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297 };
298
299 typedef struct delayed_method_info delayed_method_info;
300 DEF_VEC_O (delayed_method_info);
301
302 /* Internal state when decoding a particular compilation unit. */
303 struct dwarf2_cu
304 {
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
308 /* The header of the compilation unit. */
309 struct comp_unit_head header;
310
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
323 const char *producer;
324
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of die offsets for following references. */
362 htab_t die_hash;
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
391 };
392
393 /* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396 struct dwarf2_per_cu_quick_data
397 {
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417 };
418
419 /* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
425 struct dwarf2_per_cu_data
426 {
427 /* The start offset and length of this compilation unit. 2**29-1
428 bytes should suffice to store the length of any compilation unit
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
432 unsigned int offset;
433 unsigned int length : 29;
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
437 unsigned int queued : 1;
438
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
451 struct dwarf2_cu *cu;
452
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
468 };
469
470 /* Entry in the signatured_types hash table. */
471
472 struct signatured_type
473 {
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484 };
485
486 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492 struct die_reader_specs
493 {
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503 };
504
505 /* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508 struct line_header
509 {
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
514 unsigned char maximum_ops_per_instruction;
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
538 {
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
543 int included_p; /* Non-zero if referenced by the Line Number Program. */
544 struct symtab *symtab; /* The associated symbol table, if any. */
545 } *file_names;
546
547 /* The start and end of the statement program following this
548 header. These point into dwarf2_per_objfile->line_buffer. */
549 gdb_byte *statement_program_start, *statement_program_end;
550 };
551
552 /* When we construct a partial symbol table entry we only
553 need this much information. */
554 struct partial_die_info
555 {
556 /* Offset of this DIE. */
557 unsigned int offset;
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
580 /* Flag set if fixup_partial_die has been called on this die. */
581 unsigned int fixup_called : 1;
582
583 /* The name of this DIE. Normally the value of DW_AT_name, but
584 sometimes a default name for unnamed DIEs. */
585 char *name;
586
587 /* The linkage name, if present. */
588 const char *linkage_name;
589
590 /* The scope to prepend to our children. This is generally
591 allocated on the comp_unit_obstack, so will disappear
592 when this compilation unit leaves the cache. */
593 char *scope;
594
595 /* The location description associated with this DIE, if any. */
596 struct dwarf_block *locdesc;
597
598 /* If HAS_PC_INFO, the PC range associated with this DIE. */
599 CORE_ADDR lowpc;
600 CORE_ADDR highpc;
601
602 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
603 DW_AT_sibling, if any. */
604 /* NOTE: This member isn't strictly necessary, read_partial_die could
605 return DW_AT_sibling values to its caller load_partial_dies. */
606 gdb_byte *sibling;
607
608 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
609 DW_AT_specification (or DW_AT_abstract_origin or
610 DW_AT_extension). */
611 unsigned int spec_offset;
612
613 /* Pointers to this DIE's parent, first child, and next sibling,
614 if any. */
615 struct partial_die_info *die_parent, *die_child, *die_sibling;
616 };
617
618 /* This data structure holds the information of an abbrev. */
619 struct abbrev_info
620 {
621 unsigned int number; /* number identifying abbrev */
622 enum dwarf_tag tag; /* dwarf tag */
623 unsigned short has_children; /* boolean */
624 unsigned short num_attrs; /* number of attributes */
625 struct attr_abbrev *attrs; /* an array of attribute descriptions */
626 struct abbrev_info *next; /* next in chain */
627 };
628
629 struct attr_abbrev
630 {
631 ENUM_BITFIELD(dwarf_attribute) name : 16;
632 ENUM_BITFIELD(dwarf_form) form : 16;
633 };
634
635 /* Attributes have a name and a value */
636 struct attribute
637 {
638 ENUM_BITFIELD(dwarf_attribute) name : 16;
639 ENUM_BITFIELD(dwarf_form) form : 15;
640
641 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
642 field should be in u.str (existing only for DW_STRING) but it is kept
643 here for better struct attribute alignment. */
644 unsigned int string_is_canonical : 1;
645
646 union
647 {
648 char *str;
649 struct dwarf_block *blk;
650 ULONGEST unsnd;
651 LONGEST snd;
652 CORE_ADDR addr;
653 struct signatured_type *signatured_type;
654 }
655 u;
656 };
657
658 /* This data structure holds a complete die structure. */
659 struct die_info
660 {
661 /* DWARF-2 tag for this DIE. */
662 ENUM_BITFIELD(dwarf_tag) tag : 16;
663
664 /* Number of attributes */
665 unsigned char num_attrs;
666
667 /* True if we're presently building the full type name for the
668 type derived from this DIE. */
669 unsigned char building_fullname : 1;
670
671 /* Abbrev number */
672 unsigned int abbrev;
673
674 /* Offset in .debug_info or .debug_types section. */
675 unsigned int offset;
676
677 /* The dies in a compilation unit form an n-ary tree. PARENT
678 points to this die's parent; CHILD points to the first child of
679 this node; and all the children of a given node are chained
680 together via their SIBLING fields. */
681 struct die_info *child; /* Its first child, if any. */
682 struct die_info *sibling; /* Its next sibling, if any. */
683 struct die_info *parent; /* Its parent, if any. */
684
685 /* An array of attributes, with NUM_ATTRS elements. There may be
686 zero, but it's not common and zero-sized arrays are not
687 sufficiently portable C. */
688 struct attribute attrs[1];
689 };
690
691 struct function_range
692 {
693 const char *name;
694 CORE_ADDR lowpc, highpc;
695 int seen_line;
696 struct function_range *next;
697 };
698
699 /* Get at parts of an attribute structure */
700
701 #define DW_STRING(attr) ((attr)->u.str)
702 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
703 #define DW_UNSND(attr) ((attr)->u.unsnd)
704 #define DW_BLOCK(attr) ((attr)->u.blk)
705 #define DW_SND(attr) ((attr)->u.snd)
706 #define DW_ADDR(attr) ((attr)->u.addr)
707 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
708
709 /* Blocks are a bunch of untyped bytes. */
710 struct dwarf_block
711 {
712 unsigned int size;
713 gdb_byte *data;
714 };
715
716 #ifndef ATTR_ALLOC_CHUNK
717 #define ATTR_ALLOC_CHUNK 4
718 #endif
719
720 /* Allocate fields for structs, unions and enums in this size. */
721 #ifndef DW_FIELD_ALLOC_CHUNK
722 #define DW_FIELD_ALLOC_CHUNK 4
723 #endif
724
725 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
726 but this would require a corresponding change in unpack_field_as_long
727 and friends. */
728 static int bits_per_byte = 8;
729
730 /* The routines that read and process dies for a C struct or C++ class
731 pass lists of data member fields and lists of member function fields
732 in an instance of a field_info structure, as defined below. */
733 struct field_info
734 {
735 /* List of data member and baseclasses fields. */
736 struct nextfield
737 {
738 struct nextfield *next;
739 int accessibility;
740 int virtuality;
741 struct field field;
742 }
743 *fields, *baseclasses;
744
745 /* Number of fields (including baseclasses). */
746 int nfields;
747
748 /* Number of baseclasses. */
749 int nbaseclasses;
750
751 /* Set if the accesibility of one of the fields is not public. */
752 int non_public_fields;
753
754 /* Member function fields array, entries are allocated in the order they
755 are encountered in the object file. */
756 struct nextfnfield
757 {
758 struct nextfnfield *next;
759 struct fn_field fnfield;
760 }
761 *fnfields;
762
763 /* Member function fieldlist array, contains name of possibly overloaded
764 member function, number of overloaded member functions and a pointer
765 to the head of the member function field chain. */
766 struct fnfieldlist
767 {
768 char *name;
769 int length;
770 struct nextfnfield *head;
771 }
772 *fnfieldlists;
773
774 /* Number of entries in the fnfieldlists array. */
775 int nfnfields;
776
777 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
778 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
779 struct typedef_field_list
780 {
781 struct typedef_field field;
782 struct typedef_field_list *next;
783 }
784 *typedef_field_list;
785 unsigned typedef_field_list_count;
786 };
787
788 /* One item on the queue of compilation units to read in full symbols
789 for. */
790 struct dwarf2_queue_item
791 {
792 struct dwarf2_per_cu_data *per_cu;
793 struct dwarf2_queue_item *next;
794 };
795
796 /* The current queue. */
797 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
798
799 /* Loaded secondary compilation units are kept in memory until they
800 have not been referenced for the processing of this many
801 compilation units. Set this to zero to disable caching. Cache
802 sizes of up to at least twenty will improve startup time for
803 typical inter-CU-reference binaries, at an obvious memory cost. */
804 static int dwarf2_max_cache_age = 5;
805 static void
806 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808 {
809 fprintf_filtered (file, _("\
810 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
811 value);
812 }
813
814
815 /* Various complaints about symbol reading that don't abort the process */
816
817 static void
818 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
819 {
820 complaint (&symfile_complaints,
821 _("statement list doesn't fit in .debug_line section"));
822 }
823
824 static void
825 dwarf2_debug_line_missing_file_complaint (void)
826 {
827 complaint (&symfile_complaints,
828 _(".debug_line section has line data without a file"));
829 }
830
831 static void
832 dwarf2_debug_line_missing_end_sequence_complaint (void)
833 {
834 complaint (&symfile_complaints,
835 _(".debug_line section has line program sequence without an end"));
836 }
837
838 static void
839 dwarf2_complex_location_expr_complaint (void)
840 {
841 complaint (&symfile_complaints, _("location expression too complex"));
842 }
843
844 static void
845 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
846 int arg3)
847 {
848 complaint (&symfile_complaints,
849 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
850 arg2, arg3);
851 }
852
853 static void
854 dwarf2_macros_too_long_complaint (void)
855 {
856 complaint (&symfile_complaints,
857 _("macro info runs off end of `.debug_macinfo' section"));
858 }
859
860 static void
861 dwarf2_macro_malformed_definition_complaint (const char *arg1)
862 {
863 complaint (&symfile_complaints,
864 _("macro debug info contains a malformed macro definition:\n`%s'"),
865 arg1);
866 }
867
868 static void
869 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
870 {
871 complaint (&symfile_complaints,
872 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
873 }
874
875 /* local function prototypes */
876
877 static void dwarf2_locate_sections (bfd *, asection *, void *);
878
879 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
880 struct objfile *);
881
882 static void dwarf2_build_psymtabs_hard (struct objfile *);
883
884 static void scan_partial_symbols (struct partial_die_info *,
885 CORE_ADDR *, CORE_ADDR *,
886 int, struct dwarf2_cu *);
887
888 static void add_partial_symbol (struct partial_die_info *,
889 struct dwarf2_cu *);
890
891 static void add_partial_namespace (struct partial_die_info *pdi,
892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
893 int need_pc, struct dwarf2_cu *cu);
894
895 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
896 CORE_ADDR *highpc, int need_pc,
897 struct dwarf2_cu *cu);
898
899 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
900 struct dwarf2_cu *cu);
901
902 static void add_partial_subprogram (struct partial_die_info *pdi,
903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
904 int need_pc, struct dwarf2_cu *cu);
905
906 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
907 gdb_byte *buffer, gdb_byte *info_ptr,
908 bfd *abfd, struct dwarf2_cu *cu);
909
910 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
911
912 static void psymtab_to_symtab_1 (struct partial_symtab *);
913
914 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
915
916 static void dwarf2_free_abbrev_table (void *);
917
918 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
919 struct dwarf2_cu *);
920
921 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
922 struct dwarf2_cu *);
923
924 static struct partial_die_info *load_partial_dies (bfd *,
925 gdb_byte *, gdb_byte *,
926 int, struct dwarf2_cu *);
927
928 static gdb_byte *read_partial_die (struct partial_die_info *,
929 struct abbrev_info *abbrev,
930 unsigned int, bfd *,
931 gdb_byte *, gdb_byte *,
932 struct dwarf2_cu *);
933
934 static struct partial_die_info *find_partial_die (unsigned int,
935 struct dwarf2_cu *);
936
937 static void fixup_partial_die (struct partial_die_info *,
938 struct dwarf2_cu *);
939
940 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
941 bfd *, gdb_byte *, struct dwarf2_cu *);
942
943 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
944 bfd *, gdb_byte *, struct dwarf2_cu *);
945
946 static unsigned int read_1_byte (bfd *, gdb_byte *);
947
948 static int read_1_signed_byte (bfd *, gdb_byte *);
949
950 static unsigned int read_2_bytes (bfd *, gdb_byte *);
951
952 static unsigned int read_4_bytes (bfd *, gdb_byte *);
953
954 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
955
956 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
957 unsigned int *);
958
959 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
960
961 static LONGEST read_checked_initial_length_and_offset
962 (bfd *, gdb_byte *, const struct comp_unit_head *,
963 unsigned int *, unsigned int *);
964
965 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
966 unsigned int *);
967
968 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
969
970 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
971
972 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
973
974 static char *read_indirect_string (bfd *, gdb_byte *,
975 const struct comp_unit_head *,
976 unsigned int *);
977
978 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
979
980 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
981
982 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
983
984 static void set_cu_language (unsigned int, struct dwarf2_cu *);
985
986 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
987 struct dwarf2_cu *);
988
989 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
990 unsigned int,
991 struct dwarf2_cu *);
992
993 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
994 struct dwarf2_cu *cu);
995
996 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
997
998 static struct die_info *die_specification (struct die_info *die,
999 struct dwarf2_cu **);
1000
1001 static void free_line_header (struct line_header *lh);
1002
1003 static void add_file_name (struct line_header *, char *, unsigned int,
1004 unsigned int, unsigned int);
1005
1006 static struct line_header *(dwarf_decode_line_header
1007 (unsigned int offset,
1008 bfd *abfd, struct dwarf2_cu *cu));
1009
1010 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1011 struct dwarf2_cu *, struct partial_symtab *);
1012
1013 static void dwarf2_start_subfile (char *, const char *, const char *);
1014
1015 static struct symbol *new_symbol (struct die_info *, struct type *,
1016 struct dwarf2_cu *);
1017
1018 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1019 struct dwarf2_cu *, struct symbol *);
1020
1021 static void dwarf2_const_value (struct attribute *, struct symbol *,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf2_const_value_attr (struct attribute *attr,
1025 struct type *type,
1026 const char *name,
1027 struct obstack *obstack,
1028 struct dwarf2_cu *cu, long *value,
1029 gdb_byte **bytes,
1030 struct dwarf2_locexpr_baton **baton);
1031
1032 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1033
1034 static int need_gnat_info (struct dwarf2_cu *);
1035
1036 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1037
1038 static void set_descriptive_type (struct type *, struct die_info *,
1039 struct dwarf2_cu *);
1040
1041 static struct type *die_containing_type (struct die_info *,
1042 struct dwarf2_cu *);
1043
1044 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1045 struct dwarf2_cu *);
1046
1047 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1048
1049 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1050
1051 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1052
1053 static char *typename_concat (struct obstack *obs, const char *prefix,
1054 const char *suffix, int physname,
1055 struct dwarf2_cu *cu);
1056
1057 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1058
1059 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1060
1061 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1062
1063 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1064
1065 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1066 struct dwarf2_cu *, struct partial_symtab *);
1067
1068 static int dwarf2_get_pc_bounds (struct die_info *,
1069 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1070 struct partial_symtab *);
1071
1072 static void get_scope_pc_bounds (struct die_info *,
1073 CORE_ADDR *, CORE_ADDR *,
1074 struct dwarf2_cu *);
1075
1076 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1077 CORE_ADDR, struct dwarf2_cu *);
1078
1079 static void dwarf2_add_field (struct field_info *, struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void dwarf2_attach_fields_to_type (struct field_info *,
1083 struct type *, struct dwarf2_cu *);
1084
1085 static void dwarf2_add_member_fn (struct field_info *,
1086 struct die_info *, struct type *,
1087 struct dwarf2_cu *);
1088
1089 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1090 struct type *, struct dwarf2_cu *);
1091
1092 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1095
1096 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1097
1098 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1099
1100 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1101
1102 static struct type *read_module_type (struct die_info *die,
1103 struct dwarf2_cu *cu);
1104
1105 static const char *namespace_name (struct die_info *die,
1106 int *is_anonymous, struct dwarf2_cu *);
1107
1108 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1109
1110 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1111
1112 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1113 struct dwarf2_cu *);
1114
1115 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1116
1117 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1118 gdb_byte *info_ptr,
1119 gdb_byte **new_info_ptr,
1120 struct die_info *parent);
1121
1122 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1123 gdb_byte *info_ptr,
1124 gdb_byte **new_info_ptr,
1125 struct die_info *parent);
1126
1127 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1128 gdb_byte *info_ptr,
1129 gdb_byte **new_info_ptr,
1130 struct die_info *parent);
1131
1132 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1133 struct die_info **, gdb_byte *,
1134 int *);
1135
1136 static void process_die (struct die_info *, struct dwarf2_cu *);
1137
1138 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1139 struct obstack *);
1140
1141 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1142
1143 static const char *dwarf2_full_name (char *name,
1144 struct die_info *die,
1145 struct dwarf2_cu *cu);
1146
1147 static struct die_info *dwarf2_extension (struct die_info *die,
1148 struct dwarf2_cu **);
1149
1150 static char *dwarf_tag_name (unsigned int);
1151
1152 static char *dwarf_attr_name (unsigned int);
1153
1154 static char *dwarf_form_name (unsigned int);
1155
1156 static char *dwarf_bool_name (unsigned int);
1157
1158 static char *dwarf_type_encoding_name (unsigned int);
1159
1160 #if 0
1161 static char *dwarf_cfi_name (unsigned int);
1162 #endif
1163
1164 static struct die_info *sibling_die (struct die_info *);
1165
1166 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1167
1168 static void dump_die_for_error (struct die_info *);
1169
1170 static void dump_die_1 (struct ui_file *, int level, int max_level,
1171 struct die_info *);
1172
1173 /*static*/ void dump_die (struct die_info *, int max_level);
1174
1175 static void store_in_ref_table (struct die_info *,
1176 struct dwarf2_cu *);
1177
1178 static int is_ref_attr (struct attribute *);
1179
1180 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1181
1182 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1183
1184 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1185 struct attribute *,
1186 struct dwarf2_cu **);
1187
1188 static struct die_info *follow_die_ref (struct die_info *,
1189 struct attribute *,
1190 struct dwarf2_cu **);
1191
1192 static struct die_info *follow_die_sig (struct die_info *,
1193 struct attribute *,
1194 struct dwarf2_cu **);
1195
1196 static void read_signatured_type_at_offset (struct objfile *objfile,
1197 unsigned int offset);
1198
1199 static void read_signatured_type (struct objfile *,
1200 struct signatured_type *type_sig);
1201
1202 /* memory allocation interface */
1203
1204 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1205
1206 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1207
1208 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1209
1210 static void initialize_cu_func_list (struct dwarf2_cu *);
1211
1212 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1213 struct dwarf2_cu *);
1214
1215 static void dwarf_decode_macros (struct line_header *, unsigned int,
1216 char *, bfd *, struct dwarf2_cu *);
1217
1218 static int attr_form_is_block (struct attribute *);
1219
1220 static int attr_form_is_section_offset (struct attribute *);
1221
1222 static int attr_form_is_constant (struct attribute *);
1223
1224 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1225 struct symbol *sym,
1226 struct dwarf2_cu *cu);
1227
1228 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1229 struct abbrev_info *abbrev,
1230 struct dwarf2_cu *cu);
1231
1232 static void free_stack_comp_unit (void *);
1233
1234 static hashval_t partial_die_hash (const void *item);
1235
1236 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1237
1238 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1239 (unsigned int offset, struct objfile *objfile);
1240
1241 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1242 (unsigned int offset, struct objfile *objfile);
1243
1244 static void init_one_comp_unit (struct dwarf2_cu *cu,
1245 struct objfile *objfile);
1246
1247 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1248 struct die_info *comp_unit_die);
1249
1250 static void free_one_comp_unit (void *);
1251
1252 static void free_cached_comp_units (void *);
1253
1254 static void age_cached_comp_units (void);
1255
1256 static void free_one_cached_comp_unit (void *);
1257
1258 static struct type *set_die_type (struct die_info *, struct type *,
1259 struct dwarf2_cu *);
1260
1261 static void create_all_comp_units (struct objfile *);
1262
1263 static int create_debug_types_hash_table (struct objfile *objfile);
1264
1265 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1266 struct objfile *);
1267
1268 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1269
1270 static void dwarf2_add_dependence (struct dwarf2_cu *,
1271 struct dwarf2_per_cu_data *);
1272
1273 static void dwarf2_mark (struct dwarf2_cu *);
1274
1275 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1276
1277 static struct type *get_die_type_at_offset (unsigned int,
1278 struct dwarf2_per_cu_data *per_cu);
1279
1280 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1281
1282 static void dwarf2_release_queue (void *dummy);
1283
1284 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1285 struct objfile *objfile);
1286
1287 static void process_queue (struct objfile *objfile);
1288
1289 static void find_file_and_directory (struct die_info *die,
1290 struct dwarf2_cu *cu,
1291 char **name, char **comp_dir);
1292
1293 static char *file_full_name (int file, struct line_header *lh,
1294 const char *comp_dir);
1295
1296 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1297 gdb_byte *info_ptr,
1298 gdb_byte *buffer,
1299 unsigned int buffer_size,
1300 bfd *abfd);
1301
1302 static void init_cu_die_reader (struct die_reader_specs *reader,
1303 struct dwarf2_cu *cu);
1304
1305 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1306
1307 #if WORDS_BIGENDIAN
1308
1309 /* Convert VALUE between big- and little-endian. */
1310 static offset_type
1311 byte_swap (offset_type value)
1312 {
1313 offset_type result;
1314
1315 result = (value & 0xff) << 24;
1316 result |= (value & 0xff00) << 8;
1317 result |= (value & 0xff0000) >> 8;
1318 result |= (value & 0xff000000) >> 24;
1319 return result;
1320 }
1321
1322 #define MAYBE_SWAP(V) byte_swap (V)
1323
1324 #else
1325 #define MAYBE_SWAP(V) (V)
1326 #endif /* WORDS_BIGENDIAN */
1327
1328 /* The suffix for an index file. */
1329 #define INDEX_SUFFIX ".gdb-index"
1330
1331 static const char *dwarf2_physname (char *name, struct die_info *die,
1332 struct dwarf2_cu *cu);
1333
1334 /* Try to locate the sections we need for DWARF 2 debugging
1335 information and return true if we have enough to do something. */
1336
1337 int
1338 dwarf2_has_info (struct objfile *objfile)
1339 {
1340 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1341 if (!dwarf2_per_objfile)
1342 {
1343 /* Initialize per-objfile state. */
1344 struct dwarf2_per_objfile *data
1345 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1346
1347 memset (data, 0, sizeof (*data));
1348 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1349 dwarf2_per_objfile = data;
1350
1351 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1352 dwarf2_per_objfile->objfile = objfile;
1353 }
1354 return (dwarf2_per_objfile->info.asection != NULL
1355 && dwarf2_per_objfile->abbrev.asection != NULL);
1356 }
1357
1358 /* When loading sections, we can either look for ".<name>", or for
1359 * ".z<name>", which indicates a compressed section. */
1360
1361 static int
1362 section_is_p (const char *section_name, const char *name)
1363 {
1364 return (section_name[0] == '.'
1365 && (strcmp (section_name + 1, name) == 0
1366 || (section_name[1] == 'z'
1367 && strcmp (section_name + 2, name) == 0)));
1368 }
1369
1370 /* This function is mapped across the sections and remembers the
1371 offset and size of each of the debugging sections we are interested
1372 in. */
1373
1374 static void
1375 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1376 {
1377 if (section_is_p (sectp->name, INFO_SECTION))
1378 {
1379 dwarf2_per_objfile->info.asection = sectp;
1380 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, ABBREV_SECTION))
1383 {
1384 dwarf2_per_objfile->abbrev.asection = sectp;
1385 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, LINE_SECTION))
1388 {
1389 dwarf2_per_objfile->line.asection = sectp;
1390 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, LOC_SECTION))
1393 {
1394 dwarf2_per_objfile->loc.asection = sectp;
1395 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, MACINFO_SECTION))
1398 {
1399 dwarf2_per_objfile->macinfo.asection = sectp;
1400 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, STR_SECTION))
1403 {
1404 dwarf2_per_objfile->str.asection = sectp;
1405 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1406 }
1407 else if (section_is_p (sectp->name, FRAME_SECTION))
1408 {
1409 dwarf2_per_objfile->frame.asection = sectp;
1410 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1411 }
1412 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1413 {
1414 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1415
1416 if (aflag & SEC_HAS_CONTENTS)
1417 {
1418 dwarf2_per_objfile->eh_frame.asection = sectp;
1419 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1420 }
1421 }
1422 else if (section_is_p (sectp->name, RANGES_SECTION))
1423 {
1424 dwarf2_per_objfile->ranges.asection = sectp;
1425 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1426 }
1427 else if (section_is_p (sectp->name, TYPES_SECTION))
1428 {
1429 dwarf2_per_objfile->types.asection = sectp;
1430 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1431 }
1432 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1433 {
1434 dwarf2_per_objfile->gdb_index.asection = sectp;
1435 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1436 }
1437
1438 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1439 && bfd_section_vma (abfd, sectp) == 0)
1440 dwarf2_per_objfile->has_section_at_zero = 1;
1441 }
1442
1443 /* Decompress a section that was compressed using zlib. Store the
1444 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1445
1446 static void
1447 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1448 gdb_byte **outbuf, bfd_size_type *outsize)
1449 {
1450 bfd *abfd = objfile->obfd;
1451 #ifndef HAVE_ZLIB_H
1452 error (_("Support for zlib-compressed DWARF data (from '%s') "
1453 "is disabled in this copy of GDB"),
1454 bfd_get_filename (abfd));
1455 #else
1456 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1457 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1458 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1459 bfd_size_type uncompressed_size;
1460 gdb_byte *uncompressed_buffer;
1461 z_stream strm;
1462 int rc;
1463 int header_size = 12;
1464
1465 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1466 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1467 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1468 bfd_get_filename (abfd));
1469
1470 /* Read the zlib header. In this case, it should be "ZLIB" followed
1471 by the uncompressed section size, 8 bytes in big-endian order. */
1472 if (compressed_size < header_size
1473 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1474 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1475 bfd_get_filename (abfd));
1476 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1480 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1481 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1482 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1483 uncompressed_size += compressed_buffer[11];
1484
1485 /* It is possible the section consists of several compressed
1486 buffers concatenated together, so we uncompress in a loop. */
1487 strm.zalloc = NULL;
1488 strm.zfree = NULL;
1489 strm.opaque = NULL;
1490 strm.avail_in = compressed_size - header_size;
1491 strm.next_in = (Bytef*) compressed_buffer + header_size;
1492 strm.avail_out = uncompressed_size;
1493 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1494 uncompressed_size);
1495 rc = inflateInit (&strm);
1496 while (strm.avail_in > 0)
1497 {
1498 if (rc != Z_OK)
1499 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1500 bfd_get_filename (abfd), rc);
1501 strm.next_out = ((Bytef*) uncompressed_buffer
1502 + (uncompressed_size - strm.avail_out));
1503 rc = inflate (&strm, Z_FINISH);
1504 if (rc != Z_STREAM_END)
1505 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1506 bfd_get_filename (abfd), rc);
1507 rc = inflateReset (&strm);
1508 }
1509 rc = inflateEnd (&strm);
1510 if (rc != Z_OK
1511 || strm.avail_out != 0)
1512 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1513 bfd_get_filename (abfd), rc);
1514
1515 do_cleanups (cleanup);
1516 *outbuf = uncompressed_buffer;
1517 *outsize = uncompressed_size;
1518 #endif
1519 }
1520
1521 /* Read the contents of the section SECTP from object file specified by
1522 OBJFILE, store info about the section into INFO.
1523 If the section is compressed, uncompress it before returning. */
1524
1525 static void
1526 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1527 {
1528 bfd *abfd = objfile->obfd;
1529 asection *sectp = info->asection;
1530 gdb_byte *buf, *retbuf;
1531 unsigned char header[4];
1532
1533 if (info->readin)
1534 return;
1535 info->buffer = NULL;
1536 info->was_mmapped = 0;
1537 info->readin = 1;
1538
1539 if (info->asection == NULL || info->size == 0)
1540 return;
1541
1542 /* Check if the file has a 4-byte header indicating compression. */
1543 if (info->size > sizeof (header)
1544 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1545 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1546 {
1547 /* Upon decompression, update the buffer and its size. */
1548 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1549 {
1550 zlib_decompress_section (objfile, sectp, &info->buffer,
1551 &info->size);
1552 return;
1553 }
1554 }
1555
1556 #ifdef HAVE_MMAP
1557 if (pagesize == 0)
1558 pagesize = getpagesize ();
1559
1560 /* Only try to mmap sections which are large enough: we don't want to
1561 waste space due to fragmentation. Also, only try mmap for sections
1562 without relocations. */
1563
1564 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1565 {
1566 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1567 size_t map_length = info->size + sectp->filepos - pg_offset;
1568 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1569 MAP_PRIVATE, pg_offset);
1570
1571 if (retbuf != MAP_FAILED)
1572 {
1573 info->was_mmapped = 1;
1574 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1575 #if HAVE_POSIX_MADVISE
1576 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1577 #endif
1578 return;
1579 }
1580 }
1581 #endif
1582
1583 /* If we get here, we are a normal, not-compressed section. */
1584 info->buffer = buf
1585 = obstack_alloc (&objfile->objfile_obstack, info->size);
1586
1587 /* When debugging .o files, we may need to apply relocations; see
1588 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1589 We never compress sections in .o files, so we only need to
1590 try this when the section is not compressed. */
1591 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1592 if (retbuf != NULL)
1593 {
1594 info->buffer = retbuf;
1595 return;
1596 }
1597
1598 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1599 || bfd_bread (buf, info->size, abfd) != info->size)
1600 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1601 bfd_get_filename (abfd));
1602 }
1603
1604 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1605 SECTION_NAME. */
1606
1607 void
1608 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1609 asection **sectp, gdb_byte **bufp,
1610 bfd_size_type *sizep)
1611 {
1612 struct dwarf2_per_objfile *data
1613 = objfile_data (objfile, dwarf2_objfile_data_key);
1614 struct dwarf2_section_info *info;
1615
1616 /* We may see an objfile without any DWARF, in which case we just
1617 return nothing. */
1618 if (data == NULL)
1619 {
1620 *sectp = NULL;
1621 *bufp = NULL;
1622 *sizep = 0;
1623 return;
1624 }
1625 if (section_is_p (section_name, EH_FRAME_SECTION))
1626 info = &data->eh_frame;
1627 else if (section_is_p (section_name, FRAME_SECTION))
1628 info = &data->frame;
1629 else
1630 gdb_assert_not_reached ("unexpected section");
1631
1632 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1633 /* We haven't read this section in yet. Do it now. */
1634 dwarf2_read_section (objfile, info);
1635
1636 *sectp = info->asection;
1637 *bufp = info->buffer;
1638 *sizep = info->size;
1639 }
1640
1641 \f
1642
1643 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1644 this CU came. */
1645
1646 static void
1647 dw2_do_instantiate_symtab (struct objfile *objfile,
1648 struct dwarf2_per_cu_data *per_cu)
1649 {
1650 struct cleanup *back_to;
1651
1652 back_to = make_cleanup (dwarf2_release_queue, NULL);
1653
1654 queue_comp_unit (per_cu, objfile);
1655
1656 if (per_cu->from_debug_types)
1657 read_signatured_type_at_offset (objfile, per_cu->offset);
1658 else
1659 load_full_comp_unit (per_cu, objfile);
1660
1661 process_queue (objfile);
1662
1663 /* Age the cache, releasing compilation units that have not
1664 been used recently. */
1665 age_cached_comp_units ();
1666
1667 do_cleanups (back_to);
1668 }
1669
1670 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1671 the objfile from which this CU came. Returns the resulting symbol
1672 table. */
1673
1674 static struct symtab *
1675 dw2_instantiate_symtab (struct objfile *objfile,
1676 struct dwarf2_per_cu_data *per_cu)
1677 {
1678 if (!per_cu->v.quick->symtab)
1679 {
1680 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1681 increment_reading_symtab ();
1682 dw2_do_instantiate_symtab (objfile, per_cu);
1683 do_cleanups (back_to);
1684 }
1685 return per_cu->v.quick->symtab;
1686 }
1687
1688 /* Return the CU given its index. */
1689
1690 static struct dwarf2_per_cu_data *
1691 dw2_get_cu (int index)
1692 {
1693 if (index >= dwarf2_per_objfile->n_comp_units)
1694 {
1695 index -= dwarf2_per_objfile->n_comp_units;
1696 return dwarf2_per_objfile->type_comp_units[index];
1697 }
1698 return dwarf2_per_objfile->all_comp_units[index];
1699 }
1700
1701 /* A helper function that knows how to read a 64-bit value in a way
1702 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1703 otherwise. */
1704
1705 static int
1706 extract_cu_value (const char *bytes, ULONGEST *result)
1707 {
1708 if (sizeof (ULONGEST) < 8)
1709 {
1710 int i;
1711
1712 /* Ignore the upper 4 bytes if they are all zero. */
1713 for (i = 0; i < 4; ++i)
1714 if (bytes[i + 4] != 0)
1715 return 0;
1716
1717 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1718 }
1719 else
1720 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1721 return 1;
1722 }
1723
1724 /* Read the CU list from the mapped index, and use it to create all
1725 the CU objects for this objfile. Return 0 if something went wrong,
1726 1 if everything went ok. */
1727
1728 static int
1729 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1730 offset_type cu_list_elements)
1731 {
1732 offset_type i;
1733
1734 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1735 dwarf2_per_objfile->all_comp_units
1736 = obstack_alloc (&objfile->objfile_obstack,
1737 dwarf2_per_objfile->n_comp_units
1738 * sizeof (struct dwarf2_per_cu_data *));
1739
1740 for (i = 0; i < cu_list_elements; i += 2)
1741 {
1742 struct dwarf2_per_cu_data *the_cu;
1743 ULONGEST offset, length;
1744
1745 if (!extract_cu_value (cu_list, &offset)
1746 || !extract_cu_value (cu_list + 8, &length))
1747 return 0;
1748 cu_list += 2 * 8;
1749
1750 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1751 struct dwarf2_per_cu_data);
1752 the_cu->offset = offset;
1753 the_cu->length = length;
1754 the_cu->objfile = objfile;
1755 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1756 struct dwarf2_per_cu_quick_data);
1757 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1758 }
1759
1760 return 1;
1761 }
1762
1763 /* Create the signatured type hash table from the index. */
1764
1765 static int
1766 create_signatured_type_table_from_index (struct objfile *objfile,
1767 const gdb_byte *bytes,
1768 offset_type elements)
1769 {
1770 offset_type i;
1771 htab_t sig_types_hash;
1772
1773 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1774 dwarf2_per_objfile->type_comp_units
1775 = obstack_alloc (&objfile->objfile_obstack,
1776 dwarf2_per_objfile->n_type_comp_units
1777 * sizeof (struct dwarf2_per_cu_data *));
1778
1779 sig_types_hash = allocate_signatured_type_table (objfile);
1780
1781 for (i = 0; i < elements; i += 3)
1782 {
1783 struct signatured_type *type_sig;
1784 ULONGEST offset, type_offset, signature;
1785 void **slot;
1786
1787 if (!extract_cu_value (bytes, &offset)
1788 || !extract_cu_value (bytes + 8, &type_offset))
1789 return 0;
1790 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1791 bytes += 3 * 8;
1792
1793 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1794 struct signatured_type);
1795 type_sig->signature = signature;
1796 type_sig->offset = offset;
1797 type_sig->type_offset = type_offset;
1798 type_sig->per_cu.from_debug_types = 1;
1799 type_sig->per_cu.offset = offset;
1800 type_sig->per_cu.objfile = objfile;
1801 type_sig->per_cu.v.quick
1802 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1803 struct dwarf2_per_cu_quick_data);
1804
1805 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1806 *slot = type_sig;
1807
1808 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1809 }
1810
1811 dwarf2_per_objfile->signatured_types = sig_types_hash;
1812
1813 return 1;
1814 }
1815
1816 /* Read the address map data from the mapped index, and use it to
1817 populate the objfile's psymtabs_addrmap. */
1818
1819 static void
1820 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1821 {
1822 const gdb_byte *iter, *end;
1823 struct obstack temp_obstack;
1824 struct addrmap *mutable_map;
1825 struct cleanup *cleanup;
1826 CORE_ADDR baseaddr;
1827
1828 obstack_init (&temp_obstack);
1829 cleanup = make_cleanup_obstack_free (&temp_obstack);
1830 mutable_map = addrmap_create_mutable (&temp_obstack);
1831
1832 iter = index->address_table;
1833 end = iter + index->address_table_size;
1834
1835 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1836
1837 while (iter < end)
1838 {
1839 ULONGEST hi, lo, cu_index;
1840 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1841 iter += 8;
1842 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1843 iter += 8;
1844 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1845 iter += 4;
1846
1847 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1848 dw2_get_cu (cu_index));
1849 }
1850
1851 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1852 &objfile->objfile_obstack);
1853 do_cleanups (cleanup);
1854 }
1855
1856 /* The hash function for strings in the mapped index. This is the
1857 same as the hashtab.c hash function, but we keep a separate copy to
1858 maintain control over the implementation. This is necessary
1859 because the hash function is tied to the format of the mapped index
1860 file. */
1861
1862 static hashval_t
1863 mapped_index_string_hash (const void *p)
1864 {
1865 const unsigned char *str = (const unsigned char *) p;
1866 hashval_t r = 0;
1867 unsigned char c;
1868
1869 while ((c = *str++) != 0)
1870 r = r * 67 + c - 113;
1871
1872 return r;
1873 }
1874
1875 /* Find a slot in the mapped index INDEX for the object named NAME.
1876 If NAME is found, set *VEC_OUT to point to the CU vector in the
1877 constant pool and return 1. If NAME cannot be found, return 0. */
1878
1879 static int
1880 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1881 offset_type **vec_out)
1882 {
1883 offset_type hash = mapped_index_string_hash (name);
1884 offset_type slot, step;
1885
1886 slot = hash & (index->symbol_table_slots - 1);
1887 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1888
1889 for (;;)
1890 {
1891 /* Convert a slot number to an offset into the table. */
1892 offset_type i = 2 * slot;
1893 const char *str;
1894 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1895 return 0;
1896
1897 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1898 if (!strcmp (name, str))
1899 {
1900 *vec_out = (offset_type *) (index->constant_pool
1901 + MAYBE_SWAP (index->symbol_table[i + 1]));
1902 return 1;
1903 }
1904
1905 slot = (slot + step) & (index->symbol_table_slots - 1);
1906 }
1907 }
1908
1909 /* Read the index file. If everything went ok, initialize the "quick"
1910 elements of all the CUs and return 1. Otherwise, return 0. */
1911
1912 static int
1913 dwarf2_read_index (struct objfile *objfile)
1914 {
1915 char *addr;
1916 struct mapped_index *map;
1917 offset_type *metadata;
1918 const gdb_byte *cu_list;
1919 const gdb_byte *types_list = NULL;
1920 offset_type version, cu_list_elements;
1921 offset_type types_list_elements = 0;
1922 int i;
1923
1924 if (dwarf2_per_objfile->gdb_index.asection == NULL
1925 || dwarf2_per_objfile->gdb_index.size == 0)
1926 return 0;
1927
1928 /* Older elfutils strip versions could keep the section in the main
1929 executable while splitting it for the separate debug info file. */
1930 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
1931 & SEC_HAS_CONTENTS) == 0)
1932 return 0;
1933
1934 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1935
1936 addr = dwarf2_per_objfile->gdb_index.buffer;
1937 /* Version check. */
1938 version = MAYBE_SWAP (*(offset_type *) addr);
1939 /* Versions earlier than 3 emitted every copy of a psymbol. This
1940 causes the index to behave very poorly for certain requests. So,
1941 it seems better to just ignore such indices. */
1942 if (version < 3)
1943 return 0;
1944 /* Indexes with higher version than the one supported by GDB may be no
1945 longer backward compatible. */
1946 if (version > 3)
1947 return 0;
1948
1949 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1950 map->total_size = dwarf2_per_objfile->gdb_index.size;
1951
1952 metadata = (offset_type *) (addr + sizeof (offset_type));
1953
1954 i = 0;
1955 cu_list = addr + MAYBE_SWAP (metadata[i]);
1956 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
1957 / 8);
1958 ++i;
1959
1960 types_list = addr + MAYBE_SWAP (metadata[i]);
1961 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1962 - MAYBE_SWAP (metadata[i]))
1963 / 8);
1964 ++i;
1965
1966 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1967 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1968 - MAYBE_SWAP (metadata[i]));
1969 ++i;
1970
1971 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1972 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1973 - MAYBE_SWAP (metadata[i]))
1974 / (2 * sizeof (offset_type)));
1975 ++i;
1976
1977 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1978
1979 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1980 return 0;
1981
1982 if (types_list_elements
1983 && !create_signatured_type_table_from_index (objfile, types_list,
1984 types_list_elements))
1985 return 0;
1986
1987 create_addrmap_from_index (objfile, map);
1988
1989 dwarf2_per_objfile->index_table = map;
1990 dwarf2_per_objfile->using_index = 1;
1991
1992 return 1;
1993 }
1994
1995 /* A helper for the "quick" functions which sets the global
1996 dwarf2_per_objfile according to OBJFILE. */
1997
1998 static void
1999 dw2_setup (struct objfile *objfile)
2000 {
2001 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2002 gdb_assert (dwarf2_per_objfile);
2003 }
2004
2005 /* A helper for the "quick" functions which attempts to read the line
2006 table for THIS_CU. */
2007
2008 static void
2009 dw2_require_line_header (struct objfile *objfile,
2010 struct dwarf2_per_cu_data *this_cu)
2011 {
2012 bfd *abfd = objfile->obfd;
2013 struct line_header *lh = NULL;
2014 struct attribute *attr;
2015 struct cleanup *cleanups;
2016 struct die_info *comp_unit_die;
2017 struct dwarf2_section_info* sec;
2018 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2019 int has_children, i;
2020 struct dwarf2_cu cu;
2021 unsigned int bytes_read, buffer_size;
2022 struct die_reader_specs reader_specs;
2023 char *name, *comp_dir;
2024
2025 if (this_cu->v.quick->read_lines)
2026 return;
2027 this_cu->v.quick->read_lines = 1;
2028
2029 init_one_comp_unit (&cu, objfile);
2030 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2031
2032 if (this_cu->from_debug_types)
2033 sec = &dwarf2_per_objfile->types;
2034 else
2035 sec = &dwarf2_per_objfile->info;
2036 dwarf2_read_section (objfile, sec);
2037 buffer_size = sec->size;
2038 buffer = sec->buffer;
2039 info_ptr = buffer + this_cu->offset;
2040 beg_of_comp_unit = info_ptr;
2041
2042 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2043 buffer, buffer_size,
2044 abfd);
2045
2046 /* Complete the cu_header. */
2047 cu.header.offset = beg_of_comp_unit - buffer;
2048 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2049
2050 this_cu->cu = &cu;
2051 cu.per_cu = this_cu;
2052
2053 dwarf2_read_abbrevs (abfd, &cu);
2054 make_cleanup (dwarf2_free_abbrev_table, &cu);
2055
2056 if (this_cu->from_debug_types)
2057 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2058 init_cu_die_reader (&reader_specs, &cu);
2059 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2060 &has_children);
2061
2062 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2063 if (attr)
2064 {
2065 unsigned int line_offset = DW_UNSND (attr);
2066 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2067 }
2068 if (lh == NULL)
2069 {
2070 do_cleanups (cleanups);
2071 return;
2072 }
2073
2074 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2075
2076 this_cu->v.quick->lines = lh;
2077
2078 this_cu->v.quick->file_names
2079 = obstack_alloc (&objfile->objfile_obstack,
2080 lh->num_file_names * sizeof (char *));
2081 for (i = 0; i < lh->num_file_names; ++i)
2082 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2083
2084 do_cleanups (cleanups);
2085 }
2086
2087 /* A helper for the "quick" functions which computes and caches the
2088 real path for a given file name from the line table.
2089 dw2_require_line_header must have been called before this is
2090 invoked. */
2091
2092 static const char *
2093 dw2_require_full_path (struct objfile *objfile,
2094 struct dwarf2_per_cu_data *per_cu,
2095 int index)
2096 {
2097 if (!per_cu->v.quick->full_names)
2098 per_cu->v.quick->full_names
2099 = OBSTACK_CALLOC (&objfile->objfile_obstack,
2100 per_cu->v.quick->lines->num_file_names,
2101 sizeof (char *));
2102
2103 if (!per_cu->v.quick->full_names[index])
2104 per_cu->v.quick->full_names[index]
2105 = gdb_realpath (per_cu->v.quick->file_names[index]);
2106
2107 return per_cu->v.quick->full_names[index];
2108 }
2109
2110 static struct symtab *
2111 dw2_find_last_source_symtab (struct objfile *objfile)
2112 {
2113 int index;
2114 dw2_setup (objfile);
2115 index = dwarf2_per_objfile->n_comp_units - 1;
2116 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2117 }
2118
2119 static void
2120 dw2_forget_cached_source_info (struct objfile *objfile)
2121 {
2122 int i;
2123
2124 dw2_setup (objfile);
2125 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2126 + dwarf2_per_objfile->n_type_comp_units); ++i)
2127 {
2128 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2129
2130 if (per_cu->v.quick->full_names)
2131 {
2132 int j;
2133
2134 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2135 {
2136 xfree ((void *) per_cu->v.quick->full_names[j]);
2137 per_cu->v.quick->full_names[j] = NULL;
2138 }
2139 }
2140 }
2141 }
2142
2143 static int
2144 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2145 const char *full_path, const char *real_path,
2146 struct symtab **result)
2147 {
2148 int i;
2149 int check_basename = lbasename (name) == name;
2150 struct dwarf2_per_cu_data *base_cu = NULL;
2151
2152 dw2_setup (objfile);
2153 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2154 + dwarf2_per_objfile->n_type_comp_units); ++i)
2155 {
2156 int j;
2157 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2158
2159 if (per_cu->v.quick->symtab)
2160 continue;
2161
2162 dw2_require_line_header (objfile, per_cu);
2163 if (!per_cu->v.quick->lines)
2164 continue;
2165
2166 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2167 {
2168 const char *this_name = per_cu->v.quick->file_names[j];
2169
2170 if (FILENAME_CMP (name, this_name) == 0)
2171 {
2172 *result = dw2_instantiate_symtab (objfile, per_cu);
2173 return 1;
2174 }
2175
2176 if (check_basename && ! base_cu
2177 && FILENAME_CMP (lbasename (this_name), name) == 0)
2178 base_cu = per_cu;
2179
2180 if (full_path != NULL)
2181 {
2182 const char *this_full_name = dw2_require_full_path (objfile,
2183 per_cu, j);
2184
2185 if (this_full_name
2186 && FILENAME_CMP (full_path, this_full_name) == 0)
2187 {
2188 *result = dw2_instantiate_symtab (objfile, per_cu);
2189 return 1;
2190 }
2191 }
2192
2193 if (real_path != NULL)
2194 {
2195 const char *this_full_name = dw2_require_full_path (objfile,
2196 per_cu, j);
2197
2198 if (this_full_name != NULL)
2199 {
2200 char *rp = gdb_realpath (this_full_name);
2201 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2202 {
2203 xfree (rp);
2204 *result = dw2_instantiate_symtab (objfile, per_cu);
2205 return 1;
2206 }
2207 xfree (rp);
2208 }
2209 }
2210 }
2211 }
2212
2213 if (base_cu)
2214 {
2215 *result = dw2_instantiate_symtab (objfile, base_cu);
2216 return 1;
2217 }
2218
2219 return 0;
2220 }
2221
2222 static struct symtab *
2223 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2224 const char *name, domain_enum domain)
2225 {
2226 /* We do all the work in the pre_expand_symtabs_matching hook
2227 instead. */
2228 return NULL;
2229 }
2230
2231 /* A helper function that expands all symtabs that hold an object
2232 named NAME. */
2233
2234 static void
2235 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2236 {
2237 dw2_setup (objfile);
2238
2239 if (dwarf2_per_objfile->index_table)
2240 {
2241 offset_type *vec;
2242
2243 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2244 name, &vec))
2245 {
2246 offset_type i, len = MAYBE_SWAP (*vec);
2247 for (i = 0; i < len; ++i)
2248 {
2249 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2250 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2251
2252 dw2_instantiate_symtab (objfile, per_cu);
2253 }
2254 }
2255 }
2256 }
2257
2258 static void
2259 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2260 int kind, const char *name,
2261 domain_enum domain)
2262 {
2263 dw2_do_expand_symtabs_matching (objfile, name);
2264 }
2265
2266 static void
2267 dw2_print_stats (struct objfile *objfile)
2268 {
2269 int i, count;
2270
2271 dw2_setup (objfile);
2272 count = 0;
2273 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2274 + dwarf2_per_objfile->n_type_comp_units); ++i)
2275 {
2276 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2277
2278 if (!per_cu->v.quick->symtab)
2279 ++count;
2280 }
2281 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2282 }
2283
2284 static void
2285 dw2_dump (struct objfile *objfile)
2286 {
2287 /* Nothing worth printing. */
2288 }
2289
2290 static void
2291 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2292 struct section_offsets *delta)
2293 {
2294 /* There's nothing to relocate here. */
2295 }
2296
2297 static void
2298 dw2_expand_symtabs_for_function (struct objfile *objfile,
2299 const char *func_name)
2300 {
2301 dw2_do_expand_symtabs_matching (objfile, func_name);
2302 }
2303
2304 static void
2305 dw2_expand_all_symtabs (struct objfile *objfile)
2306 {
2307 int i;
2308
2309 dw2_setup (objfile);
2310
2311 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2312 + dwarf2_per_objfile->n_type_comp_units); ++i)
2313 {
2314 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2315
2316 dw2_instantiate_symtab (objfile, per_cu);
2317 }
2318 }
2319
2320 static void
2321 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2322 const char *filename)
2323 {
2324 int i;
2325
2326 dw2_setup (objfile);
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_comp_units); ++i)
2329 {
2330 int j;
2331 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2332
2333 if (per_cu->v.quick->symtab)
2334 continue;
2335
2336 dw2_require_line_header (objfile, per_cu);
2337 if (!per_cu->v.quick->lines)
2338 continue;
2339
2340 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2341 {
2342 const char *this_name = per_cu->v.quick->file_names[j];
2343 if (strcmp (this_name, filename) == 0)
2344 {
2345 dw2_instantiate_symtab (objfile, per_cu);
2346 break;
2347 }
2348 }
2349 }
2350 }
2351
2352 static const char *
2353 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2354 {
2355 struct dwarf2_per_cu_data *per_cu;
2356 offset_type *vec;
2357
2358 dw2_setup (objfile);
2359
2360 if (!dwarf2_per_objfile->index_table)
2361 return NULL;
2362
2363 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2364 name, &vec))
2365 return NULL;
2366
2367 /* Note that this just looks at the very first one named NAME -- but
2368 actually we are looking for a function. find_main_filename
2369 should be rewritten so that it doesn't require a custom hook. It
2370 could just use the ordinary symbol tables. */
2371 /* vec[0] is the length, which must always be >0. */
2372 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2373
2374 dw2_require_line_header (objfile, per_cu);
2375 if (!per_cu->v.quick->lines)
2376 return NULL;
2377
2378 return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
2379 }
2380
2381 static void
2382 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2383 struct objfile *objfile, int global,
2384 int (*callback) (struct block *,
2385 struct symbol *, void *),
2386 void *data,
2387 int (*match) (const char *, const char *),
2388 int (*ordered_compare) (const char *,
2389 const char *))
2390 {
2391 /* Currently unimplemented; used for Ada. The function can be called if the
2392 current language is Ada for a non-Ada objfile using GNU index. As Ada
2393 does not look for non-Ada symbols this function should just return. */
2394 }
2395
2396 static void
2397 dw2_expand_symtabs_matching (struct objfile *objfile,
2398 int (*file_matcher) (const char *, void *),
2399 int (*name_matcher) (const char *, void *),
2400 domain_enum kind,
2401 void *data)
2402 {
2403 int i;
2404 offset_type iter;
2405 struct mapped_index *index;
2406
2407 dw2_setup (objfile);
2408 if (!dwarf2_per_objfile->index_table)
2409 return;
2410 index = dwarf2_per_objfile->index_table;
2411
2412 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2413 + dwarf2_per_objfile->n_type_comp_units); ++i)
2414 {
2415 int j;
2416 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2417
2418 per_cu->v.quick->mark = 0;
2419 if (per_cu->v.quick->symtab)
2420 continue;
2421
2422 dw2_require_line_header (objfile, per_cu);
2423 if (!per_cu->v.quick->lines)
2424 continue;
2425
2426 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2427 {
2428 if (file_matcher (per_cu->v.quick->file_names[j], data))
2429 {
2430 per_cu->v.quick->mark = 1;
2431 break;
2432 }
2433 }
2434 }
2435
2436 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2437 {
2438 offset_type idx = 2 * iter;
2439 const char *name;
2440 offset_type *vec, vec_len, vec_idx;
2441
2442 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2443 continue;
2444
2445 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2446
2447 if (! (*name_matcher) (name, data))
2448 continue;
2449
2450 /* The name was matched, now expand corresponding CUs that were
2451 marked. */
2452 vec = (offset_type *) (index->constant_pool
2453 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2454 vec_len = MAYBE_SWAP (vec[0]);
2455 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2456 {
2457 struct dwarf2_per_cu_data *per_cu;
2458
2459 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2460 if (per_cu->v.quick->mark)
2461 dw2_instantiate_symtab (objfile, per_cu);
2462 }
2463 }
2464 }
2465
2466 static struct symtab *
2467 dw2_find_pc_sect_symtab (struct objfile *objfile,
2468 struct minimal_symbol *msymbol,
2469 CORE_ADDR pc,
2470 struct obj_section *section,
2471 int warn_if_readin)
2472 {
2473 struct dwarf2_per_cu_data *data;
2474
2475 dw2_setup (objfile);
2476
2477 if (!objfile->psymtabs_addrmap)
2478 return NULL;
2479
2480 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2481 if (!data)
2482 return NULL;
2483
2484 if (warn_if_readin && data->v.quick->symtab)
2485 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2486 paddress (get_objfile_arch (objfile), pc));
2487
2488 return dw2_instantiate_symtab (objfile, data);
2489 }
2490
2491 static void
2492 dw2_map_symbol_names (struct objfile *objfile,
2493 void (*fun) (const char *, void *),
2494 void *data)
2495 {
2496 offset_type iter;
2497 struct mapped_index *index;
2498
2499 dw2_setup (objfile);
2500
2501 if (!dwarf2_per_objfile->index_table)
2502 return;
2503 index = dwarf2_per_objfile->index_table;
2504
2505 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2506 {
2507 offset_type idx = 2 * iter;
2508 const char *name;
2509 offset_type *vec, vec_len, vec_idx;
2510
2511 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2512 continue;
2513
2514 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2515
2516 (*fun) (name, data);
2517 }
2518 }
2519
2520 static void
2521 dw2_map_symbol_filenames (struct objfile *objfile,
2522 void (*fun) (const char *, const char *, void *),
2523 void *data)
2524 {
2525 int i;
2526
2527 dw2_setup (objfile);
2528 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2529 + dwarf2_per_objfile->n_type_comp_units); ++i)
2530 {
2531 int j;
2532 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2533
2534 if (per_cu->v.quick->symtab)
2535 continue;
2536
2537 dw2_require_line_header (objfile, per_cu);
2538 if (!per_cu->v.quick->lines)
2539 continue;
2540
2541 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2542 {
2543 const char *this_full_name = dw2_require_full_path (objfile, per_cu,
2544 j);
2545 (*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
2546 }
2547 }
2548 }
2549
2550 static int
2551 dw2_has_symbols (struct objfile *objfile)
2552 {
2553 return 1;
2554 }
2555
2556 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2557 {
2558 dw2_has_symbols,
2559 dw2_find_last_source_symtab,
2560 dw2_forget_cached_source_info,
2561 dw2_lookup_symtab,
2562 dw2_lookup_symbol,
2563 dw2_pre_expand_symtabs_matching,
2564 dw2_print_stats,
2565 dw2_dump,
2566 dw2_relocate,
2567 dw2_expand_symtabs_for_function,
2568 dw2_expand_all_symtabs,
2569 dw2_expand_symtabs_with_filename,
2570 dw2_find_symbol_file,
2571 dw2_map_matching_symbols,
2572 dw2_expand_symtabs_matching,
2573 dw2_find_pc_sect_symtab,
2574 dw2_map_symbol_names,
2575 dw2_map_symbol_filenames
2576 };
2577
2578 /* Initialize for reading DWARF for this objfile. Return 0 if this
2579 file will use psymtabs, or 1 if using the GNU index. */
2580
2581 int
2582 dwarf2_initialize_objfile (struct objfile *objfile)
2583 {
2584 /* If we're about to read full symbols, don't bother with the
2585 indices. In this case we also don't care if some other debug
2586 format is making psymtabs, because they are all about to be
2587 expanded anyway. */
2588 if ((objfile->flags & OBJF_READNOW))
2589 {
2590 int i;
2591
2592 dwarf2_per_objfile->using_index = 1;
2593 create_all_comp_units (objfile);
2594 create_debug_types_hash_table (objfile);
2595
2596 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2597 + dwarf2_per_objfile->n_type_comp_units); ++i)
2598 {
2599 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2600
2601 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2602 struct dwarf2_per_cu_quick_data);
2603 }
2604
2605 /* Return 1 so that gdb sees the "quick" functions. However,
2606 these functions will be no-ops because we will have expanded
2607 all symtabs. */
2608 return 1;
2609 }
2610
2611 if (dwarf2_read_index (objfile))
2612 return 1;
2613
2614 dwarf2_build_psymtabs (objfile);
2615 return 0;
2616 }
2617
2618 \f
2619
2620 /* Build a partial symbol table. */
2621
2622 void
2623 dwarf2_build_psymtabs (struct objfile *objfile)
2624 {
2625 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2626 {
2627 init_psymbol_list (objfile, 1024);
2628 }
2629
2630 dwarf2_build_psymtabs_hard (objfile);
2631 }
2632
2633 /* Return TRUE if OFFSET is within CU_HEADER. */
2634
2635 static inline int
2636 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2637 {
2638 unsigned int bottom = cu_header->offset;
2639 unsigned int top = (cu_header->offset
2640 + cu_header->length
2641 + cu_header->initial_length_size);
2642
2643 return (offset >= bottom && offset < top);
2644 }
2645
2646 /* Read in the comp unit header information from the debug_info at info_ptr.
2647 NOTE: This leaves members offset, first_die_offset to be filled in
2648 by the caller. */
2649
2650 static gdb_byte *
2651 read_comp_unit_head (struct comp_unit_head *cu_header,
2652 gdb_byte *info_ptr, bfd *abfd)
2653 {
2654 int signed_addr;
2655 unsigned int bytes_read;
2656
2657 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2658 cu_header->initial_length_size = bytes_read;
2659 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2660 info_ptr += bytes_read;
2661 cu_header->version = read_2_bytes (abfd, info_ptr);
2662 info_ptr += 2;
2663 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2664 &bytes_read);
2665 info_ptr += bytes_read;
2666 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2667 info_ptr += 1;
2668 signed_addr = bfd_get_sign_extend_vma (abfd);
2669 if (signed_addr < 0)
2670 internal_error (__FILE__, __LINE__,
2671 _("read_comp_unit_head: dwarf from non elf file"));
2672 cu_header->signed_addr_p = signed_addr;
2673
2674 return info_ptr;
2675 }
2676
2677 static gdb_byte *
2678 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2679 gdb_byte *buffer, unsigned int buffer_size,
2680 bfd *abfd)
2681 {
2682 gdb_byte *beg_of_comp_unit = info_ptr;
2683
2684 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2685
2686 if (header->version != 2 && header->version != 3 && header->version != 4)
2687 error (_("Dwarf Error: wrong version in compilation unit header "
2688 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2689 bfd_get_filename (abfd));
2690
2691 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2692 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2693 "(offset 0x%lx + 6) [in module %s]"),
2694 (long) header->abbrev_offset,
2695 (long) (beg_of_comp_unit - buffer),
2696 bfd_get_filename (abfd));
2697
2698 if (beg_of_comp_unit + header->length + header->initial_length_size
2699 > buffer + buffer_size)
2700 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2701 "(offset 0x%lx + 0) [in module %s]"),
2702 (long) header->length,
2703 (long) (beg_of_comp_unit - buffer),
2704 bfd_get_filename (abfd));
2705
2706 return info_ptr;
2707 }
2708
2709 /* Read in the types comp unit header information from .debug_types entry at
2710 types_ptr. The result is a pointer to one past the end of the header. */
2711
2712 static gdb_byte *
2713 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2714 ULONGEST *signature,
2715 gdb_byte *types_ptr, bfd *abfd)
2716 {
2717 gdb_byte *initial_types_ptr = types_ptr;
2718
2719 dwarf2_read_section (dwarf2_per_objfile->objfile,
2720 &dwarf2_per_objfile->types);
2721 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2722
2723 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2724
2725 *signature = read_8_bytes (abfd, types_ptr);
2726 types_ptr += 8;
2727 types_ptr += cu_header->offset_size;
2728 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2729
2730 return types_ptr;
2731 }
2732
2733 /* Allocate a new partial symtab for file named NAME and mark this new
2734 partial symtab as being an include of PST. */
2735
2736 static void
2737 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2738 struct objfile *objfile)
2739 {
2740 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2741
2742 subpst->section_offsets = pst->section_offsets;
2743 subpst->textlow = 0;
2744 subpst->texthigh = 0;
2745
2746 subpst->dependencies = (struct partial_symtab **)
2747 obstack_alloc (&objfile->objfile_obstack,
2748 sizeof (struct partial_symtab *));
2749 subpst->dependencies[0] = pst;
2750 subpst->number_of_dependencies = 1;
2751
2752 subpst->globals_offset = 0;
2753 subpst->n_global_syms = 0;
2754 subpst->statics_offset = 0;
2755 subpst->n_static_syms = 0;
2756 subpst->symtab = NULL;
2757 subpst->read_symtab = pst->read_symtab;
2758 subpst->readin = 0;
2759
2760 /* No private part is necessary for include psymtabs. This property
2761 can be used to differentiate between such include psymtabs and
2762 the regular ones. */
2763 subpst->read_symtab_private = NULL;
2764 }
2765
2766 /* Read the Line Number Program data and extract the list of files
2767 included by the source file represented by PST. Build an include
2768 partial symtab for each of these included files. */
2769
2770 static void
2771 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2772 struct die_info *die,
2773 struct partial_symtab *pst)
2774 {
2775 struct objfile *objfile = cu->objfile;
2776 bfd *abfd = objfile->obfd;
2777 struct line_header *lh = NULL;
2778 struct attribute *attr;
2779
2780 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2781 if (attr)
2782 {
2783 unsigned int line_offset = DW_UNSND (attr);
2784
2785 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2786 }
2787 if (lh == NULL)
2788 return; /* No linetable, so no includes. */
2789
2790 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2791 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2792
2793 free_line_header (lh);
2794 }
2795
2796 static hashval_t
2797 hash_type_signature (const void *item)
2798 {
2799 const struct signatured_type *type_sig = item;
2800
2801 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2802 return type_sig->signature;
2803 }
2804
2805 static int
2806 eq_type_signature (const void *item_lhs, const void *item_rhs)
2807 {
2808 const struct signatured_type *lhs = item_lhs;
2809 const struct signatured_type *rhs = item_rhs;
2810
2811 return lhs->signature == rhs->signature;
2812 }
2813
2814 /* Allocate a hash table for signatured types. */
2815
2816 static htab_t
2817 allocate_signatured_type_table (struct objfile *objfile)
2818 {
2819 return htab_create_alloc_ex (41,
2820 hash_type_signature,
2821 eq_type_signature,
2822 NULL,
2823 &objfile->objfile_obstack,
2824 hashtab_obstack_allocate,
2825 dummy_obstack_deallocate);
2826 }
2827
2828 /* A helper function to add a signatured type CU to a list. */
2829
2830 static int
2831 add_signatured_type_cu_to_list (void **slot, void *datum)
2832 {
2833 struct signatured_type *sigt = *slot;
2834 struct dwarf2_per_cu_data ***datap = datum;
2835
2836 **datap = &sigt->per_cu;
2837 ++*datap;
2838
2839 return 1;
2840 }
2841
2842 /* Create the hash table of all entries in the .debug_types section.
2843 The result is zero if there is an error (e.g. missing .debug_types section),
2844 otherwise non-zero. */
2845
2846 static int
2847 create_debug_types_hash_table (struct objfile *objfile)
2848 {
2849 gdb_byte *info_ptr;
2850 htab_t types_htab;
2851 struct dwarf2_per_cu_data **iter;
2852
2853 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2854 info_ptr = dwarf2_per_objfile->types.buffer;
2855
2856 if (info_ptr == NULL)
2857 {
2858 dwarf2_per_objfile->signatured_types = NULL;
2859 return 0;
2860 }
2861
2862 types_htab = allocate_signatured_type_table (objfile);
2863
2864 if (dwarf2_die_debug)
2865 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2866
2867 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2868 {
2869 unsigned int offset;
2870 unsigned int offset_size;
2871 unsigned int type_offset;
2872 unsigned int length, initial_length_size;
2873 unsigned short version;
2874 ULONGEST signature;
2875 struct signatured_type *type_sig;
2876 void **slot;
2877 gdb_byte *ptr = info_ptr;
2878
2879 offset = ptr - dwarf2_per_objfile->types.buffer;
2880
2881 /* We need to read the type's signature in order to build the hash
2882 table, but we don't need to read anything else just yet. */
2883
2884 /* Sanity check to ensure entire cu is present. */
2885 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2886 if (ptr + length + initial_length_size
2887 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2888 {
2889 complaint (&symfile_complaints,
2890 _("debug type entry runs off end of `.debug_types' section, ignored"));
2891 break;
2892 }
2893
2894 offset_size = initial_length_size == 4 ? 4 : 8;
2895 ptr += initial_length_size;
2896 version = bfd_get_16 (objfile->obfd, ptr);
2897 ptr += 2;
2898 ptr += offset_size; /* abbrev offset */
2899 ptr += 1; /* address size */
2900 signature = bfd_get_64 (objfile->obfd, ptr);
2901 ptr += 8;
2902 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2903
2904 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2905 memset (type_sig, 0, sizeof (*type_sig));
2906 type_sig->signature = signature;
2907 type_sig->offset = offset;
2908 type_sig->type_offset = type_offset;
2909 type_sig->per_cu.objfile = objfile;
2910 type_sig->per_cu.from_debug_types = 1;
2911
2912 slot = htab_find_slot (types_htab, type_sig, INSERT);
2913 gdb_assert (slot != NULL);
2914 *slot = type_sig;
2915
2916 if (dwarf2_die_debug)
2917 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2918 offset, phex (signature, sizeof (signature)));
2919
2920 info_ptr = info_ptr + initial_length_size + length;
2921 }
2922
2923 dwarf2_per_objfile->signatured_types = types_htab;
2924
2925 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2926 dwarf2_per_objfile->type_comp_units
2927 = obstack_alloc (&objfile->objfile_obstack,
2928 dwarf2_per_objfile->n_type_comp_units
2929 * sizeof (struct dwarf2_per_cu_data *));
2930 iter = &dwarf2_per_objfile->type_comp_units[0];
2931 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2932 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2933 == dwarf2_per_objfile->n_type_comp_units);
2934
2935 return 1;
2936 }
2937
2938 /* Lookup a signature based type.
2939 Returns NULL if SIG is not present in the table. */
2940
2941 static struct signatured_type *
2942 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2943 {
2944 struct signatured_type find_entry, *entry;
2945
2946 if (dwarf2_per_objfile->signatured_types == NULL)
2947 {
2948 complaint (&symfile_complaints,
2949 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2950 return 0;
2951 }
2952
2953 find_entry.signature = sig;
2954 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2955 return entry;
2956 }
2957
2958 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2959
2960 static void
2961 init_cu_die_reader (struct die_reader_specs *reader,
2962 struct dwarf2_cu *cu)
2963 {
2964 reader->abfd = cu->objfile->obfd;
2965 reader->cu = cu;
2966 if (cu->per_cu->from_debug_types)
2967 {
2968 gdb_assert (dwarf2_per_objfile->types.readin);
2969 reader->buffer = dwarf2_per_objfile->types.buffer;
2970 }
2971 else
2972 {
2973 gdb_assert (dwarf2_per_objfile->info.readin);
2974 reader->buffer = dwarf2_per_objfile->info.buffer;
2975 }
2976 }
2977
2978 /* Find the base address of the compilation unit for range lists and
2979 location lists. It will normally be specified by DW_AT_low_pc.
2980 In DWARF-3 draft 4, the base address could be overridden by
2981 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2982 compilation units with discontinuous ranges. */
2983
2984 static void
2985 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2986 {
2987 struct attribute *attr;
2988
2989 cu->base_known = 0;
2990 cu->base_address = 0;
2991
2992 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2993 if (attr)
2994 {
2995 cu->base_address = DW_ADDR (attr);
2996 cu->base_known = 1;
2997 }
2998 else
2999 {
3000 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3001 if (attr)
3002 {
3003 cu->base_address = DW_ADDR (attr);
3004 cu->base_known = 1;
3005 }
3006 }
3007 }
3008
3009 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3010 to combine the common parts.
3011 Process a compilation unit for a psymtab.
3012 BUFFER is a pointer to the beginning of the dwarf section buffer,
3013 either .debug_info or debug_types.
3014 INFO_PTR is a pointer to the start of the CU.
3015 Returns a pointer to the next CU. */
3016
3017 static gdb_byte *
3018 process_psymtab_comp_unit (struct objfile *objfile,
3019 struct dwarf2_per_cu_data *this_cu,
3020 gdb_byte *buffer, gdb_byte *info_ptr,
3021 unsigned int buffer_size)
3022 {
3023 bfd *abfd = objfile->obfd;
3024 gdb_byte *beg_of_comp_unit = info_ptr;
3025 struct die_info *comp_unit_die;
3026 struct partial_symtab *pst;
3027 CORE_ADDR baseaddr;
3028 struct cleanup *back_to_inner;
3029 struct dwarf2_cu cu;
3030 int has_children, has_pc_info;
3031 struct attribute *attr;
3032 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3033 struct die_reader_specs reader_specs;
3034
3035 init_one_comp_unit (&cu, objfile);
3036 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3037
3038 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3039 buffer, buffer_size,
3040 abfd);
3041
3042 /* Complete the cu_header. */
3043 cu.header.offset = beg_of_comp_unit - buffer;
3044 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3045
3046 cu.list_in_scope = &file_symbols;
3047
3048 /* If this compilation unit was already read in, free the
3049 cached copy in order to read it in again. This is
3050 necessary because we skipped some symbols when we first
3051 read in the compilation unit (see load_partial_dies).
3052 This problem could be avoided, but the benefit is
3053 unclear. */
3054 if (this_cu->cu != NULL)
3055 free_one_cached_comp_unit (this_cu->cu);
3056
3057 /* Note that this is a pointer to our stack frame, being
3058 added to a global data structure. It will be cleaned up
3059 in free_stack_comp_unit when we finish with this
3060 compilation unit. */
3061 this_cu->cu = &cu;
3062 cu.per_cu = this_cu;
3063
3064 /* Read the abbrevs for this compilation unit into a table. */
3065 dwarf2_read_abbrevs (abfd, &cu);
3066 make_cleanup (dwarf2_free_abbrev_table, &cu);
3067
3068 /* Read the compilation unit die. */
3069 if (this_cu->from_debug_types)
3070 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3071 init_cu_die_reader (&reader_specs, &cu);
3072 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3073 &has_children);
3074
3075 if (this_cu->from_debug_types)
3076 {
3077 /* offset,length haven't been set yet for type units. */
3078 this_cu->offset = cu.header.offset;
3079 this_cu->length = cu.header.length + cu.header.initial_length_size;
3080 }
3081 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3082 {
3083 info_ptr = (beg_of_comp_unit + cu.header.length
3084 + cu.header.initial_length_size);
3085 do_cleanups (back_to_inner);
3086 return info_ptr;
3087 }
3088
3089 prepare_one_comp_unit (&cu, comp_unit_die);
3090
3091 /* Allocate a new partial symbol table structure. */
3092 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3093 pst = start_psymtab_common (objfile, objfile->section_offsets,
3094 (attr != NULL) ? DW_STRING (attr) : "",
3095 /* TEXTLOW and TEXTHIGH are set below. */
3096 0,
3097 objfile->global_psymbols.next,
3098 objfile->static_psymbols.next);
3099
3100 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3101 if (attr != NULL)
3102 pst->dirname = DW_STRING (attr);
3103
3104 pst->read_symtab_private = this_cu;
3105
3106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3107
3108 /* Store the function that reads in the rest of the symbol table */
3109 pst->read_symtab = dwarf2_psymtab_to_symtab;
3110
3111 this_cu->v.psymtab = pst;
3112
3113 dwarf2_find_base_address (comp_unit_die, &cu);
3114
3115 /* Possibly set the default values of LOWPC and HIGHPC from
3116 `DW_AT_ranges'. */
3117 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3118 &best_highpc, &cu, pst);
3119 if (has_pc_info == 1 && best_lowpc < best_highpc)
3120 /* Store the contiguous range if it is not empty; it can be empty for
3121 CUs with no code. */
3122 addrmap_set_empty (objfile->psymtabs_addrmap,
3123 best_lowpc + baseaddr,
3124 best_highpc + baseaddr - 1, pst);
3125
3126 /* Check if comp unit has_children.
3127 If so, read the rest of the partial symbols from this comp unit.
3128 If not, there's no more debug_info for this comp unit. */
3129 if (has_children)
3130 {
3131 struct partial_die_info *first_die;
3132 CORE_ADDR lowpc, highpc;
3133
3134 lowpc = ((CORE_ADDR) -1);
3135 highpc = ((CORE_ADDR) 0);
3136
3137 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3138
3139 scan_partial_symbols (first_die, &lowpc, &highpc,
3140 ! has_pc_info, &cu);
3141
3142 /* If we didn't find a lowpc, set it to highpc to avoid
3143 complaints from `maint check'. */
3144 if (lowpc == ((CORE_ADDR) -1))
3145 lowpc = highpc;
3146
3147 /* If the compilation unit didn't have an explicit address range,
3148 then use the information extracted from its child dies. */
3149 if (! has_pc_info)
3150 {
3151 best_lowpc = lowpc;
3152 best_highpc = highpc;
3153 }
3154 }
3155 pst->textlow = best_lowpc + baseaddr;
3156 pst->texthigh = best_highpc + baseaddr;
3157
3158 pst->n_global_syms = objfile->global_psymbols.next -
3159 (objfile->global_psymbols.list + pst->globals_offset);
3160 pst->n_static_syms = objfile->static_psymbols.next -
3161 (objfile->static_psymbols.list + pst->statics_offset);
3162 sort_pst_symbols (pst);
3163
3164 info_ptr = (beg_of_comp_unit + cu.header.length
3165 + cu.header.initial_length_size);
3166
3167 if (this_cu->from_debug_types)
3168 {
3169 /* It's not clear we want to do anything with stmt lists here.
3170 Waiting to see what gcc ultimately does. */
3171 }
3172 else
3173 {
3174 /* Get the list of files included in the current compilation unit,
3175 and build a psymtab for each of them. */
3176 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3177 }
3178
3179 do_cleanups (back_to_inner);
3180
3181 return info_ptr;
3182 }
3183
3184 /* Traversal function for htab_traverse_noresize.
3185 Process one .debug_types comp-unit. */
3186
3187 static int
3188 process_type_comp_unit (void **slot, void *info)
3189 {
3190 struct signatured_type *entry = (struct signatured_type *) *slot;
3191 struct objfile *objfile = (struct objfile *) info;
3192 struct dwarf2_per_cu_data *this_cu;
3193
3194 this_cu = &entry->per_cu;
3195
3196 gdb_assert (dwarf2_per_objfile->types.readin);
3197 process_psymtab_comp_unit (objfile, this_cu,
3198 dwarf2_per_objfile->types.buffer,
3199 dwarf2_per_objfile->types.buffer + entry->offset,
3200 dwarf2_per_objfile->types.size);
3201
3202 return 1;
3203 }
3204
3205 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3206 Build partial symbol tables for the .debug_types comp-units. */
3207
3208 static void
3209 build_type_psymtabs (struct objfile *objfile)
3210 {
3211 if (! create_debug_types_hash_table (objfile))
3212 return;
3213
3214 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3215 process_type_comp_unit, objfile);
3216 }
3217
3218 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3219
3220 static void
3221 psymtabs_addrmap_cleanup (void *o)
3222 {
3223 struct objfile *objfile = o;
3224
3225 objfile->psymtabs_addrmap = NULL;
3226 }
3227
3228 /* Build the partial symbol table by doing a quick pass through the
3229 .debug_info and .debug_abbrev sections. */
3230
3231 static void
3232 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3233 {
3234 gdb_byte *info_ptr;
3235 struct cleanup *back_to, *addrmap_cleanup;
3236 struct obstack temp_obstack;
3237
3238 dwarf2_per_objfile->reading_partial_symbols = 1;
3239
3240 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3241 info_ptr = dwarf2_per_objfile->info.buffer;
3242
3243 /* Any cached compilation units will be linked by the per-objfile
3244 read_in_chain. Make sure to free them when we're done. */
3245 back_to = make_cleanup (free_cached_comp_units, NULL);
3246
3247 build_type_psymtabs (objfile);
3248
3249 create_all_comp_units (objfile);
3250
3251 /* Create a temporary address map on a temporary obstack. We later
3252 copy this to the final obstack. */
3253 obstack_init (&temp_obstack);
3254 make_cleanup_obstack_free (&temp_obstack);
3255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3257
3258 /* Since the objects we're extracting from .debug_info vary in
3259 length, only the individual functions to extract them (like
3260 read_comp_unit_head and load_partial_die) can really know whether
3261 the buffer is large enough to hold another complete object.
3262
3263 At the moment, they don't actually check that. If .debug_info
3264 holds just one extra byte after the last compilation unit's dies,
3265 then read_comp_unit_head will happily read off the end of the
3266 buffer. read_partial_die is similarly casual. Those functions
3267 should be fixed.
3268
3269 For this loop condition, simply checking whether there's any data
3270 left at all should be sufficient. */
3271
3272 while (info_ptr < (dwarf2_per_objfile->info.buffer
3273 + dwarf2_per_objfile->info.size))
3274 {
3275 struct dwarf2_per_cu_data *this_cu;
3276
3277 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3278 objfile);
3279
3280 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3281 dwarf2_per_objfile->info.buffer,
3282 info_ptr,
3283 dwarf2_per_objfile->info.size);
3284 }
3285
3286 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3287 &objfile->objfile_obstack);
3288 discard_cleanups (addrmap_cleanup);
3289
3290 do_cleanups (back_to);
3291 }
3292
3293 /* Load the partial DIEs for a secondary CU into memory. */
3294
3295 static void
3296 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3297 struct objfile *objfile)
3298 {
3299 bfd *abfd = objfile->obfd;
3300 gdb_byte *info_ptr, *beg_of_comp_unit;
3301 struct die_info *comp_unit_die;
3302 struct dwarf2_cu *cu;
3303 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3304 int has_children;
3305 struct die_reader_specs reader_specs;
3306 int read_cu = 0;
3307
3308 gdb_assert (! this_cu->from_debug_types);
3309
3310 gdb_assert (dwarf2_per_objfile->info.readin);
3311 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3312 beg_of_comp_unit = info_ptr;
3313
3314 if (this_cu->cu == NULL)
3315 {
3316 cu = xmalloc (sizeof (*cu));
3317 init_one_comp_unit (cu, objfile);
3318
3319 read_cu = 1;
3320
3321 /* If an error occurs while loading, release our storage. */
3322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3323
3324 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3325 dwarf2_per_objfile->info.buffer,
3326 dwarf2_per_objfile->info.size,
3327 abfd);
3328
3329 /* Complete the cu_header. */
3330 cu->header.offset = this_cu->offset;
3331 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3332
3333 /* Link this compilation unit into the compilation unit tree. */
3334 this_cu->cu = cu;
3335 cu->per_cu = this_cu;
3336
3337 /* Link this CU into read_in_chain. */
3338 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3339 dwarf2_per_objfile->read_in_chain = this_cu;
3340 }
3341 else
3342 {
3343 cu = this_cu->cu;
3344 info_ptr += cu->header.first_die_offset;
3345 }
3346
3347 /* Read the abbrevs for this compilation unit into a table. */
3348 gdb_assert (cu->dwarf2_abbrevs == NULL);
3349 dwarf2_read_abbrevs (abfd, cu);
3350 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3351
3352 /* Read the compilation unit die. */
3353 init_cu_die_reader (&reader_specs, cu);
3354 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3355 &has_children);
3356
3357 prepare_one_comp_unit (cu, comp_unit_die);
3358
3359 /* Check if comp unit has_children.
3360 If so, read the rest of the partial symbols from this comp unit.
3361 If not, there's no more debug_info for this comp unit. */
3362 if (has_children)
3363 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3364
3365 do_cleanups (free_abbrevs_cleanup);
3366
3367 if (read_cu)
3368 {
3369 /* We've successfully allocated this compilation unit. Let our
3370 caller clean it up when finished with it. */
3371 discard_cleanups (free_cu_cleanup);
3372 }
3373 }
3374
3375 /* Create a list of all compilation units in OBJFILE. We do this only
3376 if an inter-comp-unit reference is found; presumably if there is one,
3377 there will be many, and one will occur early in the .debug_info section.
3378 So there's no point in building this list incrementally. */
3379
3380 static void
3381 create_all_comp_units (struct objfile *objfile)
3382 {
3383 int n_allocated;
3384 int n_comp_units;
3385 struct dwarf2_per_cu_data **all_comp_units;
3386 gdb_byte *info_ptr;
3387
3388 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3389 info_ptr = dwarf2_per_objfile->info.buffer;
3390
3391 n_comp_units = 0;
3392 n_allocated = 10;
3393 all_comp_units = xmalloc (n_allocated
3394 * sizeof (struct dwarf2_per_cu_data *));
3395
3396 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3397 {
3398 unsigned int length, initial_length_size;
3399 struct dwarf2_per_cu_data *this_cu;
3400 unsigned int offset;
3401
3402 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3403
3404 /* Read just enough information to find out where the next
3405 compilation unit is. */
3406 length = read_initial_length (objfile->obfd, info_ptr,
3407 &initial_length_size);
3408
3409 /* Save the compilation unit for later lookup. */
3410 this_cu = obstack_alloc (&objfile->objfile_obstack,
3411 sizeof (struct dwarf2_per_cu_data));
3412 memset (this_cu, 0, sizeof (*this_cu));
3413 this_cu->offset = offset;
3414 this_cu->length = length + initial_length_size;
3415 this_cu->objfile = objfile;
3416
3417 if (n_comp_units == n_allocated)
3418 {
3419 n_allocated *= 2;
3420 all_comp_units = xrealloc (all_comp_units,
3421 n_allocated
3422 * sizeof (struct dwarf2_per_cu_data *));
3423 }
3424 all_comp_units[n_comp_units++] = this_cu;
3425
3426 info_ptr = info_ptr + this_cu->length;
3427 }
3428
3429 dwarf2_per_objfile->all_comp_units
3430 = obstack_alloc (&objfile->objfile_obstack,
3431 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3432 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3433 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3434 xfree (all_comp_units);
3435 dwarf2_per_objfile->n_comp_units = n_comp_units;
3436 }
3437
3438 /* Process all loaded DIEs for compilation unit CU, starting at
3439 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3440 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3441 DW_AT_ranges). If NEED_PC is set, then this function will set
3442 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3443 and record the covered ranges in the addrmap. */
3444
3445 static void
3446 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3447 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3448 {
3449 struct partial_die_info *pdi;
3450
3451 /* Now, march along the PDI's, descending into ones which have
3452 interesting children but skipping the children of the other ones,
3453 until we reach the end of the compilation unit. */
3454
3455 pdi = first_die;
3456
3457 while (pdi != NULL)
3458 {
3459 fixup_partial_die (pdi, cu);
3460
3461 /* Anonymous namespaces or modules have no name but have interesting
3462 children, so we need to look at them. Ditto for anonymous
3463 enums. */
3464
3465 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3466 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3467 {
3468 switch (pdi->tag)
3469 {
3470 case DW_TAG_subprogram:
3471 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3472 break;
3473 case DW_TAG_constant:
3474 case DW_TAG_variable:
3475 case DW_TAG_typedef:
3476 case DW_TAG_union_type:
3477 if (!pdi->is_declaration)
3478 {
3479 add_partial_symbol (pdi, cu);
3480 }
3481 break;
3482 case DW_TAG_class_type:
3483 case DW_TAG_interface_type:
3484 case DW_TAG_structure_type:
3485 if (!pdi->is_declaration)
3486 {
3487 add_partial_symbol (pdi, cu);
3488 }
3489 break;
3490 case DW_TAG_enumeration_type:
3491 if (!pdi->is_declaration)
3492 add_partial_enumeration (pdi, cu);
3493 break;
3494 case DW_TAG_base_type:
3495 case DW_TAG_subrange_type:
3496 /* File scope base type definitions are added to the partial
3497 symbol table. */
3498 add_partial_symbol (pdi, cu);
3499 break;
3500 case DW_TAG_namespace:
3501 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3502 break;
3503 case DW_TAG_module:
3504 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3505 break;
3506 default:
3507 break;
3508 }
3509 }
3510
3511 /* If the die has a sibling, skip to the sibling. */
3512
3513 pdi = pdi->die_sibling;
3514 }
3515 }
3516
3517 /* Functions used to compute the fully scoped name of a partial DIE.
3518
3519 Normally, this is simple. For C++, the parent DIE's fully scoped
3520 name is concatenated with "::" and the partial DIE's name. For
3521 Java, the same thing occurs except that "." is used instead of "::".
3522 Enumerators are an exception; they use the scope of their parent
3523 enumeration type, i.e. the name of the enumeration type is not
3524 prepended to the enumerator.
3525
3526 There are two complexities. One is DW_AT_specification; in this
3527 case "parent" means the parent of the target of the specification,
3528 instead of the direct parent of the DIE. The other is compilers
3529 which do not emit DW_TAG_namespace; in this case we try to guess
3530 the fully qualified name of structure types from their members'
3531 linkage names. This must be done using the DIE's children rather
3532 than the children of any DW_AT_specification target. We only need
3533 to do this for structures at the top level, i.e. if the target of
3534 any DW_AT_specification (if any; otherwise the DIE itself) does not
3535 have a parent. */
3536
3537 /* Compute the scope prefix associated with PDI's parent, in
3538 compilation unit CU. The result will be allocated on CU's
3539 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3540 field. NULL is returned if no prefix is necessary. */
3541 static char *
3542 partial_die_parent_scope (struct partial_die_info *pdi,
3543 struct dwarf2_cu *cu)
3544 {
3545 char *grandparent_scope;
3546 struct partial_die_info *parent, *real_pdi;
3547
3548 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3549 then this means the parent of the specification DIE. */
3550
3551 real_pdi = pdi;
3552 while (real_pdi->has_specification)
3553 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3554
3555 parent = real_pdi->die_parent;
3556 if (parent == NULL)
3557 return NULL;
3558
3559 if (parent->scope_set)
3560 return parent->scope;
3561
3562 fixup_partial_die (parent, cu);
3563
3564 grandparent_scope = partial_die_parent_scope (parent, cu);
3565
3566 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3567 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3568 Work around this problem here. */
3569 if (cu->language == language_cplus
3570 && parent->tag == DW_TAG_namespace
3571 && strcmp (parent->name, "::") == 0
3572 && grandparent_scope == NULL)
3573 {
3574 parent->scope = NULL;
3575 parent->scope_set = 1;
3576 return NULL;
3577 }
3578
3579 if (parent->tag == DW_TAG_namespace
3580 || parent->tag == DW_TAG_module
3581 || parent->tag == DW_TAG_structure_type
3582 || parent->tag == DW_TAG_class_type
3583 || parent->tag == DW_TAG_interface_type
3584 || parent->tag == DW_TAG_union_type
3585 || parent->tag == DW_TAG_enumeration_type)
3586 {
3587 if (grandparent_scope == NULL)
3588 parent->scope = parent->name;
3589 else
3590 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3591 parent->name, 0, cu);
3592 }
3593 else if (parent->tag == DW_TAG_enumerator)
3594 /* Enumerators should not get the name of the enumeration as a prefix. */
3595 parent->scope = grandparent_scope;
3596 else
3597 {
3598 /* FIXME drow/2004-04-01: What should we be doing with
3599 function-local names? For partial symbols, we should probably be
3600 ignoring them. */
3601 complaint (&symfile_complaints,
3602 _("unhandled containing DIE tag %d for DIE at %d"),
3603 parent->tag, pdi->offset);
3604 parent->scope = grandparent_scope;
3605 }
3606
3607 parent->scope_set = 1;
3608 return parent->scope;
3609 }
3610
3611 /* Return the fully scoped name associated with PDI, from compilation unit
3612 CU. The result will be allocated with malloc. */
3613 static char *
3614 partial_die_full_name (struct partial_die_info *pdi,
3615 struct dwarf2_cu *cu)
3616 {
3617 char *parent_scope;
3618
3619 /* If this is a template instantiation, we can not work out the
3620 template arguments from partial DIEs. So, unfortunately, we have
3621 to go through the full DIEs. At least any work we do building
3622 types here will be reused if full symbols are loaded later. */
3623 if (pdi->has_template_arguments)
3624 {
3625 fixup_partial_die (pdi, cu);
3626
3627 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3628 {
3629 struct die_info *die;
3630 struct attribute attr;
3631 struct dwarf2_cu *ref_cu = cu;
3632
3633 attr.name = 0;
3634 attr.form = DW_FORM_ref_addr;
3635 attr.u.addr = pdi->offset;
3636 die = follow_die_ref (NULL, &attr, &ref_cu);
3637
3638 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3639 }
3640 }
3641
3642 parent_scope = partial_die_parent_scope (pdi, cu);
3643 if (parent_scope == NULL)
3644 return NULL;
3645 else
3646 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3647 }
3648
3649 static void
3650 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3651 {
3652 struct objfile *objfile = cu->objfile;
3653 CORE_ADDR addr = 0;
3654 char *actual_name = NULL;
3655 const struct partial_symbol *psym = NULL;
3656 CORE_ADDR baseaddr;
3657 int built_actual_name = 0;
3658
3659 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3660
3661 actual_name = partial_die_full_name (pdi, cu);
3662 if (actual_name)
3663 built_actual_name = 1;
3664
3665 if (actual_name == NULL)
3666 actual_name = pdi->name;
3667
3668 switch (pdi->tag)
3669 {
3670 case DW_TAG_subprogram:
3671 if (pdi->is_external || cu->language == language_ada)
3672 {
3673 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3674 of the global scope. But in Ada, we want to be able to access
3675 nested procedures globally. So all Ada subprograms are stored
3676 in the global scope. */
3677 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3678 mst_text, objfile); */
3679 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3680 built_actual_name,
3681 VAR_DOMAIN, LOC_BLOCK,
3682 &objfile->global_psymbols,
3683 0, pdi->lowpc + baseaddr,
3684 cu->language, objfile);
3685 }
3686 else
3687 {
3688 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3689 mst_file_text, objfile); */
3690 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3691 built_actual_name,
3692 VAR_DOMAIN, LOC_BLOCK,
3693 &objfile->static_psymbols,
3694 0, pdi->lowpc + baseaddr,
3695 cu->language, objfile);
3696 }
3697 break;
3698 case DW_TAG_constant:
3699 {
3700 struct psymbol_allocation_list *list;
3701
3702 if (pdi->is_external)
3703 list = &objfile->global_psymbols;
3704 else
3705 list = &objfile->static_psymbols;
3706 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3707 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3708 list, 0, 0, cu->language, objfile);
3709
3710 }
3711 break;
3712 case DW_TAG_variable:
3713 if (pdi->locdesc)
3714 addr = decode_locdesc (pdi->locdesc, cu);
3715
3716 if (pdi->locdesc
3717 && addr == 0
3718 && !dwarf2_per_objfile->has_section_at_zero)
3719 {
3720 /* A global or static variable may also have been stripped
3721 out by the linker if unused, in which case its address
3722 will be nullified; do not add such variables into partial
3723 symbol table then. */
3724 }
3725 else if (pdi->is_external)
3726 {
3727 /* Global Variable.
3728 Don't enter into the minimal symbol tables as there is
3729 a minimal symbol table entry from the ELF symbols already.
3730 Enter into partial symbol table if it has a location
3731 descriptor or a type.
3732 If the location descriptor is missing, new_symbol will create
3733 a LOC_UNRESOLVED symbol, the address of the variable will then
3734 be determined from the minimal symbol table whenever the variable
3735 is referenced.
3736 The address for the partial symbol table entry is not
3737 used by GDB, but it comes in handy for debugging partial symbol
3738 table building. */
3739
3740 if (pdi->locdesc || pdi->has_type)
3741 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3742 built_actual_name,
3743 VAR_DOMAIN, LOC_STATIC,
3744 &objfile->global_psymbols,
3745 0, addr + baseaddr,
3746 cu->language, objfile);
3747 }
3748 else
3749 {
3750 /* Static Variable. Skip symbols without location descriptors. */
3751 if (pdi->locdesc == NULL)
3752 {
3753 if (built_actual_name)
3754 xfree (actual_name);
3755 return;
3756 }
3757 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3758 mst_file_data, objfile); */
3759 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3760 built_actual_name,
3761 VAR_DOMAIN, LOC_STATIC,
3762 &objfile->static_psymbols,
3763 0, addr + baseaddr,
3764 cu->language, objfile);
3765 }
3766 break;
3767 case DW_TAG_typedef:
3768 case DW_TAG_base_type:
3769 case DW_TAG_subrange_type:
3770 add_psymbol_to_list (actual_name, strlen (actual_name),
3771 built_actual_name,
3772 VAR_DOMAIN, LOC_TYPEDEF,
3773 &objfile->static_psymbols,
3774 0, (CORE_ADDR) 0, cu->language, objfile);
3775 break;
3776 case DW_TAG_namespace:
3777 add_psymbol_to_list (actual_name, strlen (actual_name),
3778 built_actual_name,
3779 VAR_DOMAIN, LOC_TYPEDEF,
3780 &objfile->global_psymbols,
3781 0, (CORE_ADDR) 0, cu->language, objfile);
3782 break;
3783 case DW_TAG_class_type:
3784 case DW_TAG_interface_type:
3785 case DW_TAG_structure_type:
3786 case DW_TAG_union_type:
3787 case DW_TAG_enumeration_type:
3788 /* Skip external references. The DWARF standard says in the section
3789 about "Structure, Union, and Class Type Entries": "An incomplete
3790 structure, union or class type is represented by a structure,
3791 union or class entry that does not have a byte size attribute
3792 and that has a DW_AT_declaration attribute." */
3793 if (!pdi->has_byte_size && pdi->is_declaration)
3794 {
3795 if (built_actual_name)
3796 xfree (actual_name);
3797 return;
3798 }
3799
3800 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3801 static vs. global. */
3802 add_psymbol_to_list (actual_name, strlen (actual_name),
3803 built_actual_name,
3804 STRUCT_DOMAIN, LOC_TYPEDEF,
3805 (cu->language == language_cplus
3806 || cu->language == language_java)
3807 ? &objfile->global_psymbols
3808 : &objfile->static_psymbols,
3809 0, (CORE_ADDR) 0, cu->language, objfile);
3810
3811 break;
3812 case DW_TAG_enumerator:
3813 add_psymbol_to_list (actual_name, strlen (actual_name),
3814 built_actual_name,
3815 VAR_DOMAIN, LOC_CONST,
3816 (cu->language == language_cplus
3817 || cu->language == language_java)
3818 ? &objfile->global_psymbols
3819 : &objfile->static_psymbols,
3820 0, (CORE_ADDR) 0, cu->language, objfile);
3821 break;
3822 default:
3823 break;
3824 }
3825
3826 if (built_actual_name)
3827 xfree (actual_name);
3828 }
3829
3830 /* Read a partial die corresponding to a namespace; also, add a symbol
3831 corresponding to that namespace to the symbol table. NAMESPACE is
3832 the name of the enclosing namespace. */
3833
3834 static void
3835 add_partial_namespace (struct partial_die_info *pdi,
3836 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3837 int need_pc, struct dwarf2_cu *cu)
3838 {
3839 /* Add a symbol for the namespace. */
3840
3841 add_partial_symbol (pdi, cu);
3842
3843 /* Now scan partial symbols in that namespace. */
3844
3845 if (pdi->has_children)
3846 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3847 }
3848
3849 /* Read a partial die corresponding to a Fortran module. */
3850
3851 static void
3852 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3853 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3854 {
3855 /* Now scan partial symbols in that module. */
3856
3857 if (pdi->has_children)
3858 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3859 }
3860
3861 /* Read a partial die corresponding to a subprogram and create a partial
3862 symbol for that subprogram. When the CU language allows it, this
3863 routine also defines a partial symbol for each nested subprogram
3864 that this subprogram contains.
3865
3866 DIE my also be a lexical block, in which case we simply search
3867 recursively for suprograms defined inside that lexical block.
3868 Again, this is only performed when the CU language allows this
3869 type of definitions. */
3870
3871 static void
3872 add_partial_subprogram (struct partial_die_info *pdi,
3873 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3874 int need_pc, struct dwarf2_cu *cu)
3875 {
3876 if (pdi->tag == DW_TAG_subprogram)
3877 {
3878 if (pdi->has_pc_info)
3879 {
3880 if (pdi->lowpc < *lowpc)
3881 *lowpc = pdi->lowpc;
3882 if (pdi->highpc > *highpc)
3883 *highpc = pdi->highpc;
3884 if (need_pc)
3885 {
3886 CORE_ADDR baseaddr;
3887 struct objfile *objfile = cu->objfile;
3888
3889 baseaddr = ANOFFSET (objfile->section_offsets,
3890 SECT_OFF_TEXT (objfile));
3891 addrmap_set_empty (objfile->psymtabs_addrmap,
3892 pdi->lowpc + baseaddr,
3893 pdi->highpc - 1 + baseaddr,
3894 cu->per_cu->v.psymtab);
3895 }
3896 if (!pdi->is_declaration)
3897 /* Ignore subprogram DIEs that do not have a name, they are
3898 illegal. Do not emit a complaint at this point, we will
3899 do so when we convert this psymtab into a symtab. */
3900 if (pdi->name)
3901 add_partial_symbol (pdi, cu);
3902 }
3903 }
3904
3905 if (! pdi->has_children)
3906 return;
3907
3908 if (cu->language == language_ada)
3909 {
3910 pdi = pdi->die_child;
3911 while (pdi != NULL)
3912 {
3913 fixup_partial_die (pdi, cu);
3914 if (pdi->tag == DW_TAG_subprogram
3915 || pdi->tag == DW_TAG_lexical_block)
3916 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3917 pdi = pdi->die_sibling;
3918 }
3919 }
3920 }
3921
3922 /* Read a partial die corresponding to an enumeration type. */
3923
3924 static void
3925 add_partial_enumeration (struct partial_die_info *enum_pdi,
3926 struct dwarf2_cu *cu)
3927 {
3928 struct partial_die_info *pdi;
3929
3930 if (enum_pdi->name != NULL)
3931 add_partial_symbol (enum_pdi, cu);
3932
3933 pdi = enum_pdi->die_child;
3934 while (pdi)
3935 {
3936 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3937 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3938 else
3939 add_partial_symbol (pdi, cu);
3940 pdi = pdi->die_sibling;
3941 }
3942 }
3943
3944 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3945 Return the corresponding abbrev, or NULL if the number is zero (indicating
3946 an empty DIE). In either case *BYTES_READ will be set to the length of
3947 the initial number. */
3948
3949 static struct abbrev_info *
3950 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3951 struct dwarf2_cu *cu)
3952 {
3953 bfd *abfd = cu->objfile->obfd;
3954 unsigned int abbrev_number;
3955 struct abbrev_info *abbrev;
3956
3957 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3958
3959 if (abbrev_number == 0)
3960 return NULL;
3961
3962 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3963 if (!abbrev)
3964 {
3965 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3966 bfd_get_filename (abfd));
3967 }
3968
3969 return abbrev;
3970 }
3971
3972 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3973 Returns a pointer to the end of a series of DIEs, terminated by an empty
3974 DIE. Any children of the skipped DIEs will also be skipped. */
3975
3976 static gdb_byte *
3977 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3978 {
3979 struct abbrev_info *abbrev;
3980 unsigned int bytes_read;
3981
3982 while (1)
3983 {
3984 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3985 if (abbrev == NULL)
3986 return info_ptr + bytes_read;
3987 else
3988 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3989 }
3990 }
3991
3992 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3993 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3994 abbrev corresponding to that skipped uleb128 should be passed in
3995 ABBREV. Returns a pointer to this DIE's sibling, skipping any
3996 children. */
3997
3998 static gdb_byte *
3999 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4000 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4001 {
4002 unsigned int bytes_read;
4003 struct attribute attr;
4004 bfd *abfd = cu->objfile->obfd;
4005 unsigned int form, i;
4006
4007 for (i = 0; i < abbrev->num_attrs; i++)
4008 {
4009 /* The only abbrev we care about is DW_AT_sibling. */
4010 if (abbrev->attrs[i].name == DW_AT_sibling)
4011 {
4012 read_attribute (&attr, &abbrev->attrs[i],
4013 abfd, info_ptr, cu);
4014 if (attr.form == DW_FORM_ref_addr)
4015 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4016 else
4017 return buffer + dwarf2_get_ref_die_offset (&attr);
4018 }
4019
4020 /* If it isn't DW_AT_sibling, skip this attribute. */
4021 form = abbrev->attrs[i].form;
4022 skip_attribute:
4023 switch (form)
4024 {
4025 case DW_FORM_ref_addr:
4026 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4027 and later it is offset sized. */
4028 if (cu->header.version == 2)
4029 info_ptr += cu->header.addr_size;
4030 else
4031 info_ptr += cu->header.offset_size;
4032 break;
4033 case DW_FORM_addr:
4034 info_ptr += cu->header.addr_size;
4035 break;
4036 case DW_FORM_data1:
4037 case DW_FORM_ref1:
4038 case DW_FORM_flag:
4039 info_ptr += 1;
4040 break;
4041 case DW_FORM_flag_present:
4042 break;
4043 case DW_FORM_data2:
4044 case DW_FORM_ref2:
4045 info_ptr += 2;
4046 break;
4047 case DW_FORM_data4:
4048 case DW_FORM_ref4:
4049 info_ptr += 4;
4050 break;
4051 case DW_FORM_data8:
4052 case DW_FORM_ref8:
4053 case DW_FORM_sig8:
4054 info_ptr += 8;
4055 break;
4056 case DW_FORM_string:
4057 read_direct_string (abfd, info_ptr, &bytes_read);
4058 info_ptr += bytes_read;
4059 break;
4060 case DW_FORM_sec_offset:
4061 case DW_FORM_strp:
4062 info_ptr += cu->header.offset_size;
4063 break;
4064 case DW_FORM_exprloc:
4065 case DW_FORM_block:
4066 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4067 info_ptr += bytes_read;
4068 break;
4069 case DW_FORM_block1:
4070 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4071 break;
4072 case DW_FORM_block2:
4073 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4074 break;
4075 case DW_FORM_block4:
4076 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4077 break;
4078 case DW_FORM_sdata:
4079 case DW_FORM_udata:
4080 case DW_FORM_ref_udata:
4081 info_ptr = skip_leb128 (abfd, info_ptr);
4082 break;
4083 case DW_FORM_indirect:
4084 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4085 info_ptr += bytes_read;
4086 /* We need to continue parsing from here, so just go back to
4087 the top. */
4088 goto skip_attribute;
4089
4090 default:
4091 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4092 dwarf_form_name (form),
4093 bfd_get_filename (abfd));
4094 }
4095 }
4096
4097 if (abbrev->has_children)
4098 return skip_children (buffer, info_ptr, cu);
4099 else
4100 return info_ptr;
4101 }
4102
4103 /* Locate ORIG_PDI's sibling.
4104 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4105 in BUFFER. */
4106
4107 static gdb_byte *
4108 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4109 gdb_byte *buffer, gdb_byte *info_ptr,
4110 bfd *abfd, struct dwarf2_cu *cu)
4111 {
4112 /* Do we know the sibling already? */
4113
4114 if (orig_pdi->sibling)
4115 return orig_pdi->sibling;
4116
4117 /* Are there any children to deal with? */
4118
4119 if (!orig_pdi->has_children)
4120 return info_ptr;
4121
4122 /* Skip the children the long way. */
4123
4124 return skip_children (buffer, info_ptr, cu);
4125 }
4126
4127 /* Expand this partial symbol table into a full symbol table. */
4128
4129 static void
4130 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4131 {
4132 if (pst != NULL)
4133 {
4134 if (pst->readin)
4135 {
4136 warning (_("bug: psymtab for %s is already read in."), pst->filename);
4137 }
4138 else
4139 {
4140 if (info_verbose)
4141 {
4142 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
4143 gdb_flush (gdb_stdout);
4144 }
4145
4146 /* Restore our global data. */
4147 dwarf2_per_objfile = objfile_data (pst->objfile,
4148 dwarf2_objfile_data_key);
4149
4150 /* If this psymtab is constructed from a debug-only objfile, the
4151 has_section_at_zero flag will not necessarily be correct. We
4152 can get the correct value for this flag by looking at the data
4153 associated with the (presumably stripped) associated objfile. */
4154 if (pst->objfile->separate_debug_objfile_backlink)
4155 {
4156 struct dwarf2_per_objfile *dpo_backlink
4157 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4158 dwarf2_objfile_data_key);
4159
4160 dwarf2_per_objfile->has_section_at_zero
4161 = dpo_backlink->has_section_at_zero;
4162 }
4163
4164 dwarf2_per_objfile->reading_partial_symbols = 0;
4165
4166 psymtab_to_symtab_1 (pst);
4167
4168 /* Finish up the debug error message. */
4169 if (info_verbose)
4170 printf_filtered (_("done.\n"));
4171 }
4172 }
4173 }
4174
4175 /* Add PER_CU to the queue. */
4176
4177 static void
4178 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4179 {
4180 struct dwarf2_queue_item *item;
4181
4182 per_cu->queued = 1;
4183 item = xmalloc (sizeof (*item));
4184 item->per_cu = per_cu;
4185 item->next = NULL;
4186
4187 if (dwarf2_queue == NULL)
4188 dwarf2_queue = item;
4189 else
4190 dwarf2_queue_tail->next = item;
4191
4192 dwarf2_queue_tail = item;
4193 }
4194
4195 /* Process the queue. */
4196
4197 static void
4198 process_queue (struct objfile *objfile)
4199 {
4200 struct dwarf2_queue_item *item, *next_item;
4201
4202 /* The queue starts out with one item, but following a DIE reference
4203 may load a new CU, adding it to the end of the queue. */
4204 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4205 {
4206 if (dwarf2_per_objfile->using_index
4207 ? !item->per_cu->v.quick->symtab
4208 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4209 process_full_comp_unit (item->per_cu);
4210
4211 item->per_cu->queued = 0;
4212 next_item = item->next;
4213 xfree (item);
4214 }
4215
4216 dwarf2_queue_tail = NULL;
4217 }
4218
4219 /* Free all allocated queue entries. This function only releases anything if
4220 an error was thrown; if the queue was processed then it would have been
4221 freed as we went along. */
4222
4223 static void
4224 dwarf2_release_queue (void *dummy)
4225 {
4226 struct dwarf2_queue_item *item, *last;
4227
4228 item = dwarf2_queue;
4229 while (item)
4230 {
4231 /* Anything still marked queued is likely to be in an
4232 inconsistent state, so discard it. */
4233 if (item->per_cu->queued)
4234 {
4235 if (item->per_cu->cu != NULL)
4236 free_one_cached_comp_unit (item->per_cu->cu);
4237 item->per_cu->queued = 0;
4238 }
4239
4240 last = item;
4241 item = item->next;
4242 xfree (last);
4243 }
4244
4245 dwarf2_queue = dwarf2_queue_tail = NULL;
4246 }
4247
4248 /* Read in full symbols for PST, and anything it depends on. */
4249
4250 static void
4251 psymtab_to_symtab_1 (struct partial_symtab *pst)
4252 {
4253 struct dwarf2_per_cu_data *per_cu;
4254 struct cleanup *back_to;
4255 int i;
4256
4257 for (i = 0; i < pst->number_of_dependencies; i++)
4258 if (!pst->dependencies[i]->readin)
4259 {
4260 /* Inform about additional files that need to be read in. */
4261 if (info_verbose)
4262 {
4263 /* FIXME: i18n: Need to make this a single string. */
4264 fputs_filtered (" ", gdb_stdout);
4265 wrap_here ("");
4266 fputs_filtered ("and ", gdb_stdout);
4267 wrap_here ("");
4268 printf_filtered ("%s...", pst->dependencies[i]->filename);
4269 wrap_here (""); /* Flush output */
4270 gdb_flush (gdb_stdout);
4271 }
4272 psymtab_to_symtab_1 (pst->dependencies[i]);
4273 }
4274
4275 per_cu = pst->read_symtab_private;
4276
4277 if (per_cu == NULL)
4278 {
4279 /* It's an include file, no symbols to read for it.
4280 Everything is in the parent symtab. */
4281 pst->readin = 1;
4282 return;
4283 }
4284
4285 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4286 }
4287
4288 /* Load the DIEs associated with PER_CU into memory. */
4289
4290 static void
4291 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4292 {
4293 bfd *abfd = objfile->obfd;
4294 struct dwarf2_cu *cu;
4295 unsigned int offset;
4296 gdb_byte *info_ptr, *beg_of_comp_unit;
4297 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4298 struct attribute *attr;
4299 int read_cu = 0;
4300
4301 gdb_assert (! per_cu->from_debug_types);
4302
4303 /* Set local variables from the partial symbol table info. */
4304 offset = per_cu->offset;
4305
4306 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4307 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4308 beg_of_comp_unit = info_ptr;
4309
4310 if (per_cu->cu == NULL)
4311 {
4312 cu = xmalloc (sizeof (*cu));
4313 init_one_comp_unit (cu, objfile);
4314
4315 read_cu = 1;
4316
4317 /* If an error occurs while loading, release our storage. */
4318 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4319
4320 /* Read in the comp_unit header. */
4321 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4322
4323 /* Complete the cu_header. */
4324 cu->header.offset = offset;
4325 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4326
4327 /* Read the abbrevs for this compilation unit. */
4328 dwarf2_read_abbrevs (abfd, cu);
4329 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4330
4331 /* Link this compilation unit into the compilation unit tree. */
4332 per_cu->cu = cu;
4333 cu->per_cu = per_cu;
4334
4335 /* Link this CU into read_in_chain. */
4336 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4337 dwarf2_per_objfile->read_in_chain = per_cu;
4338 }
4339 else
4340 {
4341 cu = per_cu->cu;
4342 info_ptr += cu->header.first_die_offset;
4343 }
4344
4345 cu->dies = read_comp_unit (info_ptr, cu);
4346
4347 /* We try not to read any attributes in this function, because not
4348 all objfiles needed for references have been loaded yet, and symbol
4349 table processing isn't initialized. But we have to set the CU language,
4350 or we won't be able to build types correctly. */
4351 prepare_one_comp_unit (cu, cu->dies);
4352
4353 /* Similarly, if we do not read the producer, we can not apply
4354 producer-specific interpretation. */
4355 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4356 if (attr)
4357 cu->producer = DW_STRING (attr);
4358
4359 if (read_cu)
4360 {
4361 do_cleanups (free_abbrevs_cleanup);
4362
4363 /* We've successfully allocated this compilation unit. Let our
4364 caller clean it up when finished with it. */
4365 discard_cleanups (free_cu_cleanup);
4366 }
4367 }
4368
4369 /* Add a DIE to the delayed physname list. */
4370
4371 static void
4372 add_to_method_list (struct type *type, int fnfield_index, int index,
4373 const char *name, struct die_info *die,
4374 struct dwarf2_cu *cu)
4375 {
4376 struct delayed_method_info mi;
4377 mi.type = type;
4378 mi.fnfield_index = fnfield_index;
4379 mi.index = index;
4380 mi.name = name;
4381 mi.die = die;
4382 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4383 }
4384
4385 /* A cleanup for freeing the delayed method list. */
4386
4387 static void
4388 free_delayed_list (void *ptr)
4389 {
4390 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4391 if (cu->method_list != NULL)
4392 {
4393 VEC_free (delayed_method_info, cu->method_list);
4394 cu->method_list = NULL;
4395 }
4396 }
4397
4398 /* Compute the physnames of any methods on the CU's method list.
4399
4400 The computation of method physnames is delayed in order to avoid the
4401 (bad) condition that one of the method's formal parameters is of an as yet
4402 incomplete type. */
4403
4404 static void
4405 compute_delayed_physnames (struct dwarf2_cu *cu)
4406 {
4407 int i;
4408 struct delayed_method_info *mi;
4409 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4410 {
4411 char *physname;
4412 struct fn_fieldlist *fn_flp
4413 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4414 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4415 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4416 }
4417 }
4418
4419 /* Generate full symbol information for PST and CU, whose DIEs have
4420 already been loaded into memory. */
4421
4422 static void
4423 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4424 {
4425 struct dwarf2_cu *cu = per_cu->cu;
4426 struct objfile *objfile = per_cu->objfile;
4427 CORE_ADDR lowpc, highpc;
4428 struct symtab *symtab;
4429 struct cleanup *back_to, *delayed_list_cleanup;
4430 CORE_ADDR baseaddr;
4431
4432 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4433
4434 buildsym_init ();
4435 back_to = make_cleanup (really_free_pendings, NULL);
4436 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4437
4438 cu->list_in_scope = &file_symbols;
4439
4440 dwarf2_find_base_address (cu->dies, cu);
4441
4442 /* Do line number decoding in read_file_scope () */
4443 process_die (cu->dies, cu);
4444
4445 /* Now that we have processed all the DIEs in the CU, all the types
4446 should be complete, and it should now be safe to compute all of the
4447 physnames. */
4448 compute_delayed_physnames (cu);
4449 do_cleanups (delayed_list_cleanup);
4450
4451 /* Some compilers don't define a DW_AT_high_pc attribute for the
4452 compilation unit. If the DW_AT_high_pc is missing, synthesize
4453 it, by scanning the DIE's below the compilation unit. */
4454 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4455
4456 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4457
4458 /* Set symtab language to language from DW_AT_language.
4459 If the compilation is from a C file generated by language preprocessors,
4460 do not set the language if it was already deduced by start_subfile. */
4461 if (symtab != NULL
4462 && !(cu->language == language_c && symtab->language != language_c))
4463 {
4464 symtab->language = cu->language;
4465 }
4466
4467 if (dwarf2_per_objfile->using_index)
4468 per_cu->v.quick->symtab = symtab;
4469 else
4470 {
4471 struct partial_symtab *pst = per_cu->v.psymtab;
4472 pst->symtab = symtab;
4473 pst->readin = 1;
4474 }
4475
4476 do_cleanups (back_to);
4477 }
4478
4479 /* Process a die and its children. */
4480
4481 static void
4482 process_die (struct die_info *die, struct dwarf2_cu *cu)
4483 {
4484 switch (die->tag)
4485 {
4486 case DW_TAG_padding:
4487 break;
4488 case DW_TAG_compile_unit:
4489 read_file_scope (die, cu);
4490 break;
4491 case DW_TAG_type_unit:
4492 read_type_unit_scope (die, cu);
4493 break;
4494 case DW_TAG_subprogram:
4495 case DW_TAG_inlined_subroutine:
4496 read_func_scope (die, cu);
4497 break;
4498 case DW_TAG_lexical_block:
4499 case DW_TAG_try_block:
4500 case DW_TAG_catch_block:
4501 read_lexical_block_scope (die, cu);
4502 break;
4503 case DW_TAG_class_type:
4504 case DW_TAG_interface_type:
4505 case DW_TAG_structure_type:
4506 case DW_TAG_union_type:
4507 process_structure_scope (die, cu);
4508 break;
4509 case DW_TAG_enumeration_type:
4510 process_enumeration_scope (die, cu);
4511 break;
4512
4513 /* These dies have a type, but processing them does not create
4514 a symbol or recurse to process the children. Therefore we can
4515 read them on-demand through read_type_die. */
4516 case DW_TAG_subroutine_type:
4517 case DW_TAG_set_type:
4518 case DW_TAG_array_type:
4519 case DW_TAG_pointer_type:
4520 case DW_TAG_ptr_to_member_type:
4521 case DW_TAG_reference_type:
4522 case DW_TAG_string_type:
4523 break;
4524
4525 case DW_TAG_base_type:
4526 case DW_TAG_subrange_type:
4527 case DW_TAG_typedef:
4528 /* Add a typedef symbol for the type definition, if it has a
4529 DW_AT_name. */
4530 new_symbol (die, read_type_die (die, cu), cu);
4531 break;
4532 case DW_TAG_common_block:
4533 read_common_block (die, cu);
4534 break;
4535 case DW_TAG_common_inclusion:
4536 break;
4537 case DW_TAG_namespace:
4538 processing_has_namespace_info = 1;
4539 read_namespace (die, cu);
4540 break;
4541 case DW_TAG_module:
4542 processing_has_namespace_info = 1;
4543 read_module (die, cu);
4544 break;
4545 case DW_TAG_imported_declaration:
4546 case DW_TAG_imported_module:
4547 processing_has_namespace_info = 1;
4548 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4549 || cu->language != language_fortran))
4550 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4551 dwarf_tag_name (die->tag));
4552 read_import_statement (die, cu);
4553 break;
4554 default:
4555 new_symbol (die, NULL, cu);
4556 break;
4557 }
4558 }
4559
4560 /* A helper function for dwarf2_compute_name which determines whether DIE
4561 needs to have the name of the scope prepended to the name listed in the
4562 die. */
4563
4564 static int
4565 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4566 {
4567 struct attribute *attr;
4568
4569 switch (die->tag)
4570 {
4571 case DW_TAG_namespace:
4572 case DW_TAG_typedef:
4573 case DW_TAG_class_type:
4574 case DW_TAG_interface_type:
4575 case DW_TAG_structure_type:
4576 case DW_TAG_union_type:
4577 case DW_TAG_enumeration_type:
4578 case DW_TAG_enumerator:
4579 case DW_TAG_subprogram:
4580 case DW_TAG_member:
4581 return 1;
4582
4583 case DW_TAG_variable:
4584 case DW_TAG_constant:
4585 /* We only need to prefix "globally" visible variables. These include
4586 any variable marked with DW_AT_external or any variable that
4587 lives in a namespace. [Variables in anonymous namespaces
4588 require prefixing, but they are not DW_AT_external.] */
4589
4590 if (dwarf2_attr (die, DW_AT_specification, cu))
4591 {
4592 struct dwarf2_cu *spec_cu = cu;
4593
4594 return die_needs_namespace (die_specification (die, &spec_cu),
4595 spec_cu);
4596 }
4597
4598 attr = dwarf2_attr (die, DW_AT_external, cu);
4599 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4600 && die->parent->tag != DW_TAG_module)
4601 return 0;
4602 /* A variable in a lexical block of some kind does not need a
4603 namespace, even though in C++ such variables may be external
4604 and have a mangled name. */
4605 if (die->parent->tag == DW_TAG_lexical_block
4606 || die->parent->tag == DW_TAG_try_block
4607 || die->parent->tag == DW_TAG_catch_block
4608 || die->parent->tag == DW_TAG_subprogram)
4609 return 0;
4610 return 1;
4611
4612 default:
4613 return 0;
4614 }
4615 }
4616
4617 /* Retrieve the last character from a mem_file. */
4618
4619 static void
4620 do_ui_file_peek_last (void *object, const char *buffer, long length)
4621 {
4622 char *last_char_p = (char *) object;
4623
4624 if (length > 0)
4625 *last_char_p = buffer[length - 1];
4626 }
4627
4628 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4629 compute the physname for the object, which include a method's
4630 formal parameters (C++/Java) and return type (Java).
4631
4632 For Ada, return the DIE's linkage name rather than the fully qualified
4633 name. PHYSNAME is ignored..
4634
4635 The result is allocated on the objfile_obstack and canonicalized. */
4636
4637 static const char *
4638 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4639 int physname)
4640 {
4641 if (name == NULL)
4642 name = dwarf2_name (die, cu);
4643
4644 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4645 compute it by typename_concat inside GDB. */
4646 if (cu->language == language_ada
4647 || (cu->language == language_fortran && physname))
4648 {
4649 /* For Ada unit, we prefer the linkage name over the name, as
4650 the former contains the exported name, which the user expects
4651 to be able to reference. Ideally, we want the user to be able
4652 to reference this entity using either natural or linkage name,
4653 but we haven't started looking at this enhancement yet. */
4654 struct attribute *attr;
4655
4656 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4657 if (attr == NULL)
4658 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4659 if (attr && DW_STRING (attr))
4660 return DW_STRING (attr);
4661 }
4662
4663 /* These are the only languages we know how to qualify names in. */
4664 if (name != NULL
4665 && (cu->language == language_cplus || cu->language == language_java
4666 || cu->language == language_fortran))
4667 {
4668 if (die_needs_namespace (die, cu))
4669 {
4670 long length;
4671 char *prefix;
4672 struct ui_file *buf;
4673
4674 prefix = determine_prefix (die, cu);
4675 buf = mem_fileopen ();
4676 if (*prefix != '\0')
4677 {
4678 char *prefixed_name = typename_concat (NULL, prefix, name,
4679 physname, cu);
4680
4681 fputs_unfiltered (prefixed_name, buf);
4682 xfree (prefixed_name);
4683 }
4684 else
4685 fputs_unfiltered (name ? name : "", buf);
4686
4687 /* Template parameters may be specified in the DIE's DW_AT_name, or
4688 as children with DW_TAG_template_type_param or
4689 DW_TAG_value_type_param. If the latter, add them to the name
4690 here. If the name already has template parameters, then
4691 skip this step; some versions of GCC emit both, and
4692 it is more efficient to use the pre-computed name.
4693
4694 Something to keep in mind about this process: it is very
4695 unlikely, or in some cases downright impossible, to produce
4696 something that will match the mangled name of a function.
4697 If the definition of the function has the same debug info,
4698 we should be able to match up with it anyway. But fallbacks
4699 using the minimal symbol, for instance to find a method
4700 implemented in a stripped copy of libstdc++, will not work.
4701 If we do not have debug info for the definition, we will have to
4702 match them up some other way.
4703
4704 When we do name matching there is a related problem with function
4705 templates; two instantiated function templates are allowed to
4706 differ only by their return types, which we do not add here. */
4707
4708 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4709 {
4710 struct attribute *attr;
4711 struct die_info *child;
4712 int first = 1;
4713
4714 die->building_fullname = 1;
4715
4716 for (child = die->child; child != NULL; child = child->sibling)
4717 {
4718 struct type *type;
4719 long value;
4720 gdb_byte *bytes;
4721 struct dwarf2_locexpr_baton *baton;
4722 struct value *v;
4723
4724 if (child->tag != DW_TAG_template_type_param
4725 && child->tag != DW_TAG_template_value_param)
4726 continue;
4727
4728 if (first)
4729 {
4730 fputs_unfiltered ("<", buf);
4731 first = 0;
4732 }
4733 else
4734 fputs_unfiltered (", ", buf);
4735
4736 attr = dwarf2_attr (child, DW_AT_type, cu);
4737 if (attr == NULL)
4738 {
4739 complaint (&symfile_complaints,
4740 _("template parameter missing DW_AT_type"));
4741 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4742 continue;
4743 }
4744 type = die_type (child, cu);
4745
4746 if (child->tag == DW_TAG_template_type_param)
4747 {
4748 c_print_type (type, "", buf, -1, 0);
4749 continue;
4750 }
4751
4752 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4753 if (attr == NULL)
4754 {
4755 complaint (&symfile_complaints,
4756 _("template parameter missing DW_AT_const_value"));
4757 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4758 continue;
4759 }
4760
4761 dwarf2_const_value_attr (attr, type, name,
4762 &cu->comp_unit_obstack, cu,
4763 &value, &bytes, &baton);
4764
4765 if (TYPE_NOSIGN (type))
4766 /* GDB prints characters as NUMBER 'CHAR'. If that's
4767 changed, this can use value_print instead. */
4768 c_printchar (value, type, buf);
4769 else
4770 {
4771 struct value_print_options opts;
4772
4773 if (baton != NULL)
4774 v = dwarf2_evaluate_loc_desc (type, NULL,
4775 baton->data,
4776 baton->size,
4777 baton->per_cu);
4778 else if (bytes != NULL)
4779 {
4780 v = allocate_value (type);
4781 memcpy (value_contents_writeable (v), bytes,
4782 TYPE_LENGTH (type));
4783 }
4784 else
4785 v = value_from_longest (type, value);
4786
4787 /* Specify decimal so that we do not depend on the radix. */
4788 get_formatted_print_options (&opts, 'd');
4789 opts.raw = 1;
4790 value_print (v, buf, &opts);
4791 release_value (v);
4792 value_free (v);
4793 }
4794 }
4795
4796 die->building_fullname = 0;
4797
4798 if (!first)
4799 {
4800 /* Close the argument list, with a space if necessary
4801 (nested templates). */
4802 char last_char = '\0';
4803 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4804 if (last_char == '>')
4805 fputs_unfiltered (" >", buf);
4806 else
4807 fputs_unfiltered (">", buf);
4808 }
4809 }
4810
4811 /* For Java and C++ methods, append formal parameter type
4812 information, if PHYSNAME. */
4813
4814 if (physname && die->tag == DW_TAG_subprogram
4815 && (cu->language == language_cplus
4816 || cu->language == language_java))
4817 {
4818 struct type *type = read_type_die (die, cu);
4819
4820 c_type_print_args (type, buf, 0, cu->language);
4821
4822 if (cu->language == language_java)
4823 {
4824 /* For java, we must append the return type to method
4825 names. */
4826 if (die->tag == DW_TAG_subprogram)
4827 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4828 0, 0);
4829 }
4830 else if (cu->language == language_cplus)
4831 {
4832 /* Assume that an artificial first parameter is
4833 "this", but do not crash if it is not. RealView
4834 marks unnamed (and thus unused) parameters as
4835 artificial; there is no way to differentiate
4836 the two cases. */
4837 if (TYPE_NFIELDS (type) > 0
4838 && TYPE_FIELD_ARTIFICIAL (type, 0)
4839 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4840 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4841 fputs_unfiltered (" const", buf);
4842 }
4843 }
4844
4845 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4846 &length);
4847 ui_file_delete (buf);
4848
4849 if (cu->language == language_cplus)
4850 {
4851 char *cname
4852 = dwarf2_canonicalize_name (name, cu,
4853 &cu->objfile->objfile_obstack);
4854
4855 if (cname != NULL)
4856 name = cname;
4857 }
4858 }
4859 }
4860
4861 return name;
4862 }
4863
4864 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4865 If scope qualifiers are appropriate they will be added. The result
4866 will be allocated on the objfile_obstack, or NULL if the DIE does
4867 not have a name. NAME may either be from a previous call to
4868 dwarf2_name or NULL.
4869
4870 The output string will be canonicalized (if C++/Java). */
4871
4872 static const char *
4873 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4874 {
4875 return dwarf2_compute_name (name, die, cu, 0);
4876 }
4877
4878 /* Construct a physname for the given DIE in CU. NAME may either be
4879 from a previous call to dwarf2_name or NULL. The result will be
4880 allocated on the objfile_objstack or NULL if the DIE does not have a
4881 name.
4882
4883 The output string will be canonicalized (if C++/Java). */
4884
4885 static const char *
4886 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4887 {
4888 return dwarf2_compute_name (name, die, cu, 1);
4889 }
4890
4891 /* Read the import statement specified by the given die and record it. */
4892
4893 static void
4894 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4895 {
4896 struct attribute *import_attr;
4897 struct die_info *imported_die;
4898 struct dwarf2_cu *imported_cu;
4899 const char *imported_name;
4900 const char *imported_name_prefix;
4901 const char *canonical_name;
4902 const char *import_alias;
4903 const char *imported_declaration = NULL;
4904 const char *import_prefix;
4905
4906 char *temp;
4907
4908 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4909 if (import_attr == NULL)
4910 {
4911 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4912 dwarf_tag_name (die->tag));
4913 return;
4914 }
4915
4916 imported_cu = cu;
4917 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4918 imported_name = dwarf2_name (imported_die, imported_cu);
4919 if (imported_name == NULL)
4920 {
4921 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4922
4923 The import in the following code:
4924 namespace A
4925 {
4926 typedef int B;
4927 }
4928
4929 int main ()
4930 {
4931 using A::B;
4932 B b;
4933 return b;
4934 }
4935
4936 ...
4937 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4938 <52> DW_AT_decl_file : 1
4939 <53> DW_AT_decl_line : 6
4940 <54> DW_AT_import : <0x75>
4941 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4942 <59> DW_AT_name : B
4943 <5b> DW_AT_decl_file : 1
4944 <5c> DW_AT_decl_line : 2
4945 <5d> DW_AT_type : <0x6e>
4946 ...
4947 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4948 <76> DW_AT_byte_size : 4
4949 <77> DW_AT_encoding : 5 (signed)
4950
4951 imports the wrong die ( 0x75 instead of 0x58 ).
4952 This case will be ignored until the gcc bug is fixed. */
4953 return;
4954 }
4955
4956 /* Figure out the local name after import. */
4957 import_alias = dwarf2_name (die, cu);
4958
4959 /* Figure out where the statement is being imported to. */
4960 import_prefix = determine_prefix (die, cu);
4961
4962 /* Figure out what the scope of the imported die is and prepend it
4963 to the name of the imported die. */
4964 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4965
4966 if (imported_die->tag != DW_TAG_namespace
4967 && imported_die->tag != DW_TAG_module)
4968 {
4969 imported_declaration = imported_name;
4970 canonical_name = imported_name_prefix;
4971 }
4972 else if (strlen (imported_name_prefix) > 0)
4973 {
4974 temp = alloca (strlen (imported_name_prefix)
4975 + 2 + strlen (imported_name) + 1);
4976 strcpy (temp, imported_name_prefix);
4977 strcat (temp, "::");
4978 strcat (temp, imported_name);
4979 canonical_name = temp;
4980 }
4981 else
4982 canonical_name = imported_name;
4983
4984 cp_add_using_directive (import_prefix,
4985 canonical_name,
4986 import_alias,
4987 imported_declaration,
4988 &cu->objfile->objfile_obstack);
4989 }
4990
4991 static void
4992 initialize_cu_func_list (struct dwarf2_cu *cu)
4993 {
4994 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
4995 }
4996
4997 static void
4998 free_cu_line_header (void *arg)
4999 {
5000 struct dwarf2_cu *cu = arg;
5001
5002 free_line_header (cu->line_header);
5003 cu->line_header = NULL;
5004 }
5005
5006 static void
5007 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5008 char **name, char **comp_dir)
5009 {
5010 struct attribute *attr;
5011
5012 *name = NULL;
5013 *comp_dir = NULL;
5014
5015 /* Find the filename. Do not use dwarf2_name here, since the filename
5016 is not a source language identifier. */
5017 attr = dwarf2_attr (die, DW_AT_name, cu);
5018 if (attr)
5019 {
5020 *name = DW_STRING (attr);
5021 }
5022
5023 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5024 if (attr)
5025 *comp_dir = DW_STRING (attr);
5026 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5027 {
5028 *comp_dir = ldirname (*name);
5029 if (*comp_dir != NULL)
5030 make_cleanup (xfree, *comp_dir);
5031 }
5032 if (*comp_dir != NULL)
5033 {
5034 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5035 directory, get rid of it. */
5036 char *cp = strchr (*comp_dir, ':');
5037
5038 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5039 *comp_dir = cp + 1;
5040 }
5041
5042 if (*name == NULL)
5043 *name = "<unknown>";
5044 }
5045
5046 static void
5047 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5048 {
5049 struct objfile *objfile = cu->objfile;
5050 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5051 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5052 CORE_ADDR highpc = ((CORE_ADDR) 0);
5053 struct attribute *attr;
5054 char *name = NULL;
5055 char *comp_dir = NULL;
5056 struct die_info *child_die;
5057 bfd *abfd = objfile->obfd;
5058 struct line_header *line_header = 0;
5059 CORE_ADDR baseaddr;
5060
5061 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5062
5063 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5064
5065 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5066 from finish_block. */
5067 if (lowpc == ((CORE_ADDR) -1))
5068 lowpc = highpc;
5069 lowpc += baseaddr;
5070 highpc += baseaddr;
5071
5072 find_file_and_directory (die, cu, &name, &comp_dir);
5073
5074 attr = dwarf2_attr (die, DW_AT_language, cu);
5075 if (attr)
5076 {
5077 set_cu_language (DW_UNSND (attr), cu);
5078 }
5079
5080 attr = dwarf2_attr (die, DW_AT_producer, cu);
5081 if (attr)
5082 cu->producer = DW_STRING (attr);
5083
5084 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5085 standardised yet. As a workaround for the language detection we fall
5086 back to the DW_AT_producer string. */
5087 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5088 cu->language = language_opencl;
5089
5090 /* We assume that we're processing GCC output. */
5091 processing_gcc_compilation = 2;
5092
5093 processing_has_namespace_info = 0;
5094
5095 start_symtab (name, comp_dir, lowpc);
5096 record_debugformat ("DWARF 2");
5097 record_producer (cu->producer);
5098
5099 initialize_cu_func_list (cu);
5100
5101 /* Decode line number information if present. We do this before
5102 processing child DIEs, so that the line header table is available
5103 for DW_AT_decl_file. */
5104 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5105 if (attr)
5106 {
5107 unsigned int line_offset = DW_UNSND (attr);
5108 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5109 if (line_header)
5110 {
5111 cu->line_header = line_header;
5112 make_cleanup (free_cu_line_header, cu);
5113 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5114 }
5115 }
5116
5117 /* Process all dies in compilation unit. */
5118 if (die->child != NULL)
5119 {
5120 child_die = die->child;
5121 while (child_die && child_die->tag)
5122 {
5123 process_die (child_die, cu);
5124 child_die = sibling_die (child_die);
5125 }
5126 }
5127
5128 /* Decode macro information, if present. Dwarf 2 macro information
5129 refers to information in the line number info statement program
5130 header, so we can only read it if we've read the header
5131 successfully. */
5132 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5133 if (attr && line_header)
5134 {
5135 unsigned int macro_offset = DW_UNSND (attr);
5136
5137 dwarf_decode_macros (line_header, macro_offset,
5138 comp_dir, abfd, cu);
5139 }
5140 do_cleanups (back_to);
5141 }
5142
5143 /* For TUs we want to skip the first top level sibling if it's not the
5144 actual type being defined by this TU. In this case the first top
5145 level sibling is there to provide context only. */
5146
5147 static void
5148 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5149 {
5150 struct objfile *objfile = cu->objfile;
5151 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5152 CORE_ADDR lowpc;
5153 struct attribute *attr;
5154 char *name = NULL;
5155 char *comp_dir = NULL;
5156 struct die_info *child_die;
5157 bfd *abfd = objfile->obfd;
5158
5159 /* start_symtab needs a low pc, but we don't really have one.
5160 Do what read_file_scope would do in the absence of such info. */
5161 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5162
5163 /* Find the filename. Do not use dwarf2_name here, since the filename
5164 is not a source language identifier. */
5165 attr = dwarf2_attr (die, DW_AT_name, cu);
5166 if (attr)
5167 name = DW_STRING (attr);
5168
5169 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5170 if (attr)
5171 comp_dir = DW_STRING (attr);
5172 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5173 {
5174 comp_dir = ldirname (name);
5175 if (comp_dir != NULL)
5176 make_cleanup (xfree, comp_dir);
5177 }
5178
5179 if (name == NULL)
5180 name = "<unknown>";
5181
5182 attr = dwarf2_attr (die, DW_AT_language, cu);
5183 if (attr)
5184 set_cu_language (DW_UNSND (attr), cu);
5185
5186 /* This isn't technically needed today. It is done for symmetry
5187 with read_file_scope. */
5188 attr = dwarf2_attr (die, DW_AT_producer, cu);
5189 if (attr)
5190 cu->producer = DW_STRING (attr);
5191
5192 /* We assume that we're processing GCC output. */
5193 processing_gcc_compilation = 2;
5194
5195 processing_has_namespace_info = 0;
5196
5197 start_symtab (name, comp_dir, lowpc);
5198 record_debugformat ("DWARF 2");
5199 record_producer (cu->producer);
5200
5201 /* Process the dies in the type unit. */
5202 if (die->child == NULL)
5203 {
5204 dump_die_for_error (die);
5205 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5206 bfd_get_filename (abfd));
5207 }
5208
5209 child_die = die->child;
5210
5211 while (child_die && child_die->tag)
5212 {
5213 process_die (child_die, cu);
5214
5215 child_die = sibling_die (child_die);
5216 }
5217
5218 do_cleanups (back_to);
5219 }
5220
5221 static void
5222 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5223 struct dwarf2_cu *cu)
5224 {
5225 struct function_range *thisfn;
5226
5227 thisfn = (struct function_range *)
5228 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5229 thisfn->name = name;
5230 thisfn->lowpc = lowpc;
5231 thisfn->highpc = highpc;
5232 thisfn->seen_line = 0;
5233 thisfn->next = NULL;
5234
5235 if (cu->last_fn == NULL)
5236 cu->first_fn = thisfn;
5237 else
5238 cu->last_fn->next = thisfn;
5239
5240 cu->last_fn = thisfn;
5241 }
5242
5243 /* qsort helper for inherit_abstract_dies. */
5244
5245 static int
5246 unsigned_int_compar (const void *ap, const void *bp)
5247 {
5248 unsigned int a = *(unsigned int *) ap;
5249 unsigned int b = *(unsigned int *) bp;
5250
5251 return (a > b) - (b > a);
5252 }
5253
5254 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5255 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5256 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5257
5258 static void
5259 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5260 {
5261 struct die_info *child_die;
5262 unsigned die_children_count;
5263 /* CU offsets which were referenced by children of the current DIE. */
5264 unsigned *offsets;
5265 unsigned *offsets_end, *offsetp;
5266 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5267 struct die_info *origin_die;
5268 /* Iterator of the ORIGIN_DIE children. */
5269 struct die_info *origin_child_die;
5270 struct cleanup *cleanups;
5271 struct attribute *attr;
5272 struct dwarf2_cu *origin_cu;
5273 struct pending **origin_previous_list_in_scope;
5274
5275 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5276 if (!attr)
5277 return;
5278
5279 /* Note that following die references may follow to a die in a
5280 different cu. */
5281
5282 origin_cu = cu;
5283 origin_die = follow_die_ref (die, attr, &origin_cu);
5284
5285 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5286 symbols in. */
5287 origin_previous_list_in_scope = origin_cu->list_in_scope;
5288 origin_cu->list_in_scope = cu->list_in_scope;
5289
5290 if (die->tag != origin_die->tag
5291 && !(die->tag == DW_TAG_inlined_subroutine
5292 && origin_die->tag == DW_TAG_subprogram))
5293 complaint (&symfile_complaints,
5294 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5295 die->offset, origin_die->offset);
5296
5297 child_die = die->child;
5298 die_children_count = 0;
5299 while (child_die && child_die->tag)
5300 {
5301 child_die = sibling_die (child_die);
5302 die_children_count++;
5303 }
5304 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5305 cleanups = make_cleanup (xfree, offsets);
5306
5307 offsets_end = offsets;
5308 child_die = die->child;
5309 while (child_die && child_die->tag)
5310 {
5311 /* For each CHILD_DIE, find the corresponding child of
5312 ORIGIN_DIE. If there is more than one layer of
5313 DW_AT_abstract_origin, follow them all; there shouldn't be,
5314 but GCC versions at least through 4.4 generate this (GCC PR
5315 40573). */
5316 struct die_info *child_origin_die = child_die;
5317 struct dwarf2_cu *child_origin_cu = cu;
5318
5319 while (1)
5320 {
5321 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5322 child_origin_cu);
5323 if (attr == NULL)
5324 break;
5325 child_origin_die = follow_die_ref (child_origin_die, attr,
5326 &child_origin_cu);
5327 }
5328
5329 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5330 counterpart may exist. */
5331 if (child_origin_die != child_die)
5332 {
5333 if (child_die->tag != child_origin_die->tag
5334 && !(child_die->tag == DW_TAG_inlined_subroutine
5335 && child_origin_die->tag == DW_TAG_subprogram))
5336 complaint (&symfile_complaints,
5337 _("Child DIE 0x%x and its abstract origin 0x%x have "
5338 "different tags"), child_die->offset,
5339 child_origin_die->offset);
5340 if (child_origin_die->parent != origin_die)
5341 complaint (&symfile_complaints,
5342 _("Child DIE 0x%x and its abstract origin 0x%x have "
5343 "different parents"), child_die->offset,
5344 child_origin_die->offset);
5345 else
5346 *offsets_end++ = child_origin_die->offset;
5347 }
5348 child_die = sibling_die (child_die);
5349 }
5350 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5351 unsigned_int_compar);
5352 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5353 if (offsetp[-1] == *offsetp)
5354 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5355 "to DIE 0x%x as their abstract origin"),
5356 die->offset, *offsetp);
5357
5358 offsetp = offsets;
5359 origin_child_die = origin_die->child;
5360 while (origin_child_die && origin_child_die->tag)
5361 {
5362 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5363 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5364 offsetp++;
5365 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5366 {
5367 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5368 process_die (origin_child_die, origin_cu);
5369 }
5370 origin_child_die = sibling_die (origin_child_die);
5371 }
5372 origin_cu->list_in_scope = origin_previous_list_in_scope;
5373
5374 do_cleanups (cleanups);
5375 }
5376
5377 static void
5378 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5379 {
5380 struct objfile *objfile = cu->objfile;
5381 struct context_stack *new;
5382 CORE_ADDR lowpc;
5383 CORE_ADDR highpc;
5384 struct die_info *child_die;
5385 struct attribute *attr, *call_line, *call_file;
5386 char *name;
5387 CORE_ADDR baseaddr;
5388 struct block *block;
5389 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5390 VEC (symbolp) *template_args = NULL;
5391 struct template_symbol *templ_func = NULL;
5392
5393 if (inlined_func)
5394 {
5395 /* If we do not have call site information, we can't show the
5396 caller of this inlined function. That's too confusing, so
5397 only use the scope for local variables. */
5398 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5399 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5400 if (call_line == NULL || call_file == NULL)
5401 {
5402 read_lexical_block_scope (die, cu);
5403 return;
5404 }
5405 }
5406
5407 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5408
5409 name = dwarf2_name (die, cu);
5410
5411 /* Ignore functions with missing or empty names. These are actually
5412 illegal according to the DWARF standard. */
5413 if (name == NULL)
5414 {
5415 complaint (&symfile_complaints,
5416 _("missing name for subprogram DIE at %d"), die->offset);
5417 return;
5418 }
5419
5420 /* Ignore functions with missing or invalid low and high pc attributes. */
5421 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5422 {
5423 attr = dwarf2_attr (die, DW_AT_external, cu);
5424 if (!attr || !DW_UNSND (attr))
5425 complaint (&symfile_complaints,
5426 _("cannot get low and high bounds for subprogram DIE at %d"),
5427 die->offset);
5428 return;
5429 }
5430
5431 lowpc += baseaddr;
5432 highpc += baseaddr;
5433
5434 /* Record the function range for dwarf_decode_lines. */
5435 add_to_cu_func_list (name, lowpc, highpc, cu);
5436
5437 /* If we have any template arguments, then we must allocate a
5438 different sort of symbol. */
5439 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5440 {
5441 if (child_die->tag == DW_TAG_template_type_param
5442 || child_die->tag == DW_TAG_template_value_param)
5443 {
5444 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5445 struct template_symbol);
5446 templ_func->base.is_cplus_template_function = 1;
5447 break;
5448 }
5449 }
5450
5451 new = push_context (0, lowpc);
5452 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5453 (struct symbol *) templ_func);
5454
5455 /* If there is a location expression for DW_AT_frame_base, record
5456 it. */
5457 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5458 if (attr)
5459 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5460 expression is being recorded directly in the function's symbol
5461 and not in a separate frame-base object. I guess this hack is
5462 to avoid adding some sort of frame-base adjunct/annex to the
5463 function's symbol :-(. The problem with doing this is that it
5464 results in a function symbol with a location expression that
5465 has nothing to do with the location of the function, ouch! The
5466 relationship should be: a function's symbol has-a frame base; a
5467 frame-base has-a location expression. */
5468 dwarf2_symbol_mark_computed (attr, new->name, cu);
5469
5470 cu->list_in_scope = &local_symbols;
5471
5472 if (die->child != NULL)
5473 {
5474 child_die = die->child;
5475 while (child_die && child_die->tag)
5476 {
5477 if (child_die->tag == DW_TAG_template_type_param
5478 || child_die->tag == DW_TAG_template_value_param)
5479 {
5480 struct symbol *arg = new_symbol (child_die, NULL, cu);
5481
5482 if (arg != NULL)
5483 VEC_safe_push (symbolp, template_args, arg);
5484 }
5485 else
5486 process_die (child_die, cu);
5487 child_die = sibling_die (child_die);
5488 }
5489 }
5490
5491 inherit_abstract_dies (die, cu);
5492
5493 /* If we have a DW_AT_specification, we might need to import using
5494 directives from the context of the specification DIE. See the
5495 comment in determine_prefix. */
5496 if (cu->language == language_cplus
5497 && dwarf2_attr (die, DW_AT_specification, cu))
5498 {
5499 struct dwarf2_cu *spec_cu = cu;
5500 struct die_info *spec_die = die_specification (die, &spec_cu);
5501
5502 while (spec_die)
5503 {
5504 child_die = spec_die->child;
5505 while (child_die && child_die->tag)
5506 {
5507 if (child_die->tag == DW_TAG_imported_module)
5508 process_die (child_die, spec_cu);
5509 child_die = sibling_die (child_die);
5510 }
5511
5512 /* In some cases, GCC generates specification DIEs that
5513 themselves contain DW_AT_specification attributes. */
5514 spec_die = die_specification (spec_die, &spec_cu);
5515 }
5516 }
5517
5518 new = pop_context ();
5519 /* Make a block for the local symbols within. */
5520 block = finish_block (new->name, &local_symbols, new->old_blocks,
5521 lowpc, highpc, objfile);
5522
5523 /* For C++, set the block's scope. */
5524 if (cu->language == language_cplus || cu->language == language_fortran)
5525 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5526 determine_prefix (die, cu),
5527 processing_has_namespace_info);
5528
5529 /* If we have address ranges, record them. */
5530 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5531
5532 /* Attach template arguments to function. */
5533 if (! VEC_empty (symbolp, template_args))
5534 {
5535 gdb_assert (templ_func != NULL);
5536
5537 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5538 templ_func->template_arguments
5539 = obstack_alloc (&objfile->objfile_obstack,
5540 (templ_func->n_template_arguments
5541 * sizeof (struct symbol *)));
5542 memcpy (templ_func->template_arguments,
5543 VEC_address (symbolp, template_args),
5544 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5545 VEC_free (symbolp, template_args);
5546 }
5547
5548 /* In C++, we can have functions nested inside functions (e.g., when
5549 a function declares a class that has methods). This means that
5550 when we finish processing a function scope, we may need to go
5551 back to building a containing block's symbol lists. */
5552 local_symbols = new->locals;
5553 param_symbols = new->params;
5554 using_directives = new->using_directives;
5555
5556 /* If we've finished processing a top-level function, subsequent
5557 symbols go in the file symbol list. */
5558 if (outermost_context_p ())
5559 cu->list_in_scope = &file_symbols;
5560 }
5561
5562 /* Process all the DIES contained within a lexical block scope. Start
5563 a new scope, process the dies, and then close the scope. */
5564
5565 static void
5566 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5567 {
5568 struct objfile *objfile = cu->objfile;
5569 struct context_stack *new;
5570 CORE_ADDR lowpc, highpc;
5571 struct die_info *child_die;
5572 CORE_ADDR baseaddr;
5573
5574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5575
5576 /* Ignore blocks with missing or invalid low and high pc attributes. */
5577 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5578 as multiple lexical blocks? Handling children in a sane way would
5579 be nasty. Might be easier to properly extend generic blocks to
5580 describe ranges. */
5581 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5582 return;
5583 lowpc += baseaddr;
5584 highpc += baseaddr;
5585
5586 push_context (0, lowpc);
5587 if (die->child != NULL)
5588 {
5589 child_die = die->child;
5590 while (child_die && child_die->tag)
5591 {
5592 process_die (child_die, cu);
5593 child_die = sibling_die (child_die);
5594 }
5595 }
5596 new = pop_context ();
5597
5598 if (local_symbols != NULL || using_directives != NULL)
5599 {
5600 struct block *block
5601 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5602 highpc, objfile);
5603
5604 /* Note that recording ranges after traversing children, as we
5605 do here, means that recording a parent's ranges entails
5606 walking across all its children's ranges as they appear in
5607 the address map, which is quadratic behavior.
5608
5609 It would be nicer to record the parent's ranges before
5610 traversing its children, simply overriding whatever you find
5611 there. But since we don't even decide whether to create a
5612 block until after we've traversed its children, that's hard
5613 to do. */
5614 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5615 }
5616 local_symbols = new->locals;
5617 using_directives = new->using_directives;
5618 }
5619
5620 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5621 Return 1 if the attributes are present and valid, otherwise, return 0.
5622 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5623
5624 static int
5625 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5626 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5627 struct partial_symtab *ranges_pst)
5628 {
5629 struct objfile *objfile = cu->objfile;
5630 struct comp_unit_head *cu_header = &cu->header;
5631 bfd *obfd = objfile->obfd;
5632 unsigned int addr_size = cu_header->addr_size;
5633 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5634 /* Base address selection entry. */
5635 CORE_ADDR base;
5636 int found_base;
5637 unsigned int dummy;
5638 gdb_byte *buffer;
5639 CORE_ADDR marker;
5640 int low_set;
5641 CORE_ADDR low = 0;
5642 CORE_ADDR high = 0;
5643 CORE_ADDR baseaddr;
5644
5645 found_base = cu->base_known;
5646 base = cu->base_address;
5647
5648 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5649 if (offset >= dwarf2_per_objfile->ranges.size)
5650 {
5651 complaint (&symfile_complaints,
5652 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5653 offset);
5654 return 0;
5655 }
5656 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5657
5658 /* Read in the largest possible address. */
5659 marker = read_address (obfd, buffer, cu, &dummy);
5660 if ((marker & mask) == mask)
5661 {
5662 /* If we found the largest possible address, then
5663 read the base address. */
5664 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5665 buffer += 2 * addr_size;
5666 offset += 2 * addr_size;
5667 found_base = 1;
5668 }
5669
5670 low_set = 0;
5671
5672 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5673
5674 while (1)
5675 {
5676 CORE_ADDR range_beginning, range_end;
5677
5678 range_beginning = read_address (obfd, buffer, cu, &dummy);
5679 buffer += addr_size;
5680 range_end = read_address (obfd, buffer, cu, &dummy);
5681 buffer += addr_size;
5682 offset += 2 * addr_size;
5683
5684 /* An end of list marker is a pair of zero addresses. */
5685 if (range_beginning == 0 && range_end == 0)
5686 /* Found the end of list entry. */
5687 break;
5688
5689 /* Each base address selection entry is a pair of 2 values.
5690 The first is the largest possible address, the second is
5691 the base address. Check for a base address here. */
5692 if ((range_beginning & mask) == mask)
5693 {
5694 /* If we found the largest possible address, then
5695 read the base address. */
5696 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5697 found_base = 1;
5698 continue;
5699 }
5700
5701 if (!found_base)
5702 {
5703 /* We have no valid base address for the ranges
5704 data. */
5705 complaint (&symfile_complaints,
5706 _("Invalid .debug_ranges data (no base address)"));
5707 return 0;
5708 }
5709
5710 range_beginning += base;
5711 range_end += base;
5712
5713 if (ranges_pst != NULL && range_beginning < range_end)
5714 addrmap_set_empty (objfile->psymtabs_addrmap,
5715 range_beginning + baseaddr, range_end - 1 + baseaddr,
5716 ranges_pst);
5717
5718 /* FIXME: This is recording everything as a low-high
5719 segment of consecutive addresses. We should have a
5720 data structure for discontiguous block ranges
5721 instead. */
5722 if (! low_set)
5723 {
5724 low = range_beginning;
5725 high = range_end;
5726 low_set = 1;
5727 }
5728 else
5729 {
5730 if (range_beginning < low)
5731 low = range_beginning;
5732 if (range_end > high)
5733 high = range_end;
5734 }
5735 }
5736
5737 if (! low_set)
5738 /* If the first entry is an end-of-list marker, the range
5739 describes an empty scope, i.e. no instructions. */
5740 return 0;
5741
5742 if (low_return)
5743 *low_return = low;
5744 if (high_return)
5745 *high_return = high;
5746 return 1;
5747 }
5748
5749 /* Get low and high pc attributes from a die. Return 1 if the attributes
5750 are present and valid, otherwise, return 0. Return -1 if the range is
5751 discontinuous, i.e. derived from DW_AT_ranges information. */
5752 static int
5753 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5754 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5755 struct partial_symtab *pst)
5756 {
5757 struct attribute *attr;
5758 CORE_ADDR low = 0;
5759 CORE_ADDR high = 0;
5760 int ret = 0;
5761
5762 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5763 if (attr)
5764 {
5765 high = DW_ADDR (attr);
5766 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5767 if (attr)
5768 low = DW_ADDR (attr);
5769 else
5770 /* Found high w/o low attribute. */
5771 return 0;
5772
5773 /* Found consecutive range of addresses. */
5774 ret = 1;
5775 }
5776 else
5777 {
5778 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5779 if (attr != NULL)
5780 {
5781 /* Value of the DW_AT_ranges attribute is the offset in the
5782 .debug_ranges section. */
5783 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5784 return 0;
5785 /* Found discontinuous range of addresses. */
5786 ret = -1;
5787 }
5788 }
5789
5790 if (high < low)
5791 return 0;
5792
5793 /* When using the GNU linker, .gnu.linkonce. sections are used to
5794 eliminate duplicate copies of functions and vtables and such.
5795 The linker will arbitrarily choose one and discard the others.
5796 The AT_*_pc values for such functions refer to local labels in
5797 these sections. If the section from that file was discarded, the
5798 labels are not in the output, so the relocs get a value of 0.
5799 If this is a discarded function, mark the pc bounds as invalid,
5800 so that GDB will ignore it. */
5801 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5802 return 0;
5803
5804 *lowpc = low;
5805 *highpc = high;
5806 return ret;
5807 }
5808
5809 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5810 its low and high PC addresses. Do nothing if these addresses could not
5811 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5812 and HIGHPC to the high address if greater than HIGHPC. */
5813
5814 static void
5815 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5816 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5817 struct dwarf2_cu *cu)
5818 {
5819 CORE_ADDR low, high;
5820 struct die_info *child = die->child;
5821
5822 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5823 {
5824 *lowpc = min (*lowpc, low);
5825 *highpc = max (*highpc, high);
5826 }
5827
5828 /* If the language does not allow nested subprograms (either inside
5829 subprograms or lexical blocks), we're done. */
5830 if (cu->language != language_ada)
5831 return;
5832
5833 /* Check all the children of the given DIE. If it contains nested
5834 subprograms, then check their pc bounds. Likewise, we need to
5835 check lexical blocks as well, as they may also contain subprogram
5836 definitions. */
5837 while (child && child->tag)
5838 {
5839 if (child->tag == DW_TAG_subprogram
5840 || child->tag == DW_TAG_lexical_block)
5841 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5842 child = sibling_die (child);
5843 }
5844 }
5845
5846 /* Get the low and high pc's represented by the scope DIE, and store
5847 them in *LOWPC and *HIGHPC. If the correct values can't be
5848 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5849
5850 static void
5851 get_scope_pc_bounds (struct die_info *die,
5852 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5853 struct dwarf2_cu *cu)
5854 {
5855 CORE_ADDR best_low = (CORE_ADDR) -1;
5856 CORE_ADDR best_high = (CORE_ADDR) 0;
5857 CORE_ADDR current_low, current_high;
5858
5859 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5860 {
5861 best_low = current_low;
5862 best_high = current_high;
5863 }
5864 else
5865 {
5866 struct die_info *child = die->child;
5867
5868 while (child && child->tag)
5869 {
5870 switch (child->tag) {
5871 case DW_TAG_subprogram:
5872 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5873 break;
5874 case DW_TAG_namespace:
5875 case DW_TAG_module:
5876 /* FIXME: carlton/2004-01-16: Should we do this for
5877 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5878 that current GCC's always emit the DIEs corresponding
5879 to definitions of methods of classes as children of a
5880 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5881 the DIEs giving the declarations, which could be
5882 anywhere). But I don't see any reason why the
5883 standards says that they have to be there. */
5884 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5885
5886 if (current_low != ((CORE_ADDR) -1))
5887 {
5888 best_low = min (best_low, current_low);
5889 best_high = max (best_high, current_high);
5890 }
5891 break;
5892 default:
5893 /* Ignore. */
5894 break;
5895 }
5896
5897 child = sibling_die (child);
5898 }
5899 }
5900
5901 *lowpc = best_low;
5902 *highpc = best_high;
5903 }
5904
5905 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5906 in DIE. */
5907 static void
5908 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5909 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5910 {
5911 struct attribute *attr;
5912
5913 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5914 if (attr)
5915 {
5916 CORE_ADDR high = DW_ADDR (attr);
5917
5918 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5919 if (attr)
5920 {
5921 CORE_ADDR low = DW_ADDR (attr);
5922
5923 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5924 }
5925 }
5926
5927 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5928 if (attr)
5929 {
5930 bfd *obfd = cu->objfile->obfd;
5931
5932 /* The value of the DW_AT_ranges attribute is the offset of the
5933 address range list in the .debug_ranges section. */
5934 unsigned long offset = DW_UNSND (attr);
5935 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5936
5937 /* For some target architectures, but not others, the
5938 read_address function sign-extends the addresses it returns.
5939 To recognize base address selection entries, we need a
5940 mask. */
5941 unsigned int addr_size = cu->header.addr_size;
5942 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5943
5944 /* The base address, to which the next pair is relative. Note
5945 that this 'base' is a DWARF concept: most entries in a range
5946 list are relative, to reduce the number of relocs against the
5947 debugging information. This is separate from this function's
5948 'baseaddr' argument, which GDB uses to relocate debugging
5949 information from a shared library based on the address at
5950 which the library was loaded. */
5951 CORE_ADDR base = cu->base_address;
5952 int base_known = cu->base_known;
5953
5954 gdb_assert (dwarf2_per_objfile->ranges.readin);
5955 if (offset >= dwarf2_per_objfile->ranges.size)
5956 {
5957 complaint (&symfile_complaints,
5958 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5959 offset);
5960 return;
5961 }
5962
5963 for (;;)
5964 {
5965 unsigned int bytes_read;
5966 CORE_ADDR start, end;
5967
5968 start = read_address (obfd, buffer, cu, &bytes_read);
5969 buffer += bytes_read;
5970 end = read_address (obfd, buffer, cu, &bytes_read);
5971 buffer += bytes_read;
5972
5973 /* Did we find the end of the range list? */
5974 if (start == 0 && end == 0)
5975 break;
5976
5977 /* Did we find a base address selection entry? */
5978 else if ((start & base_select_mask) == base_select_mask)
5979 {
5980 base = end;
5981 base_known = 1;
5982 }
5983
5984 /* We found an ordinary address range. */
5985 else
5986 {
5987 if (!base_known)
5988 {
5989 complaint (&symfile_complaints,
5990 _("Invalid .debug_ranges data (no base address)"));
5991 return;
5992 }
5993
5994 record_block_range (block,
5995 baseaddr + base + start,
5996 baseaddr + base + end - 1);
5997 }
5998 }
5999 }
6000 }
6001
6002 /* Add an aggregate field to the field list. */
6003
6004 static void
6005 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6006 struct dwarf2_cu *cu)
6007 {
6008 struct objfile *objfile = cu->objfile;
6009 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6010 struct nextfield *new_field;
6011 struct attribute *attr;
6012 struct field *fp;
6013 char *fieldname = "";
6014
6015 /* Allocate a new field list entry and link it in. */
6016 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6017 make_cleanup (xfree, new_field);
6018 memset (new_field, 0, sizeof (struct nextfield));
6019
6020 if (die->tag == DW_TAG_inheritance)
6021 {
6022 new_field->next = fip->baseclasses;
6023 fip->baseclasses = new_field;
6024 }
6025 else
6026 {
6027 new_field->next = fip->fields;
6028 fip->fields = new_field;
6029 }
6030 fip->nfields++;
6031
6032 /* Handle accessibility and virtuality of field.
6033 The default accessibility for members is public, the default
6034 accessibility for inheritance is private. */
6035 if (die->tag != DW_TAG_inheritance)
6036 new_field->accessibility = DW_ACCESS_public;
6037 else
6038 new_field->accessibility = DW_ACCESS_private;
6039 new_field->virtuality = DW_VIRTUALITY_none;
6040
6041 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6042 if (attr)
6043 new_field->accessibility = DW_UNSND (attr);
6044 if (new_field->accessibility != DW_ACCESS_public)
6045 fip->non_public_fields = 1;
6046 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6047 if (attr)
6048 new_field->virtuality = DW_UNSND (attr);
6049
6050 fp = &new_field->field;
6051
6052 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6053 {
6054 /* Data member other than a C++ static data member. */
6055
6056 /* Get type of field. */
6057 fp->type = die_type (die, cu);
6058
6059 SET_FIELD_BITPOS (*fp, 0);
6060
6061 /* Get bit size of field (zero if none). */
6062 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6063 if (attr)
6064 {
6065 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6066 }
6067 else
6068 {
6069 FIELD_BITSIZE (*fp) = 0;
6070 }
6071
6072 /* Get bit offset of field. */
6073 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6074 if (attr)
6075 {
6076 int byte_offset = 0;
6077
6078 if (attr_form_is_section_offset (attr))
6079 dwarf2_complex_location_expr_complaint ();
6080 else if (attr_form_is_constant (attr))
6081 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6082 else if (attr_form_is_block (attr))
6083 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6084 else
6085 dwarf2_complex_location_expr_complaint ();
6086
6087 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6088 }
6089 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6090 if (attr)
6091 {
6092 if (gdbarch_bits_big_endian (gdbarch))
6093 {
6094 /* For big endian bits, the DW_AT_bit_offset gives the
6095 additional bit offset from the MSB of the containing
6096 anonymous object to the MSB of the field. We don't
6097 have to do anything special since we don't need to
6098 know the size of the anonymous object. */
6099 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6100 }
6101 else
6102 {
6103 /* For little endian bits, compute the bit offset to the
6104 MSB of the anonymous object, subtract off the number of
6105 bits from the MSB of the field to the MSB of the
6106 object, and then subtract off the number of bits of
6107 the field itself. The result is the bit offset of
6108 the LSB of the field. */
6109 int anonymous_size;
6110 int bit_offset = DW_UNSND (attr);
6111
6112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6113 if (attr)
6114 {
6115 /* The size of the anonymous object containing
6116 the bit field is explicit, so use the
6117 indicated size (in bytes). */
6118 anonymous_size = DW_UNSND (attr);
6119 }
6120 else
6121 {
6122 /* The size of the anonymous object containing
6123 the bit field must be inferred from the type
6124 attribute of the data member containing the
6125 bit field. */
6126 anonymous_size = TYPE_LENGTH (fp->type);
6127 }
6128 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6129 - bit_offset - FIELD_BITSIZE (*fp);
6130 }
6131 }
6132
6133 /* Get name of field. */
6134 fieldname = dwarf2_name (die, cu);
6135 if (fieldname == NULL)
6136 fieldname = "";
6137
6138 /* The name is already allocated along with this objfile, so we don't
6139 need to duplicate it for the type. */
6140 fp->name = fieldname;
6141
6142 /* Change accessibility for artificial fields (e.g. virtual table
6143 pointer or virtual base class pointer) to private. */
6144 if (dwarf2_attr (die, DW_AT_artificial, cu))
6145 {
6146 FIELD_ARTIFICIAL (*fp) = 1;
6147 new_field->accessibility = DW_ACCESS_private;
6148 fip->non_public_fields = 1;
6149 }
6150 }
6151 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6152 {
6153 /* C++ static member. */
6154
6155 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6156 is a declaration, but all versions of G++ as of this writing
6157 (so through at least 3.2.1) incorrectly generate
6158 DW_TAG_variable tags. */
6159
6160 char *physname;
6161
6162 /* Get name of field. */
6163 fieldname = dwarf2_name (die, cu);
6164 if (fieldname == NULL)
6165 return;
6166
6167 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6168 if (attr
6169 /* Only create a symbol if this is an external value.
6170 new_symbol checks this and puts the value in the global symbol
6171 table, which we want. If it is not external, new_symbol
6172 will try to put the value in cu->list_in_scope which is wrong. */
6173 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6174 {
6175 /* A static const member, not much different than an enum as far as
6176 we're concerned, except that we can support more types. */
6177 new_symbol (die, NULL, cu);
6178 }
6179
6180 /* Get physical name. */
6181 physname = (char *) dwarf2_physname (fieldname, die, cu);
6182
6183 /* The name is already allocated along with this objfile, so we don't
6184 need to duplicate it for the type. */
6185 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6186 FIELD_TYPE (*fp) = die_type (die, cu);
6187 FIELD_NAME (*fp) = fieldname;
6188 }
6189 else if (die->tag == DW_TAG_inheritance)
6190 {
6191 /* C++ base class field. */
6192 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6193 if (attr)
6194 {
6195 int byte_offset = 0;
6196
6197 if (attr_form_is_section_offset (attr))
6198 dwarf2_complex_location_expr_complaint ();
6199 else if (attr_form_is_constant (attr))
6200 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6201 else if (attr_form_is_block (attr))
6202 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6203 else
6204 dwarf2_complex_location_expr_complaint ();
6205
6206 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6207 }
6208 FIELD_BITSIZE (*fp) = 0;
6209 FIELD_TYPE (*fp) = die_type (die, cu);
6210 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6211 fip->nbaseclasses++;
6212 }
6213 }
6214
6215 /* Add a typedef defined in the scope of the FIP's class. */
6216
6217 static void
6218 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6219 struct dwarf2_cu *cu)
6220 {
6221 struct objfile *objfile = cu->objfile;
6222 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6223 struct typedef_field_list *new_field;
6224 struct attribute *attr;
6225 struct typedef_field *fp;
6226 char *fieldname = "";
6227
6228 /* Allocate a new field list entry and link it in. */
6229 new_field = xzalloc (sizeof (*new_field));
6230 make_cleanup (xfree, new_field);
6231
6232 gdb_assert (die->tag == DW_TAG_typedef);
6233
6234 fp = &new_field->field;
6235
6236 /* Get name of field. */
6237 fp->name = dwarf2_name (die, cu);
6238 if (fp->name == NULL)
6239 return;
6240
6241 fp->type = read_type_die (die, cu);
6242
6243 new_field->next = fip->typedef_field_list;
6244 fip->typedef_field_list = new_field;
6245 fip->typedef_field_list_count++;
6246 }
6247
6248 /* Create the vector of fields, and attach it to the type. */
6249
6250 static void
6251 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6252 struct dwarf2_cu *cu)
6253 {
6254 int nfields = fip->nfields;
6255
6256 /* Record the field count, allocate space for the array of fields,
6257 and create blank accessibility bitfields if necessary. */
6258 TYPE_NFIELDS (type) = nfields;
6259 TYPE_FIELDS (type) = (struct field *)
6260 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6261 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6262
6263 if (fip->non_public_fields && cu->language != language_ada)
6264 {
6265 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6266
6267 TYPE_FIELD_PRIVATE_BITS (type) =
6268 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6269 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6270
6271 TYPE_FIELD_PROTECTED_BITS (type) =
6272 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6273 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6274
6275 TYPE_FIELD_IGNORE_BITS (type) =
6276 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6277 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6278 }
6279
6280 /* If the type has baseclasses, allocate and clear a bit vector for
6281 TYPE_FIELD_VIRTUAL_BITS. */
6282 if (fip->nbaseclasses && cu->language != language_ada)
6283 {
6284 int num_bytes = B_BYTES (fip->nbaseclasses);
6285 unsigned char *pointer;
6286
6287 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6288 pointer = TYPE_ALLOC (type, num_bytes);
6289 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6290 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6291 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6292 }
6293
6294 /* Copy the saved-up fields into the field vector. Start from the head
6295 of the list, adding to the tail of the field array, so that they end
6296 up in the same order in the array in which they were added to the list. */
6297 while (nfields-- > 0)
6298 {
6299 struct nextfield *fieldp;
6300
6301 if (fip->fields)
6302 {
6303 fieldp = fip->fields;
6304 fip->fields = fieldp->next;
6305 }
6306 else
6307 {
6308 fieldp = fip->baseclasses;
6309 fip->baseclasses = fieldp->next;
6310 }
6311
6312 TYPE_FIELD (type, nfields) = fieldp->field;
6313 switch (fieldp->accessibility)
6314 {
6315 case DW_ACCESS_private:
6316 if (cu->language != language_ada)
6317 SET_TYPE_FIELD_PRIVATE (type, nfields);
6318 break;
6319
6320 case DW_ACCESS_protected:
6321 if (cu->language != language_ada)
6322 SET_TYPE_FIELD_PROTECTED (type, nfields);
6323 break;
6324
6325 case DW_ACCESS_public:
6326 break;
6327
6328 default:
6329 /* Unknown accessibility. Complain and treat it as public. */
6330 {
6331 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6332 fieldp->accessibility);
6333 }
6334 break;
6335 }
6336 if (nfields < fip->nbaseclasses)
6337 {
6338 switch (fieldp->virtuality)
6339 {
6340 case DW_VIRTUALITY_virtual:
6341 case DW_VIRTUALITY_pure_virtual:
6342 if (cu->language == language_ada)
6343 error ("unexpected virtuality in component of Ada type");
6344 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6345 break;
6346 }
6347 }
6348 }
6349 }
6350
6351 /* Add a member function to the proper fieldlist. */
6352
6353 static void
6354 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6355 struct type *type, struct dwarf2_cu *cu)
6356 {
6357 struct objfile *objfile = cu->objfile;
6358 struct attribute *attr;
6359 struct fnfieldlist *flp;
6360 int i;
6361 struct fn_field *fnp;
6362 char *fieldname;
6363 struct nextfnfield *new_fnfield;
6364 struct type *this_type;
6365
6366 if (cu->language == language_ada)
6367 error ("unexpected member function in Ada type");
6368
6369 /* Get name of member function. */
6370 fieldname = dwarf2_name (die, cu);
6371 if (fieldname == NULL)
6372 return;
6373
6374 /* Look up member function name in fieldlist. */
6375 for (i = 0; i < fip->nfnfields; i++)
6376 {
6377 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6378 break;
6379 }
6380
6381 /* Create new list element if necessary. */
6382 if (i < fip->nfnfields)
6383 flp = &fip->fnfieldlists[i];
6384 else
6385 {
6386 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6387 {
6388 fip->fnfieldlists = (struct fnfieldlist *)
6389 xrealloc (fip->fnfieldlists,
6390 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6391 * sizeof (struct fnfieldlist));
6392 if (fip->nfnfields == 0)
6393 make_cleanup (free_current_contents, &fip->fnfieldlists);
6394 }
6395 flp = &fip->fnfieldlists[fip->nfnfields];
6396 flp->name = fieldname;
6397 flp->length = 0;
6398 flp->head = NULL;
6399 i = fip->nfnfields++;
6400 }
6401
6402 /* Create a new member function field and chain it to the field list
6403 entry. */
6404 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6405 make_cleanup (xfree, new_fnfield);
6406 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6407 new_fnfield->next = flp->head;
6408 flp->head = new_fnfield;
6409 flp->length++;
6410
6411 /* Fill in the member function field info. */
6412 fnp = &new_fnfield->fnfield;
6413
6414 /* Delay processing of the physname until later. */
6415 if (cu->language == language_cplus || cu->language == language_java)
6416 {
6417 add_to_method_list (type, i, flp->length - 1, fieldname,
6418 die, cu);
6419 }
6420 else
6421 {
6422 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6423 fnp->physname = physname ? physname : "";
6424 }
6425
6426 fnp->type = alloc_type (objfile);
6427 this_type = read_type_die (die, cu);
6428 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6429 {
6430 int nparams = TYPE_NFIELDS (this_type);
6431
6432 /* TYPE is the domain of this method, and THIS_TYPE is the type
6433 of the method itself (TYPE_CODE_METHOD). */
6434 smash_to_method_type (fnp->type, type,
6435 TYPE_TARGET_TYPE (this_type),
6436 TYPE_FIELDS (this_type),
6437 TYPE_NFIELDS (this_type),
6438 TYPE_VARARGS (this_type));
6439
6440 /* Handle static member functions.
6441 Dwarf2 has no clean way to discern C++ static and non-static
6442 member functions. G++ helps GDB by marking the first
6443 parameter for non-static member functions (which is the
6444 this pointer) as artificial. We obtain this information
6445 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6446 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6447 fnp->voffset = VOFFSET_STATIC;
6448 }
6449 else
6450 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6451 dwarf2_full_name (fieldname, die, cu));
6452
6453 /* Get fcontext from DW_AT_containing_type if present. */
6454 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6455 fnp->fcontext = die_containing_type (die, cu);
6456
6457 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6458 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6459
6460 /* Get accessibility. */
6461 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6462 if (attr)
6463 {
6464 switch (DW_UNSND (attr))
6465 {
6466 case DW_ACCESS_private:
6467 fnp->is_private = 1;
6468 break;
6469 case DW_ACCESS_protected:
6470 fnp->is_protected = 1;
6471 break;
6472 }
6473 }
6474
6475 /* Check for artificial methods. */
6476 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6477 if (attr && DW_UNSND (attr) != 0)
6478 fnp->is_artificial = 1;
6479
6480 /* Get index in virtual function table if it is a virtual member
6481 function. For older versions of GCC, this is an offset in the
6482 appropriate virtual table, as specified by DW_AT_containing_type.
6483 For everyone else, it is an expression to be evaluated relative
6484 to the object address. */
6485
6486 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6487 if (attr)
6488 {
6489 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6490 {
6491 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6492 {
6493 /* Old-style GCC. */
6494 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6495 }
6496 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6497 || (DW_BLOCK (attr)->size > 1
6498 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6499 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6500 {
6501 struct dwarf_block blk;
6502 int offset;
6503
6504 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6505 ? 1 : 2);
6506 blk.size = DW_BLOCK (attr)->size - offset;
6507 blk.data = DW_BLOCK (attr)->data + offset;
6508 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6509 if ((fnp->voffset % cu->header.addr_size) != 0)
6510 dwarf2_complex_location_expr_complaint ();
6511 else
6512 fnp->voffset /= cu->header.addr_size;
6513 fnp->voffset += 2;
6514 }
6515 else
6516 dwarf2_complex_location_expr_complaint ();
6517
6518 if (!fnp->fcontext)
6519 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6520 }
6521 else if (attr_form_is_section_offset (attr))
6522 {
6523 dwarf2_complex_location_expr_complaint ();
6524 }
6525 else
6526 {
6527 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6528 fieldname);
6529 }
6530 }
6531 else
6532 {
6533 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6534 if (attr && DW_UNSND (attr))
6535 {
6536 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6537 complaint (&symfile_complaints,
6538 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6539 fieldname, die->offset);
6540 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6541 TYPE_CPLUS_DYNAMIC (type) = 1;
6542 }
6543 }
6544 }
6545
6546 /* Create the vector of member function fields, and attach it to the type. */
6547
6548 static void
6549 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6550 struct dwarf2_cu *cu)
6551 {
6552 struct fnfieldlist *flp;
6553 int total_length = 0;
6554 int i;
6555
6556 if (cu->language == language_ada)
6557 error ("unexpected member functions in Ada type");
6558
6559 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6560 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6561 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6562
6563 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6564 {
6565 struct nextfnfield *nfp = flp->head;
6566 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6567 int k;
6568
6569 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6570 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6571 fn_flp->fn_fields = (struct fn_field *)
6572 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6573 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6574 fn_flp->fn_fields[k] = nfp->fnfield;
6575
6576 total_length += flp->length;
6577 }
6578
6579 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6580 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6581 }
6582
6583 /* Returns non-zero if NAME is the name of a vtable member in CU's
6584 language, zero otherwise. */
6585 static int
6586 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6587 {
6588 static const char vptr[] = "_vptr";
6589 static const char vtable[] = "vtable";
6590
6591 /* Look for the C++ and Java forms of the vtable. */
6592 if ((cu->language == language_java
6593 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6594 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6595 && is_cplus_marker (name[sizeof (vptr) - 1])))
6596 return 1;
6597
6598 return 0;
6599 }
6600
6601 /* GCC outputs unnamed structures that are really pointers to member
6602 functions, with the ABI-specified layout. If TYPE describes
6603 such a structure, smash it into a member function type.
6604
6605 GCC shouldn't do this; it should just output pointer to member DIEs.
6606 This is GCC PR debug/28767. */
6607
6608 static void
6609 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6610 {
6611 struct type *pfn_type, *domain_type, *new_type;
6612
6613 /* Check for a structure with no name and two children. */
6614 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6615 return;
6616
6617 /* Check for __pfn and __delta members. */
6618 if (TYPE_FIELD_NAME (type, 0) == NULL
6619 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6620 || TYPE_FIELD_NAME (type, 1) == NULL
6621 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6622 return;
6623
6624 /* Find the type of the method. */
6625 pfn_type = TYPE_FIELD_TYPE (type, 0);
6626 if (pfn_type == NULL
6627 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6628 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6629 return;
6630
6631 /* Look for the "this" argument. */
6632 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6633 if (TYPE_NFIELDS (pfn_type) == 0
6634 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6635 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6636 return;
6637
6638 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6639 new_type = alloc_type (objfile);
6640 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6641 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6642 TYPE_VARARGS (pfn_type));
6643 smash_to_methodptr_type (type, new_type);
6644 }
6645
6646 /* Called when we find the DIE that starts a structure or union scope
6647 (definition) to create a type for the structure or union. Fill in
6648 the type's name and general properties; the members will not be
6649 processed until process_structure_type.
6650
6651 NOTE: we need to call these functions regardless of whether or not the
6652 DIE has a DW_AT_name attribute, since it might be an anonymous
6653 structure or union. This gets the type entered into our set of
6654 user defined types.
6655
6656 However, if the structure is incomplete (an opaque struct/union)
6657 then suppress creating a symbol table entry for it since gdb only
6658 wants to find the one with the complete definition. Note that if
6659 it is complete, we just call new_symbol, which does it's own
6660 checking about whether the struct/union is anonymous or not (and
6661 suppresses creating a symbol table entry itself). */
6662
6663 static struct type *
6664 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6665 {
6666 struct objfile *objfile = cu->objfile;
6667 struct type *type;
6668 struct attribute *attr;
6669 char *name;
6670
6671 /* If the definition of this type lives in .debug_types, read that type.
6672 Don't follow DW_AT_specification though, that will take us back up
6673 the chain and we want to go down. */
6674 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6675 if (attr)
6676 {
6677 struct dwarf2_cu *type_cu = cu;
6678 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6679
6680 /* We could just recurse on read_structure_type, but we need to call
6681 get_die_type to ensure only one type for this DIE is created.
6682 This is important, for example, because for c++ classes we need
6683 TYPE_NAME set which is only done by new_symbol. Blech. */
6684 type = read_type_die (type_die, type_cu);
6685
6686 /* TYPE_CU may not be the same as CU.
6687 Ensure TYPE is recorded in CU's type_hash table. */
6688 return set_die_type (die, type, cu);
6689 }
6690
6691 type = alloc_type (objfile);
6692 INIT_CPLUS_SPECIFIC (type);
6693
6694 name = dwarf2_name (die, cu);
6695 if (name != NULL)
6696 {
6697 if (cu->language == language_cplus
6698 || cu->language == language_java)
6699 {
6700 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6701
6702 /* dwarf2_full_name might have already finished building the DIE's
6703 type. If so, there is no need to continue. */
6704 if (get_die_type (die, cu) != NULL)
6705 return get_die_type (die, cu);
6706
6707 TYPE_TAG_NAME (type) = full_name;
6708 if (die->tag == DW_TAG_structure_type
6709 || die->tag == DW_TAG_class_type)
6710 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6711 }
6712 else
6713 {
6714 /* The name is already allocated along with this objfile, so
6715 we don't need to duplicate it for the type. */
6716 TYPE_TAG_NAME (type) = (char *) name;
6717 if (die->tag == DW_TAG_class_type)
6718 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6719 }
6720 }
6721
6722 if (die->tag == DW_TAG_structure_type)
6723 {
6724 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6725 }
6726 else if (die->tag == DW_TAG_union_type)
6727 {
6728 TYPE_CODE (type) = TYPE_CODE_UNION;
6729 }
6730 else
6731 {
6732 TYPE_CODE (type) = TYPE_CODE_CLASS;
6733 }
6734
6735 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6736 TYPE_DECLARED_CLASS (type) = 1;
6737
6738 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6739 if (attr)
6740 {
6741 TYPE_LENGTH (type) = DW_UNSND (attr);
6742 }
6743 else
6744 {
6745 TYPE_LENGTH (type) = 0;
6746 }
6747
6748 TYPE_STUB_SUPPORTED (type) = 1;
6749 if (die_is_declaration (die, cu))
6750 TYPE_STUB (type) = 1;
6751 else if (attr == NULL && die->child == NULL
6752 && producer_is_realview (cu->producer))
6753 /* RealView does not output the required DW_AT_declaration
6754 on incomplete types. */
6755 TYPE_STUB (type) = 1;
6756
6757 /* We need to add the type field to the die immediately so we don't
6758 infinitely recurse when dealing with pointers to the structure
6759 type within the structure itself. */
6760 set_die_type (die, type, cu);
6761
6762 /* set_die_type should be already done. */
6763 set_descriptive_type (type, die, cu);
6764
6765 return type;
6766 }
6767
6768 /* Finish creating a structure or union type, including filling in
6769 its members and creating a symbol for it. */
6770
6771 static void
6772 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6773 {
6774 struct objfile *objfile = cu->objfile;
6775 struct die_info *child_die = die->child;
6776 struct type *type;
6777
6778 type = get_die_type (die, cu);
6779 if (type == NULL)
6780 type = read_structure_type (die, cu);
6781
6782 if (die->child != NULL && ! die_is_declaration (die, cu))
6783 {
6784 struct field_info fi;
6785 struct die_info *child_die;
6786 VEC (symbolp) *template_args = NULL;
6787 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6788
6789 memset (&fi, 0, sizeof (struct field_info));
6790
6791 child_die = die->child;
6792
6793 while (child_die && child_die->tag)
6794 {
6795 if (child_die->tag == DW_TAG_member
6796 || child_die->tag == DW_TAG_variable)
6797 {
6798 /* NOTE: carlton/2002-11-05: A C++ static data member
6799 should be a DW_TAG_member that is a declaration, but
6800 all versions of G++ as of this writing (so through at
6801 least 3.2.1) incorrectly generate DW_TAG_variable
6802 tags for them instead. */
6803 dwarf2_add_field (&fi, child_die, cu);
6804 }
6805 else if (child_die->tag == DW_TAG_subprogram)
6806 {
6807 /* C++ member function. */
6808 dwarf2_add_member_fn (&fi, child_die, type, cu);
6809 }
6810 else if (child_die->tag == DW_TAG_inheritance)
6811 {
6812 /* C++ base class field. */
6813 dwarf2_add_field (&fi, child_die, cu);
6814 }
6815 else if (child_die->tag == DW_TAG_typedef)
6816 dwarf2_add_typedef (&fi, child_die, cu);
6817 else if (child_die->tag == DW_TAG_template_type_param
6818 || child_die->tag == DW_TAG_template_value_param)
6819 {
6820 struct symbol *arg = new_symbol (child_die, NULL, cu);
6821
6822 if (arg != NULL)
6823 VEC_safe_push (symbolp, template_args, arg);
6824 }
6825
6826 child_die = sibling_die (child_die);
6827 }
6828
6829 /* Attach template arguments to type. */
6830 if (! VEC_empty (symbolp, template_args))
6831 {
6832 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6833 TYPE_N_TEMPLATE_ARGUMENTS (type)
6834 = VEC_length (symbolp, template_args);
6835 TYPE_TEMPLATE_ARGUMENTS (type)
6836 = obstack_alloc (&objfile->objfile_obstack,
6837 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6838 * sizeof (struct symbol *)));
6839 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6840 VEC_address (symbolp, template_args),
6841 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6842 * sizeof (struct symbol *)));
6843 VEC_free (symbolp, template_args);
6844 }
6845
6846 /* Attach fields and member functions to the type. */
6847 if (fi.nfields)
6848 dwarf2_attach_fields_to_type (&fi, type, cu);
6849 if (fi.nfnfields)
6850 {
6851 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6852
6853 /* Get the type which refers to the base class (possibly this
6854 class itself) which contains the vtable pointer for the current
6855 class from the DW_AT_containing_type attribute. This use of
6856 DW_AT_containing_type is a GNU extension. */
6857
6858 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6859 {
6860 struct type *t = die_containing_type (die, cu);
6861
6862 TYPE_VPTR_BASETYPE (type) = t;
6863 if (type == t)
6864 {
6865 int i;
6866
6867 /* Our own class provides vtbl ptr. */
6868 for (i = TYPE_NFIELDS (t) - 1;
6869 i >= TYPE_N_BASECLASSES (t);
6870 --i)
6871 {
6872 char *fieldname = TYPE_FIELD_NAME (t, i);
6873
6874 if (is_vtable_name (fieldname, cu))
6875 {
6876 TYPE_VPTR_FIELDNO (type) = i;
6877 break;
6878 }
6879 }
6880
6881 /* Complain if virtual function table field not found. */
6882 if (i < TYPE_N_BASECLASSES (t))
6883 complaint (&symfile_complaints,
6884 _("virtual function table pointer not found when defining class '%s'"),
6885 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6886 "");
6887 }
6888 else
6889 {
6890 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6891 }
6892 }
6893 else if (cu->producer
6894 && strncmp (cu->producer,
6895 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6896 {
6897 /* The IBM XLC compiler does not provide direct indication
6898 of the containing type, but the vtable pointer is
6899 always named __vfp. */
6900
6901 int i;
6902
6903 for (i = TYPE_NFIELDS (type) - 1;
6904 i >= TYPE_N_BASECLASSES (type);
6905 --i)
6906 {
6907 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6908 {
6909 TYPE_VPTR_FIELDNO (type) = i;
6910 TYPE_VPTR_BASETYPE (type) = type;
6911 break;
6912 }
6913 }
6914 }
6915 }
6916
6917 /* Copy fi.typedef_field_list linked list elements content into the
6918 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6919 if (fi.typedef_field_list)
6920 {
6921 int i = fi.typedef_field_list_count;
6922
6923 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6924 TYPE_TYPEDEF_FIELD_ARRAY (type)
6925 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6926 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6927
6928 /* Reverse the list order to keep the debug info elements order. */
6929 while (--i >= 0)
6930 {
6931 struct typedef_field *dest, *src;
6932
6933 dest = &TYPE_TYPEDEF_FIELD (type, i);
6934 src = &fi.typedef_field_list->field;
6935 fi.typedef_field_list = fi.typedef_field_list->next;
6936 *dest = *src;
6937 }
6938 }
6939
6940 do_cleanups (back_to);
6941 }
6942
6943 quirk_gcc_member_function_pointer (type, cu->objfile);
6944
6945 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6946 snapshots) has been known to create a die giving a declaration
6947 for a class that has, as a child, a die giving a definition for a
6948 nested class. So we have to process our children even if the
6949 current die is a declaration. Normally, of course, a declaration
6950 won't have any children at all. */
6951
6952 while (child_die != NULL && child_die->tag)
6953 {
6954 if (child_die->tag == DW_TAG_member
6955 || child_die->tag == DW_TAG_variable
6956 || child_die->tag == DW_TAG_inheritance
6957 || child_die->tag == DW_TAG_template_value_param
6958 || child_die->tag == DW_TAG_template_type_param)
6959 {
6960 /* Do nothing. */
6961 }
6962 else
6963 process_die (child_die, cu);
6964
6965 child_die = sibling_die (child_die);
6966 }
6967
6968 /* Do not consider external references. According to the DWARF standard,
6969 these DIEs are identified by the fact that they have no byte_size
6970 attribute, and a declaration attribute. */
6971 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6972 || !die_is_declaration (die, cu))
6973 new_symbol (die, type, cu);
6974 }
6975
6976 /* Given a DW_AT_enumeration_type die, set its type. We do not
6977 complete the type's fields yet, or create any symbols. */
6978
6979 static struct type *
6980 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6981 {
6982 struct objfile *objfile = cu->objfile;
6983 struct type *type;
6984 struct attribute *attr;
6985 const char *name;
6986
6987 /* If the definition of this type lives in .debug_types, read that type.
6988 Don't follow DW_AT_specification though, that will take us back up
6989 the chain and we want to go down. */
6990 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6991 if (attr)
6992 {
6993 struct dwarf2_cu *type_cu = cu;
6994 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6995
6996 type = read_type_die (type_die, type_cu);
6997
6998 /* TYPE_CU may not be the same as CU.
6999 Ensure TYPE is recorded in CU's type_hash table. */
7000 return set_die_type (die, type, cu);
7001 }
7002
7003 type = alloc_type (objfile);
7004
7005 TYPE_CODE (type) = TYPE_CODE_ENUM;
7006 name = dwarf2_full_name (NULL, die, cu);
7007 if (name != NULL)
7008 TYPE_TAG_NAME (type) = (char *) name;
7009
7010 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7011 if (attr)
7012 {
7013 TYPE_LENGTH (type) = DW_UNSND (attr);
7014 }
7015 else
7016 {
7017 TYPE_LENGTH (type) = 0;
7018 }
7019
7020 /* The enumeration DIE can be incomplete. In Ada, any type can be
7021 declared as private in the package spec, and then defined only
7022 inside the package body. Such types are known as Taft Amendment
7023 Types. When another package uses such a type, an incomplete DIE
7024 may be generated by the compiler. */
7025 if (die_is_declaration (die, cu))
7026 TYPE_STUB (type) = 1;
7027
7028 return set_die_type (die, type, cu);
7029 }
7030
7031 /* Given a pointer to a die which begins an enumeration, process all
7032 the dies that define the members of the enumeration, and create the
7033 symbol for the enumeration type.
7034
7035 NOTE: We reverse the order of the element list. */
7036
7037 static void
7038 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7039 {
7040 struct type *this_type;
7041
7042 this_type = get_die_type (die, cu);
7043 if (this_type == NULL)
7044 this_type = read_enumeration_type (die, cu);
7045
7046 if (die->child != NULL)
7047 {
7048 struct die_info *child_die;
7049 struct symbol *sym;
7050 struct field *fields = NULL;
7051 int num_fields = 0;
7052 int unsigned_enum = 1;
7053 char *name;
7054
7055 child_die = die->child;
7056 while (child_die && child_die->tag)
7057 {
7058 if (child_die->tag != DW_TAG_enumerator)
7059 {
7060 process_die (child_die, cu);
7061 }
7062 else
7063 {
7064 name = dwarf2_name (child_die, cu);
7065 if (name)
7066 {
7067 sym = new_symbol (child_die, this_type, cu);
7068 if (SYMBOL_VALUE (sym) < 0)
7069 unsigned_enum = 0;
7070
7071 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7072 {
7073 fields = (struct field *)
7074 xrealloc (fields,
7075 (num_fields + DW_FIELD_ALLOC_CHUNK)
7076 * sizeof (struct field));
7077 }
7078
7079 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7080 FIELD_TYPE (fields[num_fields]) = NULL;
7081 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7082 FIELD_BITSIZE (fields[num_fields]) = 0;
7083
7084 num_fields++;
7085 }
7086 }
7087
7088 child_die = sibling_die (child_die);
7089 }
7090
7091 if (num_fields)
7092 {
7093 TYPE_NFIELDS (this_type) = num_fields;
7094 TYPE_FIELDS (this_type) = (struct field *)
7095 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7096 memcpy (TYPE_FIELDS (this_type), fields,
7097 sizeof (struct field) * num_fields);
7098 xfree (fields);
7099 }
7100 if (unsigned_enum)
7101 TYPE_UNSIGNED (this_type) = 1;
7102 }
7103
7104 new_symbol (die, this_type, cu);
7105 }
7106
7107 /* Extract all information from a DW_TAG_array_type DIE and put it in
7108 the DIE's type field. For now, this only handles one dimensional
7109 arrays. */
7110
7111 static struct type *
7112 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7113 {
7114 struct objfile *objfile = cu->objfile;
7115 struct die_info *child_die;
7116 struct type *type;
7117 struct type *element_type, *range_type, *index_type;
7118 struct type **range_types = NULL;
7119 struct attribute *attr;
7120 int ndim = 0;
7121 struct cleanup *back_to;
7122 char *name;
7123
7124 element_type = die_type (die, cu);
7125
7126 /* The die_type call above may have already set the type for this DIE. */
7127 type = get_die_type (die, cu);
7128 if (type)
7129 return type;
7130
7131 /* Irix 6.2 native cc creates array types without children for
7132 arrays with unspecified length. */
7133 if (die->child == NULL)
7134 {
7135 index_type = objfile_type (objfile)->builtin_int;
7136 range_type = create_range_type (NULL, index_type, 0, -1);
7137 type = create_array_type (NULL, element_type, range_type);
7138 return set_die_type (die, type, cu);
7139 }
7140
7141 back_to = make_cleanup (null_cleanup, NULL);
7142 child_die = die->child;
7143 while (child_die && child_die->tag)
7144 {
7145 if (child_die->tag == DW_TAG_subrange_type)
7146 {
7147 struct type *child_type = read_type_die (child_die, cu);
7148
7149 if (child_type != NULL)
7150 {
7151 /* The range type was succesfully read. Save it for
7152 the array type creation. */
7153 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7154 {
7155 range_types = (struct type **)
7156 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7157 * sizeof (struct type *));
7158 if (ndim == 0)
7159 make_cleanup (free_current_contents, &range_types);
7160 }
7161 range_types[ndim++] = child_type;
7162 }
7163 }
7164 child_die = sibling_die (child_die);
7165 }
7166
7167 /* Dwarf2 dimensions are output from left to right, create the
7168 necessary array types in backwards order. */
7169
7170 type = element_type;
7171
7172 if (read_array_order (die, cu) == DW_ORD_col_major)
7173 {
7174 int i = 0;
7175
7176 while (i < ndim)
7177 type = create_array_type (NULL, type, range_types[i++]);
7178 }
7179 else
7180 {
7181 while (ndim-- > 0)
7182 type = create_array_type (NULL, type, range_types[ndim]);
7183 }
7184
7185 /* Understand Dwarf2 support for vector types (like they occur on
7186 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7187 array type. This is not part of the Dwarf2/3 standard yet, but a
7188 custom vendor extension. The main difference between a regular
7189 array and the vector variant is that vectors are passed by value
7190 to functions. */
7191 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7192 if (attr)
7193 make_vector_type (type);
7194
7195 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7196 implementation may choose to implement triple vectors using this
7197 attribute. */
7198 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7199 if (attr)
7200 {
7201 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7202 TYPE_LENGTH (type) = DW_UNSND (attr);
7203 else
7204 complaint (&symfile_complaints, _("\
7205 DW_AT_byte_size for array type smaller than the total size of elements"));
7206 }
7207
7208 name = dwarf2_name (die, cu);
7209 if (name)
7210 TYPE_NAME (type) = name;
7211
7212 /* Install the type in the die. */
7213 set_die_type (die, type, cu);
7214
7215 /* set_die_type should be already done. */
7216 set_descriptive_type (type, die, cu);
7217
7218 do_cleanups (back_to);
7219
7220 return type;
7221 }
7222
7223 static enum dwarf_array_dim_ordering
7224 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7225 {
7226 struct attribute *attr;
7227
7228 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7229
7230 if (attr) return DW_SND (attr);
7231
7232 /*
7233 GNU F77 is a special case, as at 08/2004 array type info is the
7234 opposite order to the dwarf2 specification, but data is still
7235 laid out as per normal fortran.
7236
7237 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7238 version checking.
7239 */
7240
7241 if (cu->language == language_fortran
7242 && cu->producer && strstr (cu->producer, "GNU F77"))
7243 {
7244 return DW_ORD_row_major;
7245 }
7246
7247 switch (cu->language_defn->la_array_ordering)
7248 {
7249 case array_column_major:
7250 return DW_ORD_col_major;
7251 case array_row_major:
7252 default:
7253 return DW_ORD_row_major;
7254 };
7255 }
7256
7257 /* Extract all information from a DW_TAG_set_type DIE and put it in
7258 the DIE's type field. */
7259
7260 static struct type *
7261 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7262 {
7263 struct type *domain_type, *set_type;
7264 struct attribute *attr;
7265
7266 domain_type = die_type (die, cu);
7267
7268 /* The die_type call above may have already set the type for this DIE. */
7269 set_type = get_die_type (die, cu);
7270 if (set_type)
7271 return set_type;
7272
7273 set_type = create_set_type (NULL, domain_type);
7274
7275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7276 if (attr)
7277 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7278
7279 return set_die_type (die, set_type, cu);
7280 }
7281
7282 /* First cut: install each common block member as a global variable. */
7283
7284 static void
7285 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7286 {
7287 struct die_info *child_die;
7288 struct attribute *attr;
7289 struct symbol *sym;
7290 CORE_ADDR base = (CORE_ADDR) 0;
7291
7292 attr = dwarf2_attr (die, DW_AT_location, cu);
7293 if (attr)
7294 {
7295 /* Support the .debug_loc offsets */
7296 if (attr_form_is_block (attr))
7297 {
7298 base = decode_locdesc (DW_BLOCK (attr), cu);
7299 }
7300 else if (attr_form_is_section_offset (attr))
7301 {
7302 dwarf2_complex_location_expr_complaint ();
7303 }
7304 else
7305 {
7306 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7307 "common block member");
7308 }
7309 }
7310 if (die->child != NULL)
7311 {
7312 child_die = die->child;
7313 while (child_die && child_die->tag)
7314 {
7315 sym = new_symbol (child_die, NULL, cu);
7316 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7317 if (sym != NULL && attr != NULL)
7318 {
7319 CORE_ADDR byte_offset = 0;
7320
7321 if (attr_form_is_section_offset (attr))
7322 dwarf2_complex_location_expr_complaint ();
7323 else if (attr_form_is_constant (attr))
7324 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7325 else if (attr_form_is_block (attr))
7326 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7327 else
7328 dwarf2_complex_location_expr_complaint ();
7329
7330 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7331 add_symbol_to_list (sym, &global_symbols);
7332 }
7333 child_die = sibling_die (child_die);
7334 }
7335 }
7336 }
7337
7338 /* Create a type for a C++ namespace. */
7339
7340 static struct type *
7341 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7342 {
7343 struct objfile *objfile = cu->objfile;
7344 const char *previous_prefix, *name;
7345 int is_anonymous;
7346 struct type *type;
7347
7348 /* For extensions, reuse the type of the original namespace. */
7349 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7350 {
7351 struct die_info *ext_die;
7352 struct dwarf2_cu *ext_cu = cu;
7353
7354 ext_die = dwarf2_extension (die, &ext_cu);
7355 type = read_type_die (ext_die, ext_cu);
7356
7357 /* EXT_CU may not be the same as CU.
7358 Ensure TYPE is recorded in CU's type_hash table. */
7359 return set_die_type (die, type, cu);
7360 }
7361
7362 name = namespace_name (die, &is_anonymous, cu);
7363
7364 /* Now build the name of the current namespace. */
7365
7366 previous_prefix = determine_prefix (die, cu);
7367 if (previous_prefix[0] != '\0')
7368 name = typename_concat (&objfile->objfile_obstack,
7369 previous_prefix, name, 0, cu);
7370
7371 /* Create the type. */
7372 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7373 objfile);
7374 TYPE_NAME (type) = (char *) name;
7375 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7376
7377 return set_die_type (die, type, cu);
7378 }
7379
7380 /* Read a C++ namespace. */
7381
7382 static void
7383 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7384 {
7385 struct objfile *objfile = cu->objfile;
7386 const char *name;
7387 int is_anonymous;
7388
7389 /* Add a symbol associated to this if we haven't seen the namespace
7390 before. Also, add a using directive if it's an anonymous
7391 namespace. */
7392
7393 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7394 {
7395 struct type *type;
7396
7397 type = read_type_die (die, cu);
7398 new_symbol (die, type, cu);
7399
7400 name = namespace_name (die, &is_anonymous, cu);
7401 if (is_anonymous)
7402 {
7403 const char *previous_prefix = determine_prefix (die, cu);
7404
7405 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7406 NULL, &objfile->objfile_obstack);
7407 }
7408 }
7409
7410 if (die->child != NULL)
7411 {
7412 struct die_info *child_die = die->child;
7413
7414 while (child_die && child_die->tag)
7415 {
7416 process_die (child_die, cu);
7417 child_die = sibling_die (child_die);
7418 }
7419 }
7420 }
7421
7422 /* Read a Fortran module as type. This DIE can be only a declaration used for
7423 imported module. Still we need that type as local Fortran "use ... only"
7424 declaration imports depend on the created type in determine_prefix. */
7425
7426 static struct type *
7427 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7428 {
7429 struct objfile *objfile = cu->objfile;
7430 char *module_name;
7431 struct type *type;
7432
7433 module_name = dwarf2_name (die, cu);
7434 if (!module_name)
7435 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7436 die->offset);
7437 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7438
7439 /* determine_prefix uses TYPE_TAG_NAME. */
7440 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7441
7442 return set_die_type (die, type, cu);
7443 }
7444
7445 /* Read a Fortran module. */
7446
7447 static void
7448 read_module (struct die_info *die, struct dwarf2_cu *cu)
7449 {
7450 struct die_info *child_die = die->child;
7451
7452 while (child_die && child_die->tag)
7453 {
7454 process_die (child_die, cu);
7455 child_die = sibling_die (child_die);
7456 }
7457 }
7458
7459 /* Return the name of the namespace represented by DIE. Set
7460 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7461 namespace. */
7462
7463 static const char *
7464 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7465 {
7466 struct die_info *current_die;
7467 const char *name = NULL;
7468
7469 /* Loop through the extensions until we find a name. */
7470
7471 for (current_die = die;
7472 current_die != NULL;
7473 current_die = dwarf2_extension (die, &cu))
7474 {
7475 name = dwarf2_name (current_die, cu);
7476 if (name != NULL)
7477 break;
7478 }
7479
7480 /* Is it an anonymous namespace? */
7481
7482 *is_anonymous = (name == NULL);
7483 if (*is_anonymous)
7484 name = "(anonymous namespace)";
7485
7486 return name;
7487 }
7488
7489 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7490 the user defined type vector. */
7491
7492 static struct type *
7493 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7494 {
7495 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7496 struct comp_unit_head *cu_header = &cu->header;
7497 struct type *type;
7498 struct attribute *attr_byte_size;
7499 struct attribute *attr_address_class;
7500 int byte_size, addr_class;
7501 struct type *target_type;
7502
7503 target_type = die_type (die, cu);
7504
7505 /* The die_type call above may have already set the type for this DIE. */
7506 type = get_die_type (die, cu);
7507 if (type)
7508 return type;
7509
7510 type = lookup_pointer_type (target_type);
7511
7512 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7513 if (attr_byte_size)
7514 byte_size = DW_UNSND (attr_byte_size);
7515 else
7516 byte_size = cu_header->addr_size;
7517
7518 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7519 if (attr_address_class)
7520 addr_class = DW_UNSND (attr_address_class);
7521 else
7522 addr_class = DW_ADDR_none;
7523
7524 /* If the pointer size or address class is different than the
7525 default, create a type variant marked as such and set the
7526 length accordingly. */
7527 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7528 {
7529 if (gdbarch_address_class_type_flags_p (gdbarch))
7530 {
7531 int type_flags;
7532
7533 type_flags = gdbarch_address_class_type_flags
7534 (gdbarch, byte_size, addr_class);
7535 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7536 == 0);
7537 type = make_type_with_address_space (type, type_flags);
7538 }
7539 else if (TYPE_LENGTH (type) != byte_size)
7540 {
7541 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
7542 }
7543 else
7544 {
7545 /* Should we also complain about unhandled address classes? */
7546 }
7547 }
7548
7549 TYPE_LENGTH (type) = byte_size;
7550 return set_die_type (die, type, cu);
7551 }
7552
7553 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7554 the user defined type vector. */
7555
7556 static struct type *
7557 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7558 {
7559 struct type *type;
7560 struct type *to_type;
7561 struct type *domain;
7562
7563 to_type = die_type (die, cu);
7564 domain = die_containing_type (die, cu);
7565
7566 /* The calls above may have already set the type for this DIE. */
7567 type = get_die_type (die, cu);
7568 if (type)
7569 return type;
7570
7571 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7572 type = lookup_methodptr_type (to_type);
7573 else
7574 type = lookup_memberptr_type (to_type, domain);
7575
7576 return set_die_type (die, type, cu);
7577 }
7578
7579 /* Extract all information from a DW_TAG_reference_type DIE and add to
7580 the user defined type vector. */
7581
7582 static struct type *
7583 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7584 {
7585 struct comp_unit_head *cu_header = &cu->header;
7586 struct type *type, *target_type;
7587 struct attribute *attr;
7588
7589 target_type = die_type (die, cu);
7590
7591 /* The die_type call above may have already set the type for this DIE. */
7592 type = get_die_type (die, cu);
7593 if (type)
7594 return type;
7595
7596 type = lookup_reference_type (target_type);
7597 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7598 if (attr)
7599 {
7600 TYPE_LENGTH (type) = DW_UNSND (attr);
7601 }
7602 else
7603 {
7604 TYPE_LENGTH (type) = cu_header->addr_size;
7605 }
7606 return set_die_type (die, type, cu);
7607 }
7608
7609 static struct type *
7610 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7611 {
7612 struct type *base_type, *cv_type;
7613
7614 base_type = die_type (die, cu);
7615
7616 /* The die_type call above may have already set the type for this DIE. */
7617 cv_type = get_die_type (die, cu);
7618 if (cv_type)
7619 return cv_type;
7620
7621 /* In case the const qualifier is applied to an array type, the element type
7622 is so qualified, not the array type (section 6.7.3 of C99). */
7623 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7624 {
7625 struct type *el_type, *inner_array;
7626
7627 base_type = copy_type (base_type);
7628 inner_array = base_type;
7629
7630 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7631 {
7632 TYPE_TARGET_TYPE (inner_array) =
7633 copy_type (TYPE_TARGET_TYPE (inner_array));
7634 inner_array = TYPE_TARGET_TYPE (inner_array);
7635 }
7636
7637 el_type = TYPE_TARGET_TYPE (inner_array);
7638 TYPE_TARGET_TYPE (inner_array) =
7639 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7640
7641 return set_die_type (die, base_type, cu);
7642 }
7643
7644 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7645 return set_die_type (die, cv_type, cu);
7646 }
7647
7648 static struct type *
7649 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7650 {
7651 struct type *base_type, *cv_type;
7652
7653 base_type = die_type (die, cu);
7654
7655 /* The die_type call above may have already set the type for this DIE. */
7656 cv_type = get_die_type (die, cu);
7657 if (cv_type)
7658 return cv_type;
7659
7660 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7661 return set_die_type (die, cv_type, cu);
7662 }
7663
7664 /* Extract all information from a DW_TAG_string_type DIE and add to
7665 the user defined type vector. It isn't really a user defined type,
7666 but it behaves like one, with other DIE's using an AT_user_def_type
7667 attribute to reference it. */
7668
7669 static struct type *
7670 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7671 {
7672 struct objfile *objfile = cu->objfile;
7673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7674 struct type *type, *range_type, *index_type, *char_type;
7675 struct attribute *attr;
7676 unsigned int length;
7677
7678 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7679 if (attr)
7680 {
7681 length = DW_UNSND (attr);
7682 }
7683 else
7684 {
7685 /* check for the DW_AT_byte_size attribute */
7686 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7687 if (attr)
7688 {
7689 length = DW_UNSND (attr);
7690 }
7691 else
7692 {
7693 length = 1;
7694 }
7695 }
7696
7697 index_type = objfile_type (objfile)->builtin_int;
7698 range_type = create_range_type (NULL, index_type, 1, length);
7699 char_type = language_string_char_type (cu->language_defn, gdbarch);
7700 type = create_string_type (NULL, char_type, range_type);
7701
7702 return set_die_type (die, type, cu);
7703 }
7704
7705 /* Handle DIES due to C code like:
7706
7707 struct foo
7708 {
7709 int (*funcp)(int a, long l);
7710 int b;
7711 };
7712
7713 ('funcp' generates a DW_TAG_subroutine_type DIE)
7714 */
7715
7716 static struct type *
7717 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7718 {
7719 struct type *type; /* Type that this function returns */
7720 struct type *ftype; /* Function that returns above type */
7721 struct attribute *attr;
7722
7723 type = die_type (die, cu);
7724
7725 /* The die_type call above may have already set the type for this DIE. */
7726 ftype = get_die_type (die, cu);
7727 if (ftype)
7728 return ftype;
7729
7730 ftype = lookup_function_type (type);
7731
7732 /* All functions in C++, Pascal and Java have prototypes. */
7733 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7734 if ((attr && (DW_UNSND (attr) != 0))
7735 || cu->language == language_cplus
7736 || cu->language == language_java
7737 || cu->language == language_pascal)
7738 TYPE_PROTOTYPED (ftype) = 1;
7739 else if (producer_is_realview (cu->producer))
7740 /* RealView does not emit DW_AT_prototyped. We can not
7741 distinguish prototyped and unprototyped functions; default to
7742 prototyped, since that is more common in modern code (and
7743 RealView warns about unprototyped functions). */
7744 TYPE_PROTOTYPED (ftype) = 1;
7745
7746 /* Store the calling convention in the type if it's available in
7747 the subroutine die. Otherwise set the calling convention to
7748 the default value DW_CC_normal. */
7749 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7750 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7751
7752 /* We need to add the subroutine type to the die immediately so
7753 we don't infinitely recurse when dealing with parameters
7754 declared as the same subroutine type. */
7755 set_die_type (die, ftype, cu);
7756
7757 if (die->child != NULL)
7758 {
7759 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7760 struct die_info *child_die;
7761 int nparams, iparams;
7762
7763 /* Count the number of parameters.
7764 FIXME: GDB currently ignores vararg functions, but knows about
7765 vararg member functions. */
7766 nparams = 0;
7767 child_die = die->child;
7768 while (child_die && child_die->tag)
7769 {
7770 if (child_die->tag == DW_TAG_formal_parameter)
7771 nparams++;
7772 else if (child_die->tag == DW_TAG_unspecified_parameters)
7773 TYPE_VARARGS (ftype) = 1;
7774 child_die = sibling_die (child_die);
7775 }
7776
7777 /* Allocate storage for parameters and fill them in. */
7778 TYPE_NFIELDS (ftype) = nparams;
7779 TYPE_FIELDS (ftype) = (struct field *)
7780 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7781
7782 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7783 even if we error out during the parameters reading below. */
7784 for (iparams = 0; iparams < nparams; iparams++)
7785 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7786
7787 iparams = 0;
7788 child_die = die->child;
7789 while (child_die && child_die->tag)
7790 {
7791 if (child_die->tag == DW_TAG_formal_parameter)
7792 {
7793 struct type *arg_type;
7794
7795 /* DWARF version 2 has no clean way to discern C++
7796 static and non-static member functions. G++ helps
7797 GDB by marking the first parameter for non-static
7798 member functions (which is the this pointer) as
7799 artificial. We pass this information to
7800 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7801
7802 DWARF version 3 added DW_AT_object_pointer, which GCC
7803 4.5 does not yet generate. */
7804 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7805 if (attr)
7806 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7807 else
7808 {
7809 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7810
7811 /* GCC/43521: In java, the formal parameter
7812 "this" is sometimes not marked with DW_AT_artificial. */
7813 if (cu->language == language_java)
7814 {
7815 const char *name = dwarf2_name (child_die, cu);
7816
7817 if (name && !strcmp (name, "this"))
7818 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7819 }
7820 }
7821 arg_type = die_type (child_die, cu);
7822
7823 /* RealView does not mark THIS as const, which the testsuite
7824 expects. GCC marks THIS as const in method definitions,
7825 but not in the class specifications (GCC PR 43053). */
7826 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7827 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7828 {
7829 int is_this = 0;
7830 struct dwarf2_cu *arg_cu = cu;
7831 const char *name = dwarf2_name (child_die, cu);
7832
7833 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7834 if (attr)
7835 {
7836 /* If the compiler emits this, use it. */
7837 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7838 is_this = 1;
7839 }
7840 else if (name && strcmp (name, "this") == 0)
7841 /* Function definitions will have the argument names. */
7842 is_this = 1;
7843 else if (name == NULL && iparams == 0)
7844 /* Declarations may not have the names, so like
7845 elsewhere in GDB, assume an artificial first
7846 argument is "this". */
7847 is_this = 1;
7848
7849 if (is_this)
7850 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7851 arg_type, 0);
7852 }
7853
7854 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
7855 iparams++;
7856 }
7857 child_die = sibling_die (child_die);
7858 }
7859 }
7860
7861 return ftype;
7862 }
7863
7864 static struct type *
7865 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7866 {
7867 struct objfile *objfile = cu->objfile;
7868 const char *name = NULL;
7869 struct type *this_type;
7870
7871 name = dwarf2_full_name (NULL, die, cu);
7872 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7873 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7874 TYPE_NAME (this_type) = (char *) name;
7875 set_die_type (die, this_type, cu);
7876 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7877 return this_type;
7878 }
7879
7880 /* Find a representation of a given base type and install
7881 it in the TYPE field of the die. */
7882
7883 static struct type *
7884 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7885 {
7886 struct objfile *objfile = cu->objfile;
7887 struct type *type;
7888 struct attribute *attr;
7889 int encoding = 0, size = 0;
7890 char *name;
7891 enum type_code code = TYPE_CODE_INT;
7892 int type_flags = 0;
7893 struct type *target_type = NULL;
7894
7895 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7896 if (attr)
7897 {
7898 encoding = DW_UNSND (attr);
7899 }
7900 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7901 if (attr)
7902 {
7903 size = DW_UNSND (attr);
7904 }
7905 name = dwarf2_name (die, cu);
7906 if (!name)
7907 {
7908 complaint (&symfile_complaints,
7909 _("DW_AT_name missing from DW_TAG_base_type"));
7910 }
7911
7912 switch (encoding)
7913 {
7914 case DW_ATE_address:
7915 /* Turn DW_ATE_address into a void * pointer. */
7916 code = TYPE_CODE_PTR;
7917 type_flags |= TYPE_FLAG_UNSIGNED;
7918 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7919 break;
7920 case DW_ATE_boolean:
7921 code = TYPE_CODE_BOOL;
7922 type_flags |= TYPE_FLAG_UNSIGNED;
7923 break;
7924 case DW_ATE_complex_float:
7925 code = TYPE_CODE_COMPLEX;
7926 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7927 break;
7928 case DW_ATE_decimal_float:
7929 code = TYPE_CODE_DECFLOAT;
7930 break;
7931 case DW_ATE_float:
7932 code = TYPE_CODE_FLT;
7933 break;
7934 case DW_ATE_signed:
7935 break;
7936 case DW_ATE_unsigned:
7937 type_flags |= TYPE_FLAG_UNSIGNED;
7938 break;
7939 case DW_ATE_signed_char:
7940 if (cu->language == language_ada || cu->language == language_m2
7941 || cu->language == language_pascal)
7942 code = TYPE_CODE_CHAR;
7943 break;
7944 case DW_ATE_unsigned_char:
7945 if (cu->language == language_ada || cu->language == language_m2
7946 || cu->language == language_pascal)
7947 code = TYPE_CODE_CHAR;
7948 type_flags |= TYPE_FLAG_UNSIGNED;
7949 break;
7950 case DW_ATE_UTF:
7951 /* We just treat this as an integer and then recognize the
7952 type by name elsewhere. */
7953 break;
7954
7955 default:
7956 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7957 dwarf_type_encoding_name (encoding));
7958 break;
7959 }
7960
7961 type = init_type (code, size, type_flags, NULL, objfile);
7962 TYPE_NAME (type) = name;
7963 TYPE_TARGET_TYPE (type) = target_type;
7964
7965 if (name && strcmp (name, "char") == 0)
7966 TYPE_NOSIGN (type) = 1;
7967
7968 return set_die_type (die, type, cu);
7969 }
7970
7971 /* Read the given DW_AT_subrange DIE. */
7972
7973 static struct type *
7974 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7975 {
7976 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7977 struct type *base_type;
7978 struct type *range_type;
7979 struct attribute *attr;
7980 LONGEST low = 0;
7981 LONGEST high = -1;
7982 char *name;
7983 LONGEST negative_mask;
7984
7985 base_type = die_type (die, cu);
7986 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7987 check_typedef (base_type);
7988
7989 /* The die_type call above may have already set the type for this DIE. */
7990 range_type = get_die_type (die, cu);
7991 if (range_type)
7992 return range_type;
7993
7994 if (cu->language == language_fortran)
7995 {
7996 /* FORTRAN implies a lower bound of 1, if not given. */
7997 low = 1;
7998 }
7999
8000 /* FIXME: For variable sized arrays either of these could be
8001 a variable rather than a constant value. We'll allow it,
8002 but we don't know how to handle it. */
8003 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8004 if (attr)
8005 low = dwarf2_get_attr_constant_value (attr, 0);
8006
8007 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8008 if (attr)
8009 {
8010 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8011 {
8012 /* GCC encodes arrays with unspecified or dynamic length
8013 with a DW_FORM_block1 attribute or a reference attribute.
8014 FIXME: GDB does not yet know how to handle dynamic
8015 arrays properly, treat them as arrays with unspecified
8016 length for now.
8017
8018 FIXME: jimb/2003-09-22: GDB does not really know
8019 how to handle arrays of unspecified length
8020 either; we just represent them as zero-length
8021 arrays. Choose an appropriate upper bound given
8022 the lower bound we've computed above. */
8023 high = low - 1;
8024 }
8025 else
8026 high = dwarf2_get_attr_constant_value (attr, 1);
8027 }
8028 else
8029 {
8030 attr = dwarf2_attr (die, DW_AT_count, cu);
8031 if (attr)
8032 {
8033 int count = dwarf2_get_attr_constant_value (attr, 1);
8034 high = low + count - 1;
8035 }
8036 }
8037
8038 /* Dwarf-2 specifications explicitly allows to create subrange types
8039 without specifying a base type.
8040 In that case, the base type must be set to the type of
8041 the lower bound, upper bound or count, in that order, if any of these
8042 three attributes references an object that has a type.
8043 If no base type is found, the Dwarf-2 specifications say that
8044 a signed integer type of size equal to the size of an address should
8045 be used.
8046 For the following C code: `extern char gdb_int [];'
8047 GCC produces an empty range DIE.
8048 FIXME: muller/2010-05-28: Possible references to object for low bound,
8049 high bound or count are not yet handled by this code.
8050 */
8051 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8052 {
8053 struct objfile *objfile = cu->objfile;
8054 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8055 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8056 struct type *int_type = objfile_type (objfile)->builtin_int;
8057
8058 /* Test "int", "long int", and "long long int" objfile types,
8059 and select the first one having a size above or equal to the
8060 architecture address size. */
8061 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8062 base_type = int_type;
8063 else
8064 {
8065 int_type = objfile_type (objfile)->builtin_long;
8066 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8067 base_type = int_type;
8068 else
8069 {
8070 int_type = objfile_type (objfile)->builtin_long_long;
8071 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8072 base_type = int_type;
8073 }
8074 }
8075 }
8076
8077 negative_mask =
8078 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8079 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8080 low |= negative_mask;
8081 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8082 high |= negative_mask;
8083
8084 range_type = create_range_type (NULL, base_type, low, high);
8085
8086 /* Mark arrays with dynamic length at least as an array of unspecified
8087 length. GDB could check the boundary but before it gets implemented at
8088 least allow accessing the array elements. */
8089 if (attr && attr->form == DW_FORM_block1)
8090 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8091
8092 name = dwarf2_name (die, cu);
8093 if (name)
8094 TYPE_NAME (range_type) = name;
8095
8096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8097 if (attr)
8098 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8099
8100 set_die_type (die, range_type, cu);
8101
8102 /* set_die_type should be already done. */
8103 set_descriptive_type (range_type, die, cu);
8104
8105 return range_type;
8106 }
8107
8108 static struct type *
8109 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8110 {
8111 struct type *type;
8112
8113 /* For now, we only support the C meaning of an unspecified type: void. */
8114
8115 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8116 TYPE_NAME (type) = dwarf2_name (die, cu);
8117
8118 return set_die_type (die, type, cu);
8119 }
8120
8121 /* Trivial hash function for die_info: the hash value of a DIE
8122 is its offset in .debug_info for this objfile. */
8123
8124 static hashval_t
8125 die_hash (const void *item)
8126 {
8127 const struct die_info *die = item;
8128
8129 return die->offset;
8130 }
8131
8132 /* Trivial comparison function for die_info structures: two DIEs
8133 are equal if they have the same offset. */
8134
8135 static int
8136 die_eq (const void *item_lhs, const void *item_rhs)
8137 {
8138 const struct die_info *die_lhs = item_lhs;
8139 const struct die_info *die_rhs = item_rhs;
8140
8141 return die_lhs->offset == die_rhs->offset;
8142 }
8143
8144 /* Read a whole compilation unit into a linked list of dies. */
8145
8146 static struct die_info *
8147 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8148 {
8149 struct die_reader_specs reader_specs;
8150 int read_abbrevs = 0;
8151 struct cleanup *back_to = NULL;
8152 struct die_info *die;
8153
8154 if (cu->dwarf2_abbrevs == NULL)
8155 {
8156 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8157 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8158 read_abbrevs = 1;
8159 }
8160
8161 gdb_assert (cu->die_hash == NULL);
8162 cu->die_hash
8163 = htab_create_alloc_ex (cu->header.length / 12,
8164 die_hash,
8165 die_eq,
8166 NULL,
8167 &cu->comp_unit_obstack,
8168 hashtab_obstack_allocate,
8169 dummy_obstack_deallocate);
8170
8171 init_cu_die_reader (&reader_specs, cu);
8172
8173 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8174
8175 if (read_abbrevs)
8176 do_cleanups (back_to);
8177
8178 return die;
8179 }
8180
8181 /* Main entry point for reading a DIE and all children.
8182 Read the DIE and dump it if requested. */
8183
8184 static struct die_info *
8185 read_die_and_children (const struct die_reader_specs *reader,
8186 gdb_byte *info_ptr,
8187 gdb_byte **new_info_ptr,
8188 struct die_info *parent)
8189 {
8190 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8191 new_info_ptr, parent);
8192
8193 if (dwarf2_die_debug)
8194 {
8195 fprintf_unfiltered (gdb_stdlog,
8196 "\nRead die from %s of %s:\n",
8197 reader->buffer == dwarf2_per_objfile->info.buffer
8198 ? ".debug_info"
8199 : reader->buffer == dwarf2_per_objfile->types.buffer
8200 ? ".debug_types"
8201 : "unknown section",
8202 reader->abfd->filename);
8203 dump_die (result, dwarf2_die_debug);
8204 }
8205
8206 return result;
8207 }
8208
8209 /* Read a single die and all its descendents. Set the die's sibling
8210 field to NULL; set other fields in the die correctly, and set all
8211 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8212 location of the info_ptr after reading all of those dies. PARENT
8213 is the parent of the die in question. */
8214
8215 static struct die_info *
8216 read_die_and_children_1 (const struct die_reader_specs *reader,
8217 gdb_byte *info_ptr,
8218 gdb_byte **new_info_ptr,
8219 struct die_info *parent)
8220 {
8221 struct die_info *die;
8222 gdb_byte *cur_ptr;
8223 int has_children;
8224
8225 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8226 if (die == NULL)
8227 {
8228 *new_info_ptr = cur_ptr;
8229 return NULL;
8230 }
8231 store_in_ref_table (die, reader->cu);
8232
8233 if (has_children)
8234 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8235 else
8236 {
8237 die->child = NULL;
8238 *new_info_ptr = cur_ptr;
8239 }
8240
8241 die->sibling = NULL;
8242 die->parent = parent;
8243 return die;
8244 }
8245
8246 /* Read a die, all of its descendents, and all of its siblings; set
8247 all of the fields of all of the dies correctly. Arguments are as
8248 in read_die_and_children. */
8249
8250 static struct die_info *
8251 read_die_and_siblings (const struct die_reader_specs *reader,
8252 gdb_byte *info_ptr,
8253 gdb_byte **new_info_ptr,
8254 struct die_info *parent)
8255 {
8256 struct die_info *first_die, *last_sibling;
8257 gdb_byte *cur_ptr;
8258
8259 cur_ptr = info_ptr;
8260 first_die = last_sibling = NULL;
8261
8262 while (1)
8263 {
8264 struct die_info *die
8265 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8266
8267 if (die == NULL)
8268 {
8269 *new_info_ptr = cur_ptr;
8270 return first_die;
8271 }
8272
8273 if (!first_die)
8274 first_die = die;
8275 else
8276 last_sibling->sibling = die;
8277
8278 last_sibling = die;
8279 }
8280 }
8281
8282 /* Read the die from the .debug_info section buffer. Set DIEP to
8283 point to a newly allocated die with its information, except for its
8284 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8285 whether the die has children or not. */
8286
8287 static gdb_byte *
8288 read_full_die (const struct die_reader_specs *reader,
8289 struct die_info **diep, gdb_byte *info_ptr,
8290 int *has_children)
8291 {
8292 unsigned int abbrev_number, bytes_read, i, offset;
8293 struct abbrev_info *abbrev;
8294 struct die_info *die;
8295 struct dwarf2_cu *cu = reader->cu;
8296 bfd *abfd = reader->abfd;
8297
8298 offset = info_ptr - reader->buffer;
8299 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8300 info_ptr += bytes_read;
8301 if (!abbrev_number)
8302 {
8303 *diep = NULL;
8304 *has_children = 0;
8305 return info_ptr;
8306 }
8307
8308 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8309 if (!abbrev)
8310 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8311 abbrev_number,
8312 bfd_get_filename (abfd));
8313
8314 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8315 die->offset = offset;
8316 die->tag = abbrev->tag;
8317 die->abbrev = abbrev_number;
8318
8319 die->num_attrs = abbrev->num_attrs;
8320
8321 for (i = 0; i < abbrev->num_attrs; ++i)
8322 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8323 abfd, info_ptr, cu);
8324
8325 *diep = die;
8326 *has_children = abbrev->has_children;
8327 return info_ptr;
8328 }
8329
8330 /* In DWARF version 2, the description of the debugging information is
8331 stored in a separate .debug_abbrev section. Before we read any
8332 dies from a section we read in all abbreviations and install them
8333 in a hash table. This function also sets flags in CU describing
8334 the data found in the abbrev table. */
8335
8336 static void
8337 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8338 {
8339 struct comp_unit_head *cu_header = &cu->header;
8340 gdb_byte *abbrev_ptr;
8341 struct abbrev_info *cur_abbrev;
8342 unsigned int abbrev_number, bytes_read, abbrev_name;
8343 unsigned int abbrev_form, hash_number;
8344 struct attr_abbrev *cur_attrs;
8345 unsigned int allocated_attrs;
8346
8347 /* Initialize dwarf2 abbrevs */
8348 obstack_init (&cu->abbrev_obstack);
8349 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8350 (ABBREV_HASH_SIZE
8351 * sizeof (struct abbrev_info *)));
8352 memset (cu->dwarf2_abbrevs, 0,
8353 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8354
8355 dwarf2_read_section (dwarf2_per_objfile->objfile,
8356 &dwarf2_per_objfile->abbrev);
8357 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8358 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8359 abbrev_ptr += bytes_read;
8360
8361 allocated_attrs = ATTR_ALLOC_CHUNK;
8362 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8363
8364 /* loop until we reach an abbrev number of 0 */
8365 while (abbrev_number)
8366 {
8367 cur_abbrev = dwarf_alloc_abbrev (cu);
8368
8369 /* read in abbrev header */
8370 cur_abbrev->number = abbrev_number;
8371 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8372 abbrev_ptr += bytes_read;
8373 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8374 abbrev_ptr += 1;
8375
8376 if (cur_abbrev->tag == DW_TAG_namespace)
8377 cu->has_namespace_info = 1;
8378
8379 /* now read in declarations */
8380 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8381 abbrev_ptr += bytes_read;
8382 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8383 abbrev_ptr += bytes_read;
8384 while (abbrev_name)
8385 {
8386 if (cur_abbrev->num_attrs == allocated_attrs)
8387 {
8388 allocated_attrs += ATTR_ALLOC_CHUNK;
8389 cur_attrs
8390 = xrealloc (cur_attrs, (allocated_attrs
8391 * sizeof (struct attr_abbrev)));
8392 }
8393
8394 /* Record whether this compilation unit might have
8395 inter-compilation-unit references. If we don't know what form
8396 this attribute will have, then it might potentially be a
8397 DW_FORM_ref_addr, so we conservatively expect inter-CU
8398 references. */
8399
8400 if (abbrev_form == DW_FORM_ref_addr
8401 || abbrev_form == DW_FORM_indirect)
8402 cu->has_form_ref_addr = 1;
8403
8404 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8405 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8406 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8407 abbrev_ptr += bytes_read;
8408 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8409 abbrev_ptr += bytes_read;
8410 }
8411
8412 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8413 (cur_abbrev->num_attrs
8414 * sizeof (struct attr_abbrev)));
8415 memcpy (cur_abbrev->attrs, cur_attrs,
8416 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8417
8418 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8419 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8420 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8421
8422 /* Get next abbreviation.
8423 Under Irix6 the abbreviations for a compilation unit are not
8424 always properly terminated with an abbrev number of 0.
8425 Exit loop if we encounter an abbreviation which we have
8426 already read (which means we are about to read the abbreviations
8427 for the next compile unit) or if the end of the abbreviation
8428 table is reached. */
8429 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8430 >= dwarf2_per_objfile->abbrev.size)
8431 break;
8432 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8433 abbrev_ptr += bytes_read;
8434 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8435 break;
8436 }
8437
8438 xfree (cur_attrs);
8439 }
8440
8441 /* Release the memory used by the abbrev table for a compilation unit. */
8442
8443 static void
8444 dwarf2_free_abbrev_table (void *ptr_to_cu)
8445 {
8446 struct dwarf2_cu *cu = ptr_to_cu;
8447
8448 obstack_free (&cu->abbrev_obstack, NULL);
8449 cu->dwarf2_abbrevs = NULL;
8450 }
8451
8452 /* Lookup an abbrev_info structure in the abbrev hash table. */
8453
8454 static struct abbrev_info *
8455 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8456 {
8457 unsigned int hash_number;
8458 struct abbrev_info *abbrev;
8459
8460 hash_number = number % ABBREV_HASH_SIZE;
8461 abbrev = cu->dwarf2_abbrevs[hash_number];
8462
8463 while (abbrev)
8464 {
8465 if (abbrev->number == number)
8466 return abbrev;
8467 else
8468 abbrev = abbrev->next;
8469 }
8470 return NULL;
8471 }
8472
8473 /* Returns nonzero if TAG represents a type that we might generate a partial
8474 symbol for. */
8475
8476 static int
8477 is_type_tag_for_partial (int tag)
8478 {
8479 switch (tag)
8480 {
8481 #if 0
8482 /* Some types that would be reasonable to generate partial symbols for,
8483 that we don't at present. */
8484 case DW_TAG_array_type:
8485 case DW_TAG_file_type:
8486 case DW_TAG_ptr_to_member_type:
8487 case DW_TAG_set_type:
8488 case DW_TAG_string_type:
8489 case DW_TAG_subroutine_type:
8490 #endif
8491 case DW_TAG_base_type:
8492 case DW_TAG_class_type:
8493 case DW_TAG_interface_type:
8494 case DW_TAG_enumeration_type:
8495 case DW_TAG_structure_type:
8496 case DW_TAG_subrange_type:
8497 case DW_TAG_typedef:
8498 case DW_TAG_union_type:
8499 return 1;
8500 default:
8501 return 0;
8502 }
8503 }
8504
8505 /* Load all DIEs that are interesting for partial symbols into memory. */
8506
8507 static struct partial_die_info *
8508 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8509 int building_psymtab, struct dwarf2_cu *cu)
8510 {
8511 struct partial_die_info *part_die;
8512 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8513 struct abbrev_info *abbrev;
8514 unsigned int bytes_read;
8515 unsigned int load_all = 0;
8516
8517 int nesting_level = 1;
8518
8519 parent_die = NULL;
8520 last_die = NULL;
8521
8522 if (cu->per_cu && cu->per_cu->load_all_dies)
8523 load_all = 1;
8524
8525 cu->partial_dies
8526 = htab_create_alloc_ex (cu->header.length / 12,
8527 partial_die_hash,
8528 partial_die_eq,
8529 NULL,
8530 &cu->comp_unit_obstack,
8531 hashtab_obstack_allocate,
8532 dummy_obstack_deallocate);
8533
8534 part_die = obstack_alloc (&cu->comp_unit_obstack,
8535 sizeof (struct partial_die_info));
8536
8537 while (1)
8538 {
8539 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8540
8541 /* A NULL abbrev means the end of a series of children. */
8542 if (abbrev == NULL)
8543 {
8544 if (--nesting_level == 0)
8545 {
8546 /* PART_DIE was probably the last thing allocated on the
8547 comp_unit_obstack, so we could call obstack_free
8548 here. We don't do that because the waste is small,
8549 and will be cleaned up when we're done with this
8550 compilation unit. This way, we're also more robust
8551 against other users of the comp_unit_obstack. */
8552 return first_die;
8553 }
8554 info_ptr += bytes_read;
8555 last_die = parent_die;
8556 parent_die = parent_die->die_parent;
8557 continue;
8558 }
8559
8560 /* Check for template arguments. We never save these; if
8561 they're seen, we just mark the parent, and go on our way. */
8562 if (parent_die != NULL
8563 && cu->language == language_cplus
8564 && (abbrev->tag == DW_TAG_template_type_param
8565 || abbrev->tag == DW_TAG_template_value_param))
8566 {
8567 parent_die->has_template_arguments = 1;
8568
8569 if (!load_all)
8570 {
8571 /* We don't need a partial DIE for the template argument. */
8572 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8573 cu);
8574 continue;
8575 }
8576 }
8577
8578 /* We only recurse into subprograms looking for template arguments.
8579 Skip their other children. */
8580 if (!load_all
8581 && cu->language == language_cplus
8582 && parent_die != NULL
8583 && parent_die->tag == DW_TAG_subprogram)
8584 {
8585 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8586 continue;
8587 }
8588
8589 /* Check whether this DIE is interesting enough to save. Normally
8590 we would not be interested in members here, but there may be
8591 later variables referencing them via DW_AT_specification (for
8592 static members). */
8593 if (!load_all
8594 && !is_type_tag_for_partial (abbrev->tag)
8595 && abbrev->tag != DW_TAG_constant
8596 && abbrev->tag != DW_TAG_enumerator
8597 && abbrev->tag != DW_TAG_subprogram
8598 && abbrev->tag != DW_TAG_lexical_block
8599 && abbrev->tag != DW_TAG_variable
8600 && abbrev->tag != DW_TAG_namespace
8601 && abbrev->tag != DW_TAG_module
8602 && abbrev->tag != DW_TAG_member)
8603 {
8604 /* Otherwise we skip to the next sibling, if any. */
8605 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8606 continue;
8607 }
8608
8609 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8610 buffer, info_ptr, cu);
8611
8612 /* This two-pass algorithm for processing partial symbols has a
8613 high cost in cache pressure. Thus, handle some simple cases
8614 here which cover the majority of C partial symbols. DIEs
8615 which neither have specification tags in them, nor could have
8616 specification tags elsewhere pointing at them, can simply be
8617 processed and discarded.
8618
8619 This segment is also optional; scan_partial_symbols and
8620 add_partial_symbol will handle these DIEs if we chain
8621 them in normally. When compilers which do not emit large
8622 quantities of duplicate debug information are more common,
8623 this code can probably be removed. */
8624
8625 /* Any complete simple types at the top level (pretty much all
8626 of them, for a language without namespaces), can be processed
8627 directly. */
8628 if (parent_die == NULL
8629 && part_die->has_specification == 0
8630 && part_die->is_declaration == 0
8631 && (part_die->tag == DW_TAG_typedef
8632 || part_die->tag == DW_TAG_base_type
8633 || part_die->tag == DW_TAG_subrange_type))
8634 {
8635 if (building_psymtab && part_die->name != NULL)
8636 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8637 VAR_DOMAIN, LOC_TYPEDEF,
8638 &cu->objfile->static_psymbols,
8639 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8640 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8641 continue;
8642 }
8643
8644 /* If we're at the second level, and we're an enumerator, and
8645 our parent has no specification (meaning possibly lives in a
8646 namespace elsewhere), then we can add the partial symbol now
8647 instead of queueing it. */
8648 if (part_die->tag == DW_TAG_enumerator
8649 && parent_die != NULL
8650 && parent_die->die_parent == NULL
8651 && parent_die->tag == DW_TAG_enumeration_type
8652 && parent_die->has_specification == 0)
8653 {
8654 if (part_die->name == NULL)
8655 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8656 else if (building_psymtab)
8657 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8658 VAR_DOMAIN, LOC_CONST,
8659 (cu->language == language_cplus
8660 || cu->language == language_java)
8661 ? &cu->objfile->global_psymbols
8662 : &cu->objfile->static_psymbols,
8663 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8664
8665 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8666 continue;
8667 }
8668
8669 /* We'll save this DIE so link it in. */
8670 part_die->die_parent = parent_die;
8671 part_die->die_sibling = NULL;
8672 part_die->die_child = NULL;
8673
8674 if (last_die && last_die == parent_die)
8675 last_die->die_child = part_die;
8676 else if (last_die)
8677 last_die->die_sibling = part_die;
8678
8679 last_die = part_die;
8680
8681 if (first_die == NULL)
8682 first_die = part_die;
8683
8684 /* Maybe add the DIE to the hash table. Not all DIEs that we
8685 find interesting need to be in the hash table, because we
8686 also have the parent/sibling/child chains; only those that we
8687 might refer to by offset later during partial symbol reading.
8688
8689 For now this means things that might have be the target of a
8690 DW_AT_specification, DW_AT_abstract_origin, or
8691 DW_AT_extension. DW_AT_extension will refer only to
8692 namespaces; DW_AT_abstract_origin refers to functions (and
8693 many things under the function DIE, but we do not recurse
8694 into function DIEs during partial symbol reading) and
8695 possibly variables as well; DW_AT_specification refers to
8696 declarations. Declarations ought to have the DW_AT_declaration
8697 flag. It happens that GCC forgets to put it in sometimes, but
8698 only for functions, not for types.
8699
8700 Adding more things than necessary to the hash table is harmless
8701 except for the performance cost. Adding too few will result in
8702 wasted time in find_partial_die, when we reread the compilation
8703 unit with load_all_dies set. */
8704
8705 if (load_all
8706 || abbrev->tag == DW_TAG_constant
8707 || abbrev->tag == DW_TAG_subprogram
8708 || abbrev->tag == DW_TAG_variable
8709 || abbrev->tag == DW_TAG_namespace
8710 || part_die->is_declaration)
8711 {
8712 void **slot;
8713
8714 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8715 part_die->offset, INSERT);
8716 *slot = part_die;
8717 }
8718
8719 part_die = obstack_alloc (&cu->comp_unit_obstack,
8720 sizeof (struct partial_die_info));
8721
8722 /* For some DIEs we want to follow their children (if any). For C
8723 we have no reason to follow the children of structures; for other
8724 languages we have to, so that we can get at method physnames
8725 to infer fully qualified class names, for DW_AT_specification,
8726 and for C++ template arguments. For C++, we also look one level
8727 inside functions to find template arguments (if the name of the
8728 function does not already contain the template arguments).
8729
8730 For Ada, we need to scan the children of subprograms and lexical
8731 blocks as well because Ada allows the definition of nested
8732 entities that could be interesting for the debugger, such as
8733 nested subprograms for instance. */
8734 if (last_die->has_children
8735 && (load_all
8736 || last_die->tag == DW_TAG_namespace
8737 || last_die->tag == DW_TAG_module
8738 || last_die->tag == DW_TAG_enumeration_type
8739 || (cu->language == language_cplus
8740 && last_die->tag == DW_TAG_subprogram
8741 && (last_die->name == NULL
8742 || strchr (last_die->name, '<') == NULL))
8743 || (cu->language != language_c
8744 && (last_die->tag == DW_TAG_class_type
8745 || last_die->tag == DW_TAG_interface_type
8746 || last_die->tag == DW_TAG_structure_type
8747 || last_die->tag == DW_TAG_union_type))
8748 || (cu->language == language_ada
8749 && (last_die->tag == DW_TAG_subprogram
8750 || last_die->tag == DW_TAG_lexical_block))))
8751 {
8752 nesting_level++;
8753 parent_die = last_die;
8754 continue;
8755 }
8756
8757 /* Otherwise we skip to the next sibling, if any. */
8758 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8759
8760 /* Back to the top, do it again. */
8761 }
8762 }
8763
8764 /* Read a minimal amount of information into the minimal die structure. */
8765
8766 static gdb_byte *
8767 read_partial_die (struct partial_die_info *part_die,
8768 struct abbrev_info *abbrev,
8769 unsigned int abbrev_len, bfd *abfd,
8770 gdb_byte *buffer, gdb_byte *info_ptr,
8771 struct dwarf2_cu *cu)
8772 {
8773 unsigned int i;
8774 struct attribute attr;
8775 int has_low_pc_attr = 0;
8776 int has_high_pc_attr = 0;
8777
8778 memset (part_die, 0, sizeof (struct partial_die_info));
8779
8780 part_die->offset = info_ptr - buffer;
8781
8782 info_ptr += abbrev_len;
8783
8784 if (abbrev == NULL)
8785 return info_ptr;
8786
8787 part_die->tag = abbrev->tag;
8788 part_die->has_children = abbrev->has_children;
8789
8790 for (i = 0; i < abbrev->num_attrs; ++i)
8791 {
8792 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8793
8794 /* Store the data if it is of an attribute we want to keep in a
8795 partial symbol table. */
8796 switch (attr.name)
8797 {
8798 case DW_AT_name:
8799 switch (part_die->tag)
8800 {
8801 case DW_TAG_compile_unit:
8802 case DW_TAG_type_unit:
8803 /* Compilation units have a DW_AT_name that is a filename, not
8804 a source language identifier. */
8805 case DW_TAG_enumeration_type:
8806 case DW_TAG_enumerator:
8807 /* These tags always have simple identifiers already; no need
8808 to canonicalize them. */
8809 part_die->name = DW_STRING (&attr);
8810 break;
8811 default:
8812 part_die->name
8813 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8814 &cu->objfile->objfile_obstack);
8815 break;
8816 }
8817 break;
8818 case DW_AT_linkage_name:
8819 case DW_AT_MIPS_linkage_name:
8820 /* Note that both forms of linkage name might appear. We
8821 assume they will be the same, and we only store the last
8822 one we see. */
8823 if (cu->language == language_ada)
8824 part_die->name = DW_STRING (&attr);
8825 part_die->linkage_name = DW_STRING (&attr);
8826 break;
8827 case DW_AT_low_pc:
8828 has_low_pc_attr = 1;
8829 part_die->lowpc = DW_ADDR (&attr);
8830 break;
8831 case DW_AT_high_pc:
8832 has_high_pc_attr = 1;
8833 part_die->highpc = DW_ADDR (&attr);
8834 break;
8835 case DW_AT_location:
8836 /* Support the .debug_loc offsets */
8837 if (attr_form_is_block (&attr))
8838 {
8839 part_die->locdesc = DW_BLOCK (&attr);
8840 }
8841 else if (attr_form_is_section_offset (&attr))
8842 {
8843 dwarf2_complex_location_expr_complaint ();
8844 }
8845 else
8846 {
8847 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8848 "partial symbol information");
8849 }
8850 break;
8851 case DW_AT_external:
8852 part_die->is_external = DW_UNSND (&attr);
8853 break;
8854 case DW_AT_declaration:
8855 part_die->is_declaration = DW_UNSND (&attr);
8856 break;
8857 case DW_AT_type:
8858 part_die->has_type = 1;
8859 break;
8860 case DW_AT_abstract_origin:
8861 case DW_AT_specification:
8862 case DW_AT_extension:
8863 part_die->has_specification = 1;
8864 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8865 break;
8866 case DW_AT_sibling:
8867 /* Ignore absolute siblings, they might point outside of
8868 the current compile unit. */
8869 if (attr.form == DW_FORM_ref_addr)
8870 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8871 else
8872 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8873 break;
8874 case DW_AT_byte_size:
8875 part_die->has_byte_size = 1;
8876 break;
8877 case DW_AT_calling_convention:
8878 /* DWARF doesn't provide a way to identify a program's source-level
8879 entry point. DW_AT_calling_convention attributes are only meant
8880 to describe functions' calling conventions.
8881
8882 However, because it's a necessary piece of information in
8883 Fortran, and because DW_CC_program is the only piece of debugging
8884 information whose definition refers to a 'main program' at all,
8885 several compilers have begun marking Fortran main programs with
8886 DW_CC_program --- even when those functions use the standard
8887 calling conventions.
8888
8889 So until DWARF specifies a way to provide this information and
8890 compilers pick up the new representation, we'll support this
8891 practice. */
8892 if (DW_UNSND (&attr) == DW_CC_program
8893 && cu->language == language_fortran)
8894 {
8895 set_main_name (part_die->name);
8896
8897 /* As this DIE has a static linkage the name would be difficult
8898 to look up later. */
8899 language_of_main = language_fortran;
8900 }
8901 break;
8902 default:
8903 break;
8904 }
8905 }
8906
8907 /* When using the GNU linker, .gnu.linkonce. sections are used to
8908 eliminate duplicate copies of functions and vtables and such.
8909 The linker will arbitrarily choose one and discard the others.
8910 The AT_*_pc values for such functions refer to local labels in
8911 these sections. If the section from that file was discarded, the
8912 labels are not in the output, so the relocs get a value of 0.
8913 If this is a discarded function, mark the pc bounds as invalid,
8914 so that GDB will ignore it. */
8915 if (has_low_pc_attr && has_high_pc_attr
8916 && part_die->lowpc < part_die->highpc
8917 && (part_die->lowpc != 0
8918 || dwarf2_per_objfile->has_section_at_zero))
8919 part_die->has_pc_info = 1;
8920
8921 return info_ptr;
8922 }
8923
8924 /* Find a cached partial DIE at OFFSET in CU. */
8925
8926 static struct partial_die_info *
8927 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8928 {
8929 struct partial_die_info *lookup_die = NULL;
8930 struct partial_die_info part_die;
8931
8932 part_die.offset = offset;
8933 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8934
8935 return lookup_die;
8936 }
8937
8938 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8939 except in the case of .debug_types DIEs which do not reference
8940 outside their CU (they do however referencing other types via
8941 DW_FORM_sig8). */
8942
8943 static struct partial_die_info *
8944 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8945 {
8946 struct dwarf2_per_cu_data *per_cu = NULL;
8947 struct partial_die_info *pd = NULL;
8948
8949 if (cu->per_cu->from_debug_types)
8950 {
8951 pd = find_partial_die_in_comp_unit (offset, cu);
8952 if (pd != NULL)
8953 return pd;
8954 goto not_found;
8955 }
8956
8957 if (offset_in_cu_p (&cu->header, offset))
8958 {
8959 pd = find_partial_die_in_comp_unit (offset, cu);
8960 if (pd != NULL)
8961 return pd;
8962 }
8963
8964 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8965
8966 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8967 load_partial_comp_unit (per_cu, cu->objfile);
8968
8969 per_cu->cu->last_used = 0;
8970 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8971
8972 if (pd == NULL && per_cu->load_all_dies == 0)
8973 {
8974 struct cleanup *back_to;
8975 struct partial_die_info comp_unit_die;
8976 struct abbrev_info *abbrev;
8977 unsigned int bytes_read;
8978 char *info_ptr;
8979
8980 per_cu->load_all_dies = 1;
8981
8982 /* Re-read the DIEs. */
8983 back_to = make_cleanup (null_cleanup, 0);
8984 if (per_cu->cu->dwarf2_abbrevs == NULL)
8985 {
8986 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8987 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8988 }
8989 info_ptr = (dwarf2_per_objfile->info.buffer
8990 + per_cu->cu->header.offset
8991 + per_cu->cu->header.first_die_offset);
8992 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8993 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
8994 per_cu->cu->objfile->obfd,
8995 dwarf2_per_objfile->info.buffer, info_ptr,
8996 per_cu->cu);
8997 if (comp_unit_die.has_children)
8998 load_partial_dies (per_cu->cu->objfile->obfd,
8999 dwarf2_per_objfile->info.buffer, info_ptr,
9000 0, per_cu->cu);
9001 do_cleanups (back_to);
9002
9003 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9004 }
9005
9006 not_found:
9007
9008 if (pd == NULL)
9009 internal_error (__FILE__, __LINE__,
9010 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
9011 offset, bfd_get_filename (cu->objfile->obfd));
9012 return pd;
9013 }
9014
9015 /* See if we can figure out if the class lives in a namespace. We do
9016 this by looking for a member function; its demangled name will
9017 contain namespace info, if there is any. */
9018
9019 static void
9020 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9021 struct dwarf2_cu *cu)
9022 {
9023 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9024 what template types look like, because the demangler
9025 frequently doesn't give the same name as the debug info. We
9026 could fix this by only using the demangled name to get the
9027 prefix (but see comment in read_structure_type). */
9028
9029 struct partial_die_info *real_pdi;
9030 struct partial_die_info *child_pdi;
9031
9032 /* If this DIE (this DIE's specification, if any) has a parent, then
9033 we should not do this. We'll prepend the parent's fully qualified
9034 name when we create the partial symbol. */
9035
9036 real_pdi = struct_pdi;
9037 while (real_pdi->has_specification)
9038 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9039
9040 if (real_pdi->die_parent != NULL)
9041 return;
9042
9043 for (child_pdi = struct_pdi->die_child;
9044 child_pdi != NULL;
9045 child_pdi = child_pdi->die_sibling)
9046 {
9047 if (child_pdi->tag == DW_TAG_subprogram
9048 && child_pdi->linkage_name != NULL)
9049 {
9050 char *actual_class_name
9051 = language_class_name_from_physname (cu->language_defn,
9052 child_pdi->linkage_name);
9053 if (actual_class_name != NULL)
9054 {
9055 struct_pdi->name
9056 = obsavestring (actual_class_name,
9057 strlen (actual_class_name),
9058 &cu->objfile->objfile_obstack);
9059 xfree (actual_class_name);
9060 }
9061 break;
9062 }
9063 }
9064 }
9065
9066 /* Adjust PART_DIE before generating a symbol for it. This function
9067 may set the is_external flag or change the DIE's name. */
9068
9069 static void
9070 fixup_partial_die (struct partial_die_info *part_die,
9071 struct dwarf2_cu *cu)
9072 {
9073 /* Once we've fixed up a die, there's no point in doing so again.
9074 This also avoids a memory leak if we were to call
9075 guess_partial_die_structure_name multiple times. */
9076 if (part_die->fixup_called)
9077 return;
9078
9079 /* If we found a reference attribute and the DIE has no name, try
9080 to find a name in the referred to DIE. */
9081
9082 if (part_die->name == NULL && part_die->has_specification)
9083 {
9084 struct partial_die_info *spec_die;
9085
9086 spec_die = find_partial_die (part_die->spec_offset, cu);
9087
9088 fixup_partial_die (spec_die, cu);
9089
9090 if (spec_die->name)
9091 {
9092 part_die->name = spec_die->name;
9093
9094 /* Copy DW_AT_external attribute if it is set. */
9095 if (spec_die->is_external)
9096 part_die->is_external = spec_die->is_external;
9097 }
9098 }
9099
9100 /* Set default names for some unnamed DIEs. */
9101
9102 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9103 part_die->name = "(anonymous namespace)";
9104
9105 /* If there is no parent die to provide a namespace, and there are
9106 children, see if we can determine the namespace from their linkage
9107 name.
9108 NOTE: We need to do this even if cu->has_namespace_info != 0.
9109 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9110 if (cu->language == language_cplus
9111 && dwarf2_per_objfile->types.asection != NULL
9112 && part_die->die_parent == NULL
9113 && part_die->has_children
9114 && (part_die->tag == DW_TAG_class_type
9115 || part_die->tag == DW_TAG_structure_type
9116 || part_die->tag == DW_TAG_union_type))
9117 guess_partial_die_structure_name (part_die, cu);
9118
9119 part_die->fixup_called = 1;
9120 }
9121
9122 /* Read an attribute value described by an attribute form. */
9123
9124 static gdb_byte *
9125 read_attribute_value (struct attribute *attr, unsigned form,
9126 bfd *abfd, gdb_byte *info_ptr,
9127 struct dwarf2_cu *cu)
9128 {
9129 struct comp_unit_head *cu_header = &cu->header;
9130 unsigned int bytes_read;
9131 struct dwarf_block *blk;
9132
9133 attr->form = form;
9134 switch (form)
9135 {
9136 case DW_FORM_ref_addr:
9137 if (cu->header.version == 2)
9138 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9139 else
9140 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9141 info_ptr += bytes_read;
9142 break;
9143 case DW_FORM_addr:
9144 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9145 info_ptr += bytes_read;
9146 break;
9147 case DW_FORM_block2:
9148 blk = dwarf_alloc_block (cu);
9149 blk->size = read_2_bytes (abfd, info_ptr);
9150 info_ptr += 2;
9151 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9152 info_ptr += blk->size;
9153 DW_BLOCK (attr) = blk;
9154 break;
9155 case DW_FORM_block4:
9156 blk = dwarf_alloc_block (cu);
9157 blk->size = read_4_bytes (abfd, info_ptr);
9158 info_ptr += 4;
9159 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9160 info_ptr += blk->size;
9161 DW_BLOCK (attr) = blk;
9162 break;
9163 case DW_FORM_data2:
9164 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9165 info_ptr += 2;
9166 break;
9167 case DW_FORM_data4:
9168 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9169 info_ptr += 4;
9170 break;
9171 case DW_FORM_data8:
9172 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9173 info_ptr += 8;
9174 break;
9175 case DW_FORM_sec_offset:
9176 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9177 info_ptr += bytes_read;
9178 break;
9179 case DW_FORM_string:
9180 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9181 DW_STRING_IS_CANONICAL (attr) = 0;
9182 info_ptr += bytes_read;
9183 break;
9184 case DW_FORM_strp:
9185 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9186 &bytes_read);
9187 DW_STRING_IS_CANONICAL (attr) = 0;
9188 info_ptr += bytes_read;
9189 break;
9190 case DW_FORM_exprloc:
9191 case DW_FORM_block:
9192 blk = dwarf_alloc_block (cu);
9193 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9194 info_ptr += bytes_read;
9195 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9196 info_ptr += blk->size;
9197 DW_BLOCK (attr) = blk;
9198 break;
9199 case DW_FORM_block1:
9200 blk = dwarf_alloc_block (cu);
9201 blk->size = read_1_byte (abfd, info_ptr);
9202 info_ptr += 1;
9203 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9204 info_ptr += blk->size;
9205 DW_BLOCK (attr) = blk;
9206 break;
9207 case DW_FORM_data1:
9208 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9209 info_ptr += 1;
9210 break;
9211 case DW_FORM_flag:
9212 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9213 info_ptr += 1;
9214 break;
9215 case DW_FORM_flag_present:
9216 DW_UNSND (attr) = 1;
9217 break;
9218 case DW_FORM_sdata:
9219 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9220 info_ptr += bytes_read;
9221 break;
9222 case DW_FORM_udata:
9223 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9224 info_ptr += bytes_read;
9225 break;
9226 case DW_FORM_ref1:
9227 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9228 info_ptr += 1;
9229 break;
9230 case DW_FORM_ref2:
9231 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9232 info_ptr += 2;
9233 break;
9234 case DW_FORM_ref4:
9235 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9236 info_ptr += 4;
9237 break;
9238 case DW_FORM_ref8:
9239 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9240 info_ptr += 8;
9241 break;
9242 case DW_FORM_sig8:
9243 /* Convert the signature to something we can record in DW_UNSND
9244 for later lookup.
9245 NOTE: This is NULL if the type wasn't found. */
9246 DW_SIGNATURED_TYPE (attr) =
9247 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9248 info_ptr += 8;
9249 break;
9250 case DW_FORM_ref_udata:
9251 DW_ADDR (attr) = (cu->header.offset
9252 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9253 info_ptr += bytes_read;
9254 break;
9255 case DW_FORM_indirect:
9256 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9257 info_ptr += bytes_read;
9258 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9259 break;
9260 default:
9261 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9262 dwarf_form_name (form),
9263 bfd_get_filename (abfd));
9264 }
9265
9266 /* We have seen instances where the compiler tried to emit a byte
9267 size attribute of -1 which ended up being encoded as an unsigned
9268 0xffffffff. Although 0xffffffff is technically a valid size value,
9269 an object of this size seems pretty unlikely so we can relatively
9270 safely treat these cases as if the size attribute was invalid and
9271 treat them as zero by default. */
9272 if (attr->name == DW_AT_byte_size
9273 && form == DW_FORM_data4
9274 && DW_UNSND (attr) >= 0xffffffff)
9275 {
9276 complaint
9277 (&symfile_complaints,
9278 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9279 hex_string (DW_UNSND (attr)));
9280 DW_UNSND (attr) = 0;
9281 }
9282
9283 return info_ptr;
9284 }
9285
9286 /* Read an attribute described by an abbreviated attribute. */
9287
9288 static gdb_byte *
9289 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9290 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9291 {
9292 attr->name = abbrev->name;
9293 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9294 }
9295
9296 /* read dwarf information from a buffer */
9297
9298 static unsigned int
9299 read_1_byte (bfd *abfd, gdb_byte *buf)
9300 {
9301 return bfd_get_8 (abfd, buf);
9302 }
9303
9304 static int
9305 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9306 {
9307 return bfd_get_signed_8 (abfd, buf);
9308 }
9309
9310 static unsigned int
9311 read_2_bytes (bfd *abfd, gdb_byte *buf)
9312 {
9313 return bfd_get_16 (abfd, buf);
9314 }
9315
9316 static int
9317 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9318 {
9319 return bfd_get_signed_16 (abfd, buf);
9320 }
9321
9322 static unsigned int
9323 read_4_bytes (bfd *abfd, gdb_byte *buf)
9324 {
9325 return bfd_get_32 (abfd, buf);
9326 }
9327
9328 static int
9329 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9330 {
9331 return bfd_get_signed_32 (abfd, buf);
9332 }
9333
9334 static ULONGEST
9335 read_8_bytes (bfd *abfd, gdb_byte *buf)
9336 {
9337 return bfd_get_64 (abfd, buf);
9338 }
9339
9340 static CORE_ADDR
9341 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9342 unsigned int *bytes_read)
9343 {
9344 struct comp_unit_head *cu_header = &cu->header;
9345 CORE_ADDR retval = 0;
9346
9347 if (cu_header->signed_addr_p)
9348 {
9349 switch (cu_header->addr_size)
9350 {
9351 case 2:
9352 retval = bfd_get_signed_16 (abfd, buf);
9353 break;
9354 case 4:
9355 retval = bfd_get_signed_32 (abfd, buf);
9356 break;
9357 case 8:
9358 retval = bfd_get_signed_64 (abfd, buf);
9359 break;
9360 default:
9361 internal_error (__FILE__, __LINE__,
9362 _("read_address: bad switch, signed [in module %s]"),
9363 bfd_get_filename (abfd));
9364 }
9365 }
9366 else
9367 {
9368 switch (cu_header->addr_size)
9369 {
9370 case 2:
9371 retval = bfd_get_16 (abfd, buf);
9372 break;
9373 case 4:
9374 retval = bfd_get_32 (abfd, buf);
9375 break;
9376 case 8:
9377 retval = bfd_get_64 (abfd, buf);
9378 break;
9379 default:
9380 internal_error (__FILE__, __LINE__,
9381 _("read_address: bad switch, unsigned [in module %s]"),
9382 bfd_get_filename (abfd));
9383 }
9384 }
9385
9386 *bytes_read = cu_header->addr_size;
9387 return retval;
9388 }
9389
9390 /* Read the initial length from a section. The (draft) DWARF 3
9391 specification allows the initial length to take up either 4 bytes
9392 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9393 bytes describe the length and all offsets will be 8 bytes in length
9394 instead of 4.
9395
9396 An older, non-standard 64-bit format is also handled by this
9397 function. The older format in question stores the initial length
9398 as an 8-byte quantity without an escape value. Lengths greater
9399 than 2^32 aren't very common which means that the initial 4 bytes
9400 is almost always zero. Since a length value of zero doesn't make
9401 sense for the 32-bit format, this initial zero can be considered to
9402 be an escape value which indicates the presence of the older 64-bit
9403 format. As written, the code can't detect (old format) lengths
9404 greater than 4GB. If it becomes necessary to handle lengths
9405 somewhat larger than 4GB, we could allow other small values (such
9406 as the non-sensical values of 1, 2, and 3) to also be used as
9407 escape values indicating the presence of the old format.
9408
9409 The value returned via bytes_read should be used to increment the
9410 relevant pointer after calling read_initial_length().
9411
9412 [ Note: read_initial_length() and read_offset() are based on the
9413 document entitled "DWARF Debugging Information Format", revision
9414 3, draft 8, dated November 19, 2001. This document was obtained
9415 from:
9416
9417 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9418
9419 This document is only a draft and is subject to change. (So beware.)
9420
9421 Details regarding the older, non-standard 64-bit format were
9422 determined empirically by examining 64-bit ELF files produced by
9423 the SGI toolchain on an IRIX 6.5 machine.
9424
9425 - Kevin, July 16, 2002
9426 ] */
9427
9428 static LONGEST
9429 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9430 {
9431 LONGEST length = bfd_get_32 (abfd, buf);
9432
9433 if (length == 0xffffffff)
9434 {
9435 length = bfd_get_64 (abfd, buf + 4);
9436 *bytes_read = 12;
9437 }
9438 else if (length == 0)
9439 {
9440 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9441 length = bfd_get_64 (abfd, buf);
9442 *bytes_read = 8;
9443 }
9444 else
9445 {
9446 *bytes_read = 4;
9447 }
9448
9449 return length;
9450 }
9451
9452 /* Cover function for read_initial_length.
9453 Returns the length of the object at BUF, and stores the size of the
9454 initial length in *BYTES_READ and stores the size that offsets will be in
9455 *OFFSET_SIZE.
9456 If the initial length size is not equivalent to that specified in
9457 CU_HEADER then issue a complaint.
9458 This is useful when reading non-comp-unit headers. */
9459
9460 static LONGEST
9461 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9462 const struct comp_unit_head *cu_header,
9463 unsigned int *bytes_read,
9464 unsigned int *offset_size)
9465 {
9466 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9467
9468 gdb_assert (cu_header->initial_length_size == 4
9469 || cu_header->initial_length_size == 8
9470 || cu_header->initial_length_size == 12);
9471
9472 if (cu_header->initial_length_size != *bytes_read)
9473 complaint (&symfile_complaints,
9474 _("intermixed 32-bit and 64-bit DWARF sections"));
9475
9476 *offset_size = (*bytes_read == 4) ? 4 : 8;
9477 return length;
9478 }
9479
9480 /* Read an offset from the data stream. The size of the offset is
9481 given by cu_header->offset_size. */
9482
9483 static LONGEST
9484 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9485 unsigned int *bytes_read)
9486 {
9487 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9488
9489 *bytes_read = cu_header->offset_size;
9490 return offset;
9491 }
9492
9493 /* Read an offset from the data stream. */
9494
9495 static LONGEST
9496 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9497 {
9498 LONGEST retval = 0;
9499
9500 switch (offset_size)
9501 {
9502 case 4:
9503 retval = bfd_get_32 (abfd, buf);
9504 break;
9505 case 8:
9506 retval = bfd_get_64 (abfd, buf);
9507 break;
9508 default:
9509 internal_error (__FILE__, __LINE__,
9510 _("read_offset_1: bad switch [in module %s]"),
9511 bfd_get_filename (abfd));
9512 }
9513
9514 return retval;
9515 }
9516
9517 static gdb_byte *
9518 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9519 {
9520 /* If the size of a host char is 8 bits, we can return a pointer
9521 to the buffer, otherwise we have to copy the data to a buffer
9522 allocated on the temporary obstack. */
9523 gdb_assert (HOST_CHAR_BIT == 8);
9524 return buf;
9525 }
9526
9527 static char *
9528 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9529 {
9530 /* If the size of a host char is 8 bits, we can return a pointer
9531 to the string, otherwise we have to copy the string to a buffer
9532 allocated on the temporary obstack. */
9533 gdb_assert (HOST_CHAR_BIT == 8);
9534 if (*buf == '\0')
9535 {
9536 *bytes_read_ptr = 1;
9537 return NULL;
9538 }
9539 *bytes_read_ptr = strlen ((char *) buf) + 1;
9540 return (char *) buf;
9541 }
9542
9543 static char *
9544 read_indirect_string (bfd *abfd, gdb_byte *buf,
9545 const struct comp_unit_head *cu_header,
9546 unsigned int *bytes_read_ptr)
9547 {
9548 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9549
9550 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9551 if (dwarf2_per_objfile->str.buffer == NULL)
9552 {
9553 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9554 bfd_get_filename (abfd));
9555 return NULL;
9556 }
9557 if (str_offset >= dwarf2_per_objfile->str.size)
9558 {
9559 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
9560 bfd_get_filename (abfd));
9561 return NULL;
9562 }
9563 gdb_assert (HOST_CHAR_BIT == 8);
9564 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9565 return NULL;
9566 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9567 }
9568
9569 static unsigned long
9570 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9571 {
9572 unsigned long result;
9573 unsigned int num_read;
9574 int i, shift;
9575 unsigned char byte;
9576
9577 result = 0;
9578 shift = 0;
9579 num_read = 0;
9580 i = 0;
9581 while (1)
9582 {
9583 byte = bfd_get_8 (abfd, buf);
9584 buf++;
9585 num_read++;
9586 result |= ((unsigned long)(byte & 127) << shift);
9587 if ((byte & 128) == 0)
9588 {
9589 break;
9590 }
9591 shift += 7;
9592 }
9593 *bytes_read_ptr = num_read;
9594 return result;
9595 }
9596
9597 static long
9598 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9599 {
9600 long result;
9601 int i, shift, num_read;
9602 unsigned char byte;
9603
9604 result = 0;
9605 shift = 0;
9606 num_read = 0;
9607 i = 0;
9608 while (1)
9609 {
9610 byte = bfd_get_8 (abfd, buf);
9611 buf++;
9612 num_read++;
9613 result |= ((long)(byte & 127) << shift);
9614 shift += 7;
9615 if ((byte & 128) == 0)
9616 {
9617 break;
9618 }
9619 }
9620 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9621 result |= -(((long)1) << shift);
9622 *bytes_read_ptr = num_read;
9623 return result;
9624 }
9625
9626 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9627
9628 static gdb_byte *
9629 skip_leb128 (bfd *abfd, gdb_byte *buf)
9630 {
9631 int byte;
9632
9633 while (1)
9634 {
9635 byte = bfd_get_8 (abfd, buf);
9636 buf++;
9637 if ((byte & 128) == 0)
9638 return buf;
9639 }
9640 }
9641
9642 static void
9643 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9644 {
9645 switch (lang)
9646 {
9647 case DW_LANG_C89:
9648 case DW_LANG_C99:
9649 case DW_LANG_C:
9650 cu->language = language_c;
9651 break;
9652 case DW_LANG_C_plus_plus:
9653 cu->language = language_cplus;
9654 break;
9655 case DW_LANG_D:
9656 cu->language = language_d;
9657 break;
9658 case DW_LANG_Fortran77:
9659 case DW_LANG_Fortran90:
9660 case DW_LANG_Fortran95:
9661 cu->language = language_fortran;
9662 break;
9663 case DW_LANG_Mips_Assembler:
9664 cu->language = language_asm;
9665 break;
9666 case DW_LANG_Java:
9667 cu->language = language_java;
9668 break;
9669 case DW_LANG_Ada83:
9670 case DW_LANG_Ada95:
9671 cu->language = language_ada;
9672 break;
9673 case DW_LANG_Modula2:
9674 cu->language = language_m2;
9675 break;
9676 case DW_LANG_Pascal83:
9677 cu->language = language_pascal;
9678 break;
9679 case DW_LANG_ObjC:
9680 cu->language = language_objc;
9681 break;
9682 case DW_LANG_Cobol74:
9683 case DW_LANG_Cobol85:
9684 default:
9685 cu->language = language_minimal;
9686 break;
9687 }
9688 cu->language_defn = language_def (cu->language);
9689 }
9690
9691 /* Return the named attribute or NULL if not there. */
9692
9693 static struct attribute *
9694 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9695 {
9696 unsigned int i;
9697 struct attribute *spec = NULL;
9698
9699 for (i = 0; i < die->num_attrs; ++i)
9700 {
9701 if (die->attrs[i].name == name)
9702 return &die->attrs[i];
9703 if (die->attrs[i].name == DW_AT_specification
9704 || die->attrs[i].name == DW_AT_abstract_origin)
9705 spec = &die->attrs[i];
9706 }
9707
9708 if (spec)
9709 {
9710 die = follow_die_ref (die, spec, &cu);
9711 return dwarf2_attr (die, name, cu);
9712 }
9713
9714 return NULL;
9715 }
9716
9717 /* Return the named attribute or NULL if not there,
9718 but do not follow DW_AT_specification, etc.
9719 This is for use in contexts where we're reading .debug_types dies.
9720 Following DW_AT_specification, DW_AT_abstract_origin will take us
9721 back up the chain, and we want to go down. */
9722
9723 static struct attribute *
9724 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9725 struct dwarf2_cu *cu)
9726 {
9727 unsigned int i;
9728
9729 for (i = 0; i < die->num_attrs; ++i)
9730 if (die->attrs[i].name == name)
9731 return &die->attrs[i];
9732
9733 return NULL;
9734 }
9735
9736 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9737 and holds a non-zero value. This function should only be used for
9738 DW_FORM_flag or DW_FORM_flag_present attributes. */
9739
9740 static int
9741 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9742 {
9743 struct attribute *attr = dwarf2_attr (die, name, cu);
9744
9745 return (attr && DW_UNSND (attr));
9746 }
9747
9748 static int
9749 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9750 {
9751 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9752 which value is non-zero. However, we have to be careful with
9753 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9754 (via dwarf2_flag_true_p) follows this attribute. So we may
9755 end up accidently finding a declaration attribute that belongs
9756 to a different DIE referenced by the specification attribute,
9757 even though the given DIE does not have a declaration attribute. */
9758 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9759 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9760 }
9761
9762 /* Return the die giving the specification for DIE, if there is
9763 one. *SPEC_CU is the CU containing DIE on input, and the CU
9764 containing the return value on output. If there is no
9765 specification, but there is an abstract origin, that is
9766 returned. */
9767
9768 static struct die_info *
9769 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9770 {
9771 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9772 *spec_cu);
9773
9774 if (spec_attr == NULL)
9775 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9776
9777 if (spec_attr == NULL)
9778 return NULL;
9779 else
9780 return follow_die_ref (die, spec_attr, spec_cu);
9781 }
9782
9783 /* Free the line_header structure *LH, and any arrays and strings it
9784 refers to. */
9785 static void
9786 free_line_header (struct line_header *lh)
9787 {
9788 if (lh->standard_opcode_lengths)
9789 xfree (lh->standard_opcode_lengths);
9790
9791 /* Remember that all the lh->file_names[i].name pointers are
9792 pointers into debug_line_buffer, and don't need to be freed. */
9793 if (lh->file_names)
9794 xfree (lh->file_names);
9795
9796 /* Similarly for the include directory names. */
9797 if (lh->include_dirs)
9798 xfree (lh->include_dirs);
9799
9800 xfree (lh);
9801 }
9802
9803
9804 /* Add an entry to LH's include directory table. */
9805 static void
9806 add_include_dir (struct line_header *lh, char *include_dir)
9807 {
9808 /* Grow the array if necessary. */
9809 if (lh->include_dirs_size == 0)
9810 {
9811 lh->include_dirs_size = 1; /* for testing */
9812 lh->include_dirs = xmalloc (lh->include_dirs_size
9813 * sizeof (*lh->include_dirs));
9814 }
9815 else if (lh->num_include_dirs >= lh->include_dirs_size)
9816 {
9817 lh->include_dirs_size *= 2;
9818 lh->include_dirs = xrealloc (lh->include_dirs,
9819 (lh->include_dirs_size
9820 * sizeof (*lh->include_dirs)));
9821 }
9822
9823 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9824 }
9825
9826
9827 /* Add an entry to LH's file name table. */
9828 static void
9829 add_file_name (struct line_header *lh,
9830 char *name,
9831 unsigned int dir_index,
9832 unsigned int mod_time,
9833 unsigned int length)
9834 {
9835 struct file_entry *fe;
9836
9837 /* Grow the array if necessary. */
9838 if (lh->file_names_size == 0)
9839 {
9840 lh->file_names_size = 1; /* for testing */
9841 lh->file_names = xmalloc (lh->file_names_size
9842 * sizeof (*lh->file_names));
9843 }
9844 else if (lh->num_file_names >= lh->file_names_size)
9845 {
9846 lh->file_names_size *= 2;
9847 lh->file_names = xrealloc (lh->file_names,
9848 (lh->file_names_size
9849 * sizeof (*lh->file_names)));
9850 }
9851
9852 fe = &lh->file_names[lh->num_file_names++];
9853 fe->name = name;
9854 fe->dir_index = dir_index;
9855 fe->mod_time = mod_time;
9856 fe->length = length;
9857 fe->included_p = 0;
9858 fe->symtab = NULL;
9859 }
9860
9861
9862 /* Read the statement program header starting at OFFSET in
9863 .debug_line, according to the endianness of ABFD. Return a pointer
9864 to a struct line_header, allocated using xmalloc.
9865
9866 NOTE: the strings in the include directory and file name tables of
9867 the returned object point into debug_line_buffer, and must not be
9868 freed. */
9869 static struct line_header *
9870 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9871 struct dwarf2_cu *cu)
9872 {
9873 struct cleanup *back_to;
9874 struct line_header *lh;
9875 gdb_byte *line_ptr;
9876 unsigned int bytes_read, offset_size;
9877 int i;
9878 char *cur_dir, *cur_file;
9879
9880 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9881 if (dwarf2_per_objfile->line.buffer == NULL)
9882 {
9883 complaint (&symfile_complaints, _("missing .debug_line section"));
9884 return 0;
9885 }
9886
9887 /* Make sure that at least there's room for the total_length field.
9888 That could be 12 bytes long, but we're just going to fudge that. */
9889 if (offset + 4 >= dwarf2_per_objfile->line.size)
9890 {
9891 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9892 return 0;
9893 }
9894
9895 lh = xmalloc (sizeof (*lh));
9896 memset (lh, 0, sizeof (*lh));
9897 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9898 (void *) lh);
9899
9900 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9901
9902 /* Read in the header. */
9903 lh->total_length =
9904 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9905 &bytes_read, &offset_size);
9906 line_ptr += bytes_read;
9907 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9908 + dwarf2_per_objfile->line.size))
9909 {
9910 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9911 return 0;
9912 }
9913 lh->statement_program_end = line_ptr + lh->total_length;
9914 lh->version = read_2_bytes (abfd, line_ptr);
9915 line_ptr += 2;
9916 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9917 line_ptr += offset_size;
9918 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9919 line_ptr += 1;
9920 if (lh->version >= 4)
9921 {
9922 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9923 line_ptr += 1;
9924 }
9925 else
9926 lh->maximum_ops_per_instruction = 1;
9927
9928 if (lh->maximum_ops_per_instruction == 0)
9929 {
9930 lh->maximum_ops_per_instruction = 1;
9931 complaint (&symfile_complaints,
9932 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9933 }
9934
9935 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9936 line_ptr += 1;
9937 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9938 line_ptr += 1;
9939 lh->line_range = read_1_byte (abfd, line_ptr);
9940 line_ptr += 1;
9941 lh->opcode_base = read_1_byte (abfd, line_ptr);
9942 line_ptr += 1;
9943 lh->standard_opcode_lengths
9944 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9945
9946 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9947 for (i = 1; i < lh->opcode_base; ++i)
9948 {
9949 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9950 line_ptr += 1;
9951 }
9952
9953 /* Read directory table. */
9954 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9955 {
9956 line_ptr += bytes_read;
9957 add_include_dir (lh, cur_dir);
9958 }
9959 line_ptr += bytes_read;
9960
9961 /* Read file name table. */
9962 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9963 {
9964 unsigned int dir_index, mod_time, length;
9965
9966 line_ptr += bytes_read;
9967 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9968 line_ptr += bytes_read;
9969 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9970 line_ptr += bytes_read;
9971 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9972 line_ptr += bytes_read;
9973
9974 add_file_name (lh, cur_file, dir_index, mod_time, length);
9975 }
9976 line_ptr += bytes_read;
9977 lh->statement_program_start = line_ptr;
9978
9979 if (line_ptr > (dwarf2_per_objfile->line.buffer
9980 + dwarf2_per_objfile->line.size))
9981 complaint (&symfile_complaints,
9982 _("line number info header doesn't fit in `.debug_line' section"));
9983
9984 discard_cleanups (back_to);
9985 return lh;
9986 }
9987
9988 /* This function exists to work around a bug in certain compilers
9989 (particularly GCC 2.95), in which the first line number marker of a
9990 function does not show up until after the prologue, right before
9991 the second line number marker. This function shifts ADDRESS down
9992 to the beginning of the function if necessary, and is called on
9993 addresses passed to record_line. */
9994
9995 static CORE_ADDR
9996 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
9997 {
9998 struct function_range *fn;
9999
10000 /* Find the function_range containing address. */
10001 if (!cu->first_fn)
10002 return address;
10003
10004 if (!cu->cached_fn)
10005 cu->cached_fn = cu->first_fn;
10006
10007 fn = cu->cached_fn;
10008 while (fn)
10009 if (fn->lowpc <= address && fn->highpc > address)
10010 goto found;
10011 else
10012 fn = fn->next;
10013
10014 fn = cu->first_fn;
10015 while (fn && fn != cu->cached_fn)
10016 if (fn->lowpc <= address && fn->highpc > address)
10017 goto found;
10018 else
10019 fn = fn->next;
10020
10021 return address;
10022
10023 found:
10024 if (fn->seen_line)
10025 return address;
10026 if (address != fn->lowpc)
10027 complaint (&symfile_complaints,
10028 _("misplaced first line number at 0x%lx for '%s'"),
10029 (unsigned long) address, fn->name);
10030 fn->seen_line = 1;
10031 return fn->lowpc;
10032 }
10033
10034 /* Subroutine of dwarf_decode_lines to simplify it.
10035 Return the file name of the psymtab for included file FILE_INDEX
10036 in line header LH of PST.
10037 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10038 If space for the result is malloc'd, it will be freed by a cleanup.
10039 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10040
10041 static char *
10042 psymtab_include_file_name (const struct line_header *lh, int file_index,
10043 const struct partial_symtab *pst,
10044 const char *comp_dir)
10045 {
10046 const struct file_entry fe = lh->file_names [file_index];
10047 char *include_name = fe.name;
10048 char *include_name_to_compare = include_name;
10049 char *dir_name = NULL;
10050 const char *pst_filename;
10051 char *copied_name = NULL;
10052 int file_is_pst;
10053
10054 if (fe.dir_index)
10055 dir_name = lh->include_dirs[fe.dir_index - 1];
10056
10057 if (!IS_ABSOLUTE_PATH (include_name)
10058 && (dir_name != NULL || comp_dir != NULL))
10059 {
10060 /* Avoid creating a duplicate psymtab for PST.
10061 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10062 Before we do the comparison, however, we need to account
10063 for DIR_NAME and COMP_DIR.
10064 First prepend dir_name (if non-NULL). If we still don't
10065 have an absolute path prepend comp_dir (if non-NULL).
10066 However, the directory we record in the include-file's
10067 psymtab does not contain COMP_DIR (to match the
10068 corresponding symtab(s)).
10069
10070 Example:
10071
10072 bash$ cd /tmp
10073 bash$ gcc -g ./hello.c
10074 include_name = "hello.c"
10075 dir_name = "."
10076 DW_AT_comp_dir = comp_dir = "/tmp"
10077 DW_AT_name = "./hello.c" */
10078
10079 if (dir_name != NULL)
10080 {
10081 include_name = concat (dir_name, SLASH_STRING,
10082 include_name, (char *)NULL);
10083 include_name_to_compare = include_name;
10084 make_cleanup (xfree, include_name);
10085 }
10086 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10087 {
10088 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10089 include_name, (char *)NULL);
10090 }
10091 }
10092
10093 pst_filename = pst->filename;
10094 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10095 {
10096 copied_name = concat (pst->dirname, SLASH_STRING,
10097 pst_filename, (char *)NULL);
10098 pst_filename = copied_name;
10099 }
10100
10101 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10102
10103 if (include_name_to_compare != include_name)
10104 xfree (include_name_to_compare);
10105 if (copied_name != NULL)
10106 xfree (copied_name);
10107
10108 if (file_is_pst)
10109 return NULL;
10110 return include_name;
10111 }
10112
10113 /* Decode the Line Number Program (LNP) for the given line_header
10114 structure and CU. The actual information extracted and the type
10115 of structures created from the LNP depends on the value of PST.
10116
10117 1. If PST is NULL, then this procedure uses the data from the program
10118 to create all necessary symbol tables, and their linetables.
10119
10120 2. If PST is not NULL, this procedure reads the program to determine
10121 the list of files included by the unit represented by PST, and
10122 builds all the associated partial symbol tables.
10123
10124 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10125 It is used for relative paths in the line table.
10126 NOTE: When processing partial symtabs (pst != NULL),
10127 comp_dir == pst->dirname.
10128
10129 NOTE: It is important that psymtabs have the same file name (via strcmp)
10130 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10131 symtab we don't use it in the name of the psymtabs we create.
10132 E.g. expand_line_sal requires this when finding psymtabs to expand.
10133 A good testcase for this is mb-inline.exp. */
10134
10135 static void
10136 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10137 struct dwarf2_cu *cu, struct partial_symtab *pst)
10138 {
10139 gdb_byte *line_ptr, *extended_end;
10140 gdb_byte *line_end;
10141 unsigned int bytes_read, extended_len;
10142 unsigned char op_code, extended_op, adj_opcode;
10143 CORE_ADDR baseaddr;
10144 struct objfile *objfile = cu->objfile;
10145 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10146 const int decode_for_pst_p = (pst != NULL);
10147 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10148
10149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10150
10151 line_ptr = lh->statement_program_start;
10152 line_end = lh->statement_program_end;
10153
10154 /* Read the statement sequences until there's nothing left. */
10155 while (line_ptr < line_end)
10156 {
10157 /* state machine registers */
10158 CORE_ADDR address = 0;
10159 unsigned int file = 1;
10160 unsigned int line = 1;
10161 unsigned int column = 0;
10162 int is_stmt = lh->default_is_stmt;
10163 int basic_block = 0;
10164 int end_sequence = 0;
10165 CORE_ADDR addr;
10166 unsigned char op_index = 0;
10167
10168 if (!decode_for_pst_p && lh->num_file_names >= file)
10169 {
10170 /* Start a subfile for the current file of the state machine. */
10171 /* lh->include_dirs and lh->file_names are 0-based, but the
10172 directory and file name numbers in the statement program
10173 are 1-based. */
10174 struct file_entry *fe = &lh->file_names[file - 1];
10175 char *dir = NULL;
10176
10177 if (fe->dir_index)
10178 dir = lh->include_dirs[fe->dir_index - 1];
10179
10180 dwarf2_start_subfile (fe->name, dir, comp_dir);
10181 }
10182
10183 /* Decode the table. */
10184 while (!end_sequence)
10185 {
10186 op_code = read_1_byte (abfd, line_ptr);
10187 line_ptr += 1;
10188 if (line_ptr > line_end)
10189 {
10190 dwarf2_debug_line_missing_end_sequence_complaint ();
10191 break;
10192 }
10193
10194 if (op_code >= lh->opcode_base)
10195 {
10196 /* Special operand. */
10197 adj_opcode = op_code - lh->opcode_base;
10198 address += (((op_index + (adj_opcode / lh->line_range))
10199 / lh->maximum_ops_per_instruction)
10200 * lh->minimum_instruction_length);
10201 op_index = ((op_index + (adj_opcode / lh->line_range))
10202 % lh->maximum_ops_per_instruction);
10203 line += lh->line_base + (adj_opcode % lh->line_range);
10204 if (lh->num_file_names < file || file == 0)
10205 dwarf2_debug_line_missing_file_complaint ();
10206 /* For now we ignore lines not starting on an
10207 instruction boundary. */
10208 else if (op_index == 0)
10209 {
10210 lh->file_names[file - 1].included_p = 1;
10211 if (!decode_for_pst_p && is_stmt)
10212 {
10213 if (last_subfile != current_subfile)
10214 {
10215 addr = gdbarch_addr_bits_remove (gdbarch, address);
10216 if (last_subfile)
10217 record_line (last_subfile, 0, addr);
10218 last_subfile = current_subfile;
10219 }
10220 /* Append row to matrix using current values. */
10221 addr = check_cu_functions (address, cu);
10222 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10223 record_line (current_subfile, line, addr);
10224 }
10225 }
10226 basic_block = 0;
10227 }
10228 else switch (op_code)
10229 {
10230 case DW_LNS_extended_op:
10231 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10232 line_ptr += bytes_read;
10233 extended_end = line_ptr + extended_len;
10234 extended_op = read_1_byte (abfd, line_ptr);
10235 line_ptr += 1;
10236 switch (extended_op)
10237 {
10238 case DW_LNE_end_sequence:
10239 end_sequence = 1;
10240 break;
10241 case DW_LNE_set_address:
10242 address = read_address (abfd, line_ptr, cu, &bytes_read);
10243 op_index = 0;
10244 line_ptr += bytes_read;
10245 address += baseaddr;
10246 break;
10247 case DW_LNE_define_file:
10248 {
10249 char *cur_file;
10250 unsigned int dir_index, mod_time, length;
10251
10252 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
10253 line_ptr += bytes_read;
10254 dir_index =
10255 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10256 line_ptr += bytes_read;
10257 mod_time =
10258 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10259 line_ptr += bytes_read;
10260 length =
10261 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10262 line_ptr += bytes_read;
10263 add_file_name (lh, cur_file, dir_index, mod_time, length);
10264 }
10265 break;
10266 case DW_LNE_set_discriminator:
10267 /* The discriminator is not interesting to the debugger;
10268 just ignore it. */
10269 line_ptr = extended_end;
10270 break;
10271 default:
10272 complaint (&symfile_complaints,
10273 _("mangled .debug_line section"));
10274 return;
10275 }
10276 /* Make sure that we parsed the extended op correctly. If e.g.
10277 we expected a different address size than the producer used,
10278 we may have read the wrong number of bytes. */
10279 if (line_ptr != extended_end)
10280 {
10281 complaint (&symfile_complaints,
10282 _("mangled .debug_line section"));
10283 return;
10284 }
10285 break;
10286 case DW_LNS_copy:
10287 if (lh->num_file_names < file || file == 0)
10288 dwarf2_debug_line_missing_file_complaint ();
10289 else
10290 {
10291 lh->file_names[file - 1].included_p = 1;
10292 if (!decode_for_pst_p && is_stmt)
10293 {
10294 if (last_subfile != current_subfile)
10295 {
10296 addr = gdbarch_addr_bits_remove (gdbarch, address);
10297 if (last_subfile)
10298 record_line (last_subfile, 0, addr);
10299 last_subfile = current_subfile;
10300 }
10301 addr = check_cu_functions (address, cu);
10302 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10303 record_line (current_subfile, line, addr);
10304 }
10305 }
10306 basic_block = 0;
10307 break;
10308 case DW_LNS_advance_pc:
10309 {
10310 CORE_ADDR adjust
10311 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10312
10313 address += (((op_index + adjust)
10314 / lh->maximum_ops_per_instruction)
10315 * lh->minimum_instruction_length);
10316 op_index = ((op_index + adjust)
10317 % lh->maximum_ops_per_instruction);
10318 line_ptr += bytes_read;
10319 }
10320 break;
10321 case DW_LNS_advance_line:
10322 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10323 line_ptr += bytes_read;
10324 break;
10325 case DW_LNS_set_file:
10326 {
10327 /* The arrays lh->include_dirs and lh->file_names are
10328 0-based, but the directory and file name numbers in
10329 the statement program are 1-based. */
10330 struct file_entry *fe;
10331 char *dir = NULL;
10332
10333 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10334 line_ptr += bytes_read;
10335 if (lh->num_file_names < file || file == 0)
10336 dwarf2_debug_line_missing_file_complaint ();
10337 else
10338 {
10339 fe = &lh->file_names[file - 1];
10340 if (fe->dir_index)
10341 dir = lh->include_dirs[fe->dir_index - 1];
10342 if (!decode_for_pst_p)
10343 {
10344 last_subfile = current_subfile;
10345 dwarf2_start_subfile (fe->name, dir, comp_dir);
10346 }
10347 }
10348 }
10349 break;
10350 case DW_LNS_set_column:
10351 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10352 line_ptr += bytes_read;
10353 break;
10354 case DW_LNS_negate_stmt:
10355 is_stmt = (!is_stmt);
10356 break;
10357 case DW_LNS_set_basic_block:
10358 basic_block = 1;
10359 break;
10360 /* Add to the address register of the state machine the
10361 address increment value corresponding to special opcode
10362 255. I.e., this value is scaled by the minimum
10363 instruction length since special opcode 255 would have
10364 scaled the the increment. */
10365 case DW_LNS_const_add_pc:
10366 {
10367 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10368
10369 address += (((op_index + adjust)
10370 / lh->maximum_ops_per_instruction)
10371 * lh->minimum_instruction_length);
10372 op_index = ((op_index + adjust)
10373 % lh->maximum_ops_per_instruction);
10374 }
10375 break;
10376 case DW_LNS_fixed_advance_pc:
10377 address += read_2_bytes (abfd, line_ptr);
10378 op_index = 0;
10379 line_ptr += 2;
10380 break;
10381 default:
10382 {
10383 /* Unknown standard opcode, ignore it. */
10384 int i;
10385
10386 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10387 {
10388 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10389 line_ptr += bytes_read;
10390 }
10391 }
10392 }
10393 }
10394 if (lh->num_file_names < file || file == 0)
10395 dwarf2_debug_line_missing_file_complaint ();
10396 else
10397 {
10398 lh->file_names[file - 1].included_p = 1;
10399 if (!decode_for_pst_p)
10400 {
10401 addr = gdbarch_addr_bits_remove (gdbarch, address);
10402 record_line (current_subfile, 0, addr);
10403 }
10404 }
10405 }
10406
10407 if (decode_for_pst_p)
10408 {
10409 int file_index;
10410
10411 /* Now that we're done scanning the Line Header Program, we can
10412 create the psymtab of each included file. */
10413 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10414 if (lh->file_names[file_index].included_p == 1)
10415 {
10416 char *include_name =
10417 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10418 if (include_name != NULL)
10419 dwarf2_create_include_psymtab (include_name, pst, objfile);
10420 }
10421 }
10422 else
10423 {
10424 /* Make sure a symtab is created for every file, even files
10425 which contain only variables (i.e. no code with associated
10426 line numbers). */
10427
10428 int i;
10429 struct file_entry *fe;
10430
10431 for (i = 0; i < lh->num_file_names; i++)
10432 {
10433 char *dir = NULL;
10434
10435 fe = &lh->file_names[i];
10436 if (fe->dir_index)
10437 dir = lh->include_dirs[fe->dir_index - 1];
10438 dwarf2_start_subfile (fe->name, dir, comp_dir);
10439
10440 /* Skip the main file; we don't need it, and it must be
10441 allocated last, so that it will show up before the
10442 non-primary symtabs in the objfile's symtab list. */
10443 if (current_subfile == first_subfile)
10444 continue;
10445
10446 if (current_subfile->symtab == NULL)
10447 current_subfile->symtab = allocate_symtab (current_subfile->name,
10448 cu->objfile);
10449 fe->symtab = current_subfile->symtab;
10450 }
10451 }
10452 }
10453
10454 /* Start a subfile for DWARF. FILENAME is the name of the file and
10455 DIRNAME the name of the source directory which contains FILENAME
10456 or NULL if not known. COMP_DIR is the compilation directory for the
10457 linetable's compilation unit or NULL if not known.
10458 This routine tries to keep line numbers from identical absolute and
10459 relative file names in a common subfile.
10460
10461 Using the `list' example from the GDB testsuite, which resides in
10462 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10463 of /srcdir/list0.c yields the following debugging information for list0.c:
10464
10465 DW_AT_name: /srcdir/list0.c
10466 DW_AT_comp_dir: /compdir
10467 files.files[0].name: list0.h
10468 files.files[0].dir: /srcdir
10469 files.files[1].name: list0.c
10470 files.files[1].dir: /srcdir
10471
10472 The line number information for list0.c has to end up in a single
10473 subfile, so that `break /srcdir/list0.c:1' works as expected.
10474 start_subfile will ensure that this happens provided that we pass the
10475 concatenation of files.files[1].dir and files.files[1].name as the
10476 subfile's name. */
10477
10478 static void
10479 dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
10480 {
10481 char *fullname;
10482
10483 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10484 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10485 second argument to start_subfile. To be consistent, we do the
10486 same here. In order not to lose the line information directory,
10487 we concatenate it to the filename when it makes sense.
10488 Note that the Dwarf3 standard says (speaking of filenames in line
10489 information): ``The directory index is ignored for file names
10490 that represent full path names''. Thus ignoring dirname in the
10491 `else' branch below isn't an issue. */
10492
10493 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10494 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10495 else
10496 fullname = filename;
10497
10498 start_subfile (fullname, comp_dir);
10499
10500 if (fullname != filename)
10501 xfree (fullname);
10502 }
10503
10504 static void
10505 var_decode_location (struct attribute *attr, struct symbol *sym,
10506 struct dwarf2_cu *cu)
10507 {
10508 struct objfile *objfile = cu->objfile;
10509 struct comp_unit_head *cu_header = &cu->header;
10510
10511 /* NOTE drow/2003-01-30: There used to be a comment and some special
10512 code here to turn a symbol with DW_AT_external and a
10513 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10514 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10515 with some versions of binutils) where shared libraries could have
10516 relocations against symbols in their debug information - the
10517 minimal symbol would have the right address, but the debug info
10518 would not. It's no longer necessary, because we will explicitly
10519 apply relocations when we read in the debug information now. */
10520
10521 /* A DW_AT_location attribute with no contents indicates that a
10522 variable has been optimized away. */
10523 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10524 {
10525 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10526 return;
10527 }
10528
10529 /* Handle one degenerate form of location expression specially, to
10530 preserve GDB's previous behavior when section offsets are
10531 specified. If this is just a DW_OP_addr then mark this symbol
10532 as LOC_STATIC. */
10533
10534 if (attr_form_is_block (attr)
10535 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10536 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10537 {
10538 unsigned int dummy;
10539
10540 SYMBOL_VALUE_ADDRESS (sym) =
10541 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10542 SYMBOL_CLASS (sym) = LOC_STATIC;
10543 fixup_symbol_section (sym, objfile);
10544 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10545 SYMBOL_SECTION (sym));
10546 return;
10547 }
10548
10549 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10550 expression evaluator, and use LOC_COMPUTED only when necessary
10551 (i.e. when the value of a register or memory location is
10552 referenced, or a thread-local block, etc.). Then again, it might
10553 not be worthwhile. I'm assuming that it isn't unless performance
10554 or memory numbers show me otherwise. */
10555
10556 dwarf2_symbol_mark_computed (attr, sym, cu);
10557 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10558 }
10559
10560 /* Given a pointer to a DWARF information entry, figure out if we need
10561 to make a symbol table entry for it, and if so, create a new entry
10562 and return a pointer to it.
10563 If TYPE is NULL, determine symbol type from the die, otherwise
10564 used the passed type.
10565 If SPACE is not NULL, use it to hold the new symbol. If it is
10566 NULL, allocate a new symbol on the objfile's obstack. */
10567
10568 static struct symbol *
10569 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10570 struct symbol *space)
10571 {
10572 struct objfile *objfile = cu->objfile;
10573 struct symbol *sym = NULL;
10574 char *name;
10575 struct attribute *attr = NULL;
10576 struct attribute *attr2 = NULL;
10577 CORE_ADDR baseaddr;
10578 struct pending **list_to_add = NULL;
10579
10580 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10581
10582 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10583
10584 name = dwarf2_name (die, cu);
10585 if (name)
10586 {
10587 const char *linkagename;
10588 int suppress_add = 0;
10589
10590 if (space)
10591 sym = space;
10592 else
10593 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10594 OBJSTAT (objfile, n_syms++);
10595
10596 /* Cache this symbol's name and the name's demangled form (if any). */
10597 SYMBOL_SET_LANGUAGE (sym, cu->language);
10598 linkagename = dwarf2_physname (name, die, cu);
10599 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10600
10601 /* Fortran does not have mangling standard and the mangling does differ
10602 between gfortran, iFort etc. */
10603 if (cu->language == language_fortran
10604 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10605 symbol_set_demangled_name (&(sym->ginfo),
10606 (char *) dwarf2_full_name (name, die, cu),
10607 NULL);
10608
10609 /* Default assumptions.
10610 Use the passed type or decode it from the die. */
10611 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10612 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10613 if (type != NULL)
10614 SYMBOL_TYPE (sym) = type;
10615 else
10616 SYMBOL_TYPE (sym) = die_type (die, cu);
10617 attr = dwarf2_attr (die,
10618 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10619 cu);
10620 if (attr)
10621 {
10622 SYMBOL_LINE (sym) = DW_UNSND (attr);
10623 }
10624
10625 attr = dwarf2_attr (die,
10626 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10627 cu);
10628 if (attr)
10629 {
10630 int file_index = DW_UNSND (attr);
10631
10632 if (cu->line_header == NULL
10633 || file_index > cu->line_header->num_file_names)
10634 complaint (&symfile_complaints,
10635 _("file index out of range"));
10636 else if (file_index > 0)
10637 {
10638 struct file_entry *fe;
10639
10640 fe = &cu->line_header->file_names[file_index - 1];
10641 SYMBOL_SYMTAB (sym) = fe->symtab;
10642 }
10643 }
10644
10645 switch (die->tag)
10646 {
10647 case DW_TAG_label:
10648 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10649 if (attr)
10650 {
10651 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10652 }
10653 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10654 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10655 SYMBOL_CLASS (sym) = LOC_LABEL;
10656 add_symbol_to_list (sym, cu->list_in_scope);
10657 break;
10658 case DW_TAG_subprogram:
10659 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10660 finish_block. */
10661 SYMBOL_CLASS (sym) = LOC_BLOCK;
10662 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10663 if ((attr2 && (DW_UNSND (attr2) != 0))
10664 || cu->language == language_ada)
10665 {
10666 /* Subprograms marked external are stored as a global symbol.
10667 Ada subprograms, whether marked external or not, are always
10668 stored as a global symbol, because we want to be able to
10669 access them globally. For instance, we want to be able
10670 to break on a nested subprogram without having to
10671 specify the context. */
10672 list_to_add = &global_symbols;
10673 }
10674 else
10675 {
10676 list_to_add = cu->list_in_scope;
10677 }
10678 break;
10679 case DW_TAG_inlined_subroutine:
10680 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10681 finish_block. */
10682 SYMBOL_CLASS (sym) = LOC_BLOCK;
10683 SYMBOL_INLINED (sym) = 1;
10684 /* Do not add the symbol to any lists. It will be found via
10685 BLOCK_FUNCTION from the blockvector. */
10686 break;
10687 case DW_TAG_template_value_param:
10688 suppress_add = 1;
10689 /* Fall through. */
10690 case DW_TAG_constant:
10691 case DW_TAG_variable:
10692 case DW_TAG_member:
10693 /* Compilation with minimal debug info may result in variables
10694 with missing type entries. Change the misleading `void' type
10695 to something sensible. */
10696 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10697 SYMBOL_TYPE (sym)
10698 = objfile_type (objfile)->nodebug_data_symbol;
10699
10700 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10701 /* In the case of DW_TAG_member, we should only be called for
10702 static const members. */
10703 if (die->tag == DW_TAG_member)
10704 {
10705 /* dwarf2_add_field uses die_is_declaration,
10706 so we do the same. */
10707 gdb_assert (die_is_declaration (die, cu));
10708 gdb_assert (attr);
10709 }
10710 if (attr)
10711 {
10712 dwarf2_const_value (attr, sym, cu);
10713 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10714 if (!suppress_add)
10715 {
10716 if (attr2 && (DW_UNSND (attr2) != 0))
10717 list_to_add = &global_symbols;
10718 else
10719 list_to_add = cu->list_in_scope;
10720 }
10721 break;
10722 }
10723 attr = dwarf2_attr (die, DW_AT_location, cu);
10724 if (attr)
10725 {
10726 var_decode_location (attr, sym, cu);
10727 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10728 if (SYMBOL_CLASS (sym) == LOC_STATIC
10729 && SYMBOL_VALUE_ADDRESS (sym) == 0
10730 && !dwarf2_per_objfile->has_section_at_zero)
10731 {
10732 /* When a static variable is eliminated by the linker,
10733 the corresponding debug information is not stripped
10734 out, but the variable address is set to null;
10735 do not add such variables into symbol table. */
10736 }
10737 else if (attr2 && (DW_UNSND (attr2) != 0))
10738 {
10739 /* Workaround gfortran PR debug/40040 - it uses
10740 DW_AT_location for variables in -fPIC libraries which may
10741 get overriden by other libraries/executable and get
10742 a different address. Resolve it by the minimal symbol
10743 which may come from inferior's executable using copy
10744 relocation. Make this workaround only for gfortran as for
10745 other compilers GDB cannot guess the minimal symbol
10746 Fortran mangling kind. */
10747 if (cu->language == language_fortran && die->parent
10748 && die->parent->tag == DW_TAG_module
10749 && cu->producer
10750 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10751 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10752
10753 /* A variable with DW_AT_external is never static,
10754 but it may be block-scoped. */
10755 list_to_add = (cu->list_in_scope == &file_symbols
10756 ? &global_symbols : cu->list_in_scope);
10757 }
10758 else
10759 list_to_add = cu->list_in_scope;
10760 }
10761 else
10762 {
10763 /* We do not know the address of this symbol.
10764 If it is an external symbol and we have type information
10765 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10766 The address of the variable will then be determined from
10767 the minimal symbol table whenever the variable is
10768 referenced. */
10769 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10770 if (attr2 && (DW_UNSND (attr2) != 0)
10771 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10772 {
10773 /* A variable with DW_AT_external is never static, but it
10774 may be block-scoped. */
10775 list_to_add = (cu->list_in_scope == &file_symbols
10776 ? &global_symbols : cu->list_in_scope);
10777
10778 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10779 }
10780 else if (!die_is_declaration (die, cu))
10781 {
10782 /* Use the default LOC_OPTIMIZED_OUT class. */
10783 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10784 if (!suppress_add)
10785 list_to_add = cu->list_in_scope;
10786 }
10787 }
10788 break;
10789 case DW_TAG_formal_parameter:
10790 /* If we are inside a function, mark this as an argument. If
10791 not, we might be looking at an argument to an inlined function
10792 when we do not have enough information to show inlined frames;
10793 pretend it's a local variable in that case so that the user can
10794 still see it. */
10795 if (context_stack_depth > 0
10796 && context_stack[context_stack_depth - 1].name != NULL)
10797 SYMBOL_IS_ARGUMENT (sym) = 1;
10798 attr = dwarf2_attr (die, DW_AT_location, cu);
10799 if (attr)
10800 {
10801 var_decode_location (attr, sym, cu);
10802 }
10803 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10804 if (attr)
10805 {
10806 dwarf2_const_value (attr, sym, cu);
10807 }
10808 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10809 if (attr && DW_UNSND (attr))
10810 {
10811 struct type *ref_type;
10812
10813 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10814 SYMBOL_TYPE (sym) = ref_type;
10815 }
10816
10817 list_to_add = cu->list_in_scope;
10818 break;
10819 case DW_TAG_unspecified_parameters:
10820 /* From varargs functions; gdb doesn't seem to have any
10821 interest in this information, so just ignore it for now.
10822 (FIXME?) */
10823 break;
10824 case DW_TAG_template_type_param:
10825 suppress_add = 1;
10826 /* Fall through. */
10827 case DW_TAG_class_type:
10828 case DW_TAG_interface_type:
10829 case DW_TAG_structure_type:
10830 case DW_TAG_union_type:
10831 case DW_TAG_set_type:
10832 case DW_TAG_enumeration_type:
10833 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10834 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10835
10836 {
10837 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
10838 really ever be static objects: otherwise, if you try
10839 to, say, break of a class's method and you're in a file
10840 which doesn't mention that class, it won't work unless
10841 the check for all static symbols in lookup_symbol_aux
10842 saves you. See the OtherFileClass tests in
10843 gdb.c++/namespace.exp. */
10844
10845 if (!suppress_add)
10846 {
10847 list_to_add = (cu->list_in_scope == &file_symbols
10848 && (cu->language == language_cplus
10849 || cu->language == language_java)
10850 ? &global_symbols : cu->list_in_scope);
10851
10852 /* The semantics of C++ state that "struct foo {
10853 ... }" also defines a typedef for "foo". A Java
10854 class declaration also defines a typedef for the
10855 class. */
10856 if (cu->language == language_cplus
10857 || cu->language == language_java
10858 || cu->language == language_ada)
10859 {
10860 /* The symbol's name is already allocated along
10861 with this objfile, so we don't need to
10862 duplicate it for the type. */
10863 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10864 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10865 }
10866 }
10867 }
10868 break;
10869 case DW_TAG_typedef:
10870 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10871 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10872 list_to_add = cu->list_in_scope;
10873 break;
10874 case DW_TAG_base_type:
10875 case DW_TAG_subrange_type:
10876 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10877 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10878 list_to_add = cu->list_in_scope;
10879 break;
10880 case DW_TAG_enumerator:
10881 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10882 if (attr)
10883 {
10884 dwarf2_const_value (attr, sym, cu);
10885 }
10886 {
10887 /* NOTE: carlton/2003-11-10: See comment above in the
10888 DW_TAG_class_type, etc. block. */
10889
10890 list_to_add = (cu->list_in_scope == &file_symbols
10891 && (cu->language == language_cplus
10892 || cu->language == language_java)
10893 ? &global_symbols : cu->list_in_scope);
10894 }
10895 break;
10896 case DW_TAG_namespace:
10897 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10898 list_to_add = &global_symbols;
10899 break;
10900 default:
10901 /* Not a tag we recognize. Hopefully we aren't processing
10902 trash data, but since we must specifically ignore things
10903 we don't recognize, there is nothing else we should do at
10904 this point. */
10905 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10906 dwarf_tag_name (die->tag));
10907 break;
10908 }
10909
10910 if (suppress_add)
10911 {
10912 sym->hash_next = objfile->template_symbols;
10913 objfile->template_symbols = sym;
10914 list_to_add = NULL;
10915 }
10916
10917 if (list_to_add != NULL)
10918 add_symbol_to_list (sym, list_to_add);
10919
10920 /* For the benefit of old versions of GCC, check for anonymous
10921 namespaces based on the demangled name. */
10922 if (!processing_has_namespace_info
10923 && cu->language == language_cplus)
10924 cp_scan_for_anonymous_namespaces (sym);
10925 }
10926 return (sym);
10927 }
10928
10929 /* A wrapper for new_symbol_full that always allocates a new symbol. */
10930
10931 static struct symbol *
10932 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10933 {
10934 return new_symbol_full (die, type, cu, NULL);
10935 }
10936
10937 /* Given an attr with a DW_FORM_dataN value in host byte order,
10938 zero-extend it as appropriate for the symbol's type. The DWARF
10939 standard (v4) is not entirely clear about the meaning of using
10940 DW_FORM_dataN for a constant with a signed type, where the type is
10941 wider than the data. The conclusion of a discussion on the DWARF
10942 list was that this is unspecified. We choose to always zero-extend
10943 because that is the interpretation long in use by GCC. */
10944
10945 static gdb_byte *
10946 dwarf2_const_value_data (struct attribute *attr, struct type *type,
10947 const char *name, struct obstack *obstack,
10948 struct dwarf2_cu *cu, long *value, int bits)
10949 {
10950 struct objfile *objfile = cu->objfile;
10951 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10952 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10953 LONGEST l = DW_UNSND (attr);
10954
10955 if (bits < sizeof (*value) * 8)
10956 {
10957 l &= ((LONGEST) 1 << bits) - 1;
10958 *value = l;
10959 }
10960 else if (bits == sizeof (*value) * 8)
10961 *value = l;
10962 else
10963 {
10964 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10965 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10966 return bytes;
10967 }
10968
10969 return NULL;
10970 }
10971
10972 /* Read a constant value from an attribute. Either set *VALUE, or if
10973 the value does not fit in *VALUE, set *BYTES - either already
10974 allocated on the objfile obstack, or newly allocated on OBSTACK,
10975 or, set *BATON, if we translated the constant to a location
10976 expression. */
10977
10978 static void
10979 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10980 const char *name, struct obstack *obstack,
10981 struct dwarf2_cu *cu,
10982 long *value, gdb_byte **bytes,
10983 struct dwarf2_locexpr_baton **baton)
10984 {
10985 struct objfile *objfile = cu->objfile;
10986 struct comp_unit_head *cu_header = &cu->header;
10987 struct dwarf_block *blk;
10988 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10989 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10990
10991 *value = 0;
10992 *bytes = NULL;
10993 *baton = NULL;
10994
10995 switch (attr->form)
10996 {
10997 case DW_FORM_addr:
10998 {
10999 gdb_byte *data;
11000
11001 if (TYPE_LENGTH (type) != cu_header->addr_size)
11002 dwarf2_const_value_length_mismatch_complaint (name,
11003 cu_header->addr_size,
11004 TYPE_LENGTH (type));
11005 /* Symbols of this form are reasonably rare, so we just
11006 piggyback on the existing location code rather than writing
11007 a new implementation of symbol_computed_ops. */
11008 *baton = obstack_alloc (&objfile->objfile_obstack,
11009 sizeof (struct dwarf2_locexpr_baton));
11010 (*baton)->per_cu = cu->per_cu;
11011 gdb_assert ((*baton)->per_cu);
11012
11013 (*baton)->size = 2 + cu_header->addr_size;
11014 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11015 (*baton)->data = data;
11016
11017 data[0] = DW_OP_addr;
11018 store_unsigned_integer (&data[1], cu_header->addr_size,
11019 byte_order, DW_ADDR (attr));
11020 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11021 }
11022 break;
11023 case DW_FORM_string:
11024 case DW_FORM_strp:
11025 /* DW_STRING is already allocated on the objfile obstack, point
11026 directly to it. */
11027 *bytes = (gdb_byte *) DW_STRING (attr);
11028 break;
11029 case DW_FORM_block1:
11030 case DW_FORM_block2:
11031 case DW_FORM_block4:
11032 case DW_FORM_block:
11033 case DW_FORM_exprloc:
11034 blk = DW_BLOCK (attr);
11035 if (TYPE_LENGTH (type) != blk->size)
11036 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11037 TYPE_LENGTH (type));
11038 *bytes = blk->data;
11039 break;
11040
11041 /* The DW_AT_const_value attributes are supposed to carry the
11042 symbol's value "represented as it would be on the target
11043 architecture." By the time we get here, it's already been
11044 converted to host endianness, so we just need to sign- or
11045 zero-extend it as appropriate. */
11046 case DW_FORM_data1:
11047 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
11048 break;
11049 case DW_FORM_data2:
11050 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
11051 break;
11052 case DW_FORM_data4:
11053 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
11054 break;
11055 case DW_FORM_data8:
11056 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
11057 break;
11058
11059 case DW_FORM_sdata:
11060 *value = DW_SND (attr);
11061 break;
11062
11063 case DW_FORM_udata:
11064 *value = DW_UNSND (attr);
11065 break;
11066
11067 default:
11068 complaint (&symfile_complaints,
11069 _("unsupported const value attribute form: '%s'"),
11070 dwarf_form_name (attr->form));
11071 *value = 0;
11072 break;
11073 }
11074 }
11075
11076
11077 /* Copy constant value from an attribute to a symbol. */
11078
11079 static void
11080 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11081 struct dwarf2_cu *cu)
11082 {
11083 struct objfile *objfile = cu->objfile;
11084 struct comp_unit_head *cu_header = &cu->header;
11085 long value;
11086 gdb_byte *bytes;
11087 struct dwarf2_locexpr_baton *baton;
11088
11089 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11090 SYMBOL_PRINT_NAME (sym),
11091 &objfile->objfile_obstack, cu,
11092 &value, &bytes, &baton);
11093
11094 if (baton != NULL)
11095 {
11096 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11097 SYMBOL_LOCATION_BATON (sym) = baton;
11098 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11099 }
11100 else if (bytes != NULL)
11101 {
11102 SYMBOL_VALUE_BYTES (sym) = bytes;
11103 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11104 }
11105 else
11106 {
11107 SYMBOL_VALUE (sym) = value;
11108 SYMBOL_CLASS (sym) = LOC_CONST;
11109 }
11110 }
11111
11112 /* Return the type of the die in question using its DW_AT_type attribute. */
11113
11114 static struct type *
11115 die_type (struct die_info *die, struct dwarf2_cu *cu)
11116 {
11117 struct attribute *type_attr;
11118
11119 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11120 if (!type_attr)
11121 {
11122 /* A missing DW_AT_type represents a void type. */
11123 return objfile_type (cu->objfile)->builtin_void;
11124 }
11125
11126 return lookup_die_type (die, type_attr, cu);
11127 }
11128
11129 /* True iff CU's producer generates GNAT Ada auxiliary information
11130 that allows to find parallel types through that information instead
11131 of having to do expensive parallel lookups by type name. */
11132
11133 static int
11134 need_gnat_info (struct dwarf2_cu *cu)
11135 {
11136 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11137 of GNAT produces this auxiliary information, without any indication
11138 that it is produced. Part of enhancing the FSF version of GNAT
11139 to produce that information will be to put in place an indicator
11140 that we can use in order to determine whether the descriptive type
11141 info is available or not. One suggestion that has been made is
11142 to use a new attribute, attached to the CU die. For now, assume
11143 that the descriptive type info is not available. */
11144 return 0;
11145 }
11146
11147 /* Return the auxiliary type of the die in question using its
11148 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11149 attribute is not present. */
11150
11151 static struct type *
11152 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11153 {
11154 struct attribute *type_attr;
11155
11156 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11157 if (!type_attr)
11158 return NULL;
11159
11160 return lookup_die_type (die, type_attr, cu);
11161 }
11162
11163 /* If DIE has a descriptive_type attribute, then set the TYPE's
11164 descriptive type accordingly. */
11165
11166 static void
11167 set_descriptive_type (struct type *type, struct die_info *die,
11168 struct dwarf2_cu *cu)
11169 {
11170 struct type *descriptive_type = die_descriptive_type (die, cu);
11171
11172 if (descriptive_type)
11173 {
11174 ALLOCATE_GNAT_AUX_TYPE (type);
11175 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11176 }
11177 }
11178
11179 /* Return the containing type of the die in question using its
11180 DW_AT_containing_type attribute. */
11181
11182 static struct type *
11183 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11184 {
11185 struct attribute *type_attr;
11186
11187 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11188 if (!type_attr)
11189 error (_("Dwarf Error: Problem turning containing type into gdb type "
11190 "[in module %s]"), cu->objfile->name);
11191
11192 return lookup_die_type (die, type_attr, cu);
11193 }
11194
11195 /* Look up the type of DIE in CU using its type attribute ATTR.
11196 If there is no type substitute an error marker. */
11197
11198 static struct type *
11199 lookup_die_type (struct die_info *die, struct attribute *attr,
11200 struct dwarf2_cu *cu)
11201 {
11202 struct type *this_type;
11203
11204 /* First see if we have it cached. */
11205
11206 if (is_ref_attr (attr))
11207 {
11208 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11209
11210 this_type = get_die_type_at_offset (offset, cu->per_cu);
11211 }
11212 else if (attr->form == DW_FORM_sig8)
11213 {
11214 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11215 struct dwarf2_cu *sig_cu;
11216 unsigned int offset;
11217
11218 /* sig_type will be NULL if the signatured type is missing from
11219 the debug info. */
11220 if (sig_type == NULL)
11221 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11222 "at 0x%x [in module %s]"),
11223 die->offset, cu->objfile->name);
11224
11225 gdb_assert (sig_type->per_cu.from_debug_types);
11226 offset = sig_type->offset + sig_type->type_offset;
11227 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11228 }
11229 else
11230 {
11231 dump_die_for_error (die);
11232 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11233 dwarf_attr_name (attr->name), cu->objfile->name);
11234 }
11235
11236 /* If not cached we need to read it in. */
11237
11238 if (this_type == NULL)
11239 {
11240 struct die_info *type_die;
11241 struct dwarf2_cu *type_cu = cu;
11242
11243 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11244 /* If the type is cached, we should have found it above. */
11245 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11246 this_type = read_type_die_1 (type_die, type_cu);
11247 }
11248
11249 /* If we still don't have a type use an error marker. */
11250
11251 if (this_type == NULL)
11252 {
11253 char *message, *saved;
11254
11255 /* read_type_die already issued a complaint. */
11256 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11257 cu->objfile->name,
11258 cu->header.offset,
11259 die->offset);
11260 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11261 message, strlen (message));
11262 xfree (message);
11263
11264 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11265 }
11266
11267 return this_type;
11268 }
11269
11270 /* Return the type in DIE, CU.
11271 Returns NULL for invalid types.
11272
11273 This first does a lookup in the appropriate type_hash table,
11274 and only reads the die in if necessary.
11275
11276 NOTE: This can be called when reading in partial or full symbols. */
11277
11278 static struct type *
11279 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11280 {
11281 struct type *this_type;
11282
11283 this_type = get_die_type (die, cu);
11284 if (this_type)
11285 return this_type;
11286
11287 return read_type_die_1 (die, cu);
11288 }
11289
11290 /* Read the type in DIE, CU.
11291 Returns NULL for invalid types. */
11292
11293 static struct type *
11294 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11295 {
11296 struct type *this_type = NULL;
11297
11298 switch (die->tag)
11299 {
11300 case DW_TAG_class_type:
11301 case DW_TAG_interface_type:
11302 case DW_TAG_structure_type:
11303 case DW_TAG_union_type:
11304 this_type = read_structure_type (die, cu);
11305 break;
11306 case DW_TAG_enumeration_type:
11307 this_type = read_enumeration_type (die, cu);
11308 break;
11309 case DW_TAG_subprogram:
11310 case DW_TAG_subroutine_type:
11311 case DW_TAG_inlined_subroutine:
11312 this_type = read_subroutine_type (die, cu);
11313 break;
11314 case DW_TAG_array_type:
11315 this_type = read_array_type (die, cu);
11316 break;
11317 case DW_TAG_set_type:
11318 this_type = read_set_type (die, cu);
11319 break;
11320 case DW_TAG_pointer_type:
11321 this_type = read_tag_pointer_type (die, cu);
11322 break;
11323 case DW_TAG_ptr_to_member_type:
11324 this_type = read_tag_ptr_to_member_type (die, cu);
11325 break;
11326 case DW_TAG_reference_type:
11327 this_type = read_tag_reference_type (die, cu);
11328 break;
11329 case DW_TAG_const_type:
11330 this_type = read_tag_const_type (die, cu);
11331 break;
11332 case DW_TAG_volatile_type:
11333 this_type = read_tag_volatile_type (die, cu);
11334 break;
11335 case DW_TAG_string_type:
11336 this_type = read_tag_string_type (die, cu);
11337 break;
11338 case DW_TAG_typedef:
11339 this_type = read_typedef (die, cu);
11340 break;
11341 case DW_TAG_subrange_type:
11342 this_type = read_subrange_type (die, cu);
11343 break;
11344 case DW_TAG_base_type:
11345 this_type = read_base_type (die, cu);
11346 break;
11347 case DW_TAG_unspecified_type:
11348 this_type = read_unspecified_type (die, cu);
11349 break;
11350 case DW_TAG_namespace:
11351 this_type = read_namespace_type (die, cu);
11352 break;
11353 case DW_TAG_module:
11354 this_type = read_module_type (die, cu);
11355 break;
11356 default:
11357 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
11358 dwarf_tag_name (die->tag));
11359 break;
11360 }
11361
11362 return this_type;
11363 }
11364
11365 /* See if we can figure out if the class lives in a namespace. We do
11366 this by looking for a member function; its demangled name will
11367 contain namespace info, if there is any.
11368 Return the computed name or NULL.
11369 Space for the result is allocated on the objfile's obstack.
11370 This is the full-die version of guess_partial_die_structure_name.
11371 In this case we know DIE has no useful parent. */
11372
11373 static char *
11374 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11375 {
11376 struct die_info *spec_die;
11377 struct dwarf2_cu *spec_cu;
11378 struct die_info *child;
11379
11380 spec_cu = cu;
11381 spec_die = die_specification (die, &spec_cu);
11382 if (spec_die != NULL)
11383 {
11384 die = spec_die;
11385 cu = spec_cu;
11386 }
11387
11388 for (child = die->child;
11389 child != NULL;
11390 child = child->sibling)
11391 {
11392 if (child->tag == DW_TAG_subprogram)
11393 {
11394 struct attribute *attr;
11395
11396 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11397 if (attr == NULL)
11398 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11399 if (attr != NULL)
11400 {
11401 char *actual_name
11402 = language_class_name_from_physname (cu->language_defn,
11403 DW_STRING (attr));
11404 char *name = NULL;
11405
11406 if (actual_name != NULL)
11407 {
11408 char *die_name = dwarf2_name (die, cu);
11409
11410 if (die_name != NULL
11411 && strcmp (die_name, actual_name) != 0)
11412 {
11413 /* Strip off the class name from the full name.
11414 We want the prefix. */
11415 int die_name_len = strlen (die_name);
11416 int actual_name_len = strlen (actual_name);
11417
11418 /* Test for '::' as a sanity check. */
11419 if (actual_name_len > die_name_len + 2
11420 && actual_name[actual_name_len - die_name_len - 1] == ':')
11421 name =
11422 obsavestring (actual_name,
11423 actual_name_len - die_name_len - 2,
11424 &cu->objfile->objfile_obstack);
11425 }
11426 }
11427 xfree (actual_name);
11428 return name;
11429 }
11430 }
11431 }
11432
11433 return NULL;
11434 }
11435
11436 /* Return the name of the namespace/class that DIE is defined within,
11437 or "" if we can't tell. The caller should not xfree the result.
11438
11439 For example, if we're within the method foo() in the following
11440 code:
11441
11442 namespace N {
11443 class C {
11444 void foo () {
11445 }
11446 };
11447 }
11448
11449 then determine_prefix on foo's die will return "N::C". */
11450
11451 static char *
11452 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11453 {
11454 struct die_info *parent, *spec_die;
11455 struct dwarf2_cu *spec_cu;
11456 struct type *parent_type;
11457
11458 if (cu->language != language_cplus && cu->language != language_java
11459 && cu->language != language_fortran)
11460 return "";
11461
11462 /* We have to be careful in the presence of DW_AT_specification.
11463 For example, with GCC 3.4, given the code
11464
11465 namespace N {
11466 void foo() {
11467 // Definition of N::foo.
11468 }
11469 }
11470
11471 then we'll have a tree of DIEs like this:
11472
11473 1: DW_TAG_compile_unit
11474 2: DW_TAG_namespace // N
11475 3: DW_TAG_subprogram // declaration of N::foo
11476 4: DW_TAG_subprogram // definition of N::foo
11477 DW_AT_specification // refers to die #3
11478
11479 Thus, when processing die #4, we have to pretend that we're in
11480 the context of its DW_AT_specification, namely the contex of die
11481 #3. */
11482 spec_cu = cu;
11483 spec_die = die_specification (die, &spec_cu);
11484 if (spec_die == NULL)
11485 parent = die->parent;
11486 else
11487 {
11488 parent = spec_die->parent;
11489 cu = spec_cu;
11490 }
11491
11492 if (parent == NULL)
11493 return "";
11494 else if (parent->building_fullname)
11495 {
11496 const char *name;
11497 const char *parent_name;
11498
11499 /* It has been seen on RealView 2.2 built binaries,
11500 DW_TAG_template_type_param types actually _defined_ as
11501 children of the parent class:
11502
11503 enum E {};
11504 template class <class Enum> Class{};
11505 Class<enum E> class_e;
11506
11507 1: DW_TAG_class_type (Class)
11508 2: DW_TAG_enumeration_type (E)
11509 3: DW_TAG_enumerator (enum1:0)
11510 3: DW_TAG_enumerator (enum2:1)
11511 ...
11512 2: DW_TAG_template_type_param
11513 DW_AT_type DW_FORM_ref_udata (E)
11514
11515 Besides being broken debug info, it can put GDB into an
11516 infinite loop. Consider:
11517
11518 When we're building the full name for Class<E>, we'll start
11519 at Class, and go look over its template type parameters,
11520 finding E. We'll then try to build the full name of E, and
11521 reach here. We're now trying to build the full name of E,
11522 and look over the parent DIE for containing scope. In the
11523 broken case, if we followed the parent DIE of E, we'd again
11524 find Class, and once again go look at its template type
11525 arguments, etc., etc. Simply don't consider such parent die
11526 as source-level parent of this die (it can't be, the language
11527 doesn't allow it), and break the loop here. */
11528 name = dwarf2_name (die, cu);
11529 parent_name = dwarf2_name (parent, cu);
11530 complaint (&symfile_complaints,
11531 _("template param type '%s' defined within parent '%s'"),
11532 name ? name : "<unknown>",
11533 parent_name ? parent_name : "<unknown>");
11534 return "";
11535 }
11536 else
11537 switch (parent->tag)
11538 {
11539 case DW_TAG_namespace:
11540 parent_type = read_type_die (parent, cu);
11541 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11542 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11543 Work around this problem here. */
11544 if (cu->language == language_cplus
11545 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11546 return "";
11547 /* We give a name to even anonymous namespaces. */
11548 return TYPE_TAG_NAME (parent_type);
11549 case DW_TAG_class_type:
11550 case DW_TAG_interface_type:
11551 case DW_TAG_structure_type:
11552 case DW_TAG_union_type:
11553 case DW_TAG_module:
11554 parent_type = read_type_die (parent, cu);
11555 if (TYPE_TAG_NAME (parent_type) != NULL)
11556 return TYPE_TAG_NAME (parent_type);
11557 else
11558 /* An anonymous structure is only allowed non-static data
11559 members; no typedefs, no member functions, et cetera.
11560 So it does not need a prefix. */
11561 return "";
11562 case DW_TAG_compile_unit:
11563 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11564 if (cu->language == language_cplus
11565 && dwarf2_per_objfile->types.asection != NULL
11566 && die->child != NULL
11567 && (die->tag == DW_TAG_class_type
11568 || die->tag == DW_TAG_structure_type
11569 || die->tag == DW_TAG_union_type))
11570 {
11571 char *name = guess_full_die_structure_name (die, cu);
11572 if (name != NULL)
11573 return name;
11574 }
11575 return "";
11576 default:
11577 return determine_prefix (parent, cu);
11578 }
11579 }
11580
11581 /* Return a newly-allocated string formed by concatenating PREFIX and
11582 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11583 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11584 perform an obconcat, otherwise allocate storage for the result. The CU argument
11585 is used to determine the language and hence, the appropriate separator. */
11586
11587 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11588
11589 static char *
11590 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11591 int physname, struct dwarf2_cu *cu)
11592 {
11593 const char *lead = "";
11594 const char *sep;
11595
11596 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11597 sep = "";
11598 else if (cu->language == language_java)
11599 sep = ".";
11600 else if (cu->language == language_fortran && physname)
11601 {
11602 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11603 DW_AT_MIPS_linkage_name is preferred and used instead. */
11604
11605 lead = "__";
11606 sep = "_MOD_";
11607 }
11608 else
11609 sep = "::";
11610
11611 if (prefix == NULL)
11612 prefix = "";
11613 if (suffix == NULL)
11614 suffix = "";
11615
11616 if (obs == NULL)
11617 {
11618 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11619
11620 strcpy (retval, lead);
11621 strcat (retval, prefix);
11622 strcat (retval, sep);
11623 strcat (retval, suffix);
11624 return retval;
11625 }
11626 else
11627 {
11628 /* We have an obstack. */
11629 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11630 }
11631 }
11632
11633 /* Return sibling of die, NULL if no sibling. */
11634
11635 static struct die_info *
11636 sibling_die (struct die_info *die)
11637 {
11638 return die->sibling;
11639 }
11640
11641 /* Get name of a die, return NULL if not found. */
11642
11643 static char *
11644 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11645 struct obstack *obstack)
11646 {
11647 if (name && cu->language == language_cplus)
11648 {
11649 char *canon_name = cp_canonicalize_string (name);
11650
11651 if (canon_name != NULL)
11652 {
11653 if (strcmp (canon_name, name) != 0)
11654 name = obsavestring (canon_name, strlen (canon_name),
11655 obstack);
11656 xfree (canon_name);
11657 }
11658 }
11659
11660 return name;
11661 }
11662
11663 /* Get name of a die, return NULL if not found. */
11664
11665 static char *
11666 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11667 {
11668 struct attribute *attr;
11669
11670 attr = dwarf2_attr (die, DW_AT_name, cu);
11671 if (!attr || !DW_STRING (attr))
11672 return NULL;
11673
11674 switch (die->tag)
11675 {
11676 case DW_TAG_compile_unit:
11677 /* Compilation units have a DW_AT_name that is a filename, not
11678 a source language identifier. */
11679 case DW_TAG_enumeration_type:
11680 case DW_TAG_enumerator:
11681 /* These tags always have simple identifiers already; no need
11682 to canonicalize them. */
11683 return DW_STRING (attr);
11684
11685 case DW_TAG_subprogram:
11686 /* Java constructors will all be named "<init>", so return
11687 the class name when we see this special case. */
11688 if (cu->language == language_java
11689 && DW_STRING (attr) != NULL
11690 && strcmp (DW_STRING (attr), "<init>") == 0)
11691 {
11692 struct dwarf2_cu *spec_cu = cu;
11693 struct die_info *spec_die;
11694
11695 /* GCJ will output '<init>' for Java constructor names.
11696 For this special case, return the name of the parent class. */
11697
11698 /* GCJ may output suprogram DIEs with AT_specification set.
11699 If so, use the name of the specified DIE. */
11700 spec_die = die_specification (die, &spec_cu);
11701 if (spec_die != NULL)
11702 return dwarf2_name (spec_die, spec_cu);
11703
11704 do
11705 {
11706 die = die->parent;
11707 if (die->tag == DW_TAG_class_type)
11708 return dwarf2_name (die, cu);
11709 }
11710 while (die->tag != DW_TAG_compile_unit);
11711 }
11712 break;
11713
11714 case DW_TAG_class_type:
11715 case DW_TAG_interface_type:
11716 case DW_TAG_structure_type:
11717 case DW_TAG_union_type:
11718 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11719 structures or unions. These were of the form "._%d" in GCC 4.1,
11720 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11721 and GCC 4.4. We work around this problem by ignoring these. */
11722 if (strncmp (DW_STRING (attr), "._", 2) == 0
11723 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11724 return NULL;
11725 break;
11726
11727 default:
11728 break;
11729 }
11730
11731 if (!DW_STRING_IS_CANONICAL (attr))
11732 {
11733 DW_STRING (attr)
11734 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11735 &cu->objfile->objfile_obstack);
11736 DW_STRING_IS_CANONICAL (attr) = 1;
11737 }
11738 return DW_STRING (attr);
11739 }
11740
11741 /* Return the die that this die in an extension of, or NULL if there
11742 is none. *EXT_CU is the CU containing DIE on input, and the CU
11743 containing the return value on output. */
11744
11745 static struct die_info *
11746 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11747 {
11748 struct attribute *attr;
11749
11750 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11751 if (attr == NULL)
11752 return NULL;
11753
11754 return follow_die_ref (die, attr, ext_cu);
11755 }
11756
11757 /* Convert a DIE tag into its string name. */
11758
11759 static char *
11760 dwarf_tag_name (unsigned tag)
11761 {
11762 switch (tag)
11763 {
11764 case DW_TAG_padding:
11765 return "DW_TAG_padding";
11766 case DW_TAG_array_type:
11767 return "DW_TAG_array_type";
11768 case DW_TAG_class_type:
11769 return "DW_TAG_class_type";
11770 case DW_TAG_entry_point:
11771 return "DW_TAG_entry_point";
11772 case DW_TAG_enumeration_type:
11773 return "DW_TAG_enumeration_type";
11774 case DW_TAG_formal_parameter:
11775 return "DW_TAG_formal_parameter";
11776 case DW_TAG_imported_declaration:
11777 return "DW_TAG_imported_declaration";
11778 case DW_TAG_label:
11779 return "DW_TAG_label";
11780 case DW_TAG_lexical_block:
11781 return "DW_TAG_lexical_block";
11782 case DW_TAG_member:
11783 return "DW_TAG_member";
11784 case DW_TAG_pointer_type:
11785 return "DW_TAG_pointer_type";
11786 case DW_TAG_reference_type:
11787 return "DW_TAG_reference_type";
11788 case DW_TAG_compile_unit:
11789 return "DW_TAG_compile_unit";
11790 case DW_TAG_string_type:
11791 return "DW_TAG_string_type";
11792 case DW_TAG_structure_type:
11793 return "DW_TAG_structure_type";
11794 case DW_TAG_subroutine_type:
11795 return "DW_TAG_subroutine_type";
11796 case DW_TAG_typedef:
11797 return "DW_TAG_typedef";
11798 case DW_TAG_union_type:
11799 return "DW_TAG_union_type";
11800 case DW_TAG_unspecified_parameters:
11801 return "DW_TAG_unspecified_parameters";
11802 case DW_TAG_variant:
11803 return "DW_TAG_variant";
11804 case DW_TAG_common_block:
11805 return "DW_TAG_common_block";
11806 case DW_TAG_common_inclusion:
11807 return "DW_TAG_common_inclusion";
11808 case DW_TAG_inheritance:
11809 return "DW_TAG_inheritance";
11810 case DW_TAG_inlined_subroutine:
11811 return "DW_TAG_inlined_subroutine";
11812 case DW_TAG_module:
11813 return "DW_TAG_module";
11814 case DW_TAG_ptr_to_member_type:
11815 return "DW_TAG_ptr_to_member_type";
11816 case DW_TAG_set_type:
11817 return "DW_TAG_set_type";
11818 case DW_TAG_subrange_type:
11819 return "DW_TAG_subrange_type";
11820 case DW_TAG_with_stmt:
11821 return "DW_TAG_with_stmt";
11822 case DW_TAG_access_declaration:
11823 return "DW_TAG_access_declaration";
11824 case DW_TAG_base_type:
11825 return "DW_TAG_base_type";
11826 case DW_TAG_catch_block:
11827 return "DW_TAG_catch_block";
11828 case DW_TAG_const_type:
11829 return "DW_TAG_const_type";
11830 case DW_TAG_constant:
11831 return "DW_TAG_constant";
11832 case DW_TAG_enumerator:
11833 return "DW_TAG_enumerator";
11834 case DW_TAG_file_type:
11835 return "DW_TAG_file_type";
11836 case DW_TAG_friend:
11837 return "DW_TAG_friend";
11838 case DW_TAG_namelist:
11839 return "DW_TAG_namelist";
11840 case DW_TAG_namelist_item:
11841 return "DW_TAG_namelist_item";
11842 case DW_TAG_packed_type:
11843 return "DW_TAG_packed_type";
11844 case DW_TAG_subprogram:
11845 return "DW_TAG_subprogram";
11846 case DW_TAG_template_type_param:
11847 return "DW_TAG_template_type_param";
11848 case DW_TAG_template_value_param:
11849 return "DW_TAG_template_value_param";
11850 case DW_TAG_thrown_type:
11851 return "DW_TAG_thrown_type";
11852 case DW_TAG_try_block:
11853 return "DW_TAG_try_block";
11854 case DW_TAG_variant_part:
11855 return "DW_TAG_variant_part";
11856 case DW_TAG_variable:
11857 return "DW_TAG_variable";
11858 case DW_TAG_volatile_type:
11859 return "DW_TAG_volatile_type";
11860 case DW_TAG_dwarf_procedure:
11861 return "DW_TAG_dwarf_procedure";
11862 case DW_TAG_restrict_type:
11863 return "DW_TAG_restrict_type";
11864 case DW_TAG_interface_type:
11865 return "DW_TAG_interface_type";
11866 case DW_TAG_namespace:
11867 return "DW_TAG_namespace";
11868 case DW_TAG_imported_module:
11869 return "DW_TAG_imported_module";
11870 case DW_TAG_unspecified_type:
11871 return "DW_TAG_unspecified_type";
11872 case DW_TAG_partial_unit:
11873 return "DW_TAG_partial_unit";
11874 case DW_TAG_imported_unit:
11875 return "DW_TAG_imported_unit";
11876 case DW_TAG_condition:
11877 return "DW_TAG_condition";
11878 case DW_TAG_shared_type:
11879 return "DW_TAG_shared_type";
11880 case DW_TAG_type_unit:
11881 return "DW_TAG_type_unit";
11882 case DW_TAG_MIPS_loop:
11883 return "DW_TAG_MIPS_loop";
11884 case DW_TAG_HP_array_descriptor:
11885 return "DW_TAG_HP_array_descriptor";
11886 case DW_TAG_format_label:
11887 return "DW_TAG_format_label";
11888 case DW_TAG_function_template:
11889 return "DW_TAG_function_template";
11890 case DW_TAG_class_template:
11891 return "DW_TAG_class_template";
11892 case DW_TAG_GNU_BINCL:
11893 return "DW_TAG_GNU_BINCL";
11894 case DW_TAG_GNU_EINCL:
11895 return "DW_TAG_GNU_EINCL";
11896 case DW_TAG_upc_shared_type:
11897 return "DW_TAG_upc_shared_type";
11898 case DW_TAG_upc_strict_type:
11899 return "DW_TAG_upc_strict_type";
11900 case DW_TAG_upc_relaxed_type:
11901 return "DW_TAG_upc_relaxed_type";
11902 case DW_TAG_PGI_kanji_type:
11903 return "DW_TAG_PGI_kanji_type";
11904 case DW_TAG_PGI_interface_block:
11905 return "DW_TAG_PGI_interface_block";
11906 default:
11907 return "DW_TAG_<unknown>";
11908 }
11909 }
11910
11911 /* Convert a DWARF attribute code into its string name. */
11912
11913 static char *
11914 dwarf_attr_name (unsigned attr)
11915 {
11916 switch (attr)
11917 {
11918 case DW_AT_sibling:
11919 return "DW_AT_sibling";
11920 case DW_AT_location:
11921 return "DW_AT_location";
11922 case DW_AT_name:
11923 return "DW_AT_name";
11924 case DW_AT_ordering:
11925 return "DW_AT_ordering";
11926 case DW_AT_subscr_data:
11927 return "DW_AT_subscr_data";
11928 case DW_AT_byte_size:
11929 return "DW_AT_byte_size";
11930 case DW_AT_bit_offset:
11931 return "DW_AT_bit_offset";
11932 case DW_AT_bit_size:
11933 return "DW_AT_bit_size";
11934 case DW_AT_element_list:
11935 return "DW_AT_element_list";
11936 case DW_AT_stmt_list:
11937 return "DW_AT_stmt_list";
11938 case DW_AT_low_pc:
11939 return "DW_AT_low_pc";
11940 case DW_AT_high_pc:
11941 return "DW_AT_high_pc";
11942 case DW_AT_language:
11943 return "DW_AT_language";
11944 case DW_AT_member:
11945 return "DW_AT_member";
11946 case DW_AT_discr:
11947 return "DW_AT_discr";
11948 case DW_AT_discr_value:
11949 return "DW_AT_discr_value";
11950 case DW_AT_visibility:
11951 return "DW_AT_visibility";
11952 case DW_AT_import:
11953 return "DW_AT_import";
11954 case DW_AT_string_length:
11955 return "DW_AT_string_length";
11956 case DW_AT_common_reference:
11957 return "DW_AT_common_reference";
11958 case DW_AT_comp_dir:
11959 return "DW_AT_comp_dir";
11960 case DW_AT_const_value:
11961 return "DW_AT_const_value";
11962 case DW_AT_containing_type:
11963 return "DW_AT_containing_type";
11964 case DW_AT_default_value:
11965 return "DW_AT_default_value";
11966 case DW_AT_inline:
11967 return "DW_AT_inline";
11968 case DW_AT_is_optional:
11969 return "DW_AT_is_optional";
11970 case DW_AT_lower_bound:
11971 return "DW_AT_lower_bound";
11972 case DW_AT_producer:
11973 return "DW_AT_producer";
11974 case DW_AT_prototyped:
11975 return "DW_AT_prototyped";
11976 case DW_AT_return_addr:
11977 return "DW_AT_return_addr";
11978 case DW_AT_start_scope:
11979 return "DW_AT_start_scope";
11980 case DW_AT_bit_stride:
11981 return "DW_AT_bit_stride";
11982 case DW_AT_upper_bound:
11983 return "DW_AT_upper_bound";
11984 case DW_AT_abstract_origin:
11985 return "DW_AT_abstract_origin";
11986 case DW_AT_accessibility:
11987 return "DW_AT_accessibility";
11988 case DW_AT_address_class:
11989 return "DW_AT_address_class";
11990 case DW_AT_artificial:
11991 return "DW_AT_artificial";
11992 case DW_AT_base_types:
11993 return "DW_AT_base_types";
11994 case DW_AT_calling_convention:
11995 return "DW_AT_calling_convention";
11996 case DW_AT_count:
11997 return "DW_AT_count";
11998 case DW_AT_data_member_location:
11999 return "DW_AT_data_member_location";
12000 case DW_AT_decl_column:
12001 return "DW_AT_decl_column";
12002 case DW_AT_decl_file:
12003 return "DW_AT_decl_file";
12004 case DW_AT_decl_line:
12005 return "DW_AT_decl_line";
12006 case DW_AT_declaration:
12007 return "DW_AT_declaration";
12008 case DW_AT_discr_list:
12009 return "DW_AT_discr_list";
12010 case DW_AT_encoding:
12011 return "DW_AT_encoding";
12012 case DW_AT_external:
12013 return "DW_AT_external";
12014 case DW_AT_frame_base:
12015 return "DW_AT_frame_base";
12016 case DW_AT_friend:
12017 return "DW_AT_friend";
12018 case DW_AT_identifier_case:
12019 return "DW_AT_identifier_case";
12020 case DW_AT_macro_info:
12021 return "DW_AT_macro_info";
12022 case DW_AT_namelist_items:
12023 return "DW_AT_namelist_items";
12024 case DW_AT_priority:
12025 return "DW_AT_priority";
12026 case DW_AT_segment:
12027 return "DW_AT_segment";
12028 case DW_AT_specification:
12029 return "DW_AT_specification";
12030 case DW_AT_static_link:
12031 return "DW_AT_static_link";
12032 case DW_AT_type:
12033 return "DW_AT_type";
12034 case DW_AT_use_location:
12035 return "DW_AT_use_location";
12036 case DW_AT_variable_parameter:
12037 return "DW_AT_variable_parameter";
12038 case DW_AT_virtuality:
12039 return "DW_AT_virtuality";
12040 case DW_AT_vtable_elem_location:
12041 return "DW_AT_vtable_elem_location";
12042 /* DWARF 3 values. */
12043 case DW_AT_allocated:
12044 return "DW_AT_allocated";
12045 case DW_AT_associated:
12046 return "DW_AT_associated";
12047 case DW_AT_data_location:
12048 return "DW_AT_data_location";
12049 case DW_AT_byte_stride:
12050 return "DW_AT_byte_stride";
12051 case DW_AT_entry_pc:
12052 return "DW_AT_entry_pc";
12053 case DW_AT_use_UTF8:
12054 return "DW_AT_use_UTF8";
12055 case DW_AT_extension:
12056 return "DW_AT_extension";
12057 case DW_AT_ranges:
12058 return "DW_AT_ranges";
12059 case DW_AT_trampoline:
12060 return "DW_AT_trampoline";
12061 case DW_AT_call_column:
12062 return "DW_AT_call_column";
12063 case DW_AT_call_file:
12064 return "DW_AT_call_file";
12065 case DW_AT_call_line:
12066 return "DW_AT_call_line";
12067 case DW_AT_description:
12068 return "DW_AT_description";
12069 case DW_AT_binary_scale:
12070 return "DW_AT_binary_scale";
12071 case DW_AT_decimal_scale:
12072 return "DW_AT_decimal_scale";
12073 case DW_AT_small:
12074 return "DW_AT_small";
12075 case DW_AT_decimal_sign:
12076 return "DW_AT_decimal_sign";
12077 case DW_AT_digit_count:
12078 return "DW_AT_digit_count";
12079 case DW_AT_picture_string:
12080 return "DW_AT_picture_string";
12081 case DW_AT_mutable:
12082 return "DW_AT_mutable";
12083 case DW_AT_threads_scaled:
12084 return "DW_AT_threads_scaled";
12085 case DW_AT_explicit:
12086 return "DW_AT_explicit";
12087 case DW_AT_object_pointer:
12088 return "DW_AT_object_pointer";
12089 case DW_AT_endianity:
12090 return "DW_AT_endianity";
12091 case DW_AT_elemental:
12092 return "DW_AT_elemental";
12093 case DW_AT_pure:
12094 return "DW_AT_pure";
12095 case DW_AT_recursive:
12096 return "DW_AT_recursive";
12097 /* DWARF 4 values. */
12098 case DW_AT_signature:
12099 return "DW_AT_signature";
12100 case DW_AT_linkage_name:
12101 return "DW_AT_linkage_name";
12102 /* SGI/MIPS extensions. */
12103 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12104 case DW_AT_MIPS_fde:
12105 return "DW_AT_MIPS_fde";
12106 #endif
12107 case DW_AT_MIPS_loop_begin:
12108 return "DW_AT_MIPS_loop_begin";
12109 case DW_AT_MIPS_tail_loop_begin:
12110 return "DW_AT_MIPS_tail_loop_begin";
12111 case DW_AT_MIPS_epilog_begin:
12112 return "DW_AT_MIPS_epilog_begin";
12113 case DW_AT_MIPS_loop_unroll_factor:
12114 return "DW_AT_MIPS_loop_unroll_factor";
12115 case DW_AT_MIPS_software_pipeline_depth:
12116 return "DW_AT_MIPS_software_pipeline_depth";
12117 case DW_AT_MIPS_linkage_name:
12118 return "DW_AT_MIPS_linkage_name";
12119 case DW_AT_MIPS_stride:
12120 return "DW_AT_MIPS_stride";
12121 case DW_AT_MIPS_abstract_name:
12122 return "DW_AT_MIPS_abstract_name";
12123 case DW_AT_MIPS_clone_origin:
12124 return "DW_AT_MIPS_clone_origin";
12125 case DW_AT_MIPS_has_inlines:
12126 return "DW_AT_MIPS_has_inlines";
12127 /* HP extensions. */
12128 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12129 case DW_AT_HP_block_index:
12130 return "DW_AT_HP_block_index";
12131 #endif
12132 case DW_AT_HP_unmodifiable:
12133 return "DW_AT_HP_unmodifiable";
12134 case DW_AT_HP_actuals_stmt_list:
12135 return "DW_AT_HP_actuals_stmt_list";
12136 case DW_AT_HP_proc_per_section:
12137 return "DW_AT_HP_proc_per_section";
12138 case DW_AT_HP_raw_data_ptr:
12139 return "DW_AT_HP_raw_data_ptr";
12140 case DW_AT_HP_pass_by_reference:
12141 return "DW_AT_HP_pass_by_reference";
12142 case DW_AT_HP_opt_level:
12143 return "DW_AT_HP_opt_level";
12144 case DW_AT_HP_prof_version_id:
12145 return "DW_AT_HP_prof_version_id";
12146 case DW_AT_HP_opt_flags:
12147 return "DW_AT_HP_opt_flags";
12148 case DW_AT_HP_cold_region_low_pc:
12149 return "DW_AT_HP_cold_region_low_pc";
12150 case DW_AT_HP_cold_region_high_pc:
12151 return "DW_AT_HP_cold_region_high_pc";
12152 case DW_AT_HP_all_variables_modifiable:
12153 return "DW_AT_HP_all_variables_modifiable";
12154 case DW_AT_HP_linkage_name:
12155 return "DW_AT_HP_linkage_name";
12156 case DW_AT_HP_prof_flags:
12157 return "DW_AT_HP_prof_flags";
12158 /* GNU extensions. */
12159 case DW_AT_sf_names:
12160 return "DW_AT_sf_names";
12161 case DW_AT_src_info:
12162 return "DW_AT_src_info";
12163 case DW_AT_mac_info:
12164 return "DW_AT_mac_info";
12165 case DW_AT_src_coords:
12166 return "DW_AT_src_coords";
12167 case DW_AT_body_begin:
12168 return "DW_AT_body_begin";
12169 case DW_AT_body_end:
12170 return "DW_AT_body_end";
12171 case DW_AT_GNU_vector:
12172 return "DW_AT_GNU_vector";
12173 case DW_AT_GNU_odr_signature:
12174 return "DW_AT_GNU_odr_signature";
12175 /* VMS extensions. */
12176 case DW_AT_VMS_rtnbeg_pd_address:
12177 return "DW_AT_VMS_rtnbeg_pd_address";
12178 /* UPC extension. */
12179 case DW_AT_upc_threads_scaled:
12180 return "DW_AT_upc_threads_scaled";
12181 /* PGI (STMicroelectronics) extensions. */
12182 case DW_AT_PGI_lbase:
12183 return "DW_AT_PGI_lbase";
12184 case DW_AT_PGI_soffset:
12185 return "DW_AT_PGI_soffset";
12186 case DW_AT_PGI_lstride:
12187 return "DW_AT_PGI_lstride";
12188 default:
12189 return "DW_AT_<unknown>";
12190 }
12191 }
12192
12193 /* Convert a DWARF value form code into its string name. */
12194
12195 static char *
12196 dwarf_form_name (unsigned form)
12197 {
12198 switch (form)
12199 {
12200 case DW_FORM_addr:
12201 return "DW_FORM_addr";
12202 case DW_FORM_block2:
12203 return "DW_FORM_block2";
12204 case DW_FORM_block4:
12205 return "DW_FORM_block4";
12206 case DW_FORM_data2:
12207 return "DW_FORM_data2";
12208 case DW_FORM_data4:
12209 return "DW_FORM_data4";
12210 case DW_FORM_data8:
12211 return "DW_FORM_data8";
12212 case DW_FORM_string:
12213 return "DW_FORM_string";
12214 case DW_FORM_block:
12215 return "DW_FORM_block";
12216 case DW_FORM_block1:
12217 return "DW_FORM_block1";
12218 case DW_FORM_data1:
12219 return "DW_FORM_data1";
12220 case DW_FORM_flag:
12221 return "DW_FORM_flag";
12222 case DW_FORM_sdata:
12223 return "DW_FORM_sdata";
12224 case DW_FORM_strp:
12225 return "DW_FORM_strp";
12226 case DW_FORM_udata:
12227 return "DW_FORM_udata";
12228 case DW_FORM_ref_addr:
12229 return "DW_FORM_ref_addr";
12230 case DW_FORM_ref1:
12231 return "DW_FORM_ref1";
12232 case DW_FORM_ref2:
12233 return "DW_FORM_ref2";
12234 case DW_FORM_ref4:
12235 return "DW_FORM_ref4";
12236 case DW_FORM_ref8:
12237 return "DW_FORM_ref8";
12238 case DW_FORM_ref_udata:
12239 return "DW_FORM_ref_udata";
12240 case DW_FORM_indirect:
12241 return "DW_FORM_indirect";
12242 case DW_FORM_sec_offset:
12243 return "DW_FORM_sec_offset";
12244 case DW_FORM_exprloc:
12245 return "DW_FORM_exprloc";
12246 case DW_FORM_flag_present:
12247 return "DW_FORM_flag_present";
12248 case DW_FORM_sig8:
12249 return "DW_FORM_sig8";
12250 default:
12251 return "DW_FORM_<unknown>";
12252 }
12253 }
12254
12255 /* Convert a DWARF stack opcode into its string name. */
12256
12257 const char *
12258 dwarf_stack_op_name (unsigned op, int def)
12259 {
12260 switch (op)
12261 {
12262 case DW_OP_addr:
12263 return "DW_OP_addr";
12264 case DW_OP_deref:
12265 return "DW_OP_deref";
12266 case DW_OP_const1u:
12267 return "DW_OP_const1u";
12268 case DW_OP_const1s:
12269 return "DW_OP_const1s";
12270 case DW_OP_const2u:
12271 return "DW_OP_const2u";
12272 case DW_OP_const2s:
12273 return "DW_OP_const2s";
12274 case DW_OP_const4u:
12275 return "DW_OP_const4u";
12276 case DW_OP_const4s:
12277 return "DW_OP_const4s";
12278 case DW_OP_const8u:
12279 return "DW_OP_const8u";
12280 case DW_OP_const8s:
12281 return "DW_OP_const8s";
12282 case DW_OP_constu:
12283 return "DW_OP_constu";
12284 case DW_OP_consts:
12285 return "DW_OP_consts";
12286 case DW_OP_dup:
12287 return "DW_OP_dup";
12288 case DW_OP_drop:
12289 return "DW_OP_drop";
12290 case DW_OP_over:
12291 return "DW_OP_over";
12292 case DW_OP_pick:
12293 return "DW_OP_pick";
12294 case DW_OP_swap:
12295 return "DW_OP_swap";
12296 case DW_OP_rot:
12297 return "DW_OP_rot";
12298 case DW_OP_xderef:
12299 return "DW_OP_xderef";
12300 case DW_OP_abs:
12301 return "DW_OP_abs";
12302 case DW_OP_and:
12303 return "DW_OP_and";
12304 case DW_OP_div:
12305 return "DW_OP_div";
12306 case DW_OP_minus:
12307 return "DW_OP_minus";
12308 case DW_OP_mod:
12309 return "DW_OP_mod";
12310 case DW_OP_mul:
12311 return "DW_OP_mul";
12312 case DW_OP_neg:
12313 return "DW_OP_neg";
12314 case DW_OP_not:
12315 return "DW_OP_not";
12316 case DW_OP_or:
12317 return "DW_OP_or";
12318 case DW_OP_plus:
12319 return "DW_OP_plus";
12320 case DW_OP_plus_uconst:
12321 return "DW_OP_plus_uconst";
12322 case DW_OP_shl:
12323 return "DW_OP_shl";
12324 case DW_OP_shr:
12325 return "DW_OP_shr";
12326 case DW_OP_shra:
12327 return "DW_OP_shra";
12328 case DW_OP_xor:
12329 return "DW_OP_xor";
12330 case DW_OP_bra:
12331 return "DW_OP_bra";
12332 case DW_OP_eq:
12333 return "DW_OP_eq";
12334 case DW_OP_ge:
12335 return "DW_OP_ge";
12336 case DW_OP_gt:
12337 return "DW_OP_gt";
12338 case DW_OP_le:
12339 return "DW_OP_le";
12340 case DW_OP_lt:
12341 return "DW_OP_lt";
12342 case DW_OP_ne:
12343 return "DW_OP_ne";
12344 case DW_OP_skip:
12345 return "DW_OP_skip";
12346 case DW_OP_lit0:
12347 return "DW_OP_lit0";
12348 case DW_OP_lit1:
12349 return "DW_OP_lit1";
12350 case DW_OP_lit2:
12351 return "DW_OP_lit2";
12352 case DW_OP_lit3:
12353 return "DW_OP_lit3";
12354 case DW_OP_lit4:
12355 return "DW_OP_lit4";
12356 case DW_OP_lit5:
12357 return "DW_OP_lit5";
12358 case DW_OP_lit6:
12359 return "DW_OP_lit6";
12360 case DW_OP_lit7:
12361 return "DW_OP_lit7";
12362 case DW_OP_lit8:
12363 return "DW_OP_lit8";
12364 case DW_OP_lit9:
12365 return "DW_OP_lit9";
12366 case DW_OP_lit10:
12367 return "DW_OP_lit10";
12368 case DW_OP_lit11:
12369 return "DW_OP_lit11";
12370 case DW_OP_lit12:
12371 return "DW_OP_lit12";
12372 case DW_OP_lit13:
12373 return "DW_OP_lit13";
12374 case DW_OP_lit14:
12375 return "DW_OP_lit14";
12376 case DW_OP_lit15:
12377 return "DW_OP_lit15";
12378 case DW_OP_lit16:
12379 return "DW_OP_lit16";
12380 case DW_OP_lit17:
12381 return "DW_OP_lit17";
12382 case DW_OP_lit18:
12383 return "DW_OP_lit18";
12384 case DW_OP_lit19:
12385 return "DW_OP_lit19";
12386 case DW_OP_lit20:
12387 return "DW_OP_lit20";
12388 case DW_OP_lit21:
12389 return "DW_OP_lit21";
12390 case DW_OP_lit22:
12391 return "DW_OP_lit22";
12392 case DW_OP_lit23:
12393 return "DW_OP_lit23";
12394 case DW_OP_lit24:
12395 return "DW_OP_lit24";
12396 case DW_OP_lit25:
12397 return "DW_OP_lit25";
12398 case DW_OP_lit26:
12399 return "DW_OP_lit26";
12400 case DW_OP_lit27:
12401 return "DW_OP_lit27";
12402 case DW_OP_lit28:
12403 return "DW_OP_lit28";
12404 case DW_OP_lit29:
12405 return "DW_OP_lit29";
12406 case DW_OP_lit30:
12407 return "DW_OP_lit30";
12408 case DW_OP_lit31:
12409 return "DW_OP_lit31";
12410 case DW_OP_reg0:
12411 return "DW_OP_reg0";
12412 case DW_OP_reg1:
12413 return "DW_OP_reg1";
12414 case DW_OP_reg2:
12415 return "DW_OP_reg2";
12416 case DW_OP_reg3:
12417 return "DW_OP_reg3";
12418 case DW_OP_reg4:
12419 return "DW_OP_reg4";
12420 case DW_OP_reg5:
12421 return "DW_OP_reg5";
12422 case DW_OP_reg6:
12423 return "DW_OP_reg6";
12424 case DW_OP_reg7:
12425 return "DW_OP_reg7";
12426 case DW_OP_reg8:
12427 return "DW_OP_reg8";
12428 case DW_OP_reg9:
12429 return "DW_OP_reg9";
12430 case DW_OP_reg10:
12431 return "DW_OP_reg10";
12432 case DW_OP_reg11:
12433 return "DW_OP_reg11";
12434 case DW_OP_reg12:
12435 return "DW_OP_reg12";
12436 case DW_OP_reg13:
12437 return "DW_OP_reg13";
12438 case DW_OP_reg14:
12439 return "DW_OP_reg14";
12440 case DW_OP_reg15:
12441 return "DW_OP_reg15";
12442 case DW_OP_reg16:
12443 return "DW_OP_reg16";
12444 case DW_OP_reg17:
12445 return "DW_OP_reg17";
12446 case DW_OP_reg18:
12447 return "DW_OP_reg18";
12448 case DW_OP_reg19:
12449 return "DW_OP_reg19";
12450 case DW_OP_reg20:
12451 return "DW_OP_reg20";
12452 case DW_OP_reg21:
12453 return "DW_OP_reg21";
12454 case DW_OP_reg22:
12455 return "DW_OP_reg22";
12456 case DW_OP_reg23:
12457 return "DW_OP_reg23";
12458 case DW_OP_reg24:
12459 return "DW_OP_reg24";
12460 case DW_OP_reg25:
12461 return "DW_OP_reg25";
12462 case DW_OP_reg26:
12463 return "DW_OP_reg26";
12464 case DW_OP_reg27:
12465 return "DW_OP_reg27";
12466 case DW_OP_reg28:
12467 return "DW_OP_reg28";
12468 case DW_OP_reg29:
12469 return "DW_OP_reg29";
12470 case DW_OP_reg30:
12471 return "DW_OP_reg30";
12472 case DW_OP_reg31:
12473 return "DW_OP_reg31";
12474 case DW_OP_breg0:
12475 return "DW_OP_breg0";
12476 case DW_OP_breg1:
12477 return "DW_OP_breg1";
12478 case DW_OP_breg2:
12479 return "DW_OP_breg2";
12480 case DW_OP_breg3:
12481 return "DW_OP_breg3";
12482 case DW_OP_breg4:
12483 return "DW_OP_breg4";
12484 case DW_OP_breg5:
12485 return "DW_OP_breg5";
12486 case DW_OP_breg6:
12487 return "DW_OP_breg6";
12488 case DW_OP_breg7:
12489 return "DW_OP_breg7";
12490 case DW_OP_breg8:
12491 return "DW_OP_breg8";
12492 case DW_OP_breg9:
12493 return "DW_OP_breg9";
12494 case DW_OP_breg10:
12495 return "DW_OP_breg10";
12496 case DW_OP_breg11:
12497 return "DW_OP_breg11";
12498 case DW_OP_breg12:
12499 return "DW_OP_breg12";
12500 case DW_OP_breg13:
12501 return "DW_OP_breg13";
12502 case DW_OP_breg14:
12503 return "DW_OP_breg14";
12504 case DW_OP_breg15:
12505 return "DW_OP_breg15";
12506 case DW_OP_breg16:
12507 return "DW_OP_breg16";
12508 case DW_OP_breg17:
12509 return "DW_OP_breg17";
12510 case DW_OP_breg18:
12511 return "DW_OP_breg18";
12512 case DW_OP_breg19:
12513 return "DW_OP_breg19";
12514 case DW_OP_breg20:
12515 return "DW_OP_breg20";
12516 case DW_OP_breg21:
12517 return "DW_OP_breg21";
12518 case DW_OP_breg22:
12519 return "DW_OP_breg22";
12520 case DW_OP_breg23:
12521 return "DW_OP_breg23";
12522 case DW_OP_breg24:
12523 return "DW_OP_breg24";
12524 case DW_OP_breg25:
12525 return "DW_OP_breg25";
12526 case DW_OP_breg26:
12527 return "DW_OP_breg26";
12528 case DW_OP_breg27:
12529 return "DW_OP_breg27";
12530 case DW_OP_breg28:
12531 return "DW_OP_breg28";
12532 case DW_OP_breg29:
12533 return "DW_OP_breg29";
12534 case DW_OP_breg30:
12535 return "DW_OP_breg30";
12536 case DW_OP_breg31:
12537 return "DW_OP_breg31";
12538 case DW_OP_regx:
12539 return "DW_OP_regx";
12540 case DW_OP_fbreg:
12541 return "DW_OP_fbreg";
12542 case DW_OP_bregx:
12543 return "DW_OP_bregx";
12544 case DW_OP_piece:
12545 return "DW_OP_piece";
12546 case DW_OP_deref_size:
12547 return "DW_OP_deref_size";
12548 case DW_OP_xderef_size:
12549 return "DW_OP_xderef_size";
12550 case DW_OP_nop:
12551 return "DW_OP_nop";
12552 /* DWARF 3 extensions. */
12553 case DW_OP_push_object_address:
12554 return "DW_OP_push_object_address";
12555 case DW_OP_call2:
12556 return "DW_OP_call2";
12557 case DW_OP_call4:
12558 return "DW_OP_call4";
12559 case DW_OP_call_ref:
12560 return "DW_OP_call_ref";
12561 case DW_OP_form_tls_address:
12562 return "DW_OP_form_tls_address";
12563 case DW_OP_call_frame_cfa:
12564 return "DW_OP_call_frame_cfa";
12565 case DW_OP_bit_piece:
12566 return "DW_OP_bit_piece";
12567 /* DWARF 4 extensions. */
12568 case DW_OP_implicit_value:
12569 return "DW_OP_implicit_value";
12570 case DW_OP_stack_value:
12571 return "DW_OP_stack_value";
12572 /* GNU extensions. */
12573 case DW_OP_GNU_push_tls_address:
12574 return "DW_OP_GNU_push_tls_address";
12575 case DW_OP_GNU_uninit:
12576 return "DW_OP_GNU_uninit";
12577 default:
12578 return def ? "OP_<unknown>" : NULL;
12579 }
12580 }
12581
12582 static char *
12583 dwarf_bool_name (unsigned mybool)
12584 {
12585 if (mybool)
12586 return "TRUE";
12587 else
12588 return "FALSE";
12589 }
12590
12591 /* Convert a DWARF type code into its string name. */
12592
12593 static char *
12594 dwarf_type_encoding_name (unsigned enc)
12595 {
12596 switch (enc)
12597 {
12598 case DW_ATE_void:
12599 return "DW_ATE_void";
12600 case DW_ATE_address:
12601 return "DW_ATE_address";
12602 case DW_ATE_boolean:
12603 return "DW_ATE_boolean";
12604 case DW_ATE_complex_float:
12605 return "DW_ATE_complex_float";
12606 case DW_ATE_float:
12607 return "DW_ATE_float";
12608 case DW_ATE_signed:
12609 return "DW_ATE_signed";
12610 case DW_ATE_signed_char:
12611 return "DW_ATE_signed_char";
12612 case DW_ATE_unsigned:
12613 return "DW_ATE_unsigned";
12614 case DW_ATE_unsigned_char:
12615 return "DW_ATE_unsigned_char";
12616 /* DWARF 3. */
12617 case DW_ATE_imaginary_float:
12618 return "DW_ATE_imaginary_float";
12619 case DW_ATE_packed_decimal:
12620 return "DW_ATE_packed_decimal";
12621 case DW_ATE_numeric_string:
12622 return "DW_ATE_numeric_string";
12623 case DW_ATE_edited:
12624 return "DW_ATE_edited";
12625 case DW_ATE_signed_fixed:
12626 return "DW_ATE_signed_fixed";
12627 case DW_ATE_unsigned_fixed:
12628 return "DW_ATE_unsigned_fixed";
12629 case DW_ATE_decimal_float:
12630 return "DW_ATE_decimal_float";
12631 /* DWARF 4. */
12632 case DW_ATE_UTF:
12633 return "DW_ATE_UTF";
12634 /* HP extensions. */
12635 case DW_ATE_HP_float80:
12636 return "DW_ATE_HP_float80";
12637 case DW_ATE_HP_complex_float80:
12638 return "DW_ATE_HP_complex_float80";
12639 case DW_ATE_HP_float128:
12640 return "DW_ATE_HP_float128";
12641 case DW_ATE_HP_complex_float128:
12642 return "DW_ATE_HP_complex_float128";
12643 case DW_ATE_HP_floathpintel:
12644 return "DW_ATE_HP_floathpintel";
12645 case DW_ATE_HP_imaginary_float80:
12646 return "DW_ATE_HP_imaginary_float80";
12647 case DW_ATE_HP_imaginary_float128:
12648 return "DW_ATE_HP_imaginary_float128";
12649 default:
12650 return "DW_ATE_<unknown>";
12651 }
12652 }
12653
12654 /* Convert a DWARF call frame info operation to its string name. */
12655
12656 #if 0
12657 static char *
12658 dwarf_cfi_name (unsigned cfi_opc)
12659 {
12660 switch (cfi_opc)
12661 {
12662 case DW_CFA_advance_loc:
12663 return "DW_CFA_advance_loc";
12664 case DW_CFA_offset:
12665 return "DW_CFA_offset";
12666 case DW_CFA_restore:
12667 return "DW_CFA_restore";
12668 case DW_CFA_nop:
12669 return "DW_CFA_nop";
12670 case DW_CFA_set_loc:
12671 return "DW_CFA_set_loc";
12672 case DW_CFA_advance_loc1:
12673 return "DW_CFA_advance_loc1";
12674 case DW_CFA_advance_loc2:
12675 return "DW_CFA_advance_loc2";
12676 case DW_CFA_advance_loc4:
12677 return "DW_CFA_advance_loc4";
12678 case DW_CFA_offset_extended:
12679 return "DW_CFA_offset_extended";
12680 case DW_CFA_restore_extended:
12681 return "DW_CFA_restore_extended";
12682 case DW_CFA_undefined:
12683 return "DW_CFA_undefined";
12684 case DW_CFA_same_value:
12685 return "DW_CFA_same_value";
12686 case DW_CFA_register:
12687 return "DW_CFA_register";
12688 case DW_CFA_remember_state:
12689 return "DW_CFA_remember_state";
12690 case DW_CFA_restore_state:
12691 return "DW_CFA_restore_state";
12692 case DW_CFA_def_cfa:
12693 return "DW_CFA_def_cfa";
12694 case DW_CFA_def_cfa_register:
12695 return "DW_CFA_def_cfa_register";
12696 case DW_CFA_def_cfa_offset:
12697 return "DW_CFA_def_cfa_offset";
12698 /* DWARF 3. */
12699 case DW_CFA_def_cfa_expression:
12700 return "DW_CFA_def_cfa_expression";
12701 case DW_CFA_expression:
12702 return "DW_CFA_expression";
12703 case DW_CFA_offset_extended_sf:
12704 return "DW_CFA_offset_extended_sf";
12705 case DW_CFA_def_cfa_sf:
12706 return "DW_CFA_def_cfa_sf";
12707 case DW_CFA_def_cfa_offset_sf:
12708 return "DW_CFA_def_cfa_offset_sf";
12709 case DW_CFA_val_offset:
12710 return "DW_CFA_val_offset";
12711 case DW_CFA_val_offset_sf:
12712 return "DW_CFA_val_offset_sf";
12713 case DW_CFA_val_expression:
12714 return "DW_CFA_val_expression";
12715 /* SGI/MIPS specific. */
12716 case DW_CFA_MIPS_advance_loc8:
12717 return "DW_CFA_MIPS_advance_loc8";
12718 /* GNU extensions. */
12719 case DW_CFA_GNU_window_save:
12720 return "DW_CFA_GNU_window_save";
12721 case DW_CFA_GNU_args_size:
12722 return "DW_CFA_GNU_args_size";
12723 case DW_CFA_GNU_negative_offset_extended:
12724 return "DW_CFA_GNU_negative_offset_extended";
12725 default:
12726 return "DW_CFA_<unknown>";
12727 }
12728 }
12729 #endif
12730
12731 static void
12732 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12733 {
12734 unsigned int i;
12735
12736 print_spaces (indent, f);
12737 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12738 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12739
12740 if (die->parent != NULL)
12741 {
12742 print_spaces (indent, f);
12743 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12744 die->parent->offset);
12745 }
12746
12747 print_spaces (indent, f);
12748 fprintf_unfiltered (f, " has children: %s\n",
12749 dwarf_bool_name (die->child != NULL));
12750
12751 print_spaces (indent, f);
12752 fprintf_unfiltered (f, " attributes:\n");
12753
12754 for (i = 0; i < die->num_attrs; ++i)
12755 {
12756 print_spaces (indent, f);
12757 fprintf_unfiltered (f, " %s (%s) ",
12758 dwarf_attr_name (die->attrs[i].name),
12759 dwarf_form_name (die->attrs[i].form));
12760
12761 switch (die->attrs[i].form)
12762 {
12763 case DW_FORM_ref_addr:
12764 case DW_FORM_addr:
12765 fprintf_unfiltered (f, "address: ");
12766 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12767 break;
12768 case DW_FORM_block2:
12769 case DW_FORM_block4:
12770 case DW_FORM_block:
12771 case DW_FORM_block1:
12772 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
12773 break;
12774 case DW_FORM_exprloc:
12775 fprintf_unfiltered (f, "expression: size %u",
12776 DW_BLOCK (&die->attrs[i])->size);
12777 break;
12778 case DW_FORM_ref1:
12779 case DW_FORM_ref2:
12780 case DW_FORM_ref4:
12781 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12782 (long) (DW_ADDR (&die->attrs[i])));
12783 break;
12784 case DW_FORM_data1:
12785 case DW_FORM_data2:
12786 case DW_FORM_data4:
12787 case DW_FORM_data8:
12788 case DW_FORM_udata:
12789 case DW_FORM_sdata:
12790 fprintf_unfiltered (f, "constant: %s",
12791 pulongest (DW_UNSND (&die->attrs[i])));
12792 break;
12793 case DW_FORM_sec_offset:
12794 fprintf_unfiltered (f, "section offset: %s",
12795 pulongest (DW_UNSND (&die->attrs[i])));
12796 break;
12797 case DW_FORM_sig8:
12798 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12799 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12800 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12801 else
12802 fprintf_unfiltered (f, "signatured type, offset: unknown");
12803 break;
12804 case DW_FORM_string:
12805 case DW_FORM_strp:
12806 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12807 DW_STRING (&die->attrs[i])
12808 ? DW_STRING (&die->attrs[i]) : "",
12809 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12810 break;
12811 case DW_FORM_flag:
12812 if (DW_UNSND (&die->attrs[i]))
12813 fprintf_unfiltered (f, "flag: TRUE");
12814 else
12815 fprintf_unfiltered (f, "flag: FALSE");
12816 break;
12817 case DW_FORM_flag_present:
12818 fprintf_unfiltered (f, "flag: TRUE");
12819 break;
12820 case DW_FORM_indirect:
12821 /* the reader will have reduced the indirect form to
12822 the "base form" so this form should not occur */
12823 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
12824 break;
12825 default:
12826 fprintf_unfiltered (f, "unsupported attribute form: %d.",
12827 die->attrs[i].form);
12828 break;
12829 }
12830 fprintf_unfiltered (f, "\n");
12831 }
12832 }
12833
12834 static void
12835 dump_die_for_error (struct die_info *die)
12836 {
12837 dump_die_shallow (gdb_stderr, 0, die);
12838 }
12839
12840 static void
12841 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12842 {
12843 int indent = level * 4;
12844
12845 gdb_assert (die != NULL);
12846
12847 if (level >= max_level)
12848 return;
12849
12850 dump_die_shallow (f, indent, die);
12851
12852 if (die->child != NULL)
12853 {
12854 print_spaces (indent, f);
12855 fprintf_unfiltered (f, " Children:");
12856 if (level + 1 < max_level)
12857 {
12858 fprintf_unfiltered (f, "\n");
12859 dump_die_1 (f, level + 1, max_level, die->child);
12860 }
12861 else
12862 {
12863 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12864 }
12865 }
12866
12867 if (die->sibling != NULL && level > 0)
12868 {
12869 dump_die_1 (f, level, max_level, die->sibling);
12870 }
12871 }
12872
12873 /* This is called from the pdie macro in gdbinit.in.
12874 It's not static so gcc will keep a copy callable from gdb. */
12875
12876 void
12877 dump_die (struct die_info *die, int max_level)
12878 {
12879 dump_die_1 (gdb_stdlog, 0, max_level, die);
12880 }
12881
12882 static void
12883 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
12884 {
12885 void **slot;
12886
12887 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12888
12889 *slot = die;
12890 }
12891
12892 static int
12893 is_ref_attr (struct attribute *attr)
12894 {
12895 switch (attr->form)
12896 {
12897 case DW_FORM_ref_addr:
12898 case DW_FORM_ref1:
12899 case DW_FORM_ref2:
12900 case DW_FORM_ref4:
12901 case DW_FORM_ref8:
12902 case DW_FORM_ref_udata:
12903 return 1;
12904 default:
12905 return 0;
12906 }
12907 }
12908
12909 static unsigned int
12910 dwarf2_get_ref_die_offset (struct attribute *attr)
12911 {
12912 if (is_ref_attr (attr))
12913 return DW_ADDR (attr);
12914
12915 complaint (&symfile_complaints,
12916 _("unsupported die ref attribute form: '%s'"),
12917 dwarf_form_name (attr->form));
12918 return 0;
12919 }
12920
12921 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12922 * the value held by the attribute is not constant. */
12923
12924 static LONGEST
12925 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12926 {
12927 if (attr->form == DW_FORM_sdata)
12928 return DW_SND (attr);
12929 else if (attr->form == DW_FORM_udata
12930 || attr->form == DW_FORM_data1
12931 || attr->form == DW_FORM_data2
12932 || attr->form == DW_FORM_data4
12933 || attr->form == DW_FORM_data8)
12934 return DW_UNSND (attr);
12935 else
12936 {
12937 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
12938 dwarf_form_name (attr->form));
12939 return default_value;
12940 }
12941 }
12942
12943 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
12944 unit and add it to our queue.
12945 The result is non-zero if PER_CU was queued, otherwise the result is zero
12946 meaning either PER_CU is already queued or it is already loaded. */
12947
12948 static int
12949 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12950 struct dwarf2_per_cu_data *per_cu)
12951 {
12952 /* We may arrive here during partial symbol reading, if we need full
12953 DIEs to process an unusual case (e.g. template arguments). Do
12954 not queue PER_CU, just tell our caller to load its DIEs. */
12955 if (dwarf2_per_objfile->reading_partial_symbols)
12956 {
12957 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12958 return 1;
12959 return 0;
12960 }
12961
12962 /* Mark the dependence relation so that we don't flush PER_CU
12963 too early. */
12964 dwarf2_add_dependence (this_cu, per_cu);
12965
12966 /* If it's already on the queue, we have nothing to do. */
12967 if (per_cu->queued)
12968 return 0;
12969
12970 /* If the compilation unit is already loaded, just mark it as
12971 used. */
12972 if (per_cu->cu != NULL)
12973 {
12974 per_cu->cu->last_used = 0;
12975 return 0;
12976 }
12977
12978 /* Add it to the queue. */
12979 queue_comp_unit (per_cu, this_cu->objfile);
12980
12981 return 1;
12982 }
12983
12984 /* Follow reference or signature attribute ATTR of SRC_DIE.
12985 On entry *REF_CU is the CU of SRC_DIE.
12986 On exit *REF_CU is the CU of the result. */
12987
12988 static struct die_info *
12989 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12990 struct dwarf2_cu **ref_cu)
12991 {
12992 struct die_info *die;
12993
12994 if (is_ref_attr (attr))
12995 die = follow_die_ref (src_die, attr, ref_cu);
12996 else if (attr->form == DW_FORM_sig8)
12997 die = follow_die_sig (src_die, attr, ref_cu);
12998 else
12999 {
13000 dump_die_for_error (src_die);
13001 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13002 (*ref_cu)->objfile->name);
13003 }
13004
13005 return die;
13006 }
13007
13008 /* Follow reference OFFSET.
13009 On entry *REF_CU is the CU of the source die referencing OFFSET.
13010 On exit *REF_CU is the CU of the result.
13011 Returns NULL if OFFSET is invalid. */
13012
13013 static struct die_info *
13014 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13015 {
13016 struct die_info temp_die;
13017 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13018
13019 gdb_assert (cu->per_cu != NULL);
13020
13021 target_cu = cu;
13022
13023 if (cu->per_cu->from_debug_types)
13024 {
13025 /* .debug_types CUs cannot reference anything outside their CU.
13026 If they need to, they have to reference a signatured type via
13027 DW_FORM_sig8. */
13028 if (! offset_in_cu_p (&cu->header, offset))
13029 return NULL;
13030 }
13031 else if (! offset_in_cu_p (&cu->header, offset))
13032 {
13033 struct dwarf2_per_cu_data *per_cu;
13034
13035 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13036
13037 /* If necessary, add it to the queue and load its DIEs. */
13038 if (maybe_queue_comp_unit (cu, per_cu))
13039 load_full_comp_unit (per_cu, cu->objfile);
13040
13041 target_cu = per_cu->cu;
13042 }
13043 else if (cu->dies == NULL)
13044 {
13045 /* We're loading full DIEs during partial symbol reading. */
13046 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13047 load_full_comp_unit (cu->per_cu, cu->objfile);
13048 }
13049
13050 *ref_cu = target_cu;
13051 temp_die.offset = offset;
13052 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13053 }
13054
13055 /* Follow reference attribute ATTR of SRC_DIE.
13056 On entry *REF_CU is the CU of SRC_DIE.
13057 On exit *REF_CU is the CU of the result. */
13058
13059 static struct die_info *
13060 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13061 struct dwarf2_cu **ref_cu)
13062 {
13063 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13064 struct dwarf2_cu *cu = *ref_cu;
13065 struct die_info *die;
13066
13067 die = follow_die_offset (offset, ref_cu);
13068 if (!die)
13069 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13070 "at 0x%x [in module %s]"),
13071 offset, src_die->offset, cu->objfile->name);
13072
13073 return die;
13074 }
13075
13076 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13077 value is intended for DW_OP_call*. */
13078
13079 struct dwarf2_locexpr_baton
13080 dwarf2_fetch_die_location_block (unsigned int offset,
13081 struct dwarf2_per_cu_data *per_cu)
13082 {
13083 struct dwarf2_cu *cu = per_cu->cu;
13084 struct die_info *die;
13085 struct attribute *attr;
13086 struct dwarf2_locexpr_baton retval;
13087
13088 die = follow_die_offset (offset, &cu);
13089 if (!die)
13090 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13091 offset, per_cu->cu->objfile->name);
13092
13093 attr = dwarf2_attr (die, DW_AT_location, cu);
13094 if (!attr)
13095 {
13096 /* DWARF: "If there is no such attribute, then there is no effect.". */
13097
13098 retval.data = NULL;
13099 retval.size = 0;
13100 }
13101 else
13102 {
13103 if (!attr_form_is_block (attr))
13104 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13105 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13106 offset, per_cu->cu->objfile->name);
13107
13108 retval.data = DW_BLOCK (attr)->data;
13109 retval.size = DW_BLOCK (attr)->size;
13110 }
13111 retval.per_cu = cu->per_cu;
13112 return retval;
13113 }
13114
13115 /* Follow the signature attribute ATTR in SRC_DIE.
13116 On entry *REF_CU is the CU of SRC_DIE.
13117 On exit *REF_CU is the CU of the result. */
13118
13119 static struct die_info *
13120 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13121 struct dwarf2_cu **ref_cu)
13122 {
13123 struct objfile *objfile = (*ref_cu)->objfile;
13124 struct die_info temp_die;
13125 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13126 struct dwarf2_cu *sig_cu;
13127 struct die_info *die;
13128
13129 /* sig_type will be NULL if the signatured type is missing from
13130 the debug info. */
13131 if (sig_type == NULL)
13132 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13133 "at 0x%x [in module %s]"),
13134 src_die->offset, objfile->name);
13135
13136 /* If necessary, add it to the queue and load its DIEs. */
13137
13138 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13139 read_signatured_type (objfile, sig_type);
13140
13141 gdb_assert (sig_type->per_cu.cu != NULL);
13142
13143 sig_cu = sig_type->per_cu.cu;
13144 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13145 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13146 if (die)
13147 {
13148 *ref_cu = sig_cu;
13149 return die;
13150 }
13151
13152 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
13153 "at 0x%x [in module %s]"),
13154 sig_type->type_offset, src_die->offset, objfile->name);
13155 }
13156
13157 /* Given an offset of a signatured type, return its signatured_type. */
13158
13159 static struct signatured_type *
13160 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13161 {
13162 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13163 unsigned int length, initial_length_size;
13164 unsigned int sig_offset;
13165 struct signatured_type find_entry, *type_sig;
13166
13167 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13168 sig_offset = (initial_length_size
13169 + 2 /*version*/
13170 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13171 + 1 /*address_size*/);
13172 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13173 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13174
13175 /* This is only used to lookup previously recorded types.
13176 If we didn't find it, it's our bug. */
13177 gdb_assert (type_sig != NULL);
13178 gdb_assert (offset == type_sig->offset);
13179
13180 return type_sig;
13181 }
13182
13183 /* Read in signatured type at OFFSET and build its CU and die(s). */
13184
13185 static void
13186 read_signatured_type_at_offset (struct objfile *objfile,
13187 unsigned int offset)
13188 {
13189 struct signatured_type *type_sig;
13190
13191 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13192
13193 /* We have the section offset, but we need the signature to do the
13194 hash table lookup. */
13195 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13196
13197 gdb_assert (type_sig->per_cu.cu == NULL);
13198
13199 read_signatured_type (objfile, type_sig);
13200
13201 gdb_assert (type_sig->per_cu.cu != NULL);
13202 }
13203
13204 /* Read in a signatured type and build its CU and DIEs. */
13205
13206 static void
13207 read_signatured_type (struct objfile *objfile,
13208 struct signatured_type *type_sig)
13209 {
13210 gdb_byte *types_ptr;
13211 struct die_reader_specs reader_specs;
13212 struct dwarf2_cu *cu;
13213 ULONGEST signature;
13214 struct cleanup *back_to, *free_cu_cleanup;
13215
13216 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13217 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13218
13219 gdb_assert (type_sig->per_cu.cu == NULL);
13220
13221 cu = xmalloc (sizeof (*cu));
13222 init_one_comp_unit (cu, objfile);
13223
13224 type_sig->per_cu.cu = cu;
13225 cu->per_cu = &type_sig->per_cu;
13226
13227 /* If an error occurs while loading, release our storage. */
13228 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13229
13230 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13231 types_ptr, objfile->obfd);
13232 gdb_assert (signature == type_sig->signature);
13233
13234 cu->die_hash
13235 = htab_create_alloc_ex (cu->header.length / 12,
13236 die_hash,
13237 die_eq,
13238 NULL,
13239 &cu->comp_unit_obstack,
13240 hashtab_obstack_allocate,
13241 dummy_obstack_deallocate);
13242
13243 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13244 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13245
13246 init_cu_die_reader (&reader_specs, cu);
13247
13248 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13249 NULL /*parent*/);
13250
13251 /* We try not to read any attributes in this function, because not
13252 all objfiles needed for references have been loaded yet, and symbol
13253 table processing isn't initialized. But we have to set the CU language,
13254 or we won't be able to build types correctly. */
13255 prepare_one_comp_unit (cu, cu->dies);
13256
13257 do_cleanups (back_to);
13258
13259 /* We've successfully allocated this compilation unit. Let our caller
13260 clean it up when finished with it. */
13261 discard_cleanups (free_cu_cleanup);
13262
13263 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13264 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13265 }
13266
13267 /* Decode simple location descriptions.
13268 Given a pointer to a dwarf block that defines a location, compute
13269 the location and return the value.
13270
13271 NOTE drow/2003-11-18: This function is called in two situations
13272 now: for the address of static or global variables (partial symbols
13273 only) and for offsets into structures which are expected to be
13274 (more or less) constant. The partial symbol case should go away,
13275 and only the constant case should remain. That will let this
13276 function complain more accurately. A few special modes are allowed
13277 without complaint for global variables (for instance, global
13278 register values and thread-local values).
13279
13280 A location description containing no operations indicates that the
13281 object is optimized out. The return value is 0 for that case.
13282 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13283 callers will only want a very basic result and this can become a
13284 complaint.
13285
13286 Note that stack[0] is unused except as a default error return. */
13287
13288 static CORE_ADDR
13289 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13290 {
13291 struct objfile *objfile = cu->objfile;
13292 int i;
13293 int size = blk->size;
13294 gdb_byte *data = blk->data;
13295 CORE_ADDR stack[64];
13296 int stacki;
13297 unsigned int bytes_read, unsnd;
13298 gdb_byte op;
13299
13300 i = 0;
13301 stacki = 0;
13302 stack[stacki] = 0;
13303 stack[++stacki] = 0;
13304
13305 while (i < size)
13306 {
13307 op = data[i++];
13308 switch (op)
13309 {
13310 case DW_OP_lit0:
13311 case DW_OP_lit1:
13312 case DW_OP_lit2:
13313 case DW_OP_lit3:
13314 case DW_OP_lit4:
13315 case DW_OP_lit5:
13316 case DW_OP_lit6:
13317 case DW_OP_lit7:
13318 case DW_OP_lit8:
13319 case DW_OP_lit9:
13320 case DW_OP_lit10:
13321 case DW_OP_lit11:
13322 case DW_OP_lit12:
13323 case DW_OP_lit13:
13324 case DW_OP_lit14:
13325 case DW_OP_lit15:
13326 case DW_OP_lit16:
13327 case DW_OP_lit17:
13328 case DW_OP_lit18:
13329 case DW_OP_lit19:
13330 case DW_OP_lit20:
13331 case DW_OP_lit21:
13332 case DW_OP_lit22:
13333 case DW_OP_lit23:
13334 case DW_OP_lit24:
13335 case DW_OP_lit25:
13336 case DW_OP_lit26:
13337 case DW_OP_lit27:
13338 case DW_OP_lit28:
13339 case DW_OP_lit29:
13340 case DW_OP_lit30:
13341 case DW_OP_lit31:
13342 stack[++stacki] = op - DW_OP_lit0;
13343 break;
13344
13345 case DW_OP_reg0:
13346 case DW_OP_reg1:
13347 case DW_OP_reg2:
13348 case DW_OP_reg3:
13349 case DW_OP_reg4:
13350 case DW_OP_reg5:
13351 case DW_OP_reg6:
13352 case DW_OP_reg7:
13353 case DW_OP_reg8:
13354 case DW_OP_reg9:
13355 case DW_OP_reg10:
13356 case DW_OP_reg11:
13357 case DW_OP_reg12:
13358 case DW_OP_reg13:
13359 case DW_OP_reg14:
13360 case DW_OP_reg15:
13361 case DW_OP_reg16:
13362 case DW_OP_reg17:
13363 case DW_OP_reg18:
13364 case DW_OP_reg19:
13365 case DW_OP_reg20:
13366 case DW_OP_reg21:
13367 case DW_OP_reg22:
13368 case DW_OP_reg23:
13369 case DW_OP_reg24:
13370 case DW_OP_reg25:
13371 case DW_OP_reg26:
13372 case DW_OP_reg27:
13373 case DW_OP_reg28:
13374 case DW_OP_reg29:
13375 case DW_OP_reg30:
13376 case DW_OP_reg31:
13377 stack[++stacki] = op - DW_OP_reg0;
13378 if (i < size)
13379 dwarf2_complex_location_expr_complaint ();
13380 break;
13381
13382 case DW_OP_regx:
13383 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13384 i += bytes_read;
13385 stack[++stacki] = unsnd;
13386 if (i < size)
13387 dwarf2_complex_location_expr_complaint ();
13388 break;
13389
13390 case DW_OP_addr:
13391 stack[++stacki] = read_address (objfile->obfd, &data[i],
13392 cu, &bytes_read);
13393 i += bytes_read;
13394 break;
13395
13396 case DW_OP_const1u:
13397 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13398 i += 1;
13399 break;
13400
13401 case DW_OP_const1s:
13402 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13403 i += 1;
13404 break;
13405
13406 case DW_OP_const2u:
13407 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13408 i += 2;
13409 break;
13410
13411 case DW_OP_const2s:
13412 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13413 i += 2;
13414 break;
13415
13416 case DW_OP_const4u:
13417 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13418 i += 4;
13419 break;
13420
13421 case DW_OP_const4s:
13422 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13423 i += 4;
13424 break;
13425
13426 case DW_OP_constu:
13427 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13428 &bytes_read);
13429 i += bytes_read;
13430 break;
13431
13432 case DW_OP_consts:
13433 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13434 i += bytes_read;
13435 break;
13436
13437 case DW_OP_dup:
13438 stack[stacki + 1] = stack[stacki];
13439 stacki++;
13440 break;
13441
13442 case DW_OP_plus:
13443 stack[stacki - 1] += stack[stacki];
13444 stacki--;
13445 break;
13446
13447 case DW_OP_plus_uconst:
13448 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13449 i += bytes_read;
13450 break;
13451
13452 case DW_OP_minus:
13453 stack[stacki - 1] -= stack[stacki];
13454 stacki--;
13455 break;
13456
13457 case DW_OP_deref:
13458 /* If we're not the last op, then we definitely can't encode
13459 this using GDB's address_class enum. This is valid for partial
13460 global symbols, although the variable's address will be bogus
13461 in the psymtab. */
13462 if (i < size)
13463 dwarf2_complex_location_expr_complaint ();
13464 break;
13465
13466 case DW_OP_GNU_push_tls_address:
13467 /* The top of the stack has the offset from the beginning
13468 of the thread control block at which the variable is located. */
13469 /* Nothing should follow this operator, so the top of stack would
13470 be returned. */
13471 /* This is valid for partial global symbols, but the variable's
13472 address will be bogus in the psymtab. */
13473 if (i < size)
13474 dwarf2_complex_location_expr_complaint ();
13475 break;
13476
13477 case DW_OP_GNU_uninit:
13478 break;
13479
13480 default:
13481 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13482 dwarf_stack_op_name (op, 1));
13483 return (stack[stacki]);
13484 }
13485
13486 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13487 outside of the allocated space. Also enforce minimum>0. */
13488 if (stacki >= ARRAY_SIZE (stack) - 1)
13489 {
13490 complaint (&symfile_complaints,
13491 _("location description stack overflow"));
13492 return 0;
13493 }
13494
13495 if (stacki <= 0)
13496 {
13497 complaint (&symfile_complaints,
13498 _("location description stack underflow"));
13499 return 0;
13500 }
13501 }
13502 return (stack[stacki]);
13503 }
13504
13505 /* memory allocation interface */
13506
13507 static struct dwarf_block *
13508 dwarf_alloc_block (struct dwarf2_cu *cu)
13509 {
13510 struct dwarf_block *blk;
13511
13512 blk = (struct dwarf_block *)
13513 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13514 return (blk);
13515 }
13516
13517 static struct abbrev_info *
13518 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13519 {
13520 struct abbrev_info *abbrev;
13521
13522 abbrev = (struct abbrev_info *)
13523 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13524 memset (abbrev, 0, sizeof (struct abbrev_info));
13525 return (abbrev);
13526 }
13527
13528 static struct die_info *
13529 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13530 {
13531 struct die_info *die;
13532 size_t size = sizeof (struct die_info);
13533
13534 if (num_attrs > 1)
13535 size += (num_attrs - 1) * sizeof (struct attribute);
13536
13537 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13538 memset (die, 0, sizeof (struct die_info));
13539 return (die);
13540 }
13541
13542 \f
13543 /* Macro support. */
13544
13545
13546 /* Return the full name of file number I in *LH's file name table.
13547 Use COMP_DIR as the name of the current directory of the
13548 compilation. The result is allocated using xmalloc; the caller is
13549 responsible for freeing it. */
13550 static char *
13551 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13552 {
13553 /* Is the file number a valid index into the line header's file name
13554 table? Remember that file numbers start with one, not zero. */
13555 if (1 <= file && file <= lh->num_file_names)
13556 {
13557 struct file_entry *fe = &lh->file_names[file - 1];
13558
13559 if (IS_ABSOLUTE_PATH (fe->name))
13560 return xstrdup (fe->name);
13561 else
13562 {
13563 const char *dir;
13564 int dir_len;
13565 char *full_name;
13566
13567 if (fe->dir_index)
13568 dir = lh->include_dirs[fe->dir_index - 1];
13569 else
13570 dir = comp_dir;
13571
13572 if (dir)
13573 {
13574 dir_len = strlen (dir);
13575 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13576 strcpy (full_name, dir);
13577 full_name[dir_len] = '/';
13578 strcpy (full_name + dir_len + 1, fe->name);
13579 return full_name;
13580 }
13581 else
13582 return xstrdup (fe->name);
13583 }
13584 }
13585 else
13586 {
13587 /* The compiler produced a bogus file number. We can at least
13588 record the macro definitions made in the file, even if we
13589 won't be able to find the file by name. */
13590 char fake_name[80];
13591
13592 sprintf (fake_name, "<bad macro file number %d>", file);
13593
13594 complaint (&symfile_complaints,
13595 _("bad file number in macro information (%d)"),
13596 file);
13597
13598 return xstrdup (fake_name);
13599 }
13600 }
13601
13602
13603 static struct macro_source_file *
13604 macro_start_file (int file, int line,
13605 struct macro_source_file *current_file,
13606 const char *comp_dir,
13607 struct line_header *lh, struct objfile *objfile)
13608 {
13609 /* The full name of this source file. */
13610 char *full_name = file_full_name (file, lh, comp_dir);
13611
13612 /* We don't create a macro table for this compilation unit
13613 at all until we actually get a filename. */
13614 if (! pending_macros)
13615 pending_macros = new_macro_table (&objfile->objfile_obstack,
13616 objfile->macro_cache);
13617
13618 if (! current_file)
13619 /* If we have no current file, then this must be the start_file
13620 directive for the compilation unit's main source file. */
13621 current_file = macro_set_main (pending_macros, full_name);
13622 else
13623 current_file = macro_include (current_file, line, full_name);
13624
13625 xfree (full_name);
13626
13627 return current_file;
13628 }
13629
13630
13631 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13632 followed by a null byte. */
13633 static char *
13634 copy_string (const char *buf, int len)
13635 {
13636 char *s = xmalloc (len + 1);
13637
13638 memcpy (s, buf, len);
13639 s[len] = '\0';
13640 return s;
13641 }
13642
13643
13644 static const char *
13645 consume_improper_spaces (const char *p, const char *body)
13646 {
13647 if (*p == ' ')
13648 {
13649 complaint (&symfile_complaints,
13650 _("macro definition contains spaces in formal argument list:\n`%s'"),
13651 body);
13652
13653 while (*p == ' ')
13654 p++;
13655 }
13656
13657 return p;
13658 }
13659
13660
13661 static void
13662 parse_macro_definition (struct macro_source_file *file, int line,
13663 const char *body)
13664 {
13665 const char *p;
13666
13667 /* The body string takes one of two forms. For object-like macro
13668 definitions, it should be:
13669
13670 <macro name> " " <definition>
13671
13672 For function-like macro definitions, it should be:
13673
13674 <macro name> "() " <definition>
13675 or
13676 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13677
13678 Spaces may appear only where explicitly indicated, and in the
13679 <definition>.
13680
13681 The Dwarf 2 spec says that an object-like macro's name is always
13682 followed by a space, but versions of GCC around March 2002 omit
13683 the space when the macro's definition is the empty string.
13684
13685 The Dwarf 2 spec says that there should be no spaces between the
13686 formal arguments in a function-like macro's formal argument list,
13687 but versions of GCC around March 2002 include spaces after the
13688 commas. */
13689
13690
13691 /* Find the extent of the macro name. The macro name is terminated
13692 by either a space or null character (for an object-like macro) or
13693 an opening paren (for a function-like macro). */
13694 for (p = body; *p; p++)
13695 if (*p == ' ' || *p == '(')
13696 break;
13697
13698 if (*p == ' ' || *p == '\0')
13699 {
13700 /* It's an object-like macro. */
13701 int name_len = p - body;
13702 char *name = copy_string (body, name_len);
13703 const char *replacement;
13704
13705 if (*p == ' ')
13706 replacement = body + name_len + 1;
13707 else
13708 {
13709 dwarf2_macro_malformed_definition_complaint (body);
13710 replacement = body + name_len;
13711 }
13712
13713 macro_define_object (file, line, name, replacement);
13714
13715 xfree (name);
13716 }
13717 else if (*p == '(')
13718 {
13719 /* It's a function-like macro. */
13720 char *name = copy_string (body, p - body);
13721 int argc = 0;
13722 int argv_size = 1;
13723 char **argv = xmalloc (argv_size * sizeof (*argv));
13724
13725 p++;
13726
13727 p = consume_improper_spaces (p, body);
13728
13729 /* Parse the formal argument list. */
13730 while (*p && *p != ')')
13731 {
13732 /* Find the extent of the current argument name. */
13733 const char *arg_start = p;
13734
13735 while (*p && *p != ',' && *p != ')' && *p != ' ')
13736 p++;
13737
13738 if (! *p || p == arg_start)
13739 dwarf2_macro_malformed_definition_complaint (body);
13740 else
13741 {
13742 /* Make sure argv has room for the new argument. */
13743 if (argc >= argv_size)
13744 {
13745 argv_size *= 2;
13746 argv = xrealloc (argv, argv_size * sizeof (*argv));
13747 }
13748
13749 argv[argc++] = copy_string (arg_start, p - arg_start);
13750 }
13751
13752 p = consume_improper_spaces (p, body);
13753
13754 /* Consume the comma, if present. */
13755 if (*p == ',')
13756 {
13757 p++;
13758
13759 p = consume_improper_spaces (p, body);
13760 }
13761 }
13762
13763 if (*p == ')')
13764 {
13765 p++;
13766
13767 if (*p == ' ')
13768 /* Perfectly formed definition, no complaints. */
13769 macro_define_function (file, line, name,
13770 argc, (const char **) argv,
13771 p + 1);
13772 else if (*p == '\0')
13773 {
13774 /* Complain, but do define it. */
13775 dwarf2_macro_malformed_definition_complaint (body);
13776 macro_define_function (file, line, name,
13777 argc, (const char **) argv,
13778 p);
13779 }
13780 else
13781 /* Just complain. */
13782 dwarf2_macro_malformed_definition_complaint (body);
13783 }
13784 else
13785 /* Just complain. */
13786 dwarf2_macro_malformed_definition_complaint (body);
13787
13788 xfree (name);
13789 {
13790 int i;
13791
13792 for (i = 0; i < argc; i++)
13793 xfree (argv[i]);
13794 }
13795 xfree (argv);
13796 }
13797 else
13798 dwarf2_macro_malformed_definition_complaint (body);
13799 }
13800
13801
13802 static void
13803 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13804 char *comp_dir, bfd *abfd,
13805 struct dwarf2_cu *cu)
13806 {
13807 gdb_byte *mac_ptr, *mac_end;
13808 struct macro_source_file *current_file = 0;
13809 enum dwarf_macinfo_record_type macinfo_type;
13810 int at_commandline;
13811
13812 dwarf2_read_section (dwarf2_per_objfile->objfile,
13813 &dwarf2_per_objfile->macinfo);
13814 if (dwarf2_per_objfile->macinfo.buffer == NULL)
13815 {
13816 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
13817 return;
13818 }
13819
13820 /* First pass: Find the name of the base filename.
13821 This filename is needed in order to process all macros whose definition
13822 (or undefinition) comes from the command line. These macros are defined
13823 before the first DW_MACINFO_start_file entry, and yet still need to be
13824 associated to the base file.
13825
13826 To determine the base file name, we scan the macro definitions until we
13827 reach the first DW_MACINFO_start_file entry. We then initialize
13828 CURRENT_FILE accordingly so that any macro definition found before the
13829 first DW_MACINFO_start_file can still be associated to the base file. */
13830
13831 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13832 mac_end = dwarf2_per_objfile->macinfo.buffer
13833 + dwarf2_per_objfile->macinfo.size;
13834
13835 do
13836 {
13837 /* Do we at least have room for a macinfo type byte? */
13838 if (mac_ptr >= mac_end)
13839 {
13840 /* Complaint is printed during the second pass as GDB will probably
13841 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13842 break;
13843 }
13844
13845 macinfo_type = read_1_byte (abfd, mac_ptr);
13846 mac_ptr++;
13847
13848 switch (macinfo_type)
13849 {
13850 /* A zero macinfo type indicates the end of the macro
13851 information. */
13852 case 0:
13853 break;
13854
13855 case DW_MACINFO_define:
13856 case DW_MACINFO_undef:
13857 /* Only skip the data by MAC_PTR. */
13858 {
13859 unsigned int bytes_read;
13860
13861 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13862 mac_ptr += bytes_read;
13863 read_direct_string (abfd, mac_ptr, &bytes_read);
13864 mac_ptr += bytes_read;
13865 }
13866 break;
13867
13868 case DW_MACINFO_start_file:
13869 {
13870 unsigned int bytes_read;
13871 int line, file;
13872
13873 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13874 mac_ptr += bytes_read;
13875 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13876 mac_ptr += bytes_read;
13877
13878 current_file = macro_start_file (file, line, current_file, comp_dir,
13879 lh, cu->objfile);
13880 }
13881 break;
13882
13883 case DW_MACINFO_end_file:
13884 /* No data to skip by MAC_PTR. */
13885 break;
13886
13887 case DW_MACINFO_vendor_ext:
13888 /* Only skip the data by MAC_PTR. */
13889 {
13890 unsigned int bytes_read;
13891
13892 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13893 mac_ptr += bytes_read;
13894 read_direct_string (abfd, mac_ptr, &bytes_read);
13895 mac_ptr += bytes_read;
13896 }
13897 break;
13898
13899 default:
13900 break;
13901 }
13902 } while (macinfo_type != 0 && current_file == NULL);
13903
13904 /* Second pass: Process all entries.
13905
13906 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13907 command-line macro definitions/undefinitions. This flag is unset when we
13908 reach the first DW_MACINFO_start_file entry. */
13909
13910 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13911
13912 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13913 GDB is still reading the definitions from command line. First
13914 DW_MACINFO_start_file will need to be ignored as it was already executed
13915 to create CURRENT_FILE for the main source holding also the command line
13916 definitions. On first met DW_MACINFO_start_file this flag is reset to
13917 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13918
13919 at_commandline = 1;
13920
13921 do
13922 {
13923 /* Do we at least have room for a macinfo type byte? */
13924 if (mac_ptr >= mac_end)
13925 {
13926 dwarf2_macros_too_long_complaint ();
13927 break;
13928 }
13929
13930 macinfo_type = read_1_byte (abfd, mac_ptr);
13931 mac_ptr++;
13932
13933 switch (macinfo_type)
13934 {
13935 /* A zero macinfo type indicates the end of the macro
13936 information. */
13937 case 0:
13938 break;
13939
13940 case DW_MACINFO_define:
13941 case DW_MACINFO_undef:
13942 {
13943 unsigned int bytes_read;
13944 int line;
13945 char *body;
13946
13947 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13948 mac_ptr += bytes_read;
13949 body = read_direct_string (abfd, mac_ptr, &bytes_read);
13950 mac_ptr += bytes_read;
13951
13952 if (! current_file)
13953 {
13954 /* DWARF violation as no main source is present. */
13955 complaint (&symfile_complaints,
13956 _("debug info with no main source gives macro %s "
13957 "on line %d: %s"),
13958 macinfo_type == DW_MACINFO_define ?
13959 _("definition") :
13960 macinfo_type == DW_MACINFO_undef ?
13961 _("undefinition") :
13962 _("something-or-other"), line, body);
13963 break;
13964 }
13965 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13966 complaint (&symfile_complaints,
13967 _("debug info gives %s macro %s with %s line %d: %s"),
13968 at_commandline ? _("command-line") : _("in-file"),
13969 macinfo_type == DW_MACINFO_define ?
13970 _("definition") :
13971 macinfo_type == DW_MACINFO_undef ?
13972 _("undefinition") :
13973 _("something-or-other"),
13974 line == 0 ? _("zero") : _("non-zero"), line, body);
13975
13976 if (macinfo_type == DW_MACINFO_define)
13977 parse_macro_definition (current_file, line, body);
13978 else if (macinfo_type == DW_MACINFO_undef)
13979 macro_undef (current_file, line, body);
13980 }
13981 break;
13982
13983 case DW_MACINFO_start_file:
13984 {
13985 unsigned int bytes_read;
13986 int line, file;
13987
13988 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13989 mac_ptr += bytes_read;
13990 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13991 mac_ptr += bytes_read;
13992
13993 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13994 complaint (&symfile_complaints,
13995 _("debug info gives source %d included "
13996 "from %s at %s line %d"),
13997 file, at_commandline ? _("command-line") : _("file"),
13998 line == 0 ? _("zero") : _("non-zero"), line);
13999
14000 if (at_commandline)
14001 {
14002 /* This DW_MACINFO_start_file was executed in the pass one. */
14003 at_commandline = 0;
14004 }
14005 else
14006 current_file = macro_start_file (file, line,
14007 current_file, comp_dir,
14008 lh, cu->objfile);
14009 }
14010 break;
14011
14012 case DW_MACINFO_end_file:
14013 if (! current_file)
14014 complaint (&symfile_complaints,
14015 _("macro debug info has an unmatched `close_file' directive"));
14016 else
14017 {
14018 current_file = current_file->included_by;
14019 if (! current_file)
14020 {
14021 enum dwarf_macinfo_record_type next_type;
14022
14023 /* GCC circa March 2002 doesn't produce the zero
14024 type byte marking the end of the compilation
14025 unit. Complain if it's not there, but exit no
14026 matter what. */
14027
14028 /* Do we at least have room for a macinfo type byte? */
14029 if (mac_ptr >= mac_end)
14030 {
14031 dwarf2_macros_too_long_complaint ();
14032 return;
14033 }
14034
14035 /* We don't increment mac_ptr here, so this is just
14036 a look-ahead. */
14037 next_type = read_1_byte (abfd, mac_ptr);
14038 if (next_type != 0)
14039 complaint (&symfile_complaints,
14040 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
14041
14042 return;
14043 }
14044 }
14045 break;
14046
14047 case DW_MACINFO_vendor_ext:
14048 {
14049 unsigned int bytes_read;
14050 int constant;
14051 char *string;
14052
14053 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14054 mac_ptr += bytes_read;
14055 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14056 mac_ptr += bytes_read;
14057
14058 /* We don't recognize any vendor extensions. */
14059 }
14060 break;
14061 }
14062 } while (macinfo_type != 0);
14063 }
14064
14065 /* Check if the attribute's form is a DW_FORM_block*
14066 if so return true else false. */
14067 static int
14068 attr_form_is_block (struct attribute *attr)
14069 {
14070 return (attr == NULL ? 0 :
14071 attr->form == DW_FORM_block1
14072 || attr->form == DW_FORM_block2
14073 || attr->form == DW_FORM_block4
14074 || attr->form == DW_FORM_block
14075 || attr->form == DW_FORM_exprloc);
14076 }
14077
14078 /* Return non-zero if ATTR's value is a section offset --- classes
14079 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14080 You may use DW_UNSND (attr) to retrieve such offsets.
14081
14082 Section 7.5.4, "Attribute Encodings", explains that no attribute
14083 may have a value that belongs to more than one of these classes; it
14084 would be ambiguous if we did, because we use the same forms for all
14085 of them. */
14086 static int
14087 attr_form_is_section_offset (struct attribute *attr)
14088 {
14089 return (attr->form == DW_FORM_data4
14090 || attr->form == DW_FORM_data8
14091 || attr->form == DW_FORM_sec_offset);
14092 }
14093
14094
14095 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14096 zero otherwise. When this function returns true, you can apply
14097 dwarf2_get_attr_constant_value to it.
14098
14099 However, note that for some attributes you must check
14100 attr_form_is_section_offset before using this test. DW_FORM_data4
14101 and DW_FORM_data8 are members of both the constant class, and of
14102 the classes that contain offsets into other debug sections
14103 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14104 that, if an attribute's can be either a constant or one of the
14105 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14106 taken as section offsets, not constants. */
14107 static int
14108 attr_form_is_constant (struct attribute *attr)
14109 {
14110 switch (attr->form)
14111 {
14112 case DW_FORM_sdata:
14113 case DW_FORM_udata:
14114 case DW_FORM_data1:
14115 case DW_FORM_data2:
14116 case DW_FORM_data4:
14117 case DW_FORM_data8:
14118 return 1;
14119 default:
14120 return 0;
14121 }
14122 }
14123
14124 static void
14125 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14126 struct dwarf2_cu *cu)
14127 {
14128 if (attr_form_is_section_offset (attr)
14129 /* ".debug_loc" may not exist at all, or the offset may be outside
14130 the section. If so, fall through to the complaint in the
14131 other branch. */
14132 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14133 {
14134 struct dwarf2_loclist_baton *baton;
14135
14136 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14137 sizeof (struct dwarf2_loclist_baton));
14138 baton->per_cu = cu->per_cu;
14139 gdb_assert (baton->per_cu);
14140
14141 dwarf2_read_section (dwarf2_per_objfile->objfile,
14142 &dwarf2_per_objfile->loc);
14143
14144 /* We don't know how long the location list is, but make sure we
14145 don't run off the edge of the section. */
14146 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14147 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14148 baton->base_address = cu->base_address;
14149 if (cu->base_known == 0)
14150 complaint (&symfile_complaints,
14151 _("Location list used without specifying the CU base address."));
14152
14153 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14154 SYMBOL_LOCATION_BATON (sym) = baton;
14155 }
14156 else
14157 {
14158 struct dwarf2_locexpr_baton *baton;
14159
14160 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14161 sizeof (struct dwarf2_locexpr_baton));
14162 baton->per_cu = cu->per_cu;
14163 gdb_assert (baton->per_cu);
14164
14165 if (attr_form_is_block (attr))
14166 {
14167 /* Note that we're just copying the block's data pointer
14168 here, not the actual data. We're still pointing into the
14169 info_buffer for SYM's objfile; right now we never release
14170 that buffer, but when we do clean up properly this may
14171 need to change. */
14172 baton->size = DW_BLOCK (attr)->size;
14173 baton->data = DW_BLOCK (attr)->data;
14174 }
14175 else
14176 {
14177 dwarf2_invalid_attrib_class_complaint ("location description",
14178 SYMBOL_NATURAL_NAME (sym));
14179 baton->size = 0;
14180 baton->data = NULL;
14181 }
14182
14183 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14184 SYMBOL_LOCATION_BATON (sym) = baton;
14185 }
14186 }
14187
14188 /* Return the OBJFILE associated with the compilation unit CU. If CU
14189 came from a separate debuginfo file, then the master objfile is
14190 returned. */
14191
14192 struct objfile *
14193 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14194 {
14195 struct objfile *objfile = per_cu->objfile;
14196
14197 /* Return the master objfile, so that we can report and look up the
14198 correct file containing this variable. */
14199 if (objfile->separate_debug_objfile_backlink)
14200 objfile = objfile->separate_debug_objfile_backlink;
14201
14202 return objfile;
14203 }
14204
14205 /* Return the address size given in the compilation unit header for CU. */
14206
14207 CORE_ADDR
14208 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14209 {
14210 if (per_cu->cu)
14211 return per_cu->cu->header.addr_size;
14212 else
14213 {
14214 /* If the CU is not currently read in, we re-read its header. */
14215 struct objfile *objfile = per_cu->objfile;
14216 struct dwarf2_per_objfile *per_objfile
14217 = objfile_data (objfile, dwarf2_objfile_data_key);
14218 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14219 struct comp_unit_head cu_header;
14220
14221 memset (&cu_header, 0, sizeof cu_header);
14222 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14223 return cu_header.addr_size;
14224 }
14225 }
14226
14227 /* Return the offset size given in the compilation unit header for CU. */
14228
14229 int
14230 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14231 {
14232 if (per_cu->cu)
14233 return per_cu->cu->header.offset_size;
14234 else
14235 {
14236 /* If the CU is not currently read in, we re-read its header. */
14237 struct objfile *objfile = per_cu->objfile;
14238 struct dwarf2_per_objfile *per_objfile
14239 = objfile_data (objfile, dwarf2_objfile_data_key);
14240 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14241 struct comp_unit_head cu_header;
14242
14243 memset (&cu_header, 0, sizeof cu_header);
14244 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14245 return cu_header.offset_size;
14246 }
14247 }
14248
14249 /* Return the text offset of the CU. The returned offset comes from
14250 this CU's objfile. If this objfile came from a separate debuginfo
14251 file, then the offset may be different from the corresponding
14252 offset in the parent objfile. */
14253
14254 CORE_ADDR
14255 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14256 {
14257 struct objfile *objfile = per_cu->objfile;
14258
14259 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14260 }
14261
14262 /* Locate the .debug_info compilation unit from CU's objfile which contains
14263 the DIE at OFFSET. Raises an error on failure. */
14264
14265 static struct dwarf2_per_cu_data *
14266 dwarf2_find_containing_comp_unit (unsigned int offset,
14267 struct objfile *objfile)
14268 {
14269 struct dwarf2_per_cu_data *this_cu;
14270 int low, high;
14271
14272 low = 0;
14273 high = dwarf2_per_objfile->n_comp_units - 1;
14274 while (high > low)
14275 {
14276 int mid = low + (high - low) / 2;
14277
14278 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14279 high = mid;
14280 else
14281 low = mid + 1;
14282 }
14283 gdb_assert (low == high);
14284 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14285 {
14286 if (low == 0)
14287 error (_("Dwarf Error: could not find partial DIE containing "
14288 "offset 0x%lx [in module %s]"),
14289 (long) offset, bfd_get_filename (objfile->obfd));
14290
14291 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14292 return dwarf2_per_objfile->all_comp_units[low-1];
14293 }
14294 else
14295 {
14296 this_cu = dwarf2_per_objfile->all_comp_units[low];
14297 if (low == dwarf2_per_objfile->n_comp_units - 1
14298 && offset >= this_cu->offset + this_cu->length)
14299 error (_("invalid dwarf2 offset %u"), offset);
14300 gdb_assert (offset < this_cu->offset + this_cu->length);
14301 return this_cu;
14302 }
14303 }
14304
14305 /* Locate the compilation unit from OBJFILE which is located at exactly
14306 OFFSET. Raises an error on failure. */
14307
14308 static struct dwarf2_per_cu_data *
14309 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14310 {
14311 struct dwarf2_per_cu_data *this_cu;
14312
14313 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14314 if (this_cu->offset != offset)
14315 error (_("no compilation unit with offset %u."), offset);
14316 return this_cu;
14317 }
14318
14319 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14320
14321 static void
14322 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14323 {
14324 memset (cu, 0, sizeof (*cu));
14325 cu->objfile = objfile;
14326 obstack_init (&cu->comp_unit_obstack);
14327 }
14328
14329 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14330
14331 static void
14332 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14333 {
14334 struct attribute *attr;
14335
14336 /* Set the language we're debugging. */
14337 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14338 if (attr)
14339 set_cu_language (DW_UNSND (attr), cu);
14340 else
14341 set_cu_language (language_minimal, cu);
14342 }
14343
14344 /* Release one cached compilation unit, CU. We unlink it from the tree
14345 of compilation units, but we don't remove it from the read_in_chain;
14346 the caller is responsible for that.
14347 NOTE: DATA is a void * because this function is also used as a
14348 cleanup routine. */
14349
14350 static void
14351 free_one_comp_unit (void *data)
14352 {
14353 struct dwarf2_cu *cu = data;
14354
14355 if (cu->per_cu != NULL)
14356 cu->per_cu->cu = NULL;
14357 cu->per_cu = NULL;
14358
14359 obstack_free (&cu->comp_unit_obstack, NULL);
14360
14361 xfree (cu);
14362 }
14363
14364 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14365 when we're finished with it. We can't free the pointer itself, but be
14366 sure to unlink it from the cache. Also release any associated storage
14367 and perform cache maintenance.
14368
14369 Only used during partial symbol parsing. */
14370
14371 static void
14372 free_stack_comp_unit (void *data)
14373 {
14374 struct dwarf2_cu *cu = data;
14375
14376 obstack_free (&cu->comp_unit_obstack, NULL);
14377 cu->partial_dies = NULL;
14378
14379 if (cu->per_cu != NULL)
14380 {
14381 /* This compilation unit is on the stack in our caller, so we
14382 should not xfree it. Just unlink it. */
14383 cu->per_cu->cu = NULL;
14384 cu->per_cu = NULL;
14385
14386 /* If we had a per-cu pointer, then we may have other compilation
14387 units loaded, so age them now. */
14388 age_cached_comp_units ();
14389 }
14390 }
14391
14392 /* Free all cached compilation units. */
14393
14394 static void
14395 free_cached_comp_units (void *data)
14396 {
14397 struct dwarf2_per_cu_data *per_cu, **last_chain;
14398
14399 per_cu = dwarf2_per_objfile->read_in_chain;
14400 last_chain = &dwarf2_per_objfile->read_in_chain;
14401 while (per_cu != NULL)
14402 {
14403 struct dwarf2_per_cu_data *next_cu;
14404
14405 next_cu = per_cu->cu->read_in_chain;
14406
14407 free_one_comp_unit (per_cu->cu);
14408 *last_chain = next_cu;
14409
14410 per_cu = next_cu;
14411 }
14412 }
14413
14414 /* Increase the age counter on each cached compilation unit, and free
14415 any that are too old. */
14416
14417 static void
14418 age_cached_comp_units (void)
14419 {
14420 struct dwarf2_per_cu_data *per_cu, **last_chain;
14421
14422 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14423 per_cu = dwarf2_per_objfile->read_in_chain;
14424 while (per_cu != NULL)
14425 {
14426 per_cu->cu->last_used ++;
14427 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14428 dwarf2_mark (per_cu->cu);
14429 per_cu = per_cu->cu->read_in_chain;
14430 }
14431
14432 per_cu = dwarf2_per_objfile->read_in_chain;
14433 last_chain = &dwarf2_per_objfile->read_in_chain;
14434 while (per_cu != NULL)
14435 {
14436 struct dwarf2_per_cu_data *next_cu;
14437
14438 next_cu = per_cu->cu->read_in_chain;
14439
14440 if (!per_cu->cu->mark)
14441 {
14442 free_one_comp_unit (per_cu->cu);
14443 *last_chain = next_cu;
14444 }
14445 else
14446 last_chain = &per_cu->cu->read_in_chain;
14447
14448 per_cu = next_cu;
14449 }
14450 }
14451
14452 /* Remove a single compilation unit from the cache. */
14453
14454 static void
14455 free_one_cached_comp_unit (void *target_cu)
14456 {
14457 struct dwarf2_per_cu_data *per_cu, **last_chain;
14458
14459 per_cu = dwarf2_per_objfile->read_in_chain;
14460 last_chain = &dwarf2_per_objfile->read_in_chain;
14461 while (per_cu != NULL)
14462 {
14463 struct dwarf2_per_cu_data *next_cu;
14464
14465 next_cu = per_cu->cu->read_in_chain;
14466
14467 if (per_cu->cu == target_cu)
14468 {
14469 free_one_comp_unit (per_cu->cu);
14470 *last_chain = next_cu;
14471 break;
14472 }
14473 else
14474 last_chain = &per_cu->cu->read_in_chain;
14475
14476 per_cu = next_cu;
14477 }
14478 }
14479
14480 /* Release all extra memory associated with OBJFILE. */
14481
14482 void
14483 dwarf2_free_objfile (struct objfile *objfile)
14484 {
14485 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14486
14487 if (dwarf2_per_objfile == NULL)
14488 return;
14489
14490 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14491 free_cached_comp_units (NULL);
14492
14493 if (dwarf2_per_objfile->using_index)
14494 {
14495 int i;
14496
14497 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14498 {
14499 int j;
14500 struct dwarf2_per_cu_data *per_cu =
14501 dwarf2_per_objfile->all_comp_units[i];
14502
14503 if (!per_cu->v.quick->lines)
14504 continue;
14505
14506 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
14507 {
14508 if (per_cu->v.quick->file_names)
14509 xfree ((void *) per_cu->v.quick->file_names[j]);
14510 if (per_cu->v.quick->full_names)
14511 xfree ((void *) per_cu->v.quick->full_names[j]);
14512 }
14513
14514 free_line_header (per_cu->v.quick->lines);
14515 }
14516 }
14517
14518 /* Everything else should be on the objfile obstack. */
14519 }
14520
14521 /* A pair of DIE offset and GDB type pointer. We store these
14522 in a hash table separate from the DIEs, and preserve them
14523 when the DIEs are flushed out of cache. */
14524
14525 struct dwarf2_offset_and_type
14526 {
14527 unsigned int offset;
14528 struct type *type;
14529 };
14530
14531 /* Hash function for a dwarf2_offset_and_type. */
14532
14533 static hashval_t
14534 offset_and_type_hash (const void *item)
14535 {
14536 const struct dwarf2_offset_and_type *ofs = item;
14537
14538 return ofs->offset;
14539 }
14540
14541 /* Equality function for a dwarf2_offset_and_type. */
14542
14543 static int
14544 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14545 {
14546 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14547 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14548
14549 return ofs_lhs->offset == ofs_rhs->offset;
14550 }
14551
14552 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14553 table if necessary. For convenience, return TYPE.
14554
14555 The DIEs reading must have careful ordering to:
14556 * Not cause infite loops trying to read in DIEs as a prerequisite for
14557 reading current DIE.
14558 * Not trying to dereference contents of still incompletely read in types
14559 while reading in other DIEs.
14560 * Enable referencing still incompletely read in types just by a pointer to
14561 the type without accessing its fields.
14562
14563 Therefore caller should follow these rules:
14564 * Try to fetch any prerequisite types we may need to build this DIE type
14565 before building the type and calling set_die_type.
14566 * After building type call set_die_type for current DIE as soon as
14567 possible before fetching more types to complete the current type.
14568 * Make the type as complete as possible before fetching more types. */
14569
14570 static struct type *
14571 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14572 {
14573 struct dwarf2_offset_and_type **slot, ofs;
14574 struct objfile *objfile = cu->objfile;
14575 htab_t *type_hash_ptr;
14576
14577 /* For Ada types, make sure that the gnat-specific data is always
14578 initialized (if not already set). There are a few types where
14579 we should not be doing so, because the type-specific area is
14580 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14581 where the type-specific area is used to store the floatformat).
14582 But this is not a problem, because the gnat-specific information
14583 is actually not needed for these types. */
14584 if (need_gnat_info (cu)
14585 && TYPE_CODE (type) != TYPE_CODE_FUNC
14586 && TYPE_CODE (type) != TYPE_CODE_FLT
14587 && !HAVE_GNAT_AUX_INFO (type))
14588 INIT_GNAT_SPECIFIC (type);
14589
14590 if (cu->per_cu->from_debug_types)
14591 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14592 else
14593 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14594
14595 if (*type_hash_ptr == NULL)
14596 {
14597 *type_hash_ptr
14598 = htab_create_alloc_ex (127,
14599 offset_and_type_hash,
14600 offset_and_type_eq,
14601 NULL,
14602 &objfile->objfile_obstack,
14603 hashtab_obstack_allocate,
14604 dummy_obstack_deallocate);
14605 }
14606
14607 ofs.offset = die->offset;
14608 ofs.type = type;
14609 slot = (struct dwarf2_offset_and_type **)
14610 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14611 if (*slot)
14612 complaint (&symfile_complaints,
14613 _("A problem internal to GDB: DIE 0x%x has type already set"),
14614 die->offset);
14615 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14616 **slot = ofs;
14617 return type;
14618 }
14619
14620 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14621 table, or return NULL if the die does not have a saved type. */
14622
14623 static struct type *
14624 get_die_type_at_offset (unsigned int offset,
14625 struct dwarf2_per_cu_data *per_cu)
14626 {
14627 struct dwarf2_offset_and_type *slot, ofs;
14628 htab_t type_hash;
14629
14630 if (per_cu->from_debug_types)
14631 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14632 else
14633 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14634 if (type_hash == NULL)
14635 return NULL;
14636
14637 ofs.offset = offset;
14638 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14639 if (slot)
14640 return slot->type;
14641 else
14642 return NULL;
14643 }
14644
14645 /* Look up the type for DIE in the appropriate type_hash table,
14646 or return NULL if DIE does not have a saved type. */
14647
14648 static struct type *
14649 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14650 {
14651 return get_die_type_at_offset (die->offset, cu->per_cu);
14652 }
14653
14654 /* Add a dependence relationship from CU to REF_PER_CU. */
14655
14656 static void
14657 dwarf2_add_dependence (struct dwarf2_cu *cu,
14658 struct dwarf2_per_cu_data *ref_per_cu)
14659 {
14660 void **slot;
14661
14662 if (cu->dependencies == NULL)
14663 cu->dependencies
14664 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14665 NULL, &cu->comp_unit_obstack,
14666 hashtab_obstack_allocate,
14667 dummy_obstack_deallocate);
14668
14669 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14670 if (*slot == NULL)
14671 *slot = ref_per_cu;
14672 }
14673
14674 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14675 Set the mark field in every compilation unit in the
14676 cache that we must keep because we are keeping CU. */
14677
14678 static int
14679 dwarf2_mark_helper (void **slot, void *data)
14680 {
14681 struct dwarf2_per_cu_data *per_cu;
14682
14683 per_cu = (struct dwarf2_per_cu_data *) *slot;
14684 if (per_cu->cu->mark)
14685 return 1;
14686 per_cu->cu->mark = 1;
14687
14688 if (per_cu->cu->dependencies != NULL)
14689 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14690
14691 return 1;
14692 }
14693
14694 /* Set the mark field in CU and in every other compilation unit in the
14695 cache that we must keep because we are keeping CU. */
14696
14697 static void
14698 dwarf2_mark (struct dwarf2_cu *cu)
14699 {
14700 if (cu->mark)
14701 return;
14702 cu->mark = 1;
14703 if (cu->dependencies != NULL)
14704 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14705 }
14706
14707 static void
14708 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14709 {
14710 while (per_cu)
14711 {
14712 per_cu->cu->mark = 0;
14713 per_cu = per_cu->cu->read_in_chain;
14714 }
14715 }
14716
14717 /* Trivial hash function for partial_die_info: the hash value of a DIE
14718 is its offset in .debug_info for this objfile. */
14719
14720 static hashval_t
14721 partial_die_hash (const void *item)
14722 {
14723 const struct partial_die_info *part_die = item;
14724
14725 return part_die->offset;
14726 }
14727
14728 /* Trivial comparison function for partial_die_info structures: two DIEs
14729 are equal if they have the same offset. */
14730
14731 static int
14732 partial_die_eq (const void *item_lhs, const void *item_rhs)
14733 {
14734 const struct partial_die_info *part_die_lhs = item_lhs;
14735 const struct partial_die_info *part_die_rhs = item_rhs;
14736
14737 return part_die_lhs->offset == part_die_rhs->offset;
14738 }
14739
14740 static struct cmd_list_element *set_dwarf2_cmdlist;
14741 static struct cmd_list_element *show_dwarf2_cmdlist;
14742
14743 static void
14744 set_dwarf2_cmd (char *args, int from_tty)
14745 {
14746 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14747 }
14748
14749 static void
14750 show_dwarf2_cmd (char *args, int from_tty)
14751 {
14752 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14753 }
14754
14755 /* If section described by INFO was mmapped, munmap it now. */
14756
14757 static void
14758 munmap_section_buffer (struct dwarf2_section_info *info)
14759 {
14760 if (info->was_mmapped)
14761 {
14762 #ifdef HAVE_MMAP
14763 intptr_t begin = (intptr_t) info->buffer;
14764 intptr_t map_begin = begin & ~(pagesize - 1);
14765 size_t map_length = info->size + begin - map_begin;
14766
14767 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14768 #else
14769 /* Without HAVE_MMAP, we should never be here to begin with. */
14770 gdb_assert_not_reached ("no mmap support");
14771 #endif
14772 }
14773 }
14774
14775 /* munmap debug sections for OBJFILE, if necessary. */
14776
14777 static void
14778 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14779 {
14780 struct dwarf2_per_objfile *data = d;
14781
14782 /* This is sorted according to the order they're defined in to make it easier
14783 to keep in sync. */
14784 munmap_section_buffer (&data->info);
14785 munmap_section_buffer (&data->abbrev);
14786 munmap_section_buffer (&data->line);
14787 munmap_section_buffer (&data->loc);
14788 munmap_section_buffer (&data->macinfo);
14789 munmap_section_buffer (&data->str);
14790 munmap_section_buffer (&data->ranges);
14791 munmap_section_buffer (&data->types);
14792 munmap_section_buffer (&data->frame);
14793 munmap_section_buffer (&data->eh_frame);
14794 munmap_section_buffer (&data->gdb_index);
14795 }
14796
14797 \f
14798
14799 /* The contents of the hash table we create when building the string
14800 table. */
14801 struct strtab_entry
14802 {
14803 offset_type offset;
14804 const char *str;
14805 };
14806
14807 /* Hash function for a strtab_entry. */
14808
14809 static hashval_t
14810 hash_strtab_entry (const void *e)
14811 {
14812 const struct strtab_entry *entry = e;
14813 return mapped_index_string_hash (entry->str);
14814 }
14815
14816 /* Equality function for a strtab_entry. */
14817
14818 static int
14819 eq_strtab_entry (const void *a, const void *b)
14820 {
14821 const struct strtab_entry *ea = a;
14822 const struct strtab_entry *eb = b;
14823 return !strcmp (ea->str, eb->str);
14824 }
14825
14826 /* Create a strtab_entry hash table. */
14827
14828 static htab_t
14829 create_strtab (void)
14830 {
14831 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14832 xfree, xcalloc, xfree);
14833 }
14834
14835 /* Add a string to the constant pool. Return the string's offset in
14836 host order. */
14837
14838 static offset_type
14839 add_string (htab_t table, struct obstack *cpool, const char *str)
14840 {
14841 void **slot;
14842 struct strtab_entry entry;
14843 struct strtab_entry *result;
14844
14845 entry.str = str;
14846 slot = htab_find_slot (table, &entry, INSERT);
14847 if (*slot)
14848 result = *slot;
14849 else
14850 {
14851 result = XNEW (struct strtab_entry);
14852 result->offset = obstack_object_size (cpool);
14853 result->str = str;
14854 obstack_grow_str0 (cpool, str);
14855 *slot = result;
14856 }
14857 return result->offset;
14858 }
14859
14860 /* An entry in the symbol table. */
14861 struct symtab_index_entry
14862 {
14863 /* The name of the symbol. */
14864 const char *name;
14865 /* The offset of the name in the constant pool. */
14866 offset_type index_offset;
14867 /* A sorted vector of the indices of all the CUs that hold an object
14868 of this name. */
14869 VEC (offset_type) *cu_indices;
14870 };
14871
14872 /* The symbol table. This is a power-of-2-sized hash table. */
14873 struct mapped_symtab
14874 {
14875 offset_type n_elements;
14876 offset_type size;
14877 struct symtab_index_entry **data;
14878 };
14879
14880 /* Hash function for a symtab_index_entry. */
14881
14882 static hashval_t
14883 hash_symtab_entry (const void *e)
14884 {
14885 const struct symtab_index_entry *entry = e;
14886 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14887 sizeof (offset_type) * VEC_length (offset_type,
14888 entry->cu_indices),
14889 0);
14890 }
14891
14892 /* Equality function for a symtab_index_entry. */
14893
14894 static int
14895 eq_symtab_entry (const void *a, const void *b)
14896 {
14897 const struct symtab_index_entry *ea = a;
14898 const struct symtab_index_entry *eb = b;
14899 int len = VEC_length (offset_type, ea->cu_indices);
14900 if (len != VEC_length (offset_type, eb->cu_indices))
14901 return 0;
14902 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14903 VEC_address (offset_type, eb->cu_indices),
14904 sizeof (offset_type) * len);
14905 }
14906
14907 /* Destroy a symtab_index_entry. */
14908
14909 static void
14910 delete_symtab_entry (void *p)
14911 {
14912 struct symtab_index_entry *entry = p;
14913 VEC_free (offset_type, entry->cu_indices);
14914 xfree (entry);
14915 }
14916
14917 /* Create a hash table holding symtab_index_entry objects. */
14918
14919 static htab_t
14920 create_symbol_hash_table (void)
14921 {
14922 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14923 delete_symtab_entry, xcalloc, xfree);
14924 }
14925
14926 /* Create a new mapped symtab object. */
14927
14928 static struct mapped_symtab *
14929 create_mapped_symtab (void)
14930 {
14931 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14932 symtab->n_elements = 0;
14933 symtab->size = 1024;
14934 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14935 return symtab;
14936 }
14937
14938 /* Destroy a mapped_symtab. */
14939
14940 static void
14941 cleanup_mapped_symtab (void *p)
14942 {
14943 struct mapped_symtab *symtab = p;
14944 /* The contents of the array are freed when the other hash table is
14945 destroyed. */
14946 xfree (symtab->data);
14947 xfree (symtab);
14948 }
14949
14950 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14951 the slot. */
14952
14953 static struct symtab_index_entry **
14954 find_slot (struct mapped_symtab *symtab, const char *name)
14955 {
14956 offset_type index, step, hash = mapped_index_string_hash (name);
14957
14958 index = hash & (symtab->size - 1);
14959 step = ((hash * 17) & (symtab->size - 1)) | 1;
14960
14961 for (;;)
14962 {
14963 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14964 return &symtab->data[index];
14965 index = (index + step) & (symtab->size - 1);
14966 }
14967 }
14968
14969 /* Expand SYMTAB's hash table. */
14970
14971 static void
14972 hash_expand (struct mapped_symtab *symtab)
14973 {
14974 offset_type old_size = symtab->size;
14975 offset_type i;
14976 struct symtab_index_entry **old_entries = symtab->data;
14977
14978 symtab->size *= 2;
14979 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14980
14981 for (i = 0; i < old_size; ++i)
14982 {
14983 if (old_entries[i])
14984 {
14985 struct symtab_index_entry **slot = find_slot (symtab,
14986 old_entries[i]->name);
14987 *slot = old_entries[i];
14988 }
14989 }
14990
14991 xfree (old_entries);
14992 }
14993
14994 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
14995 is the index of the CU in which the symbol appears. */
14996
14997 static void
14998 add_index_entry (struct mapped_symtab *symtab, const char *name,
14999 offset_type cu_index)
15000 {
15001 struct symtab_index_entry **slot;
15002
15003 ++symtab->n_elements;
15004 if (4 * symtab->n_elements / 3 >= symtab->size)
15005 hash_expand (symtab);
15006
15007 slot = find_slot (symtab, name);
15008 if (!*slot)
15009 {
15010 *slot = XNEW (struct symtab_index_entry);
15011 (*slot)->name = name;
15012 (*slot)->cu_indices = NULL;
15013 }
15014 /* Don't push an index twice. Due to how we add entries we only
15015 have to check the last one. */
15016 if (VEC_empty (offset_type, (*slot)->cu_indices)
15017 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15018 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15019 }
15020
15021 /* Add a vector of indices to the constant pool. */
15022
15023 static offset_type
15024 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15025 struct symtab_index_entry *entry)
15026 {
15027 void **slot;
15028
15029 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15030 if (!*slot)
15031 {
15032 offset_type len = VEC_length (offset_type, entry->cu_indices);
15033 offset_type val = MAYBE_SWAP (len);
15034 offset_type iter;
15035 int i;
15036
15037 *slot = entry;
15038 entry->index_offset = obstack_object_size (cpool);
15039
15040 obstack_grow (cpool, &val, sizeof (val));
15041 for (i = 0;
15042 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15043 ++i)
15044 {
15045 val = MAYBE_SWAP (iter);
15046 obstack_grow (cpool, &val, sizeof (val));
15047 }
15048 }
15049 else
15050 {
15051 struct symtab_index_entry *old_entry = *slot;
15052 entry->index_offset = old_entry->index_offset;
15053 entry = old_entry;
15054 }
15055 return entry->index_offset;
15056 }
15057
15058 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15059 constant pool entries going into the obstack CPOOL. */
15060
15061 static void
15062 write_hash_table (struct mapped_symtab *symtab,
15063 struct obstack *output, struct obstack *cpool)
15064 {
15065 offset_type i;
15066 htab_t symbol_hash_table;
15067 htab_t str_table;
15068
15069 symbol_hash_table = create_symbol_hash_table ();
15070 str_table = create_strtab ();
15071
15072 /* We add all the index vectors to the constant pool first, to
15073 ensure alignment is ok. */
15074 for (i = 0; i < symtab->size; ++i)
15075 {
15076 if (symtab->data[i])
15077 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15078 }
15079
15080 /* Now write out the hash table. */
15081 for (i = 0; i < symtab->size; ++i)
15082 {
15083 offset_type str_off, vec_off;
15084
15085 if (symtab->data[i])
15086 {
15087 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15088 vec_off = symtab->data[i]->index_offset;
15089 }
15090 else
15091 {
15092 /* While 0 is a valid constant pool index, it is not valid
15093 to have 0 for both offsets. */
15094 str_off = 0;
15095 vec_off = 0;
15096 }
15097
15098 str_off = MAYBE_SWAP (str_off);
15099 vec_off = MAYBE_SWAP (vec_off);
15100
15101 obstack_grow (output, &str_off, sizeof (str_off));
15102 obstack_grow (output, &vec_off, sizeof (vec_off));
15103 }
15104
15105 htab_delete (str_table);
15106 htab_delete (symbol_hash_table);
15107 }
15108
15109 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
15110 from PST; CU_INDEX is the index of the CU in the vector of all
15111 CUs. */
15112
15113 static void
15114 add_address_entry (struct objfile *objfile,
15115 struct obstack *addr_obstack, struct partial_symtab *pst,
15116 unsigned int cu_index)
15117 {
15118 offset_type offset;
15119 char addr[8];
15120 CORE_ADDR baseaddr;
15121
15122 /* Don't bother recording empty ranges. */
15123 if (pst->textlow == pst->texthigh)
15124 return;
15125
15126 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15127
15128 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
15129 obstack_grow (addr_obstack, addr, 8);
15130 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
15131 obstack_grow (addr_obstack, addr, 8);
15132 offset = MAYBE_SWAP (cu_index);
15133 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
15134 }
15135
15136 /* Add a list of partial symbols to SYMTAB. */
15137
15138 static void
15139 write_psymbols (struct mapped_symtab *symtab,
15140 htab_t psyms_seen,
15141 struct partial_symbol **psymp,
15142 int count,
15143 offset_type cu_index,
15144 int is_static)
15145 {
15146 for (; count-- > 0; ++psymp)
15147 {
15148 void **slot, *lookup;
15149
15150 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15151 error (_("Ada is not currently supported by the index"));
15152
15153 /* We only want to add a given psymbol once. However, we also
15154 want to account for whether it is global or static. So, we
15155 may add it twice, using slightly different values. */
15156 if (is_static)
15157 {
15158 uintptr_t val = 1 | (uintptr_t) *psymp;
15159
15160 lookup = (void *) val;
15161 }
15162 else
15163 lookup = *psymp;
15164
15165 /* Only add a given psymbol once. */
15166 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15167 if (!*slot)
15168 {
15169 *slot = lookup;
15170 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15171 }
15172 }
15173 }
15174
15175 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15176 exception if there is an error. */
15177
15178 static void
15179 write_obstack (FILE *file, struct obstack *obstack)
15180 {
15181 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15182 file)
15183 != obstack_object_size (obstack))
15184 error (_("couldn't data write to file"));
15185 }
15186
15187 /* Unlink a file if the argument is not NULL. */
15188
15189 static void
15190 unlink_if_set (void *p)
15191 {
15192 char **filename = p;
15193 if (*filename)
15194 unlink (*filename);
15195 }
15196
15197 /* A helper struct used when iterating over debug_types. */
15198 struct signatured_type_index_data
15199 {
15200 struct objfile *objfile;
15201 struct mapped_symtab *symtab;
15202 struct obstack *types_list;
15203 htab_t psyms_seen;
15204 int cu_index;
15205 };
15206
15207 /* A helper function that writes a single signatured_type to an
15208 obstack. */
15209
15210 static int
15211 write_one_signatured_type (void **slot, void *d)
15212 {
15213 struct signatured_type_index_data *info = d;
15214 struct signatured_type *entry = (struct signatured_type *) *slot;
15215 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15216 struct partial_symtab *psymtab = per_cu->v.psymtab;
15217 gdb_byte val[8];
15218
15219 write_psymbols (info->symtab,
15220 info->psyms_seen,
15221 info->objfile->global_psymbols.list + psymtab->globals_offset,
15222 psymtab->n_global_syms, info->cu_index,
15223 0);
15224 write_psymbols (info->symtab,
15225 info->psyms_seen,
15226 info->objfile->static_psymbols.list + psymtab->statics_offset,
15227 psymtab->n_static_syms, info->cu_index,
15228 1);
15229
15230 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15231 obstack_grow (info->types_list, val, 8);
15232 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15233 obstack_grow (info->types_list, val, 8);
15234 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15235 obstack_grow (info->types_list, val, 8);
15236
15237 ++info->cu_index;
15238
15239 return 1;
15240 }
15241
15242 /* A cleanup function for an htab_t. */
15243
15244 static void
15245 cleanup_htab (void *arg)
15246 {
15247 htab_delete (arg);
15248 }
15249
15250 /* Create an index file for OBJFILE in the directory DIR. */
15251
15252 static void
15253 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15254 {
15255 struct cleanup *cleanup;
15256 char *filename, *cleanup_filename;
15257 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15258 struct obstack cu_list, types_cu_list;
15259 int i;
15260 FILE *out_file;
15261 struct mapped_symtab *symtab;
15262 offset_type val, size_of_contents, total_len;
15263 struct stat st;
15264 char buf[8];
15265 htab_t psyms_seen;
15266
15267 if (!objfile->psymtabs)
15268 return;
15269 if (dwarf2_per_objfile->using_index)
15270 error (_("Cannot use an index to create the index"));
15271
15272 if (stat (objfile->name, &st) < 0)
15273 perror_with_name (_("Could not stat"));
15274
15275 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15276 INDEX_SUFFIX, (char *) NULL);
15277 cleanup = make_cleanup (xfree, filename);
15278
15279 out_file = fopen (filename, "wb");
15280 if (!out_file)
15281 error (_("Can't open `%s' for writing"), filename);
15282
15283 cleanup_filename = filename;
15284 make_cleanup (unlink_if_set, &cleanup_filename);
15285
15286 symtab = create_mapped_symtab ();
15287 make_cleanup (cleanup_mapped_symtab, symtab);
15288
15289 obstack_init (&addr_obstack);
15290 make_cleanup_obstack_free (&addr_obstack);
15291
15292 obstack_init (&cu_list);
15293 make_cleanup_obstack_free (&cu_list);
15294
15295 obstack_init (&types_cu_list);
15296 make_cleanup_obstack_free (&types_cu_list);
15297
15298 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15299 NULL, xcalloc, xfree);
15300 make_cleanup (cleanup_htab, psyms_seen);
15301
15302 /* The list is already sorted, so we don't need to do additional
15303 work here. Also, the debug_types entries do not appear in
15304 all_comp_units, but only in their own hash table. */
15305 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15306 {
15307 struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
15308 struct partial_symtab *psymtab = per_cu->v.psymtab;
15309 gdb_byte val[8];
15310
15311 write_psymbols (symtab,
15312 psyms_seen,
15313 objfile->global_psymbols.list + psymtab->globals_offset,
15314 psymtab->n_global_syms, i,
15315 0);
15316 write_psymbols (symtab,
15317 psyms_seen,
15318 objfile->static_psymbols.list + psymtab->statics_offset,
15319 psymtab->n_static_syms, i,
15320 1);
15321
15322 add_address_entry (objfile, &addr_obstack, psymtab, i);
15323
15324 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15325 obstack_grow (&cu_list, val, 8);
15326 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15327 obstack_grow (&cu_list, val, 8);
15328 }
15329
15330 /* Write out the .debug_type entries, if any. */
15331 if (dwarf2_per_objfile->signatured_types)
15332 {
15333 struct signatured_type_index_data sig_data;
15334
15335 sig_data.objfile = objfile;
15336 sig_data.symtab = symtab;
15337 sig_data.types_list = &types_cu_list;
15338 sig_data.psyms_seen = psyms_seen;
15339 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15340 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15341 write_one_signatured_type, &sig_data);
15342 }
15343
15344 obstack_init (&constant_pool);
15345 make_cleanup_obstack_free (&constant_pool);
15346 obstack_init (&symtab_obstack);
15347 make_cleanup_obstack_free (&symtab_obstack);
15348 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15349
15350 obstack_init (&contents);
15351 make_cleanup_obstack_free (&contents);
15352 size_of_contents = 6 * sizeof (offset_type);
15353 total_len = size_of_contents;
15354
15355 /* The version number. */
15356 val = MAYBE_SWAP (3);
15357 obstack_grow (&contents, &val, sizeof (val));
15358
15359 /* The offset of the CU list from the start of the file. */
15360 val = MAYBE_SWAP (total_len);
15361 obstack_grow (&contents, &val, sizeof (val));
15362 total_len += obstack_object_size (&cu_list);
15363
15364 /* The offset of the types CU list from the start of the file. */
15365 val = MAYBE_SWAP (total_len);
15366 obstack_grow (&contents, &val, sizeof (val));
15367 total_len += obstack_object_size (&types_cu_list);
15368
15369 /* The offset of the address table from the start of the file. */
15370 val = MAYBE_SWAP (total_len);
15371 obstack_grow (&contents, &val, sizeof (val));
15372 total_len += obstack_object_size (&addr_obstack);
15373
15374 /* The offset of the symbol table from the start of the file. */
15375 val = MAYBE_SWAP (total_len);
15376 obstack_grow (&contents, &val, sizeof (val));
15377 total_len += obstack_object_size (&symtab_obstack);
15378
15379 /* The offset of the constant pool from the start of the file. */
15380 val = MAYBE_SWAP (total_len);
15381 obstack_grow (&contents, &val, sizeof (val));
15382 total_len += obstack_object_size (&constant_pool);
15383
15384 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15385
15386 write_obstack (out_file, &contents);
15387 write_obstack (out_file, &cu_list);
15388 write_obstack (out_file, &types_cu_list);
15389 write_obstack (out_file, &addr_obstack);
15390 write_obstack (out_file, &symtab_obstack);
15391 write_obstack (out_file, &constant_pool);
15392
15393 fclose (out_file);
15394
15395 /* We want to keep the file, so we set cleanup_filename to NULL
15396 here. See unlink_if_set. */
15397 cleanup_filename = NULL;
15398
15399 do_cleanups (cleanup);
15400 }
15401
15402 /* The mapped index file format is designed to be directly mmap()able
15403 on any architecture. In most cases, a datum is represented using a
15404 little-endian 32-bit integer value, called an offset_type. Big
15405 endian machines must byte-swap the values before using them.
15406 Exceptions to this rule are noted. The data is laid out such that
15407 alignment is always respected.
15408
15409 A mapped index consists of several sections.
15410
15411 1. The file header. This is a sequence of values, of offset_type
15412 unless otherwise noted:
15413
15414 [0] The version number, currently 3. Versions 1 and 2 are
15415 obsolete.
15416 [1] The offset, from the start of the file, of the CU list.
15417 [2] The offset, from the start of the file, of the types CU list.
15418 Note that this section can be empty, in which case this offset will
15419 be equal to the next offset.
15420 [3] The offset, from the start of the file, of the address section.
15421 [4] The offset, from the start of the file, of the symbol table.
15422 [5] The offset, from the start of the file, of the constant pool.
15423
15424 2. The CU list. This is a sequence of pairs of 64-bit
15425 little-endian values, sorted by the CU offset. The first element
15426 in each pair is the offset of a CU in the .debug_info section. The
15427 second element in each pair is the length of that CU. References
15428 to a CU elsewhere in the map are done using a CU index, which is
15429 just the 0-based index into this table. Note that if there are
15430 type CUs, then conceptually CUs and type CUs form a single list for
15431 the purposes of CU indices.
15432
15433 3. The types CU list. This is a sequence of triplets of 64-bit
15434 little-endian values. In a triplet, the first value is the CU
15435 offset, the second value is the type offset in the CU, and the
15436 third value is the type signature. The types CU list is not
15437 sorted.
15438
15439 4. The address section. The address section consists of a sequence
15440 of address entries. Each address entry has three elements.
15441 [0] The low address. This is a 64-bit little-endian value.
15442 [1] The high address. This is a 64-bit little-endian value.
15443 [2] The CU index. This is an offset_type value.
15444
15445 5. The symbol table. This is a hash table. The size of the hash
15446 table is always a power of 2. The initial hash and the step are
15447 currently defined by the `find_slot' function.
15448
15449 Each slot in the hash table consists of a pair of offset_type
15450 values. The first value is the offset of the symbol's name in the
15451 constant pool. The second value is the offset of the CU vector in
15452 the constant pool.
15453
15454 If both values are 0, then this slot in the hash table is empty.
15455 This is ok because while 0 is a valid constant pool index, it
15456 cannot be a valid index for both a string and a CU vector.
15457
15458 A string in the constant pool is stored as a \0-terminated string,
15459 as you'd expect.
15460
15461 A CU vector in the constant pool is a sequence of offset_type
15462 values. The first value is the number of CU indices in the vector.
15463 Each subsequent value is the index of a CU in the CU list. This
15464 element in the hash table is used to indicate which CUs define the
15465 symbol.
15466
15467 6. The constant pool. This is simply a bunch of bytes. It is
15468 organized so that alignment is correct: CU vectors are stored
15469 first, followed by strings. */
15470
15471 static void
15472 save_gdb_index_command (char *arg, int from_tty)
15473 {
15474 struct objfile *objfile;
15475
15476 if (!arg || !*arg)
15477 error (_("usage: save gdb-index DIRECTORY"));
15478
15479 ALL_OBJFILES (objfile)
15480 {
15481 struct stat st;
15482
15483 /* If the objfile does not correspond to an actual file, skip it. */
15484 if (stat (objfile->name, &st) < 0)
15485 continue;
15486
15487 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15488 if (dwarf2_per_objfile)
15489 {
15490 volatile struct gdb_exception except;
15491
15492 TRY_CATCH (except, RETURN_MASK_ERROR)
15493 {
15494 write_psymtabs_to_index (objfile, arg);
15495 }
15496 if (except.reason < 0)
15497 exception_fprintf (gdb_stderr, except,
15498 _("Error while writing index for `%s': "),
15499 objfile->name);
15500 }
15501 }
15502 }
15503
15504 \f
15505
15506 int dwarf2_always_disassemble;
15507
15508 static void
15509 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15510 struct cmd_list_element *c, const char *value)
15511 {
15512 fprintf_filtered (file, _("\
15513 Whether to always disassemble DWARF expressions is %s.\n"),
15514 value);
15515 }
15516
15517 void _initialize_dwarf2_read (void);
15518
15519 void
15520 _initialize_dwarf2_read (void)
15521 {
15522 struct cmd_list_element *c;
15523
15524 dwarf2_objfile_data_key
15525 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15526
15527 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15528 Set DWARF 2 specific variables.\n\
15529 Configure DWARF 2 variables such as the cache size"),
15530 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15531 0/*allow-unknown*/, &maintenance_set_cmdlist);
15532
15533 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15534 Show DWARF 2 specific variables\n\
15535 Show DWARF 2 variables such as the cache size"),
15536 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15537 0/*allow-unknown*/, &maintenance_show_cmdlist);
15538
15539 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15540 &dwarf2_max_cache_age, _("\
15541 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15542 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15543 A higher limit means that cached compilation units will be stored\n\
15544 in memory longer, and more total memory will be used. Zero disables\n\
15545 caching, which can slow down startup."),
15546 NULL,
15547 show_dwarf2_max_cache_age,
15548 &set_dwarf2_cmdlist,
15549 &show_dwarf2_cmdlist);
15550
15551 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15552 &dwarf2_always_disassemble, _("\
15553 Set whether `info address' always disassembles DWARF expressions."), _("\
15554 Show whether `info address' always disassembles DWARF expressions."), _("\
15555 When enabled, DWARF expressions are always printed in an assembly-like\n\
15556 syntax. When disabled, expressions will be printed in a more\n\
15557 conversational style, when possible."),
15558 NULL,
15559 show_dwarf2_always_disassemble,
15560 &set_dwarf2_cmdlist,
15561 &show_dwarf2_cmdlist);
15562
15563 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15564 Set debugging of the dwarf2 DIE reader."), _("\
15565 Show debugging of the dwarf2 DIE reader."), _("\
15566 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15567 The value is the maximum depth to print."),
15568 NULL,
15569 NULL,
15570 &setdebuglist, &showdebuglist);
15571
15572 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15573 _("\
15574 Save a .gdb-index file.\n\
15575 Usage: save gdb-index DIRECTORY"),
15576 &save_cmdlist);
15577 set_cmd_completer (c, filename_completer);
15578 }