Code cleanup: Split dwarf2_ranges_read to a callback
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76 #include <algorithm>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When non-zero, cross-check physname against demangler. */
93 static int check_physname = 0;
94
95 /* When non-zero, do not reject deprecated .gdb_index sections. */
96 static int use_deprecated_index_sections = 0;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
123 struct dwarf2_section_info
124 {
125 union
126 {
127 /* If this is a real section, the bfd section. */
128 asection *section;
129 /* If this is a virtual section, pointer to the containing ("real")
130 section. */
131 struct dwarf2_section_info *containing_section;
132 } s;
133 /* Pointer to section data, only valid if readin. */
134 const gdb_byte *buffer;
135 /* The size of the section, real or virtual. */
136 bfd_size_type size;
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
140 /* True if we have tried to read this section. */
141 char readin;
142 /* True if this is a virtual section, False otherwise.
143 This specifies which of s.section and s.containing_section to use. */
144 char is_virtual;
145 };
146
147 typedef struct dwarf2_section_info dwarf2_section_info_def;
148 DEF_VEC_O (dwarf2_section_info_def);
149
150 /* All offsets in the index are of this type. It must be
151 architecture-independent. */
152 typedef uint32_t offset_type;
153
154 DEF_VEC_I (offset_type);
155
156 /* Ensure only legit values are used. */
157 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
172 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180 struct mapped_index
181 {
182 /* Index data format version. */
183 int version;
184
185 /* The total length of the buffer. */
186 off_t total_size;
187
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
190
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
193
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
196
197 /* Size in slots, each slot is 2 offset_types. */
198 offset_type symbol_table_slots;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202 };
203
204 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205 DEF_VEC_P (dwarf2_per_cu_ptr);
206
207 struct tu_stats
208 {
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214 };
215
216 /* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
219 struct dwarf2_per_objfile
220 {
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
224 struct dwarf2_section_info loc;
225 struct dwarf2_section_info macinfo;
226 struct dwarf2_section_info macro;
227 struct dwarf2_section_info str;
228 struct dwarf2_section_info ranges;
229 struct dwarf2_section_info addr;
230 struct dwarf2_section_info frame;
231 struct dwarf2_section_info eh_frame;
232 struct dwarf2_section_info gdb_index;
233
234 VEC (dwarf2_section_info_def) *types;
235
236 /* Back link. */
237 struct objfile *objfile;
238
239 /* Table of all the compilation units. This is used to locate
240 the target compilation unit of a particular reference. */
241 struct dwarf2_per_cu_data **all_comp_units;
242
243 /* The number of compilation units in ALL_COMP_UNITS. */
244 int n_comp_units;
245
246 /* The number of .debug_types-related CUs. */
247 int n_type_units;
248
249 /* The number of elements allocated in all_type_units.
250 If there are skeleton-less TUs, we add them to all_type_units lazily. */
251 int n_allocated_type_units;
252
253 /* The .debug_types-related CUs (TUs).
254 This is stored in malloc space because we may realloc it. */
255 struct signatured_type **all_type_units;
256
257 /* Table of struct type_unit_group objects.
258 The hash key is the DW_AT_stmt_list value. */
259 htab_t type_unit_groups;
260
261 /* A table mapping .debug_types signatures to its signatured_type entry.
262 This is NULL if the .debug_types section hasn't been read in yet. */
263 htab_t signatured_types;
264
265 /* Type unit statistics, to see how well the scaling improvements
266 are doing. */
267 struct tu_stats tu_stats;
268
269 /* A chain of compilation units that are currently read in, so that
270 they can be freed later. */
271 struct dwarf2_per_cu_data *read_in_chain;
272
273 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
274 This is NULL if the table hasn't been allocated yet. */
275 htab_t dwo_files;
276
277 /* Non-zero if we've check for whether there is a DWP file. */
278 int dwp_checked;
279
280 /* The DWP file if there is one, or NULL. */
281 struct dwp_file *dwp_file;
282
283 /* The shared '.dwz' file, if one exists. This is used when the
284 original data was compressed using 'dwz -m'. */
285 struct dwz_file *dwz_file;
286
287 /* A flag indicating wether this objfile has a section loaded at a
288 VMA of 0. */
289 int has_section_at_zero;
290
291 /* True if we are using the mapped index,
292 or we are faking it for OBJF_READNOW's sake. */
293 unsigned char using_index;
294
295 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
296 struct mapped_index *index_table;
297
298 /* When using index_table, this keeps track of all quick_file_names entries.
299 TUs typically share line table entries with a CU, so we maintain a
300 separate table of all line table entries to support the sharing.
301 Note that while there can be way more TUs than CUs, we've already
302 sorted all the TUs into "type unit groups", grouped by their
303 DW_AT_stmt_list value. Therefore the only sharing done here is with a
304 CU and its associated TU group if there is one. */
305 htab_t quick_file_names_table;
306
307 /* Set during partial symbol reading, to prevent queueing of full
308 symbols. */
309 int reading_partial_symbols;
310
311 /* Table mapping type DIEs to their struct type *.
312 This is NULL if not allocated yet.
313 The mapping is done via (CU/TU + DIE offset) -> type. */
314 htab_t die_type_hash;
315
316 /* The CUs we recently read. */
317 VEC (dwarf2_per_cu_ptr) *just_read_cus;
318
319 /* Table containing line_header indexed by offset and offset_in_dwz. */
320 htab_t line_header_hash;
321 };
322
323 static struct dwarf2_per_objfile *dwarf2_per_objfile;
324
325 /* Default names of the debugging sections. */
326
327 /* Note that if the debugging section has been compressed, it might
328 have a name like .zdebug_info. */
329
330 static const struct dwarf2_debug_sections dwarf2_elf_names =
331 {
332 { ".debug_info", ".zdebug_info" },
333 { ".debug_abbrev", ".zdebug_abbrev" },
334 { ".debug_line", ".zdebug_line" },
335 { ".debug_loc", ".zdebug_loc" },
336 { ".debug_macinfo", ".zdebug_macinfo" },
337 { ".debug_macro", ".zdebug_macro" },
338 { ".debug_str", ".zdebug_str" },
339 { ".debug_ranges", ".zdebug_ranges" },
340 { ".debug_types", ".zdebug_types" },
341 { ".debug_addr", ".zdebug_addr" },
342 { ".debug_frame", ".zdebug_frame" },
343 { ".eh_frame", NULL },
344 { ".gdb_index", ".zgdb_index" },
345 23
346 };
347
348 /* List of DWO/DWP sections. */
349
350 static const struct dwop_section_names
351 {
352 struct dwarf2_section_names abbrev_dwo;
353 struct dwarf2_section_names info_dwo;
354 struct dwarf2_section_names line_dwo;
355 struct dwarf2_section_names loc_dwo;
356 struct dwarf2_section_names macinfo_dwo;
357 struct dwarf2_section_names macro_dwo;
358 struct dwarf2_section_names str_dwo;
359 struct dwarf2_section_names str_offsets_dwo;
360 struct dwarf2_section_names types_dwo;
361 struct dwarf2_section_names cu_index;
362 struct dwarf2_section_names tu_index;
363 }
364 dwop_section_names =
365 {
366 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
367 { ".debug_info.dwo", ".zdebug_info.dwo" },
368 { ".debug_line.dwo", ".zdebug_line.dwo" },
369 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
370 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
371 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
372 { ".debug_str.dwo", ".zdebug_str.dwo" },
373 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
374 { ".debug_types.dwo", ".zdebug_types.dwo" },
375 { ".debug_cu_index", ".zdebug_cu_index" },
376 { ".debug_tu_index", ".zdebug_tu_index" },
377 };
378
379 /* local data types */
380
381 /* The data in a compilation unit header, after target2host
382 translation, looks like this. */
383 struct comp_unit_head
384 {
385 unsigned int length;
386 short version;
387 unsigned char addr_size;
388 unsigned char signed_addr_p;
389 sect_offset abbrev_offset;
390
391 /* Size of file offsets; either 4 or 8. */
392 unsigned int offset_size;
393
394 /* Size of the length field; either 4 or 12. */
395 unsigned int initial_length_size;
396
397 /* Offset to the first byte of this compilation unit header in the
398 .debug_info section, for resolving relative reference dies. */
399 sect_offset offset;
400
401 /* Offset to first die in this cu from the start of the cu.
402 This will be the first byte following the compilation unit header. */
403 cu_offset first_die_offset;
404 };
405
406 /* Type used for delaying computation of method physnames.
407 See comments for compute_delayed_physnames. */
408 struct delayed_method_info
409 {
410 /* The type to which the method is attached, i.e., its parent class. */
411 struct type *type;
412
413 /* The index of the method in the type's function fieldlists. */
414 int fnfield_index;
415
416 /* The index of the method in the fieldlist. */
417 int index;
418
419 /* The name of the DIE. */
420 const char *name;
421
422 /* The DIE associated with this method. */
423 struct die_info *die;
424 };
425
426 typedef struct delayed_method_info delayed_method_info;
427 DEF_VEC_O (delayed_method_info);
428
429 /* Internal state when decoding a particular compilation unit. */
430 struct dwarf2_cu
431 {
432 /* The objfile containing this compilation unit. */
433 struct objfile *objfile;
434
435 /* The header of the compilation unit. */
436 struct comp_unit_head header;
437
438 /* Base address of this compilation unit. */
439 CORE_ADDR base_address;
440
441 /* Non-zero if base_address has been set. */
442 int base_known;
443
444 /* The language we are debugging. */
445 enum language language;
446 const struct language_defn *language_defn;
447
448 const char *producer;
449
450 /* The generic symbol table building routines have separate lists for
451 file scope symbols and all all other scopes (local scopes). So
452 we need to select the right one to pass to add_symbol_to_list().
453 We do it by keeping a pointer to the correct list in list_in_scope.
454
455 FIXME: The original dwarf code just treated the file scope as the
456 first local scope, and all other local scopes as nested local
457 scopes, and worked fine. Check to see if we really need to
458 distinguish these in buildsym.c. */
459 struct pending **list_in_scope;
460
461 /* The abbrev table for this CU.
462 Normally this points to the abbrev table in the objfile.
463 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
464 struct abbrev_table *abbrev_table;
465
466 /* Hash table holding all the loaded partial DIEs
467 with partial_die->offset.SECT_OFF as hash. */
468 htab_t partial_dies;
469
470 /* Storage for things with the same lifetime as this read-in compilation
471 unit, including partial DIEs. */
472 struct obstack comp_unit_obstack;
473
474 /* When multiple dwarf2_cu structures are living in memory, this field
475 chains them all together, so that they can be released efficiently.
476 We will probably also want a generation counter so that most-recently-used
477 compilation units are cached... */
478 struct dwarf2_per_cu_data *read_in_chain;
479
480 /* Backlink to our per_cu entry. */
481 struct dwarf2_per_cu_data *per_cu;
482
483 /* How many compilation units ago was this CU last referenced? */
484 int last_used;
485
486 /* A hash table of DIE cu_offset for following references with
487 die_info->offset.sect_off as hash. */
488 htab_t die_hash;
489
490 /* Full DIEs if read in. */
491 struct die_info *dies;
492
493 /* A set of pointers to dwarf2_per_cu_data objects for compilation
494 units referenced by this one. Only set during full symbol processing;
495 partial symbol tables do not have dependencies. */
496 htab_t dependencies;
497
498 /* Header data from the line table, during full symbol processing. */
499 struct line_header *line_header;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 VEC (delayed_method_info) *method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base;
535
536 /* Mark used when releasing cached dies. */
537 unsigned int mark : 1;
538
539 /* This CU references .debug_loc. See the symtab->locations_valid field.
540 This test is imperfect as there may exist optimized debug code not using
541 any location list and still facing inlining issues if handled as
542 unoptimized code. For a future better test see GCC PR other/32998. */
543 unsigned int has_loclist : 1;
544
545 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
546 if all the producer_is_* fields are valid. This information is cached
547 because profiling CU expansion showed excessive time spent in
548 producer_is_gxx_lt_4_6. */
549 unsigned int checked_producer : 1;
550 unsigned int producer_is_gxx_lt_4_6 : 1;
551 unsigned int producer_is_gcc_lt_4_3 : 1;
552 unsigned int producer_is_icc : 1;
553
554 /* When set, the file that we're processing is known to have
555 debugging info for C++ namespaces. GCC 3.3.x did not produce
556 this information, but later versions do. */
557
558 unsigned int processing_has_namespace_info : 1;
559 };
560
561 /* Persistent data held for a compilation unit, even when not
562 processing it. We put a pointer to this structure in the
563 read_symtab_private field of the psymtab. */
564
565 struct dwarf2_per_cu_data
566 {
567 /* The start offset and length of this compilation unit.
568 NOTE: Unlike comp_unit_head.length, this length includes
569 initial_length_size.
570 If the DIE refers to a DWO file, this is always of the original die,
571 not the DWO file. */
572 sect_offset offset;
573 unsigned int length;
574
575 /* Flag indicating this compilation unit will be read in before
576 any of the current compilation units are processed. */
577 unsigned int queued : 1;
578
579 /* This flag will be set when reading partial DIEs if we need to load
580 absolutely all DIEs for this compilation unit, instead of just the ones
581 we think are interesting. It gets set if we look for a DIE in the
582 hash table and don't find it. */
583 unsigned int load_all_dies : 1;
584
585 /* Non-zero if this CU is from .debug_types.
586 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
587 this is non-zero. */
588 unsigned int is_debug_types : 1;
589
590 /* Non-zero if this CU is from the .dwz file. */
591 unsigned int is_dwz : 1;
592
593 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
594 This flag is only valid if is_debug_types is true.
595 We can't read a CU directly from a DWO file: There are required
596 attributes in the stub. */
597 unsigned int reading_dwo_directly : 1;
598
599 /* Non-zero if the TU has been read.
600 This is used to assist the "Stay in DWO Optimization" for Fission:
601 When reading a DWO, it's faster to read TUs from the DWO instead of
602 fetching them from random other DWOs (due to comdat folding).
603 If the TU has already been read, the optimization is unnecessary
604 (and unwise - we don't want to change where gdb thinks the TU lives
605 "midflight").
606 This flag is only valid if is_debug_types is true. */
607 unsigned int tu_read : 1;
608
609 /* The section this CU/TU lives in.
610 If the DIE refers to a DWO file, this is always the original die,
611 not the DWO file. */
612 struct dwarf2_section_info *section;
613
614 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
615 of the CU cache it gets reset to NULL again. This is left as NULL for
616 dummy CUs (a CU header, but nothing else). */
617 struct dwarf2_cu *cu;
618
619 /* The corresponding objfile.
620 Normally we can get the objfile from dwarf2_per_objfile.
621 However we can enter this file with just a "per_cu" handle. */
622 struct objfile *objfile;
623
624 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
625 is active. Otherwise, the 'psymtab' field is active. */
626 union
627 {
628 /* The partial symbol table associated with this compilation unit,
629 or NULL for unread partial units. */
630 struct partial_symtab *psymtab;
631
632 /* Data needed by the "quick" functions. */
633 struct dwarf2_per_cu_quick_data *quick;
634 } v;
635
636 /* The CUs we import using DW_TAG_imported_unit. This is filled in
637 while reading psymtabs, used to compute the psymtab dependencies,
638 and then cleared. Then it is filled in again while reading full
639 symbols, and only deleted when the objfile is destroyed.
640
641 This is also used to work around a difference between the way gold
642 generates .gdb_index version <=7 and the way gdb does. Arguably this
643 is a gold bug. For symbols coming from TUs, gold records in the index
644 the CU that includes the TU instead of the TU itself. This breaks
645 dw2_lookup_symbol: It assumes that if the index says symbol X lives
646 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
647 will find X. Alas TUs live in their own symtab, so after expanding CU Y
648 we need to look in TU Z to find X. Fortunately, this is akin to
649 DW_TAG_imported_unit, so we just use the same mechanism: For
650 .gdb_index version <=7 this also records the TUs that the CU referred
651 to. Concurrently with this change gdb was modified to emit version 8
652 indices so we only pay a price for gold generated indices.
653 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
654 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
655 };
656
657 /* Entry in the signatured_types hash table. */
658
659 struct signatured_type
660 {
661 /* The "per_cu" object of this type.
662 This struct is used iff per_cu.is_debug_types.
663 N.B.: This is the first member so that it's easy to convert pointers
664 between them. */
665 struct dwarf2_per_cu_data per_cu;
666
667 /* The type's signature. */
668 ULONGEST signature;
669
670 /* Offset in the TU of the type's DIE, as read from the TU header.
671 If this TU is a DWO stub and the definition lives in a DWO file
672 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
673 cu_offset type_offset_in_tu;
674
675 /* Offset in the section of the type's DIE.
676 If the definition lives in a DWO file, this is the offset in the
677 .debug_types.dwo section.
678 The value is zero until the actual value is known.
679 Zero is otherwise not a valid section offset. */
680 sect_offset type_offset_in_section;
681
682 /* Type units are grouped by their DW_AT_stmt_list entry so that they
683 can share them. This points to the containing symtab. */
684 struct type_unit_group *type_unit_group;
685
686 /* The type.
687 The first time we encounter this type we fully read it in and install it
688 in the symbol tables. Subsequent times we only need the type. */
689 struct type *type;
690
691 /* Containing DWO unit.
692 This field is valid iff per_cu.reading_dwo_directly. */
693 struct dwo_unit *dwo_unit;
694 };
695
696 typedef struct signatured_type *sig_type_ptr;
697 DEF_VEC_P (sig_type_ptr);
698
699 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
700 This includes type_unit_group and quick_file_names. */
701
702 struct stmt_list_hash
703 {
704 /* The DWO unit this table is from or NULL if there is none. */
705 struct dwo_unit *dwo_unit;
706
707 /* Offset in .debug_line or .debug_line.dwo. */
708 sect_offset line_offset;
709 };
710
711 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
712 an object of this type. */
713
714 struct type_unit_group
715 {
716 /* dwarf2read.c's main "handle" on a TU symtab.
717 To simplify things we create an artificial CU that "includes" all the
718 type units using this stmt_list so that the rest of the code still has
719 a "per_cu" handle on the symtab.
720 This PER_CU is recognized by having no section. */
721 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The TUs that share this DW_AT_stmt_list entry.
725 This is added to while parsing type units to build partial symtabs,
726 and is deleted afterwards and not used again. */
727 VEC (sig_type_ptr) *tus;
728
729 /* The compunit symtab.
730 Type units in a group needn't all be defined in the same source file,
731 so we create an essentially anonymous symtab as the compunit symtab. */
732 struct compunit_symtab *compunit_symtab;
733
734 /* The data used to construct the hash key. */
735 struct stmt_list_hash hash;
736
737 /* The number of symtabs from the line header.
738 The value here must match line_header.num_file_names. */
739 unsigned int num_symtabs;
740
741 /* The symbol tables for this TU (obtained from the files listed in
742 DW_AT_stmt_list).
743 WARNING: The order of entries here must match the order of entries
744 in the line header. After the first TU using this type_unit_group, the
745 line header for the subsequent TUs is recreated from this. This is done
746 because we need to use the same symtabs for each TU using the same
747 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
748 there's no guarantee the line header doesn't have duplicate entries. */
749 struct symtab **symtabs;
750 };
751
752 /* These sections are what may appear in a (real or virtual) DWO file. */
753
754 struct dwo_sections
755 {
756 struct dwarf2_section_info abbrev;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str;
762 struct dwarf2_section_info str_offsets;
763 /* In the case of a virtual DWO file, these two are unused. */
764 struct dwarf2_section_info info;
765 VEC (dwarf2_section_info_def) *types;
766 };
767
768 /* CUs/TUs in DWP/DWO files. */
769
770 struct dwo_unit
771 {
772 /* Backlink to the containing struct dwo_file. */
773 struct dwo_file *dwo_file;
774
775 /* The "id" that distinguishes this CU/TU.
776 .debug_info calls this "dwo_id", .debug_types calls this "signature".
777 Since signatures came first, we stick with it for consistency. */
778 ULONGEST signature;
779
780 /* The section this CU/TU lives in, in the DWO file. */
781 struct dwarf2_section_info *section;
782
783 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
784 sect_offset offset;
785 unsigned int length;
786
787 /* For types, offset in the type's DIE of the type defined by this TU. */
788 cu_offset type_offset_in_tu;
789 };
790
791 /* include/dwarf2.h defines the DWP section codes.
792 It defines a max value but it doesn't define a min value, which we
793 use for error checking, so provide one. */
794
795 enum dwp_v2_section_ids
796 {
797 DW_SECT_MIN = 1
798 };
799
800 /* Data for one DWO file.
801
802 This includes virtual DWO files (a virtual DWO file is a DWO file as it
803 appears in a DWP file). DWP files don't really have DWO files per se -
804 comdat folding of types "loses" the DWO file they came from, and from
805 a high level view DWP files appear to contain a mass of random types.
806 However, to maintain consistency with the non-DWP case we pretend DWP
807 files contain virtual DWO files, and we assign each TU with one virtual
808 DWO file (generally based on the line and abbrev section offsets -
809 a heuristic that seems to work in practice). */
810
811 struct dwo_file
812 {
813 /* The DW_AT_GNU_dwo_name attribute.
814 For virtual DWO files the name is constructed from the section offsets
815 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
816 from related CU+TUs. */
817 const char *dwo_name;
818
819 /* The DW_AT_comp_dir attribute. */
820 const char *comp_dir;
821
822 /* The bfd, when the file is open. Otherwise this is NULL.
823 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
824 bfd *dbfd;
825
826 /* The sections that make up this DWO file.
827 Remember that for virtual DWO files in DWP V2, these are virtual
828 sections (for lack of a better name). */
829 struct dwo_sections sections;
830
831 /* The CU in the file.
832 We only support one because having more than one requires hacking the
833 dwo_name of each to match, which is highly unlikely to happen.
834 Doing this means all TUs can share comp_dir: We also assume that
835 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
836 struct dwo_unit *cu;
837
838 /* Table of TUs in the file.
839 Each element is a struct dwo_unit. */
840 htab_t tus;
841 };
842
843 /* These sections are what may appear in a DWP file. */
844
845 struct dwp_sections
846 {
847 /* These are used by both DWP version 1 and 2. */
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info cu_index;
850 struct dwarf2_section_info tu_index;
851
852 /* These are only used by DWP version 2 files.
853 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
854 sections are referenced by section number, and are not recorded here.
855 In DWP version 2 there is at most one copy of all these sections, each
856 section being (effectively) comprised of the concatenation of all of the
857 individual sections that exist in the version 1 format.
858 To keep the code simple we treat each of these concatenated pieces as a
859 section itself (a virtual section?). */
860 struct dwarf2_section_info abbrev;
861 struct dwarf2_section_info info;
862 struct dwarf2_section_info line;
863 struct dwarf2_section_info loc;
864 struct dwarf2_section_info macinfo;
865 struct dwarf2_section_info macro;
866 struct dwarf2_section_info str_offsets;
867 struct dwarf2_section_info types;
868 };
869
870 /* These sections are what may appear in a virtual DWO file in DWP version 1.
871 A virtual DWO file is a DWO file as it appears in a DWP file. */
872
873 struct virtual_v1_dwo_sections
874 {
875 struct dwarf2_section_info abbrev;
876 struct dwarf2_section_info line;
877 struct dwarf2_section_info loc;
878 struct dwarf2_section_info macinfo;
879 struct dwarf2_section_info macro;
880 struct dwarf2_section_info str_offsets;
881 /* Each DWP hash table entry records one CU or one TU.
882 That is recorded here, and copied to dwo_unit.section. */
883 struct dwarf2_section_info info_or_types;
884 };
885
886 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
887 In version 2, the sections of the DWO files are concatenated together
888 and stored in one section of that name. Thus each ELF section contains
889 several "virtual" sections. */
890
891 struct virtual_v2_dwo_sections
892 {
893 bfd_size_type abbrev_offset;
894 bfd_size_type abbrev_size;
895
896 bfd_size_type line_offset;
897 bfd_size_type line_size;
898
899 bfd_size_type loc_offset;
900 bfd_size_type loc_size;
901
902 bfd_size_type macinfo_offset;
903 bfd_size_type macinfo_size;
904
905 bfd_size_type macro_offset;
906 bfd_size_type macro_size;
907
908 bfd_size_type str_offsets_offset;
909 bfd_size_type str_offsets_size;
910
911 /* Each DWP hash table entry records one CU or one TU.
912 That is recorded here, and copied to dwo_unit.section. */
913 bfd_size_type info_or_types_offset;
914 bfd_size_type info_or_types_size;
915 };
916
917 /* Contents of DWP hash tables. */
918
919 struct dwp_hash_table
920 {
921 uint32_t version, nr_columns;
922 uint32_t nr_units, nr_slots;
923 const gdb_byte *hash_table, *unit_table;
924 union
925 {
926 struct
927 {
928 const gdb_byte *indices;
929 } v1;
930 struct
931 {
932 /* This is indexed by column number and gives the id of the section
933 in that column. */
934 #define MAX_NR_V2_DWO_SECTIONS \
935 (1 /* .debug_info or .debug_types */ \
936 + 1 /* .debug_abbrev */ \
937 + 1 /* .debug_line */ \
938 + 1 /* .debug_loc */ \
939 + 1 /* .debug_str_offsets */ \
940 + 1 /* .debug_macro or .debug_macinfo */)
941 int section_ids[MAX_NR_V2_DWO_SECTIONS];
942 const gdb_byte *offsets;
943 const gdb_byte *sizes;
944 } v2;
945 } section_pool;
946 };
947
948 /* Data for one DWP file. */
949
950 struct dwp_file
951 {
952 /* Name of the file. */
953 const char *name;
954
955 /* File format version. */
956 int version;
957
958 /* The bfd. */
959 bfd *dbfd;
960
961 /* Section info for this file. */
962 struct dwp_sections sections;
963
964 /* Table of CUs in the file. */
965 const struct dwp_hash_table *cus;
966
967 /* Table of TUs in the file. */
968 const struct dwp_hash_table *tus;
969
970 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
971 htab_t loaded_cus;
972 htab_t loaded_tus;
973
974 /* Table to map ELF section numbers to their sections.
975 This is only needed for the DWP V1 file format. */
976 unsigned int num_sections;
977 asection **elf_sections;
978 };
979
980 /* This represents a '.dwz' file. */
981
982 struct dwz_file
983 {
984 /* A dwz file can only contain a few sections. */
985 struct dwarf2_section_info abbrev;
986 struct dwarf2_section_info info;
987 struct dwarf2_section_info str;
988 struct dwarf2_section_info line;
989 struct dwarf2_section_info macro;
990 struct dwarf2_section_info gdb_index;
991
992 /* The dwz's BFD. */
993 bfd *dwz_bfd;
994 };
995
996 /* Struct used to pass misc. parameters to read_die_and_children, et
997 al. which are used for both .debug_info and .debug_types dies.
998 All parameters here are unchanging for the life of the call. This
999 struct exists to abstract away the constant parameters of die reading. */
1000
1001 struct die_reader_specs
1002 {
1003 /* The bfd of die_section. */
1004 bfd* abfd;
1005
1006 /* The CU of the DIE we are parsing. */
1007 struct dwarf2_cu *cu;
1008
1009 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1010 struct dwo_file *dwo_file;
1011
1012 /* The section the die comes from.
1013 This is either .debug_info or .debug_types, or the .dwo variants. */
1014 struct dwarf2_section_info *die_section;
1015
1016 /* die_section->buffer. */
1017 const gdb_byte *buffer;
1018
1019 /* The end of the buffer. */
1020 const gdb_byte *buffer_end;
1021
1022 /* The value of the DW_AT_comp_dir attribute. */
1023 const char *comp_dir;
1024 };
1025
1026 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1027 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1028 const gdb_byte *info_ptr,
1029 struct die_info *comp_unit_die,
1030 int has_children,
1031 void *data);
1032
1033 struct file_entry
1034 {
1035 const char *name;
1036 unsigned int dir_index;
1037 unsigned int mod_time;
1038 unsigned int length;
1039 /* Non-zero if referenced by the Line Number Program. */
1040 int included_p;
1041 /* The associated symbol table, if any. */
1042 struct symtab *symtab;
1043 };
1044
1045 /* The line number information for a compilation unit (found in the
1046 .debug_line section) begins with a "statement program header",
1047 which contains the following information. */
1048 struct line_header
1049 {
1050 /* Offset of line number information in .debug_line section. */
1051 sect_offset offset;
1052
1053 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1054 unsigned offset_in_dwz : 1;
1055
1056 unsigned int total_length;
1057 unsigned short version;
1058 unsigned int header_length;
1059 unsigned char minimum_instruction_length;
1060 unsigned char maximum_ops_per_instruction;
1061 unsigned char default_is_stmt;
1062 int line_base;
1063 unsigned char line_range;
1064 unsigned char opcode_base;
1065
1066 /* standard_opcode_lengths[i] is the number of operands for the
1067 standard opcode whose value is i. This means that
1068 standard_opcode_lengths[0] is unused, and the last meaningful
1069 element is standard_opcode_lengths[opcode_base - 1]. */
1070 unsigned char *standard_opcode_lengths;
1071
1072 /* The include_directories table. NOTE! These strings are not
1073 allocated with xmalloc; instead, they are pointers into
1074 debug_line_buffer. If you try to free them, `free' will get
1075 indigestion. */
1076 unsigned int num_include_dirs, include_dirs_size;
1077 const char **include_dirs;
1078
1079 /* The file_names table. NOTE! These strings are not allocated
1080 with xmalloc; instead, they are pointers into debug_line_buffer.
1081 Don't try to free them directly. */
1082 unsigned int num_file_names, file_names_size;
1083 struct file_entry *file_names;
1084
1085 /* The start and end of the statement program following this
1086 header. These point into dwarf2_per_objfile->line_buffer. */
1087 const gdb_byte *statement_program_start, *statement_program_end;
1088 };
1089
1090 /* When we construct a partial symbol table entry we only
1091 need this much information. */
1092 struct partial_die_info
1093 {
1094 /* Offset of this DIE. */
1095 sect_offset offset;
1096
1097 /* DWARF-2 tag for this DIE. */
1098 ENUM_BITFIELD(dwarf_tag) tag : 16;
1099
1100 /* Assorted flags describing the data found in this DIE. */
1101 unsigned int has_children : 1;
1102 unsigned int is_external : 1;
1103 unsigned int is_declaration : 1;
1104 unsigned int has_type : 1;
1105 unsigned int has_specification : 1;
1106 unsigned int has_pc_info : 1;
1107 unsigned int may_be_inlined : 1;
1108
1109 /* This DIE has been marked DW_AT_main_subprogram. */
1110 unsigned int main_subprogram : 1;
1111
1112 /* Flag set if the SCOPE field of this structure has been
1113 computed. */
1114 unsigned int scope_set : 1;
1115
1116 /* Flag set if the DIE has a byte_size attribute. */
1117 unsigned int has_byte_size : 1;
1118
1119 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1120 unsigned int has_const_value : 1;
1121
1122 /* Flag set if any of the DIE's children are template arguments. */
1123 unsigned int has_template_arguments : 1;
1124
1125 /* Flag set if fixup_partial_die has been called on this die. */
1126 unsigned int fixup_called : 1;
1127
1128 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1129 unsigned int is_dwz : 1;
1130
1131 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1132 unsigned int spec_is_dwz : 1;
1133
1134 /* The name of this DIE. Normally the value of DW_AT_name, but
1135 sometimes a default name for unnamed DIEs. */
1136 const char *name;
1137
1138 /* The linkage name, if present. */
1139 const char *linkage_name;
1140
1141 /* The scope to prepend to our children. This is generally
1142 allocated on the comp_unit_obstack, so will disappear
1143 when this compilation unit leaves the cache. */
1144 const char *scope;
1145
1146 /* Some data associated with the partial DIE. The tag determines
1147 which field is live. */
1148 union
1149 {
1150 /* The location description associated with this DIE, if any. */
1151 struct dwarf_block *locdesc;
1152 /* The offset of an import, for DW_TAG_imported_unit. */
1153 sect_offset offset;
1154 } d;
1155
1156 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1157 CORE_ADDR lowpc;
1158 CORE_ADDR highpc;
1159
1160 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1161 DW_AT_sibling, if any. */
1162 /* NOTE: This member isn't strictly necessary, read_partial_die could
1163 return DW_AT_sibling values to its caller load_partial_dies. */
1164 const gdb_byte *sibling;
1165
1166 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1167 DW_AT_specification (or DW_AT_abstract_origin or
1168 DW_AT_extension). */
1169 sect_offset spec_offset;
1170
1171 /* Pointers to this DIE's parent, first child, and next sibling,
1172 if any. */
1173 struct partial_die_info *die_parent, *die_child, *die_sibling;
1174 };
1175
1176 /* This data structure holds the information of an abbrev. */
1177 struct abbrev_info
1178 {
1179 unsigned int number; /* number identifying abbrev */
1180 enum dwarf_tag tag; /* dwarf tag */
1181 unsigned short has_children; /* boolean */
1182 unsigned short num_attrs; /* number of attributes */
1183 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1184 struct abbrev_info *next; /* next in chain */
1185 };
1186
1187 struct attr_abbrev
1188 {
1189 ENUM_BITFIELD(dwarf_attribute) name : 16;
1190 ENUM_BITFIELD(dwarf_form) form : 16;
1191 };
1192
1193 /* Size of abbrev_table.abbrev_hash_table. */
1194 #define ABBREV_HASH_SIZE 121
1195
1196 /* Top level data structure to contain an abbreviation table. */
1197
1198 struct abbrev_table
1199 {
1200 /* Where the abbrev table came from.
1201 This is used as a sanity check when the table is used. */
1202 sect_offset offset;
1203
1204 /* Storage for the abbrev table. */
1205 struct obstack abbrev_obstack;
1206
1207 /* Hash table of abbrevs.
1208 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1209 It could be statically allocated, but the previous code didn't so we
1210 don't either. */
1211 struct abbrev_info **abbrevs;
1212 };
1213
1214 /* Attributes have a name and a value. */
1215 struct attribute
1216 {
1217 ENUM_BITFIELD(dwarf_attribute) name : 16;
1218 ENUM_BITFIELD(dwarf_form) form : 15;
1219
1220 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1221 field should be in u.str (existing only for DW_STRING) but it is kept
1222 here for better struct attribute alignment. */
1223 unsigned int string_is_canonical : 1;
1224
1225 union
1226 {
1227 const char *str;
1228 struct dwarf_block *blk;
1229 ULONGEST unsnd;
1230 LONGEST snd;
1231 CORE_ADDR addr;
1232 ULONGEST signature;
1233 }
1234 u;
1235 };
1236
1237 /* This data structure holds a complete die structure. */
1238 struct die_info
1239 {
1240 /* DWARF-2 tag for this DIE. */
1241 ENUM_BITFIELD(dwarf_tag) tag : 16;
1242
1243 /* Number of attributes */
1244 unsigned char num_attrs;
1245
1246 /* True if we're presently building the full type name for the
1247 type derived from this DIE. */
1248 unsigned char building_fullname : 1;
1249
1250 /* True if this die is in process. PR 16581. */
1251 unsigned char in_process : 1;
1252
1253 /* Abbrev number */
1254 unsigned int abbrev;
1255
1256 /* Offset in .debug_info or .debug_types section. */
1257 sect_offset offset;
1258
1259 /* The dies in a compilation unit form an n-ary tree. PARENT
1260 points to this die's parent; CHILD points to the first child of
1261 this node; and all the children of a given node are chained
1262 together via their SIBLING fields. */
1263 struct die_info *child; /* Its first child, if any. */
1264 struct die_info *sibling; /* Its next sibling, if any. */
1265 struct die_info *parent; /* Its parent, if any. */
1266
1267 /* An array of attributes, with NUM_ATTRS elements. There may be
1268 zero, but it's not common and zero-sized arrays are not
1269 sufficiently portable C. */
1270 struct attribute attrs[1];
1271 };
1272
1273 /* Get at parts of an attribute structure. */
1274
1275 #define DW_STRING(attr) ((attr)->u.str)
1276 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1277 #define DW_UNSND(attr) ((attr)->u.unsnd)
1278 #define DW_BLOCK(attr) ((attr)->u.blk)
1279 #define DW_SND(attr) ((attr)->u.snd)
1280 #define DW_ADDR(attr) ((attr)->u.addr)
1281 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1282
1283 /* Blocks are a bunch of untyped bytes. */
1284 struct dwarf_block
1285 {
1286 size_t size;
1287
1288 /* Valid only if SIZE is not zero. */
1289 const gdb_byte *data;
1290 };
1291
1292 #ifndef ATTR_ALLOC_CHUNK
1293 #define ATTR_ALLOC_CHUNK 4
1294 #endif
1295
1296 /* Allocate fields for structs, unions and enums in this size. */
1297 #ifndef DW_FIELD_ALLOC_CHUNK
1298 #define DW_FIELD_ALLOC_CHUNK 4
1299 #endif
1300
1301 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1302 but this would require a corresponding change in unpack_field_as_long
1303 and friends. */
1304 static int bits_per_byte = 8;
1305
1306 struct nextfield
1307 {
1308 struct nextfield *next;
1309 int accessibility;
1310 int virtuality;
1311 struct field field;
1312 };
1313
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 };
1319
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 };
1326
1327 struct typedef_field_list
1328 {
1329 struct typedef_field field;
1330 struct typedef_field_list *next;
1331 };
1332
1333 /* The routines that read and process dies for a C struct or C++ class
1334 pass lists of data member fields and lists of member function fields
1335 in an instance of a field_info structure, as defined below. */
1336 struct field_info
1337 {
1338 /* List of data member and baseclasses fields. */
1339 struct nextfield *fields, *baseclasses;
1340
1341 /* Number of fields (including baseclasses). */
1342 int nfields;
1343
1344 /* Number of baseclasses. */
1345 int nbaseclasses;
1346
1347 /* Set if the accesibility of one of the fields is not public. */
1348 int non_public_fields;
1349
1350 /* Member function fields array, entries are allocated in the order they
1351 are encountered in the object file. */
1352 struct nextfnfield *fnfields;
1353
1354 /* Member function fieldlist array, contains name of possibly overloaded
1355 member function, number of overloaded member functions and a pointer
1356 to the head of the member function field chain. */
1357 struct fnfieldlist *fnfieldlists;
1358
1359 /* Number of entries in the fnfieldlists array. */
1360 int nfnfields;
1361
1362 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1363 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1364 struct typedef_field_list *typedef_field_list;
1365 unsigned typedef_field_list_count;
1366 };
1367
1368 /* One item on the queue of compilation units to read in full symbols
1369 for. */
1370 struct dwarf2_queue_item
1371 {
1372 struct dwarf2_per_cu_data *per_cu;
1373 enum language pretend_language;
1374 struct dwarf2_queue_item *next;
1375 };
1376
1377 /* The current queue. */
1378 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1379
1380 /* Loaded secondary compilation units are kept in memory until they
1381 have not been referenced for the processing of this many
1382 compilation units. Set this to zero to disable caching. Cache
1383 sizes of up to at least twenty will improve startup time for
1384 typical inter-CU-reference binaries, at an obvious memory cost. */
1385 static int dwarf_max_cache_age = 5;
1386 static void
1387 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1388 struct cmd_list_element *c, const char *value)
1389 {
1390 fprintf_filtered (file, _("The upper bound on the age of cached "
1391 "DWARF compilation units is %s.\n"),
1392 value);
1393 }
1394 \f
1395 /* local function prototypes */
1396
1397 static const char *get_section_name (const struct dwarf2_section_info *);
1398
1399 static const char *get_section_file_name (const struct dwarf2_section_info *);
1400
1401 static void dwarf2_locate_sections (bfd *, asection *, void *);
1402
1403 static void dwarf2_find_base_address (struct die_info *die,
1404 struct dwarf2_cu *cu);
1405
1406 static struct partial_symtab *create_partial_symtab
1407 (struct dwarf2_per_cu_data *per_cu, const char *name);
1408
1409 static void dwarf2_build_psymtabs_hard (struct objfile *);
1410
1411 static void scan_partial_symbols (struct partial_die_info *,
1412 CORE_ADDR *, CORE_ADDR *,
1413 int, struct dwarf2_cu *);
1414
1415 static void add_partial_symbol (struct partial_die_info *,
1416 struct dwarf2_cu *);
1417
1418 static void add_partial_namespace (struct partial_die_info *pdi,
1419 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1420 int set_addrmap, struct dwarf2_cu *cu);
1421
1422 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1423 CORE_ADDR *highpc, int set_addrmap,
1424 struct dwarf2_cu *cu);
1425
1426 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1427 struct dwarf2_cu *cu);
1428
1429 static void add_partial_subprogram (struct partial_die_info *pdi,
1430 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1431 int need_pc, struct dwarf2_cu *cu);
1432
1433 static void dwarf2_read_symtab (struct partial_symtab *,
1434 struct objfile *);
1435
1436 static void psymtab_to_symtab_1 (struct partial_symtab *);
1437
1438 static struct abbrev_info *abbrev_table_lookup_abbrev
1439 (const struct abbrev_table *, unsigned int);
1440
1441 static struct abbrev_table *abbrev_table_read_table
1442 (struct dwarf2_section_info *, sect_offset);
1443
1444 static void abbrev_table_free (struct abbrev_table *);
1445
1446 static void abbrev_table_free_cleanup (void *);
1447
1448 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1449 struct dwarf2_section_info *);
1450
1451 static void dwarf2_free_abbrev_table (void *);
1452
1453 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1454
1455 static struct partial_die_info *load_partial_dies
1456 (const struct die_reader_specs *, const gdb_byte *, int);
1457
1458 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1459 struct partial_die_info *,
1460 struct abbrev_info *,
1461 unsigned int,
1462 const gdb_byte *);
1463
1464 static struct partial_die_info *find_partial_die (sect_offset, int,
1465 struct dwarf2_cu *);
1466
1467 static void fixup_partial_die (struct partial_die_info *,
1468 struct dwarf2_cu *);
1469
1470 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1471 struct attribute *, struct attr_abbrev *,
1472 const gdb_byte *);
1473
1474 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1475
1476 static int read_1_signed_byte (bfd *, const gdb_byte *);
1477
1478 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1479
1480 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1481
1482 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1483
1484 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1485 unsigned int *);
1486
1487 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1488
1489 static LONGEST read_checked_initial_length_and_offset
1490 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1491 unsigned int *, unsigned int *);
1492
1493 static LONGEST read_offset (bfd *, const gdb_byte *,
1494 const struct comp_unit_head *,
1495 unsigned int *);
1496
1497 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1498
1499 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1500 sect_offset);
1501
1502 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1503
1504 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1505
1506 static const char *read_indirect_string (bfd *, const gdb_byte *,
1507 const struct comp_unit_head *,
1508 unsigned int *);
1509
1510 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1511
1512 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1513
1514 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1517 const gdb_byte *,
1518 unsigned int *);
1519
1520 static const char *read_str_index (const struct die_reader_specs *reader,
1521 ULONGEST str_index);
1522
1523 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1524
1525 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1526 struct dwarf2_cu *);
1527
1528 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1529 unsigned int);
1530
1531 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1532 struct dwarf2_cu *cu);
1533
1534 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1535 struct dwarf2_cu *cu);
1536
1537 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1538
1539 static struct die_info *die_specification (struct die_info *die,
1540 struct dwarf2_cu **);
1541
1542 static void free_line_header (struct line_header *lh);
1543
1544 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1545 struct dwarf2_cu *cu);
1546
1547 static void dwarf_decode_lines (struct line_header *, const char *,
1548 struct dwarf2_cu *, struct partial_symtab *,
1549 CORE_ADDR, int decode_mapping);
1550
1551 static void dwarf2_start_subfile (const char *, const char *);
1552
1553 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1554 const char *, const char *,
1555 CORE_ADDR);
1556
1557 static struct symbol *new_symbol (struct die_info *, struct type *,
1558 struct dwarf2_cu *);
1559
1560 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1561 struct dwarf2_cu *, struct symbol *);
1562
1563 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1564 struct dwarf2_cu *);
1565
1566 static void dwarf2_const_value_attr (const struct attribute *attr,
1567 struct type *type,
1568 const char *name,
1569 struct obstack *obstack,
1570 struct dwarf2_cu *cu, LONGEST *value,
1571 const gdb_byte **bytes,
1572 struct dwarf2_locexpr_baton **baton);
1573
1574 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1575
1576 static int need_gnat_info (struct dwarf2_cu *);
1577
1578 static struct type *die_descriptive_type (struct die_info *,
1579 struct dwarf2_cu *);
1580
1581 static void set_descriptive_type (struct type *, struct die_info *,
1582 struct dwarf2_cu *);
1583
1584 static struct type *die_containing_type (struct die_info *,
1585 struct dwarf2_cu *);
1586
1587 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1588 struct dwarf2_cu *);
1589
1590 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1591
1592 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1593
1594 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1595
1596 static char *typename_concat (struct obstack *obs, const char *prefix,
1597 const char *suffix, int physname,
1598 struct dwarf2_cu *cu);
1599
1600 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1609
1610 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1611 struct dwarf2_cu *, struct partial_symtab *);
1612
1613 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1614 values. Keep the items ordered with increasing constraints compliance. */
1615 enum pc_bounds_kind
1616 {
1617 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1618 PC_BOUNDS_NOT_PRESENT,
1619
1620 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1621 were present but they do not form a valid range of PC addresses. */
1622 PC_BOUNDS_INVALID,
1623
1624 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1625 PC_BOUNDS_RANGES,
1626
1627 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1628 PC_BOUNDS_HIGH_LOW,
1629 };
1630
1631 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1632 CORE_ADDR *, CORE_ADDR *,
1633 struct dwarf2_cu *,
1634 struct partial_symtab *);
1635
1636 static void get_scope_pc_bounds (struct die_info *,
1637 CORE_ADDR *, CORE_ADDR *,
1638 struct dwarf2_cu *);
1639
1640 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1641 CORE_ADDR, struct dwarf2_cu *);
1642
1643 static void dwarf2_add_field (struct field_info *, struct die_info *,
1644 struct dwarf2_cu *);
1645
1646 static void dwarf2_attach_fields_to_type (struct field_info *,
1647 struct type *, struct dwarf2_cu *);
1648
1649 static void dwarf2_add_member_fn (struct field_info *,
1650 struct die_info *, struct type *,
1651 struct dwarf2_cu *);
1652
1653 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1654 struct type *,
1655 struct dwarf2_cu *);
1656
1657 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1658
1659 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1660
1661 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1662
1663 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1664
1665 static struct using_direct **using_directives (enum language);
1666
1667 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1668
1669 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1670
1671 static struct type *read_module_type (struct die_info *die,
1672 struct dwarf2_cu *cu);
1673
1674 static const char *namespace_name (struct die_info *die,
1675 int *is_anonymous, struct dwarf2_cu *);
1676
1677 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1678
1679 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1680
1681 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1682 struct dwarf2_cu *);
1683
1684 static struct die_info *read_die_and_siblings_1
1685 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1686 struct die_info *);
1687
1688 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1689 const gdb_byte *info_ptr,
1690 const gdb_byte **new_info_ptr,
1691 struct die_info *parent);
1692
1693 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *, int);
1696
1697 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1698 struct die_info **, const gdb_byte *,
1699 int *);
1700
1701 static void process_die (struct die_info *, struct dwarf2_cu *);
1702
1703 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1704 struct obstack *);
1705
1706 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1707
1708 static const char *dwarf2_full_name (const char *name,
1709 struct die_info *die,
1710 struct dwarf2_cu *cu);
1711
1712 static const char *dwarf2_physname (const char *name, struct die_info *die,
1713 struct dwarf2_cu *cu);
1714
1715 static struct die_info *dwarf2_extension (struct die_info *die,
1716 struct dwarf2_cu **);
1717
1718 static const char *dwarf_tag_name (unsigned int);
1719
1720 static const char *dwarf_attr_name (unsigned int);
1721
1722 static const char *dwarf_form_name (unsigned int);
1723
1724 static char *dwarf_bool_name (unsigned int);
1725
1726 static const char *dwarf_type_encoding_name (unsigned int);
1727
1728 static struct die_info *sibling_die (struct die_info *);
1729
1730 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1731
1732 static void dump_die_for_error (struct die_info *);
1733
1734 static void dump_die_1 (struct ui_file *, int level, int max_level,
1735 struct die_info *);
1736
1737 /*static*/ void dump_die (struct die_info *, int max_level);
1738
1739 static void store_in_ref_table (struct die_info *,
1740 struct dwarf2_cu *);
1741
1742 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1743
1744 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1745
1746 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1747 const struct attribute *,
1748 struct dwarf2_cu **);
1749
1750 static struct die_info *follow_die_ref (struct die_info *,
1751 const struct attribute *,
1752 struct dwarf2_cu **);
1753
1754 static struct die_info *follow_die_sig (struct die_info *,
1755 const struct attribute *,
1756 struct dwarf2_cu **);
1757
1758 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1759 struct dwarf2_cu *);
1760
1761 static struct type *get_DW_AT_signature_type (struct die_info *,
1762 const struct attribute *,
1763 struct dwarf2_cu *);
1764
1765 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1766
1767 static void read_signatured_type (struct signatured_type *);
1768
1769 static int attr_to_dynamic_prop (const struct attribute *attr,
1770 struct die_info *die, struct dwarf2_cu *cu,
1771 struct dynamic_prop *prop);
1772
1773 /* memory allocation interface */
1774
1775 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1776
1777 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1778
1779 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1780
1781 static int attr_form_is_block (const struct attribute *);
1782
1783 static int attr_form_is_section_offset (const struct attribute *);
1784
1785 static int attr_form_is_constant (const struct attribute *);
1786
1787 static int attr_form_is_ref (const struct attribute *);
1788
1789 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1790 struct dwarf2_loclist_baton *baton,
1791 const struct attribute *attr);
1792
1793 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1794 struct symbol *sym,
1795 struct dwarf2_cu *cu,
1796 int is_block);
1797
1798 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1799 const gdb_byte *info_ptr,
1800 struct abbrev_info *abbrev);
1801
1802 static void free_stack_comp_unit (void *);
1803
1804 static hashval_t partial_die_hash (const void *item);
1805
1806 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1807
1808 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1809 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1810
1811 static void init_one_comp_unit (struct dwarf2_cu *cu,
1812 struct dwarf2_per_cu_data *per_cu);
1813
1814 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1815 struct die_info *comp_unit_die,
1816 enum language pretend_language);
1817
1818 static void free_heap_comp_unit (void *);
1819
1820 static void free_cached_comp_units (void *);
1821
1822 static void age_cached_comp_units (void);
1823
1824 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1825
1826 static struct type *set_die_type (struct die_info *, struct type *,
1827 struct dwarf2_cu *);
1828
1829 static void create_all_comp_units (struct objfile *);
1830
1831 static int create_all_type_units (struct objfile *);
1832
1833 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1834 enum language);
1835
1836 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1837 enum language);
1838
1839 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1840 enum language);
1841
1842 static void dwarf2_add_dependence (struct dwarf2_cu *,
1843 struct dwarf2_per_cu_data *);
1844
1845 static void dwarf2_mark (struct dwarf2_cu *);
1846
1847 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1848
1849 static struct type *get_die_type_at_offset (sect_offset,
1850 struct dwarf2_per_cu_data *);
1851
1852 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1853
1854 static void dwarf2_release_queue (void *dummy);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (void);
1860
1861 static void find_file_and_directory (struct die_info *die,
1862 struct dwarf2_cu *cu,
1863 const char **name, const char **comp_dir);
1864
1865 static char *file_full_name (int file, struct line_header *lh,
1866 const char *comp_dir);
1867
1868 static const gdb_byte *read_and_check_comp_unit_head
1869 (struct comp_unit_head *header,
1870 struct dwarf2_section_info *section,
1871 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1872 int is_debug_types_section);
1873
1874 static void init_cutu_and_read_dies
1875 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1876 int use_existing_cu, int keep,
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
1879 static void init_cutu_and_read_dies_simple
1880 (struct dwarf2_per_cu_data *this_cu,
1881 die_reader_func_ftype *die_reader_func, void *data);
1882
1883 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1884
1885 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1886
1887 static struct dwo_unit *lookup_dwo_unit_in_dwp
1888 (struct dwp_file *dwp_file, const char *comp_dir,
1889 ULONGEST signature, int is_debug_types);
1890
1891 static struct dwp_file *get_dwp_file (void);
1892
1893 static struct dwo_unit *lookup_dwo_comp_unit
1894 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1895
1896 static struct dwo_unit *lookup_dwo_type_unit
1897 (struct signatured_type *, const char *, const char *);
1898
1899 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1900
1901 static void free_dwo_file_cleanup (void *);
1902
1903 static void process_cu_includes (void);
1904
1905 static void check_producer (struct dwarf2_cu *cu);
1906
1907 static void free_line_header_voidp (void *arg);
1908 \f
1909 /* Various complaints about symbol reading that don't abort the process. */
1910
1911 static void
1912 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1913 {
1914 complaint (&symfile_complaints,
1915 _("statement list doesn't fit in .debug_line section"));
1916 }
1917
1918 static void
1919 dwarf2_debug_line_missing_file_complaint (void)
1920 {
1921 complaint (&symfile_complaints,
1922 _(".debug_line section has line data without a file"));
1923 }
1924
1925 static void
1926 dwarf2_debug_line_missing_end_sequence_complaint (void)
1927 {
1928 complaint (&symfile_complaints,
1929 _(".debug_line section has line "
1930 "program sequence without an end"));
1931 }
1932
1933 static void
1934 dwarf2_complex_location_expr_complaint (void)
1935 {
1936 complaint (&symfile_complaints, _("location expression too complex"));
1937 }
1938
1939 static void
1940 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1941 int arg3)
1942 {
1943 complaint (&symfile_complaints,
1944 _("const value length mismatch for '%s', got %d, expected %d"),
1945 arg1, arg2, arg3);
1946 }
1947
1948 static void
1949 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1950 {
1951 complaint (&symfile_complaints,
1952 _("debug info runs off end of %s section"
1953 " [in module %s]"),
1954 get_section_name (section),
1955 get_section_file_name (section));
1956 }
1957
1958 static void
1959 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1960 {
1961 complaint (&symfile_complaints,
1962 _("macro debug info contains a "
1963 "malformed macro definition:\n`%s'"),
1964 arg1);
1965 }
1966
1967 static void
1968 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1969 {
1970 complaint (&symfile_complaints,
1971 _("invalid attribute class or form for '%s' in '%s'"),
1972 arg1, arg2);
1973 }
1974
1975 /* Hash function for line_header_hash. */
1976
1977 static hashval_t
1978 line_header_hash (const struct line_header *ofs)
1979 {
1980 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1981 }
1982
1983 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1984
1985 static hashval_t
1986 line_header_hash_voidp (const void *item)
1987 {
1988 const struct line_header *ofs = (const struct line_header *) item;
1989
1990 return line_header_hash (ofs);
1991 }
1992
1993 /* Equality function for line_header_hash. */
1994
1995 static int
1996 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1997 {
1998 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1999 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2000
2001 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2002 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2003 }
2004
2005 \f
2006 #if WORDS_BIGENDIAN
2007
2008 /* Convert VALUE between big- and little-endian. */
2009 static offset_type
2010 byte_swap (offset_type value)
2011 {
2012 offset_type result;
2013
2014 result = (value & 0xff) << 24;
2015 result |= (value & 0xff00) << 8;
2016 result |= (value & 0xff0000) >> 8;
2017 result |= (value & 0xff000000) >> 24;
2018 return result;
2019 }
2020
2021 #define MAYBE_SWAP(V) byte_swap (V)
2022
2023 #else
2024 #define MAYBE_SWAP(V) (V)
2025 #endif /* WORDS_BIGENDIAN */
2026
2027 /* Read the given attribute value as an address, taking the attribute's
2028 form into account. */
2029
2030 static CORE_ADDR
2031 attr_value_as_address (struct attribute *attr)
2032 {
2033 CORE_ADDR addr;
2034
2035 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2036 {
2037 /* Aside from a few clearly defined exceptions, attributes that
2038 contain an address must always be in DW_FORM_addr form.
2039 Unfortunately, some compilers happen to be violating this
2040 requirement by encoding addresses using other forms, such
2041 as DW_FORM_data4 for example. For those broken compilers,
2042 we try to do our best, without any guarantee of success,
2043 to interpret the address correctly. It would also be nice
2044 to generate a complaint, but that would require us to maintain
2045 a list of legitimate cases where a non-address form is allowed,
2046 as well as update callers to pass in at least the CU's DWARF
2047 version. This is more overhead than what we're willing to
2048 expand for a pretty rare case. */
2049 addr = DW_UNSND (attr);
2050 }
2051 else
2052 addr = DW_ADDR (attr);
2053
2054 return addr;
2055 }
2056
2057 /* The suffix for an index file. */
2058 #define INDEX_SUFFIX ".gdb-index"
2059
2060 /* Try to locate the sections we need for DWARF 2 debugging
2061 information and return true if we have enough to do something.
2062 NAMES points to the dwarf2 section names, or is NULL if the standard
2063 ELF names are used. */
2064
2065 int
2066 dwarf2_has_info (struct objfile *objfile,
2067 const struct dwarf2_debug_sections *names)
2068 {
2069 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2070 objfile_data (objfile, dwarf2_objfile_data_key));
2071 if (!dwarf2_per_objfile)
2072 {
2073 /* Initialize per-objfile state. */
2074 struct dwarf2_per_objfile *data
2075 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2076
2077 memset (data, 0, sizeof (*data));
2078 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2079 dwarf2_per_objfile = data;
2080
2081 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2082 (void *) names);
2083 dwarf2_per_objfile->objfile = objfile;
2084 }
2085 return (!dwarf2_per_objfile->info.is_virtual
2086 && dwarf2_per_objfile->info.s.section != NULL
2087 && !dwarf2_per_objfile->abbrev.is_virtual
2088 && dwarf2_per_objfile->abbrev.s.section != NULL);
2089 }
2090
2091 /* Return the containing section of virtual section SECTION. */
2092
2093 static struct dwarf2_section_info *
2094 get_containing_section (const struct dwarf2_section_info *section)
2095 {
2096 gdb_assert (section->is_virtual);
2097 return section->s.containing_section;
2098 }
2099
2100 /* Return the bfd owner of SECTION. */
2101
2102 static struct bfd *
2103 get_section_bfd_owner (const struct dwarf2_section_info *section)
2104 {
2105 if (section->is_virtual)
2106 {
2107 section = get_containing_section (section);
2108 gdb_assert (!section->is_virtual);
2109 }
2110 return section->s.section->owner;
2111 }
2112
2113 /* Return the bfd section of SECTION.
2114 Returns NULL if the section is not present. */
2115
2116 static asection *
2117 get_section_bfd_section (const struct dwarf2_section_info *section)
2118 {
2119 if (section->is_virtual)
2120 {
2121 section = get_containing_section (section);
2122 gdb_assert (!section->is_virtual);
2123 }
2124 return section->s.section;
2125 }
2126
2127 /* Return the name of SECTION. */
2128
2129 static const char *
2130 get_section_name (const struct dwarf2_section_info *section)
2131 {
2132 asection *sectp = get_section_bfd_section (section);
2133
2134 gdb_assert (sectp != NULL);
2135 return bfd_section_name (get_section_bfd_owner (section), sectp);
2136 }
2137
2138 /* Return the name of the file SECTION is in. */
2139
2140 static const char *
2141 get_section_file_name (const struct dwarf2_section_info *section)
2142 {
2143 bfd *abfd = get_section_bfd_owner (section);
2144
2145 return bfd_get_filename (abfd);
2146 }
2147
2148 /* Return the id of SECTION.
2149 Returns 0 if SECTION doesn't exist. */
2150
2151 static int
2152 get_section_id (const struct dwarf2_section_info *section)
2153 {
2154 asection *sectp = get_section_bfd_section (section);
2155
2156 if (sectp == NULL)
2157 return 0;
2158 return sectp->id;
2159 }
2160
2161 /* Return the flags of SECTION.
2162 SECTION (or containing section if this is a virtual section) must exist. */
2163
2164 static int
2165 get_section_flags (const struct dwarf2_section_info *section)
2166 {
2167 asection *sectp = get_section_bfd_section (section);
2168
2169 gdb_assert (sectp != NULL);
2170 return bfd_get_section_flags (sectp->owner, sectp);
2171 }
2172
2173 /* When loading sections, we look either for uncompressed section or for
2174 compressed section names. */
2175
2176 static int
2177 section_is_p (const char *section_name,
2178 const struct dwarf2_section_names *names)
2179 {
2180 if (names->normal != NULL
2181 && strcmp (section_name, names->normal) == 0)
2182 return 1;
2183 if (names->compressed != NULL
2184 && strcmp (section_name, names->compressed) == 0)
2185 return 1;
2186 return 0;
2187 }
2188
2189 /* This function is mapped across the sections and remembers the
2190 offset and size of each of the debugging sections we are interested
2191 in. */
2192
2193 static void
2194 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2195 {
2196 const struct dwarf2_debug_sections *names;
2197 flagword aflag = bfd_get_section_flags (abfd, sectp);
2198
2199 if (vnames == NULL)
2200 names = &dwarf2_elf_names;
2201 else
2202 names = (const struct dwarf2_debug_sections *) vnames;
2203
2204 if ((aflag & SEC_HAS_CONTENTS) == 0)
2205 {
2206 }
2207 else if (section_is_p (sectp->name, &names->info))
2208 {
2209 dwarf2_per_objfile->info.s.section = sectp;
2210 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2211 }
2212 else if (section_is_p (sectp->name, &names->abbrev))
2213 {
2214 dwarf2_per_objfile->abbrev.s.section = sectp;
2215 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2216 }
2217 else if (section_is_p (sectp->name, &names->line))
2218 {
2219 dwarf2_per_objfile->line.s.section = sectp;
2220 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2221 }
2222 else if (section_is_p (sectp->name, &names->loc))
2223 {
2224 dwarf2_per_objfile->loc.s.section = sectp;
2225 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2226 }
2227 else if (section_is_p (sectp->name, &names->macinfo))
2228 {
2229 dwarf2_per_objfile->macinfo.s.section = sectp;
2230 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2231 }
2232 else if (section_is_p (sectp->name, &names->macro))
2233 {
2234 dwarf2_per_objfile->macro.s.section = sectp;
2235 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2236 }
2237 else if (section_is_p (sectp->name, &names->str))
2238 {
2239 dwarf2_per_objfile->str.s.section = sectp;
2240 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2241 }
2242 else if (section_is_p (sectp->name, &names->addr))
2243 {
2244 dwarf2_per_objfile->addr.s.section = sectp;
2245 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2246 }
2247 else if (section_is_p (sectp->name, &names->frame))
2248 {
2249 dwarf2_per_objfile->frame.s.section = sectp;
2250 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2251 }
2252 else if (section_is_p (sectp->name, &names->eh_frame))
2253 {
2254 dwarf2_per_objfile->eh_frame.s.section = sectp;
2255 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2256 }
2257 else if (section_is_p (sectp->name, &names->ranges))
2258 {
2259 dwarf2_per_objfile->ranges.s.section = sectp;
2260 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2261 }
2262 else if (section_is_p (sectp->name, &names->types))
2263 {
2264 struct dwarf2_section_info type_section;
2265
2266 memset (&type_section, 0, sizeof (type_section));
2267 type_section.s.section = sectp;
2268 type_section.size = bfd_get_section_size (sectp);
2269
2270 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2271 &type_section);
2272 }
2273 else if (section_is_p (sectp->name, &names->gdb_index))
2274 {
2275 dwarf2_per_objfile->gdb_index.s.section = sectp;
2276 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2277 }
2278
2279 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2280 && bfd_section_vma (abfd, sectp) == 0)
2281 dwarf2_per_objfile->has_section_at_zero = 1;
2282 }
2283
2284 /* A helper function that decides whether a section is empty,
2285 or not present. */
2286
2287 static int
2288 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2289 {
2290 if (section->is_virtual)
2291 return section->size == 0;
2292 return section->s.section == NULL || section->size == 0;
2293 }
2294
2295 /* Read the contents of the section INFO.
2296 OBJFILE is the main object file, but not necessarily the file where
2297 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2298 of the DWO file.
2299 If the section is compressed, uncompress it before returning. */
2300
2301 static void
2302 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2303 {
2304 asection *sectp;
2305 bfd *abfd;
2306 gdb_byte *buf, *retbuf;
2307
2308 if (info->readin)
2309 return;
2310 info->buffer = NULL;
2311 info->readin = 1;
2312
2313 if (dwarf2_section_empty_p (info))
2314 return;
2315
2316 sectp = get_section_bfd_section (info);
2317
2318 /* If this is a virtual section we need to read in the real one first. */
2319 if (info->is_virtual)
2320 {
2321 struct dwarf2_section_info *containing_section =
2322 get_containing_section (info);
2323
2324 gdb_assert (sectp != NULL);
2325 if ((sectp->flags & SEC_RELOC) != 0)
2326 {
2327 error (_("Dwarf Error: DWP format V2 with relocations is not"
2328 " supported in section %s [in module %s]"),
2329 get_section_name (info), get_section_file_name (info));
2330 }
2331 dwarf2_read_section (objfile, containing_section);
2332 /* Other code should have already caught virtual sections that don't
2333 fit. */
2334 gdb_assert (info->virtual_offset + info->size
2335 <= containing_section->size);
2336 /* If the real section is empty or there was a problem reading the
2337 section we shouldn't get here. */
2338 gdb_assert (containing_section->buffer != NULL);
2339 info->buffer = containing_section->buffer + info->virtual_offset;
2340 return;
2341 }
2342
2343 /* If the section has relocations, we must read it ourselves.
2344 Otherwise we attach it to the BFD. */
2345 if ((sectp->flags & SEC_RELOC) == 0)
2346 {
2347 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2348 return;
2349 }
2350
2351 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2352 info->buffer = buf;
2353
2354 /* When debugging .o files, we may need to apply relocations; see
2355 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2356 We never compress sections in .o files, so we only need to
2357 try this when the section is not compressed. */
2358 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2359 if (retbuf != NULL)
2360 {
2361 info->buffer = retbuf;
2362 return;
2363 }
2364
2365 abfd = get_section_bfd_owner (info);
2366 gdb_assert (abfd != NULL);
2367
2368 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2369 || bfd_bread (buf, info->size, abfd) != info->size)
2370 {
2371 error (_("Dwarf Error: Can't read DWARF data"
2372 " in section %s [in module %s]"),
2373 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2374 }
2375 }
2376
2377 /* A helper function that returns the size of a section in a safe way.
2378 If you are positive that the section has been read before using the
2379 size, then it is safe to refer to the dwarf2_section_info object's
2380 "size" field directly. In other cases, you must call this
2381 function, because for compressed sections the size field is not set
2382 correctly until the section has been read. */
2383
2384 static bfd_size_type
2385 dwarf2_section_size (struct objfile *objfile,
2386 struct dwarf2_section_info *info)
2387 {
2388 if (!info->readin)
2389 dwarf2_read_section (objfile, info);
2390 return info->size;
2391 }
2392
2393 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2394 SECTION_NAME. */
2395
2396 void
2397 dwarf2_get_section_info (struct objfile *objfile,
2398 enum dwarf2_section_enum sect,
2399 asection **sectp, const gdb_byte **bufp,
2400 bfd_size_type *sizep)
2401 {
2402 struct dwarf2_per_objfile *data
2403 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2404 dwarf2_objfile_data_key);
2405 struct dwarf2_section_info *info;
2406
2407 /* We may see an objfile without any DWARF, in which case we just
2408 return nothing. */
2409 if (data == NULL)
2410 {
2411 *sectp = NULL;
2412 *bufp = NULL;
2413 *sizep = 0;
2414 return;
2415 }
2416 switch (sect)
2417 {
2418 case DWARF2_DEBUG_FRAME:
2419 info = &data->frame;
2420 break;
2421 case DWARF2_EH_FRAME:
2422 info = &data->eh_frame;
2423 break;
2424 default:
2425 gdb_assert_not_reached ("unexpected section");
2426 }
2427
2428 dwarf2_read_section (objfile, info);
2429
2430 *sectp = get_section_bfd_section (info);
2431 *bufp = info->buffer;
2432 *sizep = info->size;
2433 }
2434
2435 /* A helper function to find the sections for a .dwz file. */
2436
2437 static void
2438 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2439 {
2440 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2441
2442 /* Note that we only support the standard ELF names, because .dwz
2443 is ELF-only (at the time of writing). */
2444 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2445 {
2446 dwz_file->abbrev.s.section = sectp;
2447 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2450 {
2451 dwz_file->info.s.section = sectp;
2452 dwz_file->info.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2455 {
2456 dwz_file->str.s.section = sectp;
2457 dwz_file->str.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2460 {
2461 dwz_file->line.s.section = sectp;
2462 dwz_file->line.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2465 {
2466 dwz_file->macro.s.section = sectp;
2467 dwz_file->macro.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2470 {
2471 dwz_file->gdb_index.s.section = sectp;
2472 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2473 }
2474 }
2475
2476 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2477 there is no .gnu_debugaltlink section in the file. Error if there
2478 is such a section but the file cannot be found. */
2479
2480 static struct dwz_file *
2481 dwarf2_get_dwz_file (void)
2482 {
2483 char *data;
2484 struct cleanup *cleanup;
2485 const char *filename;
2486 struct dwz_file *result;
2487 bfd_size_type buildid_len_arg;
2488 size_t buildid_len;
2489 bfd_byte *buildid;
2490
2491 if (dwarf2_per_objfile->dwz_file != NULL)
2492 return dwarf2_per_objfile->dwz_file;
2493
2494 bfd_set_error (bfd_error_no_error);
2495 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2496 &buildid_len_arg, &buildid);
2497 if (data == NULL)
2498 {
2499 if (bfd_get_error () == bfd_error_no_error)
2500 return NULL;
2501 error (_("could not read '.gnu_debugaltlink' section: %s"),
2502 bfd_errmsg (bfd_get_error ()));
2503 }
2504 cleanup = make_cleanup (xfree, data);
2505 make_cleanup (xfree, buildid);
2506
2507 buildid_len = (size_t) buildid_len_arg;
2508
2509 filename = (const char *) data;
2510 if (!IS_ABSOLUTE_PATH (filename))
2511 {
2512 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2513 char *rel;
2514
2515 make_cleanup (xfree, abs);
2516 abs = ldirname (abs);
2517 make_cleanup (xfree, abs);
2518
2519 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2520 make_cleanup (xfree, rel);
2521 filename = rel;
2522 }
2523
2524 /* First try the file name given in the section. If that doesn't
2525 work, try to use the build-id instead. */
2526 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2527 if (dwz_bfd != NULL)
2528 {
2529 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2530 dwz_bfd.release ();
2531 }
2532
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd.release ();
2543
2544 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2549 dwarf2_per_objfile->dwz_file = result;
2550 return result;
2551 }
2552 \f
2553 /* DWARF quick_symbols_functions support. */
2554
2555 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560 struct quick_file_names
2561 {
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575 };
2576
2577 /* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580 struct dwarf2_per_cu_quick_data
2581 {
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
2589 struct compunit_symtab *compunit_symtab;
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598 };
2599
2600 /* Utility hash function for a stmt_list_hash. */
2601
2602 static hashval_t
2603 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604 {
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611 }
2612
2613 /* Utility equality function for a stmt_list_hash. */
2614
2615 static int
2616 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618 {
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626 }
2627
2628 /* Hash function for a quick_file_names. */
2629
2630 static hashval_t
2631 hash_file_name_entry (const void *e)
2632 {
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
2635
2636 return hash_stmt_list_entry (&file_data->hash);
2637 }
2638
2639 /* Equality function for a quick_file_names. */
2640
2641 static int
2642 eq_file_name_entry (const void *a, const void *b)
2643 {
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2646
2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2648 }
2649
2650 /* Delete function for a quick_file_names. */
2651
2652 static void
2653 delete_file_name_entry (void *e)
2654 {
2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667 }
2668
2669 /* Create a quick_file_names hash table. */
2670
2671 static htab_t
2672 create_quick_file_names_table (unsigned int nr_initial_entries)
2673 {
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677 }
2678
2679 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683 static void
2684 load_cu (struct dwarf2_per_cu_data *per_cu)
2685 {
2686 if (per_cu->is_debug_types)
2687 load_full_type_unit (per_cu);
2688 else
2689 load_full_comp_unit (per_cu, language_minimal);
2690
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2695 }
2696
2697 /* Read in the symbols for PER_CU. */
2698
2699 static void
2700 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2701 {
2702 struct cleanup *back_to;
2703
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
2711 if (dwarf2_per_objfile->using_index
2712 ? per_cu->v.quick->compunit_symtab == NULL
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
2722 && per_cu->cu != NULL
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
2729 }
2730
2731 process_queue ();
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738 }
2739
2740 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2743
2744 static struct compunit_symtab *
2745 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2746 {
2747 gdb_assert (dwarf2_per_objfile->using_index);
2748 if (!per_cu->v.quick->compunit_symtab)
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
2752 dw2_do_instantiate_symtab (per_cu);
2753 process_cu_includes ();
2754 do_cleanups (back_to);
2755 }
2756
2757 return per_cu->v.quick->compunit_symtab;
2758 }
2759
2760 /* Return the CU/TU given its index.
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2768
2769 ...;
2770 }
2771 */
2772
2773 static struct dwarf2_per_cu_data *
2774 dw2_get_cutu (int index)
2775 {
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
2778 index -= dwarf2_per_objfile->n_comp_units;
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784 }
2785
2786 /* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
2789
2790 static struct dwarf2_per_cu_data *
2791 dw2_get_cu (int index)
2792 {
2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2794
2795 return dwarf2_per_objfile->all_comp_units[index];
2796 }
2797
2798 /* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2800
2801 static void
2802 create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
2807 {
2808 offset_type i;
2809
2810 for (i = 0; i < n_elements; i += 2)
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
2822 the_cu->offset.sect_off = offset;
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
2825 the_cu->section = section;
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2830 }
2831 }
2832
2833 /* Read the CU list from the mapped index, and use it to create all
2834 the CU objects for this objfile. */
2835
2836 static void
2837 create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840 {
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2847
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2850
2851 if (dwz_elements == 0)
2852 return;
2853
2854 dwz = dwarf2_get_dwz_file ();
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2857 }
2858
2859 /* Create the signatured type hash table from the index. */
2860
2861 static void
2862 create_signatured_type_table_from_index (struct objfile *objfile,
2863 struct dwarf2_section_info *section,
2864 const gdb_byte *bytes,
2865 offset_type elements)
2866 {
2867 offset_type i;
2868 htab_t sig_types_hash;
2869
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2875
2876 sig_types_hash = allocate_signatured_type_table (objfile);
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
2882 void **slot;
2883
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2892 struct signatured_type);
2893 sig_type->signature = signature;
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
2896 sig_type->per_cu.section = section;
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
2905
2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2907 }
2908
2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
2910 }
2911
2912 /* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2914
2915 static void
2916 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917 {
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
2943
2944 if (lo > hi)
2945 {
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
2948 hex_string (lo), hex_string (hi));
2949 continue;
2950 }
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
2957 continue;
2958 }
2959
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968 }
2969
2970 /* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2977
2978 static hashval_t
2979 mapped_index_string_hash (int index_version, const void *p)
2980 {
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
2991
2992 return r;
2993 }
2994
2995 /* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2998
2999 static int
3000 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002 {
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
3005 offset_type slot, step;
3006 int (*cmp) (const char *, const char *);
3007
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
3014
3015 if (strchr (name, '(') != NULL)
3016 {
3017 char *without_params = cp_remove_params (name);
3018
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
3024 }
3025 }
3026
3027 /* Index version 4 did not support case insensitive searches. But the
3028 indices for case insensitive languages are built in lowercase, therefore
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
3049
3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3051 if (!cmp (name, str))
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
3055 do_cleanups (back_to);
3056 return 1;
3057 }
3058
3059 slot = (slot + step) & (index->symbol_table_slots - 1);
3060 }
3061 }
3062
3063 /* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
3073
3074 static int
3075 read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
3084 {
3085 const gdb_byte *addr;
3086 offset_type version;
3087 offset_type *metadata;
3088 int i;
3089
3090 if (dwarf2_section_empty_p (section))
3091 return 0;
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3096 return 0;
3097
3098 dwarf2_read_section (objfile, section);
3099
3100 addr = section->buffer;
3101 /* Version check. */
3102 version = MAYBE_SWAP (*(offset_type *) addr);
3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
3104 causes the index to behave very poorly for certain requests. Version 3
3105 contained incomplete addrmap. So, it seems better to just ignore such
3106 indices. */
3107 if (version < 4)
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
3113 filename);
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
3126 if (version < 6 && !deprecated_ok)
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
3131 warning (_("\
3132 Skipping deprecated .gdb_index section in %s.\n\
3133 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134 to use the section anyway."),
3135 filename);
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
3147
3148 /* Indexes with higher version than the one supported by GDB may be no
3149 longer backward compatible. */
3150 if (version > 8)
3151 return 0;
3152
3153 map->version = version;
3154 map->total_size = section->size;
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
3157
3158 i = 0;
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
3162 ++i;
3163
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
3168 ++i;
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
3179 ++i;
3180
3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3182
3183 return 1;
3184 }
3185
3186
3187 /* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190 static int
3191 dwarf2_read_index (struct objfile *objfile)
3192 {
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3196 struct dwz_file *dwz;
3197
3198 if (!read_index_from_section (objfile, objfile_name (objfile),
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
3205 /* Don't use the index if it's empty. */
3206 if (local_map.symbol_table_slots == 0)
3207 return 0;
3208
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
3213 {
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
3233
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
3248 }
3249
3250 create_addrmap_from_index (objfile, &local_map);
3251
3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3253 *map = local_map;
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3259
3260 return 1;
3261 }
3262
3263 /* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
3265
3266 static void
3267 dw2_setup (struct objfile *objfile)
3268 {
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
3271 gdb_assert (dwarf2_per_objfile);
3272 }
3273
3274 /* die_reader_func for dw2_get_file_names. */
3275
3276 static void
3277 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3278 const gdb_byte *info_ptr,
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
3282 {
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
3286 struct dwarf2_per_cu_data *lh_cu;
3287 struct line_header *lh;
3288 struct attribute *attr;
3289 int i;
3290 const char *name, *comp_dir;
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
3294
3295 gdb_assert (! this_cu->is_debug_types);
3296
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
3305 lh_cu = this_cu;
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3311 if (attr)
3312 {
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3326 return;
3327 }
3328
3329 lh = dwarf_decode_line_header (line_offset, cu);
3330 }
3331 if (lh == NULL)
3332 {
3333 lh_cu->v.quick->no_file_data = 1;
3334 return;
3335 }
3336
3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
3342
3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3344
3345 qfn->num_file_names = lh->num_file_names;
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3348 for (i = 0; i < lh->num_file_names; ++i)
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
3351
3352 free_line_header (lh);
3353
3354 lh_cu->v.quick->file_names = qfn;
3355 }
3356
3357 /* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360 static struct quick_file_names *
3361 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3362 {
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3367
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
3379 }
3380
3381 /* A helper for the "quick" functions which computes and caches the
3382 real path for a given file name from the line table. */
3383
3384 static const char *
3385 dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
3387 {
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3390 qfn->num_file_names, const char *);
3391
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3394
3395 return qfn->real_names[index];
3396 }
3397
3398 static struct symtab *
3399 dw2_find_last_source_symtab (struct objfile *objfile)
3400 {
3401 struct compunit_symtab *cust;
3402 int index;
3403
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
3410 }
3411
3412 /* Traversal function for dw2_forget_cached_source_info. */
3413
3414 static int
3415 dw2_free_cached_file_names (void **slot, void *info)
3416 {
3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3418
3419 if (file_data->real_names)
3420 {
3421 int i;
3422
3423 for (i = 0; i < file_data->num_file_names; ++i)
3424 {
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
3427 }
3428 }
3429
3430 return 1;
3431 }
3432
3433 static void
3434 dw2_forget_cached_source_info (struct objfile *objfile)
3435 {
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
3440 }
3441
3442 /* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445 static int
3446 dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
3448 const char *name, const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3453
3454 /* Don't visit already-expanded CUs. */
3455 if (per_cu->v.quick->compunit_symtab)
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
3460 dw2_instantiate_symtab (per_cu);
3461
3462 return iterate_over_some_symtabs (name, real_path, callback, data,
3463 objfile->compunit_symtabs, last_made);
3464 }
3465
3466 /* Implementation of the map_symtabs_matching_filename method. */
3467
3468 static int
3469 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3470 const char *real_path,
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
3473 {
3474 int i;
3475 const char *name_basename = lbasename (name);
3476
3477 dw2_setup (objfile);
3478
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
3481
3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3483 {
3484 int j;
3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3486 struct quick_file_names *file_data;
3487
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->compunit_symtab)
3490 continue;
3491
3492 file_data = dw2_get_file_names (per_cu);
3493 if (file_data == NULL)
3494 continue;
3495
3496 for (j = 0; j < file_data->num_file_names; ++j)
3497 {
3498 const char *this_name = file_data->file_names[j];
3499 const char *this_real_name;
3500
3501 if (compare_filenames_for_search (this_name, name))
3502 {
3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3504 callback, data))
3505 return 1;
3506 continue;
3507 }
3508
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
3517 {
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
3521 continue;
3522 }
3523
3524 if (real_path != NULL)
3525 {
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
3528 if (this_real_name != NULL
3529 && FILENAME_CMP (real_path, this_real_name) == 0)
3530 {
3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3532 callback, data))
3533 return 1;
3534 continue;
3535 }
3536 }
3537 }
3538 }
3539
3540 return 0;
3541 }
3542
3543 /* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545 struct dw2_symtab_iterator
3546 {
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
3568 };
3569
3570 /* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3573
3574 static void
3575 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581 {
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
3587 iter->global_seen = 0;
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596 }
3597
3598 /* Return the next matching CU or NULL if there are no more. */
3599
3600 static struct dwarf2_per_cu_data *
3601 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602 {
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3608 struct dwarf2_per_cu_data *per_cu;
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3630 continue;
3631 }
3632
3633 per_cu = dw2_get_cutu (cu_index);
3634
3635 /* Skip if already read in. */
3636 if (per_cu->v.quick->compunit_symtab)
3637 continue;
3638
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682 }
3683
3684 static struct compunit_symtab *
3685 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
3687 {
3688 struct compunit_symtab *stab_best = NULL;
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3702
3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3704 {
3705 struct symbol *sym, *with_opaque = NULL;
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3709
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
3717
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
3724
3725 /* Keep looking through other CUs. */
3726 }
3727 }
3728
3729 return stab_best;
3730 }
3731
3732 static void
3733 dw2_print_stats (struct objfile *objfile)
3734 {
3735 int i, total, count;
3736
3737 dw2_setup (objfile);
3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3739 count = 0;
3740 for (i = 0; i < total; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743
3744 if (!per_cu->v.quick->compunit_symtab)
3745 ++count;
3746 }
3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749 }
3750
3751 /* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
3756 static void
3757 dw2_dump (struct objfile *objfile)
3758 {
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
3770 }
3771
3772 static void
3773 dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
3776 {
3777 /* There's nothing to relocate here. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783 {
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
3803 }
3804
3805 static void
3806 dw2_expand_all_symtabs (struct objfile *objfile)
3807 {
3808 int i;
3809
3810 dw2_setup (objfile);
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3813 + dwarf2_per_objfile->n_type_units); ++i)
3814 {
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816
3817 dw2_instantiate_symtab (per_cu);
3818 }
3819 }
3820
3821 static void
3822 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
3824 {
3825 int i;
3826
3827 dw2_setup (objfile);
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3835 {
3836 int j;
3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3838 struct quick_file_names *file_data;
3839
3840 /* We only need to look at symtabs not already expanded. */
3841 if (per_cu->v.quick->compunit_symtab)
3842 continue;
3843
3844 file_data = dw2_get_file_names (per_cu);
3845 if (file_data == NULL)
3846 continue;
3847
3848 for (j = 0; j < file_data->num_file_names; ++j)
3849 {
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
3853 {
3854 dw2_instantiate_symtab (per_cu);
3855 break;
3856 }
3857 }
3858 }
3859 }
3860
3861 static void
3862 dw2_map_matching_symbols (struct objfile *objfile,
3863 const char * name, domain_enum domain,
3864 int global,
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
3869 {
3870 /* Currently unimplemented; used for Ada. The function can be called if the
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
3873 }
3874
3875 static void
3876 dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3880 expand_symtabs_exp_notify_ftype *expansion_notify,
3881 enum search_domain kind,
3882 void *data)
3883 {
3884 int i;
3885 offset_type iter;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 /* index_table is NULL if OBJF_READNOW. */
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
3893 index = dwarf2_per_objfile->index_table;
3894
3895 if (file_matcher != NULL)
3896 {
3897 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3898 htab_eq_pointer,
3899 NULL, xcalloc, xfree));
3900 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3901 htab_eq_pointer,
3902 NULL, xcalloc, xfree));
3903
3904 /* The rule is CUs specify all the files, including those used by
3905 any TU, so there's no need to scan TUs here. */
3906
3907 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3908 {
3909 int j;
3910 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3911 struct quick_file_names *file_data;
3912 void **slot;
3913
3914 QUIT;
3915
3916 per_cu->v.quick->mark = 0;
3917
3918 /* We only need to look at symtabs not already expanded. */
3919 if (per_cu->v.quick->compunit_symtab)
3920 continue;
3921
3922 file_data = dw2_get_file_names (per_cu);
3923 if (file_data == NULL)
3924 continue;
3925
3926 if (htab_find (visited_not_found.get (), file_data) != NULL)
3927 continue;
3928 else if (htab_find (visited_found.get (), file_data) != NULL)
3929 {
3930 per_cu->v.quick->mark = 1;
3931 continue;
3932 }
3933
3934 for (j = 0; j < file_data->num_file_names; ++j)
3935 {
3936 const char *this_real_name;
3937
3938 if (file_matcher (file_data->file_names[j], data, 0))
3939 {
3940 per_cu->v.quick->mark = 1;
3941 break;
3942 }
3943
3944 /* Before we invoke realpath, which can get expensive when many
3945 files are involved, do a quick comparison of the basenames. */
3946 if (!basenames_may_differ
3947 && !file_matcher (lbasename (file_data->file_names[j]),
3948 data, 1))
3949 continue;
3950
3951 this_real_name = dw2_get_real_path (objfile, file_data, j);
3952 if (file_matcher (this_real_name, data, 0))
3953 {
3954 per_cu->v.quick->mark = 1;
3955 break;
3956 }
3957 }
3958
3959 slot = htab_find_slot (per_cu->v.quick->mark
3960 ? visited_found.get ()
3961 : visited_not_found.get (),
3962 file_data, INSERT);
3963 *slot = file_data;
3964 }
3965 }
3966
3967 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3968 {
3969 offset_type idx = 2 * iter;
3970 const char *name;
3971 offset_type *vec, vec_len, vec_idx;
3972 int global_seen = 0;
3973
3974 QUIT;
3975
3976 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3977 continue;
3978
3979 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3980
3981 if (! (*symbol_matcher) (name, data))
3982 continue;
3983
3984 /* The name was matched, now expand corresponding CUs that were
3985 marked. */
3986 vec = (offset_type *) (index->constant_pool
3987 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3988 vec_len = MAYBE_SWAP (vec[0]);
3989 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3990 {
3991 struct dwarf2_per_cu_data *per_cu;
3992 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3998 /* Only check the symbol attributes if they're present.
3999 Indices prior to version 7 don't record them,
4000 and indices >= 7 may elide them for certain symbols
4001 (gold does this). */
4002 int attrs_valid =
4003 (index->version >= 7
4004 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4005
4006 /* Work around gold/15646. */
4007 if (attrs_valid)
4008 {
4009 if (!is_static && global_seen)
4010 continue;
4011 if (!is_static)
4012 global_seen = 1;
4013 }
4014
4015 /* Only check the symbol's kind if it has one. */
4016 if (attrs_valid)
4017 {
4018 switch (kind)
4019 {
4020 case VARIABLES_DOMAIN:
4021 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4022 continue;
4023 break;
4024 case FUNCTIONS_DOMAIN:
4025 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4026 continue;
4027 break;
4028 case TYPES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4030 continue;
4031 break;
4032 default:
4033 break;
4034 }
4035 }
4036
4037 /* Don't crash on bad data. */
4038 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4039 + dwarf2_per_objfile->n_type_units))
4040 {
4041 complaint (&symfile_complaints,
4042 _(".gdb_index entry has bad CU index"
4043 " [in module %s]"), objfile_name (objfile));
4044 continue;
4045 }
4046
4047 per_cu = dw2_get_cutu (cu_index);
4048 if (file_matcher == NULL || per_cu->v.quick->mark)
4049 {
4050 int symtab_was_null =
4051 (per_cu->v.quick->compunit_symtab == NULL);
4052
4053 dw2_instantiate_symtab (per_cu);
4054
4055 if (expansion_notify != NULL
4056 && symtab_was_null
4057 && per_cu->v.quick->compunit_symtab != NULL)
4058 {
4059 expansion_notify (per_cu->v.quick->compunit_symtab,
4060 data);
4061 }
4062 }
4063 }
4064 }
4065 }
4066
4067 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4068 symtab. */
4069
4070 static struct compunit_symtab *
4071 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4072 CORE_ADDR pc)
4073 {
4074 int i;
4075
4076 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4077 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4078 return cust;
4079
4080 if (cust->includes == NULL)
4081 return NULL;
4082
4083 for (i = 0; cust->includes[i]; ++i)
4084 {
4085 struct compunit_symtab *s = cust->includes[i];
4086
4087 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4088 if (s != NULL)
4089 return s;
4090 }
4091
4092 return NULL;
4093 }
4094
4095 static struct compunit_symtab *
4096 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4097 struct bound_minimal_symbol msymbol,
4098 CORE_ADDR pc,
4099 struct obj_section *section,
4100 int warn_if_readin)
4101 {
4102 struct dwarf2_per_cu_data *data;
4103 struct compunit_symtab *result;
4104
4105 dw2_setup (objfile);
4106
4107 if (!objfile->psymtabs_addrmap)
4108 return NULL;
4109
4110 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4111 pc);
4112 if (!data)
4113 return NULL;
4114
4115 if (warn_if_readin && data->v.quick->compunit_symtab)
4116 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4117 paddress (get_objfile_arch (objfile), pc));
4118
4119 result
4120 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4121 pc);
4122 gdb_assert (result != NULL);
4123 return result;
4124 }
4125
4126 static void
4127 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4128 void *data, int need_fullname)
4129 {
4130 int i;
4131 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4132 NULL, xcalloc, xfree));
4133
4134 dw2_setup (objfile);
4135
4136 /* The rule is CUs specify all the files, including those used by
4137 any TU, so there's no need to scan TUs here.
4138 We can ignore file names coming from already-expanded CUs. */
4139
4140 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4141 {
4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4143
4144 if (per_cu->v.quick->compunit_symtab)
4145 {
4146 void **slot = htab_find_slot (visited.get (),
4147 per_cu->v.quick->file_names,
4148 INSERT);
4149
4150 *slot = per_cu->v.quick->file_names;
4151 }
4152 }
4153
4154 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4155 {
4156 int j;
4157 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4158 struct quick_file_names *file_data;
4159 void **slot;
4160
4161 /* We only need to look at symtabs not already expanded. */
4162 if (per_cu->v.quick->compunit_symtab)
4163 continue;
4164
4165 file_data = dw2_get_file_names (per_cu);
4166 if (file_data == NULL)
4167 continue;
4168
4169 slot = htab_find_slot (visited.get (), file_data, INSERT);
4170 if (*slot)
4171 {
4172 /* Already visited. */
4173 continue;
4174 }
4175 *slot = file_data;
4176
4177 for (j = 0; j < file_data->num_file_names; ++j)
4178 {
4179 const char *this_real_name;
4180
4181 if (need_fullname)
4182 this_real_name = dw2_get_real_path (objfile, file_data, j);
4183 else
4184 this_real_name = NULL;
4185 (*fun) (file_data->file_names[j], this_real_name, data);
4186 }
4187 }
4188 }
4189
4190 static int
4191 dw2_has_symbols (struct objfile *objfile)
4192 {
4193 return 1;
4194 }
4195
4196 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4197 {
4198 dw2_has_symbols,
4199 dw2_find_last_source_symtab,
4200 dw2_forget_cached_source_info,
4201 dw2_map_symtabs_matching_filename,
4202 dw2_lookup_symbol,
4203 dw2_print_stats,
4204 dw2_dump,
4205 dw2_relocate,
4206 dw2_expand_symtabs_for_function,
4207 dw2_expand_all_symtabs,
4208 dw2_expand_symtabs_with_fullname,
4209 dw2_map_matching_symbols,
4210 dw2_expand_symtabs_matching,
4211 dw2_find_pc_sect_compunit_symtab,
4212 dw2_map_symbol_filenames
4213 };
4214
4215 /* Initialize for reading DWARF for this objfile. Return 0 if this
4216 file will use psymtabs, or 1 if using the GNU index. */
4217
4218 int
4219 dwarf2_initialize_objfile (struct objfile *objfile)
4220 {
4221 /* If we're about to read full symbols, don't bother with the
4222 indices. In this case we also don't care if some other debug
4223 format is making psymtabs, because they are all about to be
4224 expanded anyway. */
4225 if ((objfile->flags & OBJF_READNOW))
4226 {
4227 int i;
4228
4229 dwarf2_per_objfile->using_index = 1;
4230 create_all_comp_units (objfile);
4231 create_all_type_units (objfile);
4232 dwarf2_per_objfile->quick_file_names_table =
4233 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4234
4235 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4236 + dwarf2_per_objfile->n_type_units); ++i)
4237 {
4238 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4239
4240 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4241 struct dwarf2_per_cu_quick_data);
4242 }
4243
4244 /* Return 1 so that gdb sees the "quick" functions. However,
4245 these functions will be no-ops because we will have expanded
4246 all symtabs. */
4247 return 1;
4248 }
4249
4250 if (dwarf2_read_index (objfile))
4251 return 1;
4252
4253 return 0;
4254 }
4255
4256 \f
4257
4258 /* Build a partial symbol table. */
4259
4260 void
4261 dwarf2_build_psymtabs (struct objfile *objfile)
4262 {
4263
4264 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4265 {
4266 init_psymbol_list (objfile, 1024);
4267 }
4268
4269 TRY
4270 {
4271 /* This isn't really ideal: all the data we allocate on the
4272 objfile's obstack is still uselessly kept around. However,
4273 freeing it seems unsafe. */
4274 psymtab_discarder psymtabs (objfile);
4275 dwarf2_build_psymtabs_hard (objfile);
4276 psymtabs.keep ();
4277 }
4278 CATCH (except, RETURN_MASK_ERROR)
4279 {
4280 exception_print (gdb_stderr, except);
4281 }
4282 END_CATCH
4283 }
4284
4285 /* Return the total length of the CU described by HEADER. */
4286
4287 static unsigned int
4288 get_cu_length (const struct comp_unit_head *header)
4289 {
4290 return header->initial_length_size + header->length;
4291 }
4292
4293 /* Return TRUE if OFFSET is within CU_HEADER. */
4294
4295 static inline int
4296 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4297 {
4298 sect_offset bottom = { cu_header->offset.sect_off };
4299 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4300
4301 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4302 }
4303
4304 /* Find the base address of the compilation unit for range lists and
4305 location lists. It will normally be specified by DW_AT_low_pc.
4306 In DWARF-3 draft 4, the base address could be overridden by
4307 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4308 compilation units with discontinuous ranges. */
4309
4310 static void
4311 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4312 {
4313 struct attribute *attr;
4314
4315 cu->base_known = 0;
4316 cu->base_address = 0;
4317
4318 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4319 if (attr)
4320 {
4321 cu->base_address = attr_value_as_address (attr);
4322 cu->base_known = 1;
4323 }
4324 else
4325 {
4326 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4327 if (attr)
4328 {
4329 cu->base_address = attr_value_as_address (attr);
4330 cu->base_known = 1;
4331 }
4332 }
4333 }
4334
4335 /* Read in the comp unit header information from the debug_info at info_ptr.
4336 NOTE: This leaves members offset, first_die_offset to be filled in
4337 by the caller. */
4338
4339 static const gdb_byte *
4340 read_comp_unit_head (struct comp_unit_head *cu_header,
4341 const gdb_byte *info_ptr, bfd *abfd)
4342 {
4343 int signed_addr;
4344 unsigned int bytes_read;
4345
4346 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4347 cu_header->initial_length_size = bytes_read;
4348 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4349 info_ptr += bytes_read;
4350 cu_header->version = read_2_bytes (abfd, info_ptr);
4351 info_ptr += 2;
4352 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4353 &bytes_read);
4354 info_ptr += bytes_read;
4355 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4356 info_ptr += 1;
4357 signed_addr = bfd_get_sign_extend_vma (abfd);
4358 if (signed_addr < 0)
4359 internal_error (__FILE__, __LINE__,
4360 _("read_comp_unit_head: dwarf from non elf file"));
4361 cu_header->signed_addr_p = signed_addr;
4362
4363 return info_ptr;
4364 }
4365
4366 /* Helper function that returns the proper abbrev section for
4367 THIS_CU. */
4368
4369 static struct dwarf2_section_info *
4370 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4371 {
4372 struct dwarf2_section_info *abbrev;
4373
4374 if (this_cu->is_dwz)
4375 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4376 else
4377 abbrev = &dwarf2_per_objfile->abbrev;
4378
4379 return abbrev;
4380 }
4381
4382 /* Subroutine of read_and_check_comp_unit_head and
4383 read_and_check_type_unit_head to simplify them.
4384 Perform various error checking on the header. */
4385
4386 static void
4387 error_check_comp_unit_head (struct comp_unit_head *header,
4388 struct dwarf2_section_info *section,
4389 struct dwarf2_section_info *abbrev_section)
4390 {
4391 const char *filename = get_section_file_name (section);
4392
4393 if (header->version != 2 && header->version != 3 && header->version != 4)
4394 error (_("Dwarf Error: wrong version in compilation unit header "
4395 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4396 filename);
4397
4398 if (header->abbrev_offset.sect_off
4399 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4400 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4401 "(offset 0x%lx + 6) [in module %s]"),
4402 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4403 filename);
4404
4405 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4406 avoid potential 32-bit overflow. */
4407 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4408 > section->size)
4409 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4410 "(offset 0x%lx + 0) [in module %s]"),
4411 (long) header->length, (long) header->offset.sect_off,
4412 filename);
4413 }
4414
4415 /* Read in a CU/TU header and perform some basic error checking.
4416 The contents of the header are stored in HEADER.
4417 The result is a pointer to the start of the first DIE. */
4418
4419 static const gdb_byte *
4420 read_and_check_comp_unit_head (struct comp_unit_head *header,
4421 struct dwarf2_section_info *section,
4422 struct dwarf2_section_info *abbrev_section,
4423 const gdb_byte *info_ptr,
4424 int is_debug_types_section)
4425 {
4426 const gdb_byte *beg_of_comp_unit = info_ptr;
4427 bfd *abfd = get_section_bfd_owner (section);
4428
4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4430
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4432
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
4435 if (is_debug_types_section)
4436 info_ptr += 8 /*signature*/ + header->offset_size;
4437
4438 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4439
4440 error_check_comp_unit_head (header, section, abbrev_section);
4441
4442 return info_ptr;
4443 }
4444
4445 /* Read in the types comp unit header information from .debug_types entry at
4446 types_ptr. The result is a pointer to one past the end of the header. */
4447
4448 static const gdb_byte *
4449 read_and_check_type_unit_head (struct comp_unit_head *header,
4450 struct dwarf2_section_info *section,
4451 struct dwarf2_section_info *abbrev_section,
4452 const gdb_byte *info_ptr,
4453 ULONGEST *signature,
4454 cu_offset *type_offset_in_tu)
4455 {
4456 const gdb_byte *beg_of_comp_unit = info_ptr;
4457 bfd *abfd = get_section_bfd_owner (section);
4458
4459 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4460
4461 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4462
4463 /* If we're reading a type unit, skip over the signature and
4464 type_offset fields. */
4465 if (signature != NULL)
4466 *signature = read_8_bytes (abfd, info_ptr);
4467 info_ptr += 8;
4468 if (type_offset_in_tu != NULL)
4469 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4470 header->offset_size);
4471 info_ptr += header->offset_size;
4472
4473 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4474
4475 error_check_comp_unit_head (header, section, abbrev_section);
4476
4477 return info_ptr;
4478 }
4479
4480 /* Fetch the abbreviation table offset from a comp or type unit header. */
4481
4482 static sect_offset
4483 read_abbrev_offset (struct dwarf2_section_info *section,
4484 sect_offset offset)
4485 {
4486 bfd *abfd = get_section_bfd_owner (section);
4487 const gdb_byte *info_ptr;
4488 unsigned int initial_length_size, offset_size;
4489 sect_offset abbrev_offset;
4490
4491 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4492 info_ptr = section->buffer + offset.sect_off;
4493 read_initial_length (abfd, info_ptr, &initial_length_size);
4494 offset_size = initial_length_size == 4 ? 4 : 8;
4495 info_ptr += initial_length_size + 2 /*version*/;
4496 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4497 return abbrev_offset;
4498 }
4499
4500 /* Allocate a new partial symtab for file named NAME and mark this new
4501 partial symtab as being an include of PST. */
4502
4503 static void
4504 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4505 struct objfile *objfile)
4506 {
4507 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4508
4509 if (!IS_ABSOLUTE_PATH (subpst->filename))
4510 {
4511 /* It shares objfile->objfile_obstack. */
4512 subpst->dirname = pst->dirname;
4513 }
4514
4515 subpst->textlow = 0;
4516 subpst->texthigh = 0;
4517
4518 subpst->dependencies
4519 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4520 subpst->dependencies[0] = pst;
4521 subpst->number_of_dependencies = 1;
4522
4523 subpst->globals_offset = 0;
4524 subpst->n_global_syms = 0;
4525 subpst->statics_offset = 0;
4526 subpst->n_static_syms = 0;
4527 subpst->compunit_symtab = NULL;
4528 subpst->read_symtab = pst->read_symtab;
4529 subpst->readin = 0;
4530
4531 /* No private part is necessary for include psymtabs. This property
4532 can be used to differentiate between such include psymtabs and
4533 the regular ones. */
4534 subpst->read_symtab_private = NULL;
4535 }
4536
4537 /* Read the Line Number Program data and extract the list of files
4538 included by the source file represented by PST. Build an include
4539 partial symtab for each of these included files. */
4540
4541 static void
4542 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4543 struct die_info *die,
4544 struct partial_symtab *pst)
4545 {
4546 struct line_header *lh = NULL;
4547 struct attribute *attr;
4548
4549 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4550 if (attr)
4551 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4552 if (lh == NULL)
4553 return; /* No linetable, so no includes. */
4554
4555 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4556 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4557
4558 free_line_header (lh);
4559 }
4560
4561 static hashval_t
4562 hash_signatured_type (const void *item)
4563 {
4564 const struct signatured_type *sig_type
4565 = (const struct signatured_type *) item;
4566
4567 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4568 return sig_type->signature;
4569 }
4570
4571 static int
4572 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4573 {
4574 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4575 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4576
4577 return lhs->signature == rhs->signature;
4578 }
4579
4580 /* Allocate a hash table for signatured types. */
4581
4582 static htab_t
4583 allocate_signatured_type_table (struct objfile *objfile)
4584 {
4585 return htab_create_alloc_ex (41,
4586 hash_signatured_type,
4587 eq_signatured_type,
4588 NULL,
4589 &objfile->objfile_obstack,
4590 hashtab_obstack_allocate,
4591 dummy_obstack_deallocate);
4592 }
4593
4594 /* A helper function to add a signatured type CU to a table. */
4595
4596 static int
4597 add_signatured_type_cu_to_table (void **slot, void *datum)
4598 {
4599 struct signatured_type *sigt = (struct signatured_type *) *slot;
4600 struct signatured_type ***datap = (struct signatured_type ***) datum;
4601
4602 **datap = sigt;
4603 ++*datap;
4604
4605 return 1;
4606 }
4607
4608 /* A helper for create_debug_types_hash_table. Read types from SECTION
4609 and fill them into TYPES_HTAB. */
4610
4611 static void
4612 create_debug_type_hash_table (struct dwo_file *dwo_file,
4613 dwarf2_section_info *section, htab_t &types_htab)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 struct dwarf2_section_info *abbrev_section;
4617 bfd *abfd;
4618 const gdb_byte *info_ptr, *end_ptr;
4619
4620 abbrev_section = (dwo_file != NULL
4621 ? &dwo_file->sections.abbrev
4622 : &dwarf2_per_objfile->abbrev);
4623
4624 if (dwarf_read_debug)
4625 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4626 dwo_file ? ".dwo" : "",
4627 get_section_file_name (abbrev_section));
4628
4629 dwarf2_read_section (objfile, section);
4630 info_ptr = section->buffer;
4631
4632 if (info_ptr == NULL)
4633 return;
4634
4635 /* We can't set abfd until now because the section may be empty or
4636 not present, in which case the bfd is unknown. */
4637 abfd = get_section_bfd_owner (section);
4638
4639 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4640 because we don't need to read any dies: the signature is in the
4641 header. */
4642
4643 end_ptr = info_ptr + section->size;
4644 while (info_ptr < end_ptr)
4645 {
4646 sect_offset offset;
4647 cu_offset type_offset_in_tu;
4648 ULONGEST signature;
4649 struct signatured_type *sig_type;
4650 struct dwo_unit *dwo_tu;
4651 void **slot;
4652 const gdb_byte *ptr = info_ptr;
4653 struct comp_unit_head header;
4654 unsigned int length;
4655
4656 offset.sect_off = ptr - section->buffer;
4657
4658 /* We need to read the type's signature in order to build the hash
4659 table, but we don't need anything else just yet. */
4660
4661 ptr = read_and_check_type_unit_head (&header, section,
4662 abbrev_section, ptr,
4663 &signature, &type_offset_in_tu);
4664
4665 length = get_cu_length (&header);
4666
4667 /* Skip dummy type units. */
4668 if (ptr >= info_ptr + length
4669 || peek_abbrev_code (abfd, ptr) == 0)
4670 {
4671 info_ptr += length;
4672 continue;
4673 }
4674
4675 if (types_htab == NULL)
4676 {
4677 if (dwo_file)
4678 types_htab = allocate_dwo_unit_table (objfile);
4679 else
4680 types_htab = allocate_signatured_type_table (objfile);
4681 }
4682
4683 if (dwo_file)
4684 {
4685 sig_type = NULL;
4686 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4687 struct dwo_unit);
4688 dwo_tu->dwo_file = dwo_file;
4689 dwo_tu->signature = signature;
4690 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4691 dwo_tu->section = section;
4692 dwo_tu->offset = offset;
4693 dwo_tu->length = length;
4694 }
4695 else
4696 {
4697 /* N.B.: type_offset is not usable if this type uses a DWO file.
4698 The real type_offset is in the DWO file. */
4699 dwo_tu = NULL;
4700 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4701 struct signatured_type);
4702 sig_type->signature = signature;
4703 sig_type->type_offset_in_tu = type_offset_in_tu;
4704 sig_type->per_cu.objfile = objfile;
4705 sig_type->per_cu.is_debug_types = 1;
4706 sig_type->per_cu.section = section;
4707 sig_type->per_cu.offset = offset;
4708 sig_type->per_cu.length = length;
4709 }
4710
4711 slot = htab_find_slot (types_htab,
4712 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4713 INSERT);
4714 gdb_assert (slot != NULL);
4715 if (*slot != NULL)
4716 {
4717 sect_offset dup_offset;
4718
4719 if (dwo_file)
4720 {
4721 const struct dwo_unit *dup_tu
4722 = (const struct dwo_unit *) *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu
4729 = (const struct signatured_type *) *slot;
4730
4731 dup_offset = dup_tu->per_cu.offset;
4732 }
4733
4734 complaint (&symfile_complaints,
4735 _("debug type entry at offset 0x%x is duplicate to"
4736 " the entry at offset 0x%x, signature %s"),
4737 offset.sect_off, dup_offset.sect_off,
4738 hex_string (signature));
4739 }
4740 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4741
4742 if (dwarf_read_debug > 1)
4743 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4744 offset.sect_off,
4745 hex_string (signature));
4746
4747 info_ptr += length;
4748 }
4749 }
4750
4751 /* Create the hash table of all entries in the .debug_types
4752 (or .debug_types.dwo) section(s).
4753 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4754 otherwise it is NULL.
4755
4756 The result is a pointer to the hash table or NULL if there are no types.
4757
4758 Note: This function processes DWO files only, not DWP files. */
4759
4760 static void
4761 create_debug_types_hash_table (struct dwo_file *dwo_file,
4762 VEC (dwarf2_section_info_def) *types,
4763 htab_t &types_htab)
4764 {
4765 int ix;
4766 struct dwarf2_section_info *section;
4767
4768 if (VEC_empty (dwarf2_section_info_def, types))
4769 return;
4770
4771 for (ix = 0;
4772 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4773 ++ix)
4774 create_debug_type_hash_table (dwo_file, section, types_htab);
4775 }
4776
4777 /* Create the hash table of all entries in the .debug_types section,
4778 and initialize all_type_units.
4779 The result is zero if there is an error (e.g. missing .debug_types section),
4780 otherwise non-zero. */
4781
4782 static int
4783 create_all_type_units (struct objfile *objfile)
4784 {
4785 htab_t types_htab = NULL;
4786 struct signatured_type **iter;
4787
4788 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4789 if (types_htab == NULL)
4790 {
4791 dwarf2_per_objfile->signatured_types = NULL;
4792 return 0;
4793 }
4794
4795 dwarf2_per_objfile->signatured_types = types_htab;
4796
4797 dwarf2_per_objfile->n_type_units
4798 = dwarf2_per_objfile->n_allocated_type_units
4799 = htab_elements (types_htab);
4800 dwarf2_per_objfile->all_type_units =
4801 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4802 iter = &dwarf2_per_objfile->all_type_units[0];
4803 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4804 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4805 == dwarf2_per_objfile->n_type_units);
4806
4807 return 1;
4808 }
4809
4810 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4811 If SLOT is non-NULL, it is the entry to use in the hash table.
4812 Otherwise we find one. */
4813
4814 static struct signatured_type *
4815 add_type_unit (ULONGEST sig, void **slot)
4816 {
4817 struct objfile *objfile = dwarf2_per_objfile->objfile;
4818 int n_type_units = dwarf2_per_objfile->n_type_units;
4819 struct signatured_type *sig_type;
4820
4821 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4822 ++n_type_units;
4823 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4824 {
4825 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4826 dwarf2_per_objfile->n_allocated_type_units = 1;
4827 dwarf2_per_objfile->n_allocated_type_units *= 2;
4828 dwarf2_per_objfile->all_type_units
4829 = XRESIZEVEC (struct signatured_type *,
4830 dwarf2_per_objfile->all_type_units,
4831 dwarf2_per_objfile->n_allocated_type_units);
4832 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4833 }
4834 dwarf2_per_objfile->n_type_units = n_type_units;
4835
4836 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4837 struct signatured_type);
4838 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4839 sig_type->signature = sig;
4840 sig_type->per_cu.is_debug_types = 1;
4841 if (dwarf2_per_objfile->using_index)
4842 {
4843 sig_type->per_cu.v.quick =
4844 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4845 struct dwarf2_per_cu_quick_data);
4846 }
4847
4848 if (slot == NULL)
4849 {
4850 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4851 sig_type, INSERT);
4852 }
4853 gdb_assert (*slot == NULL);
4854 *slot = sig_type;
4855 /* The rest of sig_type must be filled in by the caller. */
4856 return sig_type;
4857 }
4858
4859 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4860 Fill in SIG_ENTRY with DWO_ENTRY. */
4861
4862 static void
4863 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4864 struct signatured_type *sig_entry,
4865 struct dwo_unit *dwo_entry)
4866 {
4867 /* Make sure we're not clobbering something we don't expect to. */
4868 gdb_assert (! sig_entry->per_cu.queued);
4869 gdb_assert (sig_entry->per_cu.cu == NULL);
4870 if (dwarf2_per_objfile->using_index)
4871 {
4872 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4873 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4874 }
4875 else
4876 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4877 gdb_assert (sig_entry->signature == dwo_entry->signature);
4878 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4879 gdb_assert (sig_entry->type_unit_group == NULL);
4880 gdb_assert (sig_entry->dwo_unit == NULL);
4881
4882 sig_entry->per_cu.section = dwo_entry->section;
4883 sig_entry->per_cu.offset = dwo_entry->offset;
4884 sig_entry->per_cu.length = dwo_entry->length;
4885 sig_entry->per_cu.reading_dwo_directly = 1;
4886 sig_entry->per_cu.objfile = objfile;
4887 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4888 sig_entry->dwo_unit = dwo_entry;
4889 }
4890
4891 /* Subroutine of lookup_signatured_type.
4892 If we haven't read the TU yet, create the signatured_type data structure
4893 for a TU to be read in directly from a DWO file, bypassing the stub.
4894 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4895 using .gdb_index, then when reading a CU we want to stay in the DWO file
4896 containing that CU. Otherwise we could end up reading several other DWO
4897 files (due to comdat folding) to process the transitive closure of all the
4898 mentioned TUs, and that can be slow. The current DWO file will have every
4899 type signature that it needs.
4900 We only do this for .gdb_index because in the psymtab case we already have
4901 to read all the DWOs to build the type unit groups. */
4902
4903 static struct signatured_type *
4904 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4905 {
4906 struct objfile *objfile = dwarf2_per_objfile->objfile;
4907 struct dwo_file *dwo_file;
4908 struct dwo_unit find_dwo_entry, *dwo_entry;
4909 struct signatured_type find_sig_entry, *sig_entry;
4910 void **slot;
4911
4912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4913
4914 /* If TU skeletons have been removed then we may not have read in any
4915 TUs yet. */
4916 if (dwarf2_per_objfile->signatured_types == NULL)
4917 {
4918 dwarf2_per_objfile->signatured_types
4919 = allocate_signatured_type_table (objfile);
4920 }
4921
4922 /* We only ever need to read in one copy of a signatured type.
4923 Use the global signatured_types array to do our own comdat-folding
4924 of types. If this is the first time we're reading this TU, and
4925 the TU has an entry in .gdb_index, replace the recorded data from
4926 .gdb_index with this TU. */
4927
4928 find_sig_entry.signature = sig;
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 &find_sig_entry, INSERT);
4931 sig_entry = (struct signatured_type *) *slot;
4932
4933 /* We can get here with the TU already read, *or* in the process of being
4934 read. Don't reassign the global entry to point to this DWO if that's
4935 the case. Also note that if the TU is already being read, it may not
4936 have come from a DWO, the program may be a mix of Fission-compiled
4937 code and non-Fission-compiled code. */
4938
4939 /* Have we already tried to read this TU?
4940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4941 needn't exist in the global table yet). */
4942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4943 return sig_entry;
4944
4945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4946 dwo_unit of the TU itself. */
4947 dwo_file = cu->dwo_unit->dwo_file;
4948
4949 /* Ok, this is the first time we're reading this TU. */
4950 if (dwo_file->tus == NULL)
4951 return NULL;
4952 find_dwo_entry.signature = sig;
4953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4954 if (dwo_entry == NULL)
4955 return NULL;
4956
4957 /* If the global table doesn't have an entry for this TU, add one. */
4958 if (sig_entry == NULL)
4959 sig_entry = add_type_unit (sig, slot);
4960
4961 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4962 sig_entry->per_cu.tu_read = 1;
4963 return sig_entry;
4964 }
4965
4966 /* Subroutine of lookup_signatured_type.
4967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4968 then try the DWP file. If the TU stub (skeleton) has been removed then
4969 it won't be in .gdb_index. */
4970
4971 static struct signatured_type *
4972 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4973 {
4974 struct objfile *objfile = dwarf2_per_objfile->objfile;
4975 struct dwp_file *dwp_file = get_dwp_file ();
4976 struct dwo_unit *dwo_entry;
4977 struct signatured_type find_sig_entry, *sig_entry;
4978 void **slot;
4979
4980 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4981 gdb_assert (dwp_file != NULL);
4982
4983 /* If TU skeletons have been removed then we may not have read in any
4984 TUs yet. */
4985 if (dwarf2_per_objfile->signatured_types == NULL)
4986 {
4987 dwarf2_per_objfile->signatured_types
4988 = allocate_signatured_type_table (objfile);
4989 }
4990
4991 find_sig_entry.signature = sig;
4992 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4993 &find_sig_entry, INSERT);
4994 sig_entry = (struct signatured_type *) *slot;
4995
4996 /* Have we already tried to read this TU?
4997 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4998 needn't exist in the global table yet). */
4999 if (sig_entry != NULL)
5000 return sig_entry;
5001
5002 if (dwp_file->tus == NULL)
5003 return NULL;
5004 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5005 sig, 1 /* is_debug_types */);
5006 if (dwo_entry == NULL)
5007 return NULL;
5008
5009 sig_entry = add_type_unit (sig, slot);
5010 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5011
5012 return sig_entry;
5013 }
5014
5015 /* Lookup a signature based type for DW_FORM_ref_sig8.
5016 Returns NULL if signature SIG is not present in the table.
5017 It is up to the caller to complain about this. */
5018
5019 static struct signatured_type *
5020 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5021 {
5022 if (cu->dwo_unit
5023 && dwarf2_per_objfile->using_index)
5024 {
5025 /* We're in a DWO/DWP file, and we're using .gdb_index.
5026 These cases require special processing. */
5027 if (get_dwp_file () == NULL)
5028 return lookup_dwo_signatured_type (cu, sig);
5029 else
5030 return lookup_dwp_signatured_type (cu, sig);
5031 }
5032 else
5033 {
5034 struct signatured_type find_entry, *entry;
5035
5036 if (dwarf2_per_objfile->signatured_types == NULL)
5037 return NULL;
5038 find_entry.signature = sig;
5039 entry = ((struct signatured_type *)
5040 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5041 return entry;
5042 }
5043 }
5044 \f
5045 /* Low level DIE reading support. */
5046
5047 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5048
5049 static void
5050 init_cu_die_reader (struct die_reader_specs *reader,
5051 struct dwarf2_cu *cu,
5052 struct dwarf2_section_info *section,
5053 struct dwo_file *dwo_file)
5054 {
5055 gdb_assert (section->readin && section->buffer != NULL);
5056 reader->abfd = get_section_bfd_owner (section);
5057 reader->cu = cu;
5058 reader->dwo_file = dwo_file;
5059 reader->die_section = section;
5060 reader->buffer = section->buffer;
5061 reader->buffer_end = section->buffer + section->size;
5062 reader->comp_dir = NULL;
5063 }
5064
5065 /* Subroutine of init_cutu_and_read_dies to simplify it.
5066 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5067 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5068 already.
5069
5070 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5071 from it to the DIE in the DWO. If NULL we are skipping the stub.
5072 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5073 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5074 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5075 STUB_COMP_DIR may be non-NULL.
5076 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5077 are filled in with the info of the DIE from the DWO file.
5078 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5079 provided an abbrev table to use.
5080 The result is non-zero if a valid (non-dummy) DIE was found. */
5081
5082 static int
5083 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5084 struct dwo_unit *dwo_unit,
5085 int abbrev_table_provided,
5086 struct die_info *stub_comp_unit_die,
5087 const char *stub_comp_dir,
5088 struct die_reader_specs *result_reader,
5089 const gdb_byte **result_info_ptr,
5090 struct die_info **result_comp_unit_die,
5091 int *result_has_children)
5092 {
5093 struct objfile *objfile = dwarf2_per_objfile->objfile;
5094 struct dwarf2_cu *cu = this_cu->cu;
5095 struct dwarf2_section_info *section;
5096 bfd *abfd;
5097 const gdb_byte *begin_info_ptr, *info_ptr;
5098 ULONGEST signature; /* Or dwo_id. */
5099 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5100 int i,num_extra_attrs;
5101 struct dwarf2_section_info *dwo_abbrev_section;
5102 struct attribute *attr;
5103 struct die_info *comp_unit_die;
5104
5105 /* At most one of these may be provided. */
5106 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5107
5108 /* These attributes aren't processed until later:
5109 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5110 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5111 referenced later. However, these attributes are found in the stub
5112 which we won't have later. In order to not impose this complication
5113 on the rest of the code, we read them here and copy them to the
5114 DWO CU/TU die. */
5115
5116 stmt_list = NULL;
5117 low_pc = NULL;
5118 high_pc = NULL;
5119 ranges = NULL;
5120 comp_dir = NULL;
5121
5122 if (stub_comp_unit_die != NULL)
5123 {
5124 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5125 DWO file. */
5126 if (! this_cu->is_debug_types)
5127 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5128 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5129 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5130 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5131 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5132
5133 /* There should be a DW_AT_addr_base attribute here (if needed).
5134 We need the value before we can process DW_FORM_GNU_addr_index. */
5135 cu->addr_base = 0;
5136 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5137 if (attr)
5138 cu->addr_base = DW_UNSND (attr);
5139
5140 /* There should be a DW_AT_ranges_base attribute here (if needed).
5141 We need the value before we can process DW_AT_ranges. */
5142 cu->ranges_base = 0;
5143 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5144 if (attr)
5145 cu->ranges_base = DW_UNSND (attr);
5146 }
5147 else if (stub_comp_dir != NULL)
5148 {
5149 /* Reconstruct the comp_dir attribute to simplify the code below. */
5150 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5151 comp_dir->name = DW_AT_comp_dir;
5152 comp_dir->form = DW_FORM_string;
5153 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5154 DW_STRING (comp_dir) = stub_comp_dir;
5155 }
5156
5157 /* Set up for reading the DWO CU/TU. */
5158 cu->dwo_unit = dwo_unit;
5159 section = dwo_unit->section;
5160 dwarf2_read_section (objfile, section);
5161 abfd = get_section_bfd_owner (section);
5162 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5163 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5164 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5165
5166 if (this_cu->is_debug_types)
5167 {
5168 ULONGEST header_signature;
5169 cu_offset type_offset_in_tu;
5170 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5171
5172 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5173 dwo_abbrev_section,
5174 info_ptr,
5175 &header_signature,
5176 &type_offset_in_tu);
5177 /* This is not an assert because it can be caused by bad debug info. */
5178 if (sig_type->signature != header_signature)
5179 {
5180 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5181 " TU at offset 0x%x [in module %s]"),
5182 hex_string (sig_type->signature),
5183 hex_string (header_signature),
5184 dwo_unit->offset.sect_off,
5185 bfd_get_filename (abfd));
5186 }
5187 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5188 /* For DWOs coming from DWP files, we don't know the CU length
5189 nor the type's offset in the TU until now. */
5190 dwo_unit->length = get_cu_length (&cu->header);
5191 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5192
5193 /* Establish the type offset that can be used to lookup the type.
5194 For DWO files, we don't know it until now. */
5195 sig_type->type_offset_in_section.sect_off =
5196 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5197 }
5198 else
5199 {
5200 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5201 dwo_abbrev_section,
5202 info_ptr, 0);
5203 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5204 /* For DWOs coming from DWP files, we don't know the CU length
5205 until now. */
5206 dwo_unit->length = get_cu_length (&cu->header);
5207 }
5208
5209 /* Replace the CU's original abbrev table with the DWO's.
5210 Reminder: We can't read the abbrev table until we've read the header. */
5211 if (abbrev_table_provided)
5212 {
5213 /* Don't free the provided abbrev table, the caller of
5214 init_cutu_and_read_dies owns it. */
5215 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5216 /* Ensure the DWO abbrev table gets freed. */
5217 make_cleanup (dwarf2_free_abbrev_table, cu);
5218 }
5219 else
5220 {
5221 dwarf2_free_abbrev_table (cu);
5222 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5223 /* Leave any existing abbrev table cleanup as is. */
5224 }
5225
5226 /* Read in the die, but leave space to copy over the attributes
5227 from the stub. This has the benefit of simplifying the rest of
5228 the code - all the work to maintain the illusion of a single
5229 DW_TAG_{compile,type}_unit DIE is done here. */
5230 num_extra_attrs = ((stmt_list != NULL)
5231 + (low_pc != NULL)
5232 + (high_pc != NULL)
5233 + (ranges != NULL)
5234 + (comp_dir != NULL));
5235 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5236 result_has_children, num_extra_attrs);
5237
5238 /* Copy over the attributes from the stub to the DIE we just read in. */
5239 comp_unit_die = *result_comp_unit_die;
5240 i = comp_unit_die->num_attrs;
5241 if (stmt_list != NULL)
5242 comp_unit_die->attrs[i++] = *stmt_list;
5243 if (low_pc != NULL)
5244 comp_unit_die->attrs[i++] = *low_pc;
5245 if (high_pc != NULL)
5246 comp_unit_die->attrs[i++] = *high_pc;
5247 if (ranges != NULL)
5248 comp_unit_die->attrs[i++] = *ranges;
5249 if (comp_dir != NULL)
5250 comp_unit_die->attrs[i++] = *comp_dir;
5251 comp_unit_die->num_attrs += num_extra_attrs;
5252
5253 if (dwarf_die_debug)
5254 {
5255 fprintf_unfiltered (gdb_stdlog,
5256 "Read die from %s@0x%x of %s:\n",
5257 get_section_name (section),
5258 (unsigned) (begin_info_ptr - section->buffer),
5259 bfd_get_filename (abfd));
5260 dump_die (comp_unit_die, dwarf_die_debug);
5261 }
5262
5263 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5264 TUs by skipping the stub and going directly to the entry in the DWO file.
5265 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5266 to get it via circuitous means. Blech. */
5267 if (comp_dir != NULL)
5268 result_reader->comp_dir = DW_STRING (comp_dir);
5269
5270 /* Skip dummy compilation units. */
5271 if (info_ptr >= begin_info_ptr + dwo_unit->length
5272 || peek_abbrev_code (abfd, info_ptr) == 0)
5273 return 0;
5274
5275 *result_info_ptr = info_ptr;
5276 return 1;
5277 }
5278
5279 /* Subroutine of init_cutu_and_read_dies to simplify it.
5280 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5281 Returns NULL if the specified DWO unit cannot be found. */
5282
5283 static struct dwo_unit *
5284 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5285 struct die_info *comp_unit_die)
5286 {
5287 struct dwarf2_cu *cu = this_cu->cu;
5288 struct attribute *attr;
5289 ULONGEST signature;
5290 struct dwo_unit *dwo_unit;
5291 const char *comp_dir, *dwo_name;
5292
5293 gdb_assert (cu != NULL);
5294
5295 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5296 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5297 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5298
5299 if (this_cu->is_debug_types)
5300 {
5301 struct signatured_type *sig_type;
5302
5303 /* Since this_cu is the first member of struct signatured_type,
5304 we can go from a pointer to one to a pointer to the other. */
5305 sig_type = (struct signatured_type *) this_cu;
5306 signature = sig_type->signature;
5307 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5308 }
5309 else
5310 {
5311 struct attribute *attr;
5312
5313 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5314 if (! attr)
5315 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5316 " [in module %s]"),
5317 dwo_name, objfile_name (this_cu->objfile));
5318 signature = DW_UNSND (attr);
5319 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5320 signature);
5321 }
5322
5323 return dwo_unit;
5324 }
5325
5326 /* Subroutine of init_cutu_and_read_dies to simplify it.
5327 See it for a description of the parameters.
5328 Read a TU directly from a DWO file, bypassing the stub.
5329
5330 Note: This function could be a little bit simpler if we shared cleanups
5331 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5332 to do, so we keep this function self-contained. Or we could move this
5333 into our caller, but it's complex enough already. */
5334
5335 static void
5336 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5337 int use_existing_cu, int keep,
5338 die_reader_func_ftype *die_reader_func,
5339 void *data)
5340 {
5341 struct dwarf2_cu *cu;
5342 struct signatured_type *sig_type;
5343 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5344 struct die_reader_specs reader;
5345 const gdb_byte *info_ptr;
5346 struct die_info *comp_unit_die;
5347 int has_children;
5348
5349 /* Verify we can do the following downcast, and that we have the
5350 data we need. */
5351 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5352 sig_type = (struct signatured_type *) this_cu;
5353 gdb_assert (sig_type->dwo_unit != NULL);
5354
5355 cleanups = make_cleanup (null_cleanup, NULL);
5356
5357 if (use_existing_cu && this_cu->cu != NULL)
5358 {
5359 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5360 cu = this_cu->cu;
5361 /* There's no need to do the rereading_dwo_cu handling that
5362 init_cutu_and_read_dies does since we don't read the stub. */
5363 }
5364 else
5365 {
5366 /* If !use_existing_cu, this_cu->cu must be NULL. */
5367 gdb_assert (this_cu->cu == NULL);
5368 cu = XNEW (struct dwarf2_cu);
5369 init_one_comp_unit (cu, this_cu);
5370 /* If an error occurs while loading, release our storage. */
5371 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5372 }
5373
5374 /* A future optimization, if needed, would be to use an existing
5375 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5376 could share abbrev tables. */
5377
5378 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5379 0 /* abbrev_table_provided */,
5380 NULL /* stub_comp_unit_die */,
5381 sig_type->dwo_unit->dwo_file->comp_dir,
5382 &reader, &info_ptr,
5383 &comp_unit_die, &has_children) == 0)
5384 {
5385 /* Dummy die. */
5386 do_cleanups (cleanups);
5387 return;
5388 }
5389
5390 /* All the "real" work is done here. */
5391 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5392
5393 /* This duplicates the code in init_cutu_and_read_dies,
5394 but the alternative is making the latter more complex.
5395 This function is only for the special case of using DWO files directly:
5396 no point in overly complicating the general case just to handle this. */
5397 if (free_cu_cleanup != NULL)
5398 {
5399 if (keep)
5400 {
5401 /* We've successfully allocated this compilation unit. Let our
5402 caller clean it up when finished with it. */
5403 discard_cleanups (free_cu_cleanup);
5404
5405 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5406 So we have to manually free the abbrev table. */
5407 dwarf2_free_abbrev_table (cu);
5408
5409 /* Link this CU into read_in_chain. */
5410 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5411 dwarf2_per_objfile->read_in_chain = this_cu;
5412 }
5413 else
5414 do_cleanups (free_cu_cleanup);
5415 }
5416
5417 do_cleanups (cleanups);
5418 }
5419
5420 /* Initialize a CU (or TU) and read its DIEs.
5421 If the CU defers to a DWO file, read the DWO file as well.
5422
5423 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5424 Otherwise the table specified in the comp unit header is read in and used.
5425 This is an optimization for when we already have the abbrev table.
5426
5427 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5428 Otherwise, a new CU is allocated with xmalloc.
5429
5430 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5431 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5432
5433 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5434 linker) then DIE_READER_FUNC will not get called. */
5435
5436 static void
5437 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5438 struct abbrev_table *abbrev_table,
5439 int use_existing_cu, int keep,
5440 die_reader_func_ftype *die_reader_func,
5441 void *data)
5442 {
5443 struct objfile *objfile = dwarf2_per_objfile->objfile;
5444 struct dwarf2_section_info *section = this_cu->section;
5445 bfd *abfd = get_section_bfd_owner (section);
5446 struct dwarf2_cu *cu;
5447 const gdb_byte *begin_info_ptr, *info_ptr;
5448 struct die_reader_specs reader;
5449 struct die_info *comp_unit_die;
5450 int has_children;
5451 struct attribute *attr;
5452 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5453 struct signatured_type *sig_type = NULL;
5454 struct dwarf2_section_info *abbrev_section;
5455 /* Non-zero if CU currently points to a DWO file and we need to
5456 reread it. When this happens we need to reread the skeleton die
5457 before we can reread the DWO file (this only applies to CUs, not TUs). */
5458 int rereading_dwo_cu = 0;
5459
5460 if (dwarf_die_debug)
5461 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5462 this_cu->is_debug_types ? "type" : "comp",
5463 this_cu->offset.sect_off);
5464
5465 if (use_existing_cu)
5466 gdb_assert (keep);
5467
5468 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5469 file (instead of going through the stub), short-circuit all of this. */
5470 if (this_cu->reading_dwo_directly)
5471 {
5472 /* Narrow down the scope of possibilities to have to understand. */
5473 gdb_assert (this_cu->is_debug_types);
5474 gdb_assert (abbrev_table == NULL);
5475 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5476 die_reader_func, data);
5477 return;
5478 }
5479
5480 cleanups = make_cleanup (null_cleanup, NULL);
5481
5482 /* This is cheap if the section is already read in. */
5483 dwarf2_read_section (objfile, section);
5484
5485 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5486
5487 abbrev_section = get_abbrev_section_for_cu (this_cu);
5488
5489 if (use_existing_cu && this_cu->cu != NULL)
5490 {
5491 cu = this_cu->cu;
5492 /* If this CU is from a DWO file we need to start over, we need to
5493 refetch the attributes from the skeleton CU.
5494 This could be optimized by retrieving those attributes from when we
5495 were here the first time: the previous comp_unit_die was stored in
5496 comp_unit_obstack. But there's no data yet that we need this
5497 optimization. */
5498 if (cu->dwo_unit != NULL)
5499 rereading_dwo_cu = 1;
5500 }
5501 else
5502 {
5503 /* If !use_existing_cu, this_cu->cu must be NULL. */
5504 gdb_assert (this_cu->cu == NULL);
5505 cu = XNEW (struct dwarf2_cu);
5506 init_one_comp_unit (cu, this_cu);
5507 /* If an error occurs while loading, release our storage. */
5508 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5509 }
5510
5511 /* Get the header. */
5512 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5513 {
5514 /* We already have the header, there's no need to read it in again. */
5515 info_ptr += cu->header.first_die_offset.cu_off;
5516 }
5517 else
5518 {
5519 if (this_cu->is_debug_types)
5520 {
5521 ULONGEST signature;
5522 cu_offset type_offset_in_tu;
5523
5524 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5525 abbrev_section, info_ptr,
5526 &signature,
5527 &type_offset_in_tu);
5528
5529 /* Since per_cu is the first member of struct signatured_type,
5530 we can go from a pointer to one to a pointer to the other. */
5531 sig_type = (struct signatured_type *) this_cu;
5532 gdb_assert (sig_type->signature == signature);
5533 gdb_assert (sig_type->type_offset_in_tu.cu_off
5534 == type_offset_in_tu.cu_off);
5535 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5536
5537 /* LENGTH has not been set yet for type units if we're
5538 using .gdb_index. */
5539 this_cu->length = get_cu_length (&cu->header);
5540
5541 /* Establish the type offset that can be used to lookup the type. */
5542 sig_type->type_offset_in_section.sect_off =
5543 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5544 }
5545 else
5546 {
5547 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5548 abbrev_section,
5549 info_ptr, 0);
5550
5551 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5552 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5553 }
5554 }
5555
5556 /* Skip dummy compilation units. */
5557 if (info_ptr >= begin_info_ptr + this_cu->length
5558 || peek_abbrev_code (abfd, info_ptr) == 0)
5559 {
5560 do_cleanups (cleanups);
5561 return;
5562 }
5563
5564 /* If we don't have them yet, read the abbrevs for this compilation unit.
5565 And if we need to read them now, make sure they're freed when we're
5566 done. Note that it's important that if the CU had an abbrev table
5567 on entry we don't free it when we're done: Somewhere up the call stack
5568 it may be in use. */
5569 if (abbrev_table != NULL)
5570 {
5571 gdb_assert (cu->abbrev_table == NULL);
5572 gdb_assert (cu->header.abbrev_offset.sect_off
5573 == abbrev_table->offset.sect_off);
5574 cu->abbrev_table = abbrev_table;
5575 }
5576 else if (cu->abbrev_table == NULL)
5577 {
5578 dwarf2_read_abbrevs (cu, abbrev_section);
5579 make_cleanup (dwarf2_free_abbrev_table, cu);
5580 }
5581 else if (rereading_dwo_cu)
5582 {
5583 dwarf2_free_abbrev_table (cu);
5584 dwarf2_read_abbrevs (cu, abbrev_section);
5585 }
5586
5587 /* Read the top level CU/TU die. */
5588 init_cu_die_reader (&reader, cu, section, NULL);
5589 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5590
5591 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5592 from the DWO file.
5593 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5594 DWO CU, that this test will fail (the attribute will not be present). */
5595 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5596 if (attr)
5597 {
5598 struct dwo_unit *dwo_unit;
5599 struct die_info *dwo_comp_unit_die;
5600
5601 if (has_children)
5602 {
5603 complaint (&symfile_complaints,
5604 _("compilation unit with DW_AT_GNU_dwo_name"
5605 " has children (offset 0x%x) [in module %s]"),
5606 this_cu->offset.sect_off, bfd_get_filename (abfd));
5607 }
5608 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5609 if (dwo_unit != NULL)
5610 {
5611 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5612 abbrev_table != NULL,
5613 comp_unit_die, NULL,
5614 &reader, &info_ptr,
5615 &dwo_comp_unit_die, &has_children) == 0)
5616 {
5617 /* Dummy die. */
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621 comp_unit_die = dwo_comp_unit_die;
5622 }
5623 else
5624 {
5625 /* Yikes, we couldn't find the rest of the DIE, we only have
5626 the stub. A complaint has already been logged. There's
5627 not much more we can do except pass on the stub DIE to
5628 die_reader_func. We don't want to throw an error on bad
5629 debug info. */
5630 }
5631 }
5632
5633 /* All of the above is setup for this call. Yikes. */
5634 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5635
5636 /* Done, clean up. */
5637 if (free_cu_cleanup != NULL)
5638 {
5639 if (keep)
5640 {
5641 /* We've successfully allocated this compilation unit. Let our
5642 caller clean it up when finished with it. */
5643 discard_cleanups (free_cu_cleanup);
5644
5645 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5646 So we have to manually free the abbrev table. */
5647 dwarf2_free_abbrev_table (cu);
5648
5649 /* Link this CU into read_in_chain. */
5650 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5651 dwarf2_per_objfile->read_in_chain = this_cu;
5652 }
5653 else
5654 do_cleanups (free_cu_cleanup);
5655 }
5656
5657 do_cleanups (cleanups);
5658 }
5659
5660 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5661 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5662 to have already done the lookup to find the DWO file).
5663
5664 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5665 THIS_CU->is_debug_types, but nothing else.
5666
5667 We fill in THIS_CU->length.
5668
5669 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5670 linker) then DIE_READER_FUNC will not get called.
5671
5672 THIS_CU->cu is always freed when done.
5673 This is done in order to not leave THIS_CU->cu in a state where we have
5674 to care whether it refers to the "main" CU or the DWO CU. */
5675
5676 static void
5677 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5678 struct dwo_file *dwo_file,
5679 die_reader_func_ftype *die_reader_func,
5680 void *data)
5681 {
5682 struct objfile *objfile = dwarf2_per_objfile->objfile;
5683 struct dwarf2_section_info *section = this_cu->section;
5684 bfd *abfd = get_section_bfd_owner (section);
5685 struct dwarf2_section_info *abbrev_section;
5686 struct dwarf2_cu cu;
5687 const gdb_byte *begin_info_ptr, *info_ptr;
5688 struct die_reader_specs reader;
5689 struct cleanup *cleanups;
5690 struct die_info *comp_unit_die;
5691 int has_children;
5692
5693 if (dwarf_die_debug)
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
5696 this_cu->offset.sect_off);
5697
5698 gdb_assert (this_cu->cu == NULL);
5699
5700 abbrev_section = (dwo_file != NULL
5701 ? &dwo_file->sections.abbrev
5702 : get_abbrev_section_for_cu (this_cu));
5703
5704 /* This is cheap if the section is already read in. */
5705 dwarf2_read_section (objfile, section);
5706
5707 init_one_comp_unit (&cu, this_cu);
5708
5709 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5710
5711 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5712 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5713 abbrev_section, info_ptr,
5714 this_cu->is_debug_types);
5715
5716 this_cu->length = get_cu_length (&cu.header);
5717
5718 /* Skip dummy compilation units. */
5719 if (info_ptr >= begin_info_ptr + this_cu->length
5720 || peek_abbrev_code (abfd, info_ptr) == 0)
5721 {
5722 do_cleanups (cleanups);
5723 return;
5724 }
5725
5726 dwarf2_read_abbrevs (&cu, abbrev_section);
5727 make_cleanup (dwarf2_free_abbrev_table, &cu);
5728
5729 init_cu_die_reader (&reader, &cu, section, dwo_file);
5730 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5731
5732 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5733
5734 do_cleanups (cleanups);
5735 }
5736
5737 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5738 does not lookup the specified DWO file.
5739 This cannot be used to read DWO files.
5740
5741 THIS_CU->cu is always freed when done.
5742 This is done in order to not leave THIS_CU->cu in a state where we have
5743 to care whether it refers to the "main" CU or the DWO CU.
5744 We can revisit this if the data shows there's a performance issue. */
5745
5746 static void
5747 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5748 die_reader_func_ftype *die_reader_func,
5749 void *data)
5750 {
5751 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5752 }
5753 \f
5754 /* Type Unit Groups.
5755
5756 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5757 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5758 so that all types coming from the same compilation (.o file) are grouped
5759 together. A future step could be to put the types in the same symtab as
5760 the CU the types ultimately came from. */
5761
5762 static hashval_t
5763 hash_type_unit_group (const void *item)
5764 {
5765 const struct type_unit_group *tu_group
5766 = (const struct type_unit_group *) item;
5767
5768 return hash_stmt_list_entry (&tu_group->hash);
5769 }
5770
5771 static int
5772 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5773 {
5774 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5775 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5776
5777 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5778 }
5779
5780 /* Allocate a hash table for type unit groups. */
5781
5782 static htab_t
5783 allocate_type_unit_groups_table (void)
5784 {
5785 return htab_create_alloc_ex (3,
5786 hash_type_unit_group,
5787 eq_type_unit_group,
5788 NULL,
5789 &dwarf2_per_objfile->objfile->objfile_obstack,
5790 hashtab_obstack_allocate,
5791 dummy_obstack_deallocate);
5792 }
5793
5794 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5795 partial symtabs. We combine several TUs per psymtab to not let the size
5796 of any one psymtab grow too big. */
5797 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5798 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5799
5800 /* Helper routine for get_type_unit_group.
5801 Create the type_unit_group object used to hold one or more TUs. */
5802
5803 static struct type_unit_group *
5804 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5805 {
5806 struct objfile *objfile = dwarf2_per_objfile->objfile;
5807 struct dwarf2_per_cu_data *per_cu;
5808 struct type_unit_group *tu_group;
5809
5810 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5811 struct type_unit_group);
5812 per_cu = &tu_group->per_cu;
5813 per_cu->objfile = objfile;
5814
5815 if (dwarf2_per_objfile->using_index)
5816 {
5817 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5818 struct dwarf2_per_cu_quick_data);
5819 }
5820 else
5821 {
5822 unsigned int line_offset = line_offset_struct.sect_off;
5823 struct partial_symtab *pst;
5824 char *name;
5825
5826 /* Give the symtab a useful name for debug purposes. */
5827 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5828 name = xstrprintf ("<type_units_%d>",
5829 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5830 else
5831 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5832
5833 pst = create_partial_symtab (per_cu, name);
5834 pst->anonymous = 1;
5835
5836 xfree (name);
5837 }
5838
5839 tu_group->hash.dwo_unit = cu->dwo_unit;
5840 tu_group->hash.line_offset = line_offset_struct;
5841
5842 return tu_group;
5843 }
5844
5845 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5846 STMT_LIST is a DW_AT_stmt_list attribute. */
5847
5848 static struct type_unit_group *
5849 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5850 {
5851 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5852 struct type_unit_group *tu_group;
5853 void **slot;
5854 unsigned int line_offset;
5855 struct type_unit_group type_unit_group_for_lookup;
5856
5857 if (dwarf2_per_objfile->type_unit_groups == NULL)
5858 {
5859 dwarf2_per_objfile->type_unit_groups =
5860 allocate_type_unit_groups_table ();
5861 }
5862
5863 /* Do we need to create a new group, or can we use an existing one? */
5864
5865 if (stmt_list)
5866 {
5867 line_offset = DW_UNSND (stmt_list);
5868 ++tu_stats->nr_symtab_sharers;
5869 }
5870 else
5871 {
5872 /* Ugh, no stmt_list. Rare, but we have to handle it.
5873 We can do various things here like create one group per TU or
5874 spread them over multiple groups to split up the expansion work.
5875 To avoid worst case scenarios (too many groups or too large groups)
5876 we, umm, group them in bunches. */
5877 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5878 | (tu_stats->nr_stmt_less_type_units
5879 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5880 ++tu_stats->nr_stmt_less_type_units;
5881 }
5882
5883 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5884 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5885 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5886 &type_unit_group_for_lookup, INSERT);
5887 if (*slot != NULL)
5888 {
5889 tu_group = (struct type_unit_group *) *slot;
5890 gdb_assert (tu_group != NULL);
5891 }
5892 else
5893 {
5894 sect_offset line_offset_struct;
5895
5896 line_offset_struct.sect_off = line_offset;
5897 tu_group = create_type_unit_group (cu, line_offset_struct);
5898 *slot = tu_group;
5899 ++tu_stats->nr_symtabs;
5900 }
5901
5902 return tu_group;
5903 }
5904 \f
5905 /* Partial symbol tables. */
5906
5907 /* Create a psymtab named NAME and assign it to PER_CU.
5908
5909 The caller must fill in the following details:
5910 dirname, textlow, texthigh. */
5911
5912 static struct partial_symtab *
5913 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5914 {
5915 struct objfile *objfile = per_cu->objfile;
5916 struct partial_symtab *pst;
5917
5918 pst = start_psymtab_common (objfile, name, 0,
5919 objfile->global_psymbols.next,
5920 objfile->static_psymbols.next);
5921
5922 pst->psymtabs_addrmap_supported = 1;
5923
5924 /* This is the glue that links PST into GDB's symbol API. */
5925 pst->read_symtab_private = per_cu;
5926 pst->read_symtab = dwarf2_read_symtab;
5927 per_cu->v.psymtab = pst;
5928
5929 return pst;
5930 }
5931
5932 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5933 type. */
5934
5935 struct process_psymtab_comp_unit_data
5936 {
5937 /* True if we are reading a DW_TAG_partial_unit. */
5938
5939 int want_partial_unit;
5940
5941 /* The "pretend" language that is used if the CU doesn't declare a
5942 language. */
5943
5944 enum language pretend_language;
5945 };
5946
5947 /* die_reader_func for process_psymtab_comp_unit. */
5948
5949 static void
5950 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5951 const gdb_byte *info_ptr,
5952 struct die_info *comp_unit_die,
5953 int has_children,
5954 void *data)
5955 {
5956 struct dwarf2_cu *cu = reader->cu;
5957 struct objfile *objfile = cu->objfile;
5958 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5959 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5960 CORE_ADDR baseaddr;
5961 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5962 struct partial_symtab *pst;
5963 enum pc_bounds_kind cu_bounds_kind;
5964 const char *filename;
5965 struct process_psymtab_comp_unit_data *info
5966 = (struct process_psymtab_comp_unit_data *) data;
5967
5968 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5969 return;
5970
5971 gdb_assert (! per_cu->is_debug_types);
5972
5973 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5974
5975 cu->list_in_scope = &file_symbols;
5976
5977 /* Allocate a new partial symbol table structure. */
5978 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5979 if (filename == NULL)
5980 filename = "";
5981
5982 pst = create_partial_symtab (per_cu, filename);
5983
5984 /* This must be done before calling dwarf2_build_include_psymtabs. */
5985 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5986
5987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5988
5989 dwarf2_find_base_address (comp_unit_die, cu);
5990
5991 /* Possibly set the default values of LOWPC and HIGHPC from
5992 `DW_AT_ranges'. */
5993 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5994 &best_highpc, cu, pst);
5995 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
5996 /* Store the contiguous range if it is not empty; it can be empty for
5997 CUs with no code. */
5998 addrmap_set_empty (objfile->psymtabs_addrmap,
5999 gdbarch_adjust_dwarf2_addr (gdbarch,
6000 best_lowpc + baseaddr),
6001 gdbarch_adjust_dwarf2_addr (gdbarch,
6002 best_highpc + baseaddr) - 1,
6003 pst);
6004
6005 /* Check if comp unit has_children.
6006 If so, read the rest of the partial symbols from this comp unit.
6007 If not, there's no more debug_info for this comp unit. */
6008 if (has_children)
6009 {
6010 struct partial_die_info *first_die;
6011 CORE_ADDR lowpc, highpc;
6012
6013 lowpc = ((CORE_ADDR) -1);
6014 highpc = ((CORE_ADDR) 0);
6015
6016 first_die = load_partial_dies (reader, info_ptr, 1);
6017
6018 scan_partial_symbols (first_die, &lowpc, &highpc,
6019 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6020
6021 /* If we didn't find a lowpc, set it to highpc to avoid
6022 complaints from `maint check'. */
6023 if (lowpc == ((CORE_ADDR) -1))
6024 lowpc = highpc;
6025
6026 /* If the compilation unit didn't have an explicit address range,
6027 then use the information extracted from its child dies. */
6028 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6029 {
6030 best_lowpc = lowpc;
6031 best_highpc = highpc;
6032 }
6033 }
6034 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6035 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6036
6037 end_psymtab_common (objfile, pst);
6038
6039 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6040 {
6041 int i;
6042 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6043 struct dwarf2_per_cu_data *iter;
6044
6045 /* Fill in 'dependencies' here; we fill in 'users' in a
6046 post-pass. */
6047 pst->number_of_dependencies = len;
6048 pst->dependencies =
6049 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6050 for (i = 0;
6051 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6052 i, iter);
6053 ++i)
6054 pst->dependencies[i] = iter->v.psymtab;
6055
6056 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6057 }
6058
6059 /* Get the list of files included in the current compilation unit,
6060 and build a psymtab for each of them. */
6061 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6062
6063 if (dwarf_read_debug)
6064 {
6065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6066
6067 fprintf_unfiltered (gdb_stdlog,
6068 "Psymtab for %s unit @0x%x: %s - %s"
6069 ", %d global, %d static syms\n",
6070 per_cu->is_debug_types ? "type" : "comp",
6071 per_cu->offset.sect_off,
6072 paddress (gdbarch, pst->textlow),
6073 paddress (gdbarch, pst->texthigh),
6074 pst->n_global_syms, pst->n_static_syms);
6075 }
6076 }
6077
6078 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6079 Process compilation unit THIS_CU for a psymtab. */
6080
6081 static void
6082 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6083 int want_partial_unit,
6084 enum language pretend_language)
6085 {
6086 struct process_psymtab_comp_unit_data info;
6087
6088 /* If this compilation unit was already read in, free the
6089 cached copy in order to read it in again. This is
6090 necessary because we skipped some symbols when we first
6091 read in the compilation unit (see load_partial_dies).
6092 This problem could be avoided, but the benefit is unclear. */
6093 if (this_cu->cu != NULL)
6094 free_one_cached_comp_unit (this_cu);
6095
6096 gdb_assert (! this_cu->is_debug_types);
6097 info.want_partial_unit = want_partial_unit;
6098 info.pretend_language = pretend_language;
6099 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6100 process_psymtab_comp_unit_reader,
6101 &info);
6102
6103 /* Age out any secondary CUs. */
6104 age_cached_comp_units ();
6105 }
6106
6107 /* Reader function for build_type_psymtabs. */
6108
6109 static void
6110 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6111 const gdb_byte *info_ptr,
6112 struct die_info *type_unit_die,
6113 int has_children,
6114 void *data)
6115 {
6116 struct objfile *objfile = dwarf2_per_objfile->objfile;
6117 struct dwarf2_cu *cu = reader->cu;
6118 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6119 struct signatured_type *sig_type;
6120 struct type_unit_group *tu_group;
6121 struct attribute *attr;
6122 struct partial_die_info *first_die;
6123 CORE_ADDR lowpc, highpc;
6124 struct partial_symtab *pst;
6125
6126 gdb_assert (data == NULL);
6127 gdb_assert (per_cu->is_debug_types);
6128 sig_type = (struct signatured_type *) per_cu;
6129
6130 if (! has_children)
6131 return;
6132
6133 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6134 tu_group = get_type_unit_group (cu, attr);
6135
6136 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6137
6138 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6139 cu->list_in_scope = &file_symbols;
6140 pst = create_partial_symtab (per_cu, "");
6141 pst->anonymous = 1;
6142
6143 first_die = load_partial_dies (reader, info_ptr, 1);
6144
6145 lowpc = (CORE_ADDR) -1;
6146 highpc = (CORE_ADDR) 0;
6147 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6148
6149 end_psymtab_common (objfile, pst);
6150 }
6151
6152 /* Struct used to sort TUs by their abbreviation table offset. */
6153
6154 struct tu_abbrev_offset
6155 {
6156 struct signatured_type *sig_type;
6157 sect_offset abbrev_offset;
6158 };
6159
6160 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6161
6162 static int
6163 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6164 {
6165 const struct tu_abbrev_offset * const *a
6166 = (const struct tu_abbrev_offset * const*) ap;
6167 const struct tu_abbrev_offset * const *b
6168 = (const struct tu_abbrev_offset * const*) bp;
6169 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6170 unsigned int boff = (*b)->abbrev_offset.sect_off;
6171
6172 return (aoff > boff) - (aoff < boff);
6173 }
6174
6175 /* Efficiently read all the type units.
6176 This does the bulk of the work for build_type_psymtabs.
6177
6178 The efficiency is because we sort TUs by the abbrev table they use and
6179 only read each abbrev table once. In one program there are 200K TUs
6180 sharing 8K abbrev tables.
6181
6182 The main purpose of this function is to support building the
6183 dwarf2_per_objfile->type_unit_groups table.
6184 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6185 can collapse the search space by grouping them by stmt_list.
6186 The savings can be significant, in the same program from above the 200K TUs
6187 share 8K stmt_list tables.
6188
6189 FUNC is expected to call get_type_unit_group, which will create the
6190 struct type_unit_group if necessary and add it to
6191 dwarf2_per_objfile->type_unit_groups. */
6192
6193 static void
6194 build_type_psymtabs_1 (void)
6195 {
6196 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6197 struct cleanup *cleanups;
6198 struct abbrev_table *abbrev_table;
6199 sect_offset abbrev_offset;
6200 struct tu_abbrev_offset *sorted_by_abbrev;
6201 int i;
6202
6203 /* It's up to the caller to not call us multiple times. */
6204 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6205
6206 if (dwarf2_per_objfile->n_type_units == 0)
6207 return;
6208
6209 /* TUs typically share abbrev tables, and there can be way more TUs than
6210 abbrev tables. Sort by abbrev table to reduce the number of times we
6211 read each abbrev table in.
6212 Alternatives are to punt or to maintain a cache of abbrev tables.
6213 This is simpler and efficient enough for now.
6214
6215 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6216 symtab to use). Typically TUs with the same abbrev offset have the same
6217 stmt_list value too so in practice this should work well.
6218
6219 The basic algorithm here is:
6220
6221 sort TUs by abbrev table
6222 for each TU with same abbrev table:
6223 read abbrev table if first user
6224 read TU top level DIE
6225 [IWBN if DWO skeletons had DW_AT_stmt_list]
6226 call FUNC */
6227
6228 if (dwarf_read_debug)
6229 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6230
6231 /* Sort in a separate table to maintain the order of all_type_units
6232 for .gdb_index: TU indices directly index all_type_units. */
6233 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6234 dwarf2_per_objfile->n_type_units);
6235 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6236 {
6237 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6238
6239 sorted_by_abbrev[i].sig_type = sig_type;
6240 sorted_by_abbrev[i].abbrev_offset =
6241 read_abbrev_offset (sig_type->per_cu.section,
6242 sig_type->per_cu.offset);
6243 }
6244 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6245 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6246 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6247
6248 abbrev_offset.sect_off = ~(unsigned) 0;
6249 abbrev_table = NULL;
6250 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6251
6252 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6253 {
6254 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6255
6256 /* Switch to the next abbrev table if necessary. */
6257 if (abbrev_table == NULL
6258 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6259 {
6260 if (abbrev_table != NULL)
6261 {
6262 abbrev_table_free (abbrev_table);
6263 /* Reset to NULL in case abbrev_table_read_table throws
6264 an error: abbrev_table_free_cleanup will get called. */
6265 abbrev_table = NULL;
6266 }
6267 abbrev_offset = tu->abbrev_offset;
6268 abbrev_table =
6269 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6270 abbrev_offset);
6271 ++tu_stats->nr_uniq_abbrev_tables;
6272 }
6273
6274 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6275 build_type_psymtabs_reader, NULL);
6276 }
6277
6278 do_cleanups (cleanups);
6279 }
6280
6281 /* Print collected type unit statistics. */
6282
6283 static void
6284 print_tu_stats (void)
6285 {
6286 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6287
6288 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6289 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6290 dwarf2_per_objfile->n_type_units);
6291 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6292 tu_stats->nr_uniq_abbrev_tables);
6293 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6294 tu_stats->nr_symtabs);
6295 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6296 tu_stats->nr_symtab_sharers);
6297 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6298 tu_stats->nr_stmt_less_type_units);
6299 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6300 tu_stats->nr_all_type_units_reallocs);
6301 }
6302
6303 /* Traversal function for build_type_psymtabs. */
6304
6305 static int
6306 build_type_psymtab_dependencies (void **slot, void *info)
6307 {
6308 struct objfile *objfile = dwarf2_per_objfile->objfile;
6309 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6310 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6311 struct partial_symtab *pst = per_cu->v.psymtab;
6312 int len = VEC_length (sig_type_ptr, tu_group->tus);
6313 struct signatured_type *iter;
6314 int i;
6315
6316 gdb_assert (len > 0);
6317 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6318
6319 pst->number_of_dependencies = len;
6320 pst->dependencies =
6321 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6322 for (i = 0;
6323 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6324 ++i)
6325 {
6326 gdb_assert (iter->per_cu.is_debug_types);
6327 pst->dependencies[i] = iter->per_cu.v.psymtab;
6328 iter->type_unit_group = tu_group;
6329 }
6330
6331 VEC_free (sig_type_ptr, tu_group->tus);
6332
6333 return 1;
6334 }
6335
6336 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6337 Build partial symbol tables for the .debug_types comp-units. */
6338
6339 static void
6340 build_type_psymtabs (struct objfile *objfile)
6341 {
6342 if (! create_all_type_units (objfile))
6343 return;
6344
6345 build_type_psymtabs_1 ();
6346 }
6347
6348 /* Traversal function for process_skeletonless_type_unit.
6349 Read a TU in a DWO file and build partial symbols for it. */
6350
6351 static int
6352 process_skeletonless_type_unit (void **slot, void *info)
6353 {
6354 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6355 struct objfile *objfile = (struct objfile *) info;
6356 struct signatured_type find_entry, *entry;
6357
6358 /* If this TU doesn't exist in the global table, add it and read it in. */
6359
6360 if (dwarf2_per_objfile->signatured_types == NULL)
6361 {
6362 dwarf2_per_objfile->signatured_types
6363 = allocate_signatured_type_table (objfile);
6364 }
6365
6366 find_entry.signature = dwo_unit->signature;
6367 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6368 INSERT);
6369 /* If we've already seen this type there's nothing to do. What's happening
6370 is we're doing our own version of comdat-folding here. */
6371 if (*slot != NULL)
6372 return 1;
6373
6374 /* This does the job that create_all_type_units would have done for
6375 this TU. */
6376 entry = add_type_unit (dwo_unit->signature, slot);
6377 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6378 *slot = entry;
6379
6380 /* This does the job that build_type_psymtabs_1 would have done. */
6381 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6382 build_type_psymtabs_reader, NULL);
6383
6384 return 1;
6385 }
6386
6387 /* Traversal function for process_skeletonless_type_units. */
6388
6389 static int
6390 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6391 {
6392 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6393
6394 if (dwo_file->tus != NULL)
6395 {
6396 htab_traverse_noresize (dwo_file->tus,
6397 process_skeletonless_type_unit, info);
6398 }
6399
6400 return 1;
6401 }
6402
6403 /* Scan all TUs of DWO files, verifying we've processed them.
6404 This is needed in case a TU was emitted without its skeleton.
6405 Note: This can't be done until we know what all the DWO files are. */
6406
6407 static void
6408 process_skeletonless_type_units (struct objfile *objfile)
6409 {
6410 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6411 if (get_dwp_file () == NULL
6412 && dwarf2_per_objfile->dwo_files != NULL)
6413 {
6414 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6415 process_dwo_file_for_skeletonless_type_units,
6416 objfile);
6417 }
6418 }
6419
6420 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6421
6422 static void
6423 psymtabs_addrmap_cleanup (void *o)
6424 {
6425 struct objfile *objfile = (struct objfile *) o;
6426
6427 objfile->psymtabs_addrmap = NULL;
6428 }
6429
6430 /* Compute the 'user' field for each psymtab in OBJFILE. */
6431
6432 static void
6433 set_partial_user (struct objfile *objfile)
6434 {
6435 int i;
6436
6437 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6438 {
6439 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6440 struct partial_symtab *pst = per_cu->v.psymtab;
6441 int j;
6442
6443 if (pst == NULL)
6444 continue;
6445
6446 for (j = 0; j < pst->number_of_dependencies; ++j)
6447 {
6448 /* Set the 'user' field only if it is not already set. */
6449 if (pst->dependencies[j]->user == NULL)
6450 pst->dependencies[j]->user = pst;
6451 }
6452 }
6453 }
6454
6455 /* Build the partial symbol table by doing a quick pass through the
6456 .debug_info and .debug_abbrev sections. */
6457
6458 static void
6459 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6460 {
6461 struct cleanup *back_to, *addrmap_cleanup;
6462 struct obstack temp_obstack;
6463 int i;
6464
6465 if (dwarf_read_debug)
6466 {
6467 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6468 objfile_name (objfile));
6469 }
6470
6471 dwarf2_per_objfile->reading_partial_symbols = 1;
6472
6473 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6474
6475 /* Any cached compilation units will be linked by the per-objfile
6476 read_in_chain. Make sure to free them when we're done. */
6477 back_to = make_cleanup (free_cached_comp_units, NULL);
6478
6479 build_type_psymtabs (objfile);
6480
6481 create_all_comp_units (objfile);
6482
6483 /* Create a temporary address map on a temporary obstack. We later
6484 copy this to the final obstack. */
6485 obstack_init (&temp_obstack);
6486 make_cleanup_obstack_free (&temp_obstack);
6487 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6488 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6489
6490 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6491 {
6492 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6493
6494 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6495 }
6496
6497 /* This has to wait until we read the CUs, we need the list of DWOs. */
6498 process_skeletonless_type_units (objfile);
6499
6500 /* Now that all TUs have been processed we can fill in the dependencies. */
6501 if (dwarf2_per_objfile->type_unit_groups != NULL)
6502 {
6503 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6504 build_type_psymtab_dependencies, NULL);
6505 }
6506
6507 if (dwarf_read_debug)
6508 print_tu_stats ();
6509
6510 set_partial_user (objfile);
6511
6512 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6513 &objfile->objfile_obstack);
6514 discard_cleanups (addrmap_cleanup);
6515
6516 do_cleanups (back_to);
6517
6518 if (dwarf_read_debug)
6519 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6520 objfile_name (objfile));
6521 }
6522
6523 /* die_reader_func for load_partial_comp_unit. */
6524
6525 static void
6526 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6527 const gdb_byte *info_ptr,
6528 struct die_info *comp_unit_die,
6529 int has_children,
6530 void *data)
6531 {
6532 struct dwarf2_cu *cu = reader->cu;
6533
6534 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6535
6536 /* Check if comp unit has_children.
6537 If so, read the rest of the partial symbols from this comp unit.
6538 If not, there's no more debug_info for this comp unit. */
6539 if (has_children)
6540 load_partial_dies (reader, info_ptr, 0);
6541 }
6542
6543 /* Load the partial DIEs for a secondary CU into memory.
6544 This is also used when rereading a primary CU with load_all_dies. */
6545
6546 static void
6547 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6548 {
6549 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6550 load_partial_comp_unit_reader, NULL);
6551 }
6552
6553 static void
6554 read_comp_units_from_section (struct objfile *objfile,
6555 struct dwarf2_section_info *section,
6556 unsigned int is_dwz,
6557 int *n_allocated,
6558 int *n_comp_units,
6559 struct dwarf2_per_cu_data ***all_comp_units)
6560 {
6561 const gdb_byte *info_ptr;
6562 bfd *abfd = get_section_bfd_owner (section);
6563
6564 if (dwarf_read_debug)
6565 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6566 get_section_name (section),
6567 get_section_file_name (section));
6568
6569 dwarf2_read_section (objfile, section);
6570
6571 info_ptr = section->buffer;
6572
6573 while (info_ptr < section->buffer + section->size)
6574 {
6575 unsigned int length, initial_length_size;
6576 struct dwarf2_per_cu_data *this_cu;
6577 sect_offset offset;
6578
6579 offset.sect_off = info_ptr - section->buffer;
6580
6581 /* Read just enough information to find out where the next
6582 compilation unit is. */
6583 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6584
6585 /* Save the compilation unit for later lookup. */
6586 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6587 memset (this_cu, 0, sizeof (*this_cu));
6588 this_cu->offset = offset;
6589 this_cu->length = length + initial_length_size;
6590 this_cu->is_dwz = is_dwz;
6591 this_cu->objfile = objfile;
6592 this_cu->section = section;
6593
6594 if (*n_comp_units == *n_allocated)
6595 {
6596 *n_allocated *= 2;
6597 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6598 *all_comp_units, *n_allocated);
6599 }
6600 (*all_comp_units)[*n_comp_units] = this_cu;
6601 ++*n_comp_units;
6602
6603 info_ptr = info_ptr + this_cu->length;
6604 }
6605 }
6606
6607 /* Create a list of all compilation units in OBJFILE.
6608 This is only done for -readnow and building partial symtabs. */
6609
6610 static void
6611 create_all_comp_units (struct objfile *objfile)
6612 {
6613 int n_allocated;
6614 int n_comp_units;
6615 struct dwarf2_per_cu_data **all_comp_units;
6616 struct dwz_file *dwz;
6617
6618 n_comp_units = 0;
6619 n_allocated = 10;
6620 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6621
6622 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6623 &n_allocated, &n_comp_units, &all_comp_units);
6624
6625 dwz = dwarf2_get_dwz_file ();
6626 if (dwz != NULL)
6627 read_comp_units_from_section (objfile, &dwz->info, 1,
6628 &n_allocated, &n_comp_units,
6629 &all_comp_units);
6630
6631 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6632 struct dwarf2_per_cu_data *,
6633 n_comp_units);
6634 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6635 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6636 xfree (all_comp_units);
6637 dwarf2_per_objfile->n_comp_units = n_comp_units;
6638 }
6639
6640 /* Process all loaded DIEs for compilation unit CU, starting at
6641 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6642 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6643 DW_AT_ranges). See the comments of add_partial_subprogram on how
6644 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6645
6646 static void
6647 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6648 CORE_ADDR *highpc, int set_addrmap,
6649 struct dwarf2_cu *cu)
6650 {
6651 struct partial_die_info *pdi;
6652
6653 /* Now, march along the PDI's, descending into ones which have
6654 interesting children but skipping the children of the other ones,
6655 until we reach the end of the compilation unit. */
6656
6657 pdi = first_die;
6658
6659 while (pdi != NULL)
6660 {
6661 fixup_partial_die (pdi, cu);
6662
6663 /* Anonymous namespaces or modules have no name but have interesting
6664 children, so we need to look at them. Ditto for anonymous
6665 enums. */
6666
6667 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6668 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6669 || pdi->tag == DW_TAG_imported_unit)
6670 {
6671 switch (pdi->tag)
6672 {
6673 case DW_TAG_subprogram:
6674 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6675 break;
6676 case DW_TAG_constant:
6677 case DW_TAG_variable:
6678 case DW_TAG_typedef:
6679 case DW_TAG_union_type:
6680 if (!pdi->is_declaration)
6681 {
6682 add_partial_symbol (pdi, cu);
6683 }
6684 break;
6685 case DW_TAG_class_type:
6686 case DW_TAG_interface_type:
6687 case DW_TAG_structure_type:
6688 if (!pdi->is_declaration)
6689 {
6690 add_partial_symbol (pdi, cu);
6691 }
6692 if (cu->language == language_rust && pdi->has_children)
6693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6694 set_addrmap, cu);
6695 break;
6696 case DW_TAG_enumeration_type:
6697 if (!pdi->is_declaration)
6698 add_partial_enumeration (pdi, cu);
6699 break;
6700 case DW_TAG_base_type:
6701 case DW_TAG_subrange_type:
6702 /* File scope base type definitions are added to the partial
6703 symbol table. */
6704 add_partial_symbol (pdi, cu);
6705 break;
6706 case DW_TAG_namespace:
6707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6708 break;
6709 case DW_TAG_module:
6710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6711 break;
6712 case DW_TAG_imported_unit:
6713 {
6714 struct dwarf2_per_cu_data *per_cu;
6715
6716 /* For now we don't handle imported units in type units. */
6717 if (cu->per_cu->is_debug_types)
6718 {
6719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6720 " supported in type units [in module %s]"),
6721 objfile_name (cu->objfile));
6722 }
6723
6724 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6725 pdi->is_dwz,
6726 cu->objfile);
6727
6728 /* Go read the partial unit, if needed. */
6729 if (per_cu->v.psymtab == NULL)
6730 process_psymtab_comp_unit (per_cu, 1, cu->language);
6731
6732 VEC_safe_push (dwarf2_per_cu_ptr,
6733 cu->per_cu->imported_symtabs, per_cu);
6734 }
6735 break;
6736 case DW_TAG_imported_declaration:
6737 add_partial_symbol (pdi, cu);
6738 break;
6739 default:
6740 break;
6741 }
6742 }
6743
6744 /* If the die has a sibling, skip to the sibling. */
6745
6746 pdi = pdi->die_sibling;
6747 }
6748 }
6749
6750 /* Functions used to compute the fully scoped name of a partial DIE.
6751
6752 Normally, this is simple. For C++, the parent DIE's fully scoped
6753 name is concatenated with "::" and the partial DIE's name.
6754 Enumerators are an exception; they use the scope of their parent
6755 enumeration type, i.e. the name of the enumeration type is not
6756 prepended to the enumerator.
6757
6758 There are two complexities. One is DW_AT_specification; in this
6759 case "parent" means the parent of the target of the specification,
6760 instead of the direct parent of the DIE. The other is compilers
6761 which do not emit DW_TAG_namespace; in this case we try to guess
6762 the fully qualified name of structure types from their members'
6763 linkage names. This must be done using the DIE's children rather
6764 than the children of any DW_AT_specification target. We only need
6765 to do this for structures at the top level, i.e. if the target of
6766 any DW_AT_specification (if any; otherwise the DIE itself) does not
6767 have a parent. */
6768
6769 /* Compute the scope prefix associated with PDI's parent, in
6770 compilation unit CU. The result will be allocated on CU's
6771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6772 field. NULL is returned if no prefix is necessary. */
6773 static const char *
6774 partial_die_parent_scope (struct partial_die_info *pdi,
6775 struct dwarf2_cu *cu)
6776 {
6777 const char *grandparent_scope;
6778 struct partial_die_info *parent, *real_pdi;
6779
6780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6781 then this means the parent of the specification DIE. */
6782
6783 real_pdi = pdi;
6784 while (real_pdi->has_specification)
6785 real_pdi = find_partial_die (real_pdi->spec_offset,
6786 real_pdi->spec_is_dwz, cu);
6787
6788 parent = real_pdi->die_parent;
6789 if (parent == NULL)
6790 return NULL;
6791
6792 if (parent->scope_set)
6793 return parent->scope;
6794
6795 fixup_partial_die (parent, cu);
6796
6797 grandparent_scope = partial_die_parent_scope (parent, cu);
6798
6799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6801 Work around this problem here. */
6802 if (cu->language == language_cplus
6803 && parent->tag == DW_TAG_namespace
6804 && strcmp (parent->name, "::") == 0
6805 && grandparent_scope == NULL)
6806 {
6807 parent->scope = NULL;
6808 parent->scope_set = 1;
6809 return NULL;
6810 }
6811
6812 if (pdi->tag == DW_TAG_enumerator)
6813 /* Enumerators should not get the name of the enumeration as a prefix. */
6814 parent->scope = grandparent_scope;
6815 else if (parent->tag == DW_TAG_namespace
6816 || parent->tag == DW_TAG_module
6817 || parent->tag == DW_TAG_structure_type
6818 || parent->tag == DW_TAG_class_type
6819 || parent->tag == DW_TAG_interface_type
6820 || parent->tag == DW_TAG_union_type
6821 || parent->tag == DW_TAG_enumeration_type)
6822 {
6823 if (grandparent_scope == NULL)
6824 parent->scope = parent->name;
6825 else
6826 parent->scope = typename_concat (&cu->comp_unit_obstack,
6827 grandparent_scope,
6828 parent->name, 0, cu);
6829 }
6830 else
6831 {
6832 /* FIXME drow/2004-04-01: What should we be doing with
6833 function-local names? For partial symbols, we should probably be
6834 ignoring them. */
6835 complaint (&symfile_complaints,
6836 _("unhandled containing DIE tag %d for DIE at %d"),
6837 parent->tag, pdi->offset.sect_off);
6838 parent->scope = grandparent_scope;
6839 }
6840
6841 parent->scope_set = 1;
6842 return parent->scope;
6843 }
6844
6845 /* Return the fully scoped name associated with PDI, from compilation unit
6846 CU. The result will be allocated with malloc. */
6847
6848 static char *
6849 partial_die_full_name (struct partial_die_info *pdi,
6850 struct dwarf2_cu *cu)
6851 {
6852 const char *parent_scope;
6853
6854 /* If this is a template instantiation, we can not work out the
6855 template arguments from partial DIEs. So, unfortunately, we have
6856 to go through the full DIEs. At least any work we do building
6857 types here will be reused if full symbols are loaded later. */
6858 if (pdi->has_template_arguments)
6859 {
6860 fixup_partial_die (pdi, cu);
6861
6862 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6863 {
6864 struct die_info *die;
6865 struct attribute attr;
6866 struct dwarf2_cu *ref_cu = cu;
6867
6868 /* DW_FORM_ref_addr is using section offset. */
6869 attr.name = (enum dwarf_attribute) 0;
6870 attr.form = DW_FORM_ref_addr;
6871 attr.u.unsnd = pdi->offset.sect_off;
6872 die = follow_die_ref (NULL, &attr, &ref_cu);
6873
6874 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6875 }
6876 }
6877
6878 parent_scope = partial_die_parent_scope (pdi, cu);
6879 if (parent_scope == NULL)
6880 return NULL;
6881 else
6882 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6883 }
6884
6885 static void
6886 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6887 {
6888 struct objfile *objfile = cu->objfile;
6889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6890 CORE_ADDR addr = 0;
6891 const char *actual_name = NULL;
6892 CORE_ADDR baseaddr;
6893 char *built_actual_name;
6894
6895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6896
6897 built_actual_name = partial_die_full_name (pdi, cu);
6898 if (built_actual_name != NULL)
6899 actual_name = built_actual_name;
6900
6901 if (actual_name == NULL)
6902 actual_name = pdi->name;
6903
6904 switch (pdi->tag)
6905 {
6906 case DW_TAG_subprogram:
6907 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6908 if (pdi->is_external || cu->language == language_ada)
6909 {
6910 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6911 of the global scope. But in Ada, we want to be able to access
6912 nested procedures globally. So all Ada subprograms are stored
6913 in the global scope. */
6914 add_psymbol_to_list (actual_name, strlen (actual_name),
6915 built_actual_name != NULL,
6916 VAR_DOMAIN, LOC_BLOCK,
6917 &objfile->global_psymbols,
6918 addr, cu->language, objfile);
6919 }
6920 else
6921 {
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 VAR_DOMAIN, LOC_BLOCK,
6925 &objfile->static_psymbols,
6926 addr, cu->language, objfile);
6927 }
6928
6929 if (pdi->main_subprogram && actual_name != NULL)
6930 set_objfile_main_name (objfile, actual_name, cu->language);
6931 break;
6932 case DW_TAG_constant:
6933 {
6934 struct psymbol_allocation_list *list;
6935
6936 if (pdi->is_external)
6937 list = &objfile->global_psymbols;
6938 else
6939 list = &objfile->static_psymbols;
6940 add_psymbol_to_list (actual_name, strlen (actual_name),
6941 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6942 list, 0, cu->language, objfile);
6943 }
6944 break;
6945 case DW_TAG_variable:
6946 if (pdi->d.locdesc)
6947 addr = decode_locdesc (pdi->d.locdesc, cu);
6948
6949 if (pdi->d.locdesc
6950 && addr == 0
6951 && !dwarf2_per_objfile->has_section_at_zero)
6952 {
6953 /* A global or static variable may also have been stripped
6954 out by the linker if unused, in which case its address
6955 will be nullified; do not add such variables into partial
6956 symbol table then. */
6957 }
6958 else if (pdi->is_external)
6959 {
6960 /* Global Variable.
6961 Don't enter into the minimal symbol tables as there is
6962 a minimal symbol table entry from the ELF symbols already.
6963 Enter into partial symbol table if it has a location
6964 descriptor or a type.
6965 If the location descriptor is missing, new_symbol will create
6966 a LOC_UNRESOLVED symbol, the address of the variable will then
6967 be determined from the minimal symbol table whenever the variable
6968 is referenced.
6969 The address for the partial symbol table entry is not
6970 used by GDB, but it comes in handy for debugging partial symbol
6971 table building. */
6972
6973 if (pdi->d.locdesc || pdi->has_type)
6974 add_psymbol_to_list (actual_name, strlen (actual_name),
6975 built_actual_name != NULL,
6976 VAR_DOMAIN, LOC_STATIC,
6977 &objfile->global_psymbols,
6978 addr + baseaddr,
6979 cu->language, objfile);
6980 }
6981 else
6982 {
6983 int has_loc = pdi->d.locdesc != NULL;
6984
6985 /* Static Variable. Skip symbols whose value we cannot know (those
6986 without location descriptors or constant values). */
6987 if (!has_loc && !pdi->has_const_value)
6988 {
6989 xfree (built_actual_name);
6990 return;
6991 }
6992
6993 add_psymbol_to_list (actual_name, strlen (actual_name),
6994 built_actual_name != NULL,
6995 VAR_DOMAIN, LOC_STATIC,
6996 &objfile->static_psymbols,
6997 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6998 cu->language, objfile);
6999 }
7000 break;
7001 case DW_TAG_typedef:
7002 case DW_TAG_base_type:
7003 case DW_TAG_subrange_type:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 VAR_DOMAIN, LOC_TYPEDEF,
7007 &objfile->static_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_imported_declaration:
7011 case DW_TAG_namespace:
7012 add_psymbol_to_list (actual_name, strlen (actual_name),
7013 built_actual_name != NULL,
7014 VAR_DOMAIN, LOC_TYPEDEF,
7015 &objfile->global_psymbols,
7016 0, cu->language, objfile);
7017 break;
7018 case DW_TAG_module:
7019 add_psymbol_to_list (actual_name, strlen (actual_name),
7020 built_actual_name != NULL,
7021 MODULE_DOMAIN, LOC_TYPEDEF,
7022 &objfile->global_psymbols,
7023 0, cu->language, objfile);
7024 break;
7025 case DW_TAG_class_type:
7026 case DW_TAG_interface_type:
7027 case DW_TAG_structure_type:
7028 case DW_TAG_union_type:
7029 case DW_TAG_enumeration_type:
7030 /* Skip external references. The DWARF standard says in the section
7031 about "Structure, Union, and Class Type Entries": "An incomplete
7032 structure, union or class type is represented by a structure,
7033 union or class entry that does not have a byte size attribute
7034 and that has a DW_AT_declaration attribute." */
7035 if (!pdi->has_byte_size && pdi->is_declaration)
7036 {
7037 xfree (built_actual_name);
7038 return;
7039 }
7040
7041 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7042 static vs. global. */
7043 add_psymbol_to_list (actual_name, strlen (actual_name),
7044 built_actual_name != NULL,
7045 STRUCT_DOMAIN, LOC_TYPEDEF,
7046 cu->language == language_cplus
7047 ? &objfile->global_psymbols
7048 : &objfile->static_psymbols,
7049 0, cu->language, objfile);
7050
7051 break;
7052 case DW_TAG_enumerator:
7053 add_psymbol_to_list (actual_name, strlen (actual_name),
7054 built_actual_name != NULL,
7055 VAR_DOMAIN, LOC_CONST,
7056 cu->language == language_cplus
7057 ? &objfile->global_psymbols
7058 : &objfile->static_psymbols,
7059 0, cu->language, objfile);
7060 break;
7061 default:
7062 break;
7063 }
7064
7065 xfree (built_actual_name);
7066 }
7067
7068 /* Read a partial die corresponding to a namespace; also, add a symbol
7069 corresponding to that namespace to the symbol table. NAMESPACE is
7070 the name of the enclosing namespace. */
7071
7072 static void
7073 add_partial_namespace (struct partial_die_info *pdi,
7074 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7075 int set_addrmap, struct dwarf2_cu *cu)
7076 {
7077 /* Add a symbol for the namespace. */
7078
7079 add_partial_symbol (pdi, cu);
7080
7081 /* Now scan partial symbols in that namespace. */
7082
7083 if (pdi->has_children)
7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7085 }
7086
7087 /* Read a partial die corresponding to a Fortran module. */
7088
7089 static void
7090 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7091 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7092 {
7093 /* Add a symbol for the namespace. */
7094
7095 add_partial_symbol (pdi, cu);
7096
7097 /* Now scan partial symbols in that module. */
7098
7099 if (pdi->has_children)
7100 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7101 }
7102
7103 /* Read a partial die corresponding to a subprogram and create a partial
7104 symbol for that subprogram. When the CU language allows it, this
7105 routine also defines a partial symbol for each nested subprogram
7106 that this subprogram contains. If SET_ADDRMAP is true, record the
7107 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7108 and highest PC values found in PDI.
7109
7110 PDI may also be a lexical block, in which case we simply search
7111 recursively for subprograms defined inside that lexical block.
7112 Again, this is only performed when the CU language allows this
7113 type of definitions. */
7114
7115 static void
7116 add_partial_subprogram (struct partial_die_info *pdi,
7117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7118 int set_addrmap, struct dwarf2_cu *cu)
7119 {
7120 if (pdi->tag == DW_TAG_subprogram)
7121 {
7122 if (pdi->has_pc_info)
7123 {
7124 if (pdi->lowpc < *lowpc)
7125 *lowpc = pdi->lowpc;
7126 if (pdi->highpc > *highpc)
7127 *highpc = pdi->highpc;
7128 if (set_addrmap)
7129 {
7130 struct objfile *objfile = cu->objfile;
7131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7132 CORE_ADDR baseaddr;
7133 CORE_ADDR highpc;
7134 CORE_ADDR lowpc;
7135
7136 baseaddr = ANOFFSET (objfile->section_offsets,
7137 SECT_OFF_TEXT (objfile));
7138 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7139 pdi->lowpc + baseaddr);
7140 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->highpc + baseaddr);
7142 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7143 cu->per_cu->v.psymtab);
7144 }
7145 }
7146
7147 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7148 {
7149 if (!pdi->is_declaration)
7150 /* Ignore subprogram DIEs that do not have a name, they are
7151 illegal. Do not emit a complaint at this point, we will
7152 do so when we convert this psymtab into a symtab. */
7153 if (pdi->name)
7154 add_partial_symbol (pdi, cu);
7155 }
7156 }
7157
7158 if (! pdi->has_children)
7159 return;
7160
7161 if (cu->language == language_ada)
7162 {
7163 pdi = pdi->die_child;
7164 while (pdi != NULL)
7165 {
7166 fixup_partial_die (pdi, cu);
7167 if (pdi->tag == DW_TAG_subprogram
7168 || pdi->tag == DW_TAG_lexical_block)
7169 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7170 pdi = pdi->die_sibling;
7171 }
7172 }
7173 }
7174
7175 /* Read a partial die corresponding to an enumeration type. */
7176
7177 static void
7178 add_partial_enumeration (struct partial_die_info *enum_pdi,
7179 struct dwarf2_cu *cu)
7180 {
7181 struct partial_die_info *pdi;
7182
7183 if (enum_pdi->name != NULL)
7184 add_partial_symbol (enum_pdi, cu);
7185
7186 pdi = enum_pdi->die_child;
7187 while (pdi)
7188 {
7189 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7190 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7191 else
7192 add_partial_symbol (pdi, cu);
7193 pdi = pdi->die_sibling;
7194 }
7195 }
7196
7197 /* Return the initial uleb128 in the die at INFO_PTR. */
7198
7199 static unsigned int
7200 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7201 {
7202 unsigned int bytes_read;
7203
7204 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7205 }
7206
7207 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7208 Return the corresponding abbrev, or NULL if the number is zero (indicating
7209 an empty DIE). In either case *BYTES_READ will be set to the length of
7210 the initial number. */
7211
7212 static struct abbrev_info *
7213 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7214 struct dwarf2_cu *cu)
7215 {
7216 bfd *abfd = cu->objfile->obfd;
7217 unsigned int abbrev_number;
7218 struct abbrev_info *abbrev;
7219
7220 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7221
7222 if (abbrev_number == 0)
7223 return NULL;
7224
7225 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7226 if (!abbrev)
7227 {
7228 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7229 " at offset 0x%x [in module %s]"),
7230 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7231 cu->header.offset.sect_off, bfd_get_filename (abfd));
7232 }
7233
7234 return abbrev;
7235 }
7236
7237 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7238 Returns a pointer to the end of a series of DIEs, terminated by an empty
7239 DIE. Any children of the skipped DIEs will also be skipped. */
7240
7241 static const gdb_byte *
7242 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7243 {
7244 struct dwarf2_cu *cu = reader->cu;
7245 struct abbrev_info *abbrev;
7246 unsigned int bytes_read;
7247
7248 while (1)
7249 {
7250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7251 if (abbrev == NULL)
7252 return info_ptr + bytes_read;
7253 else
7254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7255 }
7256 }
7257
7258 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7259 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7260 abbrev corresponding to that skipped uleb128 should be passed in
7261 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7262 children. */
7263
7264 static const gdb_byte *
7265 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7266 struct abbrev_info *abbrev)
7267 {
7268 unsigned int bytes_read;
7269 struct attribute attr;
7270 bfd *abfd = reader->abfd;
7271 struct dwarf2_cu *cu = reader->cu;
7272 const gdb_byte *buffer = reader->buffer;
7273 const gdb_byte *buffer_end = reader->buffer_end;
7274 unsigned int form, i;
7275
7276 for (i = 0; i < abbrev->num_attrs; i++)
7277 {
7278 /* The only abbrev we care about is DW_AT_sibling. */
7279 if (abbrev->attrs[i].name == DW_AT_sibling)
7280 {
7281 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7282 if (attr.form == DW_FORM_ref_addr)
7283 complaint (&symfile_complaints,
7284 _("ignoring absolute DW_AT_sibling"));
7285 else
7286 {
7287 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7288 const gdb_byte *sibling_ptr = buffer + off;
7289
7290 if (sibling_ptr < info_ptr)
7291 complaint (&symfile_complaints,
7292 _("DW_AT_sibling points backwards"));
7293 else if (sibling_ptr > reader->buffer_end)
7294 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7295 else
7296 return sibling_ptr;
7297 }
7298 }
7299
7300 /* If it isn't DW_AT_sibling, skip this attribute. */
7301 form = abbrev->attrs[i].form;
7302 skip_attribute:
7303 switch (form)
7304 {
7305 case DW_FORM_ref_addr:
7306 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7307 and later it is offset sized. */
7308 if (cu->header.version == 2)
7309 info_ptr += cu->header.addr_size;
7310 else
7311 info_ptr += cu->header.offset_size;
7312 break;
7313 case DW_FORM_GNU_ref_alt:
7314 info_ptr += cu->header.offset_size;
7315 break;
7316 case DW_FORM_addr:
7317 info_ptr += cu->header.addr_size;
7318 break;
7319 case DW_FORM_data1:
7320 case DW_FORM_ref1:
7321 case DW_FORM_flag:
7322 info_ptr += 1;
7323 break;
7324 case DW_FORM_flag_present:
7325 break;
7326 case DW_FORM_data2:
7327 case DW_FORM_ref2:
7328 info_ptr += 2;
7329 break;
7330 case DW_FORM_data4:
7331 case DW_FORM_ref4:
7332 info_ptr += 4;
7333 break;
7334 case DW_FORM_data8:
7335 case DW_FORM_ref8:
7336 case DW_FORM_ref_sig8:
7337 info_ptr += 8;
7338 break;
7339 case DW_FORM_string:
7340 read_direct_string (abfd, info_ptr, &bytes_read);
7341 info_ptr += bytes_read;
7342 break;
7343 case DW_FORM_sec_offset:
7344 case DW_FORM_strp:
7345 case DW_FORM_GNU_strp_alt:
7346 info_ptr += cu->header.offset_size;
7347 break;
7348 case DW_FORM_exprloc:
7349 case DW_FORM_block:
7350 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7351 info_ptr += bytes_read;
7352 break;
7353 case DW_FORM_block1:
7354 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7355 break;
7356 case DW_FORM_block2:
7357 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7358 break;
7359 case DW_FORM_block4:
7360 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7361 break;
7362 case DW_FORM_sdata:
7363 case DW_FORM_udata:
7364 case DW_FORM_ref_udata:
7365 case DW_FORM_GNU_addr_index:
7366 case DW_FORM_GNU_str_index:
7367 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7368 break;
7369 case DW_FORM_indirect:
7370 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7371 info_ptr += bytes_read;
7372 /* We need to continue parsing from here, so just go back to
7373 the top. */
7374 goto skip_attribute;
7375
7376 default:
7377 error (_("Dwarf Error: Cannot handle %s "
7378 "in DWARF reader [in module %s]"),
7379 dwarf_form_name (form),
7380 bfd_get_filename (abfd));
7381 }
7382 }
7383
7384 if (abbrev->has_children)
7385 return skip_children (reader, info_ptr);
7386 else
7387 return info_ptr;
7388 }
7389
7390 /* Locate ORIG_PDI's sibling.
7391 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7392
7393 static const gdb_byte *
7394 locate_pdi_sibling (const struct die_reader_specs *reader,
7395 struct partial_die_info *orig_pdi,
7396 const gdb_byte *info_ptr)
7397 {
7398 /* Do we know the sibling already? */
7399
7400 if (orig_pdi->sibling)
7401 return orig_pdi->sibling;
7402
7403 /* Are there any children to deal with? */
7404
7405 if (!orig_pdi->has_children)
7406 return info_ptr;
7407
7408 /* Skip the children the long way. */
7409
7410 return skip_children (reader, info_ptr);
7411 }
7412
7413 /* Expand this partial symbol table into a full symbol table. SELF is
7414 not NULL. */
7415
7416 static void
7417 dwarf2_read_symtab (struct partial_symtab *self,
7418 struct objfile *objfile)
7419 {
7420 if (self->readin)
7421 {
7422 warning (_("bug: psymtab for %s is already read in."),
7423 self->filename);
7424 }
7425 else
7426 {
7427 if (info_verbose)
7428 {
7429 printf_filtered (_("Reading in symbols for %s..."),
7430 self->filename);
7431 gdb_flush (gdb_stdout);
7432 }
7433
7434 /* Restore our global data. */
7435 dwarf2_per_objfile
7436 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7437 dwarf2_objfile_data_key);
7438
7439 /* If this psymtab is constructed from a debug-only objfile, the
7440 has_section_at_zero flag will not necessarily be correct. We
7441 can get the correct value for this flag by looking at the data
7442 associated with the (presumably stripped) associated objfile. */
7443 if (objfile->separate_debug_objfile_backlink)
7444 {
7445 struct dwarf2_per_objfile *dpo_backlink
7446 = ((struct dwarf2_per_objfile *)
7447 objfile_data (objfile->separate_debug_objfile_backlink,
7448 dwarf2_objfile_data_key));
7449
7450 dwarf2_per_objfile->has_section_at_zero
7451 = dpo_backlink->has_section_at_zero;
7452 }
7453
7454 dwarf2_per_objfile->reading_partial_symbols = 0;
7455
7456 psymtab_to_symtab_1 (self);
7457
7458 /* Finish up the debug error message. */
7459 if (info_verbose)
7460 printf_filtered (_("done.\n"));
7461 }
7462
7463 process_cu_includes ();
7464 }
7465 \f
7466 /* Reading in full CUs. */
7467
7468 /* Add PER_CU to the queue. */
7469
7470 static void
7471 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7472 enum language pretend_language)
7473 {
7474 struct dwarf2_queue_item *item;
7475
7476 per_cu->queued = 1;
7477 item = XNEW (struct dwarf2_queue_item);
7478 item->per_cu = per_cu;
7479 item->pretend_language = pretend_language;
7480 item->next = NULL;
7481
7482 if (dwarf2_queue == NULL)
7483 dwarf2_queue = item;
7484 else
7485 dwarf2_queue_tail->next = item;
7486
7487 dwarf2_queue_tail = item;
7488 }
7489
7490 /* If PER_CU is not yet queued, add it to the queue.
7491 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7492 dependency.
7493 The result is non-zero if PER_CU was queued, otherwise the result is zero
7494 meaning either PER_CU is already queued or it is already loaded.
7495
7496 N.B. There is an invariant here that if a CU is queued then it is loaded.
7497 The caller is required to load PER_CU if we return non-zero. */
7498
7499 static int
7500 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7501 struct dwarf2_per_cu_data *per_cu,
7502 enum language pretend_language)
7503 {
7504 /* We may arrive here during partial symbol reading, if we need full
7505 DIEs to process an unusual case (e.g. template arguments). Do
7506 not queue PER_CU, just tell our caller to load its DIEs. */
7507 if (dwarf2_per_objfile->reading_partial_symbols)
7508 {
7509 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7510 return 1;
7511 return 0;
7512 }
7513
7514 /* Mark the dependence relation so that we don't flush PER_CU
7515 too early. */
7516 if (dependent_cu != NULL)
7517 dwarf2_add_dependence (dependent_cu, per_cu);
7518
7519 /* If it's already on the queue, we have nothing to do. */
7520 if (per_cu->queued)
7521 return 0;
7522
7523 /* If the compilation unit is already loaded, just mark it as
7524 used. */
7525 if (per_cu->cu != NULL)
7526 {
7527 per_cu->cu->last_used = 0;
7528 return 0;
7529 }
7530
7531 /* Add it to the queue. */
7532 queue_comp_unit (per_cu, pretend_language);
7533
7534 return 1;
7535 }
7536
7537 /* Process the queue. */
7538
7539 static void
7540 process_queue (void)
7541 {
7542 struct dwarf2_queue_item *item, *next_item;
7543
7544 if (dwarf_read_debug)
7545 {
7546 fprintf_unfiltered (gdb_stdlog,
7547 "Expanding one or more symtabs of objfile %s ...\n",
7548 objfile_name (dwarf2_per_objfile->objfile));
7549 }
7550
7551 /* The queue starts out with one item, but following a DIE reference
7552 may load a new CU, adding it to the end of the queue. */
7553 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7554 {
7555 if ((dwarf2_per_objfile->using_index
7556 ? !item->per_cu->v.quick->compunit_symtab
7557 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7558 /* Skip dummy CUs. */
7559 && item->per_cu->cu != NULL)
7560 {
7561 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7562 unsigned int debug_print_threshold;
7563 char buf[100];
7564
7565 if (per_cu->is_debug_types)
7566 {
7567 struct signatured_type *sig_type =
7568 (struct signatured_type *) per_cu;
7569
7570 sprintf (buf, "TU %s at offset 0x%x",
7571 hex_string (sig_type->signature),
7572 per_cu->offset.sect_off);
7573 /* There can be 100s of TUs.
7574 Only print them in verbose mode. */
7575 debug_print_threshold = 2;
7576 }
7577 else
7578 {
7579 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7580 debug_print_threshold = 1;
7581 }
7582
7583 if (dwarf_read_debug >= debug_print_threshold)
7584 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7585
7586 if (per_cu->is_debug_types)
7587 process_full_type_unit (per_cu, item->pretend_language);
7588 else
7589 process_full_comp_unit (per_cu, item->pretend_language);
7590
7591 if (dwarf_read_debug >= debug_print_threshold)
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7593 }
7594
7595 item->per_cu->queued = 0;
7596 next_item = item->next;
7597 xfree (item);
7598 }
7599
7600 dwarf2_queue_tail = NULL;
7601
7602 if (dwarf_read_debug)
7603 {
7604 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7605 objfile_name (dwarf2_per_objfile->objfile));
7606 }
7607 }
7608
7609 /* Free all allocated queue entries. This function only releases anything if
7610 an error was thrown; if the queue was processed then it would have been
7611 freed as we went along. */
7612
7613 static void
7614 dwarf2_release_queue (void *dummy)
7615 {
7616 struct dwarf2_queue_item *item, *last;
7617
7618 item = dwarf2_queue;
7619 while (item)
7620 {
7621 /* Anything still marked queued is likely to be in an
7622 inconsistent state, so discard it. */
7623 if (item->per_cu->queued)
7624 {
7625 if (item->per_cu->cu != NULL)
7626 free_one_cached_comp_unit (item->per_cu);
7627 item->per_cu->queued = 0;
7628 }
7629
7630 last = item;
7631 item = item->next;
7632 xfree (last);
7633 }
7634
7635 dwarf2_queue = dwarf2_queue_tail = NULL;
7636 }
7637
7638 /* Read in full symbols for PST, and anything it depends on. */
7639
7640 static void
7641 psymtab_to_symtab_1 (struct partial_symtab *pst)
7642 {
7643 struct dwarf2_per_cu_data *per_cu;
7644 int i;
7645
7646 if (pst->readin)
7647 return;
7648
7649 for (i = 0; i < pst->number_of_dependencies; i++)
7650 if (!pst->dependencies[i]->readin
7651 && pst->dependencies[i]->user == NULL)
7652 {
7653 /* Inform about additional files that need to be read in. */
7654 if (info_verbose)
7655 {
7656 /* FIXME: i18n: Need to make this a single string. */
7657 fputs_filtered (" ", gdb_stdout);
7658 wrap_here ("");
7659 fputs_filtered ("and ", gdb_stdout);
7660 wrap_here ("");
7661 printf_filtered ("%s...", pst->dependencies[i]->filename);
7662 wrap_here (""); /* Flush output. */
7663 gdb_flush (gdb_stdout);
7664 }
7665 psymtab_to_symtab_1 (pst->dependencies[i]);
7666 }
7667
7668 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7669
7670 if (per_cu == NULL)
7671 {
7672 /* It's an include file, no symbols to read for it.
7673 Everything is in the parent symtab. */
7674 pst->readin = 1;
7675 return;
7676 }
7677
7678 dw2_do_instantiate_symtab (per_cu);
7679 }
7680
7681 /* Trivial hash function for die_info: the hash value of a DIE
7682 is its offset in .debug_info for this objfile. */
7683
7684 static hashval_t
7685 die_hash (const void *item)
7686 {
7687 const struct die_info *die = (const struct die_info *) item;
7688
7689 return die->offset.sect_off;
7690 }
7691
7692 /* Trivial comparison function for die_info structures: two DIEs
7693 are equal if they have the same offset. */
7694
7695 static int
7696 die_eq (const void *item_lhs, const void *item_rhs)
7697 {
7698 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7699 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7700
7701 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7702 }
7703
7704 /* die_reader_func for load_full_comp_unit.
7705 This is identical to read_signatured_type_reader,
7706 but is kept separate for now. */
7707
7708 static void
7709 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7710 const gdb_byte *info_ptr,
7711 struct die_info *comp_unit_die,
7712 int has_children,
7713 void *data)
7714 {
7715 struct dwarf2_cu *cu = reader->cu;
7716 enum language *language_ptr = (enum language *) data;
7717
7718 gdb_assert (cu->die_hash == NULL);
7719 cu->die_hash =
7720 htab_create_alloc_ex (cu->header.length / 12,
7721 die_hash,
7722 die_eq,
7723 NULL,
7724 &cu->comp_unit_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7727
7728 if (has_children)
7729 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7730 &info_ptr, comp_unit_die);
7731 cu->dies = comp_unit_die;
7732 /* comp_unit_die is not stored in die_hash, no need. */
7733
7734 /* We try not to read any attributes in this function, because not
7735 all CUs needed for references have been loaded yet, and symbol
7736 table processing isn't initialized. But we have to set the CU language,
7737 or we won't be able to build types correctly.
7738 Similarly, if we do not read the producer, we can not apply
7739 producer-specific interpretation. */
7740 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7741 }
7742
7743 /* Load the DIEs associated with PER_CU into memory. */
7744
7745 static void
7746 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7747 enum language pretend_language)
7748 {
7749 gdb_assert (! this_cu->is_debug_types);
7750
7751 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7752 load_full_comp_unit_reader, &pretend_language);
7753 }
7754
7755 /* Add a DIE to the delayed physname list. */
7756
7757 static void
7758 add_to_method_list (struct type *type, int fnfield_index, int index,
7759 const char *name, struct die_info *die,
7760 struct dwarf2_cu *cu)
7761 {
7762 struct delayed_method_info mi;
7763 mi.type = type;
7764 mi.fnfield_index = fnfield_index;
7765 mi.index = index;
7766 mi.name = name;
7767 mi.die = die;
7768 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7769 }
7770
7771 /* A cleanup for freeing the delayed method list. */
7772
7773 static void
7774 free_delayed_list (void *ptr)
7775 {
7776 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7777 if (cu->method_list != NULL)
7778 {
7779 VEC_free (delayed_method_info, cu->method_list);
7780 cu->method_list = NULL;
7781 }
7782 }
7783
7784 /* Compute the physnames of any methods on the CU's method list.
7785
7786 The computation of method physnames is delayed in order to avoid the
7787 (bad) condition that one of the method's formal parameters is of an as yet
7788 incomplete type. */
7789
7790 static void
7791 compute_delayed_physnames (struct dwarf2_cu *cu)
7792 {
7793 int i;
7794 struct delayed_method_info *mi;
7795 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7796 {
7797 const char *physname;
7798 struct fn_fieldlist *fn_flp
7799 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7800 physname = dwarf2_physname (mi->name, mi->die, cu);
7801 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7802 = physname ? physname : "";
7803 }
7804 }
7805
7806 /* Go objects should be embedded in a DW_TAG_module DIE,
7807 and it's not clear if/how imported objects will appear.
7808 To keep Go support simple until that's worked out,
7809 go back through what we've read and create something usable.
7810 We could do this while processing each DIE, and feels kinda cleaner,
7811 but that way is more invasive.
7812 This is to, for example, allow the user to type "p var" or "b main"
7813 without having to specify the package name, and allow lookups
7814 of module.object to work in contexts that use the expression
7815 parser. */
7816
7817 static void
7818 fixup_go_packaging (struct dwarf2_cu *cu)
7819 {
7820 char *package_name = NULL;
7821 struct pending *list;
7822 int i;
7823
7824 for (list = global_symbols; list != NULL; list = list->next)
7825 {
7826 for (i = 0; i < list->nsyms; ++i)
7827 {
7828 struct symbol *sym = list->symbol[i];
7829
7830 if (SYMBOL_LANGUAGE (sym) == language_go
7831 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7832 {
7833 char *this_package_name = go_symbol_package_name (sym);
7834
7835 if (this_package_name == NULL)
7836 continue;
7837 if (package_name == NULL)
7838 package_name = this_package_name;
7839 else
7840 {
7841 if (strcmp (package_name, this_package_name) != 0)
7842 complaint (&symfile_complaints,
7843 _("Symtab %s has objects from two different Go packages: %s and %s"),
7844 (symbol_symtab (sym) != NULL
7845 ? symtab_to_filename_for_display
7846 (symbol_symtab (sym))
7847 : objfile_name (cu->objfile)),
7848 this_package_name, package_name);
7849 xfree (this_package_name);
7850 }
7851 }
7852 }
7853 }
7854
7855 if (package_name != NULL)
7856 {
7857 struct objfile *objfile = cu->objfile;
7858 const char *saved_package_name
7859 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7860 package_name,
7861 strlen (package_name));
7862 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7863 saved_package_name);
7864 struct symbol *sym;
7865
7866 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7867
7868 sym = allocate_symbol (objfile);
7869 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7870 SYMBOL_SET_NAMES (sym, saved_package_name,
7871 strlen (saved_package_name), 0, objfile);
7872 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7873 e.g., "main" finds the "main" module and not C's main(). */
7874 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7875 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7876 SYMBOL_TYPE (sym) = type;
7877
7878 add_symbol_to_list (sym, &global_symbols);
7879
7880 xfree (package_name);
7881 }
7882 }
7883
7884 /* Return the symtab for PER_CU. This works properly regardless of
7885 whether we're using the index or psymtabs. */
7886
7887 static struct compunit_symtab *
7888 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7889 {
7890 return (dwarf2_per_objfile->using_index
7891 ? per_cu->v.quick->compunit_symtab
7892 : per_cu->v.psymtab->compunit_symtab);
7893 }
7894
7895 /* A helper function for computing the list of all symbol tables
7896 included by PER_CU. */
7897
7898 static void
7899 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7900 htab_t all_children, htab_t all_type_symtabs,
7901 struct dwarf2_per_cu_data *per_cu,
7902 struct compunit_symtab *immediate_parent)
7903 {
7904 void **slot;
7905 int ix;
7906 struct compunit_symtab *cust;
7907 struct dwarf2_per_cu_data *iter;
7908
7909 slot = htab_find_slot (all_children, per_cu, INSERT);
7910 if (*slot != NULL)
7911 {
7912 /* This inclusion and its children have been processed. */
7913 return;
7914 }
7915
7916 *slot = per_cu;
7917 /* Only add a CU if it has a symbol table. */
7918 cust = get_compunit_symtab (per_cu);
7919 if (cust != NULL)
7920 {
7921 /* If this is a type unit only add its symbol table if we haven't
7922 seen it yet (type unit per_cu's can share symtabs). */
7923 if (per_cu->is_debug_types)
7924 {
7925 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7926 if (*slot == NULL)
7927 {
7928 *slot = cust;
7929 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7930 if (cust->user == NULL)
7931 cust->user = immediate_parent;
7932 }
7933 }
7934 else
7935 {
7936 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7937 if (cust->user == NULL)
7938 cust->user = immediate_parent;
7939 }
7940 }
7941
7942 for (ix = 0;
7943 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7944 ++ix)
7945 {
7946 recursively_compute_inclusions (result, all_children,
7947 all_type_symtabs, iter, cust);
7948 }
7949 }
7950
7951 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7952 PER_CU. */
7953
7954 static void
7955 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7956 {
7957 gdb_assert (! per_cu->is_debug_types);
7958
7959 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7960 {
7961 int ix, len;
7962 struct dwarf2_per_cu_data *per_cu_iter;
7963 struct compunit_symtab *compunit_symtab_iter;
7964 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7965 htab_t all_children, all_type_symtabs;
7966 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7967
7968 /* If we don't have a symtab, we can just skip this case. */
7969 if (cust == NULL)
7970 return;
7971
7972 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7973 NULL, xcalloc, xfree);
7974 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
7976
7977 for (ix = 0;
7978 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7979 ix, per_cu_iter);
7980 ++ix)
7981 {
7982 recursively_compute_inclusions (&result_symtabs, all_children,
7983 all_type_symtabs, per_cu_iter,
7984 cust);
7985 }
7986
7987 /* Now we have a transitive closure of all the included symtabs. */
7988 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7989 cust->includes
7990 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7991 struct compunit_symtab *, len + 1);
7992 for (ix = 0;
7993 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7994 compunit_symtab_iter);
7995 ++ix)
7996 cust->includes[ix] = compunit_symtab_iter;
7997 cust->includes[len] = NULL;
7998
7999 VEC_free (compunit_symtab_ptr, result_symtabs);
8000 htab_delete (all_children);
8001 htab_delete (all_type_symtabs);
8002 }
8003 }
8004
8005 /* Compute the 'includes' field for the symtabs of all the CUs we just
8006 read. */
8007
8008 static void
8009 process_cu_includes (void)
8010 {
8011 int ix;
8012 struct dwarf2_per_cu_data *iter;
8013
8014 for (ix = 0;
8015 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8016 ix, iter);
8017 ++ix)
8018 {
8019 if (! iter->is_debug_types)
8020 compute_compunit_symtab_includes (iter);
8021 }
8022
8023 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8024 }
8025
8026 /* Generate full symbol information for PER_CU, whose DIEs have
8027 already been loaded into memory. */
8028
8029 static void
8030 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8031 enum language pretend_language)
8032 {
8033 struct dwarf2_cu *cu = per_cu->cu;
8034 struct objfile *objfile = per_cu->objfile;
8035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8036 CORE_ADDR lowpc, highpc;
8037 struct compunit_symtab *cust;
8038 struct cleanup *back_to, *delayed_list_cleanup;
8039 CORE_ADDR baseaddr;
8040 struct block *static_block;
8041 CORE_ADDR addr;
8042
8043 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8044
8045 buildsym_init ();
8046 back_to = make_cleanup (really_free_pendings, NULL);
8047 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8048
8049 cu->list_in_scope = &file_symbols;
8050
8051 cu->language = pretend_language;
8052 cu->language_defn = language_def (cu->language);
8053
8054 /* Do line number decoding in read_file_scope () */
8055 process_die (cu->dies, cu);
8056
8057 /* For now fudge the Go package. */
8058 if (cu->language == language_go)
8059 fixup_go_packaging (cu);
8060
8061 /* Now that we have processed all the DIEs in the CU, all the types
8062 should be complete, and it should now be safe to compute all of the
8063 physnames. */
8064 compute_delayed_physnames (cu);
8065 do_cleanups (delayed_list_cleanup);
8066
8067 /* Some compilers don't define a DW_AT_high_pc attribute for the
8068 compilation unit. If the DW_AT_high_pc is missing, synthesize
8069 it, by scanning the DIE's below the compilation unit. */
8070 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8071
8072 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8073 static_block = end_symtab_get_static_block (addr, 0, 1);
8074
8075 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8076 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8077 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8078 addrmap to help ensure it has an accurate map of pc values belonging to
8079 this comp unit. */
8080 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8081
8082 cust = end_symtab_from_static_block (static_block,
8083 SECT_OFF_TEXT (objfile), 0);
8084
8085 if (cust != NULL)
8086 {
8087 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8088
8089 /* Set symtab language to language from DW_AT_language. If the
8090 compilation is from a C file generated by language preprocessors, do
8091 not set the language if it was already deduced by start_subfile. */
8092 if (!(cu->language == language_c
8093 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8094 COMPUNIT_FILETABS (cust)->language = cu->language;
8095
8096 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8097 produce DW_AT_location with location lists but it can be possibly
8098 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8099 there were bugs in prologue debug info, fixed later in GCC-4.5
8100 by "unwind info for epilogues" patch (which is not directly related).
8101
8102 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8103 needed, it would be wrong due to missing DW_AT_producer there.
8104
8105 Still one can confuse GDB by using non-standard GCC compilation
8106 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8107 */
8108 if (cu->has_loclist && gcc_4_minor >= 5)
8109 cust->locations_valid = 1;
8110
8111 if (gcc_4_minor >= 5)
8112 cust->epilogue_unwind_valid = 1;
8113
8114 cust->call_site_htab = cu->call_site_htab;
8115 }
8116
8117 if (dwarf2_per_objfile->using_index)
8118 per_cu->v.quick->compunit_symtab = cust;
8119 else
8120 {
8121 struct partial_symtab *pst = per_cu->v.psymtab;
8122 pst->compunit_symtab = cust;
8123 pst->readin = 1;
8124 }
8125
8126 /* Push it for inclusion processing later. */
8127 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8128
8129 do_cleanups (back_to);
8130 }
8131
8132 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8133 already been loaded into memory. */
8134
8135 static void
8136 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8137 enum language pretend_language)
8138 {
8139 struct dwarf2_cu *cu = per_cu->cu;
8140 struct objfile *objfile = per_cu->objfile;
8141 struct compunit_symtab *cust;
8142 struct cleanup *back_to, *delayed_list_cleanup;
8143 struct signatured_type *sig_type;
8144
8145 gdb_assert (per_cu->is_debug_types);
8146 sig_type = (struct signatured_type *) per_cu;
8147
8148 buildsym_init ();
8149 back_to = make_cleanup (really_free_pendings, NULL);
8150 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8151
8152 cu->list_in_scope = &file_symbols;
8153
8154 cu->language = pretend_language;
8155 cu->language_defn = language_def (cu->language);
8156
8157 /* The symbol tables are set up in read_type_unit_scope. */
8158 process_die (cu->dies, cu);
8159
8160 /* For now fudge the Go package. */
8161 if (cu->language == language_go)
8162 fixup_go_packaging (cu);
8163
8164 /* Now that we have processed all the DIEs in the CU, all the types
8165 should be complete, and it should now be safe to compute all of the
8166 physnames. */
8167 compute_delayed_physnames (cu);
8168 do_cleanups (delayed_list_cleanup);
8169
8170 /* TUs share symbol tables.
8171 If this is the first TU to use this symtab, complete the construction
8172 of it with end_expandable_symtab. Otherwise, complete the addition of
8173 this TU's symbols to the existing symtab. */
8174 if (sig_type->type_unit_group->compunit_symtab == NULL)
8175 {
8176 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8177 sig_type->type_unit_group->compunit_symtab = cust;
8178
8179 if (cust != NULL)
8180 {
8181 /* Set symtab language to language from DW_AT_language. If the
8182 compilation is from a C file generated by language preprocessors,
8183 do not set the language if it was already deduced by
8184 start_subfile. */
8185 if (!(cu->language == language_c
8186 && COMPUNIT_FILETABS (cust)->language != language_c))
8187 COMPUNIT_FILETABS (cust)->language = cu->language;
8188 }
8189 }
8190 else
8191 {
8192 augment_type_symtab ();
8193 cust = sig_type->type_unit_group->compunit_symtab;
8194 }
8195
8196 if (dwarf2_per_objfile->using_index)
8197 per_cu->v.quick->compunit_symtab = cust;
8198 else
8199 {
8200 struct partial_symtab *pst = per_cu->v.psymtab;
8201 pst->compunit_symtab = cust;
8202 pst->readin = 1;
8203 }
8204
8205 do_cleanups (back_to);
8206 }
8207
8208 /* Process an imported unit DIE. */
8209
8210 static void
8211 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8212 {
8213 struct attribute *attr;
8214
8215 /* For now we don't handle imported units in type units. */
8216 if (cu->per_cu->is_debug_types)
8217 {
8218 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8219 " supported in type units [in module %s]"),
8220 objfile_name (cu->objfile));
8221 }
8222
8223 attr = dwarf2_attr (die, DW_AT_import, cu);
8224 if (attr != NULL)
8225 {
8226 struct dwarf2_per_cu_data *per_cu;
8227 sect_offset offset;
8228 int is_dwz;
8229
8230 offset = dwarf2_get_ref_die_offset (attr);
8231 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8232 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8233
8234 /* If necessary, add it to the queue and load its DIEs. */
8235 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8236 load_full_comp_unit (per_cu, cu->language);
8237
8238 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8239 per_cu);
8240 }
8241 }
8242
8243 /* Reset the in_process bit of a die. */
8244
8245 static void
8246 reset_die_in_process (void *arg)
8247 {
8248 struct die_info *die = (struct die_info *) arg;
8249
8250 die->in_process = 0;
8251 }
8252
8253 /* Process a die and its children. */
8254
8255 static void
8256 process_die (struct die_info *die, struct dwarf2_cu *cu)
8257 {
8258 struct cleanup *in_process;
8259
8260 /* We should only be processing those not already in process. */
8261 gdb_assert (!die->in_process);
8262
8263 die->in_process = 1;
8264 in_process = make_cleanup (reset_die_in_process,die);
8265
8266 switch (die->tag)
8267 {
8268 case DW_TAG_padding:
8269 break;
8270 case DW_TAG_compile_unit:
8271 case DW_TAG_partial_unit:
8272 read_file_scope (die, cu);
8273 break;
8274 case DW_TAG_type_unit:
8275 read_type_unit_scope (die, cu);
8276 break;
8277 case DW_TAG_subprogram:
8278 case DW_TAG_inlined_subroutine:
8279 read_func_scope (die, cu);
8280 break;
8281 case DW_TAG_lexical_block:
8282 case DW_TAG_try_block:
8283 case DW_TAG_catch_block:
8284 read_lexical_block_scope (die, cu);
8285 break;
8286 case DW_TAG_GNU_call_site:
8287 read_call_site_scope (die, cu);
8288 break;
8289 case DW_TAG_class_type:
8290 case DW_TAG_interface_type:
8291 case DW_TAG_structure_type:
8292 case DW_TAG_union_type:
8293 process_structure_scope (die, cu);
8294 break;
8295 case DW_TAG_enumeration_type:
8296 process_enumeration_scope (die, cu);
8297 break;
8298
8299 /* These dies have a type, but processing them does not create
8300 a symbol or recurse to process the children. Therefore we can
8301 read them on-demand through read_type_die. */
8302 case DW_TAG_subroutine_type:
8303 case DW_TAG_set_type:
8304 case DW_TAG_array_type:
8305 case DW_TAG_pointer_type:
8306 case DW_TAG_ptr_to_member_type:
8307 case DW_TAG_reference_type:
8308 case DW_TAG_string_type:
8309 break;
8310
8311 case DW_TAG_base_type:
8312 case DW_TAG_subrange_type:
8313 case DW_TAG_typedef:
8314 /* Add a typedef symbol for the type definition, if it has a
8315 DW_AT_name. */
8316 new_symbol (die, read_type_die (die, cu), cu);
8317 break;
8318 case DW_TAG_common_block:
8319 read_common_block (die, cu);
8320 break;
8321 case DW_TAG_common_inclusion:
8322 break;
8323 case DW_TAG_namespace:
8324 cu->processing_has_namespace_info = 1;
8325 read_namespace (die, cu);
8326 break;
8327 case DW_TAG_module:
8328 cu->processing_has_namespace_info = 1;
8329 read_module (die, cu);
8330 break;
8331 case DW_TAG_imported_declaration:
8332 cu->processing_has_namespace_info = 1;
8333 if (read_namespace_alias (die, cu))
8334 break;
8335 /* The declaration is not a global namespace alias: fall through. */
8336 case DW_TAG_imported_module:
8337 cu->processing_has_namespace_info = 1;
8338 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8339 || cu->language != language_fortran))
8340 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8341 dwarf_tag_name (die->tag));
8342 read_import_statement (die, cu);
8343 break;
8344
8345 case DW_TAG_imported_unit:
8346 process_imported_unit_die (die, cu);
8347 break;
8348
8349 default:
8350 new_symbol (die, NULL, cu);
8351 break;
8352 }
8353
8354 do_cleanups (in_process);
8355 }
8356 \f
8357 /* DWARF name computation. */
8358
8359 /* A helper function for dwarf2_compute_name which determines whether DIE
8360 needs to have the name of the scope prepended to the name listed in the
8361 die. */
8362
8363 static int
8364 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8365 {
8366 struct attribute *attr;
8367
8368 switch (die->tag)
8369 {
8370 case DW_TAG_namespace:
8371 case DW_TAG_typedef:
8372 case DW_TAG_class_type:
8373 case DW_TAG_interface_type:
8374 case DW_TAG_structure_type:
8375 case DW_TAG_union_type:
8376 case DW_TAG_enumeration_type:
8377 case DW_TAG_enumerator:
8378 case DW_TAG_subprogram:
8379 case DW_TAG_inlined_subroutine:
8380 case DW_TAG_member:
8381 case DW_TAG_imported_declaration:
8382 return 1;
8383
8384 case DW_TAG_variable:
8385 case DW_TAG_constant:
8386 /* We only need to prefix "globally" visible variables. These include
8387 any variable marked with DW_AT_external or any variable that
8388 lives in a namespace. [Variables in anonymous namespaces
8389 require prefixing, but they are not DW_AT_external.] */
8390
8391 if (dwarf2_attr (die, DW_AT_specification, cu))
8392 {
8393 struct dwarf2_cu *spec_cu = cu;
8394
8395 return die_needs_namespace (die_specification (die, &spec_cu),
8396 spec_cu);
8397 }
8398
8399 attr = dwarf2_attr (die, DW_AT_external, cu);
8400 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8401 && die->parent->tag != DW_TAG_module)
8402 return 0;
8403 /* A variable in a lexical block of some kind does not need a
8404 namespace, even though in C++ such variables may be external
8405 and have a mangled name. */
8406 if (die->parent->tag == DW_TAG_lexical_block
8407 || die->parent->tag == DW_TAG_try_block
8408 || die->parent->tag == DW_TAG_catch_block
8409 || die->parent->tag == DW_TAG_subprogram)
8410 return 0;
8411 return 1;
8412
8413 default:
8414 return 0;
8415 }
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++),
8421 - receiver type (Go),
8422
8423 The term "physname" is a bit confusing.
8424 For C++, for example, it is the demangled name.
8425 For Go, for example, it's the mangled name.
8426
8427 For Ada, return the DIE's linkage name rather than the fully qualified
8428 name. PHYSNAME is ignored..
8429
8430 The result is allocated on the objfile_obstack and canonicalized. */
8431
8432 static const char *
8433 dwarf2_compute_name (const char *name,
8434 struct die_info *die, struct dwarf2_cu *cu,
8435 int physname)
8436 {
8437 struct objfile *objfile = cu->objfile;
8438
8439 if (name == NULL)
8440 name = dwarf2_name (die, cu);
8441
8442 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8443 but otherwise compute it by typename_concat inside GDB.
8444 FIXME: Actually this is not really true, or at least not always true.
8445 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8446 Fortran names because there is no mangling standard. So new_symbol_full
8447 will set the demangled name to the result of dwarf2_full_name, and it is
8448 the demangled name that GDB uses if it exists. */
8449 if (cu->language == language_ada
8450 || (cu->language == language_fortran && physname))
8451 {
8452 /* For Ada unit, we prefer the linkage name over the name, as
8453 the former contains the exported name, which the user expects
8454 to be able to reference. Ideally, we want the user to be able
8455 to reference this entity using either natural or linkage name,
8456 but we haven't started looking at this enhancement yet. */
8457 const char *linkage_name;
8458
8459 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8460 if (linkage_name == NULL)
8461 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8462 if (linkage_name != NULL)
8463 return linkage_name;
8464 }
8465
8466 /* These are the only languages we know how to qualify names in. */
8467 if (name != NULL
8468 && (cu->language == language_cplus
8469 || cu->language == language_fortran || cu->language == language_d
8470 || cu->language == language_rust))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 const char *canonical_name = NULL;
8477
8478 string_file buf;
8479
8480 prefix = determine_prefix (die, cu);
8481 if (*prefix != '\0')
8482 {
8483 char *prefixed_name = typename_concat (NULL, prefix, name,
8484 physname, cu);
8485
8486 buf.puts (prefixed_name);
8487 xfree (prefixed_name);
8488 }
8489 else
8490 buf.puts (name);
8491
8492 /* Template parameters may be specified in the DIE's DW_AT_name, or
8493 as children with DW_TAG_template_type_param or
8494 DW_TAG_value_type_param. If the latter, add them to the name
8495 here. If the name already has template parameters, then
8496 skip this step; some versions of GCC emit both, and
8497 it is more efficient to use the pre-computed name.
8498
8499 Something to keep in mind about this process: it is very
8500 unlikely, or in some cases downright impossible, to produce
8501 something that will match the mangled name of a function.
8502 If the definition of the function has the same debug info,
8503 we should be able to match up with it anyway. But fallbacks
8504 using the minimal symbol, for instance to find a method
8505 implemented in a stripped copy of libstdc++, will not work.
8506 If we do not have debug info for the definition, we will have to
8507 match them up some other way.
8508
8509 When we do name matching there is a related problem with function
8510 templates; two instantiated function templates are allowed to
8511 differ only by their return types, which we do not add here. */
8512
8513 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8514 {
8515 struct attribute *attr;
8516 struct die_info *child;
8517 int first = 1;
8518
8519 die->building_fullname = 1;
8520
8521 for (child = die->child; child != NULL; child = child->sibling)
8522 {
8523 struct type *type;
8524 LONGEST value;
8525 const gdb_byte *bytes;
8526 struct dwarf2_locexpr_baton *baton;
8527 struct value *v;
8528
8529 if (child->tag != DW_TAG_template_type_param
8530 && child->tag != DW_TAG_template_value_param)
8531 continue;
8532
8533 if (first)
8534 {
8535 buf.puts ("<");
8536 first = 0;
8537 }
8538 else
8539 buf.puts (", ");
8540
8541 attr = dwarf2_attr (child, DW_AT_type, cu);
8542 if (attr == NULL)
8543 {
8544 complaint (&symfile_complaints,
8545 _("template parameter missing DW_AT_type"));
8546 buf.puts ("UNKNOWN_TYPE");
8547 continue;
8548 }
8549 type = die_type (child, cu);
8550
8551 if (child->tag == DW_TAG_template_type_param)
8552 {
8553 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8554 continue;
8555 }
8556
8557 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8558 if (attr == NULL)
8559 {
8560 complaint (&symfile_complaints,
8561 _("template parameter missing "
8562 "DW_AT_const_value"));
8563 buf.puts ("UNKNOWN_VALUE");
8564 continue;
8565 }
8566
8567 dwarf2_const_value_attr (attr, type, name,
8568 &cu->comp_unit_obstack, cu,
8569 &value, &bytes, &baton);
8570
8571 if (TYPE_NOSIGN (type))
8572 /* GDB prints characters as NUMBER 'CHAR'. If that's
8573 changed, this can use value_print instead. */
8574 c_printchar (value, type, &buf);
8575 else
8576 {
8577 struct value_print_options opts;
8578
8579 if (baton != NULL)
8580 v = dwarf2_evaluate_loc_desc (type, NULL,
8581 baton->data,
8582 baton->size,
8583 baton->per_cu);
8584 else if (bytes != NULL)
8585 {
8586 v = allocate_value (type);
8587 memcpy (value_contents_writeable (v), bytes,
8588 TYPE_LENGTH (type));
8589 }
8590 else
8591 v = value_from_longest (type, value);
8592
8593 /* Specify decimal so that we do not depend on
8594 the radix. */
8595 get_formatted_print_options (&opts, 'd');
8596 opts.raw = 1;
8597 value_print (v, &buf, &opts);
8598 release_value (v);
8599 value_free (v);
8600 }
8601 }
8602
8603 die->building_fullname = 0;
8604
8605 if (!first)
8606 {
8607 /* Close the argument list, with a space if necessary
8608 (nested templates). */
8609 if (!buf.empty () && buf.string ().back () == '>')
8610 buf.puts (" >");
8611 else
8612 buf.puts (">");
8613 }
8614 }
8615
8616 /* For C++ methods, append formal parameter type
8617 information, if PHYSNAME. */
8618
8619 if (physname && die->tag == DW_TAG_subprogram
8620 && cu->language == language_cplus)
8621 {
8622 struct type *type = read_type_die (die, cu);
8623
8624 c_type_print_args (type, &buf, 1, cu->language,
8625 &type_print_raw_options);
8626
8627 if (cu->language == language_cplus)
8628 {
8629 /* Assume that an artificial first parameter is
8630 "this", but do not crash if it is not. RealView
8631 marks unnamed (and thus unused) parameters as
8632 artificial; there is no way to differentiate
8633 the two cases. */
8634 if (TYPE_NFIELDS (type) > 0
8635 && TYPE_FIELD_ARTIFICIAL (type, 0)
8636 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8637 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8638 0))))
8639 buf.puts (" const");
8640 }
8641 }
8642
8643 const std::string &intermediate_name = buf.string ();
8644
8645 if (cu->language == language_cplus)
8646 canonical_name
8647 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8648 &objfile->per_bfd->storage_obstack);
8649
8650 /* If we only computed INTERMEDIATE_NAME, or if
8651 INTERMEDIATE_NAME is already canonical, then we need to
8652 copy it to the appropriate obstack. */
8653 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8654 name = ((const char *)
8655 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8656 intermediate_name.c_str (),
8657 intermediate_name.length ()));
8658 else
8659 name = canonical_name;
8660 }
8661 }
8662
8663 return name;
8664 }
8665
8666 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8667 If scope qualifiers are appropriate they will be added. The result
8668 will be allocated on the storage_obstack, or NULL if the DIE does
8669 not have a name. NAME may either be from a previous call to
8670 dwarf2_name or NULL.
8671
8672 The output string will be canonicalized (if C++). */
8673
8674 static const char *
8675 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8676 {
8677 return dwarf2_compute_name (name, die, cu, 0);
8678 }
8679
8680 /* Construct a physname for the given DIE in CU. NAME may either be
8681 from a previous call to dwarf2_name or NULL. The result will be
8682 allocated on the objfile_objstack or NULL if the DIE does not have a
8683 name.
8684
8685 The output string will be canonicalized (if C++). */
8686
8687 static const char *
8688 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8689 {
8690 struct objfile *objfile = cu->objfile;
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8705
8706 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8707 See https://github.com/rust-lang/rust/issues/32925. */
8708 if (cu->language == language_rust && mangled != NULL
8709 && strchr (mangled, '{') != NULL)
8710 mangled = NULL;
8711
8712 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8713 has computed. */
8714 if (mangled != NULL)
8715 {
8716 char *demangled;
8717
8718 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8719 type. It is easier for GDB users to search for such functions as
8720 `name(params)' than `long name(params)'. In such case the minimal
8721 symbol names do not match the full symbol names but for template
8722 functions there is never a need to look up their definition from their
8723 declaration so the only disadvantage remains the minimal symbol
8724 variant `long name(params)' does not have the proper inferior type.
8725 */
8726
8727 if (cu->language == language_go)
8728 {
8729 /* This is a lie, but we already lie to the caller new_symbol_full.
8730 new_symbol_full assumes we return the mangled name.
8731 This just undoes that lie until things are cleaned up. */
8732 demangled = NULL;
8733 }
8734 else
8735 {
8736 demangled = gdb_demangle (mangled,
8737 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8738 }
8739 if (demangled)
8740 {
8741 make_cleanup (xfree, demangled);
8742 canon = demangled;
8743 }
8744 else
8745 {
8746 canon = mangled;
8747 need_copy = 0;
8748 }
8749 }
8750
8751 if (canon == NULL || check_physname)
8752 {
8753 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8754
8755 if (canon != NULL && strcmp (physname, canon) != 0)
8756 {
8757 /* It may not mean a bug in GDB. The compiler could also
8758 compute DW_AT_linkage_name incorrectly. But in such case
8759 GDB would need to be bug-to-bug compatible. */
8760
8761 complaint (&symfile_complaints,
8762 _("Computed physname <%s> does not match demangled <%s> "
8763 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8764 physname, canon, mangled, die->offset.sect_off,
8765 objfile_name (objfile));
8766
8767 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8768 is available here - over computed PHYSNAME. It is safer
8769 against both buggy GDB and buggy compilers. */
8770
8771 retval = canon;
8772 }
8773 else
8774 {
8775 retval = physname;
8776 need_copy = 0;
8777 }
8778 }
8779 else
8780 retval = canon;
8781
8782 if (need_copy)
8783 retval = ((const char *)
8784 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8785 retval, strlen (retval)));
8786
8787 do_cleanups (back_to);
8788 return retval;
8789 }
8790
8791 /* Inspect DIE in CU for a namespace alias. If one exists, record
8792 a new symbol for it.
8793
8794 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8795
8796 static int
8797 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8798 {
8799 struct attribute *attr;
8800
8801 /* If the die does not have a name, this is not a namespace
8802 alias. */
8803 attr = dwarf2_attr (die, DW_AT_name, cu);
8804 if (attr != NULL)
8805 {
8806 int num;
8807 struct die_info *d = die;
8808 struct dwarf2_cu *imported_cu = cu;
8809
8810 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8811 keep inspecting DIEs until we hit the underlying import. */
8812 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8813 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8814 {
8815 attr = dwarf2_attr (d, DW_AT_import, cu);
8816 if (attr == NULL)
8817 break;
8818
8819 d = follow_die_ref (d, attr, &imported_cu);
8820 if (d->tag != DW_TAG_imported_declaration)
8821 break;
8822 }
8823
8824 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8825 {
8826 complaint (&symfile_complaints,
8827 _("DIE at 0x%x has too many recursively imported "
8828 "declarations"), d->offset.sect_off);
8829 return 0;
8830 }
8831
8832 if (attr != NULL)
8833 {
8834 struct type *type;
8835 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8836
8837 type = get_die_type_at_offset (offset, cu->per_cu);
8838 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8839 {
8840 /* This declaration is a global namespace alias. Add
8841 a symbol for it whose type is the aliased namespace. */
8842 new_symbol (die, type, cu);
8843 return 1;
8844 }
8845 }
8846 }
8847
8848 return 0;
8849 }
8850
8851 /* Return the using directives repository (global or local?) to use in the
8852 current context for LANGUAGE.
8853
8854 For Ada, imported declarations can materialize renamings, which *may* be
8855 global. However it is impossible (for now?) in DWARF to distinguish
8856 "external" imported declarations and "static" ones. As all imported
8857 declarations seem to be static in all other languages, make them all CU-wide
8858 global only in Ada. */
8859
8860 static struct using_direct **
8861 using_directives (enum language language)
8862 {
8863 if (language == language_ada && context_stack_depth == 0)
8864 return &global_using_directives;
8865 else
8866 return &local_using_directives;
8867 }
8868
8869 /* Read the import statement specified by the given die and record it. */
8870
8871 static void
8872 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8873 {
8874 struct objfile *objfile = cu->objfile;
8875 struct attribute *import_attr;
8876 struct die_info *imported_die, *child_die;
8877 struct dwarf2_cu *imported_cu;
8878 const char *imported_name;
8879 const char *imported_name_prefix;
8880 const char *canonical_name;
8881 const char *import_alias;
8882 const char *imported_declaration = NULL;
8883 const char *import_prefix;
8884 VEC (const_char_ptr) *excludes = NULL;
8885 struct cleanup *cleanups;
8886
8887 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8888 if (import_attr == NULL)
8889 {
8890 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8891 dwarf_tag_name (die->tag));
8892 return;
8893 }
8894
8895 imported_cu = cu;
8896 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8897 imported_name = dwarf2_name (imported_die, imported_cu);
8898 if (imported_name == NULL)
8899 {
8900 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8901
8902 The import in the following code:
8903 namespace A
8904 {
8905 typedef int B;
8906 }
8907
8908 int main ()
8909 {
8910 using A::B;
8911 B b;
8912 return b;
8913 }
8914
8915 ...
8916 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8917 <52> DW_AT_decl_file : 1
8918 <53> DW_AT_decl_line : 6
8919 <54> DW_AT_import : <0x75>
8920 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8921 <59> DW_AT_name : B
8922 <5b> DW_AT_decl_file : 1
8923 <5c> DW_AT_decl_line : 2
8924 <5d> DW_AT_type : <0x6e>
8925 ...
8926 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8927 <76> DW_AT_byte_size : 4
8928 <77> DW_AT_encoding : 5 (signed)
8929
8930 imports the wrong die ( 0x75 instead of 0x58 ).
8931 This case will be ignored until the gcc bug is fixed. */
8932 return;
8933 }
8934
8935 /* Figure out the local name after import. */
8936 import_alias = dwarf2_name (die, cu);
8937
8938 /* Figure out where the statement is being imported to. */
8939 import_prefix = determine_prefix (die, cu);
8940
8941 /* Figure out what the scope of the imported die is and prepend it
8942 to the name of the imported die. */
8943 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8944
8945 if (imported_die->tag != DW_TAG_namespace
8946 && imported_die->tag != DW_TAG_module)
8947 {
8948 imported_declaration = imported_name;
8949 canonical_name = imported_name_prefix;
8950 }
8951 else if (strlen (imported_name_prefix) > 0)
8952 canonical_name = obconcat (&objfile->objfile_obstack,
8953 imported_name_prefix,
8954 (cu->language == language_d ? "." : "::"),
8955 imported_name, (char *) NULL);
8956 else
8957 canonical_name = imported_name;
8958
8959 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8960
8961 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8962 for (child_die = die->child; child_die && child_die->tag;
8963 child_die = sibling_die (child_die))
8964 {
8965 /* DWARF-4: A Fortran use statement with a “rename list” may be
8966 represented by an imported module entry with an import attribute
8967 referring to the module and owned entries corresponding to those
8968 entities that are renamed as part of being imported. */
8969
8970 if (child_die->tag != DW_TAG_imported_declaration)
8971 {
8972 complaint (&symfile_complaints,
8973 _("child DW_TAG_imported_declaration expected "
8974 "- DIE at 0x%x [in module %s]"),
8975 child_die->offset.sect_off, objfile_name (objfile));
8976 continue;
8977 }
8978
8979 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8980 if (import_attr == NULL)
8981 {
8982 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8983 dwarf_tag_name (child_die->tag));
8984 continue;
8985 }
8986
8987 imported_cu = cu;
8988 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8989 &imported_cu);
8990 imported_name = dwarf2_name (imported_die, imported_cu);
8991 if (imported_name == NULL)
8992 {
8993 complaint (&symfile_complaints,
8994 _("child DW_TAG_imported_declaration has unknown "
8995 "imported name - DIE at 0x%x [in module %s]"),
8996 child_die->offset.sect_off, objfile_name (objfile));
8997 continue;
8998 }
8999
9000 VEC_safe_push (const_char_ptr, excludes, imported_name);
9001
9002 process_die (child_die, cu);
9003 }
9004
9005 add_using_directive (using_directives (cu->language),
9006 import_prefix,
9007 canonical_name,
9008 import_alias,
9009 imported_declaration,
9010 excludes,
9011 0,
9012 &objfile->objfile_obstack);
9013
9014 do_cleanups (cleanups);
9015 }
9016
9017 /* Cleanup function for handle_DW_AT_stmt_list. */
9018
9019 static void
9020 free_cu_line_header (void *arg)
9021 {
9022 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9023
9024 free_line_header (cu->line_header);
9025 cu->line_header = NULL;
9026 }
9027
9028 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9029 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9030 this, it was first present in GCC release 4.3.0. */
9031
9032 static int
9033 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9034 {
9035 if (!cu->checked_producer)
9036 check_producer (cu);
9037
9038 return cu->producer_is_gcc_lt_4_3;
9039 }
9040
9041 static void
9042 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9043 const char **name, const char **comp_dir)
9044 {
9045 /* Find the filename. Do not use dwarf2_name here, since the filename
9046 is not a source language identifier. */
9047 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9048 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9049
9050 if (*comp_dir == NULL
9051 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9052 && IS_ABSOLUTE_PATH (*name))
9053 {
9054 char *d = ldirname (*name);
9055
9056 *comp_dir = d;
9057 if (d != NULL)
9058 make_cleanup (xfree, d);
9059 }
9060 if (*comp_dir != NULL)
9061 {
9062 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9063 directory, get rid of it. */
9064 const char *cp = strchr (*comp_dir, ':');
9065
9066 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9067 *comp_dir = cp + 1;
9068 }
9069
9070 if (*name == NULL)
9071 *name = "<unknown>";
9072 }
9073
9074 /* Handle DW_AT_stmt_list for a compilation unit.
9075 DIE is the DW_TAG_compile_unit die for CU.
9076 COMP_DIR is the compilation directory. LOWPC is passed to
9077 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9078
9079 static void
9080 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9081 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9082 {
9083 struct objfile *objfile = dwarf2_per_objfile->objfile;
9084 struct attribute *attr;
9085 unsigned int line_offset;
9086 struct line_header line_header_local;
9087 hashval_t line_header_local_hash;
9088 unsigned u;
9089 void **slot;
9090 int decode_mapping;
9091
9092 gdb_assert (! cu->per_cu->is_debug_types);
9093
9094 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9095 if (attr == NULL)
9096 return;
9097
9098 line_offset = DW_UNSND (attr);
9099
9100 /* The line header hash table is only created if needed (it exists to
9101 prevent redundant reading of the line table for partial_units).
9102 If we're given a partial_unit, we'll need it. If we're given a
9103 compile_unit, then use the line header hash table if it's already
9104 created, but don't create one just yet. */
9105
9106 if (dwarf2_per_objfile->line_header_hash == NULL
9107 && die->tag == DW_TAG_partial_unit)
9108 {
9109 dwarf2_per_objfile->line_header_hash
9110 = htab_create_alloc_ex (127, line_header_hash_voidp,
9111 line_header_eq_voidp,
9112 free_line_header_voidp,
9113 &objfile->objfile_obstack,
9114 hashtab_obstack_allocate,
9115 dummy_obstack_deallocate);
9116 }
9117
9118 line_header_local.offset.sect_off = line_offset;
9119 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9120 line_header_local_hash = line_header_hash (&line_header_local);
9121 if (dwarf2_per_objfile->line_header_hash != NULL)
9122 {
9123 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9124 &line_header_local,
9125 line_header_local_hash, NO_INSERT);
9126
9127 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9128 is not present in *SLOT (since if there is something in *SLOT then
9129 it will be for a partial_unit). */
9130 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9131 {
9132 gdb_assert (*slot != NULL);
9133 cu->line_header = (struct line_header *) *slot;
9134 return;
9135 }
9136 }
9137
9138 /* dwarf_decode_line_header does not yet provide sufficient information.
9139 We always have to call also dwarf_decode_lines for it. */
9140 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9141 if (cu->line_header == NULL)
9142 return;
9143
9144 if (dwarf2_per_objfile->line_header_hash == NULL)
9145 slot = NULL;
9146 else
9147 {
9148 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9149 &line_header_local,
9150 line_header_local_hash, INSERT);
9151 gdb_assert (slot != NULL);
9152 }
9153 if (slot != NULL && *slot == NULL)
9154 {
9155 /* This newly decoded line number information unit will be owned
9156 by line_header_hash hash table. */
9157 *slot = cu->line_header;
9158 }
9159 else
9160 {
9161 /* We cannot free any current entry in (*slot) as that struct line_header
9162 may be already used by multiple CUs. Create only temporary decoded
9163 line_header for this CU - it may happen at most once for each line
9164 number information unit. And if we're not using line_header_hash
9165 then this is what we want as well. */
9166 gdb_assert (die->tag != DW_TAG_partial_unit);
9167 make_cleanup (free_cu_line_header, cu);
9168 }
9169 decode_mapping = (die->tag != DW_TAG_partial_unit);
9170 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9171 decode_mapping);
9172 }
9173
9174 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9175
9176 static void
9177 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9178 {
9179 struct objfile *objfile = dwarf2_per_objfile->objfile;
9180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9181 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9182 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9183 CORE_ADDR highpc = ((CORE_ADDR) 0);
9184 struct attribute *attr;
9185 const char *name = NULL;
9186 const char *comp_dir = NULL;
9187 struct die_info *child_die;
9188 CORE_ADDR baseaddr;
9189
9190 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9191
9192 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9193
9194 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9195 from finish_block. */
9196 if (lowpc == ((CORE_ADDR) -1))
9197 lowpc = highpc;
9198 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9199
9200 find_file_and_directory (die, cu, &name, &comp_dir);
9201
9202 prepare_one_comp_unit (cu, die, cu->language);
9203
9204 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9205 standardised yet. As a workaround for the language detection we fall
9206 back to the DW_AT_producer string. */
9207 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9208 cu->language = language_opencl;
9209
9210 /* Similar hack for Go. */
9211 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9212 set_cu_language (DW_LANG_Go, cu);
9213
9214 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9215
9216 /* Decode line number information if present. We do this before
9217 processing child DIEs, so that the line header table is available
9218 for DW_AT_decl_file. */
9219 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9220
9221 /* Process all dies in compilation unit. */
9222 if (die->child != NULL)
9223 {
9224 child_die = die->child;
9225 while (child_die && child_die->tag)
9226 {
9227 process_die (child_die, cu);
9228 child_die = sibling_die (child_die);
9229 }
9230 }
9231
9232 /* Decode macro information, if present. Dwarf 2 macro information
9233 refers to information in the line number info statement program
9234 header, so we can only read it if we've read the header
9235 successfully. */
9236 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9237 if (attr && cu->line_header)
9238 {
9239 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9240 complaint (&symfile_complaints,
9241 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9242
9243 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9244 }
9245 else
9246 {
9247 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9248 if (attr && cu->line_header)
9249 {
9250 unsigned int macro_offset = DW_UNSND (attr);
9251
9252 dwarf_decode_macros (cu, macro_offset, 0);
9253 }
9254 }
9255
9256 do_cleanups (back_to);
9257 }
9258
9259 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9260 Create the set of symtabs used by this TU, or if this TU is sharing
9261 symtabs with another TU and the symtabs have already been created
9262 then restore those symtabs in the line header.
9263 We don't need the pc/line-number mapping for type units. */
9264
9265 static void
9266 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9267 {
9268 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9269 struct type_unit_group *tu_group;
9270 int first_time;
9271 struct line_header *lh;
9272 struct attribute *attr;
9273 unsigned int i, line_offset;
9274 struct signatured_type *sig_type;
9275
9276 gdb_assert (per_cu->is_debug_types);
9277 sig_type = (struct signatured_type *) per_cu;
9278
9279 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9280
9281 /* If we're using .gdb_index (includes -readnow) then
9282 per_cu->type_unit_group may not have been set up yet. */
9283 if (sig_type->type_unit_group == NULL)
9284 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9285 tu_group = sig_type->type_unit_group;
9286
9287 /* If we've already processed this stmt_list there's no real need to
9288 do it again, we could fake it and just recreate the part we need
9289 (file name,index -> symtab mapping). If data shows this optimization
9290 is useful we can do it then. */
9291 first_time = tu_group->compunit_symtab == NULL;
9292
9293 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9294 debug info. */
9295 lh = NULL;
9296 if (attr != NULL)
9297 {
9298 line_offset = DW_UNSND (attr);
9299 lh = dwarf_decode_line_header (line_offset, cu);
9300 }
9301 if (lh == NULL)
9302 {
9303 if (first_time)
9304 dwarf2_start_symtab (cu, "", NULL, 0);
9305 else
9306 {
9307 gdb_assert (tu_group->symtabs == NULL);
9308 restart_symtab (tu_group->compunit_symtab, "", 0);
9309 }
9310 return;
9311 }
9312
9313 cu->line_header = lh;
9314 make_cleanup (free_cu_line_header, cu);
9315
9316 if (first_time)
9317 {
9318 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9319
9320 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9321 still initializing it, and our caller (a few levels up)
9322 process_full_type_unit still needs to know if this is the first
9323 time. */
9324
9325 tu_group->num_symtabs = lh->num_file_names;
9326 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9327
9328 for (i = 0; i < lh->num_file_names; ++i)
9329 {
9330 const char *dir = NULL;
9331 struct file_entry *fe = &lh->file_names[i];
9332
9333 if (fe->dir_index && lh->include_dirs != NULL)
9334 dir = lh->include_dirs[fe->dir_index - 1];
9335 dwarf2_start_subfile (fe->name, dir);
9336
9337 if (current_subfile->symtab == NULL)
9338 {
9339 /* NOTE: start_subfile will recognize when it's been passed
9340 a file it has already seen. So we can't assume there's a
9341 simple mapping from lh->file_names to subfiles, plus
9342 lh->file_names may contain dups. */
9343 current_subfile->symtab
9344 = allocate_symtab (cust, current_subfile->name);
9345 }
9346
9347 fe->symtab = current_subfile->symtab;
9348 tu_group->symtabs[i] = fe->symtab;
9349 }
9350 }
9351 else
9352 {
9353 restart_symtab (tu_group->compunit_symtab, "", 0);
9354
9355 for (i = 0; i < lh->num_file_names; ++i)
9356 {
9357 struct file_entry *fe = &lh->file_names[i];
9358
9359 fe->symtab = tu_group->symtabs[i];
9360 }
9361 }
9362
9363 /* The main symtab is allocated last. Type units don't have DW_AT_name
9364 so they don't have a "real" (so to speak) symtab anyway.
9365 There is later code that will assign the main symtab to all symbols
9366 that don't have one. We need to handle the case of a symbol with a
9367 missing symtab (DW_AT_decl_file) anyway. */
9368 }
9369
9370 /* Process DW_TAG_type_unit.
9371 For TUs we want to skip the first top level sibling if it's not the
9372 actual type being defined by this TU. In this case the first top
9373 level sibling is there to provide context only. */
9374
9375 static void
9376 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9377 {
9378 struct die_info *child_die;
9379
9380 prepare_one_comp_unit (cu, die, language_minimal);
9381
9382 /* Initialize (or reinitialize) the machinery for building symtabs.
9383 We do this before processing child DIEs, so that the line header table
9384 is available for DW_AT_decl_file. */
9385 setup_type_unit_groups (die, cu);
9386
9387 if (die->child != NULL)
9388 {
9389 child_die = die->child;
9390 while (child_die && child_die->tag)
9391 {
9392 process_die (child_die, cu);
9393 child_die = sibling_die (child_die);
9394 }
9395 }
9396 }
9397 \f
9398 /* DWO/DWP files.
9399
9400 http://gcc.gnu.org/wiki/DebugFission
9401 http://gcc.gnu.org/wiki/DebugFissionDWP
9402
9403 To simplify handling of both DWO files ("object" files with the DWARF info)
9404 and DWP files (a file with the DWOs packaged up into one file), we treat
9405 DWP files as having a collection of virtual DWO files. */
9406
9407 static hashval_t
9408 hash_dwo_file (const void *item)
9409 {
9410 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9411 hashval_t hash;
9412
9413 hash = htab_hash_string (dwo_file->dwo_name);
9414 if (dwo_file->comp_dir != NULL)
9415 hash += htab_hash_string (dwo_file->comp_dir);
9416 return hash;
9417 }
9418
9419 static int
9420 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9421 {
9422 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9423 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9424
9425 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9426 return 0;
9427 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9428 return lhs->comp_dir == rhs->comp_dir;
9429 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9430 }
9431
9432 /* Allocate a hash table for DWO files. */
9433
9434 static htab_t
9435 allocate_dwo_file_hash_table (void)
9436 {
9437 struct objfile *objfile = dwarf2_per_objfile->objfile;
9438
9439 return htab_create_alloc_ex (41,
9440 hash_dwo_file,
9441 eq_dwo_file,
9442 NULL,
9443 &objfile->objfile_obstack,
9444 hashtab_obstack_allocate,
9445 dummy_obstack_deallocate);
9446 }
9447
9448 /* Lookup DWO file DWO_NAME. */
9449
9450 static void **
9451 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9452 {
9453 struct dwo_file find_entry;
9454 void **slot;
9455
9456 if (dwarf2_per_objfile->dwo_files == NULL)
9457 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9458
9459 memset (&find_entry, 0, sizeof (find_entry));
9460 find_entry.dwo_name = dwo_name;
9461 find_entry.comp_dir = comp_dir;
9462 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9463
9464 return slot;
9465 }
9466
9467 static hashval_t
9468 hash_dwo_unit (const void *item)
9469 {
9470 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9471
9472 /* This drops the top 32 bits of the id, but is ok for a hash. */
9473 return dwo_unit->signature;
9474 }
9475
9476 static int
9477 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9478 {
9479 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9480 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9481
9482 /* The signature is assumed to be unique within the DWO file.
9483 So while object file CU dwo_id's always have the value zero,
9484 that's OK, assuming each object file DWO file has only one CU,
9485 and that's the rule for now. */
9486 return lhs->signature == rhs->signature;
9487 }
9488
9489 /* Allocate a hash table for DWO CUs,TUs.
9490 There is one of these tables for each of CUs,TUs for each DWO file. */
9491
9492 static htab_t
9493 allocate_dwo_unit_table (struct objfile *objfile)
9494 {
9495 /* Start out with a pretty small number.
9496 Generally DWO files contain only one CU and maybe some TUs. */
9497 return htab_create_alloc_ex (3,
9498 hash_dwo_unit,
9499 eq_dwo_unit,
9500 NULL,
9501 &objfile->objfile_obstack,
9502 hashtab_obstack_allocate,
9503 dummy_obstack_deallocate);
9504 }
9505
9506 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9507
9508 struct create_dwo_cu_data
9509 {
9510 struct dwo_file *dwo_file;
9511 struct dwo_unit dwo_unit;
9512 };
9513
9514 /* die_reader_func for create_dwo_cu. */
9515
9516 static void
9517 create_dwo_cu_reader (const struct die_reader_specs *reader,
9518 const gdb_byte *info_ptr,
9519 struct die_info *comp_unit_die,
9520 int has_children,
9521 void *datap)
9522 {
9523 struct dwarf2_cu *cu = reader->cu;
9524 sect_offset offset = cu->per_cu->offset;
9525 struct dwarf2_section_info *section = cu->per_cu->section;
9526 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9527 struct dwo_file *dwo_file = data->dwo_file;
9528 struct dwo_unit *dwo_unit = &data->dwo_unit;
9529 struct attribute *attr;
9530
9531 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9532 if (attr == NULL)
9533 {
9534 complaint (&symfile_complaints,
9535 _("Dwarf Error: debug entry at offset 0x%x is missing"
9536 " its dwo_id [in module %s]"),
9537 offset.sect_off, dwo_file->dwo_name);
9538 return;
9539 }
9540
9541 dwo_unit->dwo_file = dwo_file;
9542 dwo_unit->signature = DW_UNSND (attr);
9543 dwo_unit->section = section;
9544 dwo_unit->offset = offset;
9545 dwo_unit->length = cu->per_cu->length;
9546
9547 if (dwarf_read_debug)
9548 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9549 offset.sect_off, hex_string (dwo_unit->signature));
9550 }
9551
9552 /* Create the dwo_unit for the lone CU in DWO_FILE.
9553 Note: This function processes DWO files only, not DWP files. */
9554
9555 static struct dwo_unit *
9556 create_dwo_cu (struct dwo_file *dwo_file)
9557 {
9558 struct objfile *objfile = dwarf2_per_objfile->objfile;
9559 struct dwarf2_section_info *section = &dwo_file->sections.info;
9560 const gdb_byte *info_ptr, *end_ptr;
9561 struct create_dwo_cu_data create_dwo_cu_data;
9562 struct dwo_unit *dwo_unit;
9563
9564 dwarf2_read_section (objfile, section);
9565 info_ptr = section->buffer;
9566
9567 if (info_ptr == NULL)
9568 return NULL;
9569
9570 if (dwarf_read_debug)
9571 {
9572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9573 get_section_name (section),
9574 get_section_file_name (section));
9575 }
9576
9577 create_dwo_cu_data.dwo_file = dwo_file;
9578 dwo_unit = NULL;
9579
9580 end_ptr = info_ptr + section->size;
9581 while (info_ptr < end_ptr)
9582 {
9583 struct dwarf2_per_cu_data per_cu;
9584
9585 memset (&create_dwo_cu_data.dwo_unit, 0,
9586 sizeof (create_dwo_cu_data.dwo_unit));
9587 memset (&per_cu, 0, sizeof (per_cu));
9588 per_cu.objfile = objfile;
9589 per_cu.is_debug_types = 0;
9590 per_cu.offset.sect_off = info_ptr - section->buffer;
9591 per_cu.section = section;
9592
9593 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9594 create_dwo_cu_reader,
9595 &create_dwo_cu_data);
9596
9597 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 {
9599 /* If we've already found one, complain. We only support one
9600 because having more than one requires hacking the dwo_name of
9601 each to match, which is highly unlikely to happen. */
9602 if (dwo_unit != NULL)
9603 {
9604 complaint (&symfile_complaints,
9605 _("Multiple CUs in DWO file %s [in module %s]"),
9606 dwo_file->dwo_name, objfile_name (objfile));
9607 break;
9608 }
9609
9610 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9611 *dwo_unit = create_dwo_cu_data.dwo_unit;
9612 }
9613
9614 info_ptr += per_cu.length;
9615 }
9616
9617 return dwo_unit;
9618 }
9619
9620 /* DWP file .debug_{cu,tu}_index section format:
9621 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622
9623 DWP Version 1:
9624
9625 Both index sections have the same format, and serve to map a 64-bit
9626 signature to a set of section numbers. Each section begins with a header,
9627 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9628 indexes, and a pool of 32-bit section numbers. The index sections will be
9629 aligned at 8-byte boundaries in the file.
9630
9631 The index section header consists of:
9632
9633 V, 32 bit version number
9634 -, 32 bits unused
9635 N, 32 bit number of compilation units or type units in the index
9636 M, 32 bit number of slots in the hash table
9637
9638 Numbers are recorded using the byte order of the application binary.
9639
9640 The hash table begins at offset 16 in the section, and consists of an array
9641 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9642 order of the application binary). Unused slots in the hash table are 0.
9643 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9644
9645 The parallel table begins immediately after the hash table
9646 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9647 array of 32-bit indexes (using the byte order of the application binary),
9648 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9649 table contains a 32-bit index into the pool of section numbers. For unused
9650 hash table slots, the corresponding entry in the parallel table will be 0.
9651
9652 The pool of section numbers begins immediately following the hash table
9653 (at offset 16 + 12 * M from the beginning of the section). The pool of
9654 section numbers consists of an array of 32-bit words (using the byte order
9655 of the application binary). Each item in the array is indexed starting
9656 from 0. The hash table entry provides the index of the first section
9657 number in the set. Additional section numbers in the set follow, and the
9658 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659
9660 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9661 section must be the first entry in the set, and the .debug_abbrev.dwo must
9662 be the second entry. Other members of the set may follow in any order.
9663
9664 ---
9665
9666 DWP Version 2:
9667
9668 DWP Version 2 combines all the .debug_info, etc. sections into one,
9669 and the entries in the index tables are now offsets into these sections.
9670 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9671 section.
9672
9673 Index Section Contents:
9674 Header
9675 Hash Table of Signatures dwp_hash_table.hash_table
9676 Parallel Table of Indices dwp_hash_table.unit_table
9677 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9678 Table of Section Sizes dwp_hash_table.v2.sizes
9679
9680 The index section header consists of:
9681
9682 V, 32 bit version number
9683 L, 32 bit number of columns in the table of section offsets
9684 N, 32 bit number of compilation units or type units in the index
9685 M, 32 bit number of slots in the hash table
9686
9687 Numbers are recorded using the byte order of the application binary.
9688
9689 The hash table has the same format as version 1.
9690 The parallel table of indices has the same format as version 1,
9691 except that the entries are origin-1 indices into the table of sections
9692 offsets and the table of section sizes.
9693
9694 The table of offsets begins immediately following the parallel table
9695 (at offset 16 + 12 * M from the beginning of the section). The table is
9696 a two-dimensional array of 32-bit words (using the byte order of the
9697 application binary), with L columns and N+1 rows, in row-major order.
9698 Each row in the array is indexed starting from 0. The first row provides
9699 a key to the remaining rows: each column in this row provides an identifier
9700 for a debug section, and the offsets in the same column of subsequent rows
9701 refer to that section. The section identifiers are:
9702
9703 DW_SECT_INFO 1 .debug_info.dwo
9704 DW_SECT_TYPES 2 .debug_types.dwo
9705 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9706 DW_SECT_LINE 4 .debug_line.dwo
9707 DW_SECT_LOC 5 .debug_loc.dwo
9708 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9709 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9710 DW_SECT_MACRO 8 .debug_macro.dwo
9711
9712 The offsets provided by the CU and TU index sections are the base offsets
9713 for the contributions made by each CU or TU to the corresponding section
9714 in the package file. Each CU and TU header contains an abbrev_offset
9715 field, used to find the abbreviations table for that CU or TU within the
9716 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9717 be interpreted as relative to the base offset given in the index section.
9718 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9719 should be interpreted as relative to the base offset for .debug_line.dwo,
9720 and offsets into other debug sections obtained from DWARF attributes should
9721 also be interpreted as relative to the corresponding base offset.
9722
9723 The table of sizes begins immediately following the table of offsets.
9724 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9725 with L columns and N rows, in row-major order. Each row in the array is
9726 indexed starting from 1 (row 0 is shared by the two tables).
9727
9728 ---
9729
9730 Hash table lookup is handled the same in version 1 and 2:
9731
9732 We assume that N and M will not exceed 2^32 - 1.
9733 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734
9735 Given a 64-bit compilation unit signature or a type signature S, an entry
9736 in the hash table is located as follows:
9737
9738 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9739 the low-order k bits all set to 1.
9740
9741 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9742
9743 3) If the hash table entry at index H matches the signature, use that
9744 entry. If the hash table entry at index H is unused (all zeroes),
9745 terminate the search: the signature is not present in the table.
9746
9747 4) Let H = (H + H') modulo M. Repeat at Step 3.
9748
9749 Because M > N and H' and M are relatively prime, the search is guaranteed
9750 to stop at an unused slot or find the match. */
9751
9752 /* Create a hash table to map DWO IDs to their CU/TU entry in
9753 .debug_{info,types}.dwo in DWP_FILE.
9754 Returns NULL if there isn't one.
9755 Note: This function processes DWP files only, not DWO files. */
9756
9757 static struct dwp_hash_table *
9758 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759 {
9760 struct objfile *objfile = dwarf2_per_objfile->objfile;
9761 bfd *dbfd = dwp_file->dbfd;
9762 const gdb_byte *index_ptr, *index_end;
9763 struct dwarf2_section_info *index;
9764 uint32_t version, nr_columns, nr_units, nr_slots;
9765 struct dwp_hash_table *htab;
9766
9767 if (is_debug_types)
9768 index = &dwp_file->sections.tu_index;
9769 else
9770 index = &dwp_file->sections.cu_index;
9771
9772 if (dwarf2_section_empty_p (index))
9773 return NULL;
9774 dwarf2_read_section (objfile, index);
9775
9776 index_ptr = index->buffer;
9777 index_end = index_ptr + index->size;
9778
9779 version = read_4_bytes (dbfd, index_ptr);
9780 index_ptr += 4;
9781 if (version == 2)
9782 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 else
9784 nr_columns = 0;
9785 index_ptr += 4;
9786 nr_units = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 nr_slots = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790
9791 if (version != 1 && version != 2)
9792 {
9793 error (_("Dwarf Error: unsupported DWP file version (%s)"
9794 " [in module %s]"),
9795 pulongest (version), dwp_file->name);
9796 }
9797 if (nr_slots != (nr_slots & -nr_slots))
9798 {
9799 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9800 " is not power of 2 [in module %s]"),
9801 pulongest (nr_slots), dwp_file->name);
9802 }
9803
9804 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9805 htab->version = version;
9806 htab->nr_columns = nr_columns;
9807 htab->nr_units = nr_units;
9808 htab->nr_slots = nr_slots;
9809 htab->hash_table = index_ptr;
9810 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9811
9812 /* Exit early if the table is empty. */
9813 if (nr_slots == 0 || nr_units == 0
9814 || (version == 2 && nr_columns == 0))
9815 {
9816 /* All must be zero. */
9817 if (nr_slots != 0 || nr_units != 0
9818 || (version == 2 && nr_columns != 0))
9819 {
9820 complaint (&symfile_complaints,
9821 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9822 " all zero [in modules %s]"),
9823 dwp_file->name);
9824 }
9825 return htab;
9826 }
9827
9828 if (version == 1)
9829 {
9830 htab->section_pool.v1.indices =
9831 htab->unit_table + sizeof (uint32_t) * nr_slots;
9832 /* It's harder to decide whether the section is too small in v1.
9833 V1 is deprecated anyway so we punt. */
9834 }
9835 else
9836 {
9837 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 int *ids = htab->section_pool.v2.section_ids;
9839 /* Reverse map for error checking. */
9840 int ids_seen[DW_SECT_MAX + 1];
9841 int i;
9842
9843 if (nr_columns < 2)
9844 {
9845 error (_("Dwarf Error: bad DWP hash table, too few columns"
9846 " in section table [in module %s]"),
9847 dwp_file->name);
9848 }
9849 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too many columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 for (i = 0; i < nr_columns; ++i)
9858 {
9859 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860
9861 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9864 " in section table [in module %s]"),
9865 id, dwp_file->name);
9866 }
9867 if (ids_seen[id] != -1)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9870 " id %d in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 ids_seen[id] = i;
9874 ids[i] = id;
9875 }
9876 /* Must have exactly one info or types section. */
9877 if (((ids_seen[DW_SECT_INFO] != -1)
9878 + (ids_seen[DW_SECT_TYPES] != -1))
9879 != 1)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9882 " DWO info/types section [in module %s]"),
9883 dwp_file->name);
9884 }
9885 /* Must have an abbrev section. */
9886 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9889 " section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9893 htab->section_pool.v2.sizes =
9894 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9895 * nr_units * nr_columns);
9896 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9897 * nr_units * nr_columns))
9898 > index_end)
9899 {
9900 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
9905
9906 return htab;
9907 }
9908
9909 /* Update SECTIONS with the data from SECTP.
9910
9911 This function is like the other "locate" section routines that are
9912 passed to bfd_map_over_sections, but in this context the sections to
9913 read comes from the DWP V1 hash table, not the full ELF section table.
9914
9915 The result is non-zero for success, or zero if an error was found. */
9916
9917 static int
9918 locate_v1_virtual_dwo_sections (asection *sectp,
9919 struct virtual_v1_dwo_sections *sections)
9920 {
9921 const struct dwop_section_names *names = &dwop_section_names;
9922
9923 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 {
9925 /* There can be only one. */
9926 if (sections->abbrev.s.section != NULL)
9927 return 0;
9928 sections->abbrev.s.section = sectp;
9929 sections->abbrev.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->info_dwo)
9932 || section_is_p (sectp->name, &names->types_dwo))
9933 {
9934 /* There can be only one. */
9935 if (sections->info_or_types.s.section != NULL)
9936 return 0;
9937 sections->info_or_types.s.section = sectp;
9938 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 }
9940 else if (section_is_p (sectp->name, &names->line_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->line.s.section != NULL)
9944 return 0;
9945 sections->line.s.section = sectp;
9946 sections->line.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->loc.s.section != NULL)
9952 return 0;
9953 sections->loc.s.section = sectp;
9954 sections->loc.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->macinfo.s.section != NULL)
9960 return 0;
9961 sections->macinfo.s.section = sectp;
9962 sections->macinfo.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->macro.s.section != NULL)
9968 return 0;
9969 sections->macro.s.section = sectp;
9970 sections->macro.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->str_offsets.s.section != NULL)
9976 return 0;
9977 sections->str_offsets.s.section = sectp;
9978 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 }
9980 else
9981 {
9982 /* No other kind of section is valid. */
9983 return 0;
9984 }
9985
9986 return 1;
9987 }
9988
9989 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9990 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9991 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9992 This is for DWP version 1 files. */
9993
9994 static struct dwo_unit *
9995 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9996 uint32_t unit_index,
9997 const char *comp_dir,
9998 ULONGEST signature, int is_debug_types)
9999 {
10000 struct objfile *objfile = dwarf2_per_objfile->objfile;
10001 const struct dwp_hash_table *dwp_htab =
10002 is_debug_types ? dwp_file->tus : dwp_file->cus;
10003 bfd *dbfd = dwp_file->dbfd;
10004 const char *kind = is_debug_types ? "TU" : "CU";
10005 struct dwo_file *dwo_file;
10006 struct dwo_unit *dwo_unit;
10007 struct virtual_v1_dwo_sections sections;
10008 void **dwo_file_slot;
10009 char *virtual_dwo_name;
10010 struct cleanup *cleanups;
10011 int i;
10012
10013 gdb_assert (dwp_file->version == 1);
10014
10015 if (dwarf_read_debug)
10016 {
10017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10018 kind,
10019 pulongest (unit_index), hex_string (signature),
10020 dwp_file->name);
10021 }
10022
10023 /* Fetch the sections of this DWO unit.
10024 Put a limit on the number of sections we look for so that bad data
10025 doesn't cause us to loop forever. */
10026
10027 #define MAX_NR_V1_DWO_SECTIONS \
10028 (1 /* .debug_info or .debug_types */ \
10029 + 1 /* .debug_abbrev */ \
10030 + 1 /* .debug_line */ \
10031 + 1 /* .debug_loc */ \
10032 + 1 /* .debug_str_offsets */ \
10033 + 1 /* .debug_macro or .debug_macinfo */ \
10034 + 1 /* trailing zero */)
10035
10036 memset (&sections, 0, sizeof (sections));
10037 cleanups = make_cleanup (null_cleanup, 0);
10038
10039 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10040 {
10041 asection *sectp;
10042 uint32_t section_nr =
10043 read_4_bytes (dbfd,
10044 dwp_htab->section_pool.v1.indices
10045 + (unit_index + i) * sizeof (uint32_t));
10046
10047 if (section_nr == 0)
10048 break;
10049 if (section_nr >= dwp_file->num_sections)
10050 {
10051 error (_("Dwarf Error: bad DWP hash table, section number too large"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055
10056 sectp = dwp_file->elf_sections[section_nr];
10057 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063 }
10064
10065 if (i < 2
10066 || dwarf2_section_empty_p (&sections.info_or_types)
10067 || dwarf2_section_empty_p (&sections.abbrev))
10068 {
10069 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10070 " [in module %s]"),
10071 dwp_file->name);
10072 }
10073 if (i == MAX_NR_V1_DWO_SECTIONS)
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079
10080 /* It's easier for the rest of the code if we fake a struct dwo_file and
10081 have dwo_unit "live" in that. At least for now.
10082
10083 The DWP file can be made up of a random collection of CUs and TUs.
10084 However, for each CU + set of TUs that came from the same original DWO
10085 file, we can combine them back into a virtual DWO file to save space
10086 (fewer struct dwo_file objects to allocate). Remember that for really
10087 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10088
10089 virtual_dwo_name =
10090 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10091 get_section_id (&sections.abbrev),
10092 get_section_id (&sections.line),
10093 get_section_id (&sections.loc),
10094 get_section_id (&sections.str_offsets));
10095 make_cleanup (xfree, virtual_dwo_name);
10096 /* Can we use an existing virtual DWO file? */
10097 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10098 /* Create one if necessary. */
10099 if (*dwo_file_slot == NULL)
10100 {
10101 if (dwarf_read_debug)
10102 {
10103 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10104 virtual_dwo_name);
10105 }
10106 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10107 dwo_file->dwo_name
10108 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10109 virtual_dwo_name,
10110 strlen (virtual_dwo_name));
10111 dwo_file->comp_dir = comp_dir;
10112 dwo_file->sections.abbrev = sections.abbrev;
10113 dwo_file->sections.line = sections.line;
10114 dwo_file->sections.loc = sections.loc;
10115 dwo_file->sections.macinfo = sections.macinfo;
10116 dwo_file->sections.macro = sections.macro;
10117 dwo_file->sections.str_offsets = sections.str_offsets;
10118 /* The "str" section is global to the entire DWP file. */
10119 dwo_file->sections.str = dwp_file->sections.str;
10120 /* The info or types section is assigned below to dwo_unit,
10121 there's no need to record it in dwo_file.
10122 Also, we can't simply record type sections in dwo_file because
10123 we record a pointer into the vector in dwo_unit. As we collect more
10124 types we'll grow the vector and eventually have to reallocate space
10125 for it, invalidating all copies of pointers into the previous
10126 contents. */
10127 *dwo_file_slot = dwo_file;
10128 }
10129 else
10130 {
10131 if (dwarf_read_debug)
10132 {
10133 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10134 virtual_dwo_name);
10135 }
10136 dwo_file = (struct dwo_file *) *dwo_file_slot;
10137 }
10138 do_cleanups (cleanups);
10139
10140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10141 dwo_unit->dwo_file = dwo_file;
10142 dwo_unit->signature = signature;
10143 dwo_unit->section =
10144 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10145 *dwo_unit->section = sections.info_or_types;
10146 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10147
10148 return dwo_unit;
10149 }
10150
10151 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10152 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10153 piece within that section used by a TU/CU, return a virtual section
10154 of just that piece. */
10155
10156 static struct dwarf2_section_info
10157 create_dwp_v2_section (struct dwarf2_section_info *section,
10158 bfd_size_type offset, bfd_size_type size)
10159 {
10160 struct dwarf2_section_info result;
10161 asection *sectp;
10162
10163 gdb_assert (section != NULL);
10164 gdb_assert (!section->is_virtual);
10165
10166 memset (&result, 0, sizeof (result));
10167 result.s.containing_section = section;
10168 result.is_virtual = 1;
10169
10170 if (size == 0)
10171 return result;
10172
10173 sectp = get_section_bfd_section (section);
10174
10175 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10176 bounds of the real section. This is a pretty-rare event, so just
10177 flag an error (easier) instead of a warning and trying to cope. */
10178 if (sectp == NULL
10179 || offset + size > bfd_get_section_size (sectp))
10180 {
10181 bfd *abfd = sectp->owner;
10182
10183 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10184 " in section %s [in module %s]"),
10185 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10186 objfile_name (dwarf2_per_objfile->objfile));
10187 }
10188
10189 result.virtual_offset = offset;
10190 result.size = size;
10191 return result;
10192 }
10193
10194 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10195 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10196 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10197 This is for DWP version 2 files. */
10198
10199 static struct dwo_unit *
10200 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10201 uint32_t unit_index,
10202 const char *comp_dir,
10203 ULONGEST signature, int is_debug_types)
10204 {
10205 struct objfile *objfile = dwarf2_per_objfile->objfile;
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 const char *kind = is_debug_types ? "TU" : "CU";
10210 struct dwo_file *dwo_file;
10211 struct dwo_unit *dwo_unit;
10212 struct virtual_v2_dwo_sections sections;
10213 void **dwo_file_slot;
10214 char *virtual_dwo_name;
10215 struct cleanup *cleanups;
10216 int i;
10217
10218 gdb_assert (dwp_file->version == 2);
10219
10220 if (dwarf_read_debug)
10221 {
10222 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10223 kind,
10224 pulongest (unit_index), hex_string (signature),
10225 dwp_file->name);
10226 }
10227
10228 /* Fetch the section offsets of this DWO unit. */
10229
10230 memset (&sections, 0, sizeof (sections));
10231 cleanups = make_cleanup (null_cleanup, 0);
10232
10233 for (i = 0; i < dwp_htab->nr_columns; ++i)
10234 {
10235 uint32_t offset = read_4_bytes (dbfd,
10236 dwp_htab->section_pool.v2.offsets
10237 + (((unit_index - 1) * dwp_htab->nr_columns
10238 + i)
10239 * sizeof (uint32_t)));
10240 uint32_t size = read_4_bytes (dbfd,
10241 dwp_htab->section_pool.v2.sizes
10242 + (((unit_index - 1) * dwp_htab->nr_columns
10243 + i)
10244 * sizeof (uint32_t)));
10245
10246 switch (dwp_htab->section_pool.v2.section_ids[i])
10247 {
10248 case DW_SECT_INFO:
10249 case DW_SECT_TYPES:
10250 sections.info_or_types_offset = offset;
10251 sections.info_or_types_size = size;
10252 break;
10253 case DW_SECT_ABBREV:
10254 sections.abbrev_offset = offset;
10255 sections.abbrev_size = size;
10256 break;
10257 case DW_SECT_LINE:
10258 sections.line_offset = offset;
10259 sections.line_size = size;
10260 break;
10261 case DW_SECT_LOC:
10262 sections.loc_offset = offset;
10263 sections.loc_size = size;
10264 break;
10265 case DW_SECT_STR_OFFSETS:
10266 sections.str_offsets_offset = offset;
10267 sections.str_offsets_size = size;
10268 break;
10269 case DW_SECT_MACINFO:
10270 sections.macinfo_offset = offset;
10271 sections.macinfo_size = size;
10272 break;
10273 case DW_SECT_MACRO:
10274 sections.macro_offset = offset;
10275 sections.macro_size = size;
10276 break;
10277 }
10278 }
10279
10280 /* It's easier for the rest of the code if we fake a struct dwo_file and
10281 have dwo_unit "live" in that. At least for now.
10282
10283 The DWP file can be made up of a random collection of CUs and TUs.
10284 However, for each CU + set of TUs that came from the same original DWO
10285 file, we can combine them back into a virtual DWO file to save space
10286 (fewer struct dwo_file objects to allocate). Remember that for really
10287 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10288
10289 virtual_dwo_name =
10290 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10291 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10292 (long) (sections.line_size ? sections.line_offset : 0),
10293 (long) (sections.loc_size ? sections.loc_offset : 0),
10294 (long) (sections.str_offsets_size
10295 ? sections.str_offsets_offset : 0));
10296 make_cleanup (xfree, virtual_dwo_name);
10297 /* Can we use an existing virtual DWO file? */
10298 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10299 /* Create one if necessary. */
10300 if (*dwo_file_slot == NULL)
10301 {
10302 if (dwarf_read_debug)
10303 {
10304 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10305 virtual_dwo_name);
10306 }
10307 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10308 dwo_file->dwo_name
10309 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10310 virtual_dwo_name,
10311 strlen (virtual_dwo_name));
10312 dwo_file->comp_dir = comp_dir;
10313 dwo_file->sections.abbrev =
10314 create_dwp_v2_section (&dwp_file->sections.abbrev,
10315 sections.abbrev_offset, sections.abbrev_size);
10316 dwo_file->sections.line =
10317 create_dwp_v2_section (&dwp_file->sections.line,
10318 sections.line_offset, sections.line_size);
10319 dwo_file->sections.loc =
10320 create_dwp_v2_section (&dwp_file->sections.loc,
10321 sections.loc_offset, sections.loc_size);
10322 dwo_file->sections.macinfo =
10323 create_dwp_v2_section (&dwp_file->sections.macinfo,
10324 sections.macinfo_offset, sections.macinfo_size);
10325 dwo_file->sections.macro =
10326 create_dwp_v2_section (&dwp_file->sections.macro,
10327 sections.macro_offset, sections.macro_size);
10328 dwo_file->sections.str_offsets =
10329 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10330 sections.str_offsets_offset,
10331 sections.str_offsets_size);
10332 /* The "str" section is global to the entire DWP file. */
10333 dwo_file->sections.str = dwp_file->sections.str;
10334 /* The info or types section is assigned below to dwo_unit,
10335 there's no need to record it in dwo_file.
10336 Also, we can't simply record type sections in dwo_file because
10337 we record a pointer into the vector in dwo_unit. As we collect more
10338 types we'll grow the vector and eventually have to reallocate space
10339 for it, invalidating all copies of pointers into the previous
10340 contents. */
10341 *dwo_file_slot = dwo_file;
10342 }
10343 else
10344 {
10345 if (dwarf_read_debug)
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
10350 dwo_file = (struct dwo_file *) *dwo_file_slot;
10351 }
10352 do_cleanups (cleanups);
10353
10354 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10355 dwo_unit->dwo_file = dwo_file;
10356 dwo_unit->signature = signature;
10357 dwo_unit->section =
10358 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10359 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10360 ? &dwp_file->sections.types
10361 : &dwp_file->sections.info,
10362 sections.info_or_types_offset,
10363 sections.info_or_types_size);
10364 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10365
10366 return dwo_unit;
10367 }
10368
10369 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10370 Returns NULL if the signature isn't found. */
10371
10372 static struct dwo_unit *
10373 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10374 ULONGEST signature, int is_debug_types)
10375 {
10376 const struct dwp_hash_table *dwp_htab =
10377 is_debug_types ? dwp_file->tus : dwp_file->cus;
10378 bfd *dbfd = dwp_file->dbfd;
10379 uint32_t mask = dwp_htab->nr_slots - 1;
10380 uint32_t hash = signature & mask;
10381 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10382 unsigned int i;
10383 void **slot;
10384 struct dwo_unit find_dwo_cu;
10385
10386 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10387 find_dwo_cu.signature = signature;
10388 slot = htab_find_slot (is_debug_types
10389 ? dwp_file->loaded_tus
10390 : dwp_file->loaded_cus,
10391 &find_dwo_cu, INSERT);
10392
10393 if (*slot != NULL)
10394 return (struct dwo_unit *) *slot;
10395
10396 /* Use a for loop so that we don't loop forever on bad debug info. */
10397 for (i = 0; i < dwp_htab->nr_slots; ++i)
10398 {
10399 ULONGEST signature_in_table;
10400
10401 signature_in_table =
10402 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10403 if (signature_in_table == signature)
10404 {
10405 uint32_t unit_index =
10406 read_4_bytes (dbfd,
10407 dwp_htab->unit_table + hash * sizeof (uint32_t));
10408
10409 if (dwp_file->version == 1)
10410 {
10411 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10412 comp_dir, signature,
10413 is_debug_types);
10414 }
10415 else
10416 {
10417 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
10421 return (struct dwo_unit *) *slot;
10422 }
10423 if (signature_in_table == 0)
10424 return NULL;
10425 hash = (hash + hash2) & mask;
10426 }
10427
10428 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10429 " [in module %s]"),
10430 dwp_file->name);
10431 }
10432
10433 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10434 Open the file specified by FILE_NAME and hand it off to BFD for
10435 preliminary analysis. Return a newly initialized bfd *, which
10436 includes a canonicalized copy of FILE_NAME.
10437 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10438 SEARCH_CWD is true if the current directory is to be searched.
10439 It will be searched before debug-file-directory.
10440 If successful, the file is added to the bfd include table of the
10441 objfile's bfd (see gdb_bfd_record_inclusion).
10442 If unable to find/open the file, return NULL.
10443 NOTE: This function is derived from symfile_bfd_open. */
10444
10445 static gdb_bfd_ref_ptr
10446 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10447 {
10448 int desc, flags;
10449 char *absolute_name;
10450 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10451 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10452 to debug_file_directory. */
10453 char *search_path;
10454 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10455
10456 if (search_cwd)
10457 {
10458 if (*debug_file_directory != '\0')
10459 search_path = concat (".", dirname_separator_string,
10460 debug_file_directory, (char *) NULL);
10461 else
10462 search_path = xstrdup (".");
10463 }
10464 else
10465 search_path = xstrdup (debug_file_directory);
10466
10467 flags = OPF_RETURN_REALPATH;
10468 if (is_dwp)
10469 flags |= OPF_SEARCH_IN_PATH;
10470 desc = openp (search_path, flags, file_name,
10471 O_RDONLY | O_BINARY, &absolute_name);
10472 xfree (search_path);
10473 if (desc < 0)
10474 return NULL;
10475
10476 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10477 xfree (absolute_name);
10478 if (sym_bfd == NULL)
10479 return NULL;
10480 bfd_set_cacheable (sym_bfd.get (), 1);
10481
10482 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10483 return NULL;
10484
10485 /* Success. Record the bfd as having been included by the objfile's bfd.
10486 This is important because things like demangled_names_hash lives in the
10487 objfile's per_bfd space and may have references to things like symbol
10488 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10489 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10490
10491 return sym_bfd;
10492 }
10493
10494 /* Try to open DWO file FILE_NAME.
10495 COMP_DIR is the DW_AT_comp_dir attribute.
10496 The result is the bfd handle of the file.
10497 If there is a problem finding or opening the file, return NULL.
10498 Upon success, the canonicalized path of the file is stored in the bfd,
10499 same as symfile_bfd_open. */
10500
10501 static gdb_bfd_ref_ptr
10502 open_dwo_file (const char *file_name, const char *comp_dir)
10503 {
10504 if (IS_ABSOLUTE_PATH (file_name))
10505 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10506
10507 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10508
10509 if (comp_dir != NULL)
10510 {
10511 char *path_to_try = concat (comp_dir, SLASH_STRING,
10512 file_name, (char *) NULL);
10513
10514 /* NOTE: If comp_dir is a relative path, this will also try the
10515 search path, which seems useful. */
10516 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10517 1 /*search_cwd*/));
10518 xfree (path_to_try);
10519 if (abfd != NULL)
10520 return abfd;
10521 }
10522
10523 /* That didn't work, try debug-file-directory, which, despite its name,
10524 is a list of paths. */
10525
10526 if (*debug_file_directory == '\0')
10527 return NULL;
10528
10529 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10530 }
10531
10532 /* This function is mapped across the sections and remembers the offset and
10533 size of each of the DWO debugging sections we are interested in. */
10534
10535 static void
10536 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10537 {
10538 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10539 const struct dwop_section_names *names = &dwop_section_names;
10540
10541 if (section_is_p (sectp->name, &names->abbrev_dwo))
10542 {
10543 dwo_sections->abbrev.s.section = sectp;
10544 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->info_dwo))
10547 {
10548 dwo_sections->info.s.section = sectp;
10549 dwo_sections->info.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->line_dwo))
10552 {
10553 dwo_sections->line.s.section = sectp;
10554 dwo_sections->line.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->loc_dwo))
10557 {
10558 dwo_sections->loc.s.section = sectp;
10559 dwo_sections->loc.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10562 {
10563 dwo_sections->macinfo.s.section = sectp;
10564 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10565 }
10566 else if (section_is_p (sectp->name, &names->macro_dwo))
10567 {
10568 dwo_sections->macro.s.section = sectp;
10569 dwo_sections->macro.size = bfd_get_section_size (sectp);
10570 }
10571 else if (section_is_p (sectp->name, &names->str_dwo))
10572 {
10573 dwo_sections->str.s.section = sectp;
10574 dwo_sections->str.size = bfd_get_section_size (sectp);
10575 }
10576 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10577 {
10578 dwo_sections->str_offsets.s.section = sectp;
10579 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10580 }
10581 else if (section_is_p (sectp->name, &names->types_dwo))
10582 {
10583 struct dwarf2_section_info type_section;
10584
10585 memset (&type_section, 0, sizeof (type_section));
10586 type_section.s.section = sectp;
10587 type_section.size = bfd_get_section_size (sectp);
10588 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10589 &type_section);
10590 }
10591 }
10592
10593 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10594 by PER_CU. This is for the non-DWP case.
10595 The result is NULL if DWO_NAME can't be found. */
10596
10597 static struct dwo_file *
10598 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10599 const char *dwo_name, const char *comp_dir)
10600 {
10601 struct objfile *objfile = dwarf2_per_objfile->objfile;
10602 struct dwo_file *dwo_file;
10603 struct cleanup *cleanups;
10604
10605 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10606 if (dbfd == NULL)
10607 {
10608 if (dwarf_read_debug)
10609 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10610 return NULL;
10611 }
10612 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10613 dwo_file->dwo_name = dwo_name;
10614 dwo_file->comp_dir = comp_dir;
10615 dwo_file->dbfd = dbfd.release ();
10616
10617 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10618
10619 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10620 &dwo_file->sections);
10621
10622 dwo_file->cu = create_dwo_cu (dwo_file);
10623
10624 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10625 dwo_file->tus);
10626
10627 discard_cleanups (cleanups);
10628
10629 if (dwarf_read_debug)
10630 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10631
10632 return dwo_file;
10633 }
10634
10635 /* This function is mapped across the sections and remembers the offset and
10636 size of each of the DWP debugging sections common to version 1 and 2 that
10637 we are interested in. */
10638
10639 static void
10640 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10641 void *dwp_file_ptr)
10642 {
10643 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10644 const struct dwop_section_names *names = &dwop_section_names;
10645 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10646
10647 /* Record the ELF section number for later lookup: this is what the
10648 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10649 gdb_assert (elf_section_nr < dwp_file->num_sections);
10650 dwp_file->elf_sections[elf_section_nr] = sectp;
10651
10652 /* Look for specific sections that we need. */
10653 if (section_is_p (sectp->name, &names->str_dwo))
10654 {
10655 dwp_file->sections.str.s.section = sectp;
10656 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->cu_index))
10659 {
10660 dwp_file->sections.cu_index.s.section = sectp;
10661 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->tu_index))
10664 {
10665 dwp_file->sections.tu_index.s.section = sectp;
10666 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10667 }
10668 }
10669
10670 /* This function is mapped across the sections and remembers the offset and
10671 size of each of the DWP version 2 debugging sections that we are interested
10672 in. This is split into a separate function because we don't know if we
10673 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10674
10675 static void
10676 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10677 {
10678 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10679 const struct dwop_section_names *names = &dwop_section_names;
10680 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10681
10682 /* Record the ELF section number for later lookup: this is what the
10683 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10684 gdb_assert (elf_section_nr < dwp_file->num_sections);
10685 dwp_file->elf_sections[elf_section_nr] = sectp;
10686
10687 /* Look for specific sections that we need. */
10688 if (section_is_p (sectp->name, &names->abbrev_dwo))
10689 {
10690 dwp_file->sections.abbrev.s.section = sectp;
10691 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10692 }
10693 else if (section_is_p (sectp->name, &names->info_dwo))
10694 {
10695 dwp_file->sections.info.s.section = sectp;
10696 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10697 }
10698 else if (section_is_p (sectp->name, &names->line_dwo))
10699 {
10700 dwp_file->sections.line.s.section = sectp;
10701 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10702 }
10703 else if (section_is_p (sectp->name, &names->loc_dwo))
10704 {
10705 dwp_file->sections.loc.s.section = sectp;
10706 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10707 }
10708 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10709 {
10710 dwp_file->sections.macinfo.s.section = sectp;
10711 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10712 }
10713 else if (section_is_p (sectp->name, &names->macro_dwo))
10714 {
10715 dwp_file->sections.macro.s.section = sectp;
10716 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10717 }
10718 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10719 {
10720 dwp_file->sections.str_offsets.s.section = sectp;
10721 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10722 }
10723 else if (section_is_p (sectp->name, &names->types_dwo))
10724 {
10725 dwp_file->sections.types.s.section = sectp;
10726 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10727 }
10728 }
10729
10730 /* Hash function for dwp_file loaded CUs/TUs. */
10731
10732 static hashval_t
10733 hash_dwp_loaded_cutus (const void *item)
10734 {
10735 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10736
10737 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10738 return dwo_unit->signature;
10739 }
10740
10741 /* Equality function for dwp_file loaded CUs/TUs. */
10742
10743 static int
10744 eq_dwp_loaded_cutus (const void *a, const void *b)
10745 {
10746 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10747 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10748
10749 return dua->signature == dub->signature;
10750 }
10751
10752 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10753
10754 static htab_t
10755 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10756 {
10757 return htab_create_alloc_ex (3,
10758 hash_dwp_loaded_cutus,
10759 eq_dwp_loaded_cutus,
10760 NULL,
10761 &objfile->objfile_obstack,
10762 hashtab_obstack_allocate,
10763 dummy_obstack_deallocate);
10764 }
10765
10766 /* Try to open DWP file FILE_NAME.
10767 The result is the bfd handle of the file.
10768 If there is a problem finding or opening the file, return NULL.
10769 Upon success, the canonicalized path of the file is stored in the bfd,
10770 same as symfile_bfd_open. */
10771
10772 static gdb_bfd_ref_ptr
10773 open_dwp_file (const char *file_name)
10774 {
10775 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10776 1 /*search_cwd*/));
10777 if (abfd != NULL)
10778 return abfd;
10779
10780 /* Work around upstream bug 15652.
10781 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10782 [Whether that's a "bug" is debatable, but it is getting in our way.]
10783 We have no real idea where the dwp file is, because gdb's realpath-ing
10784 of the executable's path may have discarded the needed info.
10785 [IWBN if the dwp file name was recorded in the executable, akin to
10786 .gnu_debuglink, but that doesn't exist yet.]
10787 Strip the directory from FILE_NAME and search again. */
10788 if (*debug_file_directory != '\0')
10789 {
10790 /* Don't implicitly search the current directory here.
10791 If the user wants to search "." to handle this case,
10792 it must be added to debug-file-directory. */
10793 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10794 0 /*search_cwd*/);
10795 }
10796
10797 return NULL;
10798 }
10799
10800 /* Initialize the use of the DWP file for the current objfile.
10801 By convention the name of the DWP file is ${objfile}.dwp.
10802 The result is NULL if it can't be found. */
10803
10804 static struct dwp_file *
10805 open_and_init_dwp_file (void)
10806 {
10807 struct objfile *objfile = dwarf2_per_objfile->objfile;
10808 struct dwp_file *dwp_file;
10809 char *dwp_name;
10810 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10811
10812 /* Try to find first .dwp for the binary file before any symbolic links
10813 resolving. */
10814
10815 /* If the objfile is a debug file, find the name of the real binary
10816 file and get the name of dwp file from there. */
10817 if (objfile->separate_debug_objfile_backlink != NULL)
10818 {
10819 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10820 const char *backlink_basename = lbasename (backlink->original_name);
10821 char *debug_dirname = ldirname (objfile->original_name);
10822
10823 make_cleanup (xfree, debug_dirname);
10824 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10825 SLASH_STRING, backlink_basename);
10826 }
10827 else
10828 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10829 make_cleanup (xfree, dwp_name);
10830
10831 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
10832 if (dbfd == NULL
10833 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10834 {
10835 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10836 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10837 make_cleanup (xfree, dwp_name);
10838 dbfd = open_dwp_file (dwp_name);
10839 }
10840
10841 if (dbfd == NULL)
10842 {
10843 if (dwarf_read_debug)
10844 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10845 do_cleanups (cleanups);
10846 return NULL;
10847 }
10848 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10849 dwp_file->name = bfd_get_filename (dbfd.get ());
10850 dwp_file->dbfd = dbfd.release ();
10851 do_cleanups (cleanups);
10852
10853 /* +1: section 0 is unused */
10854 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10855 dwp_file->elf_sections =
10856 OBSTACK_CALLOC (&objfile->objfile_obstack,
10857 dwp_file->num_sections, asection *);
10858
10859 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10860 dwp_file);
10861
10862 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10863
10864 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10865
10866 /* The DWP file version is stored in the hash table. Oh well. */
10867 if (dwp_file->cus->version != dwp_file->tus->version)
10868 {
10869 /* Technically speaking, we should try to limp along, but this is
10870 pretty bizarre. We use pulongest here because that's the established
10871 portability solution (e.g, we cannot use %u for uint32_t). */
10872 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10873 " TU version %s [in DWP file %s]"),
10874 pulongest (dwp_file->cus->version),
10875 pulongest (dwp_file->tus->version), dwp_name);
10876 }
10877 dwp_file->version = dwp_file->cus->version;
10878
10879 if (dwp_file->version == 2)
10880 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10881 dwp_file);
10882
10883 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10884 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10885
10886 if (dwarf_read_debug)
10887 {
10888 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10889 fprintf_unfiltered (gdb_stdlog,
10890 " %s CUs, %s TUs\n",
10891 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10892 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10893 }
10894
10895 return dwp_file;
10896 }
10897
10898 /* Wrapper around open_and_init_dwp_file, only open it once. */
10899
10900 static struct dwp_file *
10901 get_dwp_file (void)
10902 {
10903 if (! dwarf2_per_objfile->dwp_checked)
10904 {
10905 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10906 dwarf2_per_objfile->dwp_checked = 1;
10907 }
10908 return dwarf2_per_objfile->dwp_file;
10909 }
10910
10911 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10912 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10913 or in the DWP file for the objfile, referenced by THIS_UNIT.
10914 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10915 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10916
10917 This is called, for example, when wanting to read a variable with a
10918 complex location. Therefore we don't want to do file i/o for every call.
10919 Therefore we don't want to look for a DWO file on every call.
10920 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10921 then we check if we've already seen DWO_NAME, and only THEN do we check
10922 for a DWO file.
10923
10924 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10925 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10926
10927 static struct dwo_unit *
10928 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10929 const char *dwo_name, const char *comp_dir,
10930 ULONGEST signature, int is_debug_types)
10931 {
10932 struct objfile *objfile = dwarf2_per_objfile->objfile;
10933 const char *kind = is_debug_types ? "TU" : "CU";
10934 void **dwo_file_slot;
10935 struct dwo_file *dwo_file;
10936 struct dwp_file *dwp_file;
10937
10938 /* First see if there's a DWP file.
10939 If we have a DWP file but didn't find the DWO inside it, don't
10940 look for the original DWO file. It makes gdb behave differently
10941 depending on whether one is debugging in the build tree. */
10942
10943 dwp_file = get_dwp_file ();
10944 if (dwp_file != NULL)
10945 {
10946 const struct dwp_hash_table *dwp_htab =
10947 is_debug_types ? dwp_file->tus : dwp_file->cus;
10948
10949 if (dwp_htab != NULL)
10950 {
10951 struct dwo_unit *dwo_cutu =
10952 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10953 signature, is_debug_types);
10954
10955 if (dwo_cutu != NULL)
10956 {
10957 if (dwarf_read_debug)
10958 {
10959 fprintf_unfiltered (gdb_stdlog,
10960 "Virtual DWO %s %s found: @%s\n",
10961 kind, hex_string (signature),
10962 host_address_to_string (dwo_cutu));
10963 }
10964 return dwo_cutu;
10965 }
10966 }
10967 }
10968 else
10969 {
10970 /* No DWP file, look for the DWO file. */
10971
10972 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10973 if (*dwo_file_slot == NULL)
10974 {
10975 /* Read in the file and build a table of the CUs/TUs it contains. */
10976 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10977 }
10978 /* NOTE: This will be NULL if unable to open the file. */
10979 dwo_file = (struct dwo_file *) *dwo_file_slot;
10980
10981 if (dwo_file != NULL)
10982 {
10983 struct dwo_unit *dwo_cutu = NULL;
10984
10985 if (is_debug_types && dwo_file->tus)
10986 {
10987 struct dwo_unit find_dwo_cutu;
10988
10989 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10990 find_dwo_cutu.signature = signature;
10991 dwo_cutu
10992 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
10993 }
10994 else if (!is_debug_types && dwo_file->cu)
10995 {
10996 if (signature == dwo_file->cu->signature)
10997 dwo_cutu = dwo_file->cu;
10998 }
10999
11000 if (dwo_cutu != NULL)
11001 {
11002 if (dwarf_read_debug)
11003 {
11004 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11005 kind, dwo_name, hex_string (signature),
11006 host_address_to_string (dwo_cutu));
11007 }
11008 return dwo_cutu;
11009 }
11010 }
11011 }
11012
11013 /* We didn't find it. This could mean a dwo_id mismatch, or
11014 someone deleted the DWO/DWP file, or the search path isn't set up
11015 correctly to find the file. */
11016
11017 if (dwarf_read_debug)
11018 {
11019 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11020 kind, dwo_name, hex_string (signature));
11021 }
11022
11023 /* This is a warning and not a complaint because it can be caused by
11024 pilot error (e.g., user accidentally deleting the DWO). */
11025 {
11026 /* Print the name of the DWP file if we looked there, helps the user
11027 better diagnose the problem. */
11028 char *dwp_text = NULL;
11029 struct cleanup *cleanups;
11030
11031 if (dwp_file != NULL)
11032 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11033 cleanups = make_cleanup (xfree, dwp_text);
11034
11035 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11036 " [in module %s]"),
11037 kind, dwo_name, hex_string (signature),
11038 dwp_text != NULL ? dwp_text : "",
11039 this_unit->is_debug_types ? "TU" : "CU",
11040 this_unit->offset.sect_off, objfile_name (objfile));
11041
11042 do_cleanups (cleanups);
11043 }
11044 return NULL;
11045 }
11046
11047 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11048 See lookup_dwo_cutu_unit for details. */
11049
11050 static struct dwo_unit *
11051 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11052 const char *dwo_name, const char *comp_dir,
11053 ULONGEST signature)
11054 {
11055 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11056 }
11057
11058 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11059 See lookup_dwo_cutu_unit for details. */
11060
11061 static struct dwo_unit *
11062 lookup_dwo_type_unit (struct signatured_type *this_tu,
11063 const char *dwo_name, const char *comp_dir)
11064 {
11065 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11066 }
11067
11068 /* Traversal function for queue_and_load_all_dwo_tus. */
11069
11070 static int
11071 queue_and_load_dwo_tu (void **slot, void *info)
11072 {
11073 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11074 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11075 ULONGEST signature = dwo_unit->signature;
11076 struct signatured_type *sig_type =
11077 lookup_dwo_signatured_type (per_cu->cu, signature);
11078
11079 if (sig_type != NULL)
11080 {
11081 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11082
11083 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11084 a real dependency of PER_CU on SIG_TYPE. That is detected later
11085 while processing PER_CU. */
11086 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11087 load_full_type_unit (sig_cu);
11088 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11089 }
11090
11091 return 1;
11092 }
11093
11094 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11095 The DWO may have the only definition of the type, though it may not be
11096 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11097 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11098
11099 static void
11100 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11101 {
11102 struct dwo_unit *dwo_unit;
11103 struct dwo_file *dwo_file;
11104
11105 gdb_assert (!per_cu->is_debug_types);
11106 gdb_assert (get_dwp_file () == NULL);
11107 gdb_assert (per_cu->cu != NULL);
11108
11109 dwo_unit = per_cu->cu->dwo_unit;
11110 gdb_assert (dwo_unit != NULL);
11111
11112 dwo_file = dwo_unit->dwo_file;
11113 if (dwo_file->tus != NULL)
11114 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11115 }
11116
11117 /* Free all resources associated with DWO_FILE.
11118 Close the DWO file and munmap the sections.
11119 All memory should be on the objfile obstack. */
11120
11121 static void
11122 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11123 {
11124
11125 /* Note: dbfd is NULL for virtual DWO files. */
11126 gdb_bfd_unref (dwo_file->dbfd);
11127
11128 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11129 }
11130
11131 /* Wrapper for free_dwo_file for use in cleanups. */
11132
11133 static void
11134 free_dwo_file_cleanup (void *arg)
11135 {
11136 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11137 struct objfile *objfile = dwarf2_per_objfile->objfile;
11138
11139 free_dwo_file (dwo_file, objfile);
11140 }
11141
11142 /* Traversal function for free_dwo_files. */
11143
11144 static int
11145 free_dwo_file_from_slot (void **slot, void *info)
11146 {
11147 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11148 struct objfile *objfile = (struct objfile *) info;
11149
11150 free_dwo_file (dwo_file, objfile);
11151
11152 return 1;
11153 }
11154
11155 /* Free all resources associated with DWO_FILES. */
11156
11157 static void
11158 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11159 {
11160 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11161 }
11162 \f
11163 /* Read in various DIEs. */
11164
11165 /* qsort helper for inherit_abstract_dies. */
11166
11167 static int
11168 unsigned_int_compar (const void *ap, const void *bp)
11169 {
11170 unsigned int a = *(unsigned int *) ap;
11171 unsigned int b = *(unsigned int *) bp;
11172
11173 return (a > b) - (b > a);
11174 }
11175
11176 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11177 Inherit only the children of the DW_AT_abstract_origin DIE not being
11178 already referenced by DW_AT_abstract_origin from the children of the
11179 current DIE. */
11180
11181 static void
11182 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11183 {
11184 struct die_info *child_die;
11185 unsigned die_children_count;
11186 /* CU offsets which were referenced by children of the current DIE. */
11187 sect_offset *offsets;
11188 sect_offset *offsets_end, *offsetp;
11189 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11190 struct die_info *origin_die;
11191 /* Iterator of the ORIGIN_DIE children. */
11192 struct die_info *origin_child_die;
11193 struct cleanup *cleanups;
11194 struct attribute *attr;
11195 struct dwarf2_cu *origin_cu;
11196 struct pending **origin_previous_list_in_scope;
11197
11198 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11199 if (!attr)
11200 return;
11201
11202 /* Note that following die references may follow to a die in a
11203 different cu. */
11204
11205 origin_cu = cu;
11206 origin_die = follow_die_ref (die, attr, &origin_cu);
11207
11208 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11209 symbols in. */
11210 origin_previous_list_in_scope = origin_cu->list_in_scope;
11211 origin_cu->list_in_scope = cu->list_in_scope;
11212
11213 if (die->tag != origin_die->tag
11214 && !(die->tag == DW_TAG_inlined_subroutine
11215 && origin_die->tag == DW_TAG_subprogram))
11216 complaint (&symfile_complaints,
11217 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11218 die->offset.sect_off, origin_die->offset.sect_off);
11219
11220 child_die = die->child;
11221 die_children_count = 0;
11222 while (child_die && child_die->tag)
11223 {
11224 child_die = sibling_die (child_die);
11225 die_children_count++;
11226 }
11227 offsets = XNEWVEC (sect_offset, die_children_count);
11228 cleanups = make_cleanup (xfree, offsets);
11229
11230 offsets_end = offsets;
11231 for (child_die = die->child;
11232 child_die && child_die->tag;
11233 child_die = sibling_die (child_die))
11234 {
11235 struct die_info *child_origin_die;
11236 struct dwarf2_cu *child_origin_cu;
11237
11238 /* We are trying to process concrete instance entries:
11239 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11240 it's not relevant to our analysis here. i.e. detecting DIEs that are
11241 present in the abstract instance but not referenced in the concrete
11242 one. */
11243 if (child_die->tag == DW_TAG_GNU_call_site)
11244 continue;
11245
11246 /* For each CHILD_DIE, find the corresponding child of
11247 ORIGIN_DIE. If there is more than one layer of
11248 DW_AT_abstract_origin, follow them all; there shouldn't be,
11249 but GCC versions at least through 4.4 generate this (GCC PR
11250 40573). */
11251 child_origin_die = child_die;
11252 child_origin_cu = cu;
11253 while (1)
11254 {
11255 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11256 child_origin_cu);
11257 if (attr == NULL)
11258 break;
11259 child_origin_die = follow_die_ref (child_origin_die, attr,
11260 &child_origin_cu);
11261 }
11262
11263 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11264 counterpart may exist. */
11265 if (child_origin_die != child_die)
11266 {
11267 if (child_die->tag != child_origin_die->tag
11268 && !(child_die->tag == DW_TAG_inlined_subroutine
11269 && child_origin_die->tag == DW_TAG_subprogram))
11270 complaint (&symfile_complaints,
11271 _("Child DIE 0x%x and its abstract origin 0x%x have "
11272 "different tags"), child_die->offset.sect_off,
11273 child_origin_die->offset.sect_off);
11274 if (child_origin_die->parent != origin_die)
11275 complaint (&symfile_complaints,
11276 _("Child DIE 0x%x and its abstract origin 0x%x have "
11277 "different parents"), child_die->offset.sect_off,
11278 child_origin_die->offset.sect_off);
11279 else
11280 *offsets_end++ = child_origin_die->offset;
11281 }
11282 }
11283 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11284 unsigned_int_compar);
11285 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11286 if (offsetp[-1].sect_off == offsetp->sect_off)
11287 complaint (&symfile_complaints,
11288 _("Multiple children of DIE 0x%x refer "
11289 "to DIE 0x%x as their abstract origin"),
11290 die->offset.sect_off, offsetp->sect_off);
11291
11292 offsetp = offsets;
11293 origin_child_die = origin_die->child;
11294 while (origin_child_die && origin_child_die->tag)
11295 {
11296 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11297 while (offsetp < offsets_end
11298 && offsetp->sect_off < origin_child_die->offset.sect_off)
11299 offsetp++;
11300 if (offsetp >= offsets_end
11301 || offsetp->sect_off > origin_child_die->offset.sect_off)
11302 {
11303 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11304 Check whether we're already processing ORIGIN_CHILD_DIE.
11305 This can happen with mutually referenced abstract_origins.
11306 PR 16581. */
11307 if (!origin_child_die->in_process)
11308 process_die (origin_child_die, origin_cu);
11309 }
11310 origin_child_die = sibling_die (origin_child_die);
11311 }
11312 origin_cu->list_in_scope = origin_previous_list_in_scope;
11313
11314 do_cleanups (cleanups);
11315 }
11316
11317 static void
11318 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11319 {
11320 struct objfile *objfile = cu->objfile;
11321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11322 struct context_stack *newobj;
11323 CORE_ADDR lowpc;
11324 CORE_ADDR highpc;
11325 struct die_info *child_die;
11326 struct attribute *attr, *call_line, *call_file;
11327 const char *name;
11328 CORE_ADDR baseaddr;
11329 struct block *block;
11330 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11331 VEC (symbolp) *template_args = NULL;
11332 struct template_symbol *templ_func = NULL;
11333
11334 if (inlined_func)
11335 {
11336 /* If we do not have call site information, we can't show the
11337 caller of this inlined function. That's too confusing, so
11338 only use the scope for local variables. */
11339 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11340 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11341 if (call_line == NULL || call_file == NULL)
11342 {
11343 read_lexical_block_scope (die, cu);
11344 return;
11345 }
11346 }
11347
11348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11349
11350 name = dwarf2_name (die, cu);
11351
11352 /* Ignore functions with missing or empty names. These are actually
11353 illegal according to the DWARF standard. */
11354 if (name == NULL)
11355 {
11356 complaint (&symfile_complaints,
11357 _("missing name for subprogram DIE at %d"),
11358 die->offset.sect_off);
11359 return;
11360 }
11361
11362 /* Ignore functions with missing or invalid low and high pc attributes. */
11363 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11364 <= PC_BOUNDS_INVALID)
11365 {
11366 attr = dwarf2_attr (die, DW_AT_external, cu);
11367 if (!attr || !DW_UNSND (attr))
11368 complaint (&symfile_complaints,
11369 _("cannot get low and high bounds "
11370 "for subprogram DIE at %d"),
11371 die->offset.sect_off);
11372 return;
11373 }
11374
11375 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11376 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11377
11378 /* If we have any template arguments, then we must allocate a
11379 different sort of symbol. */
11380 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11381 {
11382 if (child_die->tag == DW_TAG_template_type_param
11383 || child_die->tag == DW_TAG_template_value_param)
11384 {
11385 templ_func = allocate_template_symbol (objfile);
11386 templ_func->base.is_cplus_template_function = 1;
11387 break;
11388 }
11389 }
11390
11391 newobj = push_context (0, lowpc);
11392 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11393 (struct symbol *) templ_func);
11394
11395 /* If there is a location expression for DW_AT_frame_base, record
11396 it. */
11397 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11398 if (attr)
11399 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11400
11401 /* If there is a location for the static link, record it. */
11402 newobj->static_link = NULL;
11403 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11404 if (attr)
11405 {
11406 newobj->static_link
11407 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11408 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11409 }
11410
11411 cu->list_in_scope = &local_symbols;
11412
11413 if (die->child != NULL)
11414 {
11415 child_die = die->child;
11416 while (child_die && child_die->tag)
11417 {
11418 if (child_die->tag == DW_TAG_template_type_param
11419 || child_die->tag == DW_TAG_template_value_param)
11420 {
11421 struct symbol *arg = new_symbol (child_die, NULL, cu);
11422
11423 if (arg != NULL)
11424 VEC_safe_push (symbolp, template_args, arg);
11425 }
11426 else
11427 process_die (child_die, cu);
11428 child_die = sibling_die (child_die);
11429 }
11430 }
11431
11432 inherit_abstract_dies (die, cu);
11433
11434 /* If we have a DW_AT_specification, we might need to import using
11435 directives from the context of the specification DIE. See the
11436 comment in determine_prefix. */
11437 if (cu->language == language_cplus
11438 && dwarf2_attr (die, DW_AT_specification, cu))
11439 {
11440 struct dwarf2_cu *spec_cu = cu;
11441 struct die_info *spec_die = die_specification (die, &spec_cu);
11442
11443 while (spec_die)
11444 {
11445 child_die = spec_die->child;
11446 while (child_die && child_die->tag)
11447 {
11448 if (child_die->tag == DW_TAG_imported_module)
11449 process_die (child_die, spec_cu);
11450 child_die = sibling_die (child_die);
11451 }
11452
11453 /* In some cases, GCC generates specification DIEs that
11454 themselves contain DW_AT_specification attributes. */
11455 spec_die = die_specification (spec_die, &spec_cu);
11456 }
11457 }
11458
11459 newobj = pop_context ();
11460 /* Make a block for the local symbols within. */
11461 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11462 newobj->static_link, lowpc, highpc);
11463
11464 /* For C++, set the block's scope. */
11465 if ((cu->language == language_cplus
11466 || cu->language == language_fortran
11467 || cu->language == language_d
11468 || cu->language == language_rust)
11469 && cu->processing_has_namespace_info)
11470 block_set_scope (block, determine_prefix (die, cu),
11471 &objfile->objfile_obstack);
11472
11473 /* If we have address ranges, record them. */
11474 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11475
11476 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11477
11478 /* Attach template arguments to function. */
11479 if (! VEC_empty (symbolp, template_args))
11480 {
11481 gdb_assert (templ_func != NULL);
11482
11483 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11484 templ_func->template_arguments
11485 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11486 templ_func->n_template_arguments);
11487 memcpy (templ_func->template_arguments,
11488 VEC_address (symbolp, template_args),
11489 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11490 VEC_free (symbolp, template_args);
11491 }
11492
11493 /* In C++, we can have functions nested inside functions (e.g., when
11494 a function declares a class that has methods). This means that
11495 when we finish processing a function scope, we may need to go
11496 back to building a containing block's symbol lists. */
11497 local_symbols = newobj->locals;
11498 local_using_directives = newobj->local_using_directives;
11499
11500 /* If we've finished processing a top-level function, subsequent
11501 symbols go in the file symbol list. */
11502 if (outermost_context_p ())
11503 cu->list_in_scope = &file_symbols;
11504 }
11505
11506 /* Process all the DIES contained within a lexical block scope. Start
11507 a new scope, process the dies, and then close the scope. */
11508
11509 static void
11510 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11511 {
11512 struct objfile *objfile = cu->objfile;
11513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11514 struct context_stack *newobj;
11515 CORE_ADDR lowpc, highpc;
11516 struct die_info *child_die;
11517 CORE_ADDR baseaddr;
11518
11519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11520
11521 /* Ignore blocks with missing or invalid low and high pc attributes. */
11522 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11523 as multiple lexical blocks? Handling children in a sane way would
11524 be nasty. Might be easier to properly extend generic blocks to
11525 describe ranges. */
11526 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11527 {
11528 case PC_BOUNDS_NOT_PRESENT:
11529 /* DW_TAG_lexical_block has no attributes, process its children as if
11530 there was no wrapping by that DW_TAG_lexical_block.
11531 GCC does no longer produces such DWARF since GCC r224161. */
11532 for (child_die = die->child;
11533 child_die != NULL && child_die->tag;
11534 child_die = sibling_die (child_die))
11535 process_die (child_die, cu);
11536 return;
11537 case PC_BOUNDS_INVALID:
11538 return;
11539 }
11540 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11542
11543 push_context (0, lowpc);
11544 if (die->child != NULL)
11545 {
11546 child_die = die->child;
11547 while (child_die && child_die->tag)
11548 {
11549 process_die (child_die, cu);
11550 child_die = sibling_die (child_die);
11551 }
11552 }
11553 inherit_abstract_dies (die, cu);
11554 newobj = pop_context ();
11555
11556 if (local_symbols != NULL || local_using_directives != NULL)
11557 {
11558 struct block *block
11559 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11560 newobj->start_addr, highpc);
11561
11562 /* Note that recording ranges after traversing children, as we
11563 do here, means that recording a parent's ranges entails
11564 walking across all its children's ranges as they appear in
11565 the address map, which is quadratic behavior.
11566
11567 It would be nicer to record the parent's ranges before
11568 traversing its children, simply overriding whatever you find
11569 there. But since we don't even decide whether to create a
11570 block until after we've traversed its children, that's hard
11571 to do. */
11572 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11573 }
11574 local_symbols = newobj->locals;
11575 local_using_directives = newobj->local_using_directives;
11576 }
11577
11578 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11579
11580 static void
11581 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11582 {
11583 struct objfile *objfile = cu->objfile;
11584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11585 CORE_ADDR pc, baseaddr;
11586 struct attribute *attr;
11587 struct call_site *call_site, call_site_local;
11588 void **slot;
11589 int nparams;
11590 struct die_info *child_die;
11591
11592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11593
11594 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11595 if (!attr)
11596 {
11597 complaint (&symfile_complaints,
11598 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
11600 die->offset.sect_off, objfile_name (objfile));
11601 return;
11602 }
11603 pc = attr_value_as_address (attr) + baseaddr;
11604 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11605
11606 if (cu->call_site_htab == NULL)
11607 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11608 NULL, &objfile->objfile_obstack,
11609 hashtab_obstack_allocate, NULL);
11610 call_site_local.pc = pc;
11611 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11612 if (*slot != NULL)
11613 {
11614 complaint (&symfile_complaints,
11615 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
11617 paddress (gdbarch, pc), die->offset.sect_off,
11618 objfile_name (objfile));
11619 return;
11620 }
11621
11622 /* Count parameters at the caller. */
11623
11624 nparams = 0;
11625 for (child_die = die->child; child_die && child_die->tag;
11626 child_die = sibling_die (child_die))
11627 {
11628 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11629 {
11630 complaint (&symfile_complaints,
11631 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11633 child_die->tag, child_die->offset.sect_off,
11634 objfile_name (objfile));
11635 continue;
11636 }
11637
11638 nparams++;
11639 }
11640
11641 call_site
11642 = ((struct call_site *)
11643 obstack_alloc (&objfile->objfile_obstack,
11644 sizeof (*call_site)
11645 + (sizeof (*call_site->parameter) * (nparams - 1))));
11646 *slot = call_site;
11647 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11648 call_site->pc = pc;
11649
11650 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11651 {
11652 struct die_info *func_die;
11653
11654 /* Skip also over DW_TAG_inlined_subroutine. */
11655 for (func_die = die->parent;
11656 func_die && func_die->tag != DW_TAG_subprogram
11657 && func_die->tag != DW_TAG_subroutine_type;
11658 func_die = func_die->parent);
11659
11660 /* DW_AT_GNU_all_call_sites is a superset
11661 of DW_AT_GNU_all_tail_call_sites. */
11662 if (func_die
11663 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11664 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11665 {
11666 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11667 not complete. But keep CALL_SITE for look ups via call_site_htab,
11668 both the initial caller containing the real return address PC and
11669 the final callee containing the current PC of a chain of tail
11670 calls do not need to have the tail call list complete. But any
11671 function candidate for a virtual tail call frame searched via
11672 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11673 determined unambiguously. */
11674 }
11675 else
11676 {
11677 struct type *func_type = NULL;
11678
11679 if (func_die)
11680 func_type = get_die_type (func_die, cu);
11681 if (func_type != NULL)
11682 {
11683 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11684
11685 /* Enlist this call site to the function. */
11686 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11687 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11688 }
11689 else
11690 complaint (&symfile_complaints,
11691 _("Cannot find function owning DW_TAG_GNU_call_site "
11692 "DIE 0x%x [in module %s]"),
11693 die->offset.sect_off, objfile_name (objfile));
11694 }
11695 }
11696
11697 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11698 if (attr == NULL)
11699 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11700 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11701 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11702 /* Keep NULL DWARF_BLOCK. */;
11703 else if (attr_form_is_block (attr))
11704 {
11705 struct dwarf2_locexpr_baton *dlbaton;
11706
11707 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11708 dlbaton->data = DW_BLOCK (attr)->data;
11709 dlbaton->size = DW_BLOCK (attr)->size;
11710 dlbaton->per_cu = cu->per_cu;
11711
11712 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11713 }
11714 else if (attr_form_is_ref (attr))
11715 {
11716 struct dwarf2_cu *target_cu = cu;
11717 struct die_info *target_die;
11718
11719 target_die = follow_die_ref (die, attr, &target_cu);
11720 gdb_assert (target_cu->objfile == objfile);
11721 if (die_is_declaration (target_die, target_cu))
11722 {
11723 const char *target_physname;
11724
11725 /* Prefer the mangled name; otherwise compute the demangled one. */
11726 target_physname = dwarf2_string_attr (target_die,
11727 DW_AT_linkage_name,
11728 target_cu);
11729 if (target_physname == NULL)
11730 target_physname = dwarf2_string_attr (target_die,
11731 DW_AT_MIPS_linkage_name,
11732 target_cu);
11733 if (target_physname == NULL)
11734 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11735 if (target_physname == NULL)
11736 complaint (&symfile_complaints,
11737 _("DW_AT_GNU_call_site_target target DIE has invalid "
11738 "physname, for referencing DIE 0x%x [in module %s]"),
11739 die->offset.sect_off, objfile_name (objfile));
11740 else
11741 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11742 }
11743 else
11744 {
11745 CORE_ADDR lowpc;
11746
11747 /* DW_AT_entry_pc should be preferred. */
11748 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11749 <= PC_BOUNDS_INVALID)
11750 complaint (&symfile_complaints,
11751 _("DW_AT_GNU_call_site_target target DIE has invalid "
11752 "low pc, for referencing DIE 0x%x [in module %s]"),
11753 die->offset.sect_off, objfile_name (objfile));
11754 else
11755 {
11756 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11757 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11758 }
11759 }
11760 }
11761 else
11762 complaint (&symfile_complaints,
11763 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11764 "block nor reference, for DIE 0x%x [in module %s]"),
11765 die->offset.sect_off, objfile_name (objfile));
11766
11767 call_site->per_cu = cu->per_cu;
11768
11769 for (child_die = die->child;
11770 child_die && child_die->tag;
11771 child_die = sibling_die (child_die))
11772 {
11773 struct call_site_parameter *parameter;
11774 struct attribute *loc, *origin;
11775
11776 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11777 {
11778 /* Already printed the complaint above. */
11779 continue;
11780 }
11781
11782 gdb_assert (call_site->parameter_count < nparams);
11783 parameter = &call_site->parameter[call_site->parameter_count];
11784
11785 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11786 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11787 register is contained in DW_AT_GNU_call_site_value. */
11788
11789 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11790 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11791 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11792 {
11793 sect_offset offset;
11794
11795 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11796 offset = dwarf2_get_ref_die_offset (origin);
11797 if (!offset_in_cu_p (&cu->header, offset))
11798 {
11799 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11800 binding can be done only inside one CU. Such referenced DIE
11801 therefore cannot be even moved to DW_TAG_partial_unit. */
11802 complaint (&symfile_complaints,
11803 _("DW_AT_abstract_origin offset is not in CU for "
11804 "DW_TAG_GNU_call_site child DIE 0x%x "
11805 "[in module %s]"),
11806 child_die->offset.sect_off, objfile_name (objfile));
11807 continue;
11808 }
11809 parameter->u.param_offset.cu_off = (offset.sect_off
11810 - cu->header.offset.sect_off);
11811 }
11812 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11813 {
11814 complaint (&symfile_complaints,
11815 _("No DW_FORM_block* DW_AT_location for "
11816 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11817 child_die->offset.sect_off, objfile_name (objfile));
11818 continue;
11819 }
11820 else
11821 {
11822 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11823 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11824 if (parameter->u.dwarf_reg != -1)
11825 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11826 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11827 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11828 &parameter->u.fb_offset))
11829 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11830 else
11831 {
11832 complaint (&symfile_complaints,
11833 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11834 "for DW_FORM_block* DW_AT_location is supported for "
11835 "DW_TAG_GNU_call_site child DIE 0x%x "
11836 "[in module %s]"),
11837 child_die->offset.sect_off, objfile_name (objfile));
11838 continue;
11839 }
11840 }
11841
11842 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11843 if (!attr_form_is_block (attr))
11844 {
11845 complaint (&symfile_complaints,
11846 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11847 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11848 child_die->offset.sect_off, objfile_name (objfile));
11849 continue;
11850 }
11851 parameter->value = DW_BLOCK (attr)->data;
11852 parameter->value_size = DW_BLOCK (attr)->size;
11853
11854 /* Parameters are not pre-cleared by memset above. */
11855 parameter->data_value = NULL;
11856 parameter->data_value_size = 0;
11857 call_site->parameter_count++;
11858
11859 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11860 if (attr)
11861 {
11862 if (!attr_form_is_block (attr))
11863 complaint (&symfile_complaints,
11864 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11865 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11866 child_die->offset.sect_off, objfile_name (objfile));
11867 else
11868 {
11869 parameter->data_value = DW_BLOCK (attr)->data;
11870 parameter->data_value_size = DW_BLOCK (attr)->size;
11871 }
11872 }
11873 }
11874 }
11875
11876 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET.
11877 Return 1 if the attributes are present and valid, otherwise, return 0. */
11878
11879 static int
11880 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
11881 std::function<void (CORE_ADDR range_beginning,
11882 CORE_ADDR range_end)> callback)
11883 {
11884 struct objfile *objfile = cu->objfile;
11885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11886 struct comp_unit_head *cu_header = &cu->header;
11887 bfd *obfd = objfile->obfd;
11888 unsigned int addr_size = cu_header->addr_size;
11889 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11890 /* Base address selection entry. */
11891 CORE_ADDR base;
11892 int found_base;
11893 unsigned int dummy;
11894 const gdb_byte *buffer;
11895 CORE_ADDR baseaddr;
11896
11897 found_base = cu->base_known;
11898 base = cu->base_address;
11899
11900 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11901 if (offset >= dwarf2_per_objfile->ranges.size)
11902 {
11903 complaint (&symfile_complaints,
11904 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11905 offset);
11906 return 0;
11907 }
11908 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11909
11910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11911
11912 while (1)
11913 {
11914 CORE_ADDR range_beginning, range_end;
11915
11916 range_beginning = read_address (obfd, buffer, cu, &dummy);
11917 buffer += addr_size;
11918 range_end = read_address (obfd, buffer, cu, &dummy);
11919 buffer += addr_size;
11920 offset += 2 * addr_size;
11921
11922 /* An end of list marker is a pair of zero addresses. */
11923 if (range_beginning == 0 && range_end == 0)
11924 /* Found the end of list entry. */
11925 break;
11926
11927 /* Each base address selection entry is a pair of 2 values.
11928 The first is the largest possible address, the second is
11929 the base address. Check for a base address here. */
11930 if ((range_beginning & mask) == mask)
11931 {
11932 /* If we found the largest possible address, then we already
11933 have the base address in range_end. */
11934 base = range_end;
11935 found_base = 1;
11936 continue;
11937 }
11938
11939 if (!found_base)
11940 {
11941 /* We have no valid base address for the ranges
11942 data. */
11943 complaint (&symfile_complaints,
11944 _("Invalid .debug_ranges data (no base address)"));
11945 return 0;
11946 }
11947
11948 if (range_beginning > range_end)
11949 {
11950 /* Inverted range entries are invalid. */
11951 complaint (&symfile_complaints,
11952 _("Invalid .debug_ranges data (inverted range)"));
11953 return 0;
11954 }
11955
11956 /* Empty range entries have no effect. */
11957 if (range_beginning == range_end)
11958 continue;
11959
11960 range_beginning += base;
11961 range_end += base;
11962
11963 /* A not-uncommon case of bad debug info.
11964 Don't pollute the addrmap with bad data. */
11965 if (range_beginning + baseaddr == 0
11966 && !dwarf2_per_objfile->has_section_at_zero)
11967 {
11968 complaint (&symfile_complaints,
11969 _(".debug_ranges entry has start address of zero"
11970 " [in module %s]"), objfile_name (objfile));
11971 continue;
11972 }
11973
11974 callback (range_beginning, range_end);
11975 }
11976
11977 return 1;
11978 }
11979
11980 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11981 Return 1 if the attributes are present and valid, otherwise, return 0.
11982 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11983
11984 static int
11985 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11986 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11987 struct partial_symtab *ranges_pst)
11988 {
11989 struct objfile *objfile = cu->objfile;
11990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11991 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
11992 SECT_OFF_TEXT (objfile));
11993 int low_set = 0;
11994 CORE_ADDR low = 0;
11995 CORE_ADDR high = 0;
11996 int retval;
11997
11998 retval = dwarf2_ranges_process (offset, cu,
11999 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12000 {
12001 if (ranges_pst != NULL)
12002 {
12003 CORE_ADDR lowpc;
12004 CORE_ADDR highpc;
12005
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12007 range_beginning + baseaddr);
12008 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12009 range_end + baseaddr);
12010 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12011 ranges_pst);
12012 }
12013
12014 /* FIXME: This is recording everything as a low-high
12015 segment of consecutive addresses. We should have a
12016 data structure for discontiguous block ranges
12017 instead. */
12018 if (! low_set)
12019 {
12020 low = range_beginning;
12021 high = range_end;
12022 low_set = 1;
12023 }
12024 else
12025 {
12026 if (range_beginning < low)
12027 low = range_beginning;
12028 if (range_end > high)
12029 high = range_end;
12030 }
12031 });
12032 if (!retval)
12033 return 0;
12034
12035 if (! low_set)
12036 /* If the first entry is an end-of-list marker, the range
12037 describes an empty scope, i.e. no instructions. */
12038 return 0;
12039
12040 if (low_return)
12041 *low_return = low;
12042 if (high_return)
12043 *high_return = high;
12044 return 1;
12045 }
12046
12047 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12048 definition for the return value. *LOWPC and *HIGHPC are set iff
12049 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12050
12051 static enum pc_bounds_kind
12052 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12053 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12054 struct partial_symtab *pst)
12055 {
12056 struct attribute *attr;
12057 struct attribute *attr_high;
12058 CORE_ADDR low = 0;
12059 CORE_ADDR high = 0;
12060 enum pc_bounds_kind ret;
12061
12062 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12063 if (attr_high)
12064 {
12065 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12066 if (attr)
12067 {
12068 low = attr_value_as_address (attr);
12069 high = attr_value_as_address (attr_high);
12070 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12071 high += low;
12072 }
12073 else
12074 /* Found high w/o low attribute. */
12075 return PC_BOUNDS_INVALID;
12076
12077 /* Found consecutive range of addresses. */
12078 ret = PC_BOUNDS_HIGH_LOW;
12079 }
12080 else
12081 {
12082 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12083 if (attr != NULL)
12084 {
12085 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12086 We take advantage of the fact that DW_AT_ranges does not appear
12087 in DW_TAG_compile_unit of DWO files. */
12088 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12089 unsigned int ranges_offset = (DW_UNSND (attr)
12090 + (need_ranges_base
12091 ? cu->ranges_base
12092 : 0));
12093
12094 /* Value of the DW_AT_ranges attribute is the offset in the
12095 .debug_ranges section. */
12096 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12097 return PC_BOUNDS_INVALID;
12098 /* Found discontinuous range of addresses. */
12099 ret = PC_BOUNDS_RANGES;
12100 }
12101 else
12102 return PC_BOUNDS_NOT_PRESENT;
12103 }
12104
12105 /* read_partial_die has also the strict LOW < HIGH requirement. */
12106 if (high <= low)
12107 return PC_BOUNDS_INVALID;
12108
12109 /* When using the GNU linker, .gnu.linkonce. sections are used to
12110 eliminate duplicate copies of functions and vtables and such.
12111 The linker will arbitrarily choose one and discard the others.
12112 The AT_*_pc values for such functions refer to local labels in
12113 these sections. If the section from that file was discarded, the
12114 labels are not in the output, so the relocs get a value of 0.
12115 If this is a discarded function, mark the pc bounds as invalid,
12116 so that GDB will ignore it. */
12117 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12118 return PC_BOUNDS_INVALID;
12119
12120 *lowpc = low;
12121 if (highpc)
12122 *highpc = high;
12123 return ret;
12124 }
12125
12126 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12127 its low and high PC addresses. Do nothing if these addresses could not
12128 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12129 and HIGHPC to the high address if greater than HIGHPC. */
12130
12131 static void
12132 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12133 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12134 struct dwarf2_cu *cu)
12135 {
12136 CORE_ADDR low, high;
12137 struct die_info *child = die->child;
12138
12139 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12140 {
12141 *lowpc = std::min (*lowpc, low);
12142 *highpc = std::max (*highpc, high);
12143 }
12144
12145 /* If the language does not allow nested subprograms (either inside
12146 subprograms or lexical blocks), we're done. */
12147 if (cu->language != language_ada)
12148 return;
12149
12150 /* Check all the children of the given DIE. If it contains nested
12151 subprograms, then check their pc bounds. Likewise, we need to
12152 check lexical blocks as well, as they may also contain subprogram
12153 definitions. */
12154 while (child && child->tag)
12155 {
12156 if (child->tag == DW_TAG_subprogram
12157 || child->tag == DW_TAG_lexical_block)
12158 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12159 child = sibling_die (child);
12160 }
12161 }
12162
12163 /* Get the low and high pc's represented by the scope DIE, and store
12164 them in *LOWPC and *HIGHPC. If the correct values can't be
12165 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12166
12167 static void
12168 get_scope_pc_bounds (struct die_info *die,
12169 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12170 struct dwarf2_cu *cu)
12171 {
12172 CORE_ADDR best_low = (CORE_ADDR) -1;
12173 CORE_ADDR best_high = (CORE_ADDR) 0;
12174 CORE_ADDR current_low, current_high;
12175
12176 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12177 >= PC_BOUNDS_RANGES)
12178 {
12179 best_low = current_low;
12180 best_high = current_high;
12181 }
12182 else
12183 {
12184 struct die_info *child = die->child;
12185
12186 while (child && child->tag)
12187 {
12188 switch (child->tag) {
12189 case DW_TAG_subprogram:
12190 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12191 break;
12192 case DW_TAG_namespace:
12193 case DW_TAG_module:
12194 /* FIXME: carlton/2004-01-16: Should we do this for
12195 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12196 that current GCC's always emit the DIEs corresponding
12197 to definitions of methods of classes as children of a
12198 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12199 the DIEs giving the declarations, which could be
12200 anywhere). But I don't see any reason why the
12201 standards says that they have to be there. */
12202 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12203
12204 if (current_low != ((CORE_ADDR) -1))
12205 {
12206 best_low = std::min (best_low, current_low);
12207 best_high = std::max (best_high, current_high);
12208 }
12209 break;
12210 default:
12211 /* Ignore. */
12212 break;
12213 }
12214
12215 child = sibling_die (child);
12216 }
12217 }
12218
12219 *lowpc = best_low;
12220 *highpc = best_high;
12221 }
12222
12223 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12224 in DIE. */
12225
12226 static void
12227 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12228 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12229 {
12230 struct objfile *objfile = cu->objfile;
12231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12232 struct attribute *attr;
12233 struct attribute *attr_high;
12234
12235 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12236 if (attr_high)
12237 {
12238 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12239 if (attr)
12240 {
12241 CORE_ADDR low = attr_value_as_address (attr);
12242 CORE_ADDR high = attr_value_as_address (attr_high);
12243
12244 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12245 high += low;
12246
12247 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12248 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12249 record_block_range (block, low, high - 1);
12250 }
12251 }
12252
12253 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12254 if (attr)
12255 {
12256 bfd *obfd = objfile->obfd;
12257 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12258 We take advantage of the fact that DW_AT_ranges does not appear
12259 in DW_TAG_compile_unit of DWO files. */
12260 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12261
12262 /* The value of the DW_AT_ranges attribute is the offset of the
12263 address range list in the .debug_ranges section. */
12264 unsigned long offset = (DW_UNSND (attr)
12265 + (need_ranges_base ? cu->ranges_base : 0));
12266 const gdb_byte *buffer;
12267
12268 /* For some target architectures, but not others, the
12269 read_address function sign-extends the addresses it returns.
12270 To recognize base address selection entries, we need a
12271 mask. */
12272 unsigned int addr_size = cu->header.addr_size;
12273 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12274
12275 /* The base address, to which the next pair is relative. Note
12276 that this 'base' is a DWARF concept: most entries in a range
12277 list are relative, to reduce the number of relocs against the
12278 debugging information. This is separate from this function's
12279 'baseaddr' argument, which GDB uses to relocate debugging
12280 information from a shared library based on the address at
12281 which the library was loaded. */
12282 CORE_ADDR base = cu->base_address;
12283 int base_known = cu->base_known;
12284
12285 dwarf2_ranges_process (offset, cu,
12286 [&] (CORE_ADDR start, CORE_ADDR end)
12287 {
12288 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12289 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12290 record_block_range (block, start, end - 1);
12291 });
12292 }
12293 }
12294
12295 /* Check whether the producer field indicates either of GCC < 4.6, or the
12296 Intel C/C++ compiler, and cache the result in CU. */
12297
12298 static void
12299 check_producer (struct dwarf2_cu *cu)
12300 {
12301 int major, minor;
12302
12303 if (cu->producer == NULL)
12304 {
12305 /* For unknown compilers expect their behavior is DWARF version
12306 compliant.
12307
12308 GCC started to support .debug_types sections by -gdwarf-4 since
12309 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12310 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12311 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12312 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12313 }
12314 else if (producer_is_gcc (cu->producer, &major, &minor))
12315 {
12316 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12317 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12318 }
12319 else if (startswith (cu->producer, "Intel(R) C"))
12320 cu->producer_is_icc = 1;
12321 else
12322 {
12323 /* For other non-GCC compilers, expect their behavior is DWARF version
12324 compliant. */
12325 }
12326
12327 cu->checked_producer = 1;
12328 }
12329
12330 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12331 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12332 during 4.6.0 experimental. */
12333
12334 static int
12335 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12336 {
12337 if (!cu->checked_producer)
12338 check_producer (cu);
12339
12340 return cu->producer_is_gxx_lt_4_6;
12341 }
12342
12343 /* Return the default accessibility type if it is not overriden by
12344 DW_AT_accessibility. */
12345
12346 static enum dwarf_access_attribute
12347 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12348 {
12349 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12350 {
12351 /* The default DWARF 2 accessibility for members is public, the default
12352 accessibility for inheritance is private. */
12353
12354 if (die->tag != DW_TAG_inheritance)
12355 return DW_ACCESS_public;
12356 else
12357 return DW_ACCESS_private;
12358 }
12359 else
12360 {
12361 /* DWARF 3+ defines the default accessibility a different way. The same
12362 rules apply now for DW_TAG_inheritance as for the members and it only
12363 depends on the container kind. */
12364
12365 if (die->parent->tag == DW_TAG_class_type)
12366 return DW_ACCESS_private;
12367 else
12368 return DW_ACCESS_public;
12369 }
12370 }
12371
12372 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12373 offset. If the attribute was not found return 0, otherwise return
12374 1. If it was found but could not properly be handled, set *OFFSET
12375 to 0. */
12376
12377 static int
12378 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12379 LONGEST *offset)
12380 {
12381 struct attribute *attr;
12382
12383 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12384 if (attr != NULL)
12385 {
12386 *offset = 0;
12387
12388 /* Note that we do not check for a section offset first here.
12389 This is because DW_AT_data_member_location is new in DWARF 4,
12390 so if we see it, we can assume that a constant form is really
12391 a constant and not a section offset. */
12392 if (attr_form_is_constant (attr))
12393 *offset = dwarf2_get_attr_constant_value (attr, 0);
12394 else if (attr_form_is_section_offset (attr))
12395 dwarf2_complex_location_expr_complaint ();
12396 else if (attr_form_is_block (attr))
12397 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12398 else
12399 dwarf2_complex_location_expr_complaint ();
12400
12401 return 1;
12402 }
12403
12404 return 0;
12405 }
12406
12407 /* Add an aggregate field to the field list. */
12408
12409 static void
12410 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12411 struct dwarf2_cu *cu)
12412 {
12413 struct objfile *objfile = cu->objfile;
12414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12415 struct nextfield *new_field;
12416 struct attribute *attr;
12417 struct field *fp;
12418 const char *fieldname = "";
12419
12420 /* Allocate a new field list entry and link it in. */
12421 new_field = XNEW (struct nextfield);
12422 make_cleanup (xfree, new_field);
12423 memset (new_field, 0, sizeof (struct nextfield));
12424
12425 if (die->tag == DW_TAG_inheritance)
12426 {
12427 new_field->next = fip->baseclasses;
12428 fip->baseclasses = new_field;
12429 }
12430 else
12431 {
12432 new_field->next = fip->fields;
12433 fip->fields = new_field;
12434 }
12435 fip->nfields++;
12436
12437 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12438 if (attr)
12439 new_field->accessibility = DW_UNSND (attr);
12440 else
12441 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12442 if (new_field->accessibility != DW_ACCESS_public)
12443 fip->non_public_fields = 1;
12444
12445 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12446 if (attr)
12447 new_field->virtuality = DW_UNSND (attr);
12448 else
12449 new_field->virtuality = DW_VIRTUALITY_none;
12450
12451 fp = &new_field->field;
12452
12453 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12454 {
12455 LONGEST offset;
12456
12457 /* Data member other than a C++ static data member. */
12458
12459 /* Get type of field. */
12460 fp->type = die_type (die, cu);
12461
12462 SET_FIELD_BITPOS (*fp, 0);
12463
12464 /* Get bit size of field (zero if none). */
12465 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12466 if (attr)
12467 {
12468 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12469 }
12470 else
12471 {
12472 FIELD_BITSIZE (*fp) = 0;
12473 }
12474
12475 /* Get bit offset of field. */
12476 if (handle_data_member_location (die, cu, &offset))
12477 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12478 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12479 if (attr)
12480 {
12481 if (gdbarch_bits_big_endian (gdbarch))
12482 {
12483 /* For big endian bits, the DW_AT_bit_offset gives the
12484 additional bit offset from the MSB of the containing
12485 anonymous object to the MSB of the field. We don't
12486 have to do anything special since we don't need to
12487 know the size of the anonymous object. */
12488 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12489 }
12490 else
12491 {
12492 /* For little endian bits, compute the bit offset to the
12493 MSB of the anonymous object, subtract off the number of
12494 bits from the MSB of the field to the MSB of the
12495 object, and then subtract off the number of bits of
12496 the field itself. The result is the bit offset of
12497 the LSB of the field. */
12498 int anonymous_size;
12499 int bit_offset = DW_UNSND (attr);
12500
12501 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12502 if (attr)
12503 {
12504 /* The size of the anonymous object containing
12505 the bit field is explicit, so use the
12506 indicated size (in bytes). */
12507 anonymous_size = DW_UNSND (attr);
12508 }
12509 else
12510 {
12511 /* The size of the anonymous object containing
12512 the bit field must be inferred from the type
12513 attribute of the data member containing the
12514 bit field. */
12515 anonymous_size = TYPE_LENGTH (fp->type);
12516 }
12517 SET_FIELD_BITPOS (*fp,
12518 (FIELD_BITPOS (*fp)
12519 + anonymous_size * bits_per_byte
12520 - bit_offset - FIELD_BITSIZE (*fp)));
12521 }
12522 }
12523 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12524 if (attr != NULL)
12525 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12526 + dwarf2_get_attr_constant_value (attr, 0)));
12527
12528 /* Get name of field. */
12529 fieldname = dwarf2_name (die, cu);
12530 if (fieldname == NULL)
12531 fieldname = "";
12532
12533 /* The name is already allocated along with this objfile, so we don't
12534 need to duplicate it for the type. */
12535 fp->name = fieldname;
12536
12537 /* Change accessibility for artificial fields (e.g. virtual table
12538 pointer or virtual base class pointer) to private. */
12539 if (dwarf2_attr (die, DW_AT_artificial, cu))
12540 {
12541 FIELD_ARTIFICIAL (*fp) = 1;
12542 new_field->accessibility = DW_ACCESS_private;
12543 fip->non_public_fields = 1;
12544 }
12545 }
12546 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12547 {
12548 /* C++ static member. */
12549
12550 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12551 is a declaration, but all versions of G++ as of this writing
12552 (so through at least 3.2.1) incorrectly generate
12553 DW_TAG_variable tags. */
12554
12555 const char *physname;
12556
12557 /* Get name of field. */
12558 fieldname = dwarf2_name (die, cu);
12559 if (fieldname == NULL)
12560 return;
12561
12562 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12563 if (attr
12564 /* Only create a symbol if this is an external value.
12565 new_symbol checks this and puts the value in the global symbol
12566 table, which we want. If it is not external, new_symbol
12567 will try to put the value in cu->list_in_scope which is wrong. */
12568 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12569 {
12570 /* A static const member, not much different than an enum as far as
12571 we're concerned, except that we can support more types. */
12572 new_symbol (die, NULL, cu);
12573 }
12574
12575 /* Get physical name. */
12576 physname = dwarf2_physname (fieldname, die, cu);
12577
12578 /* The name is already allocated along with this objfile, so we don't
12579 need to duplicate it for the type. */
12580 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12581 FIELD_TYPE (*fp) = die_type (die, cu);
12582 FIELD_NAME (*fp) = fieldname;
12583 }
12584 else if (die->tag == DW_TAG_inheritance)
12585 {
12586 LONGEST offset;
12587
12588 /* C++ base class field. */
12589 if (handle_data_member_location (die, cu, &offset))
12590 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12591 FIELD_BITSIZE (*fp) = 0;
12592 FIELD_TYPE (*fp) = die_type (die, cu);
12593 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12594 fip->nbaseclasses++;
12595 }
12596 }
12597
12598 /* Add a typedef defined in the scope of the FIP's class. */
12599
12600 static void
12601 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12602 struct dwarf2_cu *cu)
12603 {
12604 struct typedef_field_list *new_field;
12605 struct typedef_field *fp;
12606
12607 /* Allocate a new field list entry and link it in. */
12608 new_field = XCNEW (struct typedef_field_list);
12609 make_cleanup (xfree, new_field);
12610
12611 gdb_assert (die->tag == DW_TAG_typedef);
12612
12613 fp = &new_field->field;
12614
12615 /* Get name of field. */
12616 fp->name = dwarf2_name (die, cu);
12617 if (fp->name == NULL)
12618 return;
12619
12620 fp->type = read_type_die (die, cu);
12621
12622 new_field->next = fip->typedef_field_list;
12623 fip->typedef_field_list = new_field;
12624 fip->typedef_field_list_count++;
12625 }
12626
12627 /* Create the vector of fields, and attach it to the type. */
12628
12629 static void
12630 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12631 struct dwarf2_cu *cu)
12632 {
12633 int nfields = fip->nfields;
12634
12635 /* Record the field count, allocate space for the array of fields,
12636 and create blank accessibility bitfields if necessary. */
12637 TYPE_NFIELDS (type) = nfields;
12638 TYPE_FIELDS (type) = (struct field *)
12639 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12640 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12641
12642 if (fip->non_public_fields && cu->language != language_ada)
12643 {
12644 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12645
12646 TYPE_FIELD_PRIVATE_BITS (type) =
12647 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12648 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12649
12650 TYPE_FIELD_PROTECTED_BITS (type) =
12651 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12652 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12653
12654 TYPE_FIELD_IGNORE_BITS (type) =
12655 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12656 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12657 }
12658
12659 /* If the type has baseclasses, allocate and clear a bit vector for
12660 TYPE_FIELD_VIRTUAL_BITS. */
12661 if (fip->nbaseclasses && cu->language != language_ada)
12662 {
12663 int num_bytes = B_BYTES (fip->nbaseclasses);
12664 unsigned char *pointer;
12665
12666 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12667 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12668 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12669 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12670 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12671 }
12672
12673 /* Copy the saved-up fields into the field vector. Start from the head of
12674 the list, adding to the tail of the field array, so that they end up in
12675 the same order in the array in which they were added to the list. */
12676 while (nfields-- > 0)
12677 {
12678 struct nextfield *fieldp;
12679
12680 if (fip->fields)
12681 {
12682 fieldp = fip->fields;
12683 fip->fields = fieldp->next;
12684 }
12685 else
12686 {
12687 fieldp = fip->baseclasses;
12688 fip->baseclasses = fieldp->next;
12689 }
12690
12691 TYPE_FIELD (type, nfields) = fieldp->field;
12692 switch (fieldp->accessibility)
12693 {
12694 case DW_ACCESS_private:
12695 if (cu->language != language_ada)
12696 SET_TYPE_FIELD_PRIVATE (type, nfields);
12697 break;
12698
12699 case DW_ACCESS_protected:
12700 if (cu->language != language_ada)
12701 SET_TYPE_FIELD_PROTECTED (type, nfields);
12702 break;
12703
12704 case DW_ACCESS_public:
12705 break;
12706
12707 default:
12708 /* Unknown accessibility. Complain and treat it as public. */
12709 {
12710 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12711 fieldp->accessibility);
12712 }
12713 break;
12714 }
12715 if (nfields < fip->nbaseclasses)
12716 {
12717 switch (fieldp->virtuality)
12718 {
12719 case DW_VIRTUALITY_virtual:
12720 case DW_VIRTUALITY_pure_virtual:
12721 if (cu->language == language_ada)
12722 error (_("unexpected virtuality in component of Ada type"));
12723 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12724 break;
12725 }
12726 }
12727 }
12728 }
12729
12730 /* Return true if this member function is a constructor, false
12731 otherwise. */
12732
12733 static int
12734 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12735 {
12736 const char *fieldname;
12737 const char *type_name;
12738 int len;
12739
12740 if (die->parent == NULL)
12741 return 0;
12742
12743 if (die->parent->tag != DW_TAG_structure_type
12744 && die->parent->tag != DW_TAG_union_type
12745 && die->parent->tag != DW_TAG_class_type)
12746 return 0;
12747
12748 fieldname = dwarf2_name (die, cu);
12749 type_name = dwarf2_name (die->parent, cu);
12750 if (fieldname == NULL || type_name == NULL)
12751 return 0;
12752
12753 len = strlen (fieldname);
12754 return (strncmp (fieldname, type_name, len) == 0
12755 && (type_name[len] == '\0' || type_name[len] == '<'));
12756 }
12757
12758 /* Add a member function to the proper fieldlist. */
12759
12760 static void
12761 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12762 struct type *type, struct dwarf2_cu *cu)
12763 {
12764 struct objfile *objfile = cu->objfile;
12765 struct attribute *attr;
12766 struct fnfieldlist *flp;
12767 int i;
12768 struct fn_field *fnp;
12769 const char *fieldname;
12770 struct nextfnfield *new_fnfield;
12771 struct type *this_type;
12772 enum dwarf_access_attribute accessibility;
12773
12774 if (cu->language == language_ada)
12775 error (_("unexpected member function in Ada type"));
12776
12777 /* Get name of member function. */
12778 fieldname = dwarf2_name (die, cu);
12779 if (fieldname == NULL)
12780 return;
12781
12782 /* Look up member function name in fieldlist. */
12783 for (i = 0; i < fip->nfnfields; i++)
12784 {
12785 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12786 break;
12787 }
12788
12789 /* Create new list element if necessary. */
12790 if (i < fip->nfnfields)
12791 flp = &fip->fnfieldlists[i];
12792 else
12793 {
12794 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12795 {
12796 fip->fnfieldlists = (struct fnfieldlist *)
12797 xrealloc (fip->fnfieldlists,
12798 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12799 * sizeof (struct fnfieldlist));
12800 if (fip->nfnfields == 0)
12801 make_cleanup (free_current_contents, &fip->fnfieldlists);
12802 }
12803 flp = &fip->fnfieldlists[fip->nfnfields];
12804 flp->name = fieldname;
12805 flp->length = 0;
12806 flp->head = NULL;
12807 i = fip->nfnfields++;
12808 }
12809
12810 /* Create a new member function field and chain it to the field list
12811 entry. */
12812 new_fnfield = XNEW (struct nextfnfield);
12813 make_cleanup (xfree, new_fnfield);
12814 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12815 new_fnfield->next = flp->head;
12816 flp->head = new_fnfield;
12817 flp->length++;
12818
12819 /* Fill in the member function field info. */
12820 fnp = &new_fnfield->fnfield;
12821
12822 /* Delay processing of the physname until later. */
12823 if (cu->language == language_cplus)
12824 {
12825 add_to_method_list (type, i, flp->length - 1, fieldname,
12826 die, cu);
12827 }
12828 else
12829 {
12830 const char *physname = dwarf2_physname (fieldname, die, cu);
12831 fnp->physname = physname ? physname : "";
12832 }
12833
12834 fnp->type = alloc_type (objfile);
12835 this_type = read_type_die (die, cu);
12836 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12837 {
12838 int nparams = TYPE_NFIELDS (this_type);
12839
12840 /* TYPE is the domain of this method, and THIS_TYPE is the type
12841 of the method itself (TYPE_CODE_METHOD). */
12842 smash_to_method_type (fnp->type, type,
12843 TYPE_TARGET_TYPE (this_type),
12844 TYPE_FIELDS (this_type),
12845 TYPE_NFIELDS (this_type),
12846 TYPE_VARARGS (this_type));
12847
12848 /* Handle static member functions.
12849 Dwarf2 has no clean way to discern C++ static and non-static
12850 member functions. G++ helps GDB by marking the first
12851 parameter for non-static member functions (which is the this
12852 pointer) as artificial. We obtain this information from
12853 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12854 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12855 fnp->voffset = VOFFSET_STATIC;
12856 }
12857 else
12858 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12859 dwarf2_full_name (fieldname, die, cu));
12860
12861 /* Get fcontext from DW_AT_containing_type if present. */
12862 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12863 fnp->fcontext = die_containing_type (die, cu);
12864
12865 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12866 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12867
12868 /* Get accessibility. */
12869 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12870 if (attr)
12871 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12872 else
12873 accessibility = dwarf2_default_access_attribute (die, cu);
12874 switch (accessibility)
12875 {
12876 case DW_ACCESS_private:
12877 fnp->is_private = 1;
12878 break;
12879 case DW_ACCESS_protected:
12880 fnp->is_protected = 1;
12881 break;
12882 }
12883
12884 /* Check for artificial methods. */
12885 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12886 if (attr && DW_UNSND (attr) != 0)
12887 fnp->is_artificial = 1;
12888
12889 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12890
12891 /* Get index in virtual function table if it is a virtual member
12892 function. For older versions of GCC, this is an offset in the
12893 appropriate virtual table, as specified by DW_AT_containing_type.
12894 For everyone else, it is an expression to be evaluated relative
12895 to the object address. */
12896
12897 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12898 if (attr)
12899 {
12900 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12901 {
12902 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12903 {
12904 /* Old-style GCC. */
12905 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12906 }
12907 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12908 || (DW_BLOCK (attr)->size > 1
12909 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12910 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12911 {
12912 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12913 if ((fnp->voffset % cu->header.addr_size) != 0)
12914 dwarf2_complex_location_expr_complaint ();
12915 else
12916 fnp->voffset /= cu->header.addr_size;
12917 fnp->voffset += 2;
12918 }
12919 else
12920 dwarf2_complex_location_expr_complaint ();
12921
12922 if (!fnp->fcontext)
12923 {
12924 /* If there is no `this' field and no DW_AT_containing_type,
12925 we cannot actually find a base class context for the
12926 vtable! */
12927 if (TYPE_NFIELDS (this_type) == 0
12928 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12929 {
12930 complaint (&symfile_complaints,
12931 _("cannot determine context for virtual member "
12932 "function \"%s\" (offset %d)"),
12933 fieldname, die->offset.sect_off);
12934 }
12935 else
12936 {
12937 fnp->fcontext
12938 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12939 }
12940 }
12941 }
12942 else if (attr_form_is_section_offset (attr))
12943 {
12944 dwarf2_complex_location_expr_complaint ();
12945 }
12946 else
12947 {
12948 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12949 fieldname);
12950 }
12951 }
12952 else
12953 {
12954 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12955 if (attr && DW_UNSND (attr))
12956 {
12957 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12958 complaint (&symfile_complaints,
12959 _("Member function \"%s\" (offset %d) is virtual "
12960 "but the vtable offset is not specified"),
12961 fieldname, die->offset.sect_off);
12962 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12963 TYPE_CPLUS_DYNAMIC (type) = 1;
12964 }
12965 }
12966 }
12967
12968 /* Create the vector of member function fields, and attach it to the type. */
12969
12970 static void
12971 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12972 struct dwarf2_cu *cu)
12973 {
12974 struct fnfieldlist *flp;
12975 int i;
12976
12977 if (cu->language == language_ada)
12978 error (_("unexpected member functions in Ada type"));
12979
12980 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12981 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12982 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12983
12984 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12985 {
12986 struct nextfnfield *nfp = flp->head;
12987 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12988 int k;
12989
12990 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12991 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12992 fn_flp->fn_fields = (struct fn_field *)
12993 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12994 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12995 fn_flp->fn_fields[k] = nfp->fnfield;
12996 }
12997
12998 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12999 }
13000
13001 /* Returns non-zero if NAME is the name of a vtable member in CU's
13002 language, zero otherwise. */
13003 static int
13004 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13005 {
13006 static const char vptr[] = "_vptr";
13007 static const char vtable[] = "vtable";
13008
13009 /* Look for the C++ form of the vtable. */
13010 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13011 return 1;
13012
13013 return 0;
13014 }
13015
13016 /* GCC outputs unnamed structures that are really pointers to member
13017 functions, with the ABI-specified layout. If TYPE describes
13018 such a structure, smash it into a member function type.
13019
13020 GCC shouldn't do this; it should just output pointer to member DIEs.
13021 This is GCC PR debug/28767. */
13022
13023 static void
13024 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13025 {
13026 struct type *pfn_type, *self_type, *new_type;
13027
13028 /* Check for a structure with no name and two children. */
13029 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13030 return;
13031
13032 /* Check for __pfn and __delta members. */
13033 if (TYPE_FIELD_NAME (type, 0) == NULL
13034 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13035 || TYPE_FIELD_NAME (type, 1) == NULL
13036 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13037 return;
13038
13039 /* Find the type of the method. */
13040 pfn_type = TYPE_FIELD_TYPE (type, 0);
13041 if (pfn_type == NULL
13042 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13043 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13044 return;
13045
13046 /* Look for the "this" argument. */
13047 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13048 if (TYPE_NFIELDS (pfn_type) == 0
13049 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13050 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13051 return;
13052
13053 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13054 new_type = alloc_type (objfile);
13055 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13056 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13057 TYPE_VARARGS (pfn_type));
13058 smash_to_methodptr_type (type, new_type);
13059 }
13060
13061 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13062 (icc). */
13063
13064 static int
13065 producer_is_icc (struct dwarf2_cu *cu)
13066 {
13067 if (!cu->checked_producer)
13068 check_producer (cu);
13069
13070 return cu->producer_is_icc;
13071 }
13072
13073 /* Called when we find the DIE that starts a structure or union scope
13074 (definition) to create a type for the structure or union. Fill in
13075 the type's name and general properties; the members will not be
13076 processed until process_structure_scope. A symbol table entry for
13077 the type will also not be done until process_structure_scope (assuming
13078 the type has a name).
13079
13080 NOTE: we need to call these functions regardless of whether or not the
13081 DIE has a DW_AT_name attribute, since it might be an anonymous
13082 structure or union. This gets the type entered into our set of
13083 user defined types. */
13084
13085 static struct type *
13086 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13087 {
13088 struct objfile *objfile = cu->objfile;
13089 struct type *type;
13090 struct attribute *attr;
13091 const char *name;
13092
13093 /* If the definition of this type lives in .debug_types, read that type.
13094 Don't follow DW_AT_specification though, that will take us back up
13095 the chain and we want to go down. */
13096 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13097 if (attr)
13098 {
13099 type = get_DW_AT_signature_type (die, attr, cu);
13100
13101 /* The type's CU may not be the same as CU.
13102 Ensure TYPE is recorded with CU in die_type_hash. */
13103 return set_die_type (die, type, cu);
13104 }
13105
13106 type = alloc_type (objfile);
13107 INIT_CPLUS_SPECIFIC (type);
13108
13109 name = dwarf2_name (die, cu);
13110 if (name != NULL)
13111 {
13112 if (cu->language == language_cplus
13113 || cu->language == language_d
13114 || cu->language == language_rust)
13115 {
13116 const char *full_name = dwarf2_full_name (name, die, cu);
13117
13118 /* dwarf2_full_name might have already finished building the DIE's
13119 type. If so, there is no need to continue. */
13120 if (get_die_type (die, cu) != NULL)
13121 return get_die_type (die, cu);
13122
13123 TYPE_TAG_NAME (type) = full_name;
13124 if (die->tag == DW_TAG_structure_type
13125 || die->tag == DW_TAG_class_type)
13126 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13127 }
13128 else
13129 {
13130 /* The name is already allocated along with this objfile, so
13131 we don't need to duplicate it for the type. */
13132 TYPE_TAG_NAME (type) = name;
13133 if (die->tag == DW_TAG_class_type)
13134 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13135 }
13136 }
13137
13138 if (die->tag == DW_TAG_structure_type)
13139 {
13140 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13141 }
13142 else if (die->tag == DW_TAG_union_type)
13143 {
13144 TYPE_CODE (type) = TYPE_CODE_UNION;
13145 }
13146 else
13147 {
13148 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13149 }
13150
13151 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13152 TYPE_DECLARED_CLASS (type) = 1;
13153
13154 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13155 if (attr)
13156 {
13157 if (attr_form_is_constant (attr))
13158 TYPE_LENGTH (type) = DW_UNSND (attr);
13159 else
13160 {
13161 /* For the moment, dynamic type sizes are not supported
13162 by GDB's struct type. The actual size is determined
13163 on-demand when resolving the type of a given object,
13164 so set the type's length to zero for now. Otherwise,
13165 we record an expression as the length, and that expression
13166 could lead to a very large value, which could eventually
13167 lead to us trying to allocate that much memory when creating
13168 a value of that type. */
13169 TYPE_LENGTH (type) = 0;
13170 }
13171 }
13172 else
13173 {
13174 TYPE_LENGTH (type) = 0;
13175 }
13176
13177 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13178 {
13179 /* ICC does not output the required DW_AT_declaration
13180 on incomplete types, but gives them a size of zero. */
13181 TYPE_STUB (type) = 1;
13182 }
13183 else
13184 TYPE_STUB_SUPPORTED (type) = 1;
13185
13186 if (die_is_declaration (die, cu))
13187 TYPE_STUB (type) = 1;
13188 else if (attr == NULL && die->child == NULL
13189 && producer_is_realview (cu->producer))
13190 /* RealView does not output the required DW_AT_declaration
13191 on incomplete types. */
13192 TYPE_STUB (type) = 1;
13193
13194 /* We need to add the type field to the die immediately so we don't
13195 infinitely recurse when dealing with pointers to the structure
13196 type within the structure itself. */
13197 set_die_type (die, type, cu);
13198
13199 /* set_die_type should be already done. */
13200 set_descriptive_type (type, die, cu);
13201
13202 return type;
13203 }
13204
13205 /* Finish creating a structure or union type, including filling in
13206 its members and creating a symbol for it. */
13207
13208 static void
13209 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13210 {
13211 struct objfile *objfile = cu->objfile;
13212 struct die_info *child_die;
13213 struct type *type;
13214
13215 type = get_die_type (die, cu);
13216 if (type == NULL)
13217 type = read_structure_type (die, cu);
13218
13219 if (die->child != NULL && ! die_is_declaration (die, cu))
13220 {
13221 struct field_info fi;
13222 VEC (symbolp) *template_args = NULL;
13223 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13224
13225 memset (&fi, 0, sizeof (struct field_info));
13226
13227 child_die = die->child;
13228
13229 while (child_die && child_die->tag)
13230 {
13231 if (child_die->tag == DW_TAG_member
13232 || child_die->tag == DW_TAG_variable)
13233 {
13234 /* NOTE: carlton/2002-11-05: A C++ static data member
13235 should be a DW_TAG_member that is a declaration, but
13236 all versions of G++ as of this writing (so through at
13237 least 3.2.1) incorrectly generate DW_TAG_variable
13238 tags for them instead. */
13239 dwarf2_add_field (&fi, child_die, cu);
13240 }
13241 else if (child_die->tag == DW_TAG_subprogram)
13242 {
13243 /* Rust doesn't have member functions in the C++ sense.
13244 However, it does emit ordinary functions as children
13245 of a struct DIE. */
13246 if (cu->language == language_rust)
13247 read_func_scope (child_die, cu);
13248 else
13249 {
13250 /* C++ member function. */
13251 dwarf2_add_member_fn (&fi, child_die, type, cu);
13252 }
13253 }
13254 else if (child_die->tag == DW_TAG_inheritance)
13255 {
13256 /* C++ base class field. */
13257 dwarf2_add_field (&fi, child_die, cu);
13258 }
13259 else if (child_die->tag == DW_TAG_typedef)
13260 dwarf2_add_typedef (&fi, child_die, cu);
13261 else if (child_die->tag == DW_TAG_template_type_param
13262 || child_die->tag == DW_TAG_template_value_param)
13263 {
13264 struct symbol *arg = new_symbol (child_die, NULL, cu);
13265
13266 if (arg != NULL)
13267 VEC_safe_push (symbolp, template_args, arg);
13268 }
13269
13270 child_die = sibling_die (child_die);
13271 }
13272
13273 /* Attach template arguments to type. */
13274 if (! VEC_empty (symbolp, template_args))
13275 {
13276 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13277 TYPE_N_TEMPLATE_ARGUMENTS (type)
13278 = VEC_length (symbolp, template_args);
13279 TYPE_TEMPLATE_ARGUMENTS (type)
13280 = XOBNEWVEC (&objfile->objfile_obstack,
13281 struct symbol *,
13282 TYPE_N_TEMPLATE_ARGUMENTS (type));
13283 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13284 VEC_address (symbolp, template_args),
13285 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13286 * sizeof (struct symbol *)));
13287 VEC_free (symbolp, template_args);
13288 }
13289
13290 /* Attach fields and member functions to the type. */
13291 if (fi.nfields)
13292 dwarf2_attach_fields_to_type (&fi, type, cu);
13293 if (fi.nfnfields)
13294 {
13295 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13296
13297 /* Get the type which refers to the base class (possibly this
13298 class itself) which contains the vtable pointer for the current
13299 class from the DW_AT_containing_type attribute. This use of
13300 DW_AT_containing_type is a GNU extension. */
13301
13302 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13303 {
13304 struct type *t = die_containing_type (die, cu);
13305
13306 set_type_vptr_basetype (type, t);
13307 if (type == t)
13308 {
13309 int i;
13310
13311 /* Our own class provides vtbl ptr. */
13312 for (i = TYPE_NFIELDS (t) - 1;
13313 i >= TYPE_N_BASECLASSES (t);
13314 --i)
13315 {
13316 const char *fieldname = TYPE_FIELD_NAME (t, i);
13317
13318 if (is_vtable_name (fieldname, cu))
13319 {
13320 set_type_vptr_fieldno (type, i);
13321 break;
13322 }
13323 }
13324
13325 /* Complain if virtual function table field not found. */
13326 if (i < TYPE_N_BASECLASSES (t))
13327 complaint (&symfile_complaints,
13328 _("virtual function table pointer "
13329 "not found when defining class '%s'"),
13330 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13331 "");
13332 }
13333 else
13334 {
13335 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13336 }
13337 }
13338 else if (cu->producer
13339 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13340 {
13341 /* The IBM XLC compiler does not provide direct indication
13342 of the containing type, but the vtable pointer is
13343 always named __vfp. */
13344
13345 int i;
13346
13347 for (i = TYPE_NFIELDS (type) - 1;
13348 i >= TYPE_N_BASECLASSES (type);
13349 --i)
13350 {
13351 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13352 {
13353 set_type_vptr_fieldno (type, i);
13354 set_type_vptr_basetype (type, type);
13355 break;
13356 }
13357 }
13358 }
13359 }
13360
13361 /* Copy fi.typedef_field_list linked list elements content into the
13362 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13363 if (fi.typedef_field_list)
13364 {
13365 int i = fi.typedef_field_list_count;
13366
13367 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13368 TYPE_TYPEDEF_FIELD_ARRAY (type)
13369 = ((struct typedef_field *)
13370 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13371 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13372
13373 /* Reverse the list order to keep the debug info elements order. */
13374 while (--i >= 0)
13375 {
13376 struct typedef_field *dest, *src;
13377
13378 dest = &TYPE_TYPEDEF_FIELD (type, i);
13379 src = &fi.typedef_field_list->field;
13380 fi.typedef_field_list = fi.typedef_field_list->next;
13381 *dest = *src;
13382 }
13383 }
13384
13385 do_cleanups (back_to);
13386 }
13387
13388 quirk_gcc_member_function_pointer (type, objfile);
13389
13390 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13391 snapshots) has been known to create a die giving a declaration
13392 for a class that has, as a child, a die giving a definition for a
13393 nested class. So we have to process our children even if the
13394 current die is a declaration. Normally, of course, a declaration
13395 won't have any children at all. */
13396
13397 child_die = die->child;
13398
13399 while (child_die != NULL && child_die->tag)
13400 {
13401 if (child_die->tag == DW_TAG_member
13402 || child_die->tag == DW_TAG_variable
13403 || child_die->tag == DW_TAG_inheritance
13404 || child_die->tag == DW_TAG_template_value_param
13405 || child_die->tag == DW_TAG_template_type_param)
13406 {
13407 /* Do nothing. */
13408 }
13409 else
13410 process_die (child_die, cu);
13411
13412 child_die = sibling_die (child_die);
13413 }
13414
13415 /* Do not consider external references. According to the DWARF standard,
13416 these DIEs are identified by the fact that they have no byte_size
13417 attribute, and a declaration attribute. */
13418 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13419 || !die_is_declaration (die, cu))
13420 new_symbol (die, type, cu);
13421 }
13422
13423 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13424 update TYPE using some information only available in DIE's children. */
13425
13426 static void
13427 update_enumeration_type_from_children (struct die_info *die,
13428 struct type *type,
13429 struct dwarf2_cu *cu)
13430 {
13431 struct obstack obstack;
13432 struct die_info *child_die;
13433 int unsigned_enum = 1;
13434 int flag_enum = 1;
13435 ULONGEST mask = 0;
13436 struct cleanup *old_chain;
13437
13438 obstack_init (&obstack);
13439 old_chain = make_cleanup_obstack_free (&obstack);
13440
13441 for (child_die = die->child;
13442 child_die != NULL && child_die->tag;
13443 child_die = sibling_die (child_die))
13444 {
13445 struct attribute *attr;
13446 LONGEST value;
13447 const gdb_byte *bytes;
13448 struct dwarf2_locexpr_baton *baton;
13449 const char *name;
13450
13451 if (child_die->tag != DW_TAG_enumerator)
13452 continue;
13453
13454 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13455 if (attr == NULL)
13456 continue;
13457
13458 name = dwarf2_name (child_die, cu);
13459 if (name == NULL)
13460 name = "<anonymous enumerator>";
13461
13462 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13463 &value, &bytes, &baton);
13464 if (value < 0)
13465 {
13466 unsigned_enum = 0;
13467 flag_enum = 0;
13468 }
13469 else if ((mask & value) != 0)
13470 flag_enum = 0;
13471 else
13472 mask |= value;
13473
13474 /* If we already know that the enum type is neither unsigned, nor
13475 a flag type, no need to look at the rest of the enumerates. */
13476 if (!unsigned_enum && !flag_enum)
13477 break;
13478 }
13479
13480 if (unsigned_enum)
13481 TYPE_UNSIGNED (type) = 1;
13482 if (flag_enum)
13483 TYPE_FLAG_ENUM (type) = 1;
13484
13485 do_cleanups (old_chain);
13486 }
13487
13488 /* Given a DW_AT_enumeration_type die, set its type. We do not
13489 complete the type's fields yet, or create any symbols. */
13490
13491 static struct type *
13492 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13493 {
13494 struct objfile *objfile = cu->objfile;
13495 struct type *type;
13496 struct attribute *attr;
13497 const char *name;
13498
13499 /* If the definition of this type lives in .debug_types, read that type.
13500 Don't follow DW_AT_specification though, that will take us back up
13501 the chain and we want to go down. */
13502 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13503 if (attr)
13504 {
13505 type = get_DW_AT_signature_type (die, attr, cu);
13506
13507 /* The type's CU may not be the same as CU.
13508 Ensure TYPE is recorded with CU in die_type_hash. */
13509 return set_die_type (die, type, cu);
13510 }
13511
13512 type = alloc_type (objfile);
13513
13514 TYPE_CODE (type) = TYPE_CODE_ENUM;
13515 name = dwarf2_full_name (NULL, die, cu);
13516 if (name != NULL)
13517 TYPE_TAG_NAME (type) = name;
13518
13519 attr = dwarf2_attr (die, DW_AT_type, cu);
13520 if (attr != NULL)
13521 {
13522 struct type *underlying_type = die_type (die, cu);
13523
13524 TYPE_TARGET_TYPE (type) = underlying_type;
13525 }
13526
13527 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13528 if (attr)
13529 {
13530 TYPE_LENGTH (type) = DW_UNSND (attr);
13531 }
13532 else
13533 {
13534 TYPE_LENGTH (type) = 0;
13535 }
13536
13537 /* The enumeration DIE can be incomplete. In Ada, any type can be
13538 declared as private in the package spec, and then defined only
13539 inside the package body. Such types are known as Taft Amendment
13540 Types. When another package uses such a type, an incomplete DIE
13541 may be generated by the compiler. */
13542 if (die_is_declaration (die, cu))
13543 TYPE_STUB (type) = 1;
13544
13545 /* Finish the creation of this type by using the enum's children.
13546 We must call this even when the underlying type has been provided
13547 so that we can determine if we're looking at a "flag" enum. */
13548 update_enumeration_type_from_children (die, type, cu);
13549
13550 /* If this type has an underlying type that is not a stub, then we
13551 may use its attributes. We always use the "unsigned" attribute
13552 in this situation, because ordinarily we guess whether the type
13553 is unsigned -- but the guess can be wrong and the underlying type
13554 can tell us the reality. However, we defer to a local size
13555 attribute if one exists, because this lets the compiler override
13556 the underlying type if needed. */
13557 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13558 {
13559 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13560 if (TYPE_LENGTH (type) == 0)
13561 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13562 }
13563
13564 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13565
13566 return set_die_type (die, type, cu);
13567 }
13568
13569 /* Given a pointer to a die which begins an enumeration, process all
13570 the dies that define the members of the enumeration, and create the
13571 symbol for the enumeration type.
13572
13573 NOTE: We reverse the order of the element list. */
13574
13575 static void
13576 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13577 {
13578 struct type *this_type;
13579
13580 this_type = get_die_type (die, cu);
13581 if (this_type == NULL)
13582 this_type = read_enumeration_type (die, cu);
13583
13584 if (die->child != NULL)
13585 {
13586 struct die_info *child_die;
13587 struct symbol *sym;
13588 struct field *fields = NULL;
13589 int num_fields = 0;
13590 const char *name;
13591
13592 child_die = die->child;
13593 while (child_die && child_die->tag)
13594 {
13595 if (child_die->tag != DW_TAG_enumerator)
13596 {
13597 process_die (child_die, cu);
13598 }
13599 else
13600 {
13601 name = dwarf2_name (child_die, cu);
13602 if (name)
13603 {
13604 sym = new_symbol (child_die, this_type, cu);
13605
13606 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13607 {
13608 fields = (struct field *)
13609 xrealloc (fields,
13610 (num_fields + DW_FIELD_ALLOC_CHUNK)
13611 * sizeof (struct field));
13612 }
13613
13614 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13615 FIELD_TYPE (fields[num_fields]) = NULL;
13616 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13617 FIELD_BITSIZE (fields[num_fields]) = 0;
13618
13619 num_fields++;
13620 }
13621 }
13622
13623 child_die = sibling_die (child_die);
13624 }
13625
13626 if (num_fields)
13627 {
13628 TYPE_NFIELDS (this_type) = num_fields;
13629 TYPE_FIELDS (this_type) = (struct field *)
13630 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13631 memcpy (TYPE_FIELDS (this_type), fields,
13632 sizeof (struct field) * num_fields);
13633 xfree (fields);
13634 }
13635 }
13636
13637 /* If we are reading an enum from a .debug_types unit, and the enum
13638 is a declaration, and the enum is not the signatured type in the
13639 unit, then we do not want to add a symbol for it. Adding a
13640 symbol would in some cases obscure the true definition of the
13641 enum, giving users an incomplete type when the definition is
13642 actually available. Note that we do not want to do this for all
13643 enums which are just declarations, because C++0x allows forward
13644 enum declarations. */
13645 if (cu->per_cu->is_debug_types
13646 && die_is_declaration (die, cu))
13647 {
13648 struct signatured_type *sig_type;
13649
13650 sig_type = (struct signatured_type *) cu->per_cu;
13651 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13652 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13653 return;
13654 }
13655
13656 new_symbol (die, this_type, cu);
13657 }
13658
13659 /* Extract all information from a DW_TAG_array_type DIE and put it in
13660 the DIE's type field. For now, this only handles one dimensional
13661 arrays. */
13662
13663 static struct type *
13664 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13665 {
13666 struct objfile *objfile = cu->objfile;
13667 struct die_info *child_die;
13668 struct type *type;
13669 struct type *element_type, *range_type, *index_type;
13670 struct type **range_types = NULL;
13671 struct attribute *attr;
13672 int ndim = 0;
13673 struct cleanup *back_to;
13674 const char *name;
13675 unsigned int bit_stride = 0;
13676
13677 element_type = die_type (die, cu);
13678
13679 /* The die_type call above may have already set the type for this DIE. */
13680 type = get_die_type (die, cu);
13681 if (type)
13682 return type;
13683
13684 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13685 if (attr != NULL)
13686 bit_stride = DW_UNSND (attr) * 8;
13687
13688 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13689 if (attr != NULL)
13690 bit_stride = DW_UNSND (attr);
13691
13692 /* Irix 6.2 native cc creates array types without children for
13693 arrays with unspecified length. */
13694 if (die->child == NULL)
13695 {
13696 index_type = objfile_type (objfile)->builtin_int;
13697 range_type = create_static_range_type (NULL, index_type, 0, -1);
13698 type = create_array_type_with_stride (NULL, element_type, range_type,
13699 bit_stride);
13700 return set_die_type (die, type, cu);
13701 }
13702
13703 back_to = make_cleanup (null_cleanup, NULL);
13704 child_die = die->child;
13705 while (child_die && child_die->tag)
13706 {
13707 if (child_die->tag == DW_TAG_subrange_type)
13708 {
13709 struct type *child_type = read_type_die (child_die, cu);
13710
13711 if (child_type != NULL)
13712 {
13713 /* The range type was succesfully read. Save it for the
13714 array type creation. */
13715 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13716 {
13717 range_types = (struct type **)
13718 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13719 * sizeof (struct type *));
13720 if (ndim == 0)
13721 make_cleanup (free_current_contents, &range_types);
13722 }
13723 range_types[ndim++] = child_type;
13724 }
13725 }
13726 child_die = sibling_die (child_die);
13727 }
13728
13729 /* Dwarf2 dimensions are output from left to right, create the
13730 necessary array types in backwards order. */
13731
13732 type = element_type;
13733
13734 if (read_array_order (die, cu) == DW_ORD_col_major)
13735 {
13736 int i = 0;
13737
13738 while (i < ndim)
13739 type = create_array_type_with_stride (NULL, type, range_types[i++],
13740 bit_stride);
13741 }
13742 else
13743 {
13744 while (ndim-- > 0)
13745 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13746 bit_stride);
13747 }
13748
13749 /* Understand Dwarf2 support for vector types (like they occur on
13750 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13751 array type. This is not part of the Dwarf2/3 standard yet, but a
13752 custom vendor extension. The main difference between a regular
13753 array and the vector variant is that vectors are passed by value
13754 to functions. */
13755 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13756 if (attr)
13757 make_vector_type (type);
13758
13759 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13760 implementation may choose to implement triple vectors using this
13761 attribute. */
13762 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13763 if (attr)
13764 {
13765 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13766 TYPE_LENGTH (type) = DW_UNSND (attr);
13767 else
13768 complaint (&symfile_complaints,
13769 _("DW_AT_byte_size for array type smaller "
13770 "than the total size of elements"));
13771 }
13772
13773 name = dwarf2_name (die, cu);
13774 if (name)
13775 TYPE_NAME (type) = name;
13776
13777 /* Install the type in the die. */
13778 set_die_type (die, type, cu);
13779
13780 /* set_die_type should be already done. */
13781 set_descriptive_type (type, die, cu);
13782
13783 do_cleanups (back_to);
13784
13785 return type;
13786 }
13787
13788 static enum dwarf_array_dim_ordering
13789 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13790 {
13791 struct attribute *attr;
13792
13793 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13794
13795 if (attr)
13796 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13797
13798 /* GNU F77 is a special case, as at 08/2004 array type info is the
13799 opposite order to the dwarf2 specification, but data is still
13800 laid out as per normal fortran.
13801
13802 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13803 version checking. */
13804
13805 if (cu->language == language_fortran
13806 && cu->producer && strstr (cu->producer, "GNU F77"))
13807 {
13808 return DW_ORD_row_major;
13809 }
13810
13811 switch (cu->language_defn->la_array_ordering)
13812 {
13813 case array_column_major:
13814 return DW_ORD_col_major;
13815 case array_row_major:
13816 default:
13817 return DW_ORD_row_major;
13818 };
13819 }
13820
13821 /* Extract all information from a DW_TAG_set_type DIE and put it in
13822 the DIE's type field. */
13823
13824 static struct type *
13825 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13826 {
13827 struct type *domain_type, *set_type;
13828 struct attribute *attr;
13829
13830 domain_type = die_type (die, cu);
13831
13832 /* The die_type call above may have already set the type for this DIE. */
13833 set_type = get_die_type (die, cu);
13834 if (set_type)
13835 return set_type;
13836
13837 set_type = create_set_type (NULL, domain_type);
13838
13839 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13840 if (attr)
13841 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13842
13843 return set_die_type (die, set_type, cu);
13844 }
13845
13846 /* A helper for read_common_block that creates a locexpr baton.
13847 SYM is the symbol which we are marking as computed.
13848 COMMON_DIE is the DIE for the common block.
13849 COMMON_LOC is the location expression attribute for the common
13850 block itself.
13851 MEMBER_LOC is the location expression attribute for the particular
13852 member of the common block that we are processing.
13853 CU is the CU from which the above come. */
13854
13855 static void
13856 mark_common_block_symbol_computed (struct symbol *sym,
13857 struct die_info *common_die,
13858 struct attribute *common_loc,
13859 struct attribute *member_loc,
13860 struct dwarf2_cu *cu)
13861 {
13862 struct objfile *objfile = dwarf2_per_objfile->objfile;
13863 struct dwarf2_locexpr_baton *baton;
13864 gdb_byte *ptr;
13865 unsigned int cu_off;
13866 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13867 LONGEST offset = 0;
13868
13869 gdb_assert (common_loc && member_loc);
13870 gdb_assert (attr_form_is_block (common_loc));
13871 gdb_assert (attr_form_is_block (member_loc)
13872 || attr_form_is_constant (member_loc));
13873
13874 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13875 baton->per_cu = cu->per_cu;
13876 gdb_assert (baton->per_cu);
13877
13878 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13879
13880 if (attr_form_is_constant (member_loc))
13881 {
13882 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13883 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13884 }
13885 else
13886 baton->size += DW_BLOCK (member_loc)->size;
13887
13888 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13889 baton->data = ptr;
13890
13891 *ptr++ = DW_OP_call4;
13892 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13893 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13894 ptr += 4;
13895
13896 if (attr_form_is_constant (member_loc))
13897 {
13898 *ptr++ = DW_OP_addr;
13899 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13900 ptr += cu->header.addr_size;
13901 }
13902 else
13903 {
13904 /* We have to copy the data here, because DW_OP_call4 will only
13905 use a DW_AT_location attribute. */
13906 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13907 ptr += DW_BLOCK (member_loc)->size;
13908 }
13909
13910 *ptr++ = DW_OP_plus;
13911 gdb_assert (ptr - baton->data == baton->size);
13912
13913 SYMBOL_LOCATION_BATON (sym) = baton;
13914 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13915 }
13916
13917 /* Create appropriate locally-scoped variables for all the
13918 DW_TAG_common_block entries. Also create a struct common_block
13919 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13920 is used to sepate the common blocks name namespace from regular
13921 variable names. */
13922
13923 static void
13924 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13925 {
13926 struct attribute *attr;
13927
13928 attr = dwarf2_attr (die, DW_AT_location, cu);
13929 if (attr)
13930 {
13931 /* Support the .debug_loc offsets. */
13932 if (attr_form_is_block (attr))
13933 {
13934 /* Ok. */
13935 }
13936 else if (attr_form_is_section_offset (attr))
13937 {
13938 dwarf2_complex_location_expr_complaint ();
13939 attr = NULL;
13940 }
13941 else
13942 {
13943 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13944 "common block member");
13945 attr = NULL;
13946 }
13947 }
13948
13949 if (die->child != NULL)
13950 {
13951 struct objfile *objfile = cu->objfile;
13952 struct die_info *child_die;
13953 size_t n_entries = 0, size;
13954 struct common_block *common_block;
13955 struct symbol *sym;
13956
13957 for (child_die = die->child;
13958 child_die && child_die->tag;
13959 child_die = sibling_die (child_die))
13960 ++n_entries;
13961
13962 size = (sizeof (struct common_block)
13963 + (n_entries - 1) * sizeof (struct symbol *));
13964 common_block
13965 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
13966 size);
13967 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13968 common_block->n_entries = 0;
13969
13970 for (child_die = die->child;
13971 child_die && child_die->tag;
13972 child_die = sibling_die (child_die))
13973 {
13974 /* Create the symbol in the DW_TAG_common_block block in the current
13975 symbol scope. */
13976 sym = new_symbol (child_die, NULL, cu);
13977 if (sym != NULL)
13978 {
13979 struct attribute *member_loc;
13980
13981 common_block->contents[common_block->n_entries++] = sym;
13982
13983 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13984 cu);
13985 if (member_loc)
13986 {
13987 /* GDB has handled this for a long time, but it is
13988 not specified by DWARF. It seems to have been
13989 emitted by gfortran at least as recently as:
13990 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13991 complaint (&symfile_complaints,
13992 _("Variable in common block has "
13993 "DW_AT_data_member_location "
13994 "- DIE at 0x%x [in module %s]"),
13995 child_die->offset.sect_off,
13996 objfile_name (cu->objfile));
13997
13998 if (attr_form_is_section_offset (member_loc))
13999 dwarf2_complex_location_expr_complaint ();
14000 else if (attr_form_is_constant (member_loc)
14001 || attr_form_is_block (member_loc))
14002 {
14003 if (attr)
14004 mark_common_block_symbol_computed (sym, die, attr,
14005 member_loc, cu);
14006 }
14007 else
14008 dwarf2_complex_location_expr_complaint ();
14009 }
14010 }
14011 }
14012
14013 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14014 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14015 }
14016 }
14017
14018 /* Create a type for a C++ namespace. */
14019
14020 static struct type *
14021 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14022 {
14023 struct objfile *objfile = cu->objfile;
14024 const char *previous_prefix, *name;
14025 int is_anonymous;
14026 struct type *type;
14027
14028 /* For extensions, reuse the type of the original namespace. */
14029 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14030 {
14031 struct die_info *ext_die;
14032 struct dwarf2_cu *ext_cu = cu;
14033
14034 ext_die = dwarf2_extension (die, &ext_cu);
14035 type = read_type_die (ext_die, ext_cu);
14036
14037 /* EXT_CU may not be the same as CU.
14038 Ensure TYPE is recorded with CU in die_type_hash. */
14039 return set_die_type (die, type, cu);
14040 }
14041
14042 name = namespace_name (die, &is_anonymous, cu);
14043
14044 /* Now build the name of the current namespace. */
14045
14046 previous_prefix = determine_prefix (die, cu);
14047 if (previous_prefix[0] != '\0')
14048 name = typename_concat (&objfile->objfile_obstack,
14049 previous_prefix, name, 0, cu);
14050
14051 /* Create the type. */
14052 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14053 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14054
14055 return set_die_type (die, type, cu);
14056 }
14057
14058 /* Read a namespace scope. */
14059
14060 static void
14061 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14062 {
14063 struct objfile *objfile = cu->objfile;
14064 int is_anonymous;
14065
14066 /* Add a symbol associated to this if we haven't seen the namespace
14067 before. Also, add a using directive if it's an anonymous
14068 namespace. */
14069
14070 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14071 {
14072 struct type *type;
14073
14074 type = read_type_die (die, cu);
14075 new_symbol (die, type, cu);
14076
14077 namespace_name (die, &is_anonymous, cu);
14078 if (is_anonymous)
14079 {
14080 const char *previous_prefix = determine_prefix (die, cu);
14081
14082 add_using_directive (using_directives (cu->language),
14083 previous_prefix, TYPE_NAME (type), NULL,
14084 NULL, NULL, 0, &objfile->objfile_obstack);
14085 }
14086 }
14087
14088 if (die->child != NULL)
14089 {
14090 struct die_info *child_die = die->child;
14091
14092 while (child_die && child_die->tag)
14093 {
14094 process_die (child_die, cu);
14095 child_die = sibling_die (child_die);
14096 }
14097 }
14098 }
14099
14100 /* Read a Fortran module as type. This DIE can be only a declaration used for
14101 imported module. Still we need that type as local Fortran "use ... only"
14102 declaration imports depend on the created type in determine_prefix. */
14103
14104 static struct type *
14105 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14106 {
14107 struct objfile *objfile = cu->objfile;
14108 const char *module_name;
14109 struct type *type;
14110
14111 module_name = dwarf2_name (die, cu);
14112 if (!module_name)
14113 complaint (&symfile_complaints,
14114 _("DW_TAG_module has no name, offset 0x%x"),
14115 die->offset.sect_off);
14116 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14117
14118 /* determine_prefix uses TYPE_TAG_NAME. */
14119 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14120
14121 return set_die_type (die, type, cu);
14122 }
14123
14124 /* Read a Fortran module. */
14125
14126 static void
14127 read_module (struct die_info *die, struct dwarf2_cu *cu)
14128 {
14129 struct die_info *child_die = die->child;
14130 struct type *type;
14131
14132 type = read_type_die (die, cu);
14133 new_symbol (die, type, cu);
14134
14135 while (child_die && child_die->tag)
14136 {
14137 process_die (child_die, cu);
14138 child_die = sibling_die (child_die);
14139 }
14140 }
14141
14142 /* Return the name of the namespace represented by DIE. Set
14143 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14144 namespace. */
14145
14146 static const char *
14147 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14148 {
14149 struct die_info *current_die;
14150 const char *name = NULL;
14151
14152 /* Loop through the extensions until we find a name. */
14153
14154 for (current_die = die;
14155 current_die != NULL;
14156 current_die = dwarf2_extension (die, &cu))
14157 {
14158 /* We don't use dwarf2_name here so that we can detect the absence
14159 of a name -> anonymous namespace. */
14160 name = dwarf2_string_attr (die, DW_AT_name, cu);
14161
14162 if (name != NULL)
14163 break;
14164 }
14165
14166 /* Is it an anonymous namespace? */
14167
14168 *is_anonymous = (name == NULL);
14169 if (*is_anonymous)
14170 name = CP_ANONYMOUS_NAMESPACE_STR;
14171
14172 return name;
14173 }
14174
14175 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14176 the user defined type vector. */
14177
14178 static struct type *
14179 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14180 {
14181 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14182 struct comp_unit_head *cu_header = &cu->header;
14183 struct type *type;
14184 struct attribute *attr_byte_size;
14185 struct attribute *attr_address_class;
14186 int byte_size, addr_class;
14187 struct type *target_type;
14188
14189 target_type = die_type (die, cu);
14190
14191 /* The die_type call above may have already set the type for this DIE. */
14192 type = get_die_type (die, cu);
14193 if (type)
14194 return type;
14195
14196 type = lookup_pointer_type (target_type);
14197
14198 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14199 if (attr_byte_size)
14200 byte_size = DW_UNSND (attr_byte_size);
14201 else
14202 byte_size = cu_header->addr_size;
14203
14204 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14205 if (attr_address_class)
14206 addr_class = DW_UNSND (attr_address_class);
14207 else
14208 addr_class = DW_ADDR_none;
14209
14210 /* If the pointer size or address class is different than the
14211 default, create a type variant marked as such and set the
14212 length accordingly. */
14213 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14214 {
14215 if (gdbarch_address_class_type_flags_p (gdbarch))
14216 {
14217 int type_flags;
14218
14219 type_flags = gdbarch_address_class_type_flags
14220 (gdbarch, byte_size, addr_class);
14221 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14222 == 0);
14223 type = make_type_with_address_space (type, type_flags);
14224 }
14225 else if (TYPE_LENGTH (type) != byte_size)
14226 {
14227 complaint (&symfile_complaints,
14228 _("invalid pointer size %d"), byte_size);
14229 }
14230 else
14231 {
14232 /* Should we also complain about unhandled address classes? */
14233 }
14234 }
14235
14236 TYPE_LENGTH (type) = byte_size;
14237 return set_die_type (die, type, cu);
14238 }
14239
14240 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14241 the user defined type vector. */
14242
14243 static struct type *
14244 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14245 {
14246 struct type *type;
14247 struct type *to_type;
14248 struct type *domain;
14249
14250 to_type = die_type (die, cu);
14251 domain = die_containing_type (die, cu);
14252
14253 /* The calls above may have already set the type for this DIE. */
14254 type = get_die_type (die, cu);
14255 if (type)
14256 return type;
14257
14258 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14259 type = lookup_methodptr_type (to_type);
14260 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14261 {
14262 struct type *new_type = alloc_type (cu->objfile);
14263
14264 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14265 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14266 TYPE_VARARGS (to_type));
14267 type = lookup_methodptr_type (new_type);
14268 }
14269 else
14270 type = lookup_memberptr_type (to_type, domain);
14271
14272 return set_die_type (die, type, cu);
14273 }
14274
14275 /* Extract all information from a DW_TAG_reference_type DIE and add to
14276 the user defined type vector. */
14277
14278 static struct type *
14279 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14280 {
14281 struct comp_unit_head *cu_header = &cu->header;
14282 struct type *type, *target_type;
14283 struct attribute *attr;
14284
14285 target_type = die_type (die, cu);
14286
14287 /* The die_type call above may have already set the type for this DIE. */
14288 type = get_die_type (die, cu);
14289 if (type)
14290 return type;
14291
14292 type = lookup_reference_type (target_type);
14293 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14294 if (attr)
14295 {
14296 TYPE_LENGTH (type) = DW_UNSND (attr);
14297 }
14298 else
14299 {
14300 TYPE_LENGTH (type) = cu_header->addr_size;
14301 }
14302 return set_die_type (die, type, cu);
14303 }
14304
14305 /* Add the given cv-qualifiers to the element type of the array. GCC
14306 outputs DWARF type qualifiers that apply to an array, not the
14307 element type. But GDB relies on the array element type to carry
14308 the cv-qualifiers. This mimics section 6.7.3 of the C99
14309 specification. */
14310
14311 static struct type *
14312 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14313 struct type *base_type, int cnst, int voltl)
14314 {
14315 struct type *el_type, *inner_array;
14316
14317 base_type = copy_type (base_type);
14318 inner_array = base_type;
14319
14320 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14321 {
14322 TYPE_TARGET_TYPE (inner_array) =
14323 copy_type (TYPE_TARGET_TYPE (inner_array));
14324 inner_array = TYPE_TARGET_TYPE (inner_array);
14325 }
14326
14327 el_type = TYPE_TARGET_TYPE (inner_array);
14328 cnst |= TYPE_CONST (el_type);
14329 voltl |= TYPE_VOLATILE (el_type);
14330 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14331
14332 return set_die_type (die, base_type, cu);
14333 }
14334
14335 static struct type *
14336 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14337 {
14338 struct type *base_type, *cv_type;
14339
14340 base_type = die_type (die, cu);
14341
14342 /* The die_type call above may have already set the type for this DIE. */
14343 cv_type = get_die_type (die, cu);
14344 if (cv_type)
14345 return cv_type;
14346
14347 /* In case the const qualifier is applied to an array type, the element type
14348 is so qualified, not the array type (section 6.7.3 of C99). */
14349 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14350 return add_array_cv_type (die, cu, base_type, 1, 0);
14351
14352 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14353 return set_die_type (die, cv_type, cu);
14354 }
14355
14356 static struct type *
14357 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14358 {
14359 struct type *base_type, *cv_type;
14360
14361 base_type = die_type (die, cu);
14362
14363 /* The die_type call above may have already set the type for this DIE. */
14364 cv_type = get_die_type (die, cu);
14365 if (cv_type)
14366 return cv_type;
14367
14368 /* In case the volatile qualifier is applied to an array type, the
14369 element type is so qualified, not the array type (section 6.7.3
14370 of C99). */
14371 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14372 return add_array_cv_type (die, cu, base_type, 0, 1);
14373
14374 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14375 return set_die_type (die, cv_type, cu);
14376 }
14377
14378 /* Handle DW_TAG_restrict_type. */
14379
14380 static struct type *
14381 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14382 {
14383 struct type *base_type, *cv_type;
14384
14385 base_type = die_type (die, cu);
14386
14387 /* The die_type call above may have already set the type for this DIE. */
14388 cv_type = get_die_type (die, cu);
14389 if (cv_type)
14390 return cv_type;
14391
14392 cv_type = make_restrict_type (base_type);
14393 return set_die_type (die, cv_type, cu);
14394 }
14395
14396 /* Handle DW_TAG_atomic_type. */
14397
14398 static struct type *
14399 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14400 {
14401 struct type *base_type, *cv_type;
14402
14403 base_type = die_type (die, cu);
14404
14405 /* The die_type call above may have already set the type for this DIE. */
14406 cv_type = get_die_type (die, cu);
14407 if (cv_type)
14408 return cv_type;
14409
14410 cv_type = make_atomic_type (base_type);
14411 return set_die_type (die, cv_type, cu);
14412 }
14413
14414 /* Extract all information from a DW_TAG_string_type DIE and add to
14415 the user defined type vector. It isn't really a user defined type,
14416 but it behaves like one, with other DIE's using an AT_user_def_type
14417 attribute to reference it. */
14418
14419 static struct type *
14420 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14421 {
14422 struct objfile *objfile = cu->objfile;
14423 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14424 struct type *type, *range_type, *index_type, *char_type;
14425 struct attribute *attr;
14426 unsigned int length;
14427
14428 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14429 if (attr)
14430 {
14431 length = DW_UNSND (attr);
14432 }
14433 else
14434 {
14435 /* Check for the DW_AT_byte_size attribute. */
14436 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14437 if (attr)
14438 {
14439 length = DW_UNSND (attr);
14440 }
14441 else
14442 {
14443 length = 1;
14444 }
14445 }
14446
14447 index_type = objfile_type (objfile)->builtin_int;
14448 range_type = create_static_range_type (NULL, index_type, 1, length);
14449 char_type = language_string_char_type (cu->language_defn, gdbarch);
14450 type = create_string_type (NULL, char_type, range_type);
14451
14452 return set_die_type (die, type, cu);
14453 }
14454
14455 /* Assuming that DIE corresponds to a function, returns nonzero
14456 if the function is prototyped. */
14457
14458 static int
14459 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14460 {
14461 struct attribute *attr;
14462
14463 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14464 if (attr && (DW_UNSND (attr) != 0))
14465 return 1;
14466
14467 /* The DWARF standard implies that the DW_AT_prototyped attribute
14468 is only meaninful for C, but the concept also extends to other
14469 languages that allow unprototyped functions (Eg: Objective C).
14470 For all other languages, assume that functions are always
14471 prototyped. */
14472 if (cu->language != language_c
14473 && cu->language != language_objc
14474 && cu->language != language_opencl)
14475 return 1;
14476
14477 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14478 prototyped and unprototyped functions; default to prototyped,
14479 since that is more common in modern code (and RealView warns
14480 about unprototyped functions). */
14481 if (producer_is_realview (cu->producer))
14482 return 1;
14483
14484 return 0;
14485 }
14486
14487 /* Handle DIES due to C code like:
14488
14489 struct foo
14490 {
14491 int (*funcp)(int a, long l);
14492 int b;
14493 };
14494
14495 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14496
14497 static struct type *
14498 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14499 {
14500 struct objfile *objfile = cu->objfile;
14501 struct type *type; /* Type that this function returns. */
14502 struct type *ftype; /* Function that returns above type. */
14503 struct attribute *attr;
14504
14505 type = die_type (die, cu);
14506
14507 /* The die_type call above may have already set the type for this DIE. */
14508 ftype = get_die_type (die, cu);
14509 if (ftype)
14510 return ftype;
14511
14512 ftype = lookup_function_type (type);
14513
14514 if (prototyped_function_p (die, cu))
14515 TYPE_PROTOTYPED (ftype) = 1;
14516
14517 /* Store the calling convention in the type if it's available in
14518 the subroutine die. Otherwise set the calling convention to
14519 the default value DW_CC_normal. */
14520 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14521 if (attr)
14522 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14523 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14524 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14525 else
14526 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14527
14528 /* Record whether the function returns normally to its caller or not
14529 if the DWARF producer set that information. */
14530 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14531 if (attr && (DW_UNSND (attr) != 0))
14532 TYPE_NO_RETURN (ftype) = 1;
14533
14534 /* We need to add the subroutine type to the die immediately so
14535 we don't infinitely recurse when dealing with parameters
14536 declared as the same subroutine type. */
14537 set_die_type (die, ftype, cu);
14538
14539 if (die->child != NULL)
14540 {
14541 struct type *void_type = objfile_type (objfile)->builtin_void;
14542 struct die_info *child_die;
14543 int nparams, iparams;
14544
14545 /* Count the number of parameters.
14546 FIXME: GDB currently ignores vararg functions, but knows about
14547 vararg member functions. */
14548 nparams = 0;
14549 child_die = die->child;
14550 while (child_die && child_die->tag)
14551 {
14552 if (child_die->tag == DW_TAG_formal_parameter)
14553 nparams++;
14554 else if (child_die->tag == DW_TAG_unspecified_parameters)
14555 TYPE_VARARGS (ftype) = 1;
14556 child_die = sibling_die (child_die);
14557 }
14558
14559 /* Allocate storage for parameters and fill them in. */
14560 TYPE_NFIELDS (ftype) = nparams;
14561 TYPE_FIELDS (ftype) = (struct field *)
14562 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14563
14564 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14565 even if we error out during the parameters reading below. */
14566 for (iparams = 0; iparams < nparams; iparams++)
14567 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14568
14569 iparams = 0;
14570 child_die = die->child;
14571 while (child_die && child_die->tag)
14572 {
14573 if (child_die->tag == DW_TAG_formal_parameter)
14574 {
14575 struct type *arg_type;
14576
14577 /* DWARF version 2 has no clean way to discern C++
14578 static and non-static member functions. G++ helps
14579 GDB by marking the first parameter for non-static
14580 member functions (which is the this pointer) as
14581 artificial. We pass this information to
14582 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14583
14584 DWARF version 3 added DW_AT_object_pointer, which GCC
14585 4.5 does not yet generate. */
14586 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14587 if (attr)
14588 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14589 else
14590 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14591 arg_type = die_type (child_die, cu);
14592
14593 /* RealView does not mark THIS as const, which the testsuite
14594 expects. GCC marks THIS as const in method definitions,
14595 but not in the class specifications (GCC PR 43053). */
14596 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14597 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14598 {
14599 int is_this = 0;
14600 struct dwarf2_cu *arg_cu = cu;
14601 const char *name = dwarf2_name (child_die, cu);
14602
14603 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14604 if (attr)
14605 {
14606 /* If the compiler emits this, use it. */
14607 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14608 is_this = 1;
14609 }
14610 else if (name && strcmp (name, "this") == 0)
14611 /* Function definitions will have the argument names. */
14612 is_this = 1;
14613 else if (name == NULL && iparams == 0)
14614 /* Declarations may not have the names, so like
14615 elsewhere in GDB, assume an artificial first
14616 argument is "this". */
14617 is_this = 1;
14618
14619 if (is_this)
14620 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14621 arg_type, 0);
14622 }
14623
14624 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14625 iparams++;
14626 }
14627 child_die = sibling_die (child_die);
14628 }
14629 }
14630
14631 return ftype;
14632 }
14633
14634 static struct type *
14635 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14636 {
14637 struct objfile *objfile = cu->objfile;
14638 const char *name = NULL;
14639 struct type *this_type, *target_type;
14640
14641 name = dwarf2_full_name (NULL, die, cu);
14642 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14643 TYPE_TARGET_STUB (this_type) = 1;
14644 set_die_type (die, this_type, cu);
14645 target_type = die_type (die, cu);
14646 if (target_type != this_type)
14647 TYPE_TARGET_TYPE (this_type) = target_type;
14648 else
14649 {
14650 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14651 spec and cause infinite loops in GDB. */
14652 complaint (&symfile_complaints,
14653 _("Self-referential DW_TAG_typedef "
14654 "- DIE at 0x%x [in module %s]"),
14655 die->offset.sect_off, objfile_name (objfile));
14656 TYPE_TARGET_TYPE (this_type) = NULL;
14657 }
14658 return this_type;
14659 }
14660
14661 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14662 (which may be different from NAME) to the architecture back-end to allow
14663 it to guess the correct format if necessary. */
14664
14665 static struct type *
14666 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14667 const char *name_hint)
14668 {
14669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14670 const struct floatformat **format;
14671 struct type *type;
14672
14673 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14674 if (format)
14675 type = init_float_type (objfile, bits, name, format);
14676 else
14677 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14678
14679 return type;
14680 }
14681
14682 /* Find a representation of a given base type and install
14683 it in the TYPE field of the die. */
14684
14685 static struct type *
14686 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14687 {
14688 struct objfile *objfile = cu->objfile;
14689 struct type *type;
14690 struct attribute *attr;
14691 int encoding = 0, bits = 0;
14692 const char *name;
14693
14694 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14695 if (attr)
14696 {
14697 encoding = DW_UNSND (attr);
14698 }
14699 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14700 if (attr)
14701 {
14702 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14703 }
14704 name = dwarf2_name (die, cu);
14705 if (!name)
14706 {
14707 complaint (&symfile_complaints,
14708 _("DW_AT_name missing from DW_TAG_base_type"));
14709 }
14710
14711 switch (encoding)
14712 {
14713 case DW_ATE_address:
14714 /* Turn DW_ATE_address into a void * pointer. */
14715 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14716 type = init_pointer_type (objfile, bits, name, type);
14717 break;
14718 case DW_ATE_boolean:
14719 type = init_boolean_type (objfile, bits, 1, name);
14720 break;
14721 case DW_ATE_complex_float:
14722 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14723 type = init_complex_type (objfile, name, type);
14724 break;
14725 case DW_ATE_decimal_float:
14726 type = init_decfloat_type (objfile, bits, name);
14727 break;
14728 case DW_ATE_float:
14729 type = dwarf2_init_float_type (objfile, bits, name, name);
14730 break;
14731 case DW_ATE_signed:
14732 type = init_integer_type (objfile, bits, 0, name);
14733 break;
14734 case DW_ATE_unsigned:
14735 if (cu->language == language_fortran
14736 && name
14737 && startswith (name, "character("))
14738 type = init_character_type (objfile, bits, 1, name);
14739 else
14740 type = init_integer_type (objfile, bits, 1, name);
14741 break;
14742 case DW_ATE_signed_char:
14743 if (cu->language == language_ada || cu->language == language_m2
14744 || cu->language == language_pascal
14745 || cu->language == language_fortran)
14746 type = init_character_type (objfile, bits, 0, name);
14747 else
14748 type = init_integer_type (objfile, bits, 0, name);
14749 break;
14750 case DW_ATE_unsigned_char:
14751 if (cu->language == language_ada || cu->language == language_m2
14752 || cu->language == language_pascal
14753 || cu->language == language_fortran
14754 || cu->language == language_rust)
14755 type = init_character_type (objfile, bits, 1, name);
14756 else
14757 type = init_integer_type (objfile, bits, 1, name);
14758 break;
14759 case DW_ATE_UTF:
14760 /* We just treat this as an integer and then recognize the
14761 type by name elsewhere. */
14762 type = init_integer_type (objfile, bits, 0, name);
14763 break;
14764
14765 default:
14766 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14767 dwarf_type_encoding_name (encoding));
14768 type = init_type (objfile, TYPE_CODE_ERROR,
14769 bits / TARGET_CHAR_BIT, name);
14770 break;
14771 }
14772
14773 if (name && strcmp (name, "char") == 0)
14774 TYPE_NOSIGN (type) = 1;
14775
14776 return set_die_type (die, type, cu);
14777 }
14778
14779 /* Parse dwarf attribute if it's a block, reference or constant and put the
14780 resulting value of the attribute into struct bound_prop.
14781 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14782
14783 static int
14784 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14785 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14786 {
14787 struct dwarf2_property_baton *baton;
14788 struct obstack *obstack = &cu->objfile->objfile_obstack;
14789
14790 if (attr == NULL || prop == NULL)
14791 return 0;
14792
14793 if (attr_form_is_block (attr))
14794 {
14795 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14796 baton->referenced_type = NULL;
14797 baton->locexpr.per_cu = cu->per_cu;
14798 baton->locexpr.size = DW_BLOCK (attr)->size;
14799 baton->locexpr.data = DW_BLOCK (attr)->data;
14800 prop->data.baton = baton;
14801 prop->kind = PROP_LOCEXPR;
14802 gdb_assert (prop->data.baton != NULL);
14803 }
14804 else if (attr_form_is_ref (attr))
14805 {
14806 struct dwarf2_cu *target_cu = cu;
14807 struct die_info *target_die;
14808 struct attribute *target_attr;
14809
14810 target_die = follow_die_ref (die, attr, &target_cu);
14811 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14812 if (target_attr == NULL)
14813 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14814 target_cu);
14815 if (target_attr == NULL)
14816 return 0;
14817
14818 switch (target_attr->name)
14819 {
14820 case DW_AT_location:
14821 if (attr_form_is_section_offset (target_attr))
14822 {
14823 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14824 baton->referenced_type = die_type (target_die, target_cu);
14825 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14826 prop->data.baton = baton;
14827 prop->kind = PROP_LOCLIST;
14828 gdb_assert (prop->data.baton != NULL);
14829 }
14830 else if (attr_form_is_block (target_attr))
14831 {
14832 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14833 baton->referenced_type = die_type (target_die, target_cu);
14834 baton->locexpr.per_cu = cu->per_cu;
14835 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14836 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCEXPR;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else
14842 {
14843 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14844 "dynamic property");
14845 return 0;
14846 }
14847 break;
14848 case DW_AT_data_member_location:
14849 {
14850 LONGEST offset;
14851
14852 if (!handle_data_member_location (target_die, target_cu,
14853 &offset))
14854 return 0;
14855
14856 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14857 baton->referenced_type = read_type_die (target_die->parent,
14858 target_cu);
14859 baton->offset_info.offset = offset;
14860 baton->offset_info.type = die_type (target_die, target_cu);
14861 prop->data.baton = baton;
14862 prop->kind = PROP_ADDR_OFFSET;
14863 break;
14864 }
14865 }
14866 }
14867 else if (attr_form_is_constant (attr))
14868 {
14869 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14870 prop->kind = PROP_CONST;
14871 }
14872 else
14873 {
14874 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14875 dwarf2_name (die, cu));
14876 return 0;
14877 }
14878
14879 return 1;
14880 }
14881
14882 /* Read the given DW_AT_subrange DIE. */
14883
14884 static struct type *
14885 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14886 {
14887 struct type *base_type, *orig_base_type;
14888 struct type *range_type;
14889 struct attribute *attr;
14890 struct dynamic_prop low, high;
14891 int low_default_is_valid;
14892 int high_bound_is_count = 0;
14893 const char *name;
14894 LONGEST negative_mask;
14895
14896 orig_base_type = die_type (die, cu);
14897 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14898 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14899 creating the range type, but we use the result of check_typedef
14900 when examining properties of the type. */
14901 base_type = check_typedef (orig_base_type);
14902
14903 /* The die_type call above may have already set the type for this DIE. */
14904 range_type = get_die_type (die, cu);
14905 if (range_type)
14906 return range_type;
14907
14908 low.kind = PROP_CONST;
14909 high.kind = PROP_CONST;
14910 high.data.const_val = 0;
14911
14912 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14913 omitting DW_AT_lower_bound. */
14914 switch (cu->language)
14915 {
14916 case language_c:
14917 case language_cplus:
14918 low.data.const_val = 0;
14919 low_default_is_valid = 1;
14920 break;
14921 case language_fortran:
14922 low.data.const_val = 1;
14923 low_default_is_valid = 1;
14924 break;
14925 case language_d:
14926 case language_objc:
14927 case language_rust:
14928 low.data.const_val = 0;
14929 low_default_is_valid = (cu->header.version >= 4);
14930 break;
14931 case language_ada:
14932 case language_m2:
14933 case language_pascal:
14934 low.data.const_val = 1;
14935 low_default_is_valid = (cu->header.version >= 4);
14936 break;
14937 default:
14938 low.data.const_val = 0;
14939 low_default_is_valid = 0;
14940 break;
14941 }
14942
14943 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14944 if (attr)
14945 attr_to_dynamic_prop (attr, die, cu, &low);
14946 else if (!low_default_is_valid)
14947 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14948 "- DIE at 0x%x [in module %s]"),
14949 die->offset.sect_off, objfile_name (cu->objfile));
14950
14951 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14952 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14953 {
14954 attr = dwarf2_attr (die, DW_AT_count, cu);
14955 if (attr_to_dynamic_prop (attr, die, cu, &high))
14956 {
14957 /* If bounds are constant do the final calculation here. */
14958 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14959 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14960 else
14961 high_bound_is_count = 1;
14962 }
14963 }
14964
14965 /* Dwarf-2 specifications explicitly allows to create subrange types
14966 without specifying a base type.
14967 In that case, the base type must be set to the type of
14968 the lower bound, upper bound or count, in that order, if any of these
14969 three attributes references an object that has a type.
14970 If no base type is found, the Dwarf-2 specifications say that
14971 a signed integer type of size equal to the size of an address should
14972 be used.
14973 For the following C code: `extern char gdb_int [];'
14974 GCC produces an empty range DIE.
14975 FIXME: muller/2010-05-28: Possible references to object for low bound,
14976 high bound or count are not yet handled by this code. */
14977 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14978 {
14979 struct objfile *objfile = cu->objfile;
14980 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14981 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14982 struct type *int_type = objfile_type (objfile)->builtin_int;
14983
14984 /* Test "int", "long int", and "long long int" objfile types,
14985 and select the first one having a size above or equal to the
14986 architecture address size. */
14987 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14988 base_type = int_type;
14989 else
14990 {
14991 int_type = objfile_type (objfile)->builtin_long;
14992 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14993 base_type = int_type;
14994 else
14995 {
14996 int_type = objfile_type (objfile)->builtin_long_long;
14997 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14998 base_type = int_type;
14999 }
15000 }
15001 }
15002
15003 /* Normally, the DWARF producers are expected to use a signed
15004 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15005 But this is unfortunately not always the case, as witnessed
15006 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15007 is used instead. To work around that ambiguity, we treat
15008 the bounds as signed, and thus sign-extend their values, when
15009 the base type is signed. */
15010 negative_mask =
15011 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15012 if (low.kind == PROP_CONST
15013 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15014 low.data.const_val |= negative_mask;
15015 if (high.kind == PROP_CONST
15016 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15017 high.data.const_val |= negative_mask;
15018
15019 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15020
15021 if (high_bound_is_count)
15022 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15023
15024 /* Ada expects an empty array on no boundary attributes. */
15025 if (attr == NULL && cu->language != language_ada)
15026 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15027
15028 name = dwarf2_name (die, cu);
15029 if (name)
15030 TYPE_NAME (range_type) = name;
15031
15032 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15033 if (attr)
15034 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15035
15036 set_die_type (die, range_type, cu);
15037
15038 /* set_die_type should be already done. */
15039 set_descriptive_type (range_type, die, cu);
15040
15041 return range_type;
15042 }
15043
15044 static struct type *
15045 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15046 {
15047 struct type *type;
15048
15049 /* For now, we only support the C meaning of an unspecified type: void. */
15050
15051 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15052 TYPE_NAME (type) = dwarf2_name (die, cu);
15053
15054 return set_die_type (die, type, cu);
15055 }
15056
15057 /* Read a single die and all its descendents. Set the die's sibling
15058 field to NULL; set other fields in the die correctly, and set all
15059 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15060 location of the info_ptr after reading all of those dies. PARENT
15061 is the parent of the die in question. */
15062
15063 static struct die_info *
15064 read_die_and_children (const struct die_reader_specs *reader,
15065 const gdb_byte *info_ptr,
15066 const gdb_byte **new_info_ptr,
15067 struct die_info *parent)
15068 {
15069 struct die_info *die;
15070 const gdb_byte *cur_ptr;
15071 int has_children;
15072
15073 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15074 if (die == NULL)
15075 {
15076 *new_info_ptr = cur_ptr;
15077 return NULL;
15078 }
15079 store_in_ref_table (die, reader->cu);
15080
15081 if (has_children)
15082 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15083 else
15084 {
15085 die->child = NULL;
15086 *new_info_ptr = cur_ptr;
15087 }
15088
15089 die->sibling = NULL;
15090 die->parent = parent;
15091 return die;
15092 }
15093
15094 /* Read a die, all of its descendents, and all of its siblings; set
15095 all of the fields of all of the dies correctly. Arguments are as
15096 in read_die_and_children. */
15097
15098 static struct die_info *
15099 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15100 const gdb_byte *info_ptr,
15101 const gdb_byte **new_info_ptr,
15102 struct die_info *parent)
15103 {
15104 struct die_info *first_die, *last_sibling;
15105 const gdb_byte *cur_ptr;
15106
15107 cur_ptr = info_ptr;
15108 first_die = last_sibling = NULL;
15109
15110 while (1)
15111 {
15112 struct die_info *die
15113 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15114
15115 if (die == NULL)
15116 {
15117 *new_info_ptr = cur_ptr;
15118 return first_die;
15119 }
15120
15121 if (!first_die)
15122 first_die = die;
15123 else
15124 last_sibling->sibling = die;
15125
15126 last_sibling = die;
15127 }
15128 }
15129
15130 /* Read a die, all of its descendents, and all of its siblings; set
15131 all of the fields of all of the dies correctly. Arguments are as
15132 in read_die_and_children.
15133 This the main entry point for reading a DIE and all its children. */
15134
15135 static struct die_info *
15136 read_die_and_siblings (const struct die_reader_specs *reader,
15137 const gdb_byte *info_ptr,
15138 const gdb_byte **new_info_ptr,
15139 struct die_info *parent)
15140 {
15141 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15142 new_info_ptr, parent);
15143
15144 if (dwarf_die_debug)
15145 {
15146 fprintf_unfiltered (gdb_stdlog,
15147 "Read die from %s@0x%x of %s:\n",
15148 get_section_name (reader->die_section),
15149 (unsigned) (info_ptr - reader->die_section->buffer),
15150 bfd_get_filename (reader->abfd));
15151 dump_die (die, dwarf_die_debug);
15152 }
15153
15154 return die;
15155 }
15156
15157 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15158 attributes.
15159 The caller is responsible for filling in the extra attributes
15160 and updating (*DIEP)->num_attrs.
15161 Set DIEP to point to a newly allocated die with its information,
15162 except for its child, sibling, and parent fields.
15163 Set HAS_CHILDREN to tell whether the die has children or not. */
15164
15165 static const gdb_byte *
15166 read_full_die_1 (const struct die_reader_specs *reader,
15167 struct die_info **diep, const gdb_byte *info_ptr,
15168 int *has_children, int num_extra_attrs)
15169 {
15170 unsigned int abbrev_number, bytes_read, i;
15171 sect_offset offset;
15172 struct abbrev_info *abbrev;
15173 struct die_info *die;
15174 struct dwarf2_cu *cu = reader->cu;
15175 bfd *abfd = reader->abfd;
15176
15177 offset.sect_off = info_ptr - reader->buffer;
15178 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15179 info_ptr += bytes_read;
15180 if (!abbrev_number)
15181 {
15182 *diep = NULL;
15183 *has_children = 0;
15184 return info_ptr;
15185 }
15186
15187 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15188 if (!abbrev)
15189 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15190 abbrev_number,
15191 bfd_get_filename (abfd));
15192
15193 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15194 die->offset = offset;
15195 die->tag = abbrev->tag;
15196 die->abbrev = abbrev_number;
15197
15198 /* Make the result usable.
15199 The caller needs to update num_attrs after adding the extra
15200 attributes. */
15201 die->num_attrs = abbrev->num_attrs;
15202
15203 for (i = 0; i < abbrev->num_attrs; ++i)
15204 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15205 info_ptr);
15206
15207 *diep = die;
15208 *has_children = abbrev->has_children;
15209 return info_ptr;
15210 }
15211
15212 /* Read a die and all its attributes.
15213 Set DIEP to point to a newly allocated die with its information,
15214 except for its child, sibling, and parent fields.
15215 Set HAS_CHILDREN to tell whether the die has children or not. */
15216
15217 static const gdb_byte *
15218 read_full_die (const struct die_reader_specs *reader,
15219 struct die_info **diep, const gdb_byte *info_ptr,
15220 int *has_children)
15221 {
15222 const gdb_byte *result;
15223
15224 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15225
15226 if (dwarf_die_debug)
15227 {
15228 fprintf_unfiltered (gdb_stdlog,
15229 "Read die from %s@0x%x of %s:\n",
15230 get_section_name (reader->die_section),
15231 (unsigned) (info_ptr - reader->die_section->buffer),
15232 bfd_get_filename (reader->abfd));
15233 dump_die (*diep, dwarf_die_debug);
15234 }
15235
15236 return result;
15237 }
15238 \f
15239 /* Abbreviation tables.
15240
15241 In DWARF version 2, the description of the debugging information is
15242 stored in a separate .debug_abbrev section. Before we read any
15243 dies from a section we read in all abbreviations and install them
15244 in a hash table. */
15245
15246 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15247
15248 static struct abbrev_info *
15249 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15250 {
15251 struct abbrev_info *abbrev;
15252
15253 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15254 memset (abbrev, 0, sizeof (struct abbrev_info));
15255
15256 return abbrev;
15257 }
15258
15259 /* Add an abbreviation to the table. */
15260
15261 static void
15262 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15263 unsigned int abbrev_number,
15264 struct abbrev_info *abbrev)
15265 {
15266 unsigned int hash_number;
15267
15268 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15269 abbrev->next = abbrev_table->abbrevs[hash_number];
15270 abbrev_table->abbrevs[hash_number] = abbrev;
15271 }
15272
15273 /* Look up an abbrev in the table.
15274 Returns NULL if the abbrev is not found. */
15275
15276 static struct abbrev_info *
15277 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15278 unsigned int abbrev_number)
15279 {
15280 unsigned int hash_number;
15281 struct abbrev_info *abbrev;
15282
15283 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15284 abbrev = abbrev_table->abbrevs[hash_number];
15285
15286 while (abbrev)
15287 {
15288 if (abbrev->number == abbrev_number)
15289 return abbrev;
15290 abbrev = abbrev->next;
15291 }
15292 return NULL;
15293 }
15294
15295 /* Read in an abbrev table. */
15296
15297 static struct abbrev_table *
15298 abbrev_table_read_table (struct dwarf2_section_info *section,
15299 sect_offset offset)
15300 {
15301 struct objfile *objfile = dwarf2_per_objfile->objfile;
15302 bfd *abfd = get_section_bfd_owner (section);
15303 struct abbrev_table *abbrev_table;
15304 const gdb_byte *abbrev_ptr;
15305 struct abbrev_info *cur_abbrev;
15306 unsigned int abbrev_number, bytes_read, abbrev_name;
15307 unsigned int abbrev_form;
15308 struct attr_abbrev *cur_attrs;
15309 unsigned int allocated_attrs;
15310
15311 abbrev_table = XNEW (struct abbrev_table);
15312 abbrev_table->offset = offset;
15313 obstack_init (&abbrev_table->abbrev_obstack);
15314 abbrev_table->abbrevs =
15315 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15316 ABBREV_HASH_SIZE);
15317 memset (abbrev_table->abbrevs, 0,
15318 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15319
15320 dwarf2_read_section (objfile, section);
15321 abbrev_ptr = section->buffer + offset.sect_off;
15322 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15323 abbrev_ptr += bytes_read;
15324
15325 allocated_attrs = ATTR_ALLOC_CHUNK;
15326 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15327
15328 /* Loop until we reach an abbrev number of 0. */
15329 while (abbrev_number)
15330 {
15331 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15332
15333 /* read in abbrev header */
15334 cur_abbrev->number = abbrev_number;
15335 cur_abbrev->tag
15336 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15337 abbrev_ptr += bytes_read;
15338 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15339 abbrev_ptr += 1;
15340
15341 /* now read in declarations */
15342 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15343 abbrev_ptr += bytes_read;
15344 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15345 abbrev_ptr += bytes_read;
15346 while (abbrev_name)
15347 {
15348 if (cur_abbrev->num_attrs == allocated_attrs)
15349 {
15350 allocated_attrs += ATTR_ALLOC_CHUNK;
15351 cur_attrs
15352 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15353 }
15354
15355 cur_attrs[cur_abbrev->num_attrs].name
15356 = (enum dwarf_attribute) abbrev_name;
15357 cur_attrs[cur_abbrev->num_attrs++].form
15358 = (enum dwarf_form) abbrev_form;
15359 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15362 abbrev_ptr += bytes_read;
15363 }
15364
15365 cur_abbrev->attrs =
15366 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15367 cur_abbrev->num_attrs);
15368 memcpy (cur_abbrev->attrs, cur_attrs,
15369 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15370
15371 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15372
15373 /* Get next abbreviation.
15374 Under Irix6 the abbreviations for a compilation unit are not
15375 always properly terminated with an abbrev number of 0.
15376 Exit loop if we encounter an abbreviation which we have
15377 already read (which means we are about to read the abbreviations
15378 for the next compile unit) or if the end of the abbreviation
15379 table is reached. */
15380 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15381 break;
15382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15385 break;
15386 }
15387
15388 xfree (cur_attrs);
15389 return abbrev_table;
15390 }
15391
15392 /* Free the resources held by ABBREV_TABLE. */
15393
15394 static void
15395 abbrev_table_free (struct abbrev_table *abbrev_table)
15396 {
15397 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15398 xfree (abbrev_table);
15399 }
15400
15401 /* Same as abbrev_table_free but as a cleanup.
15402 We pass in a pointer to the pointer to the table so that we can
15403 set the pointer to NULL when we're done. It also simplifies
15404 build_type_psymtabs_1. */
15405
15406 static void
15407 abbrev_table_free_cleanup (void *table_ptr)
15408 {
15409 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15410
15411 if (*abbrev_table_ptr != NULL)
15412 abbrev_table_free (*abbrev_table_ptr);
15413 *abbrev_table_ptr = NULL;
15414 }
15415
15416 /* Read the abbrev table for CU from ABBREV_SECTION. */
15417
15418 static void
15419 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15420 struct dwarf2_section_info *abbrev_section)
15421 {
15422 cu->abbrev_table =
15423 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15424 }
15425
15426 /* Release the memory used by the abbrev table for a compilation unit. */
15427
15428 static void
15429 dwarf2_free_abbrev_table (void *ptr_to_cu)
15430 {
15431 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15432
15433 if (cu->abbrev_table != NULL)
15434 abbrev_table_free (cu->abbrev_table);
15435 /* Set this to NULL so that we SEGV if we try to read it later,
15436 and also because free_comp_unit verifies this is NULL. */
15437 cu->abbrev_table = NULL;
15438 }
15439 \f
15440 /* Returns nonzero if TAG represents a type that we might generate a partial
15441 symbol for. */
15442
15443 static int
15444 is_type_tag_for_partial (int tag)
15445 {
15446 switch (tag)
15447 {
15448 #if 0
15449 /* Some types that would be reasonable to generate partial symbols for,
15450 that we don't at present. */
15451 case DW_TAG_array_type:
15452 case DW_TAG_file_type:
15453 case DW_TAG_ptr_to_member_type:
15454 case DW_TAG_set_type:
15455 case DW_TAG_string_type:
15456 case DW_TAG_subroutine_type:
15457 #endif
15458 case DW_TAG_base_type:
15459 case DW_TAG_class_type:
15460 case DW_TAG_interface_type:
15461 case DW_TAG_enumeration_type:
15462 case DW_TAG_structure_type:
15463 case DW_TAG_subrange_type:
15464 case DW_TAG_typedef:
15465 case DW_TAG_union_type:
15466 return 1;
15467 default:
15468 return 0;
15469 }
15470 }
15471
15472 /* Load all DIEs that are interesting for partial symbols into memory. */
15473
15474 static struct partial_die_info *
15475 load_partial_dies (const struct die_reader_specs *reader,
15476 const gdb_byte *info_ptr, int building_psymtab)
15477 {
15478 struct dwarf2_cu *cu = reader->cu;
15479 struct objfile *objfile = cu->objfile;
15480 struct partial_die_info *part_die;
15481 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15482 struct abbrev_info *abbrev;
15483 unsigned int bytes_read;
15484 unsigned int load_all = 0;
15485 int nesting_level = 1;
15486
15487 parent_die = NULL;
15488 last_die = NULL;
15489
15490 gdb_assert (cu->per_cu != NULL);
15491 if (cu->per_cu->load_all_dies)
15492 load_all = 1;
15493
15494 cu->partial_dies
15495 = htab_create_alloc_ex (cu->header.length / 12,
15496 partial_die_hash,
15497 partial_die_eq,
15498 NULL,
15499 &cu->comp_unit_obstack,
15500 hashtab_obstack_allocate,
15501 dummy_obstack_deallocate);
15502
15503 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15504
15505 while (1)
15506 {
15507 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15508
15509 /* A NULL abbrev means the end of a series of children. */
15510 if (abbrev == NULL)
15511 {
15512 if (--nesting_level == 0)
15513 {
15514 /* PART_DIE was probably the last thing allocated on the
15515 comp_unit_obstack, so we could call obstack_free
15516 here. We don't do that because the waste is small,
15517 and will be cleaned up when we're done with this
15518 compilation unit. This way, we're also more robust
15519 against other users of the comp_unit_obstack. */
15520 return first_die;
15521 }
15522 info_ptr += bytes_read;
15523 last_die = parent_die;
15524 parent_die = parent_die->die_parent;
15525 continue;
15526 }
15527
15528 /* Check for template arguments. We never save these; if
15529 they're seen, we just mark the parent, and go on our way. */
15530 if (parent_die != NULL
15531 && cu->language == language_cplus
15532 && (abbrev->tag == DW_TAG_template_type_param
15533 || abbrev->tag == DW_TAG_template_value_param))
15534 {
15535 parent_die->has_template_arguments = 1;
15536
15537 if (!load_all)
15538 {
15539 /* We don't need a partial DIE for the template argument. */
15540 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15541 continue;
15542 }
15543 }
15544
15545 /* We only recurse into c++ subprograms looking for template arguments.
15546 Skip their other children. */
15547 if (!load_all
15548 && cu->language == language_cplus
15549 && parent_die != NULL
15550 && parent_die->tag == DW_TAG_subprogram)
15551 {
15552 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15553 continue;
15554 }
15555
15556 /* Check whether this DIE is interesting enough to save. Normally
15557 we would not be interested in members here, but there may be
15558 later variables referencing them via DW_AT_specification (for
15559 static members). */
15560 if (!load_all
15561 && !is_type_tag_for_partial (abbrev->tag)
15562 && abbrev->tag != DW_TAG_constant
15563 && abbrev->tag != DW_TAG_enumerator
15564 && abbrev->tag != DW_TAG_subprogram
15565 && abbrev->tag != DW_TAG_lexical_block
15566 && abbrev->tag != DW_TAG_variable
15567 && abbrev->tag != DW_TAG_namespace
15568 && abbrev->tag != DW_TAG_module
15569 && abbrev->tag != DW_TAG_member
15570 && abbrev->tag != DW_TAG_imported_unit
15571 && abbrev->tag != DW_TAG_imported_declaration)
15572 {
15573 /* Otherwise we skip to the next sibling, if any. */
15574 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15575 continue;
15576 }
15577
15578 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15579 info_ptr);
15580
15581 /* This two-pass algorithm for processing partial symbols has a
15582 high cost in cache pressure. Thus, handle some simple cases
15583 here which cover the majority of C partial symbols. DIEs
15584 which neither have specification tags in them, nor could have
15585 specification tags elsewhere pointing at them, can simply be
15586 processed and discarded.
15587
15588 This segment is also optional; scan_partial_symbols and
15589 add_partial_symbol will handle these DIEs if we chain
15590 them in normally. When compilers which do not emit large
15591 quantities of duplicate debug information are more common,
15592 this code can probably be removed. */
15593
15594 /* Any complete simple types at the top level (pretty much all
15595 of them, for a language without namespaces), can be processed
15596 directly. */
15597 if (parent_die == NULL
15598 && part_die->has_specification == 0
15599 && part_die->is_declaration == 0
15600 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15601 || part_die->tag == DW_TAG_base_type
15602 || part_die->tag == DW_TAG_subrange_type))
15603 {
15604 if (building_psymtab && part_die->name != NULL)
15605 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15606 VAR_DOMAIN, LOC_TYPEDEF,
15607 &objfile->static_psymbols,
15608 0, cu->language, objfile);
15609 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15610 continue;
15611 }
15612
15613 /* The exception for DW_TAG_typedef with has_children above is
15614 a workaround of GCC PR debug/47510. In the case of this complaint
15615 type_name_no_tag_or_error will error on such types later.
15616
15617 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15618 it could not find the child DIEs referenced later, this is checked
15619 above. In correct DWARF DW_TAG_typedef should have no children. */
15620
15621 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15622 complaint (&symfile_complaints,
15623 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15624 "- DIE at 0x%x [in module %s]"),
15625 part_die->offset.sect_off, objfile_name (objfile));
15626
15627 /* If we're at the second level, and we're an enumerator, and
15628 our parent has no specification (meaning possibly lives in a
15629 namespace elsewhere), then we can add the partial symbol now
15630 instead of queueing it. */
15631 if (part_die->tag == DW_TAG_enumerator
15632 && parent_die != NULL
15633 && parent_die->die_parent == NULL
15634 && parent_die->tag == DW_TAG_enumeration_type
15635 && parent_die->has_specification == 0)
15636 {
15637 if (part_die->name == NULL)
15638 complaint (&symfile_complaints,
15639 _("malformed enumerator DIE ignored"));
15640 else if (building_psymtab)
15641 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15642 VAR_DOMAIN, LOC_CONST,
15643 cu->language == language_cplus
15644 ? &objfile->global_psymbols
15645 : &objfile->static_psymbols,
15646 0, cu->language, objfile);
15647
15648 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15649 continue;
15650 }
15651
15652 /* We'll save this DIE so link it in. */
15653 part_die->die_parent = parent_die;
15654 part_die->die_sibling = NULL;
15655 part_die->die_child = NULL;
15656
15657 if (last_die && last_die == parent_die)
15658 last_die->die_child = part_die;
15659 else if (last_die)
15660 last_die->die_sibling = part_die;
15661
15662 last_die = part_die;
15663
15664 if (first_die == NULL)
15665 first_die = part_die;
15666
15667 /* Maybe add the DIE to the hash table. Not all DIEs that we
15668 find interesting need to be in the hash table, because we
15669 also have the parent/sibling/child chains; only those that we
15670 might refer to by offset later during partial symbol reading.
15671
15672 For now this means things that might have be the target of a
15673 DW_AT_specification, DW_AT_abstract_origin, or
15674 DW_AT_extension. DW_AT_extension will refer only to
15675 namespaces; DW_AT_abstract_origin refers to functions (and
15676 many things under the function DIE, but we do not recurse
15677 into function DIEs during partial symbol reading) and
15678 possibly variables as well; DW_AT_specification refers to
15679 declarations. Declarations ought to have the DW_AT_declaration
15680 flag. It happens that GCC forgets to put it in sometimes, but
15681 only for functions, not for types.
15682
15683 Adding more things than necessary to the hash table is harmless
15684 except for the performance cost. Adding too few will result in
15685 wasted time in find_partial_die, when we reread the compilation
15686 unit with load_all_dies set. */
15687
15688 if (load_all
15689 || abbrev->tag == DW_TAG_constant
15690 || abbrev->tag == DW_TAG_subprogram
15691 || abbrev->tag == DW_TAG_variable
15692 || abbrev->tag == DW_TAG_namespace
15693 || part_die->is_declaration)
15694 {
15695 void **slot;
15696
15697 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15698 part_die->offset.sect_off, INSERT);
15699 *slot = part_die;
15700 }
15701
15702 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15703
15704 /* For some DIEs we want to follow their children (if any). For C
15705 we have no reason to follow the children of structures; for other
15706 languages we have to, so that we can get at method physnames
15707 to infer fully qualified class names, for DW_AT_specification,
15708 and for C++ template arguments. For C++, we also look one level
15709 inside functions to find template arguments (if the name of the
15710 function does not already contain the template arguments).
15711
15712 For Ada, we need to scan the children of subprograms and lexical
15713 blocks as well because Ada allows the definition of nested
15714 entities that could be interesting for the debugger, such as
15715 nested subprograms for instance. */
15716 if (last_die->has_children
15717 && (load_all
15718 || last_die->tag == DW_TAG_namespace
15719 || last_die->tag == DW_TAG_module
15720 || last_die->tag == DW_TAG_enumeration_type
15721 || (cu->language == language_cplus
15722 && last_die->tag == DW_TAG_subprogram
15723 && (last_die->name == NULL
15724 || strchr (last_die->name, '<') == NULL))
15725 || (cu->language != language_c
15726 && (last_die->tag == DW_TAG_class_type
15727 || last_die->tag == DW_TAG_interface_type
15728 || last_die->tag == DW_TAG_structure_type
15729 || last_die->tag == DW_TAG_union_type))
15730 || (cu->language == language_ada
15731 && (last_die->tag == DW_TAG_subprogram
15732 || last_die->tag == DW_TAG_lexical_block))))
15733 {
15734 nesting_level++;
15735 parent_die = last_die;
15736 continue;
15737 }
15738
15739 /* Otherwise we skip to the next sibling, if any. */
15740 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15741
15742 /* Back to the top, do it again. */
15743 }
15744 }
15745
15746 /* Read a minimal amount of information into the minimal die structure. */
15747
15748 static const gdb_byte *
15749 read_partial_die (const struct die_reader_specs *reader,
15750 struct partial_die_info *part_die,
15751 struct abbrev_info *abbrev, unsigned int abbrev_len,
15752 const gdb_byte *info_ptr)
15753 {
15754 struct dwarf2_cu *cu = reader->cu;
15755 struct objfile *objfile = cu->objfile;
15756 const gdb_byte *buffer = reader->buffer;
15757 unsigned int i;
15758 struct attribute attr;
15759 int has_low_pc_attr = 0;
15760 int has_high_pc_attr = 0;
15761 int high_pc_relative = 0;
15762
15763 memset (part_die, 0, sizeof (struct partial_die_info));
15764
15765 part_die->offset.sect_off = info_ptr - buffer;
15766
15767 info_ptr += abbrev_len;
15768
15769 if (abbrev == NULL)
15770 return info_ptr;
15771
15772 part_die->tag = abbrev->tag;
15773 part_die->has_children = abbrev->has_children;
15774
15775 for (i = 0; i < abbrev->num_attrs; ++i)
15776 {
15777 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15778
15779 /* Store the data if it is of an attribute we want to keep in a
15780 partial symbol table. */
15781 switch (attr.name)
15782 {
15783 case DW_AT_name:
15784 switch (part_die->tag)
15785 {
15786 case DW_TAG_compile_unit:
15787 case DW_TAG_partial_unit:
15788 case DW_TAG_type_unit:
15789 /* Compilation units have a DW_AT_name that is a filename, not
15790 a source language identifier. */
15791 case DW_TAG_enumeration_type:
15792 case DW_TAG_enumerator:
15793 /* These tags always have simple identifiers already; no need
15794 to canonicalize them. */
15795 part_die->name = DW_STRING (&attr);
15796 break;
15797 default:
15798 part_die->name
15799 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15800 &objfile->per_bfd->storage_obstack);
15801 break;
15802 }
15803 break;
15804 case DW_AT_linkage_name:
15805 case DW_AT_MIPS_linkage_name:
15806 /* Note that both forms of linkage name might appear. We
15807 assume they will be the same, and we only store the last
15808 one we see. */
15809 if (cu->language == language_ada)
15810 part_die->name = DW_STRING (&attr);
15811 part_die->linkage_name = DW_STRING (&attr);
15812 break;
15813 case DW_AT_low_pc:
15814 has_low_pc_attr = 1;
15815 part_die->lowpc = attr_value_as_address (&attr);
15816 break;
15817 case DW_AT_high_pc:
15818 has_high_pc_attr = 1;
15819 part_die->highpc = attr_value_as_address (&attr);
15820 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15821 high_pc_relative = 1;
15822 break;
15823 case DW_AT_location:
15824 /* Support the .debug_loc offsets. */
15825 if (attr_form_is_block (&attr))
15826 {
15827 part_die->d.locdesc = DW_BLOCK (&attr);
15828 }
15829 else if (attr_form_is_section_offset (&attr))
15830 {
15831 dwarf2_complex_location_expr_complaint ();
15832 }
15833 else
15834 {
15835 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15836 "partial symbol information");
15837 }
15838 break;
15839 case DW_AT_external:
15840 part_die->is_external = DW_UNSND (&attr);
15841 break;
15842 case DW_AT_declaration:
15843 part_die->is_declaration = DW_UNSND (&attr);
15844 break;
15845 case DW_AT_type:
15846 part_die->has_type = 1;
15847 break;
15848 case DW_AT_abstract_origin:
15849 case DW_AT_specification:
15850 case DW_AT_extension:
15851 part_die->has_specification = 1;
15852 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15853 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15854 || cu->per_cu->is_dwz);
15855 break;
15856 case DW_AT_sibling:
15857 /* Ignore absolute siblings, they might point outside of
15858 the current compile unit. */
15859 if (attr.form == DW_FORM_ref_addr)
15860 complaint (&symfile_complaints,
15861 _("ignoring absolute DW_AT_sibling"));
15862 else
15863 {
15864 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15865 const gdb_byte *sibling_ptr = buffer + off;
15866
15867 if (sibling_ptr < info_ptr)
15868 complaint (&symfile_complaints,
15869 _("DW_AT_sibling points backwards"));
15870 else if (sibling_ptr > reader->buffer_end)
15871 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15872 else
15873 part_die->sibling = sibling_ptr;
15874 }
15875 break;
15876 case DW_AT_byte_size:
15877 part_die->has_byte_size = 1;
15878 break;
15879 case DW_AT_const_value:
15880 part_die->has_const_value = 1;
15881 break;
15882 case DW_AT_calling_convention:
15883 /* DWARF doesn't provide a way to identify a program's source-level
15884 entry point. DW_AT_calling_convention attributes are only meant
15885 to describe functions' calling conventions.
15886
15887 However, because it's a necessary piece of information in
15888 Fortran, and before DWARF 4 DW_CC_program was the only
15889 piece of debugging information whose definition refers to
15890 a 'main program' at all, several compilers marked Fortran
15891 main programs with DW_CC_program --- even when those
15892 functions use the standard calling conventions.
15893
15894 Although DWARF now specifies a way to provide this
15895 information, we support this practice for backward
15896 compatibility. */
15897 if (DW_UNSND (&attr) == DW_CC_program
15898 && cu->language == language_fortran)
15899 part_die->main_subprogram = 1;
15900 break;
15901 case DW_AT_inline:
15902 if (DW_UNSND (&attr) == DW_INL_inlined
15903 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15904 part_die->may_be_inlined = 1;
15905 break;
15906
15907 case DW_AT_import:
15908 if (part_die->tag == DW_TAG_imported_unit)
15909 {
15910 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15911 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15912 || cu->per_cu->is_dwz);
15913 }
15914 break;
15915
15916 case DW_AT_main_subprogram:
15917 part_die->main_subprogram = DW_UNSND (&attr);
15918 break;
15919
15920 default:
15921 break;
15922 }
15923 }
15924
15925 if (high_pc_relative)
15926 part_die->highpc += part_die->lowpc;
15927
15928 if (has_low_pc_attr && has_high_pc_attr)
15929 {
15930 /* When using the GNU linker, .gnu.linkonce. sections are used to
15931 eliminate duplicate copies of functions and vtables and such.
15932 The linker will arbitrarily choose one and discard the others.
15933 The AT_*_pc values for such functions refer to local labels in
15934 these sections. If the section from that file was discarded, the
15935 labels are not in the output, so the relocs get a value of 0.
15936 If this is a discarded function, mark the pc bounds as invalid,
15937 so that GDB will ignore it. */
15938 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15939 {
15940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15941
15942 complaint (&symfile_complaints,
15943 _("DW_AT_low_pc %s is zero "
15944 "for DIE at 0x%x [in module %s]"),
15945 paddress (gdbarch, part_die->lowpc),
15946 part_die->offset.sect_off, objfile_name (objfile));
15947 }
15948 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15949 else if (part_die->lowpc >= part_die->highpc)
15950 {
15951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15952
15953 complaint (&symfile_complaints,
15954 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15955 "for DIE at 0x%x [in module %s]"),
15956 paddress (gdbarch, part_die->lowpc),
15957 paddress (gdbarch, part_die->highpc),
15958 part_die->offset.sect_off, objfile_name (objfile));
15959 }
15960 else
15961 part_die->has_pc_info = 1;
15962 }
15963
15964 return info_ptr;
15965 }
15966
15967 /* Find a cached partial DIE at OFFSET in CU. */
15968
15969 static struct partial_die_info *
15970 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15971 {
15972 struct partial_die_info *lookup_die = NULL;
15973 struct partial_die_info part_die;
15974
15975 part_die.offset = offset;
15976 lookup_die = ((struct partial_die_info *)
15977 htab_find_with_hash (cu->partial_dies, &part_die,
15978 offset.sect_off));
15979
15980 return lookup_die;
15981 }
15982
15983 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15984 except in the case of .debug_types DIEs which do not reference
15985 outside their CU (they do however referencing other types via
15986 DW_FORM_ref_sig8). */
15987
15988 static struct partial_die_info *
15989 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15990 {
15991 struct objfile *objfile = cu->objfile;
15992 struct dwarf2_per_cu_data *per_cu = NULL;
15993 struct partial_die_info *pd = NULL;
15994
15995 if (offset_in_dwz == cu->per_cu->is_dwz
15996 && offset_in_cu_p (&cu->header, offset))
15997 {
15998 pd = find_partial_die_in_comp_unit (offset, cu);
15999 if (pd != NULL)
16000 return pd;
16001 /* We missed recording what we needed.
16002 Load all dies and try again. */
16003 per_cu = cu->per_cu;
16004 }
16005 else
16006 {
16007 /* TUs don't reference other CUs/TUs (except via type signatures). */
16008 if (cu->per_cu->is_debug_types)
16009 {
16010 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16011 " external reference to offset 0x%lx [in module %s].\n"),
16012 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16013 bfd_get_filename (objfile->obfd));
16014 }
16015 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16016 objfile);
16017
16018 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16019 load_partial_comp_unit (per_cu);
16020
16021 per_cu->cu->last_used = 0;
16022 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16023 }
16024
16025 /* If we didn't find it, and not all dies have been loaded,
16026 load them all and try again. */
16027
16028 if (pd == NULL && per_cu->load_all_dies == 0)
16029 {
16030 per_cu->load_all_dies = 1;
16031
16032 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16033 THIS_CU->cu may already be in use. So we can't just free it and
16034 replace its DIEs with the ones we read in. Instead, we leave those
16035 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16036 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16037 set. */
16038 load_partial_comp_unit (per_cu);
16039
16040 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16041 }
16042
16043 if (pd == NULL)
16044 internal_error (__FILE__, __LINE__,
16045 _("could not find partial DIE 0x%x "
16046 "in cache [from module %s]\n"),
16047 offset.sect_off, bfd_get_filename (objfile->obfd));
16048 return pd;
16049 }
16050
16051 /* See if we can figure out if the class lives in a namespace. We do
16052 this by looking for a member function; its demangled name will
16053 contain namespace info, if there is any. */
16054
16055 static void
16056 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16057 struct dwarf2_cu *cu)
16058 {
16059 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16060 what template types look like, because the demangler
16061 frequently doesn't give the same name as the debug info. We
16062 could fix this by only using the demangled name to get the
16063 prefix (but see comment in read_structure_type). */
16064
16065 struct partial_die_info *real_pdi;
16066 struct partial_die_info *child_pdi;
16067
16068 /* If this DIE (this DIE's specification, if any) has a parent, then
16069 we should not do this. We'll prepend the parent's fully qualified
16070 name when we create the partial symbol. */
16071
16072 real_pdi = struct_pdi;
16073 while (real_pdi->has_specification)
16074 real_pdi = find_partial_die (real_pdi->spec_offset,
16075 real_pdi->spec_is_dwz, cu);
16076
16077 if (real_pdi->die_parent != NULL)
16078 return;
16079
16080 for (child_pdi = struct_pdi->die_child;
16081 child_pdi != NULL;
16082 child_pdi = child_pdi->die_sibling)
16083 {
16084 if (child_pdi->tag == DW_TAG_subprogram
16085 && child_pdi->linkage_name != NULL)
16086 {
16087 char *actual_class_name
16088 = language_class_name_from_physname (cu->language_defn,
16089 child_pdi->linkage_name);
16090 if (actual_class_name != NULL)
16091 {
16092 struct_pdi->name
16093 = ((const char *)
16094 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16095 actual_class_name,
16096 strlen (actual_class_name)));
16097 xfree (actual_class_name);
16098 }
16099 break;
16100 }
16101 }
16102 }
16103
16104 /* Adjust PART_DIE before generating a symbol for it. This function
16105 may set the is_external flag or change the DIE's name. */
16106
16107 static void
16108 fixup_partial_die (struct partial_die_info *part_die,
16109 struct dwarf2_cu *cu)
16110 {
16111 /* Once we've fixed up a die, there's no point in doing so again.
16112 This also avoids a memory leak if we were to call
16113 guess_partial_die_structure_name multiple times. */
16114 if (part_die->fixup_called)
16115 return;
16116
16117 /* If we found a reference attribute and the DIE has no name, try
16118 to find a name in the referred to DIE. */
16119
16120 if (part_die->name == NULL && part_die->has_specification)
16121 {
16122 struct partial_die_info *spec_die;
16123
16124 spec_die = find_partial_die (part_die->spec_offset,
16125 part_die->spec_is_dwz, cu);
16126
16127 fixup_partial_die (spec_die, cu);
16128
16129 if (spec_die->name)
16130 {
16131 part_die->name = spec_die->name;
16132
16133 /* Copy DW_AT_external attribute if it is set. */
16134 if (spec_die->is_external)
16135 part_die->is_external = spec_die->is_external;
16136 }
16137 }
16138
16139 /* Set default names for some unnamed DIEs. */
16140
16141 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16142 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16143
16144 /* If there is no parent die to provide a namespace, and there are
16145 children, see if we can determine the namespace from their linkage
16146 name. */
16147 if (cu->language == language_cplus
16148 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16149 && part_die->die_parent == NULL
16150 && part_die->has_children
16151 && (part_die->tag == DW_TAG_class_type
16152 || part_die->tag == DW_TAG_structure_type
16153 || part_die->tag == DW_TAG_union_type))
16154 guess_partial_die_structure_name (part_die, cu);
16155
16156 /* GCC might emit a nameless struct or union that has a linkage
16157 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16158 if (part_die->name == NULL
16159 && (part_die->tag == DW_TAG_class_type
16160 || part_die->tag == DW_TAG_interface_type
16161 || part_die->tag == DW_TAG_structure_type
16162 || part_die->tag == DW_TAG_union_type)
16163 && part_die->linkage_name != NULL)
16164 {
16165 char *demangled;
16166
16167 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16168 if (demangled)
16169 {
16170 const char *base;
16171
16172 /* Strip any leading namespaces/classes, keep only the base name.
16173 DW_AT_name for named DIEs does not contain the prefixes. */
16174 base = strrchr (demangled, ':');
16175 if (base && base > demangled && base[-1] == ':')
16176 base++;
16177 else
16178 base = demangled;
16179
16180 part_die->name
16181 = ((const char *)
16182 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16183 base, strlen (base)));
16184 xfree (demangled);
16185 }
16186 }
16187
16188 part_die->fixup_called = 1;
16189 }
16190
16191 /* Read an attribute value described by an attribute form. */
16192
16193 static const gdb_byte *
16194 read_attribute_value (const struct die_reader_specs *reader,
16195 struct attribute *attr, unsigned form,
16196 const gdb_byte *info_ptr)
16197 {
16198 struct dwarf2_cu *cu = reader->cu;
16199 struct objfile *objfile = cu->objfile;
16200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16201 bfd *abfd = reader->abfd;
16202 struct comp_unit_head *cu_header = &cu->header;
16203 unsigned int bytes_read;
16204 struct dwarf_block *blk;
16205
16206 attr->form = (enum dwarf_form) form;
16207 switch (form)
16208 {
16209 case DW_FORM_ref_addr:
16210 if (cu->header.version == 2)
16211 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16212 else
16213 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16214 &cu->header, &bytes_read);
16215 info_ptr += bytes_read;
16216 break;
16217 case DW_FORM_GNU_ref_alt:
16218 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16219 info_ptr += bytes_read;
16220 break;
16221 case DW_FORM_addr:
16222 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16223 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16224 info_ptr += bytes_read;
16225 break;
16226 case DW_FORM_block2:
16227 blk = dwarf_alloc_block (cu);
16228 blk->size = read_2_bytes (abfd, info_ptr);
16229 info_ptr += 2;
16230 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16231 info_ptr += blk->size;
16232 DW_BLOCK (attr) = blk;
16233 break;
16234 case DW_FORM_block4:
16235 blk = dwarf_alloc_block (cu);
16236 blk->size = read_4_bytes (abfd, info_ptr);
16237 info_ptr += 4;
16238 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16239 info_ptr += blk->size;
16240 DW_BLOCK (attr) = blk;
16241 break;
16242 case DW_FORM_data2:
16243 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16244 info_ptr += 2;
16245 break;
16246 case DW_FORM_data4:
16247 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16248 info_ptr += 4;
16249 break;
16250 case DW_FORM_data8:
16251 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16252 info_ptr += 8;
16253 break;
16254 case DW_FORM_sec_offset:
16255 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16256 info_ptr += bytes_read;
16257 break;
16258 case DW_FORM_string:
16259 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16260 DW_STRING_IS_CANONICAL (attr) = 0;
16261 info_ptr += bytes_read;
16262 break;
16263 case DW_FORM_strp:
16264 if (!cu->per_cu->is_dwz)
16265 {
16266 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16267 &bytes_read);
16268 DW_STRING_IS_CANONICAL (attr) = 0;
16269 info_ptr += bytes_read;
16270 break;
16271 }
16272 /* FALLTHROUGH */
16273 case DW_FORM_GNU_strp_alt:
16274 {
16275 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16276 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16277 &bytes_read);
16278
16279 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16280 DW_STRING_IS_CANONICAL (attr) = 0;
16281 info_ptr += bytes_read;
16282 }
16283 break;
16284 case DW_FORM_exprloc:
16285 case DW_FORM_block:
16286 blk = dwarf_alloc_block (cu);
16287 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16288 info_ptr += bytes_read;
16289 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16290 info_ptr += blk->size;
16291 DW_BLOCK (attr) = blk;
16292 break;
16293 case DW_FORM_block1:
16294 blk = dwarf_alloc_block (cu);
16295 blk->size = read_1_byte (abfd, info_ptr);
16296 info_ptr += 1;
16297 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16298 info_ptr += blk->size;
16299 DW_BLOCK (attr) = blk;
16300 break;
16301 case DW_FORM_data1:
16302 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16303 info_ptr += 1;
16304 break;
16305 case DW_FORM_flag:
16306 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16307 info_ptr += 1;
16308 break;
16309 case DW_FORM_flag_present:
16310 DW_UNSND (attr) = 1;
16311 break;
16312 case DW_FORM_sdata:
16313 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16314 info_ptr += bytes_read;
16315 break;
16316 case DW_FORM_udata:
16317 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16318 info_ptr += bytes_read;
16319 break;
16320 case DW_FORM_ref1:
16321 DW_UNSND (attr) = (cu->header.offset.sect_off
16322 + read_1_byte (abfd, info_ptr));
16323 info_ptr += 1;
16324 break;
16325 case DW_FORM_ref2:
16326 DW_UNSND (attr) = (cu->header.offset.sect_off
16327 + read_2_bytes (abfd, info_ptr));
16328 info_ptr += 2;
16329 break;
16330 case DW_FORM_ref4:
16331 DW_UNSND (attr) = (cu->header.offset.sect_off
16332 + read_4_bytes (abfd, info_ptr));
16333 info_ptr += 4;
16334 break;
16335 case DW_FORM_ref8:
16336 DW_UNSND (attr) = (cu->header.offset.sect_off
16337 + read_8_bytes (abfd, info_ptr));
16338 info_ptr += 8;
16339 break;
16340 case DW_FORM_ref_sig8:
16341 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16342 info_ptr += 8;
16343 break;
16344 case DW_FORM_ref_udata:
16345 DW_UNSND (attr) = (cu->header.offset.sect_off
16346 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16347 info_ptr += bytes_read;
16348 break;
16349 case DW_FORM_indirect:
16350 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16351 info_ptr += bytes_read;
16352 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16353 break;
16354 case DW_FORM_GNU_addr_index:
16355 if (reader->dwo_file == NULL)
16356 {
16357 /* For now flag a hard error.
16358 Later we can turn this into a complaint. */
16359 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16360 dwarf_form_name (form),
16361 bfd_get_filename (abfd));
16362 }
16363 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16364 info_ptr += bytes_read;
16365 break;
16366 case DW_FORM_GNU_str_index:
16367 if (reader->dwo_file == NULL)
16368 {
16369 /* For now flag a hard error.
16370 Later we can turn this into a complaint if warranted. */
16371 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16372 dwarf_form_name (form),
16373 bfd_get_filename (abfd));
16374 }
16375 {
16376 ULONGEST str_index =
16377 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16378
16379 DW_STRING (attr) = read_str_index (reader, str_index);
16380 DW_STRING_IS_CANONICAL (attr) = 0;
16381 info_ptr += bytes_read;
16382 }
16383 break;
16384 default:
16385 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16386 dwarf_form_name (form),
16387 bfd_get_filename (abfd));
16388 }
16389
16390 /* Super hack. */
16391 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16392 attr->form = DW_FORM_GNU_ref_alt;
16393
16394 /* We have seen instances where the compiler tried to emit a byte
16395 size attribute of -1 which ended up being encoded as an unsigned
16396 0xffffffff. Although 0xffffffff is technically a valid size value,
16397 an object of this size seems pretty unlikely so we can relatively
16398 safely treat these cases as if the size attribute was invalid and
16399 treat them as zero by default. */
16400 if (attr->name == DW_AT_byte_size
16401 && form == DW_FORM_data4
16402 && DW_UNSND (attr) >= 0xffffffff)
16403 {
16404 complaint
16405 (&symfile_complaints,
16406 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16407 hex_string (DW_UNSND (attr)));
16408 DW_UNSND (attr) = 0;
16409 }
16410
16411 return info_ptr;
16412 }
16413
16414 /* Read an attribute described by an abbreviated attribute. */
16415
16416 static const gdb_byte *
16417 read_attribute (const struct die_reader_specs *reader,
16418 struct attribute *attr, struct attr_abbrev *abbrev,
16419 const gdb_byte *info_ptr)
16420 {
16421 attr->name = abbrev->name;
16422 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16423 }
16424
16425 /* Read dwarf information from a buffer. */
16426
16427 static unsigned int
16428 read_1_byte (bfd *abfd, const gdb_byte *buf)
16429 {
16430 return bfd_get_8 (abfd, buf);
16431 }
16432
16433 static int
16434 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16435 {
16436 return bfd_get_signed_8 (abfd, buf);
16437 }
16438
16439 static unsigned int
16440 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16441 {
16442 return bfd_get_16 (abfd, buf);
16443 }
16444
16445 static int
16446 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16447 {
16448 return bfd_get_signed_16 (abfd, buf);
16449 }
16450
16451 static unsigned int
16452 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16453 {
16454 return bfd_get_32 (abfd, buf);
16455 }
16456
16457 static int
16458 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16459 {
16460 return bfd_get_signed_32 (abfd, buf);
16461 }
16462
16463 static ULONGEST
16464 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16465 {
16466 return bfd_get_64 (abfd, buf);
16467 }
16468
16469 static CORE_ADDR
16470 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16471 unsigned int *bytes_read)
16472 {
16473 struct comp_unit_head *cu_header = &cu->header;
16474 CORE_ADDR retval = 0;
16475
16476 if (cu_header->signed_addr_p)
16477 {
16478 switch (cu_header->addr_size)
16479 {
16480 case 2:
16481 retval = bfd_get_signed_16 (abfd, buf);
16482 break;
16483 case 4:
16484 retval = bfd_get_signed_32 (abfd, buf);
16485 break;
16486 case 8:
16487 retval = bfd_get_signed_64 (abfd, buf);
16488 break;
16489 default:
16490 internal_error (__FILE__, __LINE__,
16491 _("read_address: bad switch, signed [in module %s]"),
16492 bfd_get_filename (abfd));
16493 }
16494 }
16495 else
16496 {
16497 switch (cu_header->addr_size)
16498 {
16499 case 2:
16500 retval = bfd_get_16 (abfd, buf);
16501 break;
16502 case 4:
16503 retval = bfd_get_32 (abfd, buf);
16504 break;
16505 case 8:
16506 retval = bfd_get_64 (abfd, buf);
16507 break;
16508 default:
16509 internal_error (__FILE__, __LINE__,
16510 _("read_address: bad switch, "
16511 "unsigned [in module %s]"),
16512 bfd_get_filename (abfd));
16513 }
16514 }
16515
16516 *bytes_read = cu_header->addr_size;
16517 return retval;
16518 }
16519
16520 /* Read the initial length from a section. The (draft) DWARF 3
16521 specification allows the initial length to take up either 4 bytes
16522 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16523 bytes describe the length and all offsets will be 8 bytes in length
16524 instead of 4.
16525
16526 An older, non-standard 64-bit format is also handled by this
16527 function. The older format in question stores the initial length
16528 as an 8-byte quantity without an escape value. Lengths greater
16529 than 2^32 aren't very common which means that the initial 4 bytes
16530 is almost always zero. Since a length value of zero doesn't make
16531 sense for the 32-bit format, this initial zero can be considered to
16532 be an escape value which indicates the presence of the older 64-bit
16533 format. As written, the code can't detect (old format) lengths
16534 greater than 4GB. If it becomes necessary to handle lengths
16535 somewhat larger than 4GB, we could allow other small values (such
16536 as the non-sensical values of 1, 2, and 3) to also be used as
16537 escape values indicating the presence of the old format.
16538
16539 The value returned via bytes_read should be used to increment the
16540 relevant pointer after calling read_initial_length().
16541
16542 [ Note: read_initial_length() and read_offset() are based on the
16543 document entitled "DWARF Debugging Information Format", revision
16544 3, draft 8, dated November 19, 2001. This document was obtained
16545 from:
16546
16547 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16548
16549 This document is only a draft and is subject to change. (So beware.)
16550
16551 Details regarding the older, non-standard 64-bit format were
16552 determined empirically by examining 64-bit ELF files produced by
16553 the SGI toolchain on an IRIX 6.5 machine.
16554
16555 - Kevin, July 16, 2002
16556 ] */
16557
16558 static LONGEST
16559 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16560 {
16561 LONGEST length = bfd_get_32 (abfd, buf);
16562
16563 if (length == 0xffffffff)
16564 {
16565 length = bfd_get_64 (abfd, buf + 4);
16566 *bytes_read = 12;
16567 }
16568 else if (length == 0)
16569 {
16570 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16571 length = bfd_get_64 (abfd, buf);
16572 *bytes_read = 8;
16573 }
16574 else
16575 {
16576 *bytes_read = 4;
16577 }
16578
16579 return length;
16580 }
16581
16582 /* Cover function for read_initial_length.
16583 Returns the length of the object at BUF, and stores the size of the
16584 initial length in *BYTES_READ and stores the size that offsets will be in
16585 *OFFSET_SIZE.
16586 If the initial length size is not equivalent to that specified in
16587 CU_HEADER then issue a complaint.
16588 This is useful when reading non-comp-unit headers. */
16589
16590 static LONGEST
16591 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16592 const struct comp_unit_head *cu_header,
16593 unsigned int *bytes_read,
16594 unsigned int *offset_size)
16595 {
16596 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16597
16598 gdb_assert (cu_header->initial_length_size == 4
16599 || cu_header->initial_length_size == 8
16600 || cu_header->initial_length_size == 12);
16601
16602 if (cu_header->initial_length_size != *bytes_read)
16603 complaint (&symfile_complaints,
16604 _("intermixed 32-bit and 64-bit DWARF sections"));
16605
16606 *offset_size = (*bytes_read == 4) ? 4 : 8;
16607 return length;
16608 }
16609
16610 /* Read an offset from the data stream. The size of the offset is
16611 given by cu_header->offset_size. */
16612
16613 static LONGEST
16614 read_offset (bfd *abfd, const gdb_byte *buf,
16615 const struct comp_unit_head *cu_header,
16616 unsigned int *bytes_read)
16617 {
16618 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16619
16620 *bytes_read = cu_header->offset_size;
16621 return offset;
16622 }
16623
16624 /* Read an offset from the data stream. */
16625
16626 static LONGEST
16627 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16628 {
16629 LONGEST retval = 0;
16630
16631 switch (offset_size)
16632 {
16633 case 4:
16634 retval = bfd_get_32 (abfd, buf);
16635 break;
16636 case 8:
16637 retval = bfd_get_64 (abfd, buf);
16638 break;
16639 default:
16640 internal_error (__FILE__, __LINE__,
16641 _("read_offset_1: bad switch [in module %s]"),
16642 bfd_get_filename (abfd));
16643 }
16644
16645 return retval;
16646 }
16647
16648 static const gdb_byte *
16649 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16650 {
16651 /* If the size of a host char is 8 bits, we can return a pointer
16652 to the buffer, otherwise we have to copy the data to a buffer
16653 allocated on the temporary obstack. */
16654 gdb_assert (HOST_CHAR_BIT == 8);
16655 return buf;
16656 }
16657
16658 static const char *
16659 read_direct_string (bfd *abfd, const gdb_byte *buf,
16660 unsigned int *bytes_read_ptr)
16661 {
16662 /* If the size of a host char is 8 bits, we can return a pointer
16663 to the string, otherwise we have to copy the string to a buffer
16664 allocated on the temporary obstack. */
16665 gdb_assert (HOST_CHAR_BIT == 8);
16666 if (*buf == '\0')
16667 {
16668 *bytes_read_ptr = 1;
16669 return NULL;
16670 }
16671 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16672 return (const char *) buf;
16673 }
16674
16675 static const char *
16676 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16677 {
16678 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16679 if (dwarf2_per_objfile->str.buffer == NULL)
16680 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16681 bfd_get_filename (abfd));
16682 if (str_offset >= dwarf2_per_objfile->str.size)
16683 error (_("DW_FORM_strp pointing outside of "
16684 ".debug_str section [in module %s]"),
16685 bfd_get_filename (abfd));
16686 gdb_assert (HOST_CHAR_BIT == 8);
16687 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16688 return NULL;
16689 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16690 }
16691
16692 /* Read a string at offset STR_OFFSET in the .debug_str section from
16693 the .dwz file DWZ. Throw an error if the offset is too large. If
16694 the string consists of a single NUL byte, return NULL; otherwise
16695 return a pointer to the string. */
16696
16697 static const char *
16698 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16699 {
16700 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16701
16702 if (dwz->str.buffer == NULL)
16703 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16704 "section [in module %s]"),
16705 bfd_get_filename (dwz->dwz_bfd));
16706 if (str_offset >= dwz->str.size)
16707 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16708 ".debug_str section [in module %s]"),
16709 bfd_get_filename (dwz->dwz_bfd));
16710 gdb_assert (HOST_CHAR_BIT == 8);
16711 if (dwz->str.buffer[str_offset] == '\0')
16712 return NULL;
16713 return (const char *) (dwz->str.buffer + str_offset);
16714 }
16715
16716 static const char *
16717 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16718 const struct comp_unit_head *cu_header,
16719 unsigned int *bytes_read_ptr)
16720 {
16721 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16722
16723 return read_indirect_string_at_offset (abfd, str_offset);
16724 }
16725
16726 static ULONGEST
16727 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16728 unsigned int *bytes_read_ptr)
16729 {
16730 ULONGEST result;
16731 unsigned int num_read;
16732 int shift;
16733 unsigned char byte;
16734
16735 result = 0;
16736 shift = 0;
16737 num_read = 0;
16738 while (1)
16739 {
16740 byte = bfd_get_8 (abfd, buf);
16741 buf++;
16742 num_read++;
16743 result |= ((ULONGEST) (byte & 127) << shift);
16744 if ((byte & 128) == 0)
16745 {
16746 break;
16747 }
16748 shift += 7;
16749 }
16750 *bytes_read_ptr = num_read;
16751 return result;
16752 }
16753
16754 static LONGEST
16755 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16756 unsigned int *bytes_read_ptr)
16757 {
16758 LONGEST result;
16759 int shift, num_read;
16760 unsigned char byte;
16761
16762 result = 0;
16763 shift = 0;
16764 num_read = 0;
16765 while (1)
16766 {
16767 byte = bfd_get_8 (abfd, buf);
16768 buf++;
16769 num_read++;
16770 result |= ((LONGEST) (byte & 127) << shift);
16771 shift += 7;
16772 if ((byte & 128) == 0)
16773 {
16774 break;
16775 }
16776 }
16777 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16778 result |= -(((LONGEST) 1) << shift);
16779 *bytes_read_ptr = num_read;
16780 return result;
16781 }
16782
16783 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16784 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16785 ADDR_SIZE is the size of addresses from the CU header. */
16786
16787 static CORE_ADDR
16788 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16789 {
16790 struct objfile *objfile = dwarf2_per_objfile->objfile;
16791 bfd *abfd = objfile->obfd;
16792 const gdb_byte *info_ptr;
16793
16794 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16795 if (dwarf2_per_objfile->addr.buffer == NULL)
16796 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16797 objfile_name (objfile));
16798 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16799 error (_("DW_FORM_addr_index pointing outside of "
16800 ".debug_addr section [in module %s]"),
16801 objfile_name (objfile));
16802 info_ptr = (dwarf2_per_objfile->addr.buffer
16803 + addr_base + addr_index * addr_size);
16804 if (addr_size == 4)
16805 return bfd_get_32 (abfd, info_ptr);
16806 else
16807 return bfd_get_64 (abfd, info_ptr);
16808 }
16809
16810 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16811
16812 static CORE_ADDR
16813 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16814 {
16815 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16816 }
16817
16818 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16819
16820 static CORE_ADDR
16821 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16822 unsigned int *bytes_read)
16823 {
16824 bfd *abfd = cu->objfile->obfd;
16825 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16826
16827 return read_addr_index (cu, addr_index);
16828 }
16829
16830 /* Data structure to pass results from dwarf2_read_addr_index_reader
16831 back to dwarf2_read_addr_index. */
16832
16833 struct dwarf2_read_addr_index_data
16834 {
16835 ULONGEST addr_base;
16836 int addr_size;
16837 };
16838
16839 /* die_reader_func for dwarf2_read_addr_index. */
16840
16841 static void
16842 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16843 const gdb_byte *info_ptr,
16844 struct die_info *comp_unit_die,
16845 int has_children,
16846 void *data)
16847 {
16848 struct dwarf2_cu *cu = reader->cu;
16849 struct dwarf2_read_addr_index_data *aidata =
16850 (struct dwarf2_read_addr_index_data *) data;
16851
16852 aidata->addr_base = cu->addr_base;
16853 aidata->addr_size = cu->header.addr_size;
16854 }
16855
16856 /* Given an index in .debug_addr, fetch the value.
16857 NOTE: This can be called during dwarf expression evaluation,
16858 long after the debug information has been read, and thus per_cu->cu
16859 may no longer exist. */
16860
16861 CORE_ADDR
16862 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16863 unsigned int addr_index)
16864 {
16865 struct objfile *objfile = per_cu->objfile;
16866 struct dwarf2_cu *cu = per_cu->cu;
16867 ULONGEST addr_base;
16868 int addr_size;
16869
16870 /* This is intended to be called from outside this file. */
16871 dw2_setup (objfile);
16872
16873 /* We need addr_base and addr_size.
16874 If we don't have PER_CU->cu, we have to get it.
16875 Nasty, but the alternative is storing the needed info in PER_CU,
16876 which at this point doesn't seem justified: it's not clear how frequently
16877 it would get used and it would increase the size of every PER_CU.
16878 Entry points like dwarf2_per_cu_addr_size do a similar thing
16879 so we're not in uncharted territory here.
16880 Alas we need to be a bit more complicated as addr_base is contained
16881 in the DIE.
16882
16883 We don't need to read the entire CU(/TU).
16884 We just need the header and top level die.
16885
16886 IWBN to use the aging mechanism to let us lazily later discard the CU.
16887 For now we skip this optimization. */
16888
16889 if (cu != NULL)
16890 {
16891 addr_base = cu->addr_base;
16892 addr_size = cu->header.addr_size;
16893 }
16894 else
16895 {
16896 struct dwarf2_read_addr_index_data aidata;
16897
16898 /* Note: We can't use init_cutu_and_read_dies_simple here,
16899 we need addr_base. */
16900 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16901 dwarf2_read_addr_index_reader, &aidata);
16902 addr_base = aidata.addr_base;
16903 addr_size = aidata.addr_size;
16904 }
16905
16906 return read_addr_index_1 (addr_index, addr_base, addr_size);
16907 }
16908
16909 /* Given a DW_FORM_GNU_str_index, fetch the string.
16910 This is only used by the Fission support. */
16911
16912 static const char *
16913 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16914 {
16915 struct objfile *objfile = dwarf2_per_objfile->objfile;
16916 const char *objf_name = objfile_name (objfile);
16917 bfd *abfd = objfile->obfd;
16918 struct dwarf2_cu *cu = reader->cu;
16919 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16920 struct dwarf2_section_info *str_offsets_section =
16921 &reader->dwo_file->sections.str_offsets;
16922 const gdb_byte *info_ptr;
16923 ULONGEST str_offset;
16924 static const char form_name[] = "DW_FORM_GNU_str_index";
16925
16926 dwarf2_read_section (objfile, str_section);
16927 dwarf2_read_section (objfile, str_offsets_section);
16928 if (str_section->buffer == NULL)
16929 error (_("%s used without .debug_str.dwo section"
16930 " in CU at offset 0x%lx [in module %s]"),
16931 form_name, (long) cu->header.offset.sect_off, objf_name);
16932 if (str_offsets_section->buffer == NULL)
16933 error (_("%s used without .debug_str_offsets.dwo section"
16934 " in CU at offset 0x%lx [in module %s]"),
16935 form_name, (long) cu->header.offset.sect_off, objf_name);
16936 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16937 error (_("%s pointing outside of .debug_str_offsets.dwo"
16938 " section in CU at offset 0x%lx [in module %s]"),
16939 form_name, (long) cu->header.offset.sect_off, objf_name);
16940 info_ptr = (str_offsets_section->buffer
16941 + str_index * cu->header.offset_size);
16942 if (cu->header.offset_size == 4)
16943 str_offset = bfd_get_32 (abfd, info_ptr);
16944 else
16945 str_offset = bfd_get_64 (abfd, info_ptr);
16946 if (str_offset >= str_section->size)
16947 error (_("Offset from %s pointing outside of"
16948 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16949 form_name, (long) cu->header.offset.sect_off, objf_name);
16950 return (const char *) (str_section->buffer + str_offset);
16951 }
16952
16953 /* Return the length of an LEB128 number in BUF. */
16954
16955 static int
16956 leb128_size (const gdb_byte *buf)
16957 {
16958 const gdb_byte *begin = buf;
16959 gdb_byte byte;
16960
16961 while (1)
16962 {
16963 byte = *buf++;
16964 if ((byte & 128) == 0)
16965 return buf - begin;
16966 }
16967 }
16968
16969 static void
16970 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16971 {
16972 switch (lang)
16973 {
16974 case DW_LANG_C89:
16975 case DW_LANG_C99:
16976 case DW_LANG_C11:
16977 case DW_LANG_C:
16978 case DW_LANG_UPC:
16979 cu->language = language_c;
16980 break;
16981 case DW_LANG_Java:
16982 case DW_LANG_C_plus_plus:
16983 case DW_LANG_C_plus_plus_11:
16984 case DW_LANG_C_plus_plus_14:
16985 cu->language = language_cplus;
16986 break;
16987 case DW_LANG_D:
16988 cu->language = language_d;
16989 break;
16990 case DW_LANG_Fortran77:
16991 case DW_LANG_Fortran90:
16992 case DW_LANG_Fortran95:
16993 case DW_LANG_Fortran03:
16994 case DW_LANG_Fortran08:
16995 cu->language = language_fortran;
16996 break;
16997 case DW_LANG_Go:
16998 cu->language = language_go;
16999 break;
17000 case DW_LANG_Mips_Assembler:
17001 cu->language = language_asm;
17002 break;
17003 case DW_LANG_Ada83:
17004 case DW_LANG_Ada95:
17005 cu->language = language_ada;
17006 break;
17007 case DW_LANG_Modula2:
17008 cu->language = language_m2;
17009 break;
17010 case DW_LANG_Pascal83:
17011 cu->language = language_pascal;
17012 break;
17013 case DW_LANG_ObjC:
17014 cu->language = language_objc;
17015 break;
17016 case DW_LANG_Rust:
17017 case DW_LANG_Rust_old:
17018 cu->language = language_rust;
17019 break;
17020 case DW_LANG_Cobol74:
17021 case DW_LANG_Cobol85:
17022 default:
17023 cu->language = language_minimal;
17024 break;
17025 }
17026 cu->language_defn = language_def (cu->language);
17027 }
17028
17029 /* Return the named attribute or NULL if not there. */
17030
17031 static struct attribute *
17032 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17033 {
17034 for (;;)
17035 {
17036 unsigned int i;
17037 struct attribute *spec = NULL;
17038
17039 for (i = 0; i < die->num_attrs; ++i)
17040 {
17041 if (die->attrs[i].name == name)
17042 return &die->attrs[i];
17043 if (die->attrs[i].name == DW_AT_specification
17044 || die->attrs[i].name == DW_AT_abstract_origin)
17045 spec = &die->attrs[i];
17046 }
17047
17048 if (!spec)
17049 break;
17050
17051 die = follow_die_ref (die, spec, &cu);
17052 }
17053
17054 return NULL;
17055 }
17056
17057 /* Return the named attribute or NULL if not there,
17058 but do not follow DW_AT_specification, etc.
17059 This is for use in contexts where we're reading .debug_types dies.
17060 Following DW_AT_specification, DW_AT_abstract_origin will take us
17061 back up the chain, and we want to go down. */
17062
17063 static struct attribute *
17064 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17065 {
17066 unsigned int i;
17067
17068 for (i = 0; i < die->num_attrs; ++i)
17069 if (die->attrs[i].name == name)
17070 return &die->attrs[i];
17071
17072 return NULL;
17073 }
17074
17075 /* Return the string associated with a string-typed attribute, or NULL if it
17076 is either not found or is of an incorrect type. */
17077
17078 static const char *
17079 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17080 {
17081 struct attribute *attr;
17082 const char *str = NULL;
17083
17084 attr = dwarf2_attr (die, name, cu);
17085
17086 if (attr != NULL)
17087 {
17088 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17089 || attr->form == DW_FORM_GNU_strp_alt)
17090 str = DW_STRING (attr);
17091 else
17092 complaint (&symfile_complaints,
17093 _("string type expected for attribute %s for "
17094 "DIE at 0x%x in module %s"),
17095 dwarf_attr_name (name), die->offset.sect_off,
17096 objfile_name (cu->objfile));
17097 }
17098
17099 return str;
17100 }
17101
17102 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17103 and holds a non-zero value. This function should only be used for
17104 DW_FORM_flag or DW_FORM_flag_present attributes. */
17105
17106 static int
17107 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17108 {
17109 struct attribute *attr = dwarf2_attr (die, name, cu);
17110
17111 return (attr && DW_UNSND (attr));
17112 }
17113
17114 static int
17115 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17116 {
17117 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17118 which value is non-zero. However, we have to be careful with
17119 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17120 (via dwarf2_flag_true_p) follows this attribute. So we may
17121 end up accidently finding a declaration attribute that belongs
17122 to a different DIE referenced by the specification attribute,
17123 even though the given DIE does not have a declaration attribute. */
17124 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17125 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17126 }
17127
17128 /* Return the die giving the specification for DIE, if there is
17129 one. *SPEC_CU is the CU containing DIE on input, and the CU
17130 containing the return value on output. If there is no
17131 specification, but there is an abstract origin, that is
17132 returned. */
17133
17134 static struct die_info *
17135 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17136 {
17137 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17138 *spec_cu);
17139
17140 if (spec_attr == NULL)
17141 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17142
17143 if (spec_attr == NULL)
17144 return NULL;
17145 else
17146 return follow_die_ref (die, spec_attr, spec_cu);
17147 }
17148
17149 /* Free the line_header structure *LH, and any arrays and strings it
17150 refers to.
17151 NOTE: This is also used as a "cleanup" function. */
17152
17153 static void
17154 free_line_header (struct line_header *lh)
17155 {
17156 if (lh->standard_opcode_lengths)
17157 xfree (lh->standard_opcode_lengths);
17158
17159 /* Remember that all the lh->file_names[i].name pointers are
17160 pointers into debug_line_buffer, and don't need to be freed. */
17161 if (lh->file_names)
17162 xfree (lh->file_names);
17163
17164 /* Similarly for the include directory names. */
17165 if (lh->include_dirs)
17166 xfree (lh->include_dirs);
17167
17168 xfree (lh);
17169 }
17170
17171 /* Stub for free_line_header to match void * callback types. */
17172
17173 static void
17174 free_line_header_voidp (void *arg)
17175 {
17176 struct line_header *lh = (struct line_header *) arg;
17177
17178 free_line_header (lh);
17179 }
17180
17181 /* Add an entry to LH's include directory table. */
17182
17183 static void
17184 add_include_dir (struct line_header *lh, const char *include_dir)
17185 {
17186 if (dwarf_line_debug >= 2)
17187 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17188 lh->num_include_dirs + 1, include_dir);
17189
17190 /* Grow the array if necessary. */
17191 if (lh->include_dirs_size == 0)
17192 {
17193 lh->include_dirs_size = 1; /* for testing */
17194 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17195 }
17196 else if (lh->num_include_dirs >= lh->include_dirs_size)
17197 {
17198 lh->include_dirs_size *= 2;
17199 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17200 lh->include_dirs_size);
17201 }
17202
17203 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17204 }
17205
17206 /* Add an entry to LH's file name table. */
17207
17208 static void
17209 add_file_name (struct line_header *lh,
17210 const char *name,
17211 unsigned int dir_index,
17212 unsigned int mod_time,
17213 unsigned int length)
17214 {
17215 struct file_entry *fe;
17216
17217 if (dwarf_line_debug >= 2)
17218 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17219 lh->num_file_names + 1, name);
17220
17221 /* Grow the array if necessary. */
17222 if (lh->file_names_size == 0)
17223 {
17224 lh->file_names_size = 1; /* for testing */
17225 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17226 }
17227 else if (lh->num_file_names >= lh->file_names_size)
17228 {
17229 lh->file_names_size *= 2;
17230 lh->file_names
17231 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17232 }
17233
17234 fe = &lh->file_names[lh->num_file_names++];
17235 fe->name = name;
17236 fe->dir_index = dir_index;
17237 fe->mod_time = mod_time;
17238 fe->length = length;
17239 fe->included_p = 0;
17240 fe->symtab = NULL;
17241 }
17242
17243 /* A convenience function to find the proper .debug_line section for a CU. */
17244
17245 static struct dwarf2_section_info *
17246 get_debug_line_section (struct dwarf2_cu *cu)
17247 {
17248 struct dwarf2_section_info *section;
17249
17250 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17251 DWO file. */
17252 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17253 section = &cu->dwo_unit->dwo_file->sections.line;
17254 else if (cu->per_cu->is_dwz)
17255 {
17256 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17257
17258 section = &dwz->line;
17259 }
17260 else
17261 section = &dwarf2_per_objfile->line;
17262
17263 return section;
17264 }
17265
17266 /* Read the statement program header starting at OFFSET in
17267 .debug_line, or .debug_line.dwo. Return a pointer
17268 to a struct line_header, allocated using xmalloc.
17269 Returns NULL if there is a problem reading the header, e.g., if it
17270 has a version we don't understand.
17271
17272 NOTE: the strings in the include directory and file name tables of
17273 the returned object point into the dwarf line section buffer,
17274 and must not be freed. */
17275
17276 static struct line_header *
17277 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17278 {
17279 struct cleanup *back_to;
17280 struct line_header *lh;
17281 const gdb_byte *line_ptr;
17282 unsigned int bytes_read, offset_size;
17283 int i;
17284 const char *cur_dir, *cur_file;
17285 struct dwarf2_section_info *section;
17286 bfd *abfd;
17287
17288 section = get_debug_line_section (cu);
17289 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17290 if (section->buffer == NULL)
17291 {
17292 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17293 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17294 else
17295 complaint (&symfile_complaints, _("missing .debug_line section"));
17296 return 0;
17297 }
17298
17299 /* We can't do this until we know the section is non-empty.
17300 Only then do we know we have such a section. */
17301 abfd = get_section_bfd_owner (section);
17302
17303 /* Make sure that at least there's room for the total_length field.
17304 That could be 12 bytes long, but we're just going to fudge that. */
17305 if (offset + 4 >= section->size)
17306 {
17307 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17308 return 0;
17309 }
17310
17311 lh = XNEW (struct line_header);
17312 memset (lh, 0, sizeof (*lh));
17313 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17314 (void *) lh);
17315
17316 lh->offset.sect_off = offset;
17317 lh->offset_in_dwz = cu->per_cu->is_dwz;
17318
17319 line_ptr = section->buffer + offset;
17320
17321 /* Read in the header. */
17322 lh->total_length =
17323 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17324 &bytes_read, &offset_size);
17325 line_ptr += bytes_read;
17326 if (line_ptr + lh->total_length > (section->buffer + section->size))
17327 {
17328 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17329 do_cleanups (back_to);
17330 return 0;
17331 }
17332 lh->statement_program_end = line_ptr + lh->total_length;
17333 lh->version = read_2_bytes (abfd, line_ptr);
17334 line_ptr += 2;
17335 if (lh->version > 4)
17336 {
17337 /* This is a version we don't understand. The format could have
17338 changed in ways we don't handle properly so just punt. */
17339 complaint (&symfile_complaints,
17340 _("unsupported version in .debug_line section"));
17341 return NULL;
17342 }
17343 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17344 line_ptr += offset_size;
17345 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17346 line_ptr += 1;
17347 if (lh->version >= 4)
17348 {
17349 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17350 line_ptr += 1;
17351 }
17352 else
17353 lh->maximum_ops_per_instruction = 1;
17354
17355 if (lh->maximum_ops_per_instruction == 0)
17356 {
17357 lh->maximum_ops_per_instruction = 1;
17358 complaint (&symfile_complaints,
17359 _("invalid maximum_ops_per_instruction "
17360 "in `.debug_line' section"));
17361 }
17362
17363 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17364 line_ptr += 1;
17365 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17366 line_ptr += 1;
17367 lh->line_range = read_1_byte (abfd, line_ptr);
17368 line_ptr += 1;
17369 lh->opcode_base = read_1_byte (abfd, line_ptr);
17370 line_ptr += 1;
17371 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17372
17373 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17374 for (i = 1; i < lh->opcode_base; ++i)
17375 {
17376 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 }
17379
17380 /* Read directory table. */
17381 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17382 {
17383 line_ptr += bytes_read;
17384 add_include_dir (lh, cur_dir);
17385 }
17386 line_ptr += bytes_read;
17387
17388 /* Read file name table. */
17389 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17390 {
17391 unsigned int dir_index, mod_time, length;
17392
17393 line_ptr += bytes_read;
17394 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17395 line_ptr += bytes_read;
17396 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17397 line_ptr += bytes_read;
17398 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
17400
17401 add_file_name (lh, cur_file, dir_index, mod_time, length);
17402 }
17403 line_ptr += bytes_read;
17404 lh->statement_program_start = line_ptr;
17405
17406 if (line_ptr > (section->buffer + section->size))
17407 complaint (&symfile_complaints,
17408 _("line number info header doesn't "
17409 "fit in `.debug_line' section"));
17410
17411 discard_cleanups (back_to);
17412 return lh;
17413 }
17414
17415 /* Subroutine of dwarf_decode_lines to simplify it.
17416 Return the file name of the psymtab for included file FILE_INDEX
17417 in line header LH of PST.
17418 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17419 If space for the result is malloc'd, it will be freed by a cleanup.
17420 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17421
17422 The function creates dangling cleanup registration. */
17423
17424 static const char *
17425 psymtab_include_file_name (const struct line_header *lh, int file_index,
17426 const struct partial_symtab *pst,
17427 const char *comp_dir)
17428 {
17429 const struct file_entry fe = lh->file_names [file_index];
17430 const char *include_name = fe.name;
17431 const char *include_name_to_compare = include_name;
17432 const char *dir_name = NULL;
17433 const char *pst_filename;
17434 char *copied_name = NULL;
17435 int file_is_pst;
17436
17437 if (fe.dir_index && lh->include_dirs != NULL)
17438 dir_name = lh->include_dirs[fe.dir_index - 1];
17439
17440 if (!IS_ABSOLUTE_PATH (include_name)
17441 && (dir_name != NULL || comp_dir != NULL))
17442 {
17443 /* Avoid creating a duplicate psymtab for PST.
17444 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17445 Before we do the comparison, however, we need to account
17446 for DIR_NAME and COMP_DIR.
17447 First prepend dir_name (if non-NULL). If we still don't
17448 have an absolute path prepend comp_dir (if non-NULL).
17449 However, the directory we record in the include-file's
17450 psymtab does not contain COMP_DIR (to match the
17451 corresponding symtab(s)).
17452
17453 Example:
17454
17455 bash$ cd /tmp
17456 bash$ gcc -g ./hello.c
17457 include_name = "hello.c"
17458 dir_name = "."
17459 DW_AT_comp_dir = comp_dir = "/tmp"
17460 DW_AT_name = "./hello.c"
17461
17462 */
17463
17464 if (dir_name != NULL)
17465 {
17466 char *tem = concat (dir_name, SLASH_STRING,
17467 include_name, (char *)NULL);
17468
17469 make_cleanup (xfree, tem);
17470 include_name = tem;
17471 include_name_to_compare = include_name;
17472 }
17473 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17474 {
17475 char *tem = concat (comp_dir, SLASH_STRING,
17476 include_name, (char *)NULL);
17477
17478 make_cleanup (xfree, tem);
17479 include_name_to_compare = tem;
17480 }
17481 }
17482
17483 pst_filename = pst->filename;
17484 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17485 {
17486 copied_name = concat (pst->dirname, SLASH_STRING,
17487 pst_filename, (char *)NULL);
17488 pst_filename = copied_name;
17489 }
17490
17491 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17492
17493 if (copied_name != NULL)
17494 xfree (copied_name);
17495
17496 if (file_is_pst)
17497 return NULL;
17498 return include_name;
17499 }
17500
17501 /* State machine to track the state of the line number program. */
17502
17503 typedef struct
17504 {
17505 /* These are part of the standard DWARF line number state machine. */
17506
17507 unsigned char op_index;
17508 unsigned int file;
17509 unsigned int line;
17510 CORE_ADDR address;
17511 int is_stmt;
17512 unsigned int discriminator;
17513
17514 /* Additional bits of state we need to track. */
17515
17516 /* The last file that we called dwarf2_start_subfile for.
17517 This is only used for TLLs. */
17518 unsigned int last_file;
17519 /* The last file a line number was recorded for. */
17520 struct subfile *last_subfile;
17521
17522 /* The function to call to record a line. */
17523 record_line_ftype *record_line;
17524
17525 /* The last line number that was recorded, used to coalesce
17526 consecutive entries for the same line. This can happen, for
17527 example, when discriminators are present. PR 17276. */
17528 unsigned int last_line;
17529 int line_has_non_zero_discriminator;
17530 } lnp_state_machine;
17531
17532 /* There's a lot of static state to pass to dwarf_record_line.
17533 This keeps it all together. */
17534
17535 typedef struct
17536 {
17537 /* The gdbarch. */
17538 struct gdbarch *gdbarch;
17539
17540 /* The line number header. */
17541 struct line_header *line_header;
17542
17543 /* Non-zero if we're recording lines.
17544 Otherwise we're building partial symtabs and are just interested in
17545 finding include files mentioned by the line number program. */
17546 int record_lines_p;
17547 } lnp_reader_state;
17548
17549 /* Ignore this record_line request. */
17550
17551 static void
17552 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17553 {
17554 return;
17555 }
17556
17557 /* Return non-zero if we should add LINE to the line number table.
17558 LINE is the line to add, LAST_LINE is the last line that was added,
17559 LAST_SUBFILE is the subfile for LAST_LINE.
17560 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17561 had a non-zero discriminator.
17562
17563 We have to be careful in the presence of discriminators.
17564 E.g., for this line:
17565
17566 for (i = 0; i < 100000; i++);
17567
17568 clang can emit four line number entries for that one line,
17569 each with a different discriminator.
17570 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17571
17572 However, we want gdb to coalesce all four entries into one.
17573 Otherwise the user could stepi into the middle of the line and
17574 gdb would get confused about whether the pc really was in the
17575 middle of the line.
17576
17577 Things are further complicated by the fact that two consecutive
17578 line number entries for the same line is a heuristic used by gcc
17579 to denote the end of the prologue. So we can't just discard duplicate
17580 entries, we have to be selective about it. The heuristic we use is
17581 that we only collapse consecutive entries for the same line if at least
17582 one of those entries has a non-zero discriminator. PR 17276.
17583
17584 Note: Addresses in the line number state machine can never go backwards
17585 within one sequence, thus this coalescing is ok. */
17586
17587 static int
17588 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17589 int line_has_non_zero_discriminator,
17590 struct subfile *last_subfile)
17591 {
17592 if (current_subfile != last_subfile)
17593 return 1;
17594 if (line != last_line)
17595 return 1;
17596 /* Same line for the same file that we've seen already.
17597 As a last check, for pr 17276, only record the line if the line
17598 has never had a non-zero discriminator. */
17599 if (!line_has_non_zero_discriminator)
17600 return 1;
17601 return 0;
17602 }
17603
17604 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17605 in the line table of subfile SUBFILE. */
17606
17607 static void
17608 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17609 unsigned int line, CORE_ADDR address,
17610 record_line_ftype p_record_line)
17611 {
17612 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17613
17614 if (dwarf_line_debug)
17615 {
17616 fprintf_unfiltered (gdb_stdlog,
17617 "Recording line %u, file %s, address %s\n",
17618 line, lbasename (subfile->name),
17619 paddress (gdbarch, address));
17620 }
17621
17622 (*p_record_line) (subfile, line, addr);
17623 }
17624
17625 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17626 Mark the end of a set of line number records.
17627 The arguments are the same as for dwarf_record_line_1.
17628 If SUBFILE is NULL the request is ignored. */
17629
17630 static void
17631 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17632 CORE_ADDR address, record_line_ftype p_record_line)
17633 {
17634 if (subfile == NULL)
17635 return;
17636
17637 if (dwarf_line_debug)
17638 {
17639 fprintf_unfiltered (gdb_stdlog,
17640 "Finishing current line, file %s, address %s\n",
17641 lbasename (subfile->name),
17642 paddress (gdbarch, address));
17643 }
17644
17645 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17646 }
17647
17648 /* Record the line in STATE.
17649 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17650
17651 static void
17652 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17653 int end_sequence)
17654 {
17655 const struct line_header *lh = reader->line_header;
17656 unsigned int file, line, discriminator;
17657 int is_stmt;
17658
17659 file = state->file;
17660 line = state->line;
17661 is_stmt = state->is_stmt;
17662 discriminator = state->discriminator;
17663
17664 if (dwarf_line_debug)
17665 {
17666 fprintf_unfiltered (gdb_stdlog,
17667 "Processing actual line %u: file %u,"
17668 " address %s, is_stmt %u, discrim %u\n",
17669 line, file,
17670 paddress (reader->gdbarch, state->address),
17671 is_stmt, discriminator);
17672 }
17673
17674 if (file == 0 || file - 1 >= lh->num_file_names)
17675 dwarf2_debug_line_missing_file_complaint ();
17676 /* For now we ignore lines not starting on an instruction boundary.
17677 But not when processing end_sequence for compatibility with the
17678 previous version of the code. */
17679 else if (state->op_index == 0 || end_sequence)
17680 {
17681 lh->file_names[file - 1].included_p = 1;
17682 if (reader->record_lines_p && is_stmt)
17683 {
17684 if (state->last_subfile != current_subfile || end_sequence)
17685 {
17686 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17687 state->address, state->record_line);
17688 }
17689
17690 if (!end_sequence)
17691 {
17692 if (dwarf_record_line_p (line, state->last_line,
17693 state->line_has_non_zero_discriminator,
17694 state->last_subfile))
17695 {
17696 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17697 line, state->address,
17698 state->record_line);
17699 }
17700 state->last_subfile = current_subfile;
17701 state->last_line = line;
17702 }
17703 }
17704 }
17705 }
17706
17707 /* Initialize STATE for the start of a line number program. */
17708
17709 static void
17710 init_lnp_state_machine (lnp_state_machine *state,
17711 const lnp_reader_state *reader)
17712 {
17713 memset (state, 0, sizeof (*state));
17714
17715 /* Just starting, there is no "last file". */
17716 state->last_file = 0;
17717 state->last_subfile = NULL;
17718
17719 state->record_line = record_line;
17720
17721 state->last_line = 0;
17722 state->line_has_non_zero_discriminator = 0;
17723
17724 /* Initialize these according to the DWARF spec. */
17725 state->op_index = 0;
17726 state->file = 1;
17727 state->line = 1;
17728 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17729 was a line entry for it so that the backend has a chance to adjust it
17730 and also record it in case it needs it. This is currently used by MIPS
17731 code, cf. `mips_adjust_dwarf2_line'. */
17732 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17733 state->is_stmt = reader->line_header->default_is_stmt;
17734 state->discriminator = 0;
17735 }
17736
17737 /* Check address and if invalid nop-out the rest of the lines in this
17738 sequence. */
17739
17740 static void
17741 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17742 const gdb_byte *line_ptr,
17743 CORE_ADDR lowpc, CORE_ADDR address)
17744 {
17745 /* If address < lowpc then it's not a usable value, it's outside the
17746 pc range of the CU. However, we restrict the test to only address
17747 values of zero to preserve GDB's previous behaviour which is to
17748 handle the specific case of a function being GC'd by the linker. */
17749
17750 if (address == 0 && address < lowpc)
17751 {
17752 /* This line table is for a function which has been
17753 GCd by the linker. Ignore it. PR gdb/12528 */
17754
17755 struct objfile *objfile = cu->objfile;
17756 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17757
17758 complaint (&symfile_complaints,
17759 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17760 line_offset, objfile_name (objfile));
17761 state->record_line = noop_record_line;
17762 /* Note: sm.record_line is left as noop_record_line
17763 until we see DW_LNE_end_sequence. */
17764 }
17765 }
17766
17767 /* Subroutine of dwarf_decode_lines to simplify it.
17768 Process the line number information in LH.
17769 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17770 program in order to set included_p for every referenced header. */
17771
17772 static void
17773 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17774 const int decode_for_pst_p, CORE_ADDR lowpc)
17775 {
17776 const gdb_byte *line_ptr, *extended_end;
17777 const gdb_byte *line_end;
17778 unsigned int bytes_read, extended_len;
17779 unsigned char op_code, extended_op;
17780 CORE_ADDR baseaddr;
17781 struct objfile *objfile = cu->objfile;
17782 bfd *abfd = objfile->obfd;
17783 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17784 /* Non-zero if we're recording line info (as opposed to building partial
17785 symtabs). */
17786 int record_lines_p = !decode_for_pst_p;
17787 /* A collection of things we need to pass to dwarf_record_line. */
17788 lnp_reader_state reader_state;
17789
17790 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17791
17792 line_ptr = lh->statement_program_start;
17793 line_end = lh->statement_program_end;
17794
17795 reader_state.gdbarch = gdbarch;
17796 reader_state.line_header = lh;
17797 reader_state.record_lines_p = record_lines_p;
17798
17799 /* Read the statement sequences until there's nothing left. */
17800 while (line_ptr < line_end)
17801 {
17802 /* The DWARF line number program state machine. */
17803 lnp_state_machine state_machine;
17804 int end_sequence = 0;
17805
17806 /* Reset the state machine at the start of each sequence. */
17807 init_lnp_state_machine (&state_machine, &reader_state);
17808
17809 if (record_lines_p && lh->num_file_names >= state_machine.file)
17810 {
17811 /* Start a subfile for the current file of the state machine. */
17812 /* lh->include_dirs and lh->file_names are 0-based, but the
17813 directory and file name numbers in the statement program
17814 are 1-based. */
17815 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17816 const char *dir = NULL;
17817
17818 if (fe->dir_index && lh->include_dirs != NULL)
17819 dir = lh->include_dirs[fe->dir_index - 1];
17820
17821 dwarf2_start_subfile (fe->name, dir);
17822 }
17823
17824 /* Decode the table. */
17825 while (line_ptr < line_end && !end_sequence)
17826 {
17827 op_code = read_1_byte (abfd, line_ptr);
17828 line_ptr += 1;
17829
17830 if (op_code >= lh->opcode_base)
17831 {
17832 /* Special opcode. */
17833 unsigned char adj_opcode;
17834 CORE_ADDR addr_adj;
17835 int line_delta;
17836
17837 adj_opcode = op_code - lh->opcode_base;
17838 addr_adj = (((state_machine.op_index
17839 + (adj_opcode / lh->line_range))
17840 / lh->maximum_ops_per_instruction)
17841 * lh->minimum_instruction_length);
17842 state_machine.address
17843 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17844 state_machine.op_index = ((state_machine.op_index
17845 + (adj_opcode / lh->line_range))
17846 % lh->maximum_ops_per_instruction);
17847 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17848 state_machine.line += line_delta;
17849 if (line_delta != 0)
17850 state_machine.line_has_non_zero_discriminator
17851 = state_machine.discriminator != 0;
17852
17853 dwarf_record_line (&reader_state, &state_machine, 0);
17854 state_machine.discriminator = 0;
17855 }
17856 else switch (op_code)
17857 {
17858 case DW_LNS_extended_op:
17859 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17860 &bytes_read);
17861 line_ptr += bytes_read;
17862 extended_end = line_ptr + extended_len;
17863 extended_op = read_1_byte (abfd, line_ptr);
17864 line_ptr += 1;
17865 switch (extended_op)
17866 {
17867 case DW_LNE_end_sequence:
17868 state_machine.record_line = record_line;
17869 end_sequence = 1;
17870 break;
17871 case DW_LNE_set_address:
17872 {
17873 CORE_ADDR address
17874 = read_address (abfd, line_ptr, cu, &bytes_read);
17875
17876 line_ptr += bytes_read;
17877 check_line_address (cu, &state_machine, line_ptr,
17878 lowpc, address);
17879 state_machine.op_index = 0;
17880 address += baseaddr;
17881 state_machine.address
17882 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17883 }
17884 break;
17885 case DW_LNE_define_file:
17886 {
17887 const char *cur_file;
17888 unsigned int dir_index, mod_time, length;
17889
17890 cur_file = read_direct_string (abfd, line_ptr,
17891 &bytes_read);
17892 line_ptr += bytes_read;
17893 dir_index =
17894 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17895 line_ptr += bytes_read;
17896 mod_time =
17897 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17898 line_ptr += bytes_read;
17899 length =
17900 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17901 line_ptr += bytes_read;
17902 add_file_name (lh, cur_file, dir_index, mod_time, length);
17903 }
17904 break;
17905 case DW_LNE_set_discriminator:
17906 /* The discriminator is not interesting to the debugger;
17907 just ignore it. We still need to check its value though:
17908 if there are consecutive entries for the same
17909 (non-prologue) line we want to coalesce them.
17910 PR 17276. */
17911 state_machine.discriminator
17912 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17913 state_machine.line_has_non_zero_discriminator
17914 |= state_machine.discriminator != 0;
17915 line_ptr += bytes_read;
17916 break;
17917 default:
17918 complaint (&symfile_complaints,
17919 _("mangled .debug_line section"));
17920 return;
17921 }
17922 /* Make sure that we parsed the extended op correctly. If e.g.
17923 we expected a different address size than the producer used,
17924 we may have read the wrong number of bytes. */
17925 if (line_ptr != extended_end)
17926 {
17927 complaint (&symfile_complaints,
17928 _("mangled .debug_line section"));
17929 return;
17930 }
17931 break;
17932 case DW_LNS_copy:
17933 dwarf_record_line (&reader_state, &state_machine, 0);
17934 state_machine.discriminator = 0;
17935 break;
17936 case DW_LNS_advance_pc:
17937 {
17938 CORE_ADDR adjust
17939 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17940 CORE_ADDR addr_adj;
17941
17942 addr_adj = (((state_machine.op_index + adjust)
17943 / lh->maximum_ops_per_instruction)
17944 * lh->minimum_instruction_length);
17945 state_machine.address
17946 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17947 state_machine.op_index = ((state_machine.op_index + adjust)
17948 % lh->maximum_ops_per_instruction);
17949 line_ptr += bytes_read;
17950 }
17951 break;
17952 case DW_LNS_advance_line:
17953 {
17954 int line_delta
17955 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17956
17957 state_machine.line += line_delta;
17958 if (line_delta != 0)
17959 state_machine.line_has_non_zero_discriminator
17960 = state_machine.discriminator != 0;
17961 line_ptr += bytes_read;
17962 }
17963 break;
17964 case DW_LNS_set_file:
17965 {
17966 /* The arrays lh->include_dirs and lh->file_names are
17967 0-based, but the directory and file name numbers in
17968 the statement program are 1-based. */
17969 struct file_entry *fe;
17970 const char *dir = NULL;
17971
17972 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17973 &bytes_read);
17974 line_ptr += bytes_read;
17975 if (state_machine.file == 0
17976 || state_machine.file - 1 >= lh->num_file_names)
17977 dwarf2_debug_line_missing_file_complaint ();
17978 else
17979 {
17980 fe = &lh->file_names[state_machine.file - 1];
17981 if (fe->dir_index && lh->include_dirs != NULL)
17982 dir = lh->include_dirs[fe->dir_index - 1];
17983 if (record_lines_p)
17984 {
17985 state_machine.last_subfile = current_subfile;
17986 state_machine.line_has_non_zero_discriminator
17987 = state_machine.discriminator != 0;
17988 dwarf2_start_subfile (fe->name, dir);
17989 }
17990 }
17991 }
17992 break;
17993 case DW_LNS_set_column:
17994 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17995 line_ptr += bytes_read;
17996 break;
17997 case DW_LNS_negate_stmt:
17998 state_machine.is_stmt = (!state_machine.is_stmt);
17999 break;
18000 case DW_LNS_set_basic_block:
18001 break;
18002 /* Add to the address register of the state machine the
18003 address increment value corresponding to special opcode
18004 255. I.e., this value is scaled by the minimum
18005 instruction length since special opcode 255 would have
18006 scaled the increment. */
18007 case DW_LNS_const_add_pc:
18008 {
18009 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18010 CORE_ADDR addr_adj;
18011
18012 addr_adj = (((state_machine.op_index + adjust)
18013 / lh->maximum_ops_per_instruction)
18014 * lh->minimum_instruction_length);
18015 state_machine.address
18016 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18017 state_machine.op_index = ((state_machine.op_index + adjust)
18018 % lh->maximum_ops_per_instruction);
18019 }
18020 break;
18021 case DW_LNS_fixed_advance_pc:
18022 {
18023 CORE_ADDR addr_adj;
18024
18025 addr_adj = read_2_bytes (abfd, line_ptr);
18026 state_machine.address
18027 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18028 state_machine.op_index = 0;
18029 line_ptr += 2;
18030 }
18031 break;
18032 default:
18033 {
18034 /* Unknown standard opcode, ignore it. */
18035 int i;
18036
18037 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18038 {
18039 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18040 line_ptr += bytes_read;
18041 }
18042 }
18043 }
18044 }
18045
18046 if (!end_sequence)
18047 dwarf2_debug_line_missing_end_sequence_complaint ();
18048
18049 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18050 in which case we still finish recording the last line). */
18051 dwarf_record_line (&reader_state, &state_machine, 1);
18052 }
18053 }
18054
18055 /* Decode the Line Number Program (LNP) for the given line_header
18056 structure and CU. The actual information extracted and the type
18057 of structures created from the LNP depends on the value of PST.
18058
18059 1. If PST is NULL, then this procedure uses the data from the program
18060 to create all necessary symbol tables, and their linetables.
18061
18062 2. If PST is not NULL, this procedure reads the program to determine
18063 the list of files included by the unit represented by PST, and
18064 builds all the associated partial symbol tables.
18065
18066 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18067 It is used for relative paths in the line table.
18068 NOTE: When processing partial symtabs (pst != NULL),
18069 comp_dir == pst->dirname.
18070
18071 NOTE: It is important that psymtabs have the same file name (via strcmp)
18072 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18073 symtab we don't use it in the name of the psymtabs we create.
18074 E.g. expand_line_sal requires this when finding psymtabs to expand.
18075 A good testcase for this is mb-inline.exp.
18076
18077 LOWPC is the lowest address in CU (or 0 if not known).
18078
18079 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18080 for its PC<->lines mapping information. Otherwise only the filename
18081 table is read in. */
18082
18083 static void
18084 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18085 struct dwarf2_cu *cu, struct partial_symtab *pst,
18086 CORE_ADDR lowpc, int decode_mapping)
18087 {
18088 struct objfile *objfile = cu->objfile;
18089 const int decode_for_pst_p = (pst != NULL);
18090
18091 if (decode_mapping)
18092 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18093
18094 if (decode_for_pst_p)
18095 {
18096 int file_index;
18097
18098 /* Now that we're done scanning the Line Header Program, we can
18099 create the psymtab of each included file. */
18100 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18101 if (lh->file_names[file_index].included_p == 1)
18102 {
18103 const char *include_name =
18104 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18105 if (include_name != NULL)
18106 dwarf2_create_include_psymtab (include_name, pst, objfile);
18107 }
18108 }
18109 else
18110 {
18111 /* Make sure a symtab is created for every file, even files
18112 which contain only variables (i.e. no code with associated
18113 line numbers). */
18114 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18115 int i;
18116
18117 for (i = 0; i < lh->num_file_names; i++)
18118 {
18119 const char *dir = NULL;
18120 struct file_entry *fe;
18121
18122 fe = &lh->file_names[i];
18123 if (fe->dir_index && lh->include_dirs != NULL)
18124 dir = lh->include_dirs[fe->dir_index - 1];
18125 dwarf2_start_subfile (fe->name, dir);
18126
18127 if (current_subfile->symtab == NULL)
18128 {
18129 current_subfile->symtab
18130 = allocate_symtab (cust, current_subfile->name);
18131 }
18132 fe->symtab = current_subfile->symtab;
18133 }
18134 }
18135 }
18136
18137 /* Start a subfile for DWARF. FILENAME is the name of the file and
18138 DIRNAME the name of the source directory which contains FILENAME
18139 or NULL if not known.
18140 This routine tries to keep line numbers from identical absolute and
18141 relative file names in a common subfile.
18142
18143 Using the `list' example from the GDB testsuite, which resides in
18144 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18145 of /srcdir/list0.c yields the following debugging information for list0.c:
18146
18147 DW_AT_name: /srcdir/list0.c
18148 DW_AT_comp_dir: /compdir
18149 files.files[0].name: list0.h
18150 files.files[0].dir: /srcdir
18151 files.files[1].name: list0.c
18152 files.files[1].dir: /srcdir
18153
18154 The line number information for list0.c has to end up in a single
18155 subfile, so that `break /srcdir/list0.c:1' works as expected.
18156 start_subfile will ensure that this happens provided that we pass the
18157 concatenation of files.files[1].dir and files.files[1].name as the
18158 subfile's name. */
18159
18160 static void
18161 dwarf2_start_subfile (const char *filename, const char *dirname)
18162 {
18163 char *copy = NULL;
18164
18165 /* In order not to lose the line information directory,
18166 we concatenate it to the filename when it makes sense.
18167 Note that the Dwarf3 standard says (speaking of filenames in line
18168 information): ``The directory index is ignored for file names
18169 that represent full path names''. Thus ignoring dirname in the
18170 `else' branch below isn't an issue. */
18171
18172 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18173 {
18174 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18175 filename = copy;
18176 }
18177
18178 start_subfile (filename);
18179
18180 if (copy != NULL)
18181 xfree (copy);
18182 }
18183
18184 /* Start a symtab for DWARF.
18185 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18186
18187 static struct compunit_symtab *
18188 dwarf2_start_symtab (struct dwarf2_cu *cu,
18189 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18190 {
18191 struct compunit_symtab *cust
18192 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18193
18194 record_debugformat ("DWARF 2");
18195 record_producer (cu->producer);
18196
18197 /* We assume that we're processing GCC output. */
18198 processing_gcc_compilation = 2;
18199
18200 cu->processing_has_namespace_info = 0;
18201
18202 return cust;
18203 }
18204
18205 static void
18206 var_decode_location (struct attribute *attr, struct symbol *sym,
18207 struct dwarf2_cu *cu)
18208 {
18209 struct objfile *objfile = cu->objfile;
18210 struct comp_unit_head *cu_header = &cu->header;
18211
18212 /* NOTE drow/2003-01-30: There used to be a comment and some special
18213 code here to turn a symbol with DW_AT_external and a
18214 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18215 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18216 with some versions of binutils) where shared libraries could have
18217 relocations against symbols in their debug information - the
18218 minimal symbol would have the right address, but the debug info
18219 would not. It's no longer necessary, because we will explicitly
18220 apply relocations when we read in the debug information now. */
18221
18222 /* A DW_AT_location attribute with no contents indicates that a
18223 variable has been optimized away. */
18224 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18225 {
18226 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18227 return;
18228 }
18229
18230 /* Handle one degenerate form of location expression specially, to
18231 preserve GDB's previous behavior when section offsets are
18232 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18233 then mark this symbol as LOC_STATIC. */
18234
18235 if (attr_form_is_block (attr)
18236 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18237 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18238 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18239 && (DW_BLOCK (attr)->size
18240 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18241 {
18242 unsigned int dummy;
18243
18244 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18245 SYMBOL_VALUE_ADDRESS (sym) =
18246 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18247 else
18248 SYMBOL_VALUE_ADDRESS (sym) =
18249 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18250 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18251 fixup_symbol_section (sym, objfile);
18252 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18253 SYMBOL_SECTION (sym));
18254 return;
18255 }
18256
18257 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18258 expression evaluator, and use LOC_COMPUTED only when necessary
18259 (i.e. when the value of a register or memory location is
18260 referenced, or a thread-local block, etc.). Then again, it might
18261 not be worthwhile. I'm assuming that it isn't unless performance
18262 or memory numbers show me otherwise. */
18263
18264 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18265
18266 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18267 cu->has_loclist = 1;
18268 }
18269
18270 /* Given a pointer to a DWARF information entry, figure out if we need
18271 to make a symbol table entry for it, and if so, create a new entry
18272 and return a pointer to it.
18273 If TYPE is NULL, determine symbol type from the die, otherwise
18274 used the passed type.
18275 If SPACE is not NULL, use it to hold the new symbol. If it is
18276 NULL, allocate a new symbol on the objfile's obstack. */
18277
18278 static struct symbol *
18279 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18280 struct symbol *space)
18281 {
18282 struct objfile *objfile = cu->objfile;
18283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18284 struct symbol *sym = NULL;
18285 const char *name;
18286 struct attribute *attr = NULL;
18287 struct attribute *attr2 = NULL;
18288 CORE_ADDR baseaddr;
18289 struct pending **list_to_add = NULL;
18290
18291 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18292
18293 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18294
18295 name = dwarf2_name (die, cu);
18296 if (name)
18297 {
18298 const char *linkagename;
18299 int suppress_add = 0;
18300
18301 if (space)
18302 sym = space;
18303 else
18304 sym = allocate_symbol (objfile);
18305 OBJSTAT (objfile, n_syms++);
18306
18307 /* Cache this symbol's name and the name's demangled form (if any). */
18308 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18309 linkagename = dwarf2_physname (name, die, cu);
18310 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18311
18312 /* Fortran does not have mangling standard and the mangling does differ
18313 between gfortran, iFort etc. */
18314 if (cu->language == language_fortran
18315 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18316 symbol_set_demangled_name (&(sym->ginfo),
18317 dwarf2_full_name (name, die, cu),
18318 NULL);
18319
18320 /* Default assumptions.
18321 Use the passed type or decode it from the die. */
18322 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18323 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18324 if (type != NULL)
18325 SYMBOL_TYPE (sym) = type;
18326 else
18327 SYMBOL_TYPE (sym) = die_type (die, cu);
18328 attr = dwarf2_attr (die,
18329 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18330 cu);
18331 if (attr)
18332 {
18333 SYMBOL_LINE (sym) = DW_UNSND (attr);
18334 }
18335
18336 attr = dwarf2_attr (die,
18337 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18338 cu);
18339 if (attr)
18340 {
18341 int file_index = DW_UNSND (attr);
18342
18343 if (cu->line_header == NULL
18344 || file_index > cu->line_header->num_file_names)
18345 complaint (&symfile_complaints,
18346 _("file index out of range"));
18347 else if (file_index > 0)
18348 {
18349 struct file_entry *fe;
18350
18351 fe = &cu->line_header->file_names[file_index - 1];
18352 symbol_set_symtab (sym, fe->symtab);
18353 }
18354 }
18355
18356 switch (die->tag)
18357 {
18358 case DW_TAG_label:
18359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18360 if (attr)
18361 {
18362 CORE_ADDR addr;
18363
18364 addr = attr_value_as_address (attr);
18365 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18366 SYMBOL_VALUE_ADDRESS (sym) = addr;
18367 }
18368 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18369 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18370 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18371 add_symbol_to_list (sym, cu->list_in_scope);
18372 break;
18373 case DW_TAG_subprogram:
18374 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18375 finish_block. */
18376 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18377 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18378 if ((attr2 && (DW_UNSND (attr2) != 0))
18379 || cu->language == language_ada)
18380 {
18381 /* Subprograms marked external are stored as a global symbol.
18382 Ada subprograms, whether marked external or not, are always
18383 stored as a global symbol, because we want to be able to
18384 access them globally. For instance, we want to be able
18385 to break on a nested subprogram without having to
18386 specify the context. */
18387 list_to_add = &global_symbols;
18388 }
18389 else
18390 {
18391 list_to_add = cu->list_in_scope;
18392 }
18393 break;
18394 case DW_TAG_inlined_subroutine:
18395 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18396 finish_block. */
18397 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18398 SYMBOL_INLINED (sym) = 1;
18399 list_to_add = cu->list_in_scope;
18400 break;
18401 case DW_TAG_template_value_param:
18402 suppress_add = 1;
18403 /* Fall through. */
18404 case DW_TAG_constant:
18405 case DW_TAG_variable:
18406 case DW_TAG_member:
18407 /* Compilation with minimal debug info may result in
18408 variables with missing type entries. Change the
18409 misleading `void' type to something sensible. */
18410 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18411 SYMBOL_TYPE (sym)
18412 = objfile_type (objfile)->nodebug_data_symbol;
18413
18414 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18415 /* In the case of DW_TAG_member, we should only be called for
18416 static const members. */
18417 if (die->tag == DW_TAG_member)
18418 {
18419 /* dwarf2_add_field uses die_is_declaration,
18420 so we do the same. */
18421 gdb_assert (die_is_declaration (die, cu));
18422 gdb_assert (attr);
18423 }
18424 if (attr)
18425 {
18426 dwarf2_const_value (attr, sym, cu);
18427 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18428 if (!suppress_add)
18429 {
18430 if (attr2 && (DW_UNSND (attr2) != 0))
18431 list_to_add = &global_symbols;
18432 else
18433 list_to_add = cu->list_in_scope;
18434 }
18435 break;
18436 }
18437 attr = dwarf2_attr (die, DW_AT_location, cu);
18438 if (attr)
18439 {
18440 var_decode_location (attr, sym, cu);
18441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18442
18443 /* Fortran explicitly imports any global symbols to the local
18444 scope by DW_TAG_common_block. */
18445 if (cu->language == language_fortran && die->parent
18446 && die->parent->tag == DW_TAG_common_block)
18447 attr2 = NULL;
18448
18449 if (SYMBOL_CLASS (sym) == LOC_STATIC
18450 && SYMBOL_VALUE_ADDRESS (sym) == 0
18451 && !dwarf2_per_objfile->has_section_at_zero)
18452 {
18453 /* When a static variable is eliminated by the linker,
18454 the corresponding debug information is not stripped
18455 out, but the variable address is set to null;
18456 do not add such variables into symbol table. */
18457 }
18458 else if (attr2 && (DW_UNSND (attr2) != 0))
18459 {
18460 /* Workaround gfortran PR debug/40040 - it uses
18461 DW_AT_location for variables in -fPIC libraries which may
18462 get overriden by other libraries/executable and get
18463 a different address. Resolve it by the minimal symbol
18464 which may come from inferior's executable using copy
18465 relocation. Make this workaround only for gfortran as for
18466 other compilers GDB cannot guess the minimal symbol
18467 Fortran mangling kind. */
18468 if (cu->language == language_fortran && die->parent
18469 && die->parent->tag == DW_TAG_module
18470 && cu->producer
18471 && startswith (cu->producer, "GNU Fortran"))
18472 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18473
18474 /* A variable with DW_AT_external is never static,
18475 but it may be block-scoped. */
18476 list_to_add = (cu->list_in_scope == &file_symbols
18477 ? &global_symbols : cu->list_in_scope);
18478 }
18479 else
18480 list_to_add = cu->list_in_scope;
18481 }
18482 else
18483 {
18484 /* We do not know the address of this symbol.
18485 If it is an external symbol and we have type information
18486 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18487 The address of the variable will then be determined from
18488 the minimal symbol table whenever the variable is
18489 referenced. */
18490 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18491
18492 /* Fortran explicitly imports any global symbols to the local
18493 scope by DW_TAG_common_block. */
18494 if (cu->language == language_fortran && die->parent
18495 && die->parent->tag == DW_TAG_common_block)
18496 {
18497 /* SYMBOL_CLASS doesn't matter here because
18498 read_common_block is going to reset it. */
18499 if (!suppress_add)
18500 list_to_add = cu->list_in_scope;
18501 }
18502 else if (attr2 && (DW_UNSND (attr2) != 0)
18503 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18504 {
18505 /* A variable with DW_AT_external is never static, but it
18506 may be block-scoped. */
18507 list_to_add = (cu->list_in_scope == &file_symbols
18508 ? &global_symbols : cu->list_in_scope);
18509
18510 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18511 }
18512 else if (!die_is_declaration (die, cu))
18513 {
18514 /* Use the default LOC_OPTIMIZED_OUT class. */
18515 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18516 if (!suppress_add)
18517 list_to_add = cu->list_in_scope;
18518 }
18519 }
18520 break;
18521 case DW_TAG_formal_parameter:
18522 /* If we are inside a function, mark this as an argument. If
18523 not, we might be looking at an argument to an inlined function
18524 when we do not have enough information to show inlined frames;
18525 pretend it's a local variable in that case so that the user can
18526 still see it. */
18527 if (context_stack_depth > 0
18528 && context_stack[context_stack_depth - 1].name != NULL)
18529 SYMBOL_IS_ARGUMENT (sym) = 1;
18530 attr = dwarf2_attr (die, DW_AT_location, cu);
18531 if (attr)
18532 {
18533 var_decode_location (attr, sym, cu);
18534 }
18535 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18536 if (attr)
18537 {
18538 dwarf2_const_value (attr, sym, cu);
18539 }
18540
18541 list_to_add = cu->list_in_scope;
18542 break;
18543 case DW_TAG_unspecified_parameters:
18544 /* From varargs functions; gdb doesn't seem to have any
18545 interest in this information, so just ignore it for now.
18546 (FIXME?) */
18547 break;
18548 case DW_TAG_template_type_param:
18549 suppress_add = 1;
18550 /* Fall through. */
18551 case DW_TAG_class_type:
18552 case DW_TAG_interface_type:
18553 case DW_TAG_structure_type:
18554 case DW_TAG_union_type:
18555 case DW_TAG_set_type:
18556 case DW_TAG_enumeration_type:
18557 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18558 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18559
18560 {
18561 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18562 really ever be static objects: otherwise, if you try
18563 to, say, break of a class's method and you're in a file
18564 which doesn't mention that class, it won't work unless
18565 the check for all static symbols in lookup_symbol_aux
18566 saves you. See the OtherFileClass tests in
18567 gdb.c++/namespace.exp. */
18568
18569 if (!suppress_add)
18570 {
18571 list_to_add = (cu->list_in_scope == &file_symbols
18572 && cu->language == language_cplus
18573 ? &global_symbols : cu->list_in_scope);
18574
18575 /* The semantics of C++ state that "struct foo {
18576 ... }" also defines a typedef for "foo". */
18577 if (cu->language == language_cplus
18578 || cu->language == language_ada
18579 || cu->language == language_d
18580 || cu->language == language_rust)
18581 {
18582 /* The symbol's name is already allocated along
18583 with this objfile, so we don't need to
18584 duplicate it for the type. */
18585 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18586 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18587 }
18588 }
18589 }
18590 break;
18591 case DW_TAG_typedef:
18592 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18593 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18594 list_to_add = cu->list_in_scope;
18595 break;
18596 case DW_TAG_base_type:
18597 case DW_TAG_subrange_type:
18598 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18599 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18600 list_to_add = cu->list_in_scope;
18601 break;
18602 case DW_TAG_enumerator:
18603 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18604 if (attr)
18605 {
18606 dwarf2_const_value (attr, sym, cu);
18607 }
18608 {
18609 /* NOTE: carlton/2003-11-10: See comment above in the
18610 DW_TAG_class_type, etc. block. */
18611
18612 list_to_add = (cu->list_in_scope == &file_symbols
18613 && cu->language == language_cplus
18614 ? &global_symbols : cu->list_in_scope);
18615 }
18616 break;
18617 case DW_TAG_imported_declaration:
18618 case DW_TAG_namespace:
18619 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18620 list_to_add = &global_symbols;
18621 break;
18622 case DW_TAG_module:
18623 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18624 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18625 list_to_add = &global_symbols;
18626 break;
18627 case DW_TAG_common_block:
18628 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18629 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18630 add_symbol_to_list (sym, cu->list_in_scope);
18631 break;
18632 default:
18633 /* Not a tag we recognize. Hopefully we aren't processing
18634 trash data, but since we must specifically ignore things
18635 we don't recognize, there is nothing else we should do at
18636 this point. */
18637 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18638 dwarf_tag_name (die->tag));
18639 break;
18640 }
18641
18642 if (suppress_add)
18643 {
18644 sym->hash_next = objfile->template_symbols;
18645 objfile->template_symbols = sym;
18646 list_to_add = NULL;
18647 }
18648
18649 if (list_to_add != NULL)
18650 add_symbol_to_list (sym, list_to_add);
18651
18652 /* For the benefit of old versions of GCC, check for anonymous
18653 namespaces based on the demangled name. */
18654 if (!cu->processing_has_namespace_info
18655 && cu->language == language_cplus)
18656 cp_scan_for_anonymous_namespaces (sym, objfile);
18657 }
18658 return (sym);
18659 }
18660
18661 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18662
18663 static struct symbol *
18664 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18665 {
18666 return new_symbol_full (die, type, cu, NULL);
18667 }
18668
18669 /* Given an attr with a DW_FORM_dataN value in host byte order,
18670 zero-extend it as appropriate for the symbol's type. The DWARF
18671 standard (v4) is not entirely clear about the meaning of using
18672 DW_FORM_dataN for a constant with a signed type, where the type is
18673 wider than the data. The conclusion of a discussion on the DWARF
18674 list was that this is unspecified. We choose to always zero-extend
18675 because that is the interpretation long in use by GCC. */
18676
18677 static gdb_byte *
18678 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18679 struct dwarf2_cu *cu, LONGEST *value, int bits)
18680 {
18681 struct objfile *objfile = cu->objfile;
18682 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18683 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18684 LONGEST l = DW_UNSND (attr);
18685
18686 if (bits < sizeof (*value) * 8)
18687 {
18688 l &= ((LONGEST) 1 << bits) - 1;
18689 *value = l;
18690 }
18691 else if (bits == sizeof (*value) * 8)
18692 *value = l;
18693 else
18694 {
18695 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18696 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18697 return bytes;
18698 }
18699
18700 return NULL;
18701 }
18702
18703 /* Read a constant value from an attribute. Either set *VALUE, or if
18704 the value does not fit in *VALUE, set *BYTES - either already
18705 allocated on the objfile obstack, or newly allocated on OBSTACK,
18706 or, set *BATON, if we translated the constant to a location
18707 expression. */
18708
18709 static void
18710 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18711 const char *name, struct obstack *obstack,
18712 struct dwarf2_cu *cu,
18713 LONGEST *value, const gdb_byte **bytes,
18714 struct dwarf2_locexpr_baton **baton)
18715 {
18716 struct objfile *objfile = cu->objfile;
18717 struct comp_unit_head *cu_header = &cu->header;
18718 struct dwarf_block *blk;
18719 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18720 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18721
18722 *value = 0;
18723 *bytes = NULL;
18724 *baton = NULL;
18725
18726 switch (attr->form)
18727 {
18728 case DW_FORM_addr:
18729 case DW_FORM_GNU_addr_index:
18730 {
18731 gdb_byte *data;
18732
18733 if (TYPE_LENGTH (type) != cu_header->addr_size)
18734 dwarf2_const_value_length_mismatch_complaint (name,
18735 cu_header->addr_size,
18736 TYPE_LENGTH (type));
18737 /* Symbols of this form are reasonably rare, so we just
18738 piggyback on the existing location code rather than writing
18739 a new implementation of symbol_computed_ops. */
18740 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18741 (*baton)->per_cu = cu->per_cu;
18742 gdb_assert ((*baton)->per_cu);
18743
18744 (*baton)->size = 2 + cu_header->addr_size;
18745 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18746 (*baton)->data = data;
18747
18748 data[0] = DW_OP_addr;
18749 store_unsigned_integer (&data[1], cu_header->addr_size,
18750 byte_order, DW_ADDR (attr));
18751 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18752 }
18753 break;
18754 case DW_FORM_string:
18755 case DW_FORM_strp:
18756 case DW_FORM_GNU_str_index:
18757 case DW_FORM_GNU_strp_alt:
18758 /* DW_STRING is already allocated on the objfile obstack, point
18759 directly to it. */
18760 *bytes = (const gdb_byte *) DW_STRING (attr);
18761 break;
18762 case DW_FORM_block1:
18763 case DW_FORM_block2:
18764 case DW_FORM_block4:
18765 case DW_FORM_block:
18766 case DW_FORM_exprloc:
18767 blk = DW_BLOCK (attr);
18768 if (TYPE_LENGTH (type) != blk->size)
18769 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18770 TYPE_LENGTH (type));
18771 *bytes = blk->data;
18772 break;
18773
18774 /* The DW_AT_const_value attributes are supposed to carry the
18775 symbol's value "represented as it would be on the target
18776 architecture." By the time we get here, it's already been
18777 converted to host endianness, so we just need to sign- or
18778 zero-extend it as appropriate. */
18779 case DW_FORM_data1:
18780 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18781 break;
18782 case DW_FORM_data2:
18783 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18784 break;
18785 case DW_FORM_data4:
18786 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18787 break;
18788 case DW_FORM_data8:
18789 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18790 break;
18791
18792 case DW_FORM_sdata:
18793 *value = DW_SND (attr);
18794 break;
18795
18796 case DW_FORM_udata:
18797 *value = DW_UNSND (attr);
18798 break;
18799
18800 default:
18801 complaint (&symfile_complaints,
18802 _("unsupported const value attribute form: '%s'"),
18803 dwarf_form_name (attr->form));
18804 *value = 0;
18805 break;
18806 }
18807 }
18808
18809
18810 /* Copy constant value from an attribute to a symbol. */
18811
18812 static void
18813 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18814 struct dwarf2_cu *cu)
18815 {
18816 struct objfile *objfile = cu->objfile;
18817 LONGEST value;
18818 const gdb_byte *bytes;
18819 struct dwarf2_locexpr_baton *baton;
18820
18821 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18822 SYMBOL_PRINT_NAME (sym),
18823 &objfile->objfile_obstack, cu,
18824 &value, &bytes, &baton);
18825
18826 if (baton != NULL)
18827 {
18828 SYMBOL_LOCATION_BATON (sym) = baton;
18829 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18830 }
18831 else if (bytes != NULL)
18832 {
18833 SYMBOL_VALUE_BYTES (sym) = bytes;
18834 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18835 }
18836 else
18837 {
18838 SYMBOL_VALUE (sym) = value;
18839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18840 }
18841 }
18842
18843 /* Return the type of the die in question using its DW_AT_type attribute. */
18844
18845 static struct type *
18846 die_type (struct die_info *die, struct dwarf2_cu *cu)
18847 {
18848 struct attribute *type_attr;
18849
18850 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18851 if (!type_attr)
18852 {
18853 /* A missing DW_AT_type represents a void type. */
18854 return objfile_type (cu->objfile)->builtin_void;
18855 }
18856
18857 return lookup_die_type (die, type_attr, cu);
18858 }
18859
18860 /* True iff CU's producer generates GNAT Ada auxiliary information
18861 that allows to find parallel types through that information instead
18862 of having to do expensive parallel lookups by type name. */
18863
18864 static int
18865 need_gnat_info (struct dwarf2_cu *cu)
18866 {
18867 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18868 of GNAT produces this auxiliary information, without any indication
18869 that it is produced. Part of enhancing the FSF version of GNAT
18870 to produce that information will be to put in place an indicator
18871 that we can use in order to determine whether the descriptive type
18872 info is available or not. One suggestion that has been made is
18873 to use a new attribute, attached to the CU die. For now, assume
18874 that the descriptive type info is not available. */
18875 return 0;
18876 }
18877
18878 /* Return the auxiliary type of the die in question using its
18879 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18880 attribute is not present. */
18881
18882 static struct type *
18883 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18884 {
18885 struct attribute *type_attr;
18886
18887 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18888 if (!type_attr)
18889 return NULL;
18890
18891 return lookup_die_type (die, type_attr, cu);
18892 }
18893
18894 /* If DIE has a descriptive_type attribute, then set the TYPE's
18895 descriptive type accordingly. */
18896
18897 static void
18898 set_descriptive_type (struct type *type, struct die_info *die,
18899 struct dwarf2_cu *cu)
18900 {
18901 struct type *descriptive_type = die_descriptive_type (die, cu);
18902
18903 if (descriptive_type)
18904 {
18905 ALLOCATE_GNAT_AUX_TYPE (type);
18906 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18907 }
18908 }
18909
18910 /* Return the containing type of the die in question using its
18911 DW_AT_containing_type attribute. */
18912
18913 static struct type *
18914 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18915 {
18916 struct attribute *type_attr;
18917
18918 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18919 if (!type_attr)
18920 error (_("Dwarf Error: Problem turning containing type into gdb type "
18921 "[in module %s]"), objfile_name (cu->objfile));
18922
18923 return lookup_die_type (die, type_attr, cu);
18924 }
18925
18926 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18927
18928 static struct type *
18929 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18930 {
18931 struct objfile *objfile = dwarf2_per_objfile->objfile;
18932 char *message, *saved;
18933
18934 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18935 objfile_name (objfile),
18936 cu->header.offset.sect_off,
18937 die->offset.sect_off);
18938 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18939 message, strlen (message));
18940 xfree (message);
18941
18942 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
18943 }
18944
18945 /* Look up the type of DIE in CU using its type attribute ATTR.
18946 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18947 DW_AT_containing_type.
18948 If there is no type substitute an error marker. */
18949
18950 static struct type *
18951 lookup_die_type (struct die_info *die, const struct attribute *attr,
18952 struct dwarf2_cu *cu)
18953 {
18954 struct objfile *objfile = cu->objfile;
18955 struct type *this_type;
18956
18957 gdb_assert (attr->name == DW_AT_type
18958 || attr->name == DW_AT_GNAT_descriptive_type
18959 || attr->name == DW_AT_containing_type);
18960
18961 /* First see if we have it cached. */
18962
18963 if (attr->form == DW_FORM_GNU_ref_alt)
18964 {
18965 struct dwarf2_per_cu_data *per_cu;
18966 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18967
18968 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18969 this_type = get_die_type_at_offset (offset, per_cu);
18970 }
18971 else if (attr_form_is_ref (attr))
18972 {
18973 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18974
18975 this_type = get_die_type_at_offset (offset, cu->per_cu);
18976 }
18977 else if (attr->form == DW_FORM_ref_sig8)
18978 {
18979 ULONGEST signature = DW_SIGNATURE (attr);
18980
18981 return get_signatured_type (die, signature, cu);
18982 }
18983 else
18984 {
18985 complaint (&symfile_complaints,
18986 _("Dwarf Error: Bad type attribute %s in DIE"
18987 " at 0x%x [in module %s]"),
18988 dwarf_attr_name (attr->name), die->offset.sect_off,
18989 objfile_name (objfile));
18990 return build_error_marker_type (cu, die);
18991 }
18992
18993 /* If not cached we need to read it in. */
18994
18995 if (this_type == NULL)
18996 {
18997 struct die_info *type_die = NULL;
18998 struct dwarf2_cu *type_cu = cu;
18999
19000 if (attr_form_is_ref (attr))
19001 type_die = follow_die_ref (die, attr, &type_cu);
19002 if (type_die == NULL)
19003 return build_error_marker_type (cu, die);
19004 /* If we find the type now, it's probably because the type came
19005 from an inter-CU reference and the type's CU got expanded before
19006 ours. */
19007 this_type = read_type_die (type_die, type_cu);
19008 }
19009
19010 /* If we still don't have a type use an error marker. */
19011
19012 if (this_type == NULL)
19013 return build_error_marker_type (cu, die);
19014
19015 return this_type;
19016 }
19017
19018 /* Return the type in DIE, CU.
19019 Returns NULL for invalid types.
19020
19021 This first does a lookup in die_type_hash,
19022 and only reads the die in if necessary.
19023
19024 NOTE: This can be called when reading in partial or full symbols. */
19025
19026 static struct type *
19027 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19028 {
19029 struct type *this_type;
19030
19031 this_type = get_die_type (die, cu);
19032 if (this_type)
19033 return this_type;
19034
19035 return read_type_die_1 (die, cu);
19036 }
19037
19038 /* Read the type in DIE, CU.
19039 Returns NULL for invalid types. */
19040
19041 static struct type *
19042 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19043 {
19044 struct type *this_type = NULL;
19045
19046 switch (die->tag)
19047 {
19048 case DW_TAG_class_type:
19049 case DW_TAG_interface_type:
19050 case DW_TAG_structure_type:
19051 case DW_TAG_union_type:
19052 this_type = read_structure_type (die, cu);
19053 break;
19054 case DW_TAG_enumeration_type:
19055 this_type = read_enumeration_type (die, cu);
19056 break;
19057 case DW_TAG_subprogram:
19058 case DW_TAG_subroutine_type:
19059 case DW_TAG_inlined_subroutine:
19060 this_type = read_subroutine_type (die, cu);
19061 break;
19062 case DW_TAG_array_type:
19063 this_type = read_array_type (die, cu);
19064 break;
19065 case DW_TAG_set_type:
19066 this_type = read_set_type (die, cu);
19067 break;
19068 case DW_TAG_pointer_type:
19069 this_type = read_tag_pointer_type (die, cu);
19070 break;
19071 case DW_TAG_ptr_to_member_type:
19072 this_type = read_tag_ptr_to_member_type (die, cu);
19073 break;
19074 case DW_TAG_reference_type:
19075 this_type = read_tag_reference_type (die, cu);
19076 break;
19077 case DW_TAG_const_type:
19078 this_type = read_tag_const_type (die, cu);
19079 break;
19080 case DW_TAG_volatile_type:
19081 this_type = read_tag_volatile_type (die, cu);
19082 break;
19083 case DW_TAG_restrict_type:
19084 this_type = read_tag_restrict_type (die, cu);
19085 break;
19086 case DW_TAG_string_type:
19087 this_type = read_tag_string_type (die, cu);
19088 break;
19089 case DW_TAG_typedef:
19090 this_type = read_typedef (die, cu);
19091 break;
19092 case DW_TAG_subrange_type:
19093 this_type = read_subrange_type (die, cu);
19094 break;
19095 case DW_TAG_base_type:
19096 this_type = read_base_type (die, cu);
19097 break;
19098 case DW_TAG_unspecified_type:
19099 this_type = read_unspecified_type (die, cu);
19100 break;
19101 case DW_TAG_namespace:
19102 this_type = read_namespace_type (die, cu);
19103 break;
19104 case DW_TAG_module:
19105 this_type = read_module_type (die, cu);
19106 break;
19107 case DW_TAG_atomic_type:
19108 this_type = read_tag_atomic_type (die, cu);
19109 break;
19110 default:
19111 complaint (&symfile_complaints,
19112 _("unexpected tag in read_type_die: '%s'"),
19113 dwarf_tag_name (die->tag));
19114 break;
19115 }
19116
19117 return this_type;
19118 }
19119
19120 /* See if we can figure out if the class lives in a namespace. We do
19121 this by looking for a member function; its demangled name will
19122 contain namespace info, if there is any.
19123 Return the computed name or NULL.
19124 Space for the result is allocated on the objfile's obstack.
19125 This is the full-die version of guess_partial_die_structure_name.
19126 In this case we know DIE has no useful parent. */
19127
19128 static char *
19129 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19130 {
19131 struct die_info *spec_die;
19132 struct dwarf2_cu *spec_cu;
19133 struct die_info *child;
19134
19135 spec_cu = cu;
19136 spec_die = die_specification (die, &spec_cu);
19137 if (spec_die != NULL)
19138 {
19139 die = spec_die;
19140 cu = spec_cu;
19141 }
19142
19143 for (child = die->child;
19144 child != NULL;
19145 child = child->sibling)
19146 {
19147 if (child->tag == DW_TAG_subprogram)
19148 {
19149 const char *linkage_name;
19150
19151 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19152 if (linkage_name == NULL)
19153 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19154 cu);
19155 if (linkage_name != NULL)
19156 {
19157 char *actual_name
19158 = language_class_name_from_physname (cu->language_defn,
19159 linkage_name);
19160 char *name = NULL;
19161
19162 if (actual_name != NULL)
19163 {
19164 const char *die_name = dwarf2_name (die, cu);
19165
19166 if (die_name != NULL
19167 && strcmp (die_name, actual_name) != 0)
19168 {
19169 /* Strip off the class name from the full name.
19170 We want the prefix. */
19171 int die_name_len = strlen (die_name);
19172 int actual_name_len = strlen (actual_name);
19173
19174 /* Test for '::' as a sanity check. */
19175 if (actual_name_len > die_name_len + 2
19176 && actual_name[actual_name_len
19177 - die_name_len - 1] == ':')
19178 name = (char *) obstack_copy0 (
19179 &cu->objfile->per_bfd->storage_obstack,
19180 actual_name, actual_name_len - die_name_len - 2);
19181 }
19182 }
19183 xfree (actual_name);
19184 return name;
19185 }
19186 }
19187 }
19188
19189 return NULL;
19190 }
19191
19192 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19193 prefix part in such case. See
19194 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19195
19196 static char *
19197 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19198 {
19199 struct attribute *attr;
19200 const char *base;
19201
19202 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19203 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19204 return NULL;
19205
19206 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19207 return NULL;
19208
19209 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19210 if (attr == NULL)
19211 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19212 if (attr == NULL || DW_STRING (attr) == NULL)
19213 return NULL;
19214
19215 /* dwarf2_name had to be already called. */
19216 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19217
19218 /* Strip the base name, keep any leading namespaces/classes. */
19219 base = strrchr (DW_STRING (attr), ':');
19220 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19221 return "";
19222
19223 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19224 DW_STRING (attr),
19225 &base[-1] - DW_STRING (attr));
19226 }
19227
19228 /* Return the name of the namespace/class that DIE is defined within,
19229 or "" if we can't tell. The caller should not xfree the result.
19230
19231 For example, if we're within the method foo() in the following
19232 code:
19233
19234 namespace N {
19235 class C {
19236 void foo () {
19237 }
19238 };
19239 }
19240
19241 then determine_prefix on foo's die will return "N::C". */
19242
19243 static const char *
19244 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19245 {
19246 struct die_info *parent, *spec_die;
19247 struct dwarf2_cu *spec_cu;
19248 struct type *parent_type;
19249 char *retval;
19250
19251 if (cu->language != language_cplus
19252 && cu->language != language_fortran && cu->language != language_d
19253 && cu->language != language_rust)
19254 return "";
19255
19256 retval = anonymous_struct_prefix (die, cu);
19257 if (retval)
19258 return retval;
19259
19260 /* We have to be careful in the presence of DW_AT_specification.
19261 For example, with GCC 3.4, given the code
19262
19263 namespace N {
19264 void foo() {
19265 // Definition of N::foo.
19266 }
19267 }
19268
19269 then we'll have a tree of DIEs like this:
19270
19271 1: DW_TAG_compile_unit
19272 2: DW_TAG_namespace // N
19273 3: DW_TAG_subprogram // declaration of N::foo
19274 4: DW_TAG_subprogram // definition of N::foo
19275 DW_AT_specification // refers to die #3
19276
19277 Thus, when processing die #4, we have to pretend that we're in
19278 the context of its DW_AT_specification, namely the contex of die
19279 #3. */
19280 spec_cu = cu;
19281 spec_die = die_specification (die, &spec_cu);
19282 if (spec_die == NULL)
19283 parent = die->parent;
19284 else
19285 {
19286 parent = spec_die->parent;
19287 cu = spec_cu;
19288 }
19289
19290 if (parent == NULL)
19291 return "";
19292 else if (parent->building_fullname)
19293 {
19294 const char *name;
19295 const char *parent_name;
19296
19297 /* It has been seen on RealView 2.2 built binaries,
19298 DW_TAG_template_type_param types actually _defined_ as
19299 children of the parent class:
19300
19301 enum E {};
19302 template class <class Enum> Class{};
19303 Class<enum E> class_e;
19304
19305 1: DW_TAG_class_type (Class)
19306 2: DW_TAG_enumeration_type (E)
19307 3: DW_TAG_enumerator (enum1:0)
19308 3: DW_TAG_enumerator (enum2:1)
19309 ...
19310 2: DW_TAG_template_type_param
19311 DW_AT_type DW_FORM_ref_udata (E)
19312
19313 Besides being broken debug info, it can put GDB into an
19314 infinite loop. Consider:
19315
19316 When we're building the full name for Class<E>, we'll start
19317 at Class, and go look over its template type parameters,
19318 finding E. We'll then try to build the full name of E, and
19319 reach here. We're now trying to build the full name of E,
19320 and look over the parent DIE for containing scope. In the
19321 broken case, if we followed the parent DIE of E, we'd again
19322 find Class, and once again go look at its template type
19323 arguments, etc., etc. Simply don't consider such parent die
19324 as source-level parent of this die (it can't be, the language
19325 doesn't allow it), and break the loop here. */
19326 name = dwarf2_name (die, cu);
19327 parent_name = dwarf2_name (parent, cu);
19328 complaint (&symfile_complaints,
19329 _("template param type '%s' defined within parent '%s'"),
19330 name ? name : "<unknown>",
19331 parent_name ? parent_name : "<unknown>");
19332 return "";
19333 }
19334 else
19335 switch (parent->tag)
19336 {
19337 case DW_TAG_namespace:
19338 parent_type = read_type_die (parent, cu);
19339 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19340 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19341 Work around this problem here. */
19342 if (cu->language == language_cplus
19343 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19344 return "";
19345 /* We give a name to even anonymous namespaces. */
19346 return TYPE_TAG_NAME (parent_type);
19347 case DW_TAG_class_type:
19348 case DW_TAG_interface_type:
19349 case DW_TAG_structure_type:
19350 case DW_TAG_union_type:
19351 case DW_TAG_module:
19352 parent_type = read_type_die (parent, cu);
19353 if (TYPE_TAG_NAME (parent_type) != NULL)
19354 return TYPE_TAG_NAME (parent_type);
19355 else
19356 /* An anonymous structure is only allowed non-static data
19357 members; no typedefs, no member functions, et cetera.
19358 So it does not need a prefix. */
19359 return "";
19360 case DW_TAG_compile_unit:
19361 case DW_TAG_partial_unit:
19362 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19363 if (cu->language == language_cplus
19364 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19365 && die->child != NULL
19366 && (die->tag == DW_TAG_class_type
19367 || die->tag == DW_TAG_structure_type
19368 || die->tag == DW_TAG_union_type))
19369 {
19370 char *name = guess_full_die_structure_name (die, cu);
19371 if (name != NULL)
19372 return name;
19373 }
19374 return "";
19375 case DW_TAG_enumeration_type:
19376 parent_type = read_type_die (parent, cu);
19377 if (TYPE_DECLARED_CLASS (parent_type))
19378 {
19379 if (TYPE_TAG_NAME (parent_type) != NULL)
19380 return TYPE_TAG_NAME (parent_type);
19381 return "";
19382 }
19383 /* Fall through. */
19384 default:
19385 return determine_prefix (parent, cu);
19386 }
19387 }
19388
19389 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19390 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19391 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19392 an obconcat, otherwise allocate storage for the result. The CU argument is
19393 used to determine the language and hence, the appropriate separator. */
19394
19395 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19396
19397 static char *
19398 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19399 int physname, struct dwarf2_cu *cu)
19400 {
19401 const char *lead = "";
19402 const char *sep;
19403
19404 if (suffix == NULL || suffix[0] == '\0'
19405 || prefix == NULL || prefix[0] == '\0')
19406 sep = "";
19407 else if (cu->language == language_d)
19408 {
19409 /* For D, the 'main' function could be defined in any module, but it
19410 should never be prefixed. */
19411 if (strcmp (suffix, "D main") == 0)
19412 {
19413 prefix = "";
19414 sep = "";
19415 }
19416 else
19417 sep = ".";
19418 }
19419 else if (cu->language == language_fortran && physname)
19420 {
19421 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19422 DW_AT_MIPS_linkage_name is preferred and used instead. */
19423
19424 lead = "__";
19425 sep = "_MOD_";
19426 }
19427 else
19428 sep = "::";
19429
19430 if (prefix == NULL)
19431 prefix = "";
19432 if (suffix == NULL)
19433 suffix = "";
19434
19435 if (obs == NULL)
19436 {
19437 char *retval
19438 = ((char *)
19439 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19440
19441 strcpy (retval, lead);
19442 strcat (retval, prefix);
19443 strcat (retval, sep);
19444 strcat (retval, suffix);
19445 return retval;
19446 }
19447 else
19448 {
19449 /* We have an obstack. */
19450 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19451 }
19452 }
19453
19454 /* Return sibling of die, NULL if no sibling. */
19455
19456 static struct die_info *
19457 sibling_die (struct die_info *die)
19458 {
19459 return die->sibling;
19460 }
19461
19462 /* Get name of a die, return NULL if not found. */
19463
19464 static const char *
19465 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19466 struct obstack *obstack)
19467 {
19468 if (name && cu->language == language_cplus)
19469 {
19470 std::string canon_name = cp_canonicalize_string (name);
19471
19472 if (!canon_name.empty ())
19473 {
19474 if (canon_name != name)
19475 name = (const char *) obstack_copy0 (obstack,
19476 canon_name.c_str (),
19477 canon_name.length ());
19478 }
19479 }
19480
19481 return name;
19482 }
19483
19484 /* Get name of a die, return NULL if not found.
19485 Anonymous namespaces are converted to their magic string. */
19486
19487 static const char *
19488 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19489 {
19490 struct attribute *attr;
19491
19492 attr = dwarf2_attr (die, DW_AT_name, cu);
19493 if ((!attr || !DW_STRING (attr))
19494 && die->tag != DW_TAG_namespace
19495 && die->tag != DW_TAG_class_type
19496 && die->tag != DW_TAG_interface_type
19497 && die->tag != DW_TAG_structure_type
19498 && die->tag != DW_TAG_union_type)
19499 return NULL;
19500
19501 switch (die->tag)
19502 {
19503 case DW_TAG_compile_unit:
19504 case DW_TAG_partial_unit:
19505 /* Compilation units have a DW_AT_name that is a filename, not
19506 a source language identifier. */
19507 case DW_TAG_enumeration_type:
19508 case DW_TAG_enumerator:
19509 /* These tags always have simple identifiers already; no need
19510 to canonicalize them. */
19511 return DW_STRING (attr);
19512
19513 case DW_TAG_namespace:
19514 if (attr != NULL && DW_STRING (attr) != NULL)
19515 return DW_STRING (attr);
19516 return CP_ANONYMOUS_NAMESPACE_STR;
19517
19518 case DW_TAG_class_type:
19519 case DW_TAG_interface_type:
19520 case DW_TAG_structure_type:
19521 case DW_TAG_union_type:
19522 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19523 structures or unions. These were of the form "._%d" in GCC 4.1,
19524 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19525 and GCC 4.4. We work around this problem by ignoring these. */
19526 if (attr && DW_STRING (attr)
19527 && (startswith (DW_STRING (attr), "._")
19528 || startswith (DW_STRING (attr), "<anonymous")))
19529 return NULL;
19530
19531 /* GCC might emit a nameless typedef that has a linkage name. See
19532 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19533 if (!attr || DW_STRING (attr) == NULL)
19534 {
19535 char *demangled = NULL;
19536
19537 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19538 if (attr == NULL)
19539 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19540
19541 if (attr == NULL || DW_STRING (attr) == NULL)
19542 return NULL;
19543
19544 /* Avoid demangling DW_STRING (attr) the second time on a second
19545 call for the same DIE. */
19546 if (!DW_STRING_IS_CANONICAL (attr))
19547 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19548
19549 if (demangled)
19550 {
19551 const char *base;
19552
19553 /* FIXME: we already did this for the partial symbol... */
19554 DW_STRING (attr)
19555 = ((const char *)
19556 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19557 demangled, strlen (demangled)));
19558 DW_STRING_IS_CANONICAL (attr) = 1;
19559 xfree (demangled);
19560
19561 /* Strip any leading namespaces/classes, keep only the base name.
19562 DW_AT_name for named DIEs does not contain the prefixes. */
19563 base = strrchr (DW_STRING (attr), ':');
19564 if (base && base > DW_STRING (attr) && base[-1] == ':')
19565 return &base[1];
19566 else
19567 return DW_STRING (attr);
19568 }
19569 }
19570 break;
19571
19572 default:
19573 break;
19574 }
19575
19576 if (!DW_STRING_IS_CANONICAL (attr))
19577 {
19578 DW_STRING (attr)
19579 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19580 &cu->objfile->per_bfd->storage_obstack);
19581 DW_STRING_IS_CANONICAL (attr) = 1;
19582 }
19583 return DW_STRING (attr);
19584 }
19585
19586 /* Return the die that this die in an extension of, or NULL if there
19587 is none. *EXT_CU is the CU containing DIE on input, and the CU
19588 containing the return value on output. */
19589
19590 static struct die_info *
19591 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19592 {
19593 struct attribute *attr;
19594
19595 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19596 if (attr == NULL)
19597 return NULL;
19598
19599 return follow_die_ref (die, attr, ext_cu);
19600 }
19601
19602 /* Convert a DIE tag into its string name. */
19603
19604 static const char *
19605 dwarf_tag_name (unsigned tag)
19606 {
19607 const char *name = get_DW_TAG_name (tag);
19608
19609 if (name == NULL)
19610 return "DW_TAG_<unknown>";
19611
19612 return name;
19613 }
19614
19615 /* Convert a DWARF attribute code into its string name. */
19616
19617 static const char *
19618 dwarf_attr_name (unsigned attr)
19619 {
19620 const char *name;
19621
19622 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19623 if (attr == DW_AT_MIPS_fde)
19624 return "DW_AT_MIPS_fde";
19625 #else
19626 if (attr == DW_AT_HP_block_index)
19627 return "DW_AT_HP_block_index";
19628 #endif
19629
19630 name = get_DW_AT_name (attr);
19631
19632 if (name == NULL)
19633 return "DW_AT_<unknown>";
19634
19635 return name;
19636 }
19637
19638 /* Convert a DWARF value form code into its string name. */
19639
19640 static const char *
19641 dwarf_form_name (unsigned form)
19642 {
19643 const char *name = get_DW_FORM_name (form);
19644
19645 if (name == NULL)
19646 return "DW_FORM_<unknown>";
19647
19648 return name;
19649 }
19650
19651 static char *
19652 dwarf_bool_name (unsigned mybool)
19653 {
19654 if (mybool)
19655 return "TRUE";
19656 else
19657 return "FALSE";
19658 }
19659
19660 /* Convert a DWARF type code into its string name. */
19661
19662 static const char *
19663 dwarf_type_encoding_name (unsigned enc)
19664 {
19665 const char *name = get_DW_ATE_name (enc);
19666
19667 if (name == NULL)
19668 return "DW_ATE_<unknown>";
19669
19670 return name;
19671 }
19672
19673 static void
19674 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19675 {
19676 unsigned int i;
19677
19678 print_spaces (indent, f);
19679 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19680 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19681
19682 if (die->parent != NULL)
19683 {
19684 print_spaces (indent, f);
19685 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19686 die->parent->offset.sect_off);
19687 }
19688
19689 print_spaces (indent, f);
19690 fprintf_unfiltered (f, " has children: %s\n",
19691 dwarf_bool_name (die->child != NULL));
19692
19693 print_spaces (indent, f);
19694 fprintf_unfiltered (f, " attributes:\n");
19695
19696 for (i = 0; i < die->num_attrs; ++i)
19697 {
19698 print_spaces (indent, f);
19699 fprintf_unfiltered (f, " %s (%s) ",
19700 dwarf_attr_name (die->attrs[i].name),
19701 dwarf_form_name (die->attrs[i].form));
19702
19703 switch (die->attrs[i].form)
19704 {
19705 case DW_FORM_addr:
19706 case DW_FORM_GNU_addr_index:
19707 fprintf_unfiltered (f, "address: ");
19708 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19709 break;
19710 case DW_FORM_block2:
19711 case DW_FORM_block4:
19712 case DW_FORM_block:
19713 case DW_FORM_block1:
19714 fprintf_unfiltered (f, "block: size %s",
19715 pulongest (DW_BLOCK (&die->attrs[i])->size));
19716 break;
19717 case DW_FORM_exprloc:
19718 fprintf_unfiltered (f, "expression: size %s",
19719 pulongest (DW_BLOCK (&die->attrs[i])->size));
19720 break;
19721 case DW_FORM_ref_addr:
19722 fprintf_unfiltered (f, "ref address: ");
19723 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19724 break;
19725 case DW_FORM_GNU_ref_alt:
19726 fprintf_unfiltered (f, "alt ref address: ");
19727 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19728 break;
19729 case DW_FORM_ref1:
19730 case DW_FORM_ref2:
19731 case DW_FORM_ref4:
19732 case DW_FORM_ref8:
19733 case DW_FORM_ref_udata:
19734 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19735 (long) (DW_UNSND (&die->attrs[i])));
19736 break;
19737 case DW_FORM_data1:
19738 case DW_FORM_data2:
19739 case DW_FORM_data4:
19740 case DW_FORM_data8:
19741 case DW_FORM_udata:
19742 case DW_FORM_sdata:
19743 fprintf_unfiltered (f, "constant: %s",
19744 pulongest (DW_UNSND (&die->attrs[i])));
19745 break;
19746 case DW_FORM_sec_offset:
19747 fprintf_unfiltered (f, "section offset: %s",
19748 pulongest (DW_UNSND (&die->attrs[i])));
19749 break;
19750 case DW_FORM_ref_sig8:
19751 fprintf_unfiltered (f, "signature: %s",
19752 hex_string (DW_SIGNATURE (&die->attrs[i])));
19753 break;
19754 case DW_FORM_string:
19755 case DW_FORM_strp:
19756 case DW_FORM_GNU_str_index:
19757 case DW_FORM_GNU_strp_alt:
19758 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19759 DW_STRING (&die->attrs[i])
19760 ? DW_STRING (&die->attrs[i]) : "",
19761 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19762 break;
19763 case DW_FORM_flag:
19764 if (DW_UNSND (&die->attrs[i]))
19765 fprintf_unfiltered (f, "flag: TRUE");
19766 else
19767 fprintf_unfiltered (f, "flag: FALSE");
19768 break;
19769 case DW_FORM_flag_present:
19770 fprintf_unfiltered (f, "flag: TRUE");
19771 break;
19772 case DW_FORM_indirect:
19773 /* The reader will have reduced the indirect form to
19774 the "base form" so this form should not occur. */
19775 fprintf_unfiltered (f,
19776 "unexpected attribute form: DW_FORM_indirect");
19777 break;
19778 default:
19779 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19780 die->attrs[i].form);
19781 break;
19782 }
19783 fprintf_unfiltered (f, "\n");
19784 }
19785 }
19786
19787 static void
19788 dump_die_for_error (struct die_info *die)
19789 {
19790 dump_die_shallow (gdb_stderr, 0, die);
19791 }
19792
19793 static void
19794 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19795 {
19796 int indent = level * 4;
19797
19798 gdb_assert (die != NULL);
19799
19800 if (level >= max_level)
19801 return;
19802
19803 dump_die_shallow (f, indent, die);
19804
19805 if (die->child != NULL)
19806 {
19807 print_spaces (indent, f);
19808 fprintf_unfiltered (f, " Children:");
19809 if (level + 1 < max_level)
19810 {
19811 fprintf_unfiltered (f, "\n");
19812 dump_die_1 (f, level + 1, max_level, die->child);
19813 }
19814 else
19815 {
19816 fprintf_unfiltered (f,
19817 " [not printed, max nesting level reached]\n");
19818 }
19819 }
19820
19821 if (die->sibling != NULL && level > 0)
19822 {
19823 dump_die_1 (f, level, max_level, die->sibling);
19824 }
19825 }
19826
19827 /* This is called from the pdie macro in gdbinit.in.
19828 It's not static so gcc will keep a copy callable from gdb. */
19829
19830 void
19831 dump_die (struct die_info *die, int max_level)
19832 {
19833 dump_die_1 (gdb_stdlog, 0, max_level, die);
19834 }
19835
19836 static void
19837 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19838 {
19839 void **slot;
19840
19841 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19842 INSERT);
19843
19844 *slot = die;
19845 }
19846
19847 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19848 required kind. */
19849
19850 static sect_offset
19851 dwarf2_get_ref_die_offset (const struct attribute *attr)
19852 {
19853 sect_offset retval = { DW_UNSND (attr) };
19854
19855 if (attr_form_is_ref (attr))
19856 return retval;
19857
19858 retval.sect_off = 0;
19859 complaint (&symfile_complaints,
19860 _("unsupported die ref attribute form: '%s'"),
19861 dwarf_form_name (attr->form));
19862 return retval;
19863 }
19864
19865 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19866 * the value held by the attribute is not constant. */
19867
19868 static LONGEST
19869 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19870 {
19871 if (attr->form == DW_FORM_sdata)
19872 return DW_SND (attr);
19873 else if (attr->form == DW_FORM_udata
19874 || attr->form == DW_FORM_data1
19875 || attr->form == DW_FORM_data2
19876 || attr->form == DW_FORM_data4
19877 || attr->form == DW_FORM_data8)
19878 return DW_UNSND (attr);
19879 else
19880 {
19881 complaint (&symfile_complaints,
19882 _("Attribute value is not a constant (%s)"),
19883 dwarf_form_name (attr->form));
19884 return default_value;
19885 }
19886 }
19887
19888 /* Follow reference or signature attribute ATTR of SRC_DIE.
19889 On entry *REF_CU is the CU of SRC_DIE.
19890 On exit *REF_CU is the CU of the result. */
19891
19892 static struct die_info *
19893 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19894 struct dwarf2_cu **ref_cu)
19895 {
19896 struct die_info *die;
19897
19898 if (attr_form_is_ref (attr))
19899 die = follow_die_ref (src_die, attr, ref_cu);
19900 else if (attr->form == DW_FORM_ref_sig8)
19901 die = follow_die_sig (src_die, attr, ref_cu);
19902 else
19903 {
19904 dump_die_for_error (src_die);
19905 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19906 objfile_name ((*ref_cu)->objfile));
19907 }
19908
19909 return die;
19910 }
19911
19912 /* Follow reference OFFSET.
19913 On entry *REF_CU is the CU of the source die referencing OFFSET.
19914 On exit *REF_CU is the CU of the result.
19915 Returns NULL if OFFSET is invalid. */
19916
19917 static struct die_info *
19918 follow_die_offset (sect_offset offset, int offset_in_dwz,
19919 struct dwarf2_cu **ref_cu)
19920 {
19921 struct die_info temp_die;
19922 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19923
19924 gdb_assert (cu->per_cu != NULL);
19925
19926 target_cu = cu;
19927
19928 if (cu->per_cu->is_debug_types)
19929 {
19930 /* .debug_types CUs cannot reference anything outside their CU.
19931 If they need to, they have to reference a signatured type via
19932 DW_FORM_ref_sig8. */
19933 if (! offset_in_cu_p (&cu->header, offset))
19934 return NULL;
19935 }
19936 else if (offset_in_dwz != cu->per_cu->is_dwz
19937 || ! offset_in_cu_p (&cu->header, offset))
19938 {
19939 struct dwarf2_per_cu_data *per_cu;
19940
19941 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19942 cu->objfile);
19943
19944 /* If necessary, add it to the queue and load its DIEs. */
19945 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19946 load_full_comp_unit (per_cu, cu->language);
19947
19948 target_cu = per_cu->cu;
19949 }
19950 else if (cu->dies == NULL)
19951 {
19952 /* We're loading full DIEs during partial symbol reading. */
19953 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19954 load_full_comp_unit (cu->per_cu, language_minimal);
19955 }
19956
19957 *ref_cu = target_cu;
19958 temp_die.offset = offset;
19959 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
19960 &temp_die, offset.sect_off);
19961 }
19962
19963 /* Follow reference attribute ATTR of SRC_DIE.
19964 On entry *REF_CU is the CU of SRC_DIE.
19965 On exit *REF_CU is the CU of the result. */
19966
19967 static struct die_info *
19968 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19969 struct dwarf2_cu **ref_cu)
19970 {
19971 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19972 struct dwarf2_cu *cu = *ref_cu;
19973 struct die_info *die;
19974
19975 die = follow_die_offset (offset,
19976 (attr->form == DW_FORM_GNU_ref_alt
19977 || cu->per_cu->is_dwz),
19978 ref_cu);
19979 if (!die)
19980 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19981 "at 0x%x [in module %s]"),
19982 offset.sect_off, src_die->offset.sect_off,
19983 objfile_name (cu->objfile));
19984
19985 return die;
19986 }
19987
19988 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19989 Returned value is intended for DW_OP_call*. Returned
19990 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19991
19992 struct dwarf2_locexpr_baton
19993 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19994 struct dwarf2_per_cu_data *per_cu,
19995 CORE_ADDR (*get_frame_pc) (void *baton),
19996 void *baton)
19997 {
19998 struct dwarf2_cu *cu;
19999 struct die_info *die;
20000 struct attribute *attr;
20001 struct dwarf2_locexpr_baton retval;
20002
20003 dw2_setup (per_cu->objfile);
20004
20005 if (per_cu->cu == NULL)
20006 load_cu (per_cu);
20007 cu = per_cu->cu;
20008 if (cu == NULL)
20009 {
20010 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20011 Instead just throw an error, not much else we can do. */
20012 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20013 offset.sect_off, objfile_name (per_cu->objfile));
20014 }
20015
20016 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20017 if (!die)
20018 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20019 offset.sect_off, objfile_name (per_cu->objfile));
20020
20021 attr = dwarf2_attr (die, DW_AT_location, cu);
20022 if (!attr)
20023 {
20024 /* DWARF: "If there is no such attribute, then there is no effect.".
20025 DATA is ignored if SIZE is 0. */
20026
20027 retval.data = NULL;
20028 retval.size = 0;
20029 }
20030 else if (attr_form_is_section_offset (attr))
20031 {
20032 struct dwarf2_loclist_baton loclist_baton;
20033 CORE_ADDR pc = (*get_frame_pc) (baton);
20034 size_t size;
20035
20036 fill_in_loclist_baton (cu, &loclist_baton, attr);
20037
20038 retval.data = dwarf2_find_location_expression (&loclist_baton,
20039 &size, pc);
20040 retval.size = size;
20041 }
20042 else
20043 {
20044 if (!attr_form_is_block (attr))
20045 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20046 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20047 offset.sect_off, objfile_name (per_cu->objfile));
20048
20049 retval.data = DW_BLOCK (attr)->data;
20050 retval.size = DW_BLOCK (attr)->size;
20051 }
20052 retval.per_cu = cu->per_cu;
20053
20054 age_cached_comp_units ();
20055
20056 return retval;
20057 }
20058
20059 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20060 offset. */
20061
20062 struct dwarf2_locexpr_baton
20063 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20064 struct dwarf2_per_cu_data *per_cu,
20065 CORE_ADDR (*get_frame_pc) (void *baton),
20066 void *baton)
20067 {
20068 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20069
20070 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20071 }
20072
20073 /* Write a constant of a given type as target-ordered bytes into
20074 OBSTACK. */
20075
20076 static const gdb_byte *
20077 write_constant_as_bytes (struct obstack *obstack,
20078 enum bfd_endian byte_order,
20079 struct type *type,
20080 ULONGEST value,
20081 LONGEST *len)
20082 {
20083 gdb_byte *result;
20084
20085 *len = TYPE_LENGTH (type);
20086 result = (gdb_byte *) obstack_alloc (obstack, *len);
20087 store_unsigned_integer (result, *len, byte_order, value);
20088
20089 return result;
20090 }
20091
20092 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20093 pointer to the constant bytes and set LEN to the length of the
20094 data. If memory is needed, allocate it on OBSTACK. If the DIE
20095 does not have a DW_AT_const_value, return NULL. */
20096
20097 const gdb_byte *
20098 dwarf2_fetch_constant_bytes (sect_offset offset,
20099 struct dwarf2_per_cu_data *per_cu,
20100 struct obstack *obstack,
20101 LONGEST *len)
20102 {
20103 struct dwarf2_cu *cu;
20104 struct die_info *die;
20105 struct attribute *attr;
20106 const gdb_byte *result = NULL;
20107 struct type *type;
20108 LONGEST value;
20109 enum bfd_endian byte_order;
20110
20111 dw2_setup (per_cu->objfile);
20112
20113 if (per_cu->cu == NULL)
20114 load_cu (per_cu);
20115 cu = per_cu->cu;
20116 if (cu == NULL)
20117 {
20118 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20119 Instead just throw an error, not much else we can do. */
20120 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20121 offset.sect_off, objfile_name (per_cu->objfile));
20122 }
20123
20124 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20125 if (!die)
20126 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20127 offset.sect_off, objfile_name (per_cu->objfile));
20128
20129
20130 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20131 if (attr == NULL)
20132 return NULL;
20133
20134 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20135 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20136
20137 switch (attr->form)
20138 {
20139 case DW_FORM_addr:
20140 case DW_FORM_GNU_addr_index:
20141 {
20142 gdb_byte *tem;
20143
20144 *len = cu->header.addr_size;
20145 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20146 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20147 result = tem;
20148 }
20149 break;
20150 case DW_FORM_string:
20151 case DW_FORM_strp:
20152 case DW_FORM_GNU_str_index:
20153 case DW_FORM_GNU_strp_alt:
20154 /* DW_STRING is already allocated on the objfile obstack, point
20155 directly to it. */
20156 result = (const gdb_byte *) DW_STRING (attr);
20157 *len = strlen (DW_STRING (attr));
20158 break;
20159 case DW_FORM_block1:
20160 case DW_FORM_block2:
20161 case DW_FORM_block4:
20162 case DW_FORM_block:
20163 case DW_FORM_exprloc:
20164 result = DW_BLOCK (attr)->data;
20165 *len = DW_BLOCK (attr)->size;
20166 break;
20167
20168 /* The DW_AT_const_value attributes are supposed to carry the
20169 symbol's value "represented as it would be on the target
20170 architecture." By the time we get here, it's already been
20171 converted to host endianness, so we just need to sign- or
20172 zero-extend it as appropriate. */
20173 case DW_FORM_data1:
20174 type = die_type (die, cu);
20175 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20176 if (result == NULL)
20177 result = write_constant_as_bytes (obstack, byte_order,
20178 type, value, len);
20179 break;
20180 case DW_FORM_data2:
20181 type = die_type (die, cu);
20182 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20183 if (result == NULL)
20184 result = write_constant_as_bytes (obstack, byte_order,
20185 type, value, len);
20186 break;
20187 case DW_FORM_data4:
20188 type = die_type (die, cu);
20189 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20190 if (result == NULL)
20191 result = write_constant_as_bytes (obstack, byte_order,
20192 type, value, len);
20193 break;
20194 case DW_FORM_data8:
20195 type = die_type (die, cu);
20196 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20197 if (result == NULL)
20198 result = write_constant_as_bytes (obstack, byte_order,
20199 type, value, len);
20200 break;
20201
20202 case DW_FORM_sdata:
20203 type = die_type (die, cu);
20204 result = write_constant_as_bytes (obstack, byte_order,
20205 type, DW_SND (attr), len);
20206 break;
20207
20208 case DW_FORM_udata:
20209 type = die_type (die, cu);
20210 result = write_constant_as_bytes (obstack, byte_order,
20211 type, DW_UNSND (attr), len);
20212 break;
20213
20214 default:
20215 complaint (&symfile_complaints,
20216 _("unsupported const value attribute form: '%s'"),
20217 dwarf_form_name (attr->form));
20218 break;
20219 }
20220
20221 return result;
20222 }
20223
20224 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20225 PER_CU. */
20226
20227 struct type *
20228 dwarf2_get_die_type (cu_offset die_offset,
20229 struct dwarf2_per_cu_data *per_cu)
20230 {
20231 sect_offset die_offset_sect;
20232
20233 dw2_setup (per_cu->objfile);
20234
20235 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20236 return get_die_type_at_offset (die_offset_sect, per_cu);
20237 }
20238
20239 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20240 On entry *REF_CU is the CU of SRC_DIE.
20241 On exit *REF_CU is the CU of the result.
20242 Returns NULL if the referenced DIE isn't found. */
20243
20244 static struct die_info *
20245 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20246 struct dwarf2_cu **ref_cu)
20247 {
20248 struct die_info temp_die;
20249 struct dwarf2_cu *sig_cu;
20250 struct die_info *die;
20251
20252 /* While it might be nice to assert sig_type->type == NULL here,
20253 we can get here for DW_AT_imported_declaration where we need
20254 the DIE not the type. */
20255
20256 /* If necessary, add it to the queue and load its DIEs. */
20257
20258 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20259 read_signatured_type (sig_type);
20260
20261 sig_cu = sig_type->per_cu.cu;
20262 gdb_assert (sig_cu != NULL);
20263 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20264 temp_die.offset = sig_type->type_offset_in_section;
20265 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20266 temp_die.offset.sect_off);
20267 if (die)
20268 {
20269 /* For .gdb_index version 7 keep track of included TUs.
20270 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20271 if (dwarf2_per_objfile->index_table != NULL
20272 && dwarf2_per_objfile->index_table->version <= 7)
20273 {
20274 VEC_safe_push (dwarf2_per_cu_ptr,
20275 (*ref_cu)->per_cu->imported_symtabs,
20276 sig_cu->per_cu);
20277 }
20278
20279 *ref_cu = sig_cu;
20280 return die;
20281 }
20282
20283 return NULL;
20284 }
20285
20286 /* Follow signatured type referenced by ATTR in SRC_DIE.
20287 On entry *REF_CU is the CU of SRC_DIE.
20288 On exit *REF_CU is the CU of the result.
20289 The result is the DIE of the type.
20290 If the referenced type cannot be found an error is thrown. */
20291
20292 static struct die_info *
20293 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20294 struct dwarf2_cu **ref_cu)
20295 {
20296 ULONGEST signature = DW_SIGNATURE (attr);
20297 struct signatured_type *sig_type;
20298 struct die_info *die;
20299
20300 gdb_assert (attr->form == DW_FORM_ref_sig8);
20301
20302 sig_type = lookup_signatured_type (*ref_cu, signature);
20303 /* sig_type will be NULL if the signatured type is missing from
20304 the debug info. */
20305 if (sig_type == NULL)
20306 {
20307 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20308 " from DIE at 0x%x [in module %s]"),
20309 hex_string (signature), src_die->offset.sect_off,
20310 objfile_name ((*ref_cu)->objfile));
20311 }
20312
20313 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20314 if (die == NULL)
20315 {
20316 dump_die_for_error (src_die);
20317 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20318 " from DIE at 0x%x [in module %s]"),
20319 hex_string (signature), src_die->offset.sect_off,
20320 objfile_name ((*ref_cu)->objfile));
20321 }
20322
20323 return die;
20324 }
20325
20326 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20327 reading in and processing the type unit if necessary. */
20328
20329 static struct type *
20330 get_signatured_type (struct die_info *die, ULONGEST signature,
20331 struct dwarf2_cu *cu)
20332 {
20333 struct signatured_type *sig_type;
20334 struct dwarf2_cu *type_cu;
20335 struct die_info *type_die;
20336 struct type *type;
20337
20338 sig_type = lookup_signatured_type (cu, signature);
20339 /* sig_type will be NULL if the signatured type is missing from
20340 the debug info. */
20341 if (sig_type == NULL)
20342 {
20343 complaint (&symfile_complaints,
20344 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20345 " from DIE at 0x%x [in module %s]"),
20346 hex_string (signature), die->offset.sect_off,
20347 objfile_name (dwarf2_per_objfile->objfile));
20348 return build_error_marker_type (cu, die);
20349 }
20350
20351 /* If we already know the type we're done. */
20352 if (sig_type->type != NULL)
20353 return sig_type->type;
20354
20355 type_cu = cu;
20356 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20357 if (type_die != NULL)
20358 {
20359 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20360 is created. This is important, for example, because for c++ classes
20361 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20362 type = read_type_die (type_die, type_cu);
20363 if (type == NULL)
20364 {
20365 complaint (&symfile_complaints,
20366 _("Dwarf Error: Cannot build signatured type %s"
20367 " referenced from DIE at 0x%x [in module %s]"),
20368 hex_string (signature), die->offset.sect_off,
20369 objfile_name (dwarf2_per_objfile->objfile));
20370 type = build_error_marker_type (cu, die);
20371 }
20372 }
20373 else
20374 {
20375 complaint (&symfile_complaints,
20376 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20377 " from DIE at 0x%x [in module %s]"),
20378 hex_string (signature), die->offset.sect_off,
20379 objfile_name (dwarf2_per_objfile->objfile));
20380 type = build_error_marker_type (cu, die);
20381 }
20382 sig_type->type = type;
20383
20384 return type;
20385 }
20386
20387 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20388 reading in and processing the type unit if necessary. */
20389
20390 static struct type *
20391 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20392 struct dwarf2_cu *cu) /* ARI: editCase function */
20393 {
20394 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20395 if (attr_form_is_ref (attr))
20396 {
20397 struct dwarf2_cu *type_cu = cu;
20398 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20399
20400 return read_type_die (type_die, type_cu);
20401 }
20402 else if (attr->form == DW_FORM_ref_sig8)
20403 {
20404 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20405 }
20406 else
20407 {
20408 complaint (&symfile_complaints,
20409 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20410 " at 0x%x [in module %s]"),
20411 dwarf_form_name (attr->form), die->offset.sect_off,
20412 objfile_name (dwarf2_per_objfile->objfile));
20413 return build_error_marker_type (cu, die);
20414 }
20415 }
20416
20417 /* Load the DIEs associated with type unit PER_CU into memory. */
20418
20419 static void
20420 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20421 {
20422 struct signatured_type *sig_type;
20423
20424 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20425 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20426
20427 /* We have the per_cu, but we need the signatured_type.
20428 Fortunately this is an easy translation. */
20429 gdb_assert (per_cu->is_debug_types);
20430 sig_type = (struct signatured_type *) per_cu;
20431
20432 gdb_assert (per_cu->cu == NULL);
20433
20434 read_signatured_type (sig_type);
20435
20436 gdb_assert (per_cu->cu != NULL);
20437 }
20438
20439 /* die_reader_func for read_signatured_type.
20440 This is identical to load_full_comp_unit_reader,
20441 but is kept separate for now. */
20442
20443 static void
20444 read_signatured_type_reader (const struct die_reader_specs *reader,
20445 const gdb_byte *info_ptr,
20446 struct die_info *comp_unit_die,
20447 int has_children,
20448 void *data)
20449 {
20450 struct dwarf2_cu *cu = reader->cu;
20451
20452 gdb_assert (cu->die_hash == NULL);
20453 cu->die_hash =
20454 htab_create_alloc_ex (cu->header.length / 12,
20455 die_hash,
20456 die_eq,
20457 NULL,
20458 &cu->comp_unit_obstack,
20459 hashtab_obstack_allocate,
20460 dummy_obstack_deallocate);
20461
20462 if (has_children)
20463 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20464 &info_ptr, comp_unit_die);
20465 cu->dies = comp_unit_die;
20466 /* comp_unit_die is not stored in die_hash, no need. */
20467
20468 /* We try not to read any attributes in this function, because not
20469 all CUs needed for references have been loaded yet, and symbol
20470 table processing isn't initialized. But we have to set the CU language,
20471 or we won't be able to build types correctly.
20472 Similarly, if we do not read the producer, we can not apply
20473 producer-specific interpretation. */
20474 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20475 }
20476
20477 /* Read in a signatured type and build its CU and DIEs.
20478 If the type is a stub for the real type in a DWO file,
20479 read in the real type from the DWO file as well. */
20480
20481 static void
20482 read_signatured_type (struct signatured_type *sig_type)
20483 {
20484 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20485
20486 gdb_assert (per_cu->is_debug_types);
20487 gdb_assert (per_cu->cu == NULL);
20488
20489 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20490 read_signatured_type_reader, NULL);
20491 sig_type->per_cu.tu_read = 1;
20492 }
20493
20494 /* Decode simple location descriptions.
20495 Given a pointer to a dwarf block that defines a location, compute
20496 the location and return the value.
20497
20498 NOTE drow/2003-11-18: This function is called in two situations
20499 now: for the address of static or global variables (partial symbols
20500 only) and for offsets into structures which are expected to be
20501 (more or less) constant. The partial symbol case should go away,
20502 and only the constant case should remain. That will let this
20503 function complain more accurately. A few special modes are allowed
20504 without complaint for global variables (for instance, global
20505 register values and thread-local values).
20506
20507 A location description containing no operations indicates that the
20508 object is optimized out. The return value is 0 for that case.
20509 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20510 callers will only want a very basic result and this can become a
20511 complaint.
20512
20513 Note that stack[0] is unused except as a default error return. */
20514
20515 static CORE_ADDR
20516 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20517 {
20518 struct objfile *objfile = cu->objfile;
20519 size_t i;
20520 size_t size = blk->size;
20521 const gdb_byte *data = blk->data;
20522 CORE_ADDR stack[64];
20523 int stacki;
20524 unsigned int bytes_read, unsnd;
20525 gdb_byte op;
20526
20527 i = 0;
20528 stacki = 0;
20529 stack[stacki] = 0;
20530 stack[++stacki] = 0;
20531
20532 while (i < size)
20533 {
20534 op = data[i++];
20535 switch (op)
20536 {
20537 case DW_OP_lit0:
20538 case DW_OP_lit1:
20539 case DW_OP_lit2:
20540 case DW_OP_lit3:
20541 case DW_OP_lit4:
20542 case DW_OP_lit5:
20543 case DW_OP_lit6:
20544 case DW_OP_lit7:
20545 case DW_OP_lit8:
20546 case DW_OP_lit9:
20547 case DW_OP_lit10:
20548 case DW_OP_lit11:
20549 case DW_OP_lit12:
20550 case DW_OP_lit13:
20551 case DW_OP_lit14:
20552 case DW_OP_lit15:
20553 case DW_OP_lit16:
20554 case DW_OP_lit17:
20555 case DW_OP_lit18:
20556 case DW_OP_lit19:
20557 case DW_OP_lit20:
20558 case DW_OP_lit21:
20559 case DW_OP_lit22:
20560 case DW_OP_lit23:
20561 case DW_OP_lit24:
20562 case DW_OP_lit25:
20563 case DW_OP_lit26:
20564 case DW_OP_lit27:
20565 case DW_OP_lit28:
20566 case DW_OP_lit29:
20567 case DW_OP_lit30:
20568 case DW_OP_lit31:
20569 stack[++stacki] = op - DW_OP_lit0;
20570 break;
20571
20572 case DW_OP_reg0:
20573 case DW_OP_reg1:
20574 case DW_OP_reg2:
20575 case DW_OP_reg3:
20576 case DW_OP_reg4:
20577 case DW_OP_reg5:
20578 case DW_OP_reg6:
20579 case DW_OP_reg7:
20580 case DW_OP_reg8:
20581 case DW_OP_reg9:
20582 case DW_OP_reg10:
20583 case DW_OP_reg11:
20584 case DW_OP_reg12:
20585 case DW_OP_reg13:
20586 case DW_OP_reg14:
20587 case DW_OP_reg15:
20588 case DW_OP_reg16:
20589 case DW_OP_reg17:
20590 case DW_OP_reg18:
20591 case DW_OP_reg19:
20592 case DW_OP_reg20:
20593 case DW_OP_reg21:
20594 case DW_OP_reg22:
20595 case DW_OP_reg23:
20596 case DW_OP_reg24:
20597 case DW_OP_reg25:
20598 case DW_OP_reg26:
20599 case DW_OP_reg27:
20600 case DW_OP_reg28:
20601 case DW_OP_reg29:
20602 case DW_OP_reg30:
20603 case DW_OP_reg31:
20604 stack[++stacki] = op - DW_OP_reg0;
20605 if (i < size)
20606 dwarf2_complex_location_expr_complaint ();
20607 break;
20608
20609 case DW_OP_regx:
20610 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20611 i += bytes_read;
20612 stack[++stacki] = unsnd;
20613 if (i < size)
20614 dwarf2_complex_location_expr_complaint ();
20615 break;
20616
20617 case DW_OP_addr:
20618 stack[++stacki] = read_address (objfile->obfd, &data[i],
20619 cu, &bytes_read);
20620 i += bytes_read;
20621 break;
20622
20623 case DW_OP_const1u:
20624 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20625 i += 1;
20626 break;
20627
20628 case DW_OP_const1s:
20629 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20630 i += 1;
20631 break;
20632
20633 case DW_OP_const2u:
20634 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20635 i += 2;
20636 break;
20637
20638 case DW_OP_const2s:
20639 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20640 i += 2;
20641 break;
20642
20643 case DW_OP_const4u:
20644 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20645 i += 4;
20646 break;
20647
20648 case DW_OP_const4s:
20649 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20650 i += 4;
20651 break;
20652
20653 case DW_OP_const8u:
20654 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20655 i += 8;
20656 break;
20657
20658 case DW_OP_constu:
20659 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20660 &bytes_read);
20661 i += bytes_read;
20662 break;
20663
20664 case DW_OP_consts:
20665 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20666 i += bytes_read;
20667 break;
20668
20669 case DW_OP_dup:
20670 stack[stacki + 1] = stack[stacki];
20671 stacki++;
20672 break;
20673
20674 case DW_OP_plus:
20675 stack[stacki - 1] += stack[stacki];
20676 stacki--;
20677 break;
20678
20679 case DW_OP_plus_uconst:
20680 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20681 &bytes_read);
20682 i += bytes_read;
20683 break;
20684
20685 case DW_OP_minus:
20686 stack[stacki - 1] -= stack[stacki];
20687 stacki--;
20688 break;
20689
20690 case DW_OP_deref:
20691 /* If we're not the last op, then we definitely can't encode
20692 this using GDB's address_class enum. This is valid for partial
20693 global symbols, although the variable's address will be bogus
20694 in the psymtab. */
20695 if (i < size)
20696 dwarf2_complex_location_expr_complaint ();
20697 break;
20698
20699 case DW_OP_GNU_push_tls_address:
20700 case DW_OP_form_tls_address:
20701 /* The top of the stack has the offset from the beginning
20702 of the thread control block at which the variable is located. */
20703 /* Nothing should follow this operator, so the top of stack would
20704 be returned. */
20705 /* This is valid for partial global symbols, but the variable's
20706 address will be bogus in the psymtab. Make it always at least
20707 non-zero to not look as a variable garbage collected by linker
20708 which have DW_OP_addr 0. */
20709 if (i < size)
20710 dwarf2_complex_location_expr_complaint ();
20711 stack[stacki]++;
20712 break;
20713
20714 case DW_OP_GNU_uninit:
20715 break;
20716
20717 case DW_OP_GNU_addr_index:
20718 case DW_OP_GNU_const_index:
20719 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20720 &bytes_read);
20721 i += bytes_read;
20722 break;
20723
20724 default:
20725 {
20726 const char *name = get_DW_OP_name (op);
20727
20728 if (name)
20729 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20730 name);
20731 else
20732 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20733 op);
20734 }
20735
20736 return (stack[stacki]);
20737 }
20738
20739 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20740 outside of the allocated space. Also enforce minimum>0. */
20741 if (stacki >= ARRAY_SIZE (stack) - 1)
20742 {
20743 complaint (&symfile_complaints,
20744 _("location description stack overflow"));
20745 return 0;
20746 }
20747
20748 if (stacki <= 0)
20749 {
20750 complaint (&symfile_complaints,
20751 _("location description stack underflow"));
20752 return 0;
20753 }
20754 }
20755 return (stack[stacki]);
20756 }
20757
20758 /* memory allocation interface */
20759
20760 static struct dwarf_block *
20761 dwarf_alloc_block (struct dwarf2_cu *cu)
20762 {
20763 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20764 }
20765
20766 static struct die_info *
20767 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20768 {
20769 struct die_info *die;
20770 size_t size = sizeof (struct die_info);
20771
20772 if (num_attrs > 1)
20773 size += (num_attrs - 1) * sizeof (struct attribute);
20774
20775 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20776 memset (die, 0, sizeof (struct die_info));
20777 return (die);
20778 }
20779
20780 \f
20781 /* Macro support. */
20782
20783 /* Return file name relative to the compilation directory of file number I in
20784 *LH's file name table. The result is allocated using xmalloc; the caller is
20785 responsible for freeing it. */
20786
20787 static char *
20788 file_file_name (int file, struct line_header *lh)
20789 {
20790 /* Is the file number a valid index into the line header's file name
20791 table? Remember that file numbers start with one, not zero. */
20792 if (1 <= file && file <= lh->num_file_names)
20793 {
20794 struct file_entry *fe = &lh->file_names[file - 1];
20795
20796 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20797 || lh->include_dirs == NULL)
20798 return xstrdup (fe->name);
20799 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20800 fe->name, (char *) NULL);
20801 }
20802 else
20803 {
20804 /* The compiler produced a bogus file number. We can at least
20805 record the macro definitions made in the file, even if we
20806 won't be able to find the file by name. */
20807 char fake_name[80];
20808
20809 xsnprintf (fake_name, sizeof (fake_name),
20810 "<bad macro file number %d>", file);
20811
20812 complaint (&symfile_complaints,
20813 _("bad file number in macro information (%d)"),
20814 file);
20815
20816 return xstrdup (fake_name);
20817 }
20818 }
20819
20820 /* Return the full name of file number I in *LH's file name table.
20821 Use COMP_DIR as the name of the current directory of the
20822 compilation. The result is allocated using xmalloc; the caller is
20823 responsible for freeing it. */
20824 static char *
20825 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20826 {
20827 /* Is the file number a valid index into the line header's file name
20828 table? Remember that file numbers start with one, not zero. */
20829 if (1 <= file && file <= lh->num_file_names)
20830 {
20831 char *relative = file_file_name (file, lh);
20832
20833 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20834 return relative;
20835 return reconcat (relative, comp_dir, SLASH_STRING,
20836 relative, (char *) NULL);
20837 }
20838 else
20839 return file_file_name (file, lh);
20840 }
20841
20842
20843 static struct macro_source_file *
20844 macro_start_file (int file, int line,
20845 struct macro_source_file *current_file,
20846 struct line_header *lh)
20847 {
20848 /* File name relative to the compilation directory of this source file. */
20849 char *file_name = file_file_name (file, lh);
20850
20851 if (! current_file)
20852 {
20853 /* Note: We don't create a macro table for this compilation unit
20854 at all until we actually get a filename. */
20855 struct macro_table *macro_table = get_macro_table ();
20856
20857 /* If we have no current file, then this must be the start_file
20858 directive for the compilation unit's main source file. */
20859 current_file = macro_set_main (macro_table, file_name);
20860 macro_define_special (macro_table);
20861 }
20862 else
20863 current_file = macro_include (current_file, line, file_name);
20864
20865 xfree (file_name);
20866
20867 return current_file;
20868 }
20869
20870
20871 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20872 followed by a null byte. */
20873 static char *
20874 copy_string (const char *buf, int len)
20875 {
20876 char *s = (char *) xmalloc (len + 1);
20877
20878 memcpy (s, buf, len);
20879 s[len] = '\0';
20880 return s;
20881 }
20882
20883
20884 static const char *
20885 consume_improper_spaces (const char *p, const char *body)
20886 {
20887 if (*p == ' ')
20888 {
20889 complaint (&symfile_complaints,
20890 _("macro definition contains spaces "
20891 "in formal argument list:\n`%s'"),
20892 body);
20893
20894 while (*p == ' ')
20895 p++;
20896 }
20897
20898 return p;
20899 }
20900
20901
20902 static void
20903 parse_macro_definition (struct macro_source_file *file, int line,
20904 const char *body)
20905 {
20906 const char *p;
20907
20908 /* The body string takes one of two forms. For object-like macro
20909 definitions, it should be:
20910
20911 <macro name> " " <definition>
20912
20913 For function-like macro definitions, it should be:
20914
20915 <macro name> "() " <definition>
20916 or
20917 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20918
20919 Spaces may appear only where explicitly indicated, and in the
20920 <definition>.
20921
20922 The Dwarf 2 spec says that an object-like macro's name is always
20923 followed by a space, but versions of GCC around March 2002 omit
20924 the space when the macro's definition is the empty string.
20925
20926 The Dwarf 2 spec says that there should be no spaces between the
20927 formal arguments in a function-like macro's formal argument list,
20928 but versions of GCC around March 2002 include spaces after the
20929 commas. */
20930
20931
20932 /* Find the extent of the macro name. The macro name is terminated
20933 by either a space or null character (for an object-like macro) or
20934 an opening paren (for a function-like macro). */
20935 for (p = body; *p; p++)
20936 if (*p == ' ' || *p == '(')
20937 break;
20938
20939 if (*p == ' ' || *p == '\0')
20940 {
20941 /* It's an object-like macro. */
20942 int name_len = p - body;
20943 char *name = copy_string (body, name_len);
20944 const char *replacement;
20945
20946 if (*p == ' ')
20947 replacement = body + name_len + 1;
20948 else
20949 {
20950 dwarf2_macro_malformed_definition_complaint (body);
20951 replacement = body + name_len;
20952 }
20953
20954 macro_define_object (file, line, name, replacement);
20955
20956 xfree (name);
20957 }
20958 else if (*p == '(')
20959 {
20960 /* It's a function-like macro. */
20961 char *name = copy_string (body, p - body);
20962 int argc = 0;
20963 int argv_size = 1;
20964 char **argv = XNEWVEC (char *, argv_size);
20965
20966 p++;
20967
20968 p = consume_improper_spaces (p, body);
20969
20970 /* Parse the formal argument list. */
20971 while (*p && *p != ')')
20972 {
20973 /* Find the extent of the current argument name. */
20974 const char *arg_start = p;
20975
20976 while (*p && *p != ',' && *p != ')' && *p != ' ')
20977 p++;
20978
20979 if (! *p || p == arg_start)
20980 dwarf2_macro_malformed_definition_complaint (body);
20981 else
20982 {
20983 /* Make sure argv has room for the new argument. */
20984 if (argc >= argv_size)
20985 {
20986 argv_size *= 2;
20987 argv = XRESIZEVEC (char *, argv, argv_size);
20988 }
20989
20990 argv[argc++] = copy_string (arg_start, p - arg_start);
20991 }
20992
20993 p = consume_improper_spaces (p, body);
20994
20995 /* Consume the comma, if present. */
20996 if (*p == ',')
20997 {
20998 p++;
20999
21000 p = consume_improper_spaces (p, body);
21001 }
21002 }
21003
21004 if (*p == ')')
21005 {
21006 p++;
21007
21008 if (*p == ' ')
21009 /* Perfectly formed definition, no complaints. */
21010 macro_define_function (file, line, name,
21011 argc, (const char **) argv,
21012 p + 1);
21013 else if (*p == '\0')
21014 {
21015 /* Complain, but do define it. */
21016 dwarf2_macro_malformed_definition_complaint (body);
21017 macro_define_function (file, line, name,
21018 argc, (const char **) argv,
21019 p);
21020 }
21021 else
21022 /* Just complain. */
21023 dwarf2_macro_malformed_definition_complaint (body);
21024 }
21025 else
21026 /* Just complain. */
21027 dwarf2_macro_malformed_definition_complaint (body);
21028
21029 xfree (name);
21030 {
21031 int i;
21032
21033 for (i = 0; i < argc; i++)
21034 xfree (argv[i]);
21035 }
21036 xfree (argv);
21037 }
21038 else
21039 dwarf2_macro_malformed_definition_complaint (body);
21040 }
21041
21042 /* Skip some bytes from BYTES according to the form given in FORM.
21043 Returns the new pointer. */
21044
21045 static const gdb_byte *
21046 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21047 enum dwarf_form form,
21048 unsigned int offset_size,
21049 struct dwarf2_section_info *section)
21050 {
21051 unsigned int bytes_read;
21052
21053 switch (form)
21054 {
21055 case DW_FORM_data1:
21056 case DW_FORM_flag:
21057 ++bytes;
21058 break;
21059
21060 case DW_FORM_data2:
21061 bytes += 2;
21062 break;
21063
21064 case DW_FORM_data4:
21065 bytes += 4;
21066 break;
21067
21068 case DW_FORM_data8:
21069 bytes += 8;
21070 break;
21071
21072 case DW_FORM_string:
21073 read_direct_string (abfd, bytes, &bytes_read);
21074 bytes += bytes_read;
21075 break;
21076
21077 case DW_FORM_sec_offset:
21078 case DW_FORM_strp:
21079 case DW_FORM_GNU_strp_alt:
21080 bytes += offset_size;
21081 break;
21082
21083 case DW_FORM_block:
21084 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21085 bytes += bytes_read;
21086 break;
21087
21088 case DW_FORM_block1:
21089 bytes += 1 + read_1_byte (abfd, bytes);
21090 break;
21091 case DW_FORM_block2:
21092 bytes += 2 + read_2_bytes (abfd, bytes);
21093 break;
21094 case DW_FORM_block4:
21095 bytes += 4 + read_4_bytes (abfd, bytes);
21096 break;
21097
21098 case DW_FORM_sdata:
21099 case DW_FORM_udata:
21100 case DW_FORM_GNU_addr_index:
21101 case DW_FORM_GNU_str_index:
21102 bytes = gdb_skip_leb128 (bytes, buffer_end);
21103 if (bytes == NULL)
21104 {
21105 dwarf2_section_buffer_overflow_complaint (section);
21106 return NULL;
21107 }
21108 break;
21109
21110 default:
21111 {
21112 complain:
21113 complaint (&symfile_complaints,
21114 _("invalid form 0x%x in `%s'"),
21115 form, get_section_name (section));
21116 return NULL;
21117 }
21118 }
21119
21120 return bytes;
21121 }
21122
21123 /* A helper for dwarf_decode_macros that handles skipping an unknown
21124 opcode. Returns an updated pointer to the macro data buffer; or,
21125 on error, issues a complaint and returns NULL. */
21126
21127 static const gdb_byte *
21128 skip_unknown_opcode (unsigned int opcode,
21129 const gdb_byte **opcode_definitions,
21130 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21131 bfd *abfd,
21132 unsigned int offset_size,
21133 struct dwarf2_section_info *section)
21134 {
21135 unsigned int bytes_read, i;
21136 unsigned long arg;
21137 const gdb_byte *defn;
21138
21139 if (opcode_definitions[opcode] == NULL)
21140 {
21141 complaint (&symfile_complaints,
21142 _("unrecognized DW_MACFINO opcode 0x%x"),
21143 opcode);
21144 return NULL;
21145 }
21146
21147 defn = opcode_definitions[opcode];
21148 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21149 defn += bytes_read;
21150
21151 for (i = 0; i < arg; ++i)
21152 {
21153 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21154 (enum dwarf_form) defn[i], offset_size,
21155 section);
21156 if (mac_ptr == NULL)
21157 {
21158 /* skip_form_bytes already issued the complaint. */
21159 return NULL;
21160 }
21161 }
21162
21163 return mac_ptr;
21164 }
21165
21166 /* A helper function which parses the header of a macro section.
21167 If the macro section is the extended (for now called "GNU") type,
21168 then this updates *OFFSET_SIZE. Returns a pointer to just after
21169 the header, or issues a complaint and returns NULL on error. */
21170
21171 static const gdb_byte *
21172 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21173 bfd *abfd,
21174 const gdb_byte *mac_ptr,
21175 unsigned int *offset_size,
21176 int section_is_gnu)
21177 {
21178 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21179
21180 if (section_is_gnu)
21181 {
21182 unsigned int version, flags;
21183
21184 version = read_2_bytes (abfd, mac_ptr);
21185 if (version != 4)
21186 {
21187 complaint (&symfile_complaints,
21188 _("unrecognized version `%d' in .debug_macro section"),
21189 version);
21190 return NULL;
21191 }
21192 mac_ptr += 2;
21193
21194 flags = read_1_byte (abfd, mac_ptr);
21195 ++mac_ptr;
21196 *offset_size = (flags & 1) ? 8 : 4;
21197
21198 if ((flags & 2) != 0)
21199 /* We don't need the line table offset. */
21200 mac_ptr += *offset_size;
21201
21202 /* Vendor opcode descriptions. */
21203 if ((flags & 4) != 0)
21204 {
21205 unsigned int i, count;
21206
21207 count = read_1_byte (abfd, mac_ptr);
21208 ++mac_ptr;
21209 for (i = 0; i < count; ++i)
21210 {
21211 unsigned int opcode, bytes_read;
21212 unsigned long arg;
21213
21214 opcode = read_1_byte (abfd, mac_ptr);
21215 ++mac_ptr;
21216 opcode_definitions[opcode] = mac_ptr;
21217 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21218 mac_ptr += bytes_read;
21219 mac_ptr += arg;
21220 }
21221 }
21222 }
21223
21224 return mac_ptr;
21225 }
21226
21227 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21228 including DW_MACRO_GNU_transparent_include. */
21229
21230 static void
21231 dwarf_decode_macro_bytes (bfd *abfd,
21232 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21233 struct macro_source_file *current_file,
21234 struct line_header *lh,
21235 struct dwarf2_section_info *section,
21236 int section_is_gnu, int section_is_dwz,
21237 unsigned int offset_size,
21238 htab_t include_hash)
21239 {
21240 struct objfile *objfile = dwarf2_per_objfile->objfile;
21241 enum dwarf_macro_record_type macinfo_type;
21242 int at_commandline;
21243 const gdb_byte *opcode_definitions[256];
21244
21245 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21246 &offset_size, section_is_gnu);
21247 if (mac_ptr == NULL)
21248 {
21249 /* We already issued a complaint. */
21250 return;
21251 }
21252
21253 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21254 GDB is still reading the definitions from command line. First
21255 DW_MACINFO_start_file will need to be ignored as it was already executed
21256 to create CURRENT_FILE for the main source holding also the command line
21257 definitions. On first met DW_MACINFO_start_file this flag is reset to
21258 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21259
21260 at_commandline = 1;
21261
21262 do
21263 {
21264 /* Do we at least have room for a macinfo type byte? */
21265 if (mac_ptr >= mac_end)
21266 {
21267 dwarf2_section_buffer_overflow_complaint (section);
21268 break;
21269 }
21270
21271 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21272 mac_ptr++;
21273
21274 /* Note that we rely on the fact that the corresponding GNU and
21275 DWARF constants are the same. */
21276 switch (macinfo_type)
21277 {
21278 /* A zero macinfo type indicates the end of the macro
21279 information. */
21280 case 0:
21281 break;
21282
21283 case DW_MACRO_GNU_define:
21284 case DW_MACRO_GNU_undef:
21285 case DW_MACRO_GNU_define_indirect:
21286 case DW_MACRO_GNU_undef_indirect:
21287 case DW_MACRO_GNU_define_indirect_alt:
21288 case DW_MACRO_GNU_undef_indirect_alt:
21289 {
21290 unsigned int bytes_read;
21291 int line;
21292 const char *body;
21293 int is_define;
21294
21295 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21296 mac_ptr += bytes_read;
21297
21298 if (macinfo_type == DW_MACRO_GNU_define
21299 || macinfo_type == DW_MACRO_GNU_undef)
21300 {
21301 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21302 mac_ptr += bytes_read;
21303 }
21304 else
21305 {
21306 LONGEST str_offset;
21307
21308 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21309 mac_ptr += offset_size;
21310
21311 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21312 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21313 || section_is_dwz)
21314 {
21315 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21316
21317 body = read_indirect_string_from_dwz (dwz, str_offset);
21318 }
21319 else
21320 body = read_indirect_string_at_offset (abfd, str_offset);
21321 }
21322
21323 is_define = (macinfo_type == DW_MACRO_GNU_define
21324 || macinfo_type == DW_MACRO_GNU_define_indirect
21325 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21326 if (! current_file)
21327 {
21328 /* DWARF violation as no main source is present. */
21329 complaint (&symfile_complaints,
21330 _("debug info with no main source gives macro %s "
21331 "on line %d: %s"),
21332 is_define ? _("definition") : _("undefinition"),
21333 line, body);
21334 break;
21335 }
21336 if ((line == 0 && !at_commandline)
21337 || (line != 0 && at_commandline))
21338 complaint (&symfile_complaints,
21339 _("debug info gives %s macro %s with %s line %d: %s"),
21340 at_commandline ? _("command-line") : _("in-file"),
21341 is_define ? _("definition") : _("undefinition"),
21342 line == 0 ? _("zero") : _("non-zero"), line, body);
21343
21344 if (is_define)
21345 parse_macro_definition (current_file, line, body);
21346 else
21347 {
21348 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21349 || macinfo_type == DW_MACRO_GNU_undef_indirect
21350 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21351 macro_undef (current_file, line, body);
21352 }
21353 }
21354 break;
21355
21356 case DW_MACRO_GNU_start_file:
21357 {
21358 unsigned int bytes_read;
21359 int line, file;
21360
21361 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21362 mac_ptr += bytes_read;
21363 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21364 mac_ptr += bytes_read;
21365
21366 if ((line == 0 && !at_commandline)
21367 || (line != 0 && at_commandline))
21368 complaint (&symfile_complaints,
21369 _("debug info gives source %d included "
21370 "from %s at %s line %d"),
21371 file, at_commandline ? _("command-line") : _("file"),
21372 line == 0 ? _("zero") : _("non-zero"), line);
21373
21374 if (at_commandline)
21375 {
21376 /* This DW_MACRO_GNU_start_file was executed in the
21377 pass one. */
21378 at_commandline = 0;
21379 }
21380 else
21381 current_file = macro_start_file (file, line, current_file, lh);
21382 }
21383 break;
21384
21385 case DW_MACRO_GNU_end_file:
21386 if (! current_file)
21387 complaint (&symfile_complaints,
21388 _("macro debug info has an unmatched "
21389 "`close_file' directive"));
21390 else
21391 {
21392 current_file = current_file->included_by;
21393 if (! current_file)
21394 {
21395 enum dwarf_macro_record_type next_type;
21396
21397 /* GCC circa March 2002 doesn't produce the zero
21398 type byte marking the end of the compilation
21399 unit. Complain if it's not there, but exit no
21400 matter what. */
21401
21402 /* Do we at least have room for a macinfo type byte? */
21403 if (mac_ptr >= mac_end)
21404 {
21405 dwarf2_section_buffer_overflow_complaint (section);
21406 return;
21407 }
21408
21409 /* We don't increment mac_ptr here, so this is just
21410 a look-ahead. */
21411 next_type
21412 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21413 mac_ptr);
21414 if (next_type != 0)
21415 complaint (&symfile_complaints,
21416 _("no terminating 0-type entry for "
21417 "macros in `.debug_macinfo' section"));
21418
21419 return;
21420 }
21421 }
21422 break;
21423
21424 case DW_MACRO_GNU_transparent_include:
21425 case DW_MACRO_GNU_transparent_include_alt:
21426 {
21427 LONGEST offset;
21428 void **slot;
21429 bfd *include_bfd = abfd;
21430 struct dwarf2_section_info *include_section = section;
21431 const gdb_byte *include_mac_end = mac_end;
21432 int is_dwz = section_is_dwz;
21433 const gdb_byte *new_mac_ptr;
21434
21435 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21436 mac_ptr += offset_size;
21437
21438 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21439 {
21440 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21441
21442 dwarf2_read_section (objfile, &dwz->macro);
21443
21444 include_section = &dwz->macro;
21445 include_bfd = get_section_bfd_owner (include_section);
21446 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21447 is_dwz = 1;
21448 }
21449
21450 new_mac_ptr = include_section->buffer + offset;
21451 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21452
21453 if (*slot != NULL)
21454 {
21455 /* This has actually happened; see
21456 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21457 complaint (&symfile_complaints,
21458 _("recursive DW_MACRO_GNU_transparent_include in "
21459 ".debug_macro section"));
21460 }
21461 else
21462 {
21463 *slot = (void *) new_mac_ptr;
21464
21465 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21466 include_mac_end, current_file, lh,
21467 section, section_is_gnu, is_dwz,
21468 offset_size, include_hash);
21469
21470 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21471 }
21472 }
21473 break;
21474
21475 case DW_MACINFO_vendor_ext:
21476 if (!section_is_gnu)
21477 {
21478 unsigned int bytes_read;
21479
21480 /* This reads the constant, but since we don't recognize
21481 any vendor extensions, we ignore it. */
21482 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21483 mac_ptr += bytes_read;
21484 read_direct_string (abfd, mac_ptr, &bytes_read);
21485 mac_ptr += bytes_read;
21486
21487 /* We don't recognize any vendor extensions. */
21488 break;
21489 }
21490 /* FALLTHROUGH */
21491
21492 default:
21493 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21494 mac_ptr, mac_end, abfd, offset_size,
21495 section);
21496 if (mac_ptr == NULL)
21497 return;
21498 break;
21499 }
21500 } while (macinfo_type != 0);
21501 }
21502
21503 static void
21504 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21505 int section_is_gnu)
21506 {
21507 struct objfile *objfile = dwarf2_per_objfile->objfile;
21508 struct line_header *lh = cu->line_header;
21509 bfd *abfd;
21510 const gdb_byte *mac_ptr, *mac_end;
21511 struct macro_source_file *current_file = 0;
21512 enum dwarf_macro_record_type macinfo_type;
21513 unsigned int offset_size = cu->header.offset_size;
21514 const gdb_byte *opcode_definitions[256];
21515 struct cleanup *cleanup;
21516 void **slot;
21517 struct dwarf2_section_info *section;
21518 const char *section_name;
21519
21520 if (cu->dwo_unit != NULL)
21521 {
21522 if (section_is_gnu)
21523 {
21524 section = &cu->dwo_unit->dwo_file->sections.macro;
21525 section_name = ".debug_macro.dwo";
21526 }
21527 else
21528 {
21529 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21530 section_name = ".debug_macinfo.dwo";
21531 }
21532 }
21533 else
21534 {
21535 if (section_is_gnu)
21536 {
21537 section = &dwarf2_per_objfile->macro;
21538 section_name = ".debug_macro";
21539 }
21540 else
21541 {
21542 section = &dwarf2_per_objfile->macinfo;
21543 section_name = ".debug_macinfo";
21544 }
21545 }
21546
21547 dwarf2_read_section (objfile, section);
21548 if (section->buffer == NULL)
21549 {
21550 complaint (&symfile_complaints, _("missing %s section"), section_name);
21551 return;
21552 }
21553 abfd = get_section_bfd_owner (section);
21554
21555 /* First pass: Find the name of the base filename.
21556 This filename is needed in order to process all macros whose definition
21557 (or undefinition) comes from the command line. These macros are defined
21558 before the first DW_MACINFO_start_file entry, and yet still need to be
21559 associated to the base file.
21560
21561 To determine the base file name, we scan the macro definitions until we
21562 reach the first DW_MACINFO_start_file entry. We then initialize
21563 CURRENT_FILE accordingly so that any macro definition found before the
21564 first DW_MACINFO_start_file can still be associated to the base file. */
21565
21566 mac_ptr = section->buffer + offset;
21567 mac_end = section->buffer + section->size;
21568
21569 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21570 &offset_size, section_is_gnu);
21571 if (mac_ptr == NULL)
21572 {
21573 /* We already issued a complaint. */
21574 return;
21575 }
21576
21577 do
21578 {
21579 /* Do we at least have room for a macinfo type byte? */
21580 if (mac_ptr >= mac_end)
21581 {
21582 /* Complaint is printed during the second pass as GDB will probably
21583 stop the first pass earlier upon finding
21584 DW_MACINFO_start_file. */
21585 break;
21586 }
21587
21588 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21589 mac_ptr++;
21590
21591 /* Note that we rely on the fact that the corresponding GNU and
21592 DWARF constants are the same. */
21593 switch (macinfo_type)
21594 {
21595 /* A zero macinfo type indicates the end of the macro
21596 information. */
21597 case 0:
21598 break;
21599
21600 case DW_MACRO_GNU_define:
21601 case DW_MACRO_GNU_undef:
21602 /* Only skip the data by MAC_PTR. */
21603 {
21604 unsigned int bytes_read;
21605
21606 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21607 mac_ptr += bytes_read;
21608 read_direct_string (abfd, mac_ptr, &bytes_read);
21609 mac_ptr += bytes_read;
21610 }
21611 break;
21612
21613 case DW_MACRO_GNU_start_file:
21614 {
21615 unsigned int bytes_read;
21616 int line, file;
21617
21618 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21619 mac_ptr += bytes_read;
21620 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21621 mac_ptr += bytes_read;
21622
21623 current_file = macro_start_file (file, line, current_file, lh);
21624 }
21625 break;
21626
21627 case DW_MACRO_GNU_end_file:
21628 /* No data to skip by MAC_PTR. */
21629 break;
21630
21631 case DW_MACRO_GNU_define_indirect:
21632 case DW_MACRO_GNU_undef_indirect:
21633 case DW_MACRO_GNU_define_indirect_alt:
21634 case DW_MACRO_GNU_undef_indirect_alt:
21635 {
21636 unsigned int bytes_read;
21637
21638 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21639 mac_ptr += bytes_read;
21640 mac_ptr += offset_size;
21641 }
21642 break;
21643
21644 case DW_MACRO_GNU_transparent_include:
21645 case DW_MACRO_GNU_transparent_include_alt:
21646 /* Note that, according to the spec, a transparent include
21647 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21648 skip this opcode. */
21649 mac_ptr += offset_size;
21650 break;
21651
21652 case DW_MACINFO_vendor_ext:
21653 /* Only skip the data by MAC_PTR. */
21654 if (!section_is_gnu)
21655 {
21656 unsigned int bytes_read;
21657
21658 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21659 mac_ptr += bytes_read;
21660 read_direct_string (abfd, mac_ptr, &bytes_read);
21661 mac_ptr += bytes_read;
21662 }
21663 /* FALLTHROUGH */
21664
21665 default:
21666 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21667 mac_ptr, mac_end, abfd, offset_size,
21668 section);
21669 if (mac_ptr == NULL)
21670 return;
21671 break;
21672 }
21673 } while (macinfo_type != 0 && current_file == NULL);
21674
21675 /* Second pass: Process all entries.
21676
21677 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21678 command-line macro definitions/undefinitions. This flag is unset when we
21679 reach the first DW_MACINFO_start_file entry. */
21680
21681 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
21682 htab_eq_pointer,
21683 NULL, xcalloc, xfree));
21684 mac_ptr = section->buffer + offset;
21685 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
21686 *slot = (void *) mac_ptr;
21687 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21688 current_file, lh, section,
21689 section_is_gnu, 0, offset_size,
21690 include_hash.get ());
21691 }
21692
21693 /* Check if the attribute's form is a DW_FORM_block*
21694 if so return true else false. */
21695
21696 static int
21697 attr_form_is_block (const struct attribute *attr)
21698 {
21699 return (attr == NULL ? 0 :
21700 attr->form == DW_FORM_block1
21701 || attr->form == DW_FORM_block2
21702 || attr->form == DW_FORM_block4
21703 || attr->form == DW_FORM_block
21704 || attr->form == DW_FORM_exprloc);
21705 }
21706
21707 /* Return non-zero if ATTR's value is a section offset --- classes
21708 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21709 You may use DW_UNSND (attr) to retrieve such offsets.
21710
21711 Section 7.5.4, "Attribute Encodings", explains that no attribute
21712 may have a value that belongs to more than one of these classes; it
21713 would be ambiguous if we did, because we use the same forms for all
21714 of them. */
21715
21716 static int
21717 attr_form_is_section_offset (const struct attribute *attr)
21718 {
21719 return (attr->form == DW_FORM_data4
21720 || attr->form == DW_FORM_data8
21721 || attr->form == DW_FORM_sec_offset);
21722 }
21723
21724 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21725 zero otherwise. When this function returns true, you can apply
21726 dwarf2_get_attr_constant_value to it.
21727
21728 However, note that for some attributes you must check
21729 attr_form_is_section_offset before using this test. DW_FORM_data4
21730 and DW_FORM_data8 are members of both the constant class, and of
21731 the classes that contain offsets into other debug sections
21732 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21733 that, if an attribute's can be either a constant or one of the
21734 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21735 taken as section offsets, not constants. */
21736
21737 static int
21738 attr_form_is_constant (const struct attribute *attr)
21739 {
21740 switch (attr->form)
21741 {
21742 case DW_FORM_sdata:
21743 case DW_FORM_udata:
21744 case DW_FORM_data1:
21745 case DW_FORM_data2:
21746 case DW_FORM_data4:
21747 case DW_FORM_data8:
21748 return 1;
21749 default:
21750 return 0;
21751 }
21752 }
21753
21754
21755 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21756 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21757
21758 static int
21759 attr_form_is_ref (const struct attribute *attr)
21760 {
21761 switch (attr->form)
21762 {
21763 case DW_FORM_ref_addr:
21764 case DW_FORM_ref1:
21765 case DW_FORM_ref2:
21766 case DW_FORM_ref4:
21767 case DW_FORM_ref8:
21768 case DW_FORM_ref_udata:
21769 case DW_FORM_GNU_ref_alt:
21770 return 1;
21771 default:
21772 return 0;
21773 }
21774 }
21775
21776 /* Return the .debug_loc section to use for CU.
21777 For DWO files use .debug_loc.dwo. */
21778
21779 static struct dwarf2_section_info *
21780 cu_debug_loc_section (struct dwarf2_cu *cu)
21781 {
21782 if (cu->dwo_unit)
21783 return &cu->dwo_unit->dwo_file->sections.loc;
21784 return &dwarf2_per_objfile->loc;
21785 }
21786
21787 /* A helper function that fills in a dwarf2_loclist_baton. */
21788
21789 static void
21790 fill_in_loclist_baton (struct dwarf2_cu *cu,
21791 struct dwarf2_loclist_baton *baton,
21792 const struct attribute *attr)
21793 {
21794 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21795
21796 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21797
21798 baton->per_cu = cu->per_cu;
21799 gdb_assert (baton->per_cu);
21800 /* We don't know how long the location list is, but make sure we
21801 don't run off the edge of the section. */
21802 baton->size = section->size - DW_UNSND (attr);
21803 baton->data = section->buffer + DW_UNSND (attr);
21804 baton->base_address = cu->base_address;
21805 baton->from_dwo = cu->dwo_unit != NULL;
21806 }
21807
21808 static void
21809 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21810 struct dwarf2_cu *cu, int is_block)
21811 {
21812 struct objfile *objfile = dwarf2_per_objfile->objfile;
21813 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21814
21815 if (attr_form_is_section_offset (attr)
21816 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21817 the section. If so, fall through to the complaint in the
21818 other branch. */
21819 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21820 {
21821 struct dwarf2_loclist_baton *baton;
21822
21823 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21824
21825 fill_in_loclist_baton (cu, baton, attr);
21826
21827 if (cu->base_known == 0)
21828 complaint (&symfile_complaints,
21829 _("Location list used without "
21830 "specifying the CU base address."));
21831
21832 SYMBOL_ACLASS_INDEX (sym) = (is_block
21833 ? dwarf2_loclist_block_index
21834 : dwarf2_loclist_index);
21835 SYMBOL_LOCATION_BATON (sym) = baton;
21836 }
21837 else
21838 {
21839 struct dwarf2_locexpr_baton *baton;
21840
21841 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21842 baton->per_cu = cu->per_cu;
21843 gdb_assert (baton->per_cu);
21844
21845 if (attr_form_is_block (attr))
21846 {
21847 /* Note that we're just copying the block's data pointer
21848 here, not the actual data. We're still pointing into the
21849 info_buffer for SYM's objfile; right now we never release
21850 that buffer, but when we do clean up properly this may
21851 need to change. */
21852 baton->size = DW_BLOCK (attr)->size;
21853 baton->data = DW_BLOCK (attr)->data;
21854 }
21855 else
21856 {
21857 dwarf2_invalid_attrib_class_complaint ("location description",
21858 SYMBOL_NATURAL_NAME (sym));
21859 baton->size = 0;
21860 }
21861
21862 SYMBOL_ACLASS_INDEX (sym) = (is_block
21863 ? dwarf2_locexpr_block_index
21864 : dwarf2_locexpr_index);
21865 SYMBOL_LOCATION_BATON (sym) = baton;
21866 }
21867 }
21868
21869 /* Return the OBJFILE associated with the compilation unit CU. If CU
21870 came from a separate debuginfo file, then the master objfile is
21871 returned. */
21872
21873 struct objfile *
21874 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21875 {
21876 struct objfile *objfile = per_cu->objfile;
21877
21878 /* Return the master objfile, so that we can report and look up the
21879 correct file containing this variable. */
21880 if (objfile->separate_debug_objfile_backlink)
21881 objfile = objfile->separate_debug_objfile_backlink;
21882
21883 return objfile;
21884 }
21885
21886 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21887 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21888 CU_HEADERP first. */
21889
21890 static const struct comp_unit_head *
21891 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21892 struct dwarf2_per_cu_data *per_cu)
21893 {
21894 const gdb_byte *info_ptr;
21895
21896 if (per_cu->cu)
21897 return &per_cu->cu->header;
21898
21899 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21900
21901 memset (cu_headerp, 0, sizeof (*cu_headerp));
21902 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21903
21904 return cu_headerp;
21905 }
21906
21907 /* Return the address size given in the compilation unit header for CU. */
21908
21909 int
21910 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21911 {
21912 struct comp_unit_head cu_header_local;
21913 const struct comp_unit_head *cu_headerp;
21914
21915 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21916
21917 return cu_headerp->addr_size;
21918 }
21919
21920 /* Return the offset size given in the compilation unit header for CU. */
21921
21922 int
21923 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21924 {
21925 struct comp_unit_head cu_header_local;
21926 const struct comp_unit_head *cu_headerp;
21927
21928 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21929
21930 return cu_headerp->offset_size;
21931 }
21932
21933 /* See its dwarf2loc.h declaration. */
21934
21935 int
21936 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21937 {
21938 struct comp_unit_head cu_header_local;
21939 const struct comp_unit_head *cu_headerp;
21940
21941 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21942
21943 if (cu_headerp->version == 2)
21944 return cu_headerp->addr_size;
21945 else
21946 return cu_headerp->offset_size;
21947 }
21948
21949 /* Return the text offset of the CU. The returned offset comes from
21950 this CU's objfile. If this objfile came from a separate debuginfo
21951 file, then the offset may be different from the corresponding
21952 offset in the parent objfile. */
21953
21954 CORE_ADDR
21955 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21956 {
21957 struct objfile *objfile = per_cu->objfile;
21958
21959 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21960 }
21961
21962 /* Locate the .debug_info compilation unit from CU's objfile which contains
21963 the DIE at OFFSET. Raises an error on failure. */
21964
21965 static struct dwarf2_per_cu_data *
21966 dwarf2_find_containing_comp_unit (sect_offset offset,
21967 unsigned int offset_in_dwz,
21968 struct objfile *objfile)
21969 {
21970 struct dwarf2_per_cu_data *this_cu;
21971 int low, high;
21972 const sect_offset *cu_off;
21973
21974 low = 0;
21975 high = dwarf2_per_objfile->n_comp_units - 1;
21976 while (high > low)
21977 {
21978 struct dwarf2_per_cu_data *mid_cu;
21979 int mid = low + (high - low) / 2;
21980
21981 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21982 cu_off = &mid_cu->offset;
21983 if (mid_cu->is_dwz > offset_in_dwz
21984 || (mid_cu->is_dwz == offset_in_dwz
21985 && cu_off->sect_off >= offset.sect_off))
21986 high = mid;
21987 else
21988 low = mid + 1;
21989 }
21990 gdb_assert (low == high);
21991 this_cu = dwarf2_per_objfile->all_comp_units[low];
21992 cu_off = &this_cu->offset;
21993 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21994 {
21995 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21996 error (_("Dwarf Error: could not find partial DIE containing "
21997 "offset 0x%lx [in module %s]"),
21998 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21999
22000 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22001 <= offset.sect_off);
22002 return dwarf2_per_objfile->all_comp_units[low-1];
22003 }
22004 else
22005 {
22006 this_cu = dwarf2_per_objfile->all_comp_units[low];
22007 if (low == dwarf2_per_objfile->n_comp_units - 1
22008 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22009 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22010 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22011 return this_cu;
22012 }
22013 }
22014
22015 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22016
22017 static void
22018 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22019 {
22020 memset (cu, 0, sizeof (*cu));
22021 per_cu->cu = cu;
22022 cu->per_cu = per_cu;
22023 cu->objfile = per_cu->objfile;
22024 obstack_init (&cu->comp_unit_obstack);
22025 }
22026
22027 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22028
22029 static void
22030 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22031 enum language pretend_language)
22032 {
22033 struct attribute *attr;
22034
22035 /* Set the language we're debugging. */
22036 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22037 if (attr)
22038 set_cu_language (DW_UNSND (attr), cu);
22039 else
22040 {
22041 cu->language = pretend_language;
22042 cu->language_defn = language_def (cu->language);
22043 }
22044
22045 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22046 }
22047
22048 /* Release one cached compilation unit, CU. We unlink it from the tree
22049 of compilation units, but we don't remove it from the read_in_chain;
22050 the caller is responsible for that.
22051 NOTE: DATA is a void * because this function is also used as a
22052 cleanup routine. */
22053
22054 static void
22055 free_heap_comp_unit (void *data)
22056 {
22057 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22058
22059 gdb_assert (cu->per_cu != NULL);
22060 cu->per_cu->cu = NULL;
22061 cu->per_cu = NULL;
22062
22063 obstack_free (&cu->comp_unit_obstack, NULL);
22064
22065 xfree (cu);
22066 }
22067
22068 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22069 when we're finished with it. We can't free the pointer itself, but be
22070 sure to unlink it from the cache. Also release any associated storage. */
22071
22072 static void
22073 free_stack_comp_unit (void *data)
22074 {
22075 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22076
22077 gdb_assert (cu->per_cu != NULL);
22078 cu->per_cu->cu = NULL;
22079 cu->per_cu = NULL;
22080
22081 obstack_free (&cu->comp_unit_obstack, NULL);
22082 cu->partial_dies = NULL;
22083 }
22084
22085 /* Free all cached compilation units. */
22086
22087 static void
22088 free_cached_comp_units (void *data)
22089 {
22090 struct dwarf2_per_cu_data *per_cu, **last_chain;
22091
22092 per_cu = dwarf2_per_objfile->read_in_chain;
22093 last_chain = &dwarf2_per_objfile->read_in_chain;
22094 while (per_cu != NULL)
22095 {
22096 struct dwarf2_per_cu_data *next_cu;
22097
22098 next_cu = per_cu->cu->read_in_chain;
22099
22100 free_heap_comp_unit (per_cu->cu);
22101 *last_chain = next_cu;
22102
22103 per_cu = next_cu;
22104 }
22105 }
22106
22107 /* Increase the age counter on each cached compilation unit, and free
22108 any that are too old. */
22109
22110 static void
22111 age_cached_comp_units (void)
22112 {
22113 struct dwarf2_per_cu_data *per_cu, **last_chain;
22114
22115 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22116 per_cu = dwarf2_per_objfile->read_in_chain;
22117 while (per_cu != NULL)
22118 {
22119 per_cu->cu->last_used ++;
22120 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22121 dwarf2_mark (per_cu->cu);
22122 per_cu = per_cu->cu->read_in_chain;
22123 }
22124
22125 per_cu = dwarf2_per_objfile->read_in_chain;
22126 last_chain = &dwarf2_per_objfile->read_in_chain;
22127 while (per_cu != NULL)
22128 {
22129 struct dwarf2_per_cu_data *next_cu;
22130
22131 next_cu = per_cu->cu->read_in_chain;
22132
22133 if (!per_cu->cu->mark)
22134 {
22135 free_heap_comp_unit (per_cu->cu);
22136 *last_chain = next_cu;
22137 }
22138 else
22139 last_chain = &per_cu->cu->read_in_chain;
22140
22141 per_cu = next_cu;
22142 }
22143 }
22144
22145 /* Remove a single compilation unit from the cache. */
22146
22147 static void
22148 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22149 {
22150 struct dwarf2_per_cu_data *per_cu, **last_chain;
22151
22152 per_cu = dwarf2_per_objfile->read_in_chain;
22153 last_chain = &dwarf2_per_objfile->read_in_chain;
22154 while (per_cu != NULL)
22155 {
22156 struct dwarf2_per_cu_data *next_cu;
22157
22158 next_cu = per_cu->cu->read_in_chain;
22159
22160 if (per_cu == target_per_cu)
22161 {
22162 free_heap_comp_unit (per_cu->cu);
22163 per_cu->cu = NULL;
22164 *last_chain = next_cu;
22165 break;
22166 }
22167 else
22168 last_chain = &per_cu->cu->read_in_chain;
22169
22170 per_cu = next_cu;
22171 }
22172 }
22173
22174 /* Release all extra memory associated with OBJFILE. */
22175
22176 void
22177 dwarf2_free_objfile (struct objfile *objfile)
22178 {
22179 dwarf2_per_objfile
22180 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22181 dwarf2_objfile_data_key);
22182
22183 if (dwarf2_per_objfile == NULL)
22184 return;
22185
22186 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22187 free_cached_comp_units (NULL);
22188
22189 if (dwarf2_per_objfile->quick_file_names_table)
22190 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22191
22192 if (dwarf2_per_objfile->line_header_hash)
22193 htab_delete (dwarf2_per_objfile->line_header_hash);
22194
22195 /* Everything else should be on the objfile obstack. */
22196 }
22197
22198 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22199 We store these in a hash table separate from the DIEs, and preserve them
22200 when the DIEs are flushed out of cache.
22201
22202 The CU "per_cu" pointer is needed because offset alone is not enough to
22203 uniquely identify the type. A file may have multiple .debug_types sections,
22204 or the type may come from a DWO file. Furthermore, while it's more logical
22205 to use per_cu->section+offset, with Fission the section with the data is in
22206 the DWO file but we don't know that section at the point we need it.
22207 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22208 because we can enter the lookup routine, get_die_type_at_offset, from
22209 outside this file, and thus won't necessarily have PER_CU->cu.
22210 Fortunately, PER_CU is stable for the life of the objfile. */
22211
22212 struct dwarf2_per_cu_offset_and_type
22213 {
22214 const struct dwarf2_per_cu_data *per_cu;
22215 sect_offset offset;
22216 struct type *type;
22217 };
22218
22219 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22220
22221 static hashval_t
22222 per_cu_offset_and_type_hash (const void *item)
22223 {
22224 const struct dwarf2_per_cu_offset_and_type *ofs
22225 = (const struct dwarf2_per_cu_offset_and_type *) item;
22226
22227 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22228 }
22229
22230 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22231
22232 static int
22233 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22234 {
22235 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22236 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22237 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22238 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22239
22240 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22241 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22242 }
22243
22244 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22245 table if necessary. For convenience, return TYPE.
22246
22247 The DIEs reading must have careful ordering to:
22248 * Not cause infite loops trying to read in DIEs as a prerequisite for
22249 reading current DIE.
22250 * Not trying to dereference contents of still incompletely read in types
22251 while reading in other DIEs.
22252 * Enable referencing still incompletely read in types just by a pointer to
22253 the type without accessing its fields.
22254
22255 Therefore caller should follow these rules:
22256 * Try to fetch any prerequisite types we may need to build this DIE type
22257 before building the type and calling set_die_type.
22258 * After building type call set_die_type for current DIE as soon as
22259 possible before fetching more types to complete the current type.
22260 * Make the type as complete as possible before fetching more types. */
22261
22262 static struct type *
22263 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22264 {
22265 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22266 struct objfile *objfile = cu->objfile;
22267 struct attribute *attr;
22268 struct dynamic_prop prop;
22269
22270 /* For Ada types, make sure that the gnat-specific data is always
22271 initialized (if not already set). There are a few types where
22272 we should not be doing so, because the type-specific area is
22273 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22274 where the type-specific area is used to store the floatformat).
22275 But this is not a problem, because the gnat-specific information
22276 is actually not needed for these types. */
22277 if (need_gnat_info (cu)
22278 && TYPE_CODE (type) != TYPE_CODE_FUNC
22279 && TYPE_CODE (type) != TYPE_CODE_FLT
22280 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22281 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22282 && TYPE_CODE (type) != TYPE_CODE_METHOD
22283 && !HAVE_GNAT_AUX_INFO (type))
22284 INIT_GNAT_SPECIFIC (type);
22285
22286 /* Read DW_AT_allocated and set in type. */
22287 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22288 if (attr_form_is_block (attr))
22289 {
22290 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22291 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22292 }
22293 else if (attr != NULL)
22294 {
22295 complaint (&symfile_complaints,
22296 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22297 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22298 die->offset.sect_off);
22299 }
22300
22301 /* Read DW_AT_associated and set in type. */
22302 attr = dwarf2_attr (die, DW_AT_associated, cu);
22303 if (attr_form_is_block (attr))
22304 {
22305 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22306 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22307 }
22308 else if (attr != NULL)
22309 {
22310 complaint (&symfile_complaints,
22311 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22312 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22313 die->offset.sect_off);
22314 }
22315
22316 /* Read DW_AT_data_location and set in type. */
22317 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22318 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22319 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22320
22321 if (dwarf2_per_objfile->die_type_hash == NULL)
22322 {
22323 dwarf2_per_objfile->die_type_hash =
22324 htab_create_alloc_ex (127,
22325 per_cu_offset_and_type_hash,
22326 per_cu_offset_and_type_eq,
22327 NULL,
22328 &objfile->objfile_obstack,
22329 hashtab_obstack_allocate,
22330 dummy_obstack_deallocate);
22331 }
22332
22333 ofs.per_cu = cu->per_cu;
22334 ofs.offset = die->offset;
22335 ofs.type = type;
22336 slot = (struct dwarf2_per_cu_offset_and_type **)
22337 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22338 if (*slot)
22339 complaint (&symfile_complaints,
22340 _("A problem internal to GDB: DIE 0x%x has type already set"),
22341 die->offset.sect_off);
22342 *slot = XOBNEW (&objfile->objfile_obstack,
22343 struct dwarf2_per_cu_offset_and_type);
22344 **slot = ofs;
22345 return type;
22346 }
22347
22348 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22349 or return NULL if the die does not have a saved type. */
22350
22351 static struct type *
22352 get_die_type_at_offset (sect_offset offset,
22353 struct dwarf2_per_cu_data *per_cu)
22354 {
22355 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22356
22357 if (dwarf2_per_objfile->die_type_hash == NULL)
22358 return NULL;
22359
22360 ofs.per_cu = per_cu;
22361 ofs.offset = offset;
22362 slot = ((struct dwarf2_per_cu_offset_and_type *)
22363 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22364 if (slot)
22365 return slot->type;
22366 else
22367 return NULL;
22368 }
22369
22370 /* Look up the type for DIE in CU in die_type_hash,
22371 or return NULL if DIE does not have a saved type. */
22372
22373 static struct type *
22374 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22375 {
22376 return get_die_type_at_offset (die->offset, cu->per_cu);
22377 }
22378
22379 /* Add a dependence relationship from CU to REF_PER_CU. */
22380
22381 static void
22382 dwarf2_add_dependence (struct dwarf2_cu *cu,
22383 struct dwarf2_per_cu_data *ref_per_cu)
22384 {
22385 void **slot;
22386
22387 if (cu->dependencies == NULL)
22388 cu->dependencies
22389 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22390 NULL, &cu->comp_unit_obstack,
22391 hashtab_obstack_allocate,
22392 dummy_obstack_deallocate);
22393
22394 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22395 if (*slot == NULL)
22396 *slot = ref_per_cu;
22397 }
22398
22399 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22400 Set the mark field in every compilation unit in the
22401 cache that we must keep because we are keeping CU. */
22402
22403 static int
22404 dwarf2_mark_helper (void **slot, void *data)
22405 {
22406 struct dwarf2_per_cu_data *per_cu;
22407
22408 per_cu = (struct dwarf2_per_cu_data *) *slot;
22409
22410 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22411 reading of the chain. As such dependencies remain valid it is not much
22412 useful to track and undo them during QUIT cleanups. */
22413 if (per_cu->cu == NULL)
22414 return 1;
22415
22416 if (per_cu->cu->mark)
22417 return 1;
22418 per_cu->cu->mark = 1;
22419
22420 if (per_cu->cu->dependencies != NULL)
22421 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22422
22423 return 1;
22424 }
22425
22426 /* Set the mark field in CU and in every other compilation unit in the
22427 cache that we must keep because we are keeping CU. */
22428
22429 static void
22430 dwarf2_mark (struct dwarf2_cu *cu)
22431 {
22432 if (cu->mark)
22433 return;
22434 cu->mark = 1;
22435 if (cu->dependencies != NULL)
22436 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22437 }
22438
22439 static void
22440 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22441 {
22442 while (per_cu)
22443 {
22444 per_cu->cu->mark = 0;
22445 per_cu = per_cu->cu->read_in_chain;
22446 }
22447 }
22448
22449 /* Trivial hash function for partial_die_info: the hash value of a DIE
22450 is its offset in .debug_info for this objfile. */
22451
22452 static hashval_t
22453 partial_die_hash (const void *item)
22454 {
22455 const struct partial_die_info *part_die
22456 = (const struct partial_die_info *) item;
22457
22458 return part_die->offset.sect_off;
22459 }
22460
22461 /* Trivial comparison function for partial_die_info structures: two DIEs
22462 are equal if they have the same offset. */
22463
22464 static int
22465 partial_die_eq (const void *item_lhs, const void *item_rhs)
22466 {
22467 const struct partial_die_info *part_die_lhs
22468 = (const struct partial_die_info *) item_lhs;
22469 const struct partial_die_info *part_die_rhs
22470 = (const struct partial_die_info *) item_rhs;
22471
22472 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22473 }
22474
22475 static struct cmd_list_element *set_dwarf_cmdlist;
22476 static struct cmd_list_element *show_dwarf_cmdlist;
22477
22478 static void
22479 set_dwarf_cmd (char *args, int from_tty)
22480 {
22481 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22482 gdb_stdout);
22483 }
22484
22485 static void
22486 show_dwarf_cmd (char *args, int from_tty)
22487 {
22488 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22489 }
22490
22491 /* Free data associated with OBJFILE, if necessary. */
22492
22493 static void
22494 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22495 {
22496 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22497 int ix;
22498
22499 /* Make sure we don't accidentally use dwarf2_per_objfile while
22500 cleaning up. */
22501 dwarf2_per_objfile = NULL;
22502
22503 for (ix = 0; ix < data->n_comp_units; ++ix)
22504 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22505
22506 for (ix = 0; ix < data->n_type_units; ++ix)
22507 VEC_free (dwarf2_per_cu_ptr,
22508 data->all_type_units[ix]->per_cu.imported_symtabs);
22509 xfree (data->all_type_units);
22510
22511 VEC_free (dwarf2_section_info_def, data->types);
22512
22513 if (data->dwo_files)
22514 free_dwo_files (data->dwo_files, objfile);
22515 if (data->dwp_file)
22516 gdb_bfd_unref (data->dwp_file->dbfd);
22517
22518 if (data->dwz_file && data->dwz_file->dwz_bfd)
22519 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22520 }
22521
22522 \f
22523 /* The "save gdb-index" command. */
22524
22525 /* The contents of the hash table we create when building the string
22526 table. */
22527 struct strtab_entry
22528 {
22529 offset_type offset;
22530 const char *str;
22531 };
22532
22533 /* Hash function for a strtab_entry.
22534
22535 Function is used only during write_hash_table so no index format backward
22536 compatibility is needed. */
22537
22538 static hashval_t
22539 hash_strtab_entry (const void *e)
22540 {
22541 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22542 return mapped_index_string_hash (INT_MAX, entry->str);
22543 }
22544
22545 /* Equality function for a strtab_entry. */
22546
22547 static int
22548 eq_strtab_entry (const void *a, const void *b)
22549 {
22550 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22551 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22552 return !strcmp (ea->str, eb->str);
22553 }
22554
22555 /* Create a strtab_entry hash table. */
22556
22557 static htab_t
22558 create_strtab (void)
22559 {
22560 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22561 xfree, xcalloc, xfree);
22562 }
22563
22564 /* Add a string to the constant pool. Return the string's offset in
22565 host order. */
22566
22567 static offset_type
22568 add_string (htab_t table, struct obstack *cpool, const char *str)
22569 {
22570 void **slot;
22571 struct strtab_entry entry;
22572 struct strtab_entry *result;
22573
22574 entry.str = str;
22575 slot = htab_find_slot (table, &entry, INSERT);
22576 if (*slot)
22577 result = (struct strtab_entry *) *slot;
22578 else
22579 {
22580 result = XNEW (struct strtab_entry);
22581 result->offset = obstack_object_size (cpool);
22582 result->str = str;
22583 obstack_grow_str0 (cpool, str);
22584 *slot = result;
22585 }
22586 return result->offset;
22587 }
22588
22589 /* An entry in the symbol table. */
22590 struct symtab_index_entry
22591 {
22592 /* The name of the symbol. */
22593 const char *name;
22594 /* The offset of the name in the constant pool. */
22595 offset_type index_offset;
22596 /* A sorted vector of the indices of all the CUs that hold an object
22597 of this name. */
22598 VEC (offset_type) *cu_indices;
22599 };
22600
22601 /* The symbol table. This is a power-of-2-sized hash table. */
22602 struct mapped_symtab
22603 {
22604 offset_type n_elements;
22605 offset_type size;
22606 struct symtab_index_entry **data;
22607 };
22608
22609 /* Hash function for a symtab_index_entry. */
22610
22611 static hashval_t
22612 hash_symtab_entry (const void *e)
22613 {
22614 const struct symtab_index_entry *entry
22615 = (const struct symtab_index_entry *) e;
22616 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22617 sizeof (offset_type) * VEC_length (offset_type,
22618 entry->cu_indices),
22619 0);
22620 }
22621
22622 /* Equality function for a symtab_index_entry. */
22623
22624 static int
22625 eq_symtab_entry (const void *a, const void *b)
22626 {
22627 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22628 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22629 int len = VEC_length (offset_type, ea->cu_indices);
22630 if (len != VEC_length (offset_type, eb->cu_indices))
22631 return 0;
22632 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22633 VEC_address (offset_type, eb->cu_indices),
22634 sizeof (offset_type) * len);
22635 }
22636
22637 /* Destroy a symtab_index_entry. */
22638
22639 static void
22640 delete_symtab_entry (void *p)
22641 {
22642 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22643 VEC_free (offset_type, entry->cu_indices);
22644 xfree (entry);
22645 }
22646
22647 /* Create a hash table holding symtab_index_entry objects. */
22648
22649 static htab_t
22650 create_symbol_hash_table (void)
22651 {
22652 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22653 delete_symtab_entry, xcalloc, xfree);
22654 }
22655
22656 /* Create a new mapped symtab object. */
22657
22658 static struct mapped_symtab *
22659 create_mapped_symtab (void)
22660 {
22661 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22662 symtab->n_elements = 0;
22663 symtab->size = 1024;
22664 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22665 return symtab;
22666 }
22667
22668 /* Destroy a mapped_symtab. */
22669
22670 static void
22671 cleanup_mapped_symtab (void *p)
22672 {
22673 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22674 /* The contents of the array are freed when the other hash table is
22675 destroyed. */
22676 xfree (symtab->data);
22677 xfree (symtab);
22678 }
22679
22680 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22681 the slot.
22682
22683 Function is used only during write_hash_table so no index format backward
22684 compatibility is needed. */
22685
22686 static struct symtab_index_entry **
22687 find_slot (struct mapped_symtab *symtab, const char *name)
22688 {
22689 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22690
22691 index = hash & (symtab->size - 1);
22692 step = ((hash * 17) & (symtab->size - 1)) | 1;
22693
22694 for (;;)
22695 {
22696 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22697 return &symtab->data[index];
22698 index = (index + step) & (symtab->size - 1);
22699 }
22700 }
22701
22702 /* Expand SYMTAB's hash table. */
22703
22704 static void
22705 hash_expand (struct mapped_symtab *symtab)
22706 {
22707 offset_type old_size = symtab->size;
22708 offset_type i;
22709 struct symtab_index_entry **old_entries = symtab->data;
22710
22711 symtab->size *= 2;
22712 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22713
22714 for (i = 0; i < old_size; ++i)
22715 {
22716 if (old_entries[i])
22717 {
22718 struct symtab_index_entry **slot = find_slot (symtab,
22719 old_entries[i]->name);
22720 *slot = old_entries[i];
22721 }
22722 }
22723
22724 xfree (old_entries);
22725 }
22726
22727 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22728 CU_INDEX is the index of the CU in which the symbol appears.
22729 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22730
22731 static void
22732 add_index_entry (struct mapped_symtab *symtab, const char *name,
22733 int is_static, gdb_index_symbol_kind kind,
22734 offset_type cu_index)
22735 {
22736 struct symtab_index_entry **slot;
22737 offset_type cu_index_and_attrs;
22738
22739 ++symtab->n_elements;
22740 if (4 * symtab->n_elements / 3 >= symtab->size)
22741 hash_expand (symtab);
22742
22743 slot = find_slot (symtab, name);
22744 if (!*slot)
22745 {
22746 *slot = XNEW (struct symtab_index_entry);
22747 (*slot)->name = name;
22748 /* index_offset is set later. */
22749 (*slot)->cu_indices = NULL;
22750 }
22751
22752 cu_index_and_attrs = 0;
22753 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22754 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22755 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22756
22757 /* We don't want to record an index value twice as we want to avoid the
22758 duplication.
22759 We process all global symbols and then all static symbols
22760 (which would allow us to avoid the duplication by only having to check
22761 the last entry pushed), but a symbol could have multiple kinds in one CU.
22762 To keep things simple we don't worry about the duplication here and
22763 sort and uniqufy the list after we've processed all symbols. */
22764 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22765 }
22766
22767 /* qsort helper routine for uniquify_cu_indices. */
22768
22769 static int
22770 offset_type_compare (const void *ap, const void *bp)
22771 {
22772 offset_type a = *(offset_type *) ap;
22773 offset_type b = *(offset_type *) bp;
22774
22775 return (a > b) - (b > a);
22776 }
22777
22778 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22779
22780 static void
22781 uniquify_cu_indices (struct mapped_symtab *symtab)
22782 {
22783 int i;
22784
22785 for (i = 0; i < symtab->size; ++i)
22786 {
22787 struct symtab_index_entry *entry = symtab->data[i];
22788
22789 if (entry
22790 && entry->cu_indices != NULL)
22791 {
22792 unsigned int next_to_insert, next_to_check;
22793 offset_type last_value;
22794
22795 qsort (VEC_address (offset_type, entry->cu_indices),
22796 VEC_length (offset_type, entry->cu_indices),
22797 sizeof (offset_type), offset_type_compare);
22798
22799 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22800 next_to_insert = 1;
22801 for (next_to_check = 1;
22802 next_to_check < VEC_length (offset_type, entry->cu_indices);
22803 ++next_to_check)
22804 {
22805 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22806 != last_value)
22807 {
22808 last_value = VEC_index (offset_type, entry->cu_indices,
22809 next_to_check);
22810 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22811 last_value);
22812 ++next_to_insert;
22813 }
22814 }
22815 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22816 }
22817 }
22818 }
22819
22820 /* Add a vector of indices to the constant pool. */
22821
22822 static offset_type
22823 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22824 struct symtab_index_entry *entry)
22825 {
22826 void **slot;
22827
22828 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22829 if (!*slot)
22830 {
22831 offset_type len = VEC_length (offset_type, entry->cu_indices);
22832 offset_type val = MAYBE_SWAP (len);
22833 offset_type iter;
22834 int i;
22835
22836 *slot = entry;
22837 entry->index_offset = obstack_object_size (cpool);
22838
22839 obstack_grow (cpool, &val, sizeof (val));
22840 for (i = 0;
22841 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22842 ++i)
22843 {
22844 val = MAYBE_SWAP (iter);
22845 obstack_grow (cpool, &val, sizeof (val));
22846 }
22847 }
22848 else
22849 {
22850 struct symtab_index_entry *old_entry
22851 = (struct symtab_index_entry *) *slot;
22852 entry->index_offset = old_entry->index_offset;
22853 entry = old_entry;
22854 }
22855 return entry->index_offset;
22856 }
22857
22858 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22859 constant pool entries going into the obstack CPOOL. */
22860
22861 static void
22862 write_hash_table (struct mapped_symtab *symtab,
22863 struct obstack *output, struct obstack *cpool)
22864 {
22865 offset_type i;
22866 htab_t symbol_hash_table;
22867 htab_t str_table;
22868
22869 symbol_hash_table = create_symbol_hash_table ();
22870 str_table = create_strtab ();
22871
22872 /* We add all the index vectors to the constant pool first, to
22873 ensure alignment is ok. */
22874 for (i = 0; i < symtab->size; ++i)
22875 {
22876 if (symtab->data[i])
22877 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22878 }
22879
22880 /* Now write out the hash table. */
22881 for (i = 0; i < symtab->size; ++i)
22882 {
22883 offset_type str_off, vec_off;
22884
22885 if (symtab->data[i])
22886 {
22887 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22888 vec_off = symtab->data[i]->index_offset;
22889 }
22890 else
22891 {
22892 /* While 0 is a valid constant pool index, it is not valid
22893 to have 0 for both offsets. */
22894 str_off = 0;
22895 vec_off = 0;
22896 }
22897
22898 str_off = MAYBE_SWAP (str_off);
22899 vec_off = MAYBE_SWAP (vec_off);
22900
22901 obstack_grow (output, &str_off, sizeof (str_off));
22902 obstack_grow (output, &vec_off, sizeof (vec_off));
22903 }
22904
22905 htab_delete (str_table);
22906 htab_delete (symbol_hash_table);
22907 }
22908
22909 /* Struct to map psymtab to CU index in the index file. */
22910 struct psymtab_cu_index_map
22911 {
22912 struct partial_symtab *psymtab;
22913 unsigned int cu_index;
22914 };
22915
22916 static hashval_t
22917 hash_psymtab_cu_index (const void *item)
22918 {
22919 const struct psymtab_cu_index_map *map
22920 = (const struct psymtab_cu_index_map *) item;
22921
22922 return htab_hash_pointer (map->psymtab);
22923 }
22924
22925 static int
22926 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22927 {
22928 const struct psymtab_cu_index_map *lhs
22929 = (const struct psymtab_cu_index_map *) item_lhs;
22930 const struct psymtab_cu_index_map *rhs
22931 = (const struct psymtab_cu_index_map *) item_rhs;
22932
22933 return lhs->psymtab == rhs->psymtab;
22934 }
22935
22936 /* Helper struct for building the address table. */
22937 struct addrmap_index_data
22938 {
22939 struct objfile *objfile;
22940 struct obstack *addr_obstack;
22941 htab_t cu_index_htab;
22942
22943 /* Non-zero if the previous_* fields are valid.
22944 We can't write an entry until we see the next entry (since it is only then
22945 that we know the end of the entry). */
22946 int previous_valid;
22947 /* Index of the CU in the table of all CUs in the index file. */
22948 unsigned int previous_cu_index;
22949 /* Start address of the CU. */
22950 CORE_ADDR previous_cu_start;
22951 };
22952
22953 /* Write an address entry to OBSTACK. */
22954
22955 static void
22956 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22957 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22958 {
22959 offset_type cu_index_to_write;
22960 gdb_byte addr[8];
22961 CORE_ADDR baseaddr;
22962
22963 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22964
22965 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22966 obstack_grow (obstack, addr, 8);
22967 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22968 obstack_grow (obstack, addr, 8);
22969 cu_index_to_write = MAYBE_SWAP (cu_index);
22970 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22971 }
22972
22973 /* Worker function for traversing an addrmap to build the address table. */
22974
22975 static int
22976 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22977 {
22978 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
22979 struct partial_symtab *pst = (struct partial_symtab *) obj;
22980
22981 if (data->previous_valid)
22982 add_address_entry (data->objfile, data->addr_obstack,
22983 data->previous_cu_start, start_addr,
22984 data->previous_cu_index);
22985
22986 data->previous_cu_start = start_addr;
22987 if (pst != NULL)
22988 {
22989 struct psymtab_cu_index_map find_map, *map;
22990 find_map.psymtab = pst;
22991 map = ((struct psymtab_cu_index_map *)
22992 htab_find (data->cu_index_htab, &find_map));
22993 gdb_assert (map != NULL);
22994 data->previous_cu_index = map->cu_index;
22995 data->previous_valid = 1;
22996 }
22997 else
22998 data->previous_valid = 0;
22999
23000 return 0;
23001 }
23002
23003 /* Write OBJFILE's address map to OBSTACK.
23004 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23005 in the index file. */
23006
23007 static void
23008 write_address_map (struct objfile *objfile, struct obstack *obstack,
23009 htab_t cu_index_htab)
23010 {
23011 struct addrmap_index_data addrmap_index_data;
23012
23013 /* When writing the address table, we have to cope with the fact that
23014 the addrmap iterator only provides the start of a region; we have to
23015 wait until the next invocation to get the start of the next region. */
23016
23017 addrmap_index_data.objfile = objfile;
23018 addrmap_index_data.addr_obstack = obstack;
23019 addrmap_index_data.cu_index_htab = cu_index_htab;
23020 addrmap_index_data.previous_valid = 0;
23021
23022 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23023 &addrmap_index_data);
23024
23025 /* It's highly unlikely the last entry (end address = 0xff...ff)
23026 is valid, but we should still handle it.
23027 The end address is recorded as the start of the next region, but that
23028 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23029 anyway. */
23030 if (addrmap_index_data.previous_valid)
23031 add_address_entry (objfile, obstack,
23032 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23033 addrmap_index_data.previous_cu_index);
23034 }
23035
23036 /* Return the symbol kind of PSYM. */
23037
23038 static gdb_index_symbol_kind
23039 symbol_kind (struct partial_symbol *psym)
23040 {
23041 domain_enum domain = PSYMBOL_DOMAIN (psym);
23042 enum address_class aclass = PSYMBOL_CLASS (psym);
23043
23044 switch (domain)
23045 {
23046 case VAR_DOMAIN:
23047 switch (aclass)
23048 {
23049 case LOC_BLOCK:
23050 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23051 case LOC_TYPEDEF:
23052 return GDB_INDEX_SYMBOL_KIND_TYPE;
23053 case LOC_COMPUTED:
23054 case LOC_CONST_BYTES:
23055 case LOC_OPTIMIZED_OUT:
23056 case LOC_STATIC:
23057 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23058 case LOC_CONST:
23059 /* Note: It's currently impossible to recognize psyms as enum values
23060 short of reading the type info. For now punt. */
23061 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23062 default:
23063 /* There are other LOC_FOO values that one might want to classify
23064 as variables, but dwarf2read.c doesn't currently use them. */
23065 return GDB_INDEX_SYMBOL_KIND_OTHER;
23066 }
23067 case STRUCT_DOMAIN:
23068 return GDB_INDEX_SYMBOL_KIND_TYPE;
23069 default:
23070 return GDB_INDEX_SYMBOL_KIND_OTHER;
23071 }
23072 }
23073
23074 /* Add a list of partial symbols to SYMTAB. */
23075
23076 static void
23077 write_psymbols (struct mapped_symtab *symtab,
23078 htab_t psyms_seen,
23079 struct partial_symbol **psymp,
23080 int count,
23081 offset_type cu_index,
23082 int is_static)
23083 {
23084 for (; count-- > 0; ++psymp)
23085 {
23086 struct partial_symbol *psym = *psymp;
23087 void **slot;
23088
23089 if (SYMBOL_LANGUAGE (psym) == language_ada)
23090 error (_("Ada is not currently supported by the index"));
23091
23092 /* Only add a given psymbol once. */
23093 slot = htab_find_slot (psyms_seen, psym, INSERT);
23094 if (!*slot)
23095 {
23096 gdb_index_symbol_kind kind = symbol_kind (psym);
23097
23098 *slot = psym;
23099 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23100 is_static, kind, cu_index);
23101 }
23102 }
23103 }
23104
23105 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23106 exception if there is an error. */
23107
23108 static void
23109 write_obstack (FILE *file, struct obstack *obstack)
23110 {
23111 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23112 file)
23113 != obstack_object_size (obstack))
23114 error (_("couldn't data write to file"));
23115 }
23116
23117 /* A helper struct used when iterating over debug_types. */
23118 struct signatured_type_index_data
23119 {
23120 struct objfile *objfile;
23121 struct mapped_symtab *symtab;
23122 struct obstack *types_list;
23123 htab_t psyms_seen;
23124 int cu_index;
23125 };
23126
23127 /* A helper function that writes a single signatured_type to an
23128 obstack. */
23129
23130 static int
23131 write_one_signatured_type (void **slot, void *d)
23132 {
23133 struct signatured_type_index_data *info
23134 = (struct signatured_type_index_data *) d;
23135 struct signatured_type *entry = (struct signatured_type *) *slot;
23136 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23137 gdb_byte val[8];
23138
23139 write_psymbols (info->symtab,
23140 info->psyms_seen,
23141 info->objfile->global_psymbols.list
23142 + psymtab->globals_offset,
23143 psymtab->n_global_syms, info->cu_index,
23144 0);
23145 write_psymbols (info->symtab,
23146 info->psyms_seen,
23147 info->objfile->static_psymbols.list
23148 + psymtab->statics_offset,
23149 psymtab->n_static_syms, info->cu_index,
23150 1);
23151
23152 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23153 entry->per_cu.offset.sect_off);
23154 obstack_grow (info->types_list, val, 8);
23155 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23156 entry->type_offset_in_tu.cu_off);
23157 obstack_grow (info->types_list, val, 8);
23158 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23159 obstack_grow (info->types_list, val, 8);
23160
23161 ++info->cu_index;
23162
23163 return 1;
23164 }
23165
23166 /* Recurse into all "included" dependencies and write their symbols as
23167 if they appeared in this psymtab. */
23168
23169 static void
23170 recursively_write_psymbols (struct objfile *objfile,
23171 struct partial_symtab *psymtab,
23172 struct mapped_symtab *symtab,
23173 htab_t psyms_seen,
23174 offset_type cu_index)
23175 {
23176 int i;
23177
23178 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23179 if (psymtab->dependencies[i]->user != NULL)
23180 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23181 symtab, psyms_seen, cu_index);
23182
23183 write_psymbols (symtab,
23184 psyms_seen,
23185 objfile->global_psymbols.list + psymtab->globals_offset,
23186 psymtab->n_global_syms, cu_index,
23187 0);
23188 write_psymbols (symtab,
23189 psyms_seen,
23190 objfile->static_psymbols.list + psymtab->statics_offset,
23191 psymtab->n_static_syms, cu_index,
23192 1);
23193 }
23194
23195 /* Create an index file for OBJFILE in the directory DIR. */
23196
23197 static void
23198 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23199 {
23200 struct cleanup *cleanup;
23201 char *filename;
23202 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23203 struct obstack cu_list, types_cu_list;
23204 int i;
23205 FILE *out_file;
23206 struct mapped_symtab *symtab;
23207 offset_type val, size_of_contents, total_len;
23208 struct stat st;
23209 struct psymtab_cu_index_map *psymtab_cu_index_map;
23210
23211 if (dwarf2_per_objfile->using_index)
23212 error (_("Cannot use an index to create the index"));
23213
23214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23215 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23216
23217 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23218 return;
23219
23220 if (stat (objfile_name (objfile), &st) < 0)
23221 perror_with_name (objfile_name (objfile));
23222
23223 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23224 INDEX_SUFFIX, (char *) NULL);
23225 cleanup = make_cleanup (xfree, filename);
23226
23227 out_file = gdb_fopen_cloexec (filename, "wb");
23228 if (!out_file)
23229 error (_("Can't open `%s' for writing"), filename);
23230
23231 gdb::unlinker unlink_file (filename);
23232
23233 symtab = create_mapped_symtab ();
23234 make_cleanup (cleanup_mapped_symtab, symtab);
23235
23236 obstack_init (&addr_obstack);
23237 make_cleanup_obstack_free (&addr_obstack);
23238
23239 obstack_init (&cu_list);
23240 make_cleanup_obstack_free (&cu_list);
23241
23242 obstack_init (&types_cu_list);
23243 make_cleanup_obstack_free (&types_cu_list);
23244
23245 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23246 htab_eq_pointer,
23247 NULL, xcalloc, xfree));
23248
23249 /* While we're scanning CU's create a table that maps a psymtab pointer
23250 (which is what addrmap records) to its index (which is what is recorded
23251 in the index file). This will later be needed to write the address
23252 table. */
23253 htab_up cu_index_htab (htab_create_alloc (100,
23254 hash_psymtab_cu_index,
23255 eq_psymtab_cu_index,
23256 NULL, xcalloc, xfree));
23257 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23258 dwarf2_per_objfile->n_comp_units);
23259 make_cleanup (xfree, psymtab_cu_index_map);
23260
23261 /* The CU list is already sorted, so we don't need to do additional
23262 work here. Also, the debug_types entries do not appear in
23263 all_comp_units, but only in their own hash table. */
23264 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23265 {
23266 struct dwarf2_per_cu_data *per_cu
23267 = dwarf2_per_objfile->all_comp_units[i];
23268 struct partial_symtab *psymtab = per_cu->v.psymtab;
23269 gdb_byte val[8];
23270 struct psymtab_cu_index_map *map;
23271 void **slot;
23272
23273 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23274 It may be referenced from a local scope but in such case it does not
23275 need to be present in .gdb_index. */
23276 if (psymtab == NULL)
23277 continue;
23278
23279 if (psymtab->user == NULL)
23280 recursively_write_psymbols (objfile, psymtab, symtab,
23281 psyms_seen.get (), i);
23282
23283 map = &psymtab_cu_index_map[i];
23284 map->psymtab = psymtab;
23285 map->cu_index = i;
23286 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23287 gdb_assert (slot != NULL);
23288 gdb_assert (*slot == NULL);
23289 *slot = map;
23290
23291 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23292 per_cu->offset.sect_off);
23293 obstack_grow (&cu_list, val, 8);
23294 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23295 obstack_grow (&cu_list, val, 8);
23296 }
23297
23298 /* Dump the address map. */
23299 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23300
23301 /* Write out the .debug_type entries, if any. */
23302 if (dwarf2_per_objfile->signatured_types)
23303 {
23304 struct signatured_type_index_data sig_data;
23305
23306 sig_data.objfile = objfile;
23307 sig_data.symtab = symtab;
23308 sig_data.types_list = &types_cu_list;
23309 sig_data.psyms_seen = psyms_seen.get ();
23310 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23311 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23312 write_one_signatured_type, &sig_data);
23313 }
23314
23315 /* Now that we've processed all symbols we can shrink their cu_indices
23316 lists. */
23317 uniquify_cu_indices (symtab);
23318
23319 obstack_init (&constant_pool);
23320 make_cleanup_obstack_free (&constant_pool);
23321 obstack_init (&symtab_obstack);
23322 make_cleanup_obstack_free (&symtab_obstack);
23323 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23324
23325 obstack_init (&contents);
23326 make_cleanup_obstack_free (&contents);
23327 size_of_contents = 6 * sizeof (offset_type);
23328 total_len = size_of_contents;
23329
23330 /* The version number. */
23331 val = MAYBE_SWAP (8);
23332 obstack_grow (&contents, &val, sizeof (val));
23333
23334 /* The offset of the CU list from the start of the file. */
23335 val = MAYBE_SWAP (total_len);
23336 obstack_grow (&contents, &val, sizeof (val));
23337 total_len += obstack_object_size (&cu_list);
23338
23339 /* The offset of the types CU list from the start of the file. */
23340 val = MAYBE_SWAP (total_len);
23341 obstack_grow (&contents, &val, sizeof (val));
23342 total_len += obstack_object_size (&types_cu_list);
23343
23344 /* The offset of the address table from the start of the file. */
23345 val = MAYBE_SWAP (total_len);
23346 obstack_grow (&contents, &val, sizeof (val));
23347 total_len += obstack_object_size (&addr_obstack);
23348
23349 /* The offset of the symbol table from the start of the file. */
23350 val = MAYBE_SWAP (total_len);
23351 obstack_grow (&contents, &val, sizeof (val));
23352 total_len += obstack_object_size (&symtab_obstack);
23353
23354 /* The offset of the constant pool from the start of the file. */
23355 val = MAYBE_SWAP (total_len);
23356 obstack_grow (&contents, &val, sizeof (val));
23357 total_len += obstack_object_size (&constant_pool);
23358
23359 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23360
23361 write_obstack (out_file, &contents);
23362 write_obstack (out_file, &cu_list);
23363 write_obstack (out_file, &types_cu_list);
23364 write_obstack (out_file, &addr_obstack);
23365 write_obstack (out_file, &symtab_obstack);
23366 write_obstack (out_file, &constant_pool);
23367
23368 fclose (out_file);
23369
23370 /* We want to keep the file. */
23371 unlink_file.keep ();
23372
23373 do_cleanups (cleanup);
23374 }
23375
23376 /* Implementation of the `save gdb-index' command.
23377
23378 Note that the file format used by this command is documented in the
23379 GDB manual. Any changes here must be documented there. */
23380
23381 static void
23382 save_gdb_index_command (char *arg, int from_tty)
23383 {
23384 struct objfile *objfile;
23385
23386 if (!arg || !*arg)
23387 error (_("usage: save gdb-index DIRECTORY"));
23388
23389 ALL_OBJFILES (objfile)
23390 {
23391 struct stat st;
23392
23393 /* If the objfile does not correspond to an actual file, skip it. */
23394 if (stat (objfile_name (objfile), &st) < 0)
23395 continue;
23396
23397 dwarf2_per_objfile
23398 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23399 dwarf2_objfile_data_key);
23400 if (dwarf2_per_objfile)
23401 {
23402
23403 TRY
23404 {
23405 write_psymtabs_to_index (objfile, arg);
23406 }
23407 CATCH (except, RETURN_MASK_ERROR)
23408 {
23409 exception_fprintf (gdb_stderr, except,
23410 _("Error while writing index for `%s': "),
23411 objfile_name (objfile));
23412 }
23413 END_CATCH
23414 }
23415 }
23416 }
23417
23418 \f
23419
23420 int dwarf_always_disassemble;
23421
23422 static void
23423 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23424 struct cmd_list_element *c, const char *value)
23425 {
23426 fprintf_filtered (file,
23427 _("Whether to always disassemble "
23428 "DWARF expressions is %s.\n"),
23429 value);
23430 }
23431
23432 static void
23433 show_check_physname (struct ui_file *file, int from_tty,
23434 struct cmd_list_element *c, const char *value)
23435 {
23436 fprintf_filtered (file,
23437 _("Whether to check \"physname\" is %s.\n"),
23438 value);
23439 }
23440
23441 void _initialize_dwarf2_read (void);
23442
23443 void
23444 _initialize_dwarf2_read (void)
23445 {
23446 struct cmd_list_element *c;
23447
23448 dwarf2_objfile_data_key
23449 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23450
23451 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23452 Set DWARF specific variables.\n\
23453 Configure DWARF variables such as the cache size"),
23454 &set_dwarf_cmdlist, "maintenance set dwarf ",
23455 0/*allow-unknown*/, &maintenance_set_cmdlist);
23456
23457 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23458 Show DWARF specific variables\n\
23459 Show DWARF variables such as the cache size"),
23460 &show_dwarf_cmdlist, "maintenance show dwarf ",
23461 0/*allow-unknown*/, &maintenance_show_cmdlist);
23462
23463 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23464 &dwarf_max_cache_age, _("\
23465 Set the upper bound on the age of cached DWARF compilation units."), _("\
23466 Show the upper bound on the age of cached DWARF compilation units."), _("\
23467 A higher limit means that cached compilation units will be stored\n\
23468 in memory longer, and more total memory will be used. Zero disables\n\
23469 caching, which can slow down startup."),
23470 NULL,
23471 show_dwarf_max_cache_age,
23472 &set_dwarf_cmdlist,
23473 &show_dwarf_cmdlist);
23474
23475 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23476 &dwarf_always_disassemble, _("\
23477 Set whether `info address' always disassembles DWARF expressions."), _("\
23478 Show whether `info address' always disassembles DWARF expressions."), _("\
23479 When enabled, DWARF expressions are always printed in an assembly-like\n\
23480 syntax. When disabled, expressions will be printed in a more\n\
23481 conversational style, when possible."),
23482 NULL,
23483 show_dwarf_always_disassemble,
23484 &set_dwarf_cmdlist,
23485 &show_dwarf_cmdlist);
23486
23487 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23488 Set debugging of the DWARF reader."), _("\
23489 Show debugging of the DWARF reader."), _("\
23490 When enabled (non-zero), debugging messages are printed during DWARF\n\
23491 reading and symtab expansion. A value of 1 (one) provides basic\n\
23492 information. A value greater than 1 provides more verbose information."),
23493 NULL,
23494 NULL,
23495 &setdebuglist, &showdebuglist);
23496
23497 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23498 Set debugging of the DWARF DIE reader."), _("\
23499 Show debugging of the DWARF DIE reader."), _("\
23500 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23501 The value is the maximum depth to print."),
23502 NULL,
23503 NULL,
23504 &setdebuglist, &showdebuglist);
23505
23506 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23507 Set debugging of the dwarf line reader."), _("\
23508 Show debugging of the dwarf line reader."), _("\
23509 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23510 A value of 1 (one) provides basic information.\n\
23511 A value greater than 1 provides more verbose information."),
23512 NULL,
23513 NULL,
23514 &setdebuglist, &showdebuglist);
23515
23516 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23517 Set cross-checking of \"physname\" code against demangler."), _("\
23518 Show cross-checking of \"physname\" code against demangler."), _("\
23519 When enabled, GDB's internal \"physname\" code is checked against\n\
23520 the demangler."),
23521 NULL, show_check_physname,
23522 &setdebuglist, &showdebuglist);
23523
23524 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23525 no_class, &use_deprecated_index_sections, _("\
23526 Set whether to use deprecated gdb_index sections."), _("\
23527 Show whether to use deprecated gdb_index sections."), _("\
23528 When enabled, deprecated .gdb_index sections are used anyway.\n\
23529 Normally they are ignored either because of a missing feature or\n\
23530 performance issue.\n\
23531 Warning: This option must be enabled before gdb reads the file."),
23532 NULL,
23533 NULL,
23534 &setlist, &showlist);
23535
23536 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23537 _("\
23538 Save a gdb-index file.\n\
23539 Usage: save gdb-index DIRECTORY"),
23540 &save_cmdlist);
23541 set_cmd_completer (c, filename_completer);
23542
23543 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23544 &dwarf2_locexpr_funcs);
23545 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23546 &dwarf2_loclist_funcs);
23547
23548 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23549 &dwarf2_block_frame_base_locexpr_funcs);
23550 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23551 &dwarf2_block_frame_base_loclist_funcs);
23552 }