Make info fun|var|types interruptable.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 int included_p; /* Non-zero if referenced by the Line Number Program. */
1034 struct symtab *symtab; /* The associated symbol table, if any. */
1035 };
1036
1037 /* The line number information for a compilation unit (found in the
1038 .debug_line section) begins with a "statement program header",
1039 which contains the following information. */
1040 struct line_header
1041 {
1042 /* Offset of line number information in .debug_line section. */
1043 sect_offset offset;
1044
1045 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1046 unsigned offset_in_dwz : 1;
1047
1048 unsigned int total_length;
1049 unsigned short version;
1050 unsigned int header_length;
1051 unsigned char minimum_instruction_length;
1052 unsigned char maximum_ops_per_instruction;
1053 unsigned char default_is_stmt;
1054 int line_base;
1055 unsigned char line_range;
1056 unsigned char opcode_base;
1057
1058 /* standard_opcode_lengths[i] is the number of operands for the
1059 standard opcode whose value is i. This means that
1060 standard_opcode_lengths[0] is unused, and the last meaningful
1061 element is standard_opcode_lengths[opcode_base - 1]. */
1062 unsigned char *standard_opcode_lengths;
1063
1064 /* The include_directories table. NOTE! These strings are not
1065 allocated with xmalloc; instead, they are pointers into
1066 debug_line_buffer. If you try to free them, `free' will get
1067 indigestion. */
1068 unsigned int num_include_dirs, include_dirs_size;
1069 const char **include_dirs;
1070
1071 /* The file_names table. NOTE! These strings are not allocated
1072 with xmalloc; instead, they are pointers into debug_line_buffer.
1073 Don't try to free them directly. */
1074 unsigned int num_file_names, file_names_size;
1075 struct file_entry *file_names;
1076
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start, *statement_program_end;
1080 };
1081
1082 /* When we construct a partial symbol table entry we only
1083 need this much information. */
1084 struct partial_die_info
1085 {
1086 /* Offset of this DIE. */
1087 sect_offset offset;
1088
1089 /* DWARF-2 tag for this DIE. */
1090 ENUM_BITFIELD(dwarf_tag) tag : 16;
1091
1092 /* Assorted flags describing the data found in this DIE. */
1093 unsigned int has_children : 1;
1094 unsigned int is_external : 1;
1095 unsigned int is_declaration : 1;
1096 unsigned int has_type : 1;
1097 unsigned int has_specification : 1;
1098 unsigned int has_pc_info : 1;
1099 unsigned int may_be_inlined : 1;
1100
1101 /* Flag set if the SCOPE field of this structure has been
1102 computed. */
1103 unsigned int scope_set : 1;
1104
1105 /* Flag set if the DIE has a byte_size attribute. */
1106 unsigned int has_byte_size : 1;
1107
1108 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1109 unsigned int has_const_value : 1;
1110
1111 /* Flag set if any of the DIE's children are template arguments. */
1112 unsigned int has_template_arguments : 1;
1113
1114 /* Flag set if fixup_partial_die has been called on this die. */
1115 unsigned int fixup_called : 1;
1116
1117 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1118 unsigned int is_dwz : 1;
1119
1120 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1121 unsigned int spec_is_dwz : 1;
1122
1123 /* The name of this DIE. Normally the value of DW_AT_name, but
1124 sometimes a default name for unnamed DIEs. */
1125 const char *name;
1126
1127 /* The linkage name, if present. */
1128 const char *linkage_name;
1129
1130 /* The scope to prepend to our children. This is generally
1131 allocated on the comp_unit_obstack, so will disappear
1132 when this compilation unit leaves the cache. */
1133 const char *scope;
1134
1135 /* Some data associated with the partial DIE. The tag determines
1136 which field is live. */
1137 union
1138 {
1139 /* The location description associated with this DIE, if any. */
1140 struct dwarf_block *locdesc;
1141 /* The offset of an import, for DW_TAG_imported_unit. */
1142 sect_offset offset;
1143 } d;
1144
1145 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1146 CORE_ADDR lowpc;
1147 CORE_ADDR highpc;
1148
1149 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1150 DW_AT_sibling, if any. */
1151 /* NOTE: This member isn't strictly necessary, read_partial_die could
1152 return DW_AT_sibling values to its caller load_partial_dies. */
1153 const gdb_byte *sibling;
1154
1155 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1156 DW_AT_specification (or DW_AT_abstract_origin or
1157 DW_AT_extension). */
1158 sect_offset spec_offset;
1159
1160 /* Pointers to this DIE's parent, first child, and next sibling,
1161 if any. */
1162 struct partial_die_info *die_parent, *die_child, *die_sibling;
1163 };
1164
1165 /* This data structure holds the information of an abbrev. */
1166 struct abbrev_info
1167 {
1168 unsigned int number; /* number identifying abbrev */
1169 enum dwarf_tag tag; /* dwarf tag */
1170 unsigned short has_children; /* boolean */
1171 unsigned short num_attrs; /* number of attributes */
1172 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1173 struct abbrev_info *next; /* next in chain */
1174 };
1175
1176 struct attr_abbrev
1177 {
1178 ENUM_BITFIELD(dwarf_attribute) name : 16;
1179 ENUM_BITFIELD(dwarf_form) form : 16;
1180 };
1181
1182 /* Size of abbrev_table.abbrev_hash_table. */
1183 #define ABBREV_HASH_SIZE 121
1184
1185 /* Top level data structure to contain an abbreviation table. */
1186
1187 struct abbrev_table
1188 {
1189 /* Where the abbrev table came from.
1190 This is used as a sanity check when the table is used. */
1191 sect_offset offset;
1192
1193 /* Storage for the abbrev table. */
1194 struct obstack abbrev_obstack;
1195
1196 /* Hash table of abbrevs.
1197 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1198 It could be statically allocated, but the previous code didn't so we
1199 don't either. */
1200 struct abbrev_info **abbrevs;
1201 };
1202
1203 /* Attributes have a name and a value. */
1204 struct attribute
1205 {
1206 ENUM_BITFIELD(dwarf_attribute) name : 16;
1207 ENUM_BITFIELD(dwarf_form) form : 15;
1208
1209 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1210 field should be in u.str (existing only for DW_STRING) but it is kept
1211 here for better struct attribute alignment. */
1212 unsigned int string_is_canonical : 1;
1213
1214 union
1215 {
1216 const char *str;
1217 struct dwarf_block *blk;
1218 ULONGEST unsnd;
1219 LONGEST snd;
1220 CORE_ADDR addr;
1221 ULONGEST signature;
1222 }
1223 u;
1224 };
1225
1226 /* This data structure holds a complete die structure. */
1227 struct die_info
1228 {
1229 /* DWARF-2 tag for this DIE. */
1230 ENUM_BITFIELD(dwarf_tag) tag : 16;
1231
1232 /* Number of attributes */
1233 unsigned char num_attrs;
1234
1235 /* True if we're presently building the full type name for the
1236 type derived from this DIE. */
1237 unsigned char building_fullname : 1;
1238
1239 /* True if this die is in process. PR 16581. */
1240 unsigned char in_process : 1;
1241
1242 /* Abbrev number */
1243 unsigned int abbrev;
1244
1245 /* Offset in .debug_info or .debug_types section. */
1246 sect_offset offset;
1247
1248 /* The dies in a compilation unit form an n-ary tree. PARENT
1249 points to this die's parent; CHILD points to the first child of
1250 this node; and all the children of a given node are chained
1251 together via their SIBLING fields. */
1252 struct die_info *child; /* Its first child, if any. */
1253 struct die_info *sibling; /* Its next sibling, if any. */
1254 struct die_info *parent; /* Its parent, if any. */
1255
1256 /* An array of attributes, with NUM_ATTRS elements. There may be
1257 zero, but it's not common and zero-sized arrays are not
1258 sufficiently portable C. */
1259 struct attribute attrs[1];
1260 };
1261
1262 /* Get at parts of an attribute structure. */
1263
1264 #define DW_STRING(attr) ((attr)->u.str)
1265 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1266 #define DW_UNSND(attr) ((attr)->u.unsnd)
1267 #define DW_BLOCK(attr) ((attr)->u.blk)
1268 #define DW_SND(attr) ((attr)->u.snd)
1269 #define DW_ADDR(attr) ((attr)->u.addr)
1270 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1271
1272 /* Blocks are a bunch of untyped bytes. */
1273 struct dwarf_block
1274 {
1275 size_t size;
1276
1277 /* Valid only if SIZE is not zero. */
1278 const gdb_byte *data;
1279 };
1280
1281 #ifndef ATTR_ALLOC_CHUNK
1282 #define ATTR_ALLOC_CHUNK 4
1283 #endif
1284
1285 /* Allocate fields for structs, unions and enums in this size. */
1286 #ifndef DW_FIELD_ALLOC_CHUNK
1287 #define DW_FIELD_ALLOC_CHUNK 4
1288 #endif
1289
1290 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1291 but this would require a corresponding change in unpack_field_as_long
1292 and friends. */
1293 static int bits_per_byte = 8;
1294
1295 struct nextfield
1296 {
1297 struct nextfield *next;
1298 int accessibility;
1299 int virtuality;
1300 struct field field;
1301 };
1302
1303 struct nextfnfield
1304 {
1305 struct nextfnfield *next;
1306 struct fn_field fnfield;
1307 };
1308
1309 struct fnfieldlist
1310 {
1311 const char *name;
1312 int length;
1313 struct nextfnfield *head;
1314 };
1315
1316 struct typedef_field_list
1317 {
1318 struct typedef_field field;
1319 struct typedef_field_list *next;
1320 };
1321
1322 /* The routines that read and process dies for a C struct or C++ class
1323 pass lists of data member fields and lists of member function fields
1324 in an instance of a field_info structure, as defined below. */
1325 struct field_info
1326 {
1327 /* List of data member and baseclasses fields. */
1328 struct nextfield *fields, *baseclasses;
1329
1330 /* Number of fields (including baseclasses). */
1331 int nfields;
1332
1333 /* Number of baseclasses. */
1334 int nbaseclasses;
1335
1336 /* Set if the accesibility of one of the fields is not public. */
1337 int non_public_fields;
1338
1339 /* Member function fields array, entries are allocated in the order they
1340 are encountered in the object file. */
1341 struct nextfnfield *fnfields;
1342
1343 /* Member function fieldlist array, contains name of possibly overloaded
1344 member function, number of overloaded member functions and a pointer
1345 to the head of the member function field chain. */
1346 struct fnfieldlist *fnfieldlists;
1347
1348 /* Number of entries in the fnfieldlists array. */
1349 int nfnfields;
1350
1351 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1352 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1353 struct typedef_field_list *typedef_field_list;
1354 unsigned typedef_field_list_count;
1355 };
1356
1357 /* One item on the queue of compilation units to read in full symbols
1358 for. */
1359 struct dwarf2_queue_item
1360 {
1361 struct dwarf2_per_cu_data *per_cu;
1362 enum language pretend_language;
1363 struct dwarf2_queue_item *next;
1364 };
1365
1366 /* The current queue. */
1367 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1368
1369 /* Loaded secondary compilation units are kept in memory until they
1370 have not been referenced for the processing of this many
1371 compilation units. Set this to zero to disable caching. Cache
1372 sizes of up to at least twenty will improve startup time for
1373 typical inter-CU-reference binaries, at an obvious memory cost. */
1374 static int dwarf2_max_cache_age = 5;
1375 static void
1376 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1377 struct cmd_list_element *c, const char *value)
1378 {
1379 fprintf_filtered (file, _("The upper bound on the age of cached "
1380 "dwarf2 compilation units is %s.\n"),
1381 value);
1382 }
1383 \f
1384 /* local function prototypes */
1385
1386 static const char *get_section_name (const struct dwarf2_section_info *);
1387
1388 static const char *get_section_file_name (const struct dwarf2_section_info *);
1389
1390 static void dwarf2_locate_sections (bfd *, asection *, void *);
1391
1392 static void dwarf2_find_base_address (struct die_info *die,
1393 struct dwarf2_cu *cu);
1394
1395 static struct partial_symtab *create_partial_symtab
1396 (struct dwarf2_per_cu_data *per_cu, const char *name);
1397
1398 static void dwarf2_build_psymtabs_hard (struct objfile *);
1399
1400 static void scan_partial_symbols (struct partial_die_info *,
1401 CORE_ADDR *, CORE_ADDR *,
1402 int, struct dwarf2_cu *);
1403
1404 static void add_partial_symbol (struct partial_die_info *,
1405 struct dwarf2_cu *);
1406
1407 static void add_partial_namespace (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1409 int set_addrmap, struct dwarf2_cu *cu);
1410
1411 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1412 CORE_ADDR *highpc, int set_addrmap,
1413 struct dwarf2_cu *cu);
1414
1415 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1416 struct dwarf2_cu *cu);
1417
1418 static void add_partial_subprogram (struct partial_die_info *pdi,
1419 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1420 int need_pc, struct dwarf2_cu *cu);
1421
1422 static void dwarf2_read_symtab (struct partial_symtab *,
1423 struct objfile *);
1424
1425 static void psymtab_to_symtab_1 (struct partial_symtab *);
1426
1427 static struct abbrev_info *abbrev_table_lookup_abbrev
1428 (const struct abbrev_table *, unsigned int);
1429
1430 static struct abbrev_table *abbrev_table_read_table
1431 (struct dwarf2_section_info *, sect_offset);
1432
1433 static void abbrev_table_free (struct abbrev_table *);
1434
1435 static void abbrev_table_free_cleanup (void *);
1436
1437 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1438 struct dwarf2_section_info *);
1439
1440 static void dwarf2_free_abbrev_table (void *);
1441
1442 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1443
1444 static struct partial_die_info *load_partial_dies
1445 (const struct die_reader_specs *, const gdb_byte *, int);
1446
1447 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1448 struct partial_die_info *,
1449 struct abbrev_info *,
1450 unsigned int,
1451 const gdb_byte *);
1452
1453 static struct partial_die_info *find_partial_die (sect_offset, int,
1454 struct dwarf2_cu *);
1455
1456 static void fixup_partial_die (struct partial_die_info *,
1457 struct dwarf2_cu *);
1458
1459 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1460 struct attribute *, struct attr_abbrev *,
1461 const gdb_byte *);
1462
1463 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1464
1465 static int read_1_signed_byte (bfd *, const gdb_byte *);
1466
1467 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1468
1469 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1470
1471 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1472
1473 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1474 unsigned int *);
1475
1476 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1477
1478 static LONGEST read_checked_initial_length_and_offset
1479 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1480 unsigned int *, unsigned int *);
1481
1482 static LONGEST read_offset (bfd *, const gdb_byte *,
1483 const struct comp_unit_head *,
1484 unsigned int *);
1485
1486 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1487
1488 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1489 sect_offset);
1490
1491 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1492
1493 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1494
1495 static const char *read_indirect_string (bfd *, const gdb_byte *,
1496 const struct comp_unit_head *,
1497 unsigned int *);
1498
1499 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1500
1501 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1502
1503 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1506 const gdb_byte *,
1507 unsigned int *);
1508
1509 static const char *read_str_index (const struct die_reader_specs *reader,
1510 ULONGEST str_index);
1511
1512 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1513
1514 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1515 struct dwarf2_cu *);
1516
1517 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1518 unsigned int);
1519
1520 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1521 struct dwarf2_cu *cu);
1522
1523 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1524
1525 static struct die_info *die_specification (struct die_info *die,
1526 struct dwarf2_cu **);
1527
1528 static void free_line_header (struct line_header *lh);
1529
1530 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1531 struct dwarf2_cu *cu);
1532
1533 static void dwarf_decode_lines (struct line_header *, const char *,
1534 struct dwarf2_cu *, struct partial_symtab *,
1535 CORE_ADDR, int decode_mapping);
1536
1537 static void dwarf2_start_subfile (const char *, const char *);
1538
1539 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1540 const char *, const char *,
1541 CORE_ADDR);
1542
1543 static struct symbol *new_symbol (struct die_info *, struct type *,
1544 struct dwarf2_cu *);
1545
1546 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1547 struct dwarf2_cu *, struct symbol *);
1548
1549 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1550 struct dwarf2_cu *);
1551
1552 static void dwarf2_const_value_attr (const struct attribute *attr,
1553 struct type *type,
1554 const char *name,
1555 struct obstack *obstack,
1556 struct dwarf2_cu *cu, LONGEST *value,
1557 const gdb_byte **bytes,
1558 struct dwarf2_locexpr_baton **baton);
1559
1560 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1561
1562 static int need_gnat_info (struct dwarf2_cu *);
1563
1564 static struct type *die_descriptive_type (struct die_info *,
1565 struct dwarf2_cu *);
1566
1567 static void set_descriptive_type (struct type *, struct die_info *,
1568 struct dwarf2_cu *);
1569
1570 static struct type *die_containing_type (struct die_info *,
1571 struct dwarf2_cu *);
1572
1573 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1574 struct dwarf2_cu *);
1575
1576 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1577
1578 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1579
1580 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1581
1582 static char *typename_concat (struct obstack *obs, const char *prefix,
1583 const char *suffix, int physname,
1584 struct dwarf2_cu *cu);
1585
1586 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1587
1588 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1589
1590 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1591
1592 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1593
1594 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1595
1596 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1597 struct dwarf2_cu *, struct partial_symtab *);
1598
1599 static int dwarf2_get_pc_bounds (struct die_info *,
1600 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1601 struct partial_symtab *);
1602
1603 static void get_scope_pc_bounds (struct die_info *,
1604 CORE_ADDR *, CORE_ADDR *,
1605 struct dwarf2_cu *);
1606
1607 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1608 CORE_ADDR, struct dwarf2_cu *);
1609
1610 static void dwarf2_add_field (struct field_info *, struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static void dwarf2_attach_fields_to_type (struct field_info *,
1614 struct type *, struct dwarf2_cu *);
1615
1616 static void dwarf2_add_member_fn (struct field_info *,
1617 struct die_info *, struct type *,
1618 struct dwarf2_cu *);
1619
1620 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1621 struct type *,
1622 struct dwarf2_cu *);
1623
1624 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1629
1630 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1631
1632 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1633
1634 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static struct type *read_module_type (struct die_info *die,
1637 struct dwarf2_cu *cu);
1638
1639 static const char *namespace_name (struct die_info *die,
1640 int *is_anonymous, struct dwarf2_cu *);
1641
1642 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1645
1646 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1647 struct dwarf2_cu *);
1648
1649 static struct die_info *read_die_and_siblings_1
1650 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1651 struct die_info *);
1652
1653 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1654 const gdb_byte *info_ptr,
1655 const gdb_byte **new_info_ptr,
1656 struct die_info *parent);
1657
1658 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1659 struct die_info **, const gdb_byte *,
1660 int *, int);
1661
1662 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1663 struct die_info **, const gdb_byte *,
1664 int *);
1665
1666 static void process_die (struct die_info *, struct dwarf2_cu *);
1667
1668 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1669 struct obstack *);
1670
1671 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1672
1673 static const char *dwarf2_full_name (const char *name,
1674 struct die_info *die,
1675 struct dwarf2_cu *cu);
1676
1677 static const char *dwarf2_physname (const char *name, struct die_info *die,
1678 struct dwarf2_cu *cu);
1679
1680 static struct die_info *dwarf2_extension (struct die_info *die,
1681 struct dwarf2_cu **);
1682
1683 static const char *dwarf_tag_name (unsigned int);
1684
1685 static const char *dwarf_attr_name (unsigned int);
1686
1687 static const char *dwarf_form_name (unsigned int);
1688
1689 static char *dwarf_bool_name (unsigned int);
1690
1691 static const char *dwarf_type_encoding_name (unsigned int);
1692
1693 static struct die_info *sibling_die (struct die_info *);
1694
1695 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1696
1697 static void dump_die_for_error (struct die_info *);
1698
1699 static void dump_die_1 (struct ui_file *, int level, int max_level,
1700 struct die_info *);
1701
1702 /*static*/ void dump_die (struct die_info *, int max_level);
1703
1704 static void store_in_ref_table (struct die_info *,
1705 struct dwarf2_cu *);
1706
1707 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1708
1709 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1710
1711 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1712 const struct attribute *,
1713 struct dwarf2_cu **);
1714
1715 static struct die_info *follow_die_ref (struct die_info *,
1716 const struct attribute *,
1717 struct dwarf2_cu **);
1718
1719 static struct die_info *follow_die_sig (struct die_info *,
1720 const struct attribute *,
1721 struct dwarf2_cu **);
1722
1723 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1724 struct dwarf2_cu *);
1725
1726 static struct type *get_DW_AT_signature_type (struct die_info *,
1727 const struct attribute *,
1728 struct dwarf2_cu *);
1729
1730 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1731
1732 static void read_signatured_type (struct signatured_type *);
1733
1734 /* memory allocation interface */
1735
1736 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1737
1738 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1739
1740 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1741
1742 static int attr_form_is_block (const struct attribute *);
1743
1744 static int attr_form_is_section_offset (const struct attribute *);
1745
1746 static int attr_form_is_constant (const struct attribute *);
1747
1748 static int attr_form_is_ref (const struct attribute *);
1749
1750 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1751 struct dwarf2_loclist_baton *baton,
1752 const struct attribute *attr);
1753
1754 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1755 struct symbol *sym,
1756 struct dwarf2_cu *cu,
1757 int is_block);
1758
1759 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1760 const gdb_byte *info_ptr,
1761 struct abbrev_info *abbrev);
1762
1763 static void free_stack_comp_unit (void *);
1764
1765 static hashval_t partial_die_hash (const void *item);
1766
1767 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1768
1769 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1770 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1771
1772 static void init_one_comp_unit (struct dwarf2_cu *cu,
1773 struct dwarf2_per_cu_data *per_cu);
1774
1775 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1776 struct die_info *comp_unit_die,
1777 enum language pretend_language);
1778
1779 static void free_heap_comp_unit (void *);
1780
1781 static void free_cached_comp_units (void *);
1782
1783 static void age_cached_comp_units (void);
1784
1785 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1786
1787 static struct type *set_die_type (struct die_info *, struct type *,
1788 struct dwarf2_cu *);
1789
1790 static void create_all_comp_units (struct objfile *);
1791
1792 static int create_all_type_units (struct objfile *);
1793
1794 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1795 enum language);
1796
1797 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1798 enum language);
1799
1800 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1801 enum language);
1802
1803 static void dwarf2_add_dependence (struct dwarf2_cu *,
1804 struct dwarf2_per_cu_data *);
1805
1806 static void dwarf2_mark (struct dwarf2_cu *);
1807
1808 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1809
1810 static struct type *get_die_type_at_offset (sect_offset,
1811 struct dwarf2_per_cu_data *);
1812
1813 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1814
1815 static void dwarf2_release_queue (void *dummy);
1816
1817 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1818 enum language pretend_language);
1819
1820 static void process_queue (void);
1821
1822 static void find_file_and_directory (struct die_info *die,
1823 struct dwarf2_cu *cu,
1824 const char **name, const char **comp_dir);
1825
1826 static char *file_full_name (int file, struct line_header *lh,
1827 const char *comp_dir);
1828
1829 static const gdb_byte *read_and_check_comp_unit_head
1830 (struct comp_unit_head *header,
1831 struct dwarf2_section_info *section,
1832 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1833 int is_debug_types_section);
1834
1835 static void init_cutu_and_read_dies
1836 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1837 int use_existing_cu, int keep,
1838 die_reader_func_ftype *die_reader_func, void *data);
1839
1840 static void init_cutu_and_read_dies_simple
1841 (struct dwarf2_per_cu_data *this_cu,
1842 die_reader_func_ftype *die_reader_func, void *data);
1843
1844 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1845
1846 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1847
1848 static struct dwo_unit *lookup_dwo_unit_in_dwp
1849 (struct dwp_file *dwp_file, const char *comp_dir,
1850 ULONGEST signature, int is_debug_types);
1851
1852 static struct dwp_file *get_dwp_file (void);
1853
1854 static struct dwo_unit *lookup_dwo_comp_unit
1855 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1856
1857 static struct dwo_unit *lookup_dwo_type_unit
1858 (struct signatured_type *, const char *, const char *);
1859
1860 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1861
1862 static void free_dwo_file_cleanup (void *);
1863
1864 static void process_cu_includes (void);
1865
1866 static void check_producer (struct dwarf2_cu *cu);
1867
1868 static void free_line_header_voidp (void *arg);
1869 \f
1870 /* Various complaints about symbol reading that don't abort the process. */
1871
1872 static void
1873 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1874 {
1875 complaint (&symfile_complaints,
1876 _("statement list doesn't fit in .debug_line section"));
1877 }
1878
1879 static void
1880 dwarf2_debug_line_missing_file_complaint (void)
1881 {
1882 complaint (&symfile_complaints,
1883 _(".debug_line section has line data without a file"));
1884 }
1885
1886 static void
1887 dwarf2_debug_line_missing_end_sequence_complaint (void)
1888 {
1889 complaint (&symfile_complaints,
1890 _(".debug_line section has line "
1891 "program sequence without an end"));
1892 }
1893
1894 static void
1895 dwarf2_complex_location_expr_complaint (void)
1896 {
1897 complaint (&symfile_complaints, _("location expression too complex"));
1898 }
1899
1900 static void
1901 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1902 int arg3)
1903 {
1904 complaint (&symfile_complaints,
1905 _("const value length mismatch for '%s', got %d, expected %d"),
1906 arg1, arg2, arg3);
1907 }
1908
1909 static void
1910 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1911 {
1912 complaint (&symfile_complaints,
1913 _("debug info runs off end of %s section"
1914 " [in module %s]"),
1915 get_section_name (section),
1916 get_section_file_name (section));
1917 }
1918
1919 static void
1920 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1921 {
1922 complaint (&symfile_complaints,
1923 _("macro debug info contains a "
1924 "malformed macro definition:\n`%s'"),
1925 arg1);
1926 }
1927
1928 static void
1929 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1930 {
1931 complaint (&symfile_complaints,
1932 _("invalid attribute class or form for '%s' in '%s'"),
1933 arg1, arg2);
1934 }
1935
1936 /* Hash function for line_header_hash. */
1937
1938 static hashval_t
1939 line_header_hash (const struct line_header *ofs)
1940 {
1941 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1942 }
1943
1944 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1945
1946 static hashval_t
1947 line_header_hash_voidp (const void *item)
1948 {
1949 const struct line_header *ofs = item;
1950
1951 return line_header_hash (ofs);
1952 }
1953
1954 /* Equality function for line_header_hash. */
1955
1956 static int
1957 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1958 {
1959 const struct line_header *ofs_lhs = item_lhs;
1960 const struct line_header *ofs_rhs = item_rhs;
1961
1962 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1963 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1964 }
1965
1966 \f
1967 #if WORDS_BIGENDIAN
1968
1969 /* Convert VALUE between big- and little-endian. */
1970 static offset_type
1971 byte_swap (offset_type value)
1972 {
1973 offset_type result;
1974
1975 result = (value & 0xff) << 24;
1976 result |= (value & 0xff00) << 8;
1977 result |= (value & 0xff0000) >> 8;
1978 result |= (value & 0xff000000) >> 24;
1979 return result;
1980 }
1981
1982 #define MAYBE_SWAP(V) byte_swap (V)
1983
1984 #else
1985 #define MAYBE_SWAP(V) (V)
1986 #endif /* WORDS_BIGENDIAN */
1987
1988 /* Read the given attribute value as an address, taking the attribute's
1989 form into account. */
1990
1991 static CORE_ADDR
1992 attr_value_as_address (struct attribute *attr)
1993 {
1994 CORE_ADDR addr;
1995
1996 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1997 {
1998 /* Aside from a few clearly defined exceptions, attributes that
1999 contain an address must always be in DW_FORM_addr form.
2000 Unfortunately, some compilers happen to be violating this
2001 requirement by encoding addresses using other forms, such
2002 as DW_FORM_data4 for example. For those broken compilers,
2003 we try to do our best, without any guarantee of success,
2004 to interpret the address correctly. It would also be nice
2005 to generate a complaint, but that would require us to maintain
2006 a list of legitimate cases where a non-address form is allowed,
2007 as well as update callers to pass in at least the CU's DWARF
2008 version. This is more overhead than what we're willing to
2009 expand for a pretty rare case. */
2010 addr = DW_UNSND (attr);
2011 }
2012 else
2013 addr = DW_ADDR (attr);
2014
2015 return addr;
2016 }
2017
2018 /* The suffix for an index file. */
2019 #define INDEX_SUFFIX ".gdb-index"
2020
2021 /* Try to locate the sections we need for DWARF 2 debugging
2022 information and return true if we have enough to do something.
2023 NAMES points to the dwarf2 section names, or is NULL if the standard
2024 ELF names are used. */
2025
2026 int
2027 dwarf2_has_info (struct objfile *objfile,
2028 const struct dwarf2_debug_sections *names)
2029 {
2030 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2031 if (!dwarf2_per_objfile)
2032 {
2033 /* Initialize per-objfile state. */
2034 struct dwarf2_per_objfile *data
2035 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2036
2037 memset (data, 0, sizeof (*data));
2038 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2039 dwarf2_per_objfile = data;
2040
2041 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2042 (void *) names);
2043 dwarf2_per_objfile->objfile = objfile;
2044 }
2045 return (!dwarf2_per_objfile->info.is_virtual
2046 && dwarf2_per_objfile->info.s.asection != NULL
2047 && !dwarf2_per_objfile->abbrev.is_virtual
2048 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2049 }
2050
2051 /* Return the containing section of virtual section SECTION. */
2052
2053 static struct dwarf2_section_info *
2054 get_containing_section (const struct dwarf2_section_info *section)
2055 {
2056 gdb_assert (section->is_virtual);
2057 return section->s.containing_section;
2058 }
2059
2060 /* Return the bfd owner of SECTION. */
2061
2062 static struct bfd *
2063 get_section_bfd_owner (const struct dwarf2_section_info *section)
2064 {
2065 if (section->is_virtual)
2066 {
2067 section = get_containing_section (section);
2068 gdb_assert (!section->is_virtual);
2069 }
2070 return section->s.asection->owner;
2071 }
2072
2073 /* Return the bfd section of SECTION.
2074 Returns NULL if the section is not present. */
2075
2076 static asection *
2077 get_section_bfd_section (const struct dwarf2_section_info *section)
2078 {
2079 if (section->is_virtual)
2080 {
2081 section = get_containing_section (section);
2082 gdb_assert (!section->is_virtual);
2083 }
2084 return section->s.asection;
2085 }
2086
2087 /* Return the name of SECTION. */
2088
2089 static const char *
2090 get_section_name (const struct dwarf2_section_info *section)
2091 {
2092 asection *sectp = get_section_bfd_section (section);
2093
2094 gdb_assert (sectp != NULL);
2095 return bfd_section_name (get_section_bfd_owner (section), sectp);
2096 }
2097
2098 /* Return the name of the file SECTION is in. */
2099
2100 static const char *
2101 get_section_file_name (const struct dwarf2_section_info *section)
2102 {
2103 bfd *abfd = get_section_bfd_owner (section);
2104
2105 return bfd_get_filename (abfd);
2106 }
2107
2108 /* Return the id of SECTION.
2109 Returns 0 if SECTION doesn't exist. */
2110
2111 static int
2112 get_section_id (const struct dwarf2_section_info *section)
2113 {
2114 asection *sectp = get_section_bfd_section (section);
2115
2116 if (sectp == NULL)
2117 return 0;
2118 return sectp->id;
2119 }
2120
2121 /* Return the flags of SECTION.
2122 SECTION (or containing section if this is a virtual section) must exist. */
2123
2124 static int
2125 get_section_flags (const struct dwarf2_section_info *section)
2126 {
2127 asection *sectp = get_section_bfd_section (section);
2128
2129 gdb_assert (sectp != NULL);
2130 return bfd_get_section_flags (sectp->owner, sectp);
2131 }
2132
2133 /* When loading sections, we look either for uncompressed section or for
2134 compressed section names. */
2135
2136 static int
2137 section_is_p (const char *section_name,
2138 const struct dwarf2_section_names *names)
2139 {
2140 if (names->normal != NULL
2141 && strcmp (section_name, names->normal) == 0)
2142 return 1;
2143 if (names->compressed != NULL
2144 && strcmp (section_name, names->compressed) == 0)
2145 return 1;
2146 return 0;
2147 }
2148
2149 /* This function is mapped across the sections and remembers the
2150 offset and size of each of the debugging sections we are interested
2151 in. */
2152
2153 static void
2154 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2155 {
2156 const struct dwarf2_debug_sections *names;
2157 flagword aflag = bfd_get_section_flags (abfd, sectp);
2158
2159 if (vnames == NULL)
2160 names = &dwarf2_elf_names;
2161 else
2162 names = (const struct dwarf2_debug_sections *) vnames;
2163
2164 if ((aflag & SEC_HAS_CONTENTS) == 0)
2165 {
2166 }
2167 else if (section_is_p (sectp->name, &names->info))
2168 {
2169 dwarf2_per_objfile->info.s.asection = sectp;
2170 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2171 }
2172 else if (section_is_p (sectp->name, &names->abbrev))
2173 {
2174 dwarf2_per_objfile->abbrev.s.asection = sectp;
2175 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2176 }
2177 else if (section_is_p (sectp->name, &names->line))
2178 {
2179 dwarf2_per_objfile->line.s.asection = sectp;
2180 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2181 }
2182 else if (section_is_p (sectp->name, &names->loc))
2183 {
2184 dwarf2_per_objfile->loc.s.asection = sectp;
2185 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2186 }
2187 else if (section_is_p (sectp->name, &names->macinfo))
2188 {
2189 dwarf2_per_objfile->macinfo.s.asection = sectp;
2190 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2191 }
2192 else if (section_is_p (sectp->name, &names->macro))
2193 {
2194 dwarf2_per_objfile->macro.s.asection = sectp;
2195 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2196 }
2197 else if (section_is_p (sectp->name, &names->str))
2198 {
2199 dwarf2_per_objfile->str.s.asection = sectp;
2200 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2201 }
2202 else if (section_is_p (sectp->name, &names->addr))
2203 {
2204 dwarf2_per_objfile->addr.s.asection = sectp;
2205 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2206 }
2207 else if (section_is_p (sectp->name, &names->frame))
2208 {
2209 dwarf2_per_objfile->frame.s.asection = sectp;
2210 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2211 }
2212 else if (section_is_p (sectp->name, &names->eh_frame))
2213 {
2214 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2215 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2216 }
2217 else if (section_is_p (sectp->name, &names->ranges))
2218 {
2219 dwarf2_per_objfile->ranges.s.asection = sectp;
2220 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2221 }
2222 else if (section_is_p (sectp->name, &names->types))
2223 {
2224 struct dwarf2_section_info type_section;
2225
2226 memset (&type_section, 0, sizeof (type_section));
2227 type_section.s.asection = sectp;
2228 type_section.size = bfd_get_section_size (sectp);
2229
2230 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2231 &type_section);
2232 }
2233 else if (section_is_p (sectp->name, &names->gdb_index))
2234 {
2235 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2236 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2237 }
2238
2239 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2240 && bfd_section_vma (abfd, sectp) == 0)
2241 dwarf2_per_objfile->has_section_at_zero = 1;
2242 }
2243
2244 /* A helper function that decides whether a section is empty,
2245 or not present. */
2246
2247 static int
2248 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2249 {
2250 if (section->is_virtual)
2251 return section->size == 0;
2252 return section->s.asection == NULL || section->size == 0;
2253 }
2254
2255 /* Read the contents of the section INFO.
2256 OBJFILE is the main object file, but not necessarily the file where
2257 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2258 of the DWO file.
2259 If the section is compressed, uncompress it before returning. */
2260
2261 static void
2262 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2263 {
2264 asection *sectp;
2265 bfd *abfd;
2266 gdb_byte *buf, *retbuf;
2267
2268 if (info->readin)
2269 return;
2270 info->buffer = NULL;
2271 info->readin = 1;
2272
2273 if (dwarf2_section_empty_p (info))
2274 return;
2275
2276 sectp = get_section_bfd_section (info);
2277
2278 /* If this is a virtual section we need to read in the real one first. */
2279 if (info->is_virtual)
2280 {
2281 struct dwarf2_section_info *containing_section =
2282 get_containing_section (info);
2283
2284 gdb_assert (sectp != NULL);
2285 if ((sectp->flags & SEC_RELOC) != 0)
2286 {
2287 error (_("Dwarf Error: DWP format V2 with relocations is not"
2288 " supported in section %s [in module %s]"),
2289 get_section_name (info), get_section_file_name (info));
2290 }
2291 dwarf2_read_section (objfile, containing_section);
2292 /* Other code should have already caught virtual sections that don't
2293 fit. */
2294 gdb_assert (info->virtual_offset + info->size
2295 <= containing_section->size);
2296 /* If the real section is empty or there was a problem reading the
2297 section we shouldn't get here. */
2298 gdb_assert (containing_section->buffer != NULL);
2299 info->buffer = containing_section->buffer + info->virtual_offset;
2300 return;
2301 }
2302
2303 /* If the section has relocations, we must read it ourselves.
2304 Otherwise we attach it to the BFD. */
2305 if ((sectp->flags & SEC_RELOC) == 0)
2306 {
2307 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2308 return;
2309 }
2310
2311 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2312 info->buffer = buf;
2313
2314 /* When debugging .o files, we may need to apply relocations; see
2315 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2316 We never compress sections in .o files, so we only need to
2317 try this when the section is not compressed. */
2318 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2319 if (retbuf != NULL)
2320 {
2321 info->buffer = retbuf;
2322 return;
2323 }
2324
2325 abfd = get_section_bfd_owner (info);
2326 gdb_assert (abfd != NULL);
2327
2328 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2329 || bfd_bread (buf, info->size, abfd) != info->size)
2330 {
2331 error (_("Dwarf Error: Can't read DWARF data"
2332 " in section %s [in module %s]"),
2333 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2334 }
2335 }
2336
2337 /* A helper function that returns the size of a section in a safe way.
2338 If you are positive that the section has been read before using the
2339 size, then it is safe to refer to the dwarf2_section_info object's
2340 "size" field directly. In other cases, you must call this
2341 function, because for compressed sections the size field is not set
2342 correctly until the section has been read. */
2343
2344 static bfd_size_type
2345 dwarf2_section_size (struct objfile *objfile,
2346 struct dwarf2_section_info *info)
2347 {
2348 if (!info->readin)
2349 dwarf2_read_section (objfile, info);
2350 return info->size;
2351 }
2352
2353 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2354 SECTION_NAME. */
2355
2356 void
2357 dwarf2_get_section_info (struct objfile *objfile,
2358 enum dwarf2_section_enum sect,
2359 asection **sectp, const gdb_byte **bufp,
2360 bfd_size_type *sizep)
2361 {
2362 struct dwarf2_per_objfile *data
2363 = objfile_data (objfile, dwarf2_objfile_data_key);
2364 struct dwarf2_section_info *info;
2365
2366 /* We may see an objfile without any DWARF, in which case we just
2367 return nothing. */
2368 if (data == NULL)
2369 {
2370 *sectp = NULL;
2371 *bufp = NULL;
2372 *sizep = 0;
2373 return;
2374 }
2375 switch (sect)
2376 {
2377 case DWARF2_DEBUG_FRAME:
2378 info = &data->frame;
2379 break;
2380 case DWARF2_EH_FRAME:
2381 info = &data->eh_frame;
2382 break;
2383 default:
2384 gdb_assert_not_reached ("unexpected section");
2385 }
2386
2387 dwarf2_read_section (objfile, info);
2388
2389 *sectp = get_section_bfd_section (info);
2390 *bufp = info->buffer;
2391 *sizep = info->size;
2392 }
2393
2394 /* A helper function to find the sections for a .dwz file. */
2395
2396 static void
2397 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2398 {
2399 struct dwz_file *dwz_file = arg;
2400
2401 /* Note that we only support the standard ELF names, because .dwz
2402 is ELF-only (at the time of writing). */
2403 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2404 {
2405 dwz_file->abbrev.s.asection = sectp;
2406 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2409 {
2410 dwz_file->info.s.asection = sectp;
2411 dwz_file->info.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2414 {
2415 dwz_file->str.s.asection = sectp;
2416 dwz_file->str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2419 {
2420 dwz_file->line.s.asection = sectp;
2421 dwz_file->line.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2424 {
2425 dwz_file->macro.s.asection = sectp;
2426 dwz_file->macro.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2429 {
2430 dwz_file->gdb_index.s.asection = sectp;
2431 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2432 }
2433 }
2434
2435 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2436 there is no .gnu_debugaltlink section in the file. Error if there
2437 is such a section but the file cannot be found. */
2438
2439 static struct dwz_file *
2440 dwarf2_get_dwz_file (void)
2441 {
2442 bfd *dwz_bfd;
2443 char *data;
2444 struct cleanup *cleanup;
2445 const char *filename;
2446 struct dwz_file *result;
2447 bfd_size_type buildid_len_arg;
2448 size_t buildid_len;
2449 bfd_byte *buildid;
2450
2451 if (dwarf2_per_objfile->dwz_file != NULL)
2452 return dwarf2_per_objfile->dwz_file;
2453
2454 bfd_set_error (bfd_error_no_error);
2455 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2456 &buildid_len_arg, &buildid);
2457 if (data == NULL)
2458 {
2459 if (bfd_get_error () == bfd_error_no_error)
2460 return NULL;
2461 error (_("could not read '.gnu_debugaltlink' section: %s"),
2462 bfd_errmsg (bfd_get_error ()));
2463 }
2464 cleanup = make_cleanup (xfree, data);
2465 make_cleanup (xfree, buildid);
2466
2467 buildid_len = (size_t) buildid_len_arg;
2468
2469 filename = (const char *) data;
2470 if (!IS_ABSOLUTE_PATH (filename))
2471 {
2472 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2473 char *rel;
2474
2475 make_cleanup (xfree, abs);
2476 abs = ldirname (abs);
2477 make_cleanup (xfree, abs);
2478
2479 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2480 make_cleanup (xfree, rel);
2481 filename = rel;
2482 }
2483
2484 /* First try the file name given in the section. If that doesn't
2485 work, try to use the build-id instead. */
2486 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2487 if (dwz_bfd != NULL)
2488 {
2489 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2490 {
2491 gdb_bfd_unref (dwz_bfd);
2492 dwz_bfd = NULL;
2493 }
2494 }
2495
2496 if (dwz_bfd == NULL)
2497 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2498
2499 if (dwz_bfd == NULL)
2500 error (_("could not find '.gnu_debugaltlink' file for %s"),
2501 objfile_name (dwarf2_per_objfile->objfile));
2502
2503 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2504 struct dwz_file);
2505 result->dwz_bfd = dwz_bfd;
2506
2507 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2508
2509 do_cleanups (cleanup);
2510
2511 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2512 dwarf2_per_objfile->dwz_file = result;
2513 return result;
2514 }
2515 \f
2516 /* DWARF quick_symbols_functions support. */
2517
2518 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2519 unique line tables, so we maintain a separate table of all .debug_line
2520 derived entries to support the sharing.
2521 All the quick functions need is the list of file names. We discard the
2522 line_header when we're done and don't need to record it here. */
2523 struct quick_file_names
2524 {
2525 /* The data used to construct the hash key. */
2526 struct stmt_list_hash hash;
2527
2528 /* The number of entries in file_names, real_names. */
2529 unsigned int num_file_names;
2530
2531 /* The file names from the line table, after being run through
2532 file_full_name. */
2533 const char **file_names;
2534
2535 /* The file names from the line table after being run through
2536 gdb_realpath. These are computed lazily. */
2537 const char **real_names;
2538 };
2539
2540 /* When using the index (and thus not using psymtabs), each CU has an
2541 object of this type. This is used to hold information needed by
2542 the various "quick" methods. */
2543 struct dwarf2_per_cu_quick_data
2544 {
2545 /* The file table. This can be NULL if there was no file table
2546 or it's currently not read in.
2547 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2548 struct quick_file_names *file_names;
2549
2550 /* The corresponding symbol table. This is NULL if symbols for this
2551 CU have not yet been read. */
2552 struct compunit_symtab *compunit_symtab;
2553
2554 /* A temporary mark bit used when iterating over all CUs in
2555 expand_symtabs_matching. */
2556 unsigned int mark : 1;
2557
2558 /* True if we've tried to read the file table and found there isn't one.
2559 There will be no point in trying to read it again next time. */
2560 unsigned int no_file_data : 1;
2561 };
2562
2563 /* Utility hash function for a stmt_list_hash. */
2564
2565 static hashval_t
2566 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2567 {
2568 hashval_t v = 0;
2569
2570 if (stmt_list_hash->dwo_unit != NULL)
2571 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2572 v += stmt_list_hash->line_offset.sect_off;
2573 return v;
2574 }
2575
2576 /* Utility equality function for a stmt_list_hash. */
2577
2578 static int
2579 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2580 const struct stmt_list_hash *rhs)
2581 {
2582 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2583 return 0;
2584 if (lhs->dwo_unit != NULL
2585 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2586 return 0;
2587
2588 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2589 }
2590
2591 /* Hash function for a quick_file_names. */
2592
2593 static hashval_t
2594 hash_file_name_entry (const void *e)
2595 {
2596 const struct quick_file_names *file_data = e;
2597
2598 return hash_stmt_list_entry (&file_data->hash);
2599 }
2600
2601 /* Equality function for a quick_file_names. */
2602
2603 static int
2604 eq_file_name_entry (const void *a, const void *b)
2605 {
2606 const struct quick_file_names *ea = a;
2607 const struct quick_file_names *eb = b;
2608
2609 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2610 }
2611
2612 /* Delete function for a quick_file_names. */
2613
2614 static void
2615 delete_file_name_entry (void *e)
2616 {
2617 struct quick_file_names *file_data = e;
2618 int i;
2619
2620 for (i = 0; i < file_data->num_file_names; ++i)
2621 {
2622 xfree ((void*) file_data->file_names[i]);
2623 if (file_data->real_names)
2624 xfree ((void*) file_data->real_names[i]);
2625 }
2626
2627 /* The space for the struct itself lives on objfile_obstack,
2628 so we don't free it here. */
2629 }
2630
2631 /* Create a quick_file_names hash table. */
2632
2633 static htab_t
2634 create_quick_file_names_table (unsigned int nr_initial_entries)
2635 {
2636 return htab_create_alloc (nr_initial_entries,
2637 hash_file_name_entry, eq_file_name_entry,
2638 delete_file_name_entry, xcalloc, xfree);
2639 }
2640
2641 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2642 have to be created afterwards. You should call age_cached_comp_units after
2643 processing PER_CU->CU. dw2_setup must have been already called. */
2644
2645 static void
2646 load_cu (struct dwarf2_per_cu_data *per_cu)
2647 {
2648 if (per_cu->is_debug_types)
2649 load_full_type_unit (per_cu);
2650 else
2651 load_full_comp_unit (per_cu, language_minimal);
2652
2653 gdb_assert (per_cu->cu != NULL);
2654
2655 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2656 }
2657
2658 /* Read in the symbols for PER_CU. */
2659
2660 static void
2661 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2662 {
2663 struct cleanup *back_to;
2664
2665 /* Skip type_unit_groups, reading the type units they contain
2666 is handled elsewhere. */
2667 if (IS_TYPE_UNIT_GROUP (per_cu))
2668 return;
2669
2670 back_to = make_cleanup (dwarf2_release_queue, NULL);
2671
2672 if (dwarf2_per_objfile->using_index
2673 ? per_cu->v.quick->compunit_symtab == NULL
2674 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2675 {
2676 queue_comp_unit (per_cu, language_minimal);
2677 load_cu (per_cu);
2678
2679 /* If we just loaded a CU from a DWO, and we're working with an index
2680 that may badly handle TUs, load all the TUs in that DWO as well.
2681 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2682 if (!per_cu->is_debug_types
2683 && per_cu->cu->dwo_unit != NULL
2684 && dwarf2_per_objfile->index_table != NULL
2685 && dwarf2_per_objfile->index_table->version <= 7
2686 /* DWP files aren't supported yet. */
2687 && get_dwp_file () == NULL)
2688 queue_and_load_all_dwo_tus (per_cu);
2689 }
2690
2691 process_queue ();
2692
2693 /* Age the cache, releasing compilation units that have not
2694 been used recently. */
2695 age_cached_comp_units ();
2696
2697 do_cleanups (back_to);
2698 }
2699
2700 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2701 the objfile from which this CU came. Returns the resulting symbol
2702 table. */
2703
2704 static struct compunit_symtab *
2705 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2706 {
2707 gdb_assert (dwarf2_per_objfile->using_index);
2708 if (!per_cu->v.quick->compunit_symtab)
2709 {
2710 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2711 increment_reading_symtab ();
2712 dw2_do_instantiate_symtab (per_cu);
2713 process_cu_includes ();
2714 do_cleanups (back_to);
2715 }
2716
2717 return per_cu->v.quick->compunit_symtab;
2718 }
2719
2720 /* Return the CU/TU given its index.
2721
2722 This is intended for loops like:
2723
2724 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2725 + dwarf2_per_objfile->n_type_units); ++i)
2726 {
2727 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2728
2729 ...;
2730 }
2731 */
2732
2733 static struct dwarf2_per_cu_data *
2734 dw2_get_cutu (int index)
2735 {
2736 if (index >= dwarf2_per_objfile->n_comp_units)
2737 {
2738 index -= dwarf2_per_objfile->n_comp_units;
2739 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2740 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2741 }
2742
2743 return dwarf2_per_objfile->all_comp_units[index];
2744 }
2745
2746 /* Return the CU given its index.
2747 This differs from dw2_get_cutu in that it's for when you know INDEX
2748 refers to a CU. */
2749
2750 static struct dwarf2_per_cu_data *
2751 dw2_get_cu (int index)
2752 {
2753 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2754
2755 return dwarf2_per_objfile->all_comp_units[index];
2756 }
2757
2758 /* A helper for create_cus_from_index that handles a given list of
2759 CUs. */
2760
2761 static void
2762 create_cus_from_index_list (struct objfile *objfile,
2763 const gdb_byte *cu_list, offset_type n_elements,
2764 struct dwarf2_section_info *section,
2765 int is_dwz,
2766 int base_offset)
2767 {
2768 offset_type i;
2769
2770 for (i = 0; i < n_elements; i += 2)
2771 {
2772 struct dwarf2_per_cu_data *the_cu;
2773 ULONGEST offset, length;
2774
2775 gdb_static_assert (sizeof (ULONGEST) >= 8);
2776 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2777 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2778 cu_list += 2 * 8;
2779
2780 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2781 struct dwarf2_per_cu_data);
2782 the_cu->offset.sect_off = offset;
2783 the_cu->length = length;
2784 the_cu->objfile = objfile;
2785 the_cu->section = section;
2786 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2787 struct dwarf2_per_cu_quick_data);
2788 the_cu->is_dwz = is_dwz;
2789 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2790 }
2791 }
2792
2793 /* Read the CU list from the mapped index, and use it to create all
2794 the CU objects for this objfile. */
2795
2796 static void
2797 create_cus_from_index (struct objfile *objfile,
2798 const gdb_byte *cu_list, offset_type cu_list_elements,
2799 const gdb_byte *dwz_list, offset_type dwz_elements)
2800 {
2801 struct dwz_file *dwz;
2802
2803 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2804 dwarf2_per_objfile->all_comp_units
2805 = obstack_alloc (&objfile->objfile_obstack,
2806 dwarf2_per_objfile->n_comp_units
2807 * sizeof (struct dwarf2_per_cu_data *));
2808
2809 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2810 &dwarf2_per_objfile->info, 0, 0);
2811
2812 if (dwz_elements == 0)
2813 return;
2814
2815 dwz = dwarf2_get_dwz_file ();
2816 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2817 cu_list_elements / 2);
2818 }
2819
2820 /* Create the signatured type hash table from the index. */
2821
2822 static void
2823 create_signatured_type_table_from_index (struct objfile *objfile,
2824 struct dwarf2_section_info *section,
2825 const gdb_byte *bytes,
2826 offset_type elements)
2827 {
2828 offset_type i;
2829 htab_t sig_types_hash;
2830
2831 dwarf2_per_objfile->n_type_units
2832 = dwarf2_per_objfile->n_allocated_type_units
2833 = elements / 3;
2834 dwarf2_per_objfile->all_type_units
2835 = xmalloc (dwarf2_per_objfile->n_type_units
2836 * sizeof (struct signatured_type *));
2837
2838 sig_types_hash = allocate_signatured_type_table (objfile);
2839
2840 for (i = 0; i < elements; i += 3)
2841 {
2842 struct signatured_type *sig_type;
2843 ULONGEST offset, type_offset_in_tu, signature;
2844 void **slot;
2845
2846 gdb_static_assert (sizeof (ULONGEST) >= 8);
2847 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2848 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2849 BFD_ENDIAN_LITTLE);
2850 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2851 bytes += 3 * 8;
2852
2853 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2854 struct signatured_type);
2855 sig_type->signature = signature;
2856 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2857 sig_type->per_cu.is_debug_types = 1;
2858 sig_type->per_cu.section = section;
2859 sig_type->per_cu.offset.sect_off = offset;
2860 sig_type->per_cu.objfile = objfile;
2861 sig_type->per_cu.v.quick
2862 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2863 struct dwarf2_per_cu_quick_data);
2864
2865 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2866 *slot = sig_type;
2867
2868 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2869 }
2870
2871 dwarf2_per_objfile->signatured_types = sig_types_hash;
2872 }
2873
2874 /* Read the address map data from the mapped index, and use it to
2875 populate the objfile's psymtabs_addrmap. */
2876
2877 static void
2878 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2879 {
2880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2881 const gdb_byte *iter, *end;
2882 struct obstack temp_obstack;
2883 struct addrmap *mutable_map;
2884 struct cleanup *cleanup;
2885 CORE_ADDR baseaddr;
2886
2887 obstack_init (&temp_obstack);
2888 cleanup = make_cleanup_obstack_free (&temp_obstack);
2889 mutable_map = addrmap_create_mutable (&temp_obstack);
2890
2891 iter = index->address_table;
2892 end = iter + index->address_table_size;
2893
2894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2895
2896 while (iter < end)
2897 {
2898 ULONGEST hi, lo, cu_index;
2899 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2900 iter += 8;
2901 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2902 iter += 8;
2903 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2904 iter += 4;
2905
2906 if (lo > hi)
2907 {
2908 complaint (&symfile_complaints,
2909 _(".gdb_index address table has invalid range (%s - %s)"),
2910 hex_string (lo), hex_string (hi));
2911 continue;
2912 }
2913
2914 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2915 {
2916 complaint (&symfile_complaints,
2917 _(".gdb_index address table has invalid CU number %u"),
2918 (unsigned) cu_index);
2919 continue;
2920 }
2921
2922 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2923 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2924 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2925 }
2926
2927 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2928 &objfile->objfile_obstack);
2929 do_cleanups (cleanup);
2930 }
2931
2932 /* The hash function for strings in the mapped index. This is the same as
2933 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2934 implementation. This is necessary because the hash function is tied to the
2935 format of the mapped index file. The hash values do not have to match with
2936 SYMBOL_HASH_NEXT.
2937
2938 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2939
2940 static hashval_t
2941 mapped_index_string_hash (int index_version, const void *p)
2942 {
2943 const unsigned char *str = (const unsigned char *) p;
2944 hashval_t r = 0;
2945 unsigned char c;
2946
2947 while ((c = *str++) != 0)
2948 {
2949 if (index_version >= 5)
2950 c = tolower (c);
2951 r = r * 67 + c - 113;
2952 }
2953
2954 return r;
2955 }
2956
2957 /* Find a slot in the mapped index INDEX for the object named NAME.
2958 If NAME is found, set *VEC_OUT to point to the CU vector in the
2959 constant pool and return 1. If NAME cannot be found, return 0. */
2960
2961 static int
2962 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2963 offset_type **vec_out)
2964 {
2965 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2966 offset_type hash;
2967 offset_type slot, step;
2968 int (*cmp) (const char *, const char *);
2969
2970 if (current_language->la_language == language_cplus
2971 || current_language->la_language == language_java
2972 || current_language->la_language == language_fortran)
2973 {
2974 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2975 not contain any. */
2976
2977 if (strchr (name, '(') != NULL)
2978 {
2979 char *without_params = cp_remove_params (name);
2980
2981 if (without_params != NULL)
2982 {
2983 make_cleanup (xfree, without_params);
2984 name = without_params;
2985 }
2986 }
2987 }
2988
2989 /* Index version 4 did not support case insensitive searches. But the
2990 indices for case insensitive languages are built in lowercase, therefore
2991 simulate our NAME being searched is also lowercased. */
2992 hash = mapped_index_string_hash ((index->version == 4
2993 && case_sensitivity == case_sensitive_off
2994 ? 5 : index->version),
2995 name);
2996
2997 slot = hash & (index->symbol_table_slots - 1);
2998 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2999 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3000
3001 for (;;)
3002 {
3003 /* Convert a slot number to an offset into the table. */
3004 offset_type i = 2 * slot;
3005 const char *str;
3006 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3007 {
3008 do_cleanups (back_to);
3009 return 0;
3010 }
3011
3012 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3013 if (!cmp (name, str))
3014 {
3015 *vec_out = (offset_type *) (index->constant_pool
3016 + MAYBE_SWAP (index->symbol_table[i + 1]));
3017 do_cleanups (back_to);
3018 return 1;
3019 }
3020
3021 slot = (slot + step) & (index->symbol_table_slots - 1);
3022 }
3023 }
3024
3025 /* A helper function that reads the .gdb_index from SECTION and fills
3026 in MAP. FILENAME is the name of the file containing the section;
3027 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3028 ok to use deprecated sections.
3029
3030 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3031 out parameters that are filled in with information about the CU and
3032 TU lists in the section.
3033
3034 Returns 1 if all went well, 0 otherwise. */
3035
3036 static int
3037 read_index_from_section (struct objfile *objfile,
3038 const char *filename,
3039 int deprecated_ok,
3040 struct dwarf2_section_info *section,
3041 struct mapped_index *map,
3042 const gdb_byte **cu_list,
3043 offset_type *cu_list_elements,
3044 const gdb_byte **types_list,
3045 offset_type *types_list_elements)
3046 {
3047 const gdb_byte *addr;
3048 offset_type version;
3049 offset_type *metadata;
3050 int i;
3051
3052 if (dwarf2_section_empty_p (section))
3053 return 0;
3054
3055 /* Older elfutils strip versions could keep the section in the main
3056 executable while splitting it for the separate debug info file. */
3057 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3058 return 0;
3059
3060 dwarf2_read_section (objfile, section);
3061
3062 addr = section->buffer;
3063 /* Version check. */
3064 version = MAYBE_SWAP (*(offset_type *) addr);
3065 /* Versions earlier than 3 emitted every copy of a psymbol. This
3066 causes the index to behave very poorly for certain requests. Version 3
3067 contained incomplete addrmap. So, it seems better to just ignore such
3068 indices. */
3069 if (version < 4)
3070 {
3071 static int warning_printed = 0;
3072 if (!warning_printed)
3073 {
3074 warning (_("Skipping obsolete .gdb_index section in %s."),
3075 filename);
3076 warning_printed = 1;
3077 }
3078 return 0;
3079 }
3080 /* Index version 4 uses a different hash function than index version
3081 5 and later.
3082
3083 Versions earlier than 6 did not emit psymbols for inlined
3084 functions. Using these files will cause GDB not to be able to
3085 set breakpoints on inlined functions by name, so we ignore these
3086 indices unless the user has done
3087 "set use-deprecated-index-sections on". */
3088 if (version < 6 && !deprecated_ok)
3089 {
3090 static int warning_printed = 0;
3091 if (!warning_printed)
3092 {
3093 warning (_("\
3094 Skipping deprecated .gdb_index section in %s.\n\
3095 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3096 to use the section anyway."),
3097 filename);
3098 warning_printed = 1;
3099 }
3100 return 0;
3101 }
3102 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3103 of the TU (for symbols coming from TUs),
3104 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3105 Plus gold-generated indices can have duplicate entries for global symbols,
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3107 These are just performance bugs, and we can't distinguish gdb-generated
3108 indices from gold-generated ones, so issue no warning here. */
3109
3110 /* Indexes with higher version than the one supported by GDB may be no
3111 longer backward compatible. */
3112 if (version > 8)
3113 return 0;
3114
3115 map->version = version;
3116 map->total_size = section->size;
3117
3118 metadata = (offset_type *) (addr + sizeof (offset_type));
3119
3120 i = 0;
3121 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3122 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3123 / 8);
3124 ++i;
3125
3126 *types_list = addr + MAYBE_SWAP (metadata[i]);
3127 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / 8);
3130 ++i;
3131
3132 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3133 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3134 - MAYBE_SWAP (metadata[i]));
3135 ++i;
3136
3137 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3138 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3139 - MAYBE_SWAP (metadata[i]))
3140 / (2 * sizeof (offset_type)));
3141 ++i;
3142
3143 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3144
3145 return 1;
3146 }
3147
3148
3149 /* Read the index file. If everything went ok, initialize the "quick"
3150 elements of all the CUs and return 1. Otherwise, return 0. */
3151
3152 static int
3153 dwarf2_read_index (struct objfile *objfile)
3154 {
3155 struct mapped_index local_map, *map;
3156 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3157 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3158 struct dwz_file *dwz;
3159
3160 if (!read_index_from_section (objfile, objfile_name (objfile),
3161 use_deprecated_index_sections,
3162 &dwarf2_per_objfile->gdb_index, &local_map,
3163 &cu_list, &cu_list_elements,
3164 &types_list, &types_list_elements))
3165 return 0;
3166
3167 /* Don't use the index if it's empty. */
3168 if (local_map.symbol_table_slots == 0)
3169 return 0;
3170
3171 /* If there is a .dwz file, read it so we can get its CU list as
3172 well. */
3173 dwz = dwarf2_get_dwz_file ();
3174 if (dwz != NULL)
3175 {
3176 struct mapped_index dwz_map;
3177 const gdb_byte *dwz_types_ignore;
3178 offset_type dwz_types_elements_ignore;
3179
3180 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3181 1,
3182 &dwz->gdb_index, &dwz_map,
3183 &dwz_list, &dwz_list_elements,
3184 &dwz_types_ignore,
3185 &dwz_types_elements_ignore))
3186 {
3187 warning (_("could not read '.gdb_index' section from %s; skipping"),
3188 bfd_get_filename (dwz->dwz_bfd));
3189 return 0;
3190 }
3191 }
3192
3193 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3194 dwz_list_elements);
3195
3196 if (types_list_elements)
3197 {
3198 struct dwarf2_section_info *section;
3199
3200 /* We can only handle a single .debug_types when we have an
3201 index. */
3202 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3203 return 0;
3204
3205 section = VEC_index (dwarf2_section_info_def,
3206 dwarf2_per_objfile->types, 0);
3207
3208 create_signatured_type_table_from_index (objfile, section, types_list,
3209 types_list_elements);
3210 }
3211
3212 create_addrmap_from_index (objfile, &local_map);
3213
3214 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3215 *map = local_map;
3216
3217 dwarf2_per_objfile->index_table = map;
3218 dwarf2_per_objfile->using_index = 1;
3219 dwarf2_per_objfile->quick_file_names_table =
3220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3221
3222 return 1;
3223 }
3224
3225 /* A helper for the "quick" functions which sets the global
3226 dwarf2_per_objfile according to OBJFILE. */
3227
3228 static void
3229 dw2_setup (struct objfile *objfile)
3230 {
3231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3232 gdb_assert (dwarf2_per_objfile);
3233 }
3234
3235 /* die_reader_func for dw2_get_file_names. */
3236
3237 static void
3238 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3239 const gdb_byte *info_ptr,
3240 struct die_info *comp_unit_die,
3241 int has_children,
3242 void *data)
3243 {
3244 struct dwarf2_cu *cu = reader->cu;
3245 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3246 struct objfile *objfile = dwarf2_per_objfile->objfile;
3247 struct dwarf2_per_cu_data *lh_cu;
3248 struct line_header *lh;
3249 struct attribute *attr;
3250 int i;
3251 const char *name, *comp_dir;
3252 void **slot;
3253 struct quick_file_names *qfn;
3254 unsigned int line_offset;
3255
3256 gdb_assert (! this_cu->is_debug_types);
3257
3258 /* Our callers never want to match partial units -- instead they
3259 will match the enclosing full CU. */
3260 if (comp_unit_die->tag == DW_TAG_partial_unit)
3261 {
3262 this_cu->v.quick->no_file_data = 1;
3263 return;
3264 }
3265
3266 lh_cu = this_cu;
3267 lh = NULL;
3268 slot = NULL;
3269 line_offset = 0;
3270
3271 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3272 if (attr)
3273 {
3274 struct quick_file_names find_entry;
3275
3276 line_offset = DW_UNSND (attr);
3277
3278 /* We may have already read in this line header (TU line header sharing).
3279 If we have we're done. */
3280 find_entry.hash.dwo_unit = cu->dwo_unit;
3281 find_entry.hash.line_offset.sect_off = line_offset;
3282 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3283 &find_entry, INSERT);
3284 if (*slot != NULL)
3285 {
3286 lh_cu->v.quick->file_names = *slot;
3287 return;
3288 }
3289
3290 lh = dwarf_decode_line_header (line_offset, cu);
3291 }
3292 if (lh == NULL)
3293 {
3294 lh_cu->v.quick->no_file_data = 1;
3295 return;
3296 }
3297
3298 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3299 qfn->hash.dwo_unit = cu->dwo_unit;
3300 qfn->hash.line_offset.sect_off = line_offset;
3301 gdb_assert (slot != NULL);
3302 *slot = qfn;
3303
3304 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3305
3306 qfn->num_file_names = lh->num_file_names;
3307 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3308 lh->num_file_names * sizeof (char *));
3309 for (i = 0; i < lh->num_file_names; ++i)
3310 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3311 qfn->real_names = NULL;
3312
3313 free_line_header (lh);
3314
3315 lh_cu->v.quick->file_names = qfn;
3316 }
3317
3318 /* A helper for the "quick" functions which attempts to read the line
3319 table for THIS_CU. */
3320
3321 static struct quick_file_names *
3322 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3323 {
3324 /* This should never be called for TUs. */
3325 gdb_assert (! this_cu->is_debug_types);
3326 /* Nor type unit groups. */
3327 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3328
3329 if (this_cu->v.quick->file_names != NULL)
3330 return this_cu->v.quick->file_names;
3331 /* If we know there is no line data, no point in looking again. */
3332 if (this_cu->v.quick->no_file_data)
3333 return NULL;
3334
3335 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3336
3337 if (this_cu->v.quick->no_file_data)
3338 return NULL;
3339 return this_cu->v.quick->file_names;
3340 }
3341
3342 /* A helper for the "quick" functions which computes and caches the
3343 real path for a given file name from the line table. */
3344
3345 static const char *
3346 dw2_get_real_path (struct objfile *objfile,
3347 struct quick_file_names *qfn, int index)
3348 {
3349 if (qfn->real_names == NULL)
3350 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3351 qfn->num_file_names, const char *);
3352
3353 if (qfn->real_names[index] == NULL)
3354 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3355
3356 return qfn->real_names[index];
3357 }
3358
3359 static struct symtab *
3360 dw2_find_last_source_symtab (struct objfile *objfile)
3361 {
3362 struct compunit_symtab *cust;
3363 int index;
3364
3365 dw2_setup (objfile);
3366 index = dwarf2_per_objfile->n_comp_units - 1;
3367 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3368 if (cust == NULL)
3369 return NULL;
3370 return compunit_primary_filetab (cust);
3371 }
3372
3373 /* Traversal function for dw2_forget_cached_source_info. */
3374
3375 static int
3376 dw2_free_cached_file_names (void **slot, void *info)
3377 {
3378 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3379
3380 if (file_data->real_names)
3381 {
3382 int i;
3383
3384 for (i = 0; i < file_data->num_file_names; ++i)
3385 {
3386 xfree ((void*) file_data->real_names[i]);
3387 file_data->real_names[i] = NULL;
3388 }
3389 }
3390
3391 return 1;
3392 }
3393
3394 static void
3395 dw2_forget_cached_source_info (struct objfile *objfile)
3396 {
3397 dw2_setup (objfile);
3398
3399 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3400 dw2_free_cached_file_names, NULL);
3401 }
3402
3403 /* Helper function for dw2_map_symtabs_matching_filename that expands
3404 the symtabs and calls the iterator. */
3405
3406 static int
3407 dw2_map_expand_apply (struct objfile *objfile,
3408 struct dwarf2_per_cu_data *per_cu,
3409 const char *name, const char *real_path,
3410 int (*callback) (struct symtab *, void *),
3411 void *data)
3412 {
3413 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3414
3415 /* Don't visit already-expanded CUs. */
3416 if (per_cu->v.quick->compunit_symtab)
3417 return 0;
3418
3419 /* This may expand more than one symtab, and we want to iterate over
3420 all of them. */
3421 dw2_instantiate_symtab (per_cu);
3422
3423 return iterate_over_some_symtabs (name, real_path, callback, data,
3424 objfile->compunit_symtabs, last_made);
3425 }
3426
3427 /* Implementation of the map_symtabs_matching_filename method. */
3428
3429 static int
3430 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3431 const char *real_path,
3432 int (*callback) (struct symtab *, void *),
3433 void *data)
3434 {
3435 int i;
3436 const char *name_basename = lbasename (name);
3437
3438 dw2_setup (objfile);
3439
3440 /* The rule is CUs specify all the files, including those used by
3441 any TU, so there's no need to scan TUs here. */
3442
3443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3444 {
3445 int j;
3446 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3447 struct quick_file_names *file_data;
3448
3449 /* We only need to look at symtabs not already expanded. */
3450 if (per_cu->v.quick->compunit_symtab)
3451 continue;
3452
3453 file_data = dw2_get_file_names (per_cu);
3454 if (file_data == NULL)
3455 continue;
3456
3457 for (j = 0; j < file_data->num_file_names; ++j)
3458 {
3459 const char *this_name = file_data->file_names[j];
3460 const char *this_real_name;
3461
3462 if (compare_filenames_for_search (this_name, name))
3463 {
3464 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3465 callback, data))
3466 return 1;
3467 continue;
3468 }
3469
3470 /* Before we invoke realpath, which can get expensive when many
3471 files are involved, do a quick comparison of the basenames. */
3472 if (! basenames_may_differ
3473 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3474 continue;
3475
3476 this_real_name = dw2_get_real_path (objfile, file_data, j);
3477 if (compare_filenames_for_search (this_real_name, name))
3478 {
3479 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3480 callback, data))
3481 return 1;
3482 continue;
3483 }
3484
3485 if (real_path != NULL)
3486 {
3487 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3488 gdb_assert (IS_ABSOLUTE_PATH (name));
3489 if (this_real_name != NULL
3490 && FILENAME_CMP (real_path, this_real_name) == 0)
3491 {
3492 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3493 callback, data))
3494 return 1;
3495 continue;
3496 }
3497 }
3498 }
3499 }
3500
3501 return 0;
3502 }
3503
3504 /* Struct used to manage iterating over all CUs looking for a symbol. */
3505
3506 struct dw2_symtab_iterator
3507 {
3508 /* The internalized form of .gdb_index. */
3509 struct mapped_index *index;
3510 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3511 int want_specific_block;
3512 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3513 Unused if !WANT_SPECIFIC_BLOCK. */
3514 int block_index;
3515 /* The kind of symbol we're looking for. */
3516 domain_enum domain;
3517 /* The list of CUs from the index entry of the symbol,
3518 or NULL if not found. */
3519 offset_type *vec;
3520 /* The next element in VEC to look at. */
3521 int next;
3522 /* The number of elements in VEC, or zero if there is no match. */
3523 int length;
3524 /* Have we seen a global version of the symbol?
3525 If so we can ignore all further global instances.
3526 This is to work around gold/15646, inefficient gold-generated
3527 indices. */
3528 int global_seen;
3529 };
3530
3531 /* Initialize the index symtab iterator ITER.
3532 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3533 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3534
3535 static void
3536 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3537 struct mapped_index *index,
3538 int want_specific_block,
3539 int block_index,
3540 domain_enum domain,
3541 const char *name)
3542 {
3543 iter->index = index;
3544 iter->want_specific_block = want_specific_block;
3545 iter->block_index = block_index;
3546 iter->domain = domain;
3547 iter->next = 0;
3548 iter->global_seen = 0;
3549
3550 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3551 iter->length = MAYBE_SWAP (*iter->vec);
3552 else
3553 {
3554 iter->vec = NULL;
3555 iter->length = 0;
3556 }
3557 }
3558
3559 /* Return the next matching CU or NULL if there are no more. */
3560
3561 static struct dwarf2_per_cu_data *
3562 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3563 {
3564 for ( ; iter->next < iter->length; ++iter->next)
3565 {
3566 offset_type cu_index_and_attrs =
3567 MAYBE_SWAP (iter->vec[iter->next + 1]);
3568 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3569 struct dwarf2_per_cu_data *per_cu;
3570 int want_static = iter->block_index != GLOBAL_BLOCK;
3571 /* This value is only valid for index versions >= 7. */
3572 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3573 gdb_index_symbol_kind symbol_kind =
3574 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3575 /* Only check the symbol attributes if they're present.
3576 Indices prior to version 7 don't record them,
3577 and indices >= 7 may elide them for certain symbols
3578 (gold does this). */
3579 int attrs_valid =
3580 (iter->index->version >= 7
3581 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3582
3583 /* Don't crash on bad data. */
3584 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3585 + dwarf2_per_objfile->n_type_units))
3586 {
3587 complaint (&symfile_complaints,
3588 _(".gdb_index entry has bad CU index"
3589 " [in module %s]"),
3590 objfile_name (dwarf2_per_objfile->objfile));
3591 continue;
3592 }
3593
3594 per_cu = dw2_get_cutu (cu_index);
3595
3596 /* Skip if already read in. */
3597 if (per_cu->v.quick->compunit_symtab)
3598 continue;
3599
3600 /* Check static vs global. */
3601 if (attrs_valid)
3602 {
3603 if (iter->want_specific_block
3604 && want_static != is_static)
3605 continue;
3606 /* Work around gold/15646. */
3607 if (!is_static && iter->global_seen)
3608 continue;
3609 if (!is_static)
3610 iter->global_seen = 1;
3611 }
3612
3613 /* Only check the symbol's kind if it has one. */
3614 if (attrs_valid)
3615 {
3616 switch (iter->domain)
3617 {
3618 case VAR_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3621 /* Some types are also in VAR_DOMAIN. */
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3623 continue;
3624 break;
3625 case STRUCT_DOMAIN:
3626 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3627 continue;
3628 break;
3629 case LABEL_DOMAIN:
3630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3631 continue;
3632 break;
3633 default:
3634 break;
3635 }
3636 }
3637
3638 ++iter->next;
3639 return per_cu;
3640 }
3641
3642 return NULL;
3643 }
3644
3645 static struct compunit_symtab *
3646 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3647 const char *name, domain_enum domain)
3648 {
3649 struct compunit_symtab *stab_best = NULL;
3650 struct mapped_index *index;
3651
3652 dw2_setup (objfile);
3653
3654 index = dwarf2_per_objfile->index_table;
3655
3656 /* index is NULL if OBJF_READNOW. */
3657 if (index)
3658 {
3659 struct dw2_symtab_iterator iter;
3660 struct dwarf2_per_cu_data *per_cu;
3661
3662 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3663
3664 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3665 {
3666 struct symbol *sym = NULL;
3667 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3668 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3669 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3670
3671 /* Some caution must be observed with overloaded functions
3672 and methods, since the index will not contain any overload
3673 information (but NAME might contain it). */
3674 sym = block_lookup_symbol (block, name, domain);
3675
3676 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3677 {
3678 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3679 return stab;
3680
3681 stab_best = stab;
3682 }
3683
3684 /* Keep looking through other CUs. */
3685 }
3686 }
3687
3688 return stab_best;
3689 }
3690
3691 static void
3692 dw2_print_stats (struct objfile *objfile)
3693 {
3694 int i, total, count;
3695
3696 dw2_setup (objfile);
3697 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3698 count = 0;
3699 for (i = 0; i < total; ++i)
3700 {
3701 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3702
3703 if (!per_cu->v.quick->compunit_symtab)
3704 ++count;
3705 }
3706 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3707 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3708 }
3709
3710 /* This dumps minimal information about the index.
3711 It is called via "mt print objfiles".
3712 One use is to verify .gdb_index has been loaded by the
3713 gdb.dwarf2/gdb-index.exp testcase. */
3714
3715 static void
3716 dw2_dump (struct objfile *objfile)
3717 {
3718 dw2_setup (objfile);
3719 gdb_assert (dwarf2_per_objfile->using_index);
3720 printf_filtered (".gdb_index:");
3721 if (dwarf2_per_objfile->index_table != NULL)
3722 {
3723 printf_filtered (" version %d\n",
3724 dwarf2_per_objfile->index_table->version);
3725 }
3726 else
3727 printf_filtered (" faked for \"readnow\"\n");
3728 printf_filtered ("\n");
3729 }
3730
3731 static void
3732 dw2_relocate (struct objfile *objfile,
3733 const struct section_offsets *new_offsets,
3734 const struct section_offsets *delta)
3735 {
3736 /* There's nothing to relocate here. */
3737 }
3738
3739 static void
3740 dw2_expand_symtabs_for_function (struct objfile *objfile,
3741 const char *func_name)
3742 {
3743 struct mapped_index *index;
3744
3745 dw2_setup (objfile);
3746
3747 index = dwarf2_per_objfile->index_table;
3748
3749 /* index is NULL if OBJF_READNOW. */
3750 if (index)
3751 {
3752 struct dw2_symtab_iterator iter;
3753 struct dwarf2_per_cu_data *per_cu;
3754
3755 /* Note: It doesn't matter what we pass for block_index here. */
3756 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3757 func_name);
3758
3759 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3760 dw2_instantiate_symtab (per_cu);
3761 }
3762 }
3763
3764 static void
3765 dw2_expand_all_symtabs (struct objfile *objfile)
3766 {
3767 int i;
3768
3769 dw2_setup (objfile);
3770
3771 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3772 + dwarf2_per_objfile->n_type_units); ++i)
3773 {
3774 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3775
3776 dw2_instantiate_symtab (per_cu);
3777 }
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3782 const char *fullname)
3783 {
3784 int i;
3785
3786 dw2_setup (objfile);
3787
3788 /* We don't need to consider type units here.
3789 This is only called for examining code, e.g. expand_line_sal.
3790 There can be an order of magnitude (or more) more type units
3791 than comp units, and we avoid them if we can. */
3792
3793 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3794 {
3795 int j;
3796 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3797 struct quick_file_names *file_data;
3798
3799 /* We only need to look at symtabs not already expanded. */
3800 if (per_cu->v.quick->compunit_symtab)
3801 continue;
3802
3803 file_data = dw2_get_file_names (per_cu);
3804 if (file_data == NULL)
3805 continue;
3806
3807 for (j = 0; j < file_data->num_file_names; ++j)
3808 {
3809 const char *this_fullname = file_data->file_names[j];
3810
3811 if (filename_cmp (this_fullname, fullname) == 0)
3812 {
3813 dw2_instantiate_symtab (per_cu);
3814 break;
3815 }
3816 }
3817 }
3818 }
3819
3820 static void
3821 dw2_map_matching_symbols (struct objfile *objfile,
3822 const char * name, domain_enum domain,
3823 int global,
3824 int (*callback) (struct block *,
3825 struct symbol *, void *),
3826 void *data, symbol_compare_ftype *match,
3827 symbol_compare_ftype *ordered_compare)
3828 {
3829 /* Currently unimplemented; used for Ada. The function can be called if the
3830 current language is Ada for a non-Ada objfile using GNU index. As Ada
3831 does not look for non-Ada symbols this function should just return. */
3832 }
3833
3834 static void
3835 dw2_expand_symtabs_matching
3836 (struct objfile *objfile,
3837 expand_symtabs_file_matcher_ftype *file_matcher,
3838 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3839 expand_symtabs_exp_notify_ftype *expansion_notify,
3840 enum search_domain kind,
3841 void *data)
3842 {
3843 int i;
3844 offset_type iter;
3845 struct mapped_index *index;
3846
3847 dw2_setup (objfile);
3848
3849 /* index_table is NULL if OBJF_READNOW. */
3850 if (!dwarf2_per_objfile->index_table)
3851 return;
3852 index = dwarf2_per_objfile->index_table;
3853
3854 if (file_matcher != NULL)
3855 {
3856 struct cleanup *cleanup;
3857 htab_t visited_found, visited_not_found;
3858
3859 visited_found = htab_create_alloc (10,
3860 htab_hash_pointer, htab_eq_pointer,
3861 NULL, xcalloc, xfree);
3862 cleanup = make_cleanup_htab_delete (visited_found);
3863 visited_not_found = htab_create_alloc (10,
3864 htab_hash_pointer, htab_eq_pointer,
3865 NULL, xcalloc, xfree);
3866 make_cleanup_htab_delete (visited_not_found);
3867
3868 /* The rule is CUs specify all the files, including those used by
3869 any TU, so there's no need to scan TUs here. */
3870
3871 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3872 {
3873 int j;
3874 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3875 struct quick_file_names *file_data;
3876 void **slot;
3877
3878 QUIT;
3879
3880 per_cu->v.quick->mark = 0;
3881
3882 /* We only need to look at symtabs not already expanded. */
3883 if (per_cu->v.quick->compunit_symtab)
3884 continue;
3885
3886 file_data = dw2_get_file_names (per_cu);
3887 if (file_data == NULL)
3888 continue;
3889
3890 if (htab_find (visited_not_found, file_data) != NULL)
3891 continue;
3892 else if (htab_find (visited_found, file_data) != NULL)
3893 {
3894 per_cu->v.quick->mark = 1;
3895 continue;
3896 }
3897
3898 for (j = 0; j < file_data->num_file_names; ++j)
3899 {
3900 const char *this_real_name;
3901
3902 if (file_matcher (file_data->file_names[j], data, 0))
3903 {
3904 per_cu->v.quick->mark = 1;
3905 break;
3906 }
3907
3908 /* Before we invoke realpath, which can get expensive when many
3909 files are involved, do a quick comparison of the basenames. */
3910 if (!basenames_may_differ
3911 && !file_matcher (lbasename (file_data->file_names[j]),
3912 data, 1))
3913 continue;
3914
3915 this_real_name = dw2_get_real_path (objfile, file_data, j);
3916 if (file_matcher (this_real_name, data, 0))
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
3921 }
3922
3923 slot = htab_find_slot (per_cu->v.quick->mark
3924 ? visited_found
3925 : visited_not_found,
3926 file_data, INSERT);
3927 *slot = file_data;
3928 }
3929
3930 do_cleanups (cleanup);
3931 }
3932
3933 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3934 {
3935 offset_type idx = 2 * iter;
3936 const char *name;
3937 offset_type *vec, vec_len, vec_idx;
3938 int global_seen = 0;
3939
3940 QUIT;
3941
3942 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3943 continue;
3944
3945 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3946
3947 if (! (*symbol_matcher) (name, data))
3948 continue;
3949
3950 /* The name was matched, now expand corresponding CUs that were
3951 marked. */
3952 vec = (offset_type *) (index->constant_pool
3953 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3954 vec_len = MAYBE_SWAP (vec[0]);
3955 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3956 {
3957 struct dwarf2_per_cu_data *per_cu;
3958 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
3969 (index->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3972 /* Work around gold/15646. */
3973 if (attrs_valid)
3974 {
3975 if (!is_static && global_seen)
3976 continue;
3977 if (!is_static)
3978 global_seen = 1;
3979 }
3980
3981 /* Only check the symbol's kind if it has one. */
3982 if (attrs_valid)
3983 {
3984 switch (kind)
3985 {
3986 case VARIABLES_DOMAIN:
3987 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3988 continue;
3989 break;
3990 case FUNCTIONS_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3992 continue;
3993 break;
3994 case TYPES_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 /* Don't crash on bad data. */
4004 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4005 + dwarf2_per_objfile->n_type_units))
4006 {
4007 complaint (&symfile_complaints,
4008 _(".gdb_index entry has bad CU index"
4009 " [in module %s]"), objfile_name (objfile));
4010 continue;
4011 }
4012
4013 per_cu = dw2_get_cutu (cu_index);
4014 if (file_matcher == NULL || per_cu->v.quick->mark)
4015 {
4016 int symtab_was_null =
4017 (per_cu->v.quick->compunit_symtab == NULL);
4018
4019 dw2_instantiate_symtab (per_cu);
4020
4021 if (expansion_notify != NULL
4022 && symtab_was_null
4023 && per_cu->v.quick->compunit_symtab != NULL)
4024 {
4025 expansion_notify (per_cu->v.quick->compunit_symtab,
4026 data);
4027 }
4028 }
4029 }
4030 }
4031 }
4032
4033 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4034 symtab. */
4035
4036 static struct compunit_symtab *
4037 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4038 CORE_ADDR pc)
4039 {
4040 int i;
4041
4042 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4043 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4044 return cust;
4045
4046 if (cust->includes == NULL)
4047 return NULL;
4048
4049 for (i = 0; cust->includes[i]; ++i)
4050 {
4051 struct compunit_symtab *s = cust->includes[i];
4052
4053 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4054 if (s != NULL)
4055 return s;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4063 struct bound_minimal_symbol msymbol,
4064 CORE_ADDR pc,
4065 struct obj_section *section,
4066 int warn_if_readin)
4067 {
4068 struct dwarf2_per_cu_data *data;
4069 struct compunit_symtab *result;
4070
4071 dw2_setup (objfile);
4072
4073 if (!objfile->psymtabs_addrmap)
4074 return NULL;
4075
4076 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4077 if (!data)
4078 return NULL;
4079
4080 if (warn_if_readin && data->v.quick->compunit_symtab)
4081 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4082 paddress (get_objfile_arch (objfile), pc));
4083
4084 result
4085 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4086 pc);
4087 gdb_assert (result != NULL);
4088 return result;
4089 }
4090
4091 static void
4092 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4093 void *data, int need_fullname)
4094 {
4095 int i;
4096 struct cleanup *cleanup;
4097 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4098 NULL, xcalloc, xfree);
4099
4100 cleanup = make_cleanup_htab_delete (visited);
4101 dw2_setup (objfile);
4102
4103 /* The rule is CUs specify all the files, including those used by
4104 any TU, so there's no need to scan TUs here.
4105 We can ignore file names coming from already-expanded CUs. */
4106
4107 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4108 {
4109 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4110
4111 if (per_cu->v.quick->compunit_symtab)
4112 {
4113 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4114 INSERT);
4115
4116 *slot = per_cu->v.quick->file_names;
4117 }
4118 }
4119
4120 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4121 {
4122 int j;
4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4124 struct quick_file_names *file_data;
4125 void **slot;
4126
4127 /* We only need to look at symtabs not already expanded. */
4128 if (per_cu->v.quick->compunit_symtab)
4129 continue;
4130
4131 file_data = dw2_get_file_names (per_cu);
4132 if (file_data == NULL)
4133 continue;
4134
4135 slot = htab_find_slot (visited, file_data, INSERT);
4136 if (*slot)
4137 {
4138 /* Already visited. */
4139 continue;
4140 }
4141 *slot = file_data;
4142
4143 for (j = 0; j < file_data->num_file_names; ++j)
4144 {
4145 const char *this_real_name;
4146
4147 if (need_fullname)
4148 this_real_name = dw2_get_real_path (objfile, file_data, j);
4149 else
4150 this_real_name = NULL;
4151 (*fun) (file_data->file_names[j], this_real_name, data);
4152 }
4153 }
4154
4155 do_cleanups (cleanup);
4156 }
4157
4158 static int
4159 dw2_has_symbols (struct objfile *objfile)
4160 {
4161 return 1;
4162 }
4163
4164 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4165 {
4166 dw2_has_symbols,
4167 dw2_find_last_source_symtab,
4168 dw2_forget_cached_source_info,
4169 dw2_map_symtabs_matching_filename,
4170 dw2_lookup_symbol,
4171 dw2_print_stats,
4172 dw2_dump,
4173 dw2_relocate,
4174 dw2_expand_symtabs_for_function,
4175 dw2_expand_all_symtabs,
4176 dw2_expand_symtabs_with_fullname,
4177 dw2_map_matching_symbols,
4178 dw2_expand_symtabs_matching,
4179 dw2_find_pc_sect_compunit_symtab,
4180 dw2_map_symbol_filenames
4181 };
4182
4183 /* Initialize for reading DWARF for this objfile. Return 0 if this
4184 file will use psymtabs, or 1 if using the GNU index. */
4185
4186 int
4187 dwarf2_initialize_objfile (struct objfile *objfile)
4188 {
4189 /* If we're about to read full symbols, don't bother with the
4190 indices. In this case we also don't care if some other debug
4191 format is making psymtabs, because they are all about to be
4192 expanded anyway. */
4193 if ((objfile->flags & OBJF_READNOW))
4194 {
4195 int i;
4196
4197 dwarf2_per_objfile->using_index = 1;
4198 create_all_comp_units (objfile);
4199 create_all_type_units (objfile);
4200 dwarf2_per_objfile->quick_file_names_table =
4201 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4202
4203 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4204 + dwarf2_per_objfile->n_type_units); ++i)
4205 {
4206 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4207
4208 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4209 struct dwarf2_per_cu_quick_data);
4210 }
4211
4212 /* Return 1 so that gdb sees the "quick" functions. However,
4213 these functions will be no-ops because we will have expanded
4214 all symtabs. */
4215 return 1;
4216 }
4217
4218 if (dwarf2_read_index (objfile))
4219 return 1;
4220
4221 return 0;
4222 }
4223
4224 \f
4225
4226 /* Build a partial symbol table. */
4227
4228 void
4229 dwarf2_build_psymtabs (struct objfile *objfile)
4230 {
4231
4232 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4233 {
4234 init_psymbol_list (objfile, 1024);
4235 }
4236
4237 TRY
4238 {
4239 /* This isn't really ideal: all the data we allocate on the
4240 objfile's obstack is still uselessly kept around. However,
4241 freeing it seems unsafe. */
4242 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4243
4244 dwarf2_build_psymtabs_hard (objfile);
4245 discard_cleanups (cleanups);
4246 }
4247 CATCH (except, RETURN_MASK_ERROR)
4248 {
4249 exception_print (gdb_stderr, except);
4250 }
4251 END_CATCH
4252 }
4253
4254 /* Return the total length of the CU described by HEADER. */
4255
4256 static unsigned int
4257 get_cu_length (const struct comp_unit_head *header)
4258 {
4259 return header->initial_length_size + header->length;
4260 }
4261
4262 /* Return TRUE if OFFSET is within CU_HEADER. */
4263
4264 static inline int
4265 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4266 {
4267 sect_offset bottom = { cu_header->offset.sect_off };
4268 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4269
4270 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4271 }
4272
4273 /* Find the base address of the compilation unit for range lists and
4274 location lists. It will normally be specified by DW_AT_low_pc.
4275 In DWARF-3 draft 4, the base address could be overridden by
4276 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4277 compilation units with discontinuous ranges. */
4278
4279 static void
4280 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4281 {
4282 struct attribute *attr;
4283
4284 cu->base_known = 0;
4285 cu->base_address = 0;
4286
4287 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4288 if (attr)
4289 {
4290 cu->base_address = attr_value_as_address (attr);
4291 cu->base_known = 1;
4292 }
4293 else
4294 {
4295 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4296 if (attr)
4297 {
4298 cu->base_address = attr_value_as_address (attr);
4299 cu->base_known = 1;
4300 }
4301 }
4302 }
4303
4304 /* Read in the comp unit header information from the debug_info at info_ptr.
4305 NOTE: This leaves members offset, first_die_offset to be filled in
4306 by the caller. */
4307
4308 static const gdb_byte *
4309 read_comp_unit_head (struct comp_unit_head *cu_header,
4310 const gdb_byte *info_ptr, bfd *abfd)
4311 {
4312 int signed_addr;
4313 unsigned int bytes_read;
4314
4315 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4316 cu_header->initial_length_size = bytes_read;
4317 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4318 info_ptr += bytes_read;
4319 cu_header->version = read_2_bytes (abfd, info_ptr);
4320 info_ptr += 2;
4321 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4322 &bytes_read);
4323 info_ptr += bytes_read;
4324 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4325 info_ptr += 1;
4326 signed_addr = bfd_get_sign_extend_vma (abfd);
4327 if (signed_addr < 0)
4328 internal_error (__FILE__, __LINE__,
4329 _("read_comp_unit_head: dwarf from non elf file"));
4330 cu_header->signed_addr_p = signed_addr;
4331
4332 return info_ptr;
4333 }
4334
4335 /* Helper function that returns the proper abbrev section for
4336 THIS_CU. */
4337
4338 static struct dwarf2_section_info *
4339 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4340 {
4341 struct dwarf2_section_info *abbrev;
4342
4343 if (this_cu->is_dwz)
4344 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4345 else
4346 abbrev = &dwarf2_per_objfile->abbrev;
4347
4348 return abbrev;
4349 }
4350
4351 /* Subroutine of read_and_check_comp_unit_head and
4352 read_and_check_type_unit_head to simplify them.
4353 Perform various error checking on the header. */
4354
4355 static void
4356 error_check_comp_unit_head (struct comp_unit_head *header,
4357 struct dwarf2_section_info *section,
4358 struct dwarf2_section_info *abbrev_section)
4359 {
4360 bfd *abfd = get_section_bfd_owner (section);
4361 const char *filename = get_section_file_name (section);
4362
4363 if (header->version != 2 && header->version != 3 && header->version != 4)
4364 error (_("Dwarf Error: wrong version in compilation unit header "
4365 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4366 filename);
4367
4368 if (header->abbrev_offset.sect_off
4369 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4370 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4371 "(offset 0x%lx + 6) [in module %s]"),
4372 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4373 filename);
4374
4375 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4376 avoid potential 32-bit overflow. */
4377 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4378 > section->size)
4379 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4380 "(offset 0x%lx + 0) [in module %s]"),
4381 (long) header->length, (long) header->offset.sect_off,
4382 filename);
4383 }
4384
4385 /* Read in a CU/TU header and perform some basic error checking.
4386 The contents of the header are stored in HEADER.
4387 The result is a pointer to the start of the first DIE. */
4388
4389 static const gdb_byte *
4390 read_and_check_comp_unit_head (struct comp_unit_head *header,
4391 struct dwarf2_section_info *section,
4392 struct dwarf2_section_info *abbrev_section,
4393 const gdb_byte *info_ptr,
4394 int is_debug_types_section)
4395 {
4396 const gdb_byte *beg_of_comp_unit = info_ptr;
4397 bfd *abfd = get_section_bfd_owner (section);
4398
4399 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4400
4401 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4402
4403 /* If we're reading a type unit, skip over the signature and
4404 type_offset fields. */
4405 if (is_debug_types_section)
4406 info_ptr += 8 /*signature*/ + header->offset_size;
4407
4408 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4409
4410 error_check_comp_unit_head (header, section, abbrev_section);
4411
4412 return info_ptr;
4413 }
4414
4415 /* Read in the types comp unit header information from .debug_types entry at
4416 types_ptr. The result is a pointer to one past the end of the header. */
4417
4418 static const gdb_byte *
4419 read_and_check_type_unit_head (struct comp_unit_head *header,
4420 struct dwarf2_section_info *section,
4421 struct dwarf2_section_info *abbrev_section,
4422 const gdb_byte *info_ptr,
4423 ULONGEST *signature,
4424 cu_offset *type_offset_in_tu)
4425 {
4426 const gdb_byte *beg_of_comp_unit = info_ptr;
4427 bfd *abfd = get_section_bfd_owner (section);
4428
4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4430
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4432
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
4435 if (signature != NULL)
4436 *signature = read_8_bytes (abfd, info_ptr);
4437 info_ptr += 8;
4438 if (type_offset_in_tu != NULL)
4439 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4440 header->offset_size);
4441 info_ptr += header->offset_size;
4442
4443 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4444
4445 error_check_comp_unit_head (header, section, abbrev_section);
4446
4447 return info_ptr;
4448 }
4449
4450 /* Fetch the abbreviation table offset from a comp or type unit header. */
4451
4452 static sect_offset
4453 read_abbrev_offset (struct dwarf2_section_info *section,
4454 sect_offset offset)
4455 {
4456 bfd *abfd = get_section_bfd_owner (section);
4457 const gdb_byte *info_ptr;
4458 unsigned int length, initial_length_size, offset_size;
4459 sect_offset abbrev_offset;
4460
4461 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4462 info_ptr = section->buffer + offset.sect_off;
4463 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4464 offset_size = initial_length_size == 4 ? 4 : 8;
4465 info_ptr += initial_length_size + 2 /*version*/;
4466 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4467 return abbrev_offset;
4468 }
4469
4470 /* Allocate a new partial symtab for file named NAME and mark this new
4471 partial symtab as being an include of PST. */
4472
4473 static void
4474 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4475 struct objfile *objfile)
4476 {
4477 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4478
4479 if (!IS_ABSOLUTE_PATH (subpst->filename))
4480 {
4481 /* It shares objfile->objfile_obstack. */
4482 subpst->dirname = pst->dirname;
4483 }
4484
4485 subpst->section_offsets = pst->section_offsets;
4486 subpst->textlow = 0;
4487 subpst->texthigh = 0;
4488
4489 subpst->dependencies = (struct partial_symtab **)
4490 obstack_alloc (&objfile->objfile_obstack,
4491 sizeof (struct partial_symtab *));
4492 subpst->dependencies[0] = pst;
4493 subpst->number_of_dependencies = 1;
4494
4495 subpst->globals_offset = 0;
4496 subpst->n_global_syms = 0;
4497 subpst->statics_offset = 0;
4498 subpst->n_static_syms = 0;
4499 subpst->compunit_symtab = NULL;
4500 subpst->read_symtab = pst->read_symtab;
4501 subpst->readin = 0;
4502
4503 /* No private part is necessary for include psymtabs. This property
4504 can be used to differentiate between such include psymtabs and
4505 the regular ones. */
4506 subpst->read_symtab_private = NULL;
4507 }
4508
4509 /* Read the Line Number Program data and extract the list of files
4510 included by the source file represented by PST. Build an include
4511 partial symtab for each of these included files. */
4512
4513 static void
4514 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4515 struct die_info *die,
4516 struct partial_symtab *pst)
4517 {
4518 struct line_header *lh = NULL;
4519 struct attribute *attr;
4520
4521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4522 if (attr)
4523 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4524 if (lh == NULL)
4525 return; /* No linetable, so no includes. */
4526
4527 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4528 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4529
4530 free_line_header (lh);
4531 }
4532
4533 static hashval_t
4534 hash_signatured_type (const void *item)
4535 {
4536 const struct signatured_type *sig_type = item;
4537
4538 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4539 return sig_type->signature;
4540 }
4541
4542 static int
4543 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4544 {
4545 const struct signatured_type *lhs = item_lhs;
4546 const struct signatured_type *rhs = item_rhs;
4547
4548 return lhs->signature == rhs->signature;
4549 }
4550
4551 /* Allocate a hash table for signatured types. */
4552
4553 static htab_t
4554 allocate_signatured_type_table (struct objfile *objfile)
4555 {
4556 return htab_create_alloc_ex (41,
4557 hash_signatured_type,
4558 eq_signatured_type,
4559 NULL,
4560 &objfile->objfile_obstack,
4561 hashtab_obstack_allocate,
4562 dummy_obstack_deallocate);
4563 }
4564
4565 /* A helper function to add a signatured type CU to a table. */
4566
4567 static int
4568 add_signatured_type_cu_to_table (void **slot, void *datum)
4569 {
4570 struct signatured_type *sigt = *slot;
4571 struct signatured_type ***datap = datum;
4572
4573 **datap = sigt;
4574 ++*datap;
4575
4576 return 1;
4577 }
4578
4579 /* Create the hash table of all entries in the .debug_types
4580 (or .debug_types.dwo) section(s).
4581 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4582 otherwise it is NULL.
4583
4584 The result is a pointer to the hash table or NULL if there are no types.
4585
4586 Note: This function processes DWO files only, not DWP files. */
4587
4588 static htab_t
4589 create_debug_types_hash_table (struct dwo_file *dwo_file,
4590 VEC (dwarf2_section_info_def) *types)
4591 {
4592 struct objfile *objfile = dwarf2_per_objfile->objfile;
4593 htab_t types_htab = NULL;
4594 int ix;
4595 struct dwarf2_section_info *section;
4596 struct dwarf2_section_info *abbrev_section;
4597
4598 if (VEC_empty (dwarf2_section_info_def, types))
4599 return NULL;
4600
4601 abbrev_section = (dwo_file != NULL
4602 ? &dwo_file->sections.abbrev
4603 : &dwarf2_per_objfile->abbrev);
4604
4605 if (dwarf2_read_debug)
4606 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4607 dwo_file ? ".dwo" : "",
4608 get_section_file_name (abbrev_section));
4609
4610 for (ix = 0;
4611 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4612 ++ix)
4613 {
4614 bfd *abfd;
4615 const gdb_byte *info_ptr, *end_ptr;
4616
4617 dwarf2_read_section (objfile, section);
4618 info_ptr = section->buffer;
4619
4620 if (info_ptr == NULL)
4621 continue;
4622
4623 /* We can't set abfd until now because the section may be empty or
4624 not present, in which case the bfd is unknown. */
4625 abfd = get_section_bfd_owner (section);
4626
4627 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4628 because we don't need to read any dies: the signature is in the
4629 header. */
4630
4631 end_ptr = info_ptr + section->size;
4632 while (info_ptr < end_ptr)
4633 {
4634 sect_offset offset;
4635 cu_offset type_offset_in_tu;
4636 ULONGEST signature;
4637 struct signatured_type *sig_type;
4638 struct dwo_unit *dwo_tu;
4639 void **slot;
4640 const gdb_byte *ptr = info_ptr;
4641 struct comp_unit_head header;
4642 unsigned int length;
4643
4644 offset.sect_off = ptr - section->buffer;
4645
4646 /* We need to read the type's signature in order to build the hash
4647 table, but we don't need anything else just yet. */
4648
4649 ptr = read_and_check_type_unit_head (&header, section,
4650 abbrev_section, ptr,
4651 &signature, &type_offset_in_tu);
4652
4653 length = get_cu_length (&header);
4654
4655 /* Skip dummy type units. */
4656 if (ptr >= info_ptr + length
4657 || peek_abbrev_code (abfd, ptr) == 0)
4658 {
4659 info_ptr += length;
4660 continue;
4661 }
4662
4663 if (types_htab == NULL)
4664 {
4665 if (dwo_file)
4666 types_htab = allocate_dwo_unit_table (objfile);
4667 else
4668 types_htab = allocate_signatured_type_table (objfile);
4669 }
4670
4671 if (dwo_file)
4672 {
4673 sig_type = NULL;
4674 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4675 struct dwo_unit);
4676 dwo_tu->dwo_file = dwo_file;
4677 dwo_tu->signature = signature;
4678 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4679 dwo_tu->section = section;
4680 dwo_tu->offset = offset;
4681 dwo_tu->length = length;
4682 }
4683 else
4684 {
4685 /* N.B.: type_offset is not usable if this type uses a DWO file.
4686 The real type_offset is in the DWO file. */
4687 dwo_tu = NULL;
4688 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4689 struct signatured_type);
4690 sig_type->signature = signature;
4691 sig_type->type_offset_in_tu = type_offset_in_tu;
4692 sig_type->per_cu.objfile = objfile;
4693 sig_type->per_cu.is_debug_types = 1;
4694 sig_type->per_cu.section = section;
4695 sig_type->per_cu.offset = offset;
4696 sig_type->per_cu.length = length;
4697 }
4698
4699 slot = htab_find_slot (types_htab,
4700 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4701 INSERT);
4702 gdb_assert (slot != NULL);
4703 if (*slot != NULL)
4704 {
4705 sect_offset dup_offset;
4706
4707 if (dwo_file)
4708 {
4709 const struct dwo_unit *dup_tu = *slot;
4710
4711 dup_offset = dup_tu->offset;
4712 }
4713 else
4714 {
4715 const struct signatured_type *dup_tu = *slot;
4716
4717 dup_offset = dup_tu->per_cu.offset;
4718 }
4719
4720 complaint (&symfile_complaints,
4721 _("debug type entry at offset 0x%x is duplicate to"
4722 " the entry at offset 0x%x, signature %s"),
4723 offset.sect_off, dup_offset.sect_off,
4724 hex_string (signature));
4725 }
4726 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4727
4728 if (dwarf2_read_debug > 1)
4729 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4730 offset.sect_off,
4731 hex_string (signature));
4732
4733 info_ptr += length;
4734 }
4735 }
4736
4737 return types_htab;
4738 }
4739
4740 /* Create the hash table of all entries in the .debug_types section,
4741 and initialize all_type_units.
4742 The result is zero if there is an error (e.g. missing .debug_types section),
4743 otherwise non-zero. */
4744
4745 static int
4746 create_all_type_units (struct objfile *objfile)
4747 {
4748 htab_t types_htab;
4749 struct signatured_type **iter;
4750
4751 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4752 if (types_htab == NULL)
4753 {
4754 dwarf2_per_objfile->signatured_types = NULL;
4755 return 0;
4756 }
4757
4758 dwarf2_per_objfile->signatured_types = types_htab;
4759
4760 dwarf2_per_objfile->n_type_units
4761 = dwarf2_per_objfile->n_allocated_type_units
4762 = htab_elements (types_htab);
4763 dwarf2_per_objfile->all_type_units
4764 = xmalloc (dwarf2_per_objfile->n_type_units
4765 * sizeof (struct signatured_type *));
4766 iter = &dwarf2_per_objfile->all_type_units[0];
4767 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4768 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4769 == dwarf2_per_objfile->n_type_units);
4770
4771 return 1;
4772 }
4773
4774 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4775 If SLOT is non-NULL, it is the entry to use in the hash table.
4776 Otherwise we find one. */
4777
4778 static struct signatured_type *
4779 add_type_unit (ULONGEST sig, void **slot)
4780 {
4781 struct objfile *objfile = dwarf2_per_objfile->objfile;
4782 int n_type_units = dwarf2_per_objfile->n_type_units;
4783 struct signatured_type *sig_type;
4784
4785 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4786 ++n_type_units;
4787 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4788 {
4789 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4790 dwarf2_per_objfile->n_allocated_type_units = 1;
4791 dwarf2_per_objfile->n_allocated_type_units *= 2;
4792 dwarf2_per_objfile->all_type_units
4793 = xrealloc (dwarf2_per_objfile->all_type_units,
4794 dwarf2_per_objfile->n_allocated_type_units
4795 * sizeof (struct signatured_type *));
4796 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4797 }
4798 dwarf2_per_objfile->n_type_units = n_type_units;
4799
4800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4801 struct signatured_type);
4802 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4803 sig_type->signature = sig;
4804 sig_type->per_cu.is_debug_types = 1;
4805 if (dwarf2_per_objfile->using_index)
4806 {
4807 sig_type->per_cu.v.quick =
4808 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4809 struct dwarf2_per_cu_quick_data);
4810 }
4811
4812 if (slot == NULL)
4813 {
4814 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4815 sig_type, INSERT);
4816 }
4817 gdb_assert (*slot == NULL);
4818 *slot = sig_type;
4819 /* The rest of sig_type must be filled in by the caller. */
4820 return sig_type;
4821 }
4822
4823 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4824 Fill in SIG_ENTRY with DWO_ENTRY. */
4825
4826 static void
4827 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4828 struct signatured_type *sig_entry,
4829 struct dwo_unit *dwo_entry)
4830 {
4831 /* Make sure we're not clobbering something we don't expect to. */
4832 gdb_assert (! sig_entry->per_cu.queued);
4833 gdb_assert (sig_entry->per_cu.cu == NULL);
4834 if (dwarf2_per_objfile->using_index)
4835 {
4836 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4837 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4838 }
4839 else
4840 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4841 gdb_assert (sig_entry->signature == dwo_entry->signature);
4842 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4843 gdb_assert (sig_entry->type_unit_group == NULL);
4844 gdb_assert (sig_entry->dwo_unit == NULL);
4845
4846 sig_entry->per_cu.section = dwo_entry->section;
4847 sig_entry->per_cu.offset = dwo_entry->offset;
4848 sig_entry->per_cu.length = dwo_entry->length;
4849 sig_entry->per_cu.reading_dwo_directly = 1;
4850 sig_entry->per_cu.objfile = objfile;
4851 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4852 sig_entry->dwo_unit = dwo_entry;
4853 }
4854
4855 /* Subroutine of lookup_signatured_type.
4856 If we haven't read the TU yet, create the signatured_type data structure
4857 for a TU to be read in directly from a DWO file, bypassing the stub.
4858 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4859 using .gdb_index, then when reading a CU we want to stay in the DWO file
4860 containing that CU. Otherwise we could end up reading several other DWO
4861 files (due to comdat folding) to process the transitive closure of all the
4862 mentioned TUs, and that can be slow. The current DWO file will have every
4863 type signature that it needs.
4864 We only do this for .gdb_index because in the psymtab case we already have
4865 to read all the DWOs to build the type unit groups. */
4866
4867 static struct signatured_type *
4868 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4869 {
4870 struct objfile *objfile = dwarf2_per_objfile->objfile;
4871 struct dwo_file *dwo_file;
4872 struct dwo_unit find_dwo_entry, *dwo_entry;
4873 struct signatured_type find_sig_entry, *sig_entry;
4874 void **slot;
4875
4876 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4877
4878 /* If TU skeletons have been removed then we may not have read in any
4879 TUs yet. */
4880 if (dwarf2_per_objfile->signatured_types == NULL)
4881 {
4882 dwarf2_per_objfile->signatured_types
4883 = allocate_signatured_type_table (objfile);
4884 }
4885
4886 /* We only ever need to read in one copy of a signatured type.
4887 Use the global signatured_types array to do our own comdat-folding
4888 of types. If this is the first time we're reading this TU, and
4889 the TU has an entry in .gdb_index, replace the recorded data from
4890 .gdb_index with this TU. */
4891
4892 find_sig_entry.signature = sig;
4893 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4894 &find_sig_entry, INSERT);
4895 sig_entry = *slot;
4896
4897 /* We can get here with the TU already read, *or* in the process of being
4898 read. Don't reassign the global entry to point to this DWO if that's
4899 the case. Also note that if the TU is already being read, it may not
4900 have come from a DWO, the program may be a mix of Fission-compiled
4901 code and non-Fission-compiled code. */
4902
4903 /* Have we already tried to read this TU?
4904 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4905 needn't exist in the global table yet). */
4906 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4907 return sig_entry;
4908
4909 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4910 dwo_unit of the TU itself. */
4911 dwo_file = cu->dwo_unit->dwo_file;
4912
4913 /* Ok, this is the first time we're reading this TU. */
4914 if (dwo_file->tus == NULL)
4915 return NULL;
4916 find_dwo_entry.signature = sig;
4917 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4918 if (dwo_entry == NULL)
4919 return NULL;
4920
4921 /* If the global table doesn't have an entry for this TU, add one. */
4922 if (sig_entry == NULL)
4923 sig_entry = add_type_unit (sig, slot);
4924
4925 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4926 sig_entry->per_cu.tu_read = 1;
4927 return sig_entry;
4928 }
4929
4930 /* Subroutine of lookup_signatured_type.
4931 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4932 then try the DWP file. If the TU stub (skeleton) has been removed then
4933 it won't be in .gdb_index. */
4934
4935 static struct signatured_type *
4936 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4937 {
4938 struct objfile *objfile = dwarf2_per_objfile->objfile;
4939 struct dwp_file *dwp_file = get_dwp_file ();
4940 struct dwo_unit *dwo_entry;
4941 struct signatured_type find_sig_entry, *sig_entry;
4942 void **slot;
4943
4944 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4945 gdb_assert (dwp_file != NULL);
4946
4947 /* If TU skeletons have been removed then we may not have read in any
4948 TUs yet. */
4949 if (dwarf2_per_objfile->signatured_types == NULL)
4950 {
4951 dwarf2_per_objfile->signatured_types
4952 = allocate_signatured_type_table (objfile);
4953 }
4954
4955 find_sig_entry.signature = sig;
4956 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4957 &find_sig_entry, INSERT);
4958 sig_entry = *slot;
4959
4960 /* Have we already tried to read this TU?
4961 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4962 needn't exist in the global table yet). */
4963 if (sig_entry != NULL)
4964 return sig_entry;
4965
4966 if (dwp_file->tus == NULL)
4967 return NULL;
4968 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4969 sig, 1 /* is_debug_types */);
4970 if (dwo_entry == NULL)
4971 return NULL;
4972
4973 sig_entry = add_type_unit (sig, slot);
4974 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4975
4976 return sig_entry;
4977 }
4978
4979 /* Lookup a signature based type for DW_FORM_ref_sig8.
4980 Returns NULL if signature SIG is not present in the table.
4981 It is up to the caller to complain about this. */
4982
4983 static struct signatured_type *
4984 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4985 {
4986 if (cu->dwo_unit
4987 && dwarf2_per_objfile->using_index)
4988 {
4989 /* We're in a DWO/DWP file, and we're using .gdb_index.
4990 These cases require special processing. */
4991 if (get_dwp_file () == NULL)
4992 return lookup_dwo_signatured_type (cu, sig);
4993 else
4994 return lookup_dwp_signatured_type (cu, sig);
4995 }
4996 else
4997 {
4998 struct signatured_type find_entry, *entry;
4999
5000 if (dwarf2_per_objfile->signatured_types == NULL)
5001 return NULL;
5002 find_entry.signature = sig;
5003 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5004 return entry;
5005 }
5006 }
5007 \f
5008 /* Low level DIE reading support. */
5009
5010 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5011
5012 static void
5013 init_cu_die_reader (struct die_reader_specs *reader,
5014 struct dwarf2_cu *cu,
5015 struct dwarf2_section_info *section,
5016 struct dwo_file *dwo_file)
5017 {
5018 gdb_assert (section->readin && section->buffer != NULL);
5019 reader->abfd = get_section_bfd_owner (section);
5020 reader->cu = cu;
5021 reader->dwo_file = dwo_file;
5022 reader->die_section = section;
5023 reader->buffer = section->buffer;
5024 reader->buffer_end = section->buffer + section->size;
5025 reader->comp_dir = NULL;
5026 }
5027
5028 /* Subroutine of init_cutu_and_read_dies to simplify it.
5029 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5030 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5031 already.
5032
5033 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5034 from it to the DIE in the DWO. If NULL we are skipping the stub.
5035 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5036 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5037 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5038 STUB_COMP_DIR may be non-NULL.
5039 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5040 are filled in with the info of the DIE from the DWO file.
5041 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5042 provided an abbrev table to use.
5043 The result is non-zero if a valid (non-dummy) DIE was found. */
5044
5045 static int
5046 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5047 struct dwo_unit *dwo_unit,
5048 int abbrev_table_provided,
5049 struct die_info *stub_comp_unit_die,
5050 const char *stub_comp_dir,
5051 struct die_reader_specs *result_reader,
5052 const gdb_byte **result_info_ptr,
5053 struct die_info **result_comp_unit_die,
5054 int *result_has_children)
5055 {
5056 struct objfile *objfile = dwarf2_per_objfile->objfile;
5057 struct dwarf2_cu *cu = this_cu->cu;
5058 struct dwarf2_section_info *section;
5059 bfd *abfd;
5060 const gdb_byte *begin_info_ptr, *info_ptr;
5061 ULONGEST signature; /* Or dwo_id. */
5062 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5063 int i,num_extra_attrs;
5064 struct dwarf2_section_info *dwo_abbrev_section;
5065 struct attribute *attr;
5066 struct die_info *comp_unit_die;
5067
5068 /* At most one of these may be provided. */
5069 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5070
5071 /* These attributes aren't processed until later:
5072 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5073 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5074 referenced later. However, these attributes are found in the stub
5075 which we won't have later. In order to not impose this complication
5076 on the rest of the code, we read them here and copy them to the
5077 DWO CU/TU die. */
5078
5079 stmt_list = NULL;
5080 low_pc = NULL;
5081 high_pc = NULL;
5082 ranges = NULL;
5083 comp_dir = NULL;
5084
5085 if (stub_comp_unit_die != NULL)
5086 {
5087 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5088 DWO file. */
5089 if (! this_cu->is_debug_types)
5090 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5091 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5092 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5093 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5094 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5095
5096 /* There should be a DW_AT_addr_base attribute here (if needed).
5097 We need the value before we can process DW_FORM_GNU_addr_index. */
5098 cu->addr_base = 0;
5099 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5100 if (attr)
5101 cu->addr_base = DW_UNSND (attr);
5102
5103 /* There should be a DW_AT_ranges_base attribute here (if needed).
5104 We need the value before we can process DW_AT_ranges. */
5105 cu->ranges_base = 0;
5106 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5107 if (attr)
5108 cu->ranges_base = DW_UNSND (attr);
5109 }
5110 else if (stub_comp_dir != NULL)
5111 {
5112 /* Reconstruct the comp_dir attribute to simplify the code below. */
5113 comp_dir = (struct attribute *)
5114 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5115 comp_dir->name = DW_AT_comp_dir;
5116 comp_dir->form = DW_FORM_string;
5117 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5118 DW_STRING (comp_dir) = stub_comp_dir;
5119 }
5120
5121 /* Set up for reading the DWO CU/TU. */
5122 cu->dwo_unit = dwo_unit;
5123 section = dwo_unit->section;
5124 dwarf2_read_section (objfile, section);
5125 abfd = get_section_bfd_owner (section);
5126 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5127 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5128 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5129
5130 if (this_cu->is_debug_types)
5131 {
5132 ULONGEST header_signature;
5133 cu_offset type_offset_in_tu;
5134 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5135
5136 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5137 dwo_abbrev_section,
5138 info_ptr,
5139 &header_signature,
5140 &type_offset_in_tu);
5141 /* This is not an assert because it can be caused by bad debug info. */
5142 if (sig_type->signature != header_signature)
5143 {
5144 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5145 " TU at offset 0x%x [in module %s]"),
5146 hex_string (sig_type->signature),
5147 hex_string (header_signature),
5148 dwo_unit->offset.sect_off,
5149 bfd_get_filename (abfd));
5150 }
5151 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5152 /* For DWOs coming from DWP files, we don't know the CU length
5153 nor the type's offset in the TU until now. */
5154 dwo_unit->length = get_cu_length (&cu->header);
5155 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5156
5157 /* Establish the type offset that can be used to lookup the type.
5158 For DWO files, we don't know it until now. */
5159 sig_type->type_offset_in_section.sect_off =
5160 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5161 }
5162 else
5163 {
5164 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5165 dwo_abbrev_section,
5166 info_ptr, 0);
5167 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5168 /* For DWOs coming from DWP files, we don't know the CU length
5169 until now. */
5170 dwo_unit->length = get_cu_length (&cu->header);
5171 }
5172
5173 /* Replace the CU's original abbrev table with the DWO's.
5174 Reminder: We can't read the abbrev table until we've read the header. */
5175 if (abbrev_table_provided)
5176 {
5177 /* Don't free the provided abbrev table, the caller of
5178 init_cutu_and_read_dies owns it. */
5179 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5180 /* Ensure the DWO abbrev table gets freed. */
5181 make_cleanup (dwarf2_free_abbrev_table, cu);
5182 }
5183 else
5184 {
5185 dwarf2_free_abbrev_table (cu);
5186 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5187 /* Leave any existing abbrev table cleanup as is. */
5188 }
5189
5190 /* Read in the die, but leave space to copy over the attributes
5191 from the stub. This has the benefit of simplifying the rest of
5192 the code - all the work to maintain the illusion of a single
5193 DW_TAG_{compile,type}_unit DIE is done here. */
5194 num_extra_attrs = ((stmt_list != NULL)
5195 + (low_pc != NULL)
5196 + (high_pc != NULL)
5197 + (ranges != NULL)
5198 + (comp_dir != NULL));
5199 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5200 result_has_children, num_extra_attrs);
5201
5202 /* Copy over the attributes from the stub to the DIE we just read in. */
5203 comp_unit_die = *result_comp_unit_die;
5204 i = comp_unit_die->num_attrs;
5205 if (stmt_list != NULL)
5206 comp_unit_die->attrs[i++] = *stmt_list;
5207 if (low_pc != NULL)
5208 comp_unit_die->attrs[i++] = *low_pc;
5209 if (high_pc != NULL)
5210 comp_unit_die->attrs[i++] = *high_pc;
5211 if (ranges != NULL)
5212 comp_unit_die->attrs[i++] = *ranges;
5213 if (comp_dir != NULL)
5214 comp_unit_die->attrs[i++] = *comp_dir;
5215 comp_unit_die->num_attrs += num_extra_attrs;
5216
5217 if (dwarf2_die_debug)
5218 {
5219 fprintf_unfiltered (gdb_stdlog,
5220 "Read die from %s@0x%x of %s:\n",
5221 get_section_name (section),
5222 (unsigned) (begin_info_ptr - section->buffer),
5223 bfd_get_filename (abfd));
5224 dump_die (comp_unit_die, dwarf2_die_debug);
5225 }
5226
5227 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5228 TUs by skipping the stub and going directly to the entry in the DWO file.
5229 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5230 to get it via circuitous means. Blech. */
5231 if (comp_dir != NULL)
5232 result_reader->comp_dir = DW_STRING (comp_dir);
5233
5234 /* Skip dummy compilation units. */
5235 if (info_ptr >= begin_info_ptr + dwo_unit->length
5236 || peek_abbrev_code (abfd, info_ptr) == 0)
5237 return 0;
5238
5239 *result_info_ptr = info_ptr;
5240 return 1;
5241 }
5242
5243 /* Subroutine of init_cutu_and_read_dies to simplify it.
5244 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5245 Returns NULL if the specified DWO unit cannot be found. */
5246
5247 static struct dwo_unit *
5248 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5249 struct die_info *comp_unit_die)
5250 {
5251 struct dwarf2_cu *cu = this_cu->cu;
5252 struct attribute *attr;
5253 ULONGEST signature;
5254 struct dwo_unit *dwo_unit;
5255 const char *comp_dir, *dwo_name;
5256
5257 gdb_assert (cu != NULL);
5258
5259 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5260 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5261 gdb_assert (attr != NULL);
5262 dwo_name = DW_STRING (attr);
5263 comp_dir = NULL;
5264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5265 if (attr)
5266 comp_dir = DW_STRING (attr);
5267
5268 if (this_cu->is_debug_types)
5269 {
5270 struct signatured_type *sig_type;
5271
5272 /* Since this_cu is the first member of struct signatured_type,
5273 we can go from a pointer to one to a pointer to the other. */
5274 sig_type = (struct signatured_type *) this_cu;
5275 signature = sig_type->signature;
5276 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5277 }
5278 else
5279 {
5280 struct attribute *attr;
5281
5282 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5283 if (! attr)
5284 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5285 " [in module %s]"),
5286 dwo_name, objfile_name (this_cu->objfile));
5287 signature = DW_UNSND (attr);
5288 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5289 signature);
5290 }
5291
5292 return dwo_unit;
5293 }
5294
5295 /* Subroutine of init_cutu_and_read_dies to simplify it.
5296 See it for a description of the parameters.
5297 Read a TU directly from a DWO file, bypassing the stub.
5298
5299 Note: This function could be a little bit simpler if we shared cleanups
5300 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5301 to do, so we keep this function self-contained. Or we could move this
5302 into our caller, but it's complex enough already. */
5303
5304 static void
5305 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5306 int use_existing_cu, int keep,
5307 die_reader_func_ftype *die_reader_func,
5308 void *data)
5309 {
5310 struct dwarf2_cu *cu;
5311 struct signatured_type *sig_type;
5312 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5313 struct die_reader_specs reader;
5314 const gdb_byte *info_ptr;
5315 struct die_info *comp_unit_die;
5316 int has_children;
5317
5318 /* Verify we can do the following downcast, and that we have the
5319 data we need. */
5320 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5321 sig_type = (struct signatured_type *) this_cu;
5322 gdb_assert (sig_type->dwo_unit != NULL);
5323
5324 cleanups = make_cleanup (null_cleanup, NULL);
5325
5326 if (use_existing_cu && this_cu->cu != NULL)
5327 {
5328 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5329 cu = this_cu->cu;
5330 /* There's no need to do the rereading_dwo_cu handling that
5331 init_cutu_and_read_dies does since we don't read the stub. */
5332 }
5333 else
5334 {
5335 /* If !use_existing_cu, this_cu->cu must be NULL. */
5336 gdb_assert (this_cu->cu == NULL);
5337 cu = xmalloc (sizeof (*cu));
5338 init_one_comp_unit (cu, this_cu);
5339 /* If an error occurs while loading, release our storage. */
5340 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5341 }
5342
5343 /* A future optimization, if needed, would be to use an existing
5344 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5345 could share abbrev tables. */
5346
5347 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5348 0 /* abbrev_table_provided */,
5349 NULL /* stub_comp_unit_die */,
5350 sig_type->dwo_unit->dwo_file->comp_dir,
5351 &reader, &info_ptr,
5352 &comp_unit_die, &has_children) == 0)
5353 {
5354 /* Dummy die. */
5355 do_cleanups (cleanups);
5356 return;
5357 }
5358
5359 /* All the "real" work is done here. */
5360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5361
5362 /* This duplicates the code in init_cutu_and_read_dies,
5363 but the alternative is making the latter more complex.
5364 This function is only for the special case of using DWO files directly:
5365 no point in overly complicating the general case just to handle this. */
5366 if (free_cu_cleanup != NULL)
5367 {
5368 if (keep)
5369 {
5370 /* We've successfully allocated this compilation unit. Let our
5371 caller clean it up when finished with it. */
5372 discard_cleanups (free_cu_cleanup);
5373
5374 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5375 So we have to manually free the abbrev table. */
5376 dwarf2_free_abbrev_table (cu);
5377
5378 /* Link this CU into read_in_chain. */
5379 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5380 dwarf2_per_objfile->read_in_chain = this_cu;
5381 }
5382 else
5383 do_cleanups (free_cu_cleanup);
5384 }
5385
5386 do_cleanups (cleanups);
5387 }
5388
5389 /* Initialize a CU (or TU) and read its DIEs.
5390 If the CU defers to a DWO file, read the DWO file as well.
5391
5392 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5393 Otherwise the table specified in the comp unit header is read in and used.
5394 This is an optimization for when we already have the abbrev table.
5395
5396 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5397 Otherwise, a new CU is allocated with xmalloc.
5398
5399 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5400 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5401
5402 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5403 linker) then DIE_READER_FUNC will not get called. */
5404
5405 static void
5406 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5407 struct abbrev_table *abbrev_table,
5408 int use_existing_cu, int keep,
5409 die_reader_func_ftype *die_reader_func,
5410 void *data)
5411 {
5412 struct objfile *objfile = dwarf2_per_objfile->objfile;
5413 struct dwarf2_section_info *section = this_cu->section;
5414 bfd *abfd = get_section_bfd_owner (section);
5415 struct dwarf2_cu *cu;
5416 const gdb_byte *begin_info_ptr, *info_ptr;
5417 struct die_reader_specs reader;
5418 struct die_info *comp_unit_die;
5419 int has_children;
5420 struct attribute *attr;
5421 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5422 struct signatured_type *sig_type = NULL;
5423 struct dwarf2_section_info *abbrev_section;
5424 /* Non-zero if CU currently points to a DWO file and we need to
5425 reread it. When this happens we need to reread the skeleton die
5426 before we can reread the DWO file (this only applies to CUs, not TUs). */
5427 int rereading_dwo_cu = 0;
5428
5429 if (dwarf2_die_debug)
5430 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5431 this_cu->is_debug_types ? "type" : "comp",
5432 this_cu->offset.sect_off);
5433
5434 if (use_existing_cu)
5435 gdb_assert (keep);
5436
5437 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5438 file (instead of going through the stub), short-circuit all of this. */
5439 if (this_cu->reading_dwo_directly)
5440 {
5441 /* Narrow down the scope of possibilities to have to understand. */
5442 gdb_assert (this_cu->is_debug_types);
5443 gdb_assert (abbrev_table == NULL);
5444 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5445 die_reader_func, data);
5446 return;
5447 }
5448
5449 cleanups = make_cleanup (null_cleanup, NULL);
5450
5451 /* This is cheap if the section is already read in. */
5452 dwarf2_read_section (objfile, section);
5453
5454 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5455
5456 abbrev_section = get_abbrev_section_for_cu (this_cu);
5457
5458 if (use_existing_cu && this_cu->cu != NULL)
5459 {
5460 cu = this_cu->cu;
5461 /* If this CU is from a DWO file we need to start over, we need to
5462 refetch the attributes from the skeleton CU.
5463 This could be optimized by retrieving those attributes from when we
5464 were here the first time: the previous comp_unit_die was stored in
5465 comp_unit_obstack. But there's no data yet that we need this
5466 optimization. */
5467 if (cu->dwo_unit != NULL)
5468 rereading_dwo_cu = 1;
5469 }
5470 else
5471 {
5472 /* If !use_existing_cu, this_cu->cu must be NULL. */
5473 gdb_assert (this_cu->cu == NULL);
5474 cu = xmalloc (sizeof (*cu));
5475 init_one_comp_unit (cu, this_cu);
5476 /* If an error occurs while loading, release our storage. */
5477 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5478 }
5479
5480 /* Get the header. */
5481 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5482 {
5483 /* We already have the header, there's no need to read it in again. */
5484 info_ptr += cu->header.first_die_offset.cu_off;
5485 }
5486 else
5487 {
5488 if (this_cu->is_debug_types)
5489 {
5490 ULONGEST signature;
5491 cu_offset type_offset_in_tu;
5492
5493 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5494 abbrev_section, info_ptr,
5495 &signature,
5496 &type_offset_in_tu);
5497
5498 /* Since per_cu is the first member of struct signatured_type,
5499 we can go from a pointer to one to a pointer to the other. */
5500 sig_type = (struct signatured_type *) this_cu;
5501 gdb_assert (sig_type->signature == signature);
5502 gdb_assert (sig_type->type_offset_in_tu.cu_off
5503 == type_offset_in_tu.cu_off);
5504 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5505
5506 /* LENGTH has not been set yet for type units if we're
5507 using .gdb_index. */
5508 this_cu->length = get_cu_length (&cu->header);
5509
5510 /* Establish the type offset that can be used to lookup the type. */
5511 sig_type->type_offset_in_section.sect_off =
5512 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5513 }
5514 else
5515 {
5516 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5517 abbrev_section,
5518 info_ptr, 0);
5519
5520 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5521 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5522 }
5523 }
5524
5525 /* Skip dummy compilation units. */
5526 if (info_ptr >= begin_info_ptr + this_cu->length
5527 || peek_abbrev_code (abfd, info_ptr) == 0)
5528 {
5529 do_cleanups (cleanups);
5530 return;
5531 }
5532
5533 /* If we don't have them yet, read the abbrevs for this compilation unit.
5534 And if we need to read them now, make sure they're freed when we're
5535 done. Note that it's important that if the CU had an abbrev table
5536 on entry we don't free it when we're done: Somewhere up the call stack
5537 it may be in use. */
5538 if (abbrev_table != NULL)
5539 {
5540 gdb_assert (cu->abbrev_table == NULL);
5541 gdb_assert (cu->header.abbrev_offset.sect_off
5542 == abbrev_table->offset.sect_off);
5543 cu->abbrev_table = abbrev_table;
5544 }
5545 else if (cu->abbrev_table == NULL)
5546 {
5547 dwarf2_read_abbrevs (cu, abbrev_section);
5548 make_cleanup (dwarf2_free_abbrev_table, cu);
5549 }
5550 else if (rereading_dwo_cu)
5551 {
5552 dwarf2_free_abbrev_table (cu);
5553 dwarf2_read_abbrevs (cu, abbrev_section);
5554 }
5555
5556 /* Read the top level CU/TU die. */
5557 init_cu_die_reader (&reader, cu, section, NULL);
5558 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5559
5560 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5561 from the DWO file.
5562 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5563 DWO CU, that this test will fail (the attribute will not be present). */
5564 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5565 if (attr)
5566 {
5567 struct dwo_unit *dwo_unit;
5568 struct die_info *dwo_comp_unit_die;
5569
5570 if (has_children)
5571 {
5572 complaint (&symfile_complaints,
5573 _("compilation unit with DW_AT_GNU_dwo_name"
5574 " has children (offset 0x%x) [in module %s]"),
5575 this_cu->offset.sect_off, bfd_get_filename (abfd));
5576 }
5577 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5578 if (dwo_unit != NULL)
5579 {
5580 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5581 abbrev_table != NULL,
5582 comp_unit_die, NULL,
5583 &reader, &info_ptr,
5584 &dwo_comp_unit_die, &has_children) == 0)
5585 {
5586 /* Dummy die. */
5587 do_cleanups (cleanups);
5588 return;
5589 }
5590 comp_unit_die = dwo_comp_unit_die;
5591 }
5592 else
5593 {
5594 /* Yikes, we couldn't find the rest of the DIE, we only have
5595 the stub. A complaint has already been logged. There's
5596 not much more we can do except pass on the stub DIE to
5597 die_reader_func. We don't want to throw an error on bad
5598 debug info. */
5599 }
5600 }
5601
5602 /* All of the above is setup for this call. Yikes. */
5603 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5604
5605 /* Done, clean up. */
5606 if (free_cu_cleanup != NULL)
5607 {
5608 if (keep)
5609 {
5610 /* We've successfully allocated this compilation unit. Let our
5611 caller clean it up when finished with it. */
5612 discard_cleanups (free_cu_cleanup);
5613
5614 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5615 So we have to manually free the abbrev table. */
5616 dwarf2_free_abbrev_table (cu);
5617
5618 /* Link this CU into read_in_chain. */
5619 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5620 dwarf2_per_objfile->read_in_chain = this_cu;
5621 }
5622 else
5623 do_cleanups (free_cu_cleanup);
5624 }
5625
5626 do_cleanups (cleanups);
5627 }
5628
5629 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5630 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5631 to have already done the lookup to find the DWO file).
5632
5633 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5634 THIS_CU->is_debug_types, but nothing else.
5635
5636 We fill in THIS_CU->length.
5637
5638 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5639 linker) then DIE_READER_FUNC will not get called.
5640
5641 THIS_CU->cu is always freed when done.
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU. */
5644
5645 static void
5646 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5647 struct dwo_file *dwo_file,
5648 die_reader_func_ftype *die_reader_func,
5649 void *data)
5650 {
5651 struct objfile *objfile = dwarf2_per_objfile->objfile;
5652 struct dwarf2_section_info *section = this_cu->section;
5653 bfd *abfd = get_section_bfd_owner (section);
5654 struct dwarf2_section_info *abbrev_section;
5655 struct dwarf2_cu cu;
5656 const gdb_byte *begin_info_ptr, *info_ptr;
5657 struct die_reader_specs reader;
5658 struct cleanup *cleanups;
5659 struct die_info *comp_unit_die;
5660 int has_children;
5661
5662 if (dwarf2_die_debug)
5663 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5664 this_cu->is_debug_types ? "type" : "comp",
5665 this_cu->offset.sect_off);
5666
5667 gdb_assert (this_cu->cu == NULL);
5668
5669 abbrev_section = (dwo_file != NULL
5670 ? &dwo_file->sections.abbrev
5671 : get_abbrev_section_for_cu (this_cu));
5672
5673 /* This is cheap if the section is already read in. */
5674 dwarf2_read_section (objfile, section);
5675
5676 init_one_comp_unit (&cu, this_cu);
5677
5678 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5679
5680 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5681 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5682 abbrev_section, info_ptr,
5683 this_cu->is_debug_types);
5684
5685 this_cu->length = get_cu_length (&cu.header);
5686
5687 /* Skip dummy compilation units. */
5688 if (info_ptr >= begin_info_ptr + this_cu->length
5689 || peek_abbrev_code (abfd, info_ptr) == 0)
5690 {
5691 do_cleanups (cleanups);
5692 return;
5693 }
5694
5695 dwarf2_read_abbrevs (&cu, abbrev_section);
5696 make_cleanup (dwarf2_free_abbrev_table, &cu);
5697
5698 init_cu_die_reader (&reader, &cu, section, dwo_file);
5699 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5700
5701 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5702
5703 do_cleanups (cleanups);
5704 }
5705
5706 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5707 does not lookup the specified DWO file.
5708 This cannot be used to read DWO files.
5709
5710 THIS_CU->cu is always freed when done.
5711 This is done in order to not leave THIS_CU->cu in a state where we have
5712 to care whether it refers to the "main" CU or the DWO CU.
5713 We can revisit this if the data shows there's a performance issue. */
5714
5715 static void
5716 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5717 die_reader_func_ftype *die_reader_func,
5718 void *data)
5719 {
5720 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5721 }
5722 \f
5723 /* Type Unit Groups.
5724
5725 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5726 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5727 so that all types coming from the same compilation (.o file) are grouped
5728 together. A future step could be to put the types in the same symtab as
5729 the CU the types ultimately came from. */
5730
5731 static hashval_t
5732 hash_type_unit_group (const void *item)
5733 {
5734 const struct type_unit_group *tu_group = item;
5735
5736 return hash_stmt_list_entry (&tu_group->hash);
5737 }
5738
5739 static int
5740 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5741 {
5742 const struct type_unit_group *lhs = item_lhs;
5743 const struct type_unit_group *rhs = item_rhs;
5744
5745 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5746 }
5747
5748 /* Allocate a hash table for type unit groups. */
5749
5750 static htab_t
5751 allocate_type_unit_groups_table (void)
5752 {
5753 return htab_create_alloc_ex (3,
5754 hash_type_unit_group,
5755 eq_type_unit_group,
5756 NULL,
5757 &dwarf2_per_objfile->objfile->objfile_obstack,
5758 hashtab_obstack_allocate,
5759 dummy_obstack_deallocate);
5760 }
5761
5762 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5763 partial symtabs. We combine several TUs per psymtab to not let the size
5764 of any one psymtab grow too big. */
5765 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5766 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5767
5768 /* Helper routine for get_type_unit_group.
5769 Create the type_unit_group object used to hold one or more TUs. */
5770
5771 static struct type_unit_group *
5772 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5773 {
5774 struct objfile *objfile = dwarf2_per_objfile->objfile;
5775 struct dwarf2_per_cu_data *per_cu;
5776 struct type_unit_group *tu_group;
5777
5778 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5779 struct type_unit_group);
5780 per_cu = &tu_group->per_cu;
5781 per_cu->objfile = objfile;
5782
5783 if (dwarf2_per_objfile->using_index)
5784 {
5785 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5786 struct dwarf2_per_cu_quick_data);
5787 }
5788 else
5789 {
5790 unsigned int line_offset = line_offset_struct.sect_off;
5791 struct partial_symtab *pst;
5792 char *name;
5793
5794 /* Give the symtab a useful name for debug purposes. */
5795 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5796 name = xstrprintf ("<type_units_%d>",
5797 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5798 else
5799 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5800
5801 pst = create_partial_symtab (per_cu, name);
5802 pst->anonymous = 1;
5803
5804 xfree (name);
5805 }
5806
5807 tu_group->hash.dwo_unit = cu->dwo_unit;
5808 tu_group->hash.line_offset = line_offset_struct;
5809
5810 return tu_group;
5811 }
5812
5813 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5814 STMT_LIST is a DW_AT_stmt_list attribute. */
5815
5816 static struct type_unit_group *
5817 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5818 {
5819 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5820 struct type_unit_group *tu_group;
5821 void **slot;
5822 unsigned int line_offset;
5823 struct type_unit_group type_unit_group_for_lookup;
5824
5825 if (dwarf2_per_objfile->type_unit_groups == NULL)
5826 {
5827 dwarf2_per_objfile->type_unit_groups =
5828 allocate_type_unit_groups_table ();
5829 }
5830
5831 /* Do we need to create a new group, or can we use an existing one? */
5832
5833 if (stmt_list)
5834 {
5835 line_offset = DW_UNSND (stmt_list);
5836 ++tu_stats->nr_symtab_sharers;
5837 }
5838 else
5839 {
5840 /* Ugh, no stmt_list. Rare, but we have to handle it.
5841 We can do various things here like create one group per TU or
5842 spread them over multiple groups to split up the expansion work.
5843 To avoid worst case scenarios (too many groups or too large groups)
5844 we, umm, group them in bunches. */
5845 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5846 | (tu_stats->nr_stmt_less_type_units
5847 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5848 ++tu_stats->nr_stmt_less_type_units;
5849 }
5850
5851 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5852 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5853 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5854 &type_unit_group_for_lookup, INSERT);
5855 if (*slot != NULL)
5856 {
5857 tu_group = *slot;
5858 gdb_assert (tu_group != NULL);
5859 }
5860 else
5861 {
5862 sect_offset line_offset_struct;
5863
5864 line_offset_struct.sect_off = line_offset;
5865 tu_group = create_type_unit_group (cu, line_offset_struct);
5866 *slot = tu_group;
5867 ++tu_stats->nr_symtabs;
5868 }
5869
5870 return tu_group;
5871 }
5872 \f
5873 /* Partial symbol tables. */
5874
5875 /* Create a psymtab named NAME and assign it to PER_CU.
5876
5877 The caller must fill in the following details:
5878 dirname, textlow, texthigh. */
5879
5880 static struct partial_symtab *
5881 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5882 {
5883 struct objfile *objfile = per_cu->objfile;
5884 struct partial_symtab *pst;
5885
5886 pst = start_psymtab_common (objfile, objfile->section_offsets,
5887 name, 0,
5888 objfile->global_psymbols.next,
5889 objfile->static_psymbols.next);
5890
5891 pst->psymtabs_addrmap_supported = 1;
5892
5893 /* This is the glue that links PST into GDB's symbol API. */
5894 pst->read_symtab_private = per_cu;
5895 pst->read_symtab = dwarf2_read_symtab;
5896 per_cu->v.psymtab = pst;
5897
5898 return pst;
5899 }
5900
5901 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5902 type. */
5903
5904 struct process_psymtab_comp_unit_data
5905 {
5906 /* True if we are reading a DW_TAG_partial_unit. */
5907
5908 int want_partial_unit;
5909
5910 /* The "pretend" language that is used if the CU doesn't declare a
5911 language. */
5912
5913 enum language pretend_language;
5914 };
5915
5916 /* die_reader_func for process_psymtab_comp_unit. */
5917
5918 static void
5919 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5920 const gdb_byte *info_ptr,
5921 struct die_info *comp_unit_die,
5922 int has_children,
5923 void *data)
5924 {
5925 struct dwarf2_cu *cu = reader->cu;
5926 struct objfile *objfile = cu->objfile;
5927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5928 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5929 struct attribute *attr;
5930 CORE_ADDR baseaddr;
5931 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5932 struct partial_symtab *pst;
5933 int has_pc_info;
5934 const char *filename;
5935 struct process_psymtab_comp_unit_data *info = data;
5936
5937 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5938 return;
5939
5940 gdb_assert (! per_cu->is_debug_types);
5941
5942 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5943
5944 cu->list_in_scope = &file_symbols;
5945
5946 /* Allocate a new partial symbol table structure. */
5947 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5948 if (attr == NULL || !DW_STRING (attr))
5949 filename = "";
5950 else
5951 filename = DW_STRING (attr);
5952
5953 pst = create_partial_symtab (per_cu, filename);
5954
5955 /* This must be done before calling dwarf2_build_include_psymtabs. */
5956 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5957 if (attr != NULL)
5958 pst->dirname = DW_STRING (attr);
5959
5960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5961
5962 dwarf2_find_base_address (comp_unit_die, cu);
5963
5964 /* Possibly set the default values of LOWPC and HIGHPC from
5965 `DW_AT_ranges'. */
5966 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5967 &best_highpc, cu, pst);
5968 if (has_pc_info == 1 && best_lowpc < best_highpc)
5969 /* Store the contiguous range if it is not empty; it can be empty for
5970 CUs with no code. */
5971 addrmap_set_empty (objfile->psymtabs_addrmap,
5972 gdbarch_adjust_dwarf2_addr (gdbarch,
5973 best_lowpc + baseaddr),
5974 gdbarch_adjust_dwarf2_addr (gdbarch,
5975 best_highpc + baseaddr) - 1,
5976 pst);
5977
5978 /* Check if comp unit has_children.
5979 If so, read the rest of the partial symbols from this comp unit.
5980 If not, there's no more debug_info for this comp unit. */
5981 if (has_children)
5982 {
5983 struct partial_die_info *first_die;
5984 CORE_ADDR lowpc, highpc;
5985
5986 lowpc = ((CORE_ADDR) -1);
5987 highpc = ((CORE_ADDR) 0);
5988
5989 first_die = load_partial_dies (reader, info_ptr, 1);
5990
5991 scan_partial_symbols (first_die, &lowpc, &highpc,
5992 ! has_pc_info, cu);
5993
5994 /* If we didn't find a lowpc, set it to highpc to avoid
5995 complaints from `maint check'. */
5996 if (lowpc == ((CORE_ADDR) -1))
5997 lowpc = highpc;
5998
5999 /* If the compilation unit didn't have an explicit address range,
6000 then use the information extracted from its child dies. */
6001 if (! has_pc_info)
6002 {
6003 best_lowpc = lowpc;
6004 best_highpc = highpc;
6005 }
6006 }
6007 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6008 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6009
6010 pst->n_global_syms = objfile->global_psymbols.next -
6011 (objfile->global_psymbols.list + pst->globals_offset);
6012 pst->n_static_syms = objfile->static_psymbols.next -
6013 (objfile->static_psymbols.list + pst->statics_offset);
6014 sort_pst_symbols (objfile, pst);
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
6025 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6026 len * sizeof (struct symtab *));
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
6040 if (dwarf2_read_debug)
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053 }
6054
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058 static void
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6062 {
6063 struct process_psymtab_comp_unit_data info;
6064
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6078 &info);
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082 }
6083
6084 /* Reader function for build_type_psymtabs. */
6085
6086 static void
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6112
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
6126 pst->n_global_syms = objfile->global_psymbols.next -
6127 (objfile->global_psymbols.list + pst->globals_offset);
6128 pst->n_static_syms = objfile->static_psymbols.next -
6129 (objfile->static_psymbols.list + pst->statics_offset);
6130 sort_pst_symbols (objfile, pst);
6131 }
6132
6133 /* Struct used to sort TUs by their abbreviation table offset. */
6134
6135 struct tu_abbrev_offset
6136 {
6137 struct signatured_type *sig_type;
6138 sect_offset abbrev_offset;
6139 };
6140
6141 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6142
6143 static int
6144 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6145 {
6146 const struct tu_abbrev_offset * const *a = ap;
6147 const struct tu_abbrev_offset * const *b = bp;
6148 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6149 unsigned int boff = (*b)->abbrev_offset.sect_off;
6150
6151 return (aoff > boff) - (aoff < boff);
6152 }
6153
6154 /* Efficiently read all the type units.
6155 This does the bulk of the work for build_type_psymtabs.
6156
6157 The efficiency is because we sort TUs by the abbrev table they use and
6158 only read each abbrev table once. In one program there are 200K TUs
6159 sharing 8K abbrev tables.
6160
6161 The main purpose of this function is to support building the
6162 dwarf2_per_objfile->type_unit_groups table.
6163 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6164 can collapse the search space by grouping them by stmt_list.
6165 The savings can be significant, in the same program from above the 200K TUs
6166 share 8K stmt_list tables.
6167
6168 FUNC is expected to call get_type_unit_group, which will create the
6169 struct type_unit_group if necessary and add it to
6170 dwarf2_per_objfile->type_unit_groups. */
6171
6172 static void
6173 build_type_psymtabs_1 (void)
6174 {
6175 struct objfile *objfile = dwarf2_per_objfile->objfile;
6176 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6177 struct cleanup *cleanups;
6178 struct abbrev_table *abbrev_table;
6179 sect_offset abbrev_offset;
6180 struct tu_abbrev_offset *sorted_by_abbrev;
6181 struct type_unit_group **iter;
6182 int i;
6183
6184 /* It's up to the caller to not call us multiple times. */
6185 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6186
6187 if (dwarf2_per_objfile->n_type_units == 0)
6188 return;
6189
6190 /* TUs typically share abbrev tables, and there can be way more TUs than
6191 abbrev tables. Sort by abbrev table to reduce the number of times we
6192 read each abbrev table in.
6193 Alternatives are to punt or to maintain a cache of abbrev tables.
6194 This is simpler and efficient enough for now.
6195
6196 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6197 symtab to use). Typically TUs with the same abbrev offset have the same
6198 stmt_list value too so in practice this should work well.
6199
6200 The basic algorithm here is:
6201
6202 sort TUs by abbrev table
6203 for each TU with same abbrev table:
6204 read abbrev table if first user
6205 read TU top level DIE
6206 [IWBN if DWO skeletons had DW_AT_stmt_list]
6207 call FUNC */
6208
6209 if (dwarf2_read_debug)
6210 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6211
6212 /* Sort in a separate table to maintain the order of all_type_units
6213 for .gdb_index: TU indices directly index all_type_units. */
6214 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6215 dwarf2_per_objfile->n_type_units);
6216 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6217 {
6218 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6219
6220 sorted_by_abbrev[i].sig_type = sig_type;
6221 sorted_by_abbrev[i].abbrev_offset =
6222 read_abbrev_offset (sig_type->per_cu.section,
6223 sig_type->per_cu.offset);
6224 }
6225 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6226 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6227 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6228
6229 abbrev_offset.sect_off = ~(unsigned) 0;
6230 abbrev_table = NULL;
6231 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6232
6233 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6234 {
6235 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6236
6237 /* Switch to the next abbrev table if necessary. */
6238 if (abbrev_table == NULL
6239 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6240 {
6241 if (abbrev_table != NULL)
6242 {
6243 abbrev_table_free (abbrev_table);
6244 /* Reset to NULL in case abbrev_table_read_table throws
6245 an error: abbrev_table_free_cleanup will get called. */
6246 abbrev_table = NULL;
6247 }
6248 abbrev_offset = tu->abbrev_offset;
6249 abbrev_table =
6250 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6251 abbrev_offset);
6252 ++tu_stats->nr_uniq_abbrev_tables;
6253 }
6254
6255 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6256 build_type_psymtabs_reader, NULL);
6257 }
6258
6259 do_cleanups (cleanups);
6260 }
6261
6262 /* Print collected type unit statistics. */
6263
6264 static void
6265 print_tu_stats (void)
6266 {
6267 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6268
6269 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6271 dwarf2_per_objfile->n_type_units);
6272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6273 tu_stats->nr_uniq_abbrev_tables);
6274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6275 tu_stats->nr_symtabs);
6276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6277 tu_stats->nr_symtab_sharers);
6278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6279 tu_stats->nr_stmt_less_type_units);
6280 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6281 tu_stats->nr_all_type_units_reallocs);
6282 }
6283
6284 /* Traversal function for build_type_psymtabs. */
6285
6286 static int
6287 build_type_psymtab_dependencies (void **slot, void *info)
6288 {
6289 struct objfile *objfile = dwarf2_per_objfile->objfile;
6290 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6291 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6292 struct partial_symtab *pst = per_cu->v.psymtab;
6293 int len = VEC_length (sig_type_ptr, tu_group->tus);
6294 struct signatured_type *iter;
6295 int i;
6296
6297 gdb_assert (len > 0);
6298 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6299
6300 pst->number_of_dependencies = len;
6301 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6302 len * sizeof (struct psymtab *));
6303 for (i = 0;
6304 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6305 ++i)
6306 {
6307 gdb_assert (iter->per_cu.is_debug_types);
6308 pst->dependencies[i] = iter->per_cu.v.psymtab;
6309 iter->type_unit_group = tu_group;
6310 }
6311
6312 VEC_free (sig_type_ptr, tu_group->tus);
6313
6314 return 1;
6315 }
6316
6317 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6318 Build partial symbol tables for the .debug_types comp-units. */
6319
6320 static void
6321 build_type_psymtabs (struct objfile *objfile)
6322 {
6323 if (! create_all_type_units (objfile))
6324 return;
6325
6326 build_type_psymtabs_1 ();
6327 }
6328
6329 /* Traversal function for process_skeletonless_type_unit.
6330 Read a TU in a DWO file and build partial symbols for it. */
6331
6332 static int
6333 process_skeletonless_type_unit (void **slot, void *info)
6334 {
6335 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6336 struct objfile *objfile = info;
6337 struct signatured_type find_entry, *entry;
6338
6339 /* If this TU doesn't exist in the global table, add it and read it in. */
6340
6341 if (dwarf2_per_objfile->signatured_types == NULL)
6342 {
6343 dwarf2_per_objfile->signatured_types
6344 = allocate_signatured_type_table (objfile);
6345 }
6346
6347 find_entry.signature = dwo_unit->signature;
6348 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6349 INSERT);
6350 /* If we've already seen this type there's nothing to do. What's happening
6351 is we're doing our own version of comdat-folding here. */
6352 if (*slot != NULL)
6353 return 1;
6354
6355 /* This does the job that create_all_type_units would have done for
6356 this TU. */
6357 entry = add_type_unit (dwo_unit->signature, slot);
6358 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6359 *slot = entry;
6360
6361 /* This does the job that build_type_psymtabs_1 would have done. */
6362 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6363 build_type_psymtabs_reader, NULL);
6364
6365 return 1;
6366 }
6367
6368 /* Traversal function for process_skeletonless_type_units. */
6369
6370 static int
6371 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6372 {
6373 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6374
6375 if (dwo_file->tus != NULL)
6376 {
6377 htab_traverse_noresize (dwo_file->tus,
6378 process_skeletonless_type_unit, info);
6379 }
6380
6381 return 1;
6382 }
6383
6384 /* Scan all TUs of DWO files, verifying we've processed them.
6385 This is needed in case a TU was emitted without its skeleton.
6386 Note: This can't be done until we know what all the DWO files are. */
6387
6388 static void
6389 process_skeletonless_type_units (struct objfile *objfile)
6390 {
6391 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6392 if (get_dwp_file () == NULL
6393 && dwarf2_per_objfile->dwo_files != NULL)
6394 {
6395 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6396 process_dwo_file_for_skeletonless_type_units,
6397 objfile);
6398 }
6399 }
6400
6401 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6402
6403 static void
6404 psymtabs_addrmap_cleanup (void *o)
6405 {
6406 struct objfile *objfile = o;
6407
6408 objfile->psymtabs_addrmap = NULL;
6409 }
6410
6411 /* Compute the 'user' field for each psymtab in OBJFILE. */
6412
6413 static void
6414 set_partial_user (struct objfile *objfile)
6415 {
6416 int i;
6417
6418 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6419 {
6420 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6421 struct partial_symtab *pst = per_cu->v.psymtab;
6422 int j;
6423
6424 if (pst == NULL)
6425 continue;
6426
6427 for (j = 0; j < pst->number_of_dependencies; ++j)
6428 {
6429 /* Set the 'user' field only if it is not already set. */
6430 if (pst->dependencies[j]->user == NULL)
6431 pst->dependencies[j]->user = pst;
6432 }
6433 }
6434 }
6435
6436 /* Build the partial symbol table by doing a quick pass through the
6437 .debug_info and .debug_abbrev sections. */
6438
6439 static void
6440 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6441 {
6442 struct cleanup *back_to, *addrmap_cleanup;
6443 struct obstack temp_obstack;
6444 int i;
6445
6446 if (dwarf2_read_debug)
6447 {
6448 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6449 objfile_name (objfile));
6450 }
6451
6452 dwarf2_per_objfile->reading_partial_symbols = 1;
6453
6454 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6455
6456 /* Any cached compilation units will be linked by the per-objfile
6457 read_in_chain. Make sure to free them when we're done. */
6458 back_to = make_cleanup (free_cached_comp_units, NULL);
6459
6460 build_type_psymtabs (objfile);
6461
6462 create_all_comp_units (objfile);
6463
6464 /* Create a temporary address map on a temporary obstack. We later
6465 copy this to the final obstack. */
6466 obstack_init (&temp_obstack);
6467 make_cleanup_obstack_free (&temp_obstack);
6468 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6469 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6470
6471 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6472 {
6473 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6474
6475 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6476 }
6477
6478 /* This has to wait until we read the CUs, we need the list of DWOs. */
6479 process_skeletonless_type_units (objfile);
6480
6481 /* Now that all TUs have been processed we can fill in the dependencies. */
6482 if (dwarf2_per_objfile->type_unit_groups != NULL)
6483 {
6484 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6485 build_type_psymtab_dependencies, NULL);
6486 }
6487
6488 if (dwarf2_read_debug)
6489 print_tu_stats ();
6490
6491 set_partial_user (objfile);
6492
6493 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6494 &objfile->objfile_obstack);
6495 discard_cleanups (addrmap_cleanup);
6496
6497 do_cleanups (back_to);
6498
6499 if (dwarf2_read_debug)
6500 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6501 objfile_name (objfile));
6502 }
6503
6504 /* die_reader_func for load_partial_comp_unit. */
6505
6506 static void
6507 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6508 const gdb_byte *info_ptr,
6509 struct die_info *comp_unit_die,
6510 int has_children,
6511 void *data)
6512 {
6513 struct dwarf2_cu *cu = reader->cu;
6514
6515 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6516
6517 /* Check if comp unit has_children.
6518 If so, read the rest of the partial symbols from this comp unit.
6519 If not, there's no more debug_info for this comp unit. */
6520 if (has_children)
6521 load_partial_dies (reader, info_ptr, 0);
6522 }
6523
6524 /* Load the partial DIEs for a secondary CU into memory.
6525 This is also used when rereading a primary CU with load_all_dies. */
6526
6527 static void
6528 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6529 {
6530 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6531 load_partial_comp_unit_reader, NULL);
6532 }
6533
6534 static void
6535 read_comp_units_from_section (struct objfile *objfile,
6536 struct dwarf2_section_info *section,
6537 unsigned int is_dwz,
6538 int *n_allocated,
6539 int *n_comp_units,
6540 struct dwarf2_per_cu_data ***all_comp_units)
6541 {
6542 const gdb_byte *info_ptr;
6543 bfd *abfd = get_section_bfd_owner (section);
6544
6545 if (dwarf2_read_debug)
6546 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6547 get_section_name (section),
6548 get_section_file_name (section));
6549
6550 dwarf2_read_section (objfile, section);
6551
6552 info_ptr = section->buffer;
6553
6554 while (info_ptr < section->buffer + section->size)
6555 {
6556 unsigned int length, initial_length_size;
6557 struct dwarf2_per_cu_data *this_cu;
6558 sect_offset offset;
6559
6560 offset.sect_off = info_ptr - section->buffer;
6561
6562 /* Read just enough information to find out where the next
6563 compilation unit is. */
6564 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6565
6566 /* Save the compilation unit for later lookup. */
6567 this_cu = obstack_alloc (&objfile->objfile_obstack,
6568 sizeof (struct dwarf2_per_cu_data));
6569 memset (this_cu, 0, sizeof (*this_cu));
6570 this_cu->offset = offset;
6571 this_cu->length = length + initial_length_size;
6572 this_cu->is_dwz = is_dwz;
6573 this_cu->objfile = objfile;
6574 this_cu->section = section;
6575
6576 if (*n_comp_units == *n_allocated)
6577 {
6578 *n_allocated *= 2;
6579 *all_comp_units = xrealloc (*all_comp_units,
6580 *n_allocated
6581 * sizeof (struct dwarf2_per_cu_data *));
6582 }
6583 (*all_comp_units)[*n_comp_units] = this_cu;
6584 ++*n_comp_units;
6585
6586 info_ptr = info_ptr + this_cu->length;
6587 }
6588 }
6589
6590 /* Create a list of all compilation units in OBJFILE.
6591 This is only done for -readnow and building partial symtabs. */
6592
6593 static void
6594 create_all_comp_units (struct objfile *objfile)
6595 {
6596 int n_allocated;
6597 int n_comp_units;
6598 struct dwarf2_per_cu_data **all_comp_units;
6599 struct dwz_file *dwz;
6600
6601 n_comp_units = 0;
6602 n_allocated = 10;
6603 all_comp_units = xmalloc (n_allocated
6604 * sizeof (struct dwarf2_per_cu_data *));
6605
6606 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6607 &n_allocated, &n_comp_units, &all_comp_units);
6608
6609 dwz = dwarf2_get_dwz_file ();
6610 if (dwz != NULL)
6611 read_comp_units_from_section (objfile, &dwz->info, 1,
6612 &n_allocated, &n_comp_units,
6613 &all_comp_units);
6614
6615 dwarf2_per_objfile->all_comp_units
6616 = obstack_alloc (&objfile->objfile_obstack,
6617 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6618 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6619 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6620 xfree (all_comp_units);
6621 dwarf2_per_objfile->n_comp_units = n_comp_units;
6622 }
6623
6624 /* Process all loaded DIEs for compilation unit CU, starting at
6625 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6626 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6627 DW_AT_ranges). See the comments of add_partial_subprogram on how
6628 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6629
6630 static void
6631 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6632 CORE_ADDR *highpc, int set_addrmap,
6633 struct dwarf2_cu *cu)
6634 {
6635 struct partial_die_info *pdi;
6636
6637 /* Now, march along the PDI's, descending into ones which have
6638 interesting children but skipping the children of the other ones,
6639 until we reach the end of the compilation unit. */
6640
6641 pdi = first_die;
6642
6643 while (pdi != NULL)
6644 {
6645 fixup_partial_die (pdi, cu);
6646
6647 /* Anonymous namespaces or modules have no name but have interesting
6648 children, so we need to look at them. Ditto for anonymous
6649 enums. */
6650
6651 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6652 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6653 || pdi->tag == DW_TAG_imported_unit)
6654 {
6655 switch (pdi->tag)
6656 {
6657 case DW_TAG_subprogram:
6658 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6659 break;
6660 case DW_TAG_constant:
6661 case DW_TAG_variable:
6662 case DW_TAG_typedef:
6663 case DW_TAG_union_type:
6664 if (!pdi->is_declaration)
6665 {
6666 add_partial_symbol (pdi, cu);
6667 }
6668 break;
6669 case DW_TAG_class_type:
6670 case DW_TAG_interface_type:
6671 case DW_TAG_structure_type:
6672 if (!pdi->is_declaration)
6673 {
6674 add_partial_symbol (pdi, cu);
6675 }
6676 break;
6677 case DW_TAG_enumeration_type:
6678 if (!pdi->is_declaration)
6679 add_partial_enumeration (pdi, cu);
6680 break;
6681 case DW_TAG_base_type:
6682 case DW_TAG_subrange_type:
6683 /* File scope base type definitions are added to the partial
6684 symbol table. */
6685 add_partial_symbol (pdi, cu);
6686 break;
6687 case DW_TAG_namespace:
6688 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6689 break;
6690 case DW_TAG_module:
6691 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6692 break;
6693 case DW_TAG_imported_unit:
6694 {
6695 struct dwarf2_per_cu_data *per_cu;
6696
6697 /* For now we don't handle imported units in type units. */
6698 if (cu->per_cu->is_debug_types)
6699 {
6700 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6701 " supported in type units [in module %s]"),
6702 objfile_name (cu->objfile));
6703 }
6704
6705 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6706 pdi->is_dwz,
6707 cu->objfile);
6708
6709 /* Go read the partial unit, if needed. */
6710 if (per_cu->v.psymtab == NULL)
6711 process_psymtab_comp_unit (per_cu, 1, cu->language);
6712
6713 VEC_safe_push (dwarf2_per_cu_ptr,
6714 cu->per_cu->imported_symtabs, per_cu);
6715 }
6716 break;
6717 case DW_TAG_imported_declaration:
6718 add_partial_symbol (pdi, cu);
6719 break;
6720 default:
6721 break;
6722 }
6723 }
6724
6725 /* If the die has a sibling, skip to the sibling. */
6726
6727 pdi = pdi->die_sibling;
6728 }
6729 }
6730
6731 /* Functions used to compute the fully scoped name of a partial DIE.
6732
6733 Normally, this is simple. For C++, the parent DIE's fully scoped
6734 name is concatenated with "::" and the partial DIE's name. For
6735 Java, the same thing occurs except that "." is used instead of "::".
6736 Enumerators are an exception; they use the scope of their parent
6737 enumeration type, i.e. the name of the enumeration type is not
6738 prepended to the enumerator.
6739
6740 There are two complexities. One is DW_AT_specification; in this
6741 case "parent" means the parent of the target of the specification,
6742 instead of the direct parent of the DIE. The other is compilers
6743 which do not emit DW_TAG_namespace; in this case we try to guess
6744 the fully qualified name of structure types from their members'
6745 linkage names. This must be done using the DIE's children rather
6746 than the children of any DW_AT_specification target. We only need
6747 to do this for structures at the top level, i.e. if the target of
6748 any DW_AT_specification (if any; otherwise the DIE itself) does not
6749 have a parent. */
6750
6751 /* Compute the scope prefix associated with PDI's parent, in
6752 compilation unit CU. The result will be allocated on CU's
6753 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6754 field. NULL is returned if no prefix is necessary. */
6755 static const char *
6756 partial_die_parent_scope (struct partial_die_info *pdi,
6757 struct dwarf2_cu *cu)
6758 {
6759 const char *grandparent_scope;
6760 struct partial_die_info *parent, *real_pdi;
6761
6762 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6763 then this means the parent of the specification DIE. */
6764
6765 real_pdi = pdi;
6766 while (real_pdi->has_specification)
6767 real_pdi = find_partial_die (real_pdi->spec_offset,
6768 real_pdi->spec_is_dwz, cu);
6769
6770 parent = real_pdi->die_parent;
6771 if (parent == NULL)
6772 return NULL;
6773
6774 if (parent->scope_set)
6775 return parent->scope;
6776
6777 fixup_partial_die (parent, cu);
6778
6779 grandparent_scope = partial_die_parent_scope (parent, cu);
6780
6781 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6782 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6783 Work around this problem here. */
6784 if (cu->language == language_cplus
6785 && parent->tag == DW_TAG_namespace
6786 && strcmp (parent->name, "::") == 0
6787 && grandparent_scope == NULL)
6788 {
6789 parent->scope = NULL;
6790 parent->scope_set = 1;
6791 return NULL;
6792 }
6793
6794 if (pdi->tag == DW_TAG_enumerator)
6795 /* Enumerators should not get the name of the enumeration as a prefix. */
6796 parent->scope = grandparent_scope;
6797 else if (parent->tag == DW_TAG_namespace
6798 || parent->tag == DW_TAG_module
6799 || parent->tag == DW_TAG_structure_type
6800 || parent->tag == DW_TAG_class_type
6801 || parent->tag == DW_TAG_interface_type
6802 || parent->tag == DW_TAG_union_type
6803 || parent->tag == DW_TAG_enumeration_type)
6804 {
6805 if (grandparent_scope == NULL)
6806 parent->scope = parent->name;
6807 else
6808 parent->scope = typename_concat (&cu->comp_unit_obstack,
6809 grandparent_scope,
6810 parent->name, 0, cu);
6811 }
6812 else
6813 {
6814 /* FIXME drow/2004-04-01: What should we be doing with
6815 function-local names? For partial symbols, we should probably be
6816 ignoring them. */
6817 complaint (&symfile_complaints,
6818 _("unhandled containing DIE tag %d for DIE at %d"),
6819 parent->tag, pdi->offset.sect_off);
6820 parent->scope = grandparent_scope;
6821 }
6822
6823 parent->scope_set = 1;
6824 return parent->scope;
6825 }
6826
6827 /* Return the fully scoped name associated with PDI, from compilation unit
6828 CU. The result will be allocated with malloc. */
6829
6830 static char *
6831 partial_die_full_name (struct partial_die_info *pdi,
6832 struct dwarf2_cu *cu)
6833 {
6834 const char *parent_scope;
6835
6836 /* If this is a template instantiation, we can not work out the
6837 template arguments from partial DIEs. So, unfortunately, we have
6838 to go through the full DIEs. At least any work we do building
6839 types here will be reused if full symbols are loaded later. */
6840 if (pdi->has_template_arguments)
6841 {
6842 fixup_partial_die (pdi, cu);
6843
6844 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6845 {
6846 struct die_info *die;
6847 struct attribute attr;
6848 struct dwarf2_cu *ref_cu = cu;
6849
6850 /* DW_FORM_ref_addr is using section offset. */
6851 attr.name = 0;
6852 attr.form = DW_FORM_ref_addr;
6853 attr.u.unsnd = pdi->offset.sect_off;
6854 die = follow_die_ref (NULL, &attr, &ref_cu);
6855
6856 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6857 }
6858 }
6859
6860 parent_scope = partial_die_parent_scope (pdi, cu);
6861 if (parent_scope == NULL)
6862 return NULL;
6863 else
6864 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6865 }
6866
6867 static void
6868 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6869 {
6870 struct objfile *objfile = cu->objfile;
6871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6872 CORE_ADDR addr = 0;
6873 const char *actual_name = NULL;
6874 CORE_ADDR baseaddr;
6875 char *built_actual_name;
6876
6877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6878
6879 built_actual_name = partial_die_full_name (pdi, cu);
6880 if (built_actual_name != NULL)
6881 actual_name = built_actual_name;
6882
6883 if (actual_name == NULL)
6884 actual_name = pdi->name;
6885
6886 switch (pdi->tag)
6887 {
6888 case DW_TAG_subprogram:
6889 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6890 if (pdi->is_external || cu->language == language_ada)
6891 {
6892 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6893 of the global scope. But in Ada, we want to be able to access
6894 nested procedures globally. So all Ada subprograms are stored
6895 in the global scope. */
6896 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6897 objfile); */
6898 add_psymbol_to_list (actual_name, strlen (actual_name),
6899 built_actual_name != NULL,
6900 VAR_DOMAIN, LOC_BLOCK,
6901 &objfile->global_psymbols,
6902 0, addr, cu->language, objfile);
6903 }
6904 else
6905 {
6906 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6907 objfile); */
6908 add_psymbol_to_list (actual_name, strlen (actual_name),
6909 built_actual_name != NULL,
6910 VAR_DOMAIN, LOC_BLOCK,
6911 &objfile->static_psymbols,
6912 0, addr, cu->language, objfile);
6913 }
6914 break;
6915 case DW_TAG_constant:
6916 {
6917 struct psymbol_allocation_list *list;
6918
6919 if (pdi->is_external)
6920 list = &objfile->global_psymbols;
6921 else
6922 list = &objfile->static_psymbols;
6923 add_psymbol_to_list (actual_name, strlen (actual_name),
6924 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6925 list, 0, 0, cu->language, objfile);
6926 }
6927 break;
6928 case DW_TAG_variable:
6929 if (pdi->d.locdesc)
6930 addr = decode_locdesc (pdi->d.locdesc, cu);
6931
6932 if (pdi->d.locdesc
6933 && addr == 0
6934 && !dwarf2_per_objfile->has_section_at_zero)
6935 {
6936 /* A global or static variable may also have been stripped
6937 out by the linker if unused, in which case its address
6938 will be nullified; do not add such variables into partial
6939 symbol table then. */
6940 }
6941 else if (pdi->is_external)
6942 {
6943 /* Global Variable.
6944 Don't enter into the minimal symbol tables as there is
6945 a minimal symbol table entry from the ELF symbols already.
6946 Enter into partial symbol table if it has a location
6947 descriptor or a type.
6948 If the location descriptor is missing, new_symbol will create
6949 a LOC_UNRESOLVED symbol, the address of the variable will then
6950 be determined from the minimal symbol table whenever the variable
6951 is referenced.
6952 The address for the partial symbol table entry is not
6953 used by GDB, but it comes in handy for debugging partial symbol
6954 table building. */
6955
6956 if (pdi->d.locdesc || pdi->has_type)
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_STATIC,
6960 &objfile->global_psymbols,
6961 0, addr + baseaddr,
6962 cu->language, objfile);
6963 }
6964 else
6965 {
6966 int has_loc = pdi->d.locdesc != NULL;
6967
6968 /* Static Variable. Skip symbols whose value we cannot know (those
6969 without location descriptors or constant values). */
6970 if (!has_loc && !pdi->has_const_value)
6971 {
6972 xfree (built_actual_name);
6973 return;
6974 }
6975
6976 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6977 mst_file_data, objfile); */
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 0,
6983 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6984 cu->language, objfile);
6985 }
6986 break;
6987 case DW_TAG_typedef:
6988 case DW_TAG_base_type:
6989 case DW_TAG_subrange_type:
6990 add_psymbol_to_list (actual_name, strlen (actual_name),
6991 built_actual_name != NULL,
6992 VAR_DOMAIN, LOC_TYPEDEF,
6993 &objfile->static_psymbols,
6994 0, (CORE_ADDR) 0, cu->language, objfile);
6995 break;
6996 case DW_TAG_imported_declaration:
6997 case DW_TAG_namespace:
6998 add_psymbol_to_list (actual_name, strlen (actual_name),
6999 built_actual_name != NULL,
7000 VAR_DOMAIN, LOC_TYPEDEF,
7001 &objfile->global_psymbols,
7002 0, (CORE_ADDR) 0, cu->language, objfile);
7003 break;
7004 case DW_TAG_module:
7005 add_psymbol_to_list (actual_name, strlen (actual_name),
7006 built_actual_name != NULL,
7007 MODULE_DOMAIN, LOC_TYPEDEF,
7008 &objfile->global_psymbols,
7009 0, (CORE_ADDR) 0, cu->language, objfile);
7010 break;
7011 case DW_TAG_class_type:
7012 case DW_TAG_interface_type:
7013 case DW_TAG_structure_type:
7014 case DW_TAG_union_type:
7015 case DW_TAG_enumeration_type:
7016 /* Skip external references. The DWARF standard says in the section
7017 about "Structure, Union, and Class Type Entries": "An incomplete
7018 structure, union or class type is represented by a structure,
7019 union or class entry that does not have a byte size attribute
7020 and that has a DW_AT_declaration attribute." */
7021 if (!pdi->has_byte_size && pdi->is_declaration)
7022 {
7023 xfree (built_actual_name);
7024 return;
7025 }
7026
7027 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7028 static vs. global. */
7029 add_psymbol_to_list (actual_name, strlen (actual_name),
7030 built_actual_name != NULL,
7031 STRUCT_DOMAIN, LOC_TYPEDEF,
7032 (cu->language == language_cplus
7033 || cu->language == language_java)
7034 ? &objfile->global_psymbols
7035 : &objfile->static_psymbols,
7036 0, (CORE_ADDR) 0, cu->language, objfile);
7037
7038 break;
7039 case DW_TAG_enumerator:
7040 add_psymbol_to_list (actual_name, strlen (actual_name),
7041 built_actual_name != NULL,
7042 VAR_DOMAIN, LOC_CONST,
7043 (cu->language == language_cplus
7044 || cu->language == language_java)
7045 ? &objfile->global_psymbols
7046 : &objfile->static_psymbols,
7047 0, (CORE_ADDR) 0, cu->language, objfile);
7048 break;
7049 default:
7050 break;
7051 }
7052
7053 xfree (built_actual_name);
7054 }
7055
7056 /* Read a partial die corresponding to a namespace; also, add a symbol
7057 corresponding to that namespace to the symbol table. NAMESPACE is
7058 the name of the enclosing namespace. */
7059
7060 static void
7061 add_partial_namespace (struct partial_die_info *pdi,
7062 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7063 int set_addrmap, struct dwarf2_cu *cu)
7064 {
7065 /* Add a symbol for the namespace. */
7066
7067 add_partial_symbol (pdi, cu);
7068
7069 /* Now scan partial symbols in that namespace. */
7070
7071 if (pdi->has_children)
7072 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7073 }
7074
7075 /* Read a partial die corresponding to a Fortran module. */
7076
7077 static void
7078 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7079 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7080 {
7081 /* Add a symbol for the namespace. */
7082
7083 add_partial_symbol (pdi, cu);
7084
7085 /* Now scan partial symbols in that module. */
7086
7087 if (pdi->has_children)
7088 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7089 }
7090
7091 /* Read a partial die corresponding to a subprogram and create a partial
7092 symbol for that subprogram. When the CU language allows it, this
7093 routine also defines a partial symbol for each nested subprogram
7094 that this subprogram contains. If SET_ADDRMAP is true, record the
7095 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7096 and highest PC values found in PDI.
7097
7098 PDI may also be a lexical block, in which case we simply search
7099 recursively for subprograms defined inside that lexical block.
7100 Again, this is only performed when the CU language allows this
7101 type of definitions. */
7102
7103 static void
7104 add_partial_subprogram (struct partial_die_info *pdi,
7105 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7106 int set_addrmap, struct dwarf2_cu *cu)
7107 {
7108 if (pdi->tag == DW_TAG_subprogram)
7109 {
7110 if (pdi->has_pc_info)
7111 {
7112 if (pdi->lowpc < *lowpc)
7113 *lowpc = pdi->lowpc;
7114 if (pdi->highpc > *highpc)
7115 *highpc = pdi->highpc;
7116 if (set_addrmap)
7117 {
7118 struct objfile *objfile = cu->objfile;
7119 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7120 CORE_ADDR baseaddr;
7121 CORE_ADDR highpc;
7122 CORE_ADDR lowpc;
7123
7124 baseaddr = ANOFFSET (objfile->section_offsets,
7125 SECT_OFF_TEXT (objfile));
7126 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7127 pdi->lowpc + baseaddr);
7128 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7129 pdi->highpc + baseaddr);
7130 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7131 cu->per_cu->v.psymtab);
7132 }
7133 }
7134
7135 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7136 {
7137 if (!pdi->is_declaration)
7138 /* Ignore subprogram DIEs that do not have a name, they are
7139 illegal. Do not emit a complaint at this point, we will
7140 do so when we convert this psymtab into a symtab. */
7141 if (pdi->name)
7142 add_partial_symbol (pdi, cu);
7143 }
7144 }
7145
7146 if (! pdi->has_children)
7147 return;
7148
7149 if (cu->language == language_ada)
7150 {
7151 pdi = pdi->die_child;
7152 while (pdi != NULL)
7153 {
7154 fixup_partial_die (pdi, cu);
7155 if (pdi->tag == DW_TAG_subprogram
7156 || pdi->tag == DW_TAG_lexical_block)
7157 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7158 pdi = pdi->die_sibling;
7159 }
7160 }
7161 }
7162
7163 /* Read a partial die corresponding to an enumeration type. */
7164
7165 static void
7166 add_partial_enumeration (struct partial_die_info *enum_pdi,
7167 struct dwarf2_cu *cu)
7168 {
7169 struct partial_die_info *pdi;
7170
7171 if (enum_pdi->name != NULL)
7172 add_partial_symbol (enum_pdi, cu);
7173
7174 pdi = enum_pdi->die_child;
7175 while (pdi)
7176 {
7177 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7178 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7179 else
7180 add_partial_symbol (pdi, cu);
7181 pdi = pdi->die_sibling;
7182 }
7183 }
7184
7185 /* Return the initial uleb128 in the die at INFO_PTR. */
7186
7187 static unsigned int
7188 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7189 {
7190 unsigned int bytes_read;
7191
7192 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7193 }
7194
7195 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7196 Return the corresponding abbrev, or NULL if the number is zero (indicating
7197 an empty DIE). In either case *BYTES_READ will be set to the length of
7198 the initial number. */
7199
7200 static struct abbrev_info *
7201 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7202 struct dwarf2_cu *cu)
7203 {
7204 bfd *abfd = cu->objfile->obfd;
7205 unsigned int abbrev_number;
7206 struct abbrev_info *abbrev;
7207
7208 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7209
7210 if (abbrev_number == 0)
7211 return NULL;
7212
7213 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7214 if (!abbrev)
7215 {
7216 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7217 " at offset 0x%x [in module %s]"),
7218 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7219 cu->header.offset.sect_off, bfd_get_filename (abfd));
7220 }
7221
7222 return abbrev;
7223 }
7224
7225 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7226 Returns a pointer to the end of a series of DIEs, terminated by an empty
7227 DIE. Any children of the skipped DIEs will also be skipped. */
7228
7229 static const gdb_byte *
7230 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7231 {
7232 struct dwarf2_cu *cu = reader->cu;
7233 struct abbrev_info *abbrev;
7234 unsigned int bytes_read;
7235
7236 while (1)
7237 {
7238 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7239 if (abbrev == NULL)
7240 return info_ptr + bytes_read;
7241 else
7242 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7243 }
7244 }
7245
7246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7247 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7248 abbrev corresponding to that skipped uleb128 should be passed in
7249 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7250 children. */
7251
7252 static const gdb_byte *
7253 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7254 struct abbrev_info *abbrev)
7255 {
7256 unsigned int bytes_read;
7257 struct attribute attr;
7258 bfd *abfd = reader->abfd;
7259 struct dwarf2_cu *cu = reader->cu;
7260 const gdb_byte *buffer = reader->buffer;
7261 const gdb_byte *buffer_end = reader->buffer_end;
7262 const gdb_byte *start_info_ptr = info_ptr;
7263 unsigned int form, i;
7264
7265 for (i = 0; i < abbrev->num_attrs; i++)
7266 {
7267 /* The only abbrev we care about is DW_AT_sibling. */
7268 if (abbrev->attrs[i].name == DW_AT_sibling)
7269 {
7270 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7271 if (attr.form == DW_FORM_ref_addr)
7272 complaint (&symfile_complaints,
7273 _("ignoring absolute DW_AT_sibling"));
7274 else
7275 {
7276 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7277 const gdb_byte *sibling_ptr = buffer + off;
7278
7279 if (sibling_ptr < info_ptr)
7280 complaint (&symfile_complaints,
7281 _("DW_AT_sibling points backwards"));
7282 else if (sibling_ptr > reader->buffer_end)
7283 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7284 else
7285 return sibling_ptr;
7286 }
7287 }
7288
7289 /* If it isn't DW_AT_sibling, skip this attribute. */
7290 form = abbrev->attrs[i].form;
7291 skip_attribute:
7292 switch (form)
7293 {
7294 case DW_FORM_ref_addr:
7295 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7296 and later it is offset sized. */
7297 if (cu->header.version == 2)
7298 info_ptr += cu->header.addr_size;
7299 else
7300 info_ptr += cu->header.offset_size;
7301 break;
7302 case DW_FORM_GNU_ref_alt:
7303 info_ptr += cu->header.offset_size;
7304 break;
7305 case DW_FORM_addr:
7306 info_ptr += cu->header.addr_size;
7307 break;
7308 case DW_FORM_data1:
7309 case DW_FORM_ref1:
7310 case DW_FORM_flag:
7311 info_ptr += 1;
7312 break;
7313 case DW_FORM_flag_present:
7314 break;
7315 case DW_FORM_data2:
7316 case DW_FORM_ref2:
7317 info_ptr += 2;
7318 break;
7319 case DW_FORM_data4:
7320 case DW_FORM_ref4:
7321 info_ptr += 4;
7322 break;
7323 case DW_FORM_data8:
7324 case DW_FORM_ref8:
7325 case DW_FORM_ref_sig8:
7326 info_ptr += 8;
7327 break;
7328 case DW_FORM_string:
7329 read_direct_string (abfd, info_ptr, &bytes_read);
7330 info_ptr += bytes_read;
7331 break;
7332 case DW_FORM_sec_offset:
7333 case DW_FORM_strp:
7334 case DW_FORM_GNU_strp_alt:
7335 info_ptr += cu->header.offset_size;
7336 break;
7337 case DW_FORM_exprloc:
7338 case DW_FORM_block:
7339 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7340 info_ptr += bytes_read;
7341 break;
7342 case DW_FORM_block1:
7343 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7344 break;
7345 case DW_FORM_block2:
7346 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7347 break;
7348 case DW_FORM_block4:
7349 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7350 break;
7351 case DW_FORM_sdata:
7352 case DW_FORM_udata:
7353 case DW_FORM_ref_udata:
7354 case DW_FORM_GNU_addr_index:
7355 case DW_FORM_GNU_str_index:
7356 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7357 break;
7358 case DW_FORM_indirect:
7359 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7360 info_ptr += bytes_read;
7361 /* We need to continue parsing from here, so just go back to
7362 the top. */
7363 goto skip_attribute;
7364
7365 default:
7366 error (_("Dwarf Error: Cannot handle %s "
7367 "in DWARF reader [in module %s]"),
7368 dwarf_form_name (form),
7369 bfd_get_filename (abfd));
7370 }
7371 }
7372
7373 if (abbrev->has_children)
7374 return skip_children (reader, info_ptr);
7375 else
7376 return info_ptr;
7377 }
7378
7379 /* Locate ORIG_PDI's sibling.
7380 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7381
7382 static const gdb_byte *
7383 locate_pdi_sibling (const struct die_reader_specs *reader,
7384 struct partial_die_info *orig_pdi,
7385 const gdb_byte *info_ptr)
7386 {
7387 /* Do we know the sibling already? */
7388
7389 if (orig_pdi->sibling)
7390 return orig_pdi->sibling;
7391
7392 /* Are there any children to deal with? */
7393
7394 if (!orig_pdi->has_children)
7395 return info_ptr;
7396
7397 /* Skip the children the long way. */
7398
7399 return skip_children (reader, info_ptr);
7400 }
7401
7402 /* Expand this partial symbol table into a full symbol table. SELF is
7403 not NULL. */
7404
7405 static void
7406 dwarf2_read_symtab (struct partial_symtab *self,
7407 struct objfile *objfile)
7408 {
7409 if (self->readin)
7410 {
7411 warning (_("bug: psymtab for %s is already read in."),
7412 self->filename);
7413 }
7414 else
7415 {
7416 if (info_verbose)
7417 {
7418 printf_filtered (_("Reading in symbols for %s..."),
7419 self->filename);
7420 gdb_flush (gdb_stdout);
7421 }
7422
7423 /* Restore our global data. */
7424 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7425
7426 /* If this psymtab is constructed from a debug-only objfile, the
7427 has_section_at_zero flag will not necessarily be correct. We
7428 can get the correct value for this flag by looking at the data
7429 associated with the (presumably stripped) associated objfile. */
7430 if (objfile->separate_debug_objfile_backlink)
7431 {
7432 struct dwarf2_per_objfile *dpo_backlink
7433 = objfile_data (objfile->separate_debug_objfile_backlink,
7434 dwarf2_objfile_data_key);
7435
7436 dwarf2_per_objfile->has_section_at_zero
7437 = dpo_backlink->has_section_at_zero;
7438 }
7439
7440 dwarf2_per_objfile->reading_partial_symbols = 0;
7441
7442 psymtab_to_symtab_1 (self);
7443
7444 /* Finish up the debug error message. */
7445 if (info_verbose)
7446 printf_filtered (_("done.\n"));
7447 }
7448
7449 process_cu_includes ();
7450 }
7451 \f
7452 /* Reading in full CUs. */
7453
7454 /* Add PER_CU to the queue. */
7455
7456 static void
7457 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7458 enum language pretend_language)
7459 {
7460 struct dwarf2_queue_item *item;
7461
7462 per_cu->queued = 1;
7463 item = xmalloc (sizeof (*item));
7464 item->per_cu = per_cu;
7465 item->pretend_language = pretend_language;
7466 item->next = NULL;
7467
7468 if (dwarf2_queue == NULL)
7469 dwarf2_queue = item;
7470 else
7471 dwarf2_queue_tail->next = item;
7472
7473 dwarf2_queue_tail = item;
7474 }
7475
7476 /* If PER_CU is not yet queued, add it to the queue.
7477 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7478 dependency.
7479 The result is non-zero if PER_CU was queued, otherwise the result is zero
7480 meaning either PER_CU is already queued or it is already loaded.
7481
7482 N.B. There is an invariant here that if a CU is queued then it is loaded.
7483 The caller is required to load PER_CU if we return non-zero. */
7484
7485 static int
7486 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7487 struct dwarf2_per_cu_data *per_cu,
7488 enum language pretend_language)
7489 {
7490 /* We may arrive here during partial symbol reading, if we need full
7491 DIEs to process an unusual case (e.g. template arguments). Do
7492 not queue PER_CU, just tell our caller to load its DIEs. */
7493 if (dwarf2_per_objfile->reading_partial_symbols)
7494 {
7495 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7496 return 1;
7497 return 0;
7498 }
7499
7500 /* Mark the dependence relation so that we don't flush PER_CU
7501 too early. */
7502 if (dependent_cu != NULL)
7503 dwarf2_add_dependence (dependent_cu, per_cu);
7504
7505 /* If it's already on the queue, we have nothing to do. */
7506 if (per_cu->queued)
7507 return 0;
7508
7509 /* If the compilation unit is already loaded, just mark it as
7510 used. */
7511 if (per_cu->cu != NULL)
7512 {
7513 per_cu->cu->last_used = 0;
7514 return 0;
7515 }
7516
7517 /* Add it to the queue. */
7518 queue_comp_unit (per_cu, pretend_language);
7519
7520 return 1;
7521 }
7522
7523 /* Process the queue. */
7524
7525 static void
7526 process_queue (void)
7527 {
7528 struct dwarf2_queue_item *item, *next_item;
7529
7530 if (dwarf2_read_debug)
7531 {
7532 fprintf_unfiltered (gdb_stdlog,
7533 "Expanding one or more symtabs of objfile %s ...\n",
7534 objfile_name (dwarf2_per_objfile->objfile));
7535 }
7536
7537 /* The queue starts out with one item, but following a DIE reference
7538 may load a new CU, adding it to the end of the queue. */
7539 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7540 {
7541 if (dwarf2_per_objfile->using_index
7542 ? !item->per_cu->v.quick->compunit_symtab
7543 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7544 {
7545 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7546 unsigned int debug_print_threshold;
7547 char buf[100];
7548
7549 if (per_cu->is_debug_types)
7550 {
7551 struct signatured_type *sig_type =
7552 (struct signatured_type *) per_cu;
7553
7554 sprintf (buf, "TU %s at offset 0x%x",
7555 hex_string (sig_type->signature),
7556 per_cu->offset.sect_off);
7557 /* There can be 100s of TUs.
7558 Only print them in verbose mode. */
7559 debug_print_threshold = 2;
7560 }
7561 else
7562 {
7563 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7564 debug_print_threshold = 1;
7565 }
7566
7567 if (dwarf2_read_debug >= debug_print_threshold)
7568 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7569
7570 if (per_cu->is_debug_types)
7571 process_full_type_unit (per_cu, item->pretend_language);
7572 else
7573 process_full_comp_unit (per_cu, item->pretend_language);
7574
7575 if (dwarf2_read_debug >= debug_print_threshold)
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7577 }
7578
7579 item->per_cu->queued = 0;
7580 next_item = item->next;
7581 xfree (item);
7582 }
7583
7584 dwarf2_queue_tail = NULL;
7585
7586 if (dwarf2_read_debug)
7587 {
7588 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7589 objfile_name (dwarf2_per_objfile->objfile));
7590 }
7591 }
7592
7593 /* Free all allocated queue entries. This function only releases anything if
7594 an error was thrown; if the queue was processed then it would have been
7595 freed as we went along. */
7596
7597 static void
7598 dwarf2_release_queue (void *dummy)
7599 {
7600 struct dwarf2_queue_item *item, *last;
7601
7602 item = dwarf2_queue;
7603 while (item)
7604 {
7605 /* Anything still marked queued is likely to be in an
7606 inconsistent state, so discard it. */
7607 if (item->per_cu->queued)
7608 {
7609 if (item->per_cu->cu != NULL)
7610 free_one_cached_comp_unit (item->per_cu);
7611 item->per_cu->queued = 0;
7612 }
7613
7614 last = item;
7615 item = item->next;
7616 xfree (last);
7617 }
7618
7619 dwarf2_queue = dwarf2_queue_tail = NULL;
7620 }
7621
7622 /* Read in full symbols for PST, and anything it depends on. */
7623
7624 static void
7625 psymtab_to_symtab_1 (struct partial_symtab *pst)
7626 {
7627 struct dwarf2_per_cu_data *per_cu;
7628 int i;
7629
7630 if (pst->readin)
7631 return;
7632
7633 for (i = 0; i < pst->number_of_dependencies; i++)
7634 if (!pst->dependencies[i]->readin
7635 && pst->dependencies[i]->user == NULL)
7636 {
7637 /* Inform about additional files that need to be read in. */
7638 if (info_verbose)
7639 {
7640 /* FIXME: i18n: Need to make this a single string. */
7641 fputs_filtered (" ", gdb_stdout);
7642 wrap_here ("");
7643 fputs_filtered ("and ", gdb_stdout);
7644 wrap_here ("");
7645 printf_filtered ("%s...", pst->dependencies[i]->filename);
7646 wrap_here (""); /* Flush output. */
7647 gdb_flush (gdb_stdout);
7648 }
7649 psymtab_to_symtab_1 (pst->dependencies[i]);
7650 }
7651
7652 per_cu = pst->read_symtab_private;
7653
7654 if (per_cu == NULL)
7655 {
7656 /* It's an include file, no symbols to read for it.
7657 Everything is in the parent symtab. */
7658 pst->readin = 1;
7659 return;
7660 }
7661
7662 dw2_do_instantiate_symtab (per_cu);
7663 }
7664
7665 /* Trivial hash function for die_info: the hash value of a DIE
7666 is its offset in .debug_info for this objfile. */
7667
7668 static hashval_t
7669 die_hash (const void *item)
7670 {
7671 const struct die_info *die = item;
7672
7673 return die->offset.sect_off;
7674 }
7675
7676 /* Trivial comparison function for die_info structures: two DIEs
7677 are equal if they have the same offset. */
7678
7679 static int
7680 die_eq (const void *item_lhs, const void *item_rhs)
7681 {
7682 const struct die_info *die_lhs = item_lhs;
7683 const struct die_info *die_rhs = item_rhs;
7684
7685 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7686 }
7687
7688 /* die_reader_func for load_full_comp_unit.
7689 This is identical to read_signatured_type_reader,
7690 but is kept separate for now. */
7691
7692 static void
7693 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7694 const gdb_byte *info_ptr,
7695 struct die_info *comp_unit_die,
7696 int has_children,
7697 void *data)
7698 {
7699 struct dwarf2_cu *cu = reader->cu;
7700 enum language *language_ptr = data;
7701
7702 gdb_assert (cu->die_hash == NULL);
7703 cu->die_hash =
7704 htab_create_alloc_ex (cu->header.length / 12,
7705 die_hash,
7706 die_eq,
7707 NULL,
7708 &cu->comp_unit_obstack,
7709 hashtab_obstack_allocate,
7710 dummy_obstack_deallocate);
7711
7712 if (has_children)
7713 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7714 &info_ptr, comp_unit_die);
7715 cu->dies = comp_unit_die;
7716 /* comp_unit_die is not stored in die_hash, no need. */
7717
7718 /* We try not to read any attributes in this function, because not
7719 all CUs needed for references have been loaded yet, and symbol
7720 table processing isn't initialized. But we have to set the CU language,
7721 or we won't be able to build types correctly.
7722 Similarly, if we do not read the producer, we can not apply
7723 producer-specific interpretation. */
7724 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7725 }
7726
7727 /* Load the DIEs associated with PER_CU into memory. */
7728
7729 static void
7730 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7731 enum language pretend_language)
7732 {
7733 gdb_assert (! this_cu->is_debug_types);
7734
7735 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7736 load_full_comp_unit_reader, &pretend_language);
7737 }
7738
7739 /* Add a DIE to the delayed physname list. */
7740
7741 static void
7742 add_to_method_list (struct type *type, int fnfield_index, int index,
7743 const char *name, struct die_info *die,
7744 struct dwarf2_cu *cu)
7745 {
7746 struct delayed_method_info mi;
7747 mi.type = type;
7748 mi.fnfield_index = fnfield_index;
7749 mi.index = index;
7750 mi.name = name;
7751 mi.die = die;
7752 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7753 }
7754
7755 /* A cleanup for freeing the delayed method list. */
7756
7757 static void
7758 free_delayed_list (void *ptr)
7759 {
7760 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7761 if (cu->method_list != NULL)
7762 {
7763 VEC_free (delayed_method_info, cu->method_list);
7764 cu->method_list = NULL;
7765 }
7766 }
7767
7768 /* Compute the physnames of any methods on the CU's method list.
7769
7770 The computation of method physnames is delayed in order to avoid the
7771 (bad) condition that one of the method's formal parameters is of an as yet
7772 incomplete type. */
7773
7774 static void
7775 compute_delayed_physnames (struct dwarf2_cu *cu)
7776 {
7777 int i;
7778 struct delayed_method_info *mi;
7779 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7780 {
7781 const char *physname;
7782 struct fn_fieldlist *fn_flp
7783 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7784 physname = dwarf2_physname (mi->name, mi->die, cu);
7785 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7786 = physname ? physname : "";
7787 }
7788 }
7789
7790 /* Go objects should be embedded in a DW_TAG_module DIE,
7791 and it's not clear if/how imported objects will appear.
7792 To keep Go support simple until that's worked out,
7793 go back through what we've read and create something usable.
7794 We could do this while processing each DIE, and feels kinda cleaner,
7795 but that way is more invasive.
7796 This is to, for example, allow the user to type "p var" or "b main"
7797 without having to specify the package name, and allow lookups
7798 of module.object to work in contexts that use the expression
7799 parser. */
7800
7801 static void
7802 fixup_go_packaging (struct dwarf2_cu *cu)
7803 {
7804 char *package_name = NULL;
7805 struct pending *list;
7806 int i;
7807
7808 for (list = global_symbols; list != NULL; list = list->next)
7809 {
7810 for (i = 0; i < list->nsyms; ++i)
7811 {
7812 struct symbol *sym = list->symbol[i];
7813
7814 if (SYMBOL_LANGUAGE (sym) == language_go
7815 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7816 {
7817 char *this_package_name = go_symbol_package_name (sym);
7818
7819 if (this_package_name == NULL)
7820 continue;
7821 if (package_name == NULL)
7822 package_name = this_package_name;
7823 else
7824 {
7825 if (strcmp (package_name, this_package_name) != 0)
7826 complaint (&symfile_complaints,
7827 _("Symtab %s has objects from two different Go packages: %s and %s"),
7828 (symbol_symtab (sym) != NULL
7829 ? symtab_to_filename_for_display
7830 (symbol_symtab (sym))
7831 : objfile_name (cu->objfile)),
7832 this_package_name, package_name);
7833 xfree (this_package_name);
7834 }
7835 }
7836 }
7837 }
7838
7839 if (package_name != NULL)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842 const char *saved_package_name
7843 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7844 package_name,
7845 strlen (package_name));
7846 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7847 saved_package_name, objfile);
7848 struct symbol *sym;
7849
7850 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7851
7852 sym = allocate_symbol (objfile);
7853 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7854 SYMBOL_SET_NAMES (sym, saved_package_name,
7855 strlen (saved_package_name), 0, objfile);
7856 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7857 e.g., "main" finds the "main" module and not C's main(). */
7858 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7859 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7860 SYMBOL_TYPE (sym) = type;
7861
7862 add_symbol_to_list (sym, &global_symbols);
7863
7864 xfree (package_name);
7865 }
7866 }
7867
7868 /* Return the symtab for PER_CU. This works properly regardless of
7869 whether we're using the index or psymtabs. */
7870
7871 static struct compunit_symtab *
7872 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7873 {
7874 return (dwarf2_per_objfile->using_index
7875 ? per_cu->v.quick->compunit_symtab
7876 : per_cu->v.psymtab->compunit_symtab);
7877 }
7878
7879 /* A helper function for computing the list of all symbol tables
7880 included by PER_CU. */
7881
7882 static void
7883 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7884 htab_t all_children, htab_t all_type_symtabs,
7885 struct dwarf2_per_cu_data *per_cu,
7886 struct compunit_symtab *immediate_parent)
7887 {
7888 void **slot;
7889 int ix;
7890 struct compunit_symtab *cust;
7891 struct dwarf2_per_cu_data *iter;
7892
7893 slot = htab_find_slot (all_children, per_cu, INSERT);
7894 if (*slot != NULL)
7895 {
7896 /* This inclusion and its children have been processed. */
7897 return;
7898 }
7899
7900 *slot = per_cu;
7901 /* Only add a CU if it has a symbol table. */
7902 cust = get_compunit_symtab (per_cu);
7903 if (cust != NULL)
7904 {
7905 /* If this is a type unit only add its symbol table if we haven't
7906 seen it yet (type unit per_cu's can share symtabs). */
7907 if (per_cu->is_debug_types)
7908 {
7909 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7910 if (*slot == NULL)
7911 {
7912 *slot = cust;
7913 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7914 if (cust->user == NULL)
7915 cust->user = immediate_parent;
7916 }
7917 }
7918 else
7919 {
7920 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7921 if (cust->user == NULL)
7922 cust->user = immediate_parent;
7923 }
7924 }
7925
7926 for (ix = 0;
7927 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7928 ++ix)
7929 {
7930 recursively_compute_inclusions (result, all_children,
7931 all_type_symtabs, iter, cust);
7932 }
7933 }
7934
7935 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7936 PER_CU. */
7937
7938 static void
7939 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7940 {
7941 gdb_assert (! per_cu->is_debug_types);
7942
7943 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7944 {
7945 int ix, len;
7946 struct dwarf2_per_cu_data *per_cu_iter;
7947 struct compunit_symtab *compunit_symtab_iter;
7948 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7949 htab_t all_children, all_type_symtabs;
7950 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7951
7952 /* If we don't have a symtab, we can just skip this case. */
7953 if (cust == NULL)
7954 return;
7955
7956 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7957 NULL, xcalloc, xfree);
7958 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960
7961 for (ix = 0;
7962 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7963 ix, per_cu_iter);
7964 ++ix)
7965 {
7966 recursively_compute_inclusions (&result_symtabs, all_children,
7967 all_type_symtabs, per_cu_iter,
7968 cust);
7969 }
7970
7971 /* Now we have a transitive closure of all the included symtabs. */
7972 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7973 cust->includes
7974 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7975 (len + 1) * sizeof (struct symtab *));
7976 for (ix = 0;
7977 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7978 compunit_symtab_iter);
7979 ++ix)
7980 cust->includes[ix] = compunit_symtab_iter;
7981 cust->includes[len] = NULL;
7982
7983 VEC_free (compunit_symtab_ptr, result_symtabs);
7984 htab_delete (all_children);
7985 htab_delete (all_type_symtabs);
7986 }
7987 }
7988
7989 /* Compute the 'includes' field for the symtabs of all the CUs we just
7990 read. */
7991
7992 static void
7993 process_cu_includes (void)
7994 {
7995 int ix;
7996 struct dwarf2_per_cu_data *iter;
7997
7998 for (ix = 0;
7999 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8000 ix, iter);
8001 ++ix)
8002 {
8003 if (! iter->is_debug_types)
8004 compute_compunit_symtab_includes (iter);
8005 }
8006
8007 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8008 }
8009
8010 /* Generate full symbol information for PER_CU, whose DIEs have
8011 already been loaded into memory. */
8012
8013 static void
8014 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8015 enum language pretend_language)
8016 {
8017 struct dwarf2_cu *cu = per_cu->cu;
8018 struct objfile *objfile = per_cu->objfile;
8019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8020 CORE_ADDR lowpc, highpc;
8021 struct compunit_symtab *cust;
8022 struct cleanup *back_to, *delayed_list_cleanup;
8023 CORE_ADDR baseaddr;
8024 struct block *static_block;
8025 CORE_ADDR addr;
8026
8027 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028
8029 buildsym_init ();
8030 back_to = make_cleanup (really_free_pendings, NULL);
8031 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8032
8033 cu->list_in_scope = &file_symbols;
8034
8035 cu->language = pretend_language;
8036 cu->language_defn = language_def (cu->language);
8037
8038 /* Do line number decoding in read_file_scope () */
8039 process_die (cu->dies, cu);
8040
8041 /* For now fudge the Go package. */
8042 if (cu->language == language_go)
8043 fixup_go_packaging (cu);
8044
8045 /* Now that we have processed all the DIEs in the CU, all the types
8046 should be complete, and it should now be safe to compute all of the
8047 physnames. */
8048 compute_delayed_physnames (cu);
8049 do_cleanups (delayed_list_cleanup);
8050
8051 /* Some compilers don't define a DW_AT_high_pc attribute for the
8052 compilation unit. If the DW_AT_high_pc is missing, synthesize
8053 it, by scanning the DIE's below the compilation unit. */
8054 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8055
8056 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8057 static_block = end_symtab_get_static_block (addr, 0, 1);
8058
8059 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8060 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8061 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8062 addrmap to help ensure it has an accurate map of pc values belonging to
8063 this comp unit. */
8064 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8065
8066 cust = end_symtab_from_static_block (static_block,
8067 SECT_OFF_TEXT (objfile), 0);
8068
8069 if (cust != NULL)
8070 {
8071 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8072
8073 /* Set symtab language to language from DW_AT_language. If the
8074 compilation is from a C file generated by language preprocessors, do
8075 not set the language if it was already deduced by start_subfile. */
8076 if (!(cu->language == language_c
8077 && COMPUNIT_FILETABS (cust)->language != language_c))
8078 COMPUNIT_FILETABS (cust)->language = cu->language;
8079
8080 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8081 produce DW_AT_location with location lists but it can be possibly
8082 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8083 there were bugs in prologue debug info, fixed later in GCC-4.5
8084 by "unwind info for epilogues" patch (which is not directly related).
8085
8086 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8087 needed, it would be wrong due to missing DW_AT_producer there.
8088
8089 Still one can confuse GDB by using non-standard GCC compilation
8090 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8091 */
8092 if (cu->has_loclist && gcc_4_minor >= 5)
8093 cust->locations_valid = 1;
8094
8095 if (gcc_4_minor >= 5)
8096 cust->epilogue_unwind_valid = 1;
8097
8098 cust->call_site_htab = cu->call_site_htab;
8099 }
8100
8101 if (dwarf2_per_objfile->using_index)
8102 per_cu->v.quick->compunit_symtab = cust;
8103 else
8104 {
8105 struct partial_symtab *pst = per_cu->v.psymtab;
8106 pst->compunit_symtab = cust;
8107 pst->readin = 1;
8108 }
8109
8110 /* Push it for inclusion processing later. */
8111 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8112
8113 do_cleanups (back_to);
8114 }
8115
8116 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8117 already been loaded into memory. */
8118
8119 static void
8120 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8121 enum language pretend_language)
8122 {
8123 struct dwarf2_cu *cu = per_cu->cu;
8124 struct objfile *objfile = per_cu->objfile;
8125 struct compunit_symtab *cust;
8126 struct cleanup *back_to, *delayed_list_cleanup;
8127 struct signatured_type *sig_type;
8128
8129 gdb_assert (per_cu->is_debug_types);
8130 sig_type = (struct signatured_type *) per_cu;
8131
8132 buildsym_init ();
8133 back_to = make_cleanup (really_free_pendings, NULL);
8134 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8135
8136 cu->list_in_scope = &file_symbols;
8137
8138 cu->language = pretend_language;
8139 cu->language_defn = language_def (cu->language);
8140
8141 /* The symbol tables are set up in read_type_unit_scope. */
8142 process_die (cu->dies, cu);
8143
8144 /* For now fudge the Go package. */
8145 if (cu->language == language_go)
8146 fixup_go_packaging (cu);
8147
8148 /* Now that we have processed all the DIEs in the CU, all the types
8149 should be complete, and it should now be safe to compute all of the
8150 physnames. */
8151 compute_delayed_physnames (cu);
8152 do_cleanups (delayed_list_cleanup);
8153
8154 /* TUs share symbol tables.
8155 If this is the first TU to use this symtab, complete the construction
8156 of it with end_expandable_symtab. Otherwise, complete the addition of
8157 this TU's symbols to the existing symtab. */
8158 if (sig_type->type_unit_group->compunit_symtab == NULL)
8159 {
8160 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8161 sig_type->type_unit_group->compunit_symtab = cust;
8162
8163 if (cust != NULL)
8164 {
8165 /* Set symtab language to language from DW_AT_language. If the
8166 compilation is from a C file generated by language preprocessors,
8167 do not set the language if it was already deduced by
8168 start_subfile. */
8169 if (!(cu->language == language_c
8170 && COMPUNIT_FILETABS (cust)->language != language_c))
8171 COMPUNIT_FILETABS (cust)->language = cu->language;
8172 }
8173 }
8174 else
8175 {
8176 augment_type_symtab ();
8177 cust = sig_type->type_unit_group->compunit_symtab;
8178 }
8179
8180 if (dwarf2_per_objfile->using_index)
8181 per_cu->v.quick->compunit_symtab = cust;
8182 else
8183 {
8184 struct partial_symtab *pst = per_cu->v.psymtab;
8185 pst->compunit_symtab = cust;
8186 pst->readin = 1;
8187 }
8188
8189 do_cleanups (back_to);
8190 }
8191
8192 /* Process an imported unit DIE. */
8193
8194 static void
8195 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8196 {
8197 struct attribute *attr;
8198
8199 /* For now we don't handle imported units in type units. */
8200 if (cu->per_cu->is_debug_types)
8201 {
8202 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8203 " supported in type units [in module %s]"),
8204 objfile_name (cu->objfile));
8205 }
8206
8207 attr = dwarf2_attr (die, DW_AT_import, cu);
8208 if (attr != NULL)
8209 {
8210 struct dwarf2_per_cu_data *per_cu;
8211 struct symtab *imported_symtab;
8212 sect_offset offset;
8213 int is_dwz;
8214
8215 offset = dwarf2_get_ref_die_offset (attr);
8216 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8217 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8218
8219 /* If necessary, add it to the queue and load its DIEs. */
8220 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8221 load_full_comp_unit (per_cu, cu->language);
8222
8223 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8224 per_cu);
8225 }
8226 }
8227
8228 /* Reset the in_process bit of a die. */
8229
8230 static void
8231 reset_die_in_process (void *arg)
8232 {
8233 struct die_info *die = arg;
8234
8235 die->in_process = 0;
8236 }
8237
8238 /* Process a die and its children. */
8239
8240 static void
8241 process_die (struct die_info *die, struct dwarf2_cu *cu)
8242 {
8243 struct cleanup *in_process;
8244
8245 /* We should only be processing those not already in process. */
8246 gdb_assert (!die->in_process);
8247
8248 die->in_process = 1;
8249 in_process = make_cleanup (reset_die_in_process,die);
8250
8251 switch (die->tag)
8252 {
8253 case DW_TAG_padding:
8254 break;
8255 case DW_TAG_compile_unit:
8256 case DW_TAG_partial_unit:
8257 read_file_scope (die, cu);
8258 break;
8259 case DW_TAG_type_unit:
8260 read_type_unit_scope (die, cu);
8261 break;
8262 case DW_TAG_subprogram:
8263 case DW_TAG_inlined_subroutine:
8264 read_func_scope (die, cu);
8265 break;
8266 case DW_TAG_lexical_block:
8267 case DW_TAG_try_block:
8268 case DW_TAG_catch_block:
8269 read_lexical_block_scope (die, cu);
8270 break;
8271 case DW_TAG_GNU_call_site:
8272 read_call_site_scope (die, cu);
8273 break;
8274 case DW_TAG_class_type:
8275 case DW_TAG_interface_type:
8276 case DW_TAG_structure_type:
8277 case DW_TAG_union_type:
8278 process_structure_scope (die, cu);
8279 break;
8280 case DW_TAG_enumeration_type:
8281 process_enumeration_scope (die, cu);
8282 break;
8283
8284 /* These dies have a type, but processing them does not create
8285 a symbol or recurse to process the children. Therefore we can
8286 read them on-demand through read_type_die. */
8287 case DW_TAG_subroutine_type:
8288 case DW_TAG_set_type:
8289 case DW_TAG_array_type:
8290 case DW_TAG_pointer_type:
8291 case DW_TAG_ptr_to_member_type:
8292 case DW_TAG_reference_type:
8293 case DW_TAG_string_type:
8294 break;
8295
8296 case DW_TAG_base_type:
8297 case DW_TAG_subrange_type:
8298 case DW_TAG_typedef:
8299 /* Add a typedef symbol for the type definition, if it has a
8300 DW_AT_name. */
8301 new_symbol (die, read_type_die (die, cu), cu);
8302 break;
8303 case DW_TAG_common_block:
8304 read_common_block (die, cu);
8305 break;
8306 case DW_TAG_common_inclusion:
8307 break;
8308 case DW_TAG_namespace:
8309 cu->processing_has_namespace_info = 1;
8310 read_namespace (die, cu);
8311 break;
8312 case DW_TAG_module:
8313 cu->processing_has_namespace_info = 1;
8314 read_module (die, cu);
8315 break;
8316 case DW_TAG_imported_declaration:
8317 cu->processing_has_namespace_info = 1;
8318 if (read_namespace_alias (die, cu))
8319 break;
8320 /* The declaration is not a global namespace alias: fall through. */
8321 case DW_TAG_imported_module:
8322 cu->processing_has_namespace_info = 1;
8323 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8324 || cu->language != language_fortran))
8325 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8326 dwarf_tag_name (die->tag));
8327 read_import_statement (die, cu);
8328 break;
8329
8330 case DW_TAG_imported_unit:
8331 process_imported_unit_die (die, cu);
8332 break;
8333
8334 default:
8335 new_symbol (die, NULL, cu);
8336 break;
8337 }
8338
8339 do_cleanups (in_process);
8340 }
8341 \f
8342 /* DWARF name computation. */
8343
8344 /* A helper function for dwarf2_compute_name which determines whether DIE
8345 needs to have the name of the scope prepended to the name listed in the
8346 die. */
8347
8348 static int
8349 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8350 {
8351 struct attribute *attr;
8352
8353 switch (die->tag)
8354 {
8355 case DW_TAG_namespace:
8356 case DW_TAG_typedef:
8357 case DW_TAG_class_type:
8358 case DW_TAG_interface_type:
8359 case DW_TAG_structure_type:
8360 case DW_TAG_union_type:
8361 case DW_TAG_enumeration_type:
8362 case DW_TAG_enumerator:
8363 case DW_TAG_subprogram:
8364 case DW_TAG_member:
8365 case DW_TAG_imported_declaration:
8366 return 1;
8367
8368 case DW_TAG_variable:
8369 case DW_TAG_constant:
8370 /* We only need to prefix "globally" visible variables. These include
8371 any variable marked with DW_AT_external or any variable that
8372 lives in a namespace. [Variables in anonymous namespaces
8373 require prefixing, but they are not DW_AT_external.] */
8374
8375 if (dwarf2_attr (die, DW_AT_specification, cu))
8376 {
8377 struct dwarf2_cu *spec_cu = cu;
8378
8379 return die_needs_namespace (die_specification (die, &spec_cu),
8380 spec_cu);
8381 }
8382
8383 attr = dwarf2_attr (die, DW_AT_external, cu);
8384 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8385 && die->parent->tag != DW_TAG_module)
8386 return 0;
8387 /* A variable in a lexical block of some kind does not need a
8388 namespace, even though in C++ such variables may be external
8389 and have a mangled name. */
8390 if (die->parent->tag == DW_TAG_lexical_block
8391 || die->parent->tag == DW_TAG_try_block
8392 || die->parent->tag == DW_TAG_catch_block
8393 || die->parent->tag == DW_TAG_subprogram)
8394 return 0;
8395 return 1;
8396
8397 default:
8398 return 0;
8399 }
8400 }
8401
8402 /* Retrieve the last character from a mem_file. */
8403
8404 static void
8405 do_ui_file_peek_last (void *object, const char *buffer, long length)
8406 {
8407 char *last_char_p = (char *) object;
8408
8409 if (length > 0)
8410 *last_char_p = buffer[length - 1];
8411 }
8412
8413 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8414 compute the physname for the object, which include a method's:
8415 - formal parameters (C++/Java),
8416 - receiver type (Go),
8417 - return type (Java).
8418
8419 The term "physname" is a bit confusing.
8420 For C++, for example, it is the demangled name.
8421 For Go, for example, it's the mangled name.
8422
8423 For Ada, return the DIE's linkage name rather than the fully qualified
8424 name. PHYSNAME is ignored..
8425
8426 The result is allocated on the objfile_obstack and canonicalized. */
8427
8428 static const char *
8429 dwarf2_compute_name (const char *name,
8430 struct die_info *die, struct dwarf2_cu *cu,
8431 int physname)
8432 {
8433 struct objfile *objfile = cu->objfile;
8434
8435 if (name == NULL)
8436 name = dwarf2_name (die, cu);
8437
8438 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8439 compute it by typename_concat inside GDB. */
8440 if (cu->language == language_ada
8441 || (cu->language == language_fortran && physname))
8442 {
8443 /* For Ada unit, we prefer the linkage name over the name, as
8444 the former contains the exported name, which the user expects
8445 to be able to reference. Ideally, we want the user to be able
8446 to reference this entity using either natural or linkage name,
8447 but we haven't started looking at this enhancement yet. */
8448 struct attribute *attr;
8449
8450 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8451 if (attr == NULL)
8452 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8453 if (attr && DW_STRING (attr))
8454 return DW_STRING (attr);
8455 }
8456
8457 /* These are the only languages we know how to qualify names in. */
8458 if (name != NULL
8459 && (cu->language == language_cplus || cu->language == language_java
8460 || cu->language == language_fortran))
8461 {
8462 if (die_needs_namespace (die, cu))
8463 {
8464 long length;
8465 const char *prefix;
8466 struct ui_file *buf;
8467 char *intermediate_name;
8468 const char *canonical_name = NULL;
8469
8470 prefix = determine_prefix (die, cu);
8471 buf = mem_fileopen ();
8472 if (*prefix != '\0')
8473 {
8474 char *prefixed_name = typename_concat (NULL, prefix, name,
8475 physname, cu);
8476
8477 fputs_unfiltered (prefixed_name, buf);
8478 xfree (prefixed_name);
8479 }
8480 else
8481 fputs_unfiltered (name, buf);
8482
8483 /* Template parameters may be specified in the DIE's DW_AT_name, or
8484 as children with DW_TAG_template_type_param or
8485 DW_TAG_value_type_param. If the latter, add them to the name
8486 here. If the name already has template parameters, then
8487 skip this step; some versions of GCC emit both, and
8488 it is more efficient to use the pre-computed name.
8489
8490 Something to keep in mind about this process: it is very
8491 unlikely, or in some cases downright impossible, to produce
8492 something that will match the mangled name of a function.
8493 If the definition of the function has the same debug info,
8494 we should be able to match up with it anyway. But fallbacks
8495 using the minimal symbol, for instance to find a method
8496 implemented in a stripped copy of libstdc++, will not work.
8497 If we do not have debug info for the definition, we will have to
8498 match them up some other way.
8499
8500 When we do name matching there is a related problem with function
8501 templates; two instantiated function templates are allowed to
8502 differ only by their return types, which we do not add here. */
8503
8504 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8505 {
8506 struct attribute *attr;
8507 struct die_info *child;
8508 int first = 1;
8509
8510 die->building_fullname = 1;
8511
8512 for (child = die->child; child != NULL; child = child->sibling)
8513 {
8514 struct type *type;
8515 LONGEST value;
8516 const gdb_byte *bytes;
8517 struct dwarf2_locexpr_baton *baton;
8518 struct value *v;
8519
8520 if (child->tag != DW_TAG_template_type_param
8521 && child->tag != DW_TAG_template_value_param)
8522 continue;
8523
8524 if (first)
8525 {
8526 fputs_unfiltered ("<", buf);
8527 first = 0;
8528 }
8529 else
8530 fputs_unfiltered (", ", buf);
8531
8532 attr = dwarf2_attr (child, DW_AT_type, cu);
8533 if (attr == NULL)
8534 {
8535 complaint (&symfile_complaints,
8536 _("template parameter missing DW_AT_type"));
8537 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8538 continue;
8539 }
8540 type = die_type (child, cu);
8541
8542 if (child->tag == DW_TAG_template_type_param)
8543 {
8544 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8545 continue;
8546 }
8547
8548 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8549 if (attr == NULL)
8550 {
8551 complaint (&symfile_complaints,
8552 _("template parameter missing "
8553 "DW_AT_const_value"));
8554 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8555 continue;
8556 }
8557
8558 dwarf2_const_value_attr (attr, type, name,
8559 &cu->comp_unit_obstack, cu,
8560 &value, &bytes, &baton);
8561
8562 if (TYPE_NOSIGN (type))
8563 /* GDB prints characters as NUMBER 'CHAR'. If that's
8564 changed, this can use value_print instead. */
8565 c_printchar (value, type, buf);
8566 else
8567 {
8568 struct value_print_options opts;
8569
8570 if (baton != NULL)
8571 v = dwarf2_evaluate_loc_desc (type, NULL,
8572 baton->data,
8573 baton->size,
8574 baton->per_cu);
8575 else if (bytes != NULL)
8576 {
8577 v = allocate_value (type);
8578 memcpy (value_contents_writeable (v), bytes,
8579 TYPE_LENGTH (type));
8580 }
8581 else
8582 v = value_from_longest (type, value);
8583
8584 /* Specify decimal so that we do not depend on
8585 the radix. */
8586 get_formatted_print_options (&opts, 'd');
8587 opts.raw = 1;
8588 value_print (v, buf, &opts);
8589 release_value (v);
8590 value_free (v);
8591 }
8592 }
8593
8594 die->building_fullname = 0;
8595
8596 if (!first)
8597 {
8598 /* Close the argument list, with a space if necessary
8599 (nested templates). */
8600 char last_char = '\0';
8601 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8602 if (last_char == '>')
8603 fputs_unfiltered (" >", buf);
8604 else
8605 fputs_unfiltered (">", buf);
8606 }
8607 }
8608
8609 /* For Java and C++ methods, append formal parameter type
8610 information, if PHYSNAME. */
8611
8612 if (physname && die->tag == DW_TAG_subprogram
8613 && (cu->language == language_cplus
8614 || cu->language == language_java))
8615 {
8616 struct type *type = read_type_die (die, cu);
8617
8618 c_type_print_args (type, buf, 1, cu->language,
8619 &type_print_raw_options);
8620
8621 if (cu->language == language_java)
8622 {
8623 /* For java, we must append the return type to method
8624 names. */
8625 if (die->tag == DW_TAG_subprogram)
8626 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8627 0, 0, &type_print_raw_options);
8628 }
8629 else if (cu->language == language_cplus)
8630 {
8631 /* Assume that an artificial first parameter is
8632 "this", but do not crash if it is not. RealView
8633 marks unnamed (and thus unused) parameters as
8634 artificial; there is no way to differentiate
8635 the two cases. */
8636 if (TYPE_NFIELDS (type) > 0
8637 && TYPE_FIELD_ARTIFICIAL (type, 0)
8638 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8639 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8640 0))))
8641 fputs_unfiltered (" const", buf);
8642 }
8643 }
8644
8645 intermediate_name = ui_file_xstrdup (buf, &length);
8646 ui_file_delete (buf);
8647
8648 if (cu->language == language_cplus)
8649 canonical_name
8650 = dwarf2_canonicalize_name (intermediate_name, cu,
8651 &objfile->per_bfd->storage_obstack);
8652
8653 /* If we only computed INTERMEDIATE_NAME, or if
8654 INTERMEDIATE_NAME is already canonical, then we need to
8655 copy it to the appropriate obstack. */
8656 if (canonical_name == NULL || canonical_name == intermediate_name)
8657 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8658 intermediate_name,
8659 strlen (intermediate_name));
8660 else
8661 name = canonical_name;
8662
8663 xfree (intermediate_name);
8664 }
8665 }
8666
8667 return name;
8668 }
8669
8670 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8671 If scope qualifiers are appropriate they will be added. The result
8672 will be allocated on the storage_obstack, or NULL if the DIE does
8673 not have a name. NAME may either be from a previous call to
8674 dwarf2_name or NULL.
8675
8676 The output string will be canonicalized (if C++/Java). */
8677
8678 static const char *
8679 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8680 {
8681 return dwarf2_compute_name (name, die, cu, 0);
8682 }
8683
8684 /* Construct a physname for the given DIE in CU. NAME may either be
8685 from a previous call to dwarf2_name or NULL. The result will be
8686 allocated on the objfile_objstack or NULL if the DIE does not have a
8687 name.
8688
8689 The output string will be canonicalized (if C++/Java). */
8690
8691 static const char *
8692 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8693 {
8694 struct objfile *objfile = cu->objfile;
8695 struct attribute *attr;
8696 const char *retval, *mangled = NULL, *canon = NULL;
8697 struct cleanup *back_to;
8698 int need_copy = 1;
8699
8700 /* In this case dwarf2_compute_name is just a shortcut not building anything
8701 on its own. */
8702 if (!die_needs_namespace (die, cu))
8703 return dwarf2_compute_name (name, die, cu, 1);
8704
8705 back_to = make_cleanup (null_cleanup, NULL);
8706
8707 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8708 if (!attr)
8709 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8710
8711 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8712 has computed. */
8713 if (attr && DW_STRING (attr))
8714 {
8715 char *demangled;
8716
8717 mangled = DW_STRING (attr);
8718
8719 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8720 type. It is easier for GDB users to search for such functions as
8721 `name(params)' than `long name(params)'. In such case the minimal
8722 symbol names do not match the full symbol names but for template
8723 functions there is never a need to look up their definition from their
8724 declaration so the only disadvantage remains the minimal symbol
8725 variant `long name(params)' does not have the proper inferior type.
8726 */
8727
8728 if (cu->language == language_go)
8729 {
8730 /* This is a lie, but we already lie to the caller new_symbol_full.
8731 new_symbol_full assumes we return the mangled name.
8732 This just undoes that lie until things are cleaned up. */
8733 demangled = NULL;
8734 }
8735 else
8736 {
8737 demangled = gdb_demangle (mangled,
8738 (DMGL_PARAMS | DMGL_ANSI
8739 | (cu->language == language_java
8740 ? DMGL_JAVA | DMGL_RET_POSTFIX
8741 : DMGL_RET_DROP)));
8742 }
8743 if (demangled)
8744 {
8745 make_cleanup (xfree, demangled);
8746 canon = demangled;
8747 }
8748 else
8749 {
8750 canon = mangled;
8751 need_copy = 0;
8752 }
8753 }
8754
8755 if (canon == NULL || check_physname)
8756 {
8757 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8758
8759 if (canon != NULL && strcmp (physname, canon) != 0)
8760 {
8761 /* It may not mean a bug in GDB. The compiler could also
8762 compute DW_AT_linkage_name incorrectly. But in such case
8763 GDB would need to be bug-to-bug compatible. */
8764
8765 complaint (&symfile_complaints,
8766 _("Computed physname <%s> does not match demangled <%s> "
8767 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8768 physname, canon, mangled, die->offset.sect_off,
8769 objfile_name (objfile));
8770
8771 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8772 is available here - over computed PHYSNAME. It is safer
8773 against both buggy GDB and buggy compilers. */
8774
8775 retval = canon;
8776 }
8777 else
8778 {
8779 retval = physname;
8780 need_copy = 0;
8781 }
8782 }
8783 else
8784 retval = canon;
8785
8786 if (need_copy)
8787 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8788 retval, strlen (retval));
8789
8790 do_cleanups (back_to);
8791 return retval;
8792 }
8793
8794 /* Inspect DIE in CU for a namespace alias. If one exists, record
8795 a new symbol for it.
8796
8797 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8798
8799 static int
8800 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8801 {
8802 struct attribute *attr;
8803
8804 /* If the die does not have a name, this is not a namespace
8805 alias. */
8806 attr = dwarf2_attr (die, DW_AT_name, cu);
8807 if (attr != NULL)
8808 {
8809 int num;
8810 struct die_info *d = die;
8811 struct dwarf2_cu *imported_cu = cu;
8812
8813 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8814 keep inspecting DIEs until we hit the underlying import. */
8815 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8816 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8817 {
8818 attr = dwarf2_attr (d, DW_AT_import, cu);
8819 if (attr == NULL)
8820 break;
8821
8822 d = follow_die_ref (d, attr, &imported_cu);
8823 if (d->tag != DW_TAG_imported_declaration)
8824 break;
8825 }
8826
8827 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8828 {
8829 complaint (&symfile_complaints,
8830 _("DIE at 0x%x has too many recursively imported "
8831 "declarations"), d->offset.sect_off);
8832 return 0;
8833 }
8834
8835 if (attr != NULL)
8836 {
8837 struct type *type;
8838 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8839
8840 type = get_die_type_at_offset (offset, cu->per_cu);
8841 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8842 {
8843 /* This declaration is a global namespace alias. Add
8844 a symbol for it whose type is the aliased namespace. */
8845 new_symbol (die, type, cu);
8846 return 1;
8847 }
8848 }
8849 }
8850
8851 return 0;
8852 }
8853
8854 /* Read the import statement specified by the given die and record it. */
8855
8856 static void
8857 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8858 {
8859 struct objfile *objfile = cu->objfile;
8860 struct attribute *import_attr;
8861 struct die_info *imported_die, *child_die;
8862 struct dwarf2_cu *imported_cu;
8863 const char *imported_name;
8864 const char *imported_name_prefix;
8865 const char *canonical_name;
8866 const char *import_alias;
8867 const char *imported_declaration = NULL;
8868 const char *import_prefix;
8869 VEC (const_char_ptr) *excludes = NULL;
8870 struct cleanup *cleanups;
8871
8872 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8873 if (import_attr == NULL)
8874 {
8875 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8876 dwarf_tag_name (die->tag));
8877 return;
8878 }
8879
8880 imported_cu = cu;
8881 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8882 imported_name = dwarf2_name (imported_die, imported_cu);
8883 if (imported_name == NULL)
8884 {
8885 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8886
8887 The import in the following code:
8888 namespace A
8889 {
8890 typedef int B;
8891 }
8892
8893 int main ()
8894 {
8895 using A::B;
8896 B b;
8897 return b;
8898 }
8899
8900 ...
8901 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8902 <52> DW_AT_decl_file : 1
8903 <53> DW_AT_decl_line : 6
8904 <54> DW_AT_import : <0x75>
8905 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8906 <59> DW_AT_name : B
8907 <5b> DW_AT_decl_file : 1
8908 <5c> DW_AT_decl_line : 2
8909 <5d> DW_AT_type : <0x6e>
8910 ...
8911 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8912 <76> DW_AT_byte_size : 4
8913 <77> DW_AT_encoding : 5 (signed)
8914
8915 imports the wrong die ( 0x75 instead of 0x58 ).
8916 This case will be ignored until the gcc bug is fixed. */
8917 return;
8918 }
8919
8920 /* Figure out the local name after import. */
8921 import_alias = dwarf2_name (die, cu);
8922
8923 /* Figure out where the statement is being imported to. */
8924 import_prefix = determine_prefix (die, cu);
8925
8926 /* Figure out what the scope of the imported die is and prepend it
8927 to the name of the imported die. */
8928 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8929
8930 if (imported_die->tag != DW_TAG_namespace
8931 && imported_die->tag != DW_TAG_module)
8932 {
8933 imported_declaration = imported_name;
8934 canonical_name = imported_name_prefix;
8935 }
8936 else if (strlen (imported_name_prefix) > 0)
8937 canonical_name = obconcat (&objfile->objfile_obstack,
8938 imported_name_prefix, "::", imported_name,
8939 (char *) NULL);
8940 else
8941 canonical_name = imported_name;
8942
8943 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8944
8945 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8946 for (child_die = die->child; child_die && child_die->tag;
8947 child_die = sibling_die (child_die))
8948 {
8949 /* DWARF-4: A Fortran use statement with a “rename list” may be
8950 represented by an imported module entry with an import attribute
8951 referring to the module and owned entries corresponding to those
8952 entities that are renamed as part of being imported. */
8953
8954 if (child_die->tag != DW_TAG_imported_declaration)
8955 {
8956 complaint (&symfile_complaints,
8957 _("child DW_TAG_imported_declaration expected "
8958 "- DIE at 0x%x [in module %s]"),
8959 child_die->offset.sect_off, objfile_name (objfile));
8960 continue;
8961 }
8962
8963 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8964 if (import_attr == NULL)
8965 {
8966 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8967 dwarf_tag_name (child_die->tag));
8968 continue;
8969 }
8970
8971 imported_cu = cu;
8972 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8973 &imported_cu);
8974 imported_name = dwarf2_name (imported_die, imported_cu);
8975 if (imported_name == NULL)
8976 {
8977 complaint (&symfile_complaints,
8978 _("child DW_TAG_imported_declaration has unknown "
8979 "imported name - DIE at 0x%x [in module %s]"),
8980 child_die->offset.sect_off, objfile_name (objfile));
8981 continue;
8982 }
8983
8984 VEC_safe_push (const_char_ptr, excludes, imported_name);
8985
8986 process_die (child_die, cu);
8987 }
8988
8989 cp_add_using_directive (import_prefix,
8990 canonical_name,
8991 import_alias,
8992 imported_declaration,
8993 excludes,
8994 0,
8995 &objfile->objfile_obstack);
8996
8997 do_cleanups (cleanups);
8998 }
8999
9000 /* Cleanup function for handle_DW_AT_stmt_list. */
9001
9002 static void
9003 free_cu_line_header (void *arg)
9004 {
9005 struct dwarf2_cu *cu = arg;
9006
9007 free_line_header (cu->line_header);
9008 cu->line_header = NULL;
9009 }
9010
9011 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9012 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9013 this, it was first present in GCC release 4.3.0. */
9014
9015 static int
9016 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9017 {
9018 if (!cu->checked_producer)
9019 check_producer (cu);
9020
9021 return cu->producer_is_gcc_lt_4_3;
9022 }
9023
9024 static void
9025 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9026 const char **name, const char **comp_dir)
9027 {
9028 struct attribute *attr;
9029
9030 *name = NULL;
9031 *comp_dir = NULL;
9032
9033 /* Find the filename. Do not use dwarf2_name here, since the filename
9034 is not a source language identifier. */
9035 attr = dwarf2_attr (die, DW_AT_name, cu);
9036 if (attr)
9037 {
9038 *name = DW_STRING (attr);
9039 }
9040
9041 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9042 if (attr)
9043 *comp_dir = DW_STRING (attr);
9044 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9045 && IS_ABSOLUTE_PATH (*name))
9046 {
9047 char *d = ldirname (*name);
9048
9049 *comp_dir = d;
9050 if (d != NULL)
9051 make_cleanup (xfree, d);
9052 }
9053 if (*comp_dir != NULL)
9054 {
9055 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9056 directory, get rid of it. */
9057 char *cp = strchr (*comp_dir, ':');
9058
9059 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9060 *comp_dir = cp + 1;
9061 }
9062
9063 if (*name == NULL)
9064 *name = "<unknown>";
9065 }
9066
9067 /* Handle DW_AT_stmt_list for a compilation unit.
9068 DIE is the DW_TAG_compile_unit die for CU.
9069 COMP_DIR is the compilation directory. LOWPC is passed to
9070 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9071
9072 static void
9073 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9074 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9075 {
9076 struct objfile *objfile = dwarf2_per_objfile->objfile;
9077 struct attribute *attr;
9078 unsigned int line_offset;
9079 struct line_header line_header_local;
9080 hashval_t line_header_local_hash;
9081 unsigned u;
9082 void **slot;
9083 int decode_mapping;
9084
9085 gdb_assert (! cu->per_cu->is_debug_types);
9086
9087 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9088 if (attr == NULL)
9089 return;
9090
9091 line_offset = DW_UNSND (attr);
9092
9093 /* The line header hash table is only created if needed (it exists to
9094 prevent redundant reading of the line table for partial_units).
9095 If we're given a partial_unit, we'll need it. If we're given a
9096 compile_unit, then use the line header hash table if it's already
9097 created, but don't create one just yet. */
9098
9099 if (dwarf2_per_objfile->line_header_hash == NULL
9100 && die->tag == DW_TAG_partial_unit)
9101 {
9102 dwarf2_per_objfile->line_header_hash
9103 = htab_create_alloc_ex (127, line_header_hash_voidp,
9104 line_header_eq_voidp,
9105 free_line_header_voidp,
9106 &objfile->objfile_obstack,
9107 hashtab_obstack_allocate,
9108 dummy_obstack_deallocate);
9109 }
9110
9111 line_header_local.offset.sect_off = line_offset;
9112 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9113 line_header_local_hash = line_header_hash (&line_header_local);
9114 if (dwarf2_per_objfile->line_header_hash != NULL)
9115 {
9116 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9117 &line_header_local,
9118 line_header_local_hash, NO_INSERT);
9119
9120 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9121 is not present in *SLOT (since if there is something in *SLOT then
9122 it will be for a partial_unit). */
9123 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9124 {
9125 gdb_assert (*slot != NULL);
9126 cu->line_header = *slot;
9127 return;
9128 }
9129 }
9130
9131 /* dwarf_decode_line_header does not yet provide sufficient information.
9132 We always have to call also dwarf_decode_lines for it. */
9133 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9134 if (cu->line_header == NULL)
9135 return;
9136
9137 if (dwarf2_per_objfile->line_header_hash == NULL)
9138 slot = NULL;
9139 else
9140 {
9141 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9142 &line_header_local,
9143 line_header_local_hash, INSERT);
9144 gdb_assert (slot != NULL);
9145 }
9146 if (slot != NULL && *slot == NULL)
9147 {
9148 /* This newly decoded line number information unit will be owned
9149 by line_header_hash hash table. */
9150 *slot = cu->line_header;
9151 }
9152 else
9153 {
9154 /* We cannot free any current entry in (*slot) as that struct line_header
9155 may be already used by multiple CUs. Create only temporary decoded
9156 line_header for this CU - it may happen at most once for each line
9157 number information unit. And if we're not using line_header_hash
9158 then this is what we want as well. */
9159 gdb_assert (die->tag != DW_TAG_partial_unit);
9160 make_cleanup (free_cu_line_header, cu);
9161 }
9162 decode_mapping = (die->tag != DW_TAG_partial_unit);
9163 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9164 decode_mapping);
9165 }
9166
9167 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9168
9169 static void
9170 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9171 {
9172 struct objfile *objfile = dwarf2_per_objfile->objfile;
9173 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9174 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9175 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9176 CORE_ADDR highpc = ((CORE_ADDR) 0);
9177 struct attribute *attr;
9178 const char *name = NULL;
9179 const char *comp_dir = NULL;
9180 struct die_info *child_die;
9181 bfd *abfd = objfile->obfd;
9182 CORE_ADDR baseaddr;
9183
9184 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9185
9186 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9187
9188 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9189 from finish_block. */
9190 if (lowpc == ((CORE_ADDR) -1))
9191 lowpc = highpc;
9192 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9193
9194 find_file_and_directory (die, cu, &name, &comp_dir);
9195
9196 prepare_one_comp_unit (cu, die, cu->language);
9197
9198 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9199 standardised yet. As a workaround for the language detection we fall
9200 back to the DW_AT_producer string. */
9201 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9202 cu->language = language_opencl;
9203
9204 /* Similar hack for Go. */
9205 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9206 set_cu_language (DW_LANG_Go, cu);
9207
9208 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9209
9210 /* Decode line number information if present. We do this before
9211 processing child DIEs, so that the line header table is available
9212 for DW_AT_decl_file. */
9213 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9214
9215 /* Process all dies in compilation unit. */
9216 if (die->child != NULL)
9217 {
9218 child_die = die->child;
9219 while (child_die && child_die->tag)
9220 {
9221 process_die (child_die, cu);
9222 child_die = sibling_die (child_die);
9223 }
9224 }
9225
9226 /* Decode macro information, if present. Dwarf 2 macro information
9227 refers to information in the line number info statement program
9228 header, so we can only read it if we've read the header
9229 successfully. */
9230 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9231 if (attr && cu->line_header)
9232 {
9233 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9234 complaint (&symfile_complaints,
9235 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9236
9237 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9238 }
9239 else
9240 {
9241 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9242 if (attr && cu->line_header)
9243 {
9244 unsigned int macro_offset = DW_UNSND (attr);
9245
9246 dwarf_decode_macros (cu, macro_offset, 0);
9247 }
9248 }
9249
9250 do_cleanups (back_to);
9251 }
9252
9253 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9254 Create the set of symtabs used by this TU, or if this TU is sharing
9255 symtabs with another TU and the symtabs have already been created
9256 then restore those symtabs in the line header.
9257 We don't need the pc/line-number mapping for type units. */
9258
9259 static void
9260 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9261 {
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9264 struct type_unit_group *tu_group;
9265 int first_time;
9266 struct line_header *lh;
9267 struct attribute *attr;
9268 unsigned int i, line_offset;
9269 struct signatured_type *sig_type;
9270
9271 gdb_assert (per_cu->is_debug_types);
9272 sig_type = (struct signatured_type *) per_cu;
9273
9274 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9275
9276 /* If we're using .gdb_index (includes -readnow) then
9277 per_cu->type_unit_group may not have been set up yet. */
9278 if (sig_type->type_unit_group == NULL)
9279 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9280 tu_group = sig_type->type_unit_group;
9281
9282 /* If we've already processed this stmt_list there's no real need to
9283 do it again, we could fake it and just recreate the part we need
9284 (file name,index -> symtab mapping). If data shows this optimization
9285 is useful we can do it then. */
9286 first_time = tu_group->compunit_symtab == NULL;
9287
9288 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9289 debug info. */
9290 lh = NULL;
9291 if (attr != NULL)
9292 {
9293 line_offset = DW_UNSND (attr);
9294 lh = dwarf_decode_line_header (line_offset, cu);
9295 }
9296 if (lh == NULL)
9297 {
9298 if (first_time)
9299 dwarf2_start_symtab (cu, "", NULL, 0);
9300 else
9301 {
9302 gdb_assert (tu_group->symtabs == NULL);
9303 restart_symtab (tu_group->compunit_symtab, "", 0);
9304 }
9305 return;
9306 }
9307
9308 cu->line_header = lh;
9309 make_cleanup (free_cu_line_header, cu);
9310
9311 if (first_time)
9312 {
9313 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9314
9315 tu_group->num_symtabs = lh->num_file_names;
9316 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9317
9318 for (i = 0; i < lh->num_file_names; ++i)
9319 {
9320 const char *dir = NULL;
9321 struct file_entry *fe = &lh->file_names[i];
9322
9323 if (fe->dir_index)
9324 dir = lh->include_dirs[fe->dir_index - 1];
9325 dwarf2_start_subfile (fe->name, dir);
9326
9327 if (current_subfile->symtab == NULL)
9328 {
9329 /* NOTE: start_subfile will recognize when it's been passed
9330 a file it has already seen. So we can't assume there's a
9331 simple mapping from lh->file_names to subfiles, plus
9332 lh->file_names may contain dups. */
9333 current_subfile->symtab
9334 = allocate_symtab (cust, current_subfile->name);
9335 }
9336
9337 fe->symtab = current_subfile->symtab;
9338 tu_group->symtabs[i] = fe->symtab;
9339 }
9340 }
9341 else
9342 {
9343 restart_symtab (tu_group->compunit_symtab, "", 0);
9344
9345 for (i = 0; i < lh->num_file_names; ++i)
9346 {
9347 struct file_entry *fe = &lh->file_names[i];
9348
9349 fe->symtab = tu_group->symtabs[i];
9350 }
9351 }
9352
9353 /* The main symtab is allocated last. Type units don't have DW_AT_name
9354 so they don't have a "real" (so to speak) symtab anyway.
9355 There is later code that will assign the main symtab to all symbols
9356 that don't have one. We need to handle the case of a symbol with a
9357 missing symtab (DW_AT_decl_file) anyway. */
9358 }
9359
9360 /* Process DW_TAG_type_unit.
9361 For TUs we want to skip the first top level sibling if it's not the
9362 actual type being defined by this TU. In this case the first top
9363 level sibling is there to provide context only. */
9364
9365 static void
9366 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9367 {
9368 struct die_info *child_die;
9369
9370 prepare_one_comp_unit (cu, die, language_minimal);
9371
9372 /* Initialize (or reinitialize) the machinery for building symtabs.
9373 We do this before processing child DIEs, so that the line header table
9374 is available for DW_AT_decl_file. */
9375 setup_type_unit_groups (die, cu);
9376
9377 if (die->child != NULL)
9378 {
9379 child_die = die->child;
9380 while (child_die && child_die->tag)
9381 {
9382 process_die (child_die, cu);
9383 child_die = sibling_die (child_die);
9384 }
9385 }
9386 }
9387 \f
9388 /* DWO/DWP files.
9389
9390 http://gcc.gnu.org/wiki/DebugFission
9391 http://gcc.gnu.org/wiki/DebugFissionDWP
9392
9393 To simplify handling of both DWO files ("object" files with the DWARF info)
9394 and DWP files (a file with the DWOs packaged up into one file), we treat
9395 DWP files as having a collection of virtual DWO files. */
9396
9397 static hashval_t
9398 hash_dwo_file (const void *item)
9399 {
9400 const struct dwo_file *dwo_file = item;
9401 hashval_t hash;
9402
9403 hash = htab_hash_string (dwo_file->dwo_name);
9404 if (dwo_file->comp_dir != NULL)
9405 hash += htab_hash_string (dwo_file->comp_dir);
9406 return hash;
9407 }
9408
9409 static int
9410 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9411 {
9412 const struct dwo_file *lhs = item_lhs;
9413 const struct dwo_file *rhs = item_rhs;
9414
9415 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9416 return 0;
9417 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9418 return lhs->comp_dir == rhs->comp_dir;
9419 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9420 }
9421
9422 /* Allocate a hash table for DWO files. */
9423
9424 static htab_t
9425 allocate_dwo_file_hash_table (void)
9426 {
9427 struct objfile *objfile = dwarf2_per_objfile->objfile;
9428
9429 return htab_create_alloc_ex (41,
9430 hash_dwo_file,
9431 eq_dwo_file,
9432 NULL,
9433 &objfile->objfile_obstack,
9434 hashtab_obstack_allocate,
9435 dummy_obstack_deallocate);
9436 }
9437
9438 /* Lookup DWO file DWO_NAME. */
9439
9440 static void **
9441 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9442 {
9443 struct dwo_file find_entry;
9444 void **slot;
9445
9446 if (dwarf2_per_objfile->dwo_files == NULL)
9447 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9448
9449 memset (&find_entry, 0, sizeof (find_entry));
9450 find_entry.dwo_name = dwo_name;
9451 find_entry.comp_dir = comp_dir;
9452 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9453
9454 return slot;
9455 }
9456
9457 static hashval_t
9458 hash_dwo_unit (const void *item)
9459 {
9460 const struct dwo_unit *dwo_unit = item;
9461
9462 /* This drops the top 32 bits of the id, but is ok for a hash. */
9463 return dwo_unit->signature;
9464 }
9465
9466 static int
9467 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9468 {
9469 const struct dwo_unit *lhs = item_lhs;
9470 const struct dwo_unit *rhs = item_rhs;
9471
9472 /* The signature is assumed to be unique within the DWO file.
9473 So while object file CU dwo_id's always have the value zero,
9474 that's OK, assuming each object file DWO file has only one CU,
9475 and that's the rule for now. */
9476 return lhs->signature == rhs->signature;
9477 }
9478
9479 /* Allocate a hash table for DWO CUs,TUs.
9480 There is one of these tables for each of CUs,TUs for each DWO file. */
9481
9482 static htab_t
9483 allocate_dwo_unit_table (struct objfile *objfile)
9484 {
9485 /* Start out with a pretty small number.
9486 Generally DWO files contain only one CU and maybe some TUs. */
9487 return htab_create_alloc_ex (3,
9488 hash_dwo_unit,
9489 eq_dwo_unit,
9490 NULL,
9491 &objfile->objfile_obstack,
9492 hashtab_obstack_allocate,
9493 dummy_obstack_deallocate);
9494 }
9495
9496 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9497
9498 struct create_dwo_cu_data
9499 {
9500 struct dwo_file *dwo_file;
9501 struct dwo_unit dwo_unit;
9502 };
9503
9504 /* die_reader_func for create_dwo_cu. */
9505
9506 static void
9507 create_dwo_cu_reader (const struct die_reader_specs *reader,
9508 const gdb_byte *info_ptr,
9509 struct die_info *comp_unit_die,
9510 int has_children,
9511 void *datap)
9512 {
9513 struct dwarf2_cu *cu = reader->cu;
9514 struct objfile *objfile = dwarf2_per_objfile->objfile;
9515 sect_offset offset = cu->per_cu->offset;
9516 struct dwarf2_section_info *section = cu->per_cu->section;
9517 struct create_dwo_cu_data *data = datap;
9518 struct dwo_file *dwo_file = data->dwo_file;
9519 struct dwo_unit *dwo_unit = &data->dwo_unit;
9520 struct attribute *attr;
9521
9522 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9523 if (attr == NULL)
9524 {
9525 complaint (&symfile_complaints,
9526 _("Dwarf Error: debug entry at offset 0x%x is missing"
9527 " its dwo_id [in module %s]"),
9528 offset.sect_off, dwo_file->dwo_name);
9529 return;
9530 }
9531
9532 dwo_unit->dwo_file = dwo_file;
9533 dwo_unit->signature = DW_UNSND (attr);
9534 dwo_unit->section = section;
9535 dwo_unit->offset = offset;
9536 dwo_unit->length = cu->per_cu->length;
9537
9538 if (dwarf2_read_debug)
9539 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9540 offset.sect_off, hex_string (dwo_unit->signature));
9541 }
9542
9543 /* Create the dwo_unit for the lone CU in DWO_FILE.
9544 Note: This function processes DWO files only, not DWP files. */
9545
9546 static struct dwo_unit *
9547 create_dwo_cu (struct dwo_file *dwo_file)
9548 {
9549 struct objfile *objfile = dwarf2_per_objfile->objfile;
9550 struct dwarf2_section_info *section = &dwo_file->sections.info;
9551 bfd *abfd;
9552 htab_t cu_htab;
9553 const gdb_byte *info_ptr, *end_ptr;
9554 struct create_dwo_cu_data create_dwo_cu_data;
9555 struct dwo_unit *dwo_unit;
9556
9557 dwarf2_read_section (objfile, section);
9558 info_ptr = section->buffer;
9559
9560 if (info_ptr == NULL)
9561 return NULL;
9562
9563 /* We can't set abfd until now because the section may be empty or
9564 not present, in which case section->asection will be NULL. */
9565 abfd = get_section_bfd_owner (section);
9566
9567 if (dwarf2_read_debug)
9568 {
9569 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9570 get_section_name (section),
9571 get_section_file_name (section));
9572 }
9573
9574 create_dwo_cu_data.dwo_file = dwo_file;
9575 dwo_unit = NULL;
9576
9577 end_ptr = info_ptr + section->size;
9578 while (info_ptr < end_ptr)
9579 {
9580 struct dwarf2_per_cu_data per_cu;
9581
9582 memset (&create_dwo_cu_data.dwo_unit, 0,
9583 sizeof (create_dwo_cu_data.dwo_unit));
9584 memset (&per_cu, 0, sizeof (per_cu));
9585 per_cu.objfile = objfile;
9586 per_cu.is_debug_types = 0;
9587 per_cu.offset.sect_off = info_ptr - section->buffer;
9588 per_cu.section = section;
9589
9590 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9591 create_dwo_cu_reader,
9592 &create_dwo_cu_data);
9593
9594 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9595 {
9596 /* If we've already found one, complain. We only support one
9597 because having more than one requires hacking the dwo_name of
9598 each to match, which is highly unlikely to happen. */
9599 if (dwo_unit != NULL)
9600 {
9601 complaint (&symfile_complaints,
9602 _("Multiple CUs in DWO file %s [in module %s]"),
9603 dwo_file->dwo_name, objfile_name (objfile));
9604 break;
9605 }
9606
9607 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9608 *dwo_unit = create_dwo_cu_data.dwo_unit;
9609 }
9610
9611 info_ptr += per_cu.length;
9612 }
9613
9614 return dwo_unit;
9615 }
9616
9617 /* DWP file .debug_{cu,tu}_index section format:
9618 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9619
9620 DWP Version 1:
9621
9622 Both index sections have the same format, and serve to map a 64-bit
9623 signature to a set of section numbers. Each section begins with a header,
9624 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9625 indexes, and a pool of 32-bit section numbers. The index sections will be
9626 aligned at 8-byte boundaries in the file.
9627
9628 The index section header consists of:
9629
9630 V, 32 bit version number
9631 -, 32 bits unused
9632 N, 32 bit number of compilation units or type units in the index
9633 M, 32 bit number of slots in the hash table
9634
9635 Numbers are recorded using the byte order of the application binary.
9636
9637 The hash table begins at offset 16 in the section, and consists of an array
9638 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9639 order of the application binary). Unused slots in the hash table are 0.
9640 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9641
9642 The parallel table begins immediately after the hash table
9643 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9644 array of 32-bit indexes (using the byte order of the application binary),
9645 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9646 table contains a 32-bit index into the pool of section numbers. For unused
9647 hash table slots, the corresponding entry in the parallel table will be 0.
9648
9649 The pool of section numbers begins immediately following the hash table
9650 (at offset 16 + 12 * M from the beginning of the section). The pool of
9651 section numbers consists of an array of 32-bit words (using the byte order
9652 of the application binary). Each item in the array is indexed starting
9653 from 0. The hash table entry provides the index of the first section
9654 number in the set. Additional section numbers in the set follow, and the
9655 set is terminated by a 0 entry (section number 0 is not used in ELF).
9656
9657 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9658 section must be the first entry in the set, and the .debug_abbrev.dwo must
9659 be the second entry. Other members of the set may follow in any order.
9660
9661 ---
9662
9663 DWP Version 2:
9664
9665 DWP Version 2 combines all the .debug_info, etc. sections into one,
9666 and the entries in the index tables are now offsets into these sections.
9667 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9668 section.
9669
9670 Index Section Contents:
9671 Header
9672 Hash Table of Signatures dwp_hash_table.hash_table
9673 Parallel Table of Indices dwp_hash_table.unit_table
9674 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9675 Table of Section Sizes dwp_hash_table.v2.sizes
9676
9677 The index section header consists of:
9678
9679 V, 32 bit version number
9680 L, 32 bit number of columns in the table of section offsets
9681 N, 32 bit number of compilation units or type units in the index
9682 M, 32 bit number of slots in the hash table
9683
9684 Numbers are recorded using the byte order of the application binary.
9685
9686 The hash table has the same format as version 1.
9687 The parallel table of indices has the same format as version 1,
9688 except that the entries are origin-1 indices into the table of sections
9689 offsets and the table of section sizes.
9690
9691 The table of offsets begins immediately following the parallel table
9692 (at offset 16 + 12 * M from the beginning of the section). The table is
9693 a two-dimensional array of 32-bit words (using the byte order of the
9694 application binary), with L columns and N+1 rows, in row-major order.
9695 Each row in the array is indexed starting from 0. The first row provides
9696 a key to the remaining rows: each column in this row provides an identifier
9697 for a debug section, and the offsets in the same column of subsequent rows
9698 refer to that section. The section identifiers are:
9699
9700 DW_SECT_INFO 1 .debug_info.dwo
9701 DW_SECT_TYPES 2 .debug_types.dwo
9702 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9703 DW_SECT_LINE 4 .debug_line.dwo
9704 DW_SECT_LOC 5 .debug_loc.dwo
9705 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9706 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9707 DW_SECT_MACRO 8 .debug_macro.dwo
9708
9709 The offsets provided by the CU and TU index sections are the base offsets
9710 for the contributions made by each CU or TU to the corresponding section
9711 in the package file. Each CU and TU header contains an abbrev_offset
9712 field, used to find the abbreviations table for that CU or TU within the
9713 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9714 be interpreted as relative to the base offset given in the index section.
9715 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9716 should be interpreted as relative to the base offset for .debug_line.dwo,
9717 and offsets into other debug sections obtained from DWARF attributes should
9718 also be interpreted as relative to the corresponding base offset.
9719
9720 The table of sizes begins immediately following the table of offsets.
9721 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9722 with L columns and N rows, in row-major order. Each row in the array is
9723 indexed starting from 1 (row 0 is shared by the two tables).
9724
9725 ---
9726
9727 Hash table lookup is handled the same in version 1 and 2:
9728
9729 We assume that N and M will not exceed 2^32 - 1.
9730 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9731
9732 Given a 64-bit compilation unit signature or a type signature S, an entry
9733 in the hash table is located as follows:
9734
9735 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9736 the low-order k bits all set to 1.
9737
9738 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9739
9740 3) If the hash table entry at index H matches the signature, use that
9741 entry. If the hash table entry at index H is unused (all zeroes),
9742 terminate the search: the signature is not present in the table.
9743
9744 4) Let H = (H + H') modulo M. Repeat at Step 3.
9745
9746 Because M > N and H' and M are relatively prime, the search is guaranteed
9747 to stop at an unused slot or find the match. */
9748
9749 /* Create a hash table to map DWO IDs to their CU/TU entry in
9750 .debug_{info,types}.dwo in DWP_FILE.
9751 Returns NULL if there isn't one.
9752 Note: This function processes DWP files only, not DWO files. */
9753
9754 static struct dwp_hash_table *
9755 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9756 {
9757 struct objfile *objfile = dwarf2_per_objfile->objfile;
9758 bfd *dbfd = dwp_file->dbfd;
9759 const gdb_byte *index_ptr, *index_end;
9760 struct dwarf2_section_info *index;
9761 uint32_t version, nr_columns, nr_units, nr_slots;
9762 struct dwp_hash_table *htab;
9763
9764 if (is_debug_types)
9765 index = &dwp_file->sections.tu_index;
9766 else
9767 index = &dwp_file->sections.cu_index;
9768
9769 if (dwarf2_section_empty_p (index))
9770 return NULL;
9771 dwarf2_read_section (objfile, index);
9772
9773 index_ptr = index->buffer;
9774 index_end = index_ptr + index->size;
9775
9776 version = read_4_bytes (dbfd, index_ptr);
9777 index_ptr += 4;
9778 if (version == 2)
9779 nr_columns = read_4_bytes (dbfd, index_ptr);
9780 else
9781 nr_columns = 0;
9782 index_ptr += 4;
9783 nr_units = read_4_bytes (dbfd, index_ptr);
9784 index_ptr += 4;
9785 nr_slots = read_4_bytes (dbfd, index_ptr);
9786 index_ptr += 4;
9787
9788 if (version != 1 && version != 2)
9789 {
9790 error (_("Dwarf Error: unsupported DWP file version (%s)"
9791 " [in module %s]"),
9792 pulongest (version), dwp_file->name);
9793 }
9794 if (nr_slots != (nr_slots & -nr_slots))
9795 {
9796 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9797 " is not power of 2 [in module %s]"),
9798 pulongest (nr_slots), dwp_file->name);
9799 }
9800
9801 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9802 htab->version = version;
9803 htab->nr_columns = nr_columns;
9804 htab->nr_units = nr_units;
9805 htab->nr_slots = nr_slots;
9806 htab->hash_table = index_ptr;
9807 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9808
9809 /* Exit early if the table is empty. */
9810 if (nr_slots == 0 || nr_units == 0
9811 || (version == 2 && nr_columns == 0))
9812 {
9813 /* All must be zero. */
9814 if (nr_slots != 0 || nr_units != 0
9815 || (version == 2 && nr_columns != 0))
9816 {
9817 complaint (&symfile_complaints,
9818 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9819 " all zero [in modules %s]"),
9820 dwp_file->name);
9821 }
9822 return htab;
9823 }
9824
9825 if (version == 1)
9826 {
9827 htab->section_pool.v1.indices =
9828 htab->unit_table + sizeof (uint32_t) * nr_slots;
9829 /* It's harder to decide whether the section is too small in v1.
9830 V1 is deprecated anyway so we punt. */
9831 }
9832 else
9833 {
9834 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9835 int *ids = htab->section_pool.v2.section_ids;
9836 /* Reverse map for error checking. */
9837 int ids_seen[DW_SECT_MAX + 1];
9838 int i;
9839
9840 if (nr_columns < 2)
9841 {
9842 error (_("Dwarf Error: bad DWP hash table, too few columns"
9843 " in section table [in module %s]"),
9844 dwp_file->name);
9845 }
9846 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9847 {
9848 error (_("Dwarf Error: bad DWP hash table, too many columns"
9849 " in section table [in module %s]"),
9850 dwp_file->name);
9851 }
9852 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9853 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9854 for (i = 0; i < nr_columns; ++i)
9855 {
9856 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9857
9858 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9859 {
9860 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9861 " in section table [in module %s]"),
9862 id, dwp_file->name);
9863 }
9864 if (ids_seen[id] != -1)
9865 {
9866 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9867 " id %d in section table [in module %s]"),
9868 id, dwp_file->name);
9869 }
9870 ids_seen[id] = i;
9871 ids[i] = id;
9872 }
9873 /* Must have exactly one info or types section. */
9874 if (((ids_seen[DW_SECT_INFO] != -1)
9875 + (ids_seen[DW_SECT_TYPES] != -1))
9876 != 1)
9877 {
9878 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9879 " DWO info/types section [in module %s]"),
9880 dwp_file->name);
9881 }
9882 /* Must have an abbrev section. */
9883 if (ids_seen[DW_SECT_ABBREV] == -1)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9886 " section [in module %s]"),
9887 dwp_file->name);
9888 }
9889 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9890 htab->section_pool.v2.sizes =
9891 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9892 * nr_units * nr_columns);
9893 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9894 * nr_units * nr_columns))
9895 > index_end)
9896 {
9897 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9898 " [in module %s]"),
9899 dwp_file->name);
9900 }
9901 }
9902
9903 return htab;
9904 }
9905
9906 /* Update SECTIONS with the data from SECTP.
9907
9908 This function is like the other "locate" section routines that are
9909 passed to bfd_map_over_sections, but in this context the sections to
9910 read comes from the DWP V1 hash table, not the full ELF section table.
9911
9912 The result is non-zero for success, or zero if an error was found. */
9913
9914 static int
9915 locate_v1_virtual_dwo_sections (asection *sectp,
9916 struct virtual_v1_dwo_sections *sections)
9917 {
9918 const struct dwop_section_names *names = &dwop_section_names;
9919
9920 if (section_is_p (sectp->name, &names->abbrev_dwo))
9921 {
9922 /* There can be only one. */
9923 if (sections->abbrev.s.asection != NULL)
9924 return 0;
9925 sections->abbrev.s.asection = sectp;
9926 sections->abbrev.size = bfd_get_section_size (sectp);
9927 }
9928 else if (section_is_p (sectp->name, &names->info_dwo)
9929 || section_is_p (sectp->name, &names->types_dwo))
9930 {
9931 /* There can be only one. */
9932 if (sections->info_or_types.s.asection != NULL)
9933 return 0;
9934 sections->info_or_types.s.asection = sectp;
9935 sections->info_or_types.size = bfd_get_section_size (sectp);
9936 }
9937 else if (section_is_p (sectp->name, &names->line_dwo))
9938 {
9939 /* There can be only one. */
9940 if (sections->line.s.asection != NULL)
9941 return 0;
9942 sections->line.s.asection = sectp;
9943 sections->line.size = bfd_get_section_size (sectp);
9944 }
9945 else if (section_is_p (sectp->name, &names->loc_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->loc.s.asection != NULL)
9949 return 0;
9950 sections->loc.s.asection = sectp;
9951 sections->loc.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9954 {
9955 /* There can be only one. */
9956 if (sections->macinfo.s.asection != NULL)
9957 return 0;
9958 sections->macinfo.s.asection = sectp;
9959 sections->macinfo.size = bfd_get_section_size (sectp);
9960 }
9961 else if (section_is_p (sectp->name, &names->macro_dwo))
9962 {
9963 /* There can be only one. */
9964 if (sections->macro.s.asection != NULL)
9965 return 0;
9966 sections->macro.s.asection = sectp;
9967 sections->macro.size = bfd_get_section_size (sectp);
9968 }
9969 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9970 {
9971 /* There can be only one. */
9972 if (sections->str_offsets.s.asection != NULL)
9973 return 0;
9974 sections->str_offsets.s.asection = sectp;
9975 sections->str_offsets.size = bfd_get_section_size (sectp);
9976 }
9977 else
9978 {
9979 /* No other kind of section is valid. */
9980 return 0;
9981 }
9982
9983 return 1;
9984 }
9985
9986 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9987 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9988 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9989 This is for DWP version 1 files. */
9990
9991 static struct dwo_unit *
9992 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9993 uint32_t unit_index,
9994 const char *comp_dir,
9995 ULONGEST signature, int is_debug_types)
9996 {
9997 struct objfile *objfile = dwarf2_per_objfile->objfile;
9998 const struct dwp_hash_table *dwp_htab =
9999 is_debug_types ? dwp_file->tus : dwp_file->cus;
10000 bfd *dbfd = dwp_file->dbfd;
10001 const char *kind = is_debug_types ? "TU" : "CU";
10002 struct dwo_file *dwo_file;
10003 struct dwo_unit *dwo_unit;
10004 struct virtual_v1_dwo_sections sections;
10005 void **dwo_file_slot;
10006 char *virtual_dwo_name;
10007 struct dwarf2_section_info *cutu;
10008 struct cleanup *cleanups;
10009 int i;
10010
10011 gdb_assert (dwp_file->version == 1);
10012
10013 if (dwarf2_read_debug)
10014 {
10015 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10016 kind,
10017 pulongest (unit_index), hex_string (signature),
10018 dwp_file->name);
10019 }
10020
10021 /* Fetch the sections of this DWO unit.
10022 Put a limit on the number of sections we look for so that bad data
10023 doesn't cause us to loop forever. */
10024
10025 #define MAX_NR_V1_DWO_SECTIONS \
10026 (1 /* .debug_info or .debug_types */ \
10027 + 1 /* .debug_abbrev */ \
10028 + 1 /* .debug_line */ \
10029 + 1 /* .debug_loc */ \
10030 + 1 /* .debug_str_offsets */ \
10031 + 1 /* .debug_macro or .debug_macinfo */ \
10032 + 1 /* trailing zero */)
10033
10034 memset (&sections, 0, sizeof (sections));
10035 cleanups = make_cleanup (null_cleanup, 0);
10036
10037 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10038 {
10039 asection *sectp;
10040 uint32_t section_nr =
10041 read_4_bytes (dbfd,
10042 dwp_htab->section_pool.v1.indices
10043 + (unit_index + i) * sizeof (uint32_t));
10044
10045 if (section_nr == 0)
10046 break;
10047 if (section_nr >= dwp_file->num_sections)
10048 {
10049 error (_("Dwarf Error: bad DWP hash table, section number too large"
10050 " [in module %s]"),
10051 dwp_file->name);
10052 }
10053
10054 sectp = dwp_file->elf_sections[section_nr];
10055 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10056 {
10057 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10058 " [in module %s]"),
10059 dwp_file->name);
10060 }
10061 }
10062
10063 if (i < 2
10064 || dwarf2_section_empty_p (&sections.info_or_types)
10065 || dwarf2_section_empty_p (&sections.abbrev))
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071 if (i == MAX_NR_V1_DWO_SECTIONS)
10072 {
10073 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10074 " [in module %s]"),
10075 dwp_file->name);
10076 }
10077
10078 /* It's easier for the rest of the code if we fake a struct dwo_file and
10079 have dwo_unit "live" in that. At least for now.
10080
10081 The DWP file can be made up of a random collection of CUs and TUs.
10082 However, for each CU + set of TUs that came from the same original DWO
10083 file, we can combine them back into a virtual DWO file to save space
10084 (fewer struct dwo_file objects to allocate). Remember that for really
10085 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10086
10087 virtual_dwo_name =
10088 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10089 get_section_id (&sections.abbrev),
10090 get_section_id (&sections.line),
10091 get_section_id (&sections.loc),
10092 get_section_id (&sections.str_offsets));
10093 make_cleanup (xfree, virtual_dwo_name);
10094 /* Can we use an existing virtual DWO file? */
10095 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10096 /* Create one if necessary. */
10097 if (*dwo_file_slot == NULL)
10098 {
10099 if (dwarf2_read_debug)
10100 {
10101 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10102 virtual_dwo_name);
10103 }
10104 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10105 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10106 virtual_dwo_name,
10107 strlen (virtual_dwo_name));
10108 dwo_file->comp_dir = comp_dir;
10109 dwo_file->sections.abbrev = sections.abbrev;
10110 dwo_file->sections.line = sections.line;
10111 dwo_file->sections.loc = sections.loc;
10112 dwo_file->sections.macinfo = sections.macinfo;
10113 dwo_file->sections.macro = sections.macro;
10114 dwo_file->sections.str_offsets = sections.str_offsets;
10115 /* The "str" section is global to the entire DWP file. */
10116 dwo_file->sections.str = dwp_file->sections.str;
10117 /* The info or types section is assigned below to dwo_unit,
10118 there's no need to record it in dwo_file.
10119 Also, we can't simply record type sections in dwo_file because
10120 we record a pointer into the vector in dwo_unit. As we collect more
10121 types we'll grow the vector and eventually have to reallocate space
10122 for it, invalidating all copies of pointers into the previous
10123 contents. */
10124 *dwo_file_slot = dwo_file;
10125 }
10126 else
10127 {
10128 if (dwarf2_read_debug)
10129 {
10130 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10131 virtual_dwo_name);
10132 }
10133 dwo_file = *dwo_file_slot;
10134 }
10135 do_cleanups (cleanups);
10136
10137 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10138 dwo_unit->dwo_file = dwo_file;
10139 dwo_unit->signature = signature;
10140 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10141 sizeof (struct dwarf2_section_info));
10142 *dwo_unit->section = sections.info_or_types;
10143 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10144
10145 return dwo_unit;
10146 }
10147
10148 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10149 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10150 piece within that section used by a TU/CU, return a virtual section
10151 of just that piece. */
10152
10153 static struct dwarf2_section_info
10154 create_dwp_v2_section (struct dwarf2_section_info *section,
10155 bfd_size_type offset, bfd_size_type size)
10156 {
10157 struct dwarf2_section_info result;
10158 asection *sectp;
10159
10160 gdb_assert (section != NULL);
10161 gdb_assert (!section->is_virtual);
10162
10163 memset (&result, 0, sizeof (result));
10164 result.s.containing_section = section;
10165 result.is_virtual = 1;
10166
10167 if (size == 0)
10168 return result;
10169
10170 sectp = get_section_bfd_section (section);
10171
10172 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10173 bounds of the real section. This is a pretty-rare event, so just
10174 flag an error (easier) instead of a warning and trying to cope. */
10175 if (sectp == NULL
10176 || offset + size > bfd_get_section_size (sectp))
10177 {
10178 bfd *abfd = sectp->owner;
10179
10180 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10181 " in section %s [in module %s]"),
10182 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10183 objfile_name (dwarf2_per_objfile->objfile));
10184 }
10185
10186 result.virtual_offset = offset;
10187 result.size = size;
10188 return result;
10189 }
10190
10191 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10192 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10193 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10194 This is for DWP version 2 files. */
10195
10196 static struct dwo_unit *
10197 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10198 uint32_t unit_index,
10199 const char *comp_dir,
10200 ULONGEST signature, int is_debug_types)
10201 {
10202 struct objfile *objfile = dwarf2_per_objfile->objfile;
10203 const struct dwp_hash_table *dwp_htab =
10204 is_debug_types ? dwp_file->tus : dwp_file->cus;
10205 bfd *dbfd = dwp_file->dbfd;
10206 const char *kind = is_debug_types ? "TU" : "CU";
10207 struct dwo_file *dwo_file;
10208 struct dwo_unit *dwo_unit;
10209 struct virtual_v2_dwo_sections sections;
10210 void **dwo_file_slot;
10211 char *virtual_dwo_name;
10212 struct dwarf2_section_info *cutu;
10213 struct cleanup *cleanups;
10214 int i;
10215
10216 gdb_assert (dwp_file->version == 2);
10217
10218 if (dwarf2_read_debug)
10219 {
10220 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10221 kind,
10222 pulongest (unit_index), hex_string (signature),
10223 dwp_file->name);
10224 }
10225
10226 /* Fetch the section offsets of this DWO unit. */
10227
10228 memset (&sections, 0, sizeof (sections));
10229 cleanups = make_cleanup (null_cleanup, 0);
10230
10231 for (i = 0; i < dwp_htab->nr_columns; ++i)
10232 {
10233 uint32_t offset = read_4_bytes (dbfd,
10234 dwp_htab->section_pool.v2.offsets
10235 + (((unit_index - 1) * dwp_htab->nr_columns
10236 + i)
10237 * sizeof (uint32_t)));
10238 uint32_t size = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.sizes
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10241 + i)
10242 * sizeof (uint32_t)));
10243
10244 switch (dwp_htab->section_pool.v2.section_ids[i])
10245 {
10246 case DW_SECT_INFO:
10247 case DW_SECT_TYPES:
10248 sections.info_or_types_offset = offset;
10249 sections.info_or_types_size = size;
10250 break;
10251 case DW_SECT_ABBREV:
10252 sections.abbrev_offset = offset;
10253 sections.abbrev_size = size;
10254 break;
10255 case DW_SECT_LINE:
10256 sections.line_offset = offset;
10257 sections.line_size = size;
10258 break;
10259 case DW_SECT_LOC:
10260 sections.loc_offset = offset;
10261 sections.loc_size = size;
10262 break;
10263 case DW_SECT_STR_OFFSETS:
10264 sections.str_offsets_offset = offset;
10265 sections.str_offsets_size = size;
10266 break;
10267 case DW_SECT_MACINFO:
10268 sections.macinfo_offset = offset;
10269 sections.macinfo_size = size;
10270 break;
10271 case DW_SECT_MACRO:
10272 sections.macro_offset = offset;
10273 sections.macro_size = size;
10274 break;
10275 }
10276 }
10277
10278 /* It's easier for the rest of the code if we fake a struct dwo_file and
10279 have dwo_unit "live" in that. At least for now.
10280
10281 The DWP file can be made up of a random collection of CUs and TUs.
10282 However, for each CU + set of TUs that came from the same original DWO
10283 file, we can combine them back into a virtual DWO file to save space
10284 (fewer struct dwo_file objects to allocate). Remember that for really
10285 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10286
10287 virtual_dwo_name =
10288 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10289 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10290 (long) (sections.line_size ? sections.line_offset : 0),
10291 (long) (sections.loc_size ? sections.loc_offset : 0),
10292 (long) (sections.str_offsets_size
10293 ? sections.str_offsets_offset : 0));
10294 make_cleanup (xfree, virtual_dwo_name);
10295 /* Can we use an existing virtual DWO file? */
10296 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10297 /* Create one if necessary. */
10298 if (*dwo_file_slot == NULL)
10299 {
10300 if (dwarf2_read_debug)
10301 {
10302 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10303 virtual_dwo_name);
10304 }
10305 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10306 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10307 virtual_dwo_name,
10308 strlen (virtual_dwo_name));
10309 dwo_file->comp_dir = comp_dir;
10310 dwo_file->sections.abbrev =
10311 create_dwp_v2_section (&dwp_file->sections.abbrev,
10312 sections.abbrev_offset, sections.abbrev_size);
10313 dwo_file->sections.line =
10314 create_dwp_v2_section (&dwp_file->sections.line,
10315 sections.line_offset, sections.line_size);
10316 dwo_file->sections.loc =
10317 create_dwp_v2_section (&dwp_file->sections.loc,
10318 sections.loc_offset, sections.loc_size);
10319 dwo_file->sections.macinfo =
10320 create_dwp_v2_section (&dwp_file->sections.macinfo,
10321 sections.macinfo_offset, sections.macinfo_size);
10322 dwo_file->sections.macro =
10323 create_dwp_v2_section (&dwp_file->sections.macro,
10324 sections.macro_offset, sections.macro_size);
10325 dwo_file->sections.str_offsets =
10326 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10327 sections.str_offsets_offset,
10328 sections.str_offsets_size);
10329 /* The "str" section is global to the entire DWP file. */
10330 dwo_file->sections.str = dwp_file->sections.str;
10331 /* The info or types section is assigned below to dwo_unit,
10332 there's no need to record it in dwo_file.
10333 Also, we can't simply record type sections in dwo_file because
10334 we record a pointer into the vector in dwo_unit. As we collect more
10335 types we'll grow the vector and eventually have to reallocate space
10336 for it, invalidating all copies of pointers into the previous
10337 contents. */
10338 *dwo_file_slot = dwo_file;
10339 }
10340 else
10341 {
10342 if (dwarf2_read_debug)
10343 {
10344 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10345 virtual_dwo_name);
10346 }
10347 dwo_file = *dwo_file_slot;
10348 }
10349 do_cleanups (cleanups);
10350
10351 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10352 dwo_unit->dwo_file = dwo_file;
10353 dwo_unit->signature = signature;
10354 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10355 sizeof (struct dwarf2_section_info));
10356 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10357 ? &dwp_file->sections.types
10358 : &dwp_file->sections.info,
10359 sections.info_or_types_offset,
10360 sections.info_or_types_size);
10361 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10362
10363 return dwo_unit;
10364 }
10365
10366 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10367 Returns NULL if the signature isn't found. */
10368
10369 static struct dwo_unit *
10370 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10371 ULONGEST signature, int is_debug_types)
10372 {
10373 const struct dwp_hash_table *dwp_htab =
10374 is_debug_types ? dwp_file->tus : dwp_file->cus;
10375 bfd *dbfd = dwp_file->dbfd;
10376 uint32_t mask = dwp_htab->nr_slots - 1;
10377 uint32_t hash = signature & mask;
10378 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10379 unsigned int i;
10380 void **slot;
10381 struct dwo_unit find_dwo_cu, *dwo_cu;
10382
10383 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10384 find_dwo_cu.signature = signature;
10385 slot = htab_find_slot (is_debug_types
10386 ? dwp_file->loaded_tus
10387 : dwp_file->loaded_cus,
10388 &find_dwo_cu, INSERT);
10389
10390 if (*slot != NULL)
10391 return *slot;
10392
10393 /* Use a for loop so that we don't loop forever on bad debug info. */
10394 for (i = 0; i < dwp_htab->nr_slots; ++i)
10395 {
10396 ULONGEST signature_in_table;
10397
10398 signature_in_table =
10399 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10400 if (signature_in_table == signature)
10401 {
10402 uint32_t unit_index =
10403 read_4_bytes (dbfd,
10404 dwp_htab->unit_table + hash * sizeof (uint32_t));
10405
10406 if (dwp_file->version == 1)
10407 {
10408 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10409 comp_dir, signature,
10410 is_debug_types);
10411 }
10412 else
10413 {
10414 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10415 comp_dir, signature,
10416 is_debug_types);
10417 }
10418 return *slot;
10419 }
10420 if (signature_in_table == 0)
10421 return NULL;
10422 hash = (hash + hash2) & mask;
10423 }
10424
10425 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10426 " [in module %s]"),
10427 dwp_file->name);
10428 }
10429
10430 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10431 Open the file specified by FILE_NAME and hand it off to BFD for
10432 preliminary analysis. Return a newly initialized bfd *, which
10433 includes a canonicalized copy of FILE_NAME.
10434 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10435 SEARCH_CWD is true if the current directory is to be searched.
10436 It will be searched before debug-file-directory.
10437 If successful, the file is added to the bfd include table of the
10438 objfile's bfd (see gdb_bfd_record_inclusion).
10439 If unable to find/open the file, return NULL.
10440 NOTE: This function is derived from symfile_bfd_open. */
10441
10442 static bfd *
10443 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10444 {
10445 bfd *sym_bfd;
10446 int desc, flags;
10447 char *absolute_name;
10448 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10449 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10450 to debug_file_directory. */
10451 char *search_path;
10452 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10453
10454 if (search_cwd)
10455 {
10456 if (*debug_file_directory != '\0')
10457 search_path = concat (".", dirname_separator_string,
10458 debug_file_directory, NULL);
10459 else
10460 search_path = xstrdup (".");
10461 }
10462 else
10463 search_path = xstrdup (debug_file_directory);
10464
10465 flags = OPF_RETURN_REALPATH;
10466 if (is_dwp)
10467 flags |= OPF_SEARCH_IN_PATH;
10468 desc = openp (search_path, flags, file_name,
10469 O_RDONLY | O_BINARY, &absolute_name);
10470 xfree (search_path);
10471 if (desc < 0)
10472 return NULL;
10473
10474 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10475 xfree (absolute_name);
10476 if (sym_bfd == NULL)
10477 return NULL;
10478 bfd_set_cacheable (sym_bfd, 1);
10479
10480 if (!bfd_check_format (sym_bfd, bfd_object))
10481 {
10482 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10483 return NULL;
10484 }
10485
10486 /* Success. Record the bfd as having been included by the objfile's bfd.
10487 This is important because things like demangled_names_hash lives in the
10488 objfile's per_bfd space and may have references to things like symbol
10489 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10490 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10491
10492 return sym_bfd;
10493 }
10494
10495 /* Try to open DWO file FILE_NAME.
10496 COMP_DIR is the DW_AT_comp_dir attribute.
10497 The result is the bfd handle of the file.
10498 If there is a problem finding or opening the file, return NULL.
10499 Upon success, the canonicalized path of the file is stored in the bfd,
10500 same as symfile_bfd_open. */
10501
10502 static bfd *
10503 open_dwo_file (const char *file_name, const char *comp_dir)
10504 {
10505 bfd *abfd;
10506
10507 if (IS_ABSOLUTE_PATH (file_name))
10508 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10509
10510 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10511
10512 if (comp_dir != NULL)
10513 {
10514 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10515
10516 /* NOTE: If comp_dir is a relative path, this will also try the
10517 search path, which seems useful. */
10518 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10519 xfree (path_to_try);
10520 if (abfd != NULL)
10521 return abfd;
10522 }
10523
10524 /* That didn't work, try debug-file-directory, which, despite its name,
10525 is a list of paths. */
10526
10527 if (*debug_file_directory == '\0')
10528 return NULL;
10529
10530 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10531 }
10532
10533 /* This function is mapped across the sections and remembers the offset and
10534 size of each of the DWO debugging sections we are interested in. */
10535
10536 static void
10537 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10538 {
10539 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10540 const struct dwop_section_names *names = &dwop_section_names;
10541
10542 if (section_is_p (sectp->name, &names->abbrev_dwo))
10543 {
10544 dwo_sections->abbrev.s.asection = sectp;
10545 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->info_dwo))
10548 {
10549 dwo_sections->info.s.asection = sectp;
10550 dwo_sections->info.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->line_dwo))
10553 {
10554 dwo_sections->line.s.asection = sectp;
10555 dwo_sections->line.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->loc_dwo))
10558 {
10559 dwo_sections->loc.s.asection = sectp;
10560 dwo_sections->loc.size = bfd_get_section_size (sectp);
10561 }
10562 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10563 {
10564 dwo_sections->macinfo.s.asection = sectp;
10565 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->macro_dwo))
10568 {
10569 dwo_sections->macro.s.asection = sectp;
10570 dwo_sections->macro.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->str_dwo))
10573 {
10574 dwo_sections->str.s.asection = sectp;
10575 dwo_sections->str.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10578 {
10579 dwo_sections->str_offsets.s.asection = sectp;
10580 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->types_dwo))
10583 {
10584 struct dwarf2_section_info type_section;
10585
10586 memset (&type_section, 0, sizeof (type_section));
10587 type_section.s.asection = sectp;
10588 type_section.size = bfd_get_section_size (sectp);
10589 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10590 &type_section);
10591 }
10592 }
10593
10594 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10595 by PER_CU. This is for the non-DWP case.
10596 The result is NULL if DWO_NAME can't be found. */
10597
10598 static struct dwo_file *
10599 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10600 const char *dwo_name, const char *comp_dir)
10601 {
10602 struct objfile *objfile = dwarf2_per_objfile->objfile;
10603 struct dwo_file *dwo_file;
10604 bfd *dbfd;
10605 struct cleanup *cleanups;
10606
10607 dbfd = open_dwo_file (dwo_name, comp_dir);
10608 if (dbfd == NULL)
10609 {
10610 if (dwarf2_read_debug)
10611 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10612 return NULL;
10613 }
10614 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10615 dwo_file->dwo_name = dwo_name;
10616 dwo_file->comp_dir = comp_dir;
10617 dwo_file->dbfd = dbfd;
10618
10619 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10620
10621 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10622
10623 dwo_file->cu = create_dwo_cu (dwo_file);
10624
10625 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10626 dwo_file->sections.types);
10627
10628 discard_cleanups (cleanups);
10629
10630 if (dwarf2_read_debug)
10631 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10632
10633 return dwo_file;
10634 }
10635
10636 /* This function is mapped across the sections and remembers the offset and
10637 size of each of the DWP debugging sections common to version 1 and 2 that
10638 we are interested in. */
10639
10640 static void
10641 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10642 void *dwp_file_ptr)
10643 {
10644 struct dwp_file *dwp_file = dwp_file_ptr;
10645 const struct dwop_section_names *names = &dwop_section_names;
10646 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10647
10648 /* Record the ELF section number for later lookup: this is what the
10649 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10650 gdb_assert (elf_section_nr < dwp_file->num_sections);
10651 dwp_file->elf_sections[elf_section_nr] = sectp;
10652
10653 /* Look for specific sections that we need. */
10654 if (section_is_p (sectp->name, &names->str_dwo))
10655 {
10656 dwp_file->sections.str.s.asection = sectp;
10657 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10658 }
10659 else if (section_is_p (sectp->name, &names->cu_index))
10660 {
10661 dwp_file->sections.cu_index.s.asection = sectp;
10662 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10663 }
10664 else if (section_is_p (sectp->name, &names->tu_index))
10665 {
10666 dwp_file->sections.tu_index.s.asection = sectp;
10667 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10668 }
10669 }
10670
10671 /* This function is mapped across the sections and remembers the offset and
10672 size of each of the DWP version 2 debugging sections that we are interested
10673 in. This is split into a separate function because we don't know if we
10674 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10675
10676 static void
10677 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10678 {
10679 struct dwp_file *dwp_file = dwp_file_ptr;
10680 const struct dwop_section_names *names = &dwop_section_names;
10681 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10682
10683 /* Record the ELF section number for later lookup: this is what the
10684 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10685 gdb_assert (elf_section_nr < dwp_file->num_sections);
10686 dwp_file->elf_sections[elf_section_nr] = sectp;
10687
10688 /* Look for specific sections that we need. */
10689 if (section_is_p (sectp->name, &names->abbrev_dwo))
10690 {
10691 dwp_file->sections.abbrev.s.asection = sectp;
10692 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10693 }
10694 else if (section_is_p (sectp->name, &names->info_dwo))
10695 {
10696 dwp_file->sections.info.s.asection = sectp;
10697 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->line_dwo))
10700 {
10701 dwp_file->sections.line.s.asection = sectp;
10702 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->loc_dwo))
10705 {
10706 dwp_file->sections.loc.s.asection = sectp;
10707 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10708 }
10709 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10710 {
10711 dwp_file->sections.macinfo.s.asection = sectp;
10712 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->macro_dwo))
10715 {
10716 dwp_file->sections.macro.s.asection = sectp;
10717 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10720 {
10721 dwp_file->sections.str_offsets.s.asection = sectp;
10722 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->types_dwo))
10725 {
10726 dwp_file->sections.types.s.asection = sectp;
10727 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10728 }
10729 }
10730
10731 /* Hash function for dwp_file loaded CUs/TUs. */
10732
10733 static hashval_t
10734 hash_dwp_loaded_cutus (const void *item)
10735 {
10736 const struct dwo_unit *dwo_unit = item;
10737
10738 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10739 return dwo_unit->signature;
10740 }
10741
10742 /* Equality function for dwp_file loaded CUs/TUs. */
10743
10744 static int
10745 eq_dwp_loaded_cutus (const void *a, const void *b)
10746 {
10747 const struct dwo_unit *dua = a;
10748 const struct dwo_unit *dub = b;
10749
10750 return dua->signature == dub->signature;
10751 }
10752
10753 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10754
10755 static htab_t
10756 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10757 {
10758 return htab_create_alloc_ex (3,
10759 hash_dwp_loaded_cutus,
10760 eq_dwp_loaded_cutus,
10761 NULL,
10762 &objfile->objfile_obstack,
10763 hashtab_obstack_allocate,
10764 dummy_obstack_deallocate);
10765 }
10766
10767 /* Try to open DWP file FILE_NAME.
10768 The result is the bfd handle of the file.
10769 If there is a problem finding or opening the file, return NULL.
10770 Upon success, the canonicalized path of the file is stored in the bfd,
10771 same as symfile_bfd_open. */
10772
10773 static bfd *
10774 open_dwp_file (const char *file_name)
10775 {
10776 bfd *abfd;
10777
10778 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10779 if (abfd != NULL)
10780 return abfd;
10781
10782 /* Work around upstream bug 15652.
10783 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10784 [Whether that's a "bug" is debatable, but it is getting in our way.]
10785 We have no real idea where the dwp file is, because gdb's realpath-ing
10786 of the executable's path may have discarded the needed info.
10787 [IWBN if the dwp file name was recorded in the executable, akin to
10788 .gnu_debuglink, but that doesn't exist yet.]
10789 Strip the directory from FILE_NAME and search again. */
10790 if (*debug_file_directory != '\0')
10791 {
10792 /* Don't implicitly search the current directory here.
10793 If the user wants to search "." to handle this case,
10794 it must be added to debug-file-directory. */
10795 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10796 0 /*search_cwd*/);
10797 }
10798
10799 return NULL;
10800 }
10801
10802 /* Initialize the use of the DWP file for the current objfile.
10803 By convention the name of the DWP file is ${objfile}.dwp.
10804 The result is NULL if it can't be found. */
10805
10806 static struct dwp_file *
10807 open_and_init_dwp_file (void)
10808 {
10809 struct objfile *objfile = dwarf2_per_objfile->objfile;
10810 struct dwp_file *dwp_file;
10811 char *dwp_name;
10812 bfd *dbfd;
10813 struct cleanup *cleanups;
10814
10815 /* Try to find first .dwp for the binary file before any symbolic links
10816 resolving. */
10817 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10818 cleanups = make_cleanup (xfree, dwp_name);
10819
10820 dbfd = open_dwp_file (dwp_name);
10821 if (dbfd == NULL
10822 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10823 {
10824 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10825 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10826 make_cleanup (xfree, dwp_name);
10827 dbfd = open_dwp_file (dwp_name);
10828 }
10829
10830 if (dbfd == NULL)
10831 {
10832 if (dwarf2_read_debug)
10833 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10834 do_cleanups (cleanups);
10835 return NULL;
10836 }
10837 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10838 dwp_file->name = bfd_get_filename (dbfd);
10839 dwp_file->dbfd = dbfd;
10840 do_cleanups (cleanups);
10841
10842 /* +1: section 0 is unused */
10843 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10844 dwp_file->elf_sections =
10845 OBSTACK_CALLOC (&objfile->objfile_obstack,
10846 dwp_file->num_sections, asection *);
10847
10848 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10849
10850 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10851
10852 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10853
10854 /* The DWP file version is stored in the hash table. Oh well. */
10855 if (dwp_file->cus->version != dwp_file->tus->version)
10856 {
10857 /* Technically speaking, we should try to limp along, but this is
10858 pretty bizarre. We use pulongest here because that's the established
10859 portability solution (e.g, we cannot use %u for uint32_t). */
10860 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10861 " TU version %s [in DWP file %s]"),
10862 pulongest (dwp_file->cus->version),
10863 pulongest (dwp_file->tus->version), dwp_name);
10864 }
10865 dwp_file->version = dwp_file->cus->version;
10866
10867 if (dwp_file->version == 2)
10868 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10869
10870 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10871 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10872
10873 if (dwarf2_read_debug)
10874 {
10875 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10876 fprintf_unfiltered (gdb_stdlog,
10877 " %s CUs, %s TUs\n",
10878 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10879 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10880 }
10881
10882 return dwp_file;
10883 }
10884
10885 /* Wrapper around open_and_init_dwp_file, only open it once. */
10886
10887 static struct dwp_file *
10888 get_dwp_file (void)
10889 {
10890 if (! dwarf2_per_objfile->dwp_checked)
10891 {
10892 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10893 dwarf2_per_objfile->dwp_checked = 1;
10894 }
10895 return dwarf2_per_objfile->dwp_file;
10896 }
10897
10898 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10899 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10900 or in the DWP file for the objfile, referenced by THIS_UNIT.
10901 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10902 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10903
10904 This is called, for example, when wanting to read a variable with a
10905 complex location. Therefore we don't want to do file i/o for every call.
10906 Therefore we don't want to look for a DWO file on every call.
10907 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10908 then we check if we've already seen DWO_NAME, and only THEN do we check
10909 for a DWO file.
10910
10911 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10912 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10913
10914 static struct dwo_unit *
10915 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10916 const char *dwo_name, const char *comp_dir,
10917 ULONGEST signature, int is_debug_types)
10918 {
10919 struct objfile *objfile = dwarf2_per_objfile->objfile;
10920 const char *kind = is_debug_types ? "TU" : "CU";
10921 void **dwo_file_slot;
10922 struct dwo_file *dwo_file;
10923 struct dwp_file *dwp_file;
10924
10925 /* First see if there's a DWP file.
10926 If we have a DWP file but didn't find the DWO inside it, don't
10927 look for the original DWO file. It makes gdb behave differently
10928 depending on whether one is debugging in the build tree. */
10929
10930 dwp_file = get_dwp_file ();
10931 if (dwp_file != NULL)
10932 {
10933 const struct dwp_hash_table *dwp_htab =
10934 is_debug_types ? dwp_file->tus : dwp_file->cus;
10935
10936 if (dwp_htab != NULL)
10937 {
10938 struct dwo_unit *dwo_cutu =
10939 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10940 signature, is_debug_types);
10941
10942 if (dwo_cutu != NULL)
10943 {
10944 if (dwarf2_read_debug)
10945 {
10946 fprintf_unfiltered (gdb_stdlog,
10947 "Virtual DWO %s %s found: @%s\n",
10948 kind, hex_string (signature),
10949 host_address_to_string (dwo_cutu));
10950 }
10951 return dwo_cutu;
10952 }
10953 }
10954 }
10955 else
10956 {
10957 /* No DWP file, look for the DWO file. */
10958
10959 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10960 if (*dwo_file_slot == NULL)
10961 {
10962 /* Read in the file and build a table of the CUs/TUs it contains. */
10963 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10964 }
10965 /* NOTE: This will be NULL if unable to open the file. */
10966 dwo_file = *dwo_file_slot;
10967
10968 if (dwo_file != NULL)
10969 {
10970 struct dwo_unit *dwo_cutu = NULL;
10971
10972 if (is_debug_types && dwo_file->tus)
10973 {
10974 struct dwo_unit find_dwo_cutu;
10975
10976 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10977 find_dwo_cutu.signature = signature;
10978 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10979 }
10980 else if (!is_debug_types && dwo_file->cu)
10981 {
10982 if (signature == dwo_file->cu->signature)
10983 dwo_cutu = dwo_file->cu;
10984 }
10985
10986 if (dwo_cutu != NULL)
10987 {
10988 if (dwarf2_read_debug)
10989 {
10990 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10991 kind, dwo_name, hex_string (signature),
10992 host_address_to_string (dwo_cutu));
10993 }
10994 return dwo_cutu;
10995 }
10996 }
10997 }
10998
10999 /* We didn't find it. This could mean a dwo_id mismatch, or
11000 someone deleted the DWO/DWP file, or the search path isn't set up
11001 correctly to find the file. */
11002
11003 if (dwarf2_read_debug)
11004 {
11005 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11006 kind, dwo_name, hex_string (signature));
11007 }
11008
11009 /* This is a warning and not a complaint because it can be caused by
11010 pilot error (e.g., user accidentally deleting the DWO). */
11011 {
11012 /* Print the name of the DWP file if we looked there, helps the user
11013 better diagnose the problem. */
11014 char *dwp_text = NULL;
11015 struct cleanup *cleanups;
11016
11017 if (dwp_file != NULL)
11018 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11019 cleanups = make_cleanup (xfree, dwp_text);
11020
11021 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11022 " [in module %s]"),
11023 kind, dwo_name, hex_string (signature),
11024 dwp_text != NULL ? dwp_text : "",
11025 this_unit->is_debug_types ? "TU" : "CU",
11026 this_unit->offset.sect_off, objfile_name (objfile));
11027
11028 do_cleanups (cleanups);
11029 }
11030 return NULL;
11031 }
11032
11033 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11034 See lookup_dwo_cutu_unit for details. */
11035
11036 static struct dwo_unit *
11037 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11038 const char *dwo_name, const char *comp_dir,
11039 ULONGEST signature)
11040 {
11041 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11042 }
11043
11044 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11045 See lookup_dwo_cutu_unit for details. */
11046
11047 static struct dwo_unit *
11048 lookup_dwo_type_unit (struct signatured_type *this_tu,
11049 const char *dwo_name, const char *comp_dir)
11050 {
11051 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11052 }
11053
11054 /* Traversal function for queue_and_load_all_dwo_tus. */
11055
11056 static int
11057 queue_and_load_dwo_tu (void **slot, void *info)
11058 {
11059 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11060 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11061 ULONGEST signature = dwo_unit->signature;
11062 struct signatured_type *sig_type =
11063 lookup_dwo_signatured_type (per_cu->cu, signature);
11064
11065 if (sig_type != NULL)
11066 {
11067 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11068
11069 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11070 a real dependency of PER_CU on SIG_TYPE. That is detected later
11071 while processing PER_CU. */
11072 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11073 load_full_type_unit (sig_cu);
11074 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11075 }
11076
11077 return 1;
11078 }
11079
11080 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11081 The DWO may have the only definition of the type, though it may not be
11082 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11083 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11084
11085 static void
11086 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11087 {
11088 struct dwo_unit *dwo_unit;
11089 struct dwo_file *dwo_file;
11090
11091 gdb_assert (!per_cu->is_debug_types);
11092 gdb_assert (get_dwp_file () == NULL);
11093 gdb_assert (per_cu->cu != NULL);
11094
11095 dwo_unit = per_cu->cu->dwo_unit;
11096 gdb_assert (dwo_unit != NULL);
11097
11098 dwo_file = dwo_unit->dwo_file;
11099 if (dwo_file->tus != NULL)
11100 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11101 }
11102
11103 /* Free all resources associated with DWO_FILE.
11104 Close the DWO file and munmap the sections.
11105 All memory should be on the objfile obstack. */
11106
11107 static void
11108 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11109 {
11110 int ix;
11111 struct dwarf2_section_info *section;
11112
11113 /* Note: dbfd is NULL for virtual DWO files. */
11114 gdb_bfd_unref (dwo_file->dbfd);
11115
11116 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11117 }
11118
11119 /* Wrapper for free_dwo_file for use in cleanups. */
11120
11121 static void
11122 free_dwo_file_cleanup (void *arg)
11123 {
11124 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11125 struct objfile *objfile = dwarf2_per_objfile->objfile;
11126
11127 free_dwo_file (dwo_file, objfile);
11128 }
11129
11130 /* Traversal function for free_dwo_files. */
11131
11132 static int
11133 free_dwo_file_from_slot (void **slot, void *info)
11134 {
11135 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11136 struct objfile *objfile = (struct objfile *) info;
11137
11138 free_dwo_file (dwo_file, objfile);
11139
11140 return 1;
11141 }
11142
11143 /* Free all resources associated with DWO_FILES. */
11144
11145 static void
11146 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11147 {
11148 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11149 }
11150 \f
11151 /* Read in various DIEs. */
11152
11153 /* qsort helper for inherit_abstract_dies. */
11154
11155 static int
11156 unsigned_int_compar (const void *ap, const void *bp)
11157 {
11158 unsigned int a = *(unsigned int *) ap;
11159 unsigned int b = *(unsigned int *) bp;
11160
11161 return (a > b) - (b > a);
11162 }
11163
11164 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11165 Inherit only the children of the DW_AT_abstract_origin DIE not being
11166 already referenced by DW_AT_abstract_origin from the children of the
11167 current DIE. */
11168
11169 static void
11170 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11171 {
11172 struct die_info *child_die;
11173 unsigned die_children_count;
11174 /* CU offsets which were referenced by children of the current DIE. */
11175 sect_offset *offsets;
11176 sect_offset *offsets_end, *offsetp;
11177 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11178 struct die_info *origin_die;
11179 /* Iterator of the ORIGIN_DIE children. */
11180 struct die_info *origin_child_die;
11181 struct cleanup *cleanups;
11182 struct attribute *attr;
11183 struct dwarf2_cu *origin_cu;
11184 struct pending **origin_previous_list_in_scope;
11185
11186 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11187 if (!attr)
11188 return;
11189
11190 /* Note that following die references may follow to a die in a
11191 different cu. */
11192
11193 origin_cu = cu;
11194 origin_die = follow_die_ref (die, attr, &origin_cu);
11195
11196 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11197 symbols in. */
11198 origin_previous_list_in_scope = origin_cu->list_in_scope;
11199 origin_cu->list_in_scope = cu->list_in_scope;
11200
11201 if (die->tag != origin_die->tag
11202 && !(die->tag == DW_TAG_inlined_subroutine
11203 && origin_die->tag == DW_TAG_subprogram))
11204 complaint (&symfile_complaints,
11205 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11206 die->offset.sect_off, origin_die->offset.sect_off);
11207
11208 child_die = die->child;
11209 die_children_count = 0;
11210 while (child_die && child_die->tag)
11211 {
11212 child_die = sibling_die (child_die);
11213 die_children_count++;
11214 }
11215 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11216 cleanups = make_cleanup (xfree, offsets);
11217
11218 offsets_end = offsets;
11219 child_die = die->child;
11220 while (child_die && child_die->tag)
11221 {
11222 /* For each CHILD_DIE, find the corresponding child of
11223 ORIGIN_DIE. If there is more than one layer of
11224 DW_AT_abstract_origin, follow them all; there shouldn't be,
11225 but GCC versions at least through 4.4 generate this (GCC PR
11226 40573). */
11227 struct die_info *child_origin_die = child_die;
11228 struct dwarf2_cu *child_origin_cu = cu;
11229
11230 while (1)
11231 {
11232 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11233 child_origin_cu);
11234 if (attr == NULL)
11235 break;
11236 child_origin_die = follow_die_ref (child_origin_die, attr,
11237 &child_origin_cu);
11238 }
11239
11240 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11241 counterpart may exist. */
11242 if (child_origin_die != child_die)
11243 {
11244 if (child_die->tag != child_origin_die->tag
11245 && !(child_die->tag == DW_TAG_inlined_subroutine
11246 && child_origin_die->tag == DW_TAG_subprogram))
11247 complaint (&symfile_complaints,
11248 _("Child DIE 0x%x and its abstract origin 0x%x have "
11249 "different tags"), child_die->offset.sect_off,
11250 child_origin_die->offset.sect_off);
11251 if (child_origin_die->parent != origin_die)
11252 complaint (&symfile_complaints,
11253 _("Child DIE 0x%x and its abstract origin 0x%x have "
11254 "different parents"), child_die->offset.sect_off,
11255 child_origin_die->offset.sect_off);
11256 else
11257 *offsets_end++ = child_origin_die->offset;
11258 }
11259 child_die = sibling_die (child_die);
11260 }
11261 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11262 unsigned_int_compar);
11263 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11264 if (offsetp[-1].sect_off == offsetp->sect_off)
11265 complaint (&symfile_complaints,
11266 _("Multiple children of DIE 0x%x refer "
11267 "to DIE 0x%x as their abstract origin"),
11268 die->offset.sect_off, offsetp->sect_off);
11269
11270 offsetp = offsets;
11271 origin_child_die = origin_die->child;
11272 while (origin_child_die && origin_child_die->tag)
11273 {
11274 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11275 while (offsetp < offsets_end
11276 && offsetp->sect_off < origin_child_die->offset.sect_off)
11277 offsetp++;
11278 if (offsetp >= offsets_end
11279 || offsetp->sect_off > origin_child_die->offset.sect_off)
11280 {
11281 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11282 Check whether we're already processing ORIGIN_CHILD_DIE.
11283 This can happen with mutually referenced abstract_origins.
11284 PR 16581. */
11285 if (!origin_child_die->in_process)
11286 process_die (origin_child_die, origin_cu);
11287 }
11288 origin_child_die = sibling_die (origin_child_die);
11289 }
11290 origin_cu->list_in_scope = origin_previous_list_in_scope;
11291
11292 do_cleanups (cleanups);
11293 }
11294
11295 static void
11296 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11297 {
11298 struct objfile *objfile = cu->objfile;
11299 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11300 struct context_stack *newobj;
11301 CORE_ADDR lowpc;
11302 CORE_ADDR highpc;
11303 struct die_info *child_die;
11304 struct attribute *attr, *call_line, *call_file;
11305 const char *name;
11306 CORE_ADDR baseaddr;
11307 struct block *block;
11308 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11309 VEC (symbolp) *template_args = NULL;
11310 struct template_symbol *templ_func = NULL;
11311
11312 if (inlined_func)
11313 {
11314 /* If we do not have call site information, we can't show the
11315 caller of this inlined function. That's too confusing, so
11316 only use the scope for local variables. */
11317 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11318 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11319 if (call_line == NULL || call_file == NULL)
11320 {
11321 read_lexical_block_scope (die, cu);
11322 return;
11323 }
11324 }
11325
11326 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11327
11328 name = dwarf2_name (die, cu);
11329
11330 /* Ignore functions with missing or empty names. These are actually
11331 illegal according to the DWARF standard. */
11332 if (name == NULL)
11333 {
11334 complaint (&symfile_complaints,
11335 _("missing name for subprogram DIE at %d"),
11336 die->offset.sect_off);
11337 return;
11338 }
11339
11340 /* Ignore functions with missing or invalid low and high pc attributes. */
11341 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11342 {
11343 attr = dwarf2_attr (die, DW_AT_external, cu);
11344 if (!attr || !DW_UNSND (attr))
11345 complaint (&symfile_complaints,
11346 _("cannot get low and high bounds "
11347 "for subprogram DIE at %d"),
11348 die->offset.sect_off);
11349 return;
11350 }
11351
11352 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11353 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11354
11355 /* If we have any template arguments, then we must allocate a
11356 different sort of symbol. */
11357 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11358 {
11359 if (child_die->tag == DW_TAG_template_type_param
11360 || child_die->tag == DW_TAG_template_value_param)
11361 {
11362 templ_func = allocate_template_symbol (objfile);
11363 templ_func->base.is_cplus_template_function = 1;
11364 break;
11365 }
11366 }
11367
11368 newobj = push_context (0, lowpc);
11369 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11370 (struct symbol *) templ_func);
11371
11372 /* If there is a location expression for DW_AT_frame_base, record
11373 it. */
11374 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11375 if (attr)
11376 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11377
11378 cu->list_in_scope = &local_symbols;
11379
11380 if (die->child != NULL)
11381 {
11382 child_die = die->child;
11383 while (child_die && child_die->tag)
11384 {
11385 if (child_die->tag == DW_TAG_template_type_param
11386 || child_die->tag == DW_TAG_template_value_param)
11387 {
11388 struct symbol *arg = new_symbol (child_die, NULL, cu);
11389
11390 if (arg != NULL)
11391 VEC_safe_push (symbolp, template_args, arg);
11392 }
11393 else
11394 process_die (child_die, cu);
11395 child_die = sibling_die (child_die);
11396 }
11397 }
11398
11399 inherit_abstract_dies (die, cu);
11400
11401 /* If we have a DW_AT_specification, we might need to import using
11402 directives from the context of the specification DIE. See the
11403 comment in determine_prefix. */
11404 if (cu->language == language_cplus
11405 && dwarf2_attr (die, DW_AT_specification, cu))
11406 {
11407 struct dwarf2_cu *spec_cu = cu;
11408 struct die_info *spec_die = die_specification (die, &spec_cu);
11409
11410 while (spec_die)
11411 {
11412 child_die = spec_die->child;
11413 while (child_die && child_die->tag)
11414 {
11415 if (child_die->tag == DW_TAG_imported_module)
11416 process_die (child_die, spec_cu);
11417 child_die = sibling_die (child_die);
11418 }
11419
11420 /* In some cases, GCC generates specification DIEs that
11421 themselves contain DW_AT_specification attributes. */
11422 spec_die = die_specification (spec_die, &spec_cu);
11423 }
11424 }
11425
11426 newobj = pop_context ();
11427 /* Make a block for the local symbols within. */
11428 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11429 lowpc, highpc);
11430
11431 /* For C++, set the block's scope. */
11432 if ((cu->language == language_cplus || cu->language == language_fortran)
11433 && cu->processing_has_namespace_info)
11434 block_set_scope (block, determine_prefix (die, cu),
11435 &objfile->objfile_obstack);
11436
11437 /* If we have address ranges, record them. */
11438 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11439
11440 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11441
11442 /* Attach template arguments to function. */
11443 if (! VEC_empty (symbolp, template_args))
11444 {
11445 gdb_assert (templ_func != NULL);
11446
11447 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11448 templ_func->template_arguments
11449 = obstack_alloc (&objfile->objfile_obstack,
11450 (templ_func->n_template_arguments
11451 * sizeof (struct symbol *)));
11452 memcpy (templ_func->template_arguments,
11453 VEC_address (symbolp, template_args),
11454 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11455 VEC_free (symbolp, template_args);
11456 }
11457
11458 /* In C++, we can have functions nested inside functions (e.g., when
11459 a function declares a class that has methods). This means that
11460 when we finish processing a function scope, we may need to go
11461 back to building a containing block's symbol lists. */
11462 local_symbols = newobj->locals;
11463 using_directives = newobj->using_directives;
11464
11465 /* If we've finished processing a top-level function, subsequent
11466 symbols go in the file symbol list. */
11467 if (outermost_context_p ())
11468 cu->list_in_scope = &file_symbols;
11469 }
11470
11471 /* Process all the DIES contained within a lexical block scope. Start
11472 a new scope, process the dies, and then close the scope. */
11473
11474 static void
11475 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11476 {
11477 struct objfile *objfile = cu->objfile;
11478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11479 struct context_stack *newobj;
11480 CORE_ADDR lowpc, highpc;
11481 struct die_info *child_die;
11482 CORE_ADDR baseaddr;
11483
11484 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11485
11486 /* Ignore blocks with missing or invalid low and high pc attributes. */
11487 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11488 as multiple lexical blocks? Handling children in a sane way would
11489 be nasty. Might be easier to properly extend generic blocks to
11490 describe ranges. */
11491 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11492 return;
11493 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11494 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11495
11496 push_context (0, lowpc);
11497 if (die->child != NULL)
11498 {
11499 child_die = die->child;
11500 while (child_die && child_die->tag)
11501 {
11502 process_die (child_die, cu);
11503 child_die = sibling_die (child_die);
11504 }
11505 }
11506 newobj = pop_context ();
11507
11508 if (local_symbols != NULL || using_directives != NULL)
11509 {
11510 struct block *block
11511 = finish_block (0, &local_symbols, newobj->old_blocks,
11512 newobj->start_addr, highpc);
11513
11514 /* Note that recording ranges after traversing children, as we
11515 do here, means that recording a parent's ranges entails
11516 walking across all its children's ranges as they appear in
11517 the address map, which is quadratic behavior.
11518
11519 It would be nicer to record the parent's ranges before
11520 traversing its children, simply overriding whatever you find
11521 there. But since we don't even decide whether to create a
11522 block until after we've traversed its children, that's hard
11523 to do. */
11524 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11525 }
11526 local_symbols = newobj->locals;
11527 using_directives = newobj->using_directives;
11528 }
11529
11530 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11531
11532 static void
11533 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11534 {
11535 struct objfile *objfile = cu->objfile;
11536 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11537 CORE_ADDR pc, baseaddr;
11538 struct attribute *attr;
11539 struct call_site *call_site, call_site_local;
11540 void **slot;
11541 int nparams;
11542 struct die_info *child_die;
11543
11544 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11545
11546 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11547 if (!attr)
11548 {
11549 complaint (&symfile_complaints,
11550 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11551 "DIE 0x%x [in module %s]"),
11552 die->offset.sect_off, objfile_name (objfile));
11553 return;
11554 }
11555 pc = attr_value_as_address (attr) + baseaddr;
11556 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11557
11558 if (cu->call_site_htab == NULL)
11559 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11560 NULL, &objfile->objfile_obstack,
11561 hashtab_obstack_allocate, NULL);
11562 call_site_local.pc = pc;
11563 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11564 if (*slot != NULL)
11565 {
11566 complaint (&symfile_complaints,
11567 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11568 "DIE 0x%x [in module %s]"),
11569 paddress (gdbarch, pc), die->offset.sect_off,
11570 objfile_name (objfile));
11571 return;
11572 }
11573
11574 /* Count parameters at the caller. */
11575
11576 nparams = 0;
11577 for (child_die = die->child; child_die && child_die->tag;
11578 child_die = sibling_die (child_die))
11579 {
11580 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11581 {
11582 complaint (&symfile_complaints,
11583 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11584 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11585 child_die->tag, child_die->offset.sect_off,
11586 objfile_name (objfile));
11587 continue;
11588 }
11589
11590 nparams++;
11591 }
11592
11593 call_site = obstack_alloc (&objfile->objfile_obstack,
11594 (sizeof (*call_site)
11595 + (sizeof (*call_site->parameter)
11596 * (nparams - 1))));
11597 *slot = call_site;
11598 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11599 call_site->pc = pc;
11600
11601 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11602 {
11603 struct die_info *func_die;
11604
11605 /* Skip also over DW_TAG_inlined_subroutine. */
11606 for (func_die = die->parent;
11607 func_die && func_die->tag != DW_TAG_subprogram
11608 && func_die->tag != DW_TAG_subroutine_type;
11609 func_die = func_die->parent);
11610
11611 /* DW_AT_GNU_all_call_sites is a superset
11612 of DW_AT_GNU_all_tail_call_sites. */
11613 if (func_die
11614 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11615 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11616 {
11617 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11618 not complete. But keep CALL_SITE for look ups via call_site_htab,
11619 both the initial caller containing the real return address PC and
11620 the final callee containing the current PC of a chain of tail
11621 calls do not need to have the tail call list complete. But any
11622 function candidate for a virtual tail call frame searched via
11623 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11624 determined unambiguously. */
11625 }
11626 else
11627 {
11628 struct type *func_type = NULL;
11629
11630 if (func_die)
11631 func_type = get_die_type (func_die, cu);
11632 if (func_type != NULL)
11633 {
11634 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11635
11636 /* Enlist this call site to the function. */
11637 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11638 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11639 }
11640 else
11641 complaint (&symfile_complaints,
11642 _("Cannot find function owning DW_TAG_GNU_call_site "
11643 "DIE 0x%x [in module %s]"),
11644 die->offset.sect_off, objfile_name (objfile));
11645 }
11646 }
11647
11648 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11649 if (attr == NULL)
11650 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11651 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11652 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11653 /* Keep NULL DWARF_BLOCK. */;
11654 else if (attr_form_is_block (attr))
11655 {
11656 struct dwarf2_locexpr_baton *dlbaton;
11657
11658 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11659 dlbaton->data = DW_BLOCK (attr)->data;
11660 dlbaton->size = DW_BLOCK (attr)->size;
11661 dlbaton->per_cu = cu->per_cu;
11662
11663 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11664 }
11665 else if (attr_form_is_ref (attr))
11666 {
11667 struct dwarf2_cu *target_cu = cu;
11668 struct die_info *target_die;
11669
11670 target_die = follow_die_ref (die, attr, &target_cu);
11671 gdb_assert (target_cu->objfile == objfile);
11672 if (die_is_declaration (target_die, target_cu))
11673 {
11674 const char *target_physname = NULL;
11675 struct attribute *target_attr;
11676
11677 /* Prefer the mangled name; otherwise compute the demangled one. */
11678 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11679 if (target_attr == NULL)
11680 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11681 target_cu);
11682 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11683 target_physname = DW_STRING (target_attr);
11684 else
11685 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11686 if (target_physname == NULL)
11687 complaint (&symfile_complaints,
11688 _("DW_AT_GNU_call_site_target target DIE has invalid "
11689 "physname, for referencing DIE 0x%x [in module %s]"),
11690 die->offset.sect_off, objfile_name (objfile));
11691 else
11692 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11693 }
11694 else
11695 {
11696 CORE_ADDR lowpc;
11697
11698 /* DW_AT_entry_pc should be preferred. */
11699 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11700 complaint (&symfile_complaints,
11701 _("DW_AT_GNU_call_site_target target DIE has invalid "
11702 "low pc, for referencing DIE 0x%x [in module %s]"),
11703 die->offset.sect_off, objfile_name (objfile));
11704 else
11705 {
11706 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11707 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11708 }
11709 }
11710 }
11711 else
11712 complaint (&symfile_complaints,
11713 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11714 "block nor reference, for DIE 0x%x [in module %s]"),
11715 die->offset.sect_off, objfile_name (objfile));
11716
11717 call_site->per_cu = cu->per_cu;
11718
11719 for (child_die = die->child;
11720 child_die && child_die->tag;
11721 child_die = sibling_die (child_die))
11722 {
11723 struct call_site_parameter *parameter;
11724 struct attribute *loc, *origin;
11725
11726 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11727 {
11728 /* Already printed the complaint above. */
11729 continue;
11730 }
11731
11732 gdb_assert (call_site->parameter_count < nparams);
11733 parameter = &call_site->parameter[call_site->parameter_count];
11734
11735 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11736 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11737 register is contained in DW_AT_GNU_call_site_value. */
11738
11739 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11740 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11741 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11742 {
11743 sect_offset offset;
11744
11745 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11746 offset = dwarf2_get_ref_die_offset (origin);
11747 if (!offset_in_cu_p (&cu->header, offset))
11748 {
11749 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11750 binding can be done only inside one CU. Such referenced DIE
11751 therefore cannot be even moved to DW_TAG_partial_unit. */
11752 complaint (&symfile_complaints,
11753 _("DW_AT_abstract_origin offset is not in CU for "
11754 "DW_TAG_GNU_call_site child DIE 0x%x "
11755 "[in module %s]"),
11756 child_die->offset.sect_off, objfile_name (objfile));
11757 continue;
11758 }
11759 parameter->u.param_offset.cu_off = (offset.sect_off
11760 - cu->header.offset.sect_off);
11761 }
11762 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11763 {
11764 complaint (&symfile_complaints,
11765 _("No DW_FORM_block* DW_AT_location for "
11766 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11767 child_die->offset.sect_off, objfile_name (objfile));
11768 continue;
11769 }
11770 else
11771 {
11772 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11773 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11774 if (parameter->u.dwarf_reg != -1)
11775 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11776 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11777 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11778 &parameter->u.fb_offset))
11779 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11780 else
11781 {
11782 complaint (&symfile_complaints,
11783 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11784 "for DW_FORM_block* DW_AT_location is supported for "
11785 "DW_TAG_GNU_call_site child DIE 0x%x "
11786 "[in module %s]"),
11787 child_die->offset.sect_off, objfile_name (objfile));
11788 continue;
11789 }
11790 }
11791
11792 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11793 if (!attr_form_is_block (attr))
11794 {
11795 complaint (&symfile_complaints,
11796 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11797 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11798 child_die->offset.sect_off, objfile_name (objfile));
11799 continue;
11800 }
11801 parameter->value = DW_BLOCK (attr)->data;
11802 parameter->value_size = DW_BLOCK (attr)->size;
11803
11804 /* Parameters are not pre-cleared by memset above. */
11805 parameter->data_value = NULL;
11806 parameter->data_value_size = 0;
11807 call_site->parameter_count++;
11808
11809 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11810 if (attr)
11811 {
11812 if (!attr_form_is_block (attr))
11813 complaint (&symfile_complaints,
11814 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11815 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11816 child_die->offset.sect_off, objfile_name (objfile));
11817 else
11818 {
11819 parameter->data_value = DW_BLOCK (attr)->data;
11820 parameter->data_value_size = DW_BLOCK (attr)->size;
11821 }
11822 }
11823 }
11824 }
11825
11826 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11827 Return 1 if the attributes are present and valid, otherwise, return 0.
11828 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11829
11830 static int
11831 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11832 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11833 struct partial_symtab *ranges_pst)
11834 {
11835 struct objfile *objfile = cu->objfile;
11836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11837 struct comp_unit_head *cu_header = &cu->header;
11838 bfd *obfd = objfile->obfd;
11839 unsigned int addr_size = cu_header->addr_size;
11840 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11841 /* Base address selection entry. */
11842 CORE_ADDR base;
11843 int found_base;
11844 unsigned int dummy;
11845 const gdb_byte *buffer;
11846 CORE_ADDR marker;
11847 int low_set;
11848 CORE_ADDR low = 0;
11849 CORE_ADDR high = 0;
11850 CORE_ADDR baseaddr;
11851
11852 found_base = cu->base_known;
11853 base = cu->base_address;
11854
11855 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11856 if (offset >= dwarf2_per_objfile->ranges.size)
11857 {
11858 complaint (&symfile_complaints,
11859 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11860 offset);
11861 return 0;
11862 }
11863 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11864
11865 /* Read in the largest possible address. */
11866 marker = read_address (obfd, buffer, cu, &dummy);
11867 if ((marker & mask) == mask)
11868 {
11869 /* If we found the largest possible address, then
11870 read the base address. */
11871 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11872 buffer += 2 * addr_size;
11873 offset += 2 * addr_size;
11874 found_base = 1;
11875 }
11876
11877 low_set = 0;
11878
11879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11880
11881 while (1)
11882 {
11883 CORE_ADDR range_beginning, range_end;
11884
11885 range_beginning = read_address (obfd, buffer, cu, &dummy);
11886 buffer += addr_size;
11887 range_end = read_address (obfd, buffer, cu, &dummy);
11888 buffer += addr_size;
11889 offset += 2 * addr_size;
11890
11891 /* An end of list marker is a pair of zero addresses. */
11892 if (range_beginning == 0 && range_end == 0)
11893 /* Found the end of list entry. */
11894 break;
11895
11896 /* Each base address selection entry is a pair of 2 values.
11897 The first is the largest possible address, the second is
11898 the base address. Check for a base address here. */
11899 if ((range_beginning & mask) == mask)
11900 {
11901 /* If we found the largest possible address, then
11902 read the base address. */
11903 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11904 found_base = 1;
11905 continue;
11906 }
11907
11908 if (!found_base)
11909 {
11910 /* We have no valid base address for the ranges
11911 data. */
11912 complaint (&symfile_complaints,
11913 _("Invalid .debug_ranges data (no base address)"));
11914 return 0;
11915 }
11916
11917 if (range_beginning > range_end)
11918 {
11919 /* Inverted range entries are invalid. */
11920 complaint (&symfile_complaints,
11921 _("Invalid .debug_ranges data (inverted range)"));
11922 return 0;
11923 }
11924
11925 /* Empty range entries have no effect. */
11926 if (range_beginning == range_end)
11927 continue;
11928
11929 range_beginning += base;
11930 range_end += base;
11931
11932 /* A not-uncommon case of bad debug info.
11933 Don't pollute the addrmap with bad data. */
11934 if (range_beginning + baseaddr == 0
11935 && !dwarf2_per_objfile->has_section_at_zero)
11936 {
11937 complaint (&symfile_complaints,
11938 _(".debug_ranges entry has start address of zero"
11939 " [in module %s]"), objfile_name (objfile));
11940 continue;
11941 }
11942
11943 if (ranges_pst != NULL)
11944 {
11945 CORE_ADDR lowpc;
11946 CORE_ADDR highpc;
11947
11948 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11949 range_beginning + baseaddr);
11950 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11951 range_end + baseaddr);
11952 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11953 ranges_pst);
11954 }
11955
11956 /* FIXME: This is recording everything as a low-high
11957 segment of consecutive addresses. We should have a
11958 data structure for discontiguous block ranges
11959 instead. */
11960 if (! low_set)
11961 {
11962 low = range_beginning;
11963 high = range_end;
11964 low_set = 1;
11965 }
11966 else
11967 {
11968 if (range_beginning < low)
11969 low = range_beginning;
11970 if (range_end > high)
11971 high = range_end;
11972 }
11973 }
11974
11975 if (! low_set)
11976 /* If the first entry is an end-of-list marker, the range
11977 describes an empty scope, i.e. no instructions. */
11978 return 0;
11979
11980 if (low_return)
11981 *low_return = low;
11982 if (high_return)
11983 *high_return = high;
11984 return 1;
11985 }
11986
11987 /* Get low and high pc attributes from a die. Return 1 if the attributes
11988 are present and valid, otherwise, return 0. Return -1 if the range is
11989 discontinuous, i.e. derived from DW_AT_ranges information. */
11990
11991 static int
11992 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11993 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11994 struct partial_symtab *pst)
11995 {
11996 struct attribute *attr;
11997 struct attribute *attr_high;
11998 CORE_ADDR low = 0;
11999 CORE_ADDR high = 0;
12000 int ret = 0;
12001
12002 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12003 if (attr_high)
12004 {
12005 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12006 if (attr)
12007 {
12008 low = attr_value_as_address (attr);
12009 high = attr_value_as_address (attr_high);
12010 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12011 high += low;
12012 }
12013 else
12014 /* Found high w/o low attribute. */
12015 return 0;
12016
12017 /* Found consecutive range of addresses. */
12018 ret = 1;
12019 }
12020 else
12021 {
12022 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12023 if (attr != NULL)
12024 {
12025 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12026 We take advantage of the fact that DW_AT_ranges does not appear
12027 in DW_TAG_compile_unit of DWO files. */
12028 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12029 unsigned int ranges_offset = (DW_UNSND (attr)
12030 + (need_ranges_base
12031 ? cu->ranges_base
12032 : 0));
12033
12034 /* Value of the DW_AT_ranges attribute is the offset in the
12035 .debug_ranges section. */
12036 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12037 return 0;
12038 /* Found discontinuous range of addresses. */
12039 ret = -1;
12040 }
12041 }
12042
12043 /* read_partial_die has also the strict LOW < HIGH requirement. */
12044 if (high <= low)
12045 return 0;
12046
12047 /* When using the GNU linker, .gnu.linkonce. sections are used to
12048 eliminate duplicate copies of functions and vtables and such.
12049 The linker will arbitrarily choose one and discard the others.
12050 The AT_*_pc values for such functions refer to local labels in
12051 these sections. If the section from that file was discarded, the
12052 labels are not in the output, so the relocs get a value of 0.
12053 If this is a discarded function, mark the pc bounds as invalid,
12054 so that GDB will ignore it. */
12055 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12056 return 0;
12057
12058 *lowpc = low;
12059 if (highpc)
12060 *highpc = high;
12061 return ret;
12062 }
12063
12064 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12065 its low and high PC addresses. Do nothing if these addresses could not
12066 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12067 and HIGHPC to the high address if greater than HIGHPC. */
12068
12069 static void
12070 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12071 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12072 struct dwarf2_cu *cu)
12073 {
12074 CORE_ADDR low, high;
12075 struct die_info *child = die->child;
12076
12077 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12078 {
12079 *lowpc = min (*lowpc, low);
12080 *highpc = max (*highpc, high);
12081 }
12082
12083 /* If the language does not allow nested subprograms (either inside
12084 subprograms or lexical blocks), we're done. */
12085 if (cu->language != language_ada)
12086 return;
12087
12088 /* Check all the children of the given DIE. If it contains nested
12089 subprograms, then check their pc bounds. Likewise, we need to
12090 check lexical blocks as well, as they may also contain subprogram
12091 definitions. */
12092 while (child && child->tag)
12093 {
12094 if (child->tag == DW_TAG_subprogram
12095 || child->tag == DW_TAG_lexical_block)
12096 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12097 child = sibling_die (child);
12098 }
12099 }
12100
12101 /* Get the low and high pc's represented by the scope DIE, and store
12102 them in *LOWPC and *HIGHPC. If the correct values can't be
12103 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12104
12105 static void
12106 get_scope_pc_bounds (struct die_info *die,
12107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12108 struct dwarf2_cu *cu)
12109 {
12110 CORE_ADDR best_low = (CORE_ADDR) -1;
12111 CORE_ADDR best_high = (CORE_ADDR) 0;
12112 CORE_ADDR current_low, current_high;
12113
12114 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12115 {
12116 best_low = current_low;
12117 best_high = current_high;
12118 }
12119 else
12120 {
12121 struct die_info *child = die->child;
12122
12123 while (child && child->tag)
12124 {
12125 switch (child->tag) {
12126 case DW_TAG_subprogram:
12127 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12128 break;
12129 case DW_TAG_namespace:
12130 case DW_TAG_module:
12131 /* FIXME: carlton/2004-01-16: Should we do this for
12132 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12133 that current GCC's always emit the DIEs corresponding
12134 to definitions of methods of classes as children of a
12135 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12136 the DIEs giving the declarations, which could be
12137 anywhere). But I don't see any reason why the
12138 standards says that they have to be there. */
12139 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12140
12141 if (current_low != ((CORE_ADDR) -1))
12142 {
12143 best_low = min (best_low, current_low);
12144 best_high = max (best_high, current_high);
12145 }
12146 break;
12147 default:
12148 /* Ignore. */
12149 break;
12150 }
12151
12152 child = sibling_die (child);
12153 }
12154 }
12155
12156 *lowpc = best_low;
12157 *highpc = best_high;
12158 }
12159
12160 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12161 in DIE. */
12162
12163 static void
12164 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12165 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12166 {
12167 struct objfile *objfile = cu->objfile;
12168 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12169 struct attribute *attr;
12170 struct attribute *attr_high;
12171
12172 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12173 if (attr_high)
12174 {
12175 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12176 if (attr)
12177 {
12178 CORE_ADDR low = attr_value_as_address (attr);
12179 CORE_ADDR high = attr_value_as_address (attr_high);
12180
12181 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12182 high += low;
12183
12184 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12185 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12186 record_block_range (block, low, high - 1);
12187 }
12188 }
12189
12190 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12191 if (attr)
12192 {
12193 bfd *obfd = objfile->obfd;
12194 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12195 We take advantage of the fact that DW_AT_ranges does not appear
12196 in DW_TAG_compile_unit of DWO files. */
12197 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12198
12199 /* The value of the DW_AT_ranges attribute is the offset of the
12200 address range list in the .debug_ranges section. */
12201 unsigned long offset = (DW_UNSND (attr)
12202 + (need_ranges_base ? cu->ranges_base : 0));
12203 const gdb_byte *buffer;
12204
12205 /* For some target architectures, but not others, the
12206 read_address function sign-extends the addresses it returns.
12207 To recognize base address selection entries, we need a
12208 mask. */
12209 unsigned int addr_size = cu->header.addr_size;
12210 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12211
12212 /* The base address, to which the next pair is relative. Note
12213 that this 'base' is a DWARF concept: most entries in a range
12214 list are relative, to reduce the number of relocs against the
12215 debugging information. This is separate from this function's
12216 'baseaddr' argument, which GDB uses to relocate debugging
12217 information from a shared library based on the address at
12218 which the library was loaded. */
12219 CORE_ADDR base = cu->base_address;
12220 int base_known = cu->base_known;
12221
12222 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12223 if (offset >= dwarf2_per_objfile->ranges.size)
12224 {
12225 complaint (&symfile_complaints,
12226 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12227 offset);
12228 return;
12229 }
12230 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12231
12232 for (;;)
12233 {
12234 unsigned int bytes_read;
12235 CORE_ADDR start, end;
12236
12237 start = read_address (obfd, buffer, cu, &bytes_read);
12238 buffer += bytes_read;
12239 end = read_address (obfd, buffer, cu, &bytes_read);
12240 buffer += bytes_read;
12241
12242 /* Did we find the end of the range list? */
12243 if (start == 0 && end == 0)
12244 break;
12245
12246 /* Did we find a base address selection entry? */
12247 else if ((start & base_select_mask) == base_select_mask)
12248 {
12249 base = end;
12250 base_known = 1;
12251 }
12252
12253 /* We found an ordinary address range. */
12254 else
12255 {
12256 if (!base_known)
12257 {
12258 complaint (&symfile_complaints,
12259 _("Invalid .debug_ranges data "
12260 "(no base address)"));
12261 return;
12262 }
12263
12264 if (start > end)
12265 {
12266 /* Inverted range entries are invalid. */
12267 complaint (&symfile_complaints,
12268 _("Invalid .debug_ranges data "
12269 "(inverted range)"));
12270 return;
12271 }
12272
12273 /* Empty range entries have no effect. */
12274 if (start == end)
12275 continue;
12276
12277 start += base + baseaddr;
12278 end += base + baseaddr;
12279
12280 /* A not-uncommon case of bad debug info.
12281 Don't pollute the addrmap with bad data. */
12282 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12283 {
12284 complaint (&symfile_complaints,
12285 _(".debug_ranges entry has start address of zero"
12286 " [in module %s]"), objfile_name (objfile));
12287 continue;
12288 }
12289
12290 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12291 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12292 record_block_range (block, start, end - 1);
12293 }
12294 }
12295 }
12296 }
12297
12298 /* Check whether the producer field indicates either of GCC < 4.6, or the
12299 Intel C/C++ compiler, and cache the result in CU. */
12300
12301 static void
12302 check_producer (struct dwarf2_cu *cu)
12303 {
12304 const char *cs;
12305 int major, minor;
12306
12307 if (cu->producer == NULL)
12308 {
12309 /* For unknown compilers expect their behavior is DWARF version
12310 compliant.
12311
12312 GCC started to support .debug_types sections by -gdwarf-4 since
12313 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12314 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12315 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12316 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12317 }
12318 else if (producer_is_gcc (cu->producer, &major, &minor))
12319 {
12320 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12321 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12322 }
12323 else if (startswith (cu->producer, "Intel(R) C"))
12324 cu->producer_is_icc = 1;
12325 else
12326 {
12327 /* For other non-GCC compilers, expect their behavior is DWARF version
12328 compliant. */
12329 }
12330
12331 cu->checked_producer = 1;
12332 }
12333
12334 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12335 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12336 during 4.6.0 experimental. */
12337
12338 static int
12339 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12340 {
12341 if (!cu->checked_producer)
12342 check_producer (cu);
12343
12344 return cu->producer_is_gxx_lt_4_6;
12345 }
12346
12347 /* Return the default accessibility type if it is not overriden by
12348 DW_AT_accessibility. */
12349
12350 static enum dwarf_access_attribute
12351 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12352 {
12353 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12354 {
12355 /* The default DWARF 2 accessibility for members is public, the default
12356 accessibility for inheritance is private. */
12357
12358 if (die->tag != DW_TAG_inheritance)
12359 return DW_ACCESS_public;
12360 else
12361 return DW_ACCESS_private;
12362 }
12363 else
12364 {
12365 /* DWARF 3+ defines the default accessibility a different way. The same
12366 rules apply now for DW_TAG_inheritance as for the members and it only
12367 depends on the container kind. */
12368
12369 if (die->parent->tag == DW_TAG_class_type)
12370 return DW_ACCESS_private;
12371 else
12372 return DW_ACCESS_public;
12373 }
12374 }
12375
12376 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12377 offset. If the attribute was not found return 0, otherwise return
12378 1. If it was found but could not properly be handled, set *OFFSET
12379 to 0. */
12380
12381 static int
12382 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12383 LONGEST *offset)
12384 {
12385 struct attribute *attr;
12386
12387 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12388 if (attr != NULL)
12389 {
12390 *offset = 0;
12391
12392 /* Note that we do not check for a section offset first here.
12393 This is because DW_AT_data_member_location is new in DWARF 4,
12394 so if we see it, we can assume that a constant form is really
12395 a constant and not a section offset. */
12396 if (attr_form_is_constant (attr))
12397 *offset = dwarf2_get_attr_constant_value (attr, 0);
12398 else if (attr_form_is_section_offset (attr))
12399 dwarf2_complex_location_expr_complaint ();
12400 else if (attr_form_is_block (attr))
12401 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12402 else
12403 dwarf2_complex_location_expr_complaint ();
12404
12405 return 1;
12406 }
12407
12408 return 0;
12409 }
12410
12411 /* Add an aggregate field to the field list. */
12412
12413 static void
12414 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12415 struct dwarf2_cu *cu)
12416 {
12417 struct objfile *objfile = cu->objfile;
12418 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12419 struct nextfield *new_field;
12420 struct attribute *attr;
12421 struct field *fp;
12422 const char *fieldname = "";
12423
12424 /* Allocate a new field list entry and link it in. */
12425 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12426 make_cleanup (xfree, new_field);
12427 memset (new_field, 0, sizeof (struct nextfield));
12428
12429 if (die->tag == DW_TAG_inheritance)
12430 {
12431 new_field->next = fip->baseclasses;
12432 fip->baseclasses = new_field;
12433 }
12434 else
12435 {
12436 new_field->next = fip->fields;
12437 fip->fields = new_field;
12438 }
12439 fip->nfields++;
12440
12441 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12442 if (attr)
12443 new_field->accessibility = DW_UNSND (attr);
12444 else
12445 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12446 if (new_field->accessibility != DW_ACCESS_public)
12447 fip->non_public_fields = 1;
12448
12449 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12450 if (attr)
12451 new_field->virtuality = DW_UNSND (attr);
12452 else
12453 new_field->virtuality = DW_VIRTUALITY_none;
12454
12455 fp = &new_field->field;
12456
12457 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12458 {
12459 LONGEST offset;
12460
12461 /* Data member other than a C++ static data member. */
12462
12463 /* Get type of field. */
12464 fp->type = die_type (die, cu);
12465
12466 SET_FIELD_BITPOS (*fp, 0);
12467
12468 /* Get bit size of field (zero if none). */
12469 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12470 if (attr)
12471 {
12472 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12473 }
12474 else
12475 {
12476 FIELD_BITSIZE (*fp) = 0;
12477 }
12478
12479 /* Get bit offset of field. */
12480 if (handle_data_member_location (die, cu, &offset))
12481 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12482 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12483 if (attr)
12484 {
12485 if (gdbarch_bits_big_endian (gdbarch))
12486 {
12487 /* For big endian bits, the DW_AT_bit_offset gives the
12488 additional bit offset from the MSB of the containing
12489 anonymous object to the MSB of the field. We don't
12490 have to do anything special since we don't need to
12491 know the size of the anonymous object. */
12492 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12493 }
12494 else
12495 {
12496 /* For little endian bits, compute the bit offset to the
12497 MSB of the anonymous object, subtract off the number of
12498 bits from the MSB of the field to the MSB of the
12499 object, and then subtract off the number of bits of
12500 the field itself. The result is the bit offset of
12501 the LSB of the field. */
12502 int anonymous_size;
12503 int bit_offset = DW_UNSND (attr);
12504
12505 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12506 if (attr)
12507 {
12508 /* The size of the anonymous object containing
12509 the bit field is explicit, so use the
12510 indicated size (in bytes). */
12511 anonymous_size = DW_UNSND (attr);
12512 }
12513 else
12514 {
12515 /* The size of the anonymous object containing
12516 the bit field must be inferred from the type
12517 attribute of the data member containing the
12518 bit field. */
12519 anonymous_size = TYPE_LENGTH (fp->type);
12520 }
12521 SET_FIELD_BITPOS (*fp,
12522 (FIELD_BITPOS (*fp)
12523 + anonymous_size * bits_per_byte
12524 - bit_offset - FIELD_BITSIZE (*fp)));
12525 }
12526 }
12527
12528 /* Get name of field. */
12529 fieldname = dwarf2_name (die, cu);
12530 if (fieldname == NULL)
12531 fieldname = "";
12532
12533 /* The name is already allocated along with this objfile, so we don't
12534 need to duplicate it for the type. */
12535 fp->name = fieldname;
12536
12537 /* Change accessibility for artificial fields (e.g. virtual table
12538 pointer or virtual base class pointer) to private. */
12539 if (dwarf2_attr (die, DW_AT_artificial, cu))
12540 {
12541 FIELD_ARTIFICIAL (*fp) = 1;
12542 new_field->accessibility = DW_ACCESS_private;
12543 fip->non_public_fields = 1;
12544 }
12545 }
12546 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12547 {
12548 /* C++ static member. */
12549
12550 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12551 is a declaration, but all versions of G++ as of this writing
12552 (so through at least 3.2.1) incorrectly generate
12553 DW_TAG_variable tags. */
12554
12555 const char *physname;
12556
12557 /* Get name of field. */
12558 fieldname = dwarf2_name (die, cu);
12559 if (fieldname == NULL)
12560 return;
12561
12562 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12563 if (attr
12564 /* Only create a symbol if this is an external value.
12565 new_symbol checks this and puts the value in the global symbol
12566 table, which we want. If it is not external, new_symbol
12567 will try to put the value in cu->list_in_scope which is wrong. */
12568 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12569 {
12570 /* A static const member, not much different than an enum as far as
12571 we're concerned, except that we can support more types. */
12572 new_symbol (die, NULL, cu);
12573 }
12574
12575 /* Get physical name. */
12576 physname = dwarf2_physname (fieldname, die, cu);
12577
12578 /* The name is already allocated along with this objfile, so we don't
12579 need to duplicate it for the type. */
12580 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12581 FIELD_TYPE (*fp) = die_type (die, cu);
12582 FIELD_NAME (*fp) = fieldname;
12583 }
12584 else if (die->tag == DW_TAG_inheritance)
12585 {
12586 LONGEST offset;
12587
12588 /* C++ base class field. */
12589 if (handle_data_member_location (die, cu, &offset))
12590 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12591 FIELD_BITSIZE (*fp) = 0;
12592 FIELD_TYPE (*fp) = die_type (die, cu);
12593 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12594 fip->nbaseclasses++;
12595 }
12596 }
12597
12598 /* Add a typedef defined in the scope of the FIP's class. */
12599
12600 static void
12601 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12602 struct dwarf2_cu *cu)
12603 {
12604 struct objfile *objfile = cu->objfile;
12605 struct typedef_field_list *new_field;
12606 struct attribute *attr;
12607 struct typedef_field *fp;
12608 char *fieldname = "";
12609
12610 /* Allocate a new field list entry and link it in. */
12611 new_field = xzalloc (sizeof (*new_field));
12612 make_cleanup (xfree, new_field);
12613
12614 gdb_assert (die->tag == DW_TAG_typedef);
12615
12616 fp = &new_field->field;
12617
12618 /* Get name of field. */
12619 fp->name = dwarf2_name (die, cu);
12620 if (fp->name == NULL)
12621 return;
12622
12623 fp->type = read_type_die (die, cu);
12624
12625 new_field->next = fip->typedef_field_list;
12626 fip->typedef_field_list = new_field;
12627 fip->typedef_field_list_count++;
12628 }
12629
12630 /* Create the vector of fields, and attach it to the type. */
12631
12632 static void
12633 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12634 struct dwarf2_cu *cu)
12635 {
12636 int nfields = fip->nfields;
12637
12638 /* Record the field count, allocate space for the array of fields,
12639 and create blank accessibility bitfields if necessary. */
12640 TYPE_NFIELDS (type) = nfields;
12641 TYPE_FIELDS (type) = (struct field *)
12642 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12643 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12644
12645 if (fip->non_public_fields && cu->language != language_ada)
12646 {
12647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12648
12649 TYPE_FIELD_PRIVATE_BITS (type) =
12650 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12651 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12652
12653 TYPE_FIELD_PROTECTED_BITS (type) =
12654 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12655 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12656
12657 TYPE_FIELD_IGNORE_BITS (type) =
12658 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12659 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12660 }
12661
12662 /* If the type has baseclasses, allocate and clear a bit vector for
12663 TYPE_FIELD_VIRTUAL_BITS. */
12664 if (fip->nbaseclasses && cu->language != language_ada)
12665 {
12666 int num_bytes = B_BYTES (fip->nbaseclasses);
12667 unsigned char *pointer;
12668
12669 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12670 pointer = TYPE_ALLOC (type, num_bytes);
12671 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12672 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12673 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12674 }
12675
12676 /* Copy the saved-up fields into the field vector. Start from the head of
12677 the list, adding to the tail of the field array, so that they end up in
12678 the same order in the array in which they were added to the list. */
12679 while (nfields-- > 0)
12680 {
12681 struct nextfield *fieldp;
12682
12683 if (fip->fields)
12684 {
12685 fieldp = fip->fields;
12686 fip->fields = fieldp->next;
12687 }
12688 else
12689 {
12690 fieldp = fip->baseclasses;
12691 fip->baseclasses = fieldp->next;
12692 }
12693
12694 TYPE_FIELD (type, nfields) = fieldp->field;
12695 switch (fieldp->accessibility)
12696 {
12697 case DW_ACCESS_private:
12698 if (cu->language != language_ada)
12699 SET_TYPE_FIELD_PRIVATE (type, nfields);
12700 break;
12701
12702 case DW_ACCESS_protected:
12703 if (cu->language != language_ada)
12704 SET_TYPE_FIELD_PROTECTED (type, nfields);
12705 break;
12706
12707 case DW_ACCESS_public:
12708 break;
12709
12710 default:
12711 /* Unknown accessibility. Complain and treat it as public. */
12712 {
12713 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12714 fieldp->accessibility);
12715 }
12716 break;
12717 }
12718 if (nfields < fip->nbaseclasses)
12719 {
12720 switch (fieldp->virtuality)
12721 {
12722 case DW_VIRTUALITY_virtual:
12723 case DW_VIRTUALITY_pure_virtual:
12724 if (cu->language == language_ada)
12725 error (_("unexpected virtuality in component of Ada type"));
12726 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12727 break;
12728 }
12729 }
12730 }
12731 }
12732
12733 /* Return true if this member function is a constructor, false
12734 otherwise. */
12735
12736 static int
12737 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12738 {
12739 const char *fieldname;
12740 const char *type_name;
12741 int len;
12742
12743 if (die->parent == NULL)
12744 return 0;
12745
12746 if (die->parent->tag != DW_TAG_structure_type
12747 && die->parent->tag != DW_TAG_union_type
12748 && die->parent->tag != DW_TAG_class_type)
12749 return 0;
12750
12751 fieldname = dwarf2_name (die, cu);
12752 type_name = dwarf2_name (die->parent, cu);
12753 if (fieldname == NULL || type_name == NULL)
12754 return 0;
12755
12756 len = strlen (fieldname);
12757 return (strncmp (fieldname, type_name, len) == 0
12758 && (type_name[len] == '\0' || type_name[len] == '<'));
12759 }
12760
12761 /* Add a member function to the proper fieldlist. */
12762
12763 static void
12764 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12765 struct type *type, struct dwarf2_cu *cu)
12766 {
12767 struct objfile *objfile = cu->objfile;
12768 struct attribute *attr;
12769 struct fnfieldlist *flp;
12770 int i;
12771 struct fn_field *fnp;
12772 const char *fieldname;
12773 struct nextfnfield *new_fnfield;
12774 struct type *this_type;
12775 enum dwarf_access_attribute accessibility;
12776
12777 if (cu->language == language_ada)
12778 error (_("unexpected member function in Ada type"));
12779
12780 /* Get name of member function. */
12781 fieldname = dwarf2_name (die, cu);
12782 if (fieldname == NULL)
12783 return;
12784
12785 /* Look up member function name in fieldlist. */
12786 for (i = 0; i < fip->nfnfields; i++)
12787 {
12788 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12789 break;
12790 }
12791
12792 /* Create new list element if necessary. */
12793 if (i < fip->nfnfields)
12794 flp = &fip->fnfieldlists[i];
12795 else
12796 {
12797 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12798 {
12799 fip->fnfieldlists = (struct fnfieldlist *)
12800 xrealloc (fip->fnfieldlists,
12801 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12802 * sizeof (struct fnfieldlist));
12803 if (fip->nfnfields == 0)
12804 make_cleanup (free_current_contents, &fip->fnfieldlists);
12805 }
12806 flp = &fip->fnfieldlists[fip->nfnfields];
12807 flp->name = fieldname;
12808 flp->length = 0;
12809 flp->head = NULL;
12810 i = fip->nfnfields++;
12811 }
12812
12813 /* Create a new member function field and chain it to the field list
12814 entry. */
12815 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12816 make_cleanup (xfree, new_fnfield);
12817 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12818 new_fnfield->next = flp->head;
12819 flp->head = new_fnfield;
12820 flp->length++;
12821
12822 /* Fill in the member function field info. */
12823 fnp = &new_fnfield->fnfield;
12824
12825 /* Delay processing of the physname until later. */
12826 if (cu->language == language_cplus || cu->language == language_java)
12827 {
12828 add_to_method_list (type, i, flp->length - 1, fieldname,
12829 die, cu);
12830 }
12831 else
12832 {
12833 const char *physname = dwarf2_physname (fieldname, die, cu);
12834 fnp->physname = physname ? physname : "";
12835 }
12836
12837 fnp->type = alloc_type (objfile);
12838 this_type = read_type_die (die, cu);
12839 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12840 {
12841 int nparams = TYPE_NFIELDS (this_type);
12842
12843 /* TYPE is the domain of this method, and THIS_TYPE is the type
12844 of the method itself (TYPE_CODE_METHOD). */
12845 smash_to_method_type (fnp->type, type,
12846 TYPE_TARGET_TYPE (this_type),
12847 TYPE_FIELDS (this_type),
12848 TYPE_NFIELDS (this_type),
12849 TYPE_VARARGS (this_type));
12850
12851 /* Handle static member functions.
12852 Dwarf2 has no clean way to discern C++ static and non-static
12853 member functions. G++ helps GDB by marking the first
12854 parameter for non-static member functions (which is the this
12855 pointer) as artificial. We obtain this information from
12856 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12857 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12858 fnp->voffset = VOFFSET_STATIC;
12859 }
12860 else
12861 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12862 dwarf2_full_name (fieldname, die, cu));
12863
12864 /* Get fcontext from DW_AT_containing_type if present. */
12865 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12866 fnp->fcontext = die_containing_type (die, cu);
12867
12868 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12869 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12870
12871 /* Get accessibility. */
12872 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12873 if (attr)
12874 accessibility = DW_UNSND (attr);
12875 else
12876 accessibility = dwarf2_default_access_attribute (die, cu);
12877 switch (accessibility)
12878 {
12879 case DW_ACCESS_private:
12880 fnp->is_private = 1;
12881 break;
12882 case DW_ACCESS_protected:
12883 fnp->is_protected = 1;
12884 break;
12885 }
12886
12887 /* Check for artificial methods. */
12888 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12889 if (attr && DW_UNSND (attr) != 0)
12890 fnp->is_artificial = 1;
12891
12892 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12893
12894 /* Get index in virtual function table if it is a virtual member
12895 function. For older versions of GCC, this is an offset in the
12896 appropriate virtual table, as specified by DW_AT_containing_type.
12897 For everyone else, it is an expression to be evaluated relative
12898 to the object address. */
12899
12900 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12901 if (attr)
12902 {
12903 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12904 {
12905 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12906 {
12907 /* Old-style GCC. */
12908 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12909 }
12910 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12911 || (DW_BLOCK (attr)->size > 1
12912 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12913 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12914 {
12915 struct dwarf_block blk;
12916 int offset;
12917
12918 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12919 ? 1 : 2);
12920 blk.size = DW_BLOCK (attr)->size - offset;
12921 blk.data = DW_BLOCK (attr)->data + offset;
12922 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12923 if ((fnp->voffset % cu->header.addr_size) != 0)
12924 dwarf2_complex_location_expr_complaint ();
12925 else
12926 fnp->voffset /= cu->header.addr_size;
12927 fnp->voffset += 2;
12928 }
12929 else
12930 dwarf2_complex_location_expr_complaint ();
12931
12932 if (!fnp->fcontext)
12933 {
12934 /* If there is no `this' field and no DW_AT_containing_type,
12935 we cannot actually find a base class context for the
12936 vtable! */
12937 if (TYPE_NFIELDS (this_type) == 0
12938 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12939 {
12940 complaint (&symfile_complaints,
12941 _("cannot determine context for virtual member "
12942 "function \"%s\" (offset %d)"),
12943 fieldname, die->offset.sect_off);
12944 }
12945 else
12946 {
12947 fnp->fcontext
12948 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12949 }
12950 }
12951 }
12952 else if (attr_form_is_section_offset (attr))
12953 {
12954 dwarf2_complex_location_expr_complaint ();
12955 }
12956 else
12957 {
12958 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12959 fieldname);
12960 }
12961 }
12962 else
12963 {
12964 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12965 if (attr && DW_UNSND (attr))
12966 {
12967 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12968 complaint (&symfile_complaints,
12969 _("Member function \"%s\" (offset %d) is virtual "
12970 "but the vtable offset is not specified"),
12971 fieldname, die->offset.sect_off);
12972 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12973 TYPE_CPLUS_DYNAMIC (type) = 1;
12974 }
12975 }
12976 }
12977
12978 /* Create the vector of member function fields, and attach it to the type. */
12979
12980 static void
12981 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12982 struct dwarf2_cu *cu)
12983 {
12984 struct fnfieldlist *flp;
12985 int i;
12986
12987 if (cu->language == language_ada)
12988 error (_("unexpected member functions in Ada type"));
12989
12990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12991 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12992 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12993
12994 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12995 {
12996 struct nextfnfield *nfp = flp->head;
12997 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12998 int k;
12999
13000 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13001 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13002 fn_flp->fn_fields = (struct fn_field *)
13003 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13004 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13005 fn_flp->fn_fields[k] = nfp->fnfield;
13006 }
13007
13008 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13009 }
13010
13011 /* Returns non-zero if NAME is the name of a vtable member in CU's
13012 language, zero otherwise. */
13013 static int
13014 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13015 {
13016 static const char vptr[] = "_vptr";
13017 static const char vtable[] = "vtable";
13018
13019 /* Look for the C++ and Java forms of the vtable. */
13020 if ((cu->language == language_java
13021 && startswith (name, vtable))
13022 || (startswith (name, vptr)
13023 && is_cplus_marker (name[sizeof (vptr) - 1])))
13024 return 1;
13025
13026 return 0;
13027 }
13028
13029 /* GCC outputs unnamed structures that are really pointers to member
13030 functions, with the ABI-specified layout. If TYPE describes
13031 such a structure, smash it into a member function type.
13032
13033 GCC shouldn't do this; it should just output pointer to member DIEs.
13034 This is GCC PR debug/28767. */
13035
13036 static void
13037 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13038 {
13039 struct type *pfn_type, *self_type, *new_type;
13040
13041 /* Check for a structure with no name and two children. */
13042 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13043 return;
13044
13045 /* Check for __pfn and __delta members. */
13046 if (TYPE_FIELD_NAME (type, 0) == NULL
13047 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13048 || TYPE_FIELD_NAME (type, 1) == NULL
13049 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13050 return;
13051
13052 /* Find the type of the method. */
13053 pfn_type = TYPE_FIELD_TYPE (type, 0);
13054 if (pfn_type == NULL
13055 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13056 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13057 return;
13058
13059 /* Look for the "this" argument. */
13060 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13061 if (TYPE_NFIELDS (pfn_type) == 0
13062 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13063 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13064 return;
13065
13066 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13067 new_type = alloc_type (objfile);
13068 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13069 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13070 TYPE_VARARGS (pfn_type));
13071 smash_to_methodptr_type (type, new_type);
13072 }
13073
13074 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13075 (icc). */
13076
13077 static int
13078 producer_is_icc (struct dwarf2_cu *cu)
13079 {
13080 if (!cu->checked_producer)
13081 check_producer (cu);
13082
13083 return cu->producer_is_icc;
13084 }
13085
13086 /* Called when we find the DIE that starts a structure or union scope
13087 (definition) to create a type for the structure or union. Fill in
13088 the type's name and general properties; the members will not be
13089 processed until process_structure_scope. A symbol table entry for
13090 the type will also not be done until process_structure_scope (assuming
13091 the type has a name).
13092
13093 NOTE: we need to call these functions regardless of whether or not the
13094 DIE has a DW_AT_name attribute, since it might be an anonymous
13095 structure or union. This gets the type entered into our set of
13096 user defined types. */
13097
13098 static struct type *
13099 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13100 {
13101 struct objfile *objfile = cu->objfile;
13102 struct type *type;
13103 struct attribute *attr;
13104 const char *name;
13105
13106 /* If the definition of this type lives in .debug_types, read that type.
13107 Don't follow DW_AT_specification though, that will take us back up
13108 the chain and we want to go down. */
13109 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13110 if (attr)
13111 {
13112 type = get_DW_AT_signature_type (die, attr, cu);
13113
13114 /* The type's CU may not be the same as CU.
13115 Ensure TYPE is recorded with CU in die_type_hash. */
13116 return set_die_type (die, type, cu);
13117 }
13118
13119 type = alloc_type (objfile);
13120 INIT_CPLUS_SPECIFIC (type);
13121
13122 name = dwarf2_name (die, cu);
13123 if (name != NULL)
13124 {
13125 if (cu->language == language_cplus
13126 || cu->language == language_java)
13127 {
13128 const char *full_name = dwarf2_full_name (name, die, cu);
13129
13130 /* dwarf2_full_name might have already finished building the DIE's
13131 type. If so, there is no need to continue. */
13132 if (get_die_type (die, cu) != NULL)
13133 return get_die_type (die, cu);
13134
13135 TYPE_TAG_NAME (type) = full_name;
13136 if (die->tag == DW_TAG_structure_type
13137 || die->tag == DW_TAG_class_type)
13138 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13139 }
13140 else
13141 {
13142 /* The name is already allocated along with this objfile, so
13143 we don't need to duplicate it for the type. */
13144 TYPE_TAG_NAME (type) = name;
13145 if (die->tag == DW_TAG_class_type)
13146 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13147 }
13148 }
13149
13150 if (die->tag == DW_TAG_structure_type)
13151 {
13152 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13153 }
13154 else if (die->tag == DW_TAG_union_type)
13155 {
13156 TYPE_CODE (type) = TYPE_CODE_UNION;
13157 }
13158 else
13159 {
13160 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13161 }
13162
13163 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13164 TYPE_DECLARED_CLASS (type) = 1;
13165
13166 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13167 if (attr)
13168 {
13169 TYPE_LENGTH (type) = DW_UNSND (attr);
13170 }
13171 else
13172 {
13173 TYPE_LENGTH (type) = 0;
13174 }
13175
13176 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13177 {
13178 /* ICC does not output the required DW_AT_declaration
13179 on incomplete types, but gives them a size of zero. */
13180 TYPE_STUB (type) = 1;
13181 }
13182 else
13183 TYPE_STUB_SUPPORTED (type) = 1;
13184
13185 if (die_is_declaration (die, cu))
13186 TYPE_STUB (type) = 1;
13187 else if (attr == NULL && die->child == NULL
13188 && producer_is_realview (cu->producer))
13189 /* RealView does not output the required DW_AT_declaration
13190 on incomplete types. */
13191 TYPE_STUB (type) = 1;
13192
13193 /* We need to add the type field to the die immediately so we don't
13194 infinitely recurse when dealing with pointers to the structure
13195 type within the structure itself. */
13196 set_die_type (die, type, cu);
13197
13198 /* set_die_type should be already done. */
13199 set_descriptive_type (type, die, cu);
13200
13201 return type;
13202 }
13203
13204 /* Finish creating a structure or union type, including filling in
13205 its members and creating a symbol for it. */
13206
13207 static void
13208 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13209 {
13210 struct objfile *objfile = cu->objfile;
13211 struct die_info *child_die;
13212 struct type *type;
13213
13214 type = get_die_type (die, cu);
13215 if (type == NULL)
13216 type = read_structure_type (die, cu);
13217
13218 if (die->child != NULL && ! die_is_declaration (die, cu))
13219 {
13220 struct field_info fi;
13221 VEC (symbolp) *template_args = NULL;
13222 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13223
13224 memset (&fi, 0, sizeof (struct field_info));
13225
13226 child_die = die->child;
13227
13228 while (child_die && child_die->tag)
13229 {
13230 if (child_die->tag == DW_TAG_member
13231 || child_die->tag == DW_TAG_variable)
13232 {
13233 /* NOTE: carlton/2002-11-05: A C++ static data member
13234 should be a DW_TAG_member that is a declaration, but
13235 all versions of G++ as of this writing (so through at
13236 least 3.2.1) incorrectly generate DW_TAG_variable
13237 tags for them instead. */
13238 dwarf2_add_field (&fi, child_die, cu);
13239 }
13240 else if (child_die->tag == DW_TAG_subprogram)
13241 {
13242 /* C++ member function. */
13243 dwarf2_add_member_fn (&fi, child_die, type, cu);
13244 }
13245 else if (child_die->tag == DW_TAG_inheritance)
13246 {
13247 /* C++ base class field. */
13248 dwarf2_add_field (&fi, child_die, cu);
13249 }
13250 else if (child_die->tag == DW_TAG_typedef)
13251 dwarf2_add_typedef (&fi, child_die, cu);
13252 else if (child_die->tag == DW_TAG_template_type_param
13253 || child_die->tag == DW_TAG_template_value_param)
13254 {
13255 struct symbol *arg = new_symbol (child_die, NULL, cu);
13256
13257 if (arg != NULL)
13258 VEC_safe_push (symbolp, template_args, arg);
13259 }
13260
13261 child_die = sibling_die (child_die);
13262 }
13263
13264 /* Attach template arguments to type. */
13265 if (! VEC_empty (symbolp, template_args))
13266 {
13267 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13268 TYPE_N_TEMPLATE_ARGUMENTS (type)
13269 = VEC_length (symbolp, template_args);
13270 TYPE_TEMPLATE_ARGUMENTS (type)
13271 = obstack_alloc (&objfile->objfile_obstack,
13272 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13273 * sizeof (struct symbol *)));
13274 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13275 VEC_address (symbolp, template_args),
13276 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13277 * sizeof (struct symbol *)));
13278 VEC_free (symbolp, template_args);
13279 }
13280
13281 /* Attach fields and member functions to the type. */
13282 if (fi.nfields)
13283 dwarf2_attach_fields_to_type (&fi, type, cu);
13284 if (fi.nfnfields)
13285 {
13286 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13287
13288 /* Get the type which refers to the base class (possibly this
13289 class itself) which contains the vtable pointer for the current
13290 class from the DW_AT_containing_type attribute. This use of
13291 DW_AT_containing_type is a GNU extension. */
13292
13293 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13294 {
13295 struct type *t = die_containing_type (die, cu);
13296
13297 set_type_vptr_basetype (type, t);
13298 if (type == t)
13299 {
13300 int i;
13301
13302 /* Our own class provides vtbl ptr. */
13303 for (i = TYPE_NFIELDS (t) - 1;
13304 i >= TYPE_N_BASECLASSES (t);
13305 --i)
13306 {
13307 const char *fieldname = TYPE_FIELD_NAME (t, i);
13308
13309 if (is_vtable_name (fieldname, cu))
13310 {
13311 set_type_vptr_fieldno (type, i);
13312 break;
13313 }
13314 }
13315
13316 /* Complain if virtual function table field not found. */
13317 if (i < TYPE_N_BASECLASSES (t))
13318 complaint (&symfile_complaints,
13319 _("virtual function table pointer "
13320 "not found when defining class '%s'"),
13321 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13322 "");
13323 }
13324 else
13325 {
13326 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13327 }
13328 }
13329 else if (cu->producer
13330 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13331 {
13332 /* The IBM XLC compiler does not provide direct indication
13333 of the containing type, but the vtable pointer is
13334 always named __vfp. */
13335
13336 int i;
13337
13338 for (i = TYPE_NFIELDS (type) - 1;
13339 i >= TYPE_N_BASECLASSES (type);
13340 --i)
13341 {
13342 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13343 {
13344 set_type_vptr_fieldno (type, i);
13345 set_type_vptr_basetype (type, type);
13346 break;
13347 }
13348 }
13349 }
13350 }
13351
13352 /* Copy fi.typedef_field_list linked list elements content into the
13353 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13354 if (fi.typedef_field_list)
13355 {
13356 int i = fi.typedef_field_list_count;
13357
13358 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13359 TYPE_TYPEDEF_FIELD_ARRAY (type)
13360 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13361 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13362
13363 /* Reverse the list order to keep the debug info elements order. */
13364 while (--i >= 0)
13365 {
13366 struct typedef_field *dest, *src;
13367
13368 dest = &TYPE_TYPEDEF_FIELD (type, i);
13369 src = &fi.typedef_field_list->field;
13370 fi.typedef_field_list = fi.typedef_field_list->next;
13371 *dest = *src;
13372 }
13373 }
13374
13375 do_cleanups (back_to);
13376
13377 if (HAVE_CPLUS_STRUCT (type))
13378 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13379 }
13380
13381 quirk_gcc_member_function_pointer (type, objfile);
13382
13383 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13384 snapshots) has been known to create a die giving a declaration
13385 for a class that has, as a child, a die giving a definition for a
13386 nested class. So we have to process our children even if the
13387 current die is a declaration. Normally, of course, a declaration
13388 won't have any children at all. */
13389
13390 child_die = die->child;
13391
13392 while (child_die != NULL && child_die->tag)
13393 {
13394 if (child_die->tag == DW_TAG_member
13395 || child_die->tag == DW_TAG_variable
13396 || child_die->tag == DW_TAG_inheritance
13397 || child_die->tag == DW_TAG_template_value_param
13398 || child_die->tag == DW_TAG_template_type_param)
13399 {
13400 /* Do nothing. */
13401 }
13402 else
13403 process_die (child_die, cu);
13404
13405 child_die = sibling_die (child_die);
13406 }
13407
13408 /* Do not consider external references. According to the DWARF standard,
13409 these DIEs are identified by the fact that they have no byte_size
13410 attribute, and a declaration attribute. */
13411 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13412 || !die_is_declaration (die, cu))
13413 new_symbol (die, type, cu);
13414 }
13415
13416 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13417 update TYPE using some information only available in DIE's children. */
13418
13419 static void
13420 update_enumeration_type_from_children (struct die_info *die,
13421 struct type *type,
13422 struct dwarf2_cu *cu)
13423 {
13424 struct obstack obstack;
13425 struct die_info *child_die;
13426 int unsigned_enum = 1;
13427 int flag_enum = 1;
13428 ULONGEST mask = 0;
13429 struct cleanup *old_chain;
13430
13431 obstack_init (&obstack);
13432 old_chain = make_cleanup_obstack_free (&obstack);
13433
13434 for (child_die = die->child;
13435 child_die != NULL && child_die->tag;
13436 child_die = sibling_die (child_die))
13437 {
13438 struct attribute *attr;
13439 LONGEST value;
13440 const gdb_byte *bytes;
13441 struct dwarf2_locexpr_baton *baton;
13442 const char *name;
13443
13444 if (child_die->tag != DW_TAG_enumerator)
13445 continue;
13446
13447 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13448 if (attr == NULL)
13449 continue;
13450
13451 name = dwarf2_name (child_die, cu);
13452 if (name == NULL)
13453 name = "<anonymous enumerator>";
13454
13455 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13456 &value, &bytes, &baton);
13457 if (value < 0)
13458 {
13459 unsigned_enum = 0;
13460 flag_enum = 0;
13461 }
13462 else if ((mask & value) != 0)
13463 flag_enum = 0;
13464 else
13465 mask |= value;
13466
13467 /* If we already know that the enum type is neither unsigned, nor
13468 a flag type, no need to look at the rest of the enumerates. */
13469 if (!unsigned_enum && !flag_enum)
13470 break;
13471 }
13472
13473 if (unsigned_enum)
13474 TYPE_UNSIGNED (type) = 1;
13475 if (flag_enum)
13476 TYPE_FLAG_ENUM (type) = 1;
13477
13478 do_cleanups (old_chain);
13479 }
13480
13481 /* Given a DW_AT_enumeration_type die, set its type. We do not
13482 complete the type's fields yet, or create any symbols. */
13483
13484 static struct type *
13485 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13486 {
13487 struct objfile *objfile = cu->objfile;
13488 struct type *type;
13489 struct attribute *attr;
13490 const char *name;
13491
13492 /* If the definition of this type lives in .debug_types, read that type.
13493 Don't follow DW_AT_specification though, that will take us back up
13494 the chain and we want to go down. */
13495 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13496 if (attr)
13497 {
13498 type = get_DW_AT_signature_type (die, attr, cu);
13499
13500 /* The type's CU may not be the same as CU.
13501 Ensure TYPE is recorded with CU in die_type_hash. */
13502 return set_die_type (die, type, cu);
13503 }
13504
13505 type = alloc_type (objfile);
13506
13507 TYPE_CODE (type) = TYPE_CODE_ENUM;
13508 name = dwarf2_full_name (NULL, die, cu);
13509 if (name != NULL)
13510 TYPE_TAG_NAME (type) = name;
13511
13512 attr = dwarf2_attr (die, DW_AT_type, cu);
13513 if (attr != NULL)
13514 {
13515 struct type *underlying_type = die_type (die, cu);
13516
13517 TYPE_TARGET_TYPE (type) = underlying_type;
13518 }
13519
13520 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13521 if (attr)
13522 {
13523 TYPE_LENGTH (type) = DW_UNSND (attr);
13524 }
13525 else
13526 {
13527 TYPE_LENGTH (type) = 0;
13528 }
13529
13530 /* The enumeration DIE can be incomplete. In Ada, any type can be
13531 declared as private in the package spec, and then defined only
13532 inside the package body. Such types are known as Taft Amendment
13533 Types. When another package uses such a type, an incomplete DIE
13534 may be generated by the compiler. */
13535 if (die_is_declaration (die, cu))
13536 TYPE_STUB (type) = 1;
13537
13538 /* Finish the creation of this type by using the enum's children.
13539 We must call this even when the underlying type has been provided
13540 so that we can determine if we're looking at a "flag" enum. */
13541 update_enumeration_type_from_children (die, type, cu);
13542
13543 /* If this type has an underlying type that is not a stub, then we
13544 may use its attributes. We always use the "unsigned" attribute
13545 in this situation, because ordinarily we guess whether the type
13546 is unsigned -- but the guess can be wrong and the underlying type
13547 can tell us the reality. However, we defer to a local size
13548 attribute if one exists, because this lets the compiler override
13549 the underlying type if needed. */
13550 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13551 {
13552 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13553 if (TYPE_LENGTH (type) == 0)
13554 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13555 }
13556
13557 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13558
13559 return set_die_type (die, type, cu);
13560 }
13561
13562 /* Given a pointer to a die which begins an enumeration, process all
13563 the dies that define the members of the enumeration, and create the
13564 symbol for the enumeration type.
13565
13566 NOTE: We reverse the order of the element list. */
13567
13568 static void
13569 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13570 {
13571 struct type *this_type;
13572
13573 this_type = get_die_type (die, cu);
13574 if (this_type == NULL)
13575 this_type = read_enumeration_type (die, cu);
13576
13577 if (die->child != NULL)
13578 {
13579 struct die_info *child_die;
13580 struct symbol *sym;
13581 struct field *fields = NULL;
13582 int num_fields = 0;
13583 const char *name;
13584
13585 child_die = die->child;
13586 while (child_die && child_die->tag)
13587 {
13588 if (child_die->tag != DW_TAG_enumerator)
13589 {
13590 process_die (child_die, cu);
13591 }
13592 else
13593 {
13594 name = dwarf2_name (child_die, cu);
13595 if (name)
13596 {
13597 sym = new_symbol (child_die, this_type, cu);
13598
13599 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13600 {
13601 fields = (struct field *)
13602 xrealloc (fields,
13603 (num_fields + DW_FIELD_ALLOC_CHUNK)
13604 * sizeof (struct field));
13605 }
13606
13607 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13608 FIELD_TYPE (fields[num_fields]) = NULL;
13609 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13610 FIELD_BITSIZE (fields[num_fields]) = 0;
13611
13612 num_fields++;
13613 }
13614 }
13615
13616 child_die = sibling_die (child_die);
13617 }
13618
13619 if (num_fields)
13620 {
13621 TYPE_NFIELDS (this_type) = num_fields;
13622 TYPE_FIELDS (this_type) = (struct field *)
13623 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13624 memcpy (TYPE_FIELDS (this_type), fields,
13625 sizeof (struct field) * num_fields);
13626 xfree (fields);
13627 }
13628 }
13629
13630 /* If we are reading an enum from a .debug_types unit, and the enum
13631 is a declaration, and the enum is not the signatured type in the
13632 unit, then we do not want to add a symbol for it. Adding a
13633 symbol would in some cases obscure the true definition of the
13634 enum, giving users an incomplete type when the definition is
13635 actually available. Note that we do not want to do this for all
13636 enums which are just declarations, because C++0x allows forward
13637 enum declarations. */
13638 if (cu->per_cu->is_debug_types
13639 && die_is_declaration (die, cu))
13640 {
13641 struct signatured_type *sig_type;
13642
13643 sig_type = (struct signatured_type *) cu->per_cu;
13644 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13645 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13646 return;
13647 }
13648
13649 new_symbol (die, this_type, cu);
13650 }
13651
13652 /* Extract all information from a DW_TAG_array_type DIE and put it in
13653 the DIE's type field. For now, this only handles one dimensional
13654 arrays. */
13655
13656 static struct type *
13657 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13658 {
13659 struct objfile *objfile = cu->objfile;
13660 struct die_info *child_die;
13661 struct type *type;
13662 struct type *element_type, *range_type, *index_type;
13663 struct type **range_types = NULL;
13664 struct attribute *attr;
13665 int ndim = 0;
13666 struct cleanup *back_to;
13667 const char *name;
13668 unsigned int bit_stride = 0;
13669
13670 element_type = die_type (die, cu);
13671
13672 /* The die_type call above may have already set the type for this DIE. */
13673 type = get_die_type (die, cu);
13674 if (type)
13675 return type;
13676
13677 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13678 if (attr != NULL)
13679 bit_stride = DW_UNSND (attr) * 8;
13680
13681 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13682 if (attr != NULL)
13683 bit_stride = DW_UNSND (attr);
13684
13685 /* Irix 6.2 native cc creates array types without children for
13686 arrays with unspecified length. */
13687 if (die->child == NULL)
13688 {
13689 index_type = objfile_type (objfile)->builtin_int;
13690 range_type = create_static_range_type (NULL, index_type, 0, -1);
13691 type = create_array_type_with_stride (NULL, element_type, range_type,
13692 bit_stride);
13693 return set_die_type (die, type, cu);
13694 }
13695
13696 back_to = make_cleanup (null_cleanup, NULL);
13697 child_die = die->child;
13698 while (child_die && child_die->tag)
13699 {
13700 if (child_die->tag == DW_TAG_subrange_type)
13701 {
13702 struct type *child_type = read_type_die (child_die, cu);
13703
13704 if (child_type != NULL)
13705 {
13706 /* The range type was succesfully read. Save it for the
13707 array type creation. */
13708 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13709 {
13710 range_types = (struct type **)
13711 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13712 * sizeof (struct type *));
13713 if (ndim == 0)
13714 make_cleanup (free_current_contents, &range_types);
13715 }
13716 range_types[ndim++] = child_type;
13717 }
13718 }
13719 child_die = sibling_die (child_die);
13720 }
13721
13722 /* Dwarf2 dimensions are output from left to right, create the
13723 necessary array types in backwards order. */
13724
13725 type = element_type;
13726
13727 if (read_array_order (die, cu) == DW_ORD_col_major)
13728 {
13729 int i = 0;
13730
13731 while (i < ndim)
13732 type = create_array_type_with_stride (NULL, type, range_types[i++],
13733 bit_stride);
13734 }
13735 else
13736 {
13737 while (ndim-- > 0)
13738 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13739 bit_stride);
13740 }
13741
13742 /* Understand Dwarf2 support for vector types (like they occur on
13743 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13744 array type. This is not part of the Dwarf2/3 standard yet, but a
13745 custom vendor extension. The main difference between a regular
13746 array and the vector variant is that vectors are passed by value
13747 to functions. */
13748 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13749 if (attr)
13750 make_vector_type (type);
13751
13752 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13753 implementation may choose to implement triple vectors using this
13754 attribute. */
13755 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13756 if (attr)
13757 {
13758 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13759 TYPE_LENGTH (type) = DW_UNSND (attr);
13760 else
13761 complaint (&symfile_complaints,
13762 _("DW_AT_byte_size for array type smaller "
13763 "than the total size of elements"));
13764 }
13765
13766 name = dwarf2_name (die, cu);
13767 if (name)
13768 TYPE_NAME (type) = name;
13769
13770 /* Install the type in the die. */
13771 set_die_type (die, type, cu);
13772
13773 /* set_die_type should be already done. */
13774 set_descriptive_type (type, die, cu);
13775
13776 do_cleanups (back_to);
13777
13778 return type;
13779 }
13780
13781 static enum dwarf_array_dim_ordering
13782 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13783 {
13784 struct attribute *attr;
13785
13786 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13787
13788 if (attr) return DW_SND (attr);
13789
13790 /* GNU F77 is a special case, as at 08/2004 array type info is the
13791 opposite order to the dwarf2 specification, but data is still
13792 laid out as per normal fortran.
13793
13794 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13795 version checking. */
13796
13797 if (cu->language == language_fortran
13798 && cu->producer && strstr (cu->producer, "GNU F77"))
13799 {
13800 return DW_ORD_row_major;
13801 }
13802
13803 switch (cu->language_defn->la_array_ordering)
13804 {
13805 case array_column_major:
13806 return DW_ORD_col_major;
13807 case array_row_major:
13808 default:
13809 return DW_ORD_row_major;
13810 };
13811 }
13812
13813 /* Extract all information from a DW_TAG_set_type DIE and put it in
13814 the DIE's type field. */
13815
13816 static struct type *
13817 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13818 {
13819 struct type *domain_type, *set_type;
13820 struct attribute *attr;
13821
13822 domain_type = die_type (die, cu);
13823
13824 /* The die_type call above may have already set the type for this DIE. */
13825 set_type = get_die_type (die, cu);
13826 if (set_type)
13827 return set_type;
13828
13829 set_type = create_set_type (NULL, domain_type);
13830
13831 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13832 if (attr)
13833 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13834
13835 return set_die_type (die, set_type, cu);
13836 }
13837
13838 /* A helper for read_common_block that creates a locexpr baton.
13839 SYM is the symbol which we are marking as computed.
13840 COMMON_DIE is the DIE for the common block.
13841 COMMON_LOC is the location expression attribute for the common
13842 block itself.
13843 MEMBER_LOC is the location expression attribute for the particular
13844 member of the common block that we are processing.
13845 CU is the CU from which the above come. */
13846
13847 static void
13848 mark_common_block_symbol_computed (struct symbol *sym,
13849 struct die_info *common_die,
13850 struct attribute *common_loc,
13851 struct attribute *member_loc,
13852 struct dwarf2_cu *cu)
13853 {
13854 struct objfile *objfile = dwarf2_per_objfile->objfile;
13855 struct dwarf2_locexpr_baton *baton;
13856 gdb_byte *ptr;
13857 unsigned int cu_off;
13858 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13859 LONGEST offset = 0;
13860
13861 gdb_assert (common_loc && member_loc);
13862 gdb_assert (attr_form_is_block (common_loc));
13863 gdb_assert (attr_form_is_block (member_loc)
13864 || attr_form_is_constant (member_loc));
13865
13866 baton = obstack_alloc (&objfile->objfile_obstack,
13867 sizeof (struct dwarf2_locexpr_baton));
13868 baton->per_cu = cu->per_cu;
13869 gdb_assert (baton->per_cu);
13870
13871 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13872
13873 if (attr_form_is_constant (member_loc))
13874 {
13875 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13876 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13877 }
13878 else
13879 baton->size += DW_BLOCK (member_loc)->size;
13880
13881 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13882 baton->data = ptr;
13883
13884 *ptr++ = DW_OP_call4;
13885 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13886 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13887 ptr += 4;
13888
13889 if (attr_form_is_constant (member_loc))
13890 {
13891 *ptr++ = DW_OP_addr;
13892 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13893 ptr += cu->header.addr_size;
13894 }
13895 else
13896 {
13897 /* We have to copy the data here, because DW_OP_call4 will only
13898 use a DW_AT_location attribute. */
13899 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13900 ptr += DW_BLOCK (member_loc)->size;
13901 }
13902
13903 *ptr++ = DW_OP_plus;
13904 gdb_assert (ptr - baton->data == baton->size);
13905
13906 SYMBOL_LOCATION_BATON (sym) = baton;
13907 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13908 }
13909
13910 /* Create appropriate locally-scoped variables for all the
13911 DW_TAG_common_block entries. Also create a struct common_block
13912 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13913 is used to sepate the common blocks name namespace from regular
13914 variable names. */
13915
13916 static void
13917 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13918 {
13919 struct attribute *attr;
13920
13921 attr = dwarf2_attr (die, DW_AT_location, cu);
13922 if (attr)
13923 {
13924 /* Support the .debug_loc offsets. */
13925 if (attr_form_is_block (attr))
13926 {
13927 /* Ok. */
13928 }
13929 else if (attr_form_is_section_offset (attr))
13930 {
13931 dwarf2_complex_location_expr_complaint ();
13932 attr = NULL;
13933 }
13934 else
13935 {
13936 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13937 "common block member");
13938 attr = NULL;
13939 }
13940 }
13941
13942 if (die->child != NULL)
13943 {
13944 struct objfile *objfile = cu->objfile;
13945 struct die_info *child_die;
13946 size_t n_entries = 0, size;
13947 struct common_block *common_block;
13948 struct symbol *sym;
13949
13950 for (child_die = die->child;
13951 child_die && child_die->tag;
13952 child_die = sibling_die (child_die))
13953 ++n_entries;
13954
13955 size = (sizeof (struct common_block)
13956 + (n_entries - 1) * sizeof (struct symbol *));
13957 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13958 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13959 common_block->n_entries = 0;
13960
13961 for (child_die = die->child;
13962 child_die && child_die->tag;
13963 child_die = sibling_die (child_die))
13964 {
13965 /* Create the symbol in the DW_TAG_common_block block in the current
13966 symbol scope. */
13967 sym = new_symbol (child_die, NULL, cu);
13968 if (sym != NULL)
13969 {
13970 struct attribute *member_loc;
13971
13972 common_block->contents[common_block->n_entries++] = sym;
13973
13974 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13975 cu);
13976 if (member_loc)
13977 {
13978 /* GDB has handled this for a long time, but it is
13979 not specified by DWARF. It seems to have been
13980 emitted by gfortran at least as recently as:
13981 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13982 complaint (&symfile_complaints,
13983 _("Variable in common block has "
13984 "DW_AT_data_member_location "
13985 "- DIE at 0x%x [in module %s]"),
13986 child_die->offset.sect_off,
13987 objfile_name (cu->objfile));
13988
13989 if (attr_form_is_section_offset (member_loc))
13990 dwarf2_complex_location_expr_complaint ();
13991 else if (attr_form_is_constant (member_loc)
13992 || attr_form_is_block (member_loc))
13993 {
13994 if (attr)
13995 mark_common_block_symbol_computed (sym, die, attr,
13996 member_loc, cu);
13997 }
13998 else
13999 dwarf2_complex_location_expr_complaint ();
14000 }
14001 }
14002 }
14003
14004 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14005 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14006 }
14007 }
14008
14009 /* Create a type for a C++ namespace. */
14010
14011 static struct type *
14012 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14013 {
14014 struct objfile *objfile = cu->objfile;
14015 const char *previous_prefix, *name;
14016 int is_anonymous;
14017 struct type *type;
14018
14019 /* For extensions, reuse the type of the original namespace. */
14020 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14021 {
14022 struct die_info *ext_die;
14023 struct dwarf2_cu *ext_cu = cu;
14024
14025 ext_die = dwarf2_extension (die, &ext_cu);
14026 type = read_type_die (ext_die, ext_cu);
14027
14028 /* EXT_CU may not be the same as CU.
14029 Ensure TYPE is recorded with CU in die_type_hash. */
14030 return set_die_type (die, type, cu);
14031 }
14032
14033 name = namespace_name (die, &is_anonymous, cu);
14034
14035 /* Now build the name of the current namespace. */
14036
14037 previous_prefix = determine_prefix (die, cu);
14038 if (previous_prefix[0] != '\0')
14039 name = typename_concat (&objfile->objfile_obstack,
14040 previous_prefix, name, 0, cu);
14041
14042 /* Create the type. */
14043 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14044 objfile);
14045 TYPE_NAME (type) = name;
14046 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14047
14048 return set_die_type (die, type, cu);
14049 }
14050
14051 /* Read a C++ namespace. */
14052
14053 static void
14054 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14055 {
14056 struct objfile *objfile = cu->objfile;
14057 int is_anonymous;
14058
14059 /* Add a symbol associated to this if we haven't seen the namespace
14060 before. Also, add a using directive if it's an anonymous
14061 namespace. */
14062
14063 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14064 {
14065 struct type *type;
14066
14067 type = read_type_die (die, cu);
14068 new_symbol (die, type, cu);
14069
14070 namespace_name (die, &is_anonymous, cu);
14071 if (is_anonymous)
14072 {
14073 const char *previous_prefix = determine_prefix (die, cu);
14074
14075 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14076 NULL, NULL, 0, &objfile->objfile_obstack);
14077 }
14078 }
14079
14080 if (die->child != NULL)
14081 {
14082 struct die_info *child_die = die->child;
14083
14084 while (child_die && child_die->tag)
14085 {
14086 process_die (child_die, cu);
14087 child_die = sibling_die (child_die);
14088 }
14089 }
14090 }
14091
14092 /* Read a Fortran module as type. This DIE can be only a declaration used for
14093 imported module. Still we need that type as local Fortran "use ... only"
14094 declaration imports depend on the created type in determine_prefix. */
14095
14096 static struct type *
14097 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14098 {
14099 struct objfile *objfile = cu->objfile;
14100 const char *module_name;
14101 struct type *type;
14102
14103 module_name = dwarf2_name (die, cu);
14104 if (!module_name)
14105 complaint (&symfile_complaints,
14106 _("DW_TAG_module has no name, offset 0x%x"),
14107 die->offset.sect_off);
14108 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14109
14110 /* determine_prefix uses TYPE_TAG_NAME. */
14111 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14112
14113 return set_die_type (die, type, cu);
14114 }
14115
14116 /* Read a Fortran module. */
14117
14118 static void
14119 read_module (struct die_info *die, struct dwarf2_cu *cu)
14120 {
14121 struct die_info *child_die = die->child;
14122 struct type *type;
14123
14124 type = read_type_die (die, cu);
14125 new_symbol (die, type, cu);
14126
14127 while (child_die && child_die->tag)
14128 {
14129 process_die (child_die, cu);
14130 child_die = sibling_die (child_die);
14131 }
14132 }
14133
14134 /* Return the name of the namespace represented by DIE. Set
14135 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14136 namespace. */
14137
14138 static const char *
14139 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14140 {
14141 struct die_info *current_die;
14142 const char *name = NULL;
14143
14144 /* Loop through the extensions until we find a name. */
14145
14146 for (current_die = die;
14147 current_die != NULL;
14148 current_die = dwarf2_extension (die, &cu))
14149 {
14150 /* We don't use dwarf2_name here so that we can detect the absence
14151 of a name -> anonymous namespace. */
14152 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14153
14154 if (attr != NULL)
14155 name = DW_STRING (attr);
14156 if (name != NULL)
14157 break;
14158 }
14159
14160 /* Is it an anonymous namespace? */
14161
14162 *is_anonymous = (name == NULL);
14163 if (*is_anonymous)
14164 name = CP_ANONYMOUS_NAMESPACE_STR;
14165
14166 return name;
14167 }
14168
14169 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14170 the user defined type vector. */
14171
14172 static struct type *
14173 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14174 {
14175 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14176 struct comp_unit_head *cu_header = &cu->header;
14177 struct type *type;
14178 struct attribute *attr_byte_size;
14179 struct attribute *attr_address_class;
14180 int byte_size, addr_class;
14181 struct type *target_type;
14182
14183 target_type = die_type (die, cu);
14184
14185 /* The die_type call above may have already set the type for this DIE. */
14186 type = get_die_type (die, cu);
14187 if (type)
14188 return type;
14189
14190 type = lookup_pointer_type (target_type);
14191
14192 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14193 if (attr_byte_size)
14194 byte_size = DW_UNSND (attr_byte_size);
14195 else
14196 byte_size = cu_header->addr_size;
14197
14198 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14199 if (attr_address_class)
14200 addr_class = DW_UNSND (attr_address_class);
14201 else
14202 addr_class = DW_ADDR_none;
14203
14204 /* If the pointer size or address class is different than the
14205 default, create a type variant marked as such and set the
14206 length accordingly. */
14207 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14208 {
14209 if (gdbarch_address_class_type_flags_p (gdbarch))
14210 {
14211 int type_flags;
14212
14213 type_flags = gdbarch_address_class_type_flags
14214 (gdbarch, byte_size, addr_class);
14215 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14216 == 0);
14217 type = make_type_with_address_space (type, type_flags);
14218 }
14219 else if (TYPE_LENGTH (type) != byte_size)
14220 {
14221 complaint (&symfile_complaints,
14222 _("invalid pointer size %d"), byte_size);
14223 }
14224 else
14225 {
14226 /* Should we also complain about unhandled address classes? */
14227 }
14228 }
14229
14230 TYPE_LENGTH (type) = byte_size;
14231 return set_die_type (die, type, cu);
14232 }
14233
14234 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14235 the user defined type vector. */
14236
14237 static struct type *
14238 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14239 {
14240 struct type *type;
14241 struct type *to_type;
14242 struct type *domain;
14243
14244 to_type = die_type (die, cu);
14245 domain = die_containing_type (die, cu);
14246
14247 /* The calls above may have already set the type for this DIE. */
14248 type = get_die_type (die, cu);
14249 if (type)
14250 return type;
14251
14252 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14253 type = lookup_methodptr_type (to_type);
14254 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14255 {
14256 struct type *new_type = alloc_type (cu->objfile);
14257
14258 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14259 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14260 TYPE_VARARGS (to_type));
14261 type = lookup_methodptr_type (new_type);
14262 }
14263 else
14264 type = lookup_memberptr_type (to_type, domain);
14265
14266 return set_die_type (die, type, cu);
14267 }
14268
14269 /* Extract all information from a DW_TAG_reference_type DIE and add to
14270 the user defined type vector. */
14271
14272 static struct type *
14273 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14274 {
14275 struct comp_unit_head *cu_header = &cu->header;
14276 struct type *type, *target_type;
14277 struct attribute *attr;
14278
14279 target_type = die_type (die, cu);
14280
14281 /* The die_type call above may have already set the type for this DIE. */
14282 type = get_die_type (die, cu);
14283 if (type)
14284 return type;
14285
14286 type = lookup_reference_type (target_type);
14287 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14288 if (attr)
14289 {
14290 TYPE_LENGTH (type) = DW_UNSND (attr);
14291 }
14292 else
14293 {
14294 TYPE_LENGTH (type) = cu_header->addr_size;
14295 }
14296 return set_die_type (die, type, cu);
14297 }
14298
14299 /* Add the given cv-qualifiers to the element type of the array. GCC
14300 outputs DWARF type qualifiers that apply to an array, not the
14301 element type. But GDB relies on the array element type to carry
14302 the cv-qualifiers. This mimics section 6.7.3 of the C99
14303 specification. */
14304
14305 static struct type *
14306 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14307 struct type *base_type, int cnst, int voltl)
14308 {
14309 struct type *el_type, *inner_array;
14310
14311 base_type = copy_type (base_type);
14312 inner_array = base_type;
14313
14314 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14315 {
14316 TYPE_TARGET_TYPE (inner_array) =
14317 copy_type (TYPE_TARGET_TYPE (inner_array));
14318 inner_array = TYPE_TARGET_TYPE (inner_array);
14319 }
14320
14321 el_type = TYPE_TARGET_TYPE (inner_array);
14322 cnst |= TYPE_CONST (el_type);
14323 voltl |= TYPE_VOLATILE (el_type);
14324 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14325
14326 return set_die_type (die, base_type, cu);
14327 }
14328
14329 static struct type *
14330 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14331 {
14332 struct type *base_type, *cv_type;
14333
14334 base_type = die_type (die, cu);
14335
14336 /* The die_type call above may have already set the type for this DIE. */
14337 cv_type = get_die_type (die, cu);
14338 if (cv_type)
14339 return cv_type;
14340
14341 /* In case the const qualifier is applied to an array type, the element type
14342 is so qualified, not the array type (section 6.7.3 of C99). */
14343 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14344 return add_array_cv_type (die, cu, base_type, 1, 0);
14345
14346 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14347 return set_die_type (die, cv_type, cu);
14348 }
14349
14350 static struct type *
14351 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14352 {
14353 struct type *base_type, *cv_type;
14354
14355 base_type = die_type (die, cu);
14356
14357 /* The die_type call above may have already set the type for this DIE. */
14358 cv_type = get_die_type (die, cu);
14359 if (cv_type)
14360 return cv_type;
14361
14362 /* In case the volatile qualifier is applied to an array type, the
14363 element type is so qualified, not the array type (section 6.7.3
14364 of C99). */
14365 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14366 return add_array_cv_type (die, cu, base_type, 0, 1);
14367
14368 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14369 return set_die_type (die, cv_type, cu);
14370 }
14371
14372 /* Handle DW_TAG_restrict_type. */
14373
14374 static struct type *
14375 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14376 {
14377 struct type *base_type, *cv_type;
14378
14379 base_type = die_type (die, cu);
14380
14381 /* The die_type call above may have already set the type for this DIE. */
14382 cv_type = get_die_type (die, cu);
14383 if (cv_type)
14384 return cv_type;
14385
14386 cv_type = make_restrict_type (base_type);
14387 return set_die_type (die, cv_type, cu);
14388 }
14389
14390 /* Handle DW_TAG_atomic_type. */
14391
14392 static struct type *
14393 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14394 {
14395 struct type *base_type, *cv_type;
14396
14397 base_type = die_type (die, cu);
14398
14399 /* The die_type call above may have already set the type for this DIE. */
14400 cv_type = get_die_type (die, cu);
14401 if (cv_type)
14402 return cv_type;
14403
14404 cv_type = make_atomic_type (base_type);
14405 return set_die_type (die, cv_type, cu);
14406 }
14407
14408 /* Extract all information from a DW_TAG_string_type DIE and add to
14409 the user defined type vector. It isn't really a user defined type,
14410 but it behaves like one, with other DIE's using an AT_user_def_type
14411 attribute to reference it. */
14412
14413 static struct type *
14414 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14415 {
14416 struct objfile *objfile = cu->objfile;
14417 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14418 struct type *type, *range_type, *index_type, *char_type;
14419 struct attribute *attr;
14420 unsigned int length;
14421
14422 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14423 if (attr)
14424 {
14425 length = DW_UNSND (attr);
14426 }
14427 else
14428 {
14429 /* Check for the DW_AT_byte_size attribute. */
14430 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14431 if (attr)
14432 {
14433 length = DW_UNSND (attr);
14434 }
14435 else
14436 {
14437 length = 1;
14438 }
14439 }
14440
14441 index_type = objfile_type (objfile)->builtin_int;
14442 range_type = create_static_range_type (NULL, index_type, 1, length);
14443 char_type = language_string_char_type (cu->language_defn, gdbarch);
14444 type = create_string_type (NULL, char_type, range_type);
14445
14446 return set_die_type (die, type, cu);
14447 }
14448
14449 /* Assuming that DIE corresponds to a function, returns nonzero
14450 if the function is prototyped. */
14451
14452 static int
14453 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14454 {
14455 struct attribute *attr;
14456
14457 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14458 if (attr && (DW_UNSND (attr) != 0))
14459 return 1;
14460
14461 /* The DWARF standard implies that the DW_AT_prototyped attribute
14462 is only meaninful for C, but the concept also extends to other
14463 languages that allow unprototyped functions (Eg: Objective C).
14464 For all other languages, assume that functions are always
14465 prototyped. */
14466 if (cu->language != language_c
14467 && cu->language != language_objc
14468 && cu->language != language_opencl)
14469 return 1;
14470
14471 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14472 prototyped and unprototyped functions; default to prototyped,
14473 since that is more common in modern code (and RealView warns
14474 about unprototyped functions). */
14475 if (producer_is_realview (cu->producer))
14476 return 1;
14477
14478 return 0;
14479 }
14480
14481 /* Handle DIES due to C code like:
14482
14483 struct foo
14484 {
14485 int (*funcp)(int a, long l);
14486 int b;
14487 };
14488
14489 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14490
14491 static struct type *
14492 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14493 {
14494 struct objfile *objfile = cu->objfile;
14495 struct type *type; /* Type that this function returns. */
14496 struct type *ftype; /* Function that returns above type. */
14497 struct attribute *attr;
14498
14499 type = die_type (die, cu);
14500
14501 /* The die_type call above may have already set the type for this DIE. */
14502 ftype = get_die_type (die, cu);
14503 if (ftype)
14504 return ftype;
14505
14506 ftype = lookup_function_type (type);
14507
14508 if (prototyped_function_p (die, cu))
14509 TYPE_PROTOTYPED (ftype) = 1;
14510
14511 /* Store the calling convention in the type if it's available in
14512 the subroutine die. Otherwise set the calling convention to
14513 the default value DW_CC_normal. */
14514 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14515 if (attr)
14516 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14517 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14518 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14519 else
14520 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14521
14522 /* Record whether the function returns normally to its caller or not
14523 if the DWARF producer set that information. */
14524 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14525 if (attr && (DW_UNSND (attr) != 0))
14526 TYPE_NO_RETURN (ftype) = 1;
14527
14528 /* We need to add the subroutine type to the die immediately so
14529 we don't infinitely recurse when dealing with parameters
14530 declared as the same subroutine type. */
14531 set_die_type (die, ftype, cu);
14532
14533 if (die->child != NULL)
14534 {
14535 struct type *void_type = objfile_type (objfile)->builtin_void;
14536 struct die_info *child_die;
14537 int nparams, iparams;
14538
14539 /* Count the number of parameters.
14540 FIXME: GDB currently ignores vararg functions, but knows about
14541 vararg member functions. */
14542 nparams = 0;
14543 child_die = die->child;
14544 while (child_die && child_die->tag)
14545 {
14546 if (child_die->tag == DW_TAG_formal_parameter)
14547 nparams++;
14548 else if (child_die->tag == DW_TAG_unspecified_parameters)
14549 TYPE_VARARGS (ftype) = 1;
14550 child_die = sibling_die (child_die);
14551 }
14552
14553 /* Allocate storage for parameters and fill them in. */
14554 TYPE_NFIELDS (ftype) = nparams;
14555 TYPE_FIELDS (ftype) = (struct field *)
14556 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14557
14558 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14559 even if we error out during the parameters reading below. */
14560 for (iparams = 0; iparams < nparams; iparams++)
14561 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14562
14563 iparams = 0;
14564 child_die = die->child;
14565 while (child_die && child_die->tag)
14566 {
14567 if (child_die->tag == DW_TAG_formal_parameter)
14568 {
14569 struct type *arg_type;
14570
14571 /* DWARF version 2 has no clean way to discern C++
14572 static and non-static member functions. G++ helps
14573 GDB by marking the first parameter for non-static
14574 member functions (which is the this pointer) as
14575 artificial. We pass this information to
14576 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14577
14578 DWARF version 3 added DW_AT_object_pointer, which GCC
14579 4.5 does not yet generate. */
14580 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14581 if (attr)
14582 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14583 else
14584 {
14585 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14586
14587 /* GCC/43521: In java, the formal parameter
14588 "this" is sometimes not marked with DW_AT_artificial. */
14589 if (cu->language == language_java)
14590 {
14591 const char *name = dwarf2_name (child_die, cu);
14592
14593 if (name && !strcmp (name, "this"))
14594 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14595 }
14596 }
14597 arg_type = die_type (child_die, cu);
14598
14599 /* RealView does not mark THIS as const, which the testsuite
14600 expects. GCC marks THIS as const in method definitions,
14601 but not in the class specifications (GCC PR 43053). */
14602 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14603 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14604 {
14605 int is_this = 0;
14606 struct dwarf2_cu *arg_cu = cu;
14607 const char *name = dwarf2_name (child_die, cu);
14608
14609 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14610 if (attr)
14611 {
14612 /* If the compiler emits this, use it. */
14613 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14614 is_this = 1;
14615 }
14616 else if (name && strcmp (name, "this") == 0)
14617 /* Function definitions will have the argument names. */
14618 is_this = 1;
14619 else if (name == NULL && iparams == 0)
14620 /* Declarations may not have the names, so like
14621 elsewhere in GDB, assume an artificial first
14622 argument is "this". */
14623 is_this = 1;
14624
14625 if (is_this)
14626 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14627 arg_type, 0);
14628 }
14629
14630 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14631 iparams++;
14632 }
14633 child_die = sibling_die (child_die);
14634 }
14635 }
14636
14637 return ftype;
14638 }
14639
14640 static struct type *
14641 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14642 {
14643 struct objfile *objfile = cu->objfile;
14644 const char *name = NULL;
14645 struct type *this_type, *target_type;
14646
14647 name = dwarf2_full_name (NULL, die, cu);
14648 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14649 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14650 TYPE_NAME (this_type) = name;
14651 set_die_type (die, this_type, cu);
14652 target_type = die_type (die, cu);
14653 if (target_type != this_type)
14654 TYPE_TARGET_TYPE (this_type) = target_type;
14655 else
14656 {
14657 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14658 spec and cause infinite loops in GDB. */
14659 complaint (&symfile_complaints,
14660 _("Self-referential DW_TAG_typedef "
14661 "- DIE at 0x%x [in module %s]"),
14662 die->offset.sect_off, objfile_name (objfile));
14663 TYPE_TARGET_TYPE (this_type) = NULL;
14664 }
14665 return this_type;
14666 }
14667
14668 /* Find a representation of a given base type and install
14669 it in the TYPE field of the die. */
14670
14671 static struct type *
14672 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14673 {
14674 struct objfile *objfile = cu->objfile;
14675 struct type *type;
14676 struct attribute *attr;
14677 int encoding = 0, size = 0;
14678 const char *name;
14679 enum type_code code = TYPE_CODE_INT;
14680 int type_flags = 0;
14681 struct type *target_type = NULL;
14682
14683 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14684 if (attr)
14685 {
14686 encoding = DW_UNSND (attr);
14687 }
14688 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14689 if (attr)
14690 {
14691 size = DW_UNSND (attr);
14692 }
14693 name = dwarf2_name (die, cu);
14694 if (!name)
14695 {
14696 complaint (&symfile_complaints,
14697 _("DW_AT_name missing from DW_TAG_base_type"));
14698 }
14699
14700 switch (encoding)
14701 {
14702 case DW_ATE_address:
14703 /* Turn DW_ATE_address into a void * pointer. */
14704 code = TYPE_CODE_PTR;
14705 type_flags |= TYPE_FLAG_UNSIGNED;
14706 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14707 break;
14708 case DW_ATE_boolean:
14709 code = TYPE_CODE_BOOL;
14710 type_flags |= TYPE_FLAG_UNSIGNED;
14711 break;
14712 case DW_ATE_complex_float:
14713 code = TYPE_CODE_COMPLEX;
14714 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14715 break;
14716 case DW_ATE_decimal_float:
14717 code = TYPE_CODE_DECFLOAT;
14718 break;
14719 case DW_ATE_float:
14720 code = TYPE_CODE_FLT;
14721 break;
14722 case DW_ATE_signed:
14723 break;
14724 case DW_ATE_unsigned:
14725 type_flags |= TYPE_FLAG_UNSIGNED;
14726 if (cu->language == language_fortran
14727 && name
14728 && startswith (name, "character("))
14729 code = TYPE_CODE_CHAR;
14730 break;
14731 case DW_ATE_signed_char:
14732 if (cu->language == language_ada || cu->language == language_m2
14733 || cu->language == language_pascal
14734 || cu->language == language_fortran)
14735 code = TYPE_CODE_CHAR;
14736 break;
14737 case DW_ATE_unsigned_char:
14738 if (cu->language == language_ada || cu->language == language_m2
14739 || cu->language == language_pascal
14740 || cu->language == language_fortran)
14741 code = TYPE_CODE_CHAR;
14742 type_flags |= TYPE_FLAG_UNSIGNED;
14743 break;
14744 case DW_ATE_UTF:
14745 /* We just treat this as an integer and then recognize the
14746 type by name elsewhere. */
14747 break;
14748
14749 default:
14750 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14751 dwarf_type_encoding_name (encoding));
14752 break;
14753 }
14754
14755 type = init_type (code, size, type_flags, NULL, objfile);
14756 TYPE_NAME (type) = name;
14757 TYPE_TARGET_TYPE (type) = target_type;
14758
14759 if (name && strcmp (name, "char") == 0)
14760 TYPE_NOSIGN (type) = 1;
14761
14762 return set_die_type (die, type, cu);
14763 }
14764
14765 /* Parse dwarf attribute if it's a block, reference or constant and put the
14766 resulting value of the attribute into struct bound_prop.
14767 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14768
14769 static int
14770 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14771 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14772 {
14773 struct dwarf2_property_baton *baton;
14774 struct obstack *obstack = &cu->objfile->objfile_obstack;
14775
14776 if (attr == NULL || prop == NULL)
14777 return 0;
14778
14779 if (attr_form_is_block (attr))
14780 {
14781 baton = obstack_alloc (obstack, sizeof (*baton));
14782 baton->referenced_type = NULL;
14783 baton->locexpr.per_cu = cu->per_cu;
14784 baton->locexpr.size = DW_BLOCK (attr)->size;
14785 baton->locexpr.data = DW_BLOCK (attr)->data;
14786 prop->data.baton = baton;
14787 prop->kind = PROP_LOCEXPR;
14788 gdb_assert (prop->data.baton != NULL);
14789 }
14790 else if (attr_form_is_ref (attr))
14791 {
14792 struct dwarf2_cu *target_cu = cu;
14793 struct die_info *target_die;
14794 struct attribute *target_attr;
14795
14796 target_die = follow_die_ref (die, attr, &target_cu);
14797 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14798 if (target_attr == NULL)
14799 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14800 target_cu);
14801 if (target_attr == NULL)
14802 return 0;
14803
14804 switch (target_attr->name)
14805 {
14806 case DW_AT_location:
14807 if (attr_form_is_section_offset (target_attr))
14808 {
14809 baton = obstack_alloc (obstack, sizeof (*baton));
14810 baton->referenced_type = die_type (target_die, target_cu);
14811 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14812 prop->data.baton = baton;
14813 prop->kind = PROP_LOCLIST;
14814 gdb_assert (prop->data.baton != NULL);
14815 }
14816 else if (attr_form_is_block (target_attr))
14817 {
14818 baton = obstack_alloc (obstack, sizeof (*baton));
14819 baton->referenced_type = die_type (target_die, target_cu);
14820 baton->locexpr.per_cu = cu->per_cu;
14821 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14822 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14823 prop->data.baton = baton;
14824 prop->kind = PROP_LOCEXPR;
14825 gdb_assert (prop->data.baton != NULL);
14826 }
14827 else
14828 {
14829 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14830 "dynamic property");
14831 return 0;
14832 }
14833 break;
14834 case DW_AT_data_member_location:
14835 {
14836 LONGEST offset;
14837
14838 if (!handle_data_member_location (target_die, target_cu,
14839 &offset))
14840 return 0;
14841
14842 baton = obstack_alloc (obstack, sizeof (*baton));
14843 baton->referenced_type = get_die_type (target_die->parent,
14844 target_cu);
14845 baton->offset_info.offset = offset;
14846 baton->offset_info.type = die_type (target_die, target_cu);
14847 prop->data.baton = baton;
14848 prop->kind = PROP_ADDR_OFFSET;
14849 break;
14850 }
14851 }
14852 }
14853 else if (attr_form_is_constant (attr))
14854 {
14855 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14856 prop->kind = PROP_CONST;
14857 }
14858 else
14859 {
14860 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14861 dwarf2_name (die, cu));
14862 return 0;
14863 }
14864
14865 return 1;
14866 }
14867
14868 /* Read the given DW_AT_subrange DIE. */
14869
14870 static struct type *
14871 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14872 {
14873 struct type *base_type, *orig_base_type;
14874 struct type *range_type;
14875 struct attribute *attr;
14876 struct dynamic_prop low, high;
14877 int low_default_is_valid;
14878 int high_bound_is_count = 0;
14879 const char *name;
14880 LONGEST negative_mask;
14881
14882 orig_base_type = die_type (die, cu);
14883 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14884 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14885 creating the range type, but we use the result of check_typedef
14886 when examining properties of the type. */
14887 base_type = check_typedef (orig_base_type);
14888
14889 /* The die_type call above may have already set the type for this DIE. */
14890 range_type = get_die_type (die, cu);
14891 if (range_type)
14892 return range_type;
14893
14894 low.kind = PROP_CONST;
14895 high.kind = PROP_CONST;
14896 high.data.const_val = 0;
14897
14898 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14899 omitting DW_AT_lower_bound. */
14900 switch (cu->language)
14901 {
14902 case language_c:
14903 case language_cplus:
14904 low.data.const_val = 0;
14905 low_default_is_valid = 1;
14906 break;
14907 case language_fortran:
14908 low.data.const_val = 1;
14909 low_default_is_valid = 1;
14910 break;
14911 case language_d:
14912 case language_java:
14913 case language_objc:
14914 low.data.const_val = 0;
14915 low_default_is_valid = (cu->header.version >= 4);
14916 break;
14917 case language_ada:
14918 case language_m2:
14919 case language_pascal:
14920 low.data.const_val = 1;
14921 low_default_is_valid = (cu->header.version >= 4);
14922 break;
14923 default:
14924 low.data.const_val = 0;
14925 low_default_is_valid = 0;
14926 break;
14927 }
14928
14929 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14930 if (attr)
14931 attr_to_dynamic_prop (attr, die, cu, &low);
14932 else if (!low_default_is_valid)
14933 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14934 "- DIE at 0x%x [in module %s]"),
14935 die->offset.sect_off, objfile_name (cu->objfile));
14936
14937 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14938 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14939 {
14940 attr = dwarf2_attr (die, DW_AT_count, cu);
14941 if (attr_to_dynamic_prop (attr, die, cu, &high))
14942 {
14943 /* If bounds are constant do the final calculation here. */
14944 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14945 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14946 else
14947 high_bound_is_count = 1;
14948 }
14949 }
14950
14951 /* Dwarf-2 specifications explicitly allows to create subrange types
14952 without specifying a base type.
14953 In that case, the base type must be set to the type of
14954 the lower bound, upper bound or count, in that order, if any of these
14955 three attributes references an object that has a type.
14956 If no base type is found, the Dwarf-2 specifications say that
14957 a signed integer type of size equal to the size of an address should
14958 be used.
14959 For the following C code: `extern char gdb_int [];'
14960 GCC produces an empty range DIE.
14961 FIXME: muller/2010-05-28: Possible references to object for low bound,
14962 high bound or count are not yet handled by this code. */
14963 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14964 {
14965 struct objfile *objfile = cu->objfile;
14966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14967 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14968 struct type *int_type = objfile_type (objfile)->builtin_int;
14969
14970 /* Test "int", "long int", and "long long int" objfile types,
14971 and select the first one having a size above or equal to the
14972 architecture address size. */
14973 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14974 base_type = int_type;
14975 else
14976 {
14977 int_type = objfile_type (objfile)->builtin_long;
14978 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14979 base_type = int_type;
14980 else
14981 {
14982 int_type = objfile_type (objfile)->builtin_long_long;
14983 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14984 base_type = int_type;
14985 }
14986 }
14987 }
14988
14989 /* Normally, the DWARF producers are expected to use a signed
14990 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14991 But this is unfortunately not always the case, as witnessed
14992 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14993 is used instead. To work around that ambiguity, we treat
14994 the bounds as signed, and thus sign-extend their values, when
14995 the base type is signed. */
14996 negative_mask =
14997 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14998 if (low.kind == PROP_CONST
14999 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15000 low.data.const_val |= negative_mask;
15001 if (high.kind == PROP_CONST
15002 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15003 high.data.const_val |= negative_mask;
15004
15005 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15006
15007 if (high_bound_is_count)
15008 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15009
15010 /* Ada expects an empty array on no boundary attributes. */
15011 if (attr == NULL && cu->language != language_ada)
15012 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15013
15014 name = dwarf2_name (die, cu);
15015 if (name)
15016 TYPE_NAME (range_type) = name;
15017
15018 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15019 if (attr)
15020 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15021
15022 set_die_type (die, range_type, cu);
15023
15024 /* set_die_type should be already done. */
15025 set_descriptive_type (range_type, die, cu);
15026
15027 return range_type;
15028 }
15029
15030 static struct type *
15031 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15032 {
15033 struct type *type;
15034
15035 /* For now, we only support the C meaning of an unspecified type: void. */
15036
15037 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15038 TYPE_NAME (type) = dwarf2_name (die, cu);
15039
15040 return set_die_type (die, type, cu);
15041 }
15042
15043 /* Read a single die and all its descendents. Set the die's sibling
15044 field to NULL; set other fields in the die correctly, and set all
15045 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15046 location of the info_ptr after reading all of those dies. PARENT
15047 is the parent of the die in question. */
15048
15049 static struct die_info *
15050 read_die_and_children (const struct die_reader_specs *reader,
15051 const gdb_byte *info_ptr,
15052 const gdb_byte **new_info_ptr,
15053 struct die_info *parent)
15054 {
15055 struct die_info *die;
15056 const gdb_byte *cur_ptr;
15057 int has_children;
15058
15059 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15060 if (die == NULL)
15061 {
15062 *new_info_ptr = cur_ptr;
15063 return NULL;
15064 }
15065 store_in_ref_table (die, reader->cu);
15066
15067 if (has_children)
15068 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15069 else
15070 {
15071 die->child = NULL;
15072 *new_info_ptr = cur_ptr;
15073 }
15074
15075 die->sibling = NULL;
15076 die->parent = parent;
15077 return die;
15078 }
15079
15080 /* Read a die, all of its descendents, and all of its siblings; set
15081 all of the fields of all of the dies correctly. Arguments are as
15082 in read_die_and_children. */
15083
15084 static struct die_info *
15085 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15086 const gdb_byte *info_ptr,
15087 const gdb_byte **new_info_ptr,
15088 struct die_info *parent)
15089 {
15090 struct die_info *first_die, *last_sibling;
15091 const gdb_byte *cur_ptr;
15092
15093 cur_ptr = info_ptr;
15094 first_die = last_sibling = NULL;
15095
15096 while (1)
15097 {
15098 struct die_info *die
15099 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15100
15101 if (die == NULL)
15102 {
15103 *new_info_ptr = cur_ptr;
15104 return first_die;
15105 }
15106
15107 if (!first_die)
15108 first_die = die;
15109 else
15110 last_sibling->sibling = die;
15111
15112 last_sibling = die;
15113 }
15114 }
15115
15116 /* Read a die, all of its descendents, and all of its siblings; set
15117 all of the fields of all of the dies correctly. Arguments are as
15118 in read_die_and_children.
15119 This the main entry point for reading a DIE and all its children. */
15120
15121 static struct die_info *
15122 read_die_and_siblings (const struct die_reader_specs *reader,
15123 const gdb_byte *info_ptr,
15124 const gdb_byte **new_info_ptr,
15125 struct die_info *parent)
15126 {
15127 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15128 new_info_ptr, parent);
15129
15130 if (dwarf2_die_debug)
15131 {
15132 fprintf_unfiltered (gdb_stdlog,
15133 "Read die from %s@0x%x of %s:\n",
15134 get_section_name (reader->die_section),
15135 (unsigned) (info_ptr - reader->die_section->buffer),
15136 bfd_get_filename (reader->abfd));
15137 dump_die (die, dwarf2_die_debug);
15138 }
15139
15140 return die;
15141 }
15142
15143 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15144 attributes.
15145 The caller is responsible for filling in the extra attributes
15146 and updating (*DIEP)->num_attrs.
15147 Set DIEP to point to a newly allocated die with its information,
15148 except for its child, sibling, and parent fields.
15149 Set HAS_CHILDREN to tell whether the die has children or not. */
15150
15151 static const gdb_byte *
15152 read_full_die_1 (const struct die_reader_specs *reader,
15153 struct die_info **diep, const gdb_byte *info_ptr,
15154 int *has_children, int num_extra_attrs)
15155 {
15156 unsigned int abbrev_number, bytes_read, i;
15157 sect_offset offset;
15158 struct abbrev_info *abbrev;
15159 struct die_info *die;
15160 struct dwarf2_cu *cu = reader->cu;
15161 bfd *abfd = reader->abfd;
15162
15163 offset.sect_off = info_ptr - reader->buffer;
15164 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15165 info_ptr += bytes_read;
15166 if (!abbrev_number)
15167 {
15168 *diep = NULL;
15169 *has_children = 0;
15170 return info_ptr;
15171 }
15172
15173 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15174 if (!abbrev)
15175 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15176 abbrev_number,
15177 bfd_get_filename (abfd));
15178
15179 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15180 die->offset = offset;
15181 die->tag = abbrev->tag;
15182 die->abbrev = abbrev_number;
15183
15184 /* Make the result usable.
15185 The caller needs to update num_attrs after adding the extra
15186 attributes. */
15187 die->num_attrs = abbrev->num_attrs;
15188
15189 for (i = 0; i < abbrev->num_attrs; ++i)
15190 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15191 info_ptr);
15192
15193 *diep = die;
15194 *has_children = abbrev->has_children;
15195 return info_ptr;
15196 }
15197
15198 /* Read a die and all its attributes.
15199 Set DIEP to point to a newly allocated die with its information,
15200 except for its child, sibling, and parent fields.
15201 Set HAS_CHILDREN to tell whether the die has children or not. */
15202
15203 static const gdb_byte *
15204 read_full_die (const struct die_reader_specs *reader,
15205 struct die_info **diep, const gdb_byte *info_ptr,
15206 int *has_children)
15207 {
15208 const gdb_byte *result;
15209
15210 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15211
15212 if (dwarf2_die_debug)
15213 {
15214 fprintf_unfiltered (gdb_stdlog,
15215 "Read die from %s@0x%x of %s:\n",
15216 get_section_name (reader->die_section),
15217 (unsigned) (info_ptr - reader->die_section->buffer),
15218 bfd_get_filename (reader->abfd));
15219 dump_die (*diep, dwarf2_die_debug);
15220 }
15221
15222 return result;
15223 }
15224 \f
15225 /* Abbreviation tables.
15226
15227 In DWARF version 2, the description of the debugging information is
15228 stored in a separate .debug_abbrev section. Before we read any
15229 dies from a section we read in all abbreviations and install them
15230 in a hash table. */
15231
15232 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15233
15234 static struct abbrev_info *
15235 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15236 {
15237 struct abbrev_info *abbrev;
15238
15239 abbrev = (struct abbrev_info *)
15240 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15241 memset (abbrev, 0, sizeof (struct abbrev_info));
15242 return abbrev;
15243 }
15244
15245 /* Add an abbreviation to the table. */
15246
15247 static void
15248 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15249 unsigned int abbrev_number,
15250 struct abbrev_info *abbrev)
15251 {
15252 unsigned int hash_number;
15253
15254 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15255 abbrev->next = abbrev_table->abbrevs[hash_number];
15256 abbrev_table->abbrevs[hash_number] = abbrev;
15257 }
15258
15259 /* Look up an abbrev in the table.
15260 Returns NULL if the abbrev is not found. */
15261
15262 static struct abbrev_info *
15263 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15264 unsigned int abbrev_number)
15265 {
15266 unsigned int hash_number;
15267 struct abbrev_info *abbrev;
15268
15269 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15270 abbrev = abbrev_table->abbrevs[hash_number];
15271
15272 while (abbrev)
15273 {
15274 if (abbrev->number == abbrev_number)
15275 return abbrev;
15276 abbrev = abbrev->next;
15277 }
15278 return NULL;
15279 }
15280
15281 /* Read in an abbrev table. */
15282
15283 static struct abbrev_table *
15284 abbrev_table_read_table (struct dwarf2_section_info *section,
15285 sect_offset offset)
15286 {
15287 struct objfile *objfile = dwarf2_per_objfile->objfile;
15288 bfd *abfd = get_section_bfd_owner (section);
15289 struct abbrev_table *abbrev_table;
15290 const gdb_byte *abbrev_ptr;
15291 struct abbrev_info *cur_abbrev;
15292 unsigned int abbrev_number, bytes_read, abbrev_name;
15293 unsigned int abbrev_form;
15294 struct attr_abbrev *cur_attrs;
15295 unsigned int allocated_attrs;
15296
15297 abbrev_table = XNEW (struct abbrev_table);
15298 abbrev_table->offset = offset;
15299 obstack_init (&abbrev_table->abbrev_obstack);
15300 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15301 (ABBREV_HASH_SIZE
15302 * sizeof (struct abbrev_info *)));
15303 memset (abbrev_table->abbrevs, 0,
15304 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15305
15306 dwarf2_read_section (objfile, section);
15307 abbrev_ptr = section->buffer + offset.sect_off;
15308 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15309 abbrev_ptr += bytes_read;
15310
15311 allocated_attrs = ATTR_ALLOC_CHUNK;
15312 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15313
15314 /* Loop until we reach an abbrev number of 0. */
15315 while (abbrev_number)
15316 {
15317 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15318
15319 /* read in abbrev header */
15320 cur_abbrev->number = abbrev_number;
15321 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15322 abbrev_ptr += bytes_read;
15323 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15324 abbrev_ptr += 1;
15325
15326 /* now read in declarations */
15327 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15328 abbrev_ptr += bytes_read;
15329 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15330 abbrev_ptr += bytes_read;
15331 while (abbrev_name)
15332 {
15333 if (cur_abbrev->num_attrs == allocated_attrs)
15334 {
15335 allocated_attrs += ATTR_ALLOC_CHUNK;
15336 cur_attrs
15337 = xrealloc (cur_attrs, (allocated_attrs
15338 * sizeof (struct attr_abbrev)));
15339 }
15340
15341 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15342 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15343 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15344 abbrev_ptr += bytes_read;
15345 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15346 abbrev_ptr += bytes_read;
15347 }
15348
15349 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15350 (cur_abbrev->num_attrs
15351 * sizeof (struct attr_abbrev)));
15352 memcpy (cur_abbrev->attrs, cur_attrs,
15353 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15354
15355 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15356
15357 /* Get next abbreviation.
15358 Under Irix6 the abbreviations for a compilation unit are not
15359 always properly terminated with an abbrev number of 0.
15360 Exit loop if we encounter an abbreviation which we have
15361 already read (which means we are about to read the abbreviations
15362 for the next compile unit) or if the end of the abbreviation
15363 table is reached. */
15364 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15365 break;
15366 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15367 abbrev_ptr += bytes_read;
15368 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15369 break;
15370 }
15371
15372 xfree (cur_attrs);
15373 return abbrev_table;
15374 }
15375
15376 /* Free the resources held by ABBREV_TABLE. */
15377
15378 static void
15379 abbrev_table_free (struct abbrev_table *abbrev_table)
15380 {
15381 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15382 xfree (abbrev_table);
15383 }
15384
15385 /* Same as abbrev_table_free but as a cleanup.
15386 We pass in a pointer to the pointer to the table so that we can
15387 set the pointer to NULL when we're done. It also simplifies
15388 build_type_psymtabs_1. */
15389
15390 static void
15391 abbrev_table_free_cleanup (void *table_ptr)
15392 {
15393 struct abbrev_table **abbrev_table_ptr = table_ptr;
15394
15395 if (*abbrev_table_ptr != NULL)
15396 abbrev_table_free (*abbrev_table_ptr);
15397 *abbrev_table_ptr = NULL;
15398 }
15399
15400 /* Read the abbrev table for CU from ABBREV_SECTION. */
15401
15402 static void
15403 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15404 struct dwarf2_section_info *abbrev_section)
15405 {
15406 cu->abbrev_table =
15407 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15408 }
15409
15410 /* Release the memory used by the abbrev table for a compilation unit. */
15411
15412 static void
15413 dwarf2_free_abbrev_table (void *ptr_to_cu)
15414 {
15415 struct dwarf2_cu *cu = ptr_to_cu;
15416
15417 if (cu->abbrev_table != NULL)
15418 abbrev_table_free (cu->abbrev_table);
15419 /* Set this to NULL so that we SEGV if we try to read it later,
15420 and also because free_comp_unit verifies this is NULL. */
15421 cu->abbrev_table = NULL;
15422 }
15423 \f
15424 /* Returns nonzero if TAG represents a type that we might generate a partial
15425 symbol for. */
15426
15427 static int
15428 is_type_tag_for_partial (int tag)
15429 {
15430 switch (tag)
15431 {
15432 #if 0
15433 /* Some types that would be reasonable to generate partial symbols for,
15434 that we don't at present. */
15435 case DW_TAG_array_type:
15436 case DW_TAG_file_type:
15437 case DW_TAG_ptr_to_member_type:
15438 case DW_TAG_set_type:
15439 case DW_TAG_string_type:
15440 case DW_TAG_subroutine_type:
15441 #endif
15442 case DW_TAG_base_type:
15443 case DW_TAG_class_type:
15444 case DW_TAG_interface_type:
15445 case DW_TAG_enumeration_type:
15446 case DW_TAG_structure_type:
15447 case DW_TAG_subrange_type:
15448 case DW_TAG_typedef:
15449 case DW_TAG_union_type:
15450 return 1;
15451 default:
15452 return 0;
15453 }
15454 }
15455
15456 /* Load all DIEs that are interesting for partial symbols into memory. */
15457
15458 static struct partial_die_info *
15459 load_partial_dies (const struct die_reader_specs *reader,
15460 const gdb_byte *info_ptr, int building_psymtab)
15461 {
15462 struct dwarf2_cu *cu = reader->cu;
15463 struct objfile *objfile = cu->objfile;
15464 struct partial_die_info *part_die;
15465 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15466 struct abbrev_info *abbrev;
15467 unsigned int bytes_read;
15468 unsigned int load_all = 0;
15469 int nesting_level = 1;
15470
15471 parent_die = NULL;
15472 last_die = NULL;
15473
15474 gdb_assert (cu->per_cu != NULL);
15475 if (cu->per_cu->load_all_dies)
15476 load_all = 1;
15477
15478 cu->partial_dies
15479 = htab_create_alloc_ex (cu->header.length / 12,
15480 partial_die_hash,
15481 partial_die_eq,
15482 NULL,
15483 &cu->comp_unit_obstack,
15484 hashtab_obstack_allocate,
15485 dummy_obstack_deallocate);
15486
15487 part_die = obstack_alloc (&cu->comp_unit_obstack,
15488 sizeof (struct partial_die_info));
15489
15490 while (1)
15491 {
15492 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15493
15494 /* A NULL abbrev means the end of a series of children. */
15495 if (abbrev == NULL)
15496 {
15497 if (--nesting_level == 0)
15498 {
15499 /* PART_DIE was probably the last thing allocated on the
15500 comp_unit_obstack, so we could call obstack_free
15501 here. We don't do that because the waste is small,
15502 and will be cleaned up when we're done with this
15503 compilation unit. This way, we're also more robust
15504 against other users of the comp_unit_obstack. */
15505 return first_die;
15506 }
15507 info_ptr += bytes_read;
15508 last_die = parent_die;
15509 parent_die = parent_die->die_parent;
15510 continue;
15511 }
15512
15513 /* Check for template arguments. We never save these; if
15514 they're seen, we just mark the parent, and go on our way. */
15515 if (parent_die != NULL
15516 && cu->language == language_cplus
15517 && (abbrev->tag == DW_TAG_template_type_param
15518 || abbrev->tag == DW_TAG_template_value_param))
15519 {
15520 parent_die->has_template_arguments = 1;
15521
15522 if (!load_all)
15523 {
15524 /* We don't need a partial DIE for the template argument. */
15525 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15526 continue;
15527 }
15528 }
15529
15530 /* We only recurse into c++ subprograms looking for template arguments.
15531 Skip their other children. */
15532 if (!load_all
15533 && cu->language == language_cplus
15534 && parent_die != NULL
15535 && parent_die->tag == DW_TAG_subprogram)
15536 {
15537 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15538 continue;
15539 }
15540
15541 /* Check whether this DIE is interesting enough to save. Normally
15542 we would not be interested in members here, but there may be
15543 later variables referencing them via DW_AT_specification (for
15544 static members). */
15545 if (!load_all
15546 && !is_type_tag_for_partial (abbrev->tag)
15547 && abbrev->tag != DW_TAG_constant
15548 && abbrev->tag != DW_TAG_enumerator
15549 && abbrev->tag != DW_TAG_subprogram
15550 && abbrev->tag != DW_TAG_lexical_block
15551 && abbrev->tag != DW_TAG_variable
15552 && abbrev->tag != DW_TAG_namespace
15553 && abbrev->tag != DW_TAG_module
15554 && abbrev->tag != DW_TAG_member
15555 && abbrev->tag != DW_TAG_imported_unit
15556 && abbrev->tag != DW_TAG_imported_declaration)
15557 {
15558 /* Otherwise we skip to the next sibling, if any. */
15559 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15560 continue;
15561 }
15562
15563 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15564 info_ptr);
15565
15566 /* This two-pass algorithm for processing partial symbols has a
15567 high cost in cache pressure. Thus, handle some simple cases
15568 here which cover the majority of C partial symbols. DIEs
15569 which neither have specification tags in them, nor could have
15570 specification tags elsewhere pointing at them, can simply be
15571 processed and discarded.
15572
15573 This segment is also optional; scan_partial_symbols and
15574 add_partial_symbol will handle these DIEs if we chain
15575 them in normally. When compilers which do not emit large
15576 quantities of duplicate debug information are more common,
15577 this code can probably be removed. */
15578
15579 /* Any complete simple types at the top level (pretty much all
15580 of them, for a language without namespaces), can be processed
15581 directly. */
15582 if (parent_die == NULL
15583 && part_die->has_specification == 0
15584 && part_die->is_declaration == 0
15585 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15586 || part_die->tag == DW_TAG_base_type
15587 || part_die->tag == DW_TAG_subrange_type))
15588 {
15589 if (building_psymtab && part_die->name != NULL)
15590 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15591 VAR_DOMAIN, LOC_TYPEDEF,
15592 &objfile->static_psymbols,
15593 0, (CORE_ADDR) 0, cu->language, objfile);
15594 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15595 continue;
15596 }
15597
15598 /* The exception for DW_TAG_typedef with has_children above is
15599 a workaround of GCC PR debug/47510. In the case of this complaint
15600 type_name_no_tag_or_error will error on such types later.
15601
15602 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15603 it could not find the child DIEs referenced later, this is checked
15604 above. In correct DWARF DW_TAG_typedef should have no children. */
15605
15606 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15607 complaint (&symfile_complaints,
15608 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15609 "- DIE at 0x%x [in module %s]"),
15610 part_die->offset.sect_off, objfile_name (objfile));
15611
15612 /* If we're at the second level, and we're an enumerator, and
15613 our parent has no specification (meaning possibly lives in a
15614 namespace elsewhere), then we can add the partial symbol now
15615 instead of queueing it. */
15616 if (part_die->tag == DW_TAG_enumerator
15617 && parent_die != NULL
15618 && parent_die->die_parent == NULL
15619 && parent_die->tag == DW_TAG_enumeration_type
15620 && parent_die->has_specification == 0)
15621 {
15622 if (part_die->name == NULL)
15623 complaint (&symfile_complaints,
15624 _("malformed enumerator DIE ignored"));
15625 else if (building_psymtab)
15626 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15627 VAR_DOMAIN, LOC_CONST,
15628 (cu->language == language_cplus
15629 || cu->language == language_java)
15630 ? &objfile->global_psymbols
15631 : &objfile->static_psymbols,
15632 0, (CORE_ADDR) 0, cu->language, objfile);
15633
15634 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15635 continue;
15636 }
15637
15638 /* We'll save this DIE so link it in. */
15639 part_die->die_parent = parent_die;
15640 part_die->die_sibling = NULL;
15641 part_die->die_child = NULL;
15642
15643 if (last_die && last_die == parent_die)
15644 last_die->die_child = part_die;
15645 else if (last_die)
15646 last_die->die_sibling = part_die;
15647
15648 last_die = part_die;
15649
15650 if (first_die == NULL)
15651 first_die = part_die;
15652
15653 /* Maybe add the DIE to the hash table. Not all DIEs that we
15654 find interesting need to be in the hash table, because we
15655 also have the parent/sibling/child chains; only those that we
15656 might refer to by offset later during partial symbol reading.
15657
15658 For now this means things that might have be the target of a
15659 DW_AT_specification, DW_AT_abstract_origin, or
15660 DW_AT_extension. DW_AT_extension will refer only to
15661 namespaces; DW_AT_abstract_origin refers to functions (and
15662 many things under the function DIE, but we do not recurse
15663 into function DIEs during partial symbol reading) and
15664 possibly variables as well; DW_AT_specification refers to
15665 declarations. Declarations ought to have the DW_AT_declaration
15666 flag. It happens that GCC forgets to put it in sometimes, but
15667 only for functions, not for types.
15668
15669 Adding more things than necessary to the hash table is harmless
15670 except for the performance cost. Adding too few will result in
15671 wasted time in find_partial_die, when we reread the compilation
15672 unit with load_all_dies set. */
15673
15674 if (load_all
15675 || abbrev->tag == DW_TAG_constant
15676 || abbrev->tag == DW_TAG_subprogram
15677 || abbrev->tag == DW_TAG_variable
15678 || abbrev->tag == DW_TAG_namespace
15679 || part_die->is_declaration)
15680 {
15681 void **slot;
15682
15683 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15684 part_die->offset.sect_off, INSERT);
15685 *slot = part_die;
15686 }
15687
15688 part_die = obstack_alloc (&cu->comp_unit_obstack,
15689 sizeof (struct partial_die_info));
15690
15691 /* For some DIEs we want to follow their children (if any). For C
15692 we have no reason to follow the children of structures; for other
15693 languages we have to, so that we can get at method physnames
15694 to infer fully qualified class names, for DW_AT_specification,
15695 and for C++ template arguments. For C++, we also look one level
15696 inside functions to find template arguments (if the name of the
15697 function does not already contain the template arguments).
15698
15699 For Ada, we need to scan the children of subprograms and lexical
15700 blocks as well because Ada allows the definition of nested
15701 entities that could be interesting for the debugger, such as
15702 nested subprograms for instance. */
15703 if (last_die->has_children
15704 && (load_all
15705 || last_die->tag == DW_TAG_namespace
15706 || last_die->tag == DW_TAG_module
15707 || last_die->tag == DW_TAG_enumeration_type
15708 || (cu->language == language_cplus
15709 && last_die->tag == DW_TAG_subprogram
15710 && (last_die->name == NULL
15711 || strchr (last_die->name, '<') == NULL))
15712 || (cu->language != language_c
15713 && (last_die->tag == DW_TAG_class_type
15714 || last_die->tag == DW_TAG_interface_type
15715 || last_die->tag == DW_TAG_structure_type
15716 || last_die->tag == DW_TAG_union_type))
15717 || (cu->language == language_ada
15718 && (last_die->tag == DW_TAG_subprogram
15719 || last_die->tag == DW_TAG_lexical_block))))
15720 {
15721 nesting_level++;
15722 parent_die = last_die;
15723 continue;
15724 }
15725
15726 /* Otherwise we skip to the next sibling, if any. */
15727 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15728
15729 /* Back to the top, do it again. */
15730 }
15731 }
15732
15733 /* Read a minimal amount of information into the minimal die structure. */
15734
15735 static const gdb_byte *
15736 read_partial_die (const struct die_reader_specs *reader,
15737 struct partial_die_info *part_die,
15738 struct abbrev_info *abbrev, unsigned int abbrev_len,
15739 const gdb_byte *info_ptr)
15740 {
15741 struct dwarf2_cu *cu = reader->cu;
15742 struct objfile *objfile = cu->objfile;
15743 const gdb_byte *buffer = reader->buffer;
15744 unsigned int i;
15745 struct attribute attr;
15746 int has_low_pc_attr = 0;
15747 int has_high_pc_attr = 0;
15748 int high_pc_relative = 0;
15749
15750 memset (part_die, 0, sizeof (struct partial_die_info));
15751
15752 part_die->offset.sect_off = info_ptr - buffer;
15753
15754 info_ptr += abbrev_len;
15755
15756 if (abbrev == NULL)
15757 return info_ptr;
15758
15759 part_die->tag = abbrev->tag;
15760 part_die->has_children = abbrev->has_children;
15761
15762 for (i = 0; i < abbrev->num_attrs; ++i)
15763 {
15764 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15765
15766 /* Store the data if it is of an attribute we want to keep in a
15767 partial symbol table. */
15768 switch (attr.name)
15769 {
15770 case DW_AT_name:
15771 switch (part_die->tag)
15772 {
15773 case DW_TAG_compile_unit:
15774 case DW_TAG_partial_unit:
15775 case DW_TAG_type_unit:
15776 /* Compilation units have a DW_AT_name that is a filename, not
15777 a source language identifier. */
15778 case DW_TAG_enumeration_type:
15779 case DW_TAG_enumerator:
15780 /* These tags always have simple identifiers already; no need
15781 to canonicalize them. */
15782 part_die->name = DW_STRING (&attr);
15783 break;
15784 default:
15785 part_die->name
15786 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15787 &objfile->per_bfd->storage_obstack);
15788 break;
15789 }
15790 break;
15791 case DW_AT_linkage_name:
15792 case DW_AT_MIPS_linkage_name:
15793 /* Note that both forms of linkage name might appear. We
15794 assume they will be the same, and we only store the last
15795 one we see. */
15796 if (cu->language == language_ada)
15797 part_die->name = DW_STRING (&attr);
15798 part_die->linkage_name = DW_STRING (&attr);
15799 break;
15800 case DW_AT_low_pc:
15801 has_low_pc_attr = 1;
15802 part_die->lowpc = attr_value_as_address (&attr);
15803 break;
15804 case DW_AT_high_pc:
15805 has_high_pc_attr = 1;
15806 part_die->highpc = attr_value_as_address (&attr);
15807 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15808 high_pc_relative = 1;
15809 break;
15810 case DW_AT_location:
15811 /* Support the .debug_loc offsets. */
15812 if (attr_form_is_block (&attr))
15813 {
15814 part_die->d.locdesc = DW_BLOCK (&attr);
15815 }
15816 else if (attr_form_is_section_offset (&attr))
15817 {
15818 dwarf2_complex_location_expr_complaint ();
15819 }
15820 else
15821 {
15822 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15823 "partial symbol information");
15824 }
15825 break;
15826 case DW_AT_external:
15827 part_die->is_external = DW_UNSND (&attr);
15828 break;
15829 case DW_AT_declaration:
15830 part_die->is_declaration = DW_UNSND (&attr);
15831 break;
15832 case DW_AT_type:
15833 part_die->has_type = 1;
15834 break;
15835 case DW_AT_abstract_origin:
15836 case DW_AT_specification:
15837 case DW_AT_extension:
15838 part_die->has_specification = 1;
15839 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15840 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15841 || cu->per_cu->is_dwz);
15842 break;
15843 case DW_AT_sibling:
15844 /* Ignore absolute siblings, they might point outside of
15845 the current compile unit. */
15846 if (attr.form == DW_FORM_ref_addr)
15847 complaint (&symfile_complaints,
15848 _("ignoring absolute DW_AT_sibling"));
15849 else
15850 {
15851 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15852 const gdb_byte *sibling_ptr = buffer + off;
15853
15854 if (sibling_ptr < info_ptr)
15855 complaint (&symfile_complaints,
15856 _("DW_AT_sibling points backwards"));
15857 else if (sibling_ptr > reader->buffer_end)
15858 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15859 else
15860 part_die->sibling = sibling_ptr;
15861 }
15862 break;
15863 case DW_AT_byte_size:
15864 part_die->has_byte_size = 1;
15865 break;
15866 case DW_AT_const_value:
15867 part_die->has_const_value = 1;
15868 break;
15869 case DW_AT_calling_convention:
15870 /* DWARF doesn't provide a way to identify a program's source-level
15871 entry point. DW_AT_calling_convention attributes are only meant
15872 to describe functions' calling conventions.
15873
15874 However, because it's a necessary piece of information in
15875 Fortran, and because DW_CC_program is the only piece of debugging
15876 information whose definition refers to a 'main program' at all,
15877 several compilers have begun marking Fortran main programs with
15878 DW_CC_program --- even when those functions use the standard
15879 calling conventions.
15880
15881 So until DWARF specifies a way to provide this information and
15882 compilers pick up the new representation, we'll support this
15883 practice. */
15884 if (DW_UNSND (&attr) == DW_CC_program
15885 && cu->language == language_fortran)
15886 set_objfile_main_name (objfile, part_die->name, language_fortran);
15887 break;
15888 case DW_AT_inline:
15889 if (DW_UNSND (&attr) == DW_INL_inlined
15890 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15891 part_die->may_be_inlined = 1;
15892 break;
15893
15894 case DW_AT_import:
15895 if (part_die->tag == DW_TAG_imported_unit)
15896 {
15897 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15898 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15899 || cu->per_cu->is_dwz);
15900 }
15901 break;
15902
15903 default:
15904 break;
15905 }
15906 }
15907
15908 if (high_pc_relative)
15909 part_die->highpc += part_die->lowpc;
15910
15911 if (has_low_pc_attr && has_high_pc_attr)
15912 {
15913 /* When using the GNU linker, .gnu.linkonce. sections are used to
15914 eliminate duplicate copies of functions and vtables and such.
15915 The linker will arbitrarily choose one and discard the others.
15916 The AT_*_pc values for such functions refer to local labels in
15917 these sections. If the section from that file was discarded, the
15918 labels are not in the output, so the relocs get a value of 0.
15919 If this is a discarded function, mark the pc bounds as invalid,
15920 so that GDB will ignore it. */
15921 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15922 {
15923 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15924
15925 complaint (&symfile_complaints,
15926 _("DW_AT_low_pc %s is zero "
15927 "for DIE at 0x%x [in module %s]"),
15928 paddress (gdbarch, part_die->lowpc),
15929 part_die->offset.sect_off, objfile_name (objfile));
15930 }
15931 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15932 else if (part_die->lowpc >= part_die->highpc)
15933 {
15934 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15935
15936 complaint (&symfile_complaints,
15937 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15938 "for DIE at 0x%x [in module %s]"),
15939 paddress (gdbarch, part_die->lowpc),
15940 paddress (gdbarch, part_die->highpc),
15941 part_die->offset.sect_off, objfile_name (objfile));
15942 }
15943 else
15944 part_die->has_pc_info = 1;
15945 }
15946
15947 return info_ptr;
15948 }
15949
15950 /* Find a cached partial DIE at OFFSET in CU. */
15951
15952 static struct partial_die_info *
15953 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15954 {
15955 struct partial_die_info *lookup_die = NULL;
15956 struct partial_die_info part_die;
15957
15958 part_die.offset = offset;
15959 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15960 offset.sect_off);
15961
15962 return lookup_die;
15963 }
15964
15965 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15966 except in the case of .debug_types DIEs which do not reference
15967 outside their CU (they do however referencing other types via
15968 DW_FORM_ref_sig8). */
15969
15970 static struct partial_die_info *
15971 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15972 {
15973 struct objfile *objfile = cu->objfile;
15974 struct dwarf2_per_cu_data *per_cu = NULL;
15975 struct partial_die_info *pd = NULL;
15976
15977 if (offset_in_dwz == cu->per_cu->is_dwz
15978 && offset_in_cu_p (&cu->header, offset))
15979 {
15980 pd = find_partial_die_in_comp_unit (offset, cu);
15981 if (pd != NULL)
15982 return pd;
15983 /* We missed recording what we needed.
15984 Load all dies and try again. */
15985 per_cu = cu->per_cu;
15986 }
15987 else
15988 {
15989 /* TUs don't reference other CUs/TUs (except via type signatures). */
15990 if (cu->per_cu->is_debug_types)
15991 {
15992 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15993 " external reference to offset 0x%lx [in module %s].\n"),
15994 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15995 bfd_get_filename (objfile->obfd));
15996 }
15997 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15998 objfile);
15999
16000 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16001 load_partial_comp_unit (per_cu);
16002
16003 per_cu->cu->last_used = 0;
16004 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16005 }
16006
16007 /* If we didn't find it, and not all dies have been loaded,
16008 load them all and try again. */
16009
16010 if (pd == NULL && per_cu->load_all_dies == 0)
16011 {
16012 per_cu->load_all_dies = 1;
16013
16014 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16015 THIS_CU->cu may already be in use. So we can't just free it and
16016 replace its DIEs with the ones we read in. Instead, we leave those
16017 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16018 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16019 set. */
16020 load_partial_comp_unit (per_cu);
16021
16022 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16023 }
16024
16025 if (pd == NULL)
16026 internal_error (__FILE__, __LINE__,
16027 _("could not find partial DIE 0x%x "
16028 "in cache [from module %s]\n"),
16029 offset.sect_off, bfd_get_filename (objfile->obfd));
16030 return pd;
16031 }
16032
16033 /* See if we can figure out if the class lives in a namespace. We do
16034 this by looking for a member function; its demangled name will
16035 contain namespace info, if there is any. */
16036
16037 static void
16038 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16039 struct dwarf2_cu *cu)
16040 {
16041 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16042 what template types look like, because the demangler
16043 frequently doesn't give the same name as the debug info. We
16044 could fix this by only using the demangled name to get the
16045 prefix (but see comment in read_structure_type). */
16046
16047 struct partial_die_info *real_pdi;
16048 struct partial_die_info *child_pdi;
16049
16050 /* If this DIE (this DIE's specification, if any) has a parent, then
16051 we should not do this. We'll prepend the parent's fully qualified
16052 name when we create the partial symbol. */
16053
16054 real_pdi = struct_pdi;
16055 while (real_pdi->has_specification)
16056 real_pdi = find_partial_die (real_pdi->spec_offset,
16057 real_pdi->spec_is_dwz, cu);
16058
16059 if (real_pdi->die_parent != NULL)
16060 return;
16061
16062 for (child_pdi = struct_pdi->die_child;
16063 child_pdi != NULL;
16064 child_pdi = child_pdi->die_sibling)
16065 {
16066 if (child_pdi->tag == DW_TAG_subprogram
16067 && child_pdi->linkage_name != NULL)
16068 {
16069 char *actual_class_name
16070 = language_class_name_from_physname (cu->language_defn,
16071 child_pdi->linkage_name);
16072 if (actual_class_name != NULL)
16073 {
16074 struct_pdi->name
16075 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16076 actual_class_name,
16077 strlen (actual_class_name));
16078 xfree (actual_class_name);
16079 }
16080 break;
16081 }
16082 }
16083 }
16084
16085 /* Adjust PART_DIE before generating a symbol for it. This function
16086 may set the is_external flag or change the DIE's name. */
16087
16088 static void
16089 fixup_partial_die (struct partial_die_info *part_die,
16090 struct dwarf2_cu *cu)
16091 {
16092 /* Once we've fixed up a die, there's no point in doing so again.
16093 This also avoids a memory leak if we were to call
16094 guess_partial_die_structure_name multiple times. */
16095 if (part_die->fixup_called)
16096 return;
16097
16098 /* If we found a reference attribute and the DIE has no name, try
16099 to find a name in the referred to DIE. */
16100
16101 if (part_die->name == NULL && part_die->has_specification)
16102 {
16103 struct partial_die_info *spec_die;
16104
16105 spec_die = find_partial_die (part_die->spec_offset,
16106 part_die->spec_is_dwz, cu);
16107
16108 fixup_partial_die (spec_die, cu);
16109
16110 if (spec_die->name)
16111 {
16112 part_die->name = spec_die->name;
16113
16114 /* Copy DW_AT_external attribute if it is set. */
16115 if (spec_die->is_external)
16116 part_die->is_external = spec_die->is_external;
16117 }
16118 }
16119
16120 /* Set default names for some unnamed DIEs. */
16121
16122 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16123 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16124
16125 /* If there is no parent die to provide a namespace, and there are
16126 children, see if we can determine the namespace from their linkage
16127 name. */
16128 if (cu->language == language_cplus
16129 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16130 && part_die->die_parent == NULL
16131 && part_die->has_children
16132 && (part_die->tag == DW_TAG_class_type
16133 || part_die->tag == DW_TAG_structure_type
16134 || part_die->tag == DW_TAG_union_type))
16135 guess_partial_die_structure_name (part_die, cu);
16136
16137 /* GCC might emit a nameless struct or union that has a linkage
16138 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16139 if (part_die->name == NULL
16140 && (part_die->tag == DW_TAG_class_type
16141 || part_die->tag == DW_TAG_interface_type
16142 || part_die->tag == DW_TAG_structure_type
16143 || part_die->tag == DW_TAG_union_type)
16144 && part_die->linkage_name != NULL)
16145 {
16146 char *demangled;
16147
16148 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16149 if (demangled)
16150 {
16151 const char *base;
16152
16153 /* Strip any leading namespaces/classes, keep only the base name.
16154 DW_AT_name for named DIEs does not contain the prefixes. */
16155 base = strrchr (demangled, ':');
16156 if (base && base > demangled && base[-1] == ':')
16157 base++;
16158 else
16159 base = demangled;
16160
16161 part_die->name
16162 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16163 base, strlen (base));
16164 xfree (demangled);
16165 }
16166 }
16167
16168 part_die->fixup_called = 1;
16169 }
16170
16171 /* Read an attribute value described by an attribute form. */
16172
16173 static const gdb_byte *
16174 read_attribute_value (const struct die_reader_specs *reader,
16175 struct attribute *attr, unsigned form,
16176 const gdb_byte *info_ptr)
16177 {
16178 struct dwarf2_cu *cu = reader->cu;
16179 struct objfile *objfile = cu->objfile;
16180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16181 bfd *abfd = reader->abfd;
16182 struct comp_unit_head *cu_header = &cu->header;
16183 unsigned int bytes_read;
16184 struct dwarf_block *blk;
16185
16186 attr->form = form;
16187 switch (form)
16188 {
16189 case DW_FORM_ref_addr:
16190 if (cu->header.version == 2)
16191 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16192 else
16193 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16194 &cu->header, &bytes_read);
16195 info_ptr += bytes_read;
16196 break;
16197 case DW_FORM_GNU_ref_alt:
16198 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16199 info_ptr += bytes_read;
16200 break;
16201 case DW_FORM_addr:
16202 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16203 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16204 info_ptr += bytes_read;
16205 break;
16206 case DW_FORM_block2:
16207 blk = dwarf_alloc_block (cu);
16208 blk->size = read_2_bytes (abfd, info_ptr);
16209 info_ptr += 2;
16210 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16211 info_ptr += blk->size;
16212 DW_BLOCK (attr) = blk;
16213 break;
16214 case DW_FORM_block4:
16215 blk = dwarf_alloc_block (cu);
16216 blk->size = read_4_bytes (abfd, info_ptr);
16217 info_ptr += 4;
16218 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16219 info_ptr += blk->size;
16220 DW_BLOCK (attr) = blk;
16221 break;
16222 case DW_FORM_data2:
16223 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16224 info_ptr += 2;
16225 break;
16226 case DW_FORM_data4:
16227 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16228 info_ptr += 4;
16229 break;
16230 case DW_FORM_data8:
16231 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16232 info_ptr += 8;
16233 break;
16234 case DW_FORM_sec_offset:
16235 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16236 info_ptr += bytes_read;
16237 break;
16238 case DW_FORM_string:
16239 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16240 DW_STRING_IS_CANONICAL (attr) = 0;
16241 info_ptr += bytes_read;
16242 break;
16243 case DW_FORM_strp:
16244 if (!cu->per_cu->is_dwz)
16245 {
16246 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16247 &bytes_read);
16248 DW_STRING_IS_CANONICAL (attr) = 0;
16249 info_ptr += bytes_read;
16250 break;
16251 }
16252 /* FALLTHROUGH */
16253 case DW_FORM_GNU_strp_alt:
16254 {
16255 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16256 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16257 &bytes_read);
16258
16259 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16260 DW_STRING_IS_CANONICAL (attr) = 0;
16261 info_ptr += bytes_read;
16262 }
16263 break;
16264 case DW_FORM_exprloc:
16265 case DW_FORM_block:
16266 blk = dwarf_alloc_block (cu);
16267 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16268 info_ptr += bytes_read;
16269 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16270 info_ptr += blk->size;
16271 DW_BLOCK (attr) = blk;
16272 break;
16273 case DW_FORM_block1:
16274 blk = dwarf_alloc_block (cu);
16275 blk->size = read_1_byte (abfd, info_ptr);
16276 info_ptr += 1;
16277 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16278 info_ptr += blk->size;
16279 DW_BLOCK (attr) = blk;
16280 break;
16281 case DW_FORM_data1:
16282 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16283 info_ptr += 1;
16284 break;
16285 case DW_FORM_flag:
16286 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16287 info_ptr += 1;
16288 break;
16289 case DW_FORM_flag_present:
16290 DW_UNSND (attr) = 1;
16291 break;
16292 case DW_FORM_sdata:
16293 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16294 info_ptr += bytes_read;
16295 break;
16296 case DW_FORM_udata:
16297 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16298 info_ptr += bytes_read;
16299 break;
16300 case DW_FORM_ref1:
16301 DW_UNSND (attr) = (cu->header.offset.sect_off
16302 + read_1_byte (abfd, info_ptr));
16303 info_ptr += 1;
16304 break;
16305 case DW_FORM_ref2:
16306 DW_UNSND (attr) = (cu->header.offset.sect_off
16307 + read_2_bytes (abfd, info_ptr));
16308 info_ptr += 2;
16309 break;
16310 case DW_FORM_ref4:
16311 DW_UNSND (attr) = (cu->header.offset.sect_off
16312 + read_4_bytes (abfd, info_ptr));
16313 info_ptr += 4;
16314 break;
16315 case DW_FORM_ref8:
16316 DW_UNSND (attr) = (cu->header.offset.sect_off
16317 + read_8_bytes (abfd, info_ptr));
16318 info_ptr += 8;
16319 break;
16320 case DW_FORM_ref_sig8:
16321 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16322 info_ptr += 8;
16323 break;
16324 case DW_FORM_ref_udata:
16325 DW_UNSND (attr) = (cu->header.offset.sect_off
16326 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16327 info_ptr += bytes_read;
16328 break;
16329 case DW_FORM_indirect:
16330 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16331 info_ptr += bytes_read;
16332 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16333 break;
16334 case DW_FORM_GNU_addr_index:
16335 if (reader->dwo_file == NULL)
16336 {
16337 /* For now flag a hard error.
16338 Later we can turn this into a complaint. */
16339 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16340 dwarf_form_name (form),
16341 bfd_get_filename (abfd));
16342 }
16343 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16344 info_ptr += bytes_read;
16345 break;
16346 case DW_FORM_GNU_str_index:
16347 if (reader->dwo_file == NULL)
16348 {
16349 /* For now flag a hard error.
16350 Later we can turn this into a complaint if warranted. */
16351 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16352 dwarf_form_name (form),
16353 bfd_get_filename (abfd));
16354 }
16355 {
16356 ULONGEST str_index =
16357 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16358
16359 DW_STRING (attr) = read_str_index (reader, str_index);
16360 DW_STRING_IS_CANONICAL (attr) = 0;
16361 info_ptr += bytes_read;
16362 }
16363 break;
16364 default:
16365 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16366 dwarf_form_name (form),
16367 bfd_get_filename (abfd));
16368 }
16369
16370 /* Super hack. */
16371 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16372 attr->form = DW_FORM_GNU_ref_alt;
16373
16374 /* We have seen instances where the compiler tried to emit a byte
16375 size attribute of -1 which ended up being encoded as an unsigned
16376 0xffffffff. Although 0xffffffff is technically a valid size value,
16377 an object of this size seems pretty unlikely so we can relatively
16378 safely treat these cases as if the size attribute was invalid and
16379 treat them as zero by default. */
16380 if (attr->name == DW_AT_byte_size
16381 && form == DW_FORM_data4
16382 && DW_UNSND (attr) >= 0xffffffff)
16383 {
16384 complaint
16385 (&symfile_complaints,
16386 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16387 hex_string (DW_UNSND (attr)));
16388 DW_UNSND (attr) = 0;
16389 }
16390
16391 return info_ptr;
16392 }
16393
16394 /* Read an attribute described by an abbreviated attribute. */
16395
16396 static const gdb_byte *
16397 read_attribute (const struct die_reader_specs *reader,
16398 struct attribute *attr, struct attr_abbrev *abbrev,
16399 const gdb_byte *info_ptr)
16400 {
16401 attr->name = abbrev->name;
16402 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16403 }
16404
16405 /* Read dwarf information from a buffer. */
16406
16407 static unsigned int
16408 read_1_byte (bfd *abfd, const gdb_byte *buf)
16409 {
16410 return bfd_get_8 (abfd, buf);
16411 }
16412
16413 static int
16414 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16415 {
16416 return bfd_get_signed_8 (abfd, buf);
16417 }
16418
16419 static unsigned int
16420 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16421 {
16422 return bfd_get_16 (abfd, buf);
16423 }
16424
16425 static int
16426 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16427 {
16428 return bfd_get_signed_16 (abfd, buf);
16429 }
16430
16431 static unsigned int
16432 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16433 {
16434 return bfd_get_32 (abfd, buf);
16435 }
16436
16437 static int
16438 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16439 {
16440 return bfd_get_signed_32 (abfd, buf);
16441 }
16442
16443 static ULONGEST
16444 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16445 {
16446 return bfd_get_64 (abfd, buf);
16447 }
16448
16449 static CORE_ADDR
16450 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16451 unsigned int *bytes_read)
16452 {
16453 struct comp_unit_head *cu_header = &cu->header;
16454 CORE_ADDR retval = 0;
16455
16456 if (cu_header->signed_addr_p)
16457 {
16458 switch (cu_header->addr_size)
16459 {
16460 case 2:
16461 retval = bfd_get_signed_16 (abfd, buf);
16462 break;
16463 case 4:
16464 retval = bfd_get_signed_32 (abfd, buf);
16465 break;
16466 case 8:
16467 retval = bfd_get_signed_64 (abfd, buf);
16468 break;
16469 default:
16470 internal_error (__FILE__, __LINE__,
16471 _("read_address: bad switch, signed [in module %s]"),
16472 bfd_get_filename (abfd));
16473 }
16474 }
16475 else
16476 {
16477 switch (cu_header->addr_size)
16478 {
16479 case 2:
16480 retval = bfd_get_16 (abfd, buf);
16481 break;
16482 case 4:
16483 retval = bfd_get_32 (abfd, buf);
16484 break;
16485 case 8:
16486 retval = bfd_get_64 (abfd, buf);
16487 break;
16488 default:
16489 internal_error (__FILE__, __LINE__,
16490 _("read_address: bad switch, "
16491 "unsigned [in module %s]"),
16492 bfd_get_filename (abfd));
16493 }
16494 }
16495
16496 *bytes_read = cu_header->addr_size;
16497 return retval;
16498 }
16499
16500 /* Read the initial length from a section. The (draft) DWARF 3
16501 specification allows the initial length to take up either 4 bytes
16502 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16503 bytes describe the length and all offsets will be 8 bytes in length
16504 instead of 4.
16505
16506 An older, non-standard 64-bit format is also handled by this
16507 function. The older format in question stores the initial length
16508 as an 8-byte quantity without an escape value. Lengths greater
16509 than 2^32 aren't very common which means that the initial 4 bytes
16510 is almost always zero. Since a length value of zero doesn't make
16511 sense for the 32-bit format, this initial zero can be considered to
16512 be an escape value which indicates the presence of the older 64-bit
16513 format. As written, the code can't detect (old format) lengths
16514 greater than 4GB. If it becomes necessary to handle lengths
16515 somewhat larger than 4GB, we could allow other small values (such
16516 as the non-sensical values of 1, 2, and 3) to also be used as
16517 escape values indicating the presence of the old format.
16518
16519 The value returned via bytes_read should be used to increment the
16520 relevant pointer after calling read_initial_length().
16521
16522 [ Note: read_initial_length() and read_offset() are based on the
16523 document entitled "DWARF Debugging Information Format", revision
16524 3, draft 8, dated November 19, 2001. This document was obtained
16525 from:
16526
16527 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16528
16529 This document is only a draft and is subject to change. (So beware.)
16530
16531 Details regarding the older, non-standard 64-bit format were
16532 determined empirically by examining 64-bit ELF files produced by
16533 the SGI toolchain on an IRIX 6.5 machine.
16534
16535 - Kevin, July 16, 2002
16536 ] */
16537
16538 static LONGEST
16539 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16540 {
16541 LONGEST length = bfd_get_32 (abfd, buf);
16542
16543 if (length == 0xffffffff)
16544 {
16545 length = bfd_get_64 (abfd, buf + 4);
16546 *bytes_read = 12;
16547 }
16548 else if (length == 0)
16549 {
16550 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16551 length = bfd_get_64 (abfd, buf);
16552 *bytes_read = 8;
16553 }
16554 else
16555 {
16556 *bytes_read = 4;
16557 }
16558
16559 return length;
16560 }
16561
16562 /* Cover function for read_initial_length.
16563 Returns the length of the object at BUF, and stores the size of the
16564 initial length in *BYTES_READ and stores the size that offsets will be in
16565 *OFFSET_SIZE.
16566 If the initial length size is not equivalent to that specified in
16567 CU_HEADER then issue a complaint.
16568 This is useful when reading non-comp-unit headers. */
16569
16570 static LONGEST
16571 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16572 const struct comp_unit_head *cu_header,
16573 unsigned int *bytes_read,
16574 unsigned int *offset_size)
16575 {
16576 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16577
16578 gdb_assert (cu_header->initial_length_size == 4
16579 || cu_header->initial_length_size == 8
16580 || cu_header->initial_length_size == 12);
16581
16582 if (cu_header->initial_length_size != *bytes_read)
16583 complaint (&symfile_complaints,
16584 _("intermixed 32-bit and 64-bit DWARF sections"));
16585
16586 *offset_size = (*bytes_read == 4) ? 4 : 8;
16587 return length;
16588 }
16589
16590 /* Read an offset from the data stream. The size of the offset is
16591 given by cu_header->offset_size. */
16592
16593 static LONGEST
16594 read_offset (bfd *abfd, const gdb_byte *buf,
16595 const struct comp_unit_head *cu_header,
16596 unsigned int *bytes_read)
16597 {
16598 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16599
16600 *bytes_read = cu_header->offset_size;
16601 return offset;
16602 }
16603
16604 /* Read an offset from the data stream. */
16605
16606 static LONGEST
16607 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16608 {
16609 LONGEST retval = 0;
16610
16611 switch (offset_size)
16612 {
16613 case 4:
16614 retval = bfd_get_32 (abfd, buf);
16615 break;
16616 case 8:
16617 retval = bfd_get_64 (abfd, buf);
16618 break;
16619 default:
16620 internal_error (__FILE__, __LINE__,
16621 _("read_offset_1: bad switch [in module %s]"),
16622 bfd_get_filename (abfd));
16623 }
16624
16625 return retval;
16626 }
16627
16628 static const gdb_byte *
16629 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16630 {
16631 /* If the size of a host char is 8 bits, we can return a pointer
16632 to the buffer, otherwise we have to copy the data to a buffer
16633 allocated on the temporary obstack. */
16634 gdb_assert (HOST_CHAR_BIT == 8);
16635 return buf;
16636 }
16637
16638 static const char *
16639 read_direct_string (bfd *abfd, const gdb_byte *buf,
16640 unsigned int *bytes_read_ptr)
16641 {
16642 /* If the size of a host char is 8 bits, we can return a pointer
16643 to the string, otherwise we have to copy the string to a buffer
16644 allocated on the temporary obstack. */
16645 gdb_assert (HOST_CHAR_BIT == 8);
16646 if (*buf == '\0')
16647 {
16648 *bytes_read_ptr = 1;
16649 return NULL;
16650 }
16651 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16652 return (const char *) buf;
16653 }
16654
16655 static const char *
16656 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16657 {
16658 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16659 if (dwarf2_per_objfile->str.buffer == NULL)
16660 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16661 bfd_get_filename (abfd));
16662 if (str_offset >= dwarf2_per_objfile->str.size)
16663 error (_("DW_FORM_strp pointing outside of "
16664 ".debug_str section [in module %s]"),
16665 bfd_get_filename (abfd));
16666 gdb_assert (HOST_CHAR_BIT == 8);
16667 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16668 return NULL;
16669 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16670 }
16671
16672 /* Read a string at offset STR_OFFSET in the .debug_str section from
16673 the .dwz file DWZ. Throw an error if the offset is too large. If
16674 the string consists of a single NUL byte, return NULL; otherwise
16675 return a pointer to the string. */
16676
16677 static const char *
16678 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16679 {
16680 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16681
16682 if (dwz->str.buffer == NULL)
16683 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16684 "section [in module %s]"),
16685 bfd_get_filename (dwz->dwz_bfd));
16686 if (str_offset >= dwz->str.size)
16687 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16688 ".debug_str section [in module %s]"),
16689 bfd_get_filename (dwz->dwz_bfd));
16690 gdb_assert (HOST_CHAR_BIT == 8);
16691 if (dwz->str.buffer[str_offset] == '\0')
16692 return NULL;
16693 return (const char *) (dwz->str.buffer + str_offset);
16694 }
16695
16696 static const char *
16697 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16698 const struct comp_unit_head *cu_header,
16699 unsigned int *bytes_read_ptr)
16700 {
16701 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16702
16703 return read_indirect_string_at_offset (abfd, str_offset);
16704 }
16705
16706 static ULONGEST
16707 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16708 unsigned int *bytes_read_ptr)
16709 {
16710 ULONGEST result;
16711 unsigned int num_read;
16712 int i, shift;
16713 unsigned char byte;
16714
16715 result = 0;
16716 shift = 0;
16717 num_read = 0;
16718 i = 0;
16719 while (1)
16720 {
16721 byte = bfd_get_8 (abfd, buf);
16722 buf++;
16723 num_read++;
16724 result |= ((ULONGEST) (byte & 127) << shift);
16725 if ((byte & 128) == 0)
16726 {
16727 break;
16728 }
16729 shift += 7;
16730 }
16731 *bytes_read_ptr = num_read;
16732 return result;
16733 }
16734
16735 static LONGEST
16736 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16737 unsigned int *bytes_read_ptr)
16738 {
16739 LONGEST result;
16740 int i, shift, num_read;
16741 unsigned char byte;
16742
16743 result = 0;
16744 shift = 0;
16745 num_read = 0;
16746 i = 0;
16747 while (1)
16748 {
16749 byte = bfd_get_8 (abfd, buf);
16750 buf++;
16751 num_read++;
16752 result |= ((LONGEST) (byte & 127) << shift);
16753 shift += 7;
16754 if ((byte & 128) == 0)
16755 {
16756 break;
16757 }
16758 }
16759 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16760 result |= -(((LONGEST) 1) << shift);
16761 *bytes_read_ptr = num_read;
16762 return result;
16763 }
16764
16765 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16766 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16767 ADDR_SIZE is the size of addresses from the CU header. */
16768
16769 static CORE_ADDR
16770 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16771 {
16772 struct objfile *objfile = dwarf2_per_objfile->objfile;
16773 bfd *abfd = objfile->obfd;
16774 const gdb_byte *info_ptr;
16775
16776 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16777 if (dwarf2_per_objfile->addr.buffer == NULL)
16778 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16779 objfile_name (objfile));
16780 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16781 error (_("DW_FORM_addr_index pointing outside of "
16782 ".debug_addr section [in module %s]"),
16783 objfile_name (objfile));
16784 info_ptr = (dwarf2_per_objfile->addr.buffer
16785 + addr_base + addr_index * addr_size);
16786 if (addr_size == 4)
16787 return bfd_get_32 (abfd, info_ptr);
16788 else
16789 return bfd_get_64 (abfd, info_ptr);
16790 }
16791
16792 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16793
16794 static CORE_ADDR
16795 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16796 {
16797 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16798 }
16799
16800 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16801
16802 static CORE_ADDR
16803 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16804 unsigned int *bytes_read)
16805 {
16806 bfd *abfd = cu->objfile->obfd;
16807 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16808
16809 return read_addr_index (cu, addr_index);
16810 }
16811
16812 /* Data structure to pass results from dwarf2_read_addr_index_reader
16813 back to dwarf2_read_addr_index. */
16814
16815 struct dwarf2_read_addr_index_data
16816 {
16817 ULONGEST addr_base;
16818 int addr_size;
16819 };
16820
16821 /* die_reader_func for dwarf2_read_addr_index. */
16822
16823 static void
16824 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16825 const gdb_byte *info_ptr,
16826 struct die_info *comp_unit_die,
16827 int has_children,
16828 void *data)
16829 {
16830 struct dwarf2_cu *cu = reader->cu;
16831 struct dwarf2_read_addr_index_data *aidata =
16832 (struct dwarf2_read_addr_index_data *) data;
16833
16834 aidata->addr_base = cu->addr_base;
16835 aidata->addr_size = cu->header.addr_size;
16836 }
16837
16838 /* Given an index in .debug_addr, fetch the value.
16839 NOTE: This can be called during dwarf expression evaluation,
16840 long after the debug information has been read, and thus per_cu->cu
16841 may no longer exist. */
16842
16843 CORE_ADDR
16844 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16845 unsigned int addr_index)
16846 {
16847 struct objfile *objfile = per_cu->objfile;
16848 struct dwarf2_cu *cu = per_cu->cu;
16849 ULONGEST addr_base;
16850 int addr_size;
16851
16852 /* This is intended to be called from outside this file. */
16853 dw2_setup (objfile);
16854
16855 /* We need addr_base and addr_size.
16856 If we don't have PER_CU->cu, we have to get it.
16857 Nasty, but the alternative is storing the needed info in PER_CU,
16858 which at this point doesn't seem justified: it's not clear how frequently
16859 it would get used and it would increase the size of every PER_CU.
16860 Entry points like dwarf2_per_cu_addr_size do a similar thing
16861 so we're not in uncharted territory here.
16862 Alas we need to be a bit more complicated as addr_base is contained
16863 in the DIE.
16864
16865 We don't need to read the entire CU(/TU).
16866 We just need the header and top level die.
16867
16868 IWBN to use the aging mechanism to let us lazily later discard the CU.
16869 For now we skip this optimization. */
16870
16871 if (cu != NULL)
16872 {
16873 addr_base = cu->addr_base;
16874 addr_size = cu->header.addr_size;
16875 }
16876 else
16877 {
16878 struct dwarf2_read_addr_index_data aidata;
16879
16880 /* Note: We can't use init_cutu_and_read_dies_simple here,
16881 we need addr_base. */
16882 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16883 dwarf2_read_addr_index_reader, &aidata);
16884 addr_base = aidata.addr_base;
16885 addr_size = aidata.addr_size;
16886 }
16887
16888 return read_addr_index_1 (addr_index, addr_base, addr_size);
16889 }
16890
16891 /* Given a DW_FORM_GNU_str_index, fetch the string.
16892 This is only used by the Fission support. */
16893
16894 static const char *
16895 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16896 {
16897 struct objfile *objfile = dwarf2_per_objfile->objfile;
16898 const char *objf_name = objfile_name (objfile);
16899 bfd *abfd = objfile->obfd;
16900 struct dwarf2_cu *cu = reader->cu;
16901 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16902 struct dwarf2_section_info *str_offsets_section =
16903 &reader->dwo_file->sections.str_offsets;
16904 const gdb_byte *info_ptr;
16905 ULONGEST str_offset;
16906 static const char form_name[] = "DW_FORM_GNU_str_index";
16907
16908 dwarf2_read_section (objfile, str_section);
16909 dwarf2_read_section (objfile, str_offsets_section);
16910 if (str_section->buffer == NULL)
16911 error (_("%s used without .debug_str.dwo section"
16912 " in CU at offset 0x%lx [in module %s]"),
16913 form_name, (long) cu->header.offset.sect_off, objf_name);
16914 if (str_offsets_section->buffer == NULL)
16915 error (_("%s used without .debug_str_offsets.dwo section"
16916 " in CU at offset 0x%lx [in module %s]"),
16917 form_name, (long) cu->header.offset.sect_off, objf_name);
16918 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16919 error (_("%s pointing outside of .debug_str_offsets.dwo"
16920 " section in CU at offset 0x%lx [in module %s]"),
16921 form_name, (long) cu->header.offset.sect_off, objf_name);
16922 info_ptr = (str_offsets_section->buffer
16923 + str_index * cu->header.offset_size);
16924 if (cu->header.offset_size == 4)
16925 str_offset = bfd_get_32 (abfd, info_ptr);
16926 else
16927 str_offset = bfd_get_64 (abfd, info_ptr);
16928 if (str_offset >= str_section->size)
16929 error (_("Offset from %s pointing outside of"
16930 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16931 form_name, (long) cu->header.offset.sect_off, objf_name);
16932 return (const char *) (str_section->buffer + str_offset);
16933 }
16934
16935 /* Return the length of an LEB128 number in BUF. */
16936
16937 static int
16938 leb128_size (const gdb_byte *buf)
16939 {
16940 const gdb_byte *begin = buf;
16941 gdb_byte byte;
16942
16943 while (1)
16944 {
16945 byte = *buf++;
16946 if ((byte & 128) == 0)
16947 return buf - begin;
16948 }
16949 }
16950
16951 static void
16952 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16953 {
16954 switch (lang)
16955 {
16956 case DW_LANG_C89:
16957 case DW_LANG_C99:
16958 case DW_LANG_C11:
16959 case DW_LANG_C:
16960 case DW_LANG_UPC:
16961 cu->language = language_c;
16962 break;
16963 case DW_LANG_C_plus_plus:
16964 case DW_LANG_C_plus_plus_11:
16965 case DW_LANG_C_plus_plus_14:
16966 cu->language = language_cplus;
16967 break;
16968 case DW_LANG_D:
16969 cu->language = language_d;
16970 break;
16971 case DW_LANG_Fortran77:
16972 case DW_LANG_Fortran90:
16973 case DW_LANG_Fortran95:
16974 case DW_LANG_Fortran03:
16975 case DW_LANG_Fortran08:
16976 cu->language = language_fortran;
16977 break;
16978 case DW_LANG_Go:
16979 cu->language = language_go;
16980 break;
16981 case DW_LANG_Mips_Assembler:
16982 cu->language = language_asm;
16983 break;
16984 case DW_LANG_Java:
16985 cu->language = language_java;
16986 break;
16987 case DW_LANG_Ada83:
16988 case DW_LANG_Ada95:
16989 cu->language = language_ada;
16990 break;
16991 case DW_LANG_Modula2:
16992 cu->language = language_m2;
16993 break;
16994 case DW_LANG_Pascal83:
16995 cu->language = language_pascal;
16996 break;
16997 case DW_LANG_ObjC:
16998 cu->language = language_objc;
16999 break;
17000 case DW_LANG_Cobol74:
17001 case DW_LANG_Cobol85:
17002 default:
17003 cu->language = language_minimal;
17004 break;
17005 }
17006 cu->language_defn = language_def (cu->language);
17007 }
17008
17009 /* Return the named attribute or NULL if not there. */
17010
17011 static struct attribute *
17012 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17013 {
17014 for (;;)
17015 {
17016 unsigned int i;
17017 struct attribute *spec = NULL;
17018
17019 for (i = 0; i < die->num_attrs; ++i)
17020 {
17021 if (die->attrs[i].name == name)
17022 return &die->attrs[i];
17023 if (die->attrs[i].name == DW_AT_specification
17024 || die->attrs[i].name == DW_AT_abstract_origin)
17025 spec = &die->attrs[i];
17026 }
17027
17028 if (!spec)
17029 break;
17030
17031 die = follow_die_ref (die, spec, &cu);
17032 }
17033
17034 return NULL;
17035 }
17036
17037 /* Return the named attribute or NULL if not there,
17038 but do not follow DW_AT_specification, etc.
17039 This is for use in contexts where we're reading .debug_types dies.
17040 Following DW_AT_specification, DW_AT_abstract_origin will take us
17041 back up the chain, and we want to go down. */
17042
17043 static struct attribute *
17044 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17045 {
17046 unsigned int i;
17047
17048 for (i = 0; i < die->num_attrs; ++i)
17049 if (die->attrs[i].name == name)
17050 return &die->attrs[i];
17051
17052 return NULL;
17053 }
17054
17055 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17056 and holds a non-zero value. This function should only be used for
17057 DW_FORM_flag or DW_FORM_flag_present attributes. */
17058
17059 static int
17060 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17061 {
17062 struct attribute *attr = dwarf2_attr (die, name, cu);
17063
17064 return (attr && DW_UNSND (attr));
17065 }
17066
17067 static int
17068 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17069 {
17070 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17071 which value is non-zero. However, we have to be careful with
17072 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17073 (via dwarf2_flag_true_p) follows this attribute. So we may
17074 end up accidently finding a declaration attribute that belongs
17075 to a different DIE referenced by the specification attribute,
17076 even though the given DIE does not have a declaration attribute. */
17077 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17078 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17079 }
17080
17081 /* Return the die giving the specification for DIE, if there is
17082 one. *SPEC_CU is the CU containing DIE on input, and the CU
17083 containing the return value on output. If there is no
17084 specification, but there is an abstract origin, that is
17085 returned. */
17086
17087 static struct die_info *
17088 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17089 {
17090 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17091 *spec_cu);
17092
17093 if (spec_attr == NULL)
17094 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17095
17096 if (spec_attr == NULL)
17097 return NULL;
17098 else
17099 return follow_die_ref (die, spec_attr, spec_cu);
17100 }
17101
17102 /* Free the line_header structure *LH, and any arrays and strings it
17103 refers to.
17104 NOTE: This is also used as a "cleanup" function. */
17105
17106 static void
17107 free_line_header (struct line_header *lh)
17108 {
17109 if (lh->standard_opcode_lengths)
17110 xfree (lh->standard_opcode_lengths);
17111
17112 /* Remember that all the lh->file_names[i].name pointers are
17113 pointers into debug_line_buffer, and don't need to be freed. */
17114 if (lh->file_names)
17115 xfree (lh->file_names);
17116
17117 /* Similarly for the include directory names. */
17118 if (lh->include_dirs)
17119 xfree (lh->include_dirs);
17120
17121 xfree (lh);
17122 }
17123
17124 /* Stub for free_line_header to match void * callback types. */
17125
17126 static void
17127 free_line_header_voidp (void *arg)
17128 {
17129 struct line_header *lh = arg;
17130
17131 free_line_header (lh);
17132 }
17133
17134 /* Add an entry to LH's include directory table. */
17135
17136 static void
17137 add_include_dir (struct line_header *lh, const char *include_dir)
17138 {
17139 /* Grow the array if necessary. */
17140 if (lh->include_dirs_size == 0)
17141 {
17142 lh->include_dirs_size = 1; /* for testing */
17143 lh->include_dirs = xmalloc (lh->include_dirs_size
17144 * sizeof (*lh->include_dirs));
17145 }
17146 else if (lh->num_include_dirs >= lh->include_dirs_size)
17147 {
17148 lh->include_dirs_size *= 2;
17149 lh->include_dirs = xrealloc (lh->include_dirs,
17150 (lh->include_dirs_size
17151 * sizeof (*lh->include_dirs)));
17152 }
17153
17154 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17155 }
17156
17157 /* Add an entry to LH's file name table. */
17158
17159 static void
17160 add_file_name (struct line_header *lh,
17161 const char *name,
17162 unsigned int dir_index,
17163 unsigned int mod_time,
17164 unsigned int length)
17165 {
17166 struct file_entry *fe;
17167
17168 /* Grow the array if necessary. */
17169 if (lh->file_names_size == 0)
17170 {
17171 lh->file_names_size = 1; /* for testing */
17172 lh->file_names = xmalloc (lh->file_names_size
17173 * sizeof (*lh->file_names));
17174 }
17175 else if (lh->num_file_names >= lh->file_names_size)
17176 {
17177 lh->file_names_size *= 2;
17178 lh->file_names = xrealloc (lh->file_names,
17179 (lh->file_names_size
17180 * sizeof (*lh->file_names)));
17181 }
17182
17183 fe = &lh->file_names[lh->num_file_names++];
17184 fe->name = name;
17185 fe->dir_index = dir_index;
17186 fe->mod_time = mod_time;
17187 fe->length = length;
17188 fe->included_p = 0;
17189 fe->symtab = NULL;
17190 }
17191
17192 /* A convenience function to find the proper .debug_line section for a
17193 CU. */
17194
17195 static struct dwarf2_section_info *
17196 get_debug_line_section (struct dwarf2_cu *cu)
17197 {
17198 struct dwarf2_section_info *section;
17199
17200 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17201 DWO file. */
17202 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17203 section = &cu->dwo_unit->dwo_file->sections.line;
17204 else if (cu->per_cu->is_dwz)
17205 {
17206 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17207
17208 section = &dwz->line;
17209 }
17210 else
17211 section = &dwarf2_per_objfile->line;
17212
17213 return section;
17214 }
17215
17216 /* Read the statement program header starting at OFFSET in
17217 .debug_line, or .debug_line.dwo. Return a pointer
17218 to a struct line_header, allocated using xmalloc.
17219 Returns NULL if there is a problem reading the header, e.g., if it
17220 has a version we don't understand.
17221
17222 NOTE: the strings in the include directory and file name tables of
17223 the returned object point into the dwarf line section buffer,
17224 and must not be freed. */
17225
17226 static struct line_header *
17227 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17228 {
17229 struct cleanup *back_to;
17230 struct line_header *lh;
17231 const gdb_byte *line_ptr;
17232 unsigned int bytes_read, offset_size;
17233 int i;
17234 const char *cur_dir, *cur_file;
17235 struct dwarf2_section_info *section;
17236 bfd *abfd;
17237
17238 section = get_debug_line_section (cu);
17239 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17240 if (section->buffer == NULL)
17241 {
17242 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17243 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17244 else
17245 complaint (&symfile_complaints, _("missing .debug_line section"));
17246 return 0;
17247 }
17248
17249 /* We can't do this until we know the section is non-empty.
17250 Only then do we know we have such a section. */
17251 abfd = get_section_bfd_owner (section);
17252
17253 /* Make sure that at least there's room for the total_length field.
17254 That could be 12 bytes long, but we're just going to fudge that. */
17255 if (offset + 4 >= section->size)
17256 {
17257 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17258 return 0;
17259 }
17260
17261 lh = xmalloc (sizeof (*lh));
17262 memset (lh, 0, sizeof (*lh));
17263 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17264 (void *) lh);
17265
17266 lh->offset.sect_off = offset;
17267 lh->offset_in_dwz = cu->per_cu->is_dwz;
17268
17269 line_ptr = section->buffer + offset;
17270
17271 /* Read in the header. */
17272 lh->total_length =
17273 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17274 &bytes_read, &offset_size);
17275 line_ptr += bytes_read;
17276 if (line_ptr + lh->total_length > (section->buffer + section->size))
17277 {
17278 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17279 do_cleanups (back_to);
17280 return 0;
17281 }
17282 lh->statement_program_end = line_ptr + lh->total_length;
17283 lh->version = read_2_bytes (abfd, line_ptr);
17284 line_ptr += 2;
17285 if (lh->version > 4)
17286 {
17287 /* This is a version we don't understand. The format could have
17288 changed in ways we don't handle properly so just punt. */
17289 complaint (&symfile_complaints,
17290 _("unsupported version in .debug_line section"));
17291 return NULL;
17292 }
17293 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17294 line_ptr += offset_size;
17295 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17296 line_ptr += 1;
17297 if (lh->version >= 4)
17298 {
17299 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17300 line_ptr += 1;
17301 }
17302 else
17303 lh->maximum_ops_per_instruction = 1;
17304
17305 if (lh->maximum_ops_per_instruction == 0)
17306 {
17307 lh->maximum_ops_per_instruction = 1;
17308 complaint (&symfile_complaints,
17309 _("invalid maximum_ops_per_instruction "
17310 "in `.debug_line' section"));
17311 }
17312
17313 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17314 line_ptr += 1;
17315 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17316 line_ptr += 1;
17317 lh->line_range = read_1_byte (abfd, line_ptr);
17318 line_ptr += 1;
17319 lh->opcode_base = read_1_byte (abfd, line_ptr);
17320 line_ptr += 1;
17321 lh->standard_opcode_lengths
17322 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17323
17324 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17325 for (i = 1; i < lh->opcode_base; ++i)
17326 {
17327 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17328 line_ptr += 1;
17329 }
17330
17331 /* Read directory table. */
17332 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17333 {
17334 line_ptr += bytes_read;
17335 add_include_dir (lh, cur_dir);
17336 }
17337 line_ptr += bytes_read;
17338
17339 /* Read file name table. */
17340 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17341 {
17342 unsigned int dir_index, mod_time, length;
17343
17344 line_ptr += bytes_read;
17345 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17346 line_ptr += bytes_read;
17347 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17348 line_ptr += bytes_read;
17349 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17350 line_ptr += bytes_read;
17351
17352 add_file_name (lh, cur_file, dir_index, mod_time, length);
17353 }
17354 line_ptr += bytes_read;
17355 lh->statement_program_start = line_ptr;
17356
17357 if (line_ptr > (section->buffer + section->size))
17358 complaint (&symfile_complaints,
17359 _("line number info header doesn't "
17360 "fit in `.debug_line' section"));
17361
17362 discard_cleanups (back_to);
17363 return lh;
17364 }
17365
17366 /* Subroutine of dwarf_decode_lines to simplify it.
17367 Return the file name of the psymtab for included file FILE_INDEX
17368 in line header LH of PST.
17369 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17370 If space for the result is malloc'd, it will be freed by a cleanup.
17371 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17372
17373 The function creates dangling cleanup registration. */
17374
17375 static const char *
17376 psymtab_include_file_name (const struct line_header *lh, int file_index,
17377 const struct partial_symtab *pst,
17378 const char *comp_dir)
17379 {
17380 const struct file_entry fe = lh->file_names [file_index];
17381 const char *include_name = fe.name;
17382 const char *include_name_to_compare = include_name;
17383 const char *dir_name = NULL;
17384 const char *pst_filename;
17385 char *copied_name = NULL;
17386 int file_is_pst;
17387
17388 if (fe.dir_index)
17389 dir_name = lh->include_dirs[fe.dir_index - 1];
17390
17391 if (!IS_ABSOLUTE_PATH (include_name)
17392 && (dir_name != NULL || comp_dir != NULL))
17393 {
17394 /* Avoid creating a duplicate psymtab for PST.
17395 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17396 Before we do the comparison, however, we need to account
17397 for DIR_NAME and COMP_DIR.
17398 First prepend dir_name (if non-NULL). If we still don't
17399 have an absolute path prepend comp_dir (if non-NULL).
17400 However, the directory we record in the include-file's
17401 psymtab does not contain COMP_DIR (to match the
17402 corresponding symtab(s)).
17403
17404 Example:
17405
17406 bash$ cd /tmp
17407 bash$ gcc -g ./hello.c
17408 include_name = "hello.c"
17409 dir_name = "."
17410 DW_AT_comp_dir = comp_dir = "/tmp"
17411 DW_AT_name = "./hello.c"
17412
17413 */
17414
17415 if (dir_name != NULL)
17416 {
17417 char *tem = concat (dir_name, SLASH_STRING,
17418 include_name, (char *)NULL);
17419
17420 make_cleanup (xfree, tem);
17421 include_name = tem;
17422 include_name_to_compare = include_name;
17423 }
17424 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17425 {
17426 char *tem = concat (comp_dir, SLASH_STRING,
17427 include_name, (char *)NULL);
17428
17429 make_cleanup (xfree, tem);
17430 include_name_to_compare = tem;
17431 }
17432 }
17433
17434 pst_filename = pst->filename;
17435 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17436 {
17437 copied_name = concat (pst->dirname, SLASH_STRING,
17438 pst_filename, (char *)NULL);
17439 pst_filename = copied_name;
17440 }
17441
17442 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17443
17444 if (copied_name != NULL)
17445 xfree (copied_name);
17446
17447 if (file_is_pst)
17448 return NULL;
17449 return include_name;
17450 }
17451
17452 /* Ignore this record_line request. */
17453
17454 static void
17455 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17456 {
17457 return;
17458 }
17459
17460 /* Return non-zero if we should add LINE to the line number table.
17461 LINE is the line to add, LAST_LINE is the last line that was added,
17462 LAST_SUBFILE is the subfile for LAST_LINE.
17463 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17464 had a non-zero discriminator.
17465
17466 We have to be careful in the presence of discriminators.
17467 E.g., for this line:
17468
17469 for (i = 0; i < 100000; i++);
17470
17471 clang can emit four line number entries for that one line,
17472 each with a different discriminator.
17473 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17474
17475 However, we want gdb to coalesce all four entries into one.
17476 Otherwise the user could stepi into the middle of the line and
17477 gdb would get confused about whether the pc really was in the
17478 middle of the line.
17479
17480 Things are further complicated by the fact that two consecutive
17481 line number entries for the same line is a heuristic used by gcc
17482 to denote the end of the prologue. So we can't just discard duplicate
17483 entries, we have to be selective about it. The heuristic we use is
17484 that we only collapse consecutive entries for the same line if at least
17485 one of those entries has a non-zero discriminator. PR 17276.
17486
17487 Note: Addresses in the line number state machine can never go backwards
17488 within one sequence, thus this coalescing is ok. */
17489
17490 static int
17491 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17492 int line_has_non_zero_discriminator,
17493 struct subfile *last_subfile)
17494 {
17495 if (current_subfile != last_subfile)
17496 return 1;
17497 if (line != last_line)
17498 return 1;
17499 /* Same line for the same file that we've seen already.
17500 As a last check, for pr 17276, only record the line if the line
17501 has never had a non-zero discriminator. */
17502 if (!line_has_non_zero_discriminator)
17503 return 1;
17504 return 0;
17505 }
17506
17507 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17508 in the line table of subfile SUBFILE. */
17509
17510 static void
17511 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17512 unsigned int line, CORE_ADDR address,
17513 record_line_ftype p_record_line)
17514 {
17515 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17516
17517 (*p_record_line) (subfile, line, addr);
17518 }
17519
17520 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17521 Mark the end of a set of line number records.
17522 The arguments are the same as for dwarf_record_line.
17523 If SUBFILE is NULL the request is ignored. */
17524
17525 static void
17526 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17527 CORE_ADDR address, record_line_ftype p_record_line)
17528 {
17529 if (subfile != NULL)
17530 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17531 }
17532
17533 /* Subroutine of dwarf_decode_lines to simplify it.
17534 Process the line number information in LH. */
17535
17536 static void
17537 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17538 const int decode_for_pst_p, CORE_ADDR lowpc)
17539 {
17540 const gdb_byte *line_ptr, *extended_end;
17541 const gdb_byte *line_end;
17542 unsigned int bytes_read, extended_len;
17543 unsigned char op_code, extended_op;
17544 CORE_ADDR baseaddr;
17545 struct objfile *objfile = cu->objfile;
17546 bfd *abfd = objfile->obfd;
17547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17548 struct subfile *last_subfile = NULL;
17549 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17550 = record_line;
17551
17552 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17553
17554 line_ptr = lh->statement_program_start;
17555 line_end = lh->statement_program_end;
17556
17557 /* Read the statement sequences until there's nothing left. */
17558 while (line_ptr < line_end)
17559 {
17560 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17561 on the initial 0 address as if there was a line entry for it
17562 so that the backend has a chance to adjust it and also record
17563 it in case it needs it. This is currently used by MIPS code,
17564 cf. `mips_adjust_dwarf2_line'. */
17565 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17566 unsigned int file = 1;
17567 unsigned int line = 1;
17568 int is_stmt = lh->default_is_stmt;
17569 int end_sequence = 0;
17570 unsigned char op_index = 0;
17571 unsigned int discriminator = 0;
17572 /* The last line number that was recorded, used to coalesce
17573 consecutive entries for the same line. This can happen, for
17574 example, when discriminators are present. PR 17276. */
17575 unsigned int last_line = 0;
17576 int line_has_non_zero_discriminator = 0;
17577
17578 if (!decode_for_pst_p && lh->num_file_names >= file)
17579 {
17580 /* Start a subfile for the current file of the state machine. */
17581 /* lh->include_dirs and lh->file_names are 0-based, but the
17582 directory and file name numbers in the statement program
17583 are 1-based. */
17584 struct file_entry *fe = &lh->file_names[file - 1];
17585 const char *dir = NULL;
17586
17587 if (fe->dir_index)
17588 dir = lh->include_dirs[fe->dir_index - 1];
17589
17590 dwarf2_start_subfile (fe->name, dir);
17591 }
17592
17593 /* Decode the table. */
17594 while (!end_sequence)
17595 {
17596 op_code = read_1_byte (abfd, line_ptr);
17597 line_ptr += 1;
17598 if (line_ptr > line_end)
17599 {
17600 dwarf2_debug_line_missing_end_sequence_complaint ();
17601 break;
17602 }
17603
17604 if (op_code >= lh->opcode_base)
17605 {
17606 /* Special opcode. */
17607 unsigned char adj_opcode;
17608 CORE_ADDR addr_adj;
17609 int line_delta;
17610
17611 adj_opcode = op_code - lh->opcode_base;
17612 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17613 / lh->maximum_ops_per_instruction)
17614 * lh->minimum_instruction_length);
17615 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17616 op_index = ((op_index + (adj_opcode / lh->line_range))
17617 % lh->maximum_ops_per_instruction);
17618 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17619 line += line_delta;
17620 if (line_delta != 0)
17621 line_has_non_zero_discriminator = discriminator != 0;
17622 if (lh->num_file_names < file || file == 0)
17623 dwarf2_debug_line_missing_file_complaint ();
17624 /* For now we ignore lines not starting on an
17625 instruction boundary. */
17626 else if (op_index == 0)
17627 {
17628 lh->file_names[file - 1].included_p = 1;
17629 if (!decode_for_pst_p && is_stmt)
17630 {
17631 if (last_subfile != current_subfile)
17632 {
17633 dwarf_finish_line (gdbarch, last_subfile,
17634 address, p_record_line);
17635 }
17636 if (dwarf_record_line_p (line, last_line,
17637 line_has_non_zero_discriminator,
17638 last_subfile))
17639 {
17640 dwarf_record_line (gdbarch, current_subfile,
17641 line, address, p_record_line);
17642 }
17643 last_subfile = current_subfile;
17644 last_line = line;
17645 }
17646 }
17647 discriminator = 0;
17648 }
17649 else switch (op_code)
17650 {
17651 case DW_LNS_extended_op:
17652 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17653 &bytes_read);
17654 line_ptr += bytes_read;
17655 extended_end = line_ptr + extended_len;
17656 extended_op = read_1_byte (abfd, line_ptr);
17657 line_ptr += 1;
17658 switch (extended_op)
17659 {
17660 case DW_LNE_end_sequence:
17661 p_record_line = record_line;
17662 end_sequence = 1;
17663 break;
17664 case DW_LNE_set_address:
17665 address = read_address (abfd, line_ptr, cu, &bytes_read);
17666
17667 /* If address < lowpc then it's not a usable value, it's
17668 outside the pc range of the CU. However, we restrict
17669 the test to only address values of zero to preserve
17670 GDB's previous behaviour which is to handle the specific
17671 case of a function being GC'd by the linker. */
17672 if (address == 0 && address < lowpc)
17673 {
17674 /* This line table is for a function which has been
17675 GCd by the linker. Ignore it. PR gdb/12528 */
17676
17677 long line_offset
17678 = line_ptr - get_debug_line_section (cu)->buffer;
17679
17680 complaint (&symfile_complaints,
17681 _(".debug_line address at offset 0x%lx is 0 "
17682 "[in module %s]"),
17683 line_offset, objfile_name (objfile));
17684 p_record_line = noop_record_line;
17685 /* Note: p_record_line is left as noop_record_line
17686 until we see DW_LNE_end_sequence. */
17687 }
17688
17689 op_index = 0;
17690 line_ptr += bytes_read;
17691 address += baseaddr;
17692 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17693 break;
17694 case DW_LNE_define_file:
17695 {
17696 const char *cur_file;
17697 unsigned int dir_index, mod_time, length;
17698
17699 cur_file = read_direct_string (abfd, line_ptr,
17700 &bytes_read);
17701 line_ptr += bytes_read;
17702 dir_index =
17703 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17704 line_ptr += bytes_read;
17705 mod_time =
17706 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17707 line_ptr += bytes_read;
17708 length =
17709 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17710 line_ptr += bytes_read;
17711 add_file_name (lh, cur_file, dir_index, mod_time, length);
17712 }
17713 break;
17714 case DW_LNE_set_discriminator:
17715 /* The discriminator is not interesting to the debugger;
17716 just ignore it. We still need to check its value though:
17717 if there are consecutive entries for the same
17718 (non-prologue) line we want to coalesce them.
17719 PR 17276. */
17720 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17721 &bytes_read);
17722 line_has_non_zero_discriminator |= discriminator != 0;
17723 line_ptr += bytes_read;
17724 break;
17725 default:
17726 complaint (&symfile_complaints,
17727 _("mangled .debug_line section"));
17728 return;
17729 }
17730 /* Make sure that we parsed the extended op correctly. If e.g.
17731 we expected a different address size than the producer used,
17732 we may have read the wrong number of bytes. */
17733 if (line_ptr != extended_end)
17734 {
17735 complaint (&symfile_complaints,
17736 _("mangled .debug_line section"));
17737 return;
17738 }
17739 break;
17740 case DW_LNS_copy:
17741 if (lh->num_file_names < file || file == 0)
17742 dwarf2_debug_line_missing_file_complaint ();
17743 else
17744 {
17745 lh->file_names[file - 1].included_p = 1;
17746 if (!decode_for_pst_p && is_stmt)
17747 {
17748 if (last_subfile != current_subfile)
17749 {
17750 dwarf_finish_line (gdbarch, last_subfile,
17751 address, p_record_line);
17752 }
17753 if (dwarf_record_line_p (line, last_line,
17754 line_has_non_zero_discriminator,
17755 last_subfile))
17756 {
17757 dwarf_record_line (gdbarch, current_subfile,
17758 line, address, p_record_line);
17759 }
17760 last_subfile = current_subfile;
17761 last_line = line;
17762 }
17763 }
17764 discriminator = 0;
17765 break;
17766 case DW_LNS_advance_pc:
17767 {
17768 CORE_ADDR adjust
17769 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17770 CORE_ADDR addr_adj;
17771
17772 addr_adj = (((op_index + adjust)
17773 / lh->maximum_ops_per_instruction)
17774 * lh->minimum_instruction_length);
17775 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17776 op_index = ((op_index + adjust)
17777 % lh->maximum_ops_per_instruction);
17778 line_ptr += bytes_read;
17779 }
17780 break;
17781 case DW_LNS_advance_line:
17782 {
17783 int line_delta
17784 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17785
17786 line += line_delta;
17787 if (line_delta != 0)
17788 line_has_non_zero_discriminator = discriminator != 0;
17789 line_ptr += bytes_read;
17790 }
17791 break;
17792 case DW_LNS_set_file:
17793 {
17794 /* The arrays lh->include_dirs and lh->file_names are
17795 0-based, but the directory and file name numbers in
17796 the statement program are 1-based. */
17797 struct file_entry *fe;
17798 const char *dir = NULL;
17799
17800 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17801 line_ptr += bytes_read;
17802 if (lh->num_file_names < file || file == 0)
17803 dwarf2_debug_line_missing_file_complaint ();
17804 else
17805 {
17806 fe = &lh->file_names[file - 1];
17807 if (fe->dir_index)
17808 dir = lh->include_dirs[fe->dir_index - 1];
17809 if (!decode_for_pst_p)
17810 {
17811 last_subfile = current_subfile;
17812 line_has_non_zero_discriminator = discriminator != 0;
17813 dwarf2_start_subfile (fe->name, dir);
17814 }
17815 }
17816 }
17817 break;
17818 case DW_LNS_set_column:
17819 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17820 line_ptr += bytes_read;
17821 break;
17822 case DW_LNS_negate_stmt:
17823 is_stmt = (!is_stmt);
17824 break;
17825 case DW_LNS_set_basic_block:
17826 break;
17827 /* Add to the address register of the state machine the
17828 address increment value corresponding to special opcode
17829 255. I.e., this value is scaled by the minimum
17830 instruction length since special opcode 255 would have
17831 scaled the increment. */
17832 case DW_LNS_const_add_pc:
17833 {
17834 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17835 CORE_ADDR addr_adj;
17836
17837 addr_adj = (((op_index + adjust)
17838 / lh->maximum_ops_per_instruction)
17839 * lh->minimum_instruction_length);
17840 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17841 op_index = ((op_index + adjust)
17842 % lh->maximum_ops_per_instruction);
17843 }
17844 break;
17845 case DW_LNS_fixed_advance_pc:
17846 {
17847 CORE_ADDR addr_adj;
17848
17849 addr_adj = read_2_bytes (abfd, line_ptr);
17850 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17851 op_index = 0;
17852 line_ptr += 2;
17853 }
17854 break;
17855 default:
17856 {
17857 /* Unknown standard opcode, ignore it. */
17858 int i;
17859
17860 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17861 {
17862 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17863 line_ptr += bytes_read;
17864 }
17865 }
17866 }
17867 }
17868 if (lh->num_file_names < file || file == 0)
17869 dwarf2_debug_line_missing_file_complaint ();
17870 else
17871 {
17872 lh->file_names[file - 1].included_p = 1;
17873 if (!decode_for_pst_p)
17874 {
17875 dwarf_finish_line (gdbarch, current_subfile, address,
17876 p_record_line);
17877 }
17878 }
17879 }
17880 }
17881
17882 /* Decode the Line Number Program (LNP) for the given line_header
17883 structure and CU. The actual information extracted and the type
17884 of structures created from the LNP depends on the value of PST.
17885
17886 1. If PST is NULL, then this procedure uses the data from the program
17887 to create all necessary symbol tables, and their linetables.
17888
17889 2. If PST is not NULL, this procedure reads the program to determine
17890 the list of files included by the unit represented by PST, and
17891 builds all the associated partial symbol tables.
17892
17893 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17894 It is used for relative paths in the line table.
17895 NOTE: When processing partial symtabs (pst != NULL),
17896 comp_dir == pst->dirname.
17897
17898 NOTE: It is important that psymtabs have the same file name (via strcmp)
17899 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17900 symtab we don't use it in the name of the psymtabs we create.
17901 E.g. expand_line_sal requires this when finding psymtabs to expand.
17902 A good testcase for this is mb-inline.exp.
17903
17904 LOWPC is the lowest address in CU (or 0 if not known).
17905
17906 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17907 for its PC<->lines mapping information. Otherwise only the filename
17908 table is read in. */
17909
17910 static void
17911 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17912 struct dwarf2_cu *cu, struct partial_symtab *pst,
17913 CORE_ADDR lowpc, int decode_mapping)
17914 {
17915 struct objfile *objfile = cu->objfile;
17916 const int decode_for_pst_p = (pst != NULL);
17917
17918 if (decode_mapping)
17919 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17920
17921 if (decode_for_pst_p)
17922 {
17923 int file_index;
17924
17925 /* Now that we're done scanning the Line Header Program, we can
17926 create the psymtab of each included file. */
17927 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17928 if (lh->file_names[file_index].included_p == 1)
17929 {
17930 const char *include_name =
17931 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17932 if (include_name != NULL)
17933 dwarf2_create_include_psymtab (include_name, pst, objfile);
17934 }
17935 }
17936 else
17937 {
17938 /* Make sure a symtab is created for every file, even files
17939 which contain only variables (i.e. no code with associated
17940 line numbers). */
17941 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17942 int i;
17943
17944 for (i = 0; i < lh->num_file_names; i++)
17945 {
17946 const char *dir = NULL;
17947 struct file_entry *fe;
17948
17949 fe = &lh->file_names[i];
17950 if (fe->dir_index)
17951 dir = lh->include_dirs[fe->dir_index - 1];
17952 dwarf2_start_subfile (fe->name, dir);
17953
17954 if (current_subfile->symtab == NULL)
17955 {
17956 current_subfile->symtab
17957 = allocate_symtab (cust, current_subfile->name);
17958 }
17959 fe->symtab = current_subfile->symtab;
17960 }
17961 }
17962 }
17963
17964 /* Start a subfile for DWARF. FILENAME is the name of the file and
17965 DIRNAME the name of the source directory which contains FILENAME
17966 or NULL if not known.
17967 This routine tries to keep line numbers from identical absolute and
17968 relative file names in a common subfile.
17969
17970 Using the `list' example from the GDB testsuite, which resides in
17971 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17972 of /srcdir/list0.c yields the following debugging information for list0.c:
17973
17974 DW_AT_name: /srcdir/list0.c
17975 DW_AT_comp_dir: /compdir
17976 files.files[0].name: list0.h
17977 files.files[0].dir: /srcdir
17978 files.files[1].name: list0.c
17979 files.files[1].dir: /srcdir
17980
17981 The line number information for list0.c has to end up in a single
17982 subfile, so that `break /srcdir/list0.c:1' works as expected.
17983 start_subfile will ensure that this happens provided that we pass the
17984 concatenation of files.files[1].dir and files.files[1].name as the
17985 subfile's name. */
17986
17987 static void
17988 dwarf2_start_subfile (const char *filename, const char *dirname)
17989 {
17990 char *copy = NULL;
17991
17992 /* In order not to lose the line information directory,
17993 we concatenate it to the filename when it makes sense.
17994 Note that the Dwarf3 standard says (speaking of filenames in line
17995 information): ``The directory index is ignored for file names
17996 that represent full path names''. Thus ignoring dirname in the
17997 `else' branch below isn't an issue. */
17998
17999 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18000 {
18001 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18002 filename = copy;
18003 }
18004
18005 start_subfile (filename);
18006
18007 if (copy != NULL)
18008 xfree (copy);
18009 }
18010
18011 /* Start a symtab for DWARF.
18012 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18013
18014 static struct compunit_symtab *
18015 dwarf2_start_symtab (struct dwarf2_cu *cu,
18016 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18017 {
18018 struct compunit_symtab *cust
18019 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18020
18021 record_debugformat ("DWARF 2");
18022 record_producer (cu->producer);
18023
18024 /* We assume that we're processing GCC output. */
18025 processing_gcc_compilation = 2;
18026
18027 cu->processing_has_namespace_info = 0;
18028
18029 return cust;
18030 }
18031
18032 static void
18033 var_decode_location (struct attribute *attr, struct symbol *sym,
18034 struct dwarf2_cu *cu)
18035 {
18036 struct objfile *objfile = cu->objfile;
18037 struct comp_unit_head *cu_header = &cu->header;
18038
18039 /* NOTE drow/2003-01-30: There used to be a comment and some special
18040 code here to turn a symbol with DW_AT_external and a
18041 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18042 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18043 with some versions of binutils) where shared libraries could have
18044 relocations against symbols in their debug information - the
18045 minimal symbol would have the right address, but the debug info
18046 would not. It's no longer necessary, because we will explicitly
18047 apply relocations when we read in the debug information now. */
18048
18049 /* A DW_AT_location attribute with no contents indicates that a
18050 variable has been optimized away. */
18051 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18052 {
18053 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18054 return;
18055 }
18056
18057 /* Handle one degenerate form of location expression specially, to
18058 preserve GDB's previous behavior when section offsets are
18059 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18060 then mark this symbol as LOC_STATIC. */
18061
18062 if (attr_form_is_block (attr)
18063 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18064 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18065 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18066 && (DW_BLOCK (attr)->size
18067 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18068 {
18069 unsigned int dummy;
18070
18071 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18072 SYMBOL_VALUE_ADDRESS (sym) =
18073 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18074 else
18075 SYMBOL_VALUE_ADDRESS (sym) =
18076 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18077 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18078 fixup_symbol_section (sym, objfile);
18079 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18080 SYMBOL_SECTION (sym));
18081 return;
18082 }
18083
18084 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18085 expression evaluator, and use LOC_COMPUTED only when necessary
18086 (i.e. when the value of a register or memory location is
18087 referenced, or a thread-local block, etc.). Then again, it might
18088 not be worthwhile. I'm assuming that it isn't unless performance
18089 or memory numbers show me otherwise. */
18090
18091 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18092
18093 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18094 cu->has_loclist = 1;
18095 }
18096
18097 /* Given a pointer to a DWARF information entry, figure out if we need
18098 to make a symbol table entry for it, and if so, create a new entry
18099 and return a pointer to it.
18100 If TYPE is NULL, determine symbol type from the die, otherwise
18101 used the passed type.
18102 If SPACE is not NULL, use it to hold the new symbol. If it is
18103 NULL, allocate a new symbol on the objfile's obstack. */
18104
18105 static struct symbol *
18106 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18107 struct symbol *space)
18108 {
18109 struct objfile *objfile = cu->objfile;
18110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18111 struct symbol *sym = NULL;
18112 const char *name;
18113 struct attribute *attr = NULL;
18114 struct attribute *attr2 = NULL;
18115 CORE_ADDR baseaddr;
18116 struct pending **list_to_add = NULL;
18117
18118 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18119
18120 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18121
18122 name = dwarf2_name (die, cu);
18123 if (name)
18124 {
18125 const char *linkagename;
18126 int suppress_add = 0;
18127
18128 if (space)
18129 sym = space;
18130 else
18131 sym = allocate_symbol (objfile);
18132 OBJSTAT (objfile, n_syms++);
18133
18134 /* Cache this symbol's name and the name's demangled form (if any). */
18135 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18136 linkagename = dwarf2_physname (name, die, cu);
18137 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18138
18139 /* Fortran does not have mangling standard and the mangling does differ
18140 between gfortran, iFort etc. */
18141 if (cu->language == language_fortran
18142 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18143 symbol_set_demangled_name (&(sym->ginfo),
18144 dwarf2_full_name (name, die, cu),
18145 NULL);
18146
18147 /* Default assumptions.
18148 Use the passed type or decode it from the die. */
18149 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18150 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18151 if (type != NULL)
18152 SYMBOL_TYPE (sym) = type;
18153 else
18154 SYMBOL_TYPE (sym) = die_type (die, cu);
18155 attr = dwarf2_attr (die,
18156 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18157 cu);
18158 if (attr)
18159 {
18160 SYMBOL_LINE (sym) = DW_UNSND (attr);
18161 }
18162
18163 attr = dwarf2_attr (die,
18164 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18165 cu);
18166 if (attr)
18167 {
18168 int file_index = DW_UNSND (attr);
18169
18170 if (cu->line_header == NULL
18171 || file_index > cu->line_header->num_file_names)
18172 complaint (&symfile_complaints,
18173 _("file index out of range"));
18174 else if (file_index > 0)
18175 {
18176 struct file_entry *fe;
18177
18178 fe = &cu->line_header->file_names[file_index - 1];
18179 symbol_set_symtab (sym, fe->symtab);
18180 }
18181 }
18182
18183 switch (die->tag)
18184 {
18185 case DW_TAG_label:
18186 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18187 if (attr)
18188 {
18189 CORE_ADDR addr;
18190
18191 addr = attr_value_as_address (attr);
18192 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18193 SYMBOL_VALUE_ADDRESS (sym) = addr;
18194 }
18195 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18196 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18197 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18198 add_symbol_to_list (sym, cu->list_in_scope);
18199 break;
18200 case DW_TAG_subprogram:
18201 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18202 finish_block. */
18203 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18204 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18205 if ((attr2 && (DW_UNSND (attr2) != 0))
18206 || cu->language == language_ada)
18207 {
18208 /* Subprograms marked external are stored as a global symbol.
18209 Ada subprograms, whether marked external or not, are always
18210 stored as a global symbol, because we want to be able to
18211 access them globally. For instance, we want to be able
18212 to break on a nested subprogram without having to
18213 specify the context. */
18214 list_to_add = &global_symbols;
18215 }
18216 else
18217 {
18218 list_to_add = cu->list_in_scope;
18219 }
18220 break;
18221 case DW_TAG_inlined_subroutine:
18222 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18223 finish_block. */
18224 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18225 SYMBOL_INLINED (sym) = 1;
18226 list_to_add = cu->list_in_scope;
18227 break;
18228 case DW_TAG_template_value_param:
18229 suppress_add = 1;
18230 /* Fall through. */
18231 case DW_TAG_constant:
18232 case DW_TAG_variable:
18233 case DW_TAG_member:
18234 /* Compilation with minimal debug info may result in
18235 variables with missing type entries. Change the
18236 misleading `void' type to something sensible. */
18237 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18238 SYMBOL_TYPE (sym)
18239 = objfile_type (objfile)->nodebug_data_symbol;
18240
18241 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18242 /* In the case of DW_TAG_member, we should only be called for
18243 static const members. */
18244 if (die->tag == DW_TAG_member)
18245 {
18246 /* dwarf2_add_field uses die_is_declaration,
18247 so we do the same. */
18248 gdb_assert (die_is_declaration (die, cu));
18249 gdb_assert (attr);
18250 }
18251 if (attr)
18252 {
18253 dwarf2_const_value (attr, sym, cu);
18254 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18255 if (!suppress_add)
18256 {
18257 if (attr2 && (DW_UNSND (attr2) != 0))
18258 list_to_add = &global_symbols;
18259 else
18260 list_to_add = cu->list_in_scope;
18261 }
18262 break;
18263 }
18264 attr = dwarf2_attr (die, DW_AT_location, cu);
18265 if (attr)
18266 {
18267 var_decode_location (attr, sym, cu);
18268 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18269
18270 /* Fortran explicitly imports any global symbols to the local
18271 scope by DW_TAG_common_block. */
18272 if (cu->language == language_fortran && die->parent
18273 && die->parent->tag == DW_TAG_common_block)
18274 attr2 = NULL;
18275
18276 if (SYMBOL_CLASS (sym) == LOC_STATIC
18277 && SYMBOL_VALUE_ADDRESS (sym) == 0
18278 && !dwarf2_per_objfile->has_section_at_zero)
18279 {
18280 /* When a static variable is eliminated by the linker,
18281 the corresponding debug information is not stripped
18282 out, but the variable address is set to null;
18283 do not add such variables into symbol table. */
18284 }
18285 else if (attr2 && (DW_UNSND (attr2) != 0))
18286 {
18287 /* Workaround gfortran PR debug/40040 - it uses
18288 DW_AT_location for variables in -fPIC libraries which may
18289 get overriden by other libraries/executable and get
18290 a different address. Resolve it by the minimal symbol
18291 which may come from inferior's executable using copy
18292 relocation. Make this workaround only for gfortran as for
18293 other compilers GDB cannot guess the minimal symbol
18294 Fortran mangling kind. */
18295 if (cu->language == language_fortran && die->parent
18296 && die->parent->tag == DW_TAG_module
18297 && cu->producer
18298 && startswith (cu->producer, "GNU Fortran "))
18299 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18300
18301 /* A variable with DW_AT_external is never static,
18302 but it may be block-scoped. */
18303 list_to_add = (cu->list_in_scope == &file_symbols
18304 ? &global_symbols : cu->list_in_scope);
18305 }
18306 else
18307 list_to_add = cu->list_in_scope;
18308 }
18309 else
18310 {
18311 /* We do not know the address of this symbol.
18312 If it is an external symbol and we have type information
18313 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18314 The address of the variable will then be determined from
18315 the minimal symbol table whenever the variable is
18316 referenced. */
18317 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18318
18319 /* Fortran explicitly imports any global symbols to the local
18320 scope by DW_TAG_common_block. */
18321 if (cu->language == language_fortran && die->parent
18322 && die->parent->tag == DW_TAG_common_block)
18323 {
18324 /* SYMBOL_CLASS doesn't matter here because
18325 read_common_block is going to reset it. */
18326 if (!suppress_add)
18327 list_to_add = cu->list_in_scope;
18328 }
18329 else if (attr2 && (DW_UNSND (attr2) != 0)
18330 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18331 {
18332 /* A variable with DW_AT_external is never static, but it
18333 may be block-scoped. */
18334 list_to_add = (cu->list_in_scope == &file_symbols
18335 ? &global_symbols : cu->list_in_scope);
18336
18337 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18338 }
18339 else if (!die_is_declaration (die, cu))
18340 {
18341 /* Use the default LOC_OPTIMIZED_OUT class. */
18342 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18343 if (!suppress_add)
18344 list_to_add = cu->list_in_scope;
18345 }
18346 }
18347 break;
18348 case DW_TAG_formal_parameter:
18349 /* If we are inside a function, mark this as an argument. If
18350 not, we might be looking at an argument to an inlined function
18351 when we do not have enough information to show inlined frames;
18352 pretend it's a local variable in that case so that the user can
18353 still see it. */
18354 if (context_stack_depth > 0
18355 && context_stack[context_stack_depth - 1].name != NULL)
18356 SYMBOL_IS_ARGUMENT (sym) = 1;
18357 attr = dwarf2_attr (die, DW_AT_location, cu);
18358 if (attr)
18359 {
18360 var_decode_location (attr, sym, cu);
18361 }
18362 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18363 if (attr)
18364 {
18365 dwarf2_const_value (attr, sym, cu);
18366 }
18367
18368 list_to_add = cu->list_in_scope;
18369 break;
18370 case DW_TAG_unspecified_parameters:
18371 /* From varargs functions; gdb doesn't seem to have any
18372 interest in this information, so just ignore it for now.
18373 (FIXME?) */
18374 break;
18375 case DW_TAG_template_type_param:
18376 suppress_add = 1;
18377 /* Fall through. */
18378 case DW_TAG_class_type:
18379 case DW_TAG_interface_type:
18380 case DW_TAG_structure_type:
18381 case DW_TAG_union_type:
18382 case DW_TAG_set_type:
18383 case DW_TAG_enumeration_type:
18384 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18385 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18386
18387 {
18388 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18389 really ever be static objects: otherwise, if you try
18390 to, say, break of a class's method and you're in a file
18391 which doesn't mention that class, it won't work unless
18392 the check for all static symbols in lookup_symbol_aux
18393 saves you. See the OtherFileClass tests in
18394 gdb.c++/namespace.exp. */
18395
18396 if (!suppress_add)
18397 {
18398 list_to_add = (cu->list_in_scope == &file_symbols
18399 && (cu->language == language_cplus
18400 || cu->language == language_java)
18401 ? &global_symbols : cu->list_in_scope);
18402
18403 /* The semantics of C++ state that "struct foo {
18404 ... }" also defines a typedef for "foo". A Java
18405 class declaration also defines a typedef for the
18406 class. */
18407 if (cu->language == language_cplus
18408 || cu->language == language_java
18409 || cu->language == language_ada)
18410 {
18411 /* The symbol's name is already allocated along
18412 with this objfile, so we don't need to
18413 duplicate it for the type. */
18414 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18415 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18416 }
18417 }
18418 }
18419 break;
18420 case DW_TAG_typedef:
18421 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18423 list_to_add = cu->list_in_scope;
18424 break;
18425 case DW_TAG_base_type:
18426 case DW_TAG_subrange_type:
18427 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18429 list_to_add = cu->list_in_scope;
18430 break;
18431 case DW_TAG_enumerator:
18432 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18433 if (attr)
18434 {
18435 dwarf2_const_value (attr, sym, cu);
18436 }
18437 {
18438 /* NOTE: carlton/2003-11-10: See comment above in the
18439 DW_TAG_class_type, etc. block. */
18440
18441 list_to_add = (cu->list_in_scope == &file_symbols
18442 && (cu->language == language_cplus
18443 || cu->language == language_java)
18444 ? &global_symbols : cu->list_in_scope);
18445 }
18446 break;
18447 case DW_TAG_imported_declaration:
18448 case DW_TAG_namespace:
18449 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18450 list_to_add = &global_symbols;
18451 break;
18452 case DW_TAG_module:
18453 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18454 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18455 list_to_add = &global_symbols;
18456 break;
18457 case DW_TAG_common_block:
18458 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18459 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18460 add_symbol_to_list (sym, cu->list_in_scope);
18461 break;
18462 default:
18463 /* Not a tag we recognize. Hopefully we aren't processing
18464 trash data, but since we must specifically ignore things
18465 we don't recognize, there is nothing else we should do at
18466 this point. */
18467 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18468 dwarf_tag_name (die->tag));
18469 break;
18470 }
18471
18472 if (suppress_add)
18473 {
18474 sym->hash_next = objfile->template_symbols;
18475 objfile->template_symbols = sym;
18476 list_to_add = NULL;
18477 }
18478
18479 if (list_to_add != NULL)
18480 add_symbol_to_list (sym, list_to_add);
18481
18482 /* For the benefit of old versions of GCC, check for anonymous
18483 namespaces based on the demangled name. */
18484 if (!cu->processing_has_namespace_info
18485 && cu->language == language_cplus)
18486 cp_scan_for_anonymous_namespaces (sym, objfile);
18487 }
18488 return (sym);
18489 }
18490
18491 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18492
18493 static struct symbol *
18494 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18495 {
18496 return new_symbol_full (die, type, cu, NULL);
18497 }
18498
18499 /* Given an attr with a DW_FORM_dataN value in host byte order,
18500 zero-extend it as appropriate for the symbol's type. The DWARF
18501 standard (v4) is not entirely clear about the meaning of using
18502 DW_FORM_dataN for a constant with a signed type, where the type is
18503 wider than the data. The conclusion of a discussion on the DWARF
18504 list was that this is unspecified. We choose to always zero-extend
18505 because that is the interpretation long in use by GCC. */
18506
18507 static gdb_byte *
18508 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18509 struct dwarf2_cu *cu, LONGEST *value, int bits)
18510 {
18511 struct objfile *objfile = cu->objfile;
18512 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18513 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18514 LONGEST l = DW_UNSND (attr);
18515
18516 if (bits < sizeof (*value) * 8)
18517 {
18518 l &= ((LONGEST) 1 << bits) - 1;
18519 *value = l;
18520 }
18521 else if (bits == sizeof (*value) * 8)
18522 *value = l;
18523 else
18524 {
18525 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18526 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18527 return bytes;
18528 }
18529
18530 return NULL;
18531 }
18532
18533 /* Read a constant value from an attribute. Either set *VALUE, or if
18534 the value does not fit in *VALUE, set *BYTES - either already
18535 allocated on the objfile obstack, or newly allocated on OBSTACK,
18536 or, set *BATON, if we translated the constant to a location
18537 expression. */
18538
18539 static void
18540 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18541 const char *name, struct obstack *obstack,
18542 struct dwarf2_cu *cu,
18543 LONGEST *value, const gdb_byte **bytes,
18544 struct dwarf2_locexpr_baton **baton)
18545 {
18546 struct objfile *objfile = cu->objfile;
18547 struct comp_unit_head *cu_header = &cu->header;
18548 struct dwarf_block *blk;
18549 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18550 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18551
18552 *value = 0;
18553 *bytes = NULL;
18554 *baton = NULL;
18555
18556 switch (attr->form)
18557 {
18558 case DW_FORM_addr:
18559 case DW_FORM_GNU_addr_index:
18560 {
18561 gdb_byte *data;
18562
18563 if (TYPE_LENGTH (type) != cu_header->addr_size)
18564 dwarf2_const_value_length_mismatch_complaint (name,
18565 cu_header->addr_size,
18566 TYPE_LENGTH (type));
18567 /* Symbols of this form are reasonably rare, so we just
18568 piggyback on the existing location code rather than writing
18569 a new implementation of symbol_computed_ops. */
18570 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18571 (*baton)->per_cu = cu->per_cu;
18572 gdb_assert ((*baton)->per_cu);
18573
18574 (*baton)->size = 2 + cu_header->addr_size;
18575 data = obstack_alloc (obstack, (*baton)->size);
18576 (*baton)->data = data;
18577
18578 data[0] = DW_OP_addr;
18579 store_unsigned_integer (&data[1], cu_header->addr_size,
18580 byte_order, DW_ADDR (attr));
18581 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18582 }
18583 break;
18584 case DW_FORM_string:
18585 case DW_FORM_strp:
18586 case DW_FORM_GNU_str_index:
18587 case DW_FORM_GNU_strp_alt:
18588 /* DW_STRING is already allocated on the objfile obstack, point
18589 directly to it. */
18590 *bytes = (const gdb_byte *) DW_STRING (attr);
18591 break;
18592 case DW_FORM_block1:
18593 case DW_FORM_block2:
18594 case DW_FORM_block4:
18595 case DW_FORM_block:
18596 case DW_FORM_exprloc:
18597 blk = DW_BLOCK (attr);
18598 if (TYPE_LENGTH (type) != blk->size)
18599 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18600 TYPE_LENGTH (type));
18601 *bytes = blk->data;
18602 break;
18603
18604 /* The DW_AT_const_value attributes are supposed to carry the
18605 symbol's value "represented as it would be on the target
18606 architecture." By the time we get here, it's already been
18607 converted to host endianness, so we just need to sign- or
18608 zero-extend it as appropriate. */
18609 case DW_FORM_data1:
18610 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18611 break;
18612 case DW_FORM_data2:
18613 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18614 break;
18615 case DW_FORM_data4:
18616 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18617 break;
18618 case DW_FORM_data8:
18619 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18620 break;
18621
18622 case DW_FORM_sdata:
18623 *value = DW_SND (attr);
18624 break;
18625
18626 case DW_FORM_udata:
18627 *value = DW_UNSND (attr);
18628 break;
18629
18630 default:
18631 complaint (&symfile_complaints,
18632 _("unsupported const value attribute form: '%s'"),
18633 dwarf_form_name (attr->form));
18634 *value = 0;
18635 break;
18636 }
18637 }
18638
18639
18640 /* Copy constant value from an attribute to a symbol. */
18641
18642 static void
18643 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18644 struct dwarf2_cu *cu)
18645 {
18646 struct objfile *objfile = cu->objfile;
18647 struct comp_unit_head *cu_header = &cu->header;
18648 LONGEST value;
18649 const gdb_byte *bytes;
18650 struct dwarf2_locexpr_baton *baton;
18651
18652 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18653 SYMBOL_PRINT_NAME (sym),
18654 &objfile->objfile_obstack, cu,
18655 &value, &bytes, &baton);
18656
18657 if (baton != NULL)
18658 {
18659 SYMBOL_LOCATION_BATON (sym) = baton;
18660 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18661 }
18662 else if (bytes != NULL)
18663 {
18664 SYMBOL_VALUE_BYTES (sym) = bytes;
18665 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18666 }
18667 else
18668 {
18669 SYMBOL_VALUE (sym) = value;
18670 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18671 }
18672 }
18673
18674 /* Return the type of the die in question using its DW_AT_type attribute. */
18675
18676 static struct type *
18677 die_type (struct die_info *die, struct dwarf2_cu *cu)
18678 {
18679 struct attribute *type_attr;
18680
18681 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18682 if (!type_attr)
18683 {
18684 /* A missing DW_AT_type represents a void type. */
18685 return objfile_type (cu->objfile)->builtin_void;
18686 }
18687
18688 return lookup_die_type (die, type_attr, cu);
18689 }
18690
18691 /* True iff CU's producer generates GNAT Ada auxiliary information
18692 that allows to find parallel types through that information instead
18693 of having to do expensive parallel lookups by type name. */
18694
18695 static int
18696 need_gnat_info (struct dwarf2_cu *cu)
18697 {
18698 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18699 of GNAT produces this auxiliary information, without any indication
18700 that it is produced. Part of enhancing the FSF version of GNAT
18701 to produce that information will be to put in place an indicator
18702 that we can use in order to determine whether the descriptive type
18703 info is available or not. One suggestion that has been made is
18704 to use a new attribute, attached to the CU die. For now, assume
18705 that the descriptive type info is not available. */
18706 return 0;
18707 }
18708
18709 /* Return the auxiliary type of the die in question using its
18710 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18711 attribute is not present. */
18712
18713 static struct type *
18714 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18715 {
18716 struct attribute *type_attr;
18717
18718 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18719 if (!type_attr)
18720 return NULL;
18721
18722 return lookup_die_type (die, type_attr, cu);
18723 }
18724
18725 /* If DIE has a descriptive_type attribute, then set the TYPE's
18726 descriptive type accordingly. */
18727
18728 static void
18729 set_descriptive_type (struct type *type, struct die_info *die,
18730 struct dwarf2_cu *cu)
18731 {
18732 struct type *descriptive_type = die_descriptive_type (die, cu);
18733
18734 if (descriptive_type)
18735 {
18736 ALLOCATE_GNAT_AUX_TYPE (type);
18737 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18738 }
18739 }
18740
18741 /* Return the containing type of the die in question using its
18742 DW_AT_containing_type attribute. */
18743
18744 static struct type *
18745 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18746 {
18747 struct attribute *type_attr;
18748
18749 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18750 if (!type_attr)
18751 error (_("Dwarf Error: Problem turning containing type into gdb type "
18752 "[in module %s]"), objfile_name (cu->objfile));
18753
18754 return lookup_die_type (die, type_attr, cu);
18755 }
18756
18757 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18758
18759 static struct type *
18760 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18761 {
18762 struct objfile *objfile = dwarf2_per_objfile->objfile;
18763 char *message, *saved;
18764
18765 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18766 objfile_name (objfile),
18767 cu->header.offset.sect_off,
18768 die->offset.sect_off);
18769 saved = obstack_copy0 (&objfile->objfile_obstack,
18770 message, strlen (message));
18771 xfree (message);
18772
18773 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18774 }
18775
18776 /* Look up the type of DIE in CU using its type attribute ATTR.
18777 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18778 DW_AT_containing_type.
18779 If there is no type substitute an error marker. */
18780
18781 static struct type *
18782 lookup_die_type (struct die_info *die, const struct attribute *attr,
18783 struct dwarf2_cu *cu)
18784 {
18785 struct objfile *objfile = cu->objfile;
18786 struct type *this_type;
18787
18788 gdb_assert (attr->name == DW_AT_type
18789 || attr->name == DW_AT_GNAT_descriptive_type
18790 || attr->name == DW_AT_containing_type);
18791
18792 /* First see if we have it cached. */
18793
18794 if (attr->form == DW_FORM_GNU_ref_alt)
18795 {
18796 struct dwarf2_per_cu_data *per_cu;
18797 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18798
18799 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18800 this_type = get_die_type_at_offset (offset, per_cu);
18801 }
18802 else if (attr_form_is_ref (attr))
18803 {
18804 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18805
18806 this_type = get_die_type_at_offset (offset, cu->per_cu);
18807 }
18808 else if (attr->form == DW_FORM_ref_sig8)
18809 {
18810 ULONGEST signature = DW_SIGNATURE (attr);
18811
18812 return get_signatured_type (die, signature, cu);
18813 }
18814 else
18815 {
18816 complaint (&symfile_complaints,
18817 _("Dwarf Error: Bad type attribute %s in DIE"
18818 " at 0x%x [in module %s]"),
18819 dwarf_attr_name (attr->name), die->offset.sect_off,
18820 objfile_name (objfile));
18821 return build_error_marker_type (cu, die);
18822 }
18823
18824 /* If not cached we need to read it in. */
18825
18826 if (this_type == NULL)
18827 {
18828 struct die_info *type_die = NULL;
18829 struct dwarf2_cu *type_cu = cu;
18830
18831 if (attr_form_is_ref (attr))
18832 type_die = follow_die_ref (die, attr, &type_cu);
18833 if (type_die == NULL)
18834 return build_error_marker_type (cu, die);
18835 /* If we find the type now, it's probably because the type came
18836 from an inter-CU reference and the type's CU got expanded before
18837 ours. */
18838 this_type = read_type_die (type_die, type_cu);
18839 }
18840
18841 /* If we still don't have a type use an error marker. */
18842
18843 if (this_type == NULL)
18844 return build_error_marker_type (cu, die);
18845
18846 return this_type;
18847 }
18848
18849 /* Return the type in DIE, CU.
18850 Returns NULL for invalid types.
18851
18852 This first does a lookup in die_type_hash,
18853 and only reads the die in if necessary.
18854
18855 NOTE: This can be called when reading in partial or full symbols. */
18856
18857 static struct type *
18858 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18859 {
18860 struct type *this_type;
18861
18862 this_type = get_die_type (die, cu);
18863 if (this_type)
18864 return this_type;
18865
18866 return read_type_die_1 (die, cu);
18867 }
18868
18869 /* Read the type in DIE, CU.
18870 Returns NULL for invalid types. */
18871
18872 static struct type *
18873 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18874 {
18875 struct type *this_type = NULL;
18876
18877 switch (die->tag)
18878 {
18879 case DW_TAG_class_type:
18880 case DW_TAG_interface_type:
18881 case DW_TAG_structure_type:
18882 case DW_TAG_union_type:
18883 this_type = read_structure_type (die, cu);
18884 break;
18885 case DW_TAG_enumeration_type:
18886 this_type = read_enumeration_type (die, cu);
18887 break;
18888 case DW_TAG_subprogram:
18889 case DW_TAG_subroutine_type:
18890 case DW_TAG_inlined_subroutine:
18891 this_type = read_subroutine_type (die, cu);
18892 break;
18893 case DW_TAG_array_type:
18894 this_type = read_array_type (die, cu);
18895 break;
18896 case DW_TAG_set_type:
18897 this_type = read_set_type (die, cu);
18898 break;
18899 case DW_TAG_pointer_type:
18900 this_type = read_tag_pointer_type (die, cu);
18901 break;
18902 case DW_TAG_ptr_to_member_type:
18903 this_type = read_tag_ptr_to_member_type (die, cu);
18904 break;
18905 case DW_TAG_reference_type:
18906 this_type = read_tag_reference_type (die, cu);
18907 break;
18908 case DW_TAG_const_type:
18909 this_type = read_tag_const_type (die, cu);
18910 break;
18911 case DW_TAG_volatile_type:
18912 this_type = read_tag_volatile_type (die, cu);
18913 break;
18914 case DW_TAG_restrict_type:
18915 this_type = read_tag_restrict_type (die, cu);
18916 break;
18917 case DW_TAG_string_type:
18918 this_type = read_tag_string_type (die, cu);
18919 break;
18920 case DW_TAG_typedef:
18921 this_type = read_typedef (die, cu);
18922 break;
18923 case DW_TAG_subrange_type:
18924 this_type = read_subrange_type (die, cu);
18925 break;
18926 case DW_TAG_base_type:
18927 this_type = read_base_type (die, cu);
18928 break;
18929 case DW_TAG_unspecified_type:
18930 this_type = read_unspecified_type (die, cu);
18931 break;
18932 case DW_TAG_namespace:
18933 this_type = read_namespace_type (die, cu);
18934 break;
18935 case DW_TAG_module:
18936 this_type = read_module_type (die, cu);
18937 break;
18938 case DW_TAG_atomic_type:
18939 this_type = read_tag_atomic_type (die, cu);
18940 break;
18941 default:
18942 complaint (&symfile_complaints,
18943 _("unexpected tag in read_type_die: '%s'"),
18944 dwarf_tag_name (die->tag));
18945 break;
18946 }
18947
18948 return this_type;
18949 }
18950
18951 /* See if we can figure out if the class lives in a namespace. We do
18952 this by looking for a member function; its demangled name will
18953 contain namespace info, if there is any.
18954 Return the computed name or NULL.
18955 Space for the result is allocated on the objfile's obstack.
18956 This is the full-die version of guess_partial_die_structure_name.
18957 In this case we know DIE has no useful parent. */
18958
18959 static char *
18960 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18961 {
18962 struct die_info *spec_die;
18963 struct dwarf2_cu *spec_cu;
18964 struct die_info *child;
18965
18966 spec_cu = cu;
18967 spec_die = die_specification (die, &spec_cu);
18968 if (spec_die != NULL)
18969 {
18970 die = spec_die;
18971 cu = spec_cu;
18972 }
18973
18974 for (child = die->child;
18975 child != NULL;
18976 child = child->sibling)
18977 {
18978 if (child->tag == DW_TAG_subprogram)
18979 {
18980 struct attribute *attr;
18981
18982 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18983 if (attr == NULL)
18984 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18985 if (attr != NULL)
18986 {
18987 char *actual_name
18988 = language_class_name_from_physname (cu->language_defn,
18989 DW_STRING (attr));
18990 char *name = NULL;
18991
18992 if (actual_name != NULL)
18993 {
18994 const char *die_name = dwarf2_name (die, cu);
18995
18996 if (die_name != NULL
18997 && strcmp (die_name, actual_name) != 0)
18998 {
18999 /* Strip off the class name from the full name.
19000 We want the prefix. */
19001 int die_name_len = strlen (die_name);
19002 int actual_name_len = strlen (actual_name);
19003
19004 /* Test for '::' as a sanity check. */
19005 if (actual_name_len > die_name_len + 2
19006 && actual_name[actual_name_len
19007 - die_name_len - 1] == ':')
19008 name =
19009 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19010 actual_name,
19011 actual_name_len - die_name_len - 2);
19012 }
19013 }
19014 xfree (actual_name);
19015 return name;
19016 }
19017 }
19018 }
19019
19020 return NULL;
19021 }
19022
19023 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19024 prefix part in such case. See
19025 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19026
19027 static char *
19028 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19029 {
19030 struct attribute *attr;
19031 char *base;
19032
19033 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19034 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19035 return NULL;
19036
19037 attr = dwarf2_attr (die, DW_AT_name, cu);
19038 if (attr != NULL && DW_STRING (attr) != NULL)
19039 return NULL;
19040
19041 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19042 if (attr == NULL)
19043 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19044 if (attr == NULL || DW_STRING (attr) == NULL)
19045 return NULL;
19046
19047 /* dwarf2_name had to be already called. */
19048 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19049
19050 /* Strip the base name, keep any leading namespaces/classes. */
19051 base = strrchr (DW_STRING (attr), ':');
19052 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19053 return "";
19054
19055 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19056 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19057 }
19058
19059 /* Return the name of the namespace/class that DIE is defined within,
19060 or "" if we can't tell. The caller should not xfree the result.
19061
19062 For example, if we're within the method foo() in the following
19063 code:
19064
19065 namespace N {
19066 class C {
19067 void foo () {
19068 }
19069 };
19070 }
19071
19072 then determine_prefix on foo's die will return "N::C". */
19073
19074 static const char *
19075 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19076 {
19077 struct die_info *parent, *spec_die;
19078 struct dwarf2_cu *spec_cu;
19079 struct type *parent_type;
19080 char *retval;
19081
19082 if (cu->language != language_cplus && cu->language != language_java
19083 && cu->language != language_fortran)
19084 return "";
19085
19086 retval = anonymous_struct_prefix (die, cu);
19087 if (retval)
19088 return retval;
19089
19090 /* We have to be careful in the presence of DW_AT_specification.
19091 For example, with GCC 3.4, given the code
19092
19093 namespace N {
19094 void foo() {
19095 // Definition of N::foo.
19096 }
19097 }
19098
19099 then we'll have a tree of DIEs like this:
19100
19101 1: DW_TAG_compile_unit
19102 2: DW_TAG_namespace // N
19103 3: DW_TAG_subprogram // declaration of N::foo
19104 4: DW_TAG_subprogram // definition of N::foo
19105 DW_AT_specification // refers to die #3
19106
19107 Thus, when processing die #4, we have to pretend that we're in
19108 the context of its DW_AT_specification, namely the contex of die
19109 #3. */
19110 spec_cu = cu;
19111 spec_die = die_specification (die, &spec_cu);
19112 if (spec_die == NULL)
19113 parent = die->parent;
19114 else
19115 {
19116 parent = spec_die->parent;
19117 cu = spec_cu;
19118 }
19119
19120 if (parent == NULL)
19121 return "";
19122 else if (parent->building_fullname)
19123 {
19124 const char *name;
19125 const char *parent_name;
19126
19127 /* It has been seen on RealView 2.2 built binaries,
19128 DW_TAG_template_type_param types actually _defined_ as
19129 children of the parent class:
19130
19131 enum E {};
19132 template class <class Enum> Class{};
19133 Class<enum E> class_e;
19134
19135 1: DW_TAG_class_type (Class)
19136 2: DW_TAG_enumeration_type (E)
19137 3: DW_TAG_enumerator (enum1:0)
19138 3: DW_TAG_enumerator (enum2:1)
19139 ...
19140 2: DW_TAG_template_type_param
19141 DW_AT_type DW_FORM_ref_udata (E)
19142
19143 Besides being broken debug info, it can put GDB into an
19144 infinite loop. Consider:
19145
19146 When we're building the full name for Class<E>, we'll start
19147 at Class, and go look over its template type parameters,
19148 finding E. We'll then try to build the full name of E, and
19149 reach here. We're now trying to build the full name of E,
19150 and look over the parent DIE for containing scope. In the
19151 broken case, if we followed the parent DIE of E, we'd again
19152 find Class, and once again go look at its template type
19153 arguments, etc., etc. Simply don't consider such parent die
19154 as source-level parent of this die (it can't be, the language
19155 doesn't allow it), and break the loop here. */
19156 name = dwarf2_name (die, cu);
19157 parent_name = dwarf2_name (parent, cu);
19158 complaint (&symfile_complaints,
19159 _("template param type '%s' defined within parent '%s'"),
19160 name ? name : "<unknown>",
19161 parent_name ? parent_name : "<unknown>");
19162 return "";
19163 }
19164 else
19165 switch (parent->tag)
19166 {
19167 case DW_TAG_namespace:
19168 parent_type = read_type_die (parent, cu);
19169 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19170 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19171 Work around this problem here. */
19172 if (cu->language == language_cplus
19173 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19174 return "";
19175 /* We give a name to even anonymous namespaces. */
19176 return TYPE_TAG_NAME (parent_type);
19177 case DW_TAG_class_type:
19178 case DW_TAG_interface_type:
19179 case DW_TAG_structure_type:
19180 case DW_TAG_union_type:
19181 case DW_TAG_module:
19182 parent_type = read_type_die (parent, cu);
19183 if (TYPE_TAG_NAME (parent_type) != NULL)
19184 return TYPE_TAG_NAME (parent_type);
19185 else
19186 /* An anonymous structure is only allowed non-static data
19187 members; no typedefs, no member functions, et cetera.
19188 So it does not need a prefix. */
19189 return "";
19190 case DW_TAG_compile_unit:
19191 case DW_TAG_partial_unit:
19192 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19193 if (cu->language == language_cplus
19194 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19195 && die->child != NULL
19196 && (die->tag == DW_TAG_class_type
19197 || die->tag == DW_TAG_structure_type
19198 || die->tag == DW_TAG_union_type))
19199 {
19200 char *name = guess_full_die_structure_name (die, cu);
19201 if (name != NULL)
19202 return name;
19203 }
19204 return "";
19205 case DW_TAG_enumeration_type:
19206 parent_type = read_type_die (parent, cu);
19207 if (TYPE_DECLARED_CLASS (parent_type))
19208 {
19209 if (TYPE_TAG_NAME (parent_type) != NULL)
19210 return TYPE_TAG_NAME (parent_type);
19211 return "";
19212 }
19213 /* Fall through. */
19214 default:
19215 return determine_prefix (parent, cu);
19216 }
19217 }
19218
19219 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19220 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19221 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19222 an obconcat, otherwise allocate storage for the result. The CU argument is
19223 used to determine the language and hence, the appropriate separator. */
19224
19225 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19226
19227 static char *
19228 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19229 int physname, struct dwarf2_cu *cu)
19230 {
19231 const char *lead = "";
19232 const char *sep;
19233
19234 if (suffix == NULL || suffix[0] == '\0'
19235 || prefix == NULL || prefix[0] == '\0')
19236 sep = "";
19237 else if (cu->language == language_java)
19238 sep = ".";
19239 else if (cu->language == language_fortran && physname)
19240 {
19241 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19242 DW_AT_MIPS_linkage_name is preferred and used instead. */
19243
19244 lead = "__";
19245 sep = "_MOD_";
19246 }
19247 else
19248 sep = "::";
19249
19250 if (prefix == NULL)
19251 prefix = "";
19252 if (suffix == NULL)
19253 suffix = "";
19254
19255 if (obs == NULL)
19256 {
19257 char *retval
19258 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19259
19260 strcpy (retval, lead);
19261 strcat (retval, prefix);
19262 strcat (retval, sep);
19263 strcat (retval, suffix);
19264 return retval;
19265 }
19266 else
19267 {
19268 /* We have an obstack. */
19269 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19270 }
19271 }
19272
19273 /* Return sibling of die, NULL if no sibling. */
19274
19275 static struct die_info *
19276 sibling_die (struct die_info *die)
19277 {
19278 return die->sibling;
19279 }
19280
19281 /* Get name of a die, return NULL if not found. */
19282
19283 static const char *
19284 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19285 struct obstack *obstack)
19286 {
19287 if (name && cu->language == language_cplus)
19288 {
19289 char *canon_name = cp_canonicalize_string (name);
19290
19291 if (canon_name != NULL)
19292 {
19293 if (strcmp (canon_name, name) != 0)
19294 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19295 xfree (canon_name);
19296 }
19297 }
19298
19299 return name;
19300 }
19301
19302 /* Get name of a die, return NULL if not found.
19303 Anonymous namespaces are converted to their magic string. */
19304
19305 static const char *
19306 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19307 {
19308 struct attribute *attr;
19309
19310 attr = dwarf2_attr (die, DW_AT_name, cu);
19311 if ((!attr || !DW_STRING (attr))
19312 && die->tag != DW_TAG_namespace
19313 && die->tag != DW_TAG_class_type
19314 && die->tag != DW_TAG_interface_type
19315 && die->tag != DW_TAG_structure_type
19316 && die->tag != DW_TAG_union_type)
19317 return NULL;
19318
19319 switch (die->tag)
19320 {
19321 case DW_TAG_compile_unit:
19322 case DW_TAG_partial_unit:
19323 /* Compilation units have a DW_AT_name that is a filename, not
19324 a source language identifier. */
19325 case DW_TAG_enumeration_type:
19326 case DW_TAG_enumerator:
19327 /* These tags always have simple identifiers already; no need
19328 to canonicalize them. */
19329 return DW_STRING (attr);
19330
19331 case DW_TAG_namespace:
19332 if (attr != NULL && DW_STRING (attr) != NULL)
19333 return DW_STRING (attr);
19334 return CP_ANONYMOUS_NAMESPACE_STR;
19335
19336 case DW_TAG_subprogram:
19337 /* Java constructors will all be named "<init>", so return
19338 the class name when we see this special case. */
19339 if (cu->language == language_java
19340 && DW_STRING (attr) != NULL
19341 && strcmp (DW_STRING (attr), "<init>") == 0)
19342 {
19343 struct dwarf2_cu *spec_cu = cu;
19344 struct die_info *spec_die;
19345
19346 /* GCJ will output '<init>' for Java constructor names.
19347 For this special case, return the name of the parent class. */
19348
19349 /* GCJ may output subprogram DIEs with AT_specification set.
19350 If so, use the name of the specified DIE. */
19351 spec_die = die_specification (die, &spec_cu);
19352 if (spec_die != NULL)
19353 return dwarf2_name (spec_die, spec_cu);
19354
19355 do
19356 {
19357 die = die->parent;
19358 if (die->tag == DW_TAG_class_type)
19359 return dwarf2_name (die, cu);
19360 }
19361 while (die->tag != DW_TAG_compile_unit
19362 && die->tag != DW_TAG_partial_unit);
19363 }
19364 break;
19365
19366 case DW_TAG_class_type:
19367 case DW_TAG_interface_type:
19368 case DW_TAG_structure_type:
19369 case DW_TAG_union_type:
19370 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19371 structures or unions. These were of the form "._%d" in GCC 4.1,
19372 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19373 and GCC 4.4. We work around this problem by ignoring these. */
19374 if (attr && DW_STRING (attr)
19375 && (startswith (DW_STRING (attr), "._")
19376 || startswith (DW_STRING (attr), "<anonymous")))
19377 return NULL;
19378
19379 /* GCC might emit a nameless typedef that has a linkage name. See
19380 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19381 if (!attr || DW_STRING (attr) == NULL)
19382 {
19383 char *demangled = NULL;
19384
19385 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19386 if (attr == NULL)
19387 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19388
19389 if (attr == NULL || DW_STRING (attr) == NULL)
19390 return NULL;
19391
19392 /* Avoid demangling DW_STRING (attr) the second time on a second
19393 call for the same DIE. */
19394 if (!DW_STRING_IS_CANONICAL (attr))
19395 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19396
19397 if (demangled)
19398 {
19399 char *base;
19400
19401 /* FIXME: we already did this for the partial symbol... */
19402 DW_STRING (attr)
19403 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19404 demangled, strlen (demangled));
19405 DW_STRING_IS_CANONICAL (attr) = 1;
19406 xfree (demangled);
19407
19408 /* Strip any leading namespaces/classes, keep only the base name.
19409 DW_AT_name for named DIEs does not contain the prefixes. */
19410 base = strrchr (DW_STRING (attr), ':');
19411 if (base && base > DW_STRING (attr) && base[-1] == ':')
19412 return &base[1];
19413 else
19414 return DW_STRING (attr);
19415 }
19416 }
19417 break;
19418
19419 default:
19420 break;
19421 }
19422
19423 if (!DW_STRING_IS_CANONICAL (attr))
19424 {
19425 DW_STRING (attr)
19426 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19427 &cu->objfile->per_bfd->storage_obstack);
19428 DW_STRING_IS_CANONICAL (attr) = 1;
19429 }
19430 return DW_STRING (attr);
19431 }
19432
19433 /* Return the die that this die in an extension of, or NULL if there
19434 is none. *EXT_CU is the CU containing DIE on input, and the CU
19435 containing the return value on output. */
19436
19437 static struct die_info *
19438 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19439 {
19440 struct attribute *attr;
19441
19442 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19443 if (attr == NULL)
19444 return NULL;
19445
19446 return follow_die_ref (die, attr, ext_cu);
19447 }
19448
19449 /* Convert a DIE tag into its string name. */
19450
19451 static const char *
19452 dwarf_tag_name (unsigned tag)
19453 {
19454 const char *name = get_DW_TAG_name (tag);
19455
19456 if (name == NULL)
19457 return "DW_TAG_<unknown>";
19458
19459 return name;
19460 }
19461
19462 /* Convert a DWARF attribute code into its string name. */
19463
19464 static const char *
19465 dwarf_attr_name (unsigned attr)
19466 {
19467 const char *name;
19468
19469 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19470 if (attr == DW_AT_MIPS_fde)
19471 return "DW_AT_MIPS_fde";
19472 #else
19473 if (attr == DW_AT_HP_block_index)
19474 return "DW_AT_HP_block_index";
19475 #endif
19476
19477 name = get_DW_AT_name (attr);
19478
19479 if (name == NULL)
19480 return "DW_AT_<unknown>";
19481
19482 return name;
19483 }
19484
19485 /* Convert a DWARF value form code into its string name. */
19486
19487 static const char *
19488 dwarf_form_name (unsigned form)
19489 {
19490 const char *name = get_DW_FORM_name (form);
19491
19492 if (name == NULL)
19493 return "DW_FORM_<unknown>";
19494
19495 return name;
19496 }
19497
19498 static char *
19499 dwarf_bool_name (unsigned mybool)
19500 {
19501 if (mybool)
19502 return "TRUE";
19503 else
19504 return "FALSE";
19505 }
19506
19507 /* Convert a DWARF type code into its string name. */
19508
19509 static const char *
19510 dwarf_type_encoding_name (unsigned enc)
19511 {
19512 const char *name = get_DW_ATE_name (enc);
19513
19514 if (name == NULL)
19515 return "DW_ATE_<unknown>";
19516
19517 return name;
19518 }
19519
19520 static void
19521 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19522 {
19523 unsigned int i;
19524
19525 print_spaces (indent, f);
19526 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19527 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19528
19529 if (die->parent != NULL)
19530 {
19531 print_spaces (indent, f);
19532 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19533 die->parent->offset.sect_off);
19534 }
19535
19536 print_spaces (indent, f);
19537 fprintf_unfiltered (f, " has children: %s\n",
19538 dwarf_bool_name (die->child != NULL));
19539
19540 print_spaces (indent, f);
19541 fprintf_unfiltered (f, " attributes:\n");
19542
19543 for (i = 0; i < die->num_attrs; ++i)
19544 {
19545 print_spaces (indent, f);
19546 fprintf_unfiltered (f, " %s (%s) ",
19547 dwarf_attr_name (die->attrs[i].name),
19548 dwarf_form_name (die->attrs[i].form));
19549
19550 switch (die->attrs[i].form)
19551 {
19552 case DW_FORM_addr:
19553 case DW_FORM_GNU_addr_index:
19554 fprintf_unfiltered (f, "address: ");
19555 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19556 break;
19557 case DW_FORM_block2:
19558 case DW_FORM_block4:
19559 case DW_FORM_block:
19560 case DW_FORM_block1:
19561 fprintf_unfiltered (f, "block: size %s",
19562 pulongest (DW_BLOCK (&die->attrs[i])->size));
19563 break;
19564 case DW_FORM_exprloc:
19565 fprintf_unfiltered (f, "expression: size %s",
19566 pulongest (DW_BLOCK (&die->attrs[i])->size));
19567 break;
19568 case DW_FORM_ref_addr:
19569 fprintf_unfiltered (f, "ref address: ");
19570 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19571 break;
19572 case DW_FORM_GNU_ref_alt:
19573 fprintf_unfiltered (f, "alt ref address: ");
19574 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19575 break;
19576 case DW_FORM_ref1:
19577 case DW_FORM_ref2:
19578 case DW_FORM_ref4:
19579 case DW_FORM_ref8:
19580 case DW_FORM_ref_udata:
19581 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19582 (long) (DW_UNSND (&die->attrs[i])));
19583 break;
19584 case DW_FORM_data1:
19585 case DW_FORM_data2:
19586 case DW_FORM_data4:
19587 case DW_FORM_data8:
19588 case DW_FORM_udata:
19589 case DW_FORM_sdata:
19590 fprintf_unfiltered (f, "constant: %s",
19591 pulongest (DW_UNSND (&die->attrs[i])));
19592 break;
19593 case DW_FORM_sec_offset:
19594 fprintf_unfiltered (f, "section offset: %s",
19595 pulongest (DW_UNSND (&die->attrs[i])));
19596 break;
19597 case DW_FORM_ref_sig8:
19598 fprintf_unfiltered (f, "signature: %s",
19599 hex_string (DW_SIGNATURE (&die->attrs[i])));
19600 break;
19601 case DW_FORM_string:
19602 case DW_FORM_strp:
19603 case DW_FORM_GNU_str_index:
19604 case DW_FORM_GNU_strp_alt:
19605 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19606 DW_STRING (&die->attrs[i])
19607 ? DW_STRING (&die->attrs[i]) : "",
19608 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19609 break;
19610 case DW_FORM_flag:
19611 if (DW_UNSND (&die->attrs[i]))
19612 fprintf_unfiltered (f, "flag: TRUE");
19613 else
19614 fprintf_unfiltered (f, "flag: FALSE");
19615 break;
19616 case DW_FORM_flag_present:
19617 fprintf_unfiltered (f, "flag: TRUE");
19618 break;
19619 case DW_FORM_indirect:
19620 /* The reader will have reduced the indirect form to
19621 the "base form" so this form should not occur. */
19622 fprintf_unfiltered (f,
19623 "unexpected attribute form: DW_FORM_indirect");
19624 break;
19625 default:
19626 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19627 die->attrs[i].form);
19628 break;
19629 }
19630 fprintf_unfiltered (f, "\n");
19631 }
19632 }
19633
19634 static void
19635 dump_die_for_error (struct die_info *die)
19636 {
19637 dump_die_shallow (gdb_stderr, 0, die);
19638 }
19639
19640 static void
19641 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19642 {
19643 int indent = level * 4;
19644
19645 gdb_assert (die != NULL);
19646
19647 if (level >= max_level)
19648 return;
19649
19650 dump_die_shallow (f, indent, die);
19651
19652 if (die->child != NULL)
19653 {
19654 print_spaces (indent, f);
19655 fprintf_unfiltered (f, " Children:");
19656 if (level + 1 < max_level)
19657 {
19658 fprintf_unfiltered (f, "\n");
19659 dump_die_1 (f, level + 1, max_level, die->child);
19660 }
19661 else
19662 {
19663 fprintf_unfiltered (f,
19664 " [not printed, max nesting level reached]\n");
19665 }
19666 }
19667
19668 if (die->sibling != NULL && level > 0)
19669 {
19670 dump_die_1 (f, level, max_level, die->sibling);
19671 }
19672 }
19673
19674 /* This is called from the pdie macro in gdbinit.in.
19675 It's not static so gcc will keep a copy callable from gdb. */
19676
19677 void
19678 dump_die (struct die_info *die, int max_level)
19679 {
19680 dump_die_1 (gdb_stdlog, 0, max_level, die);
19681 }
19682
19683 static void
19684 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19685 {
19686 void **slot;
19687
19688 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19689 INSERT);
19690
19691 *slot = die;
19692 }
19693
19694 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19695 required kind. */
19696
19697 static sect_offset
19698 dwarf2_get_ref_die_offset (const struct attribute *attr)
19699 {
19700 sect_offset retval = { DW_UNSND (attr) };
19701
19702 if (attr_form_is_ref (attr))
19703 return retval;
19704
19705 retval.sect_off = 0;
19706 complaint (&symfile_complaints,
19707 _("unsupported die ref attribute form: '%s'"),
19708 dwarf_form_name (attr->form));
19709 return retval;
19710 }
19711
19712 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19713 * the value held by the attribute is not constant. */
19714
19715 static LONGEST
19716 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19717 {
19718 if (attr->form == DW_FORM_sdata)
19719 return DW_SND (attr);
19720 else if (attr->form == DW_FORM_udata
19721 || attr->form == DW_FORM_data1
19722 || attr->form == DW_FORM_data2
19723 || attr->form == DW_FORM_data4
19724 || attr->form == DW_FORM_data8)
19725 return DW_UNSND (attr);
19726 else
19727 {
19728 complaint (&symfile_complaints,
19729 _("Attribute value is not a constant (%s)"),
19730 dwarf_form_name (attr->form));
19731 return default_value;
19732 }
19733 }
19734
19735 /* Follow reference or signature attribute ATTR of SRC_DIE.
19736 On entry *REF_CU is the CU of SRC_DIE.
19737 On exit *REF_CU is the CU of the result. */
19738
19739 static struct die_info *
19740 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19741 struct dwarf2_cu **ref_cu)
19742 {
19743 struct die_info *die;
19744
19745 if (attr_form_is_ref (attr))
19746 die = follow_die_ref (src_die, attr, ref_cu);
19747 else if (attr->form == DW_FORM_ref_sig8)
19748 die = follow_die_sig (src_die, attr, ref_cu);
19749 else
19750 {
19751 dump_die_for_error (src_die);
19752 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19753 objfile_name ((*ref_cu)->objfile));
19754 }
19755
19756 return die;
19757 }
19758
19759 /* Follow reference OFFSET.
19760 On entry *REF_CU is the CU of the source die referencing OFFSET.
19761 On exit *REF_CU is the CU of the result.
19762 Returns NULL if OFFSET is invalid. */
19763
19764 static struct die_info *
19765 follow_die_offset (sect_offset offset, int offset_in_dwz,
19766 struct dwarf2_cu **ref_cu)
19767 {
19768 struct die_info temp_die;
19769 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19770
19771 gdb_assert (cu->per_cu != NULL);
19772
19773 target_cu = cu;
19774
19775 if (cu->per_cu->is_debug_types)
19776 {
19777 /* .debug_types CUs cannot reference anything outside their CU.
19778 If they need to, they have to reference a signatured type via
19779 DW_FORM_ref_sig8. */
19780 if (! offset_in_cu_p (&cu->header, offset))
19781 return NULL;
19782 }
19783 else if (offset_in_dwz != cu->per_cu->is_dwz
19784 || ! offset_in_cu_p (&cu->header, offset))
19785 {
19786 struct dwarf2_per_cu_data *per_cu;
19787
19788 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19789 cu->objfile);
19790
19791 /* If necessary, add it to the queue and load its DIEs. */
19792 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19793 load_full_comp_unit (per_cu, cu->language);
19794
19795 target_cu = per_cu->cu;
19796 }
19797 else if (cu->dies == NULL)
19798 {
19799 /* We're loading full DIEs during partial symbol reading. */
19800 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19801 load_full_comp_unit (cu->per_cu, language_minimal);
19802 }
19803
19804 *ref_cu = target_cu;
19805 temp_die.offset = offset;
19806 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19807 }
19808
19809 /* Follow reference attribute ATTR of SRC_DIE.
19810 On entry *REF_CU is the CU of SRC_DIE.
19811 On exit *REF_CU is the CU of the result. */
19812
19813 static struct die_info *
19814 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19815 struct dwarf2_cu **ref_cu)
19816 {
19817 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19818 struct dwarf2_cu *cu = *ref_cu;
19819 struct die_info *die;
19820
19821 die = follow_die_offset (offset,
19822 (attr->form == DW_FORM_GNU_ref_alt
19823 || cu->per_cu->is_dwz),
19824 ref_cu);
19825 if (!die)
19826 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19827 "at 0x%x [in module %s]"),
19828 offset.sect_off, src_die->offset.sect_off,
19829 objfile_name (cu->objfile));
19830
19831 return die;
19832 }
19833
19834 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19835 Returned value is intended for DW_OP_call*. Returned
19836 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19837
19838 struct dwarf2_locexpr_baton
19839 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19840 struct dwarf2_per_cu_data *per_cu,
19841 CORE_ADDR (*get_frame_pc) (void *baton),
19842 void *baton)
19843 {
19844 struct dwarf2_cu *cu;
19845 struct die_info *die;
19846 struct attribute *attr;
19847 struct dwarf2_locexpr_baton retval;
19848
19849 dw2_setup (per_cu->objfile);
19850
19851 if (per_cu->cu == NULL)
19852 load_cu (per_cu);
19853 cu = per_cu->cu;
19854
19855 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19856 if (!die)
19857 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19858 offset.sect_off, objfile_name (per_cu->objfile));
19859
19860 attr = dwarf2_attr (die, DW_AT_location, cu);
19861 if (!attr)
19862 {
19863 /* DWARF: "If there is no such attribute, then there is no effect.".
19864 DATA is ignored if SIZE is 0. */
19865
19866 retval.data = NULL;
19867 retval.size = 0;
19868 }
19869 else if (attr_form_is_section_offset (attr))
19870 {
19871 struct dwarf2_loclist_baton loclist_baton;
19872 CORE_ADDR pc = (*get_frame_pc) (baton);
19873 size_t size;
19874
19875 fill_in_loclist_baton (cu, &loclist_baton, attr);
19876
19877 retval.data = dwarf2_find_location_expression (&loclist_baton,
19878 &size, pc);
19879 retval.size = size;
19880 }
19881 else
19882 {
19883 if (!attr_form_is_block (attr))
19884 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19885 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19886 offset.sect_off, objfile_name (per_cu->objfile));
19887
19888 retval.data = DW_BLOCK (attr)->data;
19889 retval.size = DW_BLOCK (attr)->size;
19890 }
19891 retval.per_cu = cu->per_cu;
19892
19893 age_cached_comp_units ();
19894
19895 return retval;
19896 }
19897
19898 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19899 offset. */
19900
19901 struct dwarf2_locexpr_baton
19902 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19903 struct dwarf2_per_cu_data *per_cu,
19904 CORE_ADDR (*get_frame_pc) (void *baton),
19905 void *baton)
19906 {
19907 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19908
19909 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19910 }
19911
19912 /* Write a constant of a given type as target-ordered bytes into
19913 OBSTACK. */
19914
19915 static const gdb_byte *
19916 write_constant_as_bytes (struct obstack *obstack,
19917 enum bfd_endian byte_order,
19918 struct type *type,
19919 ULONGEST value,
19920 LONGEST *len)
19921 {
19922 gdb_byte *result;
19923
19924 *len = TYPE_LENGTH (type);
19925 result = obstack_alloc (obstack, *len);
19926 store_unsigned_integer (result, *len, byte_order, value);
19927
19928 return result;
19929 }
19930
19931 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19932 pointer to the constant bytes and set LEN to the length of the
19933 data. If memory is needed, allocate it on OBSTACK. If the DIE
19934 does not have a DW_AT_const_value, return NULL. */
19935
19936 const gdb_byte *
19937 dwarf2_fetch_constant_bytes (sect_offset offset,
19938 struct dwarf2_per_cu_data *per_cu,
19939 struct obstack *obstack,
19940 LONGEST *len)
19941 {
19942 struct dwarf2_cu *cu;
19943 struct die_info *die;
19944 struct attribute *attr;
19945 const gdb_byte *result = NULL;
19946 struct type *type;
19947 LONGEST value;
19948 enum bfd_endian byte_order;
19949
19950 dw2_setup (per_cu->objfile);
19951
19952 if (per_cu->cu == NULL)
19953 load_cu (per_cu);
19954 cu = per_cu->cu;
19955
19956 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19957 if (!die)
19958 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19959 offset.sect_off, objfile_name (per_cu->objfile));
19960
19961
19962 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19963 if (attr == NULL)
19964 return NULL;
19965
19966 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19967 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19968
19969 switch (attr->form)
19970 {
19971 case DW_FORM_addr:
19972 case DW_FORM_GNU_addr_index:
19973 {
19974 gdb_byte *tem;
19975
19976 *len = cu->header.addr_size;
19977 tem = obstack_alloc (obstack, *len);
19978 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19979 result = tem;
19980 }
19981 break;
19982 case DW_FORM_string:
19983 case DW_FORM_strp:
19984 case DW_FORM_GNU_str_index:
19985 case DW_FORM_GNU_strp_alt:
19986 /* DW_STRING is already allocated on the objfile obstack, point
19987 directly to it. */
19988 result = (const gdb_byte *) DW_STRING (attr);
19989 *len = strlen (DW_STRING (attr));
19990 break;
19991 case DW_FORM_block1:
19992 case DW_FORM_block2:
19993 case DW_FORM_block4:
19994 case DW_FORM_block:
19995 case DW_FORM_exprloc:
19996 result = DW_BLOCK (attr)->data;
19997 *len = DW_BLOCK (attr)->size;
19998 break;
19999
20000 /* The DW_AT_const_value attributes are supposed to carry the
20001 symbol's value "represented as it would be on the target
20002 architecture." By the time we get here, it's already been
20003 converted to host endianness, so we just need to sign- or
20004 zero-extend it as appropriate. */
20005 case DW_FORM_data1:
20006 type = die_type (die, cu);
20007 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20008 if (result == NULL)
20009 result = write_constant_as_bytes (obstack, byte_order,
20010 type, value, len);
20011 break;
20012 case DW_FORM_data2:
20013 type = die_type (die, cu);
20014 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20015 if (result == NULL)
20016 result = write_constant_as_bytes (obstack, byte_order,
20017 type, value, len);
20018 break;
20019 case DW_FORM_data4:
20020 type = die_type (die, cu);
20021 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20022 if (result == NULL)
20023 result = write_constant_as_bytes (obstack, byte_order,
20024 type, value, len);
20025 break;
20026 case DW_FORM_data8:
20027 type = die_type (die, cu);
20028 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20029 if (result == NULL)
20030 result = write_constant_as_bytes (obstack, byte_order,
20031 type, value, len);
20032 break;
20033
20034 case DW_FORM_sdata:
20035 type = die_type (die, cu);
20036 result = write_constant_as_bytes (obstack, byte_order,
20037 type, DW_SND (attr), len);
20038 break;
20039
20040 case DW_FORM_udata:
20041 type = die_type (die, cu);
20042 result = write_constant_as_bytes (obstack, byte_order,
20043 type, DW_UNSND (attr), len);
20044 break;
20045
20046 default:
20047 complaint (&symfile_complaints,
20048 _("unsupported const value attribute form: '%s'"),
20049 dwarf_form_name (attr->form));
20050 break;
20051 }
20052
20053 return result;
20054 }
20055
20056 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20057 PER_CU. */
20058
20059 struct type *
20060 dwarf2_get_die_type (cu_offset die_offset,
20061 struct dwarf2_per_cu_data *per_cu)
20062 {
20063 sect_offset die_offset_sect;
20064
20065 dw2_setup (per_cu->objfile);
20066
20067 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20068 return get_die_type_at_offset (die_offset_sect, per_cu);
20069 }
20070
20071 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20072 On entry *REF_CU is the CU of SRC_DIE.
20073 On exit *REF_CU is the CU of the result.
20074 Returns NULL if the referenced DIE isn't found. */
20075
20076 static struct die_info *
20077 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20078 struct dwarf2_cu **ref_cu)
20079 {
20080 struct objfile *objfile = (*ref_cu)->objfile;
20081 struct die_info temp_die;
20082 struct dwarf2_cu *sig_cu;
20083 struct die_info *die;
20084
20085 /* While it might be nice to assert sig_type->type == NULL here,
20086 we can get here for DW_AT_imported_declaration where we need
20087 the DIE not the type. */
20088
20089 /* If necessary, add it to the queue and load its DIEs. */
20090
20091 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20092 read_signatured_type (sig_type);
20093
20094 sig_cu = sig_type->per_cu.cu;
20095 gdb_assert (sig_cu != NULL);
20096 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20097 temp_die.offset = sig_type->type_offset_in_section;
20098 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20099 temp_die.offset.sect_off);
20100 if (die)
20101 {
20102 /* For .gdb_index version 7 keep track of included TUs.
20103 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20104 if (dwarf2_per_objfile->index_table != NULL
20105 && dwarf2_per_objfile->index_table->version <= 7)
20106 {
20107 VEC_safe_push (dwarf2_per_cu_ptr,
20108 (*ref_cu)->per_cu->imported_symtabs,
20109 sig_cu->per_cu);
20110 }
20111
20112 *ref_cu = sig_cu;
20113 return die;
20114 }
20115
20116 return NULL;
20117 }
20118
20119 /* Follow signatured type referenced by ATTR in SRC_DIE.
20120 On entry *REF_CU is the CU of SRC_DIE.
20121 On exit *REF_CU is the CU of the result.
20122 The result is the DIE of the type.
20123 If the referenced type cannot be found an error is thrown. */
20124
20125 static struct die_info *
20126 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20127 struct dwarf2_cu **ref_cu)
20128 {
20129 ULONGEST signature = DW_SIGNATURE (attr);
20130 struct signatured_type *sig_type;
20131 struct die_info *die;
20132
20133 gdb_assert (attr->form == DW_FORM_ref_sig8);
20134
20135 sig_type = lookup_signatured_type (*ref_cu, signature);
20136 /* sig_type will be NULL if the signatured type is missing from
20137 the debug info. */
20138 if (sig_type == NULL)
20139 {
20140 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20141 " from DIE at 0x%x [in module %s]"),
20142 hex_string (signature), src_die->offset.sect_off,
20143 objfile_name ((*ref_cu)->objfile));
20144 }
20145
20146 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20147 if (die == NULL)
20148 {
20149 dump_die_for_error (src_die);
20150 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20151 " from DIE at 0x%x [in module %s]"),
20152 hex_string (signature), src_die->offset.sect_off,
20153 objfile_name ((*ref_cu)->objfile));
20154 }
20155
20156 return die;
20157 }
20158
20159 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20160 reading in and processing the type unit if necessary. */
20161
20162 static struct type *
20163 get_signatured_type (struct die_info *die, ULONGEST signature,
20164 struct dwarf2_cu *cu)
20165 {
20166 struct signatured_type *sig_type;
20167 struct dwarf2_cu *type_cu;
20168 struct die_info *type_die;
20169 struct type *type;
20170
20171 sig_type = lookup_signatured_type (cu, signature);
20172 /* sig_type will be NULL if the signatured type is missing from
20173 the debug info. */
20174 if (sig_type == NULL)
20175 {
20176 complaint (&symfile_complaints,
20177 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20178 " from DIE at 0x%x [in module %s]"),
20179 hex_string (signature), die->offset.sect_off,
20180 objfile_name (dwarf2_per_objfile->objfile));
20181 return build_error_marker_type (cu, die);
20182 }
20183
20184 /* If we already know the type we're done. */
20185 if (sig_type->type != NULL)
20186 return sig_type->type;
20187
20188 type_cu = cu;
20189 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20190 if (type_die != NULL)
20191 {
20192 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20193 is created. This is important, for example, because for c++ classes
20194 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20195 type = read_type_die (type_die, type_cu);
20196 if (type == NULL)
20197 {
20198 complaint (&symfile_complaints,
20199 _("Dwarf Error: Cannot build signatured type %s"
20200 " referenced from DIE at 0x%x [in module %s]"),
20201 hex_string (signature), die->offset.sect_off,
20202 objfile_name (dwarf2_per_objfile->objfile));
20203 type = build_error_marker_type (cu, die);
20204 }
20205 }
20206 else
20207 {
20208 complaint (&symfile_complaints,
20209 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20210 " from DIE at 0x%x [in module %s]"),
20211 hex_string (signature), die->offset.sect_off,
20212 objfile_name (dwarf2_per_objfile->objfile));
20213 type = build_error_marker_type (cu, die);
20214 }
20215 sig_type->type = type;
20216
20217 return type;
20218 }
20219
20220 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20221 reading in and processing the type unit if necessary. */
20222
20223 static struct type *
20224 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20225 struct dwarf2_cu *cu) /* ARI: editCase function */
20226 {
20227 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20228 if (attr_form_is_ref (attr))
20229 {
20230 struct dwarf2_cu *type_cu = cu;
20231 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20232
20233 return read_type_die (type_die, type_cu);
20234 }
20235 else if (attr->form == DW_FORM_ref_sig8)
20236 {
20237 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20238 }
20239 else
20240 {
20241 complaint (&symfile_complaints,
20242 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20243 " at 0x%x [in module %s]"),
20244 dwarf_form_name (attr->form), die->offset.sect_off,
20245 objfile_name (dwarf2_per_objfile->objfile));
20246 return build_error_marker_type (cu, die);
20247 }
20248 }
20249
20250 /* Load the DIEs associated with type unit PER_CU into memory. */
20251
20252 static void
20253 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20254 {
20255 struct signatured_type *sig_type;
20256
20257 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20258 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20259
20260 /* We have the per_cu, but we need the signatured_type.
20261 Fortunately this is an easy translation. */
20262 gdb_assert (per_cu->is_debug_types);
20263 sig_type = (struct signatured_type *) per_cu;
20264
20265 gdb_assert (per_cu->cu == NULL);
20266
20267 read_signatured_type (sig_type);
20268
20269 gdb_assert (per_cu->cu != NULL);
20270 }
20271
20272 /* die_reader_func for read_signatured_type.
20273 This is identical to load_full_comp_unit_reader,
20274 but is kept separate for now. */
20275
20276 static void
20277 read_signatured_type_reader (const struct die_reader_specs *reader,
20278 const gdb_byte *info_ptr,
20279 struct die_info *comp_unit_die,
20280 int has_children,
20281 void *data)
20282 {
20283 struct dwarf2_cu *cu = reader->cu;
20284
20285 gdb_assert (cu->die_hash == NULL);
20286 cu->die_hash =
20287 htab_create_alloc_ex (cu->header.length / 12,
20288 die_hash,
20289 die_eq,
20290 NULL,
20291 &cu->comp_unit_obstack,
20292 hashtab_obstack_allocate,
20293 dummy_obstack_deallocate);
20294
20295 if (has_children)
20296 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20297 &info_ptr, comp_unit_die);
20298 cu->dies = comp_unit_die;
20299 /* comp_unit_die is not stored in die_hash, no need. */
20300
20301 /* We try not to read any attributes in this function, because not
20302 all CUs needed for references have been loaded yet, and symbol
20303 table processing isn't initialized. But we have to set the CU language,
20304 or we won't be able to build types correctly.
20305 Similarly, if we do not read the producer, we can not apply
20306 producer-specific interpretation. */
20307 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20308 }
20309
20310 /* Read in a signatured type and build its CU and DIEs.
20311 If the type is a stub for the real type in a DWO file,
20312 read in the real type from the DWO file as well. */
20313
20314 static void
20315 read_signatured_type (struct signatured_type *sig_type)
20316 {
20317 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20318
20319 gdb_assert (per_cu->is_debug_types);
20320 gdb_assert (per_cu->cu == NULL);
20321
20322 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20323 read_signatured_type_reader, NULL);
20324 sig_type->per_cu.tu_read = 1;
20325 }
20326
20327 /* Decode simple location descriptions.
20328 Given a pointer to a dwarf block that defines a location, compute
20329 the location and return the value.
20330
20331 NOTE drow/2003-11-18: This function is called in two situations
20332 now: for the address of static or global variables (partial symbols
20333 only) and for offsets into structures which are expected to be
20334 (more or less) constant. The partial symbol case should go away,
20335 and only the constant case should remain. That will let this
20336 function complain more accurately. A few special modes are allowed
20337 without complaint for global variables (for instance, global
20338 register values and thread-local values).
20339
20340 A location description containing no operations indicates that the
20341 object is optimized out. The return value is 0 for that case.
20342 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20343 callers will only want a very basic result and this can become a
20344 complaint.
20345
20346 Note that stack[0] is unused except as a default error return. */
20347
20348 static CORE_ADDR
20349 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20350 {
20351 struct objfile *objfile = cu->objfile;
20352 size_t i;
20353 size_t size = blk->size;
20354 const gdb_byte *data = blk->data;
20355 CORE_ADDR stack[64];
20356 int stacki;
20357 unsigned int bytes_read, unsnd;
20358 gdb_byte op;
20359
20360 i = 0;
20361 stacki = 0;
20362 stack[stacki] = 0;
20363 stack[++stacki] = 0;
20364
20365 while (i < size)
20366 {
20367 op = data[i++];
20368 switch (op)
20369 {
20370 case DW_OP_lit0:
20371 case DW_OP_lit1:
20372 case DW_OP_lit2:
20373 case DW_OP_lit3:
20374 case DW_OP_lit4:
20375 case DW_OP_lit5:
20376 case DW_OP_lit6:
20377 case DW_OP_lit7:
20378 case DW_OP_lit8:
20379 case DW_OP_lit9:
20380 case DW_OP_lit10:
20381 case DW_OP_lit11:
20382 case DW_OP_lit12:
20383 case DW_OP_lit13:
20384 case DW_OP_lit14:
20385 case DW_OP_lit15:
20386 case DW_OP_lit16:
20387 case DW_OP_lit17:
20388 case DW_OP_lit18:
20389 case DW_OP_lit19:
20390 case DW_OP_lit20:
20391 case DW_OP_lit21:
20392 case DW_OP_lit22:
20393 case DW_OP_lit23:
20394 case DW_OP_lit24:
20395 case DW_OP_lit25:
20396 case DW_OP_lit26:
20397 case DW_OP_lit27:
20398 case DW_OP_lit28:
20399 case DW_OP_lit29:
20400 case DW_OP_lit30:
20401 case DW_OP_lit31:
20402 stack[++stacki] = op - DW_OP_lit0;
20403 break;
20404
20405 case DW_OP_reg0:
20406 case DW_OP_reg1:
20407 case DW_OP_reg2:
20408 case DW_OP_reg3:
20409 case DW_OP_reg4:
20410 case DW_OP_reg5:
20411 case DW_OP_reg6:
20412 case DW_OP_reg7:
20413 case DW_OP_reg8:
20414 case DW_OP_reg9:
20415 case DW_OP_reg10:
20416 case DW_OP_reg11:
20417 case DW_OP_reg12:
20418 case DW_OP_reg13:
20419 case DW_OP_reg14:
20420 case DW_OP_reg15:
20421 case DW_OP_reg16:
20422 case DW_OP_reg17:
20423 case DW_OP_reg18:
20424 case DW_OP_reg19:
20425 case DW_OP_reg20:
20426 case DW_OP_reg21:
20427 case DW_OP_reg22:
20428 case DW_OP_reg23:
20429 case DW_OP_reg24:
20430 case DW_OP_reg25:
20431 case DW_OP_reg26:
20432 case DW_OP_reg27:
20433 case DW_OP_reg28:
20434 case DW_OP_reg29:
20435 case DW_OP_reg30:
20436 case DW_OP_reg31:
20437 stack[++stacki] = op - DW_OP_reg0;
20438 if (i < size)
20439 dwarf2_complex_location_expr_complaint ();
20440 break;
20441
20442 case DW_OP_regx:
20443 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20444 i += bytes_read;
20445 stack[++stacki] = unsnd;
20446 if (i < size)
20447 dwarf2_complex_location_expr_complaint ();
20448 break;
20449
20450 case DW_OP_addr:
20451 stack[++stacki] = read_address (objfile->obfd, &data[i],
20452 cu, &bytes_read);
20453 i += bytes_read;
20454 break;
20455
20456 case DW_OP_const1u:
20457 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20458 i += 1;
20459 break;
20460
20461 case DW_OP_const1s:
20462 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20463 i += 1;
20464 break;
20465
20466 case DW_OP_const2u:
20467 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20468 i += 2;
20469 break;
20470
20471 case DW_OP_const2s:
20472 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20473 i += 2;
20474 break;
20475
20476 case DW_OP_const4u:
20477 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20478 i += 4;
20479 break;
20480
20481 case DW_OP_const4s:
20482 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20483 i += 4;
20484 break;
20485
20486 case DW_OP_const8u:
20487 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20488 i += 8;
20489 break;
20490
20491 case DW_OP_constu:
20492 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20493 &bytes_read);
20494 i += bytes_read;
20495 break;
20496
20497 case DW_OP_consts:
20498 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20499 i += bytes_read;
20500 break;
20501
20502 case DW_OP_dup:
20503 stack[stacki + 1] = stack[stacki];
20504 stacki++;
20505 break;
20506
20507 case DW_OP_plus:
20508 stack[stacki - 1] += stack[stacki];
20509 stacki--;
20510 break;
20511
20512 case DW_OP_plus_uconst:
20513 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20514 &bytes_read);
20515 i += bytes_read;
20516 break;
20517
20518 case DW_OP_minus:
20519 stack[stacki - 1] -= stack[stacki];
20520 stacki--;
20521 break;
20522
20523 case DW_OP_deref:
20524 /* If we're not the last op, then we definitely can't encode
20525 this using GDB's address_class enum. This is valid for partial
20526 global symbols, although the variable's address will be bogus
20527 in the psymtab. */
20528 if (i < size)
20529 dwarf2_complex_location_expr_complaint ();
20530 break;
20531
20532 case DW_OP_GNU_push_tls_address:
20533 /* The top of the stack has the offset from the beginning
20534 of the thread control block at which the variable is located. */
20535 /* Nothing should follow this operator, so the top of stack would
20536 be returned. */
20537 /* This is valid for partial global symbols, but the variable's
20538 address will be bogus in the psymtab. Make it always at least
20539 non-zero to not look as a variable garbage collected by linker
20540 which have DW_OP_addr 0. */
20541 if (i < size)
20542 dwarf2_complex_location_expr_complaint ();
20543 stack[stacki]++;
20544 break;
20545
20546 case DW_OP_GNU_uninit:
20547 break;
20548
20549 case DW_OP_GNU_addr_index:
20550 case DW_OP_GNU_const_index:
20551 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20552 &bytes_read);
20553 i += bytes_read;
20554 break;
20555
20556 default:
20557 {
20558 const char *name = get_DW_OP_name (op);
20559
20560 if (name)
20561 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20562 name);
20563 else
20564 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20565 op);
20566 }
20567
20568 return (stack[stacki]);
20569 }
20570
20571 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20572 outside of the allocated space. Also enforce minimum>0. */
20573 if (stacki >= ARRAY_SIZE (stack) - 1)
20574 {
20575 complaint (&symfile_complaints,
20576 _("location description stack overflow"));
20577 return 0;
20578 }
20579
20580 if (stacki <= 0)
20581 {
20582 complaint (&symfile_complaints,
20583 _("location description stack underflow"));
20584 return 0;
20585 }
20586 }
20587 return (stack[stacki]);
20588 }
20589
20590 /* memory allocation interface */
20591
20592 static struct dwarf_block *
20593 dwarf_alloc_block (struct dwarf2_cu *cu)
20594 {
20595 struct dwarf_block *blk;
20596
20597 blk = (struct dwarf_block *)
20598 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20599 return (blk);
20600 }
20601
20602 static struct die_info *
20603 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20604 {
20605 struct die_info *die;
20606 size_t size = sizeof (struct die_info);
20607
20608 if (num_attrs > 1)
20609 size += (num_attrs - 1) * sizeof (struct attribute);
20610
20611 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20612 memset (die, 0, sizeof (struct die_info));
20613 return (die);
20614 }
20615
20616 \f
20617 /* Macro support. */
20618
20619 /* Return file name relative to the compilation directory of file number I in
20620 *LH's file name table. The result is allocated using xmalloc; the caller is
20621 responsible for freeing it. */
20622
20623 static char *
20624 file_file_name (int file, struct line_header *lh)
20625 {
20626 /* Is the file number a valid index into the line header's file name
20627 table? Remember that file numbers start with one, not zero. */
20628 if (1 <= file && file <= lh->num_file_names)
20629 {
20630 struct file_entry *fe = &lh->file_names[file - 1];
20631
20632 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20633 return xstrdup (fe->name);
20634 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20635 fe->name, NULL);
20636 }
20637 else
20638 {
20639 /* The compiler produced a bogus file number. We can at least
20640 record the macro definitions made in the file, even if we
20641 won't be able to find the file by name. */
20642 char fake_name[80];
20643
20644 xsnprintf (fake_name, sizeof (fake_name),
20645 "<bad macro file number %d>", file);
20646
20647 complaint (&symfile_complaints,
20648 _("bad file number in macro information (%d)"),
20649 file);
20650
20651 return xstrdup (fake_name);
20652 }
20653 }
20654
20655 /* Return the full name of file number I in *LH's file name table.
20656 Use COMP_DIR as the name of the current directory of the
20657 compilation. The result is allocated using xmalloc; the caller is
20658 responsible for freeing it. */
20659 static char *
20660 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20661 {
20662 /* Is the file number a valid index into the line header's file name
20663 table? Remember that file numbers start with one, not zero. */
20664 if (1 <= file && file <= lh->num_file_names)
20665 {
20666 char *relative = file_file_name (file, lh);
20667
20668 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20669 return relative;
20670 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20671 }
20672 else
20673 return file_file_name (file, lh);
20674 }
20675
20676
20677 static struct macro_source_file *
20678 macro_start_file (int file, int line,
20679 struct macro_source_file *current_file,
20680 struct line_header *lh)
20681 {
20682 /* File name relative to the compilation directory of this source file. */
20683 char *file_name = file_file_name (file, lh);
20684
20685 if (! current_file)
20686 {
20687 /* Note: We don't create a macro table for this compilation unit
20688 at all until we actually get a filename. */
20689 struct macro_table *macro_table = get_macro_table ();
20690
20691 /* If we have no current file, then this must be the start_file
20692 directive for the compilation unit's main source file. */
20693 current_file = macro_set_main (macro_table, file_name);
20694 macro_define_special (macro_table);
20695 }
20696 else
20697 current_file = macro_include (current_file, line, file_name);
20698
20699 xfree (file_name);
20700
20701 return current_file;
20702 }
20703
20704
20705 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20706 followed by a null byte. */
20707 static char *
20708 copy_string (const char *buf, int len)
20709 {
20710 char *s = xmalloc (len + 1);
20711
20712 memcpy (s, buf, len);
20713 s[len] = '\0';
20714 return s;
20715 }
20716
20717
20718 static const char *
20719 consume_improper_spaces (const char *p, const char *body)
20720 {
20721 if (*p == ' ')
20722 {
20723 complaint (&symfile_complaints,
20724 _("macro definition contains spaces "
20725 "in formal argument list:\n`%s'"),
20726 body);
20727
20728 while (*p == ' ')
20729 p++;
20730 }
20731
20732 return p;
20733 }
20734
20735
20736 static void
20737 parse_macro_definition (struct macro_source_file *file, int line,
20738 const char *body)
20739 {
20740 const char *p;
20741
20742 /* The body string takes one of two forms. For object-like macro
20743 definitions, it should be:
20744
20745 <macro name> " " <definition>
20746
20747 For function-like macro definitions, it should be:
20748
20749 <macro name> "() " <definition>
20750 or
20751 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20752
20753 Spaces may appear only where explicitly indicated, and in the
20754 <definition>.
20755
20756 The Dwarf 2 spec says that an object-like macro's name is always
20757 followed by a space, but versions of GCC around March 2002 omit
20758 the space when the macro's definition is the empty string.
20759
20760 The Dwarf 2 spec says that there should be no spaces between the
20761 formal arguments in a function-like macro's formal argument list,
20762 but versions of GCC around March 2002 include spaces after the
20763 commas. */
20764
20765
20766 /* Find the extent of the macro name. The macro name is terminated
20767 by either a space or null character (for an object-like macro) or
20768 an opening paren (for a function-like macro). */
20769 for (p = body; *p; p++)
20770 if (*p == ' ' || *p == '(')
20771 break;
20772
20773 if (*p == ' ' || *p == '\0')
20774 {
20775 /* It's an object-like macro. */
20776 int name_len = p - body;
20777 char *name = copy_string (body, name_len);
20778 const char *replacement;
20779
20780 if (*p == ' ')
20781 replacement = body + name_len + 1;
20782 else
20783 {
20784 dwarf2_macro_malformed_definition_complaint (body);
20785 replacement = body + name_len;
20786 }
20787
20788 macro_define_object (file, line, name, replacement);
20789
20790 xfree (name);
20791 }
20792 else if (*p == '(')
20793 {
20794 /* It's a function-like macro. */
20795 char *name = copy_string (body, p - body);
20796 int argc = 0;
20797 int argv_size = 1;
20798 char **argv = xmalloc (argv_size * sizeof (*argv));
20799
20800 p++;
20801
20802 p = consume_improper_spaces (p, body);
20803
20804 /* Parse the formal argument list. */
20805 while (*p && *p != ')')
20806 {
20807 /* Find the extent of the current argument name. */
20808 const char *arg_start = p;
20809
20810 while (*p && *p != ',' && *p != ')' && *p != ' ')
20811 p++;
20812
20813 if (! *p || p == arg_start)
20814 dwarf2_macro_malformed_definition_complaint (body);
20815 else
20816 {
20817 /* Make sure argv has room for the new argument. */
20818 if (argc >= argv_size)
20819 {
20820 argv_size *= 2;
20821 argv = xrealloc (argv, argv_size * sizeof (*argv));
20822 }
20823
20824 argv[argc++] = copy_string (arg_start, p - arg_start);
20825 }
20826
20827 p = consume_improper_spaces (p, body);
20828
20829 /* Consume the comma, if present. */
20830 if (*p == ',')
20831 {
20832 p++;
20833
20834 p = consume_improper_spaces (p, body);
20835 }
20836 }
20837
20838 if (*p == ')')
20839 {
20840 p++;
20841
20842 if (*p == ' ')
20843 /* Perfectly formed definition, no complaints. */
20844 macro_define_function (file, line, name,
20845 argc, (const char **) argv,
20846 p + 1);
20847 else if (*p == '\0')
20848 {
20849 /* Complain, but do define it. */
20850 dwarf2_macro_malformed_definition_complaint (body);
20851 macro_define_function (file, line, name,
20852 argc, (const char **) argv,
20853 p);
20854 }
20855 else
20856 /* Just complain. */
20857 dwarf2_macro_malformed_definition_complaint (body);
20858 }
20859 else
20860 /* Just complain. */
20861 dwarf2_macro_malformed_definition_complaint (body);
20862
20863 xfree (name);
20864 {
20865 int i;
20866
20867 for (i = 0; i < argc; i++)
20868 xfree (argv[i]);
20869 }
20870 xfree (argv);
20871 }
20872 else
20873 dwarf2_macro_malformed_definition_complaint (body);
20874 }
20875
20876 /* Skip some bytes from BYTES according to the form given in FORM.
20877 Returns the new pointer. */
20878
20879 static const gdb_byte *
20880 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20881 enum dwarf_form form,
20882 unsigned int offset_size,
20883 struct dwarf2_section_info *section)
20884 {
20885 unsigned int bytes_read;
20886
20887 switch (form)
20888 {
20889 case DW_FORM_data1:
20890 case DW_FORM_flag:
20891 ++bytes;
20892 break;
20893
20894 case DW_FORM_data2:
20895 bytes += 2;
20896 break;
20897
20898 case DW_FORM_data4:
20899 bytes += 4;
20900 break;
20901
20902 case DW_FORM_data8:
20903 bytes += 8;
20904 break;
20905
20906 case DW_FORM_string:
20907 read_direct_string (abfd, bytes, &bytes_read);
20908 bytes += bytes_read;
20909 break;
20910
20911 case DW_FORM_sec_offset:
20912 case DW_FORM_strp:
20913 case DW_FORM_GNU_strp_alt:
20914 bytes += offset_size;
20915 break;
20916
20917 case DW_FORM_block:
20918 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20919 bytes += bytes_read;
20920 break;
20921
20922 case DW_FORM_block1:
20923 bytes += 1 + read_1_byte (abfd, bytes);
20924 break;
20925 case DW_FORM_block2:
20926 bytes += 2 + read_2_bytes (abfd, bytes);
20927 break;
20928 case DW_FORM_block4:
20929 bytes += 4 + read_4_bytes (abfd, bytes);
20930 break;
20931
20932 case DW_FORM_sdata:
20933 case DW_FORM_udata:
20934 case DW_FORM_GNU_addr_index:
20935 case DW_FORM_GNU_str_index:
20936 bytes = gdb_skip_leb128 (bytes, buffer_end);
20937 if (bytes == NULL)
20938 {
20939 dwarf2_section_buffer_overflow_complaint (section);
20940 return NULL;
20941 }
20942 break;
20943
20944 default:
20945 {
20946 complain:
20947 complaint (&symfile_complaints,
20948 _("invalid form 0x%x in `%s'"),
20949 form, get_section_name (section));
20950 return NULL;
20951 }
20952 }
20953
20954 return bytes;
20955 }
20956
20957 /* A helper for dwarf_decode_macros that handles skipping an unknown
20958 opcode. Returns an updated pointer to the macro data buffer; or,
20959 on error, issues a complaint and returns NULL. */
20960
20961 static const gdb_byte *
20962 skip_unknown_opcode (unsigned int opcode,
20963 const gdb_byte **opcode_definitions,
20964 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20965 bfd *abfd,
20966 unsigned int offset_size,
20967 struct dwarf2_section_info *section)
20968 {
20969 unsigned int bytes_read, i;
20970 unsigned long arg;
20971 const gdb_byte *defn;
20972
20973 if (opcode_definitions[opcode] == NULL)
20974 {
20975 complaint (&symfile_complaints,
20976 _("unrecognized DW_MACFINO opcode 0x%x"),
20977 opcode);
20978 return NULL;
20979 }
20980
20981 defn = opcode_definitions[opcode];
20982 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20983 defn += bytes_read;
20984
20985 for (i = 0; i < arg; ++i)
20986 {
20987 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20988 section);
20989 if (mac_ptr == NULL)
20990 {
20991 /* skip_form_bytes already issued the complaint. */
20992 return NULL;
20993 }
20994 }
20995
20996 return mac_ptr;
20997 }
20998
20999 /* A helper function which parses the header of a macro section.
21000 If the macro section is the extended (for now called "GNU") type,
21001 then this updates *OFFSET_SIZE. Returns a pointer to just after
21002 the header, or issues a complaint and returns NULL on error. */
21003
21004 static const gdb_byte *
21005 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21006 bfd *abfd,
21007 const gdb_byte *mac_ptr,
21008 unsigned int *offset_size,
21009 int section_is_gnu)
21010 {
21011 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21012
21013 if (section_is_gnu)
21014 {
21015 unsigned int version, flags;
21016
21017 version = read_2_bytes (abfd, mac_ptr);
21018 if (version != 4)
21019 {
21020 complaint (&symfile_complaints,
21021 _("unrecognized version `%d' in .debug_macro section"),
21022 version);
21023 return NULL;
21024 }
21025 mac_ptr += 2;
21026
21027 flags = read_1_byte (abfd, mac_ptr);
21028 ++mac_ptr;
21029 *offset_size = (flags & 1) ? 8 : 4;
21030
21031 if ((flags & 2) != 0)
21032 /* We don't need the line table offset. */
21033 mac_ptr += *offset_size;
21034
21035 /* Vendor opcode descriptions. */
21036 if ((flags & 4) != 0)
21037 {
21038 unsigned int i, count;
21039
21040 count = read_1_byte (abfd, mac_ptr);
21041 ++mac_ptr;
21042 for (i = 0; i < count; ++i)
21043 {
21044 unsigned int opcode, bytes_read;
21045 unsigned long arg;
21046
21047 opcode = read_1_byte (abfd, mac_ptr);
21048 ++mac_ptr;
21049 opcode_definitions[opcode] = mac_ptr;
21050 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21051 mac_ptr += bytes_read;
21052 mac_ptr += arg;
21053 }
21054 }
21055 }
21056
21057 return mac_ptr;
21058 }
21059
21060 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21061 including DW_MACRO_GNU_transparent_include. */
21062
21063 static void
21064 dwarf_decode_macro_bytes (bfd *abfd,
21065 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21066 struct macro_source_file *current_file,
21067 struct line_header *lh,
21068 struct dwarf2_section_info *section,
21069 int section_is_gnu, int section_is_dwz,
21070 unsigned int offset_size,
21071 htab_t include_hash)
21072 {
21073 struct objfile *objfile = dwarf2_per_objfile->objfile;
21074 enum dwarf_macro_record_type macinfo_type;
21075 int at_commandline;
21076 const gdb_byte *opcode_definitions[256];
21077
21078 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21079 &offset_size, section_is_gnu);
21080 if (mac_ptr == NULL)
21081 {
21082 /* We already issued a complaint. */
21083 return;
21084 }
21085
21086 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21087 GDB is still reading the definitions from command line. First
21088 DW_MACINFO_start_file will need to be ignored as it was already executed
21089 to create CURRENT_FILE for the main source holding also the command line
21090 definitions. On first met DW_MACINFO_start_file this flag is reset to
21091 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21092
21093 at_commandline = 1;
21094
21095 do
21096 {
21097 /* Do we at least have room for a macinfo type byte? */
21098 if (mac_ptr >= mac_end)
21099 {
21100 dwarf2_section_buffer_overflow_complaint (section);
21101 break;
21102 }
21103
21104 macinfo_type = read_1_byte (abfd, mac_ptr);
21105 mac_ptr++;
21106
21107 /* Note that we rely on the fact that the corresponding GNU and
21108 DWARF constants are the same. */
21109 switch (macinfo_type)
21110 {
21111 /* A zero macinfo type indicates the end of the macro
21112 information. */
21113 case 0:
21114 break;
21115
21116 case DW_MACRO_GNU_define:
21117 case DW_MACRO_GNU_undef:
21118 case DW_MACRO_GNU_define_indirect:
21119 case DW_MACRO_GNU_undef_indirect:
21120 case DW_MACRO_GNU_define_indirect_alt:
21121 case DW_MACRO_GNU_undef_indirect_alt:
21122 {
21123 unsigned int bytes_read;
21124 int line;
21125 const char *body;
21126 int is_define;
21127
21128 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21129 mac_ptr += bytes_read;
21130
21131 if (macinfo_type == DW_MACRO_GNU_define
21132 || macinfo_type == DW_MACRO_GNU_undef)
21133 {
21134 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21135 mac_ptr += bytes_read;
21136 }
21137 else
21138 {
21139 LONGEST str_offset;
21140
21141 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21142 mac_ptr += offset_size;
21143
21144 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21145 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21146 || section_is_dwz)
21147 {
21148 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21149
21150 body = read_indirect_string_from_dwz (dwz, str_offset);
21151 }
21152 else
21153 body = read_indirect_string_at_offset (abfd, str_offset);
21154 }
21155
21156 is_define = (macinfo_type == DW_MACRO_GNU_define
21157 || macinfo_type == DW_MACRO_GNU_define_indirect
21158 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21159 if (! current_file)
21160 {
21161 /* DWARF violation as no main source is present. */
21162 complaint (&symfile_complaints,
21163 _("debug info with no main source gives macro %s "
21164 "on line %d: %s"),
21165 is_define ? _("definition") : _("undefinition"),
21166 line, body);
21167 break;
21168 }
21169 if ((line == 0 && !at_commandline)
21170 || (line != 0 && at_commandline))
21171 complaint (&symfile_complaints,
21172 _("debug info gives %s macro %s with %s line %d: %s"),
21173 at_commandline ? _("command-line") : _("in-file"),
21174 is_define ? _("definition") : _("undefinition"),
21175 line == 0 ? _("zero") : _("non-zero"), line, body);
21176
21177 if (is_define)
21178 parse_macro_definition (current_file, line, body);
21179 else
21180 {
21181 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21182 || macinfo_type == DW_MACRO_GNU_undef_indirect
21183 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21184 macro_undef (current_file, line, body);
21185 }
21186 }
21187 break;
21188
21189 case DW_MACRO_GNU_start_file:
21190 {
21191 unsigned int bytes_read;
21192 int line, file;
21193
21194 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21195 mac_ptr += bytes_read;
21196 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21197 mac_ptr += bytes_read;
21198
21199 if ((line == 0 && !at_commandline)
21200 || (line != 0 && at_commandline))
21201 complaint (&symfile_complaints,
21202 _("debug info gives source %d included "
21203 "from %s at %s line %d"),
21204 file, at_commandline ? _("command-line") : _("file"),
21205 line == 0 ? _("zero") : _("non-zero"), line);
21206
21207 if (at_commandline)
21208 {
21209 /* This DW_MACRO_GNU_start_file was executed in the
21210 pass one. */
21211 at_commandline = 0;
21212 }
21213 else
21214 current_file = macro_start_file (file, line, current_file, lh);
21215 }
21216 break;
21217
21218 case DW_MACRO_GNU_end_file:
21219 if (! current_file)
21220 complaint (&symfile_complaints,
21221 _("macro debug info has an unmatched "
21222 "`close_file' directive"));
21223 else
21224 {
21225 current_file = current_file->included_by;
21226 if (! current_file)
21227 {
21228 enum dwarf_macro_record_type next_type;
21229
21230 /* GCC circa March 2002 doesn't produce the zero
21231 type byte marking the end of the compilation
21232 unit. Complain if it's not there, but exit no
21233 matter what. */
21234
21235 /* Do we at least have room for a macinfo type byte? */
21236 if (mac_ptr >= mac_end)
21237 {
21238 dwarf2_section_buffer_overflow_complaint (section);
21239 return;
21240 }
21241
21242 /* We don't increment mac_ptr here, so this is just
21243 a look-ahead. */
21244 next_type = read_1_byte (abfd, mac_ptr);
21245 if (next_type != 0)
21246 complaint (&symfile_complaints,
21247 _("no terminating 0-type entry for "
21248 "macros in `.debug_macinfo' section"));
21249
21250 return;
21251 }
21252 }
21253 break;
21254
21255 case DW_MACRO_GNU_transparent_include:
21256 case DW_MACRO_GNU_transparent_include_alt:
21257 {
21258 LONGEST offset;
21259 void **slot;
21260 bfd *include_bfd = abfd;
21261 struct dwarf2_section_info *include_section = section;
21262 struct dwarf2_section_info alt_section;
21263 const gdb_byte *include_mac_end = mac_end;
21264 int is_dwz = section_is_dwz;
21265 const gdb_byte *new_mac_ptr;
21266
21267 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21268 mac_ptr += offset_size;
21269
21270 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21271 {
21272 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21273
21274 dwarf2_read_section (objfile, &dwz->macro);
21275
21276 include_section = &dwz->macro;
21277 include_bfd = get_section_bfd_owner (include_section);
21278 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21279 is_dwz = 1;
21280 }
21281
21282 new_mac_ptr = include_section->buffer + offset;
21283 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21284
21285 if (*slot != NULL)
21286 {
21287 /* This has actually happened; see
21288 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21289 complaint (&symfile_complaints,
21290 _("recursive DW_MACRO_GNU_transparent_include in "
21291 ".debug_macro section"));
21292 }
21293 else
21294 {
21295 *slot = (void *) new_mac_ptr;
21296
21297 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21298 include_mac_end, current_file, lh,
21299 section, section_is_gnu, is_dwz,
21300 offset_size, include_hash);
21301
21302 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21303 }
21304 }
21305 break;
21306
21307 case DW_MACINFO_vendor_ext:
21308 if (!section_is_gnu)
21309 {
21310 unsigned int bytes_read;
21311 int constant;
21312
21313 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21314 mac_ptr += bytes_read;
21315 read_direct_string (abfd, mac_ptr, &bytes_read);
21316 mac_ptr += bytes_read;
21317
21318 /* We don't recognize any vendor extensions. */
21319 break;
21320 }
21321 /* FALLTHROUGH */
21322
21323 default:
21324 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21325 mac_ptr, mac_end, abfd, offset_size,
21326 section);
21327 if (mac_ptr == NULL)
21328 return;
21329 break;
21330 }
21331 } while (macinfo_type != 0);
21332 }
21333
21334 static void
21335 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21336 int section_is_gnu)
21337 {
21338 struct objfile *objfile = dwarf2_per_objfile->objfile;
21339 struct line_header *lh = cu->line_header;
21340 bfd *abfd;
21341 const gdb_byte *mac_ptr, *mac_end;
21342 struct macro_source_file *current_file = 0;
21343 enum dwarf_macro_record_type macinfo_type;
21344 unsigned int offset_size = cu->header.offset_size;
21345 const gdb_byte *opcode_definitions[256];
21346 struct cleanup *cleanup;
21347 htab_t include_hash;
21348 void **slot;
21349 struct dwarf2_section_info *section;
21350 const char *section_name;
21351
21352 if (cu->dwo_unit != NULL)
21353 {
21354 if (section_is_gnu)
21355 {
21356 section = &cu->dwo_unit->dwo_file->sections.macro;
21357 section_name = ".debug_macro.dwo";
21358 }
21359 else
21360 {
21361 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21362 section_name = ".debug_macinfo.dwo";
21363 }
21364 }
21365 else
21366 {
21367 if (section_is_gnu)
21368 {
21369 section = &dwarf2_per_objfile->macro;
21370 section_name = ".debug_macro";
21371 }
21372 else
21373 {
21374 section = &dwarf2_per_objfile->macinfo;
21375 section_name = ".debug_macinfo";
21376 }
21377 }
21378
21379 dwarf2_read_section (objfile, section);
21380 if (section->buffer == NULL)
21381 {
21382 complaint (&symfile_complaints, _("missing %s section"), section_name);
21383 return;
21384 }
21385 abfd = get_section_bfd_owner (section);
21386
21387 /* First pass: Find the name of the base filename.
21388 This filename is needed in order to process all macros whose definition
21389 (or undefinition) comes from the command line. These macros are defined
21390 before the first DW_MACINFO_start_file entry, and yet still need to be
21391 associated to the base file.
21392
21393 To determine the base file name, we scan the macro definitions until we
21394 reach the first DW_MACINFO_start_file entry. We then initialize
21395 CURRENT_FILE accordingly so that any macro definition found before the
21396 first DW_MACINFO_start_file can still be associated to the base file. */
21397
21398 mac_ptr = section->buffer + offset;
21399 mac_end = section->buffer + section->size;
21400
21401 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21402 &offset_size, section_is_gnu);
21403 if (mac_ptr == NULL)
21404 {
21405 /* We already issued a complaint. */
21406 return;
21407 }
21408
21409 do
21410 {
21411 /* Do we at least have room for a macinfo type byte? */
21412 if (mac_ptr >= mac_end)
21413 {
21414 /* Complaint is printed during the second pass as GDB will probably
21415 stop the first pass earlier upon finding
21416 DW_MACINFO_start_file. */
21417 break;
21418 }
21419
21420 macinfo_type = read_1_byte (abfd, mac_ptr);
21421 mac_ptr++;
21422
21423 /* Note that we rely on the fact that the corresponding GNU and
21424 DWARF constants are the same. */
21425 switch (macinfo_type)
21426 {
21427 /* A zero macinfo type indicates the end of the macro
21428 information. */
21429 case 0:
21430 break;
21431
21432 case DW_MACRO_GNU_define:
21433 case DW_MACRO_GNU_undef:
21434 /* Only skip the data by MAC_PTR. */
21435 {
21436 unsigned int bytes_read;
21437
21438 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21439 mac_ptr += bytes_read;
21440 read_direct_string (abfd, mac_ptr, &bytes_read);
21441 mac_ptr += bytes_read;
21442 }
21443 break;
21444
21445 case DW_MACRO_GNU_start_file:
21446 {
21447 unsigned int bytes_read;
21448 int line, file;
21449
21450 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21451 mac_ptr += bytes_read;
21452 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21453 mac_ptr += bytes_read;
21454
21455 current_file = macro_start_file (file, line, current_file, lh);
21456 }
21457 break;
21458
21459 case DW_MACRO_GNU_end_file:
21460 /* No data to skip by MAC_PTR. */
21461 break;
21462
21463 case DW_MACRO_GNU_define_indirect:
21464 case DW_MACRO_GNU_undef_indirect:
21465 case DW_MACRO_GNU_define_indirect_alt:
21466 case DW_MACRO_GNU_undef_indirect_alt:
21467 {
21468 unsigned int bytes_read;
21469
21470 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21471 mac_ptr += bytes_read;
21472 mac_ptr += offset_size;
21473 }
21474 break;
21475
21476 case DW_MACRO_GNU_transparent_include:
21477 case DW_MACRO_GNU_transparent_include_alt:
21478 /* Note that, according to the spec, a transparent include
21479 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21480 skip this opcode. */
21481 mac_ptr += offset_size;
21482 break;
21483
21484 case DW_MACINFO_vendor_ext:
21485 /* Only skip the data by MAC_PTR. */
21486 if (!section_is_gnu)
21487 {
21488 unsigned int bytes_read;
21489
21490 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21491 mac_ptr += bytes_read;
21492 read_direct_string (abfd, mac_ptr, &bytes_read);
21493 mac_ptr += bytes_read;
21494 }
21495 /* FALLTHROUGH */
21496
21497 default:
21498 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21499 mac_ptr, mac_end, abfd, offset_size,
21500 section);
21501 if (mac_ptr == NULL)
21502 return;
21503 break;
21504 }
21505 } while (macinfo_type != 0 && current_file == NULL);
21506
21507 /* Second pass: Process all entries.
21508
21509 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21510 command-line macro definitions/undefinitions. This flag is unset when we
21511 reach the first DW_MACINFO_start_file entry. */
21512
21513 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21514 NULL, xcalloc, xfree);
21515 cleanup = make_cleanup_htab_delete (include_hash);
21516 mac_ptr = section->buffer + offset;
21517 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21518 *slot = (void *) mac_ptr;
21519 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21520 current_file, lh, section,
21521 section_is_gnu, 0, offset_size, include_hash);
21522 do_cleanups (cleanup);
21523 }
21524
21525 /* Check if the attribute's form is a DW_FORM_block*
21526 if so return true else false. */
21527
21528 static int
21529 attr_form_is_block (const struct attribute *attr)
21530 {
21531 return (attr == NULL ? 0 :
21532 attr->form == DW_FORM_block1
21533 || attr->form == DW_FORM_block2
21534 || attr->form == DW_FORM_block4
21535 || attr->form == DW_FORM_block
21536 || attr->form == DW_FORM_exprloc);
21537 }
21538
21539 /* Return non-zero if ATTR's value is a section offset --- classes
21540 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21541 You may use DW_UNSND (attr) to retrieve such offsets.
21542
21543 Section 7.5.4, "Attribute Encodings", explains that no attribute
21544 may have a value that belongs to more than one of these classes; it
21545 would be ambiguous if we did, because we use the same forms for all
21546 of them. */
21547
21548 static int
21549 attr_form_is_section_offset (const struct attribute *attr)
21550 {
21551 return (attr->form == DW_FORM_data4
21552 || attr->form == DW_FORM_data8
21553 || attr->form == DW_FORM_sec_offset);
21554 }
21555
21556 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21557 zero otherwise. When this function returns true, you can apply
21558 dwarf2_get_attr_constant_value to it.
21559
21560 However, note that for some attributes you must check
21561 attr_form_is_section_offset before using this test. DW_FORM_data4
21562 and DW_FORM_data8 are members of both the constant class, and of
21563 the classes that contain offsets into other debug sections
21564 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21565 that, if an attribute's can be either a constant or one of the
21566 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21567 taken as section offsets, not constants. */
21568
21569 static int
21570 attr_form_is_constant (const struct attribute *attr)
21571 {
21572 switch (attr->form)
21573 {
21574 case DW_FORM_sdata:
21575 case DW_FORM_udata:
21576 case DW_FORM_data1:
21577 case DW_FORM_data2:
21578 case DW_FORM_data4:
21579 case DW_FORM_data8:
21580 return 1;
21581 default:
21582 return 0;
21583 }
21584 }
21585
21586
21587 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21588 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21589
21590 static int
21591 attr_form_is_ref (const struct attribute *attr)
21592 {
21593 switch (attr->form)
21594 {
21595 case DW_FORM_ref_addr:
21596 case DW_FORM_ref1:
21597 case DW_FORM_ref2:
21598 case DW_FORM_ref4:
21599 case DW_FORM_ref8:
21600 case DW_FORM_ref_udata:
21601 case DW_FORM_GNU_ref_alt:
21602 return 1;
21603 default:
21604 return 0;
21605 }
21606 }
21607
21608 /* Return the .debug_loc section to use for CU.
21609 For DWO files use .debug_loc.dwo. */
21610
21611 static struct dwarf2_section_info *
21612 cu_debug_loc_section (struct dwarf2_cu *cu)
21613 {
21614 if (cu->dwo_unit)
21615 return &cu->dwo_unit->dwo_file->sections.loc;
21616 return &dwarf2_per_objfile->loc;
21617 }
21618
21619 /* A helper function that fills in a dwarf2_loclist_baton. */
21620
21621 static void
21622 fill_in_loclist_baton (struct dwarf2_cu *cu,
21623 struct dwarf2_loclist_baton *baton,
21624 const struct attribute *attr)
21625 {
21626 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21627
21628 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21629
21630 baton->per_cu = cu->per_cu;
21631 gdb_assert (baton->per_cu);
21632 /* We don't know how long the location list is, but make sure we
21633 don't run off the edge of the section. */
21634 baton->size = section->size - DW_UNSND (attr);
21635 baton->data = section->buffer + DW_UNSND (attr);
21636 baton->base_address = cu->base_address;
21637 baton->from_dwo = cu->dwo_unit != NULL;
21638 }
21639
21640 static void
21641 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21642 struct dwarf2_cu *cu, int is_block)
21643 {
21644 struct objfile *objfile = dwarf2_per_objfile->objfile;
21645 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21646
21647 if (attr_form_is_section_offset (attr)
21648 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21649 the section. If so, fall through to the complaint in the
21650 other branch. */
21651 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21652 {
21653 struct dwarf2_loclist_baton *baton;
21654
21655 baton = obstack_alloc (&objfile->objfile_obstack,
21656 sizeof (struct dwarf2_loclist_baton));
21657
21658 fill_in_loclist_baton (cu, baton, attr);
21659
21660 if (cu->base_known == 0)
21661 complaint (&symfile_complaints,
21662 _("Location list used without "
21663 "specifying the CU base address."));
21664
21665 SYMBOL_ACLASS_INDEX (sym) = (is_block
21666 ? dwarf2_loclist_block_index
21667 : dwarf2_loclist_index);
21668 SYMBOL_LOCATION_BATON (sym) = baton;
21669 }
21670 else
21671 {
21672 struct dwarf2_locexpr_baton *baton;
21673
21674 baton = obstack_alloc (&objfile->objfile_obstack,
21675 sizeof (struct dwarf2_locexpr_baton));
21676 baton->per_cu = cu->per_cu;
21677 gdb_assert (baton->per_cu);
21678
21679 if (attr_form_is_block (attr))
21680 {
21681 /* Note that we're just copying the block's data pointer
21682 here, not the actual data. We're still pointing into the
21683 info_buffer for SYM's objfile; right now we never release
21684 that buffer, but when we do clean up properly this may
21685 need to change. */
21686 baton->size = DW_BLOCK (attr)->size;
21687 baton->data = DW_BLOCK (attr)->data;
21688 }
21689 else
21690 {
21691 dwarf2_invalid_attrib_class_complaint ("location description",
21692 SYMBOL_NATURAL_NAME (sym));
21693 baton->size = 0;
21694 }
21695
21696 SYMBOL_ACLASS_INDEX (sym) = (is_block
21697 ? dwarf2_locexpr_block_index
21698 : dwarf2_locexpr_index);
21699 SYMBOL_LOCATION_BATON (sym) = baton;
21700 }
21701 }
21702
21703 /* Return the OBJFILE associated with the compilation unit CU. If CU
21704 came from a separate debuginfo file, then the master objfile is
21705 returned. */
21706
21707 struct objfile *
21708 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21709 {
21710 struct objfile *objfile = per_cu->objfile;
21711
21712 /* Return the master objfile, so that we can report and look up the
21713 correct file containing this variable. */
21714 if (objfile->separate_debug_objfile_backlink)
21715 objfile = objfile->separate_debug_objfile_backlink;
21716
21717 return objfile;
21718 }
21719
21720 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21721 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21722 CU_HEADERP first. */
21723
21724 static const struct comp_unit_head *
21725 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21726 struct dwarf2_per_cu_data *per_cu)
21727 {
21728 const gdb_byte *info_ptr;
21729
21730 if (per_cu->cu)
21731 return &per_cu->cu->header;
21732
21733 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21734
21735 memset (cu_headerp, 0, sizeof (*cu_headerp));
21736 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21737
21738 return cu_headerp;
21739 }
21740
21741 /* Return the address size given in the compilation unit header for CU. */
21742
21743 int
21744 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21745 {
21746 struct comp_unit_head cu_header_local;
21747 const struct comp_unit_head *cu_headerp;
21748
21749 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21750
21751 return cu_headerp->addr_size;
21752 }
21753
21754 /* Return the offset size given in the compilation unit header for CU. */
21755
21756 int
21757 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21758 {
21759 struct comp_unit_head cu_header_local;
21760 const struct comp_unit_head *cu_headerp;
21761
21762 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21763
21764 return cu_headerp->offset_size;
21765 }
21766
21767 /* See its dwarf2loc.h declaration. */
21768
21769 int
21770 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21771 {
21772 struct comp_unit_head cu_header_local;
21773 const struct comp_unit_head *cu_headerp;
21774
21775 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21776
21777 if (cu_headerp->version == 2)
21778 return cu_headerp->addr_size;
21779 else
21780 return cu_headerp->offset_size;
21781 }
21782
21783 /* Return the text offset of the CU. The returned offset comes from
21784 this CU's objfile. If this objfile came from a separate debuginfo
21785 file, then the offset may be different from the corresponding
21786 offset in the parent objfile. */
21787
21788 CORE_ADDR
21789 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21790 {
21791 struct objfile *objfile = per_cu->objfile;
21792
21793 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21794 }
21795
21796 /* Locate the .debug_info compilation unit from CU's objfile which contains
21797 the DIE at OFFSET. Raises an error on failure. */
21798
21799 static struct dwarf2_per_cu_data *
21800 dwarf2_find_containing_comp_unit (sect_offset offset,
21801 unsigned int offset_in_dwz,
21802 struct objfile *objfile)
21803 {
21804 struct dwarf2_per_cu_data *this_cu;
21805 int low, high;
21806 const sect_offset *cu_off;
21807
21808 low = 0;
21809 high = dwarf2_per_objfile->n_comp_units - 1;
21810 while (high > low)
21811 {
21812 struct dwarf2_per_cu_data *mid_cu;
21813 int mid = low + (high - low) / 2;
21814
21815 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21816 cu_off = &mid_cu->offset;
21817 if (mid_cu->is_dwz > offset_in_dwz
21818 || (mid_cu->is_dwz == offset_in_dwz
21819 && cu_off->sect_off >= offset.sect_off))
21820 high = mid;
21821 else
21822 low = mid + 1;
21823 }
21824 gdb_assert (low == high);
21825 this_cu = dwarf2_per_objfile->all_comp_units[low];
21826 cu_off = &this_cu->offset;
21827 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21828 {
21829 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21830 error (_("Dwarf Error: could not find partial DIE containing "
21831 "offset 0x%lx [in module %s]"),
21832 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21833
21834 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21835 <= offset.sect_off);
21836 return dwarf2_per_objfile->all_comp_units[low-1];
21837 }
21838 else
21839 {
21840 this_cu = dwarf2_per_objfile->all_comp_units[low];
21841 if (low == dwarf2_per_objfile->n_comp_units - 1
21842 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21843 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21844 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21845 return this_cu;
21846 }
21847 }
21848
21849 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21850
21851 static void
21852 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21853 {
21854 memset (cu, 0, sizeof (*cu));
21855 per_cu->cu = cu;
21856 cu->per_cu = per_cu;
21857 cu->objfile = per_cu->objfile;
21858 obstack_init (&cu->comp_unit_obstack);
21859 }
21860
21861 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21862
21863 static void
21864 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21865 enum language pretend_language)
21866 {
21867 struct attribute *attr;
21868
21869 /* Set the language we're debugging. */
21870 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21871 if (attr)
21872 set_cu_language (DW_UNSND (attr), cu);
21873 else
21874 {
21875 cu->language = pretend_language;
21876 cu->language_defn = language_def (cu->language);
21877 }
21878
21879 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21880 if (attr)
21881 cu->producer = DW_STRING (attr);
21882 }
21883
21884 /* Release one cached compilation unit, CU. We unlink it from the tree
21885 of compilation units, but we don't remove it from the read_in_chain;
21886 the caller is responsible for that.
21887 NOTE: DATA is a void * because this function is also used as a
21888 cleanup routine. */
21889
21890 static void
21891 free_heap_comp_unit (void *data)
21892 {
21893 struct dwarf2_cu *cu = data;
21894
21895 gdb_assert (cu->per_cu != NULL);
21896 cu->per_cu->cu = NULL;
21897 cu->per_cu = NULL;
21898
21899 obstack_free (&cu->comp_unit_obstack, NULL);
21900
21901 xfree (cu);
21902 }
21903
21904 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21905 when we're finished with it. We can't free the pointer itself, but be
21906 sure to unlink it from the cache. Also release any associated storage. */
21907
21908 static void
21909 free_stack_comp_unit (void *data)
21910 {
21911 struct dwarf2_cu *cu = data;
21912
21913 gdb_assert (cu->per_cu != NULL);
21914 cu->per_cu->cu = NULL;
21915 cu->per_cu = NULL;
21916
21917 obstack_free (&cu->comp_unit_obstack, NULL);
21918 cu->partial_dies = NULL;
21919 }
21920
21921 /* Free all cached compilation units. */
21922
21923 static void
21924 free_cached_comp_units (void *data)
21925 {
21926 struct dwarf2_per_cu_data *per_cu, **last_chain;
21927
21928 per_cu = dwarf2_per_objfile->read_in_chain;
21929 last_chain = &dwarf2_per_objfile->read_in_chain;
21930 while (per_cu != NULL)
21931 {
21932 struct dwarf2_per_cu_data *next_cu;
21933
21934 next_cu = per_cu->cu->read_in_chain;
21935
21936 free_heap_comp_unit (per_cu->cu);
21937 *last_chain = next_cu;
21938
21939 per_cu = next_cu;
21940 }
21941 }
21942
21943 /* Increase the age counter on each cached compilation unit, and free
21944 any that are too old. */
21945
21946 static void
21947 age_cached_comp_units (void)
21948 {
21949 struct dwarf2_per_cu_data *per_cu, **last_chain;
21950
21951 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21952 per_cu = dwarf2_per_objfile->read_in_chain;
21953 while (per_cu != NULL)
21954 {
21955 per_cu->cu->last_used ++;
21956 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21957 dwarf2_mark (per_cu->cu);
21958 per_cu = per_cu->cu->read_in_chain;
21959 }
21960
21961 per_cu = dwarf2_per_objfile->read_in_chain;
21962 last_chain = &dwarf2_per_objfile->read_in_chain;
21963 while (per_cu != NULL)
21964 {
21965 struct dwarf2_per_cu_data *next_cu;
21966
21967 next_cu = per_cu->cu->read_in_chain;
21968
21969 if (!per_cu->cu->mark)
21970 {
21971 free_heap_comp_unit (per_cu->cu);
21972 *last_chain = next_cu;
21973 }
21974 else
21975 last_chain = &per_cu->cu->read_in_chain;
21976
21977 per_cu = next_cu;
21978 }
21979 }
21980
21981 /* Remove a single compilation unit from the cache. */
21982
21983 static void
21984 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21985 {
21986 struct dwarf2_per_cu_data *per_cu, **last_chain;
21987
21988 per_cu = dwarf2_per_objfile->read_in_chain;
21989 last_chain = &dwarf2_per_objfile->read_in_chain;
21990 while (per_cu != NULL)
21991 {
21992 struct dwarf2_per_cu_data *next_cu;
21993
21994 next_cu = per_cu->cu->read_in_chain;
21995
21996 if (per_cu == target_per_cu)
21997 {
21998 free_heap_comp_unit (per_cu->cu);
21999 per_cu->cu = NULL;
22000 *last_chain = next_cu;
22001 break;
22002 }
22003 else
22004 last_chain = &per_cu->cu->read_in_chain;
22005
22006 per_cu = next_cu;
22007 }
22008 }
22009
22010 /* Release all extra memory associated with OBJFILE. */
22011
22012 void
22013 dwarf2_free_objfile (struct objfile *objfile)
22014 {
22015 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22016
22017 if (dwarf2_per_objfile == NULL)
22018 return;
22019
22020 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22021 free_cached_comp_units (NULL);
22022
22023 if (dwarf2_per_objfile->quick_file_names_table)
22024 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22025
22026 if (dwarf2_per_objfile->line_header_hash)
22027 htab_delete (dwarf2_per_objfile->line_header_hash);
22028
22029 /* Everything else should be on the objfile obstack. */
22030 }
22031
22032 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22033 We store these in a hash table separate from the DIEs, and preserve them
22034 when the DIEs are flushed out of cache.
22035
22036 The CU "per_cu" pointer is needed because offset alone is not enough to
22037 uniquely identify the type. A file may have multiple .debug_types sections,
22038 or the type may come from a DWO file. Furthermore, while it's more logical
22039 to use per_cu->section+offset, with Fission the section with the data is in
22040 the DWO file but we don't know that section at the point we need it.
22041 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22042 because we can enter the lookup routine, get_die_type_at_offset, from
22043 outside this file, and thus won't necessarily have PER_CU->cu.
22044 Fortunately, PER_CU is stable for the life of the objfile. */
22045
22046 struct dwarf2_per_cu_offset_and_type
22047 {
22048 const struct dwarf2_per_cu_data *per_cu;
22049 sect_offset offset;
22050 struct type *type;
22051 };
22052
22053 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22054
22055 static hashval_t
22056 per_cu_offset_and_type_hash (const void *item)
22057 {
22058 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22059
22060 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22061 }
22062
22063 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22064
22065 static int
22066 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22067 {
22068 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22069 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22070
22071 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22072 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22073 }
22074
22075 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22076 table if necessary. For convenience, return TYPE.
22077
22078 The DIEs reading must have careful ordering to:
22079 * Not cause infite loops trying to read in DIEs as a prerequisite for
22080 reading current DIE.
22081 * Not trying to dereference contents of still incompletely read in types
22082 while reading in other DIEs.
22083 * Enable referencing still incompletely read in types just by a pointer to
22084 the type without accessing its fields.
22085
22086 Therefore caller should follow these rules:
22087 * Try to fetch any prerequisite types we may need to build this DIE type
22088 before building the type and calling set_die_type.
22089 * After building type call set_die_type for current DIE as soon as
22090 possible before fetching more types to complete the current type.
22091 * Make the type as complete as possible before fetching more types. */
22092
22093 static struct type *
22094 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22095 {
22096 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22097 struct objfile *objfile = cu->objfile;
22098 struct attribute *attr;
22099 struct dynamic_prop prop;
22100
22101 /* For Ada types, make sure that the gnat-specific data is always
22102 initialized (if not already set). There are a few types where
22103 we should not be doing so, because the type-specific area is
22104 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22105 where the type-specific area is used to store the floatformat).
22106 But this is not a problem, because the gnat-specific information
22107 is actually not needed for these types. */
22108 if (need_gnat_info (cu)
22109 && TYPE_CODE (type) != TYPE_CODE_FUNC
22110 && TYPE_CODE (type) != TYPE_CODE_FLT
22111 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22112 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22113 && TYPE_CODE (type) != TYPE_CODE_METHOD
22114 && !HAVE_GNAT_AUX_INFO (type))
22115 INIT_GNAT_SPECIFIC (type);
22116
22117 /* Read DW_AT_data_location and set in type. */
22118 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22119 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22120 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22121
22122 if (dwarf2_per_objfile->die_type_hash == NULL)
22123 {
22124 dwarf2_per_objfile->die_type_hash =
22125 htab_create_alloc_ex (127,
22126 per_cu_offset_and_type_hash,
22127 per_cu_offset_and_type_eq,
22128 NULL,
22129 &objfile->objfile_obstack,
22130 hashtab_obstack_allocate,
22131 dummy_obstack_deallocate);
22132 }
22133
22134 ofs.per_cu = cu->per_cu;
22135 ofs.offset = die->offset;
22136 ofs.type = type;
22137 slot = (struct dwarf2_per_cu_offset_and_type **)
22138 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22139 if (*slot)
22140 complaint (&symfile_complaints,
22141 _("A problem internal to GDB: DIE 0x%x has type already set"),
22142 die->offset.sect_off);
22143 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22144 **slot = ofs;
22145 return type;
22146 }
22147
22148 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22149 or return NULL if the die does not have a saved type. */
22150
22151 static struct type *
22152 get_die_type_at_offset (sect_offset offset,
22153 struct dwarf2_per_cu_data *per_cu)
22154 {
22155 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22156
22157 if (dwarf2_per_objfile->die_type_hash == NULL)
22158 return NULL;
22159
22160 ofs.per_cu = per_cu;
22161 ofs.offset = offset;
22162 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22163 if (slot)
22164 return slot->type;
22165 else
22166 return NULL;
22167 }
22168
22169 /* Look up the type for DIE in CU in die_type_hash,
22170 or return NULL if DIE does not have a saved type. */
22171
22172 static struct type *
22173 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22174 {
22175 return get_die_type_at_offset (die->offset, cu->per_cu);
22176 }
22177
22178 /* Add a dependence relationship from CU to REF_PER_CU. */
22179
22180 static void
22181 dwarf2_add_dependence (struct dwarf2_cu *cu,
22182 struct dwarf2_per_cu_data *ref_per_cu)
22183 {
22184 void **slot;
22185
22186 if (cu->dependencies == NULL)
22187 cu->dependencies
22188 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22189 NULL, &cu->comp_unit_obstack,
22190 hashtab_obstack_allocate,
22191 dummy_obstack_deallocate);
22192
22193 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22194 if (*slot == NULL)
22195 *slot = ref_per_cu;
22196 }
22197
22198 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22199 Set the mark field in every compilation unit in the
22200 cache that we must keep because we are keeping CU. */
22201
22202 static int
22203 dwarf2_mark_helper (void **slot, void *data)
22204 {
22205 struct dwarf2_per_cu_data *per_cu;
22206
22207 per_cu = (struct dwarf2_per_cu_data *) *slot;
22208
22209 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22210 reading of the chain. As such dependencies remain valid it is not much
22211 useful to track and undo them during QUIT cleanups. */
22212 if (per_cu->cu == NULL)
22213 return 1;
22214
22215 if (per_cu->cu->mark)
22216 return 1;
22217 per_cu->cu->mark = 1;
22218
22219 if (per_cu->cu->dependencies != NULL)
22220 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22221
22222 return 1;
22223 }
22224
22225 /* Set the mark field in CU and in every other compilation unit in the
22226 cache that we must keep because we are keeping CU. */
22227
22228 static void
22229 dwarf2_mark (struct dwarf2_cu *cu)
22230 {
22231 if (cu->mark)
22232 return;
22233 cu->mark = 1;
22234 if (cu->dependencies != NULL)
22235 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22236 }
22237
22238 static void
22239 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22240 {
22241 while (per_cu)
22242 {
22243 per_cu->cu->mark = 0;
22244 per_cu = per_cu->cu->read_in_chain;
22245 }
22246 }
22247
22248 /* Trivial hash function for partial_die_info: the hash value of a DIE
22249 is its offset in .debug_info for this objfile. */
22250
22251 static hashval_t
22252 partial_die_hash (const void *item)
22253 {
22254 const struct partial_die_info *part_die = item;
22255
22256 return part_die->offset.sect_off;
22257 }
22258
22259 /* Trivial comparison function for partial_die_info structures: two DIEs
22260 are equal if they have the same offset. */
22261
22262 static int
22263 partial_die_eq (const void *item_lhs, const void *item_rhs)
22264 {
22265 const struct partial_die_info *part_die_lhs = item_lhs;
22266 const struct partial_die_info *part_die_rhs = item_rhs;
22267
22268 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22269 }
22270
22271 static struct cmd_list_element *set_dwarf2_cmdlist;
22272 static struct cmd_list_element *show_dwarf2_cmdlist;
22273
22274 static void
22275 set_dwarf2_cmd (char *args, int from_tty)
22276 {
22277 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22278 gdb_stdout);
22279 }
22280
22281 static void
22282 show_dwarf2_cmd (char *args, int from_tty)
22283 {
22284 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22285 }
22286
22287 /* Free data associated with OBJFILE, if necessary. */
22288
22289 static void
22290 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22291 {
22292 struct dwarf2_per_objfile *data = d;
22293 int ix;
22294
22295 /* Make sure we don't accidentally use dwarf2_per_objfile while
22296 cleaning up. */
22297 dwarf2_per_objfile = NULL;
22298
22299 for (ix = 0; ix < data->n_comp_units; ++ix)
22300 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22301
22302 for (ix = 0; ix < data->n_type_units; ++ix)
22303 VEC_free (dwarf2_per_cu_ptr,
22304 data->all_type_units[ix]->per_cu.imported_symtabs);
22305 xfree (data->all_type_units);
22306
22307 VEC_free (dwarf2_section_info_def, data->types);
22308
22309 if (data->dwo_files)
22310 free_dwo_files (data->dwo_files, objfile);
22311 if (data->dwp_file)
22312 gdb_bfd_unref (data->dwp_file->dbfd);
22313
22314 if (data->dwz_file && data->dwz_file->dwz_bfd)
22315 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22316 }
22317
22318 \f
22319 /* The "save gdb-index" command. */
22320
22321 /* The contents of the hash table we create when building the string
22322 table. */
22323 struct strtab_entry
22324 {
22325 offset_type offset;
22326 const char *str;
22327 };
22328
22329 /* Hash function for a strtab_entry.
22330
22331 Function is used only during write_hash_table so no index format backward
22332 compatibility is needed. */
22333
22334 static hashval_t
22335 hash_strtab_entry (const void *e)
22336 {
22337 const struct strtab_entry *entry = e;
22338 return mapped_index_string_hash (INT_MAX, entry->str);
22339 }
22340
22341 /* Equality function for a strtab_entry. */
22342
22343 static int
22344 eq_strtab_entry (const void *a, const void *b)
22345 {
22346 const struct strtab_entry *ea = a;
22347 const struct strtab_entry *eb = b;
22348 return !strcmp (ea->str, eb->str);
22349 }
22350
22351 /* Create a strtab_entry hash table. */
22352
22353 static htab_t
22354 create_strtab (void)
22355 {
22356 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22357 xfree, xcalloc, xfree);
22358 }
22359
22360 /* Add a string to the constant pool. Return the string's offset in
22361 host order. */
22362
22363 static offset_type
22364 add_string (htab_t table, struct obstack *cpool, const char *str)
22365 {
22366 void **slot;
22367 struct strtab_entry entry;
22368 struct strtab_entry *result;
22369
22370 entry.str = str;
22371 slot = htab_find_slot (table, &entry, INSERT);
22372 if (*slot)
22373 result = *slot;
22374 else
22375 {
22376 result = XNEW (struct strtab_entry);
22377 result->offset = obstack_object_size (cpool);
22378 result->str = str;
22379 obstack_grow_str0 (cpool, str);
22380 *slot = result;
22381 }
22382 return result->offset;
22383 }
22384
22385 /* An entry in the symbol table. */
22386 struct symtab_index_entry
22387 {
22388 /* The name of the symbol. */
22389 const char *name;
22390 /* The offset of the name in the constant pool. */
22391 offset_type index_offset;
22392 /* A sorted vector of the indices of all the CUs that hold an object
22393 of this name. */
22394 VEC (offset_type) *cu_indices;
22395 };
22396
22397 /* The symbol table. This is a power-of-2-sized hash table. */
22398 struct mapped_symtab
22399 {
22400 offset_type n_elements;
22401 offset_type size;
22402 struct symtab_index_entry **data;
22403 };
22404
22405 /* Hash function for a symtab_index_entry. */
22406
22407 static hashval_t
22408 hash_symtab_entry (const void *e)
22409 {
22410 const struct symtab_index_entry *entry = e;
22411 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22412 sizeof (offset_type) * VEC_length (offset_type,
22413 entry->cu_indices),
22414 0);
22415 }
22416
22417 /* Equality function for a symtab_index_entry. */
22418
22419 static int
22420 eq_symtab_entry (const void *a, const void *b)
22421 {
22422 const struct symtab_index_entry *ea = a;
22423 const struct symtab_index_entry *eb = b;
22424 int len = VEC_length (offset_type, ea->cu_indices);
22425 if (len != VEC_length (offset_type, eb->cu_indices))
22426 return 0;
22427 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22428 VEC_address (offset_type, eb->cu_indices),
22429 sizeof (offset_type) * len);
22430 }
22431
22432 /* Destroy a symtab_index_entry. */
22433
22434 static void
22435 delete_symtab_entry (void *p)
22436 {
22437 struct symtab_index_entry *entry = p;
22438 VEC_free (offset_type, entry->cu_indices);
22439 xfree (entry);
22440 }
22441
22442 /* Create a hash table holding symtab_index_entry objects. */
22443
22444 static htab_t
22445 create_symbol_hash_table (void)
22446 {
22447 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22448 delete_symtab_entry, xcalloc, xfree);
22449 }
22450
22451 /* Create a new mapped symtab object. */
22452
22453 static struct mapped_symtab *
22454 create_mapped_symtab (void)
22455 {
22456 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22457 symtab->n_elements = 0;
22458 symtab->size = 1024;
22459 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22460 return symtab;
22461 }
22462
22463 /* Destroy a mapped_symtab. */
22464
22465 static void
22466 cleanup_mapped_symtab (void *p)
22467 {
22468 struct mapped_symtab *symtab = p;
22469 /* The contents of the array are freed when the other hash table is
22470 destroyed. */
22471 xfree (symtab->data);
22472 xfree (symtab);
22473 }
22474
22475 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22476 the slot.
22477
22478 Function is used only during write_hash_table so no index format backward
22479 compatibility is needed. */
22480
22481 static struct symtab_index_entry **
22482 find_slot (struct mapped_symtab *symtab, const char *name)
22483 {
22484 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22485
22486 index = hash & (symtab->size - 1);
22487 step = ((hash * 17) & (symtab->size - 1)) | 1;
22488
22489 for (;;)
22490 {
22491 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22492 return &symtab->data[index];
22493 index = (index + step) & (symtab->size - 1);
22494 }
22495 }
22496
22497 /* Expand SYMTAB's hash table. */
22498
22499 static void
22500 hash_expand (struct mapped_symtab *symtab)
22501 {
22502 offset_type old_size = symtab->size;
22503 offset_type i;
22504 struct symtab_index_entry **old_entries = symtab->data;
22505
22506 symtab->size *= 2;
22507 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22508
22509 for (i = 0; i < old_size; ++i)
22510 {
22511 if (old_entries[i])
22512 {
22513 struct symtab_index_entry **slot = find_slot (symtab,
22514 old_entries[i]->name);
22515 *slot = old_entries[i];
22516 }
22517 }
22518
22519 xfree (old_entries);
22520 }
22521
22522 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22523 CU_INDEX is the index of the CU in which the symbol appears.
22524 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22525
22526 static void
22527 add_index_entry (struct mapped_symtab *symtab, const char *name,
22528 int is_static, gdb_index_symbol_kind kind,
22529 offset_type cu_index)
22530 {
22531 struct symtab_index_entry **slot;
22532 offset_type cu_index_and_attrs;
22533
22534 ++symtab->n_elements;
22535 if (4 * symtab->n_elements / 3 >= symtab->size)
22536 hash_expand (symtab);
22537
22538 slot = find_slot (symtab, name);
22539 if (!*slot)
22540 {
22541 *slot = XNEW (struct symtab_index_entry);
22542 (*slot)->name = name;
22543 /* index_offset is set later. */
22544 (*slot)->cu_indices = NULL;
22545 }
22546
22547 cu_index_and_attrs = 0;
22548 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22549 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22550 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22551
22552 /* We don't want to record an index value twice as we want to avoid the
22553 duplication.
22554 We process all global symbols and then all static symbols
22555 (which would allow us to avoid the duplication by only having to check
22556 the last entry pushed), but a symbol could have multiple kinds in one CU.
22557 To keep things simple we don't worry about the duplication here and
22558 sort and uniqufy the list after we've processed all symbols. */
22559 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22560 }
22561
22562 /* qsort helper routine for uniquify_cu_indices. */
22563
22564 static int
22565 offset_type_compare (const void *ap, const void *bp)
22566 {
22567 offset_type a = *(offset_type *) ap;
22568 offset_type b = *(offset_type *) bp;
22569
22570 return (a > b) - (b > a);
22571 }
22572
22573 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22574
22575 static void
22576 uniquify_cu_indices (struct mapped_symtab *symtab)
22577 {
22578 int i;
22579
22580 for (i = 0; i < symtab->size; ++i)
22581 {
22582 struct symtab_index_entry *entry = symtab->data[i];
22583
22584 if (entry
22585 && entry->cu_indices != NULL)
22586 {
22587 unsigned int next_to_insert, next_to_check;
22588 offset_type last_value;
22589
22590 qsort (VEC_address (offset_type, entry->cu_indices),
22591 VEC_length (offset_type, entry->cu_indices),
22592 sizeof (offset_type), offset_type_compare);
22593
22594 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22595 next_to_insert = 1;
22596 for (next_to_check = 1;
22597 next_to_check < VEC_length (offset_type, entry->cu_indices);
22598 ++next_to_check)
22599 {
22600 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22601 != last_value)
22602 {
22603 last_value = VEC_index (offset_type, entry->cu_indices,
22604 next_to_check);
22605 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22606 last_value);
22607 ++next_to_insert;
22608 }
22609 }
22610 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22611 }
22612 }
22613 }
22614
22615 /* Add a vector of indices to the constant pool. */
22616
22617 static offset_type
22618 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22619 struct symtab_index_entry *entry)
22620 {
22621 void **slot;
22622
22623 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22624 if (!*slot)
22625 {
22626 offset_type len = VEC_length (offset_type, entry->cu_indices);
22627 offset_type val = MAYBE_SWAP (len);
22628 offset_type iter;
22629 int i;
22630
22631 *slot = entry;
22632 entry->index_offset = obstack_object_size (cpool);
22633
22634 obstack_grow (cpool, &val, sizeof (val));
22635 for (i = 0;
22636 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22637 ++i)
22638 {
22639 val = MAYBE_SWAP (iter);
22640 obstack_grow (cpool, &val, sizeof (val));
22641 }
22642 }
22643 else
22644 {
22645 struct symtab_index_entry *old_entry = *slot;
22646 entry->index_offset = old_entry->index_offset;
22647 entry = old_entry;
22648 }
22649 return entry->index_offset;
22650 }
22651
22652 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22653 constant pool entries going into the obstack CPOOL. */
22654
22655 static void
22656 write_hash_table (struct mapped_symtab *symtab,
22657 struct obstack *output, struct obstack *cpool)
22658 {
22659 offset_type i;
22660 htab_t symbol_hash_table;
22661 htab_t str_table;
22662
22663 symbol_hash_table = create_symbol_hash_table ();
22664 str_table = create_strtab ();
22665
22666 /* We add all the index vectors to the constant pool first, to
22667 ensure alignment is ok. */
22668 for (i = 0; i < symtab->size; ++i)
22669 {
22670 if (symtab->data[i])
22671 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22672 }
22673
22674 /* Now write out the hash table. */
22675 for (i = 0; i < symtab->size; ++i)
22676 {
22677 offset_type str_off, vec_off;
22678
22679 if (symtab->data[i])
22680 {
22681 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22682 vec_off = symtab->data[i]->index_offset;
22683 }
22684 else
22685 {
22686 /* While 0 is a valid constant pool index, it is not valid
22687 to have 0 for both offsets. */
22688 str_off = 0;
22689 vec_off = 0;
22690 }
22691
22692 str_off = MAYBE_SWAP (str_off);
22693 vec_off = MAYBE_SWAP (vec_off);
22694
22695 obstack_grow (output, &str_off, sizeof (str_off));
22696 obstack_grow (output, &vec_off, sizeof (vec_off));
22697 }
22698
22699 htab_delete (str_table);
22700 htab_delete (symbol_hash_table);
22701 }
22702
22703 /* Struct to map psymtab to CU index in the index file. */
22704 struct psymtab_cu_index_map
22705 {
22706 struct partial_symtab *psymtab;
22707 unsigned int cu_index;
22708 };
22709
22710 static hashval_t
22711 hash_psymtab_cu_index (const void *item)
22712 {
22713 const struct psymtab_cu_index_map *map = item;
22714
22715 return htab_hash_pointer (map->psymtab);
22716 }
22717
22718 static int
22719 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22720 {
22721 const struct psymtab_cu_index_map *lhs = item_lhs;
22722 const struct psymtab_cu_index_map *rhs = item_rhs;
22723
22724 return lhs->psymtab == rhs->psymtab;
22725 }
22726
22727 /* Helper struct for building the address table. */
22728 struct addrmap_index_data
22729 {
22730 struct objfile *objfile;
22731 struct obstack *addr_obstack;
22732 htab_t cu_index_htab;
22733
22734 /* Non-zero if the previous_* fields are valid.
22735 We can't write an entry until we see the next entry (since it is only then
22736 that we know the end of the entry). */
22737 int previous_valid;
22738 /* Index of the CU in the table of all CUs in the index file. */
22739 unsigned int previous_cu_index;
22740 /* Start address of the CU. */
22741 CORE_ADDR previous_cu_start;
22742 };
22743
22744 /* Write an address entry to OBSTACK. */
22745
22746 static void
22747 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22748 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22749 {
22750 offset_type cu_index_to_write;
22751 gdb_byte addr[8];
22752 CORE_ADDR baseaddr;
22753
22754 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22755
22756 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22757 obstack_grow (obstack, addr, 8);
22758 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22759 obstack_grow (obstack, addr, 8);
22760 cu_index_to_write = MAYBE_SWAP (cu_index);
22761 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22762 }
22763
22764 /* Worker function for traversing an addrmap to build the address table. */
22765
22766 static int
22767 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22768 {
22769 struct addrmap_index_data *data = datap;
22770 struct partial_symtab *pst = obj;
22771
22772 if (data->previous_valid)
22773 add_address_entry (data->objfile, data->addr_obstack,
22774 data->previous_cu_start, start_addr,
22775 data->previous_cu_index);
22776
22777 data->previous_cu_start = start_addr;
22778 if (pst != NULL)
22779 {
22780 struct psymtab_cu_index_map find_map, *map;
22781 find_map.psymtab = pst;
22782 map = htab_find (data->cu_index_htab, &find_map);
22783 gdb_assert (map != NULL);
22784 data->previous_cu_index = map->cu_index;
22785 data->previous_valid = 1;
22786 }
22787 else
22788 data->previous_valid = 0;
22789
22790 return 0;
22791 }
22792
22793 /* Write OBJFILE's address map to OBSTACK.
22794 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22795 in the index file. */
22796
22797 static void
22798 write_address_map (struct objfile *objfile, struct obstack *obstack,
22799 htab_t cu_index_htab)
22800 {
22801 struct addrmap_index_data addrmap_index_data;
22802
22803 /* When writing the address table, we have to cope with the fact that
22804 the addrmap iterator only provides the start of a region; we have to
22805 wait until the next invocation to get the start of the next region. */
22806
22807 addrmap_index_data.objfile = objfile;
22808 addrmap_index_data.addr_obstack = obstack;
22809 addrmap_index_data.cu_index_htab = cu_index_htab;
22810 addrmap_index_data.previous_valid = 0;
22811
22812 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22813 &addrmap_index_data);
22814
22815 /* It's highly unlikely the last entry (end address = 0xff...ff)
22816 is valid, but we should still handle it.
22817 The end address is recorded as the start of the next region, but that
22818 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22819 anyway. */
22820 if (addrmap_index_data.previous_valid)
22821 add_address_entry (objfile, obstack,
22822 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22823 addrmap_index_data.previous_cu_index);
22824 }
22825
22826 /* Return the symbol kind of PSYM. */
22827
22828 static gdb_index_symbol_kind
22829 symbol_kind (struct partial_symbol *psym)
22830 {
22831 domain_enum domain = PSYMBOL_DOMAIN (psym);
22832 enum address_class aclass = PSYMBOL_CLASS (psym);
22833
22834 switch (domain)
22835 {
22836 case VAR_DOMAIN:
22837 switch (aclass)
22838 {
22839 case LOC_BLOCK:
22840 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22841 case LOC_TYPEDEF:
22842 return GDB_INDEX_SYMBOL_KIND_TYPE;
22843 case LOC_COMPUTED:
22844 case LOC_CONST_BYTES:
22845 case LOC_OPTIMIZED_OUT:
22846 case LOC_STATIC:
22847 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22848 case LOC_CONST:
22849 /* Note: It's currently impossible to recognize psyms as enum values
22850 short of reading the type info. For now punt. */
22851 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22852 default:
22853 /* There are other LOC_FOO values that one might want to classify
22854 as variables, but dwarf2read.c doesn't currently use them. */
22855 return GDB_INDEX_SYMBOL_KIND_OTHER;
22856 }
22857 case STRUCT_DOMAIN:
22858 return GDB_INDEX_SYMBOL_KIND_TYPE;
22859 default:
22860 return GDB_INDEX_SYMBOL_KIND_OTHER;
22861 }
22862 }
22863
22864 /* Add a list of partial symbols to SYMTAB. */
22865
22866 static void
22867 write_psymbols (struct mapped_symtab *symtab,
22868 htab_t psyms_seen,
22869 struct partial_symbol **psymp,
22870 int count,
22871 offset_type cu_index,
22872 int is_static)
22873 {
22874 for (; count-- > 0; ++psymp)
22875 {
22876 struct partial_symbol *psym = *psymp;
22877 void **slot;
22878
22879 if (SYMBOL_LANGUAGE (psym) == language_ada)
22880 error (_("Ada is not currently supported by the index"));
22881
22882 /* Only add a given psymbol once. */
22883 slot = htab_find_slot (psyms_seen, psym, INSERT);
22884 if (!*slot)
22885 {
22886 gdb_index_symbol_kind kind = symbol_kind (psym);
22887
22888 *slot = psym;
22889 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22890 is_static, kind, cu_index);
22891 }
22892 }
22893 }
22894
22895 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22896 exception if there is an error. */
22897
22898 static void
22899 write_obstack (FILE *file, struct obstack *obstack)
22900 {
22901 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22902 file)
22903 != obstack_object_size (obstack))
22904 error (_("couldn't data write to file"));
22905 }
22906
22907 /* Unlink a file if the argument is not NULL. */
22908
22909 static void
22910 unlink_if_set (void *p)
22911 {
22912 char **filename = p;
22913 if (*filename)
22914 unlink (*filename);
22915 }
22916
22917 /* A helper struct used when iterating over debug_types. */
22918 struct signatured_type_index_data
22919 {
22920 struct objfile *objfile;
22921 struct mapped_symtab *symtab;
22922 struct obstack *types_list;
22923 htab_t psyms_seen;
22924 int cu_index;
22925 };
22926
22927 /* A helper function that writes a single signatured_type to an
22928 obstack. */
22929
22930 static int
22931 write_one_signatured_type (void **slot, void *d)
22932 {
22933 struct signatured_type_index_data *info = d;
22934 struct signatured_type *entry = (struct signatured_type *) *slot;
22935 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22936 gdb_byte val[8];
22937
22938 write_psymbols (info->symtab,
22939 info->psyms_seen,
22940 info->objfile->global_psymbols.list
22941 + psymtab->globals_offset,
22942 psymtab->n_global_syms, info->cu_index,
22943 0);
22944 write_psymbols (info->symtab,
22945 info->psyms_seen,
22946 info->objfile->static_psymbols.list
22947 + psymtab->statics_offset,
22948 psymtab->n_static_syms, info->cu_index,
22949 1);
22950
22951 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22952 entry->per_cu.offset.sect_off);
22953 obstack_grow (info->types_list, val, 8);
22954 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22955 entry->type_offset_in_tu.cu_off);
22956 obstack_grow (info->types_list, val, 8);
22957 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22958 obstack_grow (info->types_list, val, 8);
22959
22960 ++info->cu_index;
22961
22962 return 1;
22963 }
22964
22965 /* Recurse into all "included" dependencies and write their symbols as
22966 if they appeared in this psymtab. */
22967
22968 static void
22969 recursively_write_psymbols (struct objfile *objfile,
22970 struct partial_symtab *psymtab,
22971 struct mapped_symtab *symtab,
22972 htab_t psyms_seen,
22973 offset_type cu_index)
22974 {
22975 int i;
22976
22977 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22978 if (psymtab->dependencies[i]->user != NULL)
22979 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22980 symtab, psyms_seen, cu_index);
22981
22982 write_psymbols (symtab,
22983 psyms_seen,
22984 objfile->global_psymbols.list + psymtab->globals_offset,
22985 psymtab->n_global_syms, cu_index,
22986 0);
22987 write_psymbols (symtab,
22988 psyms_seen,
22989 objfile->static_psymbols.list + psymtab->statics_offset,
22990 psymtab->n_static_syms, cu_index,
22991 1);
22992 }
22993
22994 /* Create an index file for OBJFILE in the directory DIR. */
22995
22996 static void
22997 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22998 {
22999 struct cleanup *cleanup;
23000 char *filename, *cleanup_filename;
23001 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23002 struct obstack cu_list, types_cu_list;
23003 int i;
23004 FILE *out_file;
23005 struct mapped_symtab *symtab;
23006 offset_type val, size_of_contents, total_len;
23007 struct stat st;
23008 htab_t psyms_seen;
23009 htab_t cu_index_htab;
23010 struct psymtab_cu_index_map *psymtab_cu_index_map;
23011
23012 if (dwarf2_per_objfile->using_index)
23013 error (_("Cannot use an index to create the index"));
23014
23015 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23016 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23017
23018 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23019 return;
23020
23021 if (stat (objfile_name (objfile), &st) < 0)
23022 perror_with_name (objfile_name (objfile));
23023
23024 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23025 INDEX_SUFFIX, (char *) NULL);
23026 cleanup = make_cleanup (xfree, filename);
23027
23028 out_file = gdb_fopen_cloexec (filename, "wb");
23029 if (!out_file)
23030 error (_("Can't open `%s' for writing"), filename);
23031
23032 cleanup_filename = filename;
23033 make_cleanup (unlink_if_set, &cleanup_filename);
23034
23035 symtab = create_mapped_symtab ();
23036 make_cleanup (cleanup_mapped_symtab, symtab);
23037
23038 obstack_init (&addr_obstack);
23039 make_cleanup_obstack_free (&addr_obstack);
23040
23041 obstack_init (&cu_list);
23042 make_cleanup_obstack_free (&cu_list);
23043
23044 obstack_init (&types_cu_list);
23045 make_cleanup_obstack_free (&types_cu_list);
23046
23047 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23048 NULL, xcalloc, xfree);
23049 make_cleanup_htab_delete (psyms_seen);
23050
23051 /* While we're scanning CU's create a table that maps a psymtab pointer
23052 (which is what addrmap records) to its index (which is what is recorded
23053 in the index file). This will later be needed to write the address
23054 table. */
23055 cu_index_htab = htab_create_alloc (100,
23056 hash_psymtab_cu_index,
23057 eq_psymtab_cu_index,
23058 NULL, xcalloc, xfree);
23059 make_cleanup_htab_delete (cu_index_htab);
23060 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23061 xmalloc (sizeof (struct psymtab_cu_index_map)
23062 * dwarf2_per_objfile->n_comp_units);
23063 make_cleanup (xfree, psymtab_cu_index_map);
23064
23065 /* The CU list is already sorted, so we don't need to do additional
23066 work here. Also, the debug_types entries do not appear in
23067 all_comp_units, but only in their own hash table. */
23068 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23069 {
23070 struct dwarf2_per_cu_data *per_cu
23071 = dwarf2_per_objfile->all_comp_units[i];
23072 struct partial_symtab *psymtab = per_cu->v.psymtab;
23073 gdb_byte val[8];
23074 struct psymtab_cu_index_map *map;
23075 void **slot;
23076
23077 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23078 It may be referenced from a local scope but in such case it does not
23079 need to be present in .gdb_index. */
23080 if (psymtab == NULL)
23081 continue;
23082
23083 if (psymtab->user == NULL)
23084 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23085
23086 map = &psymtab_cu_index_map[i];
23087 map->psymtab = psymtab;
23088 map->cu_index = i;
23089 slot = htab_find_slot (cu_index_htab, map, INSERT);
23090 gdb_assert (slot != NULL);
23091 gdb_assert (*slot == NULL);
23092 *slot = map;
23093
23094 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23095 per_cu->offset.sect_off);
23096 obstack_grow (&cu_list, val, 8);
23097 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23098 obstack_grow (&cu_list, val, 8);
23099 }
23100
23101 /* Dump the address map. */
23102 write_address_map (objfile, &addr_obstack, cu_index_htab);
23103
23104 /* Write out the .debug_type entries, if any. */
23105 if (dwarf2_per_objfile->signatured_types)
23106 {
23107 struct signatured_type_index_data sig_data;
23108
23109 sig_data.objfile = objfile;
23110 sig_data.symtab = symtab;
23111 sig_data.types_list = &types_cu_list;
23112 sig_data.psyms_seen = psyms_seen;
23113 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23114 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23115 write_one_signatured_type, &sig_data);
23116 }
23117
23118 /* Now that we've processed all symbols we can shrink their cu_indices
23119 lists. */
23120 uniquify_cu_indices (symtab);
23121
23122 obstack_init (&constant_pool);
23123 make_cleanup_obstack_free (&constant_pool);
23124 obstack_init (&symtab_obstack);
23125 make_cleanup_obstack_free (&symtab_obstack);
23126 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23127
23128 obstack_init (&contents);
23129 make_cleanup_obstack_free (&contents);
23130 size_of_contents = 6 * sizeof (offset_type);
23131 total_len = size_of_contents;
23132
23133 /* The version number. */
23134 val = MAYBE_SWAP (8);
23135 obstack_grow (&contents, &val, sizeof (val));
23136
23137 /* The offset of the CU list from the start of the file. */
23138 val = MAYBE_SWAP (total_len);
23139 obstack_grow (&contents, &val, sizeof (val));
23140 total_len += obstack_object_size (&cu_list);
23141
23142 /* The offset of the types CU list from the start of the file. */
23143 val = MAYBE_SWAP (total_len);
23144 obstack_grow (&contents, &val, sizeof (val));
23145 total_len += obstack_object_size (&types_cu_list);
23146
23147 /* The offset of the address table from the start of the file. */
23148 val = MAYBE_SWAP (total_len);
23149 obstack_grow (&contents, &val, sizeof (val));
23150 total_len += obstack_object_size (&addr_obstack);
23151
23152 /* The offset of the symbol table from the start of the file. */
23153 val = MAYBE_SWAP (total_len);
23154 obstack_grow (&contents, &val, sizeof (val));
23155 total_len += obstack_object_size (&symtab_obstack);
23156
23157 /* The offset of the constant pool from the start of the file. */
23158 val = MAYBE_SWAP (total_len);
23159 obstack_grow (&contents, &val, sizeof (val));
23160 total_len += obstack_object_size (&constant_pool);
23161
23162 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23163
23164 write_obstack (out_file, &contents);
23165 write_obstack (out_file, &cu_list);
23166 write_obstack (out_file, &types_cu_list);
23167 write_obstack (out_file, &addr_obstack);
23168 write_obstack (out_file, &symtab_obstack);
23169 write_obstack (out_file, &constant_pool);
23170
23171 fclose (out_file);
23172
23173 /* We want to keep the file, so we set cleanup_filename to NULL
23174 here. See unlink_if_set. */
23175 cleanup_filename = NULL;
23176
23177 do_cleanups (cleanup);
23178 }
23179
23180 /* Implementation of the `save gdb-index' command.
23181
23182 Note that the file format used by this command is documented in the
23183 GDB manual. Any changes here must be documented there. */
23184
23185 static void
23186 save_gdb_index_command (char *arg, int from_tty)
23187 {
23188 struct objfile *objfile;
23189
23190 if (!arg || !*arg)
23191 error (_("usage: save gdb-index DIRECTORY"));
23192
23193 ALL_OBJFILES (objfile)
23194 {
23195 struct stat st;
23196
23197 /* If the objfile does not correspond to an actual file, skip it. */
23198 if (stat (objfile_name (objfile), &st) < 0)
23199 continue;
23200
23201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23202 if (dwarf2_per_objfile)
23203 {
23204
23205 TRY
23206 {
23207 write_psymtabs_to_index (objfile, arg);
23208 }
23209 CATCH (except, RETURN_MASK_ERROR)
23210 {
23211 exception_fprintf (gdb_stderr, except,
23212 _("Error while writing index for `%s': "),
23213 objfile_name (objfile));
23214 }
23215 END_CATCH
23216 }
23217 }
23218 }
23219
23220 \f
23221
23222 int dwarf2_always_disassemble;
23223
23224 static void
23225 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23226 struct cmd_list_element *c, const char *value)
23227 {
23228 fprintf_filtered (file,
23229 _("Whether to always disassemble "
23230 "DWARF expressions is %s.\n"),
23231 value);
23232 }
23233
23234 static void
23235 show_check_physname (struct ui_file *file, int from_tty,
23236 struct cmd_list_element *c, const char *value)
23237 {
23238 fprintf_filtered (file,
23239 _("Whether to check \"physname\" is %s.\n"),
23240 value);
23241 }
23242
23243 void _initialize_dwarf2_read (void);
23244
23245 void
23246 _initialize_dwarf2_read (void)
23247 {
23248 struct cmd_list_element *c;
23249
23250 dwarf2_objfile_data_key
23251 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23252
23253 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23254 Set DWARF 2 specific variables.\n\
23255 Configure DWARF 2 variables such as the cache size"),
23256 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23257 0/*allow-unknown*/, &maintenance_set_cmdlist);
23258
23259 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23260 Show DWARF 2 specific variables\n\
23261 Show DWARF 2 variables such as the cache size"),
23262 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23263 0/*allow-unknown*/, &maintenance_show_cmdlist);
23264
23265 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23266 &dwarf2_max_cache_age, _("\
23267 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23268 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23269 A higher limit means that cached compilation units will be stored\n\
23270 in memory longer, and more total memory will be used. Zero disables\n\
23271 caching, which can slow down startup."),
23272 NULL,
23273 show_dwarf2_max_cache_age,
23274 &set_dwarf2_cmdlist,
23275 &show_dwarf2_cmdlist);
23276
23277 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23278 &dwarf2_always_disassemble, _("\
23279 Set whether `info address' always disassembles DWARF expressions."), _("\
23280 Show whether `info address' always disassembles DWARF expressions."), _("\
23281 When enabled, DWARF expressions are always printed in an assembly-like\n\
23282 syntax. When disabled, expressions will be printed in a more\n\
23283 conversational style, when possible."),
23284 NULL,
23285 show_dwarf2_always_disassemble,
23286 &set_dwarf2_cmdlist,
23287 &show_dwarf2_cmdlist);
23288
23289 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23290 Set debugging of the dwarf2 reader."), _("\
23291 Show debugging of the dwarf2 reader."), _("\
23292 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23293 reading and symtab expansion. A value of 1 (one) provides basic\n\
23294 information. A value greater than 1 provides more verbose information."),
23295 NULL,
23296 NULL,
23297 &setdebuglist, &showdebuglist);
23298
23299 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23300 Set debugging of the dwarf2 DIE reader."), _("\
23301 Show debugging of the dwarf2 DIE reader."), _("\
23302 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23303 The value is the maximum depth to print."),
23304 NULL,
23305 NULL,
23306 &setdebuglist, &showdebuglist);
23307
23308 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23309 Set cross-checking of \"physname\" code against demangler."), _("\
23310 Show cross-checking of \"physname\" code against demangler."), _("\
23311 When enabled, GDB's internal \"physname\" code is checked against\n\
23312 the demangler."),
23313 NULL, show_check_physname,
23314 &setdebuglist, &showdebuglist);
23315
23316 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23317 no_class, &use_deprecated_index_sections, _("\
23318 Set whether to use deprecated gdb_index sections."), _("\
23319 Show whether to use deprecated gdb_index sections."), _("\
23320 When enabled, deprecated .gdb_index sections are used anyway.\n\
23321 Normally they are ignored either because of a missing feature or\n\
23322 performance issue.\n\
23323 Warning: This option must be enabled before gdb reads the file."),
23324 NULL,
23325 NULL,
23326 &setlist, &showlist);
23327
23328 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23329 _("\
23330 Save a gdb-index file.\n\
23331 Usage: save gdb-index DIRECTORY"),
23332 &save_cmdlist);
23333 set_cmd_completer (c, filename_completer);
23334
23335 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23336 &dwarf2_locexpr_funcs);
23337 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23338 &dwarf2_loclist_funcs);
23339
23340 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23341 &dwarf2_block_frame_base_locexpr_funcs);
23342 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23343 &dwarf2_block_frame_base_loclist_funcs);
23344 }